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Preface

This book provides a modern, self-contained introduction to digital im-
age processing. We designed the book to be used both by learners de-
siring a firm foundation on which to build and practitioners in search
of critical analysis and modern implementations of the most important
techniques. This is the first English edition of the original German-
language book, which has been widely used by:

• Scientists, and engineers who use image processing as a tool and
wish to develop a deeper understanding and create custom solutions
to imaging problems in their field.

• Information technology (IT) professionals wanting a self-study course
featuring easily adaptable code and completely worked out examples
enabling them to be productive right away.

• Faculty and students desiring an example-rich introductory textbook
suitable for an advanced undergraduate or graduate level course that
features exercises, projects, and examples that have been honed dur-
ing our years of experience teaching this material.

While we concentrate on practical applications and concrete implemen-
tations, we do so without glossing over the important formal details and
mathematics necessary for a deeper understanding of the algorithms. In
preparing this text, we started from the premise that simply creating a
recipe book of imaging solutions would not provide the deeper under-
standing needed to apply these techniques to novel problems, so instead
our solutions are developed stepwise from three different perspectives:
in mathematical form, as abstract pseudocode algorithms, and as com-
plete Java programs. We use a common notation to intertwine all three
perspectives—providing multiple, but linked, views of the problem and
its solution.

Prerequisites

Instead of presenting digital image processing as a mathematical disci-
pline, or strictly as signal processing, we present it from a practitioner’s
and programmer’s perspective and with a view toward replacing many
of the formalisms commonly used in other texts with constructs more
readily understandable by our audience. To take full advantage of the
programming components of this book, a knowledge of basic data struc-
tures and object-oriented programming, ideally in Java, is required. We V



Preface selected Java for a number of reasons, one of which is that it is the first
programming language learned by students in a wide variety of engi-
neering curricula. Practitioners with knowledge of a related language,
especially C or C++, will find the programming examples easy to follow
and extend.

The software in this book is designed to work with ImageJ, a widely
used programmer-extensible imaging system developed, maintained, and
distributed by Wayne Rasband of the National Institutes of Health
(NIH).1 ImageJ is implemented completely in Java, and therefore runs
on all major platforms, and is widely used because its “plugin”-based
architecture enables it to be easily extended. While all examples run in
ImageJ, they have been specifically designed to be easily ported to other
environments and programming languages.

Use in research and development

This book has been especially designed for use as a textbook and as
such features exercises and carefully constructed examples that supple-
ment the detailed synthesis of the fundamental concepts and techniques.
As both practitioners and developers, we know that the details required
for successful understanding and application of classical techniques are
often difficult to find, and for this reason we have been very careful
to provide the details, many gleaned over years of practical application,
necessary to successfully apply these techniques. While this should make
the text particularly valuable to those in research and development, it
is not designed as a comprehensive, fully cited scientific research text.
On the contrary, we have carefully vetted our citations so that they can
be obtained from easily accessible sources. While we have only briefly
discussed the fundamentals of, or entirely omitted, topics such as hier-
archical methods, wavelets, or eigenimages because of space limitations,
other topics have been omitted deliberately, including advanced issues
such as object recognition, image understanding, or three-dimensional
computer vision. So while most techniques described in this book could
be called “blind and dumb”, it is our experience that straightforward,
technically clean implementations of these simpler methods are essen-
tial to the success of any further domain-specific, or even “intelligent”
approaches.

If you are only in search of a programming handbook for ImageJ or
Java, there are certainly better sources. While the book includes a com-
prehensive ImageJ reference and many code examples, programming in
and of itself is not our main focus. Instead it serves as just one impor-
tant element for describing each technique in a precise and immediately
testable way.

1 http://rsb.info.nih.gov/ij/.VI



PrefaceWhy we wrote this book

Whether it is called signal processing, image processing, or media com-
putation, the manipulation of digital images has been an integral part of
most computer science and engineering curricula for many years. Today,
with the omnipresence of all-digital work flows it has become an inte-
gral part of the required skill set for professionals in diverse disciplines.
Previous to the explosion of digital media, it was often the case that
a computing curriculum would offer only a single course, called “Digi-
tal Signal Processing” in engineering or “Digital Image Processing” in
computing, and likely only as a graduate elective.

Today the topic has migrated into the early stages of many curric-
ula, where it now serves as a key foundation course. This migration
uncovered a problem in that many of the texts relied on as standards
in the older graduate-level courses were not appropriate for beginners.
The texts were usually too formal for beginners, and at the same time
did not provide detailed coverage of many of the most popular methods
used in actual practice. The result was that educators had a difficult
time selecting a single textbook or even finding a compact collection
of literature to recommend to their students. Faced with this dilemma
ourselves, we wrote this book in the sincere hope of filling a need.

The contents of the following chapters can be presented in either a
one- or two-semester sequence. Where it was feasible, we have added
supporting material in order to make each chapter as independent as
possible and provide the instructor with as much flexibility as possible
when designing the course. Chapters 13–15 offer a complete introduction
to the fundamental spectral techniques used in image processing and are
essentially independent of the other material in the text. Depending on
the goals of the instructor and the curriculum, they can be covered in as
much detail as required or completely omitted.

The road map (on page VIII) provides a sequence of topics for a one-
or two-semester syllabus.
One Semester: A one-semester course can be organized around either

of two major themes: image processing or image analysis. While
either theme integrates easily into the early semesters of a mod-
ern computer science or IT curriculum, image analysis is especially
appropriate as an early foundation course in medical informatics.

Two Semesters: When the content can be presented over two semesters,
it has been designed so that it can be coherently divided (as de-
scribed below) into two courses (fundamentals and advanced) where
the themes are grouped according to difficulty.

Supplement to the English edition

This book was translated by the authors from the second German edition
(published in 2006) [17], incorporating many enhancements throughout VII
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︸ ︷︷ ︸
2 Sem.

the text. In addition to the numerous small corrections and improve-
ments that have been made, the presentation of histogram matching in
Ch. 5, geometric region properties based on moments in Ch. 11, morpho-
logical filters in Ch. 10, and interpolation methods in Ch. 16 have been
completely revised. Also, a number of example programs, such as the
single-pass region labeling and contour finding algorithm (Sec. 11.2.2),
have been rewritten for improved clarity and to take advantage of the
new language features in Java 5.

Online resources

Visit the Website for this text

www.imagingbook.com

to download supplementary materials, including the complete Java
source code for the examples, the test images used in the examples, and
corrections. Additional materials are available for educators, including a
complete set of formulas and figures used in the text, in a format suitable
for inclusion in presentations. Comments, questions, and corrections are
welcome and should be addressed to

imagingbook@gmail.com
VIII
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1

Crunching Pixels

For a long time, using a computer to manipulate a digital image (i. e.,
digital image processing) was something performed by only a relatively
small group of specialists who had access to expensive equipment. Usu-
ally this combination of specialists and equipment was only to be found
in research labs, and so the field of digital image processing has its roots
in the academic realm. Now, however, the combination of a powerful
computer on every desktop and the fact that nearly everyone has some
type of device for digital image acquisition, be it their cell phone camera,
digital camera, or scanner, has resulted in a plethora of digital images
and, with that, for many digital image processing has become as common
as word processing.

It was not that many years ago that digitizing a photo and saving it
to a file on a computer was a time-consuming task. This is perhaps dif-
ficult to imagine given today’s powerful hardware and operating system
level support for all types of digital media, but it is always sobering to
remember that “personal” computers in the early 1990s were not power-
ful enough to even load into main memory a single image from a typical
digital camera of today. Now powerful hardware and software packages
have made it possible for amateurs to manipulate digital images and
videos just as easily as professionals.

All of these developments have resulted in a large community that
works productively with digital images while having only a basic un-
derstanding of the underlying mechanics. And for the typical consumer
merely wanting to create a digital archive of vacation photos, a deeper
understanding is not required, just as a deep understanding of the com-
bustion engine is unnecessary to successfully drive a car.

Today, IT professionals must be more then simply familiar with dig-
ital image processing. They are expected to be able to knowledgeably
manipulate images and related digital media, which are an increasingly 1



1 Crunching Pixels important part of the workflow not only of those involved in medicine
and media but all organizations. In the same way, software engineers
and computer scientists are increasingly confronted with developing pro-
grams, databases, and related systems that must correctly deal with
digital images. The simple lack of practical experience with this type
of material, combined with an often unclear understanding of its basic
foundations and a tendency to underestimate its difficulties, frequently
leads to inefficient solutions, costly errors, and personal frustration.

1.1 Programming with Images

Even though the term “image processing” is often used interchangeably
with that of “image editing”, we introduce the following more precise
definitions. Digital image editing, or as it is sometimes referred to, digital
imaging, is the manipulation of digital images using an existing software
application such as Adobe Photoshop� or Corel Paint�. Digital image
processing, on the other hand, is the conception, design, development,
and enhancement of digital imaging programs.

Modern programming environments, with their extensive APIs (ap-
plication programming interfaces), make practically every aspect of com-
puting, be it networking, databases, graphics, sound, or imaging, easily
available to nonspecialists. The possibility of developing a program that
can reach into an image and manipulate the individual elements at its
very core is fascinating and seductive. You will discover that with the
right knowledge, an image becomes ultimately no more than a simple
array of values, that with the right tools you can manipulate in any way
imaginable.

Computer graphics, in contrast to digital image processing, concen-
trates on the synthesis of digital images from geometrical descriptions
such as three-dimensional object models [31, 37, 103]. While graphics
professionals today tend to be interested in topics such as realism and,
especially in terms of computer games, rendering speed, the field does
draw on a number of methods that originate in image processing, such
as image transformation (morphing), reconstruction of 3D models from
image data, and specialized techniques such as image-based and non-
photorealistic rendering [77,104]. Similarly, image processing makes use
of a number of ideas that have their origin in computational geometry
and computer graphics, such as volumetric (voxel) models in medical
image processing. The two fields perhaps work closest when it comes
to digital postproduction of film and video and the creation of special
effects [105]. This book provides a thorough grounding in the effec-
tive processing of not only images but also sequences of images; that is,
videos.

2



1.2 Image Analysis and
Computer Vision

1.2 Image Analysis and Computer Vision

Often it appears at first glance that a given image-processing task will
have a simple solution, especially when it is something that is easily
accomplished by our own visual system. Yet in practice it turns out
that developing reliable, robust, and timely solutions is difficult or sim-
ply impossible. This is especially true when the problem involves image
analysis ; that is, where the ultimate goal is not to enhance or other-
wise alter the appearance of an image but instead to extract meaningful
information about its contents—be it distinguishing an object from its
background, following a street on a map, or finding the bar code on a
milk carton, tasks such as these often turn out to be much more difficult
to accomplish than we would expect.

We expect technology to improve on what we can do by ourselves. Be
it as simple as a lever to lift more weight or binoculars to see farther or as
complex as an airplane to move us across continents—science has created
so much that improves on, sometimes by unbelievable factors, what our
biological systems are able to perform. So, it is perhaps humbling to
discover that today’s technology is nowhere near as capable, when it
comes to image analysis, as our own visual system. While it is possible
that this will always remain true, do not let this discourage you. Instead
consider it a challenge to develop creative solutions. Using the tools,
techniques, and fundamental knowledge available today, it is possible
not only to solve many problems but to create robust, reliable, and fast
applications.

While image analysis is not the main subject of this book, it often
naturally intersects with image processing and we will explore this in-
tersection in detail in these situations: finding simple curves (Ch. 9),
segmenting image regions (Ch. 11), and comparing images (Ch. 17). In
these cases, we present solutions that work directly on the pixel data in a
bottom-up way without recourse to domain-specific knowledge (i. e., blind
solutions). In this way, our solutions essentially embody the distinction
between image processing, pattern recognition, and computer vision, re-
spectively. While these two disciplines are firmly grounded in, and rely
heavily on, image processing, their ultimate goals are much more lofty.

Pattern recognition is primarily a mathematical discipline and has
been responsible for techniques such as clustering, hidden Markov mod-
els (HMMs), decision trees, and principal component analysis (PCA),
which are used to discover patterns in data and signals. Methods from
pattern recognition have been applied extensively to problems arising in
computer vision and image analysis. A good example of their successful
application is optical character recognition (OCR), where robust, highly
accurate turnkey solutions are available for recognizing scanned text.
Pattern recognition methods are truly universal and have been success-
fully applied not only to images but also speech and audio signals, text
documents, stock trades, and finding trends in large databases, where
it is often called data mining. Dimensionality reduction, statistical, and 3



1 Crunching Pixels syntactical methods play important roles in pattern recognition (see, for
example, [27, 75, 98]).

Computer vision tackles the problem of engineering artificial visual
systems capable of somehow comprehending and interpreting our real,
three-dimensional world. Popular topics in this field include scene un-
derstanding, object recognition, motion interpretation (tracking), au-
tonomous navigation, and the robotic manipulation of objects in a scene.
Since computer vision has its roots in artificial intelligence (AI), many
AI methods were originally developed to either tackle or represent a
problem in computer vision (see, for example, [24, Ch. 13]). The fields
still have much in common today, especially in terms of adaptive meth-
ods and machine learning. Further literature on computer vision in-
cludes [5, 34, 46, 90, 95, 99].

Ultimately you will find image processing to be both intellectually
challenging and professionally rewarding, as the field is ripe with prob-
lems that were originally thought to be relatively simple to solve but have
to this day refused to give up their secrets. With the background and
techniques presented in this text, you will not only be able to develop
complete image-processing solutions but will also have the prerequisite
knowledge to tackle unsolved problems and the real possibility of ex-
panding the horizons of science for while image processing by itself may
not change the world, it is likely to be the foundation that supports
marvels of the future.

4



2

Digital Images

Digital images are the central theme of this book, and unlike just a few
years ago, this term is now so commonly used that there is really no
reason to explain it further. Yet, this book is not about all types of
digital images, and instead it focuses on images that are made up of
picture elements, more commonly known as pixels, arranged in a regular
rectangular grid.

2.1 Types of Digital Images

Every day, people work with a large variety of digital raster images such
as color photographs of people and landscapes, grayscale scans of printed
documents, building plans, faxed documents, screenshots, medical im-
ages such as x-rays and ultrasounds, and a multitude of others (Fig. 2.1).
Despite all the different sources for these images, they are all, as a rule,
ultimately represented as rectangular ordered arrays of image elements.

2.2 Image Acquisition

The process by which a scene becomes a digital image is varied and
complicated, and, in most cases, the images you work with will already
be in digital form, so we only outline here the essential stages in the
process. As most image acquisition methods are essentially variations
on the classical optical camera, we will begin by examining it in more
detail.

5



2 Digital Images

Fig. 2.1
Digital images: natural land-

scape (a), synthetically gener-
ated scene (b), poster graphic (c),

computer screenshot (d), black
and white illustration (e), bar-

code (f), fingerprint (g), x-
ray (h), microscope slide (i),
satellite image (j), radar im-

age (k), astronomical object (l).

6



2.2 Image Acquisition2.2.1 The Pinhole Camera Model

The pinhole camera is one of the simplest camera models and has been in
use since the 13th century, when it was known as the “Camera Obscura”.
While pinhole cameras have no practical use today except to hobbyists,
they are a useful model for understanding the essential optical compo-
nents of a simple camera.

The pinhole camera consists of a closed box with a small opening
on the front side through which light enters, forming an image on the
opposing wall. The light forms a smaller, inverted image of the scene
(Fig. 2.2).

Fig. 2.2
Geometry of the pinhole camera.
The pinhole opening serves as the
origin (O) of the three-dimensional
coordinate system (X, Y, Z) for
the objects in the scene. The op-
tical axis, which runs through the
opening, is the Z axis of this co-
ordinate system. A separate two-
dimensional coordinate system
(x, y) describes the projection
points on the image plane. The
distance f (“focal length”) between
the opening and the image plane
determines the scale of the projec-
tion.

Perspective transformation

The geometric properties of the pinhole camera are very simple. The
optical axis runs through the pinhole perpendicular to the image plane.
We assume a visible object, in our illustration the cactus, located at
a horizontal distance Z from the pinhole and vertical distance Y from
the optical axis. The height of the projection y is determined by two
parameters: the fixed depth of the camera box f and the distance Z to
the object from the origin of the coordinate system. By comparison,

y = −f
Y

Z
just as x = −f

X

Z
(2.1)

changes with the scale of the resulting image in proportion to the depth
of the box, as well as the distance f , in a way similar to how the fo-
cal length does in an everyday camera. For a fixed image, a small f 7



2 Digital Images (i.e., short focal length) results in a small image and a large viewing
angle, just as occurs when a wide-angle lens is used, while increasing the
“focal length” f results in a larger image and a smaller viewing angle,
just as occurs when a telephoto lens is used. The negative sign in Eqn.
(2.1) means that the projected image is flipped in the horizontal and
vertical directions and rotated by 180◦. Equation (2.1) describes what
is commonly known today as the perspective transformation.1 Impor-
tant properties of this theoretical model are that straight lines in 3D
space always appear straight in 2D projections and that circles appear
as ellipses.

2.2.2 The “Thin” Lens

While the simple geometry of the pinhole camera makes it useful for un-
derstanding its basic principles, it is never really used in practice. One
of the problems with the pinhole camera is that it requires a very small
opening to produce a sharp image. This in turn reduces the amount of
light passed through and thus leads to extremely long exposure times.
In reality, glass lenses or systems of optical lenses are used whose optical
properties are greatly superior in many aspects but of course are also
much more complex. Instead we can make our model more realistic,
without unduly increasing its complexity, by replacing the pinhole with
a “thin lens” as in Fig. 2.3. In this model, the lens is assumed to be
symmetric and infinitely thin, such that all light rays passing through
it cross through a virtual plane in the middle of the lens. The resulting
image geometry is the same as that of the pinhole camera. This model
is not sufficiently complex to encompass the physical details of actual
lens systems, such as geometrical distortions and the distinct refraction
properties of different colors. So while this simple model suffices for our
purposes (that is, understanding the mechanics of image acquisition),
much more detailed models that incorporate these additional complexi-
ties can be found in the literature (see, for example, [59]).

2.2.3 Going Digital

What is projected on the image plane of our camera is essentially a two-
dimensional, time-dependent, continuous distribution of light energy. In
order to convert this image into a digital image on our computer, three
main steps are necessary:

1. The continuous light distribution must be spatially sampled.
2. This resulting function must then be sampled in the time domain to

create a single image.
3. Finally, the resulting values must be quantized to a finite range of

integers so that they are representable within the computer.
1 It is hard to imagine today that the rules of perspective geometry, while

known to the ancient mathematicians, were only rediscovered in 1430 by
the Renaissance painter Brunoleschi.8



2.2 Image Acquisition

Fig. 2.3
The thin lens model.

Fig. 2.4
The geometry of the sensor ele-
ments is directly responsible for
the spatial sampling of the contin-
uous image. In the simplest case,
a plane of sensor elements are ar-
ranged in an evenly spaced grid,
and each element measures the
amount of light that falls on it.

Step 1: Spatial sampling

The spatial sampling of an image (that is, the conversion of the con-
tinuous signal to its discrete representation) depends on the geometry
of the sensor elements of the acquisition device (e.g., a digital or video
camera). The individual sensor elements are arranged in ordered rows,
almost always at right angles to each other, along the sensor plane (Fig.
2.4). Other types of image sensors, which include hexagonal elements
and circular sensor structures, can be found in specialized products.

Step 2: Temporal sampling

Temporal sampling is carried out by measuring at regular intervals the
amount of light incident on each individual sensor element. The CCD2

in a digital camera does this by triggering the charging process and
then measuring the amount of electrical charge that built up during the
specified amount of time that the CCD was illuminated.
2 Charge-coupled device. 9

 



2 Digital Images

Fig. 2.5
The transformation of a con-

tinuous image F (x, y) to a
discrete digital image I(u, v)
(left), image detail (below).

Step 3: Quantization of pixel values

In order to store and process the image values on the computer they
are commonly converted to an integer scale (for example, 256 = 28 or
4096 = 212). Occasionally a floating-point scale is used in professional
applications such as medical imaging. Conversion is carried out using
an analog to digital converter, which is typically embedded directly in
the sensor electronics so that conversion occurs at image capture or is
performed by special interface hardware.

Images as discrete functions

The result of these three stages is a description of the image in the
form of a two-dimensional, ordered matrix of integers (Fig. 2.5). Stated
more formally, a digital image I is a two-dimensional function of integer
coordinates N × N that maps a range of image values P such that

I(u, v) ∈ P and u, v ∈ N.

Now we are ready to transfer the image to our computer so that we can
save, compress, and otherwise manipulate it into the file format of our
choice. At this point, it is no longer important to us how the image
originated since it is now a simple two-dimensional array of numerical
data. Before moving on, we need a few more important definitions.

2.2.4 Image Size and Resolution

In the following, we assume rectangular images, and while that is a
relatively safe assumption, exceptions do exist. The size of an image
is determined directly from the width M (number of columns) and the
height N (number of rows) of the image matrix I.

The resolution of an image specifies the spatial dimensions of the
image in the real world and is given as the number of image elements10
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Fig. 2.6
Image coordinates. In digital im-
age processing, it is traditional
to use a coordinate system where
the origin (u = 0, v = 0) lies in
the upper left corner. The coor-
dinates u, v represent respectively
the columns and the rows of the
image. For an image with dimen-
sions of M × N , the maximum
column index is umax = M −1
and the maximum row index is
vmax = N−1.

per measurement; for example, dots per inch (dpi) or lines per inch (lpi)
for print production, or in pixels per kilometer for satellite images. In
most cases, the resolution of an image is the same in the horizontal and
vertical directions because the image elements are square.

Except for a few algorithms that deal with geometrical operations,
it is generally not necessary to know the spatial resolution of an image.
Precise resolution information is, however, important in cases where ge-
ometrical elements such as circles need to be drawn on an image or
distances within an image need to be measured. For these reasons, most
image formats and software systems designed for professional use include
very precise information about the resolution.

2.2.5 Image Coordinate System

In order to know which position on the image corresponds to which image
element, we need to impose a coordinate system. Contrary to normal
mathematical conventions, in image processing the coordinate system is
flipped in the vertical direction; that is, the y-coordinate runs from top
to bottom and the origin lies in the upper left (Fig. 2.6). While this
system has no practical or theoretical advantage, and in fact it makes
geometrical transforms more complicated to describe, it is used almost
without exception in software systems. The origin of this system lies
in television electronics, where the image rows traditionally followed the
direction of the electron beam, which moved from the top to the bottom
of the screen. We start the numbering of rows and columns at 0 for
practical reasons since in Java array indexing begins at 0.

2.2.6 Pixel Values

The information within an image element depends on the data type used
to represent it. Pixel values are practically always binary words of length
k so that a pixel can represent any of 2k different values. The value k 11



2 Digital Images

Table 2.1
Image element ranges

and their associated typ-
ical application domains.

Grayscale (Intensity Images):
Chan. Bits/Pix. Range Use

1 1 0. . .1 Binary image: document, illustration, fax
1 8 0. . .255 Universal: photo, scan, print
1 12 0. . .4095 High quality: photo, scan, print
1 14 0. . .16383 Professional: photo, scan, print
1 16 0. . .65535 Highest quality: medicine, astronomy

Color Images:
Chan. Bits/Pix. Range Use

3 24 [0. . .255]3 RGB, universal: photo, scan, print
3 36 [0. . .4095]3 RGB, high quality: photo, scan, print
3 42 [0. . .16383]3 RGB, professional: photo, scan, print
4 32 [0. . .255]4 CMYK, digital prepress

Special Images:
Chan. Bits/Pix. Range Use

1 16 −32768. . .32767 Whole numbers pos./neg., increased range
1 32 ±3.4 · 1038 Floating point: medicine, astronomy
1 64 ±1.8 · 10308 Floating point: internal processing

depends on the bit depth (or just depth) of the image and often the word
size of the processor.

The exact bit-level layout of an individual pixel depends on the kind
of image; for example, binary, grayscale, or RGB color. Common image
types are summarized in Table 2.1.

Grayscale images (intensity images)

The image data in a grayscale image consist of a single channel that
represents the intensity, brightness, or density of the image. In most
cases, only positive values make sense, as the numbers represent the
intensity of light energy and that cannot be negative, so typically whole
integers in the range of [0 . . . 2k−1] are used. For example, a typical
grayscale image uses k = 8 bits (1 byte) per pixel and intensity values
in the range of [0 . . . 255], where the value 0 represents the minimum
brightness (black) and 255 the maximum brightness (white).

For many professional photography and print applications, as well
as in medicine and astronomy, 8 bits per pixel is not sufficient. Image
depths of 12, 14, and even 16 bits are often encountered in these domains.
Note that bit depth refers to the number of bits used to represent a single
color, not the number of bits needed to represent an entire pixel. For
example, an RGB-encoded color image with an 8-bit depth would require12



2.3 Image File Formats8 bits for each channel for a total of 24 bits, while the same image with
a 12-bit depth would require a total of 36 bits.

Binary images

Binary images are a special type of intensity image where pixels can only
take on one of two values, black or white. These values are typically
encoded using a single bit (0/1) per pixel. Binary images are often
used for representing line graphics, archiving documents, encoding fax
transmissions, and by many printers.

Color images

Most color images contain encode the primary colors red, green, and
blue (RGB), typically making use of 8 bits per component. In these color
images, each pixel requires 3×8 = 24 bits to encode all three components,
and the range of each individual color component is [0 . . . 255]. As with
intensity images, color images with depths of 30, 36, and 42 bits are often
used in professional applications. While even amateur digital cameras
now provide the possibility of taking images 36 bits deep, very often
digital image-processing software does not fully support images with high
bit depths. Finally, while most color images contain three components,
in the digital prepress area there are images that use subtractive color
models with four or more color components, for example the CMYK
(Cyan-Magenta-Yellow-Black) model (see Ch. 12).

The difference between an indexed image or palette image and a true
color image is the number of different colors (fewer for an indexed image)
that can be used at one time within the color or gray component of the
image. The image values themselves in these cases are only indices (with
a maximum of 8 bits) in a table of color values (see Sec. 12.1.1).

Special images

Special images are those for which the standard formats already de-
scribed are not sufficient for representing the image values. Two common
examples of special images are those with negative values and those with
floating-point values. Images with negative values arise during image-
processing steps such as the detection of curves, and images with floating-
point values are often found in applications such as medicine and astron-
omy, where extended range and precision are necessary. These special
formats are almost always application-specific, and it is not possible to
use them in general with other image-processing applications.

2.3 Image File Formats

While in this book we almost always consider image data as being al-
ready in the form of a two-dimensional array ready to be read by a 13



2 Digital Images program, in practice image data must first be loaded into memory from
a file. Files provide the essential mechanism for storing, archiving, and
exchanging image data, and the choice of the correct file format is an
important decision. In the early days of digital image processing (that
is, before around 1985), most software developers created a new custom
file format for each new application they developed. The result was a
chaotic jumble of incompatible file formats that for a long time limited
the practical sharing of images between research groups. Today there ex-
ist a wide range of standardized file formats, and developers can almost
always find at least one existing file format that is suitable for their ap-
plication. Using standardized file formats vastly increases the ease with
which images can be exchanged and the likelihood that the images will
be readable by other software in the longterm. Yet for many projects the
selection of the right file format is not always simple, and compromises
must be made. The following are a few of the typical criteria that need
to be considered when selecting an appropriate file format:

• Type of image: These include black and white images, grayscale
images, scans from documents, color images, color graphics, and
special images such as those using floating-point image data. In
many applications, such as satellite imagery, the maximum image
size is also an important factor.

• Storage size and compression: Are the storage requirements of
the file a potential problem, and is the image compression method,
especially when considering lossy compression, appropriate?

• Compatibility: How important is the exchange of image data? And
for archives, how important is the long-term machine readability of
the data?

• Application domain: In which domain will the image data be
mainly used? Are they intended for print, Web, film, computer
graphics, medicine, or astronomy?

2.3.1 Raster versus Vector Data

In the following, we will deal exclusively with file formats for storing
raster images; that is, images that contain pixel values arranged in a
regular matrix using discrete coordinates. In contrast, vector graphics
represent geometric objects using continuous coordinates, which are only
rasterized once they need to be displayed on a physical device such as a
monitor or printer.

A number of standardized file formats exist for vector images, such
as the ANSI/ISO standardformat CGM (Computer Graphics Metafile),
SVG (Scalable Vector Graphics)3 as well as proprietary formats such as
DXF (Drawing Exchange Format from AutoDesk), AI (Adobe Illustra-
tor), PICT (QuickDraw Graphics Metafilefrom Apple) and WMF/EMF

3 www.w3.org/TR/SVG/.14



2.3 Image File Formats(Windows Metafile and Enhanced Metafile from Microsoft). Most of
these formats can contain both vector data and raster images in the
same file. The PS (PostScript) and EPS (Encapsulated PostScript) for-
mats from Adobe as well as the PDF (Portable Document Format) also
offer this possibility, though they are usually used for printer output and
archival purposes.4

2.3.2 Tagged Image File Format (TIFF)

This is a widely used and flexible file format designed to meet the pro-
fessional needs of diverse fields. It was originally developed by Aldus
and later extended by Microsoft and now Adobe. The format supports
grayscale, indexed, and true color images. A TIFF file can contain a
number of images with different properties. The TIFF specification pro-
vides a range of different compression methods (LZW, ZIP, CCITT, and
JPEG) and color spaces, so that it is possible, for example, to store a
number of variations of an image in different sizes and representations
together in a single TIFF file. The flexibility of TIFF has made it an
almost universal exchange format that is widely used in archiving doc-
uments, scientific applications, digital photography, and digital video
production.

The strength of this image format lies within its architecture (Fig.
2.7), which enables new image types and information blocks to be created
by defining new “tags”. As an example, in ImageJ an image with floating-
point values (float) can be saved as a TIFF image without any problems
and then read (unfortunately only with ImageJ) again. In this flexibility
also lies the weakness of the format, namely that proprietary tags are not
always supported and so the “unsupported tag” error is often encountered
when loading TIFF files, so ImageJ can read only a few uncompressed
variations of TIFF formats,5 and bear in mind that currently no Web
browser supports TIFF.

2.3.3 Graphics Interchange Format (GIF)

The Graphics Interchange Format (GIF) was originally designed by
CompuServe in 1986 to efficiently encode the rich line graphics used
in their dial-up Bulletin Board System (BBS). It has since grown into
one of the most widely used formats for representing images on the Web.
This popularity is largely due to its early support for indexed color at
multiple bit depths, LZW compression, interlaced image loading, and
ability to encode simple animations by storing a number of images in a
single file for later sequential display.
4 Special variations of PS, EPS, and PDF files are also used as (editable)

exchange formats for raster and vector data; for example, both Adobe’s
Photoshop (Photoshop-EPS) and Illustrator (AI).

5 The ImageIO plugin offers support for a wider range of TIFF formats (http:
//ij-plugins.sourceforge.net/plugins/imageio/). 15
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Fig. 2.7
Structure of a typical TIFF file.
A TIFF file consists of a header

and a linked list of image ob-
jects, three in this example.

Each image object consists of
a list of “tags” with their corre-
sponding entries followed by a

pointer to the actual image data.
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GIF is essentially an indexed image file format designed for color and
gray scale images with a maximum depth of 8 bits and consequently
it does not support true color images. It offers efficient support for
encoding palettes containing from 2 to 256 colors, one of which can be
marked for transparency. GIF supports color palletes in the range of
2 . . . 256, enabling pixels to be encoded using fewer bits. As an example,
the pixels of an image using 16 unique colors require only 4 bits to
store the 16 possible color values [0 . . . 15]. This means that instead of
storing each pixel using one byte, as done in other bitmap formats, GIF
can encode two 4-bit pixels into each 8-bit byte. This results in a 50%
storage reduction over the standard 8-bit indexed color bitmap format.

The GIF file format is designed to efficiently encode “flat” or iconic
images consisting of large areas of the same color. It uses a lossless
color quantization (see Sec. 12.5) as well as lossless LZW compression to
efficiently encode large areas of the same color. Despite the popularity of
the format, when developing new software, the PNG format, presented
in the next section, should be preferred, as it outperforms GIF by almost
every metric.

2.3.4 Portable Network Graphics (PNG)

PNG (pronounced “ping”) was originally developed as a replacement for
the GIF file format when licensing issues6 arose because of its use of LZW
compression. It was designed as a universal image format especially for

6 Unisys’s U.S. LZW Patent No. 4,558,302 expired on June 20, 2003.16



2.3 Image File Formatsuse on the Internet, and, as such, PNG supports three different types of
images:

• true color (with up to 3 × 16 bits/pixel)
• grayscale (with up to 16 bits/pixel)
• indexed (with up to 256 colors)

Additionally, PNG includes an alpha channel for transparency with a
maximum width of 16 bits. In comparison, the alpha channel of a GIF
image is only a single bit wide. While the format only supports a single
image per file, it is exceptional in that it allows images of up to 230 ×
230 pixels. The format supports lossless compression by means of a
variation of PKZIP (Phil Katz’s ZIP). No lossy compression is available,
as PNG was not designed as a replacement for JPEG. Ultimately the
PNG format meets or exceeds the capabilities of the GIF format in
every way except GIF’s ability to include multiple images in a single
file to create simple animation. Currently, PNG is the format of choice
for representing uncompressed, lossless, true color images for use on the
Web.

2.3.5 JPEG

The JPEG standard defines a compression method for continuous gray-
scale and color images, such as those that would arise from nature pho-
tography. The format was developed by the Joint Photographic Experts
Group (JPEG)7 with the goal of achieving an average data reduction of
a factor of 1:16 and was established in 1990 as ISO Standard IS-10918.
Today it is the most widely used image file format. In practice, JPEG
achieves, depending on the application, compression in the range of 1 bit
per pixel (that is, a compression factor of around 1:25) when compress-
ing 24-bit color images to an acceptable quality for viewing. The JPEG
standard supports images with up to 256 color components, and what
has become increasingly important is its support for CMYK images (see
Sec. 12.2.5).

The modular design of the JPEG compression algorithm makes it a
relatively straightforward task [71] to create variations on the “baseline”
algorithm; for example, there exists an uncompressed version, though it
is not often used.

In the case of RGB images, the core of the algorithm consists of three
main steps:

1. Color conversion and down sampling: A color transformation
from RGB into the Y CbCr space (see Sec. 12.2.4) is used to separate
the actual color components from the brightness Y component. Since
the human visual system is less sensitive to rapid changes in color,
it is possible to compress the color components more, resulting in a
significant data reduction, without a subjective loss in image quality.

7 www.jpeg.org. 17



2 Digital Images

Fig. 2.8
JPEG compression of an RGB

image. Using a color space trans-
formation, the color components

Cb, Cr are separated from the
Y luminance component and
subjected to a higher rate of

compression. Each of the three
components are then run inde-
pendently through the JPEG
compression pipeline and are

merged into a single JPEG data
stream. Decompression follows

the same stages in reverse order.
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2. Cosine transform and quantization in frequency space: The
image is divided up into a regular grid of 8 blocks, and for each
independent block, the frequency spectrum is computed using the
discrete cosine transformation (see Ch. 15). Next, the 64 spectral
coefficients of each block are quantized into a quantization table.
The size of this table largely determines the eventual compression
ratio, and therefore the visual quality, of the image. In general, the
high frequency coefficients, which are essential for the “sharpness” of
the image, are reduced most during this step. During decompres-
sion these high frequency values will be approximated by computed
values.

3. Lossless compression: Next, the quantized spectral components
data stream is again compressed using a lossless method, such as
arithmetic or Huffman encoding, in order to remove the last remain-
ing redundancy in the data stream.

The JPEG algorithm combines a number of different compression meth-
ods, and implementing even the “baseline” version is nontrivial. So appli-
cation support for JPEG increased sharply once the Independent JPEG
Group (IJG)8 made a reference implementation of the JPEG algorithm
available in 1991. Drawbacks of the JPEG compression algorithm in-
clude its performance on images such as line drawings, for which it was
not designed, its handling of abrupt transitions within an image, and
the limits that 8× 8 pixel blocks impose on the compression rates. Fig-
ure 2.9 shows the results of compressing a section of a grayscale image
using different quality factors (Photoshop QJPG = 10, 5, 1).

8 www.ijg.org.18



2.3 Image File FormatsJFIF file format

Despite common usage, JPEG is not a file format; it is “only” a method
of compressing image data9 (Fig. 2.8). What is normally referred to as
a JPEG file is almost always an instance of a “JPEG File Interchange
Format” (JFIF) file as developed by Eric Hamilton and the IJG. The
actual JPEG standard only specifies the JPEG codec (compressor and
decompressor) and by design leaves the wrapping, or file format, unde-
fined. The JFIF specifies a file format based on the JPEG standard by
defining the remaining necessary elements of a file format. The JPEG
standard leaves some parts of the codec undefined for generality, and in
these cases JFIF makes a specific choice. As an example, in step 1 of the
JPEG codec, the specific color space used in the color transformation is
not part of the JPEG standard, so it is specified by the JFIF standard.
As such, the use of different compression ratios for color and luminance
is a practical implementation decision specified by JFIF and is not a part
of the actual JPEG codec.

Exchangeable Image File Format (EXIF)

The Exchangeable Image File Format (EXIF) is a variant of the JPEG
(JFIF) format designed for storing image data originating on digital
cameras, and to that end it supports storing metadata such as the type
of camera and photographic parameters. EXIF was developed by the
Japan Electronics and Information Technology Industries Association
(JEITA) as a part of the DCF10 guidelines and is used today by practi-
cally all manufacturers as the standard format for storing digital images
on memory cards. Internally, EXIF uses TIFF to store the metadata
information and JPEG to encode a thumbnail preview image. The file
structure is designed so that it can be processed by existing JPEG/JFIF
readers without a problem.

JPEG-2000

JPEG-2000, which is specified by an ISO-ITU standard (“Coding of Still
Pictures”),11 was designed to overcome some of the better-known weak-
nesses of the traditional JPEG codec. Among the improvements made in
JPEG-2000 are the use of larger, 64×64 pixel blocks and replacement of
the discrete cosine transform by the wavelet transform. These and other
improvements enable it to achieve significantly higher compression ratios
than JPEG—up to 0.25 bit/pixel on RGB color images. Despite these
advantages, JPEG-2000 is supported by only a few image-processing ap-
plications and Web browsers.12

9 To be exact, the JPEG standard only defines how to compress the individual
components and the structure of the JPEG stream.

10 Design Rule for Camera File System.
11 www.jpeg.org/JPEG2000.htm.
12 At this time, ImageJ does not offer JPEG-2000 support. 19
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Fig. 2.9
Artifacts arising from JPEG com-

pression. A section of the origi-
nal image (a) and the results of
JPEG compression at different

quality factors: QJPG = 10 (b),
QJPG = 5 (c), and QJPG = 1
(d). In parentheses are the re-

sulting file sizes for the complete
(dimensions 274 × 274) image.

2.3.6 Windows Bitmap (BMP)

The Windows Bitmap (BMP) format is a simple, and under Windows
widely used, file format supporting grayscale, indexed, and true color
images. It also supports binary images, but not in an efficient manner20



2.3 Image File FormatsP2
# oie.pgm
17 7
255
0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0
0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81
0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0
0 13 0 7 0 7 0 13 0 7 7 0 0 81 81 81 0
0 13 0 7 7 7 0 13 0 7 7 0 0 81 0 0 0
0 13 0 0 0 0 0 13 0 7 7 0 0 81 81 81 81
0 13 13 13 13 13 13 13 0 0 0 0 0 0 0 0 0

Fig. 2.10
Example of a PGM file in human-
readable format (left) and the re-
sulting image (below).

since each pixel is stored using an entire byte. Optionally, the format
supports simple lossless, run-length-based compression. While BMP of-
fers storage for a similar range of image types as TIFF, it is a much less
flexible format.

2.3.7 Portable Bitmap Format (PBM)

The PBM family13 consists of a series of very simple file formats that
are exceptional in that they can be optionally saved in a human-readable
text format that can be easily read in a program or simply edited using a
text editor. A simple PGM image is shown in Fig. 2.10. The characters
P2 in the first line indicate that the image is a PGM (“plain”) file stored
in human-readable format. The next line shows how comments can be
inserted directly into the file by beginning the line with the # symbol.
Line 3 gives the image’s dimensions, in this case width 17 and height
7, and line 4 defines the maximum pixel value, in this case 255. The
remaining lines give the actual pixel values. The actual image defined
by the file is shown on the right.

In addition, the format supports a much more machine-optimized
“raw” output mode in which pixel values are stored as bytes. PBM
is widely used under Unix and supports the following formats: PBM
(portable bitmap) for binary bitmaps, PGM (portable graymap) for
grayscale images, and PNM (portable any map) for color images. PGM
images can be opened using ImageJ.

2.3.8 Additional File Formats

For most practical applications, one of the following file formats is suffi-
cient: TIFF as a universal format supporting a wide variety of uncom-
pressed images and JPEG/JFIF for digital color photos when storage
size is a concern, and there is either PNG or GIF for when an image is
destined for use on the Web. In addition, there exist countless other file
formats, such as those encountered in legacy applications or in special
13 http://netpbm.sourceforge.net. 21



2 Digital Images application areas where they are traditionally used. A few of the more
commonly encountered types are:

• RGB, a simple format from Silicon Graphics.
• RAS (Sun Raster Format), a simple format from Sun Microsystems.
• TGA (Truevision Targa File Format) was the first 24-bit file format
for PCs. It supports numerous image types with 8- to 32-bit depths
and is still used in medicine and biology.

• XBM/XPM (X-Windows Bitmap/Pixmap) is a family of ASCII-
encoded formats used in X-Windows and is similar to PBM/PGM.

2.3.9 Bits and Bytes

Today, opening, reading, and writing image files is mostly carried out
by means of existing software libraries. Yet sometimes you still need to
deal with the structure and contents of an image file at the byte level,
for instance when you need to read an unsupported file format or when
you receive a file where the format of the data is unknown.

Big endian and little endian

In the standard model of a computer, a file consists of a simple sequence
of 8-bit bytes, and a byte is the smallest entry that can be read or
written to a file. In contrast, the image elements as they are stored in
memory are usually larger then a byte; for example, a 32-bit int value
(= 4 bytes) is used for an RGB color pixel. The problem is that storing
the four individual bytes that make up the image data can be done in
different ways. In order to correctly recreate the original color pixel, we
must naturally know the order in which bytes in the file are arranged.

Consider a 32-bit int number z with the binary and hexadecimal
value14

z = 00010010︸ ︷︷ ︸
12H

(MSB)

·00110100·01010110·01111000︸ ︷︷ ︸
78H

(LSB)

B = 12345678H . (2.2)

Then 00010010B = 12H is the value of the most significant byte (MSB)
and 01111000B = 78H the least significant byte (LSB). When the indi-
vidual bytes in the file are arranged in order from MSB to LSB when
they are saved, we call the ordering “big endian”, and when in the op-
posite direction, “little endian”. For the value z from Eqn. (2.2), that
means:

Ordering Byte Sequence 1 2 3 4
Big Endian MSB → LSB 12H 34H 56H 78H

Little Endian LSB → MSB 78H 56H 34H 12H

14 The decimal value of z is 305419896.22



2.3 Image File FormatsEven though correctly ordering the bytes should essentially be the re-
sponsibility of the operating and file system, in practice it actually de-
pends on the architecture of the processor.15 Processors from the Intel
family (e.g., x86, Pentium) are traditionally little endian, and proces-
sors from other manufacturers (e.g., IBM, MIPS, Motorola, Sun) are big
endian.16 Big endian is also called network byte ordering since in the
IP protocol the data bytes are arranged in MSB to LSB order during
transmission.

To correctly interpret image data, it is necessary to know the byte
ordering used when creating it. In most cases, this is fixed and defined by
the file format, but in some file formats, for example TIFF, it is variable
and depends on a parameter given in the file header (see Table 2.2).

File headers and signatures

Practically all image file formats contain a data header consisting of
important information about the layout of the image data that follows.
Values such as the size of the image and the encoding of the pixels are
usually present in the file header to make it easier for programmers to
allocate the correct amount of memory for the image. The size and
structure of this header are usually fixed, but in some formats such as
TIFF, the header can contain pointers to additional subheaders.

Format Signature Format Signature

PNG 0x89504e47 PNG BMP 0x424d BM

JPEG/JFIF 0xffd8ffe0 GIF 0x4749463839 GIF89

TIFFlittle 0x49492a00 II* Photoshop 0x38425053 8BPS

TIFFbig 0x4d4d002a MM * PS/EPS 0x25215053 %!PS

Table 2.2
Example signatures of image file
formats. Most image file formats
can be identified by inspecting
the first bytes of the file. These
bytes, or signatures, are listed in
hexadecimal (0x..) form and as
ASCII text ( indicating a non-
printable character).

In order to interpret the information in the header, it is necessary
to know the file type. In many cases, this can be determined by the
file name extension (e.g., .jpg or .tif), but since these extensions are
not standardized and can be changed at any time by the user, they
are not a reliable way of determining the file type. Instead, many file
types can be identified by their embedded “signature”, which is often the
first two bytes of the file. Signatures from a number of popular image
formats are given in Table 2.2. Most image formats can be determined
by inspecting the first few bytes of the file. These bytes, or signatures,
are listed in hexadecimal (0x..) form and as ASCII text. A PNG file
always begins with the 4-byte sequence 0x89, 0x50, 0x4e, 0x47, which
15 At least the ordering of the bits within a byte is almost universally uniform.
16 In Java, this problem does not arise since internally all implementations of

the Java Virtual Machine use big endian ordering. 23



2 Digital Images is the “magic number” 0x89 followed by the ASCII sequence “PNG”.
Sometimes the signature not only identifies the type of image file but
also contains information about its encoding; for instance, in TIFF the
first two characters are either II for “Intel” or MM for “Motorola” and
indicate the byte ordering (little endian or big endian, respectively) of
the image data in the file.

2.4 Exercises

Exercise 2.1. Determine the actual physical measurement in millime-
ters of an image with 1400 rectangular pixels and a resolution of 72
dpi.

Exercise 2.2. A camera with a focal length of f = 50 mm is used to
take a photo of a vertical column that is 12 m high and is 95 m away
from the camera. Determine its height in the image in mm (a) and the
number of pixels (b) assuming the camera has a resolution of 4000 dots
per inch (dpi).

Exercise 2.3. The image sensor of a certain digital camera contains
2016 × 3024 pixels. The geometry of this sensor is identical to that of
a traditional 35mm camera (with an image size of 24 × 36 mm) except
that it is 1.6 times smaller. Compute the resolution of this digital sensor
in dots per inch.

Exercise 2.4. Assume the camera geometry described in Exercise 2.3
combined with a lens with focal length f = 50 mm. What blurring (in
pixels) would be caused by a uniform, 0.1◦ horizontal turn of the camera
during exposure? Recompute this for f = 300 mm. Decide if the extent
of the blurring also depends on the distance of the object.

Exercise 2.5. Determine the number of bytes necessary to store an un-
compressed binary image of size 4000× 3000 pixels.

Exercise 2.6. Determine the number of bytes necessary to store an un-
compressed RGB color image of size 640×480 pixels using 8, 10, 12, and
14 bits per color channel.

Exercise 2.7. Given a black and white television with a resolution of
625 × 512 8-bit pixels and a frame rate of 25 images per second: (a)
How may different images can this device ultimately display, and how
long would you have to watch it (assuming no sleeping) in order to see
every possible image at least once? (b) Perform the same calculation for
a color television with 3 × 8 bits per pixel.

Exercise 2.8. Show that the projection of a 3D straight line in a pin-
hole camera (assuming perspective projection as defined in Eqn. (2.1))
is again a straight line in the resulting 2D image.
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2.4 ExercisesExercise 2.9. Using Fig. 2.10 as a model, use a text editor to create a
PGM file, disk.pgm, containing an image of a bright circle. Open your
image with ImageJ and then try to find other programs that can open
and display the image.
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ImageJ

Until a few years ago, the image-processing community was a relatively
small group of people who either had access to expensive commercial
image-processing tools or, out of necessity, developed their own software
packages. Usually such home-brew environments started out with small
software components for loading and storing images from and to disk
files. This was not always easy because often one had to deal with poorly
documented or even proprietary file formats. An obvious (and frequent)
solution was to simply design a new image file format from scratch,
usually optimized for a particular field, application, or even a single
project, which naturally led to a myriad of different file formats, many
of which did not survive and are forgotten today [71, 74]. Nevertheless,
writing software for converting between all these file formats in the 1980s
and early 1990s was an important business that occupied many people.
Displaying images on computer screens was similarly difficult, because
there was only marginal support by operating systems, APIs, and display
hardware, and capturing images or videos into a computer was close to
impossible on common hardware. It thus may have taken many weeks
or even months before one could do just elementary things with images
on a computer and finally do some serious image processing.

Fortunately, the situation is much different today. Only a few com-
mon image file formats have survived (see also Sec. 2.3), which are readily
handled by many existing tools and software libraries. Most standard
APIs for C/C++, Java, and other popular programming languages al-
ready come with at least some basic support for working with images and
other types of media data. While there is still much development work
going on at this level, it makes our job a lot easier and, in particular,
allows us to focus on the more interesting aspects of digital imaging.

27



3 ImageJ 3.1 Image Manipulation and Processing

Traditionally, software for digital imaging has been targeted at either
manipulating or processing images, either for practitioners and designers
or software programmers, with quite different requirements.

Software packages for manipulating images, such as Adobe Photo-
shop, Corel Paint and others, usually offer a convenient user interface
and a large number of readily available functions and tools for working
with images interactively. Sometimes it is possible to extend the stan-
dard functionality by writing scipts or adding self-programmed compo-
nents. For example, Adobe provides a special API1 for programming
Photoshop “plugins” in C++, though this is a nontrivial task and cer-
tainly too complex for nonprogrammers.

In contrast to the category of tools above, digital image processing
software primarily aims at the requirements of algorithm and software
developers, scientists, and engineers working with images, where inter-
activity and ease of use are not the main concerns. Instead, these en-
vironments mostly offer comprehensive and well-documented software
libraries that facilitate the implementation of new image-processing al-
gorithms, prototypes and working applications. Popular examples are
Khoros/VisiQuest,2 IDL,3 MatLab,4 and ImageMagick,5 among many
others. In addition to the support for conventional programming (typi-
cally with C/C++), many of these systems provide dedicated scripting
languages or visual programming aides that can be used to construct
even highly complex processes in a convenient and safe fashion.

In practice, image manipulation and image processing are of course
closely related. Although Photoshop, for example, is aimed at image
manipulation by nonprogrammers, the software itself implements many
traditional image-processing algorithms. The same is true for many Web
applications using server-side image processing, such as those based on
ImageMagick. Thus image processing is really at the base of any image
manipulation software and certainly not an entirely different category.

3.2 ImageJ Overview

ImageJ, the software that is used for this book, is a combination of both
worlds discussed above. It offers a set of ready-made tools for viewing
and interactive manipulation of images but can also be extended easily
by writing new software components in a “real” programming language.
ImageJ is implemented entirely in Java and is thus largely platform-
independent, running without modification under Windows, MacOS, or
1 www.adobe.com/products/photoshop/.
2 www.accusoft.com/imaging/visiquest/.
3 www.rsinc.com/idl/.
4 www.mathworks.com.
5 www.imagemagick.org.28



3.2 ImageJ OverviewLinux. Java’s dynamic execution model allows new modules (“plugins”)
to be written as independent pieces of Java code that can be compiled,
loaded, and executed “on the fly” in the running system without the
need to even restart ImageJ. This quick turnaround makes ImageJ an
ideal platform for developing and testing new image-processing tech-
niques and algorithms. Since Java has become extremely popular as a
first programming language in many engineering curricula, it is usually
quite easy for students to get started in ImageJ without spending much
time to learn another programming language. Also, ImageJ is freely
available, so students, instructors, and practitioners can install and use
the software legally and without license charges on any computer. Im-
ageJ is thus an ideal platform for education and self-training in digital
image processing but is also in regular use for serious research and appli-
cation development at many laboratories around the world, particularly
in biological and medical imaging.

ImageJ was (and still is) developed by Wayne Rasband [79] at the
U.S. National Institutes of Health (NIH), originally as a substitute for its
predecessor, NIH-Image, which was only available for the Apple Macin-
tosh platform. The current version of ImageJ, updates, documentation,
the complete source code, test images, and a continuously growing col-
lection of third-party plugins can be downloaded from the ImageJ Web-
site.6 Installation is simple, with detailed instructions available online,
in Werner Bailer’s programming tutorial [4], and in Appendix C of this
book.

Wayne Rasband (right) at the 1st
ImageJ Conference 2006 (picture
courtesy of Marc Seil, CRP Henri
Tudor, Luxembourg).

While ImageJ is a great tool, it is naturally not perfect, likely because
of its roots and history. From a software engineering point of view, its
architectural design does not always seem intuitive and one could also
wish for stronger orthogonality (i. e., several tasks can be accomplished
in a variety of different ways). To give a structured orientation, the
short reference in Appendix C is grouped into different task areas and
concentrates on the key functionalities. Some specific rarely used func-
tions were deliberately omitted, but they can of course be found in the
ImageJ documentation and the (online) source code.

3.2.1 Key Features

As a pure Java application, ImageJ should run on any computer for
which a current Java runtime environment (JRE) exists. ImageJ comes
with its own Java runtime, so Java need not be installed separately on
the computer. Under the usual restrictions, ImageJ can be run as a Java
“applet” within a Web browser, though it is mostly used as a stand-alone
application. It is sometimes also used on the server side in the context of
Java-based Web applications (see [4] for details). In summary, the key
features of ImageJ are:

6 http://rsb.info.nih.gov/ij/. 29



3 ImageJ

Fig. 3.1
ImageJ main window

(under Windows XP).

• A set of ready-to-use, interactive tools for creating, visualizing, edit-
ing, processing, analyzing, loading, and storing images, with support
for several common file formats. ImageJ also provides “deep” 16-bit
integer images, 32-bit floating-point images, and image sequences
(“stacks”).

• A simple plugin mechanism for extending the core functionality of
ImageJ by writing (usually small) pieces of Java code. All coding
examples shown in this book are based on such plugins.

• A macro language and the corresponding interpreter, which make
it easy to implement larger processing blocks by combining existing
functions without any knowledge of Java. Macros are not used in this
book, but details can be found in ImageJ’s online documentation.7

3.2.2 Interactive Tools

When ImageJ starts up, it first opens its main window (Fig. 3.1), which
includes the following menu entries:

• File: opening, saving and creating new images.
• Edit: editing and drawing in images.
•
• Process: image processing, including point operations, filters, and
arithmetic operations between multiple images.

• Analyze: statistical measurements on image data, histograms, and
special display formats.

• Plugin: editing, compiling, executing, and managing user-defined
plugins.

The current version of ImageJ can open images in several common for-
mats, including TIFF (uncompressed only), JPEG, GIF, PNG, and
7 http://rsb.info.nih.gov/ij/developer/macro/macros.html.30

Image: modifying and converting images, geometric operations.



3.2 ImageJ Overview
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Fig. 3.2
ImageJ software structure (sim-
plified). ImageJ is based on the
Java core system and depends in
particular upon Java’s Advanced
Windowing Toolkit (AWT) for
the implementation of the user
interface and the presentation of
image data. Plugins are small Java
classes that extend the function-
ality of the basic ImageJ system.

BMP, as well as the formats DICOM8 and FITS,9 which are popular in
medical and astronomical image processing, respectively. As is common
in most image-editing programs, all interactive operations are applied to
the currently active image, the image selected by the user. ImageJ also
provides a simple (single-step) “undo” mechanism, which can also revert
the results produced by user-defined plugins.

3.2.3 ImageJ Plugins

Plugins are small Java modules for extending the functionality of Im-
ageJ by using a simple standardized interface (Fig. 3.2). Plugins can
be created, edited, compiled, invoked, and organized through the Plugin
menu in ImageJ’s main window (Fig. 3.1). Plugins can be grouped to
improve modularity, and plugin commands can be arbitrarily placed in-
side the main menu structure. Also, many of ImageJ’s built-in functions
are actually implemented as plugins themselves.

Technically speaking, plugins are Java classes that implement a par-
ticular interface specification defined by ImageJ. There are two different
kinds of plugins:

• PlugIn: requires no image to be open to start a plugin.

• PlugInFilter: the currently active image is passed to the plugin
when started.

Throughout the examples in this book, we almost exclusively use plugins
of the second type (PlugInFilter) for implementing image-processing
operations. The interface specification requires that any plugin of type
PlugInFilter must at least implement two methods, setup() and
run(), with the following signatures:

8 Digital Imaging and Communications in Medicine.
9 Flexible Image Transport System. 31



3 ImageJ int setup (String arg, ImagePlus im )
When the plugin is started, ImageJ calls this method first to verify
that the capabilities of this plugin match the target image. setup()
returns a vector of binary flags (as a 32-bit int value) that describes
the plugin’s properties.

void run (ImageProcessor ip )
This method does the actual work for this plugin. It is passed as
a single argument ip, an object of type ImageProcessor, which
contains the image to be processed and all relevant information
about it. The run() method returns no result value (void) but
may modify the passed image and create new images.

3.2.4 A First Example: Inverting an Image

Let us look at a real example to quickly illustrate this mechanism. The
task of our first plugin is to invert any 8-bit grayscale image to turn
a positive image into a negative. As we shall see later, inverting the
intensity of an image is a typical point operation, which is discussed in
detail in Chapter 5. In ImageJ, 8-bit grayscale images have pixel values
ranging from 0 (black) to 255 (white), and we assume that the width and
height of the image are M and N , respectively. The operation is very
simple: the value of each image pixel I(u, v) is replaced by its inverted
value,

I(u, v) ← 255− I(u, v),

for all image coordinates (u, v), with u = 0 . . .M−1 and v = 0 . . .N−1.

The plugin class: My_Inverter

We decide to name our first plugin “My_Inverter”, which is both the
name of the Java class and the name of the source file that contains it
(Prog. 3.1). The underscore character (“_”) in the name causes ImageJ
to recognize this class as a plugin and and to insert it automatically into
the menu list at startup. The Java source code in file My_Inverter.java
contains a few import statements, followed by the definition of the class
My_Inverter, which implements the PlugInFilter interface (because it
will be applied to an existing image).

The setup() method

When a plugin of type PlugInFilter is executed, ImageJ first invokes
its setup()method to obtain information about the plugin itself. In this
example, setup() only returns the value DOES_8G (a static int constant
specified by the PlugInFilter interface), indicating that this plugin can
handle 8-bit grayscale images (Prog. 3.1, line 8). The parameters arg
and im of the setup()method are not used in this case (see also Exercise
3.4).32



3.2 ImageJ Overview1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageProcessor;
4
5 public class My_Inverter implements PlugInFilter {
6
7 public int setup (String arg, ImagePlus im) {
8 return DOES_8G; // this plugin accepts 8-bit grayscale images
9 }

10
11 public void run (ImageProcessor ip) {
12 int w = ip.getWidth();
13 int h = ip.getHeight();
14

15 // iterate over all image coordinates
16 for (int u = 0; u < w; u++) {
17 for (int v = 0; v < h; v++) {
18 int p = ip.getPixel(u, v);
19 ip.putPixel(u, v, 255-p); // invert
20 }
21 }
22 }
23

24 } // end of class My_Inverter

Program 3.1
ImageJ plugin for inverting
8-bit grayscale images (file
My_Inverter.java).

The run() method

As mentioned above, the run() method of a PlugInFilter plugin re-
ceives an object (ip) of type ImageProcessor, which contains the image
to be processed and all relevant information about it. First, we use the
ImageProcessor methods getWidth() and getHeight() to query the
size of the image referenced by ip (lines 12–13). Then we use two nested
for loops (with loop variables u, v for the horizontal and vertical coor-
dinates, respectively) to iterate over all image pixels (lines 16–17). For
reading and writing the pixel values, we use two additional methods of
the class ImageProcessor:
int getPixel (int u, int v )

Returns the pixel value at position (u, v ) or zero if (u, v ) is outside
the image bounds.

void putPixel (int u, int v, int a )
Sets the pixel value at position (u, v ) to the new value a. Does
nothing if (u, v ) is outside the image bounds.

Details on these and other methods can be found in the ImageJ reference
in Appendix C.

If we are sure that no coordinates outside the image bounds are ever
accessed (as in My_Inverter in Prog. 3.1) and the inserted pixel values
are guaranteed not to exceed the image processor’s range, we can use 33



3 ImageJ the slightly faster methods get() and set() in place of getPixel() and
putPixel(), respectively (see p. 487). The most efficient way to process
the image is to avoid read/write methods altogether and directly access
the elements of the corresponding pixel array, as explained in Appendix
C.7.6 (see p. 490).

Editing, compiling, and executing the plugin

The source code of our plugin should be stored in a file

My_Inverter.java

located within <ij>/plugins/10 or an immediate subdirectory. New
plugin files can be created with ImageJ’s Plugins→New... menu. ImageJ
even provides a built-in Java editor for writing plugins, which is avail-
able through the Plugins→Edit... menu but unfortunately is of little use
for serious programming. A better alternative is to use a modern edi-
tor or a professional Java programming environment, such as Eclipse,11
NetBeans,12 or JBuilder,13 all of which are freely available.

For compiling plugins (to Java bytecode), ImageJ comes with its
own Java compiler as part of its runtime environment.14 To compile and
execute the new plugin, simply use the menu

Plugins→Compile and Run...

Compilation errors are displayed in a separate log window. Once the
plugin is compiled, the corresponding .class is automatically loaded and
the plugin is applied to the currently active image. An error message is
displayed if no images are open or if the current image cannot be handled
by that plugin.

At startup, ImageJ automatically loads all correctly named plugins
found in the <ij>/plugins/ directory (or any immediate subdirectory)
and installs them in its Plugins menu. These plugins can be executed
immediately without any recompilation. References to plugins can also
be placed manually with the

Plugins→Shortcuts→Install Plugin...

command at any other position in the ImageJ menu tree. Sequences
of plugin calls and other ImageJ commands may be recorded as macro
programs with Plugins→Macros→Record.

10 <ij> denotes ImageJ’s installation directory, and <ij>/plugins/ is the de-
fault plugins path, which can be set to any other directory.

11 www.eclipse.org.
12 www.netbeans.org.
13 www.borland.com.
14 Currently only for Windows; for MacOS and Linux, consult the ImageJ

installation manual.34



3.3 Additional Information
on ImageJ and Java

Displaying and “undoing” results

Our first plugin in Prog. 3.1 did not create a new image but “destruc-
tively” modified the target image. This is not always the case, but plug-
ins can also create additional images or compute only statistics, without
modifying the original image at all. It may be surprising, though, that
our plugin contains no commands for displaying the modified image.
This is done automatically by ImageJ whenever it can be assumed that
the image passed to a plugin was modified.15 In addition, ImageJ au-
tomatically makes a copy (“snapshot”) of the image before passing it to
the run()method of a PlugInFilter-type plugin. This feature makes it
possible to restore the original image (with the Edit→Undo menu) after
the plugin has finished without any explicit precautions in the plugin
code.

3.3 Additional Information on ImageJ and Java

In the following chapters, we mostly use concrete plugins and Java code
to describe algorithms and data structures. This not only makes these
examples immediately applicable, but they should also help in acquiring
additional skills for using ImageJ in a step-by-step fashion. To keep the
text compact, we often describe only the run() method of a particular
plugin and additional class and method definitions, if they are relevant
in the given context. The complete source code for these examples can
of course be downloaded from the book’s supporting Website.16

3.3.1 Resources for ImageJ

The short reference in Appendix C contains an overview of ImageJ’s
main capabilities and a short description of its key classes, interfaces,
and methods. The complete and most current API reference, including
source code, tutorials, and many example plugins, can be found on the
official ImageJ Website. Another great source for any serious plugin
programming is the tutorial by Werner Bailer [4].

3.3.2 Programming with Java

While this book does not require extensive Java skills from its readers,
some elementary knowledge is essential for understanding or extending
the given examples. There is a huge and still-growing number of intro-
ductory textbooks on Java, such as [3,28,30]. For readers with program-
ming experience who have not worked with Java before, we particularly
15 No automatic redisplay occurs if the NO_CHANGES flag is set in the return

value of the plugin’s setup() method.
16 www.imagingbook.com. 35



3 ImageJ recommend some of the tutorials on Sun’s Java Website.17 Also, in Ap-
pendix B of this book, readers will find a small compilation of specific
Java topics that cause frequent problems or programming errors.

3.4 Exercises

Exercise 3.1. Install the current version of ImageJ on your computer
and make yourself familiar with the built-in functions (open, convert,
edit, and save images).

Exercise 3.2. Write a new ImageJ plugin that reflects a grayscale im-
age horizontally (or vertically) using My_Inverter.java (Prog. 3.1) as
a template. Test your new plugin with appropriate images of different
sizes (odd, even, extremely small) and inspect the results carefully.

Exercise 3.3. Create an ImageJ plugin for 8-bit grayscale images of
arbitrary size that paints a white frame (with pixel value 255) 10 pixels
wide into the image (without increasing its size).

Exercise 3.4. Write a new ImageJ plugin that shifts an 8-bit grayscale
image horizontally and cyclically until the original state is reached again.
To display the modified image after each shift, a reference to the cor-
responding ImagePlus object is required (ImageProcessor has no dis-
play methods). The ImagePlus object is only accessible to the plugin’s
setup()method, which is automatically called before the run()method.
Modify the definition in Prog. 3.1 to keep a reference and to redraw the
ImagePlus object as follows:

1 public class XY_plugin implements PlugInFilter {
2

3 ImagePlus im; // new instance variable of this plugin object
4
5 public int setup(String arg, ImagePlus im) {
6 if (im == null) {
7 IJ.noImage(); // currently no image is open
8 return DONE;
9 }

10 this.im = im; // keep a reference to the image im
11 return DOES_8G;
12 }
13
14 public void run(ImageProcessor ip) {
15 ... // use ip to modify the image
16 im.updateAndDraw(); // use im to redisplay this image
17 ...
18 }
19
20 } // end of class XY_plugin

17 http://java.sun.com/docs/books/tutorial/.36
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Histograms

Histograms are used to depict image statistics in an easily interpreted
visual format. With a histogram, it is easy to determine certain types
of problems in an image, for example, it is simple to conclude if an im-
age is properly exposed by visual inspection of its histogram. In fact,
histograms are so useful that modern digital cameras often provide a
real-time histogram overlay on the viewfinder (Fig. 4.1) to help prevent
taking poorly exposed pictures. It is important to catch errors like this at
the image capture stage because poor exposure results in a loss of infor-
mation which it is not possible to recover later using image-processing
techniques. In addition to their usefulness during image capture, his-
tograms are also used later to improve the visual appearance of an im-
age and as a “forensic” tool for determining what type of processing has
previously been applied to an image.

Fig. 4.1
Digital camera viewfinder with
histogram overlay.
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4 Histograms

Fig. 4.2
An 8-bit grayscale image

and a histogram depicting
the frequency distribution
of its 256 intensity values.

4.1 What Is a Histogram?

Histograms are frequency distributions, and histograms of images de-
scribe the frequency of the intensity values that occur in an image. This
concept can be easily explained by considering an old-fashioned grayscale
image like that shown in Fig. 4.2. A histogram h for a grayscale image
I with intensity values in the range I(u, v) ∈ [0, K−1] would contain ex-
actly K entries, where for a typical 8 bit grayscale image, K = 28 = 256.
Each individual histogram entry is defined as

h(i) = the number of pixels in I with the intensity value i

for all 0 ≤ i < K. More formally stated,

h(i) = card
{
(u, v) | I(u, v) = i

}
.1 (4.1)

Therefore h(0) is the number of pixels with the value 0, h(1) the number
of pixels with the value 1, and so forth. Finally h(255) is the number of
all white pixels with the maximum intensity value 255 = K−1. The result
of the histogram computation is a one-dimensional vector h of length K.
Figure 4.3 gives an example for an image with K = 16 possible intensity
values.

Since a histogram encodes no information about where each of its
individual entries originated in the image, histograms contain no infor-
mation about the spatial arrangement of pixels in the image. This is
intentional since the main function of a histogram is to illustrate statis-
tical information, (e.g., the distribution of intensity values) in a compact
form. Is it possible to reconstruct an image using only its histogram?
That is, can a histogram be somehow “inverted”? Given the loss of spa-
tial information, in all but the most trivial cases, the answer is no. As
an example, consider the wide variety of images you could construct us-
ing the same number of pixels of a specific value. These images would
appear different but have exactly the same histogram (Fig. 4.4).

1 card{. . .} denotes the number of elements (“cardinality”) in a set (see also
p. 451).38



4.2 Interpreting Histograms
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Fig. 4.3
Histogram vector for an image
with K = 16 possible intensity
values. The indices of the vector
element i = 0 . . . 15 represent in-
tensity values. The value of 10 at
index 2 means that the image con-
tains 10 pixels of intensity value
2.

Fig. 4.4
Three very different images with
identical histograms.

4.2 Interpreting Histograms

A histogram depicts problems that originate during image acquisition,
such as those involving contrast and dynamic range, as well as artifacts
resulting from image-processing steps that were applied to the image.
Histograms are often used to determine if an image is making effective
use of its intensity range (Fig. 4.5) by examining the size and uniformity
of the histogram’s distribution.

Fig. 4.5
The effective intensity range. The
graph depicts how often a pixel
value occurs linearly (black bars)
and logarithmically (gray bars).
The logarithmic form makes even
relatively low occurrences, which
can be very important in the im-
age, readily apparent.
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4 Histograms

Fig. 4.6
Exposure errors are readily ap-
parent in histograms. Underex-
posed (a), properly exposed (b),

and overexposed (c) photographs.

(a) (b) (c)

4.2.1 Image Acquisition

Exposure

Histograms make classic exposure problems readily apparent. As an
example, a histogram where a large span of the intensity range at one
end is largely unused while the other end is crowded with high-value
peaks (Fig. 4.6) is representative of an improperly exposed image.

Contrast

Contrast is understood as a combination of the range of intensity values
effectively used within a given image and the difference between the
image’s maximum and minimum pixel values. A full-contrast image
makes effective use of the entire range of available intensity values from
a = amin . . . amax = 0 . . .K−1 (black to white). Using this definition,
image contrast can be easily read directly from the histogram. Figure 4.7
illustrates how varying the contrast of an image affects its histogram.

Dynamic range

The dynamic range of an image2 is understood as the number of distinct
pixel values in an image. In the ideal case, the dynamic range encom-
passes all of the usable pixel values K, in which case the value range is
completely utilized. When an image has an available range of contrast
a = alow . . . ahigh, with

amin < alow and ahigh < amax,

then the maximum possible dynamic range is achieved when all the in-
tensity values lying in this range are utilized (i. e., appear in the image;
Fig. 4.8).
2 The dynamic range of the sensor used to capture an image is typically

defined as the ratio of the greatest value to the least value it can generate.40



4.2 Interpreting Histograms

(a) (b) (c)

Fig. 4.7
How changes in contrast affect a
histogram: low contrast (a), nor-
mal contrast (b), high contrast (c).

(a) (b) (c)

Fig. 4.8
How changes in dynamic range
affect a histogram: high dynamic
range (a), low dynamic range with
64 intensity values (b), extremely
low dynamic range with only 6
intensity values (c).

While the contrast of an image can be increased by transforming its
existing values so that they utilize more of the underlying value range
available, the dynamic range of an image can only be increased by intro-
ducing artificial (that is, not originating with the image sensor) values
using methods such as interpolation (see Sec. 16.3). An image with a
high dynamic range is desirable because it will suffer less image-quality
degradation during image processing and compression. Since it is not
possible to increase dynamic range after image acquisition in a practical
way, professional cameras and scanners work at depths of more than 8
bits, often 12–14 bits per channel, in order to increase the dynamic range
at the acquisition stage. This is done for image processing since most 41



4 Histograms of the output devices, such as monitors and printers, used to display
images are unable to produce more than 256 different shades.

4.2.2 Image Defects

Histograms can be used to detect a wide range of image defects that
originate either during image acquisition or as the result of later image
processing. Since histograms always depend on the visual characteristics
of the scene captured in the image, no single “ideal” histogram exists.
While a given histogram may be optimal for a specific scene, it may be
entirely unacceptable for another. As an example, the ideal histogram
for an astronomical image would likely be very different from that of a
good landscape or portrait photo. Nevertheless, there are some general
rules; for example, when taking a landscape image with a digital camera,
you can expect the histogram to have evenly distributed intensity values
and no isolated spikes.

Saturation

Ideally the contrast range of a sensor, such as that used in a camera,
should be greater than the range of the intensity of the light that it
receives from a scene. In such a case, the resulting histogram will be
smooth at both ends because the light received from the very bright and
the very dark parts of the scene will be less than the light received from
the other parts of the scene. Unfortunately, this ideal is often not the
case in reality, and illumination outside of the sensor’s contrast range,
arising for example from glossy highlights and especially dark parts of
the scene, cannot be captured and is lost. The result is a histogram
that is saturated at one or both ends of its range. The illumination
values lying outside of the sensor’s range are mapped to its minimum or
maximum values and appear on the histogram as significant spikes at
the tail ends. This typically occurs in an under- or overexposed image
and is generally not avoidable when the inherent contrast range of the
scene exceeds the range of the system’s sensor (Fig. 4.9 (a)).

Spikes and gaps

As discussed above, the intensity value distribution for an unprocessed
image is generally smooth; that is, it is unlikely that isolated spikes
(except for possible saturation effects at the tails) or gaps will appear
in its histogram. It is also unlikely that the count of any given inten-
sity value will differ greatly from that of its neighbors (i. e., it is locally
smooth). While artifacts like these are observed very rarely in original
images, they will often be present after an image has been manipulated,
for instance, by changing its contrast. Increasing the contrast (see Ch.
5) causes the histogram lines to separate from each other and, due to42



4.2 Interpreting Histograms

(a) (b) (c)

Fig. 4.9
Effect of image capture errors on
histograms: saturation of high
intensities (a), histogram gaps
caused by a slight increase in con-
trast (b), and histogram spikes
resulting from a reduction in con-
trast (c).

(a)

(b)

(c)

Fig. 4.10
Color quantization effects resulting
from GIF conversion. The origi-
nal image converted to a 256 color
GIF image (left). Original his-
togram (a) and the histogram
after GIF conversion (b). When
the RGB image is scaled by 50%,
some of the lost colors are recre-
ated by interpolation, but the re-
sults of the GIF conversion remain
clearly visible in the histogram (c).

the discrete values, gaps are created in the histogram (Fig. 4.9 (b)). De-
creasing the contrast leads, again because of the discrete values, to the
merging of values that were previously distinct. This results in increases
in the corresponding histogram entries and ultimately leads to highly
visible spikes in the histogram (Fig. 4.9 (c)).3

Impact of image compression

Image compression also changes an image in ways that are immediately
evident in its histogram. As an example, during GIF compression, an
image’s dynamic range is reduced to only a few intensities or colors,
resulting in an obvious line structure in the histogram that generally
cannot be removed by subsequent processing (Fig. 4.10). Generally, a
histogram can quickly reveal whether an image has ever been subjected
to color quantization, such as occurs during conversion to a GIF image,
3 Unfortunately, these types of errors are also caused by the internal contrast

“optimization” routines of some image-capture devices, especially low-end
scanners. 43



4 Histograms

Fig. 4.11
Effect of JPEG compression. The
original image (a) contained only

two different gray values, as its
histogram (b) makes readily ap-

parent. JPEG compression, a
poor choice for this type of im-

age, results in numerous additional
gray values, which are visible in
both the resulting image (c) and

its histogram (d). In both his-
tograms, the linear frequency

(black bars) and the logarithmic
frequency (gray bars) are shown.

even if the image has subsequently been converted to a full-color format
such as TIFF or JPEG.

Figure 4.11 illustrates what occurs when a simple line graphic with
only two gray values (128, 255) is subjected to a compression method
such as JPEG, that is not designed for line graphics but instead for
detailed full-color photographs. The histogram of the resulting image
clearly shows that it now contains a large number of gray values that
were not present in the original image, resulting in a poor-quality image4
that appears dirty, fuzzy, and blurred.

4.3 Computing Histograms

Computing the histogram of an 8-bit grayscale image containing inten-
sity values between 0 and 255 is a simple task. All we need is a set of 256
counters, one for each possible intensity value. First, all counters are ini-
tialized to zero. Then we iterate through the image I(u, v), determining
the pixel value p at each location, and incrementing its corresponding
counter by one. At the end, each counter will contain the number of
pixels in the image that have that corresponding intensity value.

An image with K possible intensity values requires exactly K counter
variables; for example, since an 8-bit grayscale image can contain at most
256 different intensity values, we require 256 counters. While individual
counters make sense conceptually, an actual implementation would not

4 Using JPEG compression on images like this, for which it was not designed,
is one of the most egregious of imaging errors. JPEG is designed for pho-
tographs of natural scenes with smooth color transitions, and using it to
compress iconic images with large areas of the same color results in strong
visual artifacts (see, for example, Fig. 2.9 on p. 20).44



4.3 Computing Histograms1 public class Compute_Histogram implements PlugInFilter {
2

3 public int setup(String arg, ImagePlus img) {
4 return DOES_8G + NO_CHANGES;
5 }
6
7 public void run(ImageProcessor ip) {
8 int[] H = new int[256]; // histogram array
9 int w = ip.getWidth();

10 int h = ip.getHeight();
11

12 for (int v = 0; v < h; v++) {
13 for (int u = 0; u < w; u++) {
14 int i = ip.getPixel(u,v);
15 H[i] = H[i] + 1;
16 }
17 }
18 ... //histogram H[] can now be used
19 }
20

21 } // end of class Compute_Histogram

Program 4.1
ImageJ plugin for computing the
histogram of an 8-bit grayscale im-
age. The setup() method returns
DOES_8G + NO_CHANGES, which in-
dicates that this plugin requires
an 8-bit grayscale image and will
not alter it (line 4). In Java, all
elements of a newly instantiated
array (line 8) are automatically
initialized, in this case to zero.

use K individual variables to represent the counters but instead would
use an array with K entries (int[] in Java). In this example, the actual
implementation as an array is straightforward. Since the intensity values
begin at zero (like arrays in Java) and are all positive, they can be used
directly as the indices i ∈ [0, N−1] of the histogram array. Program
4.1 contains the complete Java source code for computing a histogram
within the run() method of an ImageJ plugin.

At the start of Prog. 4.1, the array H of type int[] is created (line
8) and its elements are automatically initialized5 to 0. It makes no
difference, at least in terms of the final result, whether the array is
traversed in row or column order, as long as all pixels in the image
are visited exactly once. In contrast to Prog. 3.1, in this example we
traverse the array in the standard row-first order such that the outer
for loop iterates over the vertical coordinates v and the inner loop over
the horizontal coordinates u.6 Once the histogram has been calculated,
it is available for further processing steps such as display.

Histogram computation has already been implemented in ImageJ
and is available via the method getHistogram() for objects of the class

5 In Java, arrays of primitives such as int, double are initialized at creation
to 0 in the case of integer types or 0.0 for floating-point types, while arrays
of objects are initialized to null.

6 In this way, image elements are traversed in exactly the same way that they
are laid out in main memory, resulting in more efficient memory access and
with it the possibility of increased performance, especially when dealing
with larger images (see also Appendix B, p. 462). 45



4 Histograms ImageProcessor. If we use the method provided by ImageJ, the run()
method of Prog. 4.1 can be simplified to

public void run(ImageProcessor ip) {
int[] H = ip.getHistogram();
... // histogram H[] can now be used

}

4.4 Histograms of Images with More than 8 Bits

Normally histograms are computed in order to visualize the image’s dis-
tribution on the screen. This presents no problem when dealing with
images having 28 = 256 entries, but when an image uses a larger num-
ber of values, for instance 16- and 32-bit or floating-point images (see
Table 2.1), then th e large number of entries to be displayed makes it
no longer practical to represent them directly on the screen without first
taking some additional steps. As an example, applying the original his-
togram algorithm to a 32-bit image would require screen space to display
232 = 4,294,967,296 columns.

4.4.1 Binning

Since it is not possible to represent each intensity value with its own
entry in the histogram, we will instead let a single entry in the histogram
represent a range of intensity values. This technique is often referred to
as “binning” since you can visualize it as collecting a range of pixel values
in a container such as a bin or bucket. In a binning histogram of size
B, each bin h(j) contains the number of image elements having values
within the interval aj ≤ a < aj+1, and therefore (analogous to Eqn.
(4.1))

h(j) = card {(u, v) | aj ≤ I(u, v) < aj+1} for 0 ≤ j < B. (4.2)

Typically the range of possible values in B is divided into bins of equal
size kB = K/B such that the starting value of the interval j is

aj = j · K

B
= j · kB.

4.4.2 Example

In order to create a typical histogram containing B = 256 entries from
a 14-bit image, you would divide the available value range from j =
0 . . . 214−1 into 256 equal intervals, each of length kB = 214/256 = 64, so
that a0 = 0, a1 = 64, a2 = 128, ... a255 = 16,320 and a256 = aB = 214 =
16,384 = K. This results in the following mapping from the pixel values
to the histogram bins h(0) . . . h(255):46



4.5 Color Image Histogramsh(0) ← 0 ≤ I(u, v) < 64
h(1) ← 64 ≤ I(u, v) < 128
h(2) ← 128 ≤ I(u, v) < 192
...

...
...

...
h(j) ← aj ≤ I(u, v) < aj+1

...
...

...
...

h(255) ← 16320 ≤ I(u, v) < 16384

4.4.3 Implementation

If, as in this example, the value range 0 . . .K−1 is divided into equal
length intervals kB = K/B, there is naturally no need to use a translation
table to find aj since for a given pixel value a = I(u, v) the correct
histogram element j is easily computed. In these cases, it is enough to
simply divide the pixel value I(u, v) by the interval length kB; that is,

I(u, v)
kB

=
I(u, v)
K/B

= I(u, v) · B
K . (4.3)

As an index to the appropriate histogram bin h(j), we require a whole
number value

j =
⌊
I(u, v) · B

K

⌋
, (4.4)

where �·� denotes the floor function.7 A Java method for computing
histograms by “linear binning” is given in Prog. 4.2. Note that all the
computations from Eqn. (4.4) are done with integer numbers without
using any floating-point operations. Also there is no need to explicitly
call the floor function because the expression

a * B / K

in line 11 uses integer division and in Java the floating-point result of
such an operation is truncated (i. e., the floating-point value is simply
cut off), which is operationally equivalent to the floor function.8 The
binning method can also be applied, in a similar way, to floating-point
images.

4.5 Color Image Histograms

When referring to histograms of color images, typically what is meant
is a histogram of the image intensity (luminance) or of the individual
color channels. Both of these variants are supported by practically every
image-processing application and are used to objectively appraise the
image quality, especially directly after image acquisition.
7 �x� rounds x down to the next whole number (see Appendix A, p. 451).
8 For a more detailed discussion, see the section on integer division in Java

in Appendix B (p. 457). 47
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Program 4.2
Histogram computation using “bin-

ning” (Java method). Example of
computing a histogram with B =
32 bins for an 8-bit grayscale im-

age with K = 256 intensity levels.
The method binnedHistogram()

returns the histogram of the
image object ip passed to

it as an int array of size B.

1 int[] binnedHistogram(ImageProcessor ip) {
2 int K = 256; // number of intensity values
3 int B = 32; // size of histogram, must be defined
4 int[] H = new int[B]; // histogram array
5 int w = ip.getWidth();
6 int h = ip.getHeight();
7
8 for (int v = 0; v < h; v++) {
9 for (int u = 0; u < w; u++) {

10 int a = ip.getPixel(u, v);
11 int i = a * B / K; // integer operations only!
12 H[i] = H[i] + 1;
13 }
14 }
15 // return binned histogram
16 return H;
17 }

4.5.1 Intensity Histograms

The luminance histogram hLum of a color image is nothing more than the
histogram of the corresponding grayscale image, so naturally all aspects
of the preceding discussion also apply to this type of histogram. The
grayscale image is obtained by computing the luminance of the individual
channels of the color image. When computing the luminance, it is not
sufficient to simply average the values of each color channel; instead, a
weighted sum that takes into account color perception theory should be
computed. This process is explained in detail in Chapter 12 (p. 256).

4.5.2 Individual Color Channel Histograms

Even though the luminance histogram takes into account all color chan-
nels, image errors appearing in single channels can remain undiscovered.
For example, the luminance histogram may appear clean even when one
of the color channels is oversaturated. In RGB images, the blue chan-
nel contributes only a small amount to the total brightness and so is
especially sensitive to this problem.

Component histograms provide a breakdown of the intensity distribu-
tion within the individual color channels. When computing component
histograms, each color channel is considered as a separate intensity im-
age and its histogram is computed, and displayed, independently of the
other channels. Figure 4.12 shows the luminance histogram hLum and
the three component histograms hR, hG, and hB of a typical RGB color
image. Notice that saturation problems in all three channels (red in the
upper intensity region, green and blue in the lower regions) are obvi-
ous in the component histograms but not in the luminance histogram.48



4.5 Color Image Histograms

Fig. 4.12
Histograms of an RGB color im-
age: original image (a), luminance
histogram hLum (b), RGB color
components as intensity images
(c–e), and the associated compo-
nent histograms hR, hG, hB (f–h).
The fact that all three color chan-
nels have saturation problems is
only apparent in the individual
component histograms. The spike
in the distribution resulting from
this is found in the middle of the
luminance histogram (b).

In this case it is striking, and not at all atypical, that the three com-
ponent histograms appear completely different from the corresponding
luminance histogram hLum (Fig. 4.12 (b)).

4.5.3 Combined Color Histogram

Luminance histograms and component histograms both provide useful
information about the lighting, contrast, dynamic range, and saturation
effects relative to the individual color components. It is important to
remember that they provide no information about the distribution of
the actual colors in the image because they are based on the individual
color channels and not the combination of the individual channels that
forms the color of an individual pixel. Consider, for example, when hR,
the component histogram for the red channel, contains the entry

hR(200) = 24.

Then it is only known that the image has 24 pixels that have a red
intensity value of 200. The entry does not tell us anything about the
green and blue values of those pixels, which could be any valid value (∗);
that is,

(r, g, b) = (200, ∗, ∗).
Suppose further that the three component histograms included the

following entries:

hR(50) = 100, hG(50) = 100, hB(50) = 100. 49



4 Histograms Could we conclude from this that the image contains 100 pixels with the
color combination

(r, g, b) = (50, 50, 50)

or that this color occurs at all? In general, no, because there is no way
of ascertaining from these data if there exists a pixel in the image in
which all three components have the value 50. The only thing we could
really say is that the color value (50, 50, 50) can occur at most 100 times
in this image.

So, although conventional histograms of color images depict impor-
tant properties, they do not really provide any useful information about
the composition of the actual colors in an image. In fact, a collection
of color images can have very similar component histograms and still
make use of entirely different colors. This leads to the interesting topic
of the combined histogram, which uses statistical information about the
combined color components in an attempt to determine if two images
are roughly similar in their color composition. Features computed from
these types of histograms often form the foundation of color-based image-
retrieval methods. We will return to this topic in Chapter 12, where we
will explore color images in detail.

4.6 Cumulative Histogram

The cumulative histogram, which is derived from the ordinary histogram,
is useful when performing certain image operations involving histograms;
for instance, histogram equalization (see Sec. 5.5). The cumulative his-
togram H(i) is defined as

H(i) =
i∑

j=0

h(j) for 0 ≤ i < K. (4.5)

A particular value H(i) is thus the sum of all the values h(j), with j ≤ i,
in the original histogram. Alternatively, we can define it recursively (as
implemented in Prog. 5.2 on p. 63):

H(i) =

{
h(0) for i = 0
H(i−1) + h(i) for 0 < i < K.

(4.6)

The cumulative histogram is a monotonically increasing function with a
maximum value

H(K−1) =
K−1∑
j=0

h(j) = M ·N ; (4.7)

that is, the total number of pixels in an image of width M and height
N . Figure 4.13 shows a concrete example of a cumulative histogram.50
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H(i)

Fig. 4.13
The ordinary histogram h(i) and
its associated cumulative histo-
gram H(i).

4.7 Exercises

Exercise 4.1. In Prog. 4.2, B and K are constants. Consider if there
would be an advantage to computing the value of B/K outside of the
loop, and explain your reasoning.

Exercise 4.2. Develop an ImageJ plugin that computes the cumulative
histogram of an 8-bit grayscale image and displays it as a new image,
similar to H(i) in Fig. 4.13.
Hint: Use the ImageProcessor method int[] getHistogram() to re-
trieve the original image’s histogram values and then compute the cumu-
lative histogram “in place” according to Eqn. (4.6). Create a new (blank)
image of appropriate size (e. g., 256×150) and draw the scaled histogram
data as black vertical bars such that the maximum entry spans the full
height of the image. Program 4.3 shows how this plugin could be set up
and how a new image is created and displayed.

Exercise 4.3. Develop a technique for nonlinear binning that uses a
table of interval limits aj (Eqn. (4.2)).

Exercise 4.4. Develop an ImageJ plugin that uses the Java methods
Math.random() or Random.nextInt(int n) to create an image with
random pixel values that are uniformly distributed in the range [0, 255].
Analyze the image’s histogram to determine how equally distributed the
pixel values truly are.

Exercise 4.5. Develop an ImageJ plugin that creates a random image
with a Gaussian (normal) distribution with mean value μ = 128 and
standard deviation σ = 50. Use the standard Java method double
Random.nextGaussian() to produce normally-distributed random num-
bers (with μ = 0 and σ = 1) and scale them appropriately to pixel values.
Analyze the resulting image histogram to see if it shows a Gaussian dis-
tribution too.

51



4 Histograms

Program 4.3
Creating and displaying a new

image (ImageJ plugin). First, we
create a ByteProcessor object

(histIp, line 15) that is sub-
sequently filled. At this point,
histIp has no screen represen-
tation and is thus not visible.

Then, an associated ImagePlus
object is created (line 25) and dis-

played by applying the show()
method (line 26). Notice how
the title (String) is retrieved

from the original image inside the
setup() method (line 5) and used

to compose the new image’s ti-
tle (lines 24 and 25). If histIp
is changed after calling show(),

then the method updateAndDraw()
could be used to redisplay the as-

sociated image again (line 27).

1 public class Create_New_Image implements PlugInFilter {
2 String title = null;
3
4 public int setup(String arg, ImagePlus im) {
5 title = im.getTitle();
6 return DOES_8G + NO_CHANGES;
7 }
8

9 public void run(ImageProcessor ip) {
10 int w = 256;
11 int h = 100;
12 int[] hist = ip.getHistogram();
13
14 // create the histogram image:
15 ImageProcessor histIp = new ByteProcessor(w, h);
16 histIp.setValue(255); // white = 255
17 histIp.fill(); // clear this image
18
19 // draw the histogram values as black bars in ip2 here,
20 // for example, using histIp.putpixel(u,v,0)
21 // ...
22
23 // display the histogram image:
24 String hTitle = "Histogram of " + title;
25 ImagePlus histIm = new ImagePlus(hTitle, histIp);
26 histIm.show();
27 // histIm.updateAndDraw();
28 }
29

30 } // end of class Create_New_Image
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5

Point Operations

Point operations perform a mapping of the pixel values without changing
the size, geometry, or local structure of the image. Each new pixel value
a′ = I ′(u, v) depends exclusively on the previous value a = I(u, v) at
the same position and is thus independent from any other pixel value, in
particular from any of its neighboring pixels.1 The original pixel values
are mapped to the new values by a function f(a),

a′ ← f(a) or

I ′(u, v) ← f
(
I(u, v)

)
, (5.1)

for each image position (u, v). If the function f() is independent of the
image coordinates (i. e., the same throughout the image), the operation
is called “homogeneous”. Typical examples of homogeneous point oper-
ations include, among others,

• modifying image brightness or contrast,
• applying arbitrary intensity transformations (“curves”),
• quantizing (or “posterizing”) images,
• global thresholding,
• gamma correction,
• color transformations.

We will look at some of these techniques in more detail in the following.
In contrast, the mapping function g() for a nonhomogeneous point oper-
ation would also take into account the current image coordinate (u, v);
i. e.,

a′ ← g(a, u, v) or
I ′(u, v) ← g (I(u, v), u, v) . (5.2)

1 If the result depends on more than one pixel value, the operation is called
a “filter”, as described in Ch. 6. 53



5 Point Operations

Program 5.1
Point operation to increase the

contrast by 50% (ImageJ plugin).
Note that in line 7 the result of

the multiplication of the inte-
ger pixel value by the constant

1.5 (implicitly of type double) is
of type double. Thus an explicit
type cast (int) is required to as-
sign the value to the int variable
a. 0.5 is added in line 7 to round

to the nearest integer values.

1 public void run(ImageProcessor ip) {
2 int w = ip.getWidth();
3 int h = ip.getHeight();
4
5 for (int v = 0; v < h; v++) {
6 for (int u = 0; u < w; u++) {
7 int a = (int) (ip.get(u, v) * 1.5 + 0.5);
8 if (a > 255)
9 a = 255; // clamp to maximum value

10 ip.set(u, v, a);
11 }
12 }
13 }

A typical nonhomogeneous operation is the local adjustment of contrast
or brightness used for example to compensate for uneven lighting during
image acquisition.

5.1 Modifying Image Intensity

5.1.1 Contrast and Brightness

Let us start with a simple example. Increasing the image’s contrast by
50% (i. e., by the factor 1.5) or raising the brightness by 10 units can be
expressed by the mapping functions

fcontr(a) = a · 1.5 and fbright(a) = a + 10, (5.3)

respectively. The first operation is implemented as an ImageJ plugin by
the code shown in Prog. 5.1, which can easily be adapted to perform any
other type of point operation. Rounding to the nearest integer values is
accomplished by simply adding 0.5 before the truncation effected by the
(int) typecast in line 7 (this only works for positive values). Also note
the use of the more efficient image processor methods get() and set()
(instead of getPixel() and putPixel()) in this example.

5.1.2 Limiting the Results by Clamping

When implementing arithmetic operations on pixels, we must keep in
mind that the computed results may exceed the maximum range of pixel
values for a given image type ([0 . . . 255] in the case of 8-bit grayscale
images). To avoid this, we have included the “clamping” statement

if (a > 255) a = 255;

in line 9 of Prog. 5.1, which limits any result to the maximum value 255.
Similarly one should, in general, also limit the results to the minimum
value (0) to avoid negative pixel values (which cannot be represented by
an 8-bit image), for example by the statement54



5.2 Point Operations and
Histograms

if (a < 0) a = 0;

This second measure is not necessary in Prog. 5.1 because the interme-
diate results can never be negative in this particular operation.

5.1.3 Inverting Images

Inverting an intensity image is a simple point operation that reverses the
ordering of pixel values (by multiplying with −1) and adds a constant
value to map the result to the admissible range again. Thus, for a
pixel value a = I(u, v) in the range [0, amax], the corresponding point
operation is

finvert(a) = −a + amax = amax − a. (5.4)

The inversion of an 8-bit grayscale image with amax = 255 was the task
of our first plugin example in Sec. 3.2.4 (Prog. 3.1). Note that in this
case no clamping is required at all because the function always maps to
the original range of values. In ImageJ, this operation is performed by
the method invert() (for objects of type ImageProcessor) and is also
available through the Edit→Invert menu. Inverting an image mirrors the
histogram, as shown in Fig. 5.5 (c).

5.1.4 Threshold Operation

Thresholding an image is a special type of quantization that separates
the pixel values in two classes, depending upon a given threshold value
ath. The threshold function fthreshold(a) maps all pixels to one of two
fixed intensity values a0 or a1; i. e.,

fthreshold(a) =
{

a0 for a < ath

a1 for a ≥ ath
(5.5)

with 0 < ath ≤ amax. A common application is binarizing an intensity
image with the values a0 = 0 and a1 = 1.

ImageJ does provide a special image type (BinaryProcessor) for
binary images, but these are actually implemented as 8-bit intensity
images (just like ordinary intensity images) using the values 0 and
255. ImageJ also provides the ImageProcessormethod threshold(int
level), with level ≡ ath, to perform this operation, which can also be
invoked through the Image→Adjust→Threshold menu (see Fig. 5.1 for an
example). Thresholding affects the histogram by splitting and merging
the distribution into two entries at positions a0 and a1, as illustrated in
Fig. 5.2.

5.2 Point Operations and Histograms

We have already seen that the effects of a point operation on the im-
age’s histogram are quite easy to predict in some cases. For example, 55



5 Point Operations

Fig. 5.1
Threshold operation: original im-

age (a) and corresponding his-
togram (c); result after thresh-

olding with ath = 128, a0 = 0,
a1 = 255 (b) and correspond-
ing histogram (d); ImageJ’s in-

teractive Threshold menu (e).

Fig. 5.2
Effects of thresholding upon the
histogram. The threshold value

is ath. The original distribu-
tion (a) is split and merged into
two isolated entries at a0 and a1

in the resulting histogram (b).
i i

h(i) h′(i)

ath
a0 a1

(a) (b)

increasing the brightness of an image by a constant value shifts the entire
histogram to the right, raising the contrast widens it, and inverting the
image flips the histogram. Although this appears rather simple, it may
be useful to look a bit more closely at the relationship between point
operations and the resulting changes in the histogram.

As the illustration in Fig. 5.3 shows, every entry (bar) at some posi-
tion i in the histogram maps to a set (of size h(i)) containing all image
pixels whose values are exactly i.2 If a particular histogram line is shifted
as a result of some point operation, then of course all pixels in the cor-
responding set are equally modified and vice versa. So what happens
when a point operation (e. g., reducing image contrast) causes two pre-
viously separated histogram lines to fall together at the same position i ?
The answer is that the corresponding pixel sets are merged and the new
common histogram entry is the sum of the two (or more) contributing
entries (i. e., the size of the combined set). At this point, the elements
in the merged set are no longer distinguishable (or separable), so this
operation may have (perhaps unintentionally) caused an irreversible re-

2 Of course this is only true for ordinary histograms with an entry for every
single intensity value. If binning is used (see Sec. 4.4.1), each histogram
entry maps to pixels within a certain range of values.56
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5.3 Automatic Contrast
Adjustment

i i

c h′(i)

h(a1)
h(a2)

h′(a2) ← h(a1) + h(a2)

a1 a2 a2

(a) (b)

Fig. 5.3
Histogram entries map to sets of
pixels of the same value. If a his-
togram line is moved as a result
of some point operations, then all
pixels in the corresponding set are
equally modified (a). If, due to
this operation, two histogram lines
h(a1), h(a2) coincide on the same
index, the two corresponding pixel
sets join and the contained pixels
become undiscernable (b).

duction of dynamic range and thus a permanent loss of information in
that image.

5.3 Automatic Contrast Adjustment

Automatic contrast adjustment (“auto-contrast”) is a point operation
whose task is to modify the pixels such that the available range of val-
ues is fully covered. This is done by mapping the current darkest and
brightest pixels to the lowest and highest available intensity values, re-
spectively, and linearly distributing the intermediate values.

Let us assume that alow and ahigh are the lowest and highest pixel val-
ues found in the current image, whose full intensity range is [amin, amax].
To stretch the image to the full intensity range (see Fig. 5.4), we first
map the smallest pixel value alow to zero, subsequently increase the con-
trast by the factor (amax−amin)/(ahigh−alow), and finally shift to the
target range by adding amin. The mapping function for the auto-contrast
operation is thus defined as

fac(a) = amin +
(
a−alow

) · amax−amin

ahigh−alow
, (5.6)

provided that ahigh �= alow; i. e., the image contains at least two different
pixel values. For an 8-bit image with amin = 0 and amax = 255, the
function in Eqn. (5.6) simplifies to

fac(a) = (a−alow) · 255
ahigh−alow

. (5.7)
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Fig. 5.4
Auto-contrast operation ac-

cording to Eqn. (5.6). Origi-
nal pixel values a in the range

[alow, ahigh] are mapped linearly
to the target range [amin, amax].

alow ahigh

amin amax

a

a′

Fig. 5.5
Effects of auto-contrast and in-

version operations on the re-
sulting histograms. Original im-

age (a), result of auto-contrast
operation (b), and inversion

(c). The histogram entries are
shown both linearly (black bars)
and logarithmically (gray bars).

The target range [amin, amax] need not be the maximum available range
of values but can be any interval to which the image should be mapped.
Of course the method can also be used to reduce the image contrast to a
smaller range. Figure 5.5 (b) shows the effects of an auto-contrast oper-
ation on the corresponding histogram, where the linear stretching of the
intensity range results in regularly spaced gaps in the new distribution.

In practice, the mapping function in Eqn. (5.6) could be strongly influ-
enced by only a few extreme (low or high) pixel values, which may not be
representative of the main image content. This can be avoided to a large
extent by “saturating” a fixed percentage (slow, shigh) of pixels at the
upper and lower ends of the target intensity range. To accomplish this,
we determine two limiting values âlow and âhigh such that a predefined
quantile slow of all pixel values in the image I is less than âlow and a
quantile shigh of the values are greater than âhigh (Fig. 5.6). The values
âlow, âhigh depend on the image content and can be easily obtained from
the image’s cumulative histogram3 H(i):

3 See Sec. 4.6.58

(a) (b) (c)
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i

h(i)

alow ahigh

âlow âhigh

amin amax

slow shigh

a

a′

Fig. 5.6
Modified auto-contrast opera-
tion (Eqn. (5.10)). Predefined
quantiles (slow, shigh) of image
pixels—shown as dark areas at
the left and right ends of the his-
togram h(i)—are “saturated” (i. e.,
mapped to the extreme values of
the target range). The interme-
diate values (a = âlow . . . âhigh)
are mapped linearly to the interval
[amin, amax].

âlow = min
{

i | H(i) ≥ M ·N ·slow

}
, (5.8)

âhigh = max
{

i | H(i) ≤ M ·N ·(1−shigh)
}
, (5.9)

where 0 ≤ slow, shigh ≤ 1, slow + shigh ≤ 1, and M ·N is the number
of pixels in the image. All pixel values outside (and including) âlow

and âhigh are mapped to the extreme values amin and amax, respectively,
and intermediate values are mapped linearly to the interval [amin, amax].
The mapping function fmac() for the modified auto-contrast operation
can thus be defined as

fmac(a) =

⎧⎪⎨
⎪⎩

amin for a ≤ âlow

amin +
(
a− âlow

) · amax − amin

âhigh − âlow
for âlow < a < âhigh

amax for a ≥ âhigh.
(5.10)

Using this formulation, the mapping to minimum and maximum
intensities does not depend on singular extreme pixels only but can
be based on a representative set of pixels. Usually the same value is
taken for both upper and lower quantiles (i. e., slow = shigh = s), with
s = 0.005 . . .0.015 (0.5 . . . 1.5%) being common values. For example, the
auto-contrast operation in Adobe Photoshop saturates 0.5% (s = 0.005)
of all pixels at both ends of the intensity range. Auto-contrast is a fre-
quently used point operation and thus available in practically any image-
processing software. ImageJ implements the modified auto-contrast op-
eration as part of the Brightness/Contrast and Image→Adjust menus (Auto
button), shown in Fig. 5.7.

5.5 Histogram Equalization

A frequent task is to adjust two different images in such a way that their
resulting intensity distributions are similar, for example to use them in 59
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Fig. 5.7
ImageJ’s Brightness/Contrast tool

(left) and Window/Level tool
(right) can be invoked through
the Image→Adjust menu. The

Auto button displays the re-
sult of a modified auto-contrast

operation. Apply must be hit
to actually modify the image.

Fig. 5.8
Histogram equalization. The

idea is to find and apply a point
operation to the image (with

original histogram h) such that
the histogram heq of the modi-
fied image approximates a uni-

form distribution (top). The
cumulative target histogram

Heq must thus be approxi-
mately wedge-shaped (bottom).

Original Target

i

i

i

i

h(i)

H(i)

heq(i)

Heq(i)

a print publication or to make them easier to compare. The goal of his-
togram equalization is to find and apply a point operation such that the
histogram of the modified image approximates a uniform distribution
(see Fig. 5.8). Since the histogram is a discrete distribution and ho-
mogeneous point operations can only shift and merge (but never split)
histogram entries, we can only obtain an approximate solution in gen-
eral. In particular, there is no way to eliminate or decrease individual
peaks in a histogram, and a truly uniform distribution is thus impossible
to reach. Based on point operations, we can thus modify the image only
to the extent that the resulting histogram is approximately uniform. The
question is how good this approximation can be and exactly which point
operation (which clearly depends on the image content) we must apply
to achieve this goal.

We may get a first idea by observing that the cumulative histogram
(Sec. 4.6) of a uniformly distributed image is a linear ramp (wedge), as
shown in Fig. 5.8. So we can reformulate the goal as finding a point op-60
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i

H(i) Heq(i)

aa′

Fig. 5.9
Histogram equalization on the cu-
mulative histogram. A suitable
point operation a′ ← feq(a) shifts
each histogram line from its orig-
inal position a to a′ (left or right)
such that the resulting cumulative
histogram Heq is approximately
linear.

eration that shifts the histogram lines such that the resulting cumulative
histogram is approximately linear, as illustrated in Fig. 5.9.

The desired point operation feq() is simply obtained from the cumu-
lative histogram H of the original image as4

feq(a) =
⌊
H(a) · K−1

MN

⌋
, (5.11)

for an image of size M × N with pixels in the range [0, K−1]. The
resulting function feq(a) in Eqn. (5.11) is monotonically increasing, be-
cause H(a) is monotonic and K, M , N are all positive constants. In the
(unusual) case where an image is already uniformly distributed, linear
histogram equalization should not modify that image any further. Also,
repeated applications of linear histogram equalization should not make
any changes to the image after the first time. Both requirements are
fulfilled by the formulation in Eqn. (5.11). Program 5.2 lists the Java
code for a sample implementation of linear histogram equalization. An
example demonstrating the effects on the image and the histograms is
shown in Fig. 5.10.

Notice that for “inactive” pixel values i (i. e., pixel values that do not
appear in the image, with h(i) = 0), the corresponding entries in the
cumulative histogram H(i) are either zero or identical to the neighboring
entry H(i − 1). Consequently a contiguous range of zero values in the
histogram h(i) corresponds to a constant (i. e., flat) range in the cumula-
tive histogram H(i), and the function feq(a) maps all “inactive” intensity
values within such a range to the next lower “active” value. This effect
is not relevant, however, since the image contains no such pixels any-
way. Nevertheless, a linear histogram equalization may (and typically
will) cause histogram lines to merge and consequently lead to a loss of
dynamic range (see also Sec. 5.2).

This or a similar form of linear histogram equalization is implemented
in almost any image-processing software. In ImageJ it can be invoked in-
teractively through the Process→Enhance Contrast menu (option Equal-
ize). To avoid extreme contrast effects, the histogram equalization in

4 For a derivation, see, e. g., [38, p. 173]. 61
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Fig. 5.10
Linear histogram equalization

(example). Original image I (a)
and modified image I ′ (b), corre-
sponding histograms h, h′ (c, d),
and cumulative histograms H, H′

(e, f). The resulting cumulative
histogram H′ (f) approximates
a uniformly distributed image.
Notice that new peaks are cre-
ated in the resulting histogram
h′ (d) by merging original his-

togram cells, particularly in the
lower and upper intensity ranges.

ImageJ by default5 cumulates the square root of the histogram entries
using a modified cumulative histogram of the form

H̃(i) =
i∑

j=0

√
H(i). (5.12)

Although widely implemented, the goal of linear histogram equalization—
a uniform distribution of intensity values (as described in the previous
section)—appears rather ad hoc, since good images virtually never show
such a distribution. In most real images, the distribution of the pixel
values is not even remotely uniform but is usually more similar, if at
all, to perhaps a Gaussian distribution. The images produced by lin-
ear equalization thus usually appear quite unnatural, which renders the
technique practically useless.

5 The “classic” (linear) approach is used when simultaneously keeping the Alt
key pressed.62

5.6 Histogram Specification



5.6 Histogram Specification1 public void run(ImageProcessor ip) {
2 int w = ip.getWidth();
3 int h = ip.getHeight();
4 int M = w * h; // total number of image pixels
5 int K = 256; // number of intensity values
6
7 // compute the cumulative histogram:
8 int[] H = ip.getHistogram();
9 for (int j = 1; j < H.length; j++) {

10 H[j] = H[j-1] + H[j];
11 }
12
13 // equalize the image:
14 for (int v = 0; v < h; v++) {
15 for (int u = 0; u < w; u++) {
16 int a = ip.get(u, v);
17 int b = H[a] * (K-1) / M;
18 ip.set(u, v, b);
19 }
20 }
21 }

Program 5.2
Linear histogram equalization (Im-
ageJ plugin). First the histogram
of the image ip is obtained us-
ing the standard ImageJ method
ip.getHistogram() in line 8. In
line 10, the cumulative histogram
is computed “in place” based on
the recursive definition in Eqn.
(4.6). The int division in line 17
implicitly performs the required
floor (� �) operation by truncation.

Histogram specification is a more general technique that modifies
the image to match an arbitrary intensity distribution, including the
histogram of a given image. This is particularly useful, for example,
for adjusting a set of images taken by different cameras or under vary-
ing exposure or lighting conditions to give a similar impression in print
production or when displayed. Similar to histogram equalization, this
process relies on the alignment of the cumulative histograms by apply-
ing a homogeneous point operation. To be independent of the image
size (i. e., the number of pixels), we first define normalized distributions,
which we use in place of the original histograms.

5.6.1 Frequencies and Probabilities

The value in each histogram cell described the observed frequency of the
corresponding intensity value (i. e., the histogram is a discrete frequency
distribution). For a given image I of size M×N , the sum of all histogram
entries h(i) equals the number of image pixels,∑

i

h(i) = M ·N. (5.13)

The associated normalized histogram

p(i) =
h(i)
MN

, (5.14)

for 0 ≤ i < K, is usually interpreted as the probability distribution
or probability density function (pdf) of a random process, where p(i) is 63
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Algorithm 5.1
Computation of the cumulative
distribution function (cdf) from

a given histogram h of length K.
See Prog. 5.3 (p. 70) for the cor-
responding Java implementation.

1: Cdf(h)
Returns the cumulative distribution function P(i) ∈ [0, 1] for a dis-
crete histogram h(i), with i = 0, . . . K−1.

2: Let K ← Size(h)

3: Let n ←∑K−1
i=0 h(i)

4: Create table P of size K

5: Let c ← h(0)
6: P(0) ← c/n
7: for i ← 1 . . . (K−1) do
8: c ← c + h(i) � cumulate histogram values
9: P(i) ← c/n

10: return P.

the probability for the occurrence of the pixel value i. The cumulative
probability of i being any possible value is 1, and the distribution p must
thus satisfy ∑

i

p(i) = 1. (5.15)

The statistical counterpart to the cumulative histogram H (Eqn. (4.5)) is
the discrete distribution function (also called the cumulative distribution
function or cdf),

P(i) =
H(i)

H(K−1)
=

H(i)
MN

=
i∑

j=0

h(j)
MN

=
i∑

j=0

p(j) for 0 ≤ i < K. (5.16)

The computation of the cdf from a given histogram h is outlined in
Alg. 5.1. The resulting function P(i) is (like the cumulative histogram)
monotonically increasing and, in particular,

P(0) = p(0) and P(K−1) =
K−1∑
i=0

p(i) = 1. (5.17)

This statistical formulation implicitly treats the generation of images
as a random process whose exact properties are mostly unknown.6 How-
ever, the process is usually assumed to be homogeneous (independent of
the image position); i. e., each pixel value is the result of a “random
experiment” on a single random variable i. The observed frequency dis-
tribution given by the histogram h(i) serves as a (coarse) estimate of the
probability distribution p(i) of this random variable.

6 Statistical modeling of the image generation process has a long tradition
(see, e. g., [60, Ch. 2]).64
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Fig. 5.11
Principle of histogram specifica-
tion. Given is the reference dis-
tribution PR (left) and the distri-
bution function for the original
image PA (right). The result is
the mapping function fhs : a → a′

for a point operation, which re-
places each pixel a in the origi-
nal image IA by a modified value
a′. The process has two main
steps: A© For each pixel value
a, determine b = PA(a) from
the right distribution function.
B© a′ is then found by inverting
the left distribution function as
a′ = P−1

R (b). In summary, the re-
sult is fhs(a) = a′ = P−1

R

(
PA(a)

)
.

5.6.2 Principle of Histogram Specification

The goal of histogram specification is to modify a given image IA by
some point operation such that its distribution function PA matches
a reference distribution PR as closely as possible. We thus look for a
mapping function

a′ = fhs(a) (5.18)

to convert the original image IA to a new image IA′ by a point operation
such that

PA′(i) ≈ PR(i) for 0 ≤ i < K. (5.19)

As illustrated in Fig. 5.11, the desired mapping fhs is found by combining
the two distribution functions PR and PA (see [38, p. 180] for details).
For a given pixel value a in the original image, we get the new pixel value
a′ as

a′ = P−1
R

(
PA(a)

)
, (5.20)

and thus the mapping fhs (Eqn. (5.18)) is obtained as

fhs(a) = a′ = P−1
R

(
PA(a)

)
(5.21)

for 0 ≤ a < K. This of course assumes that PR(i) is invertible; i. e., that
the function P−1

R (b) exists for b ∈ [0, 1].

5.6.3 Adjusting to a Piecewise Linear Distribution

If the reference distribution PR is given as a continuous, invertible func-
tion, then the mapping function fhs can be obtained from Eqn. (5.21)
without any difficulty. In practice, it is convenient to specify the (syn-
thetic) reference distribution as a piecewise linear function PL(i); i. e.,
as a sequence of N +1 coordinate pairs

L = [〈a0, q0〉, 〈a1, q1〉, . . . 〈ak, qk〉, . . . 〈aN , qN 〉],
each consisting of an intensity value ak and the corresponding function
value qk (with 0 ≤ ak < K, ak < ak+1, and 0 ≤ qk < 1). The two
endpoints 〈a0, q0〉 and 〈aN , qN 〉 are fixed at

〈0, q0〉 and 〈K−1, 1〉, 65
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Fig. 5.12
Piecewise linear reference dis-

tribution. The function PL(i) is
specified by N = 5 control points
〈0, q0〉, 〈a1, q1〉, . . . 〈a4, q4〉, with
ak < ak+1 and qk < qk+1. The

final point q5 is fixed at 〈K−1, 1〉. i

PL(i)

0
0

1

K−1
a1 a2 a3 a4

q0
q1

q2

q3

q4 q5

a = P−1
L (b)

b = PL(a)

respectively. To be invertible, the function must also be strictly mono-
tonic; i. e., qk < qk+1 for 0 ≤ k < N . Figure 5.12 shows an example for
such a function, which is specified by N = 5 variable points (q0, . . . q4)
and a fixed end point q5 and thus consists of N = 5 linear segments. The
reference distribution can of course be specified at an arbitrary accuracy
by inserting additional control points.

The continuous values of PL(i) are obtained by linear interpolation
between the control points as

PL(i) =

⎧⎨
⎩ qm + (i−am)· (qm+1 − qm)

(am+1 − am)
for 0 ≤ i < K−1

1 for i = K−1,
(5.22)

where m = max
{
j ∈ [0, N−1] | aj ≤ i

}
is the index of the line segment

〈am, qm〉 → 〈am+1, qm+1〉, which overlaps the position i. For instance, in
the example in Fig. 5.12, the point a lies within the segment that starts
at point 〈a2, q2〉; i. e., m = 2.

For the histogram specification according to Eqn. (5.21), we also need
the inverse distribution function P−1

L (b) for b ∈ [0, 1]. As we see from
the example in Fig. 5.12, the function PL(i) is in general not invertible
for values b < PL(0). We can fix this problem by mapping all values
b < PL(0) to zero and thus obtain a “semi-inverse” of the reference
distribution in Eqn. (5.22) as

P−1
L (b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 0 ≤ b < PL(0)

an + (b−qn)· (an+1 − an)
(qn+1 − qn)

for PL(0) ≤ b < 1

K−1 for b ≥ 1.

(5.23)

Here n = max
{
j ∈ {0, . . .N −1} | qj ≤ b

}
is the index of the line

segment 〈an, qn〉 → 〈an+1, qn+1〉, which overlaps the argument value
b. The required mapping function fhs for adapting a given image with
intensity distribution PA is finally specified, analogous to Eqn. (5.21), as

fhs(a) = P−1
L

(
PA(a)

)
for 0 ≤ a < K. (5.24)66



5.6 Histogram Specification1: PiecewiseLinearHistogram(hA, LR)
hA: histogram of the original image.
LR: reference distribution function, given as a sequence of N + 1
control points LR = [〈a0, q0〉, 〈a1, q1〉, . . . 〈aN , qN 〉], with 0 ≤ ak < K
and 0 ≤ qk ≤ 1.

2: Let K ← Size(hA)
3: Let PA ← Cdf(hA) � cdf for hA (Alg. 5.1)
4: Create a table fhs[ ] of size K � mapping function fhs

5: for a ← 0 . . . (K−1) do
6: b ← PA(a)
7: if (b ≤ q0) then
8: a′ ← 0
9: else if (b ≥ 1) then

10: a′ ← K−1
11: else
12: n ← N−1
13: while (n ≥ 0) ∧ (qn > b) do � find line segment in LR

14: n ← n − 1

15: a′ ← an + (b−qn)· (an+1 − an)

(qn+1 − qn)
� see Eqn. (5.23)

16: fhs[a] ← a′

17: return fhs.

Algorithm 5.2
Histogram specification using a
piecewise linear reference distri-
bution. Given is the histogram hA

of the original image and a piece-
wise linear reference distribution
function, specified as a sequence
of N control points LR. The dis-
crete mapping function fhs for the
corresponding point operation is
returned.

The whole process of computing the pixel mapping function for a given
image (histogram) and a piecewise linear target distribution is summa-
rized in Alg. 5.2. A real example is shown in Fig. 5.14 (Sec. 5.6.5).

5.6.4 Adjusting to a Given Histogram (Histogram Matching)

If we want to adjust one image to the histogram of another image, the
reference distribution function PR(i) is not continuous and thus, in gen-
eral, cannot be inverted (as required by Eqn. (5.21)). For example, if
the reference distribution contains zero entries (i. e., pixel values k with
probability p(k) = 0), the corresponding cumulative distribution func-
tion P (just like the cumulative histogram) has intervals of constant value
on which no inverse function value can be determined.

In the following, we describe a simple method for histogram matching
that works with discrete reference distributions. The principal idea is
graphically illustrated in Fig. 5.13. The mapping function fhs is not ob-
tained by inverting but by “filling in” the reference distribution function
PR(i). For each possible pixel value a, starting with a = 0, the corre-
sponding probability pA(a) is stacked layer by layer “under” the reference
distribution PR. The thickness of each horizontal bar for a equals the
corresponding probability pA(a). The bar for a particular intensity value
a with thickness pA(a) runs from right to left, down to position a′, where
it hits the reference distribution PR. This position a′ corresponds to the
new pixel value to which a should be mapped. 67
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Fig. 5.13
Discrete histogram specification.

The reference distribution PR

(left) is “filled” layer by layer
from bottom to top and from

right to left. For every possible
intensity value a (starting from
a = 0), the associated proba-
bility pA(a) is added as a hor-
izontal bar to a stack accumu-

lated ‘under” the reference distri-
bution PR. The bar with thick-
ness pA(a) is drawn from right
to left down to the position a′,

where the reference distribution
PR is reached. This value a′ is
the one to which a should be

mapped by the function fhs(a).

OriginalReference

aa′
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pA(a)

pA(i)PR(i)

00
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Since the sum of all probabilities pA and the maximum of the dis-
tribution function PR are both 1 (i. e.,

∑
i pA(i) = maxi PR(i) = 1), all

horizontal bars will exactly fit underneath the function PR. One may
also notice in Fig. 5.13 that the distribution value resulting at a′ is iden-
tical to the cumulated probability PA(a). Given some intensity value a,
it is therefore sufficient to find the minimum value a′, where the reference
distribution PR(a′) is greater than or equal to the cumulative probability
PA(a); i. e.,

fhs(a) = a′ = min
{

j | (0 ≤ j < K) ∧ (PA(a) ≤ PR(j)
)}

. (5.25)

This results in a very simple method, which is summarized in Alg.
5.3. Due to the use of normalized distribution functions, the size of the
images involved is not relevant. The corresponding Java implementation
in Prog. 5.3, consists of the method matchHistograms(), which accepts
the original histogram (Ha) and the reference histogram (Hr) and returns
the resulting mapping function (map) specifying the required point oper-
ation. The following code fragment demonstrates the use of the method
matchHistograms() from Prog. 5.3 in an ImageJ program:

ImageProcessor ipA = ... // target image IA (to be modified)
ImageProcessor ipR = ... // reference image IR

int[] hA = ipA.getHistogram(); // get the histogram for IA

int[] hR = ipR.getHistogram(); // get the histogram for IR

int[] F = matchHistograms(hA, hR); // mapping function fhs(a)
ipA.applyTable(F); // apply fhs() to the target image IA

The original image ipA is modified in the last line by applying the map-
ping function fhs (F) with the method applyTable() (see also p. 80).

5.6.5 Examples

Adjusting to a piecewise linear reference distribution

The first example in Fig. 5.14 shows the results of histogram specification
for a continuous, piecewise linear reference distribution, as described in
Sec. 5.6.3. Analogous to Fig. 5.12, the actual distribution function PR

(Fig. 5.14 (f)) is specified as a polygonal line consisting of five control
points 〈ak, qk〉 with coordinates68



5.6 Histogram Specification1: MatchHistograms(hA, hR)
hA: histogram of the target image
hR: reference histogram (of same size as hA)

2: Let K ← Size(hA)
3: Let PA ← Cdf(hA) � cdf for hA (Alg. 5.1)
4: Let PR ← Cdf(hR) � cdf for hR (Alg. 5.1)
5: Create a table fhs[ ] of size K � pixel mapping function fhs

6: for a ← 0 . . . (K−1) do
7: j ← K−1
8: repeat
9: fhs[a] ← j

10: j ← j − 1
11: while (j ≥ 0) ∧ (PA(a) ≤ PR(j))

12: return fhs.

Algorithm 5.3
Histogram matching. Given are
two histograms: the histogram hA

of the target image IA and a refer-
ence histogram hR, both of size K.
The result is a discrete mapping
function fhs() that, when applied
to the target image, produces a
new image with a distribution
function similar to the reference
histogram.

Fig. 5.14
Histogram specification with a
piecewise linear reference distri-
bution. The target image IA (a),
its histogram (d), and distribu-
tion function PA (g); the reference
histogram hR (c) and the corre-
sponding distribution PR (f); the
modified image IA′ (b), its his-
togram hA′ (e), and the resulting
distribution PA′ (h).

The resulting reference histogram (Fig. 5.14 (c)) is a step function with
ranges of constant values corresponding to the linear segments of the
probability density function. As expected, the cumulative probability
function for the modified image (Fig. 5.14 (h)) is quite close to the refer-
ence function in Fig. 5.14 (f), while the resulting histogram (Fig. 5.14 (e)) 69
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ak = 0 28 75 150 210 255
qk = 0.002 0.050 0.250 0.750 0.950 1.000
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Program 5.3
Histogram matching (Java im-
plementation of Alg. 5.3). The

method matchHistograms() com-
putes the mapping function F
from the target histogram Ha

and the reference histogram Hr
(see Eqn. (5.25)). The method
Cdf() computes the cumulative
distribution function (cdf) for a
given histogram (Eqn. (5.16)).

1 int[] matchHistograms (int[] hA, int[] hR) {
2 // hA . . . histogram hA of target image IA

3 // hR . . . reference histogram hR

4 // returns the mapping function fhs() to be applied to image IA

5

6 int K = hA.length; // hA, hR must be of length K
7 double[] PA = Cdf(hA); // get CDF of histogram hA

8 double[] PR = Cdf(hR); // get CDF of histogram hR

9 int[] F = new int[K]; // pixel mapping function fhs()
10
11 // compute mapping function fhs()
12 for (int a = 0; a < K; a++) {
13 int j = K-1;
14 do {
15 F[a] = j;
16 j--;
17 } while (j>=0 && PA[a]<=PR[j]);
18 }
19 return F;
20 }

22 double[] Cdf (int[] h) {
23 // returns the cumulative distribution function for histogram h
24 int K = h.length;
25 int n = 0; // sum all histogram values
26 for (int i=0; i<K; i++) {
27 n += h[i];
28 }
29

30 double[] P = new double[K]; // create cdf table P
31 int c = h[0]; // cumulate histogram values
32 P[0] = (double) c / n;
33 for (int i=1; i<K; i++) {
34 c += h[i];
35 P[i] = (double) c / n;
36 }
37 return P;
38 }

shows little similarity with the reference histogram (Fig. 5.14 (c)). How-
ever, as discussed earlier, this is all we can expect from a homogeneous
point operation.

Adjusting to an arbitrary reference histogram

In this case, the reference distribution is not given as a continuous func-
tion but specified by a discrete histogram. We thus use the method
described in Sec. 5.6.4 to compute the required mapping functions. The70
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Fig. 5.15
Histogram matching: adjusting
to a synthetic histogram. Origi-
nal image IA (a), corresponding
histogram (f), and cumulative
histogram (i). Gaussian-shaped
reference histograms with center
μ = 128 and σ = 50 (d) and
σ = 100 (e), respectively. Result-
ing images after histogram match-
ing, IG50 (b) and IG100 (c) with
the corresponding histograms (g,
h) and cumulative histograms (j,
k).

examples in Fig. 5.15 demonstrate this technique using synthetic refer-
ence histograms whose shape is approximately Gaussian.

The target image (Fig. 5.15 (a)) used here was chosen intentionally
for its poor quality, manifested by an extremely unbalanced histogram
(Fig. 5.15 (f)). The histograms of the modified images thus naturally
show little resemblance to a Gaussian. However, the resulting cumu-
lative histograms (Fig. 5.15 (j, k)) match nicely with the integral of the
corresponding Gaussians (Fig. 5.15 (d, e)), apart from the unavoidable
irregularity at the center caused by the dominant peak in the original
histogram.
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5 Point Operations Adjusting to another image

The third example in Fig. 5.16 demonstrates the adjustment of two im-
ages by matching their intensity histograms. One of the images is se-
lected as the reference image IR (Fig. 5.16 (b)) and supplies the reference
histogram hR (Fig. 5.16 (e)). The second (target) image IA (Fig. 5.16 (a))
is modified such that the resulting cumulative histogram matches the cu-
mulative histogram of the reference image IR. It can be expected that
the final image IA′ (Fig. 5.16 (c)) and the reference image give a similar
visual impression with regard to tonal range and distribution (assuming
that both images show similar content).

Fig. 5.16
Histogram matching: adjusting to
a reference image. The target im-

age IA (a) is modified by matching
its histogram to the reference im-

age IR (b), resulting in the new
image IA′ (c). The correspond-

ing histograms hA, hR, hA′ (d–f)
and cumulative histograms HA,

HR, PA′ (g–i) are shown. Notice
the good agreement between the
cumulative histograms of the ref-
erence and adjusted images (h, i).

Of course this method may be used to adjust multiple images to the
same reference image (e. g., to prepare a series of similar photographs
for a print project). For this purpose, one could either select a single
representative image as a common reference or, alternatively, compute
an “average” reference histogram from a set of typical images (see also
Exercise 5.7).

5.7 Gamma Correction

We have been using the terms “intensity” and “brightness” many times
without really bothering with how the numeric pixel values in our im-72
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Fig. 5.17
Exposure function of photographic
film. With respect to the logarith-
mic light intensity B, the resulting
film density D is approximately
linear over a wide intensity range.
The slope (ΔD/ΔB) of this linear
section of the function specifies the
“gamma” (γ) value for a particular
type of photographic material.

ages relate to these physical concepts, if at all. A pixel value may rep-
resent the amount of light falling onto a sensor element in a camera,
the photographic density of film, the amount of light to be emitted by
a monitor, the number of toner particles to be deposited by a printer,
or any other relevant physical magnitude. In practice, the relationship
between a pixel value and the corresponding physical quantity is usually
complex and almost always nonlinear. In many imaging applications, it
is important to know this relationship, at least approximately, to achieve
consistent and reproducible results.

When applied to digital intensity images, the ideal is to have some
kind of “calibrated intensity space” that optimally matches the human
perception of intensity and requires a minimum number of bits to rep-
resent the required intensity range. Gamma correction denotes a simple
point operation to compensate for the transfer characteristics of different
input and output devices and to map them to a unified intensity space.

5.7.1 Why Gamma?

The term “gamma” originates from analog photography, where the rela-
tionship between the light energy and the resulting film density is ap-
proximately logarithmic. The “exposure function” (Fig. 5.17), specifying
the relationship between the logarithmic light intensity and the result-
ing film density, is therefore approximately linear over a wide range of
light intensities. The slope of this function within this linear range is
traditionally referred to as the “gamma” of the photographic material.
The same term was adopted later in television broadcasting to describe
the nonlinearities of the cathode ray tubes used in TV receivers, i. e.,
to model the relationship between the amplitude (voltage) of the video
signal and the emitted light intensity. To compensate for the nonlinear-
ities of the receivers, a “gamma correction” was (and is) applied to the
TV signal once before broadcasting in order to avoid the need for costly
correction measures on the receiver side.
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Fig. 5.18
Gamma function b =

fγ(a) = aγ for a ∈ [0, 1]
for different gamma values.
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5.7.2 The Gamma Function

Gamma correction is based on the gamma function

b = fγ(a) = aγ for a ∈ R , γ > 0, (5.26)

where the parameter γ is called the gamma value. If a is limited to the
interval [0, 1], then—independent of γ—the value of the gamma function
also stays within [0, 1] and the function always runs through the points
(0, 0) and (1, 1). In particular, fγ(a) is the identity function for γ = 1,
as shown in Fig. 5.18. The function runs above the diagonal for gamma
values γ < 1, and below it for γ > 1. Controlled by a single continuous
parameter (γ), the gamma function can thus “imitate” both logarithmic
and exponential types of functions. Within the interval [0, 1], the func-
tion is continuous and strictly monotonic, and also very simple to invert
as

a = f−1
γ (b) = b1/γ , (5.27)

since b1/γ = (aγ)1/γ = a1 = a. The inverse of the gamma function
f−1

γ (b) is thus again a gamma function,

f−1
γ (b) = fγ̄(b), (5.28)

with γ̄ = 1/γ. Thus the inverse of the gamma function with parameter
γ is another gamma function with parameter γ̄ = 1/γ.

5.7.3 Real Gamma Values

The actual gamma values of individual devices are usually specified by
the manufacturers based on real measurements. For example, common
gamma values for CRT monitors are in the range 1.8−−2.8, with 2.4 as
a typical value. Most LCD monitors are internally adjusted to similar
values. Digital video and still cameras also emulate the transfer char-
acteristics of analog film and photographic cameras by making internal
corrections to give the resulting images an accustomed “look”.74



5.7 Gamma CorrectionIn TV receivers, gamma values are standardized with 2.2 for analog
NTSC and 2.8 for the PAL system (these values are theoretical; results of
actual measurements are around 2.35). A gamma value of 1/2.2 ≈ 0.45
is the norm for cameras in NTSC as well as the EBU7 standards. The
current international standard ITU-R BT.7098 calls for uniform gamma
values of 2.5 in receivers and 1/1.956 ≈ 0.51 for cameras [32, 55]. The
ITU 709 standard is based on a slightly modified version of the gamma
function (see Sec. 5.7.6).

Computers usually allow adjustment of the gamma value applied to
the video output signals to adapt to a wide range of different monitors.
Note however that the gamma function is only a coarse approximation
to the actual transfer characteristics of any device, which may also not
be the same for different color channels. Thus significant deviations may
occur in practice, despite the careful choice of gamma settings. Critical
applications, such as prepress or high-end photography, usually require
additional calibration efforts based on exactly measured device profiles
(see Sec. 12.3.6).

5.7.4 Applications of Gamma Correction

Let us first look at a simple example. Assume that we use a digital
camera with a nominal gamma value γc, meaning that its output signal
s relates to the incident light energy B as

s = Bγc . (5.29)

To compensate the transfer characteristic of this camera (i. e., to obtain
a measurement b that is proportional to the original light intensity B),
the camera signal s is subject to a gamma correction with the inverse of
the camera’s gamma value γ̄c = 1/γc, so

b = fγ̄c(s) = s1/γc . (5.30)

The resulting signal b = s1/γc = (Bγc)1/γc = B(γc
1

γc
) = B1 is obviously

proportional (in theory even identical) to the original light intensity B.
Although this example is overly simplistic, it still demonstrates the gen-
eral rule, which holds for output devices as well:

The transfer characteristic of a device with gamma value γ is
compensated for by a gamma correction with γ̄ = 1/γ.

In the above, we have implicitly assumed that all values are strictly in
the range [0, 1], which usually is not the case in practice. When working
with digital images, we have to deal with discrete pixel values; e. g.,
in the range [0, 255] for 8-bit images. In general, performing a gamma
correction
7 European Broadcast Union (EBU).
8 International Telecommunications Union (ITU). 75
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Fig. 5.19
Principle of gamma correc-

tion. To compensate the out-
put signal s produced by a cam-
era with nominal gamma value
γc, a gamma correction is ap-

plied with γ̄c = 1/γc. The cor-
rected signal b is proportional to

the received light intensity B.
b ← fgc(a, γ),

on a pixel value a ∈ [0, amax] and a gamma value γ > 0 requires the
following three steps.

1. Scale a linearly to â ∈ [0, 1].
2. Apply the gamma function to â: b̂ ← fγ(â) = âγ .
3. Scale b̂ ∈ [0, 1] linearly back to b ∈ [0, amax].

Formulated in a more compact way, the corrected pixel value b is ob-
tained from the original value a as

b ← fgc(a, γ) =
( a

amax

)γ
· amax. (5.31)

Figure 5.20 illustrates the typical role of gamma correction in the
digital work flow with two input (camera, scanner) and two output de-
vices (monitor, printer), each with its individual gamma value. The
central idea is to correct all images to be processed and stored in a
device-independent, standardized intensity space.

5.7.5 Implementation

Program 5.4 shows the implementation of gamma correction as an Im-
ageJ plugin for 8-bit grayscale images. The mapping function fgc(a, γ)
is computed as a lookup table (Fgc), which is then applied to the image
using the method applyTable() to perform the actual point operation
(see also Sec. 5.8.1).

5.7.6 Modified Gamma Correction

A subtle problem with the simple gamma function fγ(a) = aγ (Eqn.
(5.26)) appears if we take a closer look at the slope of this function,
expressed by its first derivative,

f ′
γ(a) = γ · a(γ−1),

which for a = 0 has the values76
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Fig. 5.20
Gamma correction in the digital
imaging work flow. Images are
processed and stored in a “linear”
intensity space, where gamma cor-
rection is used to compensate for
the transfer characteristic of each
input and output device. (The
gamma values shown are examples
only.)

1 public void run(ImageProcessor ip) {
2 // works for 8-bit images only
3 int K = 256;
4 int aMax = K - 1;
5 double GAMMA = 2.8;
6
7 // create a lookup table for the mapping function
8 int[] Fgc = new int[K];
9

10 for (int a = 0; a < K; a++) {
11 double aa = (double) a / aMax; // scale to [0, 1]
12 double bb = Math.pow(aa,GAMMA); // gamma function
13 // scale back to [0, 255]:
14 int b = (int) Math.round(bb * aMax);
15 Fgc[a] = b;
16 }
17

18 ip.applyTable(Fgc); // modify the image ip
19 }

Program 5.4
Gamma correction (ImageJ
plugin). The corrected intensity
values b are only computed once
and stored in the lookup table Fgc
(line 15). The gamma value GAMMA
is constant. The actual point op-
eration is performed by calling the
ImageJ method applyTable(Fgc)
on the image object ip (line 18).

f ′
γ(0) =

⎧⎨
⎩

0 for γ > 1
1 for γ = 1
∞ for γ < 1.

(5.32)

The tangent to the function at the origin is thus either horizontal (γ > 1),
diagonal (γ = 1), or vertical (γ < 1), with no intermediate values. For
γ < 1, this causes extremely high amplification of small intensity values
and thus increased noise in dark image regions. Theoretically, this also
means that the gamma function is generally not invertible at the origin. 77
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Fig. 5.21
The modified gamma function
f̄γ,a0() consists of a linear seg-

ment with fixed slope s between
a = 0 and a = a0, followed
by an ordinary gamma func-
tion with parameter γ (Eqn.

(5.33)). The dashed lines show
the ordinary gamma functions

for the same gamma values.
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A common solution to this problem is to replace the lower part (0 ≤
a ≤ a0) of the gamma function by a linear segment with constant slope
and to continue with the ordinary gamma function for a > a0. The
resulting modified gamma function f̄(γ,a0)(a) is defined as

f̄γ,a0(a) =
{

s · a for 0 ≤ a ≤ a0

(1 + d) · aγ − d for a0 < a ≤ 1
(5.33)

with s =
γ

a0(γ−1) + a
(1−γ)
0

and d =
1

aγ
0 (γ−1) + 1

− 1.

(5.34)

The function thus consists of a linear section (for 0 ≤ a ≤ a0) and
a nonlinear section (for a0 < a ≤ 1) that connect smoothly at the
transition point a = a0. The linear slope s and the parameter d are
determined by the condition that the two function segments must have
identical values as well as identical first derivatives at a = a0 to give
a (C1) continuous function. The function in Eqn. (5.33) is thus fully
specified by the two parameters a0 and γ.

Figure 5.21 shows two examples of the modified gamma function
f̄γ,a0() with values γ = 0.5 and γ = 2.0, respectively. In both cases,
the transition point is at a0 = 0.2. For comparison, the figure also
shows the ordinary gamma functions fγ(a) for the same gamma values
(dashed lines), whose slope at the origin is ∞ (Fig. 5.21 (a)) and zero
(Fig. 5.21 (b)), respectively.

Gamma correction in common standards

The modified gamma function is part of several modern imaging stan-
dards. In practice, however, the values of a0 are considerably smaller
than the ones used for the illustrative examples in Fig. 5.21, and γ is
chosen to obtain a good overall match to the desired correction function.
For example, the ITU-BT.709 specification [55] mentioned in Sec. 5.7.3
specifies the parameters78
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Fig. 5.22
Gamma functions specified by the
ITU-R BT.709 (a) and sRGB (b)
standards. The continuous plot
shows the modified gamma func-
tions with the nominal gamma
value γ and transition point a0.
The dashed lines are the equiv-
alent ordinary gamma functions
with effective gamma γeff .

Standard

Nominal
Gamma Value

γ a0 s d

Effective
Gamma Value

γeff

ITU BT.709 1/2.222 ≈ 0.450 0.01800 4.5068 0.09915 1/1.956 ≈ 0.511

sRGB 1/2.400 ≈ 0.417 0.00304 12.9231 0.05500 1/2.200 ≈ 0.455

Table 5.1
Gamma correction parameters
for the ITU and sRGB standards
Eqns. (5.33) and (5.34).

γ =
1

2.222
≈ 0.45 and a0 = 0.018,

with the corresponding slope and offset values s = 4.50681 and d =
0.0991499, respectively (Eqn. (5.34)). The resulting correction function
f̄ITU(a) has a nominal gamma value of 0.45, which corresponds to the
effective gamma value γeff = 1/1.956 ≈ 0.511. The gamma correction
in the sRGB standard [96] is specified on the same basis (with different
parameters; see Sec. 12.3.3).

Figure 5.22 shows the actual correction functions for the ITU and
sRGB standards, respectively, each in comparison with the equivalent
ordinary gamma function. The ITU function (Fig. 5.22 (a)) with γ =
0.45 and a0 = 0.018 corresponds to an ordinary gamma function with
effective gamma value γeff = 0.511 (dashed line). The curves for sRGB
(Fig. 5.22 (b)) differ only by the parameters γ and a0, as summarized in
Table 5.1.

Inverse gamma correction

To invert the modified gamma correction of the form b = f̄γ,a0(a) (Eqn.
(5.33)), we need the inverse of the function f̄γ,a0(), which is again defined
in two parts,

f̄−1
(γ,a0)

(b) =

⎧⎪⎨
⎪⎩

b/s for 0 ≤ b ≤ s · a0(
b + d

1 + d

)1/γ

for s · a0 < b ≤ 1,
(5.35)
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5 Point Operations where s and d are the values defined in Eqn. (5.34), and thus

a = f̄−1
γ,a0

[
f̄γ,a0(a)

]
for a ∈ [0, 1]. (5.36)

Notice that the value γ is also the same for both functions in Eqn. (5.36).
The inverse gamma function is required in particular for transforming
between different color spaces if nonlinear (i. e., gamma-corrected) com-
ponent values are involved (see also Sec. 12.3.2).

5.8 Point Operations in ImageJ

Several important types of point operations are already implemented in
ImageJ, so there is no need to program every operation manually (as
shown in Prog. 5.4). In particular, it is possible in ImageJ to apply
point operations efficiently by using tabulated functions, to use built-in
standard functions for point operations on single images, and to apply
arithmetic operations on pairs of images. These issues are described
briefly in the following subsections.

5.8.1 Point Operations with Lookup Tables

Some point operations require complex computations for each pixel, and
the processing of large images may be quite time-consuming. If the point
operation is homogeneous (i. e., independent of the pixel coordinates),
the value of the mapping function can be precomputed for every possible
pixel value and stored in a lookup table, which may then be applied very
efficiently to the image. A lookup table L represents a discrete mapping
(function f) from the original to the new pixel values,

L : [0, K−1]
f�−→ [0, K−1]. (5.37)

For a point operation specified by some arbitrary mapping function a′ =
f(a), the table L is initialized with the values

L[a] ← f(a) for 0 ≤ a < K. (5.38)

Thus the K table elements of L need only be computed once (typically
K = 256). Performing the actual point operation only requires a simple
(and quick) table lookup in L at each pixel,

I ′(u, v) ← L[I(u, v)], (5.39)

which is much more efficient than any individual function call. ImageJ
supplies the method

void applyTable(int[] lut )80



5.8 Point Operations in
ImageJ

void abs() I ′(u, v) ← |I(u, v)|
void add(int p ) I ′(u, v) ← I(u, v) + p

void gamma(double g ) I ′(u, v) ← (
I(u, v)/255

)g · 255
void invert(int p ) I ′(u, v) ← 255 − I(u, v)

void log() I ′(u, v) ← log10

(
I(u, v)

)
void max(double s ) I ′(u, v) ← max

(
I(u, v), s

)
void min(double s ) I ′(u, v) ← min

(
I(u, v), s

)
void multiply(double s ) I ′(u, v) ← round

(
I(u, v) · s)

void sqr() I ′(u, v) ← I(u, v)2

void sqrt() I ′(u, v) ←√
I(u, v)

Table 5.2
ImageJ methods for arithmetic
operations applicable to objects of
type ImageProcessor.

for objects of type ImageProcessor, which takes a lookup table lut (L)
as a one-dimensional int array of size K (see Prog. 5.4 on page 77 for
an example). The advantage of this approach is obvious: for an 8-bit
image, for example, the mapping function is computed only 256 times
(independent of the image size) and not a million times or more as in
the case of a large image. The use of lookup tables for implementing
point operations thus always makes sense if the number of image pixels
(M × N) is greater than the number of possible pixel values K (which
is usually the case).

5.8.2 Arithmetic Operations

ImageJ implements a set of common arithmetic operations as methods
for the class ImageProcessor, which are summarized in Table 5.2. In
the following example, the image is multiplied by a scalar constant (1.5)
to increase its contrast:

ImageProcessor ip = ... //some image ip
ip.multiply(1.5);

The image ip is destructively modified by all of these methods, with
the results being limited (clamped) to the minimum and maximum pixel
values, respectively.

5.8.3 Point Operations Involving Multiple Images

Point operations may involve more than one image at once, with arith-
metic operations on the pixels of pairs of images being a special but
important case. For example, we can express the pointwise addition of
two images I1 and I2 (of identical size) to create a new image I ′ as

I ′(u, v) ← I1(u, v) + I2(u, v) (5.40)

for all positions (u, v). In general, any function f(a1, a2, . . . , an) over n
pixel values ai may be defined to perform pointwise combinations of n
images, i. e., 81
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Table 5.3
Transfer mode constants and cor-
responding arithmetic operations

for ImageProcessor’s copyBits()
method. The constants ADD,

etc., listed in this table are de-
fined by the Blitter interface.

ADD ip1 ← ip1 + ip2

AVERAGE ip1 ← (ip1 + ip2 ) / 2

DIFFERENCE ip1 ← |ip1 − ip2 |
DIVIDE ip1 ← ip1 / ip2

MAX ip1 ← max(ip1 , ip2 )

MIN ip1 ← min(ip1 , ip2 )

MULTIPLY ip1 ← ip1 · ip2
SUBTRACT ip1 ← ip1 − ip2

I ′(u, v) ← f
(
I1(u, v), I2(u, v), . . . In(u, v)

)
. (5.41)

However, most arithmetic operations on multiple images required in
practice can be implemented as sequences of successive binary opera-
tions on pairs of images.

5.8.4 Methods for Point Operations on Two Images

ImageJ supplies a single method for implementing arithmetic operations
on pairs of images,

void copyBits(ImageProcessor ip2, int u, int v, int mode),

which applies the binary operation specified by the transfer mode pa-
rameter mode to all pixel pairs taken from the source image ip2 and
the target image (the image on which this method is invoked) and stores
the result in the target image. u, v are the coordinates where the source
image is inserted into the target image (usually u = v = 0). The code
fragment in the following example demonstrates the addition of two im-
ages:

ImageProcessor ip1 = ... // target image I1

ImageProcessor ip2 = ... // source image I2

// I1(u, v) ← I1(u, v) + I2(u, v)
ip1.copyBits(ip2, 0, 0, Blitter.ADD); ...

By this operation, the target image ip1 is destructively modified, while
the source image ip2 remains unchanged. The constant ADD is one of
several arithmetic transfer modes defined by the Blitter interface (see
Table 5.3). In addition, Blitter defines (bitwise) logical operations,
such as OR and AND (see Appendix C.10.1). For arithmetic operations,
the copyBits()method limits the results to the admissible range of pixel
values (of the target image). Also note that (except for target images
of type FloatProcessor) the results are not rounded but truncated to
integer values.

5.8.5 ImageJ Plugins for Multiple Images

ImageJ provides two types of plugin: a generic plugin (PlugIn), which
can be run without any open image, and plugins of type PlugInFilter,82



5.9 Exerciseswhich apply to a single image. In the latter case, the currently active
image is passed as an object of type ImageProcessor to the plugin’s
run() method (see also Sec. 3.2.3).

If two or more images I1, I2 . . . Ik are to be combined by a plugin
program, only a single image I1 can be passed directly to the plugin’s
run() method, but not the additional images I2 . . . Ik. The usual solu-
tion is to make the plugin open a dialog window to let the user select the
remaining images interactively. This is demonstrated in the following
example plugin for transparently blending two images.

Example: Alpha blending

Alpha blending is a simple method for transparently overlaying two im-
ages, IBG and IFG. The background image IBG is covered by the fore-
ground image IFG, whose transparency is controlled by the value α in
the form

I ′(u, v) ← α·IBG(u, v) + (1−α)·IFG(u, v) (5.42)

with 0 ≤ α ≤ 1. For α = 0, the foreground image IFG is nontransparent
(opaque) and thus entirely hides the background image IBG. Conversely,
the image IFG is fully transparent for α = 1 and only IBG is visible. All
α values between 0 and 1 result in a weighted sum of the corresponding
pixel values taken from IBG and IFG (Eqn. (5.42)).

Figure 5.23 shows the results of alpha blending for different α val-
ues. The Java code for the corresponding implementation (as an ImageJ
plugin) is listed in Progs. 5.5 and 5.6. The background image (bgIp) is
passed directly to the plugin’s run() method. The second (foreground)
image and the α value are specified interactively by creating an instance
of the ImageJ class GenericDialog, which allows the simple implemen-
tation of dialog windows with various types of input fields (see also Ap-
pendix C.18.2). A similar example that produces a stack of images by
stepwise alpha blending can be found in Appendix C.15.3.

5.9 Exercises

Exercise 5.1. Implement the auto-contrast operation as defined in Eqns.
(5.8)– (5.10) as an ImageJ plugin for an 8-bit grayscale image. Set the
quantile s of pixels to be saturated at both ends of the intensity range
(0 and 255) to slow = shigh = 1%.

Exercise 5.2. Modify the histogram equalization plugin in Prog. 5.2 to
use a lookup table (Sec. 5.8.1) for computing the point operation.

Exercise 5.3. Implement the histogram equalization as defined in Eqn.
(5.11), but use the modified cumulative histogram defined in Eqn. (5.12),
cumulating the square root of the histogram entries. Compare the results
to the standard (linear) approach by plotting the resulting histograms
and cumulative histograms as shown in Fig. 5.10. 83
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Fig. 5.23
Alpha blending example.
Background image (IBG)

and foreground image (IFG),
GenericDialog window (see

the implementation in Progs.
5.5 and 5.6), and blended im-

ages for transparency val-
ues α = 0.25, 0.50, and 0.75.
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5.9 Exercises1 import ij.IJ;
2 import ij.ImagePlus;
3 import ij.WindowManager;
4 import ij.gui.GenericDialog;
5 import ij.plugin.filter.PlugInFilter;
6 import ij.process.*;
7
8 public class Alpha_Blending implements PlugInFilter {
9

10 static double alpha = 0.5; // transparency of foreground image
11 ImagePlus fgIm = null; // foreground image
12
13 public int setup(String arg, ImagePlus imp) {
14 return DOES_8G;
15 }
16
17 public void run(ImageProcessor bgIp) { // background image
18 if(runDialog()) {
19 ImageProcessor fgIp
20 = fgIm.getProcessor().convertToByte(false);
21 fgIp = fgIp.duplicate();
22 fgIp.multiply(1-alpha);
23 bgIp.multiply(alpha);
24 bgIp.copyBits(fgIp, 0, 0, Blitter.ADD);
25 }
26 }
27
28 // continued ...

Program 5.5
Alpha blending plugin (part 1). A
background image is transparently
blended with a selected foreground
image. The plugin is applied to
the (currently active) background
image, and the foreground image
must also be open when the plugin
is started. The background im-
age (bgIp), which is passed to the
plugin’s run() method, is multi-
plied with α (line 23). The fore-
ground image (fgIP, selected in
part 2) is first duplicated (line 21)
and then multiplied with (1−α)
(line 22). Thus the original fore-
ground image is not modified. The
final result is obtained by adding
the two weighted images (line 24).

Exercise 5.4. Show formally that (a) a linear histogram equalization
(Eqn. (5.11)) does not change an image that already has a uniform in-
tensity distribution and (b) that any repeated application of histogram
equalization to the same image causes no more changes.

Exercise 5.5. Show that the linear histogram equalization (Sec. 5.5) is
only a special case of histogram specification (Sec. 5.6).

Exercise 5.6. Implement (in Java) a histogram specification using a
piecewise linear reference distribution function, as described in Sec. 5.6.3.
Define a new object class with all necessary instance variables to rep-
resent the distribution function and implement the required functions
PL(i) (Eqn. (5.22)) and P−1

L (b) (Eqn. (5.23)) as methods of this class.

Exercise 5.7. Using a histogram specification for adjusting multiple im-
ages (Sec. 5.6.4), one could either use one typical image as the reference
or compute an “average” reference histogram from a set of images. Im-
plement the second approach and discuss its possible advantages (or
disadvantages).
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Program 5.6
Alpha blending plugin (part 2).
To select the foreground image,
a list of currently open images

and image titles is obtained (lines
34–42). Then a dialog object

(GenericDialog) is created and
opened for specifying the fore-

ground image (fgIm) and the α
value (alpha). fgIm and alpha are
variables in the class AlphaBlend_

(declared in part 1, Prog. 5.5).
The runDialog() method returns

true if successful and false if
no images are open or the di-

alog was canceled by the user.

30 // class Alpha_Blending (continued)
31

32 boolean runDialog() {
33 // get list of open images
34 int[] windowList = WindowManager.getIDList();
35 if (windowList == null){
36 IJ.noImage();
37 return false;
38 }
39
40 // get all image titles
41 String[] windowTitles = new String[windowList.length];
42 for (int i = 0; i < windowList.length; i++) {
43 ImagePlus im = WindowManager.getImage(windowList[i]);
44 if (im == null)
45 windowTitles[i] = "untitled";
46 else
47 windowTitles[i] = im.getShortTitle();
48 }
49

50 // create dialog and show
51 GenericDialog gd = new GenericDialog("Alpha Blending");
52 gd.addChoice("Foreground image:",
53 windowTitles, windowTitles[0]);
54 gd.addNumericField("Alpha value [0..1]:", alpha, 2);
55 gd.showDialog();
56 if (gd.wasCanceled())
57 return false;
58 else {
59 int fgIdx = gd.getNextChoiceIndex();
60 fgIm = WindowManager.getImage(windowList[fgIdx]);
61 alpha = gd.getNextNumber();
62 return true;
63 }
64 }
65

66 } // end of class Alpha_Blending

Exercise 5.8. Implement the modified gamma correction (Eqn. (5.33))
as an ImageJ plugin with variable values for γ and a0 using a lookup
table as shown in Prog. 5.4.

Exercise 5.9. Show that the modified gamma function f̄(γ,a0) (a) with
the parameters defined in Eqns. (5.33) and (5.34) is C1-continuous (i. e.,
both the function itself and its first derivative are continuous).
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6

Filters

The essential property of point operations (discussed in the previous
chapter) is that each new pixel value only depends on the original pixel
at the same position. The capabilities of point operations are limited,
however. For example, they cannot accomplish the task of sharpening
or smoothing an image (Fig. 6.1). This is what filters can do. They
are similar to point operations in the sense that they also produce a 1:1
mapping of the image coordinates (i. e., the geometry of the image does
not change).

6.1 What Is a Filter?

The main difference between filters and point operations is that filters
generally use more than one pixel from the source image for computing
each new pixel value. Let us first take a closer look at the task of
smoothing an image. Images look sharp primarily at places where the
local intensity rises or drops sharply (i. e., where the difference between
neighboring pixels is large). On the other hand, we perceive an image
as blurred or fuzzy where the local intensity function is smooth.

Fig. 6.1
No point operation can blur or
sharpen an image. This is an ex-
ample of what filters can do. Like
point operations, filters do not
modify the geometry of an image.
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6 Filters

Fig. 6.2
Principal filter operation. Each
new pixel value I ′(u, v) is com-

puted as a function of the pixels
in a corresponding region of source
pixels Ru,v in the original image I .

I I ′

uu

vv

Ru,v I ′(u, v)

A first idea for smoothing an image could thus be to simply re-
place every pixel by the average of its neighboring pixels. To determine
the new pixel value in the smoothed image I ′(u, v), we use the original
pixel I(u, v) = p0 at the same position plus its eight neighboring pixels
p1, p2, . . . p8 to compute the arithmetic mean of these nine values,

I ′(u, v) ← p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8

9
(6.1)

or, expressed in relative image coordinates,

I ′(u, v) ← 1
9 · [ I(u−1, v−1) + I(u, v−1) + I(u+1, v−1) +

I(u−1, v) + I(u, v) + I(u+1, v) +
I(u−1, v + 1) + I(u, v+1) + I(u+1, v+1) ] .

(6.2)

Written more compactly, this is equivalent to

I ′(u, v) ← 1
9
·

1∑
j=−1

1∑
i=−1

I(u + i, v + j). (6.3)

This simple local averaging already exhibits all the important ele-
ments of a typical filter. In particular, it is a so-called linear filter,
which is a very important class of filters. But how are filters defined in
general? First they differ from point operations mainly by using not a
single source pixel but a set of them for computing each resulting pixel.
The coordinates of the source pixels are fixed relative to the current im-
age position (u, v) and usually form a contiguous region, as illustrated
in Fig. 6.2.

The size of the filter region is an important parameter of the filter
because it specifies how many original pixels contribute to each resulting
pixel value and thus determines the spatial extent (support) of the filter.
For example, the smoothing filter in Eqn. (6.2) uses a 3 × 3 region of
support that is centered at the current coordinate (u, v). Similar filters
with larger support, such as 5 × 5, 7 × 7, or even 21 × 21 pixels, would
obviously have stronger smoothing effects.88



6.2 Linear FiltersThe shape of the filter region is not necessarily quadratic or even
rectangular. In fact, a circular (disk-shaped) region would be preferred
to obtain an isotropic smoothing effect (i. e., one that is the same in all
image directions). Another option is to assign different weights to the
pixels in the support region, such as to give stronger emphasis to pixels
that are closer to the center of the region. Furthermore, the support
region of a filter does not need to be contiguous and may not even contain
the original pixel itself (e. g., in a ring-shaped filter region).

It is probably confusing to have so many options—a more systematic
method is needed for specifying and applying images in a targeted man-
ner. The traditional and proven classification into linear and nonlinear
filters is based on the mathematical properties of the filter function; i. e.,
whether the result is computed from the source pixels by a linear or a
nonlinear expression. In the following, we discuss both classes of filters
and show several practical examples.

6.2 Linear Filters

Linear filters are denoted that way because they combine the pixel values
in the support region in a linear fashion; i. e., as a weighted summation.
The local averaging discussed in the beginning Eqn. (6.3) is a special
example, where all nine pixels in the 3 × 3 support region are added
with the same weights (1/9). With the same mechanism, a multitude of
filters with different properties can be defined by simply modifying the
distribution of the individual weights.

6.2.1 The Filter Matrix

For any linear filter, the size and shape of the support region, as well as
the individual pixel weights, are specified by the “filter matrix” or “filter
mask” H(i, j). The size of the matrix H equals the size of the filter re-
gion, and every element H(i, j) specifies the weight of the corresponding
pixel in the summation. For the 3× 3 smoothing filter in Eqn. (6.3), the
filter matrix is

H(i, j) =

⎡
⎣ 1/9 1/9 1/9

1/9 1/9 1/9
1/9 1/9 1/9

⎤
⎦ =

1
9

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ (6.4)

because each of the nine pixels contributes one-ninth of its value to the
result.

In principle, the filter matrix H(i, j) is, just like the image itself, a
discrete, two-dimensional, real-valued function, H : Z × Z �→ R. The
filter has its own coordinate system with the origin—often referred to
as the “hot spot”— mostly (but not necessarily) located at the center.
Thus, filter coordinates are generally positive and negative (Fig. 6.3).
The filter function is of infinite extent and considered zero outside the
region defined by the matrix H . 89



6 Filters

Fig. 6.3
Filter matrix and co-

ordinate system.
H =

(0, 0) = Hot Spot

i

j

6.2.2 Applying the Filter

For a linear filter, the result is unambiguously and completely specified
by the coefficients of the filter matrix. Applying the filter to an image
is a simple process, as illustrated in Fig. 6.4. The following steps are
performed at each image position (u, v):

1. The filter matrix H is moved over the original image I such that its
origin H(0, 0) coincides with the current image position (u, v).

2. All filter coefficients H(i, j) are multiplied with the corresponding
image element I(u+i, v+j), and the results are added.

3. Finally, the resulting sum is stored at the current position in the new
image I ′(u, v).

Described formally, all pixels in the new image I ′(u, v) are computed by
the expression

I ′(u, v) ←
∑

(i,j)∈RH

I(u + i, v + j) ·H(i, j), (6.5)

where RH denotes the set of coordinates covered by the filter H . For a
typical 3 × 3 filter with centered origin, this is

Fig. 6.4
Linear filter. The filter ma-

trix H is placed with its ori-
gin at position (u, v) on the
image I . Each filter coeffi-

cient H(i, j) is multiplied with
the corresponding image pixel

I(u+i, v+j), the results are added,
and the final sum is inserted

as the new pixel value I ′(u, v).

H

I

I ′
u

u

v

v
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6.2 Linear Filters
I ′(u, v) ←

i=1∑
i=−1

j=1∑
j=−1

I(u + i, v + j) ·H(i, j), (6.6)

for all image coordinates (u, v). Not quite for all coordinates, to be
exact. There is an obvious problem at the image borders where the filter
reaches outside the image and finds no corresponding pixel values to use
in computing a result. For the moment, we ignore this border problem,
but we will attend to it again in Sec. 6.5.2.

6.2.3 Computing the Filter Operation

Now that we understand the principal operation of a filter (Fig. 6.4) and
know that the borders need special attention, we go ahead and program
a simple linear filter in ImageJ. But before we do this, we may want
to consider one more detail. In a point operation (e. g., in Progs. 5.1
and 5.2), each new pixel value depends only on the corresponding pixel
value in the original image, and it was thus no problem simply to store
the results back to the same image—the computation is done “in place”
without the need for any intermediate storage. In-place computation is
generally not possible for a filter since any original pixel contributes to
more than one resulting pixel and thus may not be modified before all
operations are complete. We therefore require additional storage space
for the resulting image, which subsequently could be copied back to the
source image again (if wanted). Thus the complete filter operation can
be implemented in two different ways (Fig. 6.5):

A. The result of the filter computation is initially stored in a new image
whose content is eventually copied back to the original image.

B. The original image is first copied to an intermediate image that serves
as the source for the filter computation. The results are directly
stored in the original image.
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Version A Version B

Fig. 6.5
Practical implementation of filter
operations.
Version A: The result of the fil-
ter is first stored in an intermedi-
ate image and subsequently copied
back to the original image.
Version B: The original image
is first copied to an intermediate
image that serves as the source
for the filter operation. The result
replaces the pixels in the original
image.
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6 Filters The same amount of storage is required for both versions, and thus none
of them offers a particular advantage. In the following examples, we use
version B.

6.2.4 Filter Plugin Examples

Simple 3 × 3 averaging filter (“box” filter)

Program 6.1 shows the ImageJ code for a simple 3 × 3 smoothing filter
based on local averaging Eqn. (6.4), which is often called a “box” filter
because of its box-like shape. No explicit filter matrix is required in
this case since all filter coefficients are identical (1/9). Also, no clamping
(see Sec. 5.1.2) of the results is needed because the sum of the filter
coefficients is 1 and thus no pixel values outside the admissible range
can be created.

Although this example implements an extremely simple filter, it nev-
ertheless demonstrates the general structure of a two-dimensional filter
program. In particular, four nested loops are needed: two (outer) loops
for moving the filter over the image coordinates (u, v) and two (inner)
loops to iterate over the (i, j) coordinates within the filter region. The
required amount of computation thus depends not only upon the size of
the image but equally on the size of the filter.

Another 3 × 3 smoothing filter

Instead of the constant weights applied in the previous example, we
now use a real filter matrix with variable coefficients. For this purpose,
we apply a bell-shaped 3 × 3 filter function H(i, j), which puts more
emphasis on the center pixel than the surrounding pixels:

H(i, j) =

⎡
⎢⎣ 0.075 0.125 0.075

0.125 0.2 0.125
0.075 0.125 0.075

⎤
⎥⎦ . (6.7)

Notice that all coefficients in H are positive and sum to 1 (i. e., the
matrix is normalized) such that all results are within the given range
of pixel values and no clamping is necessary again, and the program
structure in Prog. 6.2 is virtually identical to the previous example. The
filter matrix (filter) is represented by a two-dimensional array1 of type
double. Each pixel is multiplied by the corresponding coefficient of the
filter matrix, the resulting sum being also of type double. Accessing the
filter coefficients, it must be considered that the coordinate origin of the
filter matrix is assumed to be at its center (i. e., at position (1, 1)) in
the case of a 3 × 3 matrix. This explains the offset of 1 for the i and j
coordinates (Prog. 6.2, line 20).
1 See the additional comments in Appendix B.2.4 regarding two-dimensional

arrays in Java.92



6.2 Linear Filters1 import ij.*;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.*;
4
5 public class Filter_Average3x3 implements PlugInFilter {
6 ...
7 public void run(ImageProcessor orig) {
8 int w = orig.getWidth();
9 int h = orig.getHeight();

10 ImageProcessor copy = orig.duplicate();
11

12 for (int v = 1; v <= h-2; v++) {
13 for (int u = 1; u <= w-2; u++) {
14 //compute filter result for position (u, v)
15 int sum = 0;
16 for (int j = -1; j <= 1; j++) {
17 for (int i = -1; i <= 1; i++) {
18 int p = copy.getPixel(u+i, v+j);
19 sum = sum + p;
20 }
21 }
22 int q = (int) Math.round(sum/9.0);
23 orig.putPixel(u, v, q);
24 }
25 }
26 }
27 } // end of class Filter_Average3x3

Program 6.1
3×3 averaging “box” filter (ImageJ
plugin). First (in line 10) a dupli-
cate (copy) of the original image
(orig) is created, which is used as
the source image in the subsequent
filter computation (line 18). In line
22, the result for the current im-
age position (u, v) is rounded and
subsequently stored in the original
image (line 23). Notice that the
border pixels remain unchanged
because they are not reached by
the iteration over (u, v).

6.2.5 Integer Coefficients

Instead of using floating-point coefficients (as in the previous examples),
it is often simpler and usually more efficient to work with integer coeffi-
cients in combination with some common scale factor s,

H(i, j) = s · H ′(i, j), (6.8)

with H ′(i, j) ∈ Z and s ∈ R. If all filter coefficients are positive (which is
the case for any smoothing filter), then s is usually taken as the reciprocal
of the sum of the coefficients,

s =
1∑

i,j H ′(i, j)
, (6.9)

to obtain a normalized filter matrix. In this case, the results are bounded
to the original range of pixel values. For example, the filter matrix in
Eqn. (6.7) could be defined equivalently as

H(i, j) =

⎡
⎢⎣ 0.075 0.125 0.075

0.125 0.200 0.125
0.075 0.125 0.075

⎤
⎥⎦ =

1
40

⎡
⎢⎣ 3 5 3

5 8 5
3 5 3

⎤
⎥⎦ (6.10)
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6 Filters

Program 6.2
3 × 3 smoothing filter (ImageJ

plugin, run() method only).
The filter matrix is defined as a

two-dimensional array of type
double (line 5). The coordinate

origin of the filter is assumed
to be at the center of the ma-

trix (i. e., at the array position
[1, 1]), which is accounted for by

an offset of 1 for the i, j coor-
dinates in line 20. The results

are rounded (line 24) and stored
in the original image (line 25).

1 public void run(ImageProcessor orig) {
2 int w = orig.getWidth();
3 int h = orig.getHeight();
4 // 3 × 3 filter matrix
5 double[][] filter = {
6 {0.075, 0.125, 0.075},
7 {0.125, 0.200, 0.125},
8 {0.075, 0.125, 0.075}
9 };

10 ImageProcessor copy = orig.duplicate();
11

12 for (int v = 1; v <= h-2; v++) {
13 for (int u = 1; u <= w-2; u++) {
14 // compute filter result for position (u, v)
15 double sum = 0;
16 for (int j = -1; j <= 1; j++) {
17 for (int i = -1; i <= 1; i++) {
18 int p = copy.getPixel(u+i, v+j);
19 // get the corresponding filter coefficient:
20 double c = filter[j+1][i+1];
21 sum = sum + c * p;
22 }
23 }
24 int q = (int) Math.round(sum);
25 orig.putPixel(u, v, q);
26 }
27 }
28 }

with the common scale factor s = 1
40 = 0.025. A similar scaling is used

in Prog. 6.3.
In Adobe Photoshop, linear filters can be specified with the “Custom

Filter” tool (Fig. 6.6) using integer coefficients and a common scale factor
Scale (which corresponds to the reciprocal of s). In addition, a constant
Offset value can be specified; e. g., to shift negative results (caused by
negative coefficients) into the visible range of values. In summary, the
operation performed by the 5 × 5 Photoshop custom filter can be ex-
pressed as

I ′(u, v) ← Offset +
1

Scale

j=2∑
j=−2

i=2∑
i=−2

I(u+i, v+j) ·H(i, j). (6.11)

6.2.6 Filters of Arbitrary Size

Small filters of size 3× 3 are frequently used in practice, but sometimes
much larger filters are required. Let us assume that the filter matrix is94



6.2 Linear Filters

Fig. 6.6
Adobe Photoshop’s “Custom Fil-
ter” implements linear filters up to
a size of 5 × 5. The filter’s coordi-
nate origin (“hot spot”) is assumed
to be at the center (value set to 3
in this example), and empty cells
correspond to zero coefficients. In
addition to the (integer) coeffi-
cients, common Scale and Offset
values can be specified.centered with an odd number of (2K + 1) rows and (2L + 1) columns

(K, L ≥ 0). If the image is of size M ×N ,

I(u, v) with 0 ≤ u < M and 0 ≤ v < N,

then the filter can be computed for all image coordinates (u′, v′) with

K ≤ u′ ≤ (M−K−1) and L ≤ v′ ≤ (N−L−1),

as illustrated in Fig. 6.7. Program 6.3 (which is adapted from Prog.
6.2) shows a 7 × 5 smoothing filter as an example for implementing
linear filters of arbitrary size. This example uses integer-valued filter
coefficients in combination with a common scale factor s, as described
above. As usual, the “hot spot” of the filter is assumed to be at the
matrix center, and the range of all iterations depends on the dimensions
of the filter matrix. In this case, clamping of the results is included (in
lines 32–33) as a preventive measure.

L

L

M

N

KK

H

I

u

v

no coverage

full coverage

Fig. 6.7
Border geometry. The filter can
be applied only at locations (u, v)
where the filter matrix H of size
(2K+1)× (2L+1) is fully contained
in the image.

6.2.7 Types of Linear Filters

Since the effects of a linear filter are solely specified by the filter matrix
(which can take on arbitrary values), an infinite number of different 95
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Program 6.3
ImageJ plugin (run() method

only) for filters of arbitrary size.
The filter matrix is an integer ar-

ray of size (2K+1) × (2L+1) with
the origin at the center element.
The summation variable sum is

also defined as an integer (int),
which is scaled by a constant fac-
tor s and rounded in line 31. The

border pixels are not modified.

1 public void run(ImageProcessor orig) {
2 int M = orig.getWidth();
3 int N = orig.getHeight();
4
5 // filter matrix of size (2K + 1) × (2L + 1)
6 int[][] filter = {
7 {0,0,1,1,1,0,0},
8 {0,1,1,1,1,1,0},
9 {1,1,1,1,1,1,1},

10 {0,1,1,1,1,1,0},
11 {0,0,1,1,1,0,0}
12 };
13 double s = 1.0/23; // sum of filter coefficients is 23
14

15 int K = filter[0].length/2;
16 int L = filter.length/2;
17

18 ImageProcessor copy = orig.duplicate();
19
20 for (int v = L; v <= N-L-1; v++) {
21 for (int u = K; u <= M-K-1; u++) {
22 // compute filter result for position (u, v)
23 int sum = 0;
24 for (int j = -L; j <= L; j++) {
25 for (int i = -K; i <= K; i++) {
26 int p = copy.getPixel(u+i, v+j);
27 int c = filter[j+L][i+K];
28 sum = sum + c * p;
29 }
30 }
31 int q = (int) Math.round(s * sum);
32 if (q < 0) q = 0;
33 if (q > 255) q = 255;
34 orig.putPixel(u, v, q);
35 }
36 }
37 }

linear filters exists, at least in principle. So how can these filters be used
and which filters are suited for a given task? In the following, we briefly
discuss two broad classes of linear filters that are of key importance in
practice: smoothing filters and difference filters (Fig. 6.8).

Smoothing filters

Every filter we have discussed so far caused some kind of smoothing. In
fact, any linear filter with positive-only coefficients is a smoothing filter
in a sense because such a filter computes merely a weighted average of
the image pixels within a certain image region.96
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Fig. 6.8
Typical examples of linear filters,
illustrated as 3D plots (top), pro-
files (center), and approximations
by discrete filter matrices (bot-
tom). The “box” filter (a) and the
Gauss filter (b) are both smooth-
ing filters with all-positive coeffi-
cients. The “Laplace” or “Mexican
hat” filter (c) is a difference filter.
It computes the weighted differ-
ence between the center pixel and
the surrounding pixels and thus
reacts most strongly to local inten-
sity peaks.

Box filter

This simplest of all smoothing filters, whose 3D shape resembles a box
(Fig. 6.8 (a)), is a well-known friend already. Unfortunately, the box fil-
ter is far from an optimal smoothing filter due to its wild behavior in
frequency space, which is caused by the sharp cutoff around its sides.
Described in frequency terms, smoothing corresponds to low-pass fil-
tering (i. e., effectively attenuating all signal components above a given
cutoff frequency).2 The box filter, however, produces strong “ringing” in
frequency space and is therefore not considered a high-quality smoothing
filter. It may also appear rather ad hoc to assign the same weight to
all image pixels in the filter region. Instead, one would probably expect
to have stronger emphasis given to pixels near the center of the filter
than to the more distant ones. Furthermore, smoothing filters should
possibly operate “isotropically” (i. e., uniformly in each direction), which
is certainly not the case for the square-shaped box filter.

Gaussian filter

The filter matrix (Fig. 6.8 (b)) of this smoothing filter corresponds to a
discrete, two-dimensional Gaussian function,

Gσ(r) = e−
r2

2σ2 or Gσ(x, y) = e−
x2+y2

2σ2 , (6.12)

where σ denotes the width (standard deviation) of the bell-shaped func-
tion and r is the distance (radius) from the center. The pixel at the
center receives the maximum weight (1.0, which is scaled to the integer
2 More details on the image vs. frequency space and related concepts are

covered in Chs. 13 and 14. 97



6 Filters value 9 in the matrix shown in Fig. 6.8 (b)), and the remaining coeffi-
cients drop off smoothly with increasing distance from the center. The
Gaussian filter is isotropic if the filter matrix is large enough for a suffi-
cient approximation (at least 5 × 5). As a low-pass filter, the Gaussian
is “well-behaved” in frequency space and thus clearly superior to the box
filter. The two-dimensional Gaussian filter is separable into a pair of
one-dimensional filters (see Sec. 6.3.3), which counterweights its other-
wise slightly higher computational costs.

Difference filters

If some of the filter coefficients are negative, the filter calculation can be
interpreted as the difference of two sums: the weighted sum of all pixels
with associated positive coefficients minus the weighted sum of pixels
with negative coefficients in the filter region RH ,

I ′(u, v) =
∑

(i,j)∈R+
H

I(u+i, v+j) · |H(i, j)|

−
∑

(i,j)∈R−
H

I(u+i, v+j) · |H(i, j)| , (6.13)

where R+
H and R−

H denote the partitions of the filter with positive coeffi-
cients H(i, j) > 0 and negative coefficients H(i, j) < 0, respectively. For
example, the 5 × 5 Laplace filter in Fig. 6.8 (c) computes the difference
between the center pixel (with weight 16) and the weighted sum of 12
surrounding pixels (with weights −1 and −2). The remaining 12 pixels
have associated zero coefficients and are thus ignored in the computation.

While local intensity variations are smoothed by averaging, we can
expect the exact contrary to happen when differences are taken: local
intensity changes are enhanced. Important applications of difference fil-
ters thus include enhancing edges (Sec. 7.2) and image sharpening (Sec.
7.6).

6.3 Formal Properties of Linear Filters

In the previous sections, we have approached the concept of filters in a
rather casual manner to quickly get a grasp of how filters are defined
and used. While such a level of treatment may be sufficient for most
practical purposes, the power of linear filters may not really be apparent
yet considering the limited range of (simple) applications seen so far.

The real importance of linear filters (and perhaps their formal ele-
gance) only becomes visible when taking a closer look at some of the
underlying theoretical details. At this point, it may be surprising to the
experienced reader that we have not yet mentioned the term “convolu-
tion” in this context. We make up for this in the following subsection.98
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6.3.1 Linear Convolution

The operation associated with a linear filter, as described in the previous
section, is not an invention of digital image processing but has been
known in mathematics for a long time. It is called linear convolution3

and in general combines two functions of the same dimensionality, either
continuous or discrete. For discrete, two-dimensional functions I and H ,
the convolution operation is defined as

I ′(u, v) =
∞∑

i=−∞

∞∑
j=−∞

I(u−i, v−j) ·H(i, j), (6.14)

or
I ′ = I ∗ H (6.15)

for short, where ∗ denotes the convolution operator. This almost looks
the same as Eqn. (6.5), with two differences: the range of the variables
i, j in the summation and the negative signs in the coordinates of I(u−
i, v − j). The first point is easy to explain: Because the coefficients
outside the filter matrix H(i, j), also referred to as a filter kernel, are
assumed to be zero, the positions outside the matrix are irrelevant in
the summation. To resolve the coordinate issue, we modify Eqn. (6.14)
by replacing the summation variables i, j to

I ′(u, v) =
∑

(i,j)∈RH

I(u−i, v−j) · H(i, j)

=
∑

(i,j)∈RH

I(u+i, v+j) · H(−i,−j)

=
∑

(i,j)∈RH

I(u+i, v+j) · H∗(i, j). (6.16)

The result is identical to the linear filter in Eqn. (6.5), with the filter
function H∗(i, j) = H(−i,−j) being the horizontally and vertically re-
flected (i. e., rotated by 180◦) function H . To be precise, the operation
in Eqn. (6.5) actually defines the linear correlation, which is merely a
convolution with a reflected filter matrix.4

Thus the mathematical concept underlying all linear filters is the
convolution operation (∗), and its results are completely and sufficiently
specified by the convolution matrix (or kernel) H . To illustrate this
relationship, the convolution is often pictured as a “black box” operation,
as shown in Fig. 6.9.

3 Oddly enough the simple concept of convolution is often (though unjustly)
feared as an intractable mystery.

4 Of course this is the same in the one-dimensional case. Linear correlation
is typically used for comparing images or subpatterns (see Ch. 17). 99
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Fig. 6.9
Convolution as a “black box” op-
eration. The original image I is
subject to a linear convolution
(∗) with the convolution kernel
H , producing the resulting I ′.

I(u, v) I ′(u, v)

H(i, j)

6.3.2 Properties of Linear Convolution

The importance of linear convolution is based on its simple mathemati-
cal properties as well as its multitude of manifestations and applications.
Linear convolution is a suitable model for many types of natural phenom-
ena, including mechanical, acoustic, and optical systems. In particular
(as shown in Ch. 13), there are strong formal links to the Fourier repre-
sentation of signals in the frequency domain that are extremely valuable
for understanding complex phenomena, such as sampling and aliasing.
In the following, however, we first look at some important properties of
linear convolution in the accustomed signal or image space.

Commutativity

Linear convolution is commutative; i. e.,

I ∗ H = H ∗ I. (6.17)

Thus the result is the same if the image and filter kernel were inter-
changed, and it makes no difference if we convolve the image I with
the kernel H or the other way around—the two functions I and H are
exchangeable and may assume either role.

Linearity

Linear filters are called that because of the linearity properties of the
convolution operation, which manifests itself in various aspects. For
example, if an image is multiplied by a scalar constant s ∈ R, then the
result of the convolution multiplies by the same factor,

(s · I) ∗ H = I ∗ (s ·H) = s · (I ∗ H) . (6.18)

Similarly, if we add two images I1, I2 pixel by pixel and convolve the
resulting image with some kernel H , the same outcome is obtained by
convolving each image individually and adding the two results afterward:100
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(I1 + I2) ∗ H = (I1 ∗ H) + (I2 ∗ H). (6.19)

It may be surprising, however, that simply adding a constant (scalar)
value b to the image does not add to the convolved result by the same
amount,

(b + I) ∗ H �= b + (I ∗ H), (6.20)

and is thus not part of the linearity property. While linearity is an
important theoretical property, one should note that in practice “linear”
filters are often only partially linear because of rounding errors or a
limited range of output values.

Associativity

Linear convolution is associative, meaning that the order of successive
filter operations is irrelevant:

A ∗ (B ∗ C) = (A ∗ B) ∗ C. (6.21)

Thus multiple successive filters can be applied in any order, and multiple
filters can be arbitrarily combined into new filters.

6.3.3 Separability of Linear Filters

If a convolution kernel H can be expressed as the convolution of multiple
kernels itself,

H = H1 ∗ H2 ∗ . . . ∗ Hn,

then (as a consequence of Eqn. (6.21)) the filter operation I ∗H may be
performed as a sequence of convolutions with the constituting kernels,

I ∗ H = I ∗ (H1 ∗ H2 ∗ . . . ∗ Hn) (6.22)

=
(
. . . ((I ∗ H1) ∗ H2) ∗ . . . ∗ Hn

)
.

Depending upon the type of decomposition, this may result in significant
computational savings.

x/y-separability

The possibility of separating a two-dimensional kernel H into a pair of
one-dimensional kernels Hx, Hy is of particular relevance and is used in
many practical applications. Let us assume, as a simple example, that
the filter is composed of the one-dimensional kernels Hx and Hy with

Hx =
[

1 1 1 1 1
]

and Hy =

⎡
⎣ 1

1
1

⎤
⎦ , (6.23)

respectively. If these filters are applied sequentially to the image I, 101



6 Filters I ′ ← (I ∗ Hx) ∗ Hy = I ∗ (Hx ∗ Hy)︸ ︷︷ ︸
Hxy

, (6.24)

then according to Eqn. (6.22) this is equivalent to applying the composite
filter

Hxy = Hx ∗ Hy =

⎡
⎣ 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1

⎤
⎦ . (6.25)

Thus this two-dimensional 5× 3 box filter Hxy can be constructed from
two one-dimensional filters of lengths 5 and 3, respectively (which is
obviously true for box filters of any size). But what is the advantage of
this? In the case above, the required amount of processing is 5 · 3 = 15
steps per image pixel for the 2D filter Hxy as compared with 5 + 3 = 8
steps for the two separate 1D filters, a reduction of almost 50%. In
general, the number of operations for a 2D filter grows quadratically with
the filter size (side length) but only linearly if the filter is x/y-separable.
Clearly, separability is an eminent bonus for the implementation of large
linear filters (see also Sec. 6.5.1).

Separable Gaussian filters

In general, a two-dimensional filter is x/y-separable if (as in the example
above) the filter function H(i, j) can be expressed as the outer product
(⊗) of two one-dimensional functions,

Hx,y(i, j) = (Hx ⊗Hy) (i, j) = Hx(i) · Hy(j), (6.26)

because in this case the resulting function also corresponds to the con-
volution product Hx,y = Hx ∗ Hy. A prominent example is the widely
employed two-dimensional Gaussian function Gσ(x, y) Eqn. (6.12), which
can be expressed as the product

Gσ(x, y) = e−
x2+y2

2σ2 = e−
x2

2σ2 · e− y2

2σ2 = gσ(x) · gσ(y). (6.27)

Thus a two-dimensional Gaussian filter HG,σ can be implemented by a
pair of one-dimensional Gaussian filters HG,σ

x , HG,σ
y as

I ′ ← I ∗ HG,σ = I ∗ HG,σ
x ∗ HG,σ

y .

With different σ-values along the x and y axes, elliptical 2D Gaussians
can be realized as separable filters in the same fashion.

The Gaussian function decays relatively slowly with increasing dis-
tance from the center. To avoid visible truncation errors, discrete ap-
proximations of the Gaussian should have a sufficiently large extent of
about ±2.5 σ to ±3.5 σ samples. For example, a discrete 2D Gaus-
sian with “radius” σ = 10 requires a minimum filter size of 51 × 51
pixels, in which case the x/y-separable version can be expected to102
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1 float[] makeGaussKernel1d(double sigma) {
2

3 // create the kernel
4 int center = (int) (3.0*sigma);
5 float[] kernel = new float[2*center+1]; // odd size
6
7 // fill the kernel
8 double sigma2 = sigma * sigma; // σ2

9 for (int i=0; i<kernel.length; i++) {
10 double r = center - i;
11 kernel[i] = (float) Math.exp(-0.5 * (r*r) / sigma2);
12 }
13
14 return kernel;
15 }

Program 6.4
Dynamic creation of one-
dimensional Gaussian filter ker-
nels. For a given σ, the Java
method makeGaussKernel1d() re-
turns a discrete 1D Gaussian filter
kernel (float array) large enough
to avoid truncation effects.

run about 50 times faster than the full 2D filter. The Java method
makeGaussKernel1d() in Prog. 6.4 shows how to dynamically create a
one-dimensional Gaussian filter kernel with an extent of ±3 σ (i. e., a
vector of odd length 6 σ + 1). As an example, this method is used for
implementing “unsharp masking” filters where relatively large Gaussian
kernels may be required (see Prog. 7.1 in Sec. 7.6.2).

6.3.4 Impulse Response of a Filter

Linear convolution is a binary operation involving two functions and also
has a “neutral element”, which of course is a function, too. The impulse
or Dirac function δ() is neutral under convolution; i. e.,

I ∗ δ = I. (6.28)

In the discrete, two-dimensional case, the impulse function is defined as

δ(u, v) =
{

1 for u = v = 0
0 otherwise. (6.29)

Interpreted as an image, this function is merely a single bright pixel
(with value 1) at the coordinate origin contained in a dark (zero value)
plane of infinite extent (Fig. 6.10).

�

�u

v

δ(u, v) Fig. 6.10
Discrete, two-dimensional impulse
or Dirac function δ(u, v).
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6 Filters

Fig. 6.11
Convolving the image I with

the impulse δ returns the
original unmodified image.

I(u, v) I ′(u, v) ≡ I(u, v)
δ(i, j)

Fig. 6.12
The linear filter H with the

impulse δ as the input yields
the filter H as the result.

δ(u, v)

I ′(u, v) = H(u, v)

H(i, j)

When the Dirac function is used as the filter kernel in a linear con-
volution as in Eqn. (6.28), the result obtained is the original unmodified
image (Fig. 6.11). The reverse situation is more interesting, however,
where some filter H is applied to the impulse δ as the input function.
What happens? Since convolution is commutative Eqn. (6.17) it is evi-
dent that

H ∗ δ = δ ∗ H = H (6.30)

and thus the result of this filter operation is the filter H itself (Fig. 6.12)!
While sending an impulse into a linear filter to obtain its filter function
may seem paradoxical at first, it makes sense if the properties (coeffi-
cients) of the filter H are unknown. Assuming that the filter is actually
linear, complete information about this filter is obtained by injecting
only a single impulse and measuring the result, which is called the “im-
pulse response” of the filter. Among other applications, this technique is
used for measuring the behavior of optical systems (e. g., lenses), where a
point light source serves as the impulse and the result—a distribution of
light energy—is called the “point spread function” (PSF) of the system.

6.4 Nonlinear Filters

Linear filters have an important disadvantage when used for smoothing
or removing noise: all image structures, including points, edges, and
lines, are also blurred, and the quality of the whole image is evenly104
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� � �
� � �
� � �

Fig. 6.13
Any image structure is blurred
by a linear smoothing filter. Im-
portant image structures such as
step edges (top) or thin lines (bot-
tom) are widened, and the local
contrast is reduced.

reduced (Fig. 6.13). This effect cannot be avoided, and thus the use
of linear filters for these kinds of tasks (noise removal in particular) is
limited. In the following, we investigate certain nonlinear filters to see
if they can offer any better solution to this problem.

6.4.1 Minimum and Maximum Filters

Like all other filters, nonlinear filters compute the result at some image
position (u, v) from the pixels inside the moving region Ru,v of the orig-
inal image. The filters are called “nonlinear” because the source pixel
values are combined by some nonlinear function. The simplest of all
nonlinear filters are the minimum and maximum filters, defined as

I ′(u, v) ← min {I(u+i, v+j) | (i, j) ∈ R} , (6.31)
I ′(u, v) ← max {I(u+i, v+j) | (i, j) ∈ R} , (6.32)

where R denotes the filter region (set of filter coordinates), usually a
square of size 3 × 3 pixels. Figure 6.14 illustrates the effects of a one-
dimensional minimum filter on various local signal structures.

Figure 6.15 shows the results of applying 3 × 3 pixel minimum and
maximum filters to a grayscale image corrupted with “salt-and-pepper”
noise (i. e., randomly placed white and black dots), respectively. Ob-
viously the minimum filter removes the white (salt) dots because any

width of filter

(a) (b) (c)

Fig. 6.14
Effects of a one-dimensional mini-
mum filter on various local signal
structures. Original signal (top)
and result after filtering (bottom),
where the colored bars indicate
the extent of the filter. The step
edge (a) and the linear ramp (c)
are shifted to the right by half the
filter width, and the narrow pulse
(b) is completely removed.
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6 Filters

Fig. 6.15. Minimum and maximum filters applied to a grayscale image. The original image is corrupted with “salt-
and-pepper” noise (a). The 3×3 pixel minimum filter eliminates the bright dots and widens all dark image structures
(b). The maximum filter shows the exact opposite effects (c).

single white pixel within the 3 × 3 filter region is replaced by one of
its surrounding pixels with a smaller value. Notice, however, that the
minimum filter at the same time widens all the dark structures in the
image.

The reverse effects can be expected from the maximum filter. Any
single bright pixel is a local maximum as soon as it is contained in the
filter region R. White dots (and all other bright image structures) are
thus widened to the size of the filter, while now the dark (“pepper”) dots
disappear.

6.4.2 Median Filter

It is impossible of course to design a filter that removes any noise but
keeps all the important image structures intact because no filter can106
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p0

pK−1

pK+1

p2K

pK =
medianI(u, v)

Fig. 6.16
Computation of a 3 × 3 pixel me-
dian filter. The nine pixel values
extracted from the 3 × 3 image re-
gion are arranged as a vector that
is sorted, and the resulting center
value is taken as the median.

discriminate which image content is important to the viewer and which
is not. The popular median filter is at least a good step in this direction.

The median filter replaces every image pixel by the median of the
pixels in the corresponding filter region R,

I ′(u, v) ← median {I(u+i, v+j) | (i, j) ∈ R} . (6.33)

The median of 2K + 1 pixel values pi is defined as

median (p0, p1, . . . , pK , . . . , p2K) � pK ; (6.34)

i. e., the center value pK if the sequence (p0, . . . , p2K) is sorted (pi ≤
pi+1). Figure 6.16 demonstrates the computation of the median filter or
a filter region of size 3 × 3 pixels.

Equation (6.34) defines the median of an odd -sized set of values, and
if the side length of the rectangular filters is odd (which is usually the
case), then the number of elements in the filter region is odd as well.
In this case, the median filter does not create any new pixel values that
did not exist in the image before. If, however, the number of elements
is even (2K for some K > 0), then the median of the sorted sequence
(p0, . . . , p2K−1) is defined as the arithmetic mean of the two middle val-
ues,

median (p0, . . . , pK−1, pK , . . . , p2K−1) � (pK−1 + pK) / 2. (6.35)

Because of the interpolation above, new pixel values are generally intro-
duced by the median filter if the region is of even size.

Figure 6.17 illustrates the effects of a 3× 3 pixel median filter on se-
lected two-dimensional image structures. In particular, very small struc-
tures (smaller than half the filter size) are eliminated, but all other struc-
tures remain largely unchanged. Finally, Fig. 6.18 compares the results
of median filtering with a linear-smoothing filter. A sample Java imple-
mentation of the median filter, whose principal structure is identical to
the 3 × 3 pixel linear filter in Prog. 6.2, is shown in Prog. 6.5.

6.4.3 Weighted Median Filter

The median is a rank order statistic, and in a sense the “majority” of the
pixel values involved determine the result. A single exceptionally high or 107
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Fig. 6.17
Effects of a 3×3 pixel median filter

on two-dimensional image struc-
tures. Isolated dots are eliminated

(a), as are thin lines (b). The
step edge remains unchanged (c),
while a corner is rounded off (d).

(a) (b)

(c) (d)

Fig. 6.18. Linear smoothing filter vs. median filter. The original image is corrupted with “salt-and-pepper” noise (a).
The linear 3 × 3 pixel box filter (b) reduces the bright and dark peaks to some extent but is unable to remove them
completely. In addition, the entire image is blurred. The median filter (c) effectively eliminates the noise dots and
also keeps the remaining structures largely intact. However, it also creates small spots of flat intensity that noticeably
affect the sharpness.
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6.4 Nonlinear Filters1 import ij.*;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.*;
4 import java.util.Arrays;
5

6 public class Filter_Median3x3 implements PlugInFilter {
7 final int K = 4; // filter size
8

9 public void run(ImageProcessor orig) {
10 int w = orig.getWidth();
11 int h = orig.getHeight();
12 ImageProcessor copy = orig.duplicate();
13
14 // vector to hold pixels from 3×3 neighborhood
15 int[] P = new int[2*K+1];
16
17 for (int v = 1; v <= h-2; v++) {
18 for (int u = 1; u <= w-2; u++) {
19 // fill the pixel vector P for filter position u, v
20 int k = 0;
21 for (int j = -1; j <= 1; j++) {
22 for (int i = -1; i <= 1; i++) {
23 P[k] = copy.getPixel(u+i, v+j);
24 k++;
25 }
26 }
27 // sort pixel vector and take the center element
28 Arrays.sort(P);
29 orig.putPixel(u, v, P[K]);
30 }
31 }
32 }
33
34 } // end of class Filter_Median3x3

Program 6.5
A 3 × 3 median filter (ImageJ
plugin). An array P of type int
is defined (line 15) to hold the
9 pixels for each filter position
(u, v). This vector is sorted by
using the Java utility method
Arrays.sort() in line 28. The
center element of the sorted vec-
tor (P[K]) is taken as the median
value and stored in the original
image (line 29).

low value ( an “outlier”) cannot influence the result much but only shift
the result up or down to the next value. Thus the median (in contrast to
the linear average) is considered a “robust” measure. In a regular median
filter, each pixel in the filter region has the same influence, regardless of
its distance from the center.

The weighted median filter assigns individual weights to the positions
in the filter region, which can be interpreted as the “number of votes”
for the corresponding pixel values. Similar to the coefficient matrix H
of a linear filter, the distribution of weights is specified by a weight
matrix W (i, j) ∈ N. To compute the result of the filter, each pixel value
I(u + i, v + j) involved is inserted W (i, j) times into the extended pixel
vector

Q = (p0, . . . , pL−1) of length L =
∑

(i,j)∈R

W (i, j).
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Fig. 6.19
Weighted median example. Each

pixel value is inserted into the ex-
tended pixel vector multiple times,

as specified by the weight matrix
W . For example, the value 0 from

the center pixel is inserted three
times (since W (0, 0) = 3) and

the pixel value 7 twice. The pixel
vector is sorted and the center

value (2) is taken as the median.
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This vector is then sorted, and the resulting center value is taken as
the median, as in the standard median filter. Figure 6.19 illustrates the
computation of the weighted median filter using the 3× 3 weight matrix

W (i, j) =

⎡
⎣ 1 2 1

2 3 2
1 2 1

⎤
⎦ , (6.36)

which requires an extended pixel vector of length L = 15, equal to the
sum of the weights in W .

Of course this method may also be used to implement conventional
median filters of nonrectangular shape; for example, a cross-shaped me-
dian filter with the weight matrix

W+(i, j) =

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ . (6.37)

Not every arrangement of weights is useful, however. In particular, if the
weight assigned to the center pixel is greater than the sum of all other
weights, then that pixel would always have the “majority” and dictate
the resulting value, thus inhibiting any filter effect.

6.4.4 Other Nonlinear Filters

Median and weighted median filters are two examples of nonlinear filters
that are easy to describe and frequently used. Since “nonlinear” refers
to anything that is not linear, there are a multitude of filters that fall
into this category, including the morphological filters for binary and
grayscale images, which are discussed in Ch. 10. Other types of nonlinear
filters, such as the corner detector described in Ch. 8, are often described
algorithmically and thus defy a simple, compact description.110



6.5 Implementing FiltersIn contrast to the linear case, there is usually no “strong theory”
for nonlinear filters that could, for example, describe the relationship
between the sum of two images and the results of a median filter, as does
Eqn. (6.19) for linear convolution. Similarly, not much (if anything) can
be stated in general about the effects of nonlinear filters in frequency
space.

6.5 Implementing Filters

6.5.1 Efficiency of Filter Programs

Computing the results of filters is computationally expensive in most
cases, especially with large images, large filter kernels, or both. Given
an image of size M × N and a filter kernel of size (2K + 1) × (2L + 1),
a direct implementation requires

2K · 2L ·M · N = 4KLMN

operations, namely multiplications and additions (in the case of a linear
filter). Thus, if both the image and the filter are simply assumed to be
of size N × N , the time complexity5 of direct filtering is O(N4). As
described in Sec. 6.3.3, substantial savings are possible when large, two-
dimensional filters can be decomposed (separated) into smaller, possibly
one-dimensional filters.

The programming examples in this chapter are deliberately designed
to be simple and easy to understand, and none of the solutions shown
are particularly efficient. Possibilities for tuning and code optimization
exist in many places. It is particularly important to move all unnecessary
instructions out of inner loops if possible because these are executed most
often. This applies especially to “expensive” instructions, such as method
invocations, which may be relatively time-consuming (particularly in
Java).

In the examples, we have intentionally used the ImageJ standard
methods getPixel() for reading and putPixel() for writing image pix-
els, which is the simplest and safest approach to access image data but
also the slowest, of course. Substantial speed can be gained by using
the quicker read and write methods get() and set() defined for class
ImageProcessor and its subclasses. Note, however, that these meth-
ods do not check if the passed image coordinates are valid. Maximum
performance can be obtained by accessing the pixel arrays directly, as
described in detail in Appendix C (p. 485).

6.5.2 Handling Image Borders

As mentioned briefly in Sec. 6.2.2, the image borders require special
attention in most filter implementations. We have argued that theo-
5 See Appendix A (p. 454) for a short description of the O() notation. 111



6 Filters retically no filter results can be computed at positions where the filter
matrix is not fully contained in the image array. Thus any filter opera-
tion would reduce the size of the resulting image, which is not acceptable
in most applications. While no formally correct remedy exists, there are
several more or less practical methods for handling the remaining border
regions:
Method 1: Set the unprocessed pixels at the borders to some constant
value (e. g., “black”). This is certainly the simplest method, but not
acceptable in many situations because the image size is incrementally
reduced by every filter operation.
Method 2: Set the unprocessed pixels to the original (unfiltered) image
values. Usually the results are unacceptable, too, due to the noticeable
difference between filtered and unprocessed image parts.
Method 3: Extend the image by “padding” additional pixels around it
(Fig. 6.20) and filter the border regions, too, assuming that:

A. The pixels outside the image have a constant value (e. g., “black” or
“gray”; Fig. 6.20 (a)). This may produce strong artifacts at the image
borders, particularly when large filters are used.

B. The border pixels extend beyond the image boundaries (Fig. 6.20 (b)).
Only minor artifacts can be expected at the borders. The method is
also simple to compute and is thus often considered the method of
choice.

C. The image is mirrored at each of its four boundaries (Fig. 6.20 (c)).
The results will be similar to those of the previous method unless
very large filters are used.

D. The image repeats periodically in the horizontal and vertical direc-
tions (Fig. 6.20 (d)). This may look weird at first, and also the results
are generally not satisfactory. However, in discrete spectral analysis,
the image is implicitly treated as a periodic function, too.6 Thus,
if the image is filtered in the frequency domain, the results will be
equal to filtering in the space domain under this repetitive model.

None of these methods is perfect and, as usual, the right choice de-
pends upon the type of image and the filter applied. Notice also that
the special treatment of the image borders may sometimes require more
programming effort (and computing time) than the processing of the
interior image.

6.5.3 Debugging Filter Programs

Experience shows that programming errors can hardly ever be avoided,
even by experienced practitioners. Unless errors occur during execution
(usually caused by trying to access nonexistent array elements), filter
programs always “do something” to the image that may be similar but
6 This comment refers to topics covered in Ch. 13.112



6.6 Filter Operations in
ImageJ

Fig. 6.20
Methods for extending the im-
age to facilitate filtering along the
borders. The assumption is that
the (nonexisting) pixels outside
the original image are either set
to some constant value (a), take
on the value of the closest bor-
der pixel (b), are mirrored at the
image boundaries (c), or repeat
periodically along the coordinate
axes (d).

not identical to the expected result. To assure that the code operates
correctly, it is not advisable to start with full, large images but first to
experiment with small test cases for which the outcome can easily be
predicted. Particularly when implementing linear filters, a first “litmus
test” should always be to inspect the impulse response of the filter (as
described in Sec. 6.3.4) before processing any real images.

6.6 Filter Operations in ImageJ

ImageJ offers a collection of readily available filter operations, many of
them contributed by other authors using different styles of implementa-
tion. Most of the available operations can also be invoked via ImageJ’s
Process menu.

6.6.1 Linear Filters

Filters based on linear convolution are implemented by the ImageJ plugin
class ij.plugin.filter.Convolver, which offers several methods in
addition to the usual run() method. Its use is easily illustrated with
the following example that convolves an 8-bit grayscale image with the
filter kernel from Eqn. (6.7): 113



6 Filters
H(i, j) =

⎡
⎣ 0.075 0.125 0.075

0.125 0.2 0.125
0.075 0.125 0.075

⎤
⎦ .

In the run() method below, we first define the filter matrix H as a
one-dimensional float array (notice the syntax for the float constants
“0.075f”, etc.) and then create a new instance (cv) of class Convolver
in line 8:

1 import ij.plugin.filter.Convolver;
2 ...
3 public void run(ImageProcessor I) {
4 float[] H = { // filter array is one-dimensional!
5 0.075f, 0.125f, 0.075f,
6 0.125f, 0.200f, 0.125f,
7 0.075f, 0.125f, 0.075f };
8 Convolver cv = new Convolver();
9 cv.setNormalize(false); // do not use filter normalization

10 cv.convolve(I, H, 3, 3); // apply the filter H to I
11 }

The invocation of the method convolve() in line 10 applies the filter H
to the image I. It requires two additional arguments for the dimensions
of the filter matrix since H is passed as a one-dimensional array. The
image I is destructively modified by this operation.

In this case, one could have also used the nonnormalized, integer-
valued filter matrix given in Eqn. (6.10) because convolve() normalizes
the given filter automatically (after cv.setNormalize(true)).

6.6.2 Gaussian Filters

The ImageJ class ij.plugin.filter.GaussianBlur implements a sim-
ple Gaussian filter with arbitrary radius (σ). The filter uses separable
one-dimensional Gaussians as described in Sec. 6.3.3. Here is an example
showing its application with the radius σ = 2.5:

1 import ij.plugin.filter.GaussianBlur;
2 ...
3 public void run(ImageProcessor ip) {
4 GaussianBlur gb = new GaussianBlur();
5 double radius = 2.5;
6 gb.blur(ip, radius);
7 }

An alternative implementation of separable Gaussian filters can be found
in Prog. 7.1 (see p. 137), which uses the method makeGaussKernel1d()
defined in Prog. 6.4 (page 103) for dynamically computing the required
1D filter kernels.114



6.7 Exercises6.6.3 Nonlinear Filters

A small set of nonlinear filters is implemented in the ImageJ class
ij.plugin.filter.RankFilters, including the minimum, maximum,
and standard median filters. The filter region is (approximately) circu-
lar with variable radius. Here is an example that applies three different
filters with the same radius in sequence:

1 import ij.plugin.filter.RankFilters;
2 ...
3 public void run(ImageProcessor ip) {
4 RankFilters rf = new RankFilters();
5 double radius = 3.5;
6 rf.rank(ip, radius, RankFilters.MIN); // minimum filter
7 rf.rank(ip, radius, RankFilters.MAX); // maximum filter
8 rf.rank(ip, radius, RankFilters.MEDIAN); // median filter
9 }

6.7 Exercises

Exercise 6.1. Explain why the “custom filter” in Adobe Photoshop (Fig.
6.6) is not strictly a linear filter.

Exercise 6.2. Determine the possible maximum and minimum results
(pixel values) for a linear filter with

H(i, j) =

⎡
⎣−1 −2 0
−2 0 2

0 2 1

⎤
⎦

when applied to an 8-bit grayscale image (with pixel values in the range
[0, 255]). Assume that no clamping of the results occurs.

Exercise 6.3. Modify the ImageJ plugin shown in Prog. 6.3 such that
the image borders are processed as well. Use one of the methods for
extending the image outside its boundaries as described in Sec. 6.5.2.

Exercise 6.4. Show that a standard box filter is not isotropic (i. e., does
not smooth the image identically in all directions).

Exercise 6.5. Explain why the clamping of results to a limited range
of pixel values may violate the linearity property (Sec. 6.3.2) of linear
filters.

Exercise 6.6. Compare the number of processing steps required for non-
separable linear filters and x/y-separable filters sized 5 × 5, 11 × 11,
25 × 25, and 51 × 51 pixels. Compute the speed gain resulting from
separability in each case.

115



6 Filters Exercise 6.7. Implement a weighted median filter (Sec. 6.4.3) as an Im-
ageJ plugin, specifying the weights as a constant, two-dimensional int
array. Test the filter on suitable images and compare the results with
those from a standard median filter. Explain why, for example, the
weight matrix

W (i, j) =

⎡
⎣ 0 1 0

1 5 1
0 1 0

⎤
⎦

does not make sense.

Exercise 6.8. Verify the properties of the impulse function with respect
to linear filters Eqn. (6.30). Create a black image with a white pixel at
its center and use this image as the two-dimensional impulse. See if
linear filters really deliver the filter matrix H as their impulse response.

Exercise 6.9. Describe the effect of a linear filter with the following
filter matrix:

H(i, j) =

⎡
⎣ 0 0 0

0 0 1
0 0 0

⎤
⎦ .

Exercise 6.10. Design a linear filter (matrix) that creates a horizon-
tal blur over a length of 7 pixels, thus simulating the effect of camera
movement during exposure.

Exercise 6.11. Program your own ImageJ plugin that implements a
Gaussian smoothing filter with variable filter width (radius σ). The
plugin should dynamically create the required filter kernels with a size
of at least 5σ in both directions. Make use of the fact that the Gaussian
function is x/y-separable (see Sec. 6.3.3).

Exercise 6.12. The “Laplacian of Gaussian” (LoG) filter (Fig. 6.8) is
based on the sum of the second derivatives of the two-dimensional Gaus-
sian. It is defined as

LoGσ(x, y) = −
(x2 + y2 − σ2

σ4

)
· e−x2+y2

2σ2 .

Implement the LoG filter as an ImageJ plugin of variable width (σ), anal-
ogous to Exercise 6.11. Find out if the LoG function is x/y-separable.
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7

Edges and Contours

Prominent image “events” originating from local changes in intensity or
color, such as edges and contours, are of high importance for the visual
perception and interpretation of images. The perceived amount of infor-
mation in an image appears to be directly related to the distinctiveness
of the contained structures and discontinuities. In fact, edge-like struc-
tures and contours seem to be so important for our human visual system
that a few lines in a caricature or illustration are often sufficient to un-
ambiguously describe an object or a scene. It is thus no surprise that
the enhancement and detection of edges has been a traditional and im-
portant topic in image processing as well. In this chapter, we first look
at simple methods for localizing edges and then attend to the related
issue of image sharpening.

7.1 What Makes an Edge?

Edges and contours play a dominant role in human vision and probably
in many other biological vision systems as well. Not only are edges
visually striking, but it is often possible to describe or reconstruct a
complete figure from a few key lines, as the example in Fig. 7.1 shows.
But how do edges arise, and how can they be technically localized in an
image?

Edges can roughly be described as image positions where the local
intensity changes distinctly along a particular orientation. The stronger
the local intensity change, the higher is the evidence for an edge at that
position. In mathematics, the amount of change with respect to spatial
distance is known as the first derivative of a function, and we thus start
with this concept to develop our first simple edge detector.
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7 Edges and Contours

Fig. 7.1
Edges play an important role
in human vision. Original im-

age (a) and edge image (b).

(a) (b)

7.2 Gradient-Based Edge Detection

For simplicity, we first investigate the situation in only one dimension,
assuming that the image contains a single bright region at the center
surrounded by a dark background (Fig. 7.2 (a)). In this case, the in-
tensity profile along one image line would look like the one-dimensional
function f(x), as shown in Fig. 7.2 (b). Computing the first derivative
of f(x) from left to right as

f ′(x) =
df

dx
(x) (7.1)

results in a positive swing at those positions where the intensity rises
and a negative swing where the value of the function drops (Fig. 7.2 (c)).

Unlike in the continuous case, however, the first derivative is un-
defined for a discrete function f(u) (such as the line profile of a real
image), and some method is needed to estimate it. Figure 7.3 gives the
basic idea, again for the one-dimensional case: the first derivative of a
continuous function at position x can be interpreted as the slope of its
tangent at this position. One simple way for roughly approximating the
slope of the tangent for a discrete function f(u) at position u is to fit a
straight line through the neighboring function values f(u−1) and f(u+1),

Fig. 7.2
Sample image and first derivative
in one dimension: original image

(a), horizontal intensity profile
f(x) along the center image line

(b), and first derivative f ′(x) (c).

(a)

0

0 x

x

f(x)

f ′(x)

(b)

(c)
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7.2 Gradient-Based Edge
Detection

uu−1 u+1

f(u)

uu−1 u+1

f(u)

Fig. 7.3
Estimating the first derivative of
a discrete function. The slope of
the straight (dashed) line between
the neighboring function values
f(u−1) and f(u+1) is taken as
the estimate for the slope of the
tangent (i. e., the first derivative)
at f(u).df

du
(u) ≈ f(u+1)− f(u−1)

2
= 0.5 · (f(u+1)− f(u−1)

)
. (7.2)

The same estimation can be applied of course in the vertical direction;
i. e., along the image columns.

7.2.1 Partial Derivatives and the Gradient

A derivative of a multidimensional function taken along one of its coor-
dinate axes is called a partial derivative; for example,

∂I

∂u
(u, v) and

∂I

∂v
(u, v) (7.3)

are the partial derivatives of the image function I(u, v) along the u and
v axes, respectively.1 The function

∇I(u, v) =

[
∂I
∂u (u, v)
∂I
∂v (u, v)

]
(7.4)

is called the gradient vector (or “gradient” for short) of the function I at
position (u, v). The magnitude of the gradient,

|∇I|(u, v) =

√(∂I

∂u
(u, v)

)2

+
(∂I

∂v
(u, v)

)2

, (7.5)

is invariant under image rotation and thus independent of the orien-
tation of the underlying image structures. This property is important
for isotropic localization of edges, and thus |∇I| is the basis of many
practical edge detection methods.

7.2.2 Derivative Filters

The components of the gradient function (Eqn. (7.4)) are simply the
first derivatives of the image lines (Eqn. (7.1)) and columns along the
horizontal and vertical axes, respectively. The approximation of the first
1 ∂ denotes the partial derivative or “del” operator. 119



7 Edges and Contours horizontal derivatives (Eqn. (7.2)) can be easily implemented by a linear
filter (see Sec. 6.2) with the coefficient matrix

HD
x =

[−0.5 0 0.5
]

= 0.5 · [−1 0 1
]
, (7.6)

where the coefficients −0.5 and +0.5 correspond to the image elements
I(u − 1, v) and I(u + 1, v), respectively. Notice that the center pixel
I(u, v) itself is weighted with the zero coefficient and is thus ignored.
Similarly, the vertical component of the gradient can be computed with
the linear filter

HD
y =

⎡
⎣−0.5

0
0.5

⎤
⎦ = 0.5 ·

⎡
⎣−1

0
1

⎤
⎦ . (7.7)

Figure 7.4 shows the results of applying the gradient filters in Eqn.
(7.6) and Eqn. (7.7) to a synthetic test image. The orientation depen-
dence of the filter responses can be seen clearly. The horizontal gradient
filter HD

x reacts most strongly to rapid changes along the horizontal di-
rection, (i. e., to vertical edges); analogously the vertical gradient filter
HD

y reacts most strongly to horizontal edges. The filter response is zero
in flat image regions (shown gray in Fig. 7.4 (b, c)).

7.3 Edge Operators

Approximating the local gradient of the image function is the basis of
many classical edge-detection operators. Practically, they only differ in
the type of filter used for estimating the gradient components and the
way these components are combined. In many situations, one is not only
interested in the strength of edge points but also in the local direction of
the edge. Both types of information are contained in the gradient func-
tion and can be easily computed from the directional components. The
following small collection describes some frequently used, simple edge
operators that have been around for many years and are thus interesting
from a historical perspective as well.

7.3.1 Prewitt and Sobel Operators

The edge operators by Prewitt and Sobel [26] are two classic methods
that differ only marginally in the filters they use.

Gradient filters

The Prewitt and Sobel operators use linear filters that extend over three
adjacent lines and columns, respectively, to counteract the noise sensi-
tivity of the simple (single line/column) gradient operators (Eqns. (7.6)
and (7.7)). The Prewitt operator uses the filters120



7.3 Edge Operators

(a) (b)

(c) (d)

Fig. 7.4
Partial derivatives of a two-
dimensional function: synthetic
image function I (a); approximate
first derivatives in the horizontal
direction ∂I/∂u (b) and the verti-
cal direction ∂I/∂v (c); magnitude
of the resulting gradient |∇I | (d).
In (b) and (c), the lowest (nega-
tive) values are shown black, the
maximum (positive) values are
white, and zero values are gray.

HP
x =

⎡
⎣ −1 0 1
−1 0 1
−1 0 1

⎤
⎦ and HP

y =

⎡
⎣−1 −1 −1

0 0 0
1 1 1

⎤
⎦ , (7.8)

which compute the average gradient components across three neighbor-
ing lines or columns, respectively. When the filters are written in sepa-
rated form,

HP
x =

⎡
⎣ 1

1
1

⎤
⎦ ∗ [ −1 0 1

]
and HP

y =
[

1 1 1
] ∗

⎡
⎣−1

0
1

⎤
⎦ , (7.9)

it becomes obvious that HP
x performs a simple (box) smoothing over

three lines before computing the x gradient (Eqn. (7.6)), and analogously
HP

y smooths over three columns before computing the y gradient (Eqn.
(7.7)).2 Because of the commutativity of linear convolution, this could
equally be described the other way around, with smoothing to be applied
after the computation of the gradients.

2 In Eqn. (7.9), ∗ is the linear convolution operator (see Sec. 6.3.1). 121



7 Edges and Contours The filters for the Sobel operator are almost identical; however, the
smoothing part assigns higher weight to the current center line and col-
umn, respectively:

HS
x =

⎡
⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ and HS

y =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ . (7.10)

The estimates for the local gradient components are obtained from the
filter results by appropriate scaling:

∇I(u, v) ≈ 1
6
·
[(

I ∗ HP
x

)
(u, v)(

I ∗ HP
y

)
(u, v)

]
(7.11)

for the Prewitt operator and

∇I(u, v) ≈ 1
8
·
[ (

I ∗ HS
x

)
(u, v)(

I ∗ HS
y

)
(u, v)

]
(7.12)

for the Sobel operator.

Edge strength and orientation

In the following, we denote the scaled filter results (obtained with either
the Prewitt or Sobel operator) as

Dx(u, v) = Hx ∗ I and Dy(u, v) = Hy ∗ I.

In both cases, the local edge strength E(u, v) is defined as the gradient
magnitude

E(u, v) =
√(

Dx(u, v)
)2 +

(
Dy(u, v)

)2
, (7.13)

and the local edge orientation angle Φ(u, v) is3

Φ(u, v) = tan−1
(Dy(u, v)

Dx(u, v)

)
= ArcTan

(
Dx(u, v), Dy(u, v)

)
. (7.14)

The whole process of extracting the edge magnitude and orientation
is summarized in Fig. 7.5. First, the original image I is independently
convolved with the two gradient filters Hx and Hy, and subsequently the
edge strength E and orientation Φ are computed from the filter results.

The estimate of the edge orientation based on the original Prewitt
and Sobel filters is relatively inaccurate, and improved versions of the
Sobel filters were proposed in [59, p. 353] to minimize the orientation
errors:
3 See the hints in Appendix B.1.6 for computing the inverse tangent

tan−1(y/x) with the ArcTan(x, y) function.122



7.3 Edge Operators

I(u, v)

Hx

Hy

Dx(u, v)

Dy(u, v)

E(u, v)

Φ(u, v)

√
D2

x + D2
y

tan−1 Dy

Dx

Fig. 7.5
Typical process of gradient-based
edge extraction. The two linear
gradient filters Hx and Hy pro-
duce two gradient images, Dx and
Dy, respectively. They are used
to compute the edge strength E
and orientation Φ for each image
position (u, v).

HS′
x =

1
32

⎡
⎣ −3 0 3
−10 0 10
−3 0 3

⎤
⎦ and HS′

y =
1
32

⎡
⎣−3 −10 −3

0 0 0
3 10 3

⎤
⎦ . (7.15)

These edge operators are frequently used because of their good results
(see also Fig. 7.10) and simple implementation. The Sobel operator,
in particular, is available in many image-processing tools and software
packages (including ImageJ).

7.3.2 Roberts Operator

As one of the simplest and oldest edge finders, the Roberts operator [83]
today is mainly of historical interest. It employs two extremely small
filters of size 2 × 2 for estimating the directional gradient along the
image diagonals:

HR
1 =

[
0 1

−1 0

]
and HR

2 =
[ −1 0

0 1

]
. (7.16)

These filters naturally respond to diagonal edges but are not highly selec-
tive to orientation; i. e., both filters show strong results over a relatively
wide range of angles (Fig. 7.6). The local edge strength is computed by
measuring the length of the resulting 2D vector, similar to the gradient
computation but with its components rotated 45◦ (Fig. 7.7).

7.3.3 Compass Operators

The design of linear edge filters involves a trade-off: the stronger a filter
responds to edge-like structures, the more sensitive it is to orientation.
In other words, filters that are orientation-insensitive tend to respond
to nonedge structures, while the most discriminating edge filters only
respond to edges in a narrow range of orientations. One solution is to
use not only a single pair of relatively “wide” filters for two directions
(such as the Prewitt and Sobel operators) but a larger set of filters
with narrowly spaced orientations instead. A classic example is the edge 123



7 Edges and Contours

Fig. 7.6
Diagonal gradient com-

ponents produced by
the two Roberts filters.

D1 = I ∗ HR
1 D2 = I ∗ HR

2

Fig. 7.7
Definition of edge strength for

the Roberts operator. The edge
strength E(u, v) corresponds

to the length of the vector ob-
tained by adding the two orthog-
onal gradient components (filter

results) D1(u, v) and D2(u, v).

D1

D2

x

y

E =
√

D2
1 + D2

2

operator by Kirsch [63], which employs the following eight filters with
orientations spaced at 45◦:

HK
0 =

⎡
⎣−1 0 1
−2 0 2
−1 0 1

⎤
⎦ HK

4 =

⎡
⎣ 1 0 −1

2 0 −2
1 0 −1

⎤
⎦ , (7.17)

HK
1 =

⎡
⎣−2 −1 0
−1 0 1

0 1 2

⎤
⎦ HK

5 =

⎡
⎣ 2 1 0

1 0 −1
0 −1 −2

⎤
⎦ , (7.18)

HK
2 =

⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ HK

6 =

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ , (7.19)

HK
3 =

⎡
⎣ 0 −1 −2

1 0 −1
2 1 0

⎤
⎦ HK

7 =

⎡
⎣ 0 1 2
−1 0 1
−2 −1 0

⎤
⎦ . (7.20)

Only the results of four of the eight filters H0, H1, . . .H7 above must
actually be computed since the four others are identical except for the
reversed sign. For example, from the fact that HK

4 = −HK
0 and the

convolution being linear (Eqn. (6.18)), it follows that

I ∗ HK
4 = I ∗ −HK

0 = −(I ∗ HK
0 ); (7.21)124



7.4 Other Edge Operatorsi. e., the result for filter HK
4 is simply the negative result for filter HK

0 .
The directional outputs D0, D1, . . . D7 for the eight Kirsch filters can
thus be computed as follows:

D0 ← I ∗ HK
0 D1 ← I ∗ HK

1 D2 ← I ∗ HK
2 D3 ← I ∗ HK

3

D4 ← −D0 D5 ← −D1 D6 ← −D2 D7 ← −D3.
(7.22)

The edge strength EK at position (u, v) is defined as the maximum of
the eight filter outputs; i. e.,

EK(u, v) � max
(
D0(u, v), D1(u, v), . . . D7(u, v)

)
(7.23)

= max
(|D0(u, v)|, |D1(u, v)|, |D2(u, v)|, |D3(u, v)|)

and the strongest-responding filter also determines the local edge orien-
tation as

ΦK(u, v) � π

4
with j = argmax

0≤i≤7
Di(u, v). (7.24)

In practice, however, this and other “compass operators” show only
minor benefits over the simpler operators described earlier, including the
small advantage of not requiring the computation of square roots (which
is considered a relatively “expensive” operation).

7.3.4 Edge Operators in ImageJ

The current version of ImageJ implements the Sobel operator (as de-
scribed in Eqn. (7.10)) for practically any type of image. It can be
invoked via the

Process→Find Edges

menu and is also available through the method void findEdges() for
objects of type ImageProcessor.

7.4 Other Edge Operators

One problem with edge operators based on first derivatives (as described
in the previous section) is that each resulting edge is as wide as the
underlying intensity transition and thus edges may be difficult to localize
precisely. An alternative class of edge operators makes use of the second
derivatives of the image function, including some popular modern edge
operators that also address the problem of edges appearing at various
levels of scale. These issues are briefly discussed in the following. 125



7 Edges and Contours 7.4.1 Edge Detection Based on Second Derivatives

The second derivative of a function measures its local curvature. The
idea is that edges can be found at zero positions or—even better—at
the zero crossings of the second derivatives of the image function, as
illustrated in Fig. 7.8 for the one-dimensional case. Since second deriva-
tives generally tend to amplify image noise, some sort of presmoothing
is usually applied with suitable low-pass filters.

Fig. 7.8
Principle of edge detection with

the second derivative: origi-
nal function (a), first deriva-
tive (b), and second deriva-
tive (c). Edge points are lo-

cated where the second derivative
crosses through zero and the first
derivative has a high magnitude.

0

0

0

x

x

x

f(x)

f ′(x)

f ′′(x)

zero crossing

(a)

(b)

(c)

A popular example is the “Laplacian-of-Gaussian” (LoG) operator
[69], which combines gaussian smoothing and computing the second
derivatives (see the Laplace Filter in Sec. 7.6.1) into a single linear fil-
ter. The example in Fig. 7.10 shows that the edges produced by the
LoG operator are more precisely localized than the ones delivered by the
Prewitt and Sobel operators, and the amount of “clutter” is comparably
small. Details about the LoG operator and a comprehensive survey of
common edge operators can be found in [85, Ch. 4] and [73].

7.4.2 Edges at Different Scales

Unfortunately, the results of the simple edge operators we have discussed
so far often deviate from what we as humans perceive as important edges.
The two main reasons for this are:

• First, edge operators only respond to local intensity differences, while
our visual system is able to extend edges across areas of minimal or
vanishing contrast.126



7.5 From Edges to Contours• Second, edges exist not at a single fixed resolution or at a certain
scale but over a whole range of different scales.

Typical small edge operators, such as the Sobel operator, can only re-
spond to intensity differences that occur within their 3 × 3 pixel filter
regions. To recognize edge-like events over a greater horizon, we would
either need larger edge operators (with correspondingly large filters) or
use the original (small) operators on reduced (i. e., scaled) images. This
is the principal idea of “multiresolution” techniques (also referred to as
“hierarchical” or “pyramid” techniques), which have traditionally been
used in many image-processing applications [18, 65]. In the context of
edge detection, this typically amounts to detecting edges at various scale
levels first and then deciding which edge (if any) at which scale level is
dominant at each image position.

7.4.3 Canny Operator

A popular example for such a method is the edge operator by Canny
[19], which employs a set of relatively large, oriented filters at multiple
image resolutions and merges the individual results into a common edge
map. The method tries to reach three main goals: (a) to minimize the
number of false edge points, (b) achieve good localization of edges, and
(c) deliver only a single mark on each edge. At its core, the Canny “filter”
is a gradient method (based on first derivatives; see Sec. 7.2), but it
uses the zero crossings of second derivatives for precise edge localization.
Frequently, however, only a single-scale implementation of the algorithm
with an adjustable filter radius (smoothing parameter σ) is used, which
is nevertheless superior to most of the simple edge operators (see Figs.
7.9 and 7.10). Thus, even in its basic (single-scale) form, the Canny
operator is often preferred over other edge detection methods. A more
detailed description of the algorithm and a Java implementation can be
found, for example, in [29, Ch. 7].

7.5 From Edges to Contours

Whatever method is used for edge detection, the result is usually a con-
tinuous value for the edge strength for each image position and possibly
also the angle of local edge orientation. How can this information be
used, for example, to find larger image structures and contours of ob-
jects in particular?

7.5.1 Contour Following

The idea of tracing contours sequentially along the discovered edge points
is not uncommon and appears quite simple in principle. Starting from
an image point with high edge strength, the edge is followed iteratively 127



7 Edges and Contours

Fig. 7.9
Canny edge operator. Re-

sulting edge maps for differ-
ent settings of the smooth-

ing (scale) parameter σ.

Original σ = 1.0

σ = 2.0 σ = 4.0

σ = 8.0 σ = 16.0

in both directions until the two traces meet and a closed contour is
formed. Unfortunately, there are several obstacles that make this task
more difficult than it seems at first, including the following:

• Edges may end in regions of vanishing intensity gradient.
• Crossing edges lead to ambiguities.
• Contours may branch into several directions.

Because of these problems, contour following usually is not applied to
original images or continuous-valued edge images except in very sim-
ple situations, such as when there is a clear separation between objects
(foreground) and the background. Tracing contours in binary images is
much simpler, of course (see Ch. 11).
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7.5 From Edges to Contours

Original Roberts

Prewitt Sobel

Laplacian of Gaussian Canny (σ = 1.0)

Fig. 7.10
Comparison of various edge oper-
ators. Important criteria for the
quality of edge results are the
amount of “clutter” (irrelevant
edge elements) and the connect-
edness of dominant edges. The
Roberts operator responds to very
small edge structures because of
the small size of its filters. The
similarity of the Prewitt and Sobel
operators is manifested in the cor-
responding results. The edge map
produced by the Canny operator
is substantially cleaner than those
of the simpler operators, even for
a fixed and relatively small scale
value σ.

7.5.2 Edge Maps

In many situations, the next step after edge enhancement (by some edge
operator) is the selection of edge points, a binary decision whether an
image pixel is an edge point or not. The simplest method is to apply a
threshold operation to the edge strength delivered by the edge operator
using either a fixed or adaptive threshold value, which results in a binary
edge image or “edge map”.

In practice, edge maps hardly ever contain perfect contours but in-
stead many small, unconnected contour fragments, interrupted at posi-
tions of insufficient edge strength. After thresholding, the empty posi-
tions of course contain no edge information at all that could possibly be
used in a subsequent step, such as for linking adjacent edge segments. 129



7 Edges and Contours Despite this weakness, global thresholding is often used at this point be-
cause of its simplicity, and some common postprocessing methods, such
as the Hough transform (see Ch. 9), can cope well with incomplete edge
maps.

7.6 Edge Sharpening

Making images look sharper is a frequent task, such as to make up for a
lack of sharpness after scanning or scaling an image or to precompensate
for a subsequent loss of sharpness in the course of printing or displaying
an image. The common approach to image sharpening is to amplify the
high-frequency image components, which are mainly responsible for the
perceived sharpness of an image and for which the strongest occur at
rapid intensity transitions. In the following, we describe two methods
for artificial image sharpening that are based on techniques similar to
edge detection and thus fit well in this chapter.

7.6.1 Edge Sharpening with the Laplace Filter

A common method for localizing rapid intensity changes are filters based
on the second derivatives of the image function. Figure 7.11 illustrates
this idea on a one-dimensional, continuous function f(x). The second
derivative f ′′(x) of the step function shows a positive pulse at the lower
end of the transition and a negative pulse at the upper end. The edge
is sharpened by subtracting a certain fraction w of the second derivative
f ′′(x) from the original function f(x),

f̌(x) = f(x) − w · f ′′(x). (7.25)

Depending upon the weight factor w ≥ 0, the expression in Eqn. (7.25)
causes the intensity function to overshoot at both sides of an edge, thus
exaggerating edges and increasing the perceived sharpness.

Laplace operator

Sharpening of a two-dimensional function can be accomplished with the
second derivatives in the horizontal and vertical directions combined
by the so-called Laplace operator. The Laplace operator ∇2 of a two-
dimensional function f(x, y) is defined as the sum of the second partial
derivatives along the x and y directions:

(∇2f
)
(x, y) =

∂2f

∂2x
(x, y) +

∂2f

∂2y
(x, y). (7.26)

Similar to the first derivatives (see Sec. 7.2.2), the second derivatives of a
discrete image function can also be estimated with a set of simple linear130



7.6 Edge Sharpening

0
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0

0

x

x

x

x

f(x)

f ′(x)

f ′′(x)

f̌(x)

Fig. 7.11
Edge sharpening with the sec-
ond derivative. The original inten-
sity function f(x), first derivative
f ′(x), second derivative f ′′(x),
and sharpened intensity function
f̌(x) = f(x)−w · f ′′(x) are shown.

filters. Again, several versions, have been proposed. For example, the
two one-dimensional filters

∂2f

∂2x
≡ HL

x =
[
1 −2 1

]
and

∂2f

∂2y
≡ HL

y =

⎡
⎣ 1
−2

1

⎤
⎦ (7.27)

for estimating the second derivatives along the x and y directions, re-
spectively, combine to make the two-dimensional Laplace filter

HL = HL
x + HL

y =

⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ . (7.28)

Figure 7.12 shows an example of applying the Laplace filter HL to a
grayscale image, where the pairs of positive-negative peaks at both sides
of each edge are clearly visible. The filter appears almost isotropic de-
spite the coarse approximation with the small filter kernels.

Notice that HL in Eqn. (7.28) is not a separable filter in the usual
sense (as described in Sec. 6.3.3) but, because of the linearity property
of convolution (Eqns. (6.17) and (6.19)), it can be expressed (and com-
puted) as the sum of two one-dimensional filters,

I ∗ HL = I ∗ (HL
x + HL

y ) = (I ∗ HL
x ) + (I ∗ HL

y ).

Analogous to the gradient filters (for estimating the first derivatives),
the sum of the coefficients is zero in any Laplace filter, such that its
response is zero in areas of constant (flat) intensity (Fig. 7.12). Other
common variants of 3 × 3 pixel Laplace filters are 131



7 Edges and Contours

Fig. 7.12
Results of Laplace filter HL: syn-

thetic test image I (a), second
partial derivative ∂2I/∂2u in

the horizontal direction (b), sec-
ond partial derivative ∂2I/∂2v

in the vertical direction (c), and
Laplace filter ∇2I(u, v) (d). In-

tensities in (b–d) are scaled
such that maximally negative
and positive values are shown

as black and white, respec-
tively, and zero values are gray.

(a) (b)

(c) (d)

HL
8 =

⎡
⎣ 1 1 1

1 −8 1
1 1 1

⎤
⎦ and HL

12 =

⎡
⎣ 1 2 1

2 −12 2
1 2 1

⎤
⎦ . (7.29)

Sharpening

To perform the actual sharpening, as described by Eqn. (7.25) for the
one-dimensional case, we first apply a Laplace filter to the image I and
then subtract a fraction of the result from the original image,

Ǐ ← I − w · (HL ∗ I). (7.30)

The factor w specifies the proportion of the Laplace component and thus
the sharpening strength. The proper choice of w also depends on the
specific Laplace filter used in Eqn. (7.30) since none of the filters above
is normalized.

Figure 7.12 shows the result of applying a Laplace filter (with the
kernel given in Eqn. (7.28)) to a synthetic test image where the pairs
of positive/negative peaks at both sides of each edge are clearly visible.132



7.6 Edge Sharpening

Fig. 7.13
Edge sharpening with the Laplace
filter: original image with a
horizontal profile taken from
the marked line (a, b), result
of Laplace filter HL (c, d), and
sharpened image (e, f).

The filter appears almost isotropic despite the coarse approximation with
the small filter kernels. The application to a real grayscale image using
the filter HL (Eqn. (7.28)) and w = 1.0 is shown in Fig. 7.13.

As we can expect from second-order derivatives, the Laplace filter is
fairly sensitive to image noise, which can be reduced (as is commonly
done in edge detection with first derivatives) by previous smoothing such
as with a Gaussian filter (see also Sec. 7.4.1).

7.6.2 Unsharp Masking

“Unsharp masking” (USM) is a technique for edge sharpening that is
particularly popular in astronomy, digital printing, and many other areas
of image processing. The term originates from classical photography,
where the sharpness of an image was optically enhanced by combining it
with a smoothed (“unsharp”) copy. This process is in principle the same
for digital images. 133



7 Edges and Contours Process

The first step in the USM filter is to subtract a smoothed version of
the image from the original, which enhances the edges. The result is
called the “mask”. In analog photography, the required smoothing was
achieved by simply defocusing the lens. Subsequently, the mask is again
added to the original, such that the edges in the image are sharpened.
In summary, the steps involved in USM filtering are:

1. The mask M is generated by subtracting a smoothed version of the
image I from the original,

M ← I − (I ∗ H̃) = I − Ĩ , (7.31)

where the kernel H̃ of the smoothing filter is assumed to be normal-
ized (see Sec. 6.2.5).

2. To obtain the sharpened image Ǐ, the maskM is added to the original
image I, weighted by the factor a, which controls the amount of
sharpening,

Ǐ ← I + a · M, (7.32)

and thus (substituting from Eqn. (7.31))

Ǐ ← I + a · (I − Ĩ) = (1 + a) · I − a · Ĩ . (7.33)

Smoothing filter

In principle, any smoothing filter could be used for the kernel H̃ in
Eqn. (7.31), but Gaussian filters HG,σ with variable radius σ are most
common (see also Sec. 6.2.7). Typical parameter values are 1 to 20 for σ
and 0.2 to 4.0 (equivalent to 20% to 400%) for the sharpening factor a.
Figure 7.14 shows two examples of USM filters using Gaussian smoothing
filters with different radii σ.

Extensions

The advantages of the USM filter over the Laplace filter are a reduced
noise sensitivity due to the involved smoothing and improved control-
lability through the parameters σ (spatial extent) and a (sharpening
strength).

Of course the USM filter responds not only to real edges but to some
extent to any intensity transition and thus potentially increases any vis-
ible noise in continuous image regions. Some implementations (e. g.,
Adobe Photoshop) therefore provide an additional threshold parameter
tc to specify the minimum local contrast required to perform edge sharp-
ening. Sharpening is only applied if the local contrast at position (u, v),134



7.6 Edge Sharpening

Fig. 7.14. USM filter: original image (a), detail (b), and intensity profile of marked image line (c); results of USM
filtering with Gaussian smoothing radius σ = 2.5 (d–f) and 10.0 (g–i). The value of the sharpening factor a is 1.0
(100%).

expressed for example by the gradient magnitude |∇I| (Eqn. (7.5)), is
greater than that threshold. Otherwise, that pixel remains unmodified:

Ǐ(u, v) ←
{

I(u, v) + a · M(u, v) for |∇I|(u, v) ≥ tc

I(u, v) otherwise.
(7.34)
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7 Edges and Contours Different from the original USM filter (Eqn. (7.32)), this extended version
is no longer a linear filter. On color images, the USM filter is usually
applied to all color channels with identical parameter settings.

Implementation

The USM filter is available in virtually any image-processing software
and, due to its simplicity and flexibility, has become an indispensable tool
for many professional users. In ImageJ, the USM filter is implemented by
the plugin class ij.plugin.filter.UnsharpMask, which can be invoked
through the menu

Process→Filter→Unsharp Mask...

ImageJ’s UnsharpMask implementation uses the class GaussianBlur for
the required smoothing operation, whose filter kernels tend to be too
small (as argued in Sec. 6.6.2). The alternative implementation shown
in Prog. 7.1 follows the definition in Eqn. (7.33) and uses sufficiently large
filter kernels that are created with the method makeGaussKernel1d(),
as defined in Prog. 6.4.

Laplace versus USM filter

A closer look at these two methods reveals that sharpening with the
Laplace filter (Sec. 7.6.1) can be viewed as a special case of the USM
filter. If the Laplace filter in Eqn. (7.28) is decomposed as

HL =

⎡
⎣0 1 0

1−4 1
0 1 0

⎤
⎦ =

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦− 5

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦

= 5

(
1
5

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦−

⎡
⎣ 0 0 0

0 1 0
0 0 0

⎤
⎦) = 5

(
H̃ − δ

)
, (7.35)

one can see that HL consists of a simple 3 × 3 pixel smoothing filter H̃
minus the impulse function δ. Laplace sharpening with the weight factor
w as defined in Eqn. (7.30) can therefore (by a little manipulation) be
expressed as

ǏL ← I − w · (HL ∗ I) = I − w · (5(H̃L − δ) ∗ I
)

= I − 5w · (H̃L ∗ I − I) = I + 5w · (I − H̃L ∗ I)

= I + 5w ·ML; (7.36)

i. e., in the form of a USM filter Ǐ ← I + a ·M (Eqn. (7.32)). Laplacian
sharpening is thus a special case of a USM filter with the mask M =
ML = (I − H̃L ∗ I), the specific smoothing filter136



7.7 Exercises1 public void unsharpMask(ImageProcessor ip,
2 double sigma, double a) {
3 ImageProcessor I = ip.convertToFloat(); // I
4
5 // create a blurred version of the image
6 ImageProcessor J = I.duplicate(); // Ĩ
7 float[] H = GaussKernel1d.create(sigma); // see Prog. 6.4
8 Convolver cv = new Convolver();
9 cv.setNormalize(true);

10 cv.convolve(J, H, 1, H.length);
11 cv.convolve(J, H, H.length, 1);
12
13 I.multiply(1+a); // I ← (1 + a) · I
14 J.multiply(a); // Ĩ ← a · Ĩ
15 I.copyBits(J,0,0,Blitter.SUBTRACT); // Ĩ ← (1 + a) · I − a · Ĩ
16
17 //copy result back into original byte image
18 ip.insert(I.convertToByte(false), 0, 0);
19 }

Program 7.1
Unsharp masking (Java implemen-
tation). First the original image
is converted to a FloatProcessor
object I (I) in line 3, which is
duplicated to hold the blurred im-
age J (Ĩ) in line 6. The method
makeGaussKernel1d(), defined in
Prog. 6.4, is used to create the 1D
Gaussian filter kernel applied in
the horizontal and vertical direc-
tions (lines 10–11). The remaining
computations follow Eqn. (7.33).

H̃ = H̃L =
1
5

⎡
⎣ 0 1 0

1 1 1
0 1 0

⎤
⎦ ,

and the sharpening factor a = 5w.

7.7 Exercises

Exercise 7.1. Compute manually the gradient and the Laplacian for
the following image function by using the approximations in Eqn. (7.2)
and Eqn. (7.28), respectively:

I(u, v) =

⎡
⎢⎢⎢⎢⎢⎢⎣

14 10 19 16 14 12
18 9 11 12 10 19
9 14 15 26 13 6

21 27 17 17 19 16
11 18 18 19 16 14
16 10 13 7 22 21

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Exercise 7.2. Implement the Sobel edge operator as defined in Eqn.
(7.10) (and illustrated in Fig. 7.5) as an ImageJ plugin. The plugin
should generate two new images for the edge magnitude E(u, v) and the
edge orientation Φ(u, v). Come up with a suitable way to display the
edge orientation.

Exercise 7.3. Express the Sobel operator in x/y-separable form analo-
gous to Eqn. (7.9) (Prewitt operator).
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7 Edges and Contours Exercise 7.4. Implement the Kirsch operator analogous to Exercise 7.2
and in particular compare the estimates for the edge orientation pro-
duced by the two methods.

Exercise 7.5. Devise and implement a compass edge operator with
more than 8 (16?) differently oriented filters.

Exercise 7.6. Compare the results of the unsharp masking filters in Im-
ageJ and Adobe Photoshop using a suitable test image. How should the
parameters for σ (radius) and a (weight) be defined in both implemen-
tations to obtain similar results?
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8

Corner Detection

Corners are prominent structural elements in an image and are there-
fore useful in a wide variety of applications, including following objects
across related images (tracking), determining the correspondence be-
tween stereo images, serving as reference points for precise geometrical
measurements, and calibrating camera systems for machine vision appli-
cations. Corner points are important not only in human vision, where
they alert us to boundaries, but also in machine vision, where they be-
long to the small set of features referred to as “robust”. Robust features
are those that, for the most part, do not arise accidentally in 3D scenes
and furthermore can be relatively consistently and accurately located
under a wide range of viewing angles and lighting conditions.

8.1 Points of Interest

Despite being easily recognized by our visual system, accurately and
precisely detecting corners automatically is nontrivial. A good corner
detector must satisfy a number of criteria, including distinguishing be-
tween true and accidental corners, reliably detecting corners in the pres-
ence of realistic image noise, and precisely and accurately determining
the locations of corners, and finally it should be possible to implement
the detector efficiently enough so that it can be utilized in real-time
applications such as video tracking.

While a number of methods for finding corners, and related interest
points, have been proposed, most of them take advantage of the following
basic principle. While an edge is usually defined as a location in the
image at which the gradient is especially high in one direction and low
in the direction normal to it, a corner point is defined as an area that
exhibits a strong gradient value in multiple directions at the same time. 139



8 Corner Detection Most methods take advantage of this observation by examining the
first or second derivative of the image in the x and y directions (e. g., [33,
42,64,67]) to find corners. In the next section, we describe in detail the
Harris detector, also known as the “Plessey feature point detector” [42],
since it turns out that even though more efficient detectors are known
(see, for example, [87,94]), the Harris detector, and other detectors based
on it, are the most widely used in practice.

8.2 Harris Corner Detector

This operator, developed by Harris and Stephens [42], is one of a group of
related methods based on the same premise: a corner point exists where
the gradient of the image is especially strong in more than one direction
at the same time. In addition, most of these detectors take advantage
of the heuristics that locations along edges, where the gradient is strong
in only one direction, should not be considered as corners, and since
corners can exist in any orientation, the detector should be isotropic
(i. e., orientation independent).

8.2.1 Local Structure Matrix

Computations based on the first partial derivative of the image function
I(u, v) in the horizontal and vertical directions are the foundation of the
Harris detector:

Ix(u, v) =
∂I

∂x
(u, v) and Iy(u, v) =

∂I

∂y
(u, v). (8.1)

For each location in the image (u, v), we first compute the three values
A(u, v), B(u, v), and C(u, v),

A(u, v) = I2
x(u, v), (8.2)

B(u, v) = I2
y (u, v), (8.3)

C(u, v) = Ix(u, v) · Iy(u, v), (8.4)

which will be interpreted as elements of the local structural matrix
M(u, v):1

M =

(
I2
x IxIy

IxIy I2
y

)
=

(
A C

C B

)
. (8.5)

Next, each of the three functions A(u, v), B(u, v), C(u, v) is individually
smoothed by convolution with a linear Gaussian filter HG,σ (see Sec.
6.2.7),
1 For improved legibility, the notation used in the following functions has

been simplified by omitting the coordinates (u, v); e. g., Ix ≡ Ix(u, v) or
A ≡ A(u, v).140



8.2 Harris Corner DetectorM̄ =

(
A∗HG,σ C∗HG,σ

C∗HG,σ B∗HG,σ

)
=

(
Ā C̄

C̄ B̄

)
. (8.6)

Since the matrix M̄ is symmetric, it can be diagonalized,

M̄ ′ =
(

λ1 0
0 λ2

)
, (8.7)

where λ1 and λ2 are the eigenvalues of the matrix M̄ , defined as2

λ1,2 =
trace(M̄)

2
±
√(trace(M̄)

2

)2

− det(M̄)

=
1
2

(
Ā + B̄ ±

√
Ā2 − 2ĀB̄ + B̄2 + 4C̄2

)
. (8.8)

These eigenvalues, which are positive and real, contain essential infor-
mation about the local image structure. Within an image region that is
uniform (that is, appears flat), M̄ = 0 and therefore λ1 = λ2 = 0. On the
other hand, given an ideal ramp, λ1 > 0 and λ2 = 0, independent of the
orientation of the edge. The eigenvalues thus encode an edge’s strength,
and their associated eigenvectors represent the edge’s orientation.

A corner should have a strong edge in the main direction (corre-
sponding to the larger of the two eigenvalues), another edge normal to
the first (corresponding to the smaller eigenvalues), and the eigenvalues
of both of these must be significant. Since Ā, B̄ ≥ 0, we can assume that
trace(M̄) > 0 and thus |λ1| ≥ |λ2|. Therefore only the smaller of the two
eigenvalues, λ2 = trace(M̄)/2 −√

. . . , is relevant when determining a
corner.

8.2.2 Corner Response Function (CRF)

As we can see from Eqn. (8.8), the difference between the two eigenvalues
is

λ1 − λ2 = 2 ·
√

1
4
· (trace(M̄)

)2 − det(M̄),

where in every case
(
0.25 · trace(M̄)2

)
> det(M̄) holds. At a corner,

this expression should be as small as possible, and therefore the Harris
detector defines the function

Q(u, v) = det(M̄) − α · (trace(M̄)
)2

= (ĀB̄ − C̄2) − α · (Ā + B̄)2 (8.9)

as a measure of “corner strength”, where the parameter α determines
the sensitivity of the detector. Q(u, v) is called the “corner response
function” and returns maximum values at isolated corners. In practice,
α is assigned a fixed value in the range of 0.04 to 0.06 (max. 0.25 = 1

4 ).
The larger the value of α, the less sensitive the detector is and the fewer
corners detected.
2 Where det(M̄) is the determinant and trace(M̄) the trace of the matrix M̄

(see, for example, [15, pp. 259, 252]). 141



8 Corner Detection 8.2.3 Determining Corner Points

An image location (u, v) is selected as a candidate for a corner point
when

Q(u, v) > tH ,

where the threshold tH is selected based on image content and typically
lies within the range of 10,000 to 1,000,000. Once selected, the corners
ci = 〈ui, vi, qi〉 are inserted into the set

Corners = [c1, c2, . . . cN ] ,

which is then sorted in descending order (i. e., qi ≥ qi+1) according to
corner strength qi = Q(ui, vi), as defined in Eqn. (8.9). To suppress
the false corners that tend to arise in densely packed groups around true
corners, all except the strongest corner in a specified area are eliminated.
To accomplish this, the list Corners is traversed from the front to the
back, and the weaker corners toward the end of the list, which lie in the
neighborhood of a stronger corner, are deleted.

The complete algorithm for the Harris detector is summarized again
in Alg. 8.1, and the associated parameters are explained in Fig. 8.1.

8.2.4 Example

Figure 8.2 uses a simple synthetic image to illustrate the most important
steps in corner detection using the Harris detector. The figure shows the
result of the gradient computation, the three components of the structure
matrix M(u, v) =

(
A C
C B

)
, and the values of the corner response function

Q(u, v) for each image position (u, v). This example utilizes the standard
settings as given in Fig. 8.1.

The second example (Fig. 8.3) illustrates the detection of corner
points in a grayscale representation of a natural scene. It demonstrates
how weak corners are eliminated in favor of the strongest corner in a
region.

8.3 Implementation

Since the Harris detector algorithm is more complex than the algo-
rithms we presented earlier, in the following sections, we explain its
implementation in greater detail. While reading the following sec-
tions you may wish to refer to the complete source code for the class
HarrisCornerDetector, which can be found in Appendix D (pp. 525–
532).142



8.3 Implementation1: HarrisCorners(I)
Returns a list of the strongest corners found in the image I .

2: Step 1—compute the corner response function:

3: Prefilter (smooth) the original image: I ′ ← I ∗ Hp

4: Compute the horizontal and vertical image derivatives:
Ix ← I ′ ∗ Hdx

Iy ← I ′ ∗ Hdy

5: Compute the local structure matrix M(u, v) =
(

A C
C B

)
:

A(u, v) ← I2
x(u, v)

B(u, v) ← I2
y(u, v)

C(u, v) ← Ix(u, v) · Iy(u, v)
6: Blur each component of the structure matrix: M̄ =

(
Ā C̄
C̄ B̄

)
:

Ā ← A ∗ Hb

B̄ ← B ∗ Hb

C̄ ← C ∗ Hb

7: Compute the corner response function:
Q ← (Ā · B̄ − C̄2) − α · (Ā + B̄)2

8: Step 2—collect corner points:

9: Create an empty list:
Corners ← [ ]

10: for all image coordinates (u, v) do
11: if Q(u, v) > tH and IsLocalMax(Q, u, v) then
12: Create a new corner:

ci ← 〈ui, vi, qi〉 = 〈u, v, Q(u, v)〉
13: Add ci to Corners
14: Sort Corners by qi in descending order (strongest corners first)
15: GoodCorners ← CleanUpNeighbors(Corners)

16: return GoodCorners .

17: IsLocalMax(Q,u, v) � determine if Q(u, v) is a local maximum
18: Let qc ← Q(u, v) (center pixel)
19: Let N ← Neighbors(Q, u, v) � values of all neighboring pixels
20: if qc ≥ qi for all qi ∈ N then
21: return true
22: else
23: return false.

24: CleanUpNeighbors(Corners) � Corners is sorted by descending q
25: Create an empty list:

GoodCorners ← [ ]
26: while Corners is not empty do
27: ci ← RemoveFirst(Corners)
28: Add ci to GoodCorners
29: for all cj in Corners do
30: if Dist(ci, cj) < dmin then
31: Delete cj from Corners
32: return GoodCorners .

Algorithm 8.1
Harris corner detector. This al-
gorithm takes an intensity image
I and creates a sorted list of de-
tected corner points. Details for
the parameters Hp, Hdx, Hdy, Hb,
α, tH , and dmin, can be found in
Fig. 8.1.
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8 Corner Detection

Fig. 8.1
Harris corner detector—actual

parameter values. The line
numbers refer to Alg. 8.1.

Prefilter (line 3): Smoothing with a small xy-separable filter
Hp = Hpx ∗ Hpy, where

Hpx =
1

9

[
2 5 2

]
and Hpy = HT

px =
1

9

⎡
⎣2
5
2

⎤
⎦ .

Gradient filter (line 4): Computing the first partial derivative in the x
and y directions with

Hdx =
[−0.453014 0 0.453014

]
and Hdy = HT

dx =

⎡
⎣−0.453014

0
0.453014

⎤
⎦ .

Blurfilter (line 6): Smoothing the individual components of the
structure matrix M with separable Gaussian filters Hb = Hbx ∗ Hby

with

Hbx =
1

64

[
1 6 15 20 15 6 1

]
, Hby = HT

bx =
1

64

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
6
15
20
15
6
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Steering parameter (line 7): α = 0.04 to 0.06 (default 0.05)
Response threshold (line 13): tH = 10,000 to 1,000,000 (default

25,000)
Neighborhood radius (line 31): dmin = 10 pixels

8.3.1 Step 1: Computing the Corner Response Function

In order to handle the range of the positive and negative values generated
in this step by the filter process, we will need to use floating-point images
to store the intermediate results. In order to correctly, and precisely,
represent these small values, it is necessary to store them as floating-
point values. The kernel of this filter, as well as the presmoothing Hp,
the gradients Hdx, Hdy, and the smoothing filter for the structure matrix
Hb are stored as one-dimensional float arrays:

1 float[] pfilt = {0.223755f,0.552490f,0.223755f}; // Hp

2 float[] dfilt = {0.453014f,0.0f,-0.453014f}; // Hdx, Hdy

3 float[] bfilt = {0.01563f,0.09375f,0.234375f,0.3125f,
4 0.234375f,0.09375f,0.01563f}; // Hb

From the original 8-bit image (of type ByteProcessor), we first cre-
ate two copies, Ix and Iy, of type FloatProcessor:

5 FloatProcessor Ix = (FloatProcessor) ip.convertToFloat();
6 FloatProcessor Iy = (FloatProcessor) ip.convertToFloat();
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8.3 Implementation

Fig. 8.2
Harris corner detector—
Example 1. Starting with the orig-
inal image I(u, v), the first deriva-
tive is computed, and then from
it the components of the struc-
ture matrix A = I2

x, B = I2
y ,

C = IxIy. A and B represent,
respectively, the strength of the
horizontal and vertical edges. In
C, the values are strongly posi-
tive (white) or strongly negative
(black) only where the edges are
strong in both directions (null val-
ues are shown in gray). The cor-
ner response function, Q, exhibits
noticeable positive spikes at the
corner positions. Final corners are
determined by thresholding and
then finding the local maxima of
the function Q.

The first processing step is a presmoothing with the filter Hp (Alg. 8.1,
line 3). Subsequently the gradient filters Hdx and Hdy are used to com-
pute the horizontal and vertical derivatives (Alg. 8.1, line 4). Since one-
dimensional filters of the same direction are applied in each step, pres- 145



8 Corner Detection

Fig. 8.3
Harris corner detector—

Example 2. A complete result
with the final corner points

marked (a). After selecting the
strongest corner points within
a 10-pixel radius, only 335 of

the original 615 candidate cor-
ners remain. Details before

(b, c) and after selection (d, e).
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8.3 Implementationmoothing and gradient computation can be combined in a single step:

7 Ix = convolve1h(convolve1h(Ix,pfilt),dfilt);
8 Iy = convolve1v(convolve1v(Iy,pfilt),dfilt);

The methods convolve1h(I , h) and convolve1v(I , h) above perform
one-dimensional filter operations h on the image I in the horizontal and
vertical directions, respectively (see “filter methods” below). Now the
components A, B, C of the structure matrix are computed and then
smoothed using the separable 2D filter Hb (bfilt):

9 A = sqr ((FloatProcessor) Ix.duplicate());
10 B = sqr ((FloatProcessor) Iy.duplicate());
11 C = mult((FloatProcessor) Ix.duplicate(),Iy);
12
13 A = convolve2(A,bfilt); // convolve with Hb

14 B = convolve2(B,bfilt);
15 C = convolve2(C,bfilt);

The variables A, B, C of type FloatProcessor are declared in the class
HarrisCornerDetector. The method convolve2(I , h) performs a sep-
arable 2D convolution of the image I using the 1D filter kernel h. mult()
and sqr() are auxiliary methods for multiplying two images and squar-
ing an image, respectively (see Appendix D, p. 531).

Finally, the corner response function (Alg. 8.1, line 7) is computed
using the method makeCrf(), and a new image of type FloatProcessor
is created:

16 void makeCrf() { // defined in class HarrisCornerDetector
17 int w = ipOrig.getWidth();
18 int h = ipOrig.getHeight();
19 Q = new FloatProcessor(w,h);
20 float[] Apix = (float[]) A.getPixels();
21 float[] Bpix = (float[]) B.getPixels();
22 float[] Cpix = (float[]) C.getPixels();
23 float[] Qpix = (float[]) Q.getPixels();
24 for (int v=0; v<h; v++) {
25 for (int u=0; u<w; u++) {
26 int i = v*w+u;
27 float a = Apix[i], b = Bpix[i], c = Cpix[i];
28 float det = a*b-c*c; // det(M̄)
29 float trace = a+b; // trace(M̄)
30 Qpix[i] = det - alpha * (trace * trace);
31 }
32 }
33 }

Filter methods

The filter methods above use the ImageJ class Convolver (defined
in package ij.plugin.filter) to perform the actual filter operation. 147



8 Corner Detection These static methods are defined in class HarrisCornerDetector (see
App. D, p. 527) as follows:

34 static FloatProcessor convolve1h(FloatProcessor I,float[] h) {
35 Convolver conv = new Convolver();
36 conv.setNormalize(false);
37 conv.convolve(I, h, 1, h.length);
38 return I; }
39
40 static FloatProcessor convolve1v(FloatProcessor I,float[] h) {
41 Convolver conv = new Convolver();
42 conv.setNormalize(false);
43 conv.convolve(I, h, h.length, 1);
44 return I; }
45
46 static FloatProcessor convolve2(FloatProcessor I,float[] h) {
47 convolve1h(I,h);
48 convolve1v(I,h);
49 return I; }

8.3.2 Step 2: Selecting “Good” Corner Points

The result of the first stage of Alg. 8.1 is the corner response function
Q(u, v), which in our implementation is stored as a floating-point image
(FloatProcessor). In the second stage, the dominant corner points are
selected from Q. For this we need (a) an object type to describe the
corners and (b) a flexible container, in which to store these objects. In
this case, the container should be a dynamic data structure since the
number of objects to be stored is not known beforehand.

Corner class

Next we define a new class for representing single corner points ci =
〈ui, vi, qi〉 and a constructor for creating new objects of the class Corner
that uses the position (ui, vi) and the corner strength qi:

50 public class Corner implements Comparable {
51 int u; // x position
52 int v; // y position
53 float q; // corner strength
54

55 Corner (int u, int v, float q) { //constructor method
56 this.u = u;
57 this.v = v;
58 this.q = q;
59 }
60 }
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8.3 ImplementationThe class Corner implements the Java Comparable Interface, so that
Corner objects can be compared with each other and thereby sorted
into an ordered sequence.

Choosing a container

In Alg. 8.1, we made use of the mathematical notation for lists and sets to
organize and manipulate the large collections of potential corner points
generated at various stages. While these generic concepts are well-suited
for describing the abstract algorithm, in order to implement it, we need
to replace them with real Java constructs.

One solution would be to utilize arrays, but since the size of arrays
must be declared before they are used, we would have to allocate memory
for extremely large arrays in order to store all the possible corner points
that might be identified. Since this would be a very inefficient use of
memory, we will instead make use of the Vector class, which is one of
the dynamic data structures conveniently included in Java’s Collections
Framework (package java.util; also see App. B.2.7).

A Vector is similar in use to an array but can automatically increase
its capacity as needed.3 Just as in an array, individual elements in a
Vector can be accessed through their index, but since the class Vector
implements the Java List interface, a suite of additional access methods
are available. Consequently, we also use the generic List type to de-
clare variables and return values wherever possible, such that the actual
implementation (as Vector in this case) is only specified once where list
objects are created.

The collectCorners() method

The method collectCorners()below selects the dominant corner points
from the corner response function Q(u, v). The parameter border speci-
fies the width of the image’s border, within which corner points should
be ignored.

First (in line 62), the variable cornerList (of the generic type List)
is assigned a new Vector object with an initial capacity of 1000 objects.

3 While a Vector will increase its capacity as needed, there is an underly-
ing expense to consider. When instantiated using the default constructor,
storage is allocated for n potential elements. Once n elements have been
stored, there is no more space remaining, so the object dynamically creates
more by first allocating space for roughly 2n elements and then copying
the original n elements into this new space. Since this allocate-and-copy
operation is expensive, if you have an expectation of the maximum number
of elements that will be stored in the Vector, you should specify it using
the convenience constructor Vector(n), as demonstrated in line 62. Alter-
natively, we could have made use of the class ArrayList, which differs only
slightly from the class Vector. 149



8 Corner Detection Then the image Q is traversed, and when a potential corner point is lo-
cated, a new Corner object is instantiated and stored in the cornerList
(line 72):

61 List<Corner> collectCorners(FloatProcessor Q, int border) {
62 List<Corner> cornerList = new Vector<Corner>(1000);
63 int w = Q.getWidth();
64 int h = Q.getHeight();
65 float[] Qpix = (float[]) Q.getPixels();
66 // traverse the Q-image and check for corners:
67 for (int v = border; v < h-border; v++){
68 for (int u = border; u < w-border; u++) {
69 float q = Qpix[v*w+u];
70 if (q > threshold && isLocalMax(crf,u,v)) {
71 Corner c = new Corner(u,v,q);
72 cornerList.add(c);
73 }
74 }
75 }
76 Collections.sort(cornerList);
77 return cornerList;
78 }

The Boolean method isLocalMax(Q , u, v) (defined in the class
HarrisCornerDetector) determines if the 2D function Q at the po-
sition (u, v ) is a local maximum (see the definition in App. D, p. 531).
Finally, at line 76, the corner points in cornerList are sorted according
to their strength by calling the method sort() (a static method defined
in class java.util.Collections).

In order to sort the points in this way, a class—in this case Corner—
must implement the Java Comparable interface and provide a suitable
compareTo() method. Since we want to sort the corner points in de-
scending order according to their q values, we define the compareTo()
method of the class Corner as follows:

79 public int compareTo (Object obj) { // in class Corner
80 Corner c2 = (Corner) obj;
81 if (this.q > c2.q) return -1;
82 if (this.q < c2.q) return 1;
83 else return 0;
84 }

Cleaning up

The final step is to remove the weakest corners in a limited area where
the size of this area is specified by the radius dmin (Alg. 8.1, lines 24–
32). This process is outlined in Fig. 8.4 and implemented in the method
cleanupCorners() below. The Vector corners, which was already
sorted according to q, is now converted into an ordinary array (line 89)
and then iterated through from beginning to end:150



8.3 Implementation
corners
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Fig. 8.4
Selecting the strongest corners
within a given spatial distance.
The original list of corners
(corners) is sorted by “corner
strength” in descending order;
i. e., c0 is the strongest corner.
First, corner c0 is added to a
new list goodCorners, while the
weaker corners c4 and c8 (which
are both within distance dmin from
c0) are removed from the original
corners list. The following cor-
ners c1, c2, . . . are treated similarly
until no more elements remain in
corners. None of the corners in
the resulting list goodCorners is
closer to another corner than dmin.

85 List<Corner> cleanupCorners(List<Corner> corners) {
86 // corners is assumed to be sorted by descending q
87 double dmin2 = dmin*dmin; // d2

min (dmin is an object variable)
88 Corner[] cornerArray = new Corner[corners.size()];
89 cornerArray = corners.toArray(cornerArray);
90
91 List<Corner> goodCorners =
92 new Vector<Corner>(corners.size());
93
94 for (int i = 0; i < cornerArray.length; i++){
95 if (cornerArray[i] != null) {
96 // select the next “good” corner c1

97 Corner c1 = cornerArray[i];
98 goodCorners.add(c1);
99 // remove all remaining corners too close to c1

100 for (int j = i+1; j < cornerArray.length; j++) {
101 if (cornerArray[j] != null) {
102 Corner c2 = cornerArray[j];
103 if (c1.dist2(c2) < dmin2) //compare squared distances
104 cornerArray[j] = null; //remove corner c2

105 }
106 }
107 }
108 }
109 return goodCorners;
110 }

At this point, weak corner points within the neighborhood of a
stronger corner point, where the neighborhood is defined by the dmin

radius, are deleted (line 104), and only those corner points that remain
(that is, the strongest ones) are copied into the new list goodCorners
(which is also implemented as a Vector).

The method call c1.dist2(c2) in line 103 computes the squared Eu-
clidean distance d2(c1, c2) = (u1−u2)2 + (v1−v2)2 between the corner
points c1 and c2. Since the square of the distance suffices for the compar-
ison, we do not need to compute the actual distance, and consequently
we avoid calling the expensive square root function. This is a common
trick when comparing distances. 151



8 Corner Detection 8.3.3 Displaying the Corner Points

In order to visualize the locations of the corner points finally selected,
we now place markers at the corresponding positions in the original
image. The method showCornerPoints() below (defined in the class
HarrisCornerDetector) first creates a copy of the original image ip
and increases, with the help of a lookup table, the overall brightness of
the intensity range 128 to 255, and at the same time reduces the contrast
by half (lines 114–118). Then the list corners is iterated through, and
each Corner object “draws itself” onto the display image ipResult by
calling its draw() method (line 121):

111 ImageProcessor showCornerPoints(ImageProcessor ip) {
112 ByteProcessor ipResult = (ByteProcessor) ip.duplicate();
113 // change background image contrast and brightness
114 int[] lookupTable = new int[256];
115 for (int i=0; i<256; i++){
116 lookupTable[i] = 128 + (i/2);
117 }
118 ipResult.applyTable(lookupTable);
119 // draw all corners:
120 for (Corner c: corners) {
121 c.draw(ipResult);
122 }
123 return ipResult;
124 }

The draw() method is defined in the class Corner and simply draws
a fixed-size cross at the position of the corner point (u, v):

125 void draw(ByteProcessor ip){ // defined in class Corner
126 //draw this corner as a black cross
127 int paintvalue = 0; // set draw value to black
128 int size = 2; // set size of cross marker
129 ip.setValue(paintvalue);
130 ip.drawLine(u-size,v,u+size,v);
131 ip.drawLine(u,v-size,u,v+size);
132 }

8.3.4 Summary

Most of the implementation steps we have just described are initiated
through calls from the method findCorners():

133 void findCorners(){ // defined in class Corner
134 makeDerivatives();
135 makeCrf(); // compute corner response function (CRF)
136 corners = collectCorners(border);
137 corners = cleanupCorners(corners);
138 }

152



8.4 ExercisesSince we have broken up the processing steps up into small mean-
ingful methods, the actual run() method of the plugin Find_Corners is
reduced to just a few lines. This method simply creates a new object of
the class HarrisCornerDetector, calls its findCorners()method, and
finally displays the results in a new window:

139 public void run(ImageProcessor ip) {
140 HarrisCornerDetector hcd = new HarrisCornerDetector(ip);
141 hcd.findCorners();
142 ImageProcessor result = hcd.showCornerPoints(ip);
143 ImagePlus win = new ImagePlus("Corners",result);
144 win.show();
145 }

As previously mentioned, the complete source code for this section
can be found in App. D (pp. 525–532). Again, when writing this code,
we focused on understandability and not necessarily speed and memory
usage. Many elements of the code can be optimized with relatively little
effort (perhaps as an exercise?) if efficiency becomes important.

8.4 Exercises

Exercise 8.1. Adapt the draw() method in the class Corner (p. 148)
so that the strength (q-value) of the corner points can also be visualized.
This could be done, for example, by manipulating the size, color, or
intensity of the markers drawn in relation to the strength of the corner.

Exercise 8.2. Conduct a series of experiments to determine how image
contrast affects the performance of the Harris detector, and then develop
an idea for how you might automatically determine the parameter tH
depending on image content.

Exercise 8.3. Explore how rotation and distortion of the image affect
the performance of the Harris corner detector. Based on your experi-
ments, is the operator truly isotropic?

Exercise 8.4. Determine how image noise affects the performance of
the Harris detector in terms of the positional accuracy of the detected
corners and the omission of actual corners.
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9

Detecting Simple Curves

Chapter 7 demonstrated how to use appropriately designed filters to de-
tect edges in images. These filters compute both the edge strength and
orientation at every position in the image. In the following sections, we
explain how to decide (for example, by using a threshold operation on
the edge strength) if a curve is actually present at a given image lo-
cation. The result of this process is generally represented as a binary
edge map. Edge maps are considered preliminary results since with an
edge filter’s limited (“myopic”) view it is not possible to accurately ascer-
tain if a point belongs to a true edge. Edge maps created using simple
threshold operations contain many edge points that do not belong to
true edges (false positives), and, on the other hand, many edge points
are not detected (false negatives) and so are missing from the map.1 In
general, edge maps contain many irrelevant structures, while at the same
time many important structures are completely missing. The theme of
this chapter is how, given a binary edge map, one can find relevant and
possibly significant structures based on their forms.

9.1 Salient Structures

An intuitive approach to locating large image structures is to first select
an arbitrary edge point, systematically examine its neighboring pixels
and add them if they belong to the object’s contour, and repeat. In
principle, such an approach could be applied to either a continuous edge

1 Typically thresholding is performed at a level that decreases false negatives
at the expense of introducing false positives, the reasoning being that it is
much simpler to remove false positives during higher-level processing than
it is to, in essence, rediscover the missing edges eliminated during low-level
processing. 155



9 Detecting Simple Curves

Fig. 9.1
The human visual system is

capable of instantly recogniz-
ing prominent image structures
even under difficult conditions.

map consisting of edge strengths and orientations or a simple binary
edge map. Unfortunately, with either input, such an approach is likely
to fail due to image noise and ambiguities that arise when trying to
follow the contours. Additional constraints and information about the
type of object sought are needed in order to handle pixel-level problems
such as branching, as well as interruptions. This type of local sequential
contour tracing makes for an interesting optimization problem [60] (see
Sec. 11.2).

A completely different approach is to search for globally apparent
structures that inherently express certain common shape features. As
an example, Fig. 9.1 shows that certain structures are readily apparent to
the human visual system, even when they overlap in noisy images. The
biological basis for why the human visual system spontaneously recog-
nizes four lines or three circles in Fig. 9.1 instead of a larger number of
disjoint segments and arcs is not completely known. At the cognitive
level, theories such as Gestalt grouping have been proposed to address
this behavior. The next sections explore one technique, the Hough trans-
form, that provides an algorithmic solution to this problem.

9.2 Hough Transform

The method from Paul Hough—originally published as a US Patent [47]
and often referred to as the “Hough transform” (HT)—is a general ap-
proach to localizing any shape that can be defined parametrically within
a distribution of points [27, 50]. For example, many geometrical shapes,
such as lines, circles, and ellipses, can be readily described using simple
equations with only a few parameters. Since simple geometric forms of-
ten occur as part of man-made objects, they are especially useful features
for analysis of these types of images (Fig. 9.2).

The Hough transform is perhaps most often used for detecting line
segments in edge maps. A line segment in 2D can be described with two
real-valued parameters using the classic slope-intercept form

y = kx + d, (9.1)

where k is the slope and d the intercept—that is, the height at which
the line would intercept the y axis (Fig. 9.3). A line segment that passes156



9.2 Hough Transform

Fig. 9.2
Simple geometrical forms such
as sections of lines, circles, and
ellipses are often found in man-
made objects.

x

y

d

p1 = (x1, y1)

p2 = (x2, y2)

y1 = kx1 + d
y2 = kx2 + d

Fig. 9.3
Two points, p1 and p2, lie on the
same line when y1 = kx1 + d and
y2 = kx2 + d for a particular pair
of parameters k and d.

through two given edge points p1 = (x1, y1) and p2 = (x2, y2) must
satisfy the conditions

y1 = kx1 + d and y2 = kx2 + d (9.2)

for k, d ∈ R. The goal is to find values of k and d such that as many
edge points as possible lie on the line they describe; in other words, the
line that fits the most edge points. But how can you determine the
number of edge points that lie on a given line segment? One possibility
is to exhaustively “draw” every possible line segment into the image
while counting the number of points that lie exactly on each of these.
Even though the discrete nature of pixel images makes this approach
possible, generating such a large number of lines is very computationally
expensive.

9.2.1 Parameter Space

The Hough transform approaches the problem from another direction.
It examines all the possible line segments that run through a single given
point in the image. Every line Lj that runs through a point p0 = (x0, y0)
must satisfy the condition 157



9 Detecting Simple Curves

Fig. 9.4
Set of lines passing through an im-

age point. For all possible lines
Lj passing through the point
p0 = (x0, y0), the equation

y0 = kjx0 + dj holds for appropri-
ate values of the parameters kj , dj .

x

y

p0

L1

L2

L3L4

Lj : y0 = kjx0 + dj (9.3)

for all appropriate values of kj , dj . The possible solutions for kj , dj in
Eqn. (9.3) correspond to the infinite set of lines passing through the given
point p0 (Fig. 9.4). For a given kj , the solution for dj in Eqn. (9.3) is

dj = −x0kj + y0, (9.4)

which is another equation for a line, where now kj , dj are the variables
and x0, y0 the constant parameters in the equation. The solution set
{(kj , dj)} of Eqn. (9.4) describes the parameters of all possible lines Lj

passing through the image point p0 = (x0, y0). For an arbitrary image
point pi = (xi, yi), Eqn. (9.4) describes the line

Mi : d = −xik + yi (9.5)

with the parameters −xi, yi in the so-called parameter or Hough space
spanning the coordinates k, d.

The relationship between image space and parameter space can be
summarized as follows:

Image Space (x, y) Parameter Space (k, d)

Point pi = (xi, yi) Mi : d = −xik + yi Line
Line Lj : y = kjx + dj qj = (kj , dj) Point

Each image point pi and its associated line bundle correspond to exactly
one line Mi in parameter space. Therefore we are interested in those
places in the parameter space where lines intersect. The example in
Fig. 9.5 illustrates how the lines M1 and M2 intersect at the position
q12 = (k12, d12) in the parameter space, which means (k12, d12) are the
parameters of the line in the image space that runs through both image
points p1 and p2. The more lines Mi that intersect at a single point in the
parameter space, the more image space points lie on the corresponding
line in the image! In other words, when many lines intersect at a single
point in the parameter space, then there are many points in the image
space that lie on the line corresponding to that parameter space point.158
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x

y

k

d

p1 = (x1, y1)

p2 = (x2, y2)

M1 : d = −x1k + y1

M2 : d = −x2k + y2

q12 = (k12, d12)

L12

(a) x/y image space (b) k/d parameter space

Fig. 9.5
Relationship between image space
and parameter space. The param-
eter values for all possible lines
passing through the image point
pi = (xi, yi) in image space (a) lie
on a single line Mi in parameter
space (b). This means that each
point qj = (kj , dj) in parameter
space corresponds to a single line
Lj in image space. The intersec-
tion of the two lines M1, M2 at
the point q12 = (k12, d12) in pa-
rameter space indicates that a line
L12 through the two points k12

and d12 exists in the image space.

If N lines intersect at position (k′, d′) in parameter space, then N
image points lie on the corresponding line y = k′x + d′ in image
space.

9.2.2 Accumulator Array

Finding the dominant lines in the image can now be reformulated as
finding all the locations in parameter space where a significant number
of lines intersect. This is basically the goal of the HT. In order to com-
pute the HT, we must first decide on a discrete representation of the
continuous parameter space by selecting an appropriate step size for the
k and d axes. Once we have selected step sizes for the coordinates, we
can represent the space naturally using an array. Since the array will
be used to keep track of the number of times parameter space lines in-
tersect, it is called an accumulator array. Each parameter space line is
painted into the accumulator array and the cells through which it passes
through are incremented so that ultimately each cell accumulates the
total number of lines that intersect at that cell (Fig. 9.6).

9.2.3 A Better Line Representation

The line representation in Eqn. (9.1) is not used in practice because for
vertical lines k = ∞. A more practical representation is the so-called
Hessian normal form (HNF, [15, p. 195]) for representing lines,

x · cos(θ) + y · sin(θ) = r, (9.6)

which does not exhibit such singularities and also provides a natural
linear quantization for its parameters, the angle θ and the radius r (Fig.
9.7). With the HNF representation, the parameter space is defined by the
coordinates θ, r, and the mapping from an image space point pi = (xi, yi)
to a parameter space point is defined as

rxi,yi(θ) = xi · cos(θ) + yi · sin(θ) (9.7) 159



9 Detecting Simple Curves

Fig. 9.6
Main idea of the Hough trans-

form. The accumulator array is
a discrete representation of the

parameter space (k, d). For each
image point found (a), a discrete

line in the parameter space (b)
is drawn. This operation is per-

formed additively so that the val-
ues of the array through which
the line passes are incremented
by 1. The value at each cell of

the accumulator array is the
number of parameter space lines
that intersect it (in this case 2).

x

y d

k

(a) Image Space (b) Accumulator Array

Fig. 9.7
Representation of lines in 2D. In

the normal k, d representation (a),
vertical lines pose a problem be-

cause k = ∞. The Hessian normal
form (b) avoids this problem by
representing a line by its angle θ

and distance r from the origin.

xx

yy

d

(x, y)
(x, y)

k = ∞
r

θ

y = kx + d x · cos(θ) + y · sin(θ) = r

(a) (b)

for angles in the range 0 ≤ θ < π (Fig. 9.8). If we use the center of the
image as the reference point for the x/y image space, then it is possible
to limit the range of the radius to half the diagonal of the image,

−rmax ≤ rx,y(θ) ≤ rmax, where rmax = 1
2

√
M2 + N2 , (9.8)

for an image of width M and height N .

9.3 Implementing the Hough Transform

The fundamental Hough algorithm using the HNF line representation
(Eqn. (9.6)) is given in Alg. 9.1. Starting with a binary image I(u, v)
where the edge pixels have been assigned a value of 1, the first stage
creates a two-dimensional accumulator array and then iterates over the
image to fill it. In the second stage, the accumulator array is searched
(FindMaxLines()) for maximum values, and a vector containing the
parameters for the K strongest lines

MaxLines =
(〈θ1, r1〉, 〈θ2, r2〉, . . . 〈θK , rK〉)160



9.3 Implementing the Hough
Transform

Fig. 9.8
Image space and parameter space
using the HNF representation.

1: HoughLines(I)
Returns the list of parameters 〈θi, ri〉 corresponding to the strongest
lines found in the binary image I .

2: Set up a two-dimensional array Acc[θ, r] of counters, initialize to 0.
3: Let (uc, vc) be the center coordinates of the image I
4: for all image coordinates (u, v) do
5: if I(u, v) is an edge point then

Get coordinate relative to the image center (uc, vc):
6: (x, y) ← (u−uc, v−vc)
7: for θi = 0 . . . π do
8: ri = x · cos(θi) + y · sin(θi)
9: Increment Acc[θi, ri]

Return the list of parameter pairs 〈θj , rj〉 for K strongest lines:
10: MaxLines ← FindMaxLines(Acc, K)
11: return MaxLines .

Algorithm 9.1
Simple Hough algorithm for local-
izing lines. It returns a list con-
taining the parameters 〈θ, r〉 of the
K strongest lines in a binary edge
map.

is computed. The next sections explain these two stages in detail.

9.3.1 Filling the Accumulator Array

A direct implementation of the first phase of Alg. 9.1 is given in the
Java class LinearHT Prog. 9.1. The accumulator array (houghArray) is
defined as a two-dimensional int Array. The HT is computed from the
original image ip by creating a new instance of the class LinearHT, e. g.,

LinearHT ht = new LinearHT(ip, 256, 256);

The binary image is passed as an ImageProcessor (ip), wherein any
value greater than 0 is interpreted as an edge pixel. The other two
parameters, nAng (256) and nRad (256), specify the number of discrete
steps to use for the angle (Nθ steps for θi = 0 to π) and the radius (Nr

steps for ri = −rmax to rmax). The resulting increments for the angle
and radius are thus 161



9 Detecting Simple Curves

Program 9.1
Hough transform for lo-

calizing straight lines
(Java implementation).

1 class LinearHT {
2 ImageProcessor ip; // reference to the original image I
3 int xCtr, yCtr; // x/y-coordinates of image center (uc, vc)
4 int nAng; // Nθ steps for the angle (θ = 0 . . . π)
5 int nRad; // Nr steps for the radius (r = −rmax . . . rmax)
6 int cRad; // center of radius axis (r = 0)
7 double dAng; // increment of angle Δθ

8 double dRad; // increment of radius Δr

9 int[][] houghArray; // Hough accumulator Acc[θi, ri]
10
11 //constructor method:
12 LinearHT(ImageProcessor ip, int nAng, int nRad) {
13 this.ip = ip;
14 this.xCtr = ip.getWidth()/2;
15 this.yCtr = ip.getHeight()/2;
16 this.nAng = nAng;
17 this.dAng = Math.PI / nAng;
18 this.nRad = nRad;
19 this.cRad = nRad / 2;
20 double rMax = Math.sqrt(xCtr * xCtr + yCtr * yCtr);
21 this.dRad = (2.0 * rMax) / nRad;
22 this.houghArray = new int[nAng][nRad];
23 fillHoughAccumulator();
24 }
25
26 void fillHoughAccumulator() {
27 int h = ip.getHeight();
28 int w = ip.getWidth();
29 for (int v = 0; v < h; v++) {
30 for (int u = 0; u < w; u++) {
31 if (ip.get(u, v) > 0) {
32 doPixel(u, v);
33 }
34 }
35 }
36 }
37
38 void doPixel(int u, int v) {
39 int x = u - xCtr, y = v - yCtr;
40 for (int i = 0; i < nAng; i++) {
41 double theta = dAng * i;
42 int r = cRad + (int) Math.rint
43 ((x*Math.cos(theta) + y*Math.sin(theta)) / dRad);
44 if (r >= 0 && r < nRad) {
45 houghArray[i][r]++;
46 }
47 }
48 }
49
50 } // end of class LinearHT

162



9.3 Implementing the Hough
Transform

Fig. 9.9
Hough transform for lines. The
dimensions of the original im-
age (a) are 360 × 240 pixels, so
the maximal radius (measured
from the image center (uc, vc))
is rmax ≈ 216. For the parame-
ter space (b), a step size of 256 is
used for both the angle θ = 0 . . . π
(horizontal axis) and the radius
r = −rmax . . . rmax (vertical axis).
The four darkest spots in (b) mark
the maximum values in the accu-
mulator array, and their parame-
ters correspond to the four lines in
the original image. In (b), intensi-
ties have been inverted to improve
legibility.

Δθ =
π

Nθ
and Δr =

2 · rmax

Nr

(see lines 17 and 21 in Prog. 9.1, respectively). The output of this pro-
gram for a very noisy edge image is given in Fig. 9.9.

9.3.2 Analyzing the Accumulator Array

The second phase is localizing the maximum values in the accumulator
array Acc[θ, r]. As can readily be seen in Fig. 9.9 (b), even in the case
where the lines in the image are geometrically “straight”, the parame-
ter space curves associated with them do not intercept at exactly one
point in the accumulator array but rather their intersection points are
distributed within a small area. This is primarily caused by the round-
ing errors introduced due to the discrete coordinate grid used in the
accumulator array. Since the maximum points are really maximum ar-
eas in the accumulator array, simply traversing the array and returning
its K largest values is not sufficient. Since this is a critical step in the
algorithm, we will examine two different approaches (Fig. 9.10) in the
following.

Approach A: Thresholding

First the accumulator is thresholded to the value of ta by setting all
accumulator values Acc[θ, r] < ta to 0. The resulting scattering of points,
or point clouds, are first coalesced into regions (Fig. 9.10 (b)) using a
technique such as a morphological closing operation (see Sec. 10.3.2).
Next the remaining regions must be localized, for instance using the
region-finding technique from Sec. 11.1, and then each region’s centroid
(see Sec. 11.4.3) can be utilized as the (noninteger) coordinates for the
potential image space line. Often the sum of the accumulator’s values
within a region is used as a measure of the strength (number of image
points) of the line it represents. 163
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Fig. 9.10
Determining the local maximum
values in the accumulator array.

Original distribution of the values
in the Hough accumulator (a).

Variant A: Threshold oper-
ation using 50% of the maxi-
mum value (b). The remain-
ing regions represent the four
dominant lines in the image,
and the coordinates of their

centroids are a good approxi-
mation to the line parameters.

Variant B: Using nonmaxi-
mum suppression results in a

large number of local maxima (c)
that must then be reduced us-
ing a threshold operation (d).

Approach B: Nonmaximum suppression

In this method, local maxima in the accumulator array are found by
suppressing nonmaximal values.2 This is carried out by determining for
every cell in Acc[θ, r] whether the value is higher than the value of all
of its neighboring cells. If this is the case, then the value remains the
same; otherwise it is set to 0 (Fig. 9.10 (c)). The (integer) coordinates of
the remaining peaks are potential line parameters, and their respective
heights correlate with the strength of the image space line they represent.
This method can be used in conjunction with a threshold operation to
reduce the number of candidate points that must be considered. The
result for Fig. 9.9 (a) is shown in Fig. 9.10 (d).

2 Nonmaximum suppression is also used in Sec. 8.2.3 for isolating corner
points.164



9.3 Implementing the Hough
Transform

9.3.3 Hough Transform Extensions

So far, we have presented the Hough transform only in its most basic
formulation. The following is a list of some of the more common methods
of improving and refining the algorithm.

Modified accumulator updating

The purpose of the accumulator array is to find the intersections of
two-dimensional curves. Due to the discrete nature of the image and
accumulator coordinates, rounding errors usually cause the parameter
curves for multiple image points on the same line not to intersect in a
single accumulator cell. A common remedy is, for a given angle θi (Alg.
9.1), to increment not only the corresponding accumulator cell Acc[θi, ri]
but also the neighboring cells Acc[θi, ri−1] and Acc[θi, ri+1]. This makes
the Hough transform more tolerant against inaccurate point coordinates.

Bias problem

Since the value of a cell in the Hough accumulator represents the number
of image points falling on a line, longer lines naturally have higher values
than shorter lines. This may seem like an obvious point to make, but
consider when the image only contains a small section of a “long” line.
For instance, if a line only passes through the corner of an image then the
cells representing it in the accumulator array will naturally have lower
values than a “shorter” line that lies entirely within the image (Fig. 9.11).

x

y

a

b

ra

rb

Fig. 9.11
Bias problem. When an image
represents only a finite section of
an object, then those lines nearer
the center (smaller r values) will
have higher values than those far-
ther away (larger r values). As an
example, the maximum value of
the accumulator for line a will be
higher than that of line b.

It follows then that if we only search the accumulator array for
maximal values, it is likely that we will completely miss short line seg-
ments. One way to compensate for this inherent bias is to compute for
each accumulator entry Acc[θ, r] the maximum number of image points
MaxHits [θ, r] possible for a line with the parameters θ, r and then nor-
malize

Acc′[θ, r] ← Acc[θ, r]
MaxHits [θ, r]

(9.9)
165



9 Detecting Simple Curves for MaxHits [θ, r] > 0. The normalization term MaxHits [θ, r] can be
determined, for example, by computing the Hough transform of an image
with the same dimensions in which all pixels are activated or using a
random image in which the pixels are uniformly distributed.

Line endpoints

Our simple version of the Hough transform determines the parameters
of the line in the image but not their endpoints. These could be found
in a subsequent step by determining which image points belong to any
detected line (e. g., by applying a threshold to the perpendicular dis-
tance between the line and the image points). An alternative solution is
to calculate the extreme point of the line during the computation of the
accumulator array. For this, every cell of the accumulator array is supple-
mented with two additional coordinate pairs (xstart, ystart), (xend, yend),
i. e.,

Acc[θ, r] = 〈count , xstart, ystart, xend, yend〉.
Now the coordinates for the endpoints of every line can be stored while
filling in the accumulator array so that by the end of the process each cell
contains the two endpoints that lie farthest from each other on the line
it represents. When finding the maximum values in the second stage,
care should be taken so that the merged cell values contain the correct
endpoints.

Line intersections

It may be useful in certain applications not to find the lines themselves
but their intersections, e. g., for precisely locating the corner points of a
polygon-shaped object. The Hough transform delivers the parameters of
the recovered lines in Hessian normal form (i. e., as pairs Li = 〈θi, ri〉).
To compute the point of intersection x0 = (x0, y0)T for two lines

L1 = 〈θ1, r1〉 and L2 = 〈θ2, r2〉,
we need to solve the system of linear equations

x0 · cos(θ1) + y0 · sin(θ1) = r1, (9.10)
x0 · cos(θ2) + y0 · sin(θ2) = r2, (9.11)

for the unknowns x0, y0. The solution is

x0 =
1

cos(θ1) sin(θ2) − cos(θ2) sin(θ1)
·
[
r1 sin(θ2) − r2 sin(θ1)
r2 cos(θ1) − r1 cos(θ2)

]

=
1

sin(θ2 − θ1)
·
[
r1 sin(θ2) − r2 sin(θ1)
r2 cos(θ1) − r1 cos(θ2)

]
(9.12)

for sin(θ2 − θ1) �= 0. Obviously x0 is undefined (no intersection point
exists) if the lines L1, L2 are parallel to each other (i. e., if θ1 ≡ θ2).166



9.4 Hough Transform for
Circles and Ellipses

Considering edge strength and orientation

Until now, the raw data for the Hough transform was typically an edge
map that was interpreted as a binary image with ones at potential edge
points. Yet edge maps contain additional information, such as the edge
strength E(u, v) and local edge orientation Φ(u, v) (see Sec. 7.3), which
can be used to improve the results of the HT.

The edge strength E(u, v) is especially easy to take into consideration.
Instead of incrementing visited accumulator cells by 1, add the strength
of the respective edge:

Acc[θ, r] ← Acc[θ, r] + E(u, v).

In this way, strong edge points will contribute more to the accumulated
value than weak points.

The local edge orientation Φ(u, v) is also useful for limiting the range
of possible orientation angles for the line at (u, v). The angle Φ(u, v)
can be used to increase the efficiency of the algorithm by reducing the
number of accumulator cells required along the θ axis. Since this also
reduces the number of irrelevant “votes” in the accumulator, it increases
the overall sensitivity of the Hough transform (see, for example, [58, p.
483]).

Hierarchical Hough transform

The accuracy of the results increases with the size of the parameter
space used; for example, a step size of 256 along the θ axis is equivalent
to searching for lines every π

256 ≈ 0.7◦. While increasing the number of
accumulators provides a finer result, bear in mind that it also increases
the computation time and especially the amount of memory required.
Instead of increasing the resolution of the entire parameter space, the
idea of the hierarchical HT is to gradually “zoom” in and refine the pa-
rameter space. First, the regions containing the most important lines
are found using a relatively low-resolution parameter space, and then
the parameter spaces of those regions are recursively passed to the HT
and examined at a higher resolution. In this way, a relatively exact deter-
mination of the parameters can be found using a limited (in comparison)
parameter space.

9.4 Hough Transform for Circles and Ellipses

9.4.1 Circles and Arcs

Since lines in 2D have two degrees of freedom, they could be completely
specified using two real value parameters. In a similar fashion, repre-
senting a circle in 2D requires three parameters, for example 167



9 Detecting Simple Curves

Fig. 9.12
Representation of cir-

cles and ellipses in 2D.

x̄x̄

ȳȳ

p = (u, v)
p = (u, v)

ρ

a

b α

Circle = 〈x̄, ȳ, ρ〉,
where x̄, ȳ are the coordinates of the center and ρ is the radius of the
circle (Fig. 9.12). A point p = (u, v) lies on a circle when the relation

(u − x̄)2 + (v − ȳ)2 = ρ2 (9.13)

holds. Therefore the Hough transform requires a three-dimensional pa-
rameter space Acc[x̄, ȳ, ρ] to find the position and radius of circles (and
circular arcs) in an image. Unlike the HT for lines, there does not exist
a simple functional dependency between the coordinates in parameter
space, so how can we find every parameter combination (x̄, ȳ, ρ) that
satisfies Eqn. (9.13) for a given image point p = (u, v)? One solution
is to apply a “brute force” method such as described in Alg. 9.2 that
exhaustively tests each cell in the parameter space to see if the relation
in Eqn. (9.13) holds.

Algorithm 9.2
Exhaustive Hough algo-

rithm for localizing circles.

1: HoughCircles(I)
Returns the list of parameters 〈x̄i, ȳi, ρi〉 corresponding to the
strongest circles found in the binary image I .

2: Set up a three-dimensional array Acc[x̄, ȳ, ρ] and initialize to 0
3: for all image coordinates (u, v) do
4: if I(u, v) is an edge point then
5: for all (x̄i, ȳi, ρi) in the accumulator space do
6: if (u−x̄i)

2 + (v−ȳi)
2 = ρ2

i then
7: Increment Acc[x̄i, ȳi, ρi]
8: MaxCircles ← FindMaxCircles(Acc) � a list of tuples 〈x̄j , ȳj , ρj〉
9: return MaxCircles .

If we examine Fig. 9.13, we can see that a better idea might be to
make use of the fact that the coordinates of the center points also form
a circle in Hough space. It is not necessary therefore to search the en-
tire three-dimensional parameter space for each image point p = (u, v).
Instead we need only increase the cell values along the edge of the appro-
priate circle on each ρ plane of the accumulator array. To do this, we can
adapt any of the standard algorithms for generating circles. In this case,
the integer math version of the well-known Bresenham algorithm [13] is
particularly well-suited.168



9.4 Hough Transform for
Circles and Ellipses

u1

v1

x̄

ȳ

ρi p1

p2

p3

C1

C2

C3

C

Acc[x̄, ȳ, ρi]

possible centers

true center

Fig. 9.13
Hough transform for circles. The
illustration depicts a slice of the
three-dimensional accumulator ar-
ray Acc[x̄, ȳ, ρ] at a given circle
radius ρ = ρi. The center points
of all the circles running through
a given image point p1 = (u1, v1)
form a circle C1 with a radius of
ρi centered around p1, just as
the center points of the circles
that pass through p2 and p3 lie
on the circles C2, C3. The cells
along the edges of the three cir-
cles C1, C2, C3 of radius ρi are
traversed and their values in the
accumulator array incremented.
The cell in the accumulator array
contains a value of three where the
circles intersect at the true center
of the image circle C.

Figure 9.14 shows the spatial structure of the three-dimensional pa-
rameter space for circles. For a given image point pk = (uk, vk), at each
plane along the ρ axis (for ρi = ρmin . . . ρmax), a circle centered at (uk, vk)
with the radius ρi is traversed, ultimately creating a three-dimensional
cone-shaped surface in the parameter space. The coordinates of the
dominant circles can be found by searching the accumulator space for
the cells with the highest values; that is, the cells where the most cones
intersect.

Just as in the linear HT, the bias problem (see Sec. 9.3.3) also oc-
curs in the circle HT. Sections of circles (i. e., arcs) can be found in a
similar way, in which case the maximum value possible for a given cell
is proportional to the arc length.

3D parameter space:
x̄, ȳ = 0 . . . 100
ρ = 10 . . . 30

Image points pk:
p1 = (30, 50)
p2 = (50, 50)
p3 = (40, 40)
p4 = (80, 20)

Fig. 9.14
Three-dimensional parameter
space for circles. For each image
point pk = (uk, vk), the cells
lying along a cone in the three-
dimensional accumulator array
Acc[x̄, ȳ, ρ] are incremented.
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9 Detecting Simple Curves 9.4.2 Ellipses

In a perspective image, most circular objects originating in our real,
three-dimensional world will actually appear in 2D images as ellipses,
except in the case where the object lies on the optical axis and is observed
from the front. For this reason, perfectly circular structures seldom occur
in photographs. While the Hough transform can still be used to find
ellipses, the larger parameter space required makes it substantially more
expensive.

A general ellipse in 2D has five degrees of freedom and therefore
requires five parameters to represent it,

Ellipse = 〈x̄, ȳ, ra, rb, α〉,

where (x̄, ȳ) are the coordinates of the center points, (ra, rb) are the
two radii, and α is the orientation of the principal axis (Fig. 9.12).3
In order to find ellipses of any size, position, and orientation using the
Hough transform, a five-dimensional parameter space with a suitable
resolution in each dimension is required. A simple calculation illustrates
the enormous expense of representing this space: using a resolution of
only 128 = 27 steps in ever dimension results in 235 accumulator cells,
and implementing these using 4-byte int values thus requires 237 bytes
(128 gigabytes) of memory.

An interesting alternative in this case is the generalized Hough trans-
form, which in principle can be used for detecting any arbitrary two-
dimensional shape [5, 50]. Using the generalized Hough transform, the
shape of the sought-after contour is first encoded point by point in a
table and then the associated parameter space is related to the position
(xc, yc), scale S, and orientation θ of the shape. This requires a four-
dimensional space, which is smaller than that of the Hough method for
ellipses described above.

9.5 Exercises

Exercise 9.1. Implement a version of the Hough transform for straight
lines that incorporates the modified accumulator update, as suggested
in Sec. 9.3.3. Analyze the extent to which the method improves the
robustness with respect to inaccurate or noisy point positions.

Exercise 9.2. Implement a version of the Hough transform for finding
lines that takes into account line endpoints as described in Sec. 9.3.3.

Exercise 9.3. Implement a hierarchical Hough transform for straight
lines (see p. 167) capable of accurately determining line parameters.

3 See Eqn. (11.33) on p. 232 for a parametric equation of this ellipse.170



9.5 ExercisesExercise 9.4. Implement the Hough transform for finding circles and
circular arcs with varying radii. Make use of a fast algorithm for gener-
ating circles, such as described in Sec. 9.4, in the accumulator array.
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10

Morphological Filters

In the discussion of the median filter in Ch. 6 (Sec. 6.4.2), we noticed that
this type of filter can somehow alter two-dimensional image structures.
Figure 10.1 illustrates once more how corners are rounded off, holes of
a certain size are filled, and small structures, such as single dots or thin
lines, are removed. The median filter thus responds selectively to the
local shape of image structures, a property that might be useful for
other purposes if it can be applied not just randomly but in a controlled
fashion. Altering the local structure in a predictable way is exactly what
“morphological” filters can do, which we focus on in this chapter.

In their original form, morphological filters are aimed at binary im-
ages, images with only two possible pixel values, 0 and 1 or black and
white, respectively. Binary images are found in many places, in partic-
ular in digital printing, document transmission (FAX) and storage, or
as selection masks in image and video editing. Binary images can be
obtained from grayscale images by simple thresholding (see Sec. 5.1.4)
using either a global or a locally varying threshold value. We denote
binary pixels with values 1 and 0 as foreground and background pixels,
respectively. In most of the following examples, the foreground pixels

Fig. 10.1
Median filter applied to a binary
image: original image (a) and re-
sults from a 3× 3 pixel median
filter (b) and a 5×5 pixel median
filter (c).
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10 Morphological Filters are shown black and background pixels are shown white, as is common
in printing.

At the end of this chapter, we will see that morphological filters are
applicable not only to binary images but also to grayscale and even color
images, though these operations differ significantly from their binary
counterparts.

10.1 Shrink and Let Grow

Our starting point was the observation that a simple 3×3 pixel median
filter can round off larger image structures and remove smaller structures,
such as points and thin lines, in a binary image. This could for one be
useful to eliminate structures that are below a certain size (e. g., to clean
an image from noise or dirt). But how can we control the size and
possibly the shape of the structures affected by such an operation?

Although its structural effects may be interesting, we disregard the
median filter at this point and start with this task again from the be-
ginning. Let’s assume that we want to remove small structures from a
binary image without significantly altering the remaining larger struc-
tures. The key idea for accomplishing this could be the following (Fig.
10.2):

1. First, all structures in the image are iteratively “shrunk” by peeling
off a layer of a certain thickness around the boundaries.

2. Shrinking removes the smaller structures step by step, and only the
larger structures remain.

3. The remaining structures are then grown back by the same amount.
4. Eventually the larger regions should have returned to approximately

their original shapes, while the smaller regions have disappeared from
the image.

All we need for this are two types of operations. “Shrinking” means to
remove a layer of pixels from a foreground region around its outer border

Fig. 10.2
Removing small image struc-

tures by stepwise shrink-
ing and subsequent growing.

1 2 3 4

8 7 6 5

shrink

grow
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(a) (b) (c)

Fig. 10.3
“Shrinking” a foreground region
by removing a layer of border pix-
els: original image (a), identified
border pixels that are in direct
contact with the background (b),
and result after shrinking (c).

(a) (b) (c)

Fig. 10.4
“Growing” a foreground region by
attaching a layer of pixels: original
image (a), identified background
pixels that are in direct contact
with the region (b), and result
after growing (c).

against the background (Fig. 10.3). The other way around, “growing”,
adds a layer of pixels around the border of a foreground region (Fig.
10.4).

10.1.1 Neighborhood of Pixels

For both operations, we must define the meaning of two pixels being
adjacent (i. e., being “neighbors”). Two definitions of “neighborhood” are
commonly used for rectangular pixel grids (Fig. 10.5):

• 4-neighborhood (N4): the four pixels adjacent to a given pixel in
the horizontal and vertical directions;

• 8-neighborhood (N8): the pixels contained in N4 plus the four
adjacent pixels along the diagonals.

10.2 Basic Morphological Operations

Shrinking and growing are indeed the two most basic morphological op-
erations, which are referred to as “erosion” and “dilation”, respectively.
These morphological operations, however, are much more general than
illustrated in the example above. They go well beyond removing or
attaching single pixel layers and—in combination—can perform much
more complex operations.

10.2.1 The Structuring Element

Similar to the coefficient matrix of a linear filter (see Sec. 6.2), the prop-
erties of a morphological filter are specified by elements in a matrix called 175
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Fig. 10.5
Definitions of “neighborhood”

on a rectangular pixel grid: 4-
neighborhood N4 = {N1, . . . N4}
(left) and 8-neighborhood N8 =

N4 ∪ {N5, . . . N8} (right).

N4 N8

N2

N1 × N3

N4

N5 N2 N6

N1 × N3

N8 N4 N7

a “structuring element”. In binary morphology, the structuring element
(like the image) contains only the values 0 and 1,

H(i, j) ∈ {0, 1},

and the hot spot marks the origin of the coordinate system of H (Fig.
10.6). Notice that the hot spot is not necessarily located at the center
of the structuring element, nor must its value be 1.

Fig. 10.6
Binary structuring element
(example). 1–elements are

marked with •; 0–cells are empty.

H =
•

• • •
•

origin (hot spot)

10.2.2 Point Sets

For the formal specification of morphological operations, it is helpful to
describe binary images as sets of two-dimensional coordinate points. For
a binary image I(u, v) ∈ {0, 1}, the corresponding point set QI consists
of the coordinate pairs p = (u, v) of all foreground pixels,

QI = {p | I(p) = 1}. (10.1)

Of course, as shown in Fig. 10.7, not only a binary image I but also a
structuring element H can be described as a point set.

Given a description as point sets, fundamental operations on binary
images can also be expressed as simple set operations. For example,
inverting a binary image I → Ī (i. e., exchanging foreground and back-
ground) is equivalent to building the complementary set

QĪ = Q̄I = {p ∈ Z
2 | p /∈ QI}. (10.2)

Combining two binary images I1 and I2 by an OR operation between
corresponding pixels, the resulting point set is the union of the individual
point sets QI1 and QI2 ; that is,

QI1∨I2 = QI1 ∪ QI2 . (10.3)
176
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I H

0 1 2 3

0

1 • •
2 •
3

−1 0 1

−1

0 • •
1

I ≡ QI = {(1, 1), (2, 1), (2, 2)} H ≡ QH = {(0, 0), (1, 0)}

Fig. 10.7
A binary image I or a structuring
element H can each be described
as a set of coordinate pairs, QI

and QH , respectively. The dark
shaded element in H marks the
coordinate origin (hot spot).

Since a point set QI is only an alternative representation of the bi-
nary image I (i. e., I ≡ QI), we will use both image and set notations
synonymously in the following. For example, we simply write Ī instead of
Q̄I for an inverted image as in Eqn. (10.2) or I1∪I2 instead of QI1 ∪ QI2

in Eqn. (10.3). The meaning should always be clear in the given context.
Thus, translating (shifting) the binary image I by some coordinate

vector d creates a new image with the content Id(p + d) = I(p), which
corresponds to all coordinates in the point set QI being shifted by d;
i. e.,

Id ≡ {
(p + d) | p ∈ I

}
. (10.4)

In some cases, it is necessary to reflect (mirror) a binary image or point
set about its origin, which we denote as

H∗ ≡ {−p | p ∈ H}. (10.5)

10.2.3 Dilation

A dilation is the morphological operation that corresponds to our intu-
itive concept of “growing” as discussed above. As a set operation, it is
defined as

I ⊕H ≡ {
(p + q) | for some p ∈ I and q ∈ H

}
. (10.6)

Thus the point set produced by a dilation is the (vector) sum of all
possible pairs of coordinate points from the original sets I and H , as
illustrated by a simple example in Fig. 10.8.

Alternatively, one could view the dilation as the structuring element
H being replicated at each foreground pixel of the image I or, conversely,
the image I being replicated at each foreground element of H . Expressed
in set notation,1 this is

I ⊕H ≡
⋃
p∈I

Hp =
⋃

q∈H

Iq, (10.7)

with Hp, Iq denoting the sets H, I shifted by p and q, respectively Eqn.
(10.4).
1 Also see Sec. 1.2. 177
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Fig. 10.8
Dilation example. The bi-

nary image I is subject to di-
lation with the structuring ele-
ment H . In the result I ⊕ H ,
the structuring element H is

replicated at every foreground
pixel of the original image I .

I H I ⊕ H

0 1 2 3

0

1 • •
2 •
3

⊕

−1 0 1

−1

0 • •
1

=

0 1 2 3

0

1 • • •
2 • •
3

I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0, 0), (1,0)}

I ⊕ H ≡ { (1, 1) + (0,0), (1, 1) + (1,0),
(2, 1) + (0,0), (2, 1) + (1,0),
(2, 2) + (0,0), (2, 2) + (1,0) }

10.2.4 Erosion

The quasi-inverse of dilation is the erosion operation, again defined in
set notation as

I �H ≡ {
p ∈ Z

2 | (p + q) ∈ I, for every q ∈ H
}
. (10.8)

This definition may appear quite cryptic but is simply explained as fol-
lows. A position p is contained in the result I � H if (and only if) the
structuring element H—when placed at this position p—is fully con-
tained in the foreground pixels of the original image; i. e., if Hp is a
subset of I. Equivalent to Eqn. (10.8), we could thus define erosion as

I �H ≡ {p ∈ Z
2 | Hp ⊆ I}. (10.9)

Figure 10.9 shows a simple example for binary erosion.

10.2.5 Properties of Dilation and Erosion

The dilation operation is commutative,

I ⊕H = H ⊕ I , (10.10)

and therefore—just as in linear convolution—the image and the struc-
turing element (filter) can be exchanged to get the same result. Dilation
is also associative,

(I1 ⊕ I2) ⊕ I3 = I1 ⊕ (I2 ⊕ I3), (10.11)

and therefore the ordering of multiple dilations is not relevant. This also
means—analogous to linear filters (cf. Eqn. (6.21))—that a dilation with
a large structuring element of the form Hbig = H1⊕H2⊕. . .⊕HK can be
efficiently implemented as a sequence of multiple dilations with smaller
structuring elements by

I ⊕Hbig = (. . . ((I ⊕H1) ⊕H2) ⊕ . . .⊕HK). (10.12)178



10.2 Basic Morphological
Operations

I H I � H

0 1 2 3

0

1 • •
2 •
3

�

−1 0 1

−1

0 • •
1

=

0 1 2 3

0

1 •
2

3

I ≡ {(1, 1), (2, 1), (2, 2)}, H ≡ {(0,0), (1,0)}

I � H ≡ { (1, 1) } because

(1, 1) + (0,0) = (1, 1) ∈ I and (1, 1) + (1,0) = (2, 1) ∈ I

Fig. 10.9
Erosion example. The binary im-
age I is subject to erosion with H
as the structuring element. H is
only covered by I when placed at
position p = (1, 1). Thus the re-
sulting point set contains only the
single coordinate (1, 1).

There is also a neutral!element δ for dilation, similar to the Dirac func-
tion for the linear convolution (see Sec. 6.3.4),

I ⊕ δ = δ ⊕ I = I, with δ ≡ {
(0, 0)

}
. (10.13)

The erosion operation is, in contrast to dilation (but similar to arith-
metic subtraction), not commutative; i. e.,

I �H �= H � I (10.14)

in general. However, if erosion and dilation are combined, then—again in
analogy with arithmetic subtraction and addition—the following chain
rule holds:

(I1 � I2) � I3 = I1 � (I2 ⊕ I3). (10.15)

Although dilation and erosion are not mutually inverse (in general,
the effects of dilation cannot be undone by a subsequent erosion), there
are still some strong formal relations between these two operations.

For one, dilation and erosion are dual in the sense that a dilation of
the foreground (I) can be accomplished by an erosion of the background
(Ī) and subsequent inversion of the result,

I ⊕H ≡ (Ī �H∗), (10.16)

where H∗ denotes the reflection of H (Eqn. (10.5)). This works similarly
the other way, too, namely

I �H ≡ (Ī ⊕H∗), (10.17)

effectively eroding the foreground by dilating the background with the
mirrored structuring element, as illustrated by the example in Fig. 10.10
(see [38, pp. 521–524] for a proof).

Equation (10.17) is interesting because it shows that we only need to
implement either dilation or erosion for computing both, considering that
the foreground-background inversion is a very simple task. Algorithm
10.1 gives a simple algorithmic description of dilation and erosion based
on the relationships above. The corresponding Java implementation is
shown later, in Sec. 10.5.2. 179
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Fig. 10.10
Implementing erosion via dila-
tion. The binary erosion of the

foreground I � H (a) can be
implemented by dilating the in-

verted (background) image Ī
with the reflected structuring
element H∗ and subsequently
inverting the result again (b).

I H I �H

(a)
•
• • •

• •
�

•
• • = •

•

↓ ↓ ↑
invert reflect invert

↓ ↓ ↑

(b)

• • • • •
• • • •
• •
• • •
• • • • •

⊕ • •
•

=

• • • • •
• • • • •
• • • •
• • • •
• • • • •

Ī H∗ Ī ⊕H∗

Algorithm 10.1
Binary dilation and erosion. Pro-
cedure Dilate() implements the
binary dilation as suggested by
Eqn. (10.7). The original image

I is displaced to each foreground
coordinate of H and then copied
into the resulting image I ′. The

hot spot of the structuring element
H is assumed to be at coordinate

(0, 0). Procedure Erode() im-
plements the binary erosion by

dilating the inverted image Ī with
the reflected structuring element

H∗, as described by Eqn. (10.17).

1: Dilate (I,H)
I : binary image of size w × h
H : binary structuring element defined over region RH

Returns the dilated image I ′ = I ⊕ H

2: I ′ ← new binary image of size w × h
3: I ′(u, v) ← 0, for all (u, v) � I ′ ← ∅

4: for all (i, j) ∈ RH do � (i, j) = q

5: if H(i, j) = 1 then � q ∈ H

6: Merge the shifted Iq with I ′: � I ′ ← I ′ ∪ Iq

7: for u ← 0 . . . (w−1) do
8: for v ← 0 . . . (h−1) do � (u, v) = p
9: if I(u, v) = 1 then � p ∈ I

10: I ′(u+i, v+j) ← 1 � I ′ ← I ′ ∪ (p+q)

11: return I ′.

12: Erode (I, H)
13: Ī ← Invert(I) � Ī ← ¬I
14: H∗ ← Reflect(H)

15: return Invert(Dilate(Ī, H∗)). � I ⊕ H = (Ī ⊕ H∗)

10.2.6 Designing Morphological Filters

A morphological filter is unambiguously specified by (a) the type of op-
eration and (b) the contents of the structuring element. The appropriate
size and shape of the structuring element depends upon the application,
image resolution, etc. In practice, structuring elements of quasi-circular
shape are frequently used, such as the examples shown in Fig. 10.11.

A dilation with a circular (disk-shaped) structuring element with
radius r adds a layer of thickness r to any foreground structure in the
image. Conversely, an erosion with that structuring element peels off180
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• • •
•

• • •
• • •
• • •

• • •
• • • • •
• • • • •
• • • • •

• • •
(a) (b) (c)

Fig. 10.11
Typical small structuring ele-
ments: 4-neighborhood (a), 8-
neighborhood (b), and “small
disk” (c).

layers of the same thickness. Figure 10.13 shows the results of dilation
and erosion with disk-shaped structuring elements of different diameters
applied to the original image in Fig. 10.12. Dilation and erosion results
for various other structuring elements are shown in Fig. 10.14.

Fig. 10.12
Original binary image and the
section used in the following ex-
amples (illustration by Albrecht
Dürer, 1515).

Disk-shaped structuring elements are commonly used to implement
isotropic filters, morphological operations that have the same effect in
every direction. Unlike linear filters (e. g., the 2D Gaussian filter in Sec.
6.3.3), it is generally not possible to compose an isotropic 2D structuring
element H◦ from one-dimensional structuring elements Hx and Hy since
the dilation Hx ⊕Hy always results in a rectangular (i. e., nonisotropic)
structure. A remedy for approximating large disk-shaped filters is to
alternately apply smaller disk-shaped operators of different shapes, as il-
lustrated in Fig. 10.15. The resulting filter is generally not fully isotropic
but can be implemented efficiently as a sequence of small filters.

10.2.7 Application Example: Outline

A typical application of morphological operations is to extract the
boundary pixels of the foreground structures. The process is very sim-
ple. First, we apply an erosion on the original image I to remove the
boundary pixels of the foreground,

I ′ = I �Hn,

using the 4- or 8-neighborhood (Fig. 10.11) as the structuring element
Hn. To extract the actual boundary pixels B, we take the intersection
of the original image I and the inverted result Ī ′; that is, 181



10 Morphological Filters

Fig. 10.13
Results of binary dilation and

erosion with disk-shaped struc-
turing elements. The radius
of the disk (r) is 1.0 (top),

2.5 (center), or 5.0 (bottom).

Dilation Erosion

r = 1.0

r = 2.5

r = 5.0

B = I ∩ I ′ = I ∩ (I �Hn). (10.18)

Notice that using the 4-neighborhood as the structuring element Hn

produces “8-connected” contours and vice versa [58, p. 504].
The process of boundary extraction is illustrated on a simple example

in Fig. 10.16. As can be observed in this figure, the result B contains
exactly those pixels that are different in the original image I and the
eroded image I ′ = I�Hn, which can also be obtained by an exclusive-OR
(XOR) operation between pairs of pixels; that is, boundary extraction
from a binary image can be implemented as

B(u, v) = XOR
(
I(u, v), I ′(u, v)

)
for all (u, v). (10.19)

Figure 10.17 shows a more complex example for extracting the boundary
pixels from a real image.182
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Fig. 10.14
Examples of binary dilation and
erosion with various free-form
structuring elements. The struc-
turing elements H are shown in
the left column (enlarged). No-
tice that the dilation expands ev-
ery isolated foreground point to
the shape of the structuring ele-
ment, analogous to the impulse
response of a linear filter. Under
erosion, only those elements where
the structuring element is fully
contained in the original image
survive.

10.3 Composite Operations

Due to their semiduality, dilation and erosion are often used together
in composite operations, two of which are so important that they even
carry their own names and symbols: “opening” and “closing”. They are
probably the most frequently used morphological operations in practice. 183
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Fig. 10.15
Composition of large filters
by repeated application of

smaller filters: repeated appli-
cation of the structuring ele-

ment HA (a) and structuring el-
ement HB (b); alternating ap-

plication of HB and HA (c).

Fig. 10.16
Outline example using a 4-

neighborhood structuring element
Hn. The image I is first eroded
(I � Hn) and subsequently in-
verted (I � Hn). The bound-
ary pixels are finally obtained

as the intersection I ∩ I � Hn.

I I � Hn

Hn =
•

• • •
•

• • •
• • • • •
• • • • •

• • • •
• • •

• •
• • •

• •

I � Hn B = I ∩ I � Hn

• • • • • • •
• • • • • • •
• • • • •
• • • •
• • • • •
• • • • • • •
• • • • • • •
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Fig. 10.17
Extraction of boundary pixels
using morphological operations.
The 4-neighborhood structuring
element used in (a) produces 8-
connected contours. Conversely,
using the 8-neighborhood as
the structuring element gives 4-
connected contours (b).

10.3.1 Opening

A binary opening I ◦ H denotes an erosion followed by a dilation with
the same structuring element H ,

I ◦ H = (I �H)⊕H. (10.20)

The main effect of an opening is that all foreground structures that are
smaller than the structuring element are eliminated in the first step (ero-
sion). The remaining structures are smoothed by the subsequent dilation
and grown back to approximately their original size, as demonstrated by
the examples in Fig. 10.18). This process of shrinking and subsequent
growing corresponds to the idea for eliminating small structures that we
had initially sketched in Sec. 10.1.

10.3.2 Closing

When the sequence of erosion and dilation is reversed, the resulting
operation is called a closing and denoted I • H ,

I • H = (I ⊕H)�H. (10.21)

A closing removes (closes) holes and fissures in the foreground structures
that are smaller than the structuring element H . Some examples with
typical disk-shaped structuring elements are shown in Fig. 10.18. 185
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Fig. 10.18
Binary opening and closing with

disk-shaped structuring ele-
ments. The radius r of the struc-

turing element H is 1.0 (top),
2.5 (center), or 5.0 (bottom).

Opening Closing

r = 1.0

r = 2.5

r = 5.0

10.3.3 Properties of Opening and Closing

Both operations, opening as well as closing, are idempotent, meaning
that their results are “final” in the sense that any subsequent application
of the same operation no longer changes the result; i. e.,

I ◦ H = (I ◦ H) ◦ H = ((I ◦ H) ◦ H) ◦ H = . . . ,

I • H = (I • H) • H = ((I • H) • H) • H = . . . . (10.22)

Also, opening and closing are “duals” in the sense that opening the fore-
ground is equivalent to closing the background and vice versa; i. e.,

I ◦ H =
(
Ī • H

)
and I • H =

(
Ī ◦ H

)
. (10.23)

186
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Morphological operations are not confined to binary images but are also
for intensity (grayscale) images. In fact, the definition of grayscale mor-
phology is a generalization of binary morphology, with the binary OR
and AND operators replaced by the arithmetic MAX and MIN opera-
tors, respectively. As a consequence, procedures designed for grayscale
morphology can also perform binary morphology (but not the other way
around).2 In the case of color images, the grayscale operations are usu-
ally applied individually to each color channel.

10.4.1 Structuring Elements

Unlike in the binary scheme, the structuring elements for grayscale mor-
phology are not defined as point sets but as real-valued 2D functions,

H(i, j) ∈ R , for (i, j) ∈ Z
2.

The values in H may be negative or zero. Notice, however, that in con-
trast to linear convolution (Sec. 6.3.1), zero elements in grayscale mor-
phology generally do contribute to the result.3 The design of structuring
elements for grayscale morphology must therefore distinguish explicitly
between cells containing the value 0 and empty (“don’t care”) cells; for
example

0 1 0

1 2 1

0 1 0

�=
1

1 2 1

1

. (10.24)

10.4.2 Dilation and Erosion

The result of grayscale dilation I ⊕H is defined as the maximum of the
values in H added to the values of the current subimage of I,

(I ⊕H)(u, v) = max
(i,j)∈H

{
I(u+i, v+j) + H(i, j)

}
. (10.25)

Similarly, the result of grayscale erosion is the minimum of the differ-
ences,

(I �H)(u, v) = min
(i,j)∈H

{
I(u+i, v+j)−H(i, j)

}
. (10.26)

Figures 10.19 and 10.20 demonstrate the basic process of grayscale di-
lation and erosion, respectively, on a simple example. In general, either
operation may produce negative results that must be considered if the
2 ImageJ provides a single implementation of morphological operations that

handles both binary and grayscale images (see Sec. 10.5.5).
3 While a zero coefficient in a linear convolution matrix simply means that

the corresponding image pixel is ignored. 187
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Fig. 10.19
Grayscale dilation I ⊕ H . The
3 × 3 pixel structuring element

H is placed on the image I in the
upper left position. Each value

of H is added to the correspond-
ing element of I ; the intermediate

result (I + H) for this particu-
lar position is shown below. Its

maximum value 8 = 7 + 1 is in-
serted into the result (I ⊕ H) at
the current position of the filter

origin. The results for three other
filter positions are also shown.
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1 1 1

1 1
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I HHI
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Fig. 10.20
Grayscale erosion I � H . The

3 × 3 pixel structuring element H
is placed on the image I in the up-
per left position. Each value of H
is subtracted from the correspond-
ing element of I ; the intermediate

result (I − H) for this particu-
lar position is shown below. Its
minimum value 3−1 = 2 is in-

serted into the result (I � H) at
the current position of the filter

origin. The results for three other
filter positions are also shown.
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range of pixel values is restricted; for example, by clamping the results
(see Sec. 5.1.2). Some examples of grayscale dilation and erosion on
natural images using disk-shaped structuring elements of various sizes
are shown in Fig. 10.21. Figure 10.22 demonstrates the same operations
with some freely designed structuring elements.

10.4.3 Grayscale Opening and Closing

Opening and closing on grayscale images are defined, identical to the
binary case (Eqns. (10.20) and (10.21)), as operations composed of di-
lation and erosion with the same structuring element. Some examples
are shown in Fig. 10.23 for disk-shaped structuring elements and in Fig.
10.24 for various nonstandard structuring elements. Notice that inter-
esting effects can be obtained, particularly from structuring elements
resembling the shape of brush or other stroke patterns.
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Dilation Erosion

r = 2.5

r = 5.0

r = 10.0

Fig. 10.21
Grayscale dilation and erosion
with disk-shaped structuring ele-
ments. The radius r of the struc-
turing element is 2.5 (top), 5.0
(center), or 10.0 (bottom).

10.5 Implementing Morphological Filters

10.5.1 Binary Images in ImageJ

In ImageJ, binary images contain 8 bits per pixel, the same as ordinary
grayscale images.4 A zero intensity value is interpreted as a binary 0,
and any value greater than zero is considered a binary 1. Usually the
intensity values 0 and 255 are used to represent the binaries 0 and 1,
respectively, in which case the background pixels are displayed black and
the foreground pixels are white by default. If an inverted display (black
foreground) is desired, this can be easily accomplished by inverting the

4 ImageJ does not provide a special (1-bit) data format for binary images.
The class BinaryProcessor keeps image data as byte (8-bit) arrays, as does
ByteProcessor for grayscale images. 189
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Fig. 10.22
Grayscale dilation and

erosion with various free-
form structuring elements.

display function or lookup table (LUT) either interactively through the
menu

Image→Lookup Tables→Invert LUT

or within the Java program by invoking the ImageProcessor method

void invertLut()

on the corresponding ImageProcessor object. Any of these instructions
changes only the screen presentation of the current image but not its
contents (pixel values).190
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Opening Closing

r = 2.5

r = 5.0

r = 10.0

Fig. 10.23
Grayscale opening and closing
with disk-shaped structuring el-
ements. The radius r of the struc-
turing element is 2.5 (top), 5.0
(center), or 10.0 (bottom).

10.5.2 Dilation and Erosion

Most morphological operations are already implemented in ImageJ as
methods of the class ImageProcessor (see also Sec. 10.5.5); however,
they are restricted to structuring elements of size 3×3 pixels.

In the following, we describe a sample implementation of binary di-
lation for arbitrary structuring elements that can be used (due to the
duality of dilation and erosion; see Eqn. (10.16)) for implementing most
other morphological operations. Input to dilate() is a binary image
I with values 0 for the background and 255 for the foreground5 and a
two-dimensional structuring element H with 0/1-values whose origin (hot
spot) is assumed at its center:

1 import ij.process.Blitter;
2 import ij.process.ImageProcessor;

5 In fact, any value greater than 0 is considered a foreground pixel. 191



10 Morphological Filters

Fig. 10.24
Grayscale opening and

closing with various free-
form structuring elements.

3 ...
4 void dilate(ImageProcessor I, int[][] H){
5 //assume that the hot spot of H is at its center (ic,jc):
6 int ic = (H[0].length-1)/2;
7 int jc = (H.length-1)/2;
8
9 //create a temporary (empty) image:

10 ImageProcessor tmp
11 = I.createProcessor(I.getWidth(),I.getHeight());
12192
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13 for (int j=0; j<H.length; j++){
14 for (int i=0; i<H[j].length; i++){
15 if (H[j][i] > 0) { // this pixel is set
16 //copy image into position (i-ic,j-jc):
17 tmp.copyBits(I,i-ic,j-jc,Blitter.MAX);
18 }
19 }
20 }
21 //copy the temporary result back to original image
22 I.copyBits(np,0,0,Blitter.COPY);
23 }

The dilate()method destructively modifies the input image I. First
(in line 10), a temporary (empty) image tmp of the same size as I is
created, which is then modified and eventually (line 22) copied back to
replace the input image. The actual dilation is performed iteratively by
copying a shifted version of the original image into the temporary image
tmp for every position (i, j) of the structuring element with H(i, j) > 0.
This is done in line 17 using the ImageProcessor method copyBits()
with Blitter.MAX as the operation parameter (see also Sec. 5.8.3). If the
pixels are interpreted as binary values, the max-operation corresponds
to a logical OR operation between the pixels in the intermediate image
tmp and the shifted input image I.

Dilation is the only operation that must be implemented in detail
since erosion can be performed as a dilation of the background by in-
verting the image, performing a dilation, and inverting again (see Alg.
10.1):

24 void erode(ImageProcessor I, int[][] H) {
25 ip.invert();
26 dilate(ip, reflect(H));
27 ip.invert();
28 }

In the above, the method reflect(H) (line 26) returns a mirrored copy
of the structuring element H and invert() (lines 25, 27) is a standard
ImageJ method defined by the class ImageProcessor.

10.5.3 Opening and Closing

Opening and closing operations are now easy to implement as combi-
nations of dilation and erosion with the same structuring element H, as
described in Sec. 10.3:

29 void open(ImageProcessor I, int[][] H) {
30 erode(I,H);
31 dilate(I,H);
32 }

193



10 Morphological Filters 33 void close(ImageProcessor I, int[][] H) {
34 dilate(I,H);
35 erode(I,H);
36 }

10.5.4 Outline

To implement the outline operation for extracting the boundary pixels,
as described in Sec. 10.2.7, we use a 3 × 3 pixel structuring element H
to represent the 4-neighborhood. First we create a duplicate (Ie) of the
input image (I), which is then subject to erosion with H (line 43). The
boundary pixels are obtained by computing the difference between the
original and the eroded image (using the standard method copyBits()
with the argument Blitter.DIFFERENCE). In binary terms, this is an
exclusive-OR (XOR) operation between the pixels in I and Ie, which
implements the set intersection (see Eqn. (10.19)). The differencing op-
eration in line 44 stores its result in I, which finally contains the bound-
ary pixels of the foreground structures:

37 void outline(ImageProcessor I) {
38 int[][] H = { //4-neighborhood structuring element
39 {0,1,0},
40 {1,1,1},
41 {0,1,0}};
42 ImageProcessor Ie = I.duplicate();
43 erode(Ie,H); // I ′ ← I � H
44 I.copyBits(Ie,0,0,Blitter.DIFFERENCE); // I ← XOR(I, I ′)
45 }

10.5.5 Morphological Operations in ImageJ

Class ImageProcessor

ImageJ defines several methods for basic morphological operations in the
class ImageProcessor:

void dilate()
void erode()
void open()
void close()

All these methods apply a 3 × 3 pixel box-shaped structuring element
(see Fig. 10.11 (b)) and perform either binary or grayscale operations,
depending upon the image content. The class ColorProcessor uses
the same methods for RGB images by processing the color channels
individually like ordinary grayscale or binary images.194
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Fig. 10.25
Example of thinning with the
skeletonize() method: original
image and detail (a) and results
from thinning (b).

Class BinaryProcessor

The class BinaryProcessor (a subclass of ByteProcessor) offers the
specific morphological methods

void outline()
void skeletonize()

which are only defined for binary images. The method outline() imple-
ments the extraction of boundary pixels using an 8-neighborhood struc-
turing element, as described in Sec. 10.2.7.

The operation implemented by the method skeletonize() is often
referred to as “thinning” or “skeletonization”, which iteratively erodes
structures down to a thickness of 1 pixel without splitting them. This
requires a decision based on the current image content within the filter
region (typically of size 3×3 pixels) as to whether another erosion should
be applied or not. The operation repeats until no more changes can be
made to the result (see, e. g., [38, p. 535] or [59, p. 517] for details). The
actual implementation in ImageJ is based on an efficient algorithm by
Zhang and Suen [107], and an example of applying the skeletonize()
method is shown in Fig. 10.25.

The methods outline() and skeletonize() are only applicable to
objects of type BinaryProcessor, which can be created from existing 195



10 Morphological Filters ByteProcessor objects. This assumes, however, that the original image
contains only values of 0 (background) and 255 (foreground). The fol-
lowing example shows the use of outline() within the run() method
of an ImageJ plugin:

1 public void run(ImageProcessor ip) {
2 ByteProcessor byteP
3 = (ByteProcessor) ip.convertToByte(true); // scale!
4 BinaryProcessor binP
5 = new BinaryProcessor(byteP);
6 binP.outline();
7 ...
8 }

Notice that the new BinaryProcessor object binP does not allocate any
new image data but only references the data of the parent image byteP.
Thus any subsequent modification to binP (e. g., by invoking the method
outline()) is also visible in byteP.

Other morphological filters

In addition to the morphological operations implemented in ImageJ it-
self, there are additional plugins and complete morphological packages
available online,6 including the morphology operators by Gabriel Lan-
dini and the Grayscale Morphology package by Dimiter Prodanov, which
allows structuring elements to be interactively specified (a modified ver-
sion was used for some examples in this chapter).

10.6 Exercises

Exercise 10.1. Manually compute the results of dilation and erosion for
the following image I and the structuring elements H1 and H2:

I =

•
• • • • •

• • • • •
• • • •

• •
•

H1 =
•

•
•

H2 =
•

• • •
•

Exercise 10.2. Assume that a binary image I contains unwanted fore-
ground spots with a maximum diameter of 5 pixels that should be re-
moved without damaging the remaining structures. Design a suitable
morphological procedure, and evaluate its performance on appropriate
test images.

6 http://rsb.info.nih.gov/ij/plugins/.196



10.6 ExercisesExercise 10.3. Show that, in the special case of the structuring ele-
ments with the contents

• • •
• • •
• • •

for binary images and
0 0 0
0 0 0

0 0 0
for grayscale images,

dilation is equivalent to a 3 × 3 pixel maximum filter and erosion is
equivalent to a 3 × 3 pixel minimum filter (see Sec. 6.4.1).
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11

Regions in Binary Images

In binary images, a pixel can take on exactly one of two values. These
values are often thought of as representing the “foreground” and “back-
ground” in the image, even though these concepts often are not applica-
ble to natural scenes. In this chapter we focus on regions in images and
how to isolate and describe such structures.

Our primary task then is to devise a program to interpret the number
and type of objects in a figure like Fig. 11.1. As long as we continue to
consider each pixel in isolation, we will not be able to determine how
many objects there are overall in the image, where they are located, and
which pixels belong to which objects. Therefore our first step is to find
each object by grouping together all the pixels that belong to it. In the
simplest case, an object is a group of touching foreground pixels; that
is, a connected binary region.

Fig. 11.1
Binary image with nine objects.
Each object corresponds to a re-
gion of related foreground pixels.

199



11 Regions in Binary Images 11.1 Finding Image Regions

In the search for binary regions, the most important tasks are to find out
which pixels belong to which regions, how many regions are in the image,
and where these regions are located. These steps usually take place as
part of a process called region labeling or region coloring. During this
process, neighboring pixels are pieced together in a stepwise manner to
build regions in which all pixels within that region are assigned a unique
number (“label”) for identification. In the following sections, we describe
two variations on this idea. In the first method, region marking through
flood filling, a region is filled in all directions starting from a single point
or “seed” within the region. In the second method, sequential region
marking, the image is traversed from top to bottom, marking regions as
they are encountered. In Sec. 11.2.2, we describe a third method that
combines two useful processes, region labeling and contour finding, in a
single algorithm.

Independent of which of the methods above we use, we must first
settle on either the 4- or 8-connected definition of neighboring (Fig.
10.5) for determining when two pixels are “connected” to each other,
since under each definition we can end up with different results. In the
following region-marking algorithms, the resulting binary image I(u, v)
uses the values 0 for background and 1 for foreground, and any other
value can be used for numbering (labeling) the regions:

I(u, v) =

⎧⎨
⎩

0 background pixel
1 foreground pixel
2, 3, . . . region label.

11.1.1 Region Labeling with Flood Filling

The underlying algorithm for region marking using flood filling is simple:
search for an unmarked foreground pixel and then fill (visit and mark) all
the rest of the neighboring pixels in its region. This operation is called a
“flood fill” because it is as if a flood of water erupts at the start pixel and
flows out across a flat region. There are various methods for carrying out
the fill operation that ultimately differ in how to select the coordinates
of the next pixel to be visited during the fill. We present three different
ways of performing the FloodFill() procedure: a recursive version, an
iterative depth-first version, and an iterative breadth-first version (see
Alg. 11.1):

(A) Recursive Flood Filling: The recursive version (Alg. 11.1, lines
8–15) does not make use of explicit data structures to keep track of
the image coordinates but uses the local variables that are implic-
itly allocated by recursive procedure calls.1 Within each region, a

1 In Java, and similar imperative programming languages such as C and C++,
local variables are automatically stored on the call stack at each procedure
call and restored from the stack when the procedure returns.200



11.1 Finding Image Regions1: RegionLabeling(I)
I : binary image (0 = background, 1 = foreground)
The image I is labeled (destructively modified) and returned.

2: Initialize m ← 2 (the value of the next label to be assigned).
3: Iterate over all image coordinates (u, v).
4: if I(u, v) = 1 then
5: FloodFill(I, u, v, m) � use any of the 3 versions below
6: m ← m + 1.
7: return the labeled image I .

8: FloodFill(I,u, v, label) � Recursive Version
9: if coordinate (u, v) is within image boundaries and I(u, v) = 1 then

10: Set I(u, v) ← label
11: FloodFill(I, u+1, v, label)
12: FloodFill(I, u, v+1, label)
13: FloodFill(I, u, v−1, label)
14: FloodFill(I, u−1, v, label)
15: return.

16: FloodFill(I,u, v, label) � Depth-First Version
17: Create an empty stack S
18: Put the seed coordinate 〈u, v〉 onto the stack: Push(S, 〈u, v〉)
19: while S is not empty do
20: Get the next coordinate from the top of the stack:

〈x, y〉 ← Pop(S)
21: if coordinate (x, y) is within image boundaries and I(x, y) = 1

then
22: Set I(x, y) ← label
23: Push(S, 〈x+1, y〉)
24: Push(S, 〈x, y+1〉)
25: Push(S, 〈x, y−1〉)
26: Push(S, 〈x−1, y〉)
27: return.

28: FloodFill(I,u, v, label) � Breadth-First Version
29: Create an empty queue Q
30: Insert the seed coordinate 〈u, v〉 into the queue: Enqueue(Q, 〈u, v〉)
31: while Q is not empty do
32: Get the next coordinate from the front of the queue:

〈x, y〉 ← Dequeue(Q)
33: if coordinate 〈x, y〉 is within image boundaries and I(x, y) = 1

then
34: Set I(x, y) ← label
35: Enqueue(Q, 〈x+1, y〉)
36: Enqueue(Q, 〈x, y+1〉)
37: Enqueue(Q, 〈x, y−1〉)
38: Enqueue(Q, 〈x−1, y〉)
39: return.

Algorithm 11.1
Region marking using flood filling.
The binary input image I uses the
value 0 for background pixels and
1 for foreground pixels. Unmarked
foreground pixels are searched for,
and then the region to which they
belong is filled. Three variations
of the FloodFill() procedure are
presented: recursive, depth-first,
and breadth-first.
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11 Regions in Binary Images tree structure, rooted at the starting point, is defined by the neigh-
borhood relation between pixels. The recursive step corresponds
to a depth-first traversal [25] of this tree and results in very short
and elegant program code. Unfortunately, since the depth of the
recursion necessary is proportional to the size of the region, stack
memory is quickly exhausted. Therefore this method is risky and
really only practical for very small images.

(B) Iterative Flood Filling (depth-first): Every recursive algorithm
can also be reformulated as an iterative algorithm (Alg. 11.1, lines
16–27) by implementing and managing its own stacks. In this case,
the stack records the “open” (that is, the not yet visited) elements.
As in the recursive version (A), the tree of pixels is traversed depth-
first. By making use of its own dedicated stack (which is created in
the heap memory), the depth of the tree is no longer limited to the
size of the call stack.

(C) Iterative Flood Filling (breadth-first): In this version, pixels
are traversed in a way that resembles an expanding wave front prop-
agating out from the starting point (Alg. 11.1, lines 28–39). The
data structure used to hold the as yet unvisited pixel coordinates is
in this case a queue instead of a stack, but otherwise it is identical
to version B.

Java implementation

The recursive version (A) of the algorithm corresponds practically 1:1
to its Java implementation. However, a normal Java runtime does not
support more than about 10,000 recursive calls of the FloodFill()
procedure (Alg. 11.1, line 8) before the memory allocated for the call
stack is exhausted. This is only sufficient for relatively small images
with fewer than approximately 200× 200 pixels.

Program 11.1 gives the complete Java implementation for both vari-
ants of the iterative FloodFill() procedure. In line 1, a new Java class
Node is implemented to represent a single pixel coordinate.

In implementing the stack (S) in the iterative depth-first Version (B),
we use the stack data structure provided by the Java class Stack (Prog.
11.1, line 10), which serves as a container for generic Java objects. For
the queue data structure (Q) in the breadth-first variant (C), we use the
Java class LinkedList2 with the methods addFirst(), removeLast(),
and isEmpty() (Prog. 11.1, line 25). We have specified <Node> as a
parameter for both container classes (i. e., parameterized) so that only
objects of the type Node can be stored in these data structures.3

2 The class LinkedList is a part of the Java Collection Frameworks (see also
Appendix B, p. 462).

3 Generic types and templates (i. e., the ability to specify a parameterization
for a container) have only been available since Java 5 (1.5).202



11.1 Finding Image Regions1 class Node {
2 int x, y;
3
4 Node(int x, int y) { // constructor method
5 this.x = x;
6 this.y = y;
7 }
8 }

Depth-first variant (using a stack):

9 void floodFill(ImageProcessor ip, int x, int y, int label) {
10 Stack<Node> s = new Stack<Node>(); // stack
11 s.push(new Node(x,y));
12 while (!s.isEmpty()){
13 Node n = s.pop();
14 if ((n.x>=0) && (n.x<width) && (n.y>=0) && (n.y<height)
15 && ip.getPixel(n.x,n.y)==1) {
16 ip.putPixel(n.x,n.y,label);
17 s.push(new Node(n.x+1,n.y));
18 s.push(new Node(n.x,n.y+1));
19 s.push(new Node(n.x,n.y-1));
20 s.push(new Node(n.x-1,n.y));
21 }
22 }
23 }

Breadth-first variant (using a queue):

24 void floodFill(ImageProcessor ip, int x, int y, int label) {
25 LinkedList<Node> q = new LinkedList<Node>(); // queue
26 q.addFirst(new Node(x,y));
27 while (!q.isEmpty()) {
28 Node n = q.removeLast();
29 if ((n.x>=0) && (n.x<width) && (n.y>=0) && (n.y<height)
30 && ip.getPixel(n.x,n.y)==1) {
31 ip.putPixel(n.x,n.y,label);
32 q.addFirst(new Node(n.x+1,n.y));
33 q.addFirst(new Node(n.x,n.y+1));
34 q.addFirst(new Node(n.x,n.y-1));
35 q.addFirst(new Node(n.x-1,n.y));
36 }
37 }
38 }

Program 11.1
Flood filling (Java implementa-
tion). The depth-first variant uses
the stack operations provided
by the methods push(), pop(),
and isEmpty() of the Java class
Stack. The breadth-first variant
uses the Java class LinkedList
(with access methods addFirst()
for Enqueue() and removeLast()
for Dequeue()) for implementing
the queue data structure.

Figure 11.2 illustrates the progress of the region marking in both vari-
ants within an example region, where the start point (i. e., seed point),
which would normally lie on a contour edge, has been placed arbitrarily
within the region in order to better illustrate the process. It is clearly
visible that the depth-first method first explores one direction (in this 203



11 Regions in Binary Images case horizontally to the left) completely (that is, until it reaches the edge
of the region) and only then examines the remaining directions. In con-
trast the breadth-first method markings proceed outward, step by step,
equally in all directions.

Due to the way exploration takes place, the memory requirement of
the breadth-first variant of the flood-fill version is generally much lower
than that of the depth-first variant. For example, when flood filling the
region in Fig. 11.2 using the implementation given (Prog. 11.1), the stack
in the depth-first variant grows to a maximum of 28,822 elements, while
the queue used by the breadth-first variant never exceeds a maximum of
438 nodes.

11.1.2 Sequential Region Labeling

Sequential region marking is a classical, nonrecursive technique that is
known in the literature as “region labeling”. The algorithm consists in
essence of two steps: (1) a preliminary labeling of the image regions
and (2) resolving cases where more than one label occurs (i. e., has been
assigned in the previous step) in the same region. Even though this
algorithm is relatively complex, especially the second stage, its moderate
memory requirements have made it the method of choice in practice over
other simpler methods. The entire process is summarized in Alg. 11.2.

Stage 1: Preliminary labeling

In the first stage of region labeling, the image is traversed from top
left to bottom right sequentially to assign a preliminary label to every
foreground pixel. Depending on the definition of neighborhood (either
4- or 8-connected) used, the vicinity of each pixel must be examined (×
marks the actual pixel at the position (u, v)):

N4(u, v) =
N2

N1 × or N8(u, v) =
N2 N3 N4

N1 ×

When using the 4-connected neighborhood N4, only the two neighbors
N1 = I(u−1, v) and N2 = I(u, v−1) need to be considered, but when
using the 8-connected neighborhood N8, all four neighbors N1 . . . N4

must be examined. In the following example, we will use an 8-connected
neighborhood and the image from Fig. 11.3 (a).

Propagating labels

Again we assume that, in the image, the value I(u, v) = 0 represents
foreground pixels and the value I(u, v) = 1 represents background pixels.
We will also consider neighboring pixels that lie outside of the image
matrix (e. g., on the array borders) to be part of the background. The204



11.1 Finding Image Regions

Fig. 11.2
Iterative flood filling—comparison
between depth-first and breadth-
first variations. The starting
point, marked + in the original
image (a), was arbitrarily chosen.
Intermediate results of the flood
fill algorithm after 1000, 5000, and
10,000 marked pixels are shown
(b–d). The image size is 250 × 242
pixels.
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11 Regions in Binary Images

Algorithm 11.2
Sequential region labeling. The bi-
nary input image I uses the value

I(u, v) = 0 for background pix-
els and I(u, v) = 1 for foreground
(region) pixels. The resulting la-
bels have the values 2 . . . m−1.

1: SequentialLabeling(I)
I : binary image (0 = background, 1 = foreground)
The image I is labeled (destructively modified) and returned.

Pass 1—Assign Initial Labels:
2: Initialize m ← 2 (the value of the next label to be assigned).
3: Create an empty set C to hold the collisions: C ← {}.
4: for v ← 0 . . . H − 1 do � H = height of image I
5: for u ← 0 . . . W − 1 do � W = width of image I
6: if I(u, v) = 1 then do one of:
7: if all neighbors of (u, v) are background pixels (all ni = 0)

then
8: I(u, v) ← m.
9: m ← m + 1.

10: else if exactly one of the neighbors has a label value
nk > 1 then

11: set I(u, v) ← nk

12: else if several neighbors of (u, v) have label values nj > 1
then

13: Select one of them as the new label:
I(u, v) ← k ∈ {nj}.

14: for all other neighbors of u, v) with label values ni >1
and ni �=k do

15: Create a new label collision ci = 〈ni, k〉.
16: Record the collision: C ← C ∪ {ci}.

Remark: The image I now contains label values 0, 2, . . . m − 1.

Pass 2—Resolve Label Collisions:
17: Let L = {2, 3, . . . m − 1} be the set of preliminary region labels.
18: Create a partitioning of L as a vector of sets, one set for each label

value: R ← [R2,R3, . . . ,Rm−1] = [{2}, {3}, {4}, . . . , {m − 1}],
so Ri = {i} for all i ∈ L.

19: for all collisions 〈a, b〉 ∈ C do
20: Find in R the sets Ra, Rb containing the labels a, b, resp.:

Ra ← the set that currently contains label a
Rb ← the set that currently contains label b

21: if Ra �= Rb (a and b are contained in different sets) then
22: Merge sets Ra and Rb by moving all elements of Rb to Ra:

Ra ← Ra ∪Rb

Rb ← {}
Remark: All equivalent label values (i. e., all labels of pixels in the
same region) are now contained in the same set Ri within R.

Pass 3—Relabel the Image:
23: Iterate through all image pixels (u, v):
24: if I(u, v) > 1 then
25: Find the set Ri in R that contains label I(u, v).
26: Choose one unique representative element k from the set Ri

(e. g., the minimum value, k = min(Ri)).
27: Replace the image label: I(u, v) ← k.

28: return the labeled image I .
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11.1 Finding Image Regionsneighborhood region N (u, v) is slid over the image horizontally and then
vertically, starting from the top left corner. When the current image
element I(u, v) is a foreground pixel, it is either assigned a new region
number or, in the case where one of its previously examined neighbors
in N (u, v) was a foreground pixel, it takes on the region number of the
neighbor. In this way, existing region numbers propagate in the image
from the left to the right and from the top to the bottom as in (Fig.
11.3 (b, c)).

Label collisions

In the case where two or more neighbors have labels belonging to differ-
ent regions, then a label collision has occurred; that is, pixels within a
single connected region have different labels. For example, in a U -shaped
region, the pixels in the left and right arms are at first assigned different
labels since it is not immediately apparent that they are actually part of
a single region. The two labels will propagate down independently from
each other until they eventually collide in the lower part of the U (Fig.
11.3 (d)).

When two labels a, b collide, then we know that they are actually
“equivalent”; i. e., they are contained in the same image region These
collisions are registered but otherwise not dealt with during the first step.
Once all collisions have been registered, they are then resolved during the
second step of the algorithm. The number of collisions depends on the
content of the image. There can be only a few, or very many, collisions,
and the exact number is only known at the end of the first step, once the
whole image has been traversed. For this reason, collision management
must make use of dynamic data structure such as lists and hash tables.
Upon the completion of the first steps, all the original foreground pixels
have been provisionally marked, and all the collisions between markings
within the same regions have been registered for subsequent processing.

The example in Fig. 11.4 illustrates the state upon completion of
step 1: all foreground pixels have been assigned preliminary labels (Fig.
11.4 (a)), and the following collisions (depicted by circles) between the
labels 〈2, 4〉, 〈2, 5〉, and 〈2, 6〉 have been registered. The labels L =
{2, 3, 4, 5, 6, 7} and collisions C = {〈2, 4〉, 〈2, 5〉, 〈2, 6〉} correspond to the
nodes and edges of an undirected graph (Fig. 11.4 (b)).

Step 2: Resolving collisions

The task in the second step is to resolve the label collisions that arose
in the first step in order to merge the corresponding “partial” regions.
This process is nontrivial since it is possible for two regions with different
labels to be connected transitively (e. g., 〈a, b〉 ∩ 〈b, c〉 ⇒ 〈a, c〉 ) through
a third region or, more generally, through a series of regions. In fact, this
problem is identical to the problem of finding the connected components
of a graph [25], where the labels L determined in Step 1 constitute the 207



11 Regions in Binary Images

Fig. 11.3
Sequential region labeling—label
propagation. Original image (a).
The first foreground pixel [1] is
found in (b): all neighbors are
background pixels [0], and the
pixel is assigned the first label
[2]. In the next step, (c) is ex-

actly one neighbor pixel with the
label 2 marked, so this value is

propagated. In (d) there are two
neighboring pixels, and they have
differing labels (2 and 5); one of
these values is propagated, and
the collision 〈2,5〉 is registered.
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one of the labels (2) is propagated

“nodes” of the graph and the registered collisions C make up its “edges”
(Fig. 11.4 (b)).

Once all the distinct labels within a single region have been collected,
the labels of all the pixels in the region are updated so they have the
same value (for example, using the smallest original label in the region)
as in Fig. 11.5.
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Fig. 11.4
Sequential region labeling—
intermediate result after Step 1.
Label collisions indicated by cir-
cles (a); the nodes of the undi-
rected graph (b) correspond to the
labels, and its edges correspond to
the collisions.
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Fig. 11.5
Sequential region labeling—final
result after Step 2. All equivalent
labels are replaced by the smallest
label within that region.

11.1.3 Region Labeling—Summary

In this section, we described a selection of algorithms for finding and
labeling connected regions in images. We discovered that the elegant idea
of labeling individual regions using a simple recursive flood-filling (Sec.
11.1.1) method was not useful because of practical limits on the depth
of recursion and the high memory costs associated with it. We also saw
that classical sequential region labeling (Sec. 11.1.2) is relatively complex
and offers no real advantage over iterative implementations of the depth-
first and breadth-first methods. In practice, the iterative breadth-first
method is generally the best choice for large and complex images.

11.2 Region Contours

Once the regions in a binary image have been found, the next step is
often to find the contours (that is, the outlines) of the regions. Like so
many other tasks in image processing, at first glance this appears to be an
easy task: simply follow along the edge of the region. We will see that,
in actuality, describing this apparently simple process algorithmically
requires careful thought, which has made contour finding one of the
classic problems in image analysis.

11.2.1 External and Internal Contours

As we have already seen in Sec. 10.2.7, the pixels along the edge of a
binary region (that is, its border) can be identified using simple morpho-
logical operations and difference images. It must be stressed, however, 209



11 Regions in Binary Images

Fig. 11.6
Example of a complete region la-

beling. The pixels within each
region have been colored accord-
ing to the consecutive label val-

ues 2, 3, . . . 10 they were assigned.
The corresponding region statis-
tics are shown in the table below
(total image size is 1212 × 836).

Area Bounding Box Center
Label (pixels) (left, top, right, bottom) (xc, yc)

2 14978 (887, 21, 1144, 399) (1049.7, 242.8)
3 36156 ( 40, 37, 438, 419) ( 261.9, 209.5)
4 25904 (464, 126, 841, 382) ( 680.6, 240.6)
5 2024 (387, 281, 442, 341) ( 414.2, 310.6)
6 2293 (244, 367, 342, 506) ( 294.4, 439.0)
7 4394 (406, 400, 507, 512) ( 454.1, 457.3)
8 29777 (510, 416, 883, 765) ( 704.9, 583.9)
9 20724 (833, 497, 1168, 759) (1016.0, 624.1)
10 16566 ( 82, 558, 411, 821) ( 208.7, 661.6)

that this process only marks the pixels along the contour, which is use-
ful, for instance, for display purposes. In this section, we will go one
step further and develop an algorithm for obtaining an ordered sequence
of border pixels for describing a region’s contour.

Note that connected image regions contain exactly one outer con-
tour, yet, due to holes, they can contain arbitrarily many inner contours.
Within such holes, smaller regions may be found, which will again have
their own outer contours, and in turn these regions may themselves con-
tain further holes with even smaller regions, and so on in a recursive
manner (Fig. 11.7).

An additional complication arises when regions are connected by
parts that taper down to the width of a single pixel. In such cases,
the contour can run through the same pixel more than once and from
different directions (Fig. 11.8). Therefore, when tracing a contour from
a start point xS , returning to the start point is not a sufficient condition
for terminating the contour tracing. Other factors, such as the current
direction along which the contour is being traced, must be taken into
account.210



11.2 Region Contours

Fig. 11.7
Binary image with outer and in-
ner contours. The outer contour
lies along the outside of the fore-
ground region (dark). The in-
ner contour surrounds the space
within the region, which may con-
tain further regions (holes), and so
on in a recursive manner.

xS

Fig. 11.8
The path along a contour as an
ordered sequence of pixel coordi-
nates with a given start point xS.
Individual pixels may occur (be
visited) more than once within the
path, and a region consisting of a
single isolated pixel will also have
a contour (bottom right).

One apparently simple way of determining a contour is to proceed
based on the two-stage idea presented in the previous section (11.1);
that is, to first identify the connected regions in the image and second,
for each region, proceed around it, starting from a pixel selected from
its border. In a similar way, the internal contour can be found starting
from a region’s interior. A wide range of algorithms based on first finding
the regions and then following along their contours have been published,
including [84], [77, pp. 142–148], and [90, p. 296], and while the idea
is simple in essence, the implementation requires careful record-keeping
and is complicated by special cases such as the single-pixel bridges de-
scribed in the previous section.

As an alternative, we present the following combined algorithm that,
in contrast to the classical methods above, combines contour finding and
region labeling in a single process.

211



11 Regions in Binary Images 11.2.2 Combining Region Labeling and Contour Finding

This method, based on [23], combines the concepts of sequential region
labeling (Sec. 11.1) and traditional contour tracing into a single algo-
rithm able to perform both tasks simultaneously during a single pass
through the image. It identifies and labels regions and at the same time
traces both their inner and outer contours. The algorithm does not re-
quire a complicated data structures and is very efficient when compared
with other methods with similar capabilities.

We now sketch the fundamental idea of the algorithm. While the
main idea of the algorithm can be sketched out in a few simple steps,
the actual implementation requires attention to a number of details,
so we have provided the complete Java source for an ImageJ plugin
implementation in Appendix D (pp. 532–542). The most important steps
of the method are illustrated in Fig. 11.9:

1. As in the sequential region labeling (Alg. 11.2), the binary image I
is traversed from the top left to the bottom right. Such a traversal
ensures that all pixels in the image are eventually examined and
assigned an appropriate label.

2. At a given position in the image, the following cases may occur:
Case A: The transition from a foreground pixel to a previously
unmarked foreground pixel A means that A lies on the outer edge
of a new region. A new label is allocated and the associated outer
contour is traversed and marked by calling the method TraceCon-
tour() (see Fig. 11.9 (a) and Alg. 11.3 (line 20)). Furthermore, all
background pixels directly bordering the region are marked with the
value −1.
Case B: The transition from a foreground pixel B to an unmarked
background pixel means that B lies on the edge of an inner contour
(Fig. 11.9 (b)). Starting from B, the inner contour is traversed and
its pixels are labeled with labels from the surrounding region (Fig.
11.9 (c)). Also, all bordering background pixels are again assigned
the value of −1.
Case C: When a foreground pixel does not lie on a contour (i. e.,
it is not on an edge), then the neighboring pixel to the left has al-
ready been labeled (Fig. 11.9 (d)) and this label is propagated to the
current pixel.

In Algs. 11.3 and 11.4, the entire procedure is presented again and ex-
plained precisely. The method CombinedContourLabeling() tra-
verses the image line-by-line and calls the method TraceContour()
whenever a new inner or outer contour must be traced. The labels of the
image elements along the contour, as well as the neighboring foreground
pixels, are stored in the “label map” LM by the method FindNext-
Point() (Alg. 11.4).212



11.2 Region Contours· · · A

B

(a) (b)

B
C

(c) (d)

Fig. 11.9
Combined region labeling and con-
tour following (after [23]). The
image is traversed from the top
left to the lower right a row at
a time. In (a), the first point A
on the outer edge of the region is
found. Starting from point A, the
pixels on the edge along the outer
contour are visited and labeled un-
til A is reached again. In (b), the
first point B on an inner contour
is found. The pixels along the in-
ner contour are visited and labeled
until arriving back at B (c). In
(d), an already labeled point C on
an inner contour is found. Its label
is propagated along the image row
within the region.

11.2.3 Implementation

The complete implementation of the algorithm in Java (ImageJ) can
be found in Appendix D (beginning on page 532). The implementa-
tion closely follows the description in Algs. 11.3 and 11.4 but illustrates
several additional details:4

• First the image I (pixelMap) and the associated label map LM
(labelMap) are enlarged by adding one pixel around the borders.
The new pixels are marked as background (0) in the image I. This
simplifies contour following and eliminates the need to handle a num-
ber of special situations.

• As contours are found they are stored in an object of the class
ContourSet, separated into outer and inner contours. The con-
tours themselves are represented by the classes OuterContour and
InnerContour, with a common superclass Contour. Every contour
consists of an ordered sequence of coordinate points of the class Node

4 In the following description the names in parentheses after the algorithmic
symbols denote the corresponding identifiers used in the Java implementa-
tion. 213



11 Regions in Binary Images

Algorithm 11.3
Combined contour tracing and
region labeling. Given a binary

image I , the method Combined-
ContourLabeling() returns a

set of contours and an array con-
taining region labels for all pixels
in the image. When a new point
on either an outer or inner con-
tour is found, then an ordered

list of the contour’s points is con-
structed by calling the method

TraceContour() (line 20 and
line 27). TraceContour() it-

self is described in Alg. 11.4.

1: CombinedContourLabeling (I)
I : binary image
Returns a set of contours and a label map (labeled image).

2: Create an empty set of contours: C ← {}
3: Create a label map LM of the same size as I and initialize:
4: for all (u, v) do
5: LM (u, v) ← 0 � label map LM
6: R ← 0 � region counter R

7: Scan the image from left to right and top to bottom:
8: for v ← 0 . . . N−1 do
9: Lk ← 0 � current label Lk

10: for u ← 0 . . . M−1 do
11: if I(u, v) is a foreground pixel then
12: if (Lk �= 0) then � continue existing region
13: LM (u, v) ← L
14: else
15: Lk ← LM (u, v)
16: if (Lk = 0) then � hit new outer contour
17: R ← R + 1
18: Lk ← R
19: xS ← (u, v)
20: couter ← TraceContour(xS, 0, Lk, I,LM )
21: C ← C ∪ {couter} � collect new contour
22: LM (u, v) ← Lk

23: else � I(u, v) is a background pixel
24: if (L �= 0) then
25: if (LM (u, v) = 0) then � hit new inner contour
26: xS ← (u−1, v)
27: cinner ← TraceContour(xS, 1, Lk, I,LM )
28: C ← C ∪ {cinner} � collect new contour
29: L ← 0
30: return (C,LM ). � return the set of contours and the label map

continued in Alg. 11.4 ��

(defined on p. 203). The Java container class ArrayList (templated
on the type Node) is used as a dynamic data structure for storing
the point sequences of the outer and inner contours.

• The method traceContour() (see p. 538) traverses an outer or inner
contour, beginning from the starting point xS (xS, yS). It calls the
method findNextPoint(), to determine the next contour point xT

(xT, yT) following xS :

– In the case that no following point is found, then xS = xT

and the region (contour) consists of a single isolated pixel. The
method traceContour() is finished.

– In the other case the remaining contour points are found by re-
peatedly calling findNextPoint(), and for every successive pair
of points the current point xc (xC, yC) and the previous point xp214



11.2 Region Contours1: TraceContour(xS , dS, Lk, I,LM )
xS : start position, dS: initial search direction,
Lc: label for this contour
I : original image, LM : label map.
Traces and returns the contour starting at xS .

2: (xT , dnext) ← FindNextPoint(xS, dS , I,LM )
3: c ← [xT ] � create a contour starting with xT

4: xp ← xS � previous position xp = (up, vp)
5: xc ← xT � current position xc = (uc, vc)
6: done ← (xS ≡ xT ) � isolated pixel?
7: while (¬done) do
8: LM (uc, vc) ← Lc

9: dsearch ← (dnext + 6) mod 8
10: (xn, dnext) ← FindNextPoint(xc, dsearch, I,LM )
11: xp ← xc

12: xc ← xn

13: done ← (xp ≡ xS ∧ xc ≡ xT ) � back at start point?
14: if (¬done) then
15: Append(c, xn) � add point xn to contour c
16: return c. � return this contour

17: FindNextPoint(xc, d, I,LM )
xc: start point, d: search direction,
I : original image, LM : label map.

18: for i ← 0 . . . 6 do � search in 7 directions
19: x′ ← xc + Delta(d) � x′ = (u′, v′)
20: if I(u′, v′) is a background pixel then
21: LM (u′, v′) ← −1 � mark background as visited (−1)
22: d ← (d + 1) mod 8
23: else � found a nonbackground pixel at x′

24: return (x′, d)
25: return (xc, d). � found no next point, return start point

26: Delta(d) = (Δx, Δy), with
d 0 1 2 3 4 5 6 7

Δx 1 1 0 −1 −1 −1 0 1
Δy 0 1 1 1 0 −1 −1 −1

Algorithm 11.4
Combined contour finding and re-
gion labeling (continued from Alg.
11.3). Starting from xS , the pro-
cedure TraceContour traces
along the contour in the direc-
tion dS = 0 for outer contours
or dS = 1 for inner contours.
During this process, all contour
points as well as neighboring back-
ground points are marked in the
label array LM . Given a point xc,
TraceContour uses FindNext-
Point() to determine the next
point along the contour (line 10).
The function Delta() returns the
next coordinate in the sequence,
taking into account the search di-
rection d.

(xP, yP) are recorded. Only when both points correspond to the
original starting points on the contour, xp = xS and xc = xT ,
we know that the contour has been completely traversed.

• The method findNextPoint() (see p. 539 ) determines which point
on the contour follows the current point xc (Xc) by searching in
the direction d (dir), depending upon the position of the previous
contour point. Starting in the first search direction, up to seven
neighboring pixels (all neighbors except the previous contour point)
are searched in clockwise direction until the next contour point is
found. At the same time, all background pixels in the label map
LM (labelMap) are marked with the value −1 to prevent them from
being searched again. If no valid contour point is found among the 215



11 Regions in Binary Images

Program 11.2
Example of using the
class ContourTracer.

1 import java.util.ArrayList;
2 ...
3 public class Trace_Contours implements PlugInFilter {
4 public void run(ImageProcessor ip) {
5 ContourTracer tracer = new ContourTracer(ip);
6 ContourSet cs = tracer.getContours();
7 // process outer and inner contours:
8 ArrayList<Contour> outer = cs.outerContours;
9 ArrayList<Contour> inner = cs.innerContours;

10 ...
11 }
12 }

seven possible neighbors, then findNextPoint() returns the original
point xc (Xc).

In this implementation the core of the algorithm is contained in the class
ContourTracer (pp. 536–541). Program 11.2 provides an example of its
usage within the run() method of an ImageJ plugin. An interesting
detail is the class ContourOverlay (pp. 541–542) that is used to dis-
play the resulting contours by a vector graphics overlay. In this way
graphic structures that are smaller and thinner than image pixels can be
visualized on top of ImageJ’s raster images at arbitrary magnification
(zooming).

11.2.4 Example

This combined algorithm for region marking and contour following is
particularly well suited for processing large binary images since it is effi-
cient and has only modest memory requirements. Figure 11.10 shows a
synthetic test image that illustrates a number of special situations, such
as isolated pixels and thin sections, which the algorithm must deal with
correctly when following the contours. In the resulting plot, outer con-
tours are shown as black polygon lines running trough the centers of the
contour pixels, and inner contours are drawn white. Contours of single-
pixel regions are marked by small circles filled with the corresponding
color. Figure 11.11 shows the results for a larger section taken from a
real image (Fig. 10.12).

11.3 Representing Image Regions

11.3.1 Matrix Representation

A natural representation for images is a matrix (that is, a two-dimensional
array) in which elements represent the intensity or the color at a corre-
sponding position in the image. This representation lends itself, in most216



11.3 Representing Image
Regions

Fig. 11.10
Combined contour and region
marking: original image in gray
(a), located contours (b) with
black lines for out and white lines
for inner contours. The contour
consisting of singe isolated pixels
(for example, in the upper-right of
(b)) are marked by a single circle
in the approriate color.

Fig. 11.11
Example of a complex contour (in
a section cut from Fig. 10.12).
Outer contours are marked in
black and inner contours in white.

programming languages, to a simple and elegant mapping onto two-
dimensional arrays, which makes possible a very natural way to work
with raster images. One possible disadvantage with this representation
is that it does not depend on the content of the image. In other words, it
makes no difference whether the image contains only a pair of lines or is
of a complex scene because the amount of memory required is constant
and depends only on the dimensions of the image. 217
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Fig. 11.12
Use of a binary mask to spec-
ify a region of an image: orig-

inal image (a), logical (bit)
mask (b), and masked image (c).

Fig. 11.13
Run length encoding in row di-

rection. A run of pixels can
be represented by its starting
point (1, 2) and its length (6).

Bitmap RLE

0 1 2 3 4 5 6 7 8

0

1 × × × × × ×
2

3 × × × ×
4 × × × × × ×
5 × × × × × × × × ×
6

→

〈row, column, length〉

〈1, 2, 6〉
〈3, 4, 4〉
〈4, 1, 3〉
〈4, 5, 3〉
〈5, 0, 9〉

Regions in an image can be represented using a logical mask in which
the area within the region is assigned the value true and the area without
the value false (Fig. 11.12). Since Boolean values can be represented by
a single bit, such a matrix is often referred to as a “bitmap”.5

11.3.2 Run Length Encoding

In run length encoding (RLE), sequences of adjacent foreground pixels
can be represented compactly as “runs”. A run, or contiguous block, is
a maximal length sequence of adjacent pixels of the same type within
either a row or a column. Runs of arbitrary length can be encoded
compactly using three integers,

Runi = 〈rowi, columni, lengthi〉,

two to represent the starting pixel (row, column) and a third for the
length of the run as illustrated in Fig. 11.13. When representing a se-
quence of runs within the same row, the number of the row is redundant
and can be left out. Also, in some applications, it is more useful to
record the coordinate of the end column instead of the length of the run.

Since the RLE representation can be easily implemented and effi-
ciently computed, it has long been used as a simple lossless compression
method. It forms the foundation for fax transmission and can be found in
5 In Java, variables of the type boolean are represented internally within the

Java virtual machine (JVM) as 32-bit ints. There is currently no direct
way to implement genuine bitmaps in Java.218
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Fig. 11.14
Chain codes with 4- and 8-
connected neighborhoods. To com-
pute a chain code, begin traversing
the contour from a given starting
point xS. Encode the relative po-
sition between adjacent contour
points using the directional code
for either 4-connected (left) or 8-
connected (right) neighborhoods.
The length of the resulting path,
calculated as the sum of the indi-
vidual segments, can be used to
approximate the true length of the
contour.

a number of other important codecs, including TIFF, GIF, and JPEG. In
addition, RLE provides precomputed information about the image that
can be used directly when computing certain properties of the image (for
example, statistical moments; see Sec. 11.4.3).

11.3.3 Chain Codes

Regions can be represented not only using their interiors but also by
their contours. Chain codes, which are often referred to as Freeman
codes [35], are a classical method of contour encoding. In this encoding,
the contour beginning at a given start point xS is represented by the
sequence of directional changes it describes on the discrete image raster
(Fig. 11.14).

Absolute chain code

For a closed contour of a region R, described by the sequence of points
cR = [x0, x1, . . .xM−1] with xi = 〈ui, vi〉, we create the elements of its
chain code sequence c′R = [c′0, c

′
1, . . . c

′
M−1] by

c′i = Code(Δui, Δvi), (11.1)

where (Δui, Δvi) =

{
(ui+1−ui, vi+1−vi) for 0 ≤ i < M−1

(u0−ui, v0−vi) for i = M−1,

and Code(Δu, Δv) being defined by the following table:6

6 Assuming an 8-connected neighborhood. 219



11 Regions in Binary Images Δu 1 1 0 −1 −1 −1 0 1
Δv 0 1 1 1 0 −1 −1 −1

Code(Δu, Δv) 0 1 2 3 4 5 6 7

Chain codes are compact since instead of storing the absolute coordi-
nates for every point on the contour, only that of the starting point
is recorded. The remaining points are encoded relative to the starting
point by indicating in which of the eight possible directions the next
point lies. Since only 3 bits are required to encode these eight directions
the values can be stored using a smaller numeric type.

Differential chain code

Directly comparing two regions represented using chain codes is difficult
since the description depends on the starting point selected xS , and
for instance simply rotating the region by 90◦ results in a completely
different chain code. When using a differential chain code, the situation
improves slightly. Instead of encoding the difference in the position of
the next contour point, the change in the direction along the discrete
contour is encoded. A given absolute chain code c′R = [c′0, c′1, . . . c′M−1]
can be converted element by element to a differential chain code c′′R =
[c′′0 , c′′1 , . . . c′′M−1], with

c′′i =

{
(c′i+1 − c′i) mod 8 for 0 ≤ i < M−1

(c′0 − c′i) mod 8 for i = M−1,
(11.2)

again under the assumption of an 8-connected neighborhood.7 The ele-
ment c′′i thus describes the change in direction (curvature) of the contour
between two successive segments c′i and c′i+1 of the original chain code
c′R. For the contour in Fig. 11.14 (b), the results are

c′R = [5, 4, 5, 4, 4, 5, 4, 6, 7, 6, 7, . . .2, 2, 2],
c′′R = [7, 1, 7, 0, 1, 7, 2, 1, 7, 1, 1, . . .0, 0, 3].

Given the starting point xS and the (absolute) initial direction c0, the
original contour can be unambiguously reconstructed from the differen-
tial chain code.

Shape numbers

While the differential chain code remains the same when a region is
rotated by 90◦, the encoding is still dependent on the selected starting
point. If we want to determine the similarity of two contours of the
same length M using their differential chain codes c′′1 , c′′2 , we must first
ensure that the same start point was used when computing the codes.
7 See Appendix B.1.2 for implementing the mod operator used in Eqn. (11.2).220
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A method that is often used [5,38] is to interpret the elements c′′i in the
differential chain code as the digits of a number to the base b (b = 8
for an 8-connected contour or b = 4 for a 4-connected contour) and the
numeric value

Val(c′′R) = c′′0 · b0 + c′′1 · b1 + . . . + c′′M−1 · bM−1

=
M−1∑
i=0

c′′i · bi. (11.3)

Then the sequence c′′R is shifted cyclically until the numeric value of
the corresponding number reaches a maximum. We use the expression
c′′R�k to denote the sequence c′′R being cyclically shifted by k positions
to the right,8 such as (for k = 2)

c′′R = [ 0, 1, 3, 2, . . .9, 3, 7, 4 ]
c′′R�2 = [ 7, 4, 0, 1, 3, 2, . . .9, 3 ]

and
kmax = arg max

0≤k<M
Val(c′′R�k) (11.4)

to denote the shift required to maximize the corresponding arithmetic
value. The resulting code sequence or shape number,

sR = c′′R�kmax, (11.5)

is normalized with respect to the starting point and can thus be directly
compared element by element with other normalized code sequences.
Since the function Val() in Eqn. (11.3) produces values that are in gen-
eral too large to be actually computed, in practice the relation

Val(c′′1 ) > Val(c′′2)

is determined by comparing the lexicographic ordering between the se-
quences c′′1 and c′′2 so that the arithmetic values need not be computed
at all.

Unfortunately, comparisons based on chain codes are generally not
very useful for determining the similarity between regions simply be-
cause rotations at arbitrary angles (�= 90◦) have too great of an impact
(change) on a region’s code. In addition, chain codes are not capable
of handling changes in size (scaling) or other distortions. Section 11.4
presents a number of tools that are more appropriate in these types of
cases.

Fourier descriptors

An elegant approach to describing contours are so-called Fourier de-
scriptors, which interpret the two-dimensional contour cR = [x0, x1, . . .

8 (c′′
R �k)[ i ] = c′′

R[(i − k) mod M ]. 221



11 Regions in Binary Images xM−1] with xi = (ui, vi) as a sequence of values [z0, z1 . . . zM−1] in the
complex plane, where

zi = (ui + i · vi) ∈ C. (11.6)

From this sequence, one obtains (using a suitable method of interpo-
lation in case of an 8-connected contour), a discrete, one-dimensional
periodic function f(s) ∈ C with a constant sampling interval over s, the
path length around the contour. The coefficients of the one-dimensional
Fourier spectrum (see Sec. 13.3) of this function f(s) provide a shape
description of the contour in frequency space, where the lower spectral
coefficients deliver a gross description of the shape. The details of this
classical method can be found for example in [38, 41, 59, 60, 95].

11.4 Properties of Binary Regions

Imagine that you have to describe the contents of a digital image to
another person over the telephone. One possibility would be to call out
the value of each pixel in some agreed upon order. A much simpler way
of course would be to describe the image on the basis of its properties—
for example, “a red rectangle on a blue background”, or at an even higher
level such as “a sunset at the beach with two dogs playing in the sand”.
While using such a description is simple and natural for us, it is not (yet)
possible for a computer to generate these types of descriptions without
human intervention. For computers, it is of course simpler to calculate
the mathematical properties of an image or region and to use these as the
basis for further classification. Using features to classify, be they images
or other items, is a fundamental part of the field of pattern recognition, a
research area with many applications in image processing and computer
vision [27, 75, 98].

11.4.1 Shape Features

The comparison and classification of binary regions is widely used, for
example, in optical character recognition (OCR) and for automating pro-
cesses ranging from blood cell counting to quality control inspection of
manufactured products on assembly lines. The analysis of binary regions
turns out to be one of the simpler tasks for which many efficient algo-
rithms have been developed and used to implement reliable applications
that are in use every day.

By a feature of a region, we mean a specific numerical or qualitative
value that is computable from the values and coordinates of the pixels
that make up the region. As an example, one of the simplest features is
its size; that is the number of pixels that make up a region. In order to
describe a region in a compact form, different features are often combined
into a feature vector. This vector is then used as a sort of “signature”222
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for the region that can be used for classification or comparison with
other regions. The best features are those that are simple to calculate
and are not easily influenced (robust) by irrelevant changes, particularly
translation, rotation, and scaling.

11.4.2 Geometric Features

A region R of a binary image can be interpreted as a two-dimensional
distribution of foreground points xi = (ui, vi) within the discrete plane
Z

2,

R = {x0, x1 . . . xN−1} = {(u0, v0), (u1, v1) . . . (uN−1, vN−1)}.

Most geometric properties are defined in such a way that a region is
considered to be a set of pixels that, in contrast to the definition in Sec.
11.1, does not necessarily have to be connected.

Perimeter

The perimeter (or circumference) of a region R is defined as the length
of its outer contour, where R must be connected. As illustrated in Fig.
11.14, the type of neighborhood relation must be taken into account for
this calculation. When using a 4-neighborhood, the measured length of
the contour (except when that length is 1) will be larger than its actual
length. In the case of 8-neighborhoods, a good approximation is reached
by weighing vertical segments with 1 and diagonal segments with

√
2.

Given an 8-connected chain code c′R = [c′0, c
′
1, . . . c

′
M−1], the perimeter

of the region is arrived at by

Perimeter(R) =
M−1∑
i=0

length(c′i) (11.7)

with length(c) =
{

1 for c = 0, 2, 4, 6,√
2 for c = 1, 3, 5, 7.

However, with this conventional method of calculation,9 the real perime-
ter (P (R)) is systematically overestimated. As a simple remedy, a gen-
eral correction factor of 0.95 works satisfactory even for relatively small
regions:

P (R) ≈ Perimetercorr(R) = 0.95 · Perimeter(R). (11.8)

9 The function used in ImageJ’s Analyze menu uses this method of perimeter
computation. 223



11 Regions in Binary Images Area

The area of a regionR can be found by simply counting the image pixels
that make up the region,

A(R) = |R| = N. (11.9)

The area of a connected region without holes can also be approximated
from its closed contour, defined by M coordinate points (x0, x1, . . .
xM−1), where xi = (ui, vi), using the Gaussian area formula for poly-
gons:

A(R) ≈ 1
2
·
∣∣∣∣∣

M−1∑
i=0

(
ui · v(i+1) mod M − u(i+1) mod M · vi

)∣∣∣∣∣ . (11.10)

When the contour is already encoded as a chain code c′R = [c′0, c
′
1, . . .

c′M−1], then the region’s area can be computed using Eqn. (11.10) by ex-
panding c′R into a sequence of contour points, using an arbitrary starting
point (e. g., (0, 0)).

While simple region properties such as area and perimeter are not
influenced (except for quantization errors) by translation and rotation of
the region, they are definitely affected by changes in size; for example,
when the object to which the region corresponds is imaged from different
distances. However, as described below, it is possible to specify combined
features that are invariant to translation, rotation, and scaling as well.

Compactness and roundness

Compactness is understood as the relation between a region’s area and
its perimeter. We can use the fact that a region’s perimeter P increases
linearly with the enlargement factor while the area A increases quadrat-
ically to see that, for a particular shape, the ratio A/P 2 should be the
same at any scale. This ratio can thus be used as a feature that is invari-
ant under translation, rotation, and scaling. When applied to a circular
region of any diameter, this ratio has a value of 1

4π , so by normaliz-
ing it against a filled circle, we create a feature that is sensitive to the
roundness or circularity of a region,

Circularity(R) = 4π · A(R)
P 2(R)

, (11.11)

which results in a maximum value of 1 for a perfectly round region R
and a value in the range [0, 1) for all other shapes (Fig. 11.15). If an ab-
solute value for a region’s roundness is required, the corrected perimeter
estimate (Eqn. (11.8)) should be employed:

Circularity(R) ≈ 4π · A(R)
Perimeter2corr(R)

. (11.12)

Figure 11.15 shows the circularity values of different regions as computed
with the formulation in Eqn. (11.12).224
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Fig. 11.15
Circularity values for different
shapes. Shown are the correspond-
ing Circularity(R) estimates as de-
fined in Eqn. (11.12).

Fig. 11.16
Example bounding box (a) and
convex hull (b) of a binary image
region.

Bounding box

The bounding box of a region R is the minimal axis-parallel rectangle
that encloses all points of R,

BoundingBox(R) = 〈umin, umax, vmin, vmax〉, (11.13)

where umin, umax and vmin, vmax are the minimal and maximal coordinate
values of all points (ui, vi) ∈ R in the x and y directions, respectively
(Fig. 11.16 (a)).

Convex hull

The convex hull is the smallest polygon within which all points in the
region fit. A physical analogy is a board in which nails stick out in
correspondence to each of the points in the region. If you were to place
an elastic band around all the nails, then, when you release it, it will
contract into a convex hull around the nails (Fig. 11.16 (b)). The convex
hull can be computed digitally using the QuickHull algorithm [6] for N
contour points in time complexity O(NH), where H is the number of
points in the polygon of the resulting convex hull.10

The convex hull is useful, for example, for determining the convexity
or the density of a region. The convexity is defined as the relationship
10 For O() complexity notation, see Appendix A (p. 454). 225



11 Regions in Binary Images between the length of the convex hull and the original perimeter of the
region. Density is then defined as the ratio between the area of the
region and the area of its convex hull. The diameter, on the other hand,
is the maximal distance between any two nodes on the convex hull.

11.4.3 Statistical Shape Properties

When computing statistical shape properties, we consider a region R to
be a collection of coordinate points distributed within a two-dimensional
space. Since statistical properties can be computed for point distribu-
tions that do not form a connected region, they can be applied before
segmentation. An important concept in this context are the central mo-
ments of the region’s point distribution, which measure characteristic
properties with respect to its midpoint or centroid.

Centroid

The centroid or center of gravity of a connected region can be easily
visualized. Imagine drawing the region on a piece of cardboard or tin
and then cutting it out and attempting to balance it on the tip of your
finger. The location on the region where you must place your finger in
order for the region to balance is the centroid of the region.11

The centroid x̄ = (x̄, ȳ) of a binary (not necessarily connected) region
is the arithmetic mean of the coordinates in the x and y directions,

x̄ =
1
|R| ·

∑
(u,v)∈R

u and ȳ =
1
|R| ·

∑
(u,v)∈R

v . (11.14)

Moments

The formulation of the region’s centroid in Eqn. (11.14) is only a special
case of the more general statistical concept of a moment. Specifically,
the expression

mpq =
∑

(u,v)∈R
I(u, v) · upvq (11.15)

describes the (ordinary) moment of the order p, q for a discrete (image)
function I(u, v) ∈ R; for example, a grayscale image. All the following
definitions are also generally applicable to regions in grayscale images.
The moments of connected binary regions can also be computed directly
from the coordinates of the contour points [89, p. 148].

In the special case of a binary image I(u, v) ∈ {0, 1}, only the fore-
ground pixels with I(u, v) = 1 in the region R need to be considered,
and therefore Eqn. (11.15) can be simplified to
11 Assuming you did not imagine a region where the centroid lies outside of

the region or within a hole in the region, which is of course possible.226
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mpq =
∑

(u,v)∈R
upvq. (11.16)

In this way, the area of a binary region can be expressed as the zero-order
moment,

A(R) = |R| =
∑

(u,v)∈R
1 =

∑
(u,v)∈R

u0v0 = m00(R), (11.17)

and similarly the centroid x̄ Eqn. (11.14) as

x̄ =
1
|R| ·

∑
(u,v)∈R

u1v0 =
m10(R)
m00(R)

, (11.18)

ȳ =
1
|R| ·

∑
(u,v)∈R

u0v1 =
m01(R)
m00(R)

. (11.19)

These moments thus represent concrete physical properties of a region.
Specifically, the area m00 is in practice an important basis for character-
izing regions, and the centroid (x̄, ȳ) permits the reliable and (within a
fraction of a pixel) exact specification of a region’s position.

Central moments

To compute position-independent (translation-invariant) region features,
the region’s centroid, which can be determined precisely in any situation,
can be used as a reference point. In other words, we can shift the origin
of the coordinate system to the region’s centroid x̄ = (x̄, ȳ) to obtain
the central moments of order p, q:

μpq(R) =
∑

(u,v)∈R
I(u, v) · (u − x̄)p · (v − ȳ)q. (11.20)

For a binary image (with I(u, v) = 1 within the region R), Eqn. (11.20)
can be simplified to

μpq(R) =
∑

(u,v)∈R
(u − x̄)p · (v − ȳ)q. (11.21)

Normalized central moments

Central moment values of course depend on the absolute size of the region
since the value depends directly on the distance of all region points to
its centroid. So, if a 2D shape is scaled uniformly by some factor s ∈ R,
its central moments multiply by the factor

s(p+q+2). (11.22) 227



11 Regions in Binary Images Thus size-invariant (normalized) moments are obtained by normalizing
with the reciprocal of the area μ00 = m00 raised to the required power
in the form

μ̄pq(R) = μpq ·
( 1

μ00(R)

)(p+q+2)/2

(11.23)

for (p + q) ≥ 2 [59, p. 529].
Program 11.3 gives a direct (brute force) conversion of the calcula-

tions for ordinary, central, and normalized central moments in Java for
binary images (BACKGROUND = 0). This implementation is only meant
to clarify the computation, and naturally much more efficient implemen-
tations are possible (for example, [61]).

11.4.4 Moment-Based Geometrical Properties

While normalized moments can be directly applied for classifying regions,
further interesting and geometrically relevant features can be elegantly
derived from moments.

Orientation

Orientation describes the direction of the major axis, that is the axis that
runs through the centroid and along the widest part of the region (Fig.
11.18 (a)). Since rotating the region around the major axis requires less
effort (least moment of inertia) than spinning it around any other axis,
it is sometimes referred to as the major axis of rotation. As an example,
when you hold a pencil between your hands and twist it around its
major axis (that is, around the lead), the pencil exhibits the least mass
inertia (Fig. 11.17). As long as a region exhibits an orientation at all
(μ20(R) �= μ02(R)), the direction θR of the major axis can be found
directly from the central moments μpq as

tan(2 θR) =
2 · μ11(R)

μ20(R) − μ02(R)
(11.24)

and therefore

θR =
1
2

tan−1

(
2 · μ11(R)

μ20(R) − μ02(R)

)
. (11.25)

The resulting angle θR is in the range [−π
2 , π

2 ].12 Orientation measure-
ments based on region moments are very accurate in general.

12 See Appendix B.1.6 concerning the computation of angles in Java using
Math.atan2().228
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1 import ij.process.ImageProcessor;
2

3 public class Moments {
4 static final int BACKGROUND = 0;
5

6 static double moment(ImageProcessor ip,int p,int q) {
7 double Mpq = 0.0;
8 for (int v = 0; v < ip.getHeight(); v++) {
9 for (int u = 0; u < ip.getWidth(); u++) {

10 if (ip.getPixel(u,v) != BACKGROUND) {
11 Mpq += Math.pow(u, p) * Math.pow(v, q);
12 }
13 }
14 }
15 return Mpq;
16 }

17 static double centralMoment(ImageProcessor ip,int p,int q)
18 {
19 double m00 = moment(ip, 0, 0); // region area
20 double xCtr = moment(ip, 1, 0) / m00;
21 double yCtr = moment(ip, 0, 1) / m00;
22 double cMpq = 0.0;
23 for (int v = 0; v < ip.getHeight(); v++) {
24 for (int u = 0; u < ip.getWidth(); u++) {
25 if (ip.getPixel(u,v) != BACKGROUND) {
26 cMpq +=
27 Math.pow(u - xCtr, p) *
28 Math.pow(v - yCtr, q);
29 }
30 }
31 }
32 return cMpq;
33 }

34 static double normalCentralMoment
35 (ImageProcessor ip,int p,int q) {
36 double m00 = moment(ip, 0, 0);
37 double norm = Math.pow(m00, (double)(p + q + 2) / 2);
38 return centralMoment(ip, p, q) / norm;
39 }
40
41 } // end of class Moments

Program 11.3
Example of directly computing
moments in Java. The methods
moment(), centralMoment(), and
normalCentralMoment() compute
for a binary image the moments
mpq, μpq , and μ̄pq (Eqns. (11.16),
(11.21), and (11.23)).

Computing orientation vectors
When visualizing region properties, a frequent task is to plot the region’s
orientation as a line or arrow, that are usually anchored at the center of
gravity x̄ = (x̄, ȳ); for example, by a parametric line of the form

x = x̄ + λ · xd =
(

x̄
ȳ

)
+ λ ·

(
cos(θR)
sin(θR)

)
, (11.26)
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Fig. 11.17
Major axis of a region. Rotat-

ing an elongated region R, inter-
preted as a physical body, around
its major axis requires less effort

(least moment of inertia) than ro-
tating it around any other axis.

Fig. 11.18
Region orientation and eccen-

tricity. The major axis of the re-
gion extends through its center

of gravity x̄ at the orientation θ.
Note that angles are in the range

[−π
2
, +π

2
] and increment in the

clockwise direction because the y
axis of the image coordinate sys-
tem points downward (in this ex-

ample, θ ≈ −0.759 ≈ −43.5◦). The
eccentricity of the region is defined
as the ratio between the lengths of
the major axis (ra) and the minor

axis (rb) of the “equivalent” ellipse.

for some length λ > 0. To find the unit orientation vector xd =
(cos θ, sin θ)T , we could first compute the inverse tangent to get 2θ (Eqn.
(11.25)) and then compute the cosine and sine of θ. However, the vector
xd can also be obtained without using trigonometric functions as follows.
Rewriting Eqn. (11.24) as

tan(2θR) =
2 · μ11(R)

μ20(R) − μ02(R)
=

A

B
=

sin(2θR)
cos(2θR)

(11.27)

we get (by Pythagoras theorem)

sin(2θR) =
A√

A2+B2
and cos(2θR) =

B√
A2+B2

,

where A = 2μ11(R) and B = μ20(R) − μ02(R). Using the relations
cos2α = 1

2 [1 + cos(2α)] and sin2α = 1
2 [1− cos(2α)], we can compute the

region’s orientation vector xd = (xd, yd)T as230
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Regionsxd = cos(θR) =

⎧⎨
⎩

0 for A = B = 0[
1
2

(
1+ B√

A2+B2

)] 1
2

otherwise,
(11.28)

yd = sin(θR) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for A = B = 0[
1
2

(
1− B√

A2+B2

)] 1
2

for A ≥ 0

−
[

1
2

(
1− b√

A2+B2

)] 1
2

for A < 0,

(11.29)

straight from the central region moments μ11(R), μ20(R), and μ02(R), as
defined in Eqn. (11.27). The horizontal component (xd) in Eqn. (11.28)
is always positive, while the case switch in Eqn. (11.29) corrects the
sign of the vertical component (yd) to map to the same angular range
[−π

2 , +π
2 ] as Eqn. (11.25). The resulting vector xd is normalized (i. e.,

‖(xd, yd)‖ = 1) and could be scaled arbitrarily for display purposes by
a suitable length λ, for example, using the region’s eccentricity value
described below.

Eccentricity

Similar to the region orientation, moments can also be used to deter-
mine the “elongatedness” or eccentricity of a region. A naive approach
for computing the eccentricity could be to rotate the region until we can
fit a bounding box (or enclosing ellipse) with a maximum aspect ratio.
Of course this process would be computationally intensive simply be-
cause of the many rotations required. If we know the orientation of the
region (Eqn. (11.25)), then we may fit a bounding box that is parallel
to the region’s major axis. In general, the proportions of the region’s
bounding box is not a good eccentricity measure anyway because it does
not consider the distribution of pixels inside the box.

Based on region moments, highly accurate and stable measures can
be obtained without any iterative search or optimization. Also, moment-
based methods do not require knowledge of the boundary length (as
required for computing the circularity feature in Sec. 11.4.2), and they
can also handle nonconnected regions or point clouds. Several different
formulations of region eccentricity can be found in the literature [5,59,60]
(see also Exercise 11.11). We adopt the following definition because of
its simple geometrical interpretation:

Ecc(R) =
a1

a2
=

μ20 + μ02 +
√

(μ20 − μ02)2 + 4 · μ2
11

μ20 + μ02 −
√

(μ20 − μ02)2 + 4 · μ2
11

, (11.30)

where a1 = 2λ1, a2 = 2λ2 are multiples of the eigenvalues λ1, λ2 of the
symmetric 2 × 2 matrix

A =
(

μ20 μ11

μ11 μ02

)
231
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Fig. 11.19
Orientation and eccentricity ex-
amples. The orientation θ (Eqn.

(11.25)) is displayed for each con-
nected region as a vector with the
length proportional to the region’s

eccentricity value Ecc(R) (Eqn.
(11.30)). Also shown are the el-

lipses (Eqns. (11.31) and (11.32))
corresponding to the orienta-

tion and eccentricity parameters.

formed by the central moments μpq of the region R. The values of
Ecc are in the range [1,∞), where Ecc = 1 corresponds to a circular
disk and elongated regions have values > 1. Ecc itself is invariant to
the region’s orientation and size. However, the values a1, a2 contain
information about the spatial extent of the region. Geometrically, the
eigenvalues λ1, λ2 (and thus a1, a2) directly relate to the proportions of
the “equivalent” ellipse, positioned at the region’s center of gravity (x̄, ȳ)
and oriented at θ = θR Eqn. (11.25). The lengths of the major and
minor axes, ra and rb, are

ra = 2 ·
( λ1

|R|
) 1

2
=
(2 a1

|R|
) 1

2
, (11.31)

rb = 2 ·
( λ2

|R|
) 1

2
=
(2 a2

|R|
) 1

2
, (11.32)

respectively, with a1, a2 as defined in Eqn. (11.30) and |R| being the
number of pixels in the region. The resulting parametric equation of
this ellipse is(

x(t)
y(t)

)
=
(

x̄
ȳ

)
+
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
·
(

ra · cos(t)
rb · sin(t)

)

=
(

x̄ + cos(θ) · ra · cos(t) − sin(θ) · rb · sin(t)
ȳ + sin(θ) · ra · cos(t) + cos(θ) · rb · sin(t)

)
(11.33)

for 0 ≤ t < 2π. If entirely filled, the region described by this ellipse would
have the same central moments as the original region R. Figure 11.19
shows a set of regions with overlaid orientation and eccentricity results.
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11.4 Properties of Binary
Regions

Invariant moments

Normalized central moments are not affected by the translation or uni-
form scaling of a region (i. e., the values are invariant), but in general
rotating the image will change these values. A classical solution to this
problem is a clever combination of simpler features known as “Hu’s Mo-
ments” [48]:13

H1 = μ̄20 + μ̄02, (11.34)
H2 = (μ̄20 − μ̄02)2 + 4 μ̄2

11,

H3 = (μ̄30 − 3 μ̄12)2 + (3 μ̄21 − μ̄03)2,
H4 = (μ̄30 + μ̄12)2 + (μ̄21 + μ̄03)2,
H5 = (μ̄30 − 3 μ̄12) · (μ̄30 + μ̄12) ·

[
(μ̄30 + μ̄12)2 − 3(μ̄21 + μ̄03)2

]
+ (3 μ̄21 − μ̄03) · (μ̄21 + μ̄03) ·

[
3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]
,

H6 = (μ̄20 − μ̄02) ·
[
(μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]
+ 4 μ̄11 · (μ̄30 + μ̄12) · (μ̄21 + μ̄03),

H7 = (3 μ̄21 − μ̄03) · (μ̄30 + μ̄12) ·
[
(μ̄30 + μ̄12)2 − 3 (μ̄21 + μ̄03)2

]
+ (3 μ̄12 − μ̄30) · (μ̄21 + μ̄03) ·

[
3 (μ̄30 + μ̄12)2 − (μ̄21 + μ̄03)2

]
.

In practice, the logarithm of the results (that is, log(Hk)) is used since
the raw values can have a very large range. These features are also
known as moment invariants since they are invariant under translation,
rotation, and scaling. While defined here for binary images, they are
also applicable to grayscale images; for further information, see [38, p.
517].

11.4.5 Projections

Image projections are one-dimensional representations of the image con-
tents, usually computed parallel to the coordinate axis; in this case, the
horizontal, as well as the veritcal, projection of an image I(u, v), with
0 ≤ u < M , 0 ≤ v < N , defined as

Phor(v0) =
M−1∑
u=0

I(u, v0) for 0 < v0 < N, (11.35)

Pver(u0) =
N−1∑
v=0

I(u0, v) for 0 < u0 < M. (11.36)

The horizontal projection Phor(v0) (Eqn. (11.35)) is the sum of the pixel
values in the image row v0 and has length N corresponding to the height
13 In order to improve the legibility of Eqn. (11.34) the argument for the region

(R) has been dropped; as an example, with the region argument, the first
line would read H1(R) = μ̄20(R) + μ̄02(R), and so on. 233



11 Regions in Binary Images

Program 11.4
Computation of horizontal and
vertical projections. The run()

method for an ImageJ plugin
(ip is of type ByteProcessor

or ShortProcessor) computes
the projections in x and y di-

rections simultaneously in a
a single traversal of the im-

age. The projections are repre-
sented by the one-dimensional

arrays horProj and verProj
with elements of type int.

1 public void run(ImageProcessor ip) {
2 int M = ip.getWidth();
3 int N = ip.getHeight();
4 int[] horProj = new int[N];
5 int[] verProj = new int[M];
6 for (int v = 0; v < N; v++) {
7 for (int u = 0; u < M; u++) {
8 int p = ip.getPixel(u, v);
9 horProj[v] += p;

10 verProj[u] += p;
11 }
12 }
13 // use projections horProj, verProj now
14 // ...
15 }

of the image. On the other hand, a vertical projection Pver of length M
is the sum of all the values in the image column u0 (Eqn. (11.36)). In
the case of a binary image with I(u, v) ∈ 0, 1, the projection contains
the count of the foreground pixels in the corresponding image row or
column.

Program Prog. 11.4 gives a direct implementation of the projection
calculations as the run() method for an ImageJ plugin, where projec-
tions in both directions are computed during a single traversal of the
image.

Projections in the direction of the coordinate axis are often utilized
to quickly analyze the structure of an image and isolate its component
parts; for example, in document images it is used to separate graphic
elements from text blocks as well as to isolate individual lines (see the
example in Fig. 11.20). In practice, especially to account for document
skew, projections are often computed along the major axis of an image
region Eqn. (11.25). When the projection vectors of a region are com-
puted in reference to the centroid of the region along the major axis,
the result is a rotation-invariant vector description (often referred to as
a “signature”) of the region.

11.4.6 Topological Properties

Topological features do not describe the shape of a region in continuous
terms; instead, they capture its structural properties. Topological prop-
erties are typically invariant even under strong image transformations.
The convexity of a region, which can be calculated from the convex hull
(Sec. 11.4.2), is also a topological property.

A simple and robust topological feature is the number of holes NL(R)
in a region. This feature is easily determined while finding the inner
contours of a region, as described in Sec. 11.2.2.234



11.5 Exercises

Fig. 11.20
Example of the horizontal projec-
tion (right) and vertical projection
(bottom) of a binary image.

A feature that can be derived from the number of holes is the so-
called Euler number NE , which is the difference between the number of
connected regions NR and the number of their holes NL,

NE(R) = NR(R) −NL(R). (11.37)

When dealing with single connected regions, the formula simplifies to
1−NL. So, for a picture of the number “8”, for example, NE = 1−2 = −1
and for the letter “D” NE = 1 − 1 = 0.

Topological features are often used in combination with numerical
features for classification. A classic example of this combination is OCR
(optical character recognition) [16].

11.5 Exercises

Exercise 11.1. Trace, by hand, the execution of both variations (depth-
first and breadth-first) of the flood-fill algorithm using the following im-
age region and starting at coordinates (5, 1):
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Background

Foreground

Exercise 11.2. The implementation of the flood-fill algorithm in Prog.
11.1 places all the neighboring pixels of each visited pixel into either the
stack or the queue without ensuring they are foreground pixels and that 235



11 Regions in Binary Images they lie within the image boundaries. The number of items in the stack or
the queue can be reduced by ignoring (not inserting) those neighboring
pixels that do not meet the two conditions given above. Modify the
depth-first and breadth-first variants given in Prog. 11.1 accordingly and
compare the new running times.

Exercise 11.3. Implement an ImageJ plugin that encodes a grayscale
image using run length encoding (Sec. 11.3.2) and stores it in a file.
Develop a second plugin that reads the file and reconstructs the image.

Exercise 11.4. Calculate the amount of memory required to represent
a contour with 1000 points in the following ways: (a) as a sequence of
coordinate points stored as pairs of int values; (b) as an 8-chain code
using Java byte elements, and (c) as an 8-chain code using only 3 bits
per element.

Exercise 11.5. Implement a Java class for describing a binary image
region using chain codes. It is up to you, whether you want to use
an absolute or differential chain code. The implementation should be
able to encode closed contours as chain codes and also reconstruct the
contours given a chain code.

Exercise 11.6. While computing the convex hull of a region, the max-
imal diameter (maximum distance between two arbitrary points) can
also be simply found. Devise an alternative method for computing this
feature without using the convex hull. Determine the running time of
your algorithm in terms of the number of points in the region.

Exercise 11.7. Implement an algorithm for comparing contours using
their shape numbers Eqn. (11.3). For this purpose, develop a metric for
measuring the distance between two normalized chain codes. Describe
if, and under which conditions, the results will be reliable.

Exercise 11.8. Using Eqn. (11.10) as the basis, develop and implement
an algorithm that computes the area of a region from its 8-chain code
encoded contour. What type of discrepancy from the region’s actual
area (the number of pixels it contains) do you expect?

Exercise 11.9. Sketch an example binary region where the centroid lies
outside of the region.

Exercise 11.10. Implement the moment features developed by Hu (Eqn.
(11.34)) and show that they are invariant under scaling and rotation for
both binary and grayscale images.

Exercise 11.11. There are alternative definitions for the eccentricity of
a region Eqn. (11.30); for example,236



11.5 Exercises
Ecc2(R) =

(
μ20 − μ02

)2 + 4 · μ2
11(

μ20 + μ02

)2 [60, p. 394],

Ecc3(R) =
(μ20 − μ02)2 + 4 · μ11

m00
[59, p. 531],

Ecc4(R) =
√

μ20 − μ02 + 4 · μ11

m00
[5, p. 255].

Implement all four variations (including the one in Eqn. (11.30)) and
contrast the results using suitably designed regions. Determine how
these measures work and what their range of values is, and propose a
geometrical interpretation for each.

Exercise 11.12. Write an ImageJ plugin that (a) finds (labels) all re-
gions in a binary image, (b) computes the orientation and eccentricity
for each region, and (c) shows the results as a direction vector and the
equivalent ellipse on top of each region (as exemplified in Fig. 11.19).
Hint: Use Eqn. (11.33) to develop a method for drawing ellipses at ar-
bitrary orientations (not available in ImageJ).

Exercise 11.13. The Java method in Prog. 11.4 computes an image’s
horizontal and vertical projections. For document image processing, pro-
jections in the diagonal directions are also useful. Implement these pro-
jections and consider what role they play in document image analysis.
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12

Color Images

Color images are involved in every aspect of our lives, where they play an
important role in everyday activities such as television, photography, and
printing. Color perception is a fascinating and complicated phenomenon
that has occupied the interest of scientists, psychologists, philosophers,
and artists for hundreds of years [88, 92]. In this chapter, we focus on
those technical aspects of color that are most important for working with
digital color images. Our emphasis will be on understanding the various
representations of color and correctly utilizing them when programming.

12.1 RGB Color Images

The RGB color schema encodes colors as combinations of the three pri-
mary colors: red (R), green (G), and blue (B). This scheme is widely
used for transmission, representation, and storage of color images on
both analog devices such as television sets and digital devices such as
computers, digital cameras, and scanners. For this reason, many image-
processing and graphics programs use the RGB schema as their internal
representation for color images, and most language libraries, including
Java’s imaging APIs, use it as their standard image representation.

RGB is an additive color system, which means that all colors start
with black and are created by adding the primary colors. You can think
of color formation in this system as occurring in a dark room where you
can overlay three beams of light—one red, one green, and one blue—on
a sheet of white paper. To create different colors, you would modify the
intensity of each of these beams independently. The distinct intensity
of each primary color beam controls the shade and brightness of the
resulting color. The colors gray and white are created by mixing the three
primary color beams at the same intensity. A similar operation occurs 239



12 Color Images on the screen of a color television or CRT1-based computer monitor,
where tiny, close-lying dots of red, green, and blue phosphorous are
simultaneously excited by a stream of electrons to distinct energy levels
(intensities), creating a seemingly continuous color image.

The RGB color space can be visualized as a three-dimensional unit
cube in which the three primary colors form the coordinate axis. The
RGB values are positive and lie in the range [0, Cmax]; for most digital
images, Cmax = 255. Every possible color Ci corresponds to a point
within the RGB color cube of the form

Ci = (Ri, Gi, Bi),

where 0 ≤ Ri, Gi, Bi ≤ Cmax. RGB values are often normalized to the
interval [0, 1] so that the resulting color space forms a unit cube (Fig.
12.1). The point S = (0, 0, 0) corresponds to the color black, W =
(1, 1, 1) corresponds to the color white, and all the points lying on the
diagonal between S and W are shades of gray created from equal color
components R = G = B.

Fig. 12.1
Representation of the RGB color
space as a three-dimensional unit

cube. The primary colors red (R),
green (G), and blue (B) form the

coordinate system. The “pure”
red color (R), green (G), blue
(B), cyan (C), magenta (M),
and yellow (Y) lie on the ver-
tices of the color cube. All the

shades of gray, of which K is
an example, lie on the diagonal
between black S and white W.

RGB Value
Point Color R G B

S Black 0.00 0.00 0.00
R Red 1.00 0.00 0.00
Y Yellow 1.00 1.00 0.00
G Green 0.00 1.00 0.00
C Cyan 0.00 1.00 1.00
B Blue 0.00 0.00 1.00
M Magenta 1.00 0.00 1.00
W White 1.00 1.00 1.00
K 50% Gray 0.50 0.50 0.50

R75 75% Red 0.75 0.00 0.00
R50 50% Red 0.50 0.00 0.00
R25 25% Red 0.25 0.00 0.00
P Pink 1.00 0.50 0.50

Figure 12.2 shows a color test image and its corresponding RGB
color components, displayed here as intensity images. We will refer to
this image in a number of examples that follow in this chapter.

RGB is a very simple color system, and as demonstrated in Sec. 12.2,
a basic knowledge of it is often sufficient for processing color images or
transforming them into other color spaces. In this color space, we will
not be able to determine what color a particular RGB pixel corresponds
to in the real world, or even what the primary colors red, green, and
blue truly mean in a physical sense. While the simple RGB color system
does not permit us to answer questions like these, we will return to them
when we cover the CIE color space (Sec. 12.3.1).

1 Cathode ray tube.240



12.1 RGB Color Images

Fig. 12.2
A color image and its correspond-
ing RGB channels. The fruits de-
picted are mainly yellow and red
and therefore have high values in
the R and G channels. In these
regions, the B content is corre-
spondingly lower (represented here
by darker gray values) except for
the bright highlights on the apple,
where the color changes gradu-
ally to white. The tabletop in the
foreground is violet and therefore
displays correspondingly higher
values in its B channel.

12.1.1 Organization of Color Images

Color images are represented in the same way as grayscale images, by
using an array of pixels in which different models are used to order
the individual color components. In the next sections we will examine
the difference between true color images, which utilize colors uniformly
selected from the entire color space, and so-called palleted or indexed
images, in which only a select set of distinct colors are used. Selecting
which type of image to use depends on the requirements of the applica-
tion.

True color images

A pixel in a true color image can represent any color in its color space,
as long as it falls within the (discrete) range of its individual color com-
ponents. True color images are appropriate when the image contains
many colors with subtle differences, as occurs in digital photography
and photo-realistic computer graphics. Next we look at two methods of
ordering the color components in true color images: component ordering
and packed ordering. 241



12 Color Images Component ordering

In component ordering (also referred to as planar ordering) the color
components are laid out in separate arrays of identical dimensions. In
this case, the color image

I = 〈IR, IG, IB〉

can be thought of as a group of related intensity images IR, IG, and
IB (Fig. 12.3), and the RGB component values of the color image I at
position (u, v) are obtained by accessing all three intensity images as
follows: ⎛

⎝R
G
B

⎞
⎠←

⎛
⎝IR(u, v)

IG(u, v)
IB(u, v)

⎞
⎠ . (12.1)

Packed ordering

In packed ordering, the component values that represent the color of a
particular pixel are packed together into a single element of the image
array (Fig. 12.4) so that

I(u, v) = 〈R, G, B〉.

The RGB value of a packed image I at the location (u, v) is obtained by
accessing the individual components of the color pixel as follows:⎛

⎝R
G
B

⎞
⎠←

⎛
⎝ Red(I(u, v))

Green(I(u, v))
Blue(I(u, v))

⎞
⎠ . (12.2)

The access functions, Red(), Green(), Blue(), will depend on the specific
implementation used for encoding the color pixels.

Fig. 12.3
RGB color image in component
ordering. The three color com-

ponents are laid out in separate
arrays IR, IG, IB of the same size.

3 component arrays

IR

IG

IB

u

v
IR(u, v)
IG(u, v)

IB(u, v)
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12.1 RGB Color ImagesRGB Pixel Array

R G B

u

v

I(u, v)

Fig. 12.4
RGB-color image using packed
ordering. The three color com-
ponents R, G, and B are placed
together in a single array element.

Indexed images

Indexed images permit only a limited number of distinct colors and there-
fore are used mostly for illustrations and graphics that contain large re-
gions of the same color. Often these types of images are stored in indexed
GIF or PNG files for use on the Web. In these indexed images, the pixel
array does not contain color or brightness data but instead consists of
integer numbers k that are used to index into a color table or “palette”

P [k] = (PR[k], PG[k], PB[k]) ,

for k = 0 . . .N −1 (Fig. 12.5). N is the size of the color table and
therefore also the maximum number of distinct image colors (typically
N = 2 to 256). Since the color table can contain any RGB color value
〈PR, PG, PB〉, it must be saved as part of the image. The RGB com-
ponent values of an indexed image Iidx at location (u, v) are obtained
as ⎛

⎝R
G
B

⎞
⎠←

⎛
⎝PR[k]

PG[k]
PB[k]

⎞
⎠ =

⎛
⎝ rk

gk

bk

⎞
⎠ , (12.3)

with k = Iidx(u, v). During the transformation from a true color image
to an indexed image (for example, from a JPEG image to a GIF image),

Image Iidx(u,v)

Color Table P

Index PR PG PB

u

v

r0 g0 b0

r1 g1 b1

r2 g2 b2

rk gk bk

rN−1 gN−1 bN−1

0

1

2

k k

N−1

Fig. 12.5
RGB indexed image. Instead of
a full color value, each pixel in
Iidx(u,v) contains an index k. The
color value for each k is defined
by an entry in the color table or
“palette” P [k].
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12 Color Images the problem of optimal color reduction, or color quantization, arises.
Color quantization is the process of determining an optimal color table
and then mapping it to the original colors. This process is described in
detail in the color quantization section (Sec. 12.5).

12.1.2 Color Images in ImageJ

ImageJ provides two simple types of color images:

• RGB full-color images (24-bit “RGB color”)
• Indexed images (“8-bit color”)

RGB true color images

RGB color images in ImageJ use a packed order (see Sec. 12.1.1), where
each color pixel is represented by a 32-bit int value. As Fig. 12.6 illus-
trates, 8 bits are used to represent each of the RGB components, which
limits the range of the individual components to 0 to 255. The remaining
8 bits are reserved for the transparency,2 or alpha (α), component. This
is also the usual ordering in Java3 for RGB color images.

Fig. 12.6
Construction of an RGB color

pixel in Java. Within a 32-
bit int, 8 bits are allocated,

in the following order, for
each of the color components
R, G, B as well as the trans-

parency α (unused in ImageJ).

�� �� �� 	�� �� 
 �
Bits

α R G B

Accessing RGB pixel values

RGB color images are represented by an array of pixels, the elements of
which are standard Java ints. To disassemble the packed int value into
the three color components, you apply the appropriate bitwise shifting
and masking operations. In the following example, we assume that the
image processor ip contains an RGB color image:

1 int c = ip.getPixel(u,v); // a color pixel
2 int r = (c & 0xff0000) >> 16; // red value
3 int g = (c & 0x00ff00) >> 8; // green value
4 int b = (c & 0x0000ff); // blue value

In this example ,each of the RGB components of the packed pixel c are
isolated using a bitwise AND operation (&) with an appropriate bit mask

2 The transparency value α (alpha) represents the ability to see through a
color pixel onto the background. At this time, the α channel is unused in
ImageJ.

3 Java Advanced Window Toolkit (AWT).244



12.1 RGB Color Images
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Fig. 12.7
Decomposition of a 32-bit RGB
color pixel using bit operations.
The R component (bits 16–23) of
the RGB pixels C (above) is iso-
lated using a bitwise AND opera-
tion (&) together with a bit mask
M = 0xff0000. All bits except the
R component are set to the value
0, while the bit pattern within the
R component remains unchanged.
This bit pattern is subsequently
shifted 16 positions to the right
(»), so that the R component is
moved into the lowest 8 bits and
its value lies in the range of 0 to
255. During the shift operation,
zeros are filled in from the left.

(following convention, bit masks are given in hexadecimal4 notation),
and afterwards the extracted bits are shifted right 16 (for R) or 8 (for
G) bit positions (see Fig. 12.7).

The “construction” of an RGB pixel from the individual R, G, and
B values is done in the opposite direction using the bitwise OR operator
(|) and shifting the bits left («):

1 int r = 169; // red value
2 int g = 212; // green value
3 int b = 17; // blue value
4 int c = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
5 ip.putPixel(u,v,C);

Masking the component values with 0xff works in this case because
except for the bits in positions 0 to 7 (values in the range 0 to 255), all the
other bits are already set to zero. A complete example of manipulating
an RGB color image using bit operations is presented in Prog. 12.1.
Instead of accessing color pixels using ImageJ’s access functions, these
programs directly access the pixel array for increased efficiency (see also
Sec. B.1.3).

The ImageJ class ColorProcessor provides an easy to use alternative
which returns the separated RGB components (as an int array with
three elements). In the following example that demonstrates its use, ip
is of type ColorProcessor:

1 int[] RGB = new int[3];
2 ...
3 RGB = ip.getPixel(u,v,RGB);
4 int r = RGB[0];
5 int g = RGB[1];
6 int b = RGB[2];
7 ...
8 ip.putPixel(u,v,RGB);

A more detailed and complete example is shown by the simple plugin
in Prog. 12.2, which increases the value of all three color components of
4 The mask 0xff0000 is of type int and represents the 32-bit binary pattern
00000000111111110000000000000000. 245



12 Color Images

Program 12.1
Working with RGB color images

using bit operations (ImageJ
plugin, variant 1). This plugin
increases the values of all three

color components by 10 units. It
demonstrates the use of direct ac-

cess to the pixel array (line 17),
the separation of color components
using bit operations (lines 19–21),

and the reassembly of color pix-
els after modification (line 28).
The value DOES_RGB (defined in
the interface PlugInFilter) re-
turned by the setup() method
indicates that this plugin is de-
signed to work on RGB format-
ted true color images (line 10).

1 // File Brighten_Rgb_1.java
2

3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ImageProcessor;
6
7 public class Brighten_Rgb_1 implements PlugInFilter {
8

9 public int setup(String arg, ImagePlus im) {
10 return DOES_RGB; // this plugin works on RGB images
11 }
12
13 public void run(ImageProcessor ip) {
14 int[] pixels = (int[]) ip.getPixels();
15
16 for (int i = 0; i < pixels.length; i++) {
17 int c = pixels[i];
18 // split the color pixel into RGB components
19 int r = (c & 0xff0000) >> 16;
20 int g = (c & 0x00ff00) >> 8;
21 int b = (c & 0x0000ff);
22 // modify colors
23 r = r + 10; if (r > 255) r = 255;
24 g = g + 10; if (g > 255) g = 255;
25 b = b + 10; if (b > 255) b = 255;
26 // reassemble the color pixel and insert into pixel array
27 pixels[i]
28 = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
29 }
30 }
31
32 } // end of class Brighten_Rgb_1

an RGB image by 10 units. Notice that the plugin limits the resulting
component values to 255, because the putPixel()method only uses the
lowest 8 bits of each component and does not test if the value passed in is
out of the permitted 0 to 255 range. Without this test, arithmetic over-
flow failures can occur. The price for using this access method, instead of
direct array access, is a noticeably longer running time (approximately
a factor of 4 when compared to the variant in Prog. 12.1).

Opening and saving RGB images

ImageJ supports the following types of image formats for RGB true color
images:

• TIFF (only uncompressed): 3×8-bit RGB. TIFF color images with
16-bit depth are opened as an image stack consisting of three 16-bit
intensity images.

• BMP, JPEG: 3 × 8-bit RGB.246



12.1 RGB Color Images1 // File Brighten_Rgb_2.java
2

3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ColorProcessor;
6 import ij.process.ImageProcessor;
7
8 public class Brighten_Rgb_2 implements PlugInFilter {
9 static final int R = 0, G = 1, B = 2; // component indices

10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_RGB; // this plugin works on RGB images
13 }
14

15 public void run(ImageProcessor ip) {
16 //make sure the image is of type ColorProcessor
17 ColorProcessor cp = (ColorProcessor) ip;
18 int[] RGB = new int[3];
19
20 for (int v = 0; v < cp.getHeight(); v++) {
21 for (int u = 0; u < cp.getWidth(); u++) {
22 cp.getPixel(u, v, RGB);
23 RGB[R] = Math.min(RGB[R]+10, 255); // add 10 and
24 RGB[G] = Math.min(RGB[G]+10, 255); // limit to 255
25 RGB[B] = Math.min(RGB[B]+10, 255);
26 cp.putPixel(u, v, RGB);
27 }
28 }
29 }
30
31 } // end of class Brighten_Rgb_2

Program 12.2
Working with RGB color im-
ages without bit operations (Im-
ageJ plugin, variant 2). This
plugin increases the values of all
three color components by 10
units using the access methods
getPixel(int, int, int[]) and
putPixel(int, int, int[]) from
the class ColorProcessor (lines 22
and 26, respectively). The running
time, because of the method calls,
is approximately four times higher
than that of variant 1 (Prog. 12.1).

• PNG (read only): 3 × 8-bit RGB.
• RAW: using the ImageJ menu File→Import→Raw, RGB images can
be opened whose format is not directly supported by ImageJ. It is
then possible to select different arrangements of the color compo-
nents.

Creating RGB images
The simplest way to create a new RGB image using ImageJ is to use an
instance of the class ColorProcessor, as the following example demon-
strates:

1 int w = 640, h = 480;
2 ColorProcessor cip = new ColorProcessor(w, h);
3 ImagePlus cimg = new ImagePlus("My New Color Image", cip);
4 cimg.show();

When needed, the color image can be displayed by creating an instance
of the class ImagePlus (line 3) and calling its show() method. Since cip 247



12 Color Images is of type ColorProcessor, the resulting ImagePlus object cimg is also
a color image. The following code segment demonstrates how this could
be verified:

5 if (cimg.getType()==ImagePlus.COLOR_RGB) {
6 int b = cimg.getBitDepth(); // b = 24
7 IJ.write("this is an RGB color image with " + b + " bits");
8 }

Indexed color images

The structure of an indexed image in ImageJ is given in Fig. 12.5, where
each element of the index array is 8 bits and therefore can represent
a maximum of 256 different colors. When programming, indexed im-
ages are similar to grayscale images, as both make use of a color table
to determine the actual color of the pixel. Indexed images differ from
grayscale images only in that the contents of the color table are not
intensity values but RGB values.

Opening and saving indexed images

ImageJ supports the following types of image formats for indexed images:

• GIF: index values with 1 to 8 bits (2 to 256 colors), 3 × 8-bit color
values.

• PNG (read only): index values with 1 to 8 Bits (2 to 256 colors),
3 × 8-bit color values.

• BMP, TIFF (uncompressed): index values with 1 to 8 bits (2 to
256 colors), 3 × 8-bit color values.

Working with indexed images

The indexed format is mostly used as a space-saving means of image
storage and is not directly useful as a processing format since an index
value in the pixel array is arbitrarily related to the actual color, found in
the color table, that it represents. When working with indexed images
it usually makes no sense to base any numerical interpretations on the
pixel values or to apply any filter operations designed for 8-bit intensity
images. Figure 12.8 illustrates an example of applying a Gaussian filter
and a median filter to the pixels of an indexed image. Since there is no
meaningful quantitative relation between the actual colors and the in-
dex values, the results are erratic. Note that even the use of the median
filter is inadmissible because no ordering relation exists between the in-
dex values. Thus, with few exceptions, ImageJ functions do not permit
the application of such operations to indexed images. Generally, when
processing an indexed image, you first convert it into a true color RGB
image and then after processing convert it back into an indexed image.

When an ImageJ plugin is supposed to process indexed images, its
setup() method should return the DOES_8C (“8-bit color”) flag. The248



12.1 RGB Color Images1 // File Brighten_Index_Image.java
2

3 import ij.ImagePlus;
4 import ij.WindowManager;
5 import ij.plugin.filter.PlugInFilter;
6 import ij.process.ImageProcessor;
7 import java.awt.image.IndexColorModel;
8

9 public class Brighten_Index_Image implements PlugInFilter {
10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_8C; // this plugin works on indexed color images
13 }
14

15 public void run(ImageProcessor ip) {
16 IndexColorModel icm =
17 (IndexColorModel) ip.getColorModel();
18 int pixBits = icm.getPixelSize();
19 int mapSize = icm.getMapSize();
20

21 //retrieve the current lookup tables (maps) for R,G,B
22 byte[] Rmap = new byte[mapSize]; icm.getReds(Rmap);
23 byte[] Gmap = new byte[mapSize]; icm.getGreens(Gmap);
24 byte[] Bmap = new byte[mapSize]; icm.getBlues(Bmap);
25
26 //modify the lookup tables
27 for (int idx = 0; idx < mapSize; idx++){
28 int r = 0xff & Rmap[idx]; //mask to treat as unsigned byte
29 int g = 0xff & Gmap[idx];
30 int b = 0xff & Bmap[idx];
31 Rmap[idx] = (byte) Math.min(r + 10, 255);
32 Gmap[idx] = (byte) Math.min(g + 10, 255);
33 Bmap[idx] = (byte) Math.min(b + 10, 255);
34 }
35
36 //create a new color model and apply to the image
37 IndexColorModel icm2 =
38 new IndexColorModel(pixBits, mapSize, Rmap, Gmap,Bmap);
39 ip.setColorModel(icm2);
40
41 //update the resulting image
42 WindowManager.getCurrentImage().updateAndDraw();
43 }
44
45 } // end of class Brighten_Index_Image

Program 12.3
Working with indexed images (Im-
ageJ plugin). This plugin increases
the brightness of an image by 10
units by modifying the palette.
The actual values in the pixel
array, which are indices into the
palette, are not changed.
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12 Color Images

Fig. 12.8
Improper application of smoothing

filters to an indexed color image.
Indexed image with 16 colors (a)

and results of applying a linear
smoothing filter (b) and a 3 × 3

median filter (c) to the pixel array
(that is, the index values). The

application of a linear filter makes
no sense, of course, since no mean-

ingful relation exists between the
index values in the pixel array and
the actual image intensities. While
the median filter (c) delivers seem-
ingly plausible results in this case,
its use is also inadmissible because

no suitable ordering relation ex-
ists between the index values.

plugin in Prog. 12.3 shows how to increase the intensity of the three color
components of an indexed image by 10 units (analogously to Progs. 12.1
and 12.2 for RGB images). Notice how in indexed images only the palette
is modified and the original pixel data, the index values, remain the same.
The color table of ImageProcessor is accessible through a ColorModel5

object, which can be read using the method getColorModel() and mod-
ified using setColorModel().

The ColorModel object for indexed images (as well as 8-bit grayscale
images) is a subtype of IndexColorModel, which contains three color ta-
bles (maps) representing the red, green, and blue components as separate
byte arrays. The size of these tables (2 to 256) can be determined by
calling the method getMapSize(). Note that the elements of the palette
should be interpreted as unsigned bytes with values ranging from 0 to
255. Just as with grayscale pixel values, during the conversion to int
values, these color component values must also be bitwise masked with
0xff as shown in Prog. 12.3 (lines 28–30).

As a further example, Prog. 12.4 shows how to convert an indexed
image to a true color RGB image of type ColorProcessor. Conversion in
this direction poses no problems because the RGB component values for
a particular pixel are simply taken from the corresponding color table
entry, as described by Eqn. (12.3). On the other hand, conversion in
the other direction requires quantization of the RGB color space and
is as a rule more difficult and involved (see Sec. 12.5 for more details).
In practice, most applications make use of existing conversion methods
such as those available in ImageJ (see pp. 252–253).

5 Defined in the standard Java class java.awt.image.ColorModel.250



12.1 RGB Color Images1 // File Index_To_Rgb.java
2

3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ColorProcessor;
6 import ij.process.ImageProcessor;
7 import java.awt.image.IndexColorModel;
8

9 public class Index_To_Rgb implements PlugInFilter {
10 static final int R = 0, G = 1, B = 2;
11

12 public int setup(String arg, ImagePlus im) {
13 return DOES_8C + NO_CHANGES; //does not alter original image
14 }
15
16 public void run(ImageProcessor ip) {
17 int w = ip.getWidth();
18 int h = ip.getHeight();
19
20 //retrieve the color table (palette) for R,G,B
21 IndexColorModel icm =
22 (IndexColorModel) ip.getColorModel();
23 int mapSize = icm.getMapSize();
24 byte[] Rmap = new byte[mapSize]; icm.getReds(Rmap);
25 byte[] Gmap = new byte[mapSize]; icm.getGreens(Gmap);
26 byte[] Bmap = new byte[mapSize]; icm.getBlues(Bmap);
27
28 //create new 24-bit RGB image
29 ColorProcessor cp = new ColorProcessor(w,h);
30 int[] RGB = new int[3];
31 for (int v = 0; v < h; v++) {
32 for (int u = 0; u < w; u++) {
33 int idx = ip.getPixel(u, v);
34 RGB[R] = Rmap[idx];
35 RGB[G] = Gmap[idx];
36 RGB[B] = Bmap[idx];
37 cp.set(u, v, RGB);
38 }
39 }
40 ImagePlus cimg = new ImagePlus("RGB Image",cp);
41 cimg.show();
42 }
43
44 } // end of class Index_To_Rgb

Program 12.4
Converting an indexed image to
a true color RGB image (ImageJ
plugin).

Creating indexed images

In ImageJ, no special method is provided for the creation of indexed
images, so in almost all cases they are generated by converting an existing 251



12 Color Images image. The following method demonstrates how to directly create an
indexed image if required:

1 ByteProcessor makeIndexColorImage(int w, int h, int nColors) {
2 // allocate red, green, blue color tables:
3 byte[] Rmap = new byte[nColors];
4 byte[] Gmap = new byte[nColors];
5 byte[] Bmap = new byte[nColors];
6 // color maps need to be filled here
7 byte[] pixels = new byte[w * h];
8 // pixel array (color indices) needs to be filled here
9 IndexColorModel cm

10 = new IndexColorModel(8, nColors, Rmap, Gmap, Bmap);
11 return new ByteProcessor(w, h, pixels, cm);
12 }

The parameter nColors defines the number of colors (and thus the size
of the palette) and must be a value in the range of 2 to 256. To use the
above template, you would complete it with code that filled the three
byte arrays for the RGB components (Rmap, Gmap, Bmap) and the index
array (pixels) with the appropriate values.

Transparency

Transparency is one of the reasons indexed images are often used for
Web graphics. In an indexed image, it is possible to define one of the
index values so that it is displayed in a transparent manner and at se-
lected image locations the background beneath the image shows through.
In Java this can be controlled when creating the image’s color model
(IndexColorModel). As an example, to make color index 2 in Prog. 12.3
transparent, lines 37–39 would need to be modified as follows:

1 int tIdx = 2; // index of transparent color
2 IndexColorModel icm2 = new
3 IndexColorModel(pixBits, mapSize, Rmap, Gmap, Bmap, tIdx);
4 ip.setColorModel(icm2);

At this time, however, ImageJ does not support the transparency prop-
erty; it is not considered during display, and it is lost when the image is
saved.

Color image conversion in ImageJ

In ImageJ, the following methods for converting between different types
of color and grayscale image objects of type ImagePlus and processor
objects of type ImageProcessor are available:

Converting images of type ImageProcessor

ImageJ objects of type ImageProcessor can be converted using the
methods listed in Table 12.1. Each of these methods returns a new252



12.2 Color Spaces and Color
Conversion

ImageProcessor convertToByte(boolean doScaling )
Converts to an 8-bit grayscale image (ByteProcessor).

ImageProcessor convertToShort(boolean doScaling )
Converts to a 16-bit grayscale image (ShortProcessor).

ImageProcessor convertToFloat()
Converts to a 32-bit floating-point image (FloatProcessor).

ImageProcessor convertToRGB()
Converts to a 32-bit RGB color image (ColorProcessor).

Table 12.1
Conversion methods for im-
ages of type ImageProcessor. If
doScaling is true in the first two
methods, the pixel values are auto-
matically scaled to the maximum
range of the new image.

ImageProcessor object, unless the original image is already of the de-
sired type. If this is the case, only a reference to the original image
processor is returned, i. e., no duplication or modification occurs. The
following example demonstrates the conversion from an arbitrary image
type to an RGB color image:

1 ImageProcessor ip1;
2 ...
3 ImageProcessor ip2 = ip1.convertToRGB();
4 // now ip2 is of type ColorProcessor, ip1 is unmodified.
5 ...

In this case, a new object (ip2) of type ColorProcessor is created and
the original object (ip1) remains unchanged.

Converting images of type ImagePlus

ImageJ image objects of type ImagePlus can be converted with the help
of methods from the ImageJ class ImageConverter, as summarized in
Table 12.2. The following example demonstrates the conversion to an
RGB color image:

1 import ij.process.ImageConverter;
2 ...
3 ImagePlus ipl;
4 ...
5 ImageConverter ic = new ImageConverter(ipl);
6 ic.convertToRGB();
7 // ipl is an RGB image now

Note that the method convertToRGB() does not return a new image
object, but instead modifies the original ImagePlus object ipl.

12.2 Color Spaces and Color Conversion

The RGB color system is well-suited for use in programming, as it is
simple to manipulate and maps directly to the typical display hardware.
When modifying colors within the RGB space, it is important to remem-
ber that the metric, or measured distance within this color space, does
not proportionally correspond to our perception of color (e. g., doubling 253



12 Color Images

Table 12.2
Methods of the ImageJ class
ImageConverter for convert-
ing ImagePlus objects. Note

that these methods do not cre-
ate any new images, but instead

modify the original ImagePlus
object ipl used to instan-
tiate the ImageConverter.

ImageConverter(ImagePlus ipl )
Instantiates an ImageConverter object for the image ipl .

void convertToGray8()
Converts ipl to an 8-bit grayscale image.

void convertToGray16()
Converts ipl to a 16-bit grayscale image.

void convertToGray32()
Converts ipl to a 32-bit grayscale image (float).

void convertToRGB()
Converts ipl to an RGB color image.

void convertRGBtoIndexedColor(int nColors )
Converts the RGB true color image ipl to an indexed image with
8-bit index values and nColors colors, performing color quanti-
zation.

void convertToHSB()
Converts ipl to a color image using the HSB color space (see
Sec. 12.2.3).

void convertHSBToRGB()
Converts an HSB color space image ipl to an RGB color image.

the value of the red component does not necessarily result in a color
which appears to be twice as red). In general, in this space, modify-
ing different color points by the same amount can cause very different
changes in color. In addition, brightness changes in the RGB color space
are also perceived as nonlinear.

Since any coordinate movement modifies color tone, saturation, and
brightness all at once, color selection in RGB space is difficult and quite
non-intuitive. Color selection is more intuitive in other color spaces,
such as the HSV space (see Sec. 12.2.3), since perceptual color features,
such as saturation, are represented individually and can be modified
independently. Alternatives to the RGB color space are also used in
applications such as the automatic separation of objects from a colored
background (the blue box technique in television), encoding television
signals for transmission, or in printing, and are thus also relevant in
digital image processing.

Figure 12.9 shows the distribution of the colors from a nature image
in three different color spaces. The first half of this section introduces
these color spaces and the methods of converting between them and
later discusses the choices that need to be made to correctly convert
a color image to grayscale. In addition to the classical color systems
most widely used in programming, precise reference systems, such as
the CIEXYZ color space, gain increasing importance in practical color
processing.
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12.2 Color Spaces and Color
Conversion

Fig. 12.9
Examples of the color distribution
of natural images in three differ-
ent color spaces. Original images:
landscape photograph with dom-
inant green and blue components
and sun-spot image with rich red
and yellow components (a). Color
distribution in RGB- (b), HSV-
(c), and YUV-space (d).
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12 Color Images 12.2.1 Conversion to Grayscale

The conversion of an RGB color image to a grayscale image proceeds
by computing the equivalent gray or luminance value Y for each RGB
pixel. In its simplest form, Y could be computed as the average

Y = Avg(R, G, B) =
R + G + B

3
(12.4)

of the three color components R, G, and B. Since we perceive both red
and green as being substantially brighter than blue, the resulting image
will appear to be too dark in the red and green areas and too bright in
the blue ones. Therefore, a weighted sum of the color components

Y = Lum(R, G, B) = wR ·R + wG ·G + wB ·B (12.5)

is typically used to compute the equivalent luminance value. The weights
most often used were originally developed for encoding analog color tele-
vision signals (see Sec. 12.2.4):

wR = 0.299 , wG = 0.587 , wB = 0.114 . (12.6)

Those recommended in ITU-BT.709 [55] for digital color encoding are

wR = 0.2125 , wG = 0.7154 , wB = 0.072 . (12.7)

If each color component is assigned the same weight, as in Eqn. (12.4),
this is of course just a special case of Eqn. (12.5).

Note that, although these weights were developed for use with TV
signals, they are optimized for linear RGB component values, i. e., sig-
nals with no gamma correction. In many practical situations, however,
the RGB components are actually nonlinear, particularly when we work
with sRGB images (see Sec. 12.3.3). In this case, the RGB components
must first be linearized to obtain the correct luminance values with the
above weights. An alternative is to estimate the luminance without lin-
earization by computing the weighted sum of the nonlinear component
values and applying a different set of weights (for details see Sec. 12.3.3,
p. 287).

In some color systems, instead of a weighted sum of the RGB color
components, a nonlinear brightness function, for example the value V
in HSV (Eqn. (12.11) in Sec. 12.2.3) or the luminance L in HLS (Eqn.
(12.21)), is used as the intensity value Y .

Hueless (gray) color images

An RGB image is hueless or gray when the RGB components of each
pixel I(u, v) = (R, G, B) are the same; i. e., if

R = G = B.256



12.2 Color Spaces and Color
Conversion

Therefore, to completely remove the color from an RGB image, simply
replace the R, G, and B component of each pixel with the equivalent
gray value Y , ⎛

⎝R′

G′

B′

⎞
⎠←

⎛
⎝Y

Y
Y

⎞
⎠ , (12.8)

by using Y = Lum(R, G, B) from Eqn. (12.5), for example. The result-
ing grayscale image should have the same subjective brightness as the
original color image.

Grayscale conversion in ImageJ

In ImageJ, the simplest way to convert an RGB color image (of type
ColorProcessor) into an 8-bit grayscale image is to use the method

convertToByte(boolean doScaling),

which returns a new image of type ByteProcessor (see Table 12.1 and
the example on page 253). ImageJ uses the default weights wR = wG =
wB = 1

3 (as in Eqn. (12.4)) for the RGB components, or wR = 0.299,
wG = 0.587, wB = 0.114 (as in Eqn. (12.6)) if the “Weighted RGB
Conversions” option is selected in the Edit→Options→Conversions dia-
log. Arbitrary weights (wr , wg , wb ) can be specified for subsequent
conversion operations through the static ColorProcessor method

setWeightingFactors(double wr, double wg, double wb ).

Similarly, the static method ColorProcessor.getWeightingFactors()
can be used to retrieve the current weights as a 3-element double-array.
Note that no linearization is performed on the color components, which
should be considered when working with (nonlinear) sRGB colors (see
Sec. 12.3.3).

12.2.2 Desaturating Color Images

Desaturation is the uniform reduction of the amount of color in an RGB
image in a continuous manner. It is done by replacing each RGB pixel
by a desaturated color (Rd, Gd, Bd) computed by linear interpolation
between the pixel’s original color and the corresponding (Y, Y, Y ) gray
point in the RGB space, i. e.,⎛

⎝Rd

Gd

Bd

⎞
⎠←

⎛
⎝Y

Y
Y

⎞
⎠+ scol ·

⎛
⎝R − Y

G − Y
B − Y

⎞
⎠ , (12.9)

where the factor scol ∈ [0, 1] controls the remaining amount of color
saturation (Fig. 12.10). This gradual transition is referred to as desatu-
rating a color image. A value of scol = 0 completely eliminates all color,
resulting in a true grayscale image, and with scol = 1 the color values
will be unchanged. In Prog. 12.5, continuous desaturation as defined in
Eqn. (12.9) is implemented as an ImageJ plugin. 257



12 Color Images

Fig. 12.10
Desaturation in RGB space: orig-

inal color point C = (R, G, B),
its corresponding gray point
G = (Y, Y, Y ), and the de-
saturated color point D =
(Rd, Gd, Bd). Saturation is

controlled by the factor scol.
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Fig. 12.11
HSV and HLS color space are tra-

ditionally visualized as a single
or double hexagonal pyramid.

The brightness V (or L) is rep-
resented by the vertical dimen-
sion, the color saturation S by
the radius from the pyramid’s
axis, and the hue h by the an-
gle. In both cases, the primary
colors red (R), green (G), and

blue (B) and the mixed colors yel-
low (Y), cyan (C), and magenta
(M) lie on a common plane with
black (S) at the tip. The essen-
tial difference between the HSV
and HLS color spaces is the lo-
cation of the white point (W).
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12.2.3 HSV/HSB and HLS Color Space

In the HSV color space, colors are specified by the components hue,
saturation, and value. Often, such as in Adobe products and the Java
API, the HSV space is called HSB. While the acronym is different (in
this case B = brightness),6 it denotes the same space. The HSV color
space is traditionally shown as an upside-down, six-sided pyramid (Fig.
12.11 (a)), where the vertical axis represents the V value, the horizontal
distance from the axis the S value, and the angle the H value. The
black point is at the tip of the pyramid and the white point lies in the
center of the base. The three primary colors red, green, and blue and the
pairwise mixed colors yellow, cyan and magenta are the corner points of
the base. While this space is often represented as a pyramid, according
to its mathematical definition, the space is actually a cylinder, as shown
below (Fig. 12.13).

The HLS color space7 (hue, luminance, saturation) is very similar to
the HSV space, and the hue component is in fact completely identical
in both spaces. The luminance and saturation values also correspond to
6 Sometimes the HSV space is also referred to as the “HSI” space, where ‘I’

stands for intensity.
7 The acronyms HLS and HSL are used interchangeably.258
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1 // File Desaturate_Rgb.java
2

3 import ij.ImagePlus;
4 import ij.plugin.filter.PlugInFilter;
5 import ij.process.ImageProcessor;
6
7 public class Desaturate_Rgb implements PlugInFilter {
8

9 static double sCol = 0.3; // color saturation factor
10
11 public int setup(String arg, ImagePlus im) {
12 return DOES_RGB;
13 }
14

15 public void run(ImageProcessor ip) {
16
17 // iterate over all pixels
18 for (int v = 0; v < ip.getHeight(); v++) {
19 for (int u = 0; u < ip.getWidth(); u++) {
20

21 // get int-packed color pixel
22 int c = ip.get(u, v);
23

24 // extract RGB components from color pixel
25 int r = (c & 0xff0000) >> 16;
26 int g = (c & 0x00ff00) >> 8;
27 int b = (c & 0x0000ff);
28
29 // compute equivalent gray value
30 double y = 0.299 * r + 0.587 * g + 0.114 * b;
31
32 // linearly interpolate (yyy) ↔ (rgb)
33 r = (int) (y + sCol * (r - y));
34 g = (int) (y + sCol * (g - y));
35 b = (int) (y + sCol * (b - y));
36

37 // reassemble color pixel
38 c = ((r & 0xff)<<16) | ((g & 0xff)<<8) | b & 0xff;
39 ip.set(u, v, c);
40 }
41 }
42 }
43
44 } // end of class Desaturate_Rgb

Program 12.5
Continuous desaturation of an
RGB color image (ImageJ plugin).
The amount of color saturation
is controlled by the variable sCol
defined in line 9 (see Eqn. (12.9)).

the vertical axis and the radius, respectively, but are defined differently
than in HSV space. The common representation of the HLS space is as a
double pyramid (Fig. 12.11 (b)), with black on the bottom tip and white
on the top. The primary colors lie on the corner points of the hexagonal 259



12 Color Images base between the two pyramids. Even though it is often portrayed in
this intuitive way, mathematically the HLS space is again a cylinder (see
Fig. 12.15).

RGB→HSV

To convert from RGB to the HSV color space, we first find the saturation
of the RGB color components R, G, B ∈ [0, Cmax], with Cmax being the
maximum component value (typically 255), as

SHSV =

{
Crng
Chigh

for Chigh > 0

0 otherwise,
(12.10)

and the luminance (value)

VHSV =
Chigh

Cmax
, (12.11)

with Chigh, Clow, and Crng defined as

Chigh = max(R, G, B), Clow = min(R, G, B), Crng = Chigh. (12.12)

Finally, we need to specify the hue value HHSV. When all three RGB
color components have the same value (R = G = B), then we are dealing
with an achromatic (gray) pixel. In this particular case Crng = 0 and
thus the saturation value SHSV = 0, consequently the hue is undefined.
To compute HHSV when Crng > 0, we first normalize each component
using

R′ =
Chigh−R

Crng
, G′ =

Chigh−G

Crng
, B′ =

Chigh−B

Crng
. (12.13)

Then, depending on which of the three original color components had
the maximal value, we compute a preliminary hue H ′ as

H ′ =

⎧⎨
⎩

B′ −G′ if R = Chigh

R′ −B′ + 2 if G = Chigh

G′ −R′ + 4 if B = Chigh.
(12.14)

Since the resulting value for H ′ lies on the interval [−1 . . . 5], we obtain
the final hue value by normalizing to the interval [0, 1] as

HHSV =
1
6
·
{

(H ′ + 6) for H ′ < 0
H ′ otherwise. (12.15)

Hence all three components HHSV, SHSV, and VHSV will lie within the
interval [0, 1]. The hue value HHSV can naturally also be computed in
another angle interval, for example in the 0 to 360◦ interval using260
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HHSV SHSV VHSV

Fig. 12.12
HSV components for the test im-
age in Fig. 12.2. The darker areas
in the hHSV component correspond
to the red and yellow colors, where
the hue angle is near zero.

H
S

V

YG

C

B M

W

S

R

R75

R50

R25

P

RGB/HSV Values

Pt. Color R G B H S V

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 1.00

Y Yellow 1.00 1.00 0.00 1/6 1.00 1.00

G Green 0.00 1.00 0.00 2/6 1.00 1.00

C Cyan 0.00 1.00 1.00 3/6 1.00 1.00

B Blue 0.00 0.00 1.00 4/6 1.00 1.00

M Magenta 1.00 0.00 1.00 5/6 1.00 1.00

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.75

R50 50% Red 0.50 0.00 0.00 0 1.00 0.50

R25 25% Red 0.25 0.00 0.00 0 1.00 0.25

P Pink 1.00 0.50 0.50 0 0.5 1.00

Fig. 12.13
HSV color space. The illustra-
tion shows the HSV color space
as a cylinder with the coordinates
H (hue) as the angle, S (satura-
tion) as the radius, and V (bright-
ness value) as the distance along
the vertical axis, which runs be-
tween the black point S and the
white point W. The table lists
the (R,G, B) and (H,S, V ) values
of the color points marked on the
graphic. Pure colors (composed
of only one or two components)
lie on the outer wall of the cylin-
der (S = 1), as exemplified by
the gradually saturated reds (R25,
R50, R75, R).H◦

HSV = HHSV · 360.

Under this definition, the RGB space unit cube is mapped to a cylin-
der with height and radius of length 1 (Fig. 12.13). In contrast to the
traditional representation (Fig. 12.11), all HSB points within the en-
tire cylinder correspond to valid color coordinates in RGB space. The
mapping from RGB to the HSV space is nonlinear, as can be noted by
examining how the black point stretches completely across the cylinder’s
base. Figure 12.12 shows the individual HSV components (in grayscale)
of the test image in Fig. 12.2. Figure 12.13 plots the location of some
notable color points and compares them with their locations in RGB
space (see also Fig. 12.1).

Java implementation

In Java, the RGB-HSV conversion is implemented in the class java.awt.
Color by the method

float[] RGBtoHSB (int r, int g, int b, float[] hsv )

(HSV and HSB denote the same color space). The method takes three
int arguments r, g, b (within the range [0, 255]) and returns a float 261



12 Color Images array with the resulting H, S, V values in the interval [0, 1]. When an
existing float array is passed as the argument hsv , then the result is
placed in it; otherwise (when hsv = null) a new array is created. Here
is a simple usage example:

1 import java.awt.Color;
2 ...
3 float[] hsv = new float[3];
4 int red = 128, green = 255, blue = 0;
5 hsv = Color.RGBtoHSB (red, green, blue, hsv);
6 float h = hsv[0];
7 float s = hsv[1];
8 float v = hsv[2];
9 ...

A possible implementation of the Java method RGBtoHSB() using the
definition in Eqns. (12.11)–(12.15) is given in Prog. 12.6.

HSV→RGB

To convert an HSV tuple (HHSV, SHSV, VHSV), where HHSV, SHSV, and
VHSV ∈ [0, 1], into the corresponding (R, G, B) color values, the appro-
priate color sector

H ′ = (6 ·HHSV) mod 6 (12.16)
(0 ≤ H ′ < 6) is determined first, followed by computing the intermediate
values

c1 = �H ′�, x = (1 − SHSV) · v,

c2 = H ′ − c1, y = (1 − (SHSV · c2)) · VHSV,

z = (1 − (SHSV · (1 − c2))) · VHSV.

(12.17)

Depending on the value of c1, the normalized RGB values R′, G′, B′ ∈
[0, 1] are then computed from v = VHSV, x, y, and z as follows:8

(R′, G′, B′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(v, z, x) if c1 = 0
(y, v, x) if c1 = 1
(x, v, z) if c1 = 2
(x, y, v) if c1 = 3
(z, x, v) if c1 = 4
(v, x, y) if c1 = 5.

(12.18)

The scaling of the RGB components to whole numbers in the range
[0, N − 1] (typically N = 256) is carried out as follows:

R = min
(
round(N ·R′), N − 1

)
,

G = min
(
round(N ·G′), N − 1

)
, (12.19)

B = min
(
round(N ·B′), N − 1

)
.

8 The variables x, y, z used here have no relation to those used in the CIEXYZ
color space (Sec. 12.3.1).262
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1 static float[] RGBtoHSV (int R, int G, int B, float[] HSV) {
2 // R, G, B ∈ [0, 255]
3 float H = 0, S = 0, V = 0;
4 float cMax = 255.0f;
5 int cHi = Math.max(R,Math.max(G,B)); // highest color value
6 int cLo = Math.min(R,Math.min(G,B)); // lowest color value
7 int cRng = cHi - cLo; // color range
8

9 // compute value V
10 V = cHi / cMax;
11

12 // compute saturation S
13 if (cHi > 0)
14 S = (float) cRng / cHi;
15
16 // compute hue H
17 if (cRng > 0) { // hue is defined only for color pixels
18 float rr = (float)(cHi - R) / cRng;
19 float gg = (float)(cHi - G) / cRng;
20 float bb = (float)(cHi - B) / cRng;
21 float hh;
22 if (R == cHi) // R is highest color value
23 hh = bb - gg;
24 else if (G == cHi) // G is highest color value
25 hh = rr - bb + 2.0f;
26 else // B is highest color value
27 hh = gg - rr + 4.0f;
28 if (hh < 0)
29 hh= hh + 6;
30 H = hh / 6;
31 }
32

33 if (HSV == null) // create a new HSV array if needed
34 HSV = new float[3];
35 HSV[0] = H; HSV[1] = S; HSV[2] = V;
36 return HSV;
37 }

Program 12.6
RGB→HSV conversion. This Java
method for RGB→HSV conver-
sion follows the process given in
the text to compute a single color
tuple. It takes the same arguments
and returns results identical to
the standard Color.RGBtoHSB()
method.

Java implementation

In Java, HSV→RGB conversion is implemented in the standard AWT
class java.awt.Color by the method

int HSBtoRGB (float h, float s, float v ) ,

which takes three float arguments h , s , v ∈ [0, 1] and returns the cor-
responding RGB color as an int value with 3 × 8 bits arranged in the
standard Java RGB format (see Fig. 12.6). One possible implementation
of this method is shown in Prog. 12.7.
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12 Color Images

Program 12.7
HSV→RGB conversion. This
Java method takes the same
arguments and returns iden-
tical results as the standard
method Color.HSBtoRGB().

1 static int HSVtoRGB (float h, float s, float v) {
2 // h, s, v ∈ [0, 1]
3 float rr = 0, gg = 0, bb = 0;
4 float hh = (6 * h) % 6; // h′ ← (6 · h) mod 6
5 int c1 = (int) hh; // c1 ← �h′�
6 float c2 = hh - c1;
7 float x = (1 - s) * v;
8 float y = (1 - (s * c2)) * v;
9 float z = (1 - (s * (1 - c2))) * v;

10 switch (c1) {
11 case 0: rr=v; gg=z; bb=x; break;
12 case 1: rr=y; gg=v; bb=x; break;
13 case 2: rr=x; gg=v; bb=z; break;
14 case 3: rr=x; gg=y; bb=v; break;
15 case 4: rr=z; gg=x; bb=v; break;
16 case 5: rr=v; gg=x; bb=y; break;
17 }
18 int N = 256;
19 int r = Math.min(Math.round(rr*N), N-1);
20 int g = Math.min(Math.round(gg*N), N-1);
21 int b = Math.min(Math.round(bb*N), N-1);
22 // create int-packed RGB color:
23 int rgb = ((r&0xff)<<16) | ((g&0xff)<<8) | b&0xff;
24 return rgb;
25 }

RGB→HLS

In the HLS model, the hue value HHLS is computed in the same way as
in the HSV model (Eqns. (12.13)–(12.15)), i. e.,

HHLS = HHSV. (12.20)

The other values, LHLS and SHLS, are computed as follows (for Chigh,
Clow, and Crng, see Eqn. (12.12)):

LHLS =
Chigh + Clow

2
, (12.21)

SHLS =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for LHLS = 0

0.5 · Crng
LHLS

for 0 < LHLS ≤ 0.5

0.5 · Crng
1−LHLS

for 0.5 < LHLS < 1

0 for LHLS = 1.

(12.22)

Figure 12.14 shows the individual HLS components of the test image as
grayscale images. Using the above definitions, the unit cube in the RGB
space is again mapped to a cylinder with height and length 1 (Fig. 12.15).264
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HHLS SHLS LHLS

Fig. 12.14
HLS color components HHLS

(hue), SHLS (saturation), and
LHLS (luminance). Note that the
S and L images are swapped to
appear in the same order as in
HSV space (see Fig. 12.12).

H S
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YG

C

B M

W

S

R
R75
R50

R25

0.5

P

RGB/HLS Values

Pt. Color R G B H S L

S Black 0.00 0.00 0.00 — 0.00 0.00

R Red 1.00 0.00 0.00 0 1.00 0.50

Y Yellow 1.00 1.00 0.00 1/6 1.00 0.50

G Green 0.00 1.00 0.00 2/6 1.00 0.50

C Cyan 0.00 1.00 1.00 3/6 1.00 0.50

B Blue 0.00 0.00 1.00 4/6 1.00 0.50

M Magenta 1.00 0.00 1.00 5/6 1.00 0.50

W White 1.00 1.00 1.00 — 0.00 1.00

R75 75% Red 0.75 0.00 0.00 0 1.00 0.375

R50 50% Red 0.50 0.00 0.00 0 1.00 0.250

R25 25% Red 0.25 0.00 0.00 0 1.00 0.125

P Pink 1.00 0.50 0.50 0/6 1.00 0.75

Fig. 12.15
HLS color space. The illustra-
tion shows the HLS color space
visualized as a cylinder with the
coordinates H (hue) as the angle,
S (saturation) as the radius, and
L (lightness) as the distance along
the vertical axis, which runs be-
tween the black point S and the
white point W. The table lists
the (R,G, B) and (H,S, L) values
where “pure” colors (created using
only one or two color components)
lie on the lower half of the outer
cylinder wall (S = 1), as illus-
trated by the gradually saturated
reds (R25, R50, R75, R). Mixtures
of all three primary colors, where
at least one of the components
is completely saturated, lie along
the upper half of the outer cylin-
der wall; for example, the point P
(pink).

In contrast to the HSV space (Fig. 12.13), the primary colors lie together
in the horizontal plane at LHLS = 0.5 and the white point lies outside
of this plane at LHLS = 1.0. Using these nonlinear transformations, the
black and the white points are mapped to the top and the bottom planes
of the cylinder, respectively.

HLS→RGB

When converting from HLS to the RGB space, we assume that HHLS,
SHLS, LHLS ∈ [0, 1]. In the case where LHLS = 0 or LHLS = 1, the result
is

(R′, G′, B′) =
{

(0, 0, 0) for LHLS = 0
(1, 1, 1) for LHLS = 1.

(12.23)

Otherwise, we again determine the appropriate color sector

H ′ = (6 · HHLS) mod 6 , (12.24)

where (0 ≤ H ′ < 6), and then, based on the resulting sector, we deter-
mine the values 265



12 Color Images c1 = �H ′�
c2 = H ′ − c1

d =

{
SHLS · LHLS for LHLS ≤ 0.5
SHLS · (LHLS−1) for LHLS > 0.5

w = LHLS + d

x = LHLS − d

y = w − (w − x) · c2

z = x + (w − x) · c2.
(12.25)

The assignment of the RGB values is done similarly to Eqn. (12.18), i. e.,

(R′, G′, B′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(w, z, x) if c1 = 0
(y, w, x) if c1 = 1
(x, w, z) if c1 = 2
(x, y, w) if c1 = 3
(z, x, w) if c1 = 4
(w, x, y) if c1 = 5.

(12.26)

Finally, scaling the normalized ([0, 1]) R′, G′, B′ color components back
into the [0, 255] range is done as in Eqn. (12.19).

Java implementation (RGB↔HLS)

Currently there is no method in either the standard Java API or ImageJ
for converting color values between RGB and HLS. Program 12.8 gives
one possible implementation of the RGB→HLS conversion that follows
the definitions in Eqns. (12.20)–(12.22). The HLS→RGB conversion is
given in Prog. 12.9.

Comparing HSV and HLS

Despite the gross similarity between the two color spaces, as Fig. 12.16
illustrates, substantial differences in the V /L and S components do exist.
The essential difference between the HSV and HLS spaces is the ordering
of the colors that lie between the white point W and the “pure” colors
(R, G, B, Y, C, M), which consist of at most two primary colors, at
least one of which is completely saturated.

The difference in how colors are distributed in RGB, HSV, and HLS
space is readily apparent in Fig. 12.17. The starting point was a distri-
bution of 1331 (11×11×11) color tuples obtained by uniformly sampling
the RGB space at an interval of 0.1 in each dimension.

Both the HSV and HLS color spaces are widely used in practice; for
instance, for selecting colors in image editing and graphics design appli-
cations. In digital image processing, they are also used for color keying
(that is, isolating objects according to their hue) on a homogeneously
colored background where the brightness is not necessarily constant.266
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1 static float[] RGBtoHLS (float R, float G, float B) {
2 // R, G, B assumed to be in [0, 1]
3 float cHi = Math.max(R,Math.max(G,B)); // highest color value
4 float cLo = Math.min(R,Math.min(G,B)); // lowest color value
5 float cRng = cHi - cLo; // color range
6
7 // compute luminance L
8 float L = (cHi + cLo)/2;
9

10 // compute saturation S
11 float S = 0;
12 if (0 < L && L < 1) {
13 float d = (L <= 0.5f) ? L : (1 - L);
14 S = 0.5f * cRng / d;
15 }
16
17 // compute hue H
18 float H=0;
19 if (cHi > 0 && cRng > 0) { // a color pixel
20 float rr = (float)(cHi - R) / cRng;
21 float gg = (float)(cHi - G) / cRng;
22 float bb = (float)(cHi - B) / cRng;
23 float hh;
24 if (R == cHi) // R is highest color value
25 hh = bb - gg;
26 else if (G == cHi) // G is highest color value
27 hh = rr - bb + 2.0f;
28 else // B is highest color value
29 hh = gg - rr + 4.0f;
30
31 if (hh < 0)
32 hh= hh + 6;
33 H = hh / 6;
34 }
35
36 return new float[] {H,L,S};
37 }

Program 12.8
RGB→HLS conversion (Java
method).

12.2.4 TV Color Spaces—YUV, YIQ, and YCbCr

These color spaces are an integral part of the standards surrounding the
recording, storage, transmission, and display of television signals. YUV
and YIQ are the fundamental color-encoding methods for the analog
NTSC and PAL systems, and YCbCr is a part of the international stan-
dards governing digital television [49]. All of these color spaces have in
common the idea of separating the luminance component Y from two
chroma components and, instead of directly encoding colors, encoding
color differences. In this way, compatibility with legacy black and white
systems is maintained while at the same time the bandwidth of the sig- 267
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Program 12.9
HLS→RGB conver-
sion (Java method).

1 static float[] HLStoRGB (float H, float L, float S) {
2 // H, L, S assumed to be in [0, 1]
3 float R = 0, G = 0, B = 0;
4
5 if (L <= 0) // black
6 R = G = B = 0;
7 else if (L >= 1) // white
8 R = G = B = 1;
9 else {

10 float hh = (6 * H) % 6;
11 int c1 = (int) hh;
12 float c2 = hh - c1;
13 float d = (L <= 0.5f) ? (S * L) : (S * (1 - L));
14 float w = L + d;
15 float x = L - d;
16 float y = w - (w - x) * c2;
17 float z = x + (w - x) * c2;
18 switch (c1) {
19 case 0: R=w; G=z; B=x; break;
20 case 1: R=y; G=w; B=x; break;
21 case 2: R=x; G=w; B=z; break;
22 case 3: R=x; G=y; B=w; break;
23 case 4: R=z; G=x; B=w; break;
24 case 5: R=w; G=x; B=y; break;
25 }
26 }
27 return new float[] {R,G,B};
28 }

nal can be optimized by using different transmission bandwidths for the
brightness and the color components. Since the human visual system
is not able to perceive detail in the color components as well as it does
in the intensity part of a video signal, the amount of information, and
consequently bandwidth, used in the color channel can be reduced to
approximately 1/4 of that used for the intensity component. This fact is
also used when compressing digital still images and is why, for example,
the JPEG codec converts RGB images to YCbCr. That is why these
color spaces are important in digital image processing, even though raw
YIQ or YUV images are rarely encountered in practice.

YUV

YUV is the basis for the color encoding used in analog television in
both the North American NTSC and the European PAL systems. The
luminance component Y is computed, just as in Eqn. (12.6), from the
RGB components as

Y = 0.299 ·R + 0.587 ·G + 0.114 ·B (12.27)268
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HSV HLS Difference

SHSV SHLS SHSV − SHLS

VHSV LHLS VHSV − LHLS

Fig. 12.16
Comparison between HSV and
HLS components: saturation (top
row) and intensity (bottom row).
In the color saturation difference
image SHSV − SHLS (top), light
areas correspond to positive values
and dark areas to negative values.
Saturation in the HLS represen-
tation, especially in the brightest
sections of the image, is notably
higher, resulting in negative val-
ues in the difference image. For
the intensity (value and lumi-
nance, respectively) in general,
VHSV ≥ LHLS and therefore the
difference VHSV −LHLS (bottom) is
always positive. The hue compo-
nent H (not shown) is identical in
both representations.

under the assumption that the RGB values have already been gamma
corrected according to the TV encoding standard (γNTSC = 2.2 and
γPAL = 2.8, see Sec. 5.7) for playback. The UV components are com-
puted from a weighted difference between the luminance and the blue or
red components as

U = 0.492 · (B − Y ) and V = 0.877 · (R − Y ), (12.28)

and the entire transformation from RGB to YUV is⎛
⎝Y

U
V

⎞
⎠ =

⎛
⎝ 0.299 0.587 0.114
−0.147 −0.289 0.436

0.615 −0.515 −0.100

⎞
⎠ ·

⎛
⎝R

G
B

⎞
⎠ . (12.29)

The transformation from YUV back to RGB is found by inverting the
matrix in Eqn. (12.29):⎛

⎝R
G
B

⎞
⎠ =

⎛
⎝ 1.000 0.000 1.140

1.000 −0.395 −0.581
1.000 2.032 0.000

⎞
⎠ ·

⎛
⎝Y

U
V

⎞
⎠ . (12.30)

YIQ

The original NTSC system used a variant of YUV called YIQ (I for “in-
phase”, Q for “quadrature”), where both the U and V color vectors were
rotated and mirrored such that 269
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Fig. 12.17
Distribution of colors in the RGB,
HSV, and HLS spaces. The start-

ing point is the uniform distri-
bution of colors in RGB space
(top). The corresponding col-

ors in the HSV and HLS spaces
are distributed nonsymmetri-

cally (HSV) and symmetrically
(HLS) within the cylindrical space. 0
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where β = 0.576 (33◦). The Y component is the same as in YUV.
Although the YIQ has certain advantages with respect to bandwidth
requirements it has been completely replaced by YUV [57, p. 240].

YCbCr

The YCbCr color space is an internationally standardized variant of YUV
that is used for both digital television and image compression (for exam-
ple, in JPEG). The chroma components Cb, Cr are (similar to U, V ) dif-
ference values between the luminance and the blue and red components,
respectively. In contrast to YUV, the weights of the RGB components
for the luminance Y depend explicitly on the coefficients used for the
chroma values Cb and Cr [82, p. 16]. For arbitrary weights wB , wR, the
transformation is defined as270
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Y = wR ·R + (1− wB − wR) ·G + wB ·B,

Cb =
0.5

1 − wB
· (B − Y ),

Cr =
0.5

1 − wR
· (R − Y ), (12.32)

and the inverse transformation from YCbCr to RGB is

R = Y +
1 − wR

0.5
· Cr,

G = Y − wB · (1 − wB) · Cb − wR · (1 − wR) · Cr

0.5 · (1 − wB − wR)
,

B = Y +
1 − wB

0.5
· Cb. (12.33)

The ITU9 recommendation BT.601 [56] specifies the values wR = 0.299
and wB = 0.114 (wG = 1 − wB − wR = 0.587). Using these values, the
transformation becomes⎛

⎝Y
Cb

Cr

⎞
⎠ =

⎛
⎝ 0.299 0.587 0.114
−0.169 −0.331 0.500

0.500 −0.419 −0.081

⎞
⎠ ·

⎛
⎝R

G
B

⎞
⎠ , (12.34)

and the inverse transformation becomes⎛
⎝R

G
B

⎞
⎠ =

⎛
⎝ 1.000 0.000 1.403

1.000 −0.344 −0.714
1.000 1.773 0.000

⎞
⎠ ·

⎛
⎝Y

Cb

Cr

⎞
⎠ . (12.35)

Different weights are recommended based on how the color space is used;
for example, ITU-BT.709 [55] recommends wR = 0.2125 and wB =
0.0721 to be used in digital HDTV production. The values of U, V ,
I, Q, and Cb, Cr may be both positive or negative. To encode Cb, Cr

values to digital numbers, a suitable offset is typically added to obtain
positive-only values, e. g., 128 = 27 in case of 8-bit components.

Figure 12.18 shows the three color spaces YUV, YIQ, and YCbCr

together for comparison. The U, V , I, Q, and Cb, Cr values in the right
two frames have been offset by 128 so that the negative values are visible.
Thus a value of zero is represented as medium gray in these images.
The YCbCr encoding is practically indistinguishable from YUV in these
images since they both use very similar weights for the color components.

12.2.5 Color Spaces for Printing—CMY and CMYK

In contrast to the additive RGB color scheme (and its various color
models), color printing makes use of a subtractive color scheme, where
9 International Telecommunication Union (www.itu.int). 271
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Fig. 12.18
Comparing YUV-, YIQ- and

YCbCrvalues. The Y values are
identical in all three color spaces.

Y UV

Y U V

Y IQ

Y I Q

Y CbCr

Y Cb Cr

each printed color reduces the intensity of the reflected light at that
location. Color printing requires a minimum of three primary colors;
traditionally cyan (C), magenta (M) and yellow (Y )10 have been used.

Using subtractive color mixing on a white background, C = M =
Y = 0 (no ink) results in the color white and C = M = Y = 1 (complete
saturation of all three inks) in the color black. A cyan-colored ink will
absorb red (R) most strongly, magenta absorbs green (G), and yellow
absorbs blue (B). The simplest form of the CMY model is defined as

C = 1 −R,

M = 1 −G, (12.36)
Y = 1 −B.

10 Note that in this case Y stands for yellow and has nothing to do with the
Y luminance component in YUV or YCbCr.272
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In practice, the color produced by fully saturating all three inks is not
physically a true black. Therefore, the three primary colors C, M, Y are
usually supplemented with a black ink (K) to increase the color range
and coverage (gamut). In the simplest case, the amount of black is

K = min(C, M, Y ). (12.37)

With rising levels of black, however, the intensity of the C, M, Y compo-
nents can be gradually reduced. Many methods for reducing the primary
dyes have been proposed and we look at three of them in the following.

CMY→CMYK (Version 1): In this simple variant the C, M, Y values
are reduced linearly with increasing K and the modified components
C′, M ′, Y ′, K ′ are defined as⎛

⎜⎜⎝
C′

M ′

Y ′

K ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

C −K
M −K
Y −K

K

⎞
⎟⎟⎠ . (12.38)

CMY→CMYK (Version 2): The second variant corrects the color by
reducing the C, M, Y components with 1

1−K , resulting in stronger colors
in the dark areas of the image:

⎛
⎝C′

M ′

Y ′

⎞
⎠ =

⎛
⎝C −K

M −K
Y −K

⎞
⎠ ·

{
1

1−K for K < 1
1 otherwise.

(12.39)

K ′ = K

In both versions, the fourth component is used directly (from Eqn.
(12.37)) without modification, and all gray tones (that is, when R =
G = B) are printed using black ink K ′, without any contribution from
C′, M ′, or Y ′.

While both of these simple definitions are widely used, neither one
produces high quality results. Figure 12.19 (a) compares the result from
version 2 with that produced with Adobe Photoshop (Fig. 12.19 (c)).
The difference in the cyan component C is particularly noticeable and
also the amount of black (K) brighter areas of the image.

In practice, the required amounts of black K and C, M, Y depend so
strongly on the printing process and the type of paper used that print
jobs are routinely calibrated individually.

CMY→CMYK (Version 3): In print production, special transfer
functions are applied to tune the results. For example, the Adobe
PostScript interpreter [62, p. 345] specifies an undercolor-removal func-
tion fUCR(K) for gradually reducing the CMY components and a sep-
arate black-generation function fBG(K) for controlling the amount of
black. These functions are used in the form 273
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Fig. 12.19
RGB→CMYK conversion com-

parison. Simple conversion using
Eqn. (12.39) (a), applying the
undercolor-removal and black-

generation functions of Eqn.
(12.40) (b), and results obtained
with Adobe Photoshop (c). The

color intensities are shown in-
verted, i. e., darker areas represent

higher CMYK color values. The
simple conversion (a), in compar-
ison with Photoshop’s result (c),

shows strong deviations in all color
components, C and K in partic-
ular. The results in (b) are close
to Photoshop’s and could be fur-
ther improved by tuning the cor-
responding function parameters.

C

M

Y

K
(a) (b) (c)

⎛
⎜⎜⎝

C′

M ′

Y ′

K ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

C − fUCR(K)
M − fUCR(K)
Y − fUCR(K)

fBG(K)

⎞
⎟⎟⎠ , (12.40)

where K = min(C, M, Y ) again (as defined in Eqn. (12.37)). The func-
tions fUCR and fBG are usually nonlinear, and the resulting values
C′, M ′, Y ′, K ′ are scaled (typically by means of clamping) to the in-
terval [0, 1]. The example shown in Fig. 12.19 (b) was produced using
the functions274
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Fig. 12.20
Examples of undercolor-removal
function fUCR (Eqn. (12.41)) and
black generation function fBG

(Eqn. (12.42)). The parameter
settings are sK = 0.1, K0 = 0.3,
and Kmax = 0.9.

fUCR(K) = sK ·K, (12.41)

fBG(K) =

{
0 for K < K0

Kmax · K−K0
1−K0

for K ≥ K0,
(12.42)

where sK = 0.1, K0 = 0.3, and Kmax = 0.9 (see Fig. 12.20). With this
definition, fUCR reduces the CMY components by 10% of the K value
(by Eqn. (12.40)), which mostly affects the dark areas of the image with
high K values. The effect of the function fBG (Eqn. (12.42)) is that for
values of K < K0 (that is in the light areas of the image), no black ink
is added at all. In the interval K = K0 . . . 1.0, the black component is
increased linearly up to the maximum value Kmax. The result in Fig.
12.19 (b) is relatively close to the CMYK component values produced by
Photoshop11 in Fig. 12.19 (c). It could be further improved by adjusting
the function parameters sK , K0, and Kmax (Eqn. (12.40)).

Even though the results of this last variant (3) for converting RGB to
CMYK are better, it is only a gross approximation and still too impre-
cise for professional work. As we argue in the following section, techni-
cally correct color conversions need to be based on precise, “colorimetric”
grounds.

12.3 Colorimetric Color Spaces

In any application that requires precise, reproducible, and device-inde-
pendent presentation of colors, the use of calibrated color systems is
an absolute necessity. For example, color calibration is routinely used
throughout the digital print work flow but also in digital film production,
professional photography, image databases, etc. One may have experi-
enced how difficult it is, for example, to render a good photograph on a

11 Actually Adobe Photoshop does not convert directly from RGB to CMYK.
Instead, it first converts to, and then from, the CIE L∗a∗b∗ color space (see
Sec. 12.3.1). 275
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12 Color Images color laser printer, and even the color reproduction on monitors largely
depends on the particular manufacturer and computer system.

All the color spaces described in Sec. 12.2 somehow relate to the
physical properties of some media device, such as the specific colors
of the phosphor coatings inside a CRT tube or the colors of the inks
used for printing. To make colors appear similar or even identical on
different media modalities, we need a representation that is independent
of how a particular device reproduces these colors. Color systems that
describe colors in a measurable, device-independent fashion are called
colorimetric or calibrated, and the field of color science is traditionally
concerned with the properties and application of these color systems (see,
e. g., [106] or [91] for an overview). While several colorimetric standards
exist, we focus on the most widely used CIE systems in the remaining
part of this section.

12.3.1 CIE Color Spaces

The XYZ color system, developed by the CIE (Commission Interna-
tionale d’Èclairage)12 in the 1920s and standardized in 1931, is the foun-
dation of most colorimetric color systems that are in use today [81, p.
22].

CIE XYZ color space

The CIE XYZ color scheme was developed after extensive measurements
of human visual perception under controlled conditions. It is based on
three imaginary primary colors X , Y , Z, which are chosen such that all
visible colors can be described as a summation of positive-only compo-
nents, where the Y component corresponds to the perceived lightness
or luminosity of a color. All visible colors lie inside a three-dimensional
cone-shaped region (Fig. 12.21 (a)), which interestingly enough does not
include the primary colors themselves.

Some common color spaces, and the RGB color space in particular,
conveniently relate to XYZ space by a linear coordinate transformation,
as described in Sec. 12.3.3. Thus, as shown in Fig. 12.21 (b), the RGB
color space is embedded in the XYZ space as a distorted cube, and
therefore straight lines in RGB space map to straight lines in XYZ again.
The CIE XYZ scheme is (similar to the RGB color space) nonlinear with
respect to human visual perception, that it, a particular fixed distance
in XYZ is not perceived as a uniform color change throughout the entire
color space. The XYZ coordinates of the RGB color cube (based on the
primary colors defined by ITU-R BT.709) are listed in Table 12.3.

12 International Commission on Illumination (www.cie.co.at).276
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Fig. 12.21
CIE XYZ color space. The XYZ
color space is defined by the three
imaginary primary colors X, Y ,
Z, where the Y dimension cor-
responds to the perceived lu-
minance. All visible colors are
contained inside an open, cone-
shaped volume that originates at
the black point S (a), where E
denotes the axis of neutral (gray)
colors. The RGB color space maps
to the XYZ space as a linearly dis-
torted cube (b).

Pt. Color R G B X Y Z x y

S black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.3127 0.3290

R red 1.00 0.00 0.00 0.4125 0.2127 0.0193 0.6400 0.3300

Y yellow 1.00 1.00 0.00 0.7700 0.9278 0.1385 0.4193 0.5052

G green 0.00 1.00 0.00 0.3576 0.7152 0.1192 0.3000 0.6000

C cyan 0.00 1.00 1.00 0.5380 0.7873 1.0694 0.2247 0.3288

B blue 0.00 0.00 1.00 0.1804 0.0722 0.9502 0.1500 0.0600

M magenta 1.00 0.00 1.00 0.5929 0.2848 0.9696 0.3209 0.1542

W white 1.00 1.00 1.00 0.9505 1.0000 1.0888 0.3127 0.3290

Table 12.3
Coordinates of the RGB color
cube in CIE XYZ space. The
X, Y, Z values refer to standard
(ITU-R BT.709) primaries and
white point D65 (see Table 12.4),
x, y denote the corresponding CIE
chromaticity coordinates.

CIE x, y chromaticity

As mentioned, the luminance in XYZ color space increases along the
Y axis, starting at the black point S located at the coordinate origin
(X = Y = Z = 0). The color hue is independent of the luminance and
thus independent of the Y value. To describe the corresponding “pure”
color hues and saturation in a convenient manner, the CIE system also
defines the three chromaticity values

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, z =

Z

X + Y + Z
, (12.43)

where (obviously) x + y + z = 1 and thus one of the three values (e. g.,
z) is redundant. Equation (12.43) describes a central projection from
X, Y, Z coordinates onto the three-dimensional plane

X + Y + Z = 1,

with the origin S as the projection center (Fig. 12.22). Thus, for an arbi-
trary XYZ color point A = (Xa, Ya, Za), the corresponding chromaticity 277
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Fig. 12.22
CIE x, y chromaticity diagram.

For an arbitrary XYZ color point
A = (Xa, Ya, Za), the chromaticity
values a = (xa, ya, za) are obtained

by a central projection onto the
3D plane X + Y + Z = 1 (a). The

corner points of the RGB cube
map to a triangle, and its white
point W maps to the (colorless)

neutral point E. The intersection
points are then projected onto the
X/Y plane (b) by simply dropping
the Z component, which produces
the familiar CIE chromaticity di-
agram shown in (c). The CIE di-

agram contains all visible color
tones (hues and saturations) but
no luminance information, with

wavelengths in the range 380–780
nanometers. A particular color

space is specified by at least three
primary colors (tristimulus val-
ues; e. g., R, G, B), which de-

fine a triangle (linear hull) con-
taining all representable colors.
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coordinates a = (xa, ya, za) are found by intersecting the line SA with
the X + Y + Z = 1 plane (Fig. 12.22 (a)). The final x, y coordinates
are the result of projecting these intersection points onto the X/Y -plane
(Fig. 12.22 (b)) by simply dropping the Z component za.

The result is the well-known horseshoe-shaped CIE x, y chromaticity
diagram, which is shown in Fig. 12.22 (c). Any x, y point in this diagram
defines the hue and saturation of a particular color, but only the colors
inside the horseshoe curve are potentially visible.

Obviously an infinite number of X, Y, Z colors (with different lu-
minance values) project to the same x, y, z chromaticity values, and the278
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XYZ color coordinates thus cannot be uniquely reconstructed from given
chromaticity values. Additional information is required. For example,
it is common to specify the visible colors of the CIE system in the form
Yxy, where Y is the original luminance component of the XYZ color.

Given a pair of chromaticity values x, y (with y > 0) and an arbitrary
Y value, the missing X, Z coordinates are obtained (using the definitions
in Eqn. (12.43)) as

X = x · Y

y
, Z = z · Y

y
= (1 − x − y) · Y

y
. (12.44)

The CIE diagram not only yields an intuitive layout of color hues
but exhibits some remarkable formal properties. The xy values along
the outer horseshoe boundary correspond to monochromatic (“spectrally
pure”), maximally saturated colors with wavelengths ranging from be-
low 400 nm (purple) up to 780 nm (red). Thus, the position of any color
inside the xy diagram can be specified with respect to any of the pri-
mary colors at the boundary, except for the points on the connecting
line (“purple line”) between 380 and 780 nm, whose purple hues do not
correspond to primary colors but can only be generated by mixing other
colors.

The saturation of colors falls off continuously toward the “neutral
point” (E) at the center of the horseshoe, with x = y = 1

3 (or X =
Y = Z = 1, respectively) and zero saturation. All other colorless (i. e.,
gray) values also map to the neutral point, just as any set of colors with
the same hue but different brightness corresponds to a single x, y point.
All possible composite colors lie inside the convex hull specified by the
coordinates of the primary colors of the CIE diagram and, in particular,
complementary colors are located on straight lines that run diagonally
through the white point.

Standard illuminants

A central goal of colorimetry is the quantitative measurement of colors
in physical reality, which strongly depends on the color properties of the
illumination. The CIE system specifies a number of standard illumi-
nants for a variety of real and hypothetical light sources, each specified
by a spectral radiant power distribution and the “correlated color tem-
perature” (expressed in degrees Kelvin) [106, Sec. 3.3.3]. The following
daylight (D) illuminants are particularly important for the design of dig-
ital color spaces (Table 12.4):

D50 emulates the spectrum of natural (direct) sunlight with an equiv-
alent color temperature of approximately 5000◦K. D50 is the rec-
ommended illuminant for viewing reflective images, such as pa-
per prints. In practice, D50 lighting is commonly implemented
with fluorescent lamps using multiple phosphors to approximate
the specified color spectrum. 279
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Fig. 12.23
Gamut regions for different
color spaces and output de-

vices inside the CIE diagram.
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D65 has a correlated color temperature of approximately 6500◦K and is
designed to emulate the average (indirect) daylight observed under
an overcast sky on the northern hemisphere. D65 is also used as
the reference white for emittive devices, such as display screens.

The standard illuminants serve to specify the ambient viewing light but
also to define the reference white points in various color spaces in the CIE
color system. For example, the sRGB standard (see Sec. 12.3.3) refers to
D65 as the media white point and D50 as the ambient viewing illuminant.
In addition, the CIE system also specifies the range of admissible viewing
angles (commonly at ±2◦).

Table 12.4
CIE color parameters for the

standard illuminants D50 and
D65. E denotes the absolute

neutral point in CIE XYZ space.

Pt. Temp. X Y Z x y

D50 5000◦ K 0.964296 1.000000 0.825105 0.3457 0.3585
D65 6500◦ K 0.950456 1.000000 1.088754 0.3127 0.3290
E 5400◦ K 1 1 1 1/3 1/3

Gamut

The set of all colors that can be handled by a certain media device or can
be represented by a particular color space is called “gamut”. This is usu-
ally a contiguous region in the three-dimensional CIE XYZ color space
or, reduced to the representable color hues and ignoring the luminance
component, a convex region in the two-dimensional CIE chromaticity
diagram. Figure 12.23 illustrates some typical gamut regions inside the
CIE diagram.

The gamut of an output device mainly depends on the technology em-
ployed. For example, ordinary color monitors are typically not capable280
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of displaying all colors of the gamut covered by the corresponding color
space (usually sRGB). Conversely, it is also possible that devices would
reproduce certain colors that cannot be represented in the utilized color
space. Significant deviations exist, for example, between the RGB color
space and the gamuts associated with CMYK-based printers. Also, me-
dia devices with very large gamuts exist, as demonstrated by the laser
display system in Fig. 12.23. Representing such large gamuts and, in
particular, transforming between different color representations requires
adequately sized color spaces, such as the Adobe-RGB color space or
L∗a∗b∗ (described below), which covers the entire visible portion of the
CIE diagram.

Variants of the CIE color space

The original CIEXYZ color space and the derived xy chromaticity di-
agram have the disadvantage that color differences are not perceived
equally in different regions of the color space. For example, large color
changes are perceived in the magenta region for a given shift in XYZ
while the change is relatively small in the green region for the same co-
ordinate distance. Several variants of the CIE color space have been
developed for different purposes, primarily with the goal of creating per-
ceptually uniform color representations without sacrificing the formal
qualities of the CIE reference system. Popular CIE-derived color spaces
include CIE YUV, YU′V′, L∗u∗v∗, YCbCr, and particularly L∗a∗b∗, which
is described below.

In addition, CIE-compliant specifications exist for most common
color spaces (see Sec. 12.2), which allow more or less dependable conver-
sions between almost any pair of color spaces.

12.3.2 CIE L∗a∗b∗

The L∗a∗b∗ color model (specified by CIE in 1976) was developed with
the goal of linearizing the representation with respect to human color
perception and at the same time creating a more intuitive color system.
Since then, L∗a∗b∗13 has become a popular and widely used color model,
particularly for high-quality photographic applications. It is used, for
example, inside Adobe Photoshop as the standard model for converting
between different color spaces. The dimensions in this color space are
the luminosity L∗ and the two color components a∗, b∗, which specify
the color hue and saturation along the green-red and blue-yellow axes,
respectively. All three components are relative values and refer to the
specified reference white point Cref = (Xref , Yref , Zref). In addition, a
nonlinear correction function (similar to the modified gamma correction
described in Sec. 5.7.6) is applied to all three components, as detailed
below.
13 Often L∗a∗b∗ is simply referred to as the “Lab” color space. 281
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Table 12.5
CIE L∗a∗b∗ coordinates for se-
lected RGB color points. The
X65, Y65, Z65 values relate to

the standard (ITU-R BT.709)
primaries and white point D65

(see Tables 12.3 and 12.4).

Pt. Color R G B X65 Y65 Z65 L∗ a∗ b∗

S black 0.00 0.00 0.00 0.0000 0.0000 0.0000 0.00 0.00 0.00

R red 1.00 0.00 0.00 0.4125 0.2127 0.0193 53.24 80.09 67.20

Y yellow 1.00 1.00 0.00 0.7700 0.9278 0.1385 97.14 −21.55 94.48

G green 0.00 1.00 0.00 0.3576 0.7152 0.1192 87.74 −86.18 83.18

C cyan 0.00 1.00 1.00 0.5380 0.7873 1.0694 91.11 −48.09 −14.13

B blue 0.00 0.00 1.00 0.1804 0.0722 0.9502 32.30 79.19 −107.86

M magenta 0.00 1.00 1.00 0.5929 0.2848 0.9696 60.32 98.23 −60.83

W white 1.00 1.00 1.00 0.9505 1.0000 1.0888 100.00 0.00 0.00

Transformation CIE XYZ → L∗a∗b∗

Several specifications for converting to and from L∗a∗b∗ space exist that,
however, differ marginally and for very small L values only. The current
specification for converting between CIEXYZ and L∗a∗b∗ colors is defined
by ISO Standard 13655 [53] as follows:

L∗ = 116 · Y ′ − 16,

a∗ = 500 · (X ′ − Y ′), (12.45)
b∗ = 200 · (Y ′ − Z ′),

where X ′ = f1

(
X

Xref

)
, Y ′ = f1

(
Y

Yref

)
, Z ′ = f1

(
Z

Zref

)
,

and f1(c) =
{

c
1
3 for c > 0.008856

7.787 · c + 16
116 for c ≤ 0.008856 .

Usually D65 is specified as the reference white point (Xref , Yref , Zref) (see
Table 12.4). The L∗ values are positive and usually within the range
[0, 100] (often scaled to [0, 255]), but may theoretically be greater. The
possible values for a∗ and b∗ are in the range [−127, +127].

Transformation L∗a∗b∗ → CIE XYZ

The reverse transformation from L∗a∗b∗ space to XYZ coordinates is
defined as follows:

X = Xref · f2

(
a∗
500 + Y ′),

Y = Yref · f2

(
Y ′), (12.46)

Z = Zref · f2

(
Y ′ − b∗

200

)
,

where Y ′ = L∗+16
116

and f2(c) =
{

c3 for c3 > 0.008856
c−16/116

7.787 for c3 ≤ 0.008856 .

The complete Java code for the L∗a∗b∗/XYZ conversion and the imple-
mentation of the associated ColorSpace class can be found in Progs.
12.10 and 12.11 (pp. 297–298).282
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L∗ a∗ b∗

Fig. 12.24
L∗a∗b∗ components shown as
grayscale images. The contrast
of the a∗ and b∗ images has been
increased by 40% for better view-
ing.

Table 12.5 lists the relation between L∗a∗b∗ and XYZ coordinates for
selected RGB colors. Figure 12.24 shows the separation of a color image
into the corresponding L∗a∗b∗ components.

Measuring color differences

Due to its high uniformity with respect to human color perception, the
L∗a∗b∗ color space is a particularly good choice for determining the dif-
ference between colors (the same holds for the L∗u∗v∗ space) [40, p. 57].
The difference between two color points C1 and C2 can be found by
simply measuring the Euclidean distance in L∗a∗b∗ space,

ColorDistLab(C1,C2) = ‖C1 −C2‖ (12.47)

=
√

(L∗
1 − L∗

2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2 ,

where C1 = (L∗
1, a

∗
1, b

∗
1) and C2 = (L∗

2, a
∗
2, b

∗
2).

12.3.3 sRGB

CIE-based color spaces such as L∗a∗b∗ (and L∗u∗v∗) are device-indepen-
dent and have a gamut sufficiently large to represent virtually all visi-
ble colors in the CIEXYZ system. However, in many computer-based,
display-oriented applications, such as computer graphics or multimedia,
the direct use of CIE-based color spaces may be too cumbersome or
inefficient.

sRGB (“standard RGB” [52]) was developed (jointly by Hewlett-
Packard and Microsoft) with the goal of creating a precisely specified
color space for these applications, based on standardized mappings with
respect to the colorimetric CIEXYZ color space. This includes precise
specifications of the three primary colors, the white reference point, am-
bient lighting conditions, and gamma values. Interestingly, the sRGB
color specification is the same as the one specified many years before for
the European PAL/SECAM television standards.

Compared to L∗a∗b∗, sRGB exhibits a relatively small gamut (see Fig.
12.23), which, however, includes most colors that can be reproduced by 283
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Table 12.6
sRGB tristimulus values R, G,
B with reference to the white

point D65 (W). R, G, B denote
the linearized component values

(which at 0 and 1 are identical to
the nonlinear R′, G′, B′ values).

Pt. R G B X65 Y65 Z65 x65 y65

R 1.0 0.0 0.0 0.412453 0.212671 0.019334 0.6400 0.3300

G 0.0 1.0 0.0 0.357580 0.715160 0.119193 0.3000 0.6000

B 0.0 0.0 1.0 0.180423 0.072169 0.950227 0.1500 0.0600

W 1.0 1.0 1.0 0.950456 1.000000 1.088754 0.3127 0.3290

current computer and video monitors. Although sRGB was not designed
as a universal color space, its CIE-based specification at least permits
more or less exact conversions to and from other color spaces.

Several standard image formats, including EXIF (JPEG) and PNG
are based on sRGB color data, which makes sRGB the de facto standard
for digital still cameras, color printers, and other imaging devices at the
consumer level [45]. sRGB is used as a relatively dependable archive for-
mat for digital images, particularly in less demanding applications that
do not require (or allow) explicit color management [97]. In particular,
sRGB was defined as the standard default color space for Internet/Web
applications by the W3C consortium as part of the HTML 4 specifica-
tion [96]. Thus, in practice, working with any RGB color data almost
always means dealing with sRGB. It is thus no coincidence that sRGB
is also the common color scheme in Java and is extensively supported by
the Java standard API (see Sec. 12.3.6 below).

Table 12.6 lists the key parameters of the sRGB color space (i. e., the
XYZ coordinates for the primary colors R, G, B and the white point W
(D65)), which are defined according to ITU-R BT.709 [55] (see Tables
12.3 and 12.4). Together, these values permit the unambiguous mapping
of all other colors in the CIE diagram.

Linear vs. nonlinear color components

sRGB is a nonlinear color space with respect to the XYZ coordinate
system, and it is important to carefully distinguish between the linear
and nonlinear RGB component values. The nonlinear values (denoted
R′, G′, B′) represent the actual color tuples, the data values read from
an image file or received from a digital camera. These values are precor-
rected with a fixed Gamma (≈ 2.2) such that they can be easily viewed
on a common color monitor without any additional conversion. The cor-
responding linear components (denoted R, G, B) relate to the CIEXYZ
color space by a linear mapping and can thus be computed from X, Y, Z
coordinates and vice versa by simple matrix multiplication,⎛

⎝R
G
B

⎞
⎠ = MRGB ·

⎛
⎝X

Y
Z

⎞
⎠ and

⎛
⎝X

Y
Z

⎞
⎠ = M−1

RGB ·
⎛
⎝R

G
B

⎞
⎠ , (12.48)

respectively, with284
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SpacesMRGB =

⎛
⎝ 3.240479 −1.537150 −0.498535
−0.969256 1.875992 0.041556

0.055648 −0.204043 1.057311

⎞
⎠, (12.49)

M−1
RGB =

⎛
⎝ 0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎞
⎠. (12.50)

Notice that the three column vectors of M−1
RGB (Eqn. (12.50)) are the

coordinates of the primary colors R, G, B (tristimulus values) in XYZ
space (cf. Table 12.6) and thus

R = M−1
RGB ·

⎛
⎝1

0
0

⎞
⎠, G = M−1

RGB ·
⎛
⎝0

1
0

⎞
⎠, B = M−1

RGB ·
⎛
⎝0

0
1

⎞
⎠. (12.51)

Transformation CIE XYZ→sRGB

To transform a given XYZ color to sRGB (Fig. 12.25), we first compute
the linear R, G, B values by multiplying the (X, Y, Z) coordinate vector
with the matrix MRGB (Eqn. (12.49)),⎛

⎝R
G
B

⎞
⎠ = MRGB

⎛
⎝X

Y
Z

⎞
⎠ . (12.52)

Subsequently, a modified gamma correction (see Sec. 5.7.6) with γ = 2.4
(which corresponds to an effective gamma value of ca. 2.2) is applied to
the linear R, G, B values,

R′ = fγ(R), G′ = fγ(G), B′ = fγ(B),

with fγ(c) =

{
1.055 · c 1

2.4 − 0.055 for c > 0.0031308
12.92 · c for c ≤ 0.0031308 .

(12.53)

The resulting nonlinear sRGB components R′, G′, B′ are limited to the
interval [0, 1]. To obtain discrete numbers, the R′, G′, B′ values are fi-
nally scaled linearly to the 8-bit integer range [0, 255].

⎛
⎝X

Y
Z

⎞
⎠ −→

linear
mapping
MRGB

−→
⎛
⎝R

G
B

⎞
⎠ −→

gamma
correction

fγ()
−→

⎛
⎝R′

G′

B′

⎞
⎠ Fig. 12.25

Color transformation from
CIEXYZ to sRGB.
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Table 12.7
CIEXYZ coordinates for selected
sRGB colors. The table lists the
nonlinear R′, G′, and B′ compo-

nents, the linearized R, G, and
B values, and the correspond-

ing X, Y , and Z coordinates (for
white point D65). The linear and

nonlinear RGB values are iden-
tical for the extremal points of

the RGB color cube S . . .W (top
rows) because the gamma cor-
rection does not affect 0 and 1

component values. However, in-
termediate colors (K . . .P, shaded
rows) may exhibit large differences

between the nonlinear and lin-
ear components (e. g., compare
the R′ and R values for R25).

sRGB sRGB
nonlinear linearized CIEXYZ

Pt. Color R′ G′ B′ R G B X65 Y65 Z65

S black 0.00 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R red 1.00 0.0 0.0 1.0000 0.0000 0.0000 0.4125 0.2127 0.0193

Y yellow 1.00 1.0 0.0 1.0000 1.0000 0.0000 0.7700 0.9278 0.1385

G green 0.00 1.0 0.0 0.0000 1.0000 0.0000 0.3576 0.7152 0.1192

C cyan 0.00 1.0 1.0 0.0000 1.0000 1.0000 0.5380 0.7873 1.0694

B blue 0.00 0.0 1.0 0.0000 0.0000 1.0000 0.1804 0.0722 0.9502

M magenta 1.00 0.0 1.0 1.0000 0.0000 1.0000 0.5929 0.2848 0.9696

W white 1.00 1.0 1.0 1.0000 1.0000 1.0000 0.9505 1.0000 1.0888

K 50% gray 0.50 0.5 0.5 0.2140 0.2140 0.2140 0.2034 0.2140 0.2330

R75 75% red 0.75 0.0 0.0 0.5225 0.0000 0.0000 0.2155 0.1111 0.0101

R50 50% red 0.50 0.0 0.0 0.2140 0.0000 0.0000 0.0883 0.0455 0.0041

R25 25% red 0.25 0.0 0.0 0.0509 0.0000 0.0000 0.0210 0.0108 0.0010

P pink 1.00 0.5 0.5 1.0000 0.2140 0.2140 0.5276 0.3812 0.2482

Transformation sRGB→CIE XYZ

To compute the reverse transformation from sRGB to XYZ, the given
(nonlinear) R′G′B′ values (in the range [0, 1]) are first linearized by
inverting the gamma correction14 (Eqn. (12.53)),

R = f−1
γ (R′), G = f−1

γ (G′), B = f−1
γ (B′), (12.54)

with f−1
γ (c′) =

{(
c′+0.055

1.055

)2.4 for c′ > 0.03928
c′

12.92 for c′ ≤ 0.03928.
(12.55)

Subsequently, the linearized (R, G, B) vector is transformed to XYZ co-
ordinates by multiplication with the inverse of the matrix MRGB (Eqn.
(12.50)); i. e., ⎛

⎝X
Y
Z

⎞
⎠ = M−1

RGB

⎛
⎝R

G
B

⎞
⎠ . (12.56)

Table 12.7 lists the nonlinear and the linear RGB component values
for selected color points. Note that component values of 0 and 1 are not
affected by the gamma correction because these values map to them-
selves. The coordinates of the extremal points of the RGB color cube
are therefore identical in nonlinear and linear RGB spaces. However,
intermediate values are strongly affected by the gamma correction, as
illustrated by the coordinates for the color points K . . .P, which em-
phasizes the importance of differentiating between linear and nonlinear
color coordinates.
14 See Eqn. (5.36) for a general formulation of the inverse modified gamma

function.286
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Calculating with sRGB values

The sRGB color specification is widely used for representing colors in
digital photography, graphics, multimedia, and Internet applications.
For example, when a JPEG image is loaded with ImageJ or Java, the
pixel values in the resulting data array are media-oriented, i. e., nonlinear
R′, G′, B′ components of the sRGB color space. Unfortunately, this fact
is often overlooked by programmers, with the consequence that colors
are incorrectly manipulated and reproduced.

As a general rule, any arithmetic operation on color values should
always be performed on the linearized R, G, B components, which are
obtained from the nonlinear R′, G′, B′ values through the inverse gamma
function f−1

γ (Eqn. (12.55)) and converted back again with fγ (Eqn.
(12.53)).

Example: color to grayscale conversion

When we initially presented the process of converting RGB colors to
grayscale values in Sec. 12.2.1 we simply ignored the possibility that the
color component values used in the weighted sum might be nonlinear.
However, the variables R, G, B, and Y in the color-to-grayscale conver-
sion defined by Eqn. (12.7),

Y = 0.2125 · R + 0.7154 ·G + 0.0721 · B, (12.57)

implicitly refer to linear color and gray values, respectively. We can
refine Eqn. (12.57) to obtain the correct grayscale conversion from the
raw nonlinear sRGB components R′, G′, B′ as

Y ′ = fγ

[
0.2125 ·f−1

γ (R′)+ 0.7154 ·f−1
γ (G′)+ 0.0721 ·f−1

γ (B′)
]
, (12.58)

with the functions fγ() and f−1
γ () as defined in Eqns. (12.53) and (12.55).

The result (Y ′) is again a nonlinear, sRGB-compatible gray value; i. e.,
the sRGB color tuple (Y ′, Y ′, Y ′) should have the same perceived lumi-
nance as the original color (R′, G′, B′).

Note that setting the components of an sRGB color pixel to three
arbitrary but identical values Y ′,

(R′, G′, B′) → (Y ′, Y ′, Y ′),

always creates a gray (colorless) pixel, despite the nonlinearities of the
sRGB space. This is due to the fact that the gamma correction (Eqns.
(12.53) and (12.55)) applies evenly to all three color components and thus
any three identical values map to a (linearized) color on the straight gray
line between the black point S and the white point W in XYZ space (cf.
Fig. 12.21 (b)).

For many applications, however, the following approximation to the
exact grayscale conversion in Eqn. (12.58) is sufficient. It works without 287
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Fig. 12.26
Gamuts for sRGB (a) and

Adobe RGB (b) in the three-
dimensional CIE XYZ color space.

converting the sRGB values (i. e., directly on the nonlinear R′, G′, B′

components) by computing a linear combination

Y ′ ≈ w′
R · R′ + w′

G ·G′ + w′
B ·B′ (12.59)

with a modified set of weights; e. g., w′
R = 0.309, w′

G = 0.609, w′
B =

0.082, as proposed in [78].

12.3.4 Adobe RGB

A distinct weakness of sRGB is its relatively small gamut, which is
limited to the range of colors reproducible by ordinary color monitors.
This causes problems, for example, in printing, where larger gamuts are
needed, particularly in the green regions. The “Adobe RGB (1998)” [1]
color space, developed by Adobe as their own standard, is based on the
same general concept as sRGB but exhibits a significantly larger gamut
(Fig. 12.23), which extends its use particularly to print applications. Fig-
ure 12.26 shows the noted difference between the sRGB and Adobe RGB
gamuts in three-dimensional CIEXYZ color space.

The white point of Adobe RGB corresponds to the D65 standard
(with x = 0.3127, y = 0.3290), and the gamma value is 2.199 (compared
with 2.4 for sRGB) for the forward correction and 1

2.199 for the inverse
correction, respectively. The associated file specification provides for a
number of different codings (8 to 16-bit integer and 32-bit floating point)
for the color components. Adobe RGB is frequently used in professional
photography as an alternative to the L∗a∗b∗ color space and for picture
archive applications.

12.3.5 Chromatic Adaptation

The human eye has the capability to interpret colors as being constant
under varying viewing conditions and illumination in particular. A white
sheet of paper appears white to us in bright daylight as well as under
fluorescent lighting, although the spectral composition of the light that288
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enters the eye is completely different in both situations. The CIE color
system takes into account the color temperature of the ambient lighting
because the exact interpretation of XYZ color values also requires knowl-
edge of the corresponding reference white point. For example, a color
value (X, Y, Z) specified with respect to the D50 reference white point is
generally perceived differently when reproduced by a D65-based media
device, although the absolute (i. e., measured) color is the same. Thus
the actual meaning of XYZ values cannot be known without knowing
the corresponding white point. This is known as relative colorimetry.

If colors are specified with respect to different white points, for ex-
ample W1 = (XW1, YW1, ZW1) and W2 = (XW2, YW2, ZW2), they can
be related by first applying a so-called chromatic adaptation transfor-
mation (CAT) [49, Ch. 34] in the XYZ color space. This transformation
determines for given color coordinates (X1, Y1, Z1) and the associated
white point W1 the new color coordinates (X2, Y2, Z2) relative to the
alternate white point W2.

XYZ scaling

The simplest chromatic adaptation method is XYZ scaling, where the
individual color coordinates are individually multiplied by the ratios of
the corresponding white point coordinates:

X2 = X1 · XW2

XW1
, Y2 = Y1 · YW2

YW1
, Z2 = Z1 · ZW2

ZW1
. (12.60)

For example, to convert colors from a system based on the white point
W1 = D65 to a system relative to W2 = D50 (see Table 12.4), the
resulting transformation is

X50 = X65 · XD50

XD65
= X65 · 0.964296

0.950456
= X65 · 1.01456 ,

Y50 = Y65 · YD50

YD65
= Y65 · 1.000000

1.000000
= Y65 ,

Z50 = Z65 · ZD50

ZD65
= Z65 · 0.825105

1.088754
= Z65 · 0.757843 .

(12.61)

This form of scaling color coordinates in XYZ space is usually not con-
sidered a good color adaptation model and is not recommended for high-
quality applications.

Bradford adaptation

The most common chromatic adaptation models are based on scaling the
color coordinates not directly in XYZ but in a “virtual” R∗G∗B∗ color
space obtained from the XYZ values by a linear transformation 289
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⎛
⎝R∗

G∗

B∗

⎞
⎠ = MCAT ·

⎛
⎝X

Y
Z

⎞
⎠ , (12.62)

where MCAT is a 3×3 transformation matrix (defined below). After ap-
propriate scaling, the R∗G∗B∗ coordinates are transformed back to XYZ,
so the complete adaptation transform from color coordinates X1, Y1, Z1

(w.r.t. white point W1) to the new color coordinates X2, Y2, Z2 (w.r.t.
white point W2) takes the form⎛

⎝X2

Y2

Z2

⎞
⎠ = M−1

CAT ·

⎛
⎜⎜⎝

R∗
W2

R∗
W1

0 0

0 G∗
W2

G∗
W1

0

0 0 B∗
W2

B∗
W1

⎞
⎟⎟⎠·MCAT ·

⎛
⎝X1

Y1

Z1

⎞
⎠ , (12.63)

where R∗
W2

R∗
W1

, G∗
W2

G∗
W1

, B∗
W2

B∗
W1

are the (constant) ratios of the R∗G∗B∗ values
of the white points W2, W1, respectively; i. e.,⎛
⎝R∗

W1

G∗
W1

B∗
W1

⎞
⎠ = MCAT ·

⎛
⎝XW1

YW1

ZW1

⎞
⎠ and

⎛
⎝R∗

W2

G∗
W2

B∗
W2

⎞
⎠ = MCAT ·

⎛
⎝XW2

YW2

ZW2

⎞
⎠ .

The popular “Bradford” model [49, p. 590] for chromatic adaptation
specifies the transformation matrix

MCAT =

⎛
⎝ 0.8951 0.2664 −0.1614
−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

⎞
⎠ . (12.64)

Inserting this particularMCAT matrix in Eqn. (12.63) gives the complete
chromatic adaptation. For example, the resulting transformation for
converting from D65-based to D50-based colors (i. e., W1 = D65, W2 =
D50, as listed in Table 12.4) is⎛
⎝X50

Y50

Z50

⎞
⎠ = M50|65 ·

⎛
⎝X65

Y65

Z65

⎞
⎠

=

⎛
⎝ 1.047884 0.022928 −0.050149

0.029603 0.990437 −0.017059
−0.009235 0.015042 0.752085

⎞
⎠·
⎛
⎝X65

Y65

Z65

⎞
⎠ , (12.65)

and conversely from D50-based to D65-based colors (i. e., W1 = D50,
W2 = D65),⎛
⎝X65

Y65

Z65

⎞
⎠ = M65|50 ·

⎛
⎝X50

Y50

Z50

⎞
⎠ = M−1

50|65 ·
⎛
⎝X50

Y50

Z50

⎞
⎠

=

⎛
⎝ 0.955513 −0.023079 0.063190
−0.028348 1.009992 0.021019

0.012300 −0.020484 1.329993

⎞
⎠·
⎛
⎝X50

Y50

Z50

⎞
⎠ . (12.66)
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Fig. 12.27
Bradford chromatic adaptation
from white point D65 to D50. The
solid triangle represents the orig-
inal RGB gamut for white point
D65, with the primaries (R,G, B)
located at the corner points. The
dashed triangle is the correspond-
ing gamut after chromatic adapta-
tion to white point D50.

sRGB XYZ (D65) XYZ (D50)
Pt. Color R′ G′ B′ X65 Y65 Z65 X50 Y50 Z50

S black 0.00 0.0 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

R red 1.00 0.0 0.0 0.4125 0.2127 0.0193 0.4361 0.2225 0.0139

Y yellow 1.00 1.0 0.0 0.7700 0.9278 0.1385 0.8212 0.9394 0.1110

G green 0.00 1.0 0.0 0.3576 0.7152 0.1192 0.3851 0.7169 0.0971

C cyan 0.00 1.0 1.0 0.5380 0.7873 1.0694 0.5282 0.7775 0.8112

B blue 0.00 0.0 1.0 0.1804 0.0722 0.9502 0.1431 0.0606 0.7141

M magenta 1.00 0.0 1.0 0.5929 0.2848 0.9696 0.5792 0.2831 0.7280

W white 1.00 1.0 1.0 0.9505 1.0000 1.0888 0.9643 1.0000 0.8251

K 50% gray 0.50 0.5 0.5 0.2034 0.2140 0.2330 0.2064 0.2140 0.1766

R75 75% red 0.75 0.0 0.0 0.2155 0.1111 0.0101 0.2279 0.1163 0.0073

R50 50% red 0.50 0.0 0.0 0.0883 0.0455 0.0041 0.0933 0.0476 0.0030

R25 25% red 0.25 0.0 0.0 0.0210 0.0108 0.0010 0.0222 0.0113 0.0007

P pink 1.00 0.5 0.5 0.5276 0.3812 0.2482 0.5492 0.3889 0.1876

Table 12.8
Bradford chromatic adaptation
from white point D65 to D50 for
selected sRGB colors. The XYZ
coordinates X65, Y65, Z65 relate
to the original white point D65
(W1). X50, Y50, Z50 are the corre-
sponding coordinates for the new
white point D50 (W2), obtained
with the Bradford adaptation ac-
cording to Eqn. (12.65).

Fig. 12.27 illustrates the effects of adaptation from the D65 white
point to D50 in the CIE x, y chromaticity diagram. A short list of
corresponding color coordinates is given in Table 12.8.

The Bradford model is a widely used chromatic adaptation scheme
but several similar procedures have been proposed (see also Exercise
12.5). Generally speaking, chromatic adaptation and related problems
have a long history in color engineering and are still active fields of
scientific research [106, Sec. 5.12].
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12 Color Images 12.3.6 Colorimetric Support in Java

sRGB colors in Java

sRGB is the standard color space in Java; i. e., the components of color
objects and RGB color images are gamma-corrected, nonlinear R′, G′, B′

values (see Fig. 12.25). The nonlinear R′, G′, B′ values are related to the
linear R, G, B values by a modified gamma correction, as specified by
the sRGB standard (Eqns. (12.53) and (12.55)).

Profile connection space (PCS)

The Java API (AWT) provides classes for representing color objects
and color spaces, together with a rich set of corresponding methods.
Java’s color system is designed after the ICC15 “color management ar-
chitecture”, which uses a CIEXYZ-based device-independent color space
called the “profile connection space” (PCS) [51,54]. The PCS color space
is used as the intermediate reference for converting colors between dif-
ferent color spaces. The ICC standard defines device profiles (see Sec.
12.3.6) that specify the transforms to convert between a device’s color
space and the PCS. The advantage of this approach is that for any given
device only a single color transformation (profile) must be specified to
convert between device-specific colors and the unified, colorimetric pro-
file connection space. Every ColorSpace class (or subclass) provides the
methods fromCIEXYZ() and toCIEXYZ() to convert device color values
to XYZ coordinates in the standardized PCS. Figure 12.28 illustrates
the principal application of ColorSpace objects for converting colors
between different color spaces in Java using the XYZ space as a common
“hub”.

Different from the sRGB specification, the ICC specifies D50 (and
not D65) as the illuminant white point for its default PCS color space
(see Table 12.4). The reason is that the ICC standard was developed
primarily for color management in photography, graphics, and printing,
where D50 is normally used as the reflective media white point. The Java
methods fromCIEXYZ() and toCIEXYZ() thus take and return X, Y, Z
color coordinates that are relative to the D50 white point. The resulting
coordinates for the primary colors (listed in Table 12.9) are different from
the ones given for white point D65 (see Table 12.6)! This is a frequent
cause of confusion since the sRGB component values are D65-based (as
specified by the sRGB standard) but Java’s XYZ values are relative to
the D50.

Chromatic adaptation (see Sec. 12.3.5) is used to convert between
XYZ color coordinates that are measured with respect to different white
points. The ICC specification [51] recommends a linear chromatic adap-
tation based on the Bradford model to convert between the D65-related
15 International Color Consortium (ICC, www.color.org).292
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Fig. 12.28
XYZ-based color conversion in
Java. ColorSpace objects imple-
ment the methods fromCIEXYZ()
and toCIEXYZ() to convert color
vectors from and to the CIEXYZ
color space, respectively. Colori-
metric transformations between
color spaces can be accomplished
as a two-step process via the XYZ
space. For example, to convert
from sRGB to L∗a∗b∗, the sRGB
color is first converted to XYZ and
subsequently from XYZ to L∗a∗b∗.
Notice that Java’s standard XYZ
color space is based on the D50
white point, while most common
color spaces refer to D65.

Pt. R G B X50 Y50 Z50 x50 y50

R 1.0 0.0 0.0 0.436108 0.222517 0.013931 0.6484 0.3309

G 0.0 1.0 0.0 0.385120 0.716873 0.097099 0.3212 0.5978

B 0.0 0.0 1.0 0.143064 0.060610 0.714075 0.1559 0.0660

W 1.0 1.0 1.0 0.964296 1.000000 0.825106 0.3457 0.3585

Table 12.9
Color coordinates for sRGB pri-
maries and the white point in
Java’s default XYZ color space.
The white point W is equal to
D50.

XYZ coordinates (X65, Y65, Z65) and D50-related values (X50, Y50, Z50).
This is also implemented by the Java API.

The complete mapping between the linearized sRGB color values
(R, G, B) and the D50-based (X50, Y50, Z50) coordinates can be ex-
pressed as a linear transformation composed of the RGB→XYZ65 trans-
formation by matrix MRGB (Eqns. (12.49) and (12.50)) and the chro-
matic adaptation transformation XYZ65→XYZ50 defined by the matrix
M50|65 (Eqn. (12.65)),⎛

⎝X50

Y50

Z50

⎞
⎠ = M 50|65 · M−1

RGB ·
⎛
⎝R

G
B

⎞
⎠

=
(
MRGB · M65|50

)−1

·
⎛
⎝R

G
B

⎞
⎠

=

⎛
⎝0.436131 0.385147 0.143033

0.222527 0.716878 0.060600
0.013926 0.097080 0.713871

⎞
⎠ ·

⎛
⎝R

G
B

⎞
⎠ , (12.67)

and, in the reverse direction, 293



12 Color Images

Fig. 12.29
Transformation from D50-

based PCS coordinates
(X50, Y50, Z50) to nonlinear

sRGB values (R′, G′, B′).
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R

G

B

R′

G′

B′

⎛
⎝R

G
B

⎞
⎠ = MRGB ·M 65|50 ·

⎛
⎝X50

Y50

Z50

⎞
⎠ (12.68)

=

⎛
⎝ 3.133660 −1.617140 −0.490588
−0.978808 1.916280 0.033444

0.071979 −0.229051 1.405840

⎞
⎠ ·

⎛
⎝X50

Y50

Z50

⎞
⎠ .

Equations (12.67) and (12.68) are the transformations implemented by
the methods toCIEXYZ() and fromCIEXYZ(), respectively, for Java’s de-
fault sRGB ColorSpace class. Of course, these methods must also per-
form the necessary gamma correction between the linear R, G, B com-
ponents and the actual (nonlinear) sRGB values R′, G′, B′. Figure 12.29
illustrates the complete transformation from D50-based PCS coordinates
to nonlinear sRGB values.

Color-related Java classes

The Java standard API offers extensive support for working with colors
and color images. The most important classes contained in the Java
AWT package are:

• Color: defines individual color objects.
• ColorSpace: specifies the properties of entire color spaces.
• ColorModel: describes the structure of color images; e. g., full-color
images or indexed-color images, as used in Sec. 12.1.2 (see Prog.
12.3).

Color (java.awt.Color)

An object of class Color describes a particular color in the associated
color space, which defines the number and type of the color components.
Color objects are primarily used for graphic operations, such as to spec-
ify the color for drawing or filling graphic objects. Unless the color space
is not explicitly specified, new Color objects are created as sRGB colors.
The arguments passed to the Color constructor methods may be either
float components in the range [0, 1] or integers in the range [0, 255], as
demonstrated by the following example:294
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1 Color pink = new Color(1.0f,0.5f,0.5f);
2 Color blue = new Color(0,0,255);

Note that in both cases the arguments are interpreted as nonlinear sRGB
values (R′, G′, B′). Other constructor methods exist for class Color that
in addition accept alpha (transparency) values. In addition, the Color
class offers two useful static methods, RGBtoHSB() and HSBtoRGB(), for
converting between sRGB and HSV16 colors (see Sec. 12.2.3, p. 261).

ColorSpace (java.awt.color.ColorSpace)

An object of type ColorSpace represents an entire color space, such
as sRGB or CMYK. Every subclass of ColorSpace (which itself is an
abstract class) provides methods for converting its native colors to the
CIEXYZ and sRGB color space and vice versa, such that conversions
between arbitrary color spaces can easily be performed (through Java’s
XYZ-based profile connection space).

In the following example, we first create an instance of the de-
fault sRGB color space by invoking the static method ColorSpace.
getInstance() and subsequently convert an sRGB color object (pink)
to the corresponding (X50, Y50, Z50) coordinates in Java’s (D50-based)
CIEXYZ profile connection space:

1 // create an sRGB color space object:
2 ColorSpace sRGBcsp
3 = ColorSpace.getInstance(ColorSpace.CS_sRGB);
4 float[] pink_RGB = new float[] {1.0f, 0.5f, 0.5f};
5 // convert from sRGB to XYZ:
6 float[] pink_XYZ = sRGBcsp.toCIEXYZ(pink_RGB);

Notice that color vectors are represented as float[] arrays for
color conversions with ColorSpace objects. If required, the method
getComponents() can be used to convert Color objects to float[] ar-
rays. In summary, the types of color spaces that can be created with the
ColorSpace.getInstance() method include:

• CS_sRGB: the standard (D65-based) RGB color space with nonlinear
R′, G′, B′ components, as specified in [52],

• CS_LINEAR_RGB: color space with linear R, G, B components (i. e.,
no gamma correction applied),

• CS_GRAY: single-component color space with linear grayscale values,

• CS_PYCC: Kodak’s Photo YCC color space,

• CS_CIEXYZ: the default XYZ profile connection space (based on the
D50 white point).

The color space objects returned by getInstance() are all instances
of ICC_ColorSpace, which is the only implementation of (the abstract
16 The HSV color space is referred to as “HSB” (hue, saturation, brightness)

in the Java API. 295



12 Color Images class) ColorSpace provided by the Java standard API.Other color spaces
can be implemented by creating additional implementations (subclasses)
of ColorSpace, as demonstrated for L∗a∗b∗ in the example below.

An L∗a∗b∗ color space implementation

In the following, we show a complete implementation of the L∗a∗b∗ color
space, which is not available in the current Java API, based on the
specification given in Sec. 12.3.2. For this purpose, we define a sub-
class of ColorSpace (defined in the package java.awt.color) named
Lab_ColorSpace, which implements the required methods toCIEXYZ(),
fromCIEXYZ() for converting to and from Java’s default profile connec-
tion space, respectively, and toRGB(), fromRGB() for converting between
L∗a∗b∗ and sRGB (Progs. 12.10 and 12.11). These conversions are per-
formed in two steps via XYZ coordinates, where care must be taken
regarding the right choice of the associated white point (L∗a∗b∗ is based
on D65 and Java XYZ on D50). The following examples demonstrate
the principal use of the new Lab_ColorSpace class:

1 ColorSpace LABcsp = new LabColorSpace();
2 float[] cyan_sRGB = {0.0f, 1.0f, 1.0f};
3 // sRGB→L*a*b*:
4 float[] cyan_LAB = LABcsp.fromRGB(cyan_sRGB)
5 // L*a*b*→XYZ:
6 float[] cyan_XYZ = LABcsp.toXYZ(cyan_LAB);

ICC profiles

Even with the most precise specification, a standard color space may
not be sufficient to accurately describe the transfer characteristics of
some input or output device. ICC profiles are standardized descriptions
of individual device transfer properties that warrant that an image or
graphics can be reproduced accurately on different media. The contents
and the format of ICC profile files is specified in [51], which is identical to
ISO standard 15076 [54]. Profiles are thus a key element in the process
of digital color management [102].

The standard Java API supports the use of ICC profiles mainly
through the classes ICC_ColorSpace and ICC_Profile, which allow ap-
plication designers to create various standard profiles and read ICC pro-
files from data files.17

17 In the Java API, the transformations for all standard color space types
are specified through corresponding ICC profiles, which are part of the
standard Java distribution (files sRGB.pf, etc., usually contained in jdk...
/jre/lib/cmm). However, up to the current Java release (1.6.0), the meth-
ods toCIEXYZ() and fromCIEXYZ() do not properly invert; i. e., col �=
csp.fromCIEXYZ(csp.toCIEXYZ(col )) for a color space object csp. (This
has been a documented Java problem for some time.) A “clean” implemen-296
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1 public class LabColorSpace extends ColorSpace {
2

3 // D65 reference white point
4 static final double Xref = Illuminant.D65.X; // 0.950456;
5 static final double Yref = Illuminant.D65.Y; // 1.000000;
6 static final double Zref = Illuminant.D65.Z; // 1.088754;
7
8 // create two chromatic adaptation objects
9 ChromaticAdaptation catD65toD50 =

10 new BradfordAdaptation(Illuminant.D65, Illuminant.D50);
11 ChromaticAdaptation catD50toD65 =
12 new BradfordAdaptation(Illuminant.D50, Illuminant.D65);
13
14 // sRGB color space for methods toRGB() and fromRGB()
15 static final ColorSpace sRGBcs
16 = ColorSpace.getInstance(CS_sRGB);
17

18 // constructor method:
19 public LabColorSpace(){
20 super(TYPE_Lab,3);
21 }
22
23 // XYZ→CIELab: returns D65-related L*a*b values
24 // from D50-related XYZ values:
25 public float[] fromCIEXYZ(float[] XYZ50) {
26 float[] XYZ65 = catD50toD65.apply(XYZ50);
27 double xx = f1(XYZ65[0] / Xref);
28 double yy = f1(XYZ65[1] / Yref);
29 double zz = f1(XYZ65[2] / Zref);
30
31 float L = (float)(116 * yy - 16);
32 float a = (float)(500 * (xx - yy));
33 float b = (float)(200 * (yy - zz));
34 return new float[] {L, a, b};
35 }
36

37 // CIELab→XYZ: returns D50-related XYZ values
38 // from D65-related L*a*b* values:
39 public float[] toCIEXYZ(float[] Lab) {
40 double yy = ( Lab[0] + 16 ) / 116;
41 float X65 = (float) (Xref * f2(Lab[1] / 500 + yy));
42 float Y65 = (float) (Yref * f2(yy));
43 float Z65 = (float) (Zref * f2(yy - Lab[2] / 200));
44 float[] XYZ65 = new float[] {X65, Y65, Z65};
45 return catD65toD50.apply(XYZ65);
46 }
47
48 // continued...

Program 12.10
Java implementation of the L∗a∗b∗

color space. Lab_ColorSpace is
a subclass of the standard AWT
class ColorSpace. The conversion
from the profile connection space
(XYZ) to L∗a∗b∗ (Eqn. (12.45))
is implemented by the method
fromCIEXYZ(), where a chromatic
adaptation from D50 to D65 is
applied first (line 26). The aux-
iliary method f1() (defined in
line 50) performs the required
gamma correction (lines 27–29).
The method toCIEXYZ() imple-
ments the reverse transformation
from L∗a∗b∗ to XYZ, where the
method f2() (defined in line 58)
does the inverse gamma correc-
tion (lines 41–43), followed by
the chromatic adaptation from
D65 to D50 in line 45. The defini-
tions of the classes Illuminant,
ChromaticAdaptation, and
BradfordAdaptation can be found
in the source code section of the
book’s Website.
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Program 12.11
Java implementation of the L∗a∗b∗

color space (continued). Auxiliary
methods f1() and f2() imple-

menting the forward and inverse
gamma corrections, respectively
(as defined in Eqns. (12.45) and
(12.46)). The methods toRGB()

and fromRGB() perform the con-
versions to and from sRGB in

two steps via XYZ coordinates.

49 // Gamma correction (forward)
50 double f1 (double c) {
51 if (c > 0.008856)
52 return Math.pow(c, 1.0 / 3);
53 else
54 return (7.787 * c) + (16.0 / 116);
55 }
56

57 // Gamma correction (inverse)
58 double f2 (double c) {
59 double c3 = Math.pow(c, 3.0);
60 if (c3 > 0.008856)
61 return c3;
62 else
63 return (c - 16.0 / 116) / 7.787;
64 }
65

66 //sRGB→CIELab
67 public float[] fromRGB(float[] sRGB) {
68 float[] XYZ50 = sRGBcs.toCIEXYZ(sRGB);
69 return this.fromCIEXYZ(XYZ50);
70 }
71

72 //CIELab→sRGB
73 public float[] toRGB(float[] Lab) {
74 float[] XYZ50 = this.toCIEXYZ(Lab);
75 return sRGBcs.fromCIEXYZ(XYZ50);
76 }
77

78 } // end of class LabColorSpace

Assume, for example, that an image was recorded with a calibrated
scanner and shall be displayed accurately on a monitor. For this purpose,
we need the ICC profiles for the scanner and the monitor, which are
often supplied by the manufacturers as .icc data files.18 For standard
color spaces, the associated ICC profiles are often available as part of
the computer installation, such as CIERGB.icc or NTSC1953.icc. With
these profiles, a color space object can be specified that converts the
image data produced by the scanner into corresponding CIEXYZ or
sRGB values, as illustrated by the following example:

1 // load the scanner’s ICC profile
2 ICC_ColorSpace scannerCS = new
3 ICC_ColorSpace(ICC_ProfileRGB.getInstance("scanner.icc"));
4 // convert to RGB color

tation of the sRGB color space can be found in the source code section of
this book’s Website.

18 ICC profile files may also come with extensions .icm or .pf (as in the Java
distribution).298
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5 float[] RGBColor = scannerCS.toRGB(scannerColor);
6 // convert to XYZ color
7 float[] XYZColor = scannerCS.toCIEXYZ(scannerColor);

Similarly, we can compute the accurate color values to be sent to the
monitor by creating a suitable color space object from this device’s ICC
profile.

12.4 Statistics of Color Images

12.4.1 How Many Colors Are in an Image?

A minor but frequent task in the context of color images is to determine
how many different colors are contained in a given image. One way of
doing this would be to create and fill a histogram array with one integer
element for each color and subsequently count all histogram cells with
values greater than zero. But since a 24-bit RGB color image potentially
contains 224 = 16, 777, 216 colors, the resulting histogram array (with a
size of 64 megabytes) would be larger than the image itself in most cases!

A simple solution to this problem is to sort the pixel values in the
(one-dimensional) pixel array such that all identical colors are placed
next to each other. The sorting order is of course completely irrelevant,
and the number of contiguous color blocks in the sorted pixel vector
corresponds to the number of different colors in the image. This number
can be obtained by simply counting the transitions between neighboring
color blocks, as shown in Prog. 12.12. Of course, we do not want to
sort the original pixel array (which would destroy the image) but a copy
of it, which can be obtained with Java’s clone() method.19 Sorting of
the one-dimensional array in Prog. 12.12 is accomplished (in line 9) with
the generic Java method Arrays.sort(), which is implemented very
efficiently.

12.4.2 Color Histograms

We briefly touched on histograms of color images in Sec. 4.5, where we
only considered the one-dimensional distributions of the image inten-
sity and the individual color channels. For instance, the built-in ImageJ
method getHistogram(), when applied to an object of type Color-
Processor, simply computes the intensity histogram of the correspond-
ing gray values:

ColorProcessor cp;
int[] H = cp.getHistogram();

19 Java arrays implement the methods of the root class Object, including the
clone() method specified by the Cloneable interface (see also Appendix
B.2.5). 299
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Program 12.12
Counting the colors contained

in an RGB image. The method
countColors() first creates a

copy of the one-dimensional RGB
(int) pixel array (line 8), then

sorts that array, and finally counts
the transitions between contigu-

ous blocks of identical colors.

1 import ij.process.ColorProcessor;
2 import java.util.Arrays;
3
4 public class ColorStatistics {
5

6 static int countColors (ColorProcessor cp) {
7 // duplicate pixel array and sort
8 int[] pixels = ((int[]) cp.getPixels()).clone();
9 Arrays.sort(pixels);

10
11 int k = 1; // image contains at least one color
12 for (int i = 0; i < pixels.length-1; i++) {
13 if (pixels[i] != pixels[i+1])
14 k = k + 1;
15 }
16 return k;
17 }
18
19 } // end of class ColorStatistics

As an alternative, one could compute the individual intensity histograms
of the three color channels, although (as discussed in Sec. 4.5.2) these
do not provide any information about the actual colors in this image.
Similarly, of course, one could compute the distributions of the individual
components of any other color space, such as HSV or L∗a∗b∗.

A full histogram of an RGB image is three-dimensional and, as noted
earlier, consists of 256×256×256 = 224 cells of type int (for 8-bit color
components). Such a histogram is not only very large20 but also difficult
to visualize.

2D color histograms

A useful alternative to the full 3D RGB histogram are two-dimensional
histogram projections (Fig. 12.30). Depending on the axis of projection,
we obtain 2D histograms with coordinates red-green (HRG), red-blue
(HRB), or green-blue (HGB), respectively, with the values

HRG(r, g) ← number of pixels with IRGB(u, v)=(r, g, ∗),
HRB(r, b) ← number of pixels with IRGB(u, v)=(r, ∗, b), (12.69)
HGB(g, b) ← number of pixels with IRGB(u, v)=(∗, g, b),

where ∗ denotes an arbitrary component value. The result is, indepen-
dent of the original image size, a set of two-dimensional histograms of

20 It may seem a paradox that, although the RGB histogram is usually much
larger than the image itself, the histogram is not sufficient in general to
reconstruct the original image.300
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Fig. 12.30
Two-dimensional RGB histogram
projections. Three-dimensional
RGB cube illustrating an im-
age’s color distribution (a). The
color points indicate the corre-
sponding pixel colors and not the
color frequency. The combined
histograms for red-green (HRG),
red-blue (HRB), and green-blue
(HGB) are 2D projections of the
3D histogram. The corresponding
image is shown in Fig. 12.9 (a).

Program 12.13
Method get2dHistogram() for
computing a combined 2D color
histogram. The color components
(histogram axes) are specified by
the parameters c1 and c2. The
color distribution H is returned
as a two-dimensional int array.
The method is defined in class
ColorStatistics (Prog. 12.12).

size 256 × 256 (for 8-bit RGB components), which can easily be visu-
alized as images. Note that it is not necessary to obtain the full RGB
histogram in order to compute the combined 2D histograms (see Prog.
12.13).

As the examples in Fig. 12.31 show, the combined color histograms
do, to a certain extent, express the color characteristics of an image.
They are therefore useful, for example, to identify the coarse type of
the depicted scene or to estimate the similarity between images (see also
Exercise 12.8).

12.5 Color Quantization

The task of color quantization is to select and assign a limited set of colors
for representing a given color image with maximum fidelity. Assume, for 301
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Fig. 12.31
Combined color histogram exam-
ples. For better viewing, the im-

ages are inverted (dark regions
indicate high frequencies) and the
gray value corresponds to the log-

arithm of the histogram entries
(scaled to the maximum entries).

example, that a graphic artist has created an illustration with beautiful
shades of color, for which he applied 150 different crayons. His editor
likes the result but, for some technical reason, instructs the artist to
draw the picture again, this time using only 10 different crayons. The
artist now faces the problem of color quantization—his task is to select302



12.5 Color Quantizationa “palette” of the 10 best suited from his 150 crayons and then choose
the most similar color to redraw each stroke of his original picture.

In the general case, the original image I contains a set of m different
colors C = {C1,C2, . . .Cm}, where m could be only a few or several
thousand, but at most 224 for a 3 × 8-bit color image. The goal is
to replace the original colors by a (usually much smaller) set of colors
C′ = {C′

1,C
′
2, . . .C

′
n}, with n < m. The difficulty lies in the proper

choice of the reduced color palette C′ such that damage to the resulting
image is minimized.

In practice, this problem is encountered, for example, when convert-
ing from full-color images to images with lower pixel depth or to index
(“palette”) images, such as the conversion from 24-bit TIFF to 8-bit GIF
images with only 256 (or fewer) colors. Until a few years ago, a similar
problem had to be solved for displaying full-color images on computer
screens because the available display memory was often limited to only
8 bits. Today, even the cheapest display hardware has at least 24-bit
depth and therefore this particular need for (fast) color quantization no
longer exists.

12.5.1 Scalar Color Quantization

Scalar (or uniform) quantization is a simple and fast process that is
independent of the image content. Each of the original color components
ci (e. g., Ri, Gi, Bi) in the range [0 . . .m−1] is independently converted
to the new range [0 . . . n−1], in the simplest case by a linear quantization
in the form

c′i ←
⌊
ci · n

m

⌋
, (12.70)

for all color components ci. A typical example would be the conversion
of a color image with 3 × 12-bit components (m = 4096) to an RGB
image with 3 × 8-bit components (n = 256). In this case, each original
component value is multiplied by n/m = 256/4096 = 1/16 = 2−4 and
subsequently truncated, which is equivalent to an integer division by 16
or simply ignoring the lower 4 bits of the corresponding binary values
(Fig. 12.32 (a)).

m and n are usually the same for all color components but not always.
An extreme (today rarely used) approach is to quantize 3×8 color vectors
to single-byte (8-bit) colors, where 3 bits are used for red and green
and only 2 bits for blue, as illustrated in Fig. 12.32 (b). In this case,
m = 256 for all color components, nred = ngreen = 8, and mblue = 4.
This conversion to 3:3:2-packed single byte colors can be accomplished
efficiently with simple bit operations, as illustrated in the Java code
segment in Prog. 12.14. Naturally, due to the small number of colors
available with this encoding (Fig. 12.33), the resulting image quality is
poor.

Unlike the techniques described in the following, scalar quantization
does not take into account the distribution of colors in the original image. 303
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Fig. 12.32
Scalar quantization of color com-

ponents by truncating lower
bits. Quantization of 3 × 12-

bit to 3 × 8-bit colors (a).
Quantization of 3 × 8-bit to
3:3:2-packed 8-bit colors (b).

Fig. 12.33
Color distribution after a scalar

3:3:2 quantization. Distribution of
the original 226,321 colors (a) and

the remaining 8 × 8 × 4 = 256
colors after 3:3:2 quantization

(b) in the RGB color cube.

Program 12.14
3:3:2 quantization of a 24-bit

RGB color pixel using bit oper-
ations (see also Exercise 12.9).

Scalar quantization is an optimal solution only if the image colors are
uniformly distributed within the RGB cube. However, the typical color
distribution in natural images is anything but uniform, with some regions
of the color space being densely populated and many colors entirely
missing. In this case, scalar quantization is not optimal because the
interesting colors may not be sampled with sufficient density while at
the same time colors are represented that do not appear in the image at
all.
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12.5 Color Quantization12.5.2 Vector Quantization

Vector quantization does not treat the individual color components sep-
arately as does scalar quantization, but each color vector Ci = (ri, gi, bi)
or pixel in the image is treated as a single entity. Starting from a set of
original color tuples C = {C1,C2, . . .Cm}, the task of vector quantiza-
tion is

(a) to find a set of n representative color vectors C′ = {C′
1,C

′
2, . . .C

′
n}

and
(b) to replace each original color Ci by one of the new color vectors

C′
j ∈ C′,

where n is usually predetermined (n < m) and the resulting deviation
from the original image shall be minimal. This is a combinatorial opti-
mization problem in a rather large search space, which usually makes it
impossible to determine a global optimum in adequate time. Thus all of
the following methods only compute a “local” optimum at best.

Populosity algorithm

The populosity algorithm21 [43] selects the n most frequent colors in the
image as the representative set of color vectors C′. Being very easy to
implement, this procedure is quite popular. The method described in
Sec. 12.4.1 can be used to determine the n most frequent image colors.
Each original pixel Ci is then replaced by the closest representative color
vector in C′; i. e., the quantized color vector with the smallest distance
in the 3D color space.

The algorithm performs sufficiently only as long as the original image
colors are not widely scattered through the color space. Some improve-
ment is possible by grouping similar colors into larger cells first (by scalar
quantization). However, a less frequent (but possibly important) color
may get lost whenever it is not sufficiently similar to any of the n most
frequent colors.

Median-cut algorithm

The median-cut algorithm [43] is considered a classical method for color
quantization that is implemented in many applications (including Im-
ageJ).

As in the populosity method, a color histogram is first computed for
the original image, traditionally with a reduced number of histogram
cells (such as 32×32×32) for efficiency reasons.22 The initial histogram
21 Sometimes also called the “popularity” algorithm.
22 This corresponds to a scalar prequantization on the color components, which

leads to additional quantization errors and thus produces suboptimal re-
sults. This step seems unnecessary on modern computers and should be
avoided. 305
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Fig. 12.34
Median-cut algorithm. The

RGB color space is recur-
sively split into smaller cubes

along one of the color axes.

volume is then recursively split into smaller boxes until the desired num-
ber of representative colors is reached. In each recursive step, the color
box representing the largest number of pixels is selected for splitting.
A box is always split across the longest of its three axes at the me-
dian point, such that half of the contained pixels remain in each of the
resulting subboxes (Fig. 12.34).

The result of this recursive splitting process is a partitioning of the
color space into a set of disjoint boxes, with each box ideally containing
the same number of image pixels. In the last step, a representative color
vector (e. g., the mean vector of the contained colors) is computed for
each color cube, and all the image pixels it contains are replaced by that
color.

The advantage of this method is that color regions of high pixel den-
sity are split into many smaller cells, thus reducing the overall quantiza-
tion error. In color regions of low density, however, relatively large cubes
and thus large color deviations may occur for individual pixels.

The median-cut method is described in detail in Algorithms 12.1–12.3
and a corresponding Java implementation can be found in the source
code section of this book’s Website.

Octree algorithm

Similar to the median-cut algorithm, this method is also based on parti-
tioning the three-dimensional color space into cells of varying size. The
octree algorithm [36] utilizes a hierarchical structure, where each cube in
color space may contain eight subcubes. This partitioning is represented
by a tree structure (octree) with a cube at each node that may again link
to up to eight further nodes. Thus each node corresponds to a subrange
of the color space that reduces to a single color point at a certain tree
depth d (e. g., d = 8 for a 3 × 8-bit RGB color image).

When an image is processed, the corresponding quantization tree,
which is initially empty, is created dynamically by evaluating all pixels in
a sequence. Each pixel’s color tuple is inserted into the quantization tree,
while at the same time the number of nodes is limited to a predefined
value K (typically 256). When a new color tuple Ci is inserted and the
tree does not contain this color, one of the following situations can occur:306



12.5 Color Quantization1: MedianCut(I, Kmax)
I : color image, Kmax: max. number of quantized colors
Returns a new quantized image with at most Kmax colors.

2: CR ← FindRepresentativeColors(I,Kmax)
3: return QuantizeImage(I,CR)

4: FindRepresentativeColors(I,Kmax)
5: Determine C = {c1, c2, . . . cK}, the set of K distinct colors in I ,

where each color instance ci is a tuple 〈red, grn, blu, cnt〉 consist-
ing of the RGB color components (red, grn, blu) and the number
of pixels (cnt) for that particular color.

6: if |C| ≤ Kmax then
7: CR ← C.
8: else

Create a color box b0 at level 0 that contains all image colors C
and make it the initial element in the set of color boxes B:

9: b0 ← CreateColorBox(C , 0) � see Alg. 12.2
10: B ← {b0} � initial set of color boxes
11: k ← 1
12: done ← false
13: while k < Nmax and not done do
14: b ← FindBoxToSplit(B) � see Alg. 12.2
15: if b �= nil then
16: 〈b1, b2〉 ← SplitBox(b) � see Alg. 12.2
17: B ← B − {b} � remove b from B
18: B ← B ∪ {b1, b2} � insert b1, b2 into B
19: k ← k + 1
20: else � no more boxes to split
21: done ← true

Determine the average color inside each color box in set B:
22: CR ← {cj = AverageColors(bj) | bj ∈ B} � see Alg. 12.3
23: return CR.

24: QuantizeImage(I, CR)
Returns a new image with color pixels from I replaced by their closest
representative colors in CR:

25: Create a new image I ′ the same size as I .
26: for all (u, v) do
27: Find the color c ∈ CR that is “closest” to I(u, v) (e. g., using the

Euclidean distance in RGB space).
28: I ′(u, v) ← c
29: return I ′.

Algorithm 12.1
Median-cut color quantization
(part 1 of 3 ). The input image I
is quantized to up to Kmax repre-
sentative colors and a new, quan-
tized image is returned. The main
work is done in procedure Find-
RepresentativeColors(), which
iteratively partitions the color
space into increasingly smaller
boxes. It returns a set of rep-
resentative colors (CR) that are
subsequently used by procedure
QuantizeImage() to quantize the
original image I . Note that (unlike
in most common implementations)
no prequantization is applied to
the original image colors.

1. If the number of nodes is less than K, a new node is created for Ci.
2. Otherwise (i. e., if the number of nodes is K), the existing nodes at

the maximum tree depth (which represent similar colors) are merged
into a common node.

A key advantage of the iterative octree method is that the number of
color nodes remains limited to K in any step and thus the amount of 307
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Algorithm 12.2
Median-cut color quan-

tization (part 2 of 3 ).

1: CreateColorBox(C,m)
Creates and returns a new color box containing the colors C. A color
box b is a tuple 〈colors, level, rmin, rmax, gmin, gmax, bmin, bmax〉,
where colors is the set of image colors represented by the box, level
denotes the split-level, and rmin, . . . bmax describe the color bound-
aries of the box in RGB space.

2: Find the RGB extrema of all colors in this box:
rmin ← min red(c)
rmax ← max red(c)
gmin ← min grn(c)
gmax ← max grn(c)
bmin ← min blu(c)
bmax ← max blu(c)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

for all colors c ∈ C

3: Create a new color box b:
b ← 〈C, m, rmin, rmax, gmin, gmax, bmin, bmax〉

4: return b.

5: FindBoxToSplit(B)
Searches the set of boxes B for a box to split and returns this box,
or nil if no splittable box can be found.
Let Bs be the set of all color boxes that can be split (i. e., contain at
least 2 different colors):

6: Bs ← { b | b ∈ B ∧ |colors(b)| ≥ 2}
7: if Bs = {} then � no splittable box was found
8: return nil.
9: else

10: Select a box bx ∈ Bs, such that level(bx) is a minimum.
11: return bx.

12: SplitBox(b)
Splits the color box b at the median plane perpendicular to its longest
dimension and returns a pair of new color boxes.

13: m ← level(b)
14: d ← FindMaxBoxDimension(b) � see Alg. 12.3
15: C ← colors(b)
16: From all color samples in C determine xmed as the median of the

color distribution along dimension d .
17: Partition the set C into two disjoint sets C1 and C2 by splitting at

xmed along dimension d.
18: b1 ← CreateColorBox(C1, m + 1)
19: b2 ← CreateColorBox(C2, m + 1)
20: return 〈b1, b2〉.

required storage is small. The final replacement of the image pixels by
the quantized color vectors can also be performed easily and efficiently
with the octree structure because only up to eight comparisons (one at
each tree layer) are necessary to locate the best-matching color for each
pixel.308



12.5 Color Quantization1: AverageColors(b)
Returns the average color cavg for the pixels represented by the color
box b.

2: C ← colors(b)
3: n ← 0, rsum ← 0, gsum ← 0, bsum ← 0

4: for all c ∈ C do
5: k ← cnt(c)
6: n ← n + k
7: rsum ← rsum + k · red(c)
8: gsum ← gsum + k · grn(c)
9: bsum ← bsum + k · blu(c)

10: ravg ← 1
n
· rsum, gavg ← 1

n
· gsum, bavg ← 1

n
· bsum

11: cavg ← 〈ravg, gavg, bavg〉
12: return cavg.

13: FindMaxBoxDimension(b)
Returns the largest dimension of the color box b (i. e., Red, Green, or
Blue).

14: sizer = rmax(b) − rmin(b)
15: sizeg = gmax(b) − gmin(b)
16: sizeb = bmax(b) − bmin(b)
17: sizemax = max(sizer, sizeg, sizeb)

18: if sizemax = sizer then
19: return Red.
20: else if sizemax = sizeg then
21: return Green.
22: else
23: return Blue.

Algorithm 12.3
Median-cut color quantization
(part 3 of 3 ).

Figure 12.35 shows the resulting color distributions in RGB space
after applying the median-cut and octree algorithms. In both cases,
the original image (Fig. 12.31 (b)) is quantized to 256 colors. Notice in
particular the dense placement of quantized colors in certain regions of
the green hues.

For both algorithms and the (scalar) 3:3:2 quantization, the resulting
distances between the original pixels and the quantized colors are shown
in Fig. 12.36. The greatest error naturally results from 3:3:2 quantiza-
tion, because this method does not consider the contents of the image
at all. Compared with the median-cut method, the overall error for the
octree algorithm is considerably smaller, although the latter creates sev-
eral large deviations, particularly inside the colored foreground regions
and the forest region in the background.

Other methods for vector quantization

A suitable set of representative color vectors can usually be determined
without inspecting all pixels in the original image. It is often sufficient 309



12 Color Images

Fig. 12.35
Color distribution after application

of the median-cut (a) and octree
(b) algorithms. In both cases, the
set of 226,321 colors in the origi-
nal image (Fig. 12.31 (b)) was re-

duced to 256 representative colors.

Fig. 12.36
Quantization errors. Original
image (a), distance between
original and quantized color
pixels for scalar 3:3:2 quan-
tization (b), median-cut (c),

and octree (d) algorithms.

to use only 10% of randomly selected pixels to obtain a high probability
that none of the important colors is lost.

In addition to the color quantization methods described above, sev-
eral other procedures and refined algorithms have been proposed. This
includes statistical and clustering methods, such as the classical k-means
algorithm, but also the use of neural networks and genetic algorithms.
A good overview can be found in [93].310



12.6 Exercises12.6 Exercises

Exercise 12.1. Create an ImageJ plugin that rotates the individual
components of an RGB color image; i. e., R → G → B → R.

Exercise 12.2. Create an ImageJ plugin that shows the color table of
an 8-bit indexed image as a new image with 16 × 16 rectangular color
fields. Mark all unused color table entries in a suitable way. Look at
Prog. 12.3 as a starting point.

Exercise 12.3. Show that a “desaturated” RGB pixel produced in the
form (r, g, b) → (y, y, y), where y is the equivalent luminance value (see
Eqn. (12.8)), has the luminance y as well.

Exercise 12.4. Extend the ImageJ plugin for desaturating color images
in Prog. 12.5 such that the image is only modified inside the user-selected
region of interest (ROI).

Exercise 12.5. For chromatic adaptation (defined in Eqn. (12.63)),
transformation matrices other than the Bradford model (Eqn. (12.64))
have been proposed; e. g. [97],

MSharp =

⎛
⎝ 1.2694 −0.0988 −0.1706
−0.8364 1.8006 0.0357

0.0297 −0.0315 1.0018

⎞
⎠ and

MCMC =

⎛
⎝ 0.7982 0.3389 −0.1371
−0.5918 1.5512 0.0406

0.0008 −0.0239 0.9753

⎞
⎠ .

Derive the complete chromatic adaptation transformations M50|65 and
M65|50 for converting between D65 and D50 colors, analogous to Eqns.
(12.65) and (12.66), for each of the transformation matrices above.

Exercise 12.6. Implement the conversion of an sRGB color image to
a colorless (grayscale) sRGB image using the three methods in Eqns.
(12.57) (incorrectly applying standard weights to nonlinear R′G′B′ com-
ponents), (12.58) (exact computation), and (12.59) (approximation using
nonlinear components and modified weights). Compare the results by
computing difference images, and also determine the total errors.

Exercise 12.7. Pseudocolors are sometimes used for displaying gray-
scale images (i. e., for viewing medical images with high dynamic range).
Create an ImageJ plugin for converting 8-bit grayscale images to an
indexed image with 256 colors, simulating the hues of glowing iron (from
dark red to yellow and white).

Exercise 12.8. Determining the similarity between images of different
sizes is a frequent problem (e. g., in the context of image data bases).
Color statistics are commonly used for this purpose because they facili-
tate a coarse classification of images, such as landscape images, portraits, 311



12 Color Images etc. However, two-dimensional color histograms (as described in Sec.
12.4.2) are usually too large and thus cumbersome to use for this pur-
pose. A simple idea could be to split the 2D histograms or even the full
RGB histogram into K regions (bins) and to combine the corresponding
entries into a K-dimensional feature vector, which could be used for a
coarse comparison. Develop a concept for such a procedure, and also
discuss the possible problems.

Exercise 12.9. Simplify the 3:3:2 quantization given in Prog. 12.14 such
that only a single bit mask/shift step is performed for each color com-
ponent.

Exercise 12.10. The median-cut algorithm for color quantization (Sec.
12.5.2) is implemented in the Independent JPEG Group’s23 libjpeg
open source software with the following modification: the choice of the
cube to be split next depends alternately on (a) the number of con-
tained image pixels and (b) the cube’s geometric volume. Consider the
possible motives and discuss examples where this approach may offer an
improvement over the original algorithm.

23 www.ijg.org.312



13

Introduction to Spectral Techniques

The following three chapters deal with the representation and analy-
sis of images in the frequency domain, based on the decomposition of
image signals into sine and cosine functions—which are also known as
harmonic functions—using the well-known Fourier transform. Students
often consider this a difficult topic, mainly because of its mathematical
flavor and that its practical applications are not immediately obvious.
Indeed, most common operations and methods in digital image process-
ing can be sufficiently described in the original signal or image space
without even mentioning spectral techniques. This is the reason why we
pick up this topic relatively late in this text.

While spectral techniques were often used to improve the efficiency
of image-processing operations, this has become increasingly less impor-
tant due to the high power of modern computers. There exist, however,
some important effects, concepts, and techniques in digital image pro-
cessing that are considerably easier to describe in the frequency domain
or cannot otherwise be understood at all. The topic should therefore not
be avoided all together. Fourier analysis not only owns a very elegant
(perhaps not always sufficiently appreciated) mathematical theory but
interestingly enough also complements some important concepts we have
seen earlier, in particular linear filters and linear convolution (Sec. 6.2).
Equally important are applications of spectral techniques in many popu-
lar methods for image and video compression, and they provide valuable
insight into the mechanisms of sampling (discretization) of continuous
signals as well as the reconstruction and interpolation of discrete signals.

In the following, we first give a basic introduction to the concepts of
frequency and spectral decomposition that tries to be minimally for-
mal and thus should be easily “digestible” even for readers without
previous exposure to this topic. We start with the representation of
one-dimensional signals and will then extend the discussion to two- 313
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dimensional signals (images) in the next chapter. Subsequently, Ch. 15
briefly explains the discrete cosine transform, a popular variant of the
discrete Fourier transform that is frequently used in image compression.

13.1 The Fourier Transform

The concept of frequency and the decomposition of waveforms into el-
ementary “harmonic” functions first arose in the context of music and
sound. The idea of describing acoustic events in terms of “pure” sinu-
soidal functions does not seem unreasonable, considering that sine waves
appear naturally in every form of oscillation (e. g., on a free-swinging
pendulum).

13.1.1 Sine and Cosine Functions

The well-known cosine function

f(x) = cos(x) (13.1)

has the value 1 at the origin (cos(0) = 1) and performs exactly one full
cycle between the origin and the point x = 2π (Fig. 13.1 (a)). We say
that the function is periodic with a cycle length (period) T = 2π; i. e.,

cos(x) = cos(x + 2π) = cos(x + 4π) = · · · = cos(x + k2π) (13.2)

for any k ∈ Z. The same is true for the corresponding sine function,
except that its value is zero at the origin (sin(0) = 0).

Fig. 13.1
Cosine and sine functions. The
expression cos(ωx) describes a

cosine function with angular fre-
quency ω at position x. The

angular frequency ω of this pe-
riodic function corresponds to

a cycle length (period) T =
2π/ω. For ω = 1, the period is

T1 = 2π (a), and for ω = 3 it is
T3 = 2π/3 ≈ 2.0944 (b). The same
holds for the sine function sin(ωx).
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Frequency and amplitude

The number of oscillations of cos(x) over the distance T = 2π is one and
thus the value of the angular frequency

ω =
2π

T
= 1. (13.3)

If we modify the function to314



13.1 The Fourier Transformf(x) = cos(3x), (13.4)

we obtain a compressed cosine wave that oscillates three times faster
than the original function cos(x) (Fig. 13.1 (b)). The function cos(3x)
performs three full cycles over a distance of 2π and thus has the angular
frequency ω = 3 and a period T = 2π

3 . In general, the period T relates
to the angular frequency ω as

T = 2π
ω (13.5)

for ω > 0. A sine or cosine function oscillates between peak values +1
and −1, and its amplitude is 1. Multiplying by a constant a ∈ R changes
the peak values of the function to ±a and its amplitude to a. In general,
the expression

a · cos(ωx) and a · sin(ωx)

denotes a cosine or sine function with amplitude a and angular frequency
ω, evaluated at position (or point in time) x. The relation between the
angular frequency ω and the “common” frequency f is given by

f =
1
T

=
ω

2π
or ω = 2πf, (13.6)

where f is measured in cycles per length or time unit.1 In the following,
we use either ω or f as appropriate, and the meaning should always be
clear from the symbol used.

Phase

Shifting a cosine function along the x axis by a distance ϕ,

cos(x) → cos(x − ϕ),

changes the phase of the cosine wave, and ϕ denotes the phase angle
of the resulting function. Thus a sine function is really just a cosine
function shifted to the right2 by a quarter period (ϕ = 2π

4 = π
2 ), so

sin(ωx) = cos
(
ωx− π

2

)
. (13.7)

If we take the cosine function as the reference with phase ϕcos = 0, then
the phase angle of the corresponding sine function is ϕsin = π

2 = 90◦.
Cosine and sine functions are “orthogonal” in a sense and we can use

this fact to create new “sinusoidal” functions with arbitrary frequency,

1 For example, a temporal oscillation with frequency f = 1000 cycles/s
(Hertz) has the period T = 1/1000 s and therefore the angular frequency
ω = 2000π. The latter is a unitless magnitude.

2 In general, the function f(x−d) is the original function f(x) shifted to the
right by a distance d. 315
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Fig. 13.2
Adding cosine and sine func-

tions with identical frequencies,
A · cos(ωx) + B · sin(ωx), with
ω = 3 and A = B = 0.5. The
result is a phase-shifted cosine

function (dotted curve) with am-
plitude C =

√
0.52 + 0.52 ≈ 0.707

and phase angle ϕ = 45◦ (a). If
the cosine and sine components

are treated as orthogonal vec-
tors (A, B) in 2-space, the am-

plitude and phase of the resulting
sinusoid (C) can be easily deter-
mined by vector summation (b).
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phase, and amplitude. In particular, adding a cosine and a sine func-
tion with the identical frequencies ω and arbitrary amplitudes A and B,
respectively, creates another sinusoid:

A · cos(ωx) + B · sin(ωx) = C · cos(ωx − ϕ). (13.8)

The resulting amplitude C and the phase angle ϕ are defined only by
the two original amplitudes A and B as

C =
√

A2 + B2 and ϕ = tan−1
(

B
A

)
. (13.9)

Figure 13.2 (a) shows an example with amplitudes A = B = 0.5 and a
resulting phase angle ϕ = 45◦.

Complex-valued sine functions—Euler’s notation

Figure 13.2 (b) depicts the contributing cosine and sine components of
the new function as a pair of orthogonal vectors in 2-space whose lengths
correspond to the amplitudes A and B. Not coincidentally, this reminds
us of the representation of real and imaginary components of complex
numbers

z = a + i b

in the two-dimensional plane C, where i is the imaginary unit (i2 = −1).
This association becomes even stronger if we look at Euler’s famous
notation of complex numbers along the unit circle,

z = eiθ = cos(θ) + i · sin(θ), (13.10)316



13.1 The Fourier Transformwhere e ≈ 2.71828 is the Euler number. If we take the expression eiθ

as a function of the angle θ rotating around the unit circle, we obtain
a “complex-valued sinusoid” whose real and imaginary parts correspond
to a cosine and a sine function, respectively,

Re{eiθ} = cos(θ),

Im{eiθ} = sin(θ).
(13.11)

Since z = eiθ is placed on the unit circle, the amplitude of the complex-
valued sinusoid is |z| = r = 1. We can easily modify the amplitude of
this function by multiplying it by some real value a ≥ 0,

|a · eiθ| = a · |eiθ| = a. (13.12)

Similarly, we can alter the phase of a complex-valued sinusoid by adding
a phase angle ϕ in the function’s exponent or, equivalently, by multiply-
ing it by a complex-valued constant c = eiϕ,

ei(θ+ϕ) = eiθ · eiϕ. (13.13)

In summary, multiplying by some real value affects only the amplitude
of a sinusoid, while multiplying by some complex value c (with unit
amplitude |c| = 1) modifies only the function’s phase (without changing
its amplitude). In general, of course, multiplying by some arbitrary
complex value changes both the amplitude and the phase of the function
(also see Appendix 1.3).

The complex notation makes it easy to combine orthogonal pairs of
sine functions cos(ωx) and sin(ωx) with identical frequencies ω into a
single functional expression

eiθ = eiωx = cos(ωx) + i · sin(ωx). (13.14)

We will make more use of this notation later in Sec. 13.1.4 to explain the
Fourier transform.

13.1.2 Fourier Series of Periodic Functions

As we demonstrated in Eqn. (13.8), sinusoidal functions of arbitrary
frequency, amplitude, and phase can be described as the sum of suitably
weighted cosine and sine functions. One may wonder if non-sinusoidal
functions can also be decomposed into a sum of cosine and sine functions.
The answer is yes, of course. It was Fourier3 who first extended this idea
to arbitrary functions and showed that (almost) any periodic function
g(x) with a fundamental frequency ω0 can be described as a—possibly
infinite—sum of “harmonic” sinusoids; i. e.,

3 Jean Baptiste Joseph de Fourier (1768–1830). 317
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g(x) =
∞∑

k=0

[Ak cos(kω0x) + Bk sin(kω0x)] . (13.15)

This is called a Fourier series, and the constant factors Ak, Bk are the
Fourier coefficients of the function g(x). Notice that in Eqn. (13.15) the
frequencies of the sine and cosine functions contributing to the Fourier
series are integral multiples (“harmonics”) of the fundamental frequency
ω0, including the zero frequency for k = 0. The corresponding coeffi-
cients Ak and Bk, which are initially unknown, can be uniquely derived
from the original function g(x). This process is commonly referred to as
Fourier analysis.

13.1.3 Fourier Integral

Fourier did not want to limit this concept to periodic functions and pos-
tulated that nonperiodic functions, too, could be described as sums of
sine and cosine functions. While this proved to be true in principle,
it generally requires—beyond multiples of the fundamental frequency
(kω0)—infinitely many, densely spaced frequencies! The resulting de-
composition

g(x) =
∫ ∞

0

Aω cos(ωx) + Bω sin(ωx) dω (13.16)

is called a Fourier integral, and the coefficients Aω, Bω are again the
weights for the corresponding cosine and sine functions with the (con-
tinuous) frequency ω. The Fourier integral is the basis of the Fourier
spectrum and the Fourier transform, as described below (for details, see
e. g., [15, Sec. 15.3]).

In Eqn. (13.16), every coefficientAω and Bω specifies the amplitude of
the corresponding cosine or sine function, respectively. The coefficients
thus define “how much of each frequency” contributes to a given function
or signal g(x). But what are the proper values of these coefficients for a
given function g(x), and can they be determined uniquely? The answer
is yes again, and the “recipe” for computing the coefficients is amazingly
simple:

Aω = A(ω) =
1
π

∫ ∞

−∞
g(x) · cos(ωx) dx, (13.17)

Bω = B(ω) =
1
π

∫ ∞

−∞
g(x) · sin(ωx) dx. (13.18)

Since this representation of the function g(x) involves infinitely many
densely spaced frequency values ω, the corresponding coefficients A(ω)
and B(ω) are indeed continuous functions as well. They hold the con-
tinuous distribution of frequency components contained in the original
signal, which is called a “spectrum”.318



13.1 The Fourier TransformThus the Fourier integral in Eqn. (13.16) describes the original func-
tion g(x) as a sum of infinitely many cosine and sine functions, with the
corresponding Fourier coefficients contained in the functions A(ω) and
B(ω). In addition, a signal g(x) is uniquely and fully represented by
the corresponding coefficient functions A(ω) and B(ω). We know from
Eqn. (13.17) how to compute the spectrum for a given function g(x),
and Eqn. (13.16) explains how to reconstruct the original function from
its spectrum if it is ever needed.

13.1.4 Fourier Spectrum and Transformation

There is now only a small remaining step from the decomposition of a
function g(x), as shown in Eqn. (13.17), to the “real” Fourier transform.
In contrast to the Fourier integral, the Fourier transform treats both
the original signal and the corresponding spectrum as complex-valued
functions, which considerably simplifies the resulting notation. Based
on the functions A(ω) and B(ω) defined in the Fourier integral (Eqn.
(13.17)), the Fourier spectrum G(ω) of a function g(x) is given as

G(ω) =
√

π
2

[
A(ω) − i ·B(ω)

]
=
√

π
2

[
1
π

∫ ∞

−∞
g(x) · cos(ωx) dx − i · 1

π

∫ ∞

−∞
g(x) · sin(ωx) dx

]

=
1√
2π

∫ ∞

−∞
g(x) ·

[
cos(ωx) − i · sin(ωx)

]
dx, (13.19)

with g(x), G(ω) ∈ C. Using Euler’s notation of complex values (Eqn.
(13.14)) yields the continuous Fourier spectrum from Eqn. (13.19) in its
most popular form:

G(ω) =
1√
2π

∫ ∞

−∞
g(x) ·

[
cos(ωx) − i · sin(ωx)

]
dx

=
1√
2π

∫ ∞

−∞
g(x) · e−iωx dx.

(13.20)

The transition from the function g(x) to its Fourier spectrum G(ω) is
called the Fourier transform4 (F). Conversely, the original function g(x)
can be reconstructed completely from its Fourier spectrum G(ω) using
the inverse Fourier transform5 (F−1), defined as

g(x) =
1√
2π

∫ ∞

−∞
G(ω) ·

[
cos(ωx) + i · sin(ωx)

]
dω

=
1√
2π

∫ ∞

−∞
G(ω) · eiωx dω.

(13.21)

4 Also called the “direct” or “forward” transformation.
5 Also called “backward” transformation. 319
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In general, even if one of the involved functions (g(x) or G(ω)) is
real-valued (which is usually the case for physical signals g(x)), the
other function is complex-valued. One may also note that the forward
transformation F (Eqn. (13.20)) and the inverse transformation F−1

(Eqn. (13.21)) are almost completely symmetrical, the sign of the expo-
nent being the only difference.6 The spectrum produced by the Fourier
transform is a new representation of the signal in a space of frequencies.
Apparently, this “frequency space” and the original “signal space” are
dual and interchangeable mathematical representations.

13.1.5 Fourier Transform Pairs

The relationship between a function g(x) and its Fourier spectrum G(ω)
is unique in both directions: the Fourier spectrum is uniquely defined for
a given function, and for any Fourier spectrum there is only one matching
signal—the two functions g(x) and G(ω) constitute a “transform pair”,

g(x)� G(ω).

Table 13.1 lists the transform pairs for some selected analytical functions,
which are also shown graphically in Figs. 13.3 and 13.4.

Table 13.1
Fourier transforms of selected

analytical functions; δ() de-
notes the “impulse” or Dirac

function (see Sec. 13.2.1).

Function Transform Pair g(x)�G(ω) Figure

Cosine function
with frequency ω0

g(x) = cos(ω0x)

G(ω) =
√

π
2
· (δ(ω−ω0) + δ(ω+ω0)

) 13.3 (a, c)

Sine function with
frequency ω0

g(x) = sin(ω0x)

G(ω) = i
√

π
2
· (δ(ω−ω0) − δ(ω+ω0)

) 13.3 (b, d)

Gaussian function
of width σ

g(x) = 1
σ
· e− x2

2σ2

G(ω) = e−
σ2ω2

2

13.4 (a, b)

Rectangular pulse
of width 2b

g(x) = Πb(x) =

{
1 for |x| ≤ b
0 otherwise

G(ω) = 2b sin(bω)√
2πω

13.4 (c, d)

The Fourier spectrum of a cosine function cos(ω0x), for example,
consists of two separate thin pulses arranged symmetrically at a dis-
tance ω0 from the origin (Fig. 13.3 (a, c)). Intuitively, this corresponds
to our physical understanding of a spectrum ( e. g., if we think of a pure

6 Various definitions of the Fourier transform are in common use. They are
contrasted mainly by the constant factors outside the integral and the signs
of the exponents in the forward and inverse transforms, but all versions are
equivalent in principle. The symmetric variant shown here uses the same
factor (1/

√
2π) in the forward and inverse transforms.320



13.1 The Fourier Transformmonophonic sound in acoustics or the thin line produced by some ex-
tremely pure color in the optical spectrum). Increasing the frequency
ω0 would move the corresponding pulses in the spectrum away from the
origin. Notice that the spectrum of the cosine function is real-valued,
the imaginary part being zero. Of course, the same relation holds for
the sine function (Fig. 13.3 (b, d)), with the only difference being that
the pulses have different polarities and appear in the imaginary part of
the spectrum. In this case, the real part of the spectrum G(ω) is zero.

The Gaussian function is particularly interesting because its Fourier
spectrum is also a Gaussian function (Fig. 13.4 (a, b))! It is one of the
few examples where the function type in frequency space is the same
as in signal space. With the Gaussian function, it is also clear to see
that stretching a function in signal space corresponds to shortening its
spectrum and vice versa.

The Fourier transform of a rectangular pulse (Fig. 13.4 (c, d)) is the
“Sinc” function of type sin(x)/x. With increasing frequencies, this func-
tion drops off quite slowly, which shows that the components contained
in the original rectangular signal are spread out over a large frequency
range. Thus a rectangular pulse function exhibits a very wide spectrum
in general.

13.1.6 Important Properties of the Fourier Transform

Symmetry

The Fourier spectrum extends over positive and negative frequencies and
could, in principle, be an arbitrary complex-valued function. However,
in many situations, the spectrum is symmetric about its origin (see,
e. g., [20, p. 178]). In particular, the Fourier transform of a real-valued
signal g(x) ∈ R is a so-called Hermite function with the property

G(ω) = G∗(−ω), (13.22)

where G∗ denotes the complex conjugate of G (see also Appendix 1.3).

Linearity

The Fourier transform is also a linear operation such that multiplying
the signal by a constant value c ∈ C scales the corresponding spectrum
by the same amount,

c · g(x)� c · G(ω). (13.23)

Linearity also means that the transform of the sum of two signals g(x) =
g1(x)+g2(x) is identical to the sum of their individual transforms G1(ω)
and G2(ω) and thus

g1(x) + g2(x)� G1(ω) + G2(ω). (13.24)
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Fig. 13.3
Fourier transform pairs—
cosine and sine functions. �9 �7 �5 �3 �1 1 3 5 7 9
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(a) cosine (ω0 =3): g(x) = cos(3x) � G(ω) =
√

π
2
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(b) sine (ω0 =3): g(x) = sin(3x) � G(ω) = i
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· (δ(ω−3) − δ(ω+3)

)

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x
�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

(c) cosine (ω0 =5): g(x) = cos(5x) � G(ω) =
√

π
2
· (δ(ω−5) + δ(ω+5)
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(d) sine (ω0 =5): g(x) = sin(5x) � G(ω) = i
√

π
2
· (δ(ω−5) − δ(ω+5)

)

322



13.1 The Fourier Transform

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x
�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

(a) Gauss (σ=1): g(x) = e−
x2
2 � G(ω) = e−

ω2
2

�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

x
�9 �7 �5 �3 �1 1 3 5 7 9

�1

�0.5

0.5

1

ω

(b) Gauss (σ=3): g(x) = 1
3
· e− x2

2·9 � G(ω) = e−
9ω2
2

�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

x
�9 �7 �5 �3 �1 1 3 5 7 9

�0.5

0.5

1

1.5

ω

(c) rect. pulse (b=1): g(x) = Π1(x) � G(ω) = 2 sin(ω)√
2πω
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(d) rect. pulse (b=2): g(x) = Π2(x) � G(ω) = 4 sin(2ω)√
2πω

Fig. 13.4
Fourier transform pairs—Gaussian
functions and rectangular pulses.
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Similarity

If the original function g(x) is scaled in space or time, the opposite
effect appears in the corresponding Fourier spectrum. In particular, as
observed on the Gaussian function in Fig. 13.4, stretching a signal by
a factor s (i. e., g(x) → g(sx)) leads to a shortening of the Fourier
spectrum:

g(sx)� 1
|s| · G

(
ω
s

)
. (13.25)

Similarly, the signal is shortened if the corresponding spectrum is stret-
ched.

Shift property

If the original function g(x) is shifted by a distance d along its coordinate
axis (i. e., g(x) → g(x−d)), then the Fourier spectrum multiplies by the
complex value e−iωd dependent on ω:

g(x−d)� e−iωd · G(ω). (13.26)

Since e−iωd lies on the unit circle, the multiplication causes a phase shift
on the spectral values (i. e., a redistribution between the real and imag-
inary components) without altering the magnitude |G(ω)|. Obviously,
the amount (angle) of phase shift (ωd) is proportional to the angular
frequency ω.

Convolution property

From the image-processing point of view, the most interesting property
of the Fourier transform is its relation to linear convolution, which we
described in Sec. 6.3.1. Let us assume that we have two functions g(x)
and h(x) and their corresponding Fourier spectra G(ω) and H(ω), re-
spectively. If the original functions are subject to linear convolution (i. e.,
g(x) ∗ h(x)), then the Fourier transform of the result equals the (point-
wise) product of the individual Fourier transforms G(ω) and H(ω):

g(x) ∗ h(x)� G(ω) ·H(ω). (13.27)

Due to the duality of signal space and frequency space, the same also
holds in the opposite direction; i. e., a pointwise multiplication of two
signals is equivalent to convolving the corresponding spectra:

g(x) · h(x)� G(ω) ∗ H(ω). (13.28)

A multiplication of the functions in one space (signal or frequency space)
thus corresponds to a linear convolution of the Fourier spectra in the
opposite space.324
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13.2 Working with Discrete Signals

The definition of the continuous Fourier transform above is of little use
for numerical computation on a computer. Neither can arbitrary con-
tinuous (and possibly infinite) functions be represented in practice. Nor
can the required integrals be computed. In reality, we must always deal
with discrete signals, and we therefore need a new version of the Fourier
transform that treats signals and spectra as finite data vectors—the “dis-
crete” Fourier transform. Before continuing with this issue we want to
use our existing wisdom to take a closer look at the process of discretizing
signals in general.

13.2.1 Sampling

We first consider the question of how a continuous function can be con-
verted to a discrete signal in the first place. This process is usually
called “sampling” (i. e., taking samples of the continuous function at cer-
tain points in time (or in space), usually spaced at regular distances). To
describe this step in a simple but formal way, we require an inconspicuous
but nevertheless important piece from the mathematician’s toolbox.

The impulse function δ(x)

We casually encountered the impulse function (also called the delta or
Dirac function) earlier when we looked at the impulse response of linear
filters (Sec. 6.3.4) and in the Fourier transforms of the cosine and sine
functions (Fig. 13.3). This function, which models a continuous “ideal”
impulse, is unusual in several respects: its value is zero everywhere except
at the origin, where it is nonzero (though undefined), but its integral is
one; i. e.,

δ(x) = 0 for x �= 0 and
∫ ∞

−∞
δ(x) dx = 1. (13.29)

One could imagine δ(x) as a single pulse at position x = 0 that is in-
finitesimally narrow but still contains finite energy (1). Also remarkable
is the impulse function’s behavior under scaling along the time (or space)
axis (i. e., δ(x) → δ(sx)), with

δ(sx) =
1
|s| · δ(x) for s �= 0. (13.30)

Despite the fact that δ(x) does not exist in physical reality and cannot
be plotted (the corresponding plots in Fig. 13.3 are for illustration only),
this function is a useful mathematical tool for describing the sampling
process, as shown below. 325



13 Introduction to Spectral
Techniques

Sampling with the impulse function

Using the concept of the ideal impulse, the sampling process can be
described in a straightforward and intuitive way.7 If a continuous func-
tion g(x) is multiplied with the impulse function δ(x), we obtain a new
function

ḡ(x) = g(x) · δ(x) =
{

g(0) for x = 0
0 otherwise. (13.31)

The resulting function ḡ(x) consists of a single pulse at position 0 whose
height corresponds to the original function value g(0) (at position 0).
Thus, by multiplying the function g(x) by the impulse function, we ob-
tain a single discrete sample value of g(x) at position x = 0. If the
impulse function δ(x) is shifted by a distance x0, we can sample g(x) at
an arbitrary position x = x0,

ḡ(x) = g(x) · δ(x−x0) =
{

g(x0) for x = x0

0 otherwise. (13.32)

Here δ(x−x0) is the impulse function shifted by x0, and the resulting
function ḡ(x) is zero except at position x0, where it contains the original
function value g(x0). This relationship is illustrated in Fig. 13.5 for the
sampling position x0 = 3.

Fig. 13.5
Sampling with the impulse

function. The continuous sig-
nal g(x) is sampled at position

x0 = 3 by multiplying g(x) by a
shifted impulse function δ(x−3).

� � � � � �� � �
x xx

g(x) δ(x−3) ḡ(x)

To sample the function g(x) at more than one position simultaneously
(e. g., at positions x1 and x2), we use two separately shifted versions of
the impulse function, multiply g(x) by both of them, and simply add the
resulting function values. In this particular case, we get

ḡ(x) = g(x) · δ(x−x1) + g(x) · δ(x−x2) (13.33)

= g(x) · [δ(x−x1) + δ(x−x2)
]

(13.34)

=

⎧⎨
⎩

g(x1) for x = x1

g(x2) for x = x2

0 otherwise.
(13.35)

From Eqn. (13.34), sampling a continuous function g(x) at N positions
xi = 1, 2, . . .N can thus be described as the sum of the N individual
samples,
7 The following description is intentionally casual and superficial in a math-

ematical sense. See, e. g., [20,60] for more precise coverage of these topics.326
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Fig. 13.6
Sampling with the comb function.
The original continuous signal g(x)
is multiplied by the comb function
III(x). The function value g(x) is
transferred to the resulting func-
tion ḡ(x) only at integral positions
x = xi ∈ Z and ignored at all
nonintegral positions.

ḡ(x) = g(x) · [δ(x−1) + δ(x−2) + . . . + δ(x−N)
]

= g(x) ·
N∑

i=1

δ(x−i). (13.36)

The comb function

The sum of shifted impulses
∑N

i=1 δ(x− i) in Eqn. (13.36) is called a
pulse sequence or pulse train. Extending this sequence to infinity in
both directions, we obtain the “comb” or “Shah” function

III(x) =
∞∑

i=−∞
δ(x − i). (13.37)

The process of discretizing a continuous function by taking samples at
regular integral intervals can thus be written simply as

ḡ(x) = g(x) · III(x), (13.38)

i. e., as a pointwise multiplication of the original signal g(x) with the
comb function III(x). As Fig. 13.6 illustrates, the function values of g(x)
at integral positions xi ∈ Z are transferred to the discrete function ḡ(xi)
and ignored at all nonintegral positions.

Of course, the sampling interval (i. e., the distance between adjacent
samples) is not restricted to 1. To take samples at regular but arbitrary
intervals τ , the sampling function III(x) is simply scaled along the time
or space axis; i. e.,

ḡ(x) = g(x) · III (x
τ

)
for τ > 0. (13.39)
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Effects of sampling in frequency space

Despite the elegant formulation made possible by the use of the comb
function, one may still wonder why all this math is necessary to describe
a process that appears intuitively to be so simple anyway. The Fourier
spectrum gives one answer to this question. Sampling a continuous func-
tion has massive—though predictable—effects upon the frequency spec-
trum of the resulting (discrete) signal. Using the comb function as a
formal model for the sampling process makes it relatively easy to esti-
mate and interpret those spectral effects. Similar to the Gaussian (see
Sec. 13.1.5), the comb function features the rare property that its Fourier
transform

III(x)� III( 1
2π ω) (13.40)

is again a comb function (i. e., the same type of function). In general,
the Fourier transform of a comb function scaled to an arbitrary sampling
interval τ is

III(x
τ )� τIII

(
τ
2π ω

)
(13.41)

due to the similarity property of the Fourier transform (Eqn. (13.25)).
Figure 13.7 shows two examples of the comb function IIIτ (x) with sam-
pling intervals τ = 1 and τ = 3 and the corresponding Fourier trans-
forms.

Now, what happens to the Fourier spectrum during discretization;
i. e., when we multiply a function in signal space by the comb function
III(x

τ )? We get the answer by recalling the convolution property of the
Fourier transform (Eqn. (13.27)): the product of two functions in one
space (signal or frequency space) corresponds to the linear convolution
of the transformed functions in the opposite space, and thus

g(x) · III(x
τ )� G(ω) ∗ τIII

(
τ
2π ω

)
. (13.42)

We already know that the Fourier spectrum of the sampling function
is a comb function again and therefore consists of a sequence of regu-
larly spaced pulses (Fig. 13.7). In addition, we know that convolving an
arbitrary function with the impulse δ(x) returns the original function;
i. e., f(x) ∗ δ(x) = f(x) (see Sec. 6.3.4). Convolving with a shifted pulse
δ(x−d) also reproduces the original function f(x), though shifted by the
same distance d; i. e.,

f(x) ∗ δ(x−d) = f(x−d). (13.43)

As a consequence, the spectrum G(ω) of the original continuous signal
becomes replicated in the Fourier spectrum Ḡ(ω) of a sampled signal
at every pulse of the sampling function’s spectrum; i. e., infinitely many
times (see Fig. 13.8 (a, b))! Thus the resulting Fourier spectrum is repet-
itive with a period 2π

τ , which corresponds to the sampling frequency
ωs.328
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(a)
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Comb function: III1(x) = III(x)

τ = 1

(b)
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Fourier transform: III( 1
2π

ω)

ω0 = 2π

τ = 3

(c)
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Comb function: III3(x) = III( 1
3
x)

τ = 3

(d)
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ω

Fourier transform: 3III( 3
2π

ω)

ω0 = 2π
3

Fig. 13.7
Comb function and its Fourier
transform. Comb function IIIτ (x)
for the sampling interval τ = 1 (a)
and its Fourier transform. Comb
function for τ = 3 (c) and its
Fourier transform (d). Note that
the actual height of the δ-pulses
is undefined and shown only for
illustration.

Aliasing and the sampling theorem

As long as the spectral replicas in Ḡ(ω) created by the sampling pro-
cess do not overlap, the original spectrum G(ω)—and thus the original
continuous function—can be reconstructed without loss from any iso-
lated replica of G(ω) in the periodic spectrum Ḡ(ω). As we can see in
Fig. 13.8, this requires that the frequencies contained in the original sig-
nal g(x) be within some upper limit ωmax; i. e., the signal contains no
components with frequencies greater than ωmax. The maximum allowed
signal frequency ωmax depends upon the sampling frequency ωs used to
discretize the signal, with the requirement

ωmax ≤ 1
2ωs or ωs ≥ 2ωmax. (13.44)

Discretizing a continuous signal g(x) with frequency components in the
range 0 ≤ ω ≤ ωmax thus requires a sampling frequency ωs of at least
twice the maximum signal frequency ωmax. If this condition is not met,
the replicas in the spectrum of the sampled signal overlap (Fig. 13.8 (c))
and the spectrum becomes corrupted. Consequently, the original signal
cannot be recovered flawlessly from the sampled signal’s spectrum. This
effect is commonly called “aliasing”. 329
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Fig. 13.8
Spectral effects of sampling. The

spectrum G(ω) of the original con-
tinuous signal is assumed to be
band-limited within the range

±ωmax (a). Sampling the signal
at a rate (sampling frequency)

ωs = ω1 causes the signal’s
spectrum G(ω) to be replicated
at multiples of ω1 along the fre-
quency (ω) axis (b). Obviously,
the replicas in the spectrum do

not overlap as long as ωs > 2ωmax.
In (c), the sampling frequency
ωs = ω2 is less than 2ωmax,

so there is overlap between the
replicas in the spectrum, and fre-
quency components are mirrored

at 2ωmax and superimpose the
original spectrum. This effect is

called “aliasing” because the orig-
inal spectrum (and thus the orig-
inal signal) cannot be reproduced
from such a corrupted spectrum.

(a)

ω

G(ω)

ωmax

(b)
ω

Ḡ1(ω)

ωmax
ω1

(c)

ω

Ḡ2(ω)

ω2

aliasing

What we just said in simple terms is nothing but the essence of the
famous “sampling theorem” formulated by Shannon and Nyquist (see
e. g. [20, p. 256]). It actually states that the sampling frequency must be
at least twice the bandwidth8 of the continuous signal to avoid aliasing
effects. However, if we assume that a signal’s frequency range starts at
zero, then bandwidth and maximum frequency are the same anyway.

13.2.2 Discrete and Periodic Functions

Assume that we are given a continuous signal g(x) that is periodic with
a period of length T . In this case, the corresponding Fourier spectrum
G(ω) is a sequence of thin spectral lines equally spaced at a distance
ω0 = 2π/T . As discussed in Sec. 13.1.2, the Fourier spectrum of a
periodic function can be represented as a Fourier series and is therefore
discrete. Conversely, if a continuous signal g(x) is sampled at regular
intervals τ , then the corresponding Fourier spectrum becomes periodic
with a period of length ωs = 2π/τ . Sampling in signal space thus leads to
periodicity in frequency space and vice versa. Figure 13.9 illustrates this
relationship and the transition from a continuous nonperiodic signal to
a discrete periodic function, which can be represented as a finite vector
of numbers and thus easily processed on a computer.
8 This may be surprising at first because it allows a signal with high frequen-

cy—but low bandwidth—to be sampled (and correctly reconstructed) at
a relatively low sampling frequency, even well below the maximum signal
frequency. This is possible because one can also use a filter with suitably low
bandwidth for reconstructing the original signal. For example, it may be
sufficient to strike (i. e., “sample”) a church bell (a low-bandwidth oscillatory
system with small internal damping) to uniquely generate a sound wave of
relatively high frequency.330
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x

g(x)

ω

G(ω)

(a) Continuous nonperiodic signal. (b) Continuous nonperiodic spec-
trum.

x

g(x)

t0
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G(ω)

ω0

(c) Continuous periodic signal with
period t0.

(d) Discrete nonperiodic spec-
trum with values spaced at
ω0 =2π/t0.

x

g(x)

ts

ω

G(ω)

ωs

(e) Discrete nonperiodic signal with
samples spaced at ts.

(f) Continuous periodic spectrum
with period ωs =2π/ts.
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g(x) ts

t0

ω

G(ω) ωs

ω0

(g) Discrete periodic signal with
samples spaced at ts and period
t0 = tsM .

(h) Discrete periodic spectrum with
values spaced at ω0 = 2π/t0 and
period ωs =2π/ts =ω0M .

Fig. 13.9
Transition from continuous to dis-
crete periodic functions.
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Thus, in general, the Fourier spectrum of a continuous, nonperiodic
signal g(x) is also continuous and nonperiodic (Fig. 13.9 (a, b)). However,
if the signal g(x) is periodic, then the corresponding spectrum is discrete
(Fig. 13.9 (c,d)). Conversely, a discrete—but not necessarily periodic—
signal leads to a periodic spectrum (Fig. 13.9 (e, f)). Finally, if a signal
is discrete and periodic with M samples per period, then its spectrum is
also discrete and periodic with M values (Fig. 13.9 (g, h)). Note that the
particular signals and spectra in Fig. 13.9 were chosen for illustration
only and do not really correspond with each other.

13.3 The Discrete Fourier Transform (DFT)

In the case of a discrete periodic signal, only a finite sequence of M
sample values is required to completely represent either the signal g(u)
itself or its Fourier spectrum G(m).9 This representation as finite vectors
makes it straightforward to store and process signals and spectra on a
computer. What we still need is a version of the Fourier transform
applicable to discrete signals.

13.3.1 Definition of the DFT

The discrete Fourier transform is, just like its continuous counterpart,
identical in both directions. For a discrete signal g(u) of length M (u =
0 . . .M−1), the forward transform (DFT) is defined as

G(m) =
1√
M

M−1∑
u=0

g(u) ·
[
cos

(
2π

mu

M

)
− i · sin

(
2π

mu

M

)]

=
1√
M

M−1∑
u=0

g(u) · e−i2π mu
M for 0 ≤ m < M

(13.45)

and the inverse transform (DFT−1) as

g(u) =
1√
M

M−1∑
m=0

G(m) ·
[
cos

(
2π

mu

M

)
+ i · sin

(
2π

mu

M

)]

=
1√
M

M−1∑
m=0

G(m) · ei2π mu
M for 0 ≤ u < M.

(13.46)

(Compare these definitions with the corresponding expressions for the
continuous forward and inverse Fourier transforms in Eqns. (13.20) and
(13.21), respectively.) Both the signal g(u) and the discrete spectrum
G(m) are complex-valued vectors of length M ,
9 Notation: we use g(x), G(ω) for a continuous signal or spectrum, respec-

tively, and g(u), G(m) for the discrete versions.332
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u g(u) G(m) m

0 1.0000 0.0000 14.2302 0.0000 0
1 3.0000 0.0000 DFT −5.6745 −2.9198 1
2 5.0000 0.0000 −→ ∗0.0000 ∗0.0000 2
3 7.0000 0.0000 −0.0176 −0.6893 3
4 9.0000 0.0000 ∗0.0000 ∗0.0000 4
5 8.0000 0.0000 0.3162 0.0000 5
6 6.0000 0.0000 ∗0.0000 ∗0.0000 6
7 4.0000 0.0000 DFT−1 −0.0176 0.6893 7
8 2.0000 0.0000 ←− ∗0.0000 ∗0.0000 8
9 0.0000 0.0000 −5.6745 2.9198 9

Re Im Re Im

Fig. 13.10
Complex-valued vectors (example).
In the discrete Fourier transform
(DFT), both the original signal
g(u) and its spectrum G(m) are
complex-valued vectors of length
M (M = 10 in this example); ∗
indicates values with |G(m)| <
10−15.

g(u) = gRe(u) + i·gIm(u),

G(m) = GRe(m) + i·GIm(m),
(13.47)

for u, m = 0 . . .M − 1 (Fig. 13.10). Expanding the first line of Eqn.
(13.45), we obtain the complex values of the Fourier spectrum in com-
ponent notation as

G(m) =
1√
M

M−1∑
u=0

[
gRe(u) + i·gIm(u)︸ ︷︷ ︸

g(u)

]
·
[
cos

(
2π mu

M

)︸ ︷︷ ︸
CM

m (u)

− i·sin(2π mu
M

)︸ ︷︷ ︸
SM

m (u)

]
,

(13.48)
where we denote as CM

m and SM
m the discrete (cosine and sine) basis

functions, as described in the next section. Applying the usual complex
multiplication, we obtain the real and imaginary parts of the discrete
Fourier spectrum as

GRe(m) =
1√
M

M−1∑
u=0

gRe(u) · CM
m (u) + gIm(u) · SM

m (u), (13.49)

GIm(m) =
1√
M

M−1∑
u=0

gIm(u) ·CM
m (u)− gRe(u) · SM

m (u), (13.50)

for m = 0 . . .M − 1. Analogously, the inverse DFT in Eqn. (13.46)
expands to

g(u) =
1√
M

M−1∑
m=0

[
GRe(m) + i·GIm(m)︸ ︷︷ ︸

G(m)

]
·
[
cos

(
2π mu

M

)︸ ︷︷ ︸
CM

m (u)

+ i·sin(2π mu
M

)︸ ︷︷ ︸
SM

m (u)

]
,

(13.51)
and thus the real and imaginary parts of the reconstructed signal are 333
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gRe(u) =
1√
M

M−1∑
m=0

GRe(m) ·CM
m (u)−GIm(m) · SM

m (u), (13.52)

gIm(u) =
1√
M

M−1∑
m=0

GIm(m) ·CM
m (u) + GRe(m) · SM

m (u), (13.53)

for u = 0 . . . M − 1.

13.3.2 Discrete Basis Functions

Equation (13.51) describes the decomposition of the discrete function
g(u) into a finite sum of M discrete cosine and sine functions (CM

m , SM
m )

whose weights (or “amplitudes”) are determined by the DFT coefficients
in G(m). Each of these one-dimensional basis functions,

CM
m (u) = CM

u (m) = cos
(
2π mu

M

)
= cos(ωmu), (13.54)

SM
m (u) = SM

u (m) = sin
(
2π mu

M

)
= sin(ωmu), (13.55)

is periodic with M and has a discrete frequency (wave number) m, which
corresponds to the angular frequency

ωm = 2π
m

M
.

As an example, Figs. 13.11 and 13.12 show the discrete basis functions
(with integer ordinate values u ∈ Z) for the DFT of length M = 8 as
well as their continuous counterparts (with ordinate values x ∈ R).

For wave number m = 0, the cosine function CM
0 (u) (Eqn. (13.54))

has the constant value 1. The corresponding DFT coefficient GRe(0)—
the real part of G(0)—thus specifies the constant part of the signal or
the average value of the signal g(u) in Eqn. (13.52). In contrast, the
zero-frequency sine function SM

0 (u) is zero for any value of u and thus
cannot contribute anything to the signal. The corresponding DFT coef-
ficients GIm(0) in Eqn. (13.52) and GRe(0) in Eqn. (13.53) are therefore
of no relevance. For a real-valued signal (i. e., gIm(u) = 0 for all u), the
coefficient GIm(0) in the corresponding Fourier spectrum must also be
zero.

As shown in Fig. 13.11, the wave number m = 1 relates to a cosine or
sine function that performs exactly one full cycle over the signal length
M = 8. Similarly, the wave numbers m = 2 . . . 7 correspond to 2 . . . 7
complete cycles over the signal length M (Figs. 13.11 and 13.12).

13.3.3 Aliasing Again!

A closer look at Figs. 13.11 and 13.12 reveals an interesting fact: the
sampled (discrete) cosine and sine functions for m = 3 and m = 5 are
identical, although their continuous counterparts are different! The same334
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Fig. 13.11
Discrete basis functions CM

m (u)
and SM

m (u) for the signal length
M = 8 and wave numbers
m = 0 . . . 3. Each plot shows both
the discrete function (round dots)
and the corresponding continuous
function.
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Fig. 13.12
Discrete basis functions (contin-
ued). Signal length M = 8 and
wave numbers m = 4 . . . 7. No-
tice that, for example, the dis-
crete functions for m = 5 and
m = 3 (Fig. 13.11) are iden-

tical because m = 4 is the
maximum wave number that

can be represented in a discrete
spectrum of length M = 8.
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Fig. 13.13
Aliasing in signal space. For the
signal length M = 8, the discrete
cosine and sine basis functions for
the wave numbers m = 1, 9, 17, . . .
(round dots) are all identical. The
sampling frequency itself corres-
ponds to the wave number m = 8.

is true for the frequency pairs m = 2, 6 and m = 1, 7. What we see here is
another manifestation of the sampling theorem—which we had originally
encountered (Sec. 13.2.1) in frequency space—in signal space.

Obviously, m = 4 is the maximum frequency component that can be
represented by a discrete signal of length M = 8. Any discrete func-
tion with a higher frequency (m = 5 . . . 7 in this case) has an identical
counterpart with a lower wave number and thus cannot be reconstructed
from the sampled signal!

If a continuous signal is sampled at a regular distance τ , the corre-
sponding Fourier spectrum is repeated at multiples of ωs = 2π/τ , as we
have shown earlier (Fig. 13.8). In the discrete case, the spectrum is peri-
odic with length M . Since the Fourier spectrum of a real-valued signal is 337
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symmetric about the origin (Eqn. (13.22)), there is for every coefficient
with wave number m an equal-sized duplicate with wave number −m.
Thus the spectral components appear pairwise and mirrored at multiples
of M ; i. e.,

|G(m)| = |G(M−m)| = |G(M +m)|
= |G(2M−m)| = |G(2M +m)| (13.56)
. . .

= |G(kM−m)| = |G(kM +m)|
for all k ∈ Z. If the original continuous signal contains “energy” with the
frequencies

ωm > ωM/2

(i. e., signal components with wave numbers m > M/2), then, accord-
ing to the sampling theorem, the overlapping parts of the spectra are
superimposed in the resulting periodic spectrum of the discrete signal.

13.3.4 Units in Signal and Frequency Space

The relationship between the units in signal and frequency space and
the interpretation of wave numbers m is a common cause of confusion.
While the discrete signal and its spectrum are simple numerical vectors
and units of measurement are irrelevant for computing the DFT itself,
it is nevertheless important to understand how the coordinates in the
spectrum relate to physical dimensions in the real world.

Clearly, every complex-valued spectral coefficient G(m) corresponds
to one pair of cosine and sine functions with a particular frequency in
signal space. Assume a continuous signal is sampled at M consecutive
positions spaced at τ (an interval in time or distance in space). The
wave number m = 1 then corresponds to the fundamental period of the
discrete signal (which is now assumed to be periodic) with a period of
length Mτ ; i. e., to the frequency

f1 =
1

Mτ
. (13.57)

In general, the wave number m of a discrete spectrum relates to the
physical frequency as

fm = m
1

Mτ
= m · f1 (13.58)

for 0 ≤ m < M , which is equivalent to the angular frequency

ωm = 2πfm = m
2π

Mτ
= m · ω1. (13.59)

Obviously then, the sampling frequency fs = 1/τ = M · f1 corresponds
to the wave number ms = M . As expected, the maximum nonaliased
wave number in the spectrum is338
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mmax =
M

2
=

ms

2
, (13.60)

half the wave number of the sampling frequency ms.

Example 1: Time-domain signal

We assume for this example that g(u) is a signal in the time domain (e. g.,
a discrete sound signal) that contains M = 500 sample values taken
at regular intervals τ = 1 ms = 10−3 s. Thus the sampling frequency
is fs = 1/τ = 1000Hertz (cycles per second) and the total duration
(fundamental period) of the signal is Mτ = 0.5 s.

The signal is implicitly periodic, and from Eqn. (13.57) we obtain
its fundamental frequency as f1 = 1

500·10−3 = 1
0.5 = 2Hertz. The

wave number m = 2 in this case corresponds to a real frequency
f2 = 2f1 = 4Hertz, f3 = 6Hertz, etc. The maximum frequency that
can be represented by this discrete signal without aliasing is fmax =
M
2 f1 = 1

2τ = 500Hertz, exactly half the sampling frequency fs.

Example 2: Space-domain signal

Assume we have a one-dimensional print pattern with a resolution (i. e.,
spatial sampling frequency) of 120 dots per cm, which equals approxi-
mately 300 dots per inch (dpi) and a total signal length ofM = 1800 sam-
ples. This corresponds to a spatial sampling interval of τ = 1/120 cm ≈
83 μm and a physical signal length of (1800/120) cm = 15 cm.

The fundamental frequency of this signal (again implicitly assumed
to be periodic) is f1 = 1

15 , expressed in cycles per cm. The sampling
frequency is fs = 120 cycles per cm and thus the maximum signal fre-
quency is fmax = fs

2 = 60 cycles per cm. The maximum signal frequency
specifies the finest structure ( 1

60 cm) that can be reproduced by this print
raster.

13.3.5 Power Spectrum

The magnitude of the complex-valued Fourier spectrum

|G(m)| =
√

G2
Re(m) + G2

Im(m) (13.61)

is commonly called the “power spectrum” of a signal. It specifies the
energy that individual frequency components in the spectrum contribute
to the signal. The power spectrum is real-valued and positive and thus
often used for graphically displaying the results of Fourier transforms
(see also Sec. 14.2).

Since all phase information is lost in the power spectrum, the original
signal cannot be reconstructed from the power spectrum alone. However, 339
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because of the missing phase information, the power spectrum is insen-
sitive to shifts of the original signal and can thus be efficiently used for
comparing signals. To be more precise, the power spectrum of a cycli-
cally shifted signal is identical to the power spectrum of the original
signal. Thus, given a discrete periodic signal g1(u) of length M and a
second signal g2(u) shifted by some offset d, such that

g2(u) = g1(u−d), (13.62)

the corresponding power spectra are the same,

|G2(m)| = |G1(m)|, (13.63)

although in general the complex-valued spectra G1(m) and G2(m) are
different. Furthermore, from the symmetry property of the Fourier spec-
trum, it follows that

|G(m)| = |G(−m)| (13.64)

for real-valued signals g(u) ∈ R.

13.4 Implementing the DFT

13.4.1 Direct Implementation

Based on the definitions in Eqns. (13.49)–(13.50) the DFT can be di-
rectly implemented, as shown in Prog. 13.1. The main method DFT()
transforms a signal vector of arbitrary length M (not necessarily a power
of 2). It requires roughly M2 operations (multiplications and additions);
i. e., the time complexity of this DFT algorithm is O(M2).

One way to improve the efficiency of the DFT algorithm is to use
lookup tables for the sin and cos functions (which are relatively “ex-
pensive” to compute) since only function values for a set of M different
angles ϕm are ever needed. The angles ϕm = 2π m

M corresponding to
m = 0 . . .M − 1 are evenly distributed over the full 360◦ circle. Any
integral multiple ϕm ·u (for u ∈ Z) can only fall onto one of these angles
again because

ϕm · u = 2π mu
M ≡ 2π

M (mu mod M︸ ︷︷ ︸
0≤k<M

) = 2π k
M = ϕk, (13.65)

where mod denotes the “modulus” operator.10 Thus we can set up two
constant tables (floating-point arrays) WC [k] and WS[k] of size M with
the values

WC [k] ← cos(ωk) = cos
(
2π k

M

)
,

WS[k] ← sin(ωk) = sin
(
2π k

M

)
,

10 See also Appendix B.1.2.340



13.4 Implementing the DFT1 class Complex {
2 double re, im;
3
4 Complex(double re, double im) { //constructor method
5 this.re = re;
6 this.im = im;
7 }
8 }

9 Complex[] DFT(Complex[] g, boolean forward) {
10 int M = g.length;
11 double s = 1 / Math.sqrt(M); //common scale factor
12 Complex[] G = new Complex[M];
13 for (int m = 0; m < M; m++) {
14 double sumRe = 0;
15 double sumIm = 0;
16 double phim = 2 * Math.PI * m / M;
17 for (int u = 0; u < M; u++) {
18 double gRe = g[u].re;
19 double gIm = g[u].im;
20 double cosw = Math.cos(phim * u);
21 double sinw = Math.sin(phim * u);
22 if (!forward) // inverse transform
23 sinw = -sinw;
24 //complex mult: [gRe + i gIm] · [cos(ω) + i sin(ω)]
25 sumRe += gRe * cosw + gIm * sinw;
26 sumIm += gIm * cosw - gRe * sinw;
27 }
28 G[m] = new Complex(s * sumRe, s * sumIm);
29 }
30 return G;
31 }

Program 13.1
Direct implementation of the DFT
based on the definition in Eqns.
(13.49) and (13.50). The method
DFT() returns a complex-valued
vector with the same length as the
complex-valued input (signal) vec-
tor g. This method implements
both the forward and the inverse
transforms, controlled by the
Boolean parameter forward. The
class Complex (top) defines the
structure of the complex-valued
vector elements.

for 0 ≤ k < M . For computing the DFT, the necessary cosine and sine
values (Eqn. (13.48)) can be read from these tables as

CM
k (u) = cos

(
2π mu

M

)
= WC [mu mod M ], (13.66)

SM
k (u) = sin

(
2π mu

M

)
= WS[mu mod M ], (13.67)

for arbitrary values of m and u, without any additional computation.
The necessary modification of the DFT() method in Prog. 13.1 is left as
an exercise (Exercise 13.5).

Despite this significant improvement, the direct implementation of
the DFT remains computationally intensive. As a matter of fact, it
has been impossible for a long time to compute this form of DFT in
sufficiently short time on off-the-shelf computers, and this is still true
today for many real applications.
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13.4.2 Fast Fourier Transform (FFT)

Fortunately, for computing the DFT in practice, fast algorithms exist
that lay out the sequence of computations in such a way that interme-
diate results are only computed once and optimally reused many times.
This “fast Fourier transform”, which exists in many variations, gener-
ally reduces the time complexity of the computation from O(M2) to
O(M log2 M). The benefits are substantial, in particular for longer sig-
nals. For example, with a signal of length M = 103, the FFT leads to a
speedup by a factor of 100 over the direct DFT implementation and an
impressive gain of 10,000 times for a signal of length M = 106. Since its
invention, the FFT has therefore become an indispensable tool in almost
any application of spectral signal analysis [14].

Most FFT algorithms, including the one described in the famous
publication by Cooley and Tukey in 1965 (see [38, p. 156] for a historic
overview), are designed for signals of length M = 2k (i. e., powers of 2).
However, FFT algorithms have also been developed for other lengths,
including several small prime numbers [8]. It is important to remember,
though, that the DFT and FFT compute exactly the same result and
the FFT is only a special—though ingenious—method for implementing
the discrete Fourier transform (Eqn. (13.45)).

13.5 Exercises

Exercise 13.1. Compute the values of the cosine function f(x) =
cos(ωx) with angular frequency ω = 5 for the positions x = −3,−2, . . . ,
2, 3. What is the length of this function’s period?

Exercise 13.2. Determine the phase angle ϕ of the function f(x) =
A · cos(ωx) + B · sin(ωx) for A = −1 and B = 2.

Exercise 13.3. Compute the real part, the imaginary part, and the
magnitude of the complex value z = 1.5 · e−i 2.5.

Exercise 13.4. A one-dimensional optical scanner for sampling film
transparencies is supposed to resolve image structures with a precision
of 4,000 dpi (dots per inch). What spatial distance (in mm) between
samples is required such that no aliasing occurs?

Exercise 13.5. Modify the direct implementation of the one-dimension-
al DFT given in Prog. 13.1 by using lookup tables for the cos and sin
functions as described in Eqns. (13.66) and (13.67).
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14

The Discrete Fourier Transform in 2D

The Fourier transform is defined not only for one-dimensional signals
but for functions of arbitrary dimension. Thus, two-dimensional images
are nothing special from a mathematical point of view.

For a two-dimensional, periodic function (e. g., an intensity image)
g(u, v) of size M×N , the discrete Fourier transform (2D DFT) is defined
as

G(m, n) =
1√

MN

M−1∑
u=0

N−1∑
v=0

g(u, v) · e−i2π mu
M · e−i2π nv

N

=
1√

MN

M−1∑
u=0

N−1∑
v=0

g(u, v) · e−i2π( mu
M + nv

N )

(14.1)

for the spectral coordinates m = 0 . . .M−1 and n = 0 . . .N−1. As we
see, the resulting Fourier transform is again a two-dimensional function
of the same size (M × N) as the original signal. Similarly, the inverse
2D DFT is defined as

g(u, v) =
1√
MN

M−1∑
m=0

N−1∑
n=0

G(m, n) · ei2π mu
M · ei2π nv

N

=
1√
MN

M−1∑
m=0

N−1∑
n=0

G(m, n) · ei2π( mu
M + nv

N )

(14.2)

for the image coordinates u = 0 . . .M−1 and v = 0 . . .N−1. 343
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14.1.1 2D Basis Functions

Equation (14.2) shows that a discrete two-dimensional, periodic function
g(u, v) can be represented as a linear combination (i. e., as a weighted
sum) of 2D sinusoids of the form

ei2π( mu
M + nv

N ) = ei(ωmu+ωnv) (14.3)

= cos
[
2π
(mu

M
+

nv

N

)]
︸ ︷︷ ︸

CM,N
m,n (u, v)

+ i·sin
[
2π
(mu

M
+

nv

N

)]
︸ ︷︷ ︸

SM,N
m,n (u, v)

. (14.4)

CM,N
m,n (u, v) and SM,N

m,n (u, v) are discrete, two-dimensional cosine and sine
functions with horizontal and vertical wave numbers n and m, respec-
tively, and the corresponding angular frequencies ωm, ωn:

CM,N
m,n (u, v) = cos

[
2π
(mu

M
+

nv

N

)]
= cos(ωmu + ωnv), (14.5)

SM,N
m,n (u, v) = sin

[
2π
(mu

M
+

nv

N

)]
= sin(ωmu + ωnv). (14.6)

Each of these basis functions is periodic with M units in the horizontal
direction and N units in the vertical direction.

Examples

Figures 14.1 and 14.2 show a set of 2D cosine functions CM,N
m,n of size

M × N = 16 × 16 for various combinations of wave numbers m, n =
0 . . . 3. As we can clearly see, these functions correspond to a directed,
cosine-shaped waveform whose orientation is determined by the wave
numbers m and n. For example, the wave numbers m = n = 2 specify
a cosine function CM,N

2,2 (u, v) that performs two full cycles in both the
horizontal and vertical directions, thus creating a diagonally oriented,
two-dimensional wave. Of course, the same holds for the corresponding
sine functions.

14.1.2 Implementing the Two-Dimensional DFT

As in the one-dimensional case, we could directly use the definition in
Eqn. (14.1) to write a program or procedure that implements the 2D
DFT. However, this is not even necessary. A minor rearrangement of
Eqn. (14.1) into

G(m, n) =
1√
N

N−1∑
v=0

[
1√
M

M−1∑
u=0

g(u, v) · e−i2π mu
M

︸ ︷︷ ︸
1-dim. DFT of row g(·, v)

]
· e−i2π nv

N (14.7)
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14.2 Visualizing the 2D
Fourier Transform

1: Separable 2D-DFT (g) � g(u, v) ∈ C, 0 ≤ u < M , 0 ≤ v < N
2: for v ← 0 . . . N−1 do
3: Let g(·, v) be the vth row vector of g:

Replace g(·, v) by DFT
(
g(·, v)

)
4: for u ← 0 . . . M−1 do
5: Let g(u, ·) be the uth column vector of g:

Replace g(u, ·) by DFT
(
g(u, ·))

Remark: g(u, v) ≡ G(u, v) ∈ C now contains the discrete 2D spec-
trum.

6: return g

Algorithm 14.1
In-place implementation of the
two-dimensional DFT as a se-
quence of one-dimensional DFTs
on row and column vectors.

shows that its core contains a one-dimensional DFT (see Eqn. (13.45))
of the vth row vector g(·, v) that is independent of the “vertical” position
v and size N (noting the fact that v and N are placed outside the square
brackets in Eqn. (14.7)). If, in a first step, we replace each row vector
g(·, v) of the original image by its one-dimensional Fourier transform,

g′(·, v) ← DFT
(
g(·, v)

)
for 0 ≤ v < N,

then we only need to replace each resulting column vector by its one-
dimensional DFT in a second step:

g′′(u, ·) ← DFT
(
g′(u, ·)) for 0 ≤ u < M.

The resulting function g′′(u, v) is precisely the two-dimensional Fourier
transform G(m, n). Thus the two-dimensional DFT can be separated
into a sequence of one-dimensional DFTs over the row and column vec-
tors, respectively, as summarized in Alg. 14.1. The advantage of this
is twofold: first, the 2D-DFT can be implemented more efficiently, and
second, only a one-dimensional implementation of the DFT (or the one-
dimensional FFT, as described in Sec. 13.4.2) is needed to implement
any multidimensional DFT.

As we can see from Eqn. (14.7), the 2D DFT could equally be per-
formed in the opposite way, by first doing a 1D DFT on all rows and
subsequently on all columns. One should also note that all operations in
Alg. 14.1 are done “in place”, which means that the original signal g(u, v)
is destructively modified and successively replaced by its Fourier trans-
form G(m, n) of the same size, without allocating any additional storage
space. This feature is certainly desirable and also quite common, based
on the fact that most one-dimensional FFT algorithms (which should be
used for implementing the DFT in practice) work “in place”.

14.2 Visualizing the 2D Fourier Transform

Unfortunately, there is no simple method for visualizing two-dimensional
complex-valued functions, such as the result of a 2D DFT. One alter-
native is to display the real and imaginary parts individually as 2D
surfaces. Mostly, however, the absolute value of the complex functions 345
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Fig. 14.1
Two-dimensional cosine functions.
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Fig. 14.2
Two-dimensional cosine func-
tions (continued). CM,N

m,n (u, v) =
cos

[
2π
(

mu
M

+ nv
N

)]
for M = N =

16, n = 0 . . . 3, m = 2, 3.
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is displayed, which in the case of the Fourier transform is |G(m, n)|, the
power spectrum (see Sec. 13.3.5).

14.2.1 Range of Spectral Values

For most natural images, the “spectral energy” concentrates at the lower
frequencies with a clear maximum at wave numbers (0, 0); i. e., at the
co-ordinate center (see also Sec. 14.4). The values of the power spectrum
usually cover a wide range, and displaying them linearly often makes the
smaller values invisible. To show the full range of spectral values, in par-
ticular the smaller values for the high frequencies, it is common to display
the square root or the logarithm of the power spectrum,

√|G(m, n)| or
log |G(m, n)|, respectively.

14.2.2 Centered Representation

Analogous to the one-dimensional case, the 2D spectrum is a periodic
function in both dimensions,

G(m, n) = G(m + pM, n + qN), (14.8)

for arbitrary p, q ∈ Z. In the case of a real-valued 2D signal (g(u, v) ∈ R,
see Eqn. (13.56)), the power spectrum is also symmetric about the origin,

|G(m, n)| = |G(−m,−n)| . (14.9)

It is thus common to use a centered representation of the spectrum with
coordinates m, n in the ranges

−⌊M
2

⌋ ≤ m ≤ ⌊
M−1

2

⌋
and −⌊N

2

⌋ ≤ n ≤ ⌊
N−1
2

⌋
,

respectively. This can be easily accomplished by swapping the four quad-
rants of the Fourier transform, as illustrated in Fig. 14.3. In the resulting
representation, the low-frequency coefficients are found at the center and
the high-frequency entries along the outer boundaries. Figure 14.4 shows
the plot of a 2D power spectrum as an intensity image in its original and
centered form, with the intensity proportional to the logarithm of the
spectral values (log10 |G(m, n)|).

14.3 Frequencies and Orientation in 2D

As we could see in Figs. 14.1 and 14.2, each 2D basis function is an
oriented cosine or sine function whose orientation and frequency are
determined by its wave numbers m and n for the horizontal and vertical
directions, respectively. If we moved along the main direction of such a
basis function (i. e., perpendicular to the crest of the waves), we would
follow a one-dimensional cosine or sine function of some frequency f̂ ,
which we call the directional or effective frequency of the waveform (see
Fig. 14.5).348
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Fig. 14.3
Centering the 2D Fourier spec-
trum. In the original (non-
centered) spectrum, the coordinate
center (i. e., the region of low fre-
quencies) is located in the upper
left corner and, due to the period-
icity of the spectrum, also at all
other corners (a). In this case, the
coefficients for the highest wave
numbers (frequencies) lie at the
center. Swapping the quadrants
pairwise, as shown in (b), moves
all low-frequency coefficients to
the center and high frequencies to
the periphery. A real 2D power
spectrum is shown in its original
form in (c) and in centered form in
(d).

(a) (b) (c)

Fig. 14.4
Intensity plot of a 2D power spec-
trum: original image (a), non-
centered spectrum (b), and cen-
tered spectrum (c).

14.3.1 Effective Frequency

As we remember, the wave numbers m, n specify how many full cycles
the corresponding 2D basis function performs over a distance of M units
in the horizontal direction or N units in the vertical direction. The
effective frequency along the main direction of the wave can be derived
from the one-dimensional case (Eqn. (13.57)) as

f̂(m,n) =
1
τ

√(m

M

)2

+
( n

N

)2

, (14.10)

where we assume the same (fixed) spatial sampling interval along the x
and y axes (i. e., τ = τx = τy). Thus the maximum signal frequency in
the directions of the coordinate axes is 349
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Fig. 14.5
Frequency and orientation in 2D.

The image (left) contains some
periodic pattern with effective

frequency f̂ = 1/τ̂ and ori-
entation ψ. The frequency co-
efficient corresponding to this
pattern is located at position

(m, n) = ±f̂ · (M cos ψ, N sin ψ)
in the 2D power spectrum (right).

Thus in general the spectral co-
efficients (m,n) are not placed
at the same direction (with re-

spect to the origin) as the orienta-
tion of the image pattern implies.

M

N

g(u, v)

τ̂

ψ

M

N

m

n

G(m, n)

f̂(±M
2 ,0) = f̂(0,±N

2 ) = 1
τ

√(
1
2

)2 = 1
2τ = 1

2fs, (14.11)

where fs = 1
τ denotes the sampling frequency. Notice that the effective

signal frequency at the corners of the spectrum is

f̂(±M
2 ,±N

2 ) = 1
τ

√(
1
2

)2 +
(

1
2

)2 = 1√
2·τ = 1√

2
fs, (14.12)

which is a factor
√

2 higher than along the coordinate axes (Eqn. (14.11)).

14.3.2 Frequency Limits and Aliasing in 2D

Figure 14.6 illustrates the relationship described in Eqns. (14.11) and
(14.12). The highest permissible signal frequencies in any direction lie
along the boundary of the centered 2D spectrum of size M × N . Any
signal with all frequency components within this region complies with the
sampling theorem (Nyquist rule) and can thus be reconstructed without
aliasing. In contrast, any spectral component outside these limits is
reflected across the boundary of this box toward the coordinate center
onto lower frequencies, which would appear as visual aliasing in the
reconstructed image.

Apparently the lowest effective sampling frequency (Eqn. (14.10)) oc-
curs in the directions of the coordinate axes of the sampling grid. To
ensure that a certain image pattern can be reconstructed without alias-
ing at any orientation, the effective signal frequency f̂ of that pattern
must be limited to fs

2 = 1
2τ in every direction, again assuming that the

sampling interval τ is the same along both coordinate axes.

14.3.3 Orientation

The spatial orientation of a two-dimensional cosine or sine wave with
spectral coordinates m, n (wave numbers 0 ≤ m < M , 0 ≤ n < N) is

ψ(m,n) = ArcTan
(

m
M , n

N

)
= ArcTan

(
mN, nM

)
, (14.13)350
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Fig. 14.6
Maximum signal frequencies and
aliasing in 2D. The boundary of
the M × N 2D spectrum (inner
rectangle) marks the region of per-
missible signal frequencies along
any direction. The outer rectangle
corresponds to the effective sam-
pling frequency, which is twice the
maximum signal frequency in the
same direction. The signal com-
ponent with spectral position A
(Ā, respectively) lies within the
maximum representable frequency
range and thus causes no alias-
ing. In contrast, component B (B̄,
respectively) is outside the per-
missible frequency range. Due to
the periodicity of the spectrum,
the components repeat, as in the
one-dimensional case, at every
multiple of the sampling frequen-
cies along the m and n axes. Thus
component B appears as an “alias”
at position B′ (and B̄ appears at
position B̄′) in the visible part of
the spectrum. Notice that aliasing
changes both the frequencies and
directions of the affected compo-
nents in signal space.

where ψ(m,n) for m = n = 0 is of course undefined.1 Conversely, a two-
dimensional sinusoid with effective frequency f̂ and spatial orientation
ψ is represented by the spectral coordinates

(m, n) = ±f̂ · (M cosψ, N sin ψ) , (14.14)

as shown before in Fig. 14.5.

14.3.4 Correcting the Geometry of a 2D Spectrum

From Eqn. (14.14) we can derive that in the special case of a sinusoid
with spatial orientation ψ = 45◦ the corresponding spectral coefficients
are found at the frequency coordinates

(m, n) = ±(λM, λN) for − 1
2 ≤ λ ≤ + 1

2 ; (14.15)

i. e., at the diagonals of the spectrum (see also Eqn. (14.12)). Unless
the image (and thus the spectrum) is quadratic (M = N), the angle of
orientation in the image and in the spectrum are not the same, though
they coincide along the directions of the coordinate axes. This means
that rotating an image by some angle α does turn the spectrum in the
same direction but in general not by the same angle α!

To obtain identical orientations and turning angles in both the image
and the spectrum, it is sufficient to scale the spectrum to square size such
that the spectral resolution is the same along both frequency axes (as
shown in Fig. 14.7).

1 ArcTan(x, y) in Eqn. (14.13) denotes the inverse tangent function
tan−1(y/x) (also see Appendix B.1.6). 351
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Fig. 14.7
Correcting the geometry of the

2D spectrum. Original image (a)
with dominant oriented patterns

that show up as clear peaks in the
corresponding spectrum (b). Be-

cause the image and the spectrum
are not square (M �= N), orien-
tations in the image are not the
same as in the actual spectrum

(b). After the spectrum is scaled
to square size (c), we can clearly
observe that the cylinders of this
(Harley-Davidson V-Rod) engine
are really spaced at a 60◦ angle.

(a)

(b) (c)

14.3.5 Effects of Periodicity

When interpreting the 2D DFT of images, one must always be aware of
the fact that with any discrete Fourier transform, the signal function is
implicitly assumed to be periodic in every dimension. Thus the transi-
tions at the borders between the replicas of the image are also part of
the signal, just like the interior of the image itself. If there is a large
intensity difference between opposing borders of an image (e. g., between
the upper and lower parts of a landscape image), then this causes strong
transitions in the resulting periodic signal. Such steep discontinuities are
of high bandwidth (i. e., the corresponding signal energy is spread over
a wide range along the coordinate axes of the sampling grid; see Fig.
14.8). This broadband energy distribution along the main axes, which
is often observed with real images, may lead to a suppression of other
relevant signal components in the spectrum.

14.3.6 Windowing

One solution to this problem is to multiply the image function g(u, v) =
I(u, v) by a suitable windowing function w(u, v),

g̃(u, v) = g(u, v) · w(u, v),

for 0 ≤ u < M , 0 ≤ v < N , prior to computing the DFT. The win-
dowing function w(u, v) should drop off continuously toward the image
borders such that the transitions between image replicas are effectively
eliminated. But multiplying the image with w(u, v) has additional effects352
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Fig. 14.8
Effects of periodicity in the 2D
spectrum. The discrete Fourier
transform is computed under the
implicit assumption that the im-
age signal is periodic along both
dimensions (top). Large differ-
ences in intensity at opposite
image borders—here most no-
tably in the vertical direction—
lead to broad-band signal compo-
nents that in this case appear as
a bright line along the spectrum’s
vertical axis (bottom).

upon the spectrum. As we already know (from Eqn. (13.27)), a multi-
plication of two functions in signal space corresponds to a convolution
of the corresponding spectra in frequency space:

G̃(m, n) ← G(m, n) ∗ W (m, n).

To apply the least possible damage to the Fourier transform of the im-
age, the ideal spectrum of w(u, v) would be the impulse function δ(m, n).
Unfortunately, this again corresponds to the constant windowing func-
tion w(u, v) = 1 with no windowing effect at all. In general, we can say
that a broader spectrum of the windowing function w(u, v) smoothes the
resulting spectrum more strongly and individual frequency components
are harder to isolate.

Taking a picture is equivalent to cutting out a finite (usually rectan-
gular) region from an infinite image plane, which can be simply modeled
as a multiplication with a rectangular pulse function of width M and 353
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height N . So, in this case, the spectrum of the original intensity func-
tion is convolved with the spectrum of the rectangular pulse (box). The
problem is that the spectrum of the rectangular box (see Fig. 14.9 (a)) is
of extremely high bandwidth and thus far off the ideal narrow impulse
function.

These two examples demonstrate a dilemma: windowing functions
should for one be as wide as possible to include a maximum part of the
original image, and they should also drop off to zero toward the image
borders but then again not too steeply to maintain a narrow windowing
spectrum.

14.3.7 Windowing Functions

Suitable windowing functions should therefore exhibit soft transitions,
and many variants have been proposed and analyzed both theoretically
and for practical use (see, e. g., [14, Sec. 9.3], [80, Ch. 10]). Table 14.1 lists
the definitions of several popular windowing functions; the corresponding
2D (logarithmic) power spectra are displayed in Figs. 14.9 and 14.10.

The spectrum of the rectangular pulse function (Fig. 14.9 (a)), which
assigns identical weights to all image elements, exhibits a relatively nar-
row peak at the center, which promises little smoothing in the resulting
windowed spectrum. Nevertheless, the spectral energy drops off quite
slowly toward the higher frequencies, thus in all creating a rather wide
spectrum. Not surprisingly, the behavior of the elliptical windowing
function in Fig. 14.9 (b) is quite similar. The Gaussian window in Fig.
14.9 (c) demonstrates how the off-center spectral energy can be signifi-
cantly suppressed by narrowing the windowing function, however, at the
cost of a much wider peak at the center. In fact, none of the functions
in Fig. 14.9 make a good windowing function.

Obviously, the choice of a suitable windowing function is a delicate
compromise since even apparently similar functions may exhibit largely
different behaviors in the frequency spectrum. For example, good overall
results can be obtained with the Hanning window (Fig. 14.10 (c)) or the
Parzen window (Fig. 14.10 (d)), which are both easy to compute and
frequently used in practice.

Figure 14.11 illustrates the effects of selected windowing functions
upon the spectrum of an intensity image. As can be seen clearly, nar-
rowing the windowing function leads to a suppression of the artifacts
caused by the signal’s implicit periodicity. At the same time, however,
it also reduces the resolution of the spectrum; the spectrum becomes
blurred, and individual peaks are widened.

354
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ru = u−M/2
M/2

= 2u
M

−1 rv = v−N/2
N/2

= 2v
N
−1 ru,v =

√
r2

u + r2
v

Elliptical
window:

w(u, v) =

{
1 for 0 ≤ ru,v ≤ 1

0 otherwise

Gaussian
window:

w(u, v) = e

(−r2
u,v

2σ2

)
, σ = 0.3 . . . 0.4

Super-Gaussian
window:

w(u, v) = e

(−rn
u,v
κ

)
, n = 6, κ = 0.3 . . . 0.4

Cosine2

window:
w(u, v) =

{
cos

(
π
2
ru

) · cos(π
2
rv

)
for 0 ≤ ru, rv ≤ 1

0 otherwise

Bartlett
window:

w(u, v) =

{
1−ru,v for 0 ≤ ru,v ≤ 1

0 otherwise

Hanning
window:

w(u, v) =

{
0.5 · cos(πru,v + 1) for 0 ≤ ru,v ≤ 1

0 otherwise

Parzen
window:

w(u, v) =

⎧⎪⎨
⎪⎩

1 − 6r2
u,v + 6r3

u,v for 0 ≤ ru,v < 0.5

2 · (1 − ru,v)3 for 0.5 ≤ ru,v < 1

0 otherwise

Table 14.1
2D windowing functions. The
functions w(u, v) have their max-
imum values at the image center,
w(M/2, N/2) = 1. The values ru,
rv, and ru,v used in the definitions
are specified at the top of the ta-
ble.
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Fig. 14.9
Windowing functions and their

logarithmic power spectra. Rect-
angular pulse (a), elliptical win-
dow (b), Gaussian window with

σ = 0.3 (c), and super-Gaussian
window of order n = 6 and κ = 0.3

(d). The windowing functions
are deliberately of nonsquare

size (M : N = 1 : 2).
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Fig. 14.10
Windowing functions and their
logarithmic power spectra (contin-
ued). Cosine2 window (a), Bartlett
window (b), Hanning window (c),
and Parzen window (d).
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Fig. 14.11. Application of windowing functions on images. The plots show the windowing function w(u,v), the
logarithmic power spectrum of the windowing function log |W (m,n)|, the windowed image g(u,v) · w(u,v), and the
power spectrum of the windowed image log |G(m,n) ∗ W (m,n)|.
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14.5 Applications of the DFT14.4 2D Fourier Transform Examples

The following examples demonstrate some basic properties of the two-
dimensional DFT on real intensity images. All examples in Figs. 14.12–
14.18 show a centered and squared spectrum with logarithmic intensity
values (see Sec. 14.2).

Scaling
Figure 14.12 shows that scaling the image in signal space has the opposite
effect in frequency space, analogous to the one-dimensional case (Fig.
13.4).

Periodic image patterns
The images in Fig. 14.13 contain repetitive periodic patterns at various
orientations and scales. They appear as distinct peaks at the correspond-
ing positions (see Eqn. (14.14)) in the spectrum.

Rotation
Figure 14.14 shows that rotating the image by some angle α rotates the
spectrum in the same direction and—if the image is square—by the same
angle.

Oriented, elongated structures
Pictures of artificial objects often exhibit regular patterns or elongated
structures that appear dominantly in the spectrum. The images in Fig.
14.15 show several elongated structures that show up in the spectrum
as bright streaks oriented perpendicularly to the main direction of the
image patterns.

Natural images
Straight and regular structures are usually less dominant in images of
natural objects and scenes, and thus the visual effects in the spectrum
are not as obvious as with artificial objects. Some examples of this class
of images are shown in Figs. 14.16 and 14.17.

Print pattern
The regular patterns generated by the common raster print techniques
(Fig. 14.18) are typical examples for periodic multidirectional structures,
which stand out clearly in the corresponding Fourier spectrum.

14.5 Applications of the DFT

The Fourier transform and the DFT in particular are important tools
in many engineering disciplines. In digital signal and image processing,
the DFT (and the FFT) is an indispensable “workhorse” with many
applications in image analysis, filtering, and image reconstruction, just
to name a few. 359
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Fig. 14.12
DFT—image scaling. The rectan-
gular pulse in the image function
(a–c) creates a strongly oscillat-
ing power spectrum (d–f), as in

the one-dimensional case. Stretch-
ing the image causes the spec-

trum to contract and vice versa.

Fig. 14.13
DFT—oriented, repetitive pat-
terns. The image function (a–

c) contains patterns with three
dominant orientations, which

appear as pairs of correspond-
ing frequency spots in the spec-
trum (c–f). Enlarging the image
causes the spectrum to contract.
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Fig. 14.14
DFT —image rotation. The origi-
nal image (a) is rotated by 15◦ (b)
and 30◦ (c). The corresponding
(squared) spectrum turns in the
same direction and by exactly the
same amount (d–f).

Fig. 14.15
DFT—superposition of image
patterns. Strong, oriented sub-
patterns (a–c) are easy to identify
in the corresponding spectrum (d–
f). Notice the broadband effects
caused by straight structures, such
as the dark beam on the wall in
(b, e).
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Fig. 14.16
DFT—natural image patterns.

Examples of repetitive struc-
tures in natural images (a–c)

that are also visible in the cor-
responding spectrum (d–f).

Fig. 14.17
DFT—natural image patterns
with no dominant orientation.

The repetitive patterns con-
tained in these images (a–c)

have no common orientation or
sufficiently regular spacing to
stand out locally in the corre-

sponding Fourier spectra (d–f).
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Fig. 14.18
DFT of a print pattern. The reg-
ular diagonally oriented raster
pattern (a, b) is clearly visible in
the corresponding power spectrum
(c). It is possible (at least in prin-
ciple) to remove such patterns by
erasing these peaks in the Fourier
spectrum and reconstructing the
smoothed image from the modified
spectrum using the inverse DFT.

14.5.1 Linear Filter Operations in Frequency Space

Performing linear filter operations in frequency space is an interesting
option because it provides an efficient way to apply filters of large spatial
extent. The approach is based on the convolution property of the Fourier
transform (see Sec. 13.1.6), which states that a linear convolution in
image space corresponds to a pointwise multiplication in frequency space.
Thus the linear convolution g ∗ h → g′ between an image g(u, v) and a
filter matrix h(u, v) can be accomplished by the following steps:

Image space: g(u, v) ∗ h(u, v) = g′(u, v)
↓ ↓ ↑

DFT DFT DFT−1

↓ ↓ ↑
Frequency space: G(m, n) · H(m, n) −→ G′(m, n)

(14.16)

First, the image g and the filter function h are transformed to frequency
space using the two-dimensional DFT. The corresponding spectra G and
H are then multiplied (pointwise), and the result G′ is subsequently
transformed back to image space using the inverse DFT, thus generating
the filtered image g′.

The main advantage of this “detour” lies in its possible efficiency. A
direct convolution for an image of size M ×M and a filter matrix of size 363
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N ×N requires O(M2N2) operations. Thus, time complexity increases
quadratically with filter size, which is usually no problem for small filters
but may render some larger filters too costly to implement. For example,
a filter of size 50 × 50 already requires about 2500 multiplications and
additions for every image pixel. In comparison, the transformation from
image to frequency space and back can be performed in O(M log2 M)
using the FFT, and the pointwise multiplication in frequency space re-
quires M2 operations, independent of the filter size.

In addition, certain types of filters are easier to specify in frequency
space than in image space; for example, an ideal low-pass filter, which
can be described very compactly in frequency space. Further details on
filter operations in frequency space can be found, for example, in [38, Sec.
4.4].

14.5.2 Linear Convolution versus Correlation

As described already in Sec. 6.3, a linear correlation is the same as a
linear convolution with a mirrored filter function. Therefore, the corre-
lation can be computed just like the convolution operation in the fre-
quency domain by following the steps described in Eqn. (14.16). This
could be advantageous for comparing images using correlation methods
(see Sec. 17.1.1) because in this case the image and the “filter” matrix
(i. e., the second image) are of similar size and thus usually too large to
be processed in image space.

Some operations in ImageJ, such as correlate, convolve, or deconvolve
(see below), are also implemented in the “Fourier domain” (FD) using the
two-dimensional DFT. They can be invoked through the menu Process
→FFT→FD Math.

14.5.3 Inverse Filters

Filtering in the frequency domain opens another interesting perspective:
reversing the effects of a filter, at least under restricted conditions. In
the following, we describe the basic idea only.

Assume we are given an image gblur that has been generated from
an original image gorig by some linear filter, for example, motion blur
induced by a moving camera. Under the assumption that this image
modification can be modeled sufficiently by a linear filter function hblur,
we can state that

gblur = gorig ∗ hblur.

Knowing that in frequency space this corresponds to a multiplication of
the corresponding spectra,

Gblur = Gorig · Hblur,

it should be possible to reconstruct the original (nonblurred) image by
computing the inverse Fourier transform of the expression364
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(a) (b)

(c) (d)

Fig. 14.19
Removing motion blur by inverse
filtering: original image (a); image
blurred by horizontal motion (b);
reconstruction using the exact
(known) filter function (c); result
of the inverse filter when the filter
function deviates marginally from
the real filter (d).

Gorig(m, n) =
Gblur(m, n)
Hblur(m, n)

.

Unfortunately, this “inverse filter” only works if the spectral coefficients
Hblur are nonzero, because otherwise the resulting values are infinite.
But even small values of Hblur, which are typical at high frequencies, lead
to large coefficients in the reconstructed spectrum and, as a consequence,
large amounts of image noise.

It is also important that the real filter function be accurately approx-
imated because otherwise the reconstructed image may strongly deviate
from the original. The example in Fig. 14.19 shows an image that has
been blurred by smooth horizontal motion, whose effect can easily be
modeled as a linear convolution. If the filter function that caused the
blurring is known exactly, then the reconstruction of the original image
can be accomplished without any problems (Fig. 14.19 (c)). However, as
shown in Fig. 14.19 (d), large errors occur if the inverse filter deviates
only marginally from the real filter, which quickly renders the method
useless.

Beyond this simple idea (which is often referred to as “deconvolu-
tion”), better methods for inverse filtering exist, such as the Wiener filter 365
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and related techniques (see, e. g., [38, Sec. 5.4], [60, Sec. 8.3], [59, Sec.
17.8], [20, Ch. 16]).

14.6 Exercises

Exercise 14.1. Implement the two-dimensional DFT using the one-di-
mensional DFT, as described in Sec. 14.1.2. Apply the 2D DFT to real
intensity images of arbitrary size and display the results (by converting
to ImageJ float images). Implement the inverse transform and verify
that the back-transformed result is identical to the original image.

Exercise 14.2. Assume that the two-dimensional Fourier spectrum of
an image with size 640× 480 and a spatial resolution of 72 dpi shows a
dominant peak at position ±(100, 100). Determine the orientation and
effective frequency (in cycles per cm) of the corresponding image pattern.

Exercise 14.3. An image with size 800× 600 contains a wavy intensity
pattern with an effective period of 12 pixels, oriented at 30◦. At which
frequency coordinates will this pattern manifest itself in the discrete
Fourier spectrum?

Exercise 14.4. Generalize Eqn. (14.10) and Eqns. (14.12)–(14.14) for
the case where the sampling intervals are not identical along the x and
y axes (i. e., for τx �= τy).

Exercise 14.5. Implement the elliptical and the super-Gauss window-
ing functions (Table 14.1) as ImageJ plugins, and investigate the effects
of these windows upon the resulting spectra. Also compare the results
to the case where no windowing function is used.
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The Discrete Cosine Transform (DCT)

The Fourier transform and the DFT are designed for processing complex-
valued signals, and they always produce a complex-valued spectrum even
in the case where the original signal was strictly real-valued. The reason
is that neither the real nor the imaginary part of the Fourier spectrum
alone is sufficient to represent (i. e., reconstruct) the signal completely. In
other words, the corresponding cosine (for the real part) or sine functions
(for the imaginary part) alone do not constitute a complete set of basis
functions.

On the other hand, we know (see Eqn. (13.22)) that a real-valued
signal has a symmetric Fourier spectrum, so only one half of the spectral
coefficients need to be computed without losing any signal information.

There are several spectral transformations that have properties sim-
ilar to the DFT but do not work with complex function values. The
discrete cosine transform (DCT) is a well known example that is partic-
ularly interesting in our context because it is frequently used for image
and video compression. The DCT uses only cosine functions of various
wave numbers as basis functions and operates on real-valued signals and
spectral coefficients. Similarly, there is also a discrete sine transform
(DST) based on a system of sine functions [60].

15.1 One-Dimensional DCT

The discrete cosine transform is not, as one may falsely assume, only
a “one-half” variant of the discrete Fourier transform. In the one-
dimensional case, the forward cosine transform for a signal g(u) of length
M is defined as 367
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G(m) =
√

2
M

M−1∑
u=0

g(u) · cm cos
(
π m(2u+1)

2M

)
(15.1)

for 0 ≤ m < M , and the inverse transform is

g(u) =
√

2
M

M−1∑
m=0

G(m) · cm cos
(
π m(2u+1)

2M

)
(15.2)

for 0 ≤ u < M , respectively, with

cm =
{ 1√

2
for m = 0

1 otherwise.
(15.3)

Note that the index variables (u, m) are used differently in the forward
transform (Eqn. (15.1)) and the inverse transform (Eqn. (15.2)), so the
two transforms are—in contrast to the DFT—not symmetric.

15.1.1 DCT Basis Functions

One may ask why it is possible that the DCT can work without any sine
functions, while they are essential in the DFT. The trick is to divide all
frequencies in half such that they are spaced more densely and thus the
frequency resolution in the spectrum is doubled. Comparing the cosine
parts of the DFT basis functions (Eqn. (13.48)) and those of the DCT
(Eqn. (15.1)),

DFT: CM
m (u) = cos

(
2π mu

M

)
,

DCT: DM
m (u) = cos

(
π m(2u+1)

2M

)
= cos

(
2π m(u+0.5)

2M

)
, (15.4)

one can clearly see that the period of the DCT basis functions (2M/m)
is double the period of DFT functions (M/m) and the DCT functions
are also phase-shifted by 0.5 units.

Figure 15.1 shows the DCT basis functions DM
m (u) for the signal

length M = 8 and wave numbers m = 0 . . . 7. For example, the basis
function D8

7(u) for wave number m = 7 performs seven full cycles over
a length of 2M = 16 units and therefore has the radial frequency ω =
m/2 = 3.5.

15.1.2 Implementing the One-Dimensional DCT

Since the DCT does not create any complex values and the forward and
inverse transforms (Eqns. (15.1) and (15.2)) are almost identical, the
whole procedure is fairly easy to implement in Java, as shown in Prog.
15.1. The only minor thing to note is that the factor cm in Eqn. (15.1)
is independent of the iteration variable u and can thus be computed
outside the inner summation loop (Prog. 15.1, line 7).368
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Fig. 15.1
DCT basis functions DM

0 (u) . . .
DM

7 (u) for M = 8. Each plot
shows both the discrete function
(round dots) and the correspond-
ing continuous function. Com-
pared with the basis functions of
the DFT (Figs. 13.11 and 13.12),
all frequencies are divided in half
and the DCT basis functions are
phase-shifted by 0.5 units. All
DCT basis functions are thus peri-
odic over the length 2M = 16 (as
compared with M for the DFT).

Of course, much more efficient (“fast”) DCT algorithms exist. More-
over, the DCT can also be computed in O(M log2 M) time using the
FFT [60, p. 152].1 The DCT is often used for image compression, in
particular for JPEG compression, where the size of the transformed sub-
images is fixed at 8 × 8 and the processing can be highly optimized.

1 See Appendix A (p. 454) for a brief explanation of the O() notation. 369
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Program 15.1
One-dimensional DCT (Java im-

plementation). The method DCT()
computes the forward transform
for a real-valued signal vector g
of arbitrary length according to

the definition in Eqn. (15.1). The
method returns the DCT spec-

trum as a real-valued vector of the
same length as the input vector
g. The inverse transform iDCT()

computes the inverse DCT for
the real-valued cosine spectrum G.

1 double[] DCT (double[] g) { // forward DCT of signal g(u)
2 int M = g.length;
3 double s = Math.sqrt(2.0 / M); //common scale factor
4 double[] G = new double[M];
5 for (int m = 0; m < M; m++) {
6 double cm = 1.0;
7 if (m == 0) cm = 1.0 / Math.sqrt(2);
8 double sum = 0;
9 for (int u = 0; u < M; u++) {

10 double Phi = (Math.PI * m * (2 * u + 1)) / (2.0 * M);
11 sum += g[u] * cm * Math.cos(Phi);
12 }
13 G[m] = s * sum;
14 }
15 return G;
16 }

17 double[] iDCT (double[] G) { // inverse DCT of spectrum G(m)
18 int M = G.length;
19 double s = Math.sqrt(2.0 / M); //common scale factor
20 double[] g = new double[M];
21 for (int u = 0; u < M; u++) {
22 double sum = 0;
23 for (int m = 0; m < M; m++) {
24 double cm = 1.0;
25 if (m == 0) cm = 1.0 / Math.sqrt(2);
26 double Phi = (Math.PI * (2 * u + 1) * m) / (2.0 * M);
27 double cosPhi = Math.cos(Phi);
28 sum += cm * G[m] * cosPhi;
29 }
30 g[u] = s * sum;
31 }
32 return g;
33 }

15.2 Two-Dimensional DCT

The two-dimensional form of the DCT follows immediately from the the
one-dimensional definition (Eqns. (15.1) and (15.2)), resulting in the 2D
forward transform

G(m, n) =
2√
MN

M−1∑
u=0

N−1∑
v=0

g(u, v) · cm cos
(

π(2u+1)m
2M

)
· cn cos

(
π(2v+1)n

2N

)

=
2cmcn√

MN

M−1∑
u=0

N−1∑
v=0

g(u, v) ·DM
m (u) · DN

n (v) (15.5)

for 0 ≤ m < M , 0 ≤ n < N , and the inverse transform370
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g(u, v) =
2√
MN

M−1∑
m=0

N−1∑
n=0

G(m, n)·cm cos
(

π(2u+1)m
2M

)
·cn cos

(
π(2v+1)n

2N

)

=
2√
MN

M−1∑
m=0

N−1∑
n=0

G(m, n) · cmDM
m (u) · cnDN

n (v) (15.6)

for 0 ≤ u < M , 0 ≤ v < N . The coefficients cm and cn in Eqns. (15.5)
and (15.6) are the same as in the one-dimensional case (Eqn. (15.3)).
Notice that in the forward transform (and only there!) the factors cm,
cn are independent of the iteration variables u, v and can thus be placed
outside the summation (as shown in Eqn. (15.5)).

15.2.1 Separability

Similar to the DFT (see Eqn. (14.7)), the two-dimensional DCT can also
be separated into two successive one-dimensional transforms. To make
this fact clear, the forward DCT can be expressed in the following way:

G(m, n) =
√

2
N

N−1∑
v=0

[ √
2
M

M−1∑
u=0

g(u, v)·cmDM
m (u)

︸ ︷︷ ︸
one-dimensional DCT[g(·, v)]

]
·cnDN

n (v) . (15.7)

The inner expression in Eqn. (15.7) corresponds to a one-dimensional
DCT of the vth line g(·, v) of the 2D signal function. Thus, as with the
2D DFT, one can first apply a one-dimensional DCT to every line of an
image and subsequently a DCT to each column. Of course ,one could
equally follow the reverse order by doing a DCT on the columns first
and then on the rows.

15.2.2 Examples

Figure 15.2 shows several examples of the DCT in comparison with the
results of the DFT. Since the DCT spectrum is (in contrast to the DFT
spectrum) not symmetric, it does not get centered but is displayed in
its original form with its origin at the upper left corner. The intensity
corresponds to the logarithm of the absolute value in the case of the (real-
valued) DCT spectrum. Similarly, the usual logarithmic power spectrum
is shown for the DFT. Notice that the DCT is not simply a section of
the DFT but obviously combines structures from adjacent quadrants of
the Fourier spectrum.

15.3 Other Spectral Transforms

Apparently, the Fourier transform is not the only way to represent a given
signal in frequency space; in fact, numerous similar transforms exist. 371



15 The Discrete Cosine
Transform (DCT)

Fig. 15.2
Comparing the results of the two-
dimensional DFT and DCT. Ap-

parently both transforms show
the frequency effects of image

structures in a similar fashion.
In the real-valued DCT spectrum

(right), all coefficients are con-
tained in a single quadrant and
the frequency resolution is dou-

bled compared with the DFT
power spectrum (center). The
DFT spectrum is centered as

usual, while the origin of the DCT
spectrum is located at the upper

left corner. Both spectral plots
show logarithmic intensity values.

Some of these, such as the discrete cosine transform, also use sinusoidal
basis functions, while others, such as the Hadamard transform (also
known as the Walsh transform), build on binary 0/1-functions [20, 59].

All of these transforms are of global nature; i. e., the value of any
spectral coefficient is equally influenced by all signal values, independent
of the spatial position in the signal. Thus a peak in the spectrum could
be caused by a high-amplitude event of local extent as well as by a
widespread, continuous wave of low amplitude. Global transforms are
therefore of limited use for the purpose of detecting or analyzing local
events because they are incapable of capturing the spatial position and
extent of events in a signal.372



15.4 ExercisesA solution to this problem is to use a set of local, spatially limited
basis functions (“wavelets”) in place of the global, spatially fixed basis
functions. The corresponding wavelet transform, of which several ver-
sions have been proposed, allows the simultaneous localization of repet-
itive signal components in both signal space and frequency space [68].

15.4 Exercises

Exercise 15.1. Implement the two-dimensional DCT (Sec. 15.2) as an
ImageJ plugin for images of arbitrary size.

Exercise 15.2. Implement an efficient (“hard-coded”) Java method for
computing the one-dimensional DCT of length M = 8 that operates
without iterations (loops) and contains all necessary coefficients as pre-
computed constants.

Exercise 15.3. Verify by numerical computation that the DCT basis
functions DM

m (u) for 0 ≤ m, u < M (Eqn. (15.4)) are pairwise orthogo-
nal; i. e., the inner product of the vectors DM

m ·DM
n is zero for any pair

m �= n.
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Geometric Operations

Common to the filters and point operations described so far is the fact
that they may change the intensity function of an image but the position
of each pixel and thus the geometry of the image remains the same. The
purpose of geometric operations, which are discussed in this chapter,
is to deform an image by altering its geometry. Typical examples are
shifting, rotating, or scaling images, as shown in Fig. 16.1. Geometric
operations are frequently needed in practical applications, for example,
in virtually any modern graphical computer interface. Today we take for
granted that windows and images in graphic or video applications can be
zoomed continuously to arbitrary size. Geometric image operations are
also important in computer graphics where textures, which are usually
raster images, are deformed to be mapped onto the corresponding 3D
surfaces, possibly in real time.

Of course, geometric operations are not as simple as their commonal-
ity may suggest. While it is obvious, for example, that an image could be
enlarged by some integral factor n simply by replicating each pixel n×n
times, the results would probably not be appealing, and it also gives
us no immediate idea how to handle nonintegral scale factors, rotating
images, or other image deformations. In general, geometric operations
that achieve high-quality results are not trivial to implement and are
also computationally demanding, even on today’s fast computers.

In principle, a geometric operation transforms a given image I to a
new image I ′ by modifying the coordinates of image pixels,

I(x, y) → I ′(x′, y′); (16.1)

i. e., the value of the image function I originally located at (x, y) moves
to the position (x′, y′) in the new image I ′.

To model this process, we first need a mapping function

T : R
2 → R

2
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Fig. 16.1
Typical examples for geometric
operations: original image (a),

translation (b), scaling (contract-
ing or stretching) in x and y direc-

tions (c), rotation about the cen-
ter (d), projective transformation
(e), and nonlinear distortion (f).

(a) (b) (c)

(d) (e) (f)

that specifies for each original 2D coordinate point x = (x, y) the corre-
sponding target point x′ = (x′, y′) in the new image I ′,

x′ = T (x). (16.2)

Notice that the coordinates (x, y) and (x′, y′) specify real-valued points
in the continuous image plane R×R. The main problem in transforming
digital images is that the pixels I(u, v) are defined not on a continuous
plane but on a discrete raster Z×Z. Obviously, a transformed coordinate
(u′, v′) = T (u, v) produced by the mapping function T () will, in general,
no longer fall onto a discrete raster point. The solution to this problem
is to compute intermediate pixel values for the transformed image by
a process called interpolation, which is the second essential element in
any geometric operation. Let us first take a closer look at the contin-
uous coordinate transform T () and subsequently attend to the issue of
interpolation in Sec. 16.3.

16.1 2D Mapping Function

The mapping function T () in Eqn. (16.2) is an arbitrary continuous func-
tion that for reasons of simplicity is often specified as two separate func-
tions,376



16.1 2D Mapping Functionx′ = Tx(x, y) and y′ = Ty(x, y), (16.3)

for the x and y components.

16.1.1 Simple Mappings

The simple mapping functions include translation, scaling, shearing, and
rotation, defined as follows:
Translation (shift) by a vector (dx, dy):

Tx : x′ = x + dx

Ty : y′ = y + dy
or

(
x′

y′

)
=
(

x
y

)
+
(

dx

dy

)
. (16.4)

Scaling (contracting or stretching) along the x or y axis by the factor sx

or sy, respectively:

Tx : x′ = sx · x
Ty : y′ = sy · y or

(
x′

y′

)
=
(

sx 0
0 sy

)
·
(

x
y

)
. (16.5)

Shearing along the x and y axis by the factor bx and by, respectively (for
shearing in only one direction, the other factor is set to zero):

Tx : x′ = x + bx · y
Ty : y′ = y + by · x or

(
x′

y′

)
=
(

1 bx

by 1

)
·
(

x
y

)
. (16.6)

Rotation by an angle α (the coordinate origin being the center of rota-
tion):

Tx : x′ = x · cosα − y · sin α
Ty : y′ = x · sin α + y · cosα

or (16.7)

(
x′

y′

)
=
(

cosα − sinα
sin α cosα

)
·
(

x
y

)
. (16.8)

16.1.2 Homogeneous Coordinates

The operations listed in Eqns. (16.4)–(16.8) constitute the important
class of “affine” mapping functions or affine transformations (see also Sec.
16.1.3). To simplify the concatenation of mappings, it is advantageous
to specify all operations in the form of vector-matrix multiplications, as
in Eqns. (16.5)–(16.8). Notice that the translation Eqn. (16.4), which is
a vector addition, cannot be formulated as vector-matrix multiplication.

Fortunately, this difficulty can be elegantly resolved with homoge-
neous coordinates (see, e. g., [31, p. 204]). To turn regular coordinates
into homogeneous coordinates, each vector is extended by one additional
element (h); i. e., in the two-dimensional case, 377
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x =

(
x
y

)
converts to x̂ =

⎛
⎝x̂

ŷ
h

⎞
⎠ =

⎛
⎝h x

h y
h

⎞
⎠ . (16.9)

Thus every ordinary 2D (Cartesian) coordinate pair x = (x, y)T is
replaced by a three-dimensional homogeneous coordinate vector x̂ =
(x̂, ŷ, h)T with arbitrary h �= 0. If the last component (h) of the ho-
mogeneous vector x̂ is nonzero, the components of the corresponding
Cartesian vector (x, y)T are found to be

x =
x̂

h
and y =

ŷ

h
. (16.10)

Since the value of h is arbitrary, there exist infinitely many homogeneous
vectors that are equivalent to a particular ordinary vector. In particular,
two homogeneous coordinates x̂1, x̂2 represent the same Cartesian point
x if they are multiples of each other; i. e.,

if x̂1 = s · x̂2, then x1 = x2 = x (16.11)

for s �= 0. For example, the homogeneous coordinates x̂1 = (3, 2, 1)T ,
x̂2 = (−6,−4,−2)T , and x̂3 = (30, 20, 10)T are all equivalent to the
Cartesian coordinate vector x = (3, 2)T .

16.1.3 Affine (Three-Point) Mapping

Using homogeneous coordinates, we can rewrite the 2D translation (Eqn.
(16.4)) as ⎛

⎝x′

y′

1

⎞
⎠ =

⎛
⎝x+dx

y+dy

1

⎞
⎠ =

⎛
⎝ 1 0 dx

0 1 dy

0 0 1

⎞
⎠·
⎛
⎝x

y
1

⎞
⎠ , (16.12)

which had been our motive for introducing homogeneous coordinates
in the first place. Consequently, we can now express any combination
of 2D translation, scaling, and rotation as vector-matrix multiplication
with homogeneous coordinates in the form x̂′ = A · x̂ or⎛

⎝x′

y′

1

⎞
⎠ =

⎛
⎝a11 a12 a13

a21 a22 a23

0 0 1

⎞
⎠·
⎛
⎝x

y
1

⎞
⎠ . (16.13)

This 2D coordinate transformation is called an “affine mapping” with the
six parameters a11 . . . a23, where a13, a23 specify the translation (equiva-
lent to dx, dy in Eqn. (16.4)) and a11, a12, a21, a22 aggregate the scaling,
shearing, and rotation terms (Eqns. (16.5)–(16.8)). An affine mapping
transforms straight lines to straight lines, triangles to triangles, and rect-
angles to parallelograms, as illustrated in Fig. 16.2. The distance ratio
between points on a straight line remains unchanged by this type of
mapping function.378
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I I ′

x1

x2

x3

x′
1

x′
2

x′
3

Fig. 16.2
Affine mapping. This map-
ping transforms straight lines to
straight lines, triangles to trian-
gles, and rectangles to parallelo-
grams. Parallel lines remain paral-
lel, and the distance ratio between
points on a straight line does not
change. An affine 2D transforma-
tion is uniquely specified by three
pairs of corresponding points; e. g.,
(x1, x

′
1), (x2, x

′
2), and (x3, x

′
3).Determining transformation parameters

The six parameters of the 2D affine mapping (Eqn. (16.13)) are uniquely
determined by three pairs of corresponding points (x1, x

′
1), (x2, x

′
2),

(x3, x
′
3), with the first point xi = (xi, yi) of each pair located in the

original image and the corresponding point x′
i = (x′

i, y
′
i) located in the

target image. From these six coordinate values, the six transformation
parameters a11 . . . a23 are derived by solving the system of linear equa-
tions

x′
1 = a11 ·x1 + a12 ·y1 + a13, y′

1 = a21 ·x1 + a22 ·y1 + a23,

x′
2 = a11 ·x2 + a12 ·y2 + a13, y′

2 = a21 ·x2 + a22 ·y2 + a23, (16.14)
x′

3 = a11 ·x3 + a12 ·y3 + a13, y′
3 = a21 ·x3 + a22 ·y3 + a23,

provided that the points (vectors) x1, x2, x3 are linearly independent
(i. e., that they do not lie on a common straight line). Since Eqn. (16.14)
consists of two independent sets of linear 3 × 3 equations for x′

i and y′
i,

the solution can be written in closed form as

a11 = 1
d ·
[
y1(x′

2−x′
3) + y2(x′

3−x′
1) + y3(x′

1−x′
2)
]
,

a12 = 1
d ·
[
x1(x′

3−x′
2) + x2(x′

1−x′
3) + x3(x′

2−x′
1)
]
,

a21 = 1
d ·
[
y1(y′

2−y′
3) + y2(y′

3−y′
1) + y3(y′

1−y′
2)
]
,

a22 = 1
d ·
[
x1(y′

3−y′
2) + x2(y′

1−y′
3) + x3(y′

2−y′
1)
]
,

a13 = 1
d ·
[
x1(y3x

′
2−y2x

′
3) + x2(y1x

′
3−y3x

′
1) + x3(y2x

′
1−y1x

′
2)
]
,

a23 = 1
d ·
[
x1(y3y

′
2−y2y

′
3) + x2(y1y

′
3−y3y

′
1) + x3(y2y

′
1−y1y

′
2)
]
,

(16.15)

with d = x1(y3−y2) + x2(y1−y3) + x3(y2−y1).

Inverse mapping

The inverse T−1() of the affine mapping function, which is often required
in practice (see Sec. 16.2.2), can be found by computing the inverse of
the transformation matrix (Eqn. (16.13)), 379
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⎛
⎝x

y
1

⎞
⎠ =

⎛
⎝a11 a12 a13

a21 a22 a23

0 0 1

⎞
⎠−1

·
⎛
⎝x′

y′

1

⎞
⎠ (16.16)

=
1

a11a22−a12a21

⎛
⎝ a22 −a12 a12a23−a13a22

−a21 a11 a13a21−a11a23

0 0 a11a22−a12a21

⎞
⎠·
⎛
⎝x′

y′

1

⎞
⎠ .

Of course, the inverse of the affine mapping can also be found directly
(i. e., without inverting the transformation matrix) from the given point
coordinates (xi, x

′
i) using Eqn. (16.15) with source and target coordi-

nates interchanged.

16.1.4 Projective (Four-Point) Mapping

In contrast to the affine transformation, which provides a mapping be-
tween arbitrary triangles, the projective transformation is a linear map-
ping between arbitrary quadrilaterals (Fig. 16.3). This is particularly
useful for deforming images controlled by mesh partitioning, as described
in Sec. 16.1.7. To map from an arbitrary sequence of four 2D points
(x1, x2, x3, x4) to a set of corresponding points (x′

1, x′
2, x′

3, x′
4), the

transformation requires eight degrees of freedom, two more than needed
for the affine transformation. Similar to the affine transformation, the
projective transformation can be expressed as a linear mapping in ho-
mogeneous coordinates, with two additional parameters (a31, a32):⎛

⎝x̂′

ŷ′

h′

⎞
⎠ =

⎛
⎝h′x′

h′y′

h′

⎞
⎠ =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 1

⎞
⎠·
⎛
⎝x

y
1

⎞
⎠ . (16.17)

In Cartesian coordinates, the resulting mapping functions

x′ =
1
h′ ·

(
a11 x + a12 y + a13

)
=

a11 x + a12 y + a13

a31 x + a32 y + 1
, (16.18)

y′ =
1
h′ ·

(
a21 x + a22 y + a23

)
=

a21 x + a22 y + a23

a31 x + a32 y + 1
, (16.19)

are apparently nonlinear. Despite this nonlinearity, straight lines are
preserved under this transformation. In fact, this is the most general
transformation that maps straight lines to straight lines in 2D, and it
actually maps any Nth-order algebraic curve onto another Nth-order
algebraic curve. In particular, circles and ellipses always transform into
other second-order curves (i. e., conic sections). Unlike the affine trans-
formation, however, parallel lines do not generally map to parallel lines
under a projective transformation (cf. Fig. 16.3) and the distance ratios
between points on a line are not preserved. The projective mapping is
therefore sometimes referred to as “perspective” or “pseudo-perspective”.380
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I I ′

x1

x2
x3

x4 x′
1

x′
2

x′
3

x′
4

Fig. 16.3
Projective mapping. Four pairs of
corresponding 2D points uniquely
specify a projective transforma-
tion. Straight lines are again
mapped to straight lines, and
a rectangle is mapped to some
quadrilateral. In general, neither
parallelism between straight lines
nor distance ratios are preserved.

Determining transformation parameters

Given four pairs of corresponding 2D points, (x1, x
′
1) . . . (x4, x

′
4), with

one point xi = (xi, yi) in the source image and the second point
x′

i = (x′
i, y

′
i) in the target image, the eight unknown transformation

parameters a11 . . . a32 can be found by solving a system of linear equa-
tions. Inserting the given point coordinates x′

i, y′
i into Eqn. (16.18), we

get for each point pair i = 1 . . . 4 a pair of linear equations

x′
i = a11 xi + a12 yi + a13 − a31 xi x′

i − a32 yi x′
i,

y′
i = a21 xi + a22 yi + a23 − a31 xi y′

i − a32 yi y′
i,

(16.20)

for the eight unknowns a11 . . . a32. Combining the resulting eight equa-
tions in matrix notation gives⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
1

y′
1

x′
2

y′
2

x′
3

y′
3

x′
4

y′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11

a12

a13

a21

a22

a23

a31

a32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.21)

or
x′ = M · a . (16.22)

The unknown parameters a = (a11, a12, . . . a32)T can be found by solving
the system of linear equations above using standard numerical methods
such as the Gauss algorithm [15, p. 276].1

1 We recommend relying on existing numerical software libraries for this pur-
pose. Several free packages are available for C/C++ but only a few ex-
ist for Java; e. g., JAMA—A Java Matrix Package (http://math.nist.gov/
javanumerics/jama/), which we use here. 381



16 Geometric Operations Inverse mapping

In general, a linear transformation of the form x′ = A·x can be inverted
by computing the inverse of the matrix A (i. e., x = A−1·x′), provided
that A is nonsingular (Det(A) �= 0). The inverse of a 3× 3 matrix A is
relatively easy to find using the relation

A−1 =
1

Det(A)
· Aadj (16.23)

between the determinant Det(A) and the corresponding adjoint matrix
Aadj [15, pp. 251, 260]. For an arbitrary 3 × 3 matrix

A =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ ,

the determinant is

Det(A) = a11 a22 a33 + a12 a23 a31 + a13 a21 a32

− a11 a23 a32 − a12 a21 a33 − a13 a22 a31 (16.24)

and its adjoint matrix is

Aadj =

⎛
⎝a22 a33−a23 a32 a13 a32−a12 a33 a12 a23−a13 a22

a23 a31−a21 a33 a11 a33−a13 a31 a13 a21−a11 a23

a21 a32−a22 a31 a12 a31−a11 a32 a11 a22−a12 a21

⎞
⎠ . (16.25)

In the special case of a projective mapping, the coefficient a33 = 1 (Eqn.
(16.17)), which slightly simplifies the computation. Since scalar multi-
ples of homogeneous vectors are all equivalent in Cartesian space, the
multiplication by the factor 1/Det(A) in Eqn. (16.23) can be omitted.
Thus, to invert the linear transformation, we only need to multiply the
homogeneous coordinate vector with the adjoint matrix Aadj and (if
needed) “homogenize” the resulting vector,⎛
⎝x̂

ŷ
h

⎞
⎠ = Aadj ·

⎛
⎝x′

y′

1

⎞
⎠ and subsequently

⎛
⎝x

y
1

⎞
⎠ =

1
h

⎛
⎝x̂

ŷ
h

⎞
⎠ . (16.26)

This method can be used to invert any linear mapping function in 2D,
including the affine and projective mapping functions described above.
Consequently, the inversion of the affine transformation shown earlier
(Eqn. (16.16)) is only a special case of this general method.

Projective mapping via the unit square

An alternative method for finding the projective mapping parameters
for a given set of image points is to use a two-stage mapping through382
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Fig. 16.4
Projective mapping from the unit
square S1 to an arbitrary quadri-
lateral Q = (x′

1, . . . x
′
4).

the unit square, which avoids iteratively solving a system of equations.
The projective mapping, shown in Fig. 16.4, from the corner points of
the unit square S1 to an arbitrary quadrilateral Q = x′

1, . . .x
′
4 with

(0, 0) → x′
1

(1, 0) → x′
2

(1, 1) → x′
3

(0, 1) → x′
4

reduces the system of equations in Eqn. (16.21) to

x′
1 = a13,

y′
1 = a23,

x′
2 = a11 + a13 − a31 · x′

2,

y′
2 = a21 + a23 − a31 · y′

2, (16.27)
x′

3 = a11 + a12 + a13 − a31 · x′
3 − a32 · x′

3,

y′
3 = a21 + a22 + a23 − a31 · y′

3 − a32 · y′
3,

x′
4 = a12 + a13 − a32 · x′

4,

y′
4 = a22 + a23 − a32 · y′

4.

This set of equations has the following closed-form solution for the eight
unknown transformation parameters a11, a12, . . . a32:

a31 =
(x′

1−x′
2+x′

3−x′
4)·(y′

4−y′
3) − (y′

1−y′
2+y′

3−y′
4)·(x′

4−x′
3)

(x′
2−x′

3) · (y′
4−y′

3) − (x′
4−x′

3) · (y′
2−y′

3)
, (16.28)

a32 =
(y′

1−y′
2+y′

3−y′
4)·(x′

2−x′
3)− (x′

1−x′
2+x′

3−x′
4)·(y′

2−y′
3)

(x′
2−x′

3) · (y′
4−y′

3) − (x′
4−x′

3) · (y′
2−y′

3)
, (16.29)

a11 = x′
2−x′

1+a31 x′
2, a12 = x′

4−x′
1+a32 x′

4, a13 = x′
1, (16.30)

a21 = y′
2−y′

1+a31 y′
2, a22 = y′

4−y′
1+a32 y′

4, a23 = y′
1. (16.31)

By computing the inverse of the corresponding 3 × 3 transformation
matrix (Eqn. (16.23)), the mapping may be reversed to transform an
arbitrary quadrilateral to the unit square. A mapping T between two
arbitrary quadrilaterals

Q1
T−→ Q2 383
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Fig. 16.5
Two-step projective transforma-

tion between arbitrary quadri-
laterals. In the first step, quadri-
lateral Q1 is transformed to the

unit square S1 by the inverse
mapping function T−1

1 . In the
second step, T2 transforms the
square S1 to the target quadri-
lateral Q2. The complete map-

ping T results from the concatena-
tion of the mappings T−1

1 and T2.
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can thus be implemented by combining a reversed mapping and a forward
mapping via the unit square [105, p. 55] [44]. As illustrated in Fig. 16.5,
the transformation of the first quadrilateral Q1 = (x1, x2, x3, x4) to
the second quadrilateral Q2 = (x′

1, x
′
2, x

′
3, x

′
4) is accomplished in two

steps involving the linear transformations T1 and T2 between the two
quadrilaterals and the unit square S1:

Q1
T−1
1−→ S1

T2−→ Q2. (16.32)

The projective transformation parameters for T1 and T2 are obtained by
inserting the corresponding point coordinates of Q1 and Q2 (xi and x′

i,
respectively) into Eqns. (16.28)–(16.31). The complete transformation
T is then the concatenation of the two transformations T−1

1 and T2,

x′ = T
(
x) = T2(T

−1
1 (x)

)
, (16.33)

or, expressed in matrix notation,

x′ = A · x = A2 ·A−1
1 · x. (16.34)

Of course, the matrix A = A2·A−1
1 needs to be computed only once for a

particular transformation and can then be used repeatedly for mapping
all required image points.

Example
The source and the target quadrilaterals Q1 and Q2 are specified by the
following coordinate points:

Q1 : x1 = (2, 5) x2 = (4, 6) x3 = (7, 9) x4 = (5, 9)
Q2 : x′

1 = (4, 3) x′
2 = (5, 2) x′

3 = (9, 3) x′
4 = (7, 5)

Using Eqns. (16.28)–(16.31), the transformation parameters (matrices)
for the projective mappings from the unit S1 square to the quadrilaterals
A1 : S1 → Q1 and A2 : S1 → Q2 are obtained as384



16.1 2D Mapping Function
A1 =

⎛
⎝ 3.33̇ 0.50 2.00

3.00 −0.50 5.00
0.33̇ −0.50 1.00

⎞
⎠ and A2 =

⎛
⎝ 1.00 −0.50 4.00
−1.00 −0.50 3.00

0.00 −0.50 1.00

⎞
⎠ .

Concatenating the inverse mapping A−1
1 with A2 (by matrix multipli-

cation), we get the complete mapping A = A2 ·A−1
1 with

A−1
1 =

⎛
⎝ 0.60 −0.45 1.05
−0.40 0.80 −3.20
−0.40 0.55 −0.95

⎞
⎠ and A =

⎛
⎝−0.80 1.35 −1.15
−1.60 1.70 −2.30
−0.20 0.15 0.65

⎞
⎠ .

The Java method makeMapping() in class ProjectiveMapping (p. 420)
shows an implementation of this two-step technique.

16.1.5 Bilinear Mapping

Similar to the projective transformation (Eqn. (16.17)), the bilinear map-
ping function

Tx : x′ = a1x + a2y + a3xy + a4,

Ty : y′ = b1x + b2y + b3xy + b4,
(16.35)

is specified with four pairs of corresponding points and has eight pa-
rameters (a1 . . . a4, b1 . . . b4). The transformation is nonlinear because
of the mixed term xy and cannot be described by a linear transforma-
tion, even with homogeneous coordinates. In contrast to the projective
transformation, the straight lines are not preserved in general but map
onto quadratic curves. Similarly, circles are not mapped to ellipses by a
bilinear transform.

A bilinear mapping is uniquely specified by four corresponding pairs
of 2D points (x1, x

′
1) . . . (x4, x

′
4). In the general case, for a bilinear map-

ping between arbitrary quadrilaterals, the coefficients a1 . . . a4, b1 . . . b4

(Eqn. (16.35)) are found as the solution of two separate systems of equa-
tions, each with four unknowns:⎛

⎜⎜⎝
x′

1

x′
2

x′
3

x′
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x1 y1 x1 y1 1
x2 y2 x2 y2 1
x3 y3 x3 y3 1
x4 y4 x4 y4 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎠ or x = M · a , (16.36)

⎛
⎜⎜⎝

y′
1

y′
2

y′
3

y′
4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x1 y1 x1 y1 1
x2 y2 x2 y2 1
x3 y3 x3 y3 1
x4 y4 x4 y4 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝

b1

b2

b3

b4

⎞
⎟⎟⎠ or y = M · b . (16.37)

These equations can again be solved using standard numerical tech-
niques, as described on page 381. A sample implementation of this
computation is shown by the Java method makeInverseMapping() in-
side the class BilinearMapping on page 422. 385



16 Geometric Operations

Fig. 16.6
Geometric transformations com-
pared: original image (a), affine
transformation with respect to
the triangle 1-2-3 (b), projec-
tive transformation (c), and
bilinear transformation (d).

(a) (b)

(c) (d)

In the special case of bilinearly mapping the unit square S1 to an
arbitrary quadrilateral Q = (x′

1, . . .x
′
4), the parameters a1 . . . a4 and

b1 . . . b4 are

a1 = x′
2 − x′

1, b1 = y′
2 − y′

1,

a2 = x′
4 − x′

1, b2 = y′
4 − y′

1,

a3 = x′
1 − x′

2 + x′
3 − x′

4, b3 = y′
1 − y′

2 + y′
3 − y′

4,

a4 = x′
1, b4 = y′

1.

Figure 16.6 shows results of the affine, projective, and bilinear trans-
formations applied to a simple test pattern. The affine transformation
(Fig. 16.6 (b)) is specified by mapping to the triangle 1-2-3, while the four
points of the quadrilateral 1-2-3-4 define the projective and the bilinear
transforms (Fig. 16.6 (c, d)).

16.1.6 Other Nonlinear Image Transformations

The bilinear transformation discussed in the previous section is only one
example of a nonlinear mapping in 2D that cannot be expressed as a
simple matrix-vector multiplication in homogeneous coordinates. Many
other types of nonlinear deformations exist; for example, to implement386
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(a) (b) (c)

(d) (e) (f)

Fig. 16.7
Various nonlinear image deforma-
tions: twirl (a, d), ripple (b, e),
and sphere (c, f) transformations.
The original (source) images are
shown in Fig. 16.6 (a) and Fig.
16.1 (a).

various artistic effects for creative imaging. This type of image deforma-
tion is often called “image warping”.

Depending on the type of transformation used, the derivation of
the inverse transformation function—which is required for the practical
computation of the mapping using target-to-source mapping (see Sec.
16.2.2)—is not always easy or may even be impossible. In the following
three examples, we therefore look straight at the inverse maps

x = T−1(x′)

without really bothering about the corresponding forward transforma-
tions.

“Twirl” transformation

The twirl mapping causes the image to be rotated around a given anchor
point xc = (xc, yc) with a space-variant rotation angle, which has a fixed
value α at the center xc and decreases linearly with the radial distance
from the center. The image remains unchanged outside the limiting
radius rmax. The corresponding (inverse) mapping function is defined as

T−1
x : x =

{
xc + r · cos(β) for r ≤ rmax

x′ for r > rmax,
(16.38)

T−1
y : y =

{
yc + r · sin(β) for r ≤ rmax

y′ for r > rmax,
(16.39)

387



16 Geometric Operations with

dx = x′ − xc, r =
√

d2
x + d2

y,

dy = y′ − yc, β = ArcTan(dx, dy) + α · ( rmax−r
rmax

)
.

Figure 16.7 (a, d) shows a twirl mapping with the anchor point xc placed
at the image center. The limiting radius rmax is half the length of the im-
age diagonal, and the rotation angle is α = 43◦ at the center. A Java im-
plementation of this transformation is shown in the class TwirlMapping
on page 422.

“Ripple” transformation

The ripple transformation causes a local wavelike displacement of the im-
age along both the x and y directions. The parameters of this mapping
function are the period lengths τx, τy �= 0 (in pixels) and the correspond-
ing amplitude values ax, ay for the displacement in both directions:

T−1
x : x = x′ + ax · sin

(
2π·y′

τx

)
, (16.40)

T−1
y : y = y′ + ay · sin

(
2π·x′

τy

)
. (16.41)

An example for the ripple mapping with τx = 120, τy = 250, ax = 10,
and ay = 15 is shown in Fig. 16.7 (b, e).

Spherical transformation

The spherical deformation imitates the effect of viewing the image
through a transparent hemisphere or lens placed on top of the image.
The parameters of this transformation are the position xc = (xc, yc) of
the lens center, the radius of the lens rmax and its refraction index ρ.
The corresponding mapping functions are defined as

T−1
x : x = x′ −

{
z · tan(βx) for r ≤ rmax

0 for r > rmax,
(16.42)

T−1
y : y = y′ −

{
z · tan(βy) for r ≤ rmax

0 for r > rmax,
(16.43)

with

dx = x′−xc, r =
√

d2
x + d2

y , βx =
(
1− 1

ρ

) · sin−1
(

dx√
(d2

x+z2)

)
,

dy = y′−yc, z =
√

r2
max − r2 , βy =

(
1− 1

ρ

) · sin−1
( dy√

(d2
y+z2)

)
.

Figure 16.7 (c, f) shows a spherical transformation with the lens posi-
tioned at the image center. The lens radius rmax is set to half of the
image width, and the refraction index is ρ = 1.8.388



16.1 2D Mapping Function16.1.7 Local Image Transformations

All the geometric transformations discussed so far are global (i. e., the
same mapping function is applied to all pixels in the given image). It
is often necessary to deform an image such that a larger number of n
original image points x1 . . .xn are precisely mapped onto a given set of
target points x′

1 . . . x′
n. For n = 3, this problem can be solved with an

affine mapping (see Sec. 16.1.3), and for n = 4 we could use a projective
or bilinear mapping (see Secs. 16.1.4 and 16.1.5). A precise global map-
ping of n > 4 points requires a more complicated function T (x) (e. g., a
two-dimensional nth-order polynomial or a spline function).

An alternative is to use local or piecewise transformations, where the
image is partitioned into disjoint patches that are transformed separately,
applying an individual mapping function to each patch. In practice, it is
common to partition the image into a mesh of triangles or quadrilaterals,
as illustrated in Fig. 16.8.

For a triangular mesh partitioning (Fig. 16.8 (a)), the transformation
between each pair of triangles Di → D′

i could be accomplished with an
affine mapping, whose parameters must be computed individually for
every patch. Similarly, the projective transformation would be suitable
for mapping each patch in a mesh partitioning composed of quadrilaterals

Di D′
i

(a)

Qi Q′
i

(b)

Fig. 16.8
Mesh partitioning. Almost arbi-
trary image deformations can be
implemented by partitioning the
image plane into nonoverlapping
triangles Di,D′

i (a) or quadri-
laterals Qi,Q′

i (b) and applying
simple local transformations. Ev-
ery patch in the resulting mesh is
transformed separately with the
required transformation parame-
ters derived from the correspond-
ing three or four corner points,
respectively.

389



16 Geometric Operations Qi (Fig. 16.8 (b)). Since both the affine and the projective transforma-
tions preserve the straightness of lines, we can be certain that no holes or
overlaps will arise and the deformation will appear continuous between
adjacent mesh patches.

Local transformations of this type are frequently used; for example, to
register aerial and satellite images or to undistort images for panoramic
stitching. In computer graphics, similar techniques are used to map
texture images onto polygonal 3D surfaces in the rendered 2D image.
Another popular application of this technique is “morphing” [105], which
performs a stepwise geometric transformation from one image to another
while simultaneously blending their intensity (or color) values.2

16.2 Resampling the Image

In the discussion of geometric transformations, we have so far consid-
ered the 2D image coordinates as being continuous (i. e., real-valued).
In reality, the picture elements in digital images reside at discrete (i. e.,
integer-valued) coordinates, and thus transferring a discrete image into
another discrete image without introducing significant losses in quality
is a nontrivial subproblem in the implementation of geometric transfor-
mations.

Based on the original image I(u, v) and some (continuous) geomet-
ric transformations T (x, y), the aim is to create a transformed image
I ′(u′, v′) where all coordinates are discrete (i. e., u, v ∈ Z and u′, v′ ∈ Z).3
This can be accomplished in one of two ways, which differ by the mapping
direction and are commonly referred to as source-to-target or target-to-
source mapping, respectively.

16.2.1 Source-to-Target Mapping

In this approach, which appears quite natural at first sight, we compute
for every pixel (u, v) of the original (source) image I the corresponding
transformed position

(x′, y′) = T (u, v)

in the target image I ′. In general, the result will not coincide with any
of the raster points, as illustrated in Fig. 16.9. Subsequently, we would
have to decide in which pixel in the target image I ′ the original intensity
or color value from I(u, v) should be stored. We could perhaps even
think of somehow distributing this value onto all adjacent pixels.

The problem with the source-to-target method is that, depending on
the geometric transformation T , some elements in the target image I ′

2 Image morphing has also been implemented in ImageJ as a plugin (iMorph)
by Hajime Hirase (http://rsb.info.nih.gov/ij/plugins/morph.html).

3 Remark on notation: We use (u, v) or (u′, v′) to denote discrete (integer)
coordinates and (x, y) or (x′, y′) for continuous (real-valued) coordinates.390



16.2 Resampling the Imagetarget image I ′source image I

T

u

v

x′

y′

Fig. 16.9
Source-to-target mapping. For
each discrete pixel position (u, v)
in the source image I , the cor-
responding (continuous) target
position (x′, y′) is found by apply-
ing the geometric transformation
T (u, v). In general, the target po-
sition (x′, y′) does not coincide
with any discrete raster point.
The source pixel value I(u, v) is
subsequently transferred to one of
the adjacent target pixels.

may never be “hit” at all (i. e., never receive a source pixel value)! This
happens, for example, when the image is enlarged (even slightly) by the
geometric transformation. The resulting holes in the target image would
be difficult to close in a subsequent processing step. Conversely, one
would have to consider (e. g., when the image is shrunk) that a single
element in the target image I ′ may be hit by multiple source pixels and
thus image content may get lost. In the light of all these complications,
source-to-target mapping is not really the method of choice.

16.2.2 Target-to-Source Mapping

This method avoids most difficulties encountered in the source-to-target
mapping by simply reversing the image generation process. For every
discrete pixel position (u′, v′) in the target image, we compute the cor-
responding (continuous) point

(x, y) = T−1(u′, v′)

in the source image plane using the inverse geometric transformation
T−1. Of course, the coordinate (x, y) again does not fall onto a raster
point in general and thus we have to decide from which of the neighboring
source pixels to extract the resulting target pixel value. This problem of
interpolating among intensity values will be discussed in detail in Sec.
16.3.

The major advantage of the target-to-source method is that all pixels
in the target image I ′ (and only these) are computed and filled exactly

target image I ′source image I

T−1

x

y

u′

v′

Fig. 16.10
Target-to-source mapping. For
each discrete pixel position (u′, v′)
in the target image I ′, the corre-
sponding continuous source po-
sition (x, y) is found by apply-
ing the inverse mapping function
T−1(u′, v′). The new pixel value
I ′(u′, v′) is determined by inter-
polating the pixel values in the
source image within some neigh-
borhood of (x, y).
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16 Geometric Operations once such that no holes or multiple hits can occur. This, however, re-
quires the inverse geometric transformation T−1 to be available, which
is no disadvantage in most cases since the forward transformation T
itself is never really needed. Due to its simplicity, which is also demon-
strated in Alg. 16.1, target-to-source mapping is the common method for
geometrically transforming 2D images.

Algorithm 16.1
Geometric image transforma-

tion using target-to-source map-
ping. Given are the original

(source) image I and the contin-
uous coordinate transformation T .
getInterpolatedValue(I, x, y)

returns the interpolated value
of the source image I at the

continuous position (x, y).

1: TransformImage (I, T )
I : source image
T : coordinate transform function

2: Create target image I ′.
3: for all target image coordinates (u′, v′) do
4: Let (x, y) ← T−1(u′, v′)
5: I ′(u′, v′) ← getInterpolatedValue(I, x, y)
6: return target image I ′.

16.3 Interpolation

Interpolation is the process of estimating the intermediate values of a
sampled function or signal at continuous positions or the attempt to
reconstruct the original continuous function from a set of discrete sam-
ples. In the context of geometric operations this task arises from the
fact that discrete pixel positions in one image are generally not mapped
to discrete raster positions in the other image under some continuous
geometric transformation T (or T−1, respectively). The concrete goal is
to obtain an optimal estimate for the value of the two-dimensional image
function I(x, y) at any continuous position (x, y) ∈ R2. In practice, the
interpolated function should preserve as much detail (i. e., sharpness) as
possible without causing visible artifacts such as ringing or moiré pat-
terns.

16.3.1 Simple Interpolation Methods

To illustrate the problem, we first attend to the one-dimensional case
(Fig. 16.11). Several simple methods exist for interpolating the values of
a discrete function g(u), with u ∈ Z, at arbitrary continuous positions
x ∈ R. While these ad hoc methods are easy to implement, they lack a
theoretical justification and usually give poor results.

Nearest-neighbor interpolation

The simplest of all interpolation methods is to round the continuous
coordinate x to the closest integer u0 and use the sample g(u0) as the
estimated function value ĝ(x),392



16.3 Interpolation

1 2 3 4 5 6 7 8 9 10
u

g(u)

1 2 3 4 5 6 7 8 9 10
x

f(x)

(a) (b)

Fig. 16.11
Interpolating a discrete function
in 1D. Given the discrete function
values g(u) (a), the goal is to es-
timate the original function f(x)
at arbitrary continuous positions
x ∈ R (b).

1 2 3 4 5 6 7 8 9 10
x

ĝ(x)

1 2 3 4 5 6 7 8 9 10
x

ĝ(x)

(a) (b)

Fig. 16.12
Simple interpolation methods.
The nearest-neighbor interpola-
tion (a) simply selects the discrete
sample g(u) closest to the given
continuous coordinate x as the
interpolating value ĝ(x). Under
linear interpolation (b), the result
is a piecewise linear function con-
necting adjacent samples g(u) and
g(u + 1).

ĝ(x) = g(u0), (16.44)
where u0 = round(x) = �x + 0.5�. (16.45)

A typical result of this so-called nearest-neighbor interpolation is shown
in Fig. 16.12 (a).

Linear interpolation

Another simple method is linear interpolation. Here the estimated value
is the sum of the two closest samples g(u0) and g(u0 + 1), with u0 =
�x�. The weight of each sample is proportional to its closeness to the
continuous position x,

ĝ(x) = g(u0) + (x − u0) ·
(
g(u0 + 1) − g(u0)

)
= g(u0) ·

(
1− (x − u0)

)
+ g(u0 + 1) · (x − u0). (16.46)

As shown in Fig. 16.12 (b), the result is a piecewise linear function made
up of straight line segments between consecutive sample values.

16.3.2 Ideal Interpolation

Obviously the results of these simple interpolation methods do not well
approximate the original continuous function (Fig. 16.11). But how can
we obtain a better approximation from the discrete samples only when
the original function is unknown? This may appear hopeless at first, 393



16 Geometric Operations because the discrete samples g(u) could possibly originate from any con-
tinuous function f(x) with identical values at the discrete sample posi-
tions.

We find an intuitive answer to this question (once again) by looking at
the functions in the spectral domain. If the original function f(x) was
discretized in accordance with the sampling theorem (see Sec. 13.2.1),
then f(x) must have been “band limited”—it could not contain any signal
components with frequencies higher than half the sampling frequency ωs.
This means that the reconstructed signal can only contain a limited set
of frequencies and thus its trajectory between the discrete sample values
is not arbitrary but naturally constrained.

In this context, absolute units of measure are of no concern since
in a digital signal all frequencies relate to the sampling frequency. In
particular, if we take τs = 1 as the (unitless) sampling interval, the
resulting sampling frequency is

ωs = 2π

and thus the maximum signal frequency is ωmax = ωs

2 = π. To iso-
late the frequency range −ωmax . . . ωmax in the corresponding (periodic)
Fourier spectrum, we multiply the spectrum G(ω) by a square windowing
function Ππ(ω) of width ±ωmax = ±π,

Ĝ(ω) = G(ω) ·Ππ(ω) = G(ω) ·
{

1 for − π ≤ ω ≤ π
0 otherwise.

This is called an ideal low-pass filter, which cuts off all signal components
with frequencies greater than π and keeps all lower-frequency compo-
nents unchanged. In the signal domain, the operation in Eqn. (16.47)
corresponds (see Eqn. (13.28)) to a linear convolution with the inverse
Fourier transform of the windowing function Ππ(ω), which is the Sinc
function, defined as

Sinc(x) =

{
1 for |x| = 0
sin(πx)

πx for |x| > 0
(16.47)

and shown in Fig. 16.13 (see also Table 13.1). This correspondence,
which was already discussed in Sec. 13.1.6, between convolution in the
signal domain and simple multiplication in the frequency domain is sum-
marized in Fig. 16.14.

So theoretically Sinc(x) is the ideal interpolation function for recon-
structing a frequency-limited continuous signal. To compute the inter-
polated value for the discrete function g(u) at an arbitrary position x0,
the Sinc function is shifted to x0 (such that its origin lies at x0), mul-
tiplied with all sample values g(u), with u ∈ Z, and the results are
summed—i. e., g(u) and Sinc(x) are convolved. The reconstructed value
of the continuous function at position x0 is thus394
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1

x

Sinc(x)

Fig. 16.13
Sinc function in 1D. The function
Sinc(x) has the value 1 at the ori-
gin and zero values at all integer
positions. The dashed line plots
the amplitude | 1

πx
| of the underly-

ing sine function.

Signal space Frequency space

g(u)

Sinc(x)

ĝ(x) = [Sinc∗g] (x)

G(ω)

Ππ(ω)

Ĝ(ω) = G(ω)·Ππ(ω)

Fig. 16.14
Interpolation of a discrete signal—
relation between signal and fre-
quency space. The discrete signal
g(u) in signal space (left) corre-
sponds to the periodic Fourier
spectrum G(ω) in frequency space
(right). The spectrum Ĝ(ω) of
the continuous signal is isolated
from G(ω) by pointwise multipli-
cation (×) with the square func-
tion Ππ(ω), which constitutes an
ideal low-pass filter (right). In
signal space (left), this operation
corresponds to a linear convolution
(∗) with the function Sinc(x).

ĝ(x0) = [Sinc ∗ g] (x0) =
∞∑

u=−∞
Sinc(x0 − u) · g(u), (16.48)

where ∗ is the linear convolution operator (see Sec. 6.3.1). If the discrete
signal g(u) is finite with length N (as is usually the case), it is assumed
to be periodic (i. e., g(u) = g(u + kN) for all k ∈ Z).4 In this case, Eqn.
(16.48) modifies to

ĝ(x0) =
∞∑

u=−∞
Sinc(x0 − u) · g(u mod N). (16.49)

It may be surprising that the ideal interpolation of a discrete function
g(u) at a position x0 apparently involves not only a few neighboring
sample points but in general infinitely many values of g(u) whose weights
decrease continuously with their distance from the given interpolation
point x0 (at the rate | 1

π(x0−u) |).
4 This assumption is explained by the fact that a discrete Fourier spectrum

implicitly corresponds to a periodic signal (also see Sec. 13.2.2). 395



16 Geometric Operations

Fig. 16.15
Interpolation by convolving with
the Sinc function. The Sinc func-

tion is shifted by aligning its
origin with the interpolation

points x0 = 4.4 (a) and x0 = 5
(b). The values of the shifted
Sinc function (dashed curve)

at the integral positions are the
weights (coefficients) for the cor-

responding sample values g(u).
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Figure 16.15 shows two examples for interpolating the function g(u)
at positions x0 = 4.4 and x0 = 5. If the function is interpolated at some
integral position, such as x0 = 5, the sample g(u) at u = x0 receives
the weight 1, while all other samples coincide with the zero positions
of the Sinc function and are thus ignored. Consequently, the resulting
interpolation values ĝ(x) are identical to the sample values g(u) at all
integral positions x = u.

If a continuous signal is properly frequency limited (by half the sam-
pling frequency ωs

2 ), it can be exactly reconstructed from the discrete
signal by interpolation with the Sinc function, as Fig. 16.16 (a) demon-
strates. Problems occur, however, around local high-frequency signal
events, such as rapid transitions or pulses, as shown in Fig. 16.16 (b, c).
In those situations, the Sinc interpolation causes strong overshooting
or “ringing” artifacts, which are perceived as visually disturbing. For
practical applications, the Sinc function is therefore not suitable as an
interpolation kernel—not only because of its infinite extent (and the
resulting noncomputability).

Fig. 16.16
Sinc interpolation on various sig-

nal types. The reconstructed func-
tion in (a) is identical to the con-

tinuous, band-limited original.
The results for the step function

(b) and the pulse function (c)
show the strong ringing caused by
Sinc (ideal low-pass) interpolation.
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x

ĝ1(x)

1 2 3 4 5 6 7 8 9 10
x

ĝ2(x)

1 2 3 4 5 6 7 8 9 10
x

ĝ3(x)

(a) (b) (c)

A useful interpolation function implements a low-pass filter that on
the one hand introduces minimal blurring by maintaining the maximum
the signal bandwidth but also delivers a good reconstruction at rapid
signal transitions on the other hand. In this regard, the Sinc function
is an extreme choice—it implements an ideal low-pass filter and thus
preserves a maximum bandwidth and signal continuity but gives inferior
results at signal transitions. At the opposite extreme, nearest-neighbor
interpolation (Fig. 16.12) can perfectly handle steps and pulses but gen-
erally fails to produce a continuous signal reconstruction between sample396



16.3 Interpolationpoints. The design of an interpolation function thus always involves a
trade-off, and the quality of the results often depends on the particular
application and subjective judgment. In the following, we discuss some
common interpolation functions that come close to this goal and are
therefore frequently used in practice.

16.3.3 Interpolation by Convolution

As we saw earlier in the context of Sinc interpolation (Eqn. (16.47)),
the reconstruction of a continuous signal can be described as a linear
convolution operation. In general, we can express interpolation as a
convolution of the given discrete function g(u) with some continuous
interpolation kernel w(x) as

ĝ(x0) = [w ∗ g] (x0) =
∞∑

u=−∞
w(x0 − u) · g(u). (16.50)

The Sinc interpolation in Eqn. (16.48) is obviously only a special case
with w(x) = Sinc(x). Similarly, the one-dimensional nearest-neighbor
interpolation (Eqn. (16.45), Fig. 16.12 (a)) can be expressed as a linear
convolution with the kernel

wnn(x) =
{

1 for −0.5 ≤ x < 0.5
0 otherwise

(16.51)

and the linear interpolation (Eqn. (16.46), Fig. 16.12 (b)) with the kernel

wlin(x) =
{

1 − x for |x| < 1
0 for |x| ≥ 1.

(16.52)

The interpolation kernels wnn(x) and wlin(x) are both shown in Fig.
16.17, and sample results for various function types are plotted in Fig.
16.18.

16.3.4 Cubic Interpolation

Because of its infinite extent and the ringing artifacts caused by its slowly
decaying oscillations, the Sinc function is not a useful interpolation kernel
in practice. Therefore, several interpolation methods employ a truncated

�3 �2 �1 1 2 3

1

x

wnn(x)

�3 �2 �1 1 2 3

1

x

wlin(x)

(a) (b)

Fig. 16.17
Convolution kernels for nearest-
neighbor interpolation wnn(x) and
linear interpolation wlin(x).
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16 Geometric Operations

Fig. 16.18
Interpolation examples: nearest-

neighbor interpolation (a–
c), linear interpolation (d–f). 1 2 3 4 5 6 7 8 9 10
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Fig. 16.19
Cubic interpolation kernel. Func-

tion wcub(x, a) with control pa-
rameter a set to a = 0.25 (dashed
curve), a = 1 (continuous curve),

and a = 1.75 (dotted curve)
(a). Cubic function wcub(x) and

Sinc function compared (b).
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version of the Sinc function or an approximation of it, thereby making the
convolution kernel more compact and reducing the ringing. A frequently
used approximation of a truncated Sinc function is the so-called cubic
interpolation, whose convolution kernel is defined as the piecewise cubic
polynomial

wcub(x, a) =

⎧⎪⎨
⎪⎩

(−a + 2) · |x|3 + (a − 3) · |x|2 + 1 for 0 ≤ |x| < 1
−a · |x|3 + 5a · |x|2 − 8a · |x| + 4a for 1 ≤ |x| < 2
0 for |x| ≥ 2 .

(16.53)

The single control parameter a can be used to adjust the slope of this
spline5 function (Fig. 16.19), which affects the amount of overshoot and
thus the perceived “sharpness” of the interpolated signal. For a = 1,
which is often recommended as a standard setting, Eqn. (16.53) simplifies
to

wcub(x) =

⎧⎪⎨
⎪⎩

|x|3 − 2 · |x|2 + 1 for 0 ≤ |x| < 1
−|x|3 + 5 · |x|2 − 8 · |x| + 4 for 1 ≤ |x| < 2

0 for |x| ≥ 2 .

(16.54)

5 The family of functions described by Eqn. (16.53) are commonly referred to
as cardinal splines [10] (see also Sec. 16.3.5).398
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Fig. 16.20
Cubic interpolation examples. Pa-
rameter a in Eqn. (16.53) controls
the amount of signal overshoot or
perceived sharpness: a = 0.25 (a–
c), standard setting a = 1 (d–f),
a = 1.75 (g–i). Notice in (d) the
ripple effects incurred by interpo-
lating with the standard settings
in smooth signal regions.

Figure 16.20 shows the results of cubic interpolation with different set-
tings of the control parameter a. Notice that the cubic reconstruction
obtained with the popular standard setting (a = 1) exhibits substantial
overshooting at edges as well as strong ripple effects in the continuous
parts of the signal (Fig. 16.20 (d)). With a = 0.5, the expression in Eqn.
(16.53) corresponds to a Catmull-Rom spline [21] (see also Sec. 16.3.5),
which produces significantly better results than the standard setup (with
a = 1), particularly in smooth signal regions (see Fig. 16.22 (a–c)).

In contrast to the Sinc function, the cubic interpolation kernel
wcub(x) has a very small extent and is therefore efficient to compute
(Fig. 16.19 (b)). Since wcub(x, a) = 0 for |x| ≥ 2, only four discrete
values g(u) need to be accounted for in the convolution operation (Eqn.
(16.50)) at any continuous position x0 ∈ R,

g(u0−1), g(u0), g(u0+1), g(u0+2), where u0 = �x0�.

This reduces the one-dimensional cubic interpolation to computing the
expression

ĝ(x0) =

x0�+2∑

u=
x0�−1

wcub(x0−u, a) · g(u). (16.55)

16.3.5 Spline Interpolation

The cubic interpolation kernel (Eqn. (16.53)) described in the previous
section is a piecewise cubic polynomial function, also known as a cubic 399
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Fig. 16.21
Examples of cardinal spline func-

tions wcs(x, a, b) as specified by
Eqn. (16.56): Catmull-Rom spline

wcs(x, 0.5, 0) (dotted line), cu-
bic B-spline wcs(x, 0, 1) (dashed

line), and Mitchell-Netravali
function wcs(x, 1

3
, 1

3
) (solid line). �2 �1 1 2
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x

wcs(x, a, b)

spline in computer graphics. In its general form, this function takes not
only one but two control parameters (a, b) [72],6

wcs(x, a, b) =

1
6
·

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(−6a− 9b + 12) · |x|3
+ (6a + 12b− 18) · |x|2 − 2b + 6 for 0 ≤ |x| < 1

(−6a− b) · |x|3 + (30a + 6b) · |x|2
+ (−48a− 12b) · |x| + 24a + 8b for 1 ≤ |x| < 2

0 for |x| ≥ 2 .

(16.56)

Equation (16.56) describes a family of C2-continuous functions; i. e., their
first and second derivatives are continuous everywhere and thus their
trajectories exhibit no discontinuities, corners, or abrupt changes of cur-
vature. For b = 0, the function wcs(x, a, b) specifies a one-parameter
family of so-called cardinal splines equivalent to the cubic interpolation
function wcub(x, a) in Eqn. (16.53),

wcs(x, a, 0) = wcub(x, a),

and for the standard setting a = 1 (Eqn. (16.54)) in particular

wcs(x, 1, 0) = wcub(x, 1) = wcub(x).

Figure 16.21 shows three additional examples of this function type that
are important in the context of interpolation: Catmull-Rom splines, cu-
bic B-splines, and the Mitchell-Netravali function. All three functions
are briefly described below. The actual computation of the interpolated
signal follows exactly the same scheme as used for the cubic interpolation
described in Eqn. (16.55).

Catmull-Rom interpolation

With the control parameters set to a = 0.5 and b = 0, the function in
Eqn. (16.56) is a Catmull-Rom spline [21], as already mentioned in Sec.
16.3.4:
6 In [72], the parameters a and b were originally named C and B, respectively,

with B ≡ b and C ≡ a.400



16.3 Interpolationwcrm(x) = wcs(x, 0.5, 0)

=
1
2
·

⎧⎪⎨
⎪⎩

3 · |x|3 − 5 · |x|2 + 2 for 0 ≤ |x| < 1

−|x|3 + 5 · |x|2 − 8 · |x| + 4 for 1 ≤ |x| < 2

0 for |x| ≥ 2 .

(16.57)

Examples of signals interpolated with this kernel are shown in Fig.
16.22 (a–c). The results are similar to ones produced by cubic inter-
polation (with a = 1, see Fig. 16.20) with regard to sharpness, but the
Catmull-Rom reconstruction is clearly superior in smooth signal regions
(compare, e. g., Fig. 16.20 (d) vs. Fig. 16.22 (a)).

Cubic B-spline approximation

With parameters set to a = 0 and b = 1, Eqn. (16.56) corresponds to a
cubic B-spline function [10] of the form

wcbs(x) = wcs(x, 0, 1)

=
1
6
·

⎧⎪⎨
⎪⎩

3 · |x|3 − 6 · |x|2 − 4 for 0 ≤ |x| < 1

−|x|3 + 6 · |x|2 − 12 · |x| + 8 for 1 ≤ |x| < 2

0 for |x| ≥ 2 .

(16.58)

This function is positive everywhere and, when used as an interpolation
kernel, causes a pure smoothing effect similar to a Gaussian smoothing
filter (see Fig. 16.22 (d–f)). Notice also that—in contrast to all previ-
ously described interpolation methods—the reconstructed function does
not pass through all discrete sample points. Thus, to be precise, the
reconstruction with cubic B-splines is not called an interpolation but an
approximation of the signal.

Mitchell-Netravali approximation

The design of an optimal interpolation kernel is always a trade-off be-
tween high bandwidth (sharpness) and good transient response (low ring-
ing). Catmull-Rom interpolation, for example, emphasizes high sharp-
ness, whereas cubic B-spline interpolation blurs but creates no ringing.
Based on empirical tests, Mitchell and Netravali [72] proposed a cubic
interpolation kernel as described in Eqn. (16.56) with parameter settings
a = 1

3 and b = 1
3 , and the resulting interpolation function

wmn(x) = wcs

(
x, 1

3 , 1
3

)

=
1
18

·

⎧⎪⎨
⎪⎩

21 · |x|3 − 36 · |x|2 + 16 for 0 ≤ |x| < 1

−7 · |x|3 + 36 · |x|2 − 60 · |x| + 32 for 1 ≤ |x| < 2

0 for |x| ≥ 2.

(16.59)
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Fig. 16.22
Cardinal spline reconstruction ex-

amples: Catmull-Rom interpo-
lation (a–c), cubic B-spline ap-

proximation (d–f), and Mitchell-
Netravali approximation (g–i).
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ĝ1(x)

1 2 3 4 5 6 7 8 9 10
x
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This function is the weighted sum of a Catmull-Rom spline (Eqn. (16.57))
and a cubic B-spline (Eqn. (16.58)), as is apparent in Fig. 16.21.7 The
examples in Fig. 16.22 (g–i) show that this method is a good compro-
mise, producing little overshoot, high edge sharpness, and good signal
continuity in smooth regions. Since the resulting function does not pass
through the original sample points, the Mitchell-Netravali method is
again an approximation and not an interpolation.

16.3.6 Lanczos Interpolation

The Lanczos8 interpolation belongs to the family of “windowed Sinc”
methods. In contrast to the methods described in the previous sections,
these do not use a polynomial (or other) approximation of the Sinc
function but the Sinc function itself combined with a suitable window
function ψ(x); i. e., an interpolation kernel of the form

w(x) = ψ(x) · Sinc(x). (16.60)

The particular window functions for the Lanczos interpolation are de-
fined as

ψLn(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for |x| = 0
sin(π x

n )

π x
n

for 0 < |x| < n

0 for |x| ≥ n ,

(16.61)

7 See also Exercise 16.5.
8 Cornelius Lanczos (1893–1974).402
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Fig. 16.23
One-dimensional Lanczos inter-
polation kernels. Lanczos window
functions ψL2 (a), ψL3 (b), and the
corresponding interpolation kernels
wL2 (c), wL3 (d). The original Sinc
function (dotted curve) is shown
for comparison.

where n ∈ N denotes the order of the filter [76, 100]. Notice that the
window function is again a truncated Sinc function! For the Lanczos
filters of order n = 2, 3, which are the most commonly used in image
processing, the corresponding window functions are

ψL2(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for |x| = 0
sin(π x

2 )

π x
2

for 0 < |x| < 2

0 for |x| ≥ 2 ,

(16.62)

ψL3(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for |x| = 0
sin(π x

3 )

π x
3

for 0 < |x| < 3

0 for |x| ≥ 3.

(16.63)

Both functions are shown in Fig. 16.23 (a, b). The corresponding one-
dimensional interpolation kernels wL2 and wL3, respectively, are obtained
by multiplying the window function by the Sinc function (Eqns. (16.47)
and (16.61)) as

wL2(x) = ψL2(x) · Sinc(x)

=

⎧⎪⎨
⎪⎩

1 for |x| = 0

2 · sin(π x
2 )·sin(πx)

π2x2 for 0 < |x| < 2
0 for |x| ≥ 2

(16.64)

and 403
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Fig. 16.24
Lanczos interpolation examples:

Lanczos-2 (a–c), Lanczos-3 (d–f).
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ĝ3(x)

(a) (b) (c)

1 2 3 4 5 6 7 8 9 10
x
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wL3(x) = ψL3(x) · Sinc(x)

=

⎧⎪⎨
⎪⎩

1 for |x| = 0

3 · sin(π x
3 )·sin(πx)

π2x2 for 0 < |x| < 3
0 for |x| ≥ 3 .

(16.65)

Figure 16.23 (c, d) shows the resulting interpolation kernels together with
the original Sinc function. The function wL2(x) is quite similar to the
Catmull-Rom kernel wcrm(x) (Eqn. (16.57), Fig. 16.21), so the results
can be expected to be similar as well, as shown in Fig. 16.24 (a–c) (cf.
Fig. 16.22 (a–c)). Notice, however, the relatively poor reconstruction in
the smooth signal regions (Fig. 16.24 (a)) and the bumps introduced in
the constant high-amplitude regions (Fig. 16.24 (b)). The “3-tap” kernel
wL3(x) reduces these artifacts but at the cost of additional overshoot
and ringing at edges (Fig. 16.22 (d–f)).

In summary, although Lanczos filters have seen revived interest and
popularity in recent years, they do not seem to offer much (if any) ad-
vantage over other established methods, particularly the cubic, Catmull-
Rom, or Mitchell-Netravali interpolations.

16.3.7 Interpolation in 2D

So far we have only looked at interpolating (or reconstructing) one-
dimensional signals from discrete samples. Images are two-dimensional
signals but, as we shall see in this section, the techniques for interpolating
images are very similar and can be derived from the one-dimensional
approach. In particular, “ideal” (low-pass filter) interpolation requires a
two-dimensional Sinc function defined as

Sinc(x, y) = Sinc(x) · Sinc(y) =
sin(πx)

πx
· sin(πy)

πy
, (16.66)

which is shown in Fig. 16.25 (a). Just as in 1D, the 2D Sinc function is not
a practical interpolation function for various reasons. In the following, we404
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Fig. 16.25
Interpolation kernels in 2D: Sinc
kernel Sinc(x, y) (a) and nearest-
neighbor kernel Wnn(x, y) (b) for
−3 ≤ x, y ≤ 3.

look at some common interpolation methods for images, particularly the
nearest-neighbor, bilinear, bicubic, and Lanczos interpolations, whose
1D versions were described in the previous sections.

Nearest-neighbor interpolation in 2D

The pixel closest to a given continuous point (x0, y0) is found by rounding
the x and y coordinates independently to integral values,

Î(x0, y0) = I(u0, v0),

with u0 = round(x0) = �x0 + 0.5�, (16.67)
v0 = round(y0) = �y0 + 0.5�.

As in the 1D case, the interpolation in 2D can be described as a lin-
ear convolution (linear filter). The 2D kernel for the nearest-neighbor
interpolation is, analogous to Eqn. (16.51), defined as

Wnn(x, y) =
{

1 for −0.5 ≤ x, y < 0.5
0 otherwise.

(16.68)

This function is shown in Fig. 16.25 (b). Nearest-neighbor interpolation
is known for its strong blocking effects (Fig. 16.26 (b)) and thus is rarely
used for geometric image operations. However, in some situations, this
effect may be intended; for example, if an image is to be enlarged by
replicating each pixel without any smoothing.

Bilinear interpolation

The 2D counterpart to the linear interpolation (Sec. 16.3.1) is the so-
called bilinear interpolation,9 whose operation is illustrated in Fig. 16.27.
For the given interpolation point (x0, y0), we first find the four closest
(surrounding) pixels A, B, C, D in the image I with

9 Not to be confused with the bilinear mapping (transformation) described
in Sec. 16.1.5. 405
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Fig. 16.26
Image enlargement (8×): original

(a), nearest-neighbor interpolation
(b), and bilinear interpolation (c).

Fig. 16.27
Bilinear interpolation. For a given
position (x0, y0), the interpolated

value is computed from the val-
ues A, B, C, D of the four closest
pixels in two steps (a). First the
intermediate values E and F are
computed by linear interpolation

in the horizontal direction between
A, B and C, D, respectively, where

a = x0 − u0 is the distance to
the nearest pixel to the left of x0.

Subsequently, the intermediate
values E, F are interpolated in the
vertical direction, where b = y0−v0

is the distance to the nearest pixel
below y0. An example for the
resulting surface between four

adjacent pixels is shown in (b).

A = I(u0, v0), B = I(u0+1, v0), (16.69)
C = I(u0, v0+1), D = I(u0+1, v0+1),

where u0 = �x0� and v0 = �y0�. Then the pixel values A, B, C, D are
interpolated in horizontal and subsequently in vertical direction. The
intermediate values E, F are determined by the distance a = x0 −
u0 between the interpolation point (x0, y0) and the horizontal raster
coordinate u0 as

E = A + (x0 − u0) · (B−A) = A + a · (B−A),
F = C + (x0 − u0) · (D−C) = C + a · (D−C),

and the final interpolation value G is computed from the vertical distance
b = y0 − v0 as

Î(x0, y0) = G = E + (y0 − v0) · (F−E) = E + b · (F−E)
= (a−1)(b−1)A + a(1−b)B + (1−a) b C + a b D. (16.70)

Expressed as a linear convolution filter, the corresponding 2D kernel
Wbil(x, y) is the product of the two one-dimensional kernels wlin(x) and406



16.3 Interpolation

�� 0

0

0 1
1

1

1
1

0

1

(a) (b)

Fig. 16.28
2D interpolation kernels: bilinear
kernel Wbil(x, y) (a) and bicubic
kernel Wbic(x, y) (b) for −3 ≤
x, y ≤ 3.

wlin(y) (Eqn. (16.52)),

Wbil(x, y) = wlin(x) · wlin(y)

=
{

1 − x − y − x · y for 0 ≤ |x|, |y| < 1
0 otherwise.

(16.71)

In this function (plotted in Fig. 16.28 (a)), we can recognize the bilinear
term that gives this method its name.

Bicubic interpolation

The convolution kernel for the two-dimensional cubic interpolation is
also defined as the product of the corresponding one-dimensional kernels
(Eqn. (16.54)),

Wbic(x, y) = wcub(x) · wcub(y). (16.72)

The resulting kernel is plotted in Fig. 16.28 (b). Due to the decomposi-
tion into one-dimensional kernels (Eqn. (16.72)), the computation of the
bicubic interpolation is separable in x, y and can thus be expressed as

Î(x0, y0) =

y0�+2∑

v=

y0�−1

[ 
x0�+2∑
u=


x0�−1

I(u, v) ·Wbic(x0−u, y0−v)

]

=
3∑

j=0

[
wcub(y0−vj) ·

3∑
i=0

I(ui, vj) · wcub(x0−ui)︸ ︷︷ ︸
pj

]
, (16.73)

with ui = �x0� − 1 + i and vj = �y0� − 1 + j. The value pj denotes the
intermediate result of the cubic interpolation in the x direction in line
j, as illustrated in Fig. 16.29. Equation (16.73) describes a simple and
efficient procedure for computing the bicubic interpolation using only a
one-dimensional kernel wcub(x). The interpolation is based on a 4 × 4
neighborhood of pixels and requires a total of 16 + 4 = 20 additions and
multiplications. 407
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Fig. 16.29
Bicubic interpolation in two steps.

The discrete image I (pixels are
marked ©) is to be interpolated at
some continuous position (x0, y0).
In step 1 (left), a one-dimensional
interpolation is performed in the
horizontal direction with wcub(x)
over four pixels I(ui, vj) in four

lines. One intermediate result
pj (marked �) is computed for

each line j. In step 2 (right), the
result Î(x0, y0) is computed by
a single cubic interpolation in
the vertical direction over the
intermediate results p0 . . . p3.

x0x0

y0y0

u0u0

v0v0

p0

p1

p2

p3

I(u0, v0)

Î(x0, y0)

Algorithm 16.2
Bicubic interpolation of image

I at position (x0, y0). The one-
dimensional cubic function wcub(·)

(Eqn. (16.53)) is used for the
separate interpolation in the

x and y directions based on a
neighborhood of 4 × 4 pixels.

1: BicubicInterpolation (I, x0, y0) � x0, y0 ∈ R

Returns the interpolated value of the image I at the continuous po-
sition (x0, y0).

2: q ← 0
3: for j ← 0 . . . 3 do � iterate over 4 lines
4: v ← �y0� − 1 + j
5: p ← 0

6: for i ← 0 . . . 3 do � iterate over 4 columns
7: u ← �x0� − 1 + i
8: p ← p + I(u, v) · wcub(x0−u)

9: q ← q + p · wcub(y0−v)
10: return q.

This method, which is summarized in Alg. 16.2, can be used to im-
plement any x/y-separable 2D interpolation kernel of size 4× 4, such as
the two-dimensional Catmull-Rom interpolation (Eqn. (16.57)) with

Wcrm(x, y) = wcrm(x) · wcrm(y) (16.74)

or the Mitchell-Netravali interpolation (Eqn. (16.59)) with

Wmn(x, y) = wmn(x) · wmn(y). (16.75)

Lanczos interpolation

The kernels for the 2D Lanczos interpolation are also x/y-separable into
one-dimensional kernels (Eqns. (16.64) and (16.65)),

WLn(x, y) = wLn(x) · wLn(y). (16.76)

The resulting kernels for n = 2 and n = 3 are shown in Fig. 16.30.
Because of the separability the 2D Lanczos interpolation can be com-408
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Fig. 16.30
Two-dimensional Lanczos kernels
for n = 2 and n = 3: kernels
WL2(x, y) (a) and WL3(x, y) (b),
with −3 ≤ x, y ≤ 3.

puted, similar to the bicubic interpolation, separately in the x and y
directions. Like the bicubic kernel, the 2-tap Lanczos kernel WL2 (Eqn.
(16.64)) is zero outside the interval −2 ≤ x, y ≤ 2, and thus the proce-
dure described in Eqn. (16.73) and Alg. 16.2 can be used without mod-
ification. The 3-tap kernel WL3 (Eqn. (16.65)) requires two additional
rows and columns, and thus the 2D interpolation changes to

Î(x0, y0) =

y0�+3∑

v=

y0�−2

[ 
x0�+3∑
u=


x0�−2

I(u, v) · WL3(x0 − u, y0 − v)

]

=
5∑

j=0

[
wL3(y0 − vj) ·

5∑
i=0

I(ui, vj) · wL3(x0 − ui)

]
, (16.77)

with ui = �x0�+ i− 2 and vj = �y0�+ j − 2.

Thus, the L3 Lanczos interpolation in 2D uses a support region of 6 ×
6 = 36 pixels from the original image, 20 pixels more than the bicubic
interpolation.

Examples and discussion

Figure 16.31 compares the three most common interpolation methods:
nearest-neighbor, bilinear, and bicubic interpolation. The original im-
age, consisting of black lines on a gray background, is rotated counter-
clockwise by 15◦.

Nearest-neighbor interpolation (Fig. 16.31 (b)) creates no new pixel
values but forms, as expected, coarse blocks of pixels with the same
intensity. The effect of the bilinear interpolation (Fig. 16.31 (c)) is lo-
cal smoothing over four neighboring pixels. The weights for these four
pixels are positive, and thus no result can be smaller than the smallest
neighboring pixel value or greater than the greatest neighboring pixel
value. In other words, bilinear interpolation cannot create any over-
or undershoot at edges. This is not the case for the bicubic interpola-
tion (Fig. 16.31 (d)): some of the coefficients in the bicubic interpolation 409



16 Geometric Operations kernel are negative, which makes pixels near edges clearly brighter or
darker, respectively, thus increasing the perceived sharpness. In general,
bicubic interpolation produces clearly better results than the bilinear
method at comparable computing cost, and it is thus widely accepted as
the standard technique and used in most image manipulation programs.
By adjusting the control parameter a (Eqn. (16.53)), the bicubic kernel
can be easily tuned to fit the need of particular applications. For ex-
ample, the Catmull-Rom method can be implemented with the bicubic
interpolation by setting a = 0.5 (Eqns. (16.57) and (16.74)).

Results from the 2D Lanczos interpolation (not shown here) using
the 2-tap kernel WL2 cannot be expected to be better than the bicubic
interpolation, which can be adjusted to give similar results without pro-
ducing the artifacts shown in Fig. 16.24. The 3-tap Lanczos kernel WL3

on the other hand should produce slightly sharper edges at the cost of
increased ringing (see also Exercise 16.7).

For high-quality applications one may consider the Mitchell-Netravali
method (Eqns. (16.59) and (16.75)), which offers exceptional reconstruc-
tion at the same computational cost as the bicubic interpolation (see
Exercise 16.6).

16.3.8 Aliasing

As we described in the previous parts of this chapter, the usual approach
for implementing geometric image transformations can be summarized
by the following three steps (Fig. 16.32):

1. Each discrete image point (u′
0, v

′
0) of the target image is projected

by the inverse geometric transformation T−1 to the continuous co-
ordinate (x0, y0) in the source image.

2. The continuous image function Î(x, y) is reconstructed from the dis-
crete source image I(u, v) by interpolation (using one of the methods
described above).

3. The interpolated function is sampled at position (x0, y0), and the
sample value Î(x0, y0) is transferred to the target pixel I ′(u′

0, v
′
0).

Sampling the interpolated image

One problem not considered so far concerns the process of sampling the
reconstructed, continuous image function in step 3 above. The problem
occurs when the geometric transformation T causes parts of the image
to be contracted. In this case, the distance between adjacent sample
points on the source image is locally increased by the corresponding in-
verse transformation T−1. Now, widening the sampling distance reduces
the spatial sampling rate and thus the maximum permissible frequencies
in the reconstructed image function Î(x, y). Eventually this leads to a
violation of the sampling criterion and causes visible aliasing in the trans-
formed image. The problem does not occur when the image is enlarged410
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Fig. 16.31
Image interpolation methods com-
pared: part of the original image
(a), which is subsequently rotated
by 15◦, nearest-neighbor interpola-
tion (b), bilinear interpolation (c),
and bicubic interpolation (d).

Fig. 16.32
Sampling errors in geometric op-
erations. If the geometric trans-
formation T leads to a local con-
traction of the image (which cor-
responds to a local enlargement
by T−1), the distance between
adjacent sample points in I is in-
creased. This reduces the local
sampling frequency and thus the
maximum signal frequency allowed
in the source image, which eventu-
ally leads to aliasing.

411
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Fig. 16.33
Aliasing caused by local image

contraction. Aliasing is caused by
a violation of the sampling crite-
rion and is largely unaffected by
the interpolation method used:

complete transformed image (a),
detail using nearest-neighbor inter-
polation (b), bilinear interpolation
(c), and bicubic interpolation (d).

by the geometric transformation because in this case the sampling inter-
val on the source image is shortened (corresponding to a higher sampling
frequency) and no aliasing can occur.

Notice that this effect is largely unrelated to the interpolation
method, as demonstrated by the examples in Fig. 16.33. The effect is
most noticeable under nearest-neighbor interpolation in Fig. 16.33 (b),
where the thin lines are simply not “hit” by the widened sampling raster
and thus disappear in some places. Important image information is
thereby lost. The bilinear and bicubic interpolation methods in Fig.
16.33 (c, d) have wider interpolation kernels but still cannot avoid the
aliasing effect. The problem of course gets worse with increasing reduc-
tion factors.

Low-pass filtering

One solution to the aliasing problem is to make sure that the interpolated
image function is properly frequency-limited before it gets resampled.412
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Fig. 16.34
Low-pass filtering to avoid alias-
ing in geometric operations. After
interpolation (step 1), the recon-
structed image function is sub-
jected to low-pass filtering (step 2)
before being resampled (step 3).This can be accomplished with a suitable low-pass filter, as illustrated

in Fig. 16.34.
The cutoff frequency of the low-pass filter is determined by the

amount of local scale change, which may—depending upon the type
of transformation—be different in various parts of the image. In the
simplest, case the amount of scale change is the same throughout the
image (e. g., under global scaling or affine transformations, where the
same filter can be used everywhere in the image).

In general, however, the low-pass filter is space-variant or nonhomo-
geneous, and the local filter parameters are determined by the transfor-
mation T and the current image position. If convolution filters are used
for both interpolation and low-pass filtering, they could be combined
into a common, space-variant reconstruction filter. Unfortunately, space-
variant filtering is computationally expensive and thus is often avoided,
even in professional applications (e. g., Adobe Photoshop). The tech-
nique is nevertheless used in certain applications, such as high-quality
texture mapping in computer graphics [31, 44, 105].

16.4 Java Implementation

In ImageJ, only a few simple geometric operations are currently im-
plemented as methods in the ImageProcessor class, such as rotation
and flipping. Additional operations, including affine transformations,
are available as plugin classes as part of the optional TransformJ pack-
age [70]. In the following, we develop a rudimentary Java implementation
for a set of geometric operations with the class structure summarized in
Fig. 16.35. The Java classes form two groups: the first group implements
the geometric transformations discussed in Sec. 16.1,10 while the second
group implements the most important interpolation methods described
in Sec. 16.3. Finally, we show a sample ImageJ plugin to demonstrate
the use of this implementation.

16.4.1 Geometric Transformations

The following Java classes represent geometric transformations in 2D
and provide methods for computing the transformation parameters from
corresponding point pairs.
10 The standard Java API currently only implements the affine transformation

(in class java.awt.geom.AffineTransform). 413



16 Geometric Operations

Fig. 16.35
Java class structure for the im-

plementation of geometric oper-
ations. The class Mapping and

its subclasses implement the ge-
ometric transformations, and

PixelInterpolator implements
various interpolation methods.
Pnt2d is an auxiliary class for
representing 2D coordinates.
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Pnt2d (class)

Two-dimensional, continuous coordinates x = (x, y) ∈ R2 are repre-
sented as objects of the class Pnt2d:

1 public class Pnt2d {
2 double x, y;
3
4 Pnt2d (double x, double y){
5 this.x = x; this.y = y;
6 }
7 }

Mapping (class)

The abstract class Mapping is the superclass for all subsequent trans-
formations. All subclasses of Mapping are required to implement the
method

applyTo (Pnt2d pnt)

which applies the specific transformation to a given coordinate point
pnt. The method

applyTo (ImageProcessor ip, PixelInterpolator intPol)

on the other hand is implemented by the class Mapping itself and is not
supposed to be overwritten by subclasses. It is used to apply some coor-
dinate transformation to the entire image ip, with the specified Pixel-
Interpolator object intPol taking care of the pixel interpolation (see
line 36 in the code segment below).414



16.4 Java ImplementationThe actual image transformation is based on the target-to-source
method (Sec. 16.2.2) and thus requires the inverse coordinate transform
T−1, which can be obtained via the method getInverse() (see lines
14 and 24). The inverse mapping is computed and returned unless the
particular mapping is already an inverse mapping (isInverse is true).
Note that the inversion is only implemented for linear transformations
(class LinearMapping and derived subclasses). In all other cases, an
inverse mapping is created immediately when the Mapping object is in-
stantiated, so no inversion is ever needed.

1 import ij.process.ImageProcessor;
2

3 public abstract class Mapping implements Cloneable {
4 boolean isInverse = false;
5
6 // subclasses must implement this method:
7 abstract Pnt2d applyTo(Pnt2d pnt);
8
9 Mapping invert() {

10 throw new
11 IllegalArgumentException("cannot invert mapping");
12 }
13
14 Mapping getInverse() {
15 if (isInverse)
16 return this;
17 else
18 return this.invert(); // only linear mappings invert
19 }
20
21 void applyTo(ImageProcessor ip, PixelInterpolator intPol){
22 ImageProcessor targetIp = ip;
23 ImageProcessor sourceIp = ip.duplicate();
24 Mapping invMap = this.getInverse(); // get inverse mapping
25 intPol.setImageProcessor(sourceIp);
26 int w = sourceIp.getWidth();
27 int h = sourceIp.getHeight();
28
29 Pnt2d pt = new Pnt2d(0,0);
30 for (int v=0; v<h; v++){
31 for (int u=0; u<w; u++){
32 pt.x = u;
33 pt.y = v;
34 invMap.applyTo(pt);
35 int p =
36 (int) Math.rint(intPol.getInterpolatedPixel(pt));
37 targetIp.putPixel(u,v,p);
38 }
39 }
40 }
41 415



16 Geometric Operations 42 Mapping duplicate() { //clones any mapping object
43 Mapping newMap = null;
44 try {
45 newMap = (Mapping) this.clone();
46 }
47 catch (CloneNotSupportedException e){};
48 return newMap;
49 }
50
51 } // end of class Mapping

LinearMapping (class)

LinearMapping is a subclass of Mapping that implements an arbitrary
linear transformation in 2D using homogeneous coordinates. The nine el-
ements a11, a12, . . . a33 of the 3×3 transformation matrix are represented
by corresponding instance variables. This class is normally not instan-
tiated (only subclasses are) but supplies the general functionality of lin-
ear mappings, in particular the transformation of 2D points (method
applyTo(Pnt2d pnt)), inversion (method invert()), and concatena-
tion with another linear mapping (method concat(LinearMapping B)):

1 public class LinearMapping extends Mapping {
2 double
3 a11 = 1, a12 = 0, a13 = 0, // transformation matrix
4 a21 = 0, a22 = 1, a23 = 0,
5 a31 = 0, a32 = 0, a33 = 1;
6
7 LinearMapping() {}
8

9 LinearMapping ( // constructor method
10 double a11, double a12, double a13,
11 double a21, double a22, double a23,
12 double a31, double a32, double a33,
13 boolean inv) {
14 this.a11 = a11; this.a12 = a12; this.a13 = a13;
15 this.a21 = a21; this.a22 = a22; this.a23 = a23;
16 this.a31 = a31; this.a32 = a32; this.a33 = a33;
17 isInverse = inv;
18 }
19
20 Pnt2d applyTo (Pnt2d pnt) { // see Eqn. (16.17)
21 double h = (a31*pnt.x + a32*pnt.y + a33);
22 double x = (a11*pnt.x + a12*pnt.y + a13) / h;
23 double y = (a21*pnt.x + a22*pnt.y + a23) / h;
24 pnt.x = x;
25 pnt.y = y;
26 return pnt;
27 }
28416



16.4 Java Implementation29 Mapping invert() { // see Eqn. (16.23)
30 LinearMapping lm = (LinearMapping) duplicate();
31 double det =
32 a11*a22*a33 + a12*a23*a31 + a13*a21*a32 -
33 a11*a23*a32 - a12*a21*a33 - a13*a22*a31;
34
35 lm.a11 = (a22*a33 - a23*a32) / det;
36 lm.a12 = (a13*a32 - a12*a33) / det;
37 lm.a13 = (a12*a23 - a13*a22) / det;
38
39 lm.a21 = (a23*a31 - a21*a33) / det;
40 lm.a22 = (a11*a33 - a13*a31) / det;
41 lm.a23 = (a13*a21 - a11*a23) / det;
42

43 lm.a31 = (a21*a32 - a22*a31) / det;
44 lm.a32 = (a12*a31 - a11*a32) / det;
45 lm.a33 = (a11*a22 - a12*a21) / det;
46
47 lm.isInverse = !isInverse;
48 return lm;
49 }
50
51 // concatenates this transform matrix A with B: C ← B · A
52 LinearMapping concat(LinearMapping B) {
53 LinearMapping lm = (LinearMapping) duplicate();
54 lm.a11 = B.a11*a11 + B.a12*a21 + B.a13*a31;
55 lm.a12 = B.a11*a12 + B.a12*a22 + B.a13*a32;
56 lm.a13 = B.a11*a13 + B.a12*a23 + B.a13*a33;
57
58 lm.a21 = B.a21*a11 + B.a22*a21 + B.a23*a31;
59 lm.a22 = B.a21*a12 + B.a22*a22 + B.a23*a32;
60 lm.a23 = B.a21*a13 + B.a22*a23 + B.a23*a33;
61

62 lm.a31 = B.a31*a11 + B.a32*a21 + B.a33*a31;
63 lm.a32 = B.a31*a12 + B.a32*a22 + B.a33*a32;
64 lm.a33 = B.a31*a13 + B.a32*a23 + B.a33*a33;
65 return lm;}
66
67 } // end of class LinearMapping

AffineMapping (class)

AffineMapping extends its superclass LinearMapping with two addi-
tional functions. First, it contains a special constructor method that ini-
tializes the elements a31, a32, a33 of the transformation matrix to 0, 0, 1,
as required by the affine transformation. Second, it defines the method
makeMapping(), which is used to compute the parameters of the affine
transformation T from three pairs of corresponding points (Ai, Bi) as
described in Eqn. (16.15): 417



16 Geometric Operations 1 public class AffineMapping extends LinearMapping {
2

3 AffineMapping ( // constructor method
4 double a11, double a12, double a13,
5 double a21, double a22, double a23,
6 boolean inv) {
7 super(a11,a12,a13,a21,a22,a23,0,0,1,inv);
8 }
9

10 // create the affine transform between
11 // arbitrary triangles (A1..A3) and (B1..B3)
12 static AffineMapping makeMapping (
13 Pnt2d A1, Pnt2d A2, Pnt2d A3,
14 Pnt2d B1, Pnt2d B2, Pnt2d B3) {
15
16 double ax1 = A1.x, ax2 = A2.x, ax3 = A3.x;
17 double ay1 = A1.y, ay2 = A2.y, ay3 = A3.y;
18 double bx1 = B1.x, bx2 = B2.x, bx3 = B3.x;
19 double by1 = B1.y, by2 = B2.y, by3 = B3.y;
20

21 double S = ax1*(ay3-ay2) + ax2*(ay1-ay3) + ax3*(ay2-ay1);
22 double a11 =
23 (ay1*(bx2-bx3)+ay2*(bx3-bx1)+ay3*(bx1-bx2)) / S;
24 double a12 =
25 (ax1*(bx3-bx2)+ax2*(bx1-bx3)+ax3*(bx2-bx1)) / S;
26 double a21 =
27 (ay1*(by2-by3)+ay2*(by3-by1)+ay3*(by1-by2)) / S;
28 double a22 =
29 (ax1*(by3-by2)+ax2*(by1-by3)+ax3*(by2-by1)) / S;
30 double a13 =
31 (ax1*(ay3*bx2-ay2*bx3) + ax2*(ay1*bx3-ay3*bx1)
32 + ax3*(ay2*bx1-ay1*bx2)) / S;
33 double a23 =
34 (ax1*(ay3*by2-ay2*by3) + ax2*(ay1*by3-ay3*by1)
35 + ax3*(ay2*by1-ay1*by2)) / S;
36

37 return new AffineMapping(a11,a12,a13,a21,a22,a23,false);
38 }
39

40 } // end of class AffineMapping

Translation, Scaling, Shear, Rotation (classes)

The classes Translation, Scaling, Shear, and Rotation are direct sub-
classes of AffineMapping. The definition of each class only contains
the corresponding constructor method. The remaining functionality is
derived from the superclasses AffineTransform and LinearTransform.
The call super() in the following code segments refers to the constructor
method of the direct superclass AffineMapping:418



16.4 Java Implementation1 class Translation extends AffineMapping { // see Eqn. (16.4)
2 Translation (double dx, double dy) {
3 super(
4 1, 0, dx,
5 0, 1, dy,
6 false );
7 }
8 } // end of class Translation

1 class Scaling extends AffineMapping { // see Eqn. (16.5)
2 Scaling(double sx, double sy) {
3 super(
4 sx, 0, 0,
5 0, sy, 0,
6 false );
7 }
8 } // end of class Scaling

1 class Shear extends AffineMapping { // see Eqn. (16.6)
2 Shear(double bx, double by) {
3 super(
4 1, bx, 0,
5 by, 1, 0,
6 false );
7 }
8 } // end of class Shear

1 class Rotation extends AffineMapping { // see Eqn. (16.8)
2 Rotation(double alpha) {
3 super(
4 Math.cos(alpha), Math.sin(alpha), 0,
5 -Math.sin(alpha), Math.cos(alpha), 0,
6 false);
7 }
8 } // end of class Rotation

ProjectiveMapping (class)

The class ProjectiveMapping implements a linear projective transfor-
mation as defined in Eqn. (16.17). The class provides a constructor
method for initializing the eight transformation parameters a11, a12, . . .
a32 (a33 = 1) and two different (overloaded) methods to compute the
transformation for given pairs of quadrilaterals.

The first version of makeMapping(), in line 12, creates a projective
mapping from the unit square S1 to an arbitrary quadrilateral Q, de-
fined by the coordinate points P1. . . P4 (see Eqns. (16.28)–(16.31)). The
second version of makeMapping(), in line 37, computes the projective
mapping between two arbitrary quadrilaterals A1. . . A4 and B1. . . B4 in
two steps via the unit square (see Eqn. (16.33)). This method makes 419



16 Geometric Operations use of the methods invert() and concat() defined earlier in the class
LinearMapping:

1 class ProjectiveMapping extends LinearMapping {
2
3 ProjectiveMapping(
4 double a11, double a12, double a13,
5 double a21, double a22, double a23,
6 double a31, double a32, boolean inv) {
7 super(a11,a12,a13,a21,a22,a23,a31,a32,1,inv);
8 }
9

10 // creates the projective mapping from the unit square S1 to
11 // the arbitrary quadrilateral Q given by points P1 . . . P4:
12 static ProjectiveMapping makeMapping(
13 Pnt2d P1, Pnt2d P2, Pnt2d P3, Pnt2d P4) {
14 double x1 = P1.x, x2 = P2.x, x3 = P3.x, x4 = P4.x;
15 double y1 = P1.y, y2 = P2.y, y3 = P3.y, y4 = P4.y;
16 double S = (x2-x3)*(y4-y3) - (x4-x3)*(y2-y3);
17
18 double a31 =
19 ((x1-x2+x3-x4)*(y4-y3)-(y1-y2+y3-y4)*(x4-x3))/S;
20 double a32 =
21 ((y1-y2+y3-y4)*(x2-x3)-(x1-x2+x3-x4)*(y2-y3))/S;
22
23 double a11 = x2 - x1 + a31*x2;
24 double a12 = x4 - x1 + a32*x4;
25 double a13 = x1;
26
27 double a21 = y2 - y1 + a31*y2;
28 double a22 = y4 - y1 + a32*y4;
29 double a23 = y1;
30
31 return new
32 ProjectiveMapping(a11,a12,a13,a21,a22,a23,a31,a32,false);
33 }
34

35 // creates the projective mapping between arbitrary
36 // quadrilaterals Qa, Qb via the unit square S1: Qa → S1 → Qb

37 static ProjectiveMapping makeMapping (
38 Pnt2d A1, Pnt2d A2, Pnt2d A3, Pnt2d A4,
39 Pnt2d B1, Pnt2d B2, Pnt2d B3, Pnt2d B4) {
40 ProjectiveMapping T1 = makeMapping(A1, A2, A3, A4);
41 ProjectiveMapping T2 = makeMapping(B1, B2, B3, B4);
42 LinearMapping T1i = (LinearMapping) T1.invert();
43 LinearMapping T = T1i.concat(T2);
44 T.isInverse = false;
45 return (ProjectiveMapping) T;
46 }
47 } // end of class ProjectiveMapping

420



16.4 Java ImplementationBilinearMapping (class)

This class implements the bilinear transformation described in Sec.
16.1.5. As a nonlinear mapping, it is a direct subclass of Mapping, it
has eight transformation parameters (a1. . . b4), and (since it does not
inherit the corresponding method from class LinearTransformation)
defines its own applyTo(Pnt2d pnt) method for transforming individ-
ual coordinate points (see Eqn. (16.35)):

1 import Jama.Matrix; // use the JAMA linear algebra package
2

3 class BilinearMapping extends Mapping {
4 double a1, a2, a3, a4;
5 double b1, b2, b3, b4;
6
7 c( // constructor method
8 double a1, double a2, double a3, double a4,
9 double b1, double b2, double b3, double b4,

10 boolean inv) {
11 this.a1 = a1; this.a2 = a2; this.a3 = a3; this.a4 = a4;
12 this.b1 = b1; this.b2 = b2; this.b3 = b3; this.b4 = b4;
13 isInverse = inv;
14 }
15
16 Pnt2d applyTo (Pnt2d pnt){
17 double x = pnt.x;
18 double y = pnt.y;
19 pnt.x = a1 * x + a2 * y + a3 * x * y + a4;
20 pnt.y = b1 * x + b2 * y + b3 * x * y + b4;
21 return pnt;
22 }
23
24 // (continued below)

To avoid the problem of inverting this transformation, the method
makeInverseMapping() creates the inverse mapping T−1 directly. This
method computes the (inverse) bilinear mapping from a given quadrilat-
eral P (specified by the coordinate points P1. . . P4) to another quadri-
lateral Q (Q1. . . Q4):

25 // map between arbitrary quadrilaterals P → Q
26 public static BilinearMapping makeInverseMapping(
27 Pnt2d P1, Pnt2d P2, Pnt2d P3, Pnt2d P4, // source quad P
28 Pnt2d Q1, Pnt2d Q2, Pnt2d Q3, Pnt2d Q4) // target quad Q
29 {
30
31 //define column vectors x, y
32 Matrix X = new Matrix(
33 new double[][] {{Q1.x},{Q2.x},{Q3.x},{Q4.x}});
34 Matrix Y = new Matrix(
35 new double[][] {{Q1.y},{Q2.y},{Q3.y},{Q4.y}});
36 421



16 Geometric Operations 37 //define matrix M
38 Matrix M = new Matrix(new double[][]
39 {{P1.x, P1.y, P1.x * P1.y, 1},
40 {P2.x, P2.y, P2.x * P2.y, 1},
41 {P3.x, P3.y, P3.x * P3.y, 1},
42 {P4.x, P4.y, P4.x * P4.y, 1}}
43 );
44

45 Matrix A = M.solve(X); // solve x = M · a (Eqn. (16.36))
46 Matrix B = M.solve(Y); // solve y = M · b (Eqn. (16.37))
47

48 double a1 = A.get(0,0); double b1 = B.get(0,0);
49 double a2 = A.get(1,0); double b2 = B.get(1,0);
50 double a3 = A.get(2,0); double b3 = B.get(2,0);
51 double a4 = A.get(3,0); double b4 = B.get(3,0);
52
53 return new BilinearMapping(a1,a2,a3,a4,b1,b2,b3,b4,true);
54 }
55 } // end of class BilinearMapping

In the method above, a 4×4 system of linear equations is solved in lines
45–46 using the method solve() of the Matrix class in the JAMA11

numerical library.

TwirlMapping (class)

This class implements the twirl mapping (Eqns. (16.38) and (16.39)) as
a typical example of a warp transformation. The mapping is nonlin-
ear, and thus TwirlMapping is a subclass of the general mapping class
Mapping. Again the inverse transformation T−1 is created directly using
the method makeInverseMapping():

1 public class TwirlMapping extends Mapping {
2 double xc;
3 double yc;
4 double angle;
5 double rad;
6

7 TwirlMapping (
8 double xc, double yc, double angle,
9 double rad, boolean inv)

10 {
11 this.xc = xc;
12 this.yc = yc;
13 this.angle = angle;
14 this.rad = rad;
15 this.isInverse = inv;
16 }
17

11 http://math.nist.gov/javanumerics/jama/.422



16.4 Java Implementation18 static TwirlMapping makeInverseMapping (
19 double xc, double yc, double angle, double rad)
20 {
21 return new TwirlMapping(xc, yc, angle, rad, true);
22 }
23
24 Pnt2d applyTo (Pnt2d pnt) {
25 double x = pnt.x;
26 double y = pnt.y;
27 double dx = x - xc;
28 double dy = y - yc;
29 double d = Math.sqrt(dx*dx + dy*dy);
30 if (d < rad) {
31 double a = Math.atan2(dy,dx) + angle * (rad-d) / rad;
32 pnt.x = xc + d*Math.cos(a);
33 pnt.y = yc + d*Math.sin(a);
34 }
35 return pnt;
36 }
37 } // end of class TwirlMapping

Similar classes could be defined to implement the ripple transformation
and the spherical distortion described in Sec. 16.1.6 (see Exercise 16.3).

16.4.2 Pixel Interpolation

The following class definitions implement three of the interpolation meth-
ods described in Sec. 16.3. Each class provides its own version of the
method getInterpolatedPixel(Pnt2d pnt), which returns the inter-
polated value of the image function at the given continuous coordinate
pnt = (x0, y0) as a floating-point value.

PixelInterpolator (class)

PixelInterpolator is the (abstract) superclass for the actual interpo-
lator classes. In particular, it specifies the method getInterpolated-
Pixel (Pnt2d pnt), which must be implemented by all subclasses and
is invoked by the method applyTo() in class Mapping (p. 415):

1 import ij.process.ImageProcessor;
2
3 public abstract class PixelInterpolator {
4 ImageProcessor ip;
5
6 PixelInterpolator() {}
7
8 void setImageProcessor(ImageProcessor ip) {
9 this.ip = ip;

10 }
11 423



16 Geometric Operations 12 abstract double getInterpolatedPixel(Pnt2d pnt);
13

14 } // end of class PixelInterpolator

NearestNeighborInterpolator (class)

This class implements the two-dimensional nearest-neighbor interpola-
tion (see Eqn. (16.67)):

1 public class NearestNeighborInterpolator extends
PixelInterpolator {

2

3 double getInterpolatedPixel(Pnt2d pnt) {
4 int u = (int) Math.rint(pnt.x);
5 int v = (int) Math.rint(pnt.y);
6 return ip.getPixel(u,v);
7 }
8 } // end of class NearestNeighborInterpolator

BilinearInterpolator (class)

This class implements the bilinear interpolation method (see Eqn.
(16.70)):

1 public class BilinearInterpolator extends PixelInterpolator
2 {
3 double getInterpolatedPixel(Pnt2d pnt) {
4 int u = (int) Math.floor(pnt.x);
5 int v = (int) Math.floor(pnt.y);
6 double a = pnt.x - u;
7 double b = pnt.y - v;
8 int A = ip.getPixel(u,v);
9 int B = ip.getPixel(u+1,v);

10 int C = ip.getPixel(u,v+1);
11 int D = ip.getPixel(u+1,v+1);
12 double E = A + a*(B-A);
13 double F = C + a*(D-C);
14 double G = E + b*(F-E);
15 return G;
16 }
17 } // end of class BilinearInterpolator

The bilinear interpolation is also implemented in the current ImageJ
distribution by the method

double getInterpolatedPixel (double x, double y)

in class ImageProcessor.424



16.4 Java ImplementationBicubicInterpolator (class)

This class implements the bicubic interpolation method described in
Eqn. (16.73) and Alg. 16.2. The control parameter a (with a = 1 as
the default value) can be modified by the corresponding parameter in
the second constructor method (line 6). The one-dimensional cubic in-
terpolation (Eqn. (16.55)) is implemented by the method double cubic
(double x):

1 public class BicubicInterpolator extends PixelInterpolator {
2 double a = 1; // control parameter a (default setting)
3
4 BicubicInterpolator() {}
5

6 BicubicInterpolator(double a) {
7 this.a = a;
8 }
9

10 public double getInterpolatedPixel(Pnt2d pnt) {
11 double x0 = pnt.x;
12 double y0 = pnt.y;
13 // use floor to correctly handle negative coordinates:
14 int u0 = (int) Math.floor(x0);
15 int v0 = (int) Math.floor(y0);
16
17 double q = 0;
18 for (int j = 0; j <= 3; j++) {
19 int v = v0 - 1 + j;
20 double p = 0;
21 for (int i = 0; i <= 3; i++) {
22 int u = u0 - 1 + i;
23 p = p + ip.getPixel(u,v) * cubic(x0 - u);
24 }
25 q = q + p * cubic(y0 - v);
26 }
27 return q;
28 }
29
30 double cubic(double x) {
31 if (x < 0) x = -x;
32 double z = 0;
33 if (x < 1)
34 z = (-a+2)*x*x*x + (a-3)*x*x + 1;
35 else if (x < 2)
36 z = -a*x*x*x + 5*a*x*x - 8*a*x + 4*a;
37 return z;
38 }
39 } // end of class BicubicInterpolator

Setting a = 0.5, this class implements a Catmull-Rom interpolation (see
Sec. 16.3.5). 425



16 Geometric Operations 16.4.3 Sample Applications

The following ImageJ plugins show two simple examples of the use of
the classes above for implementing geometric operations.

Example 1: Rotation

The plugin class PluginRotation_ performs a rotation of the image by
15◦. First the geometric mapping object (map) is created as an instance
of class Rotation, with the given angle being converted from degrees to
radians (line 14). Subsequently, the interpolator object ipol is created
(line 15). Here we chose a BicubicInterpolator with a = 0.5 (i. e.,
Catmull-Rom interpolation). The actual transformation of the image is
accomplished by invoking the method applyTo() in line 16:

1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.*;
4
5 public class Geometry_Rotate implements PlugInFilter {
6

7 double angle = 15; // rotation angle (in degrees)
8
9 public int setup(String arg, ImagePlus imp) {

10 return DOES_8G;
11 }
12

13 public void run(ImageProcessor ip) {
14 Rotation map = new Rotation((2 * Math.PI * angle) / 360);
15 PixelInterpolator ipol = new BicubicInterpolator(0.5);
16 map.applyTo(ip, ipol);
17 }
18 } // end of class Geometry_Rotate

Example 2: Projective transformation

The second examples demonstrates a projective transformation, the
mapping T being specified by two corresponding quadrilaterals P =
p1 . . . p4 and Q = q1 . . .q4. Of course, in a real application, these points
would probably be specified interactively or given as the result of a mesh
partitioning.

The mapping object map, which represents the forward transforma-
tion T , is created by invoking the static method ProjectiveMapping.
makeMapping() in line 22. In this case, we used a bilinear interpolator
(line 24), which is applied as in the previous example (line 25):

1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;426



16.5 Exercises3 import ij.process.*;
4

5 public class Geometry_ProjectiveMapping implements
PlugInFilter

6 {
7 public int setup(String arg, ImagePlus imp) {
8 return DOES_8G;
9 }

10
11 public void run(ImageProcessor ip) {
12 Pnt2d p1 = new Pnt2d(0,0);
13 Pnt2d p2 = new Pnt2d(400,0);
14 Pnt2d p3 = new Pnt2d(400,400);
15 Pnt2d p4 = new Pnt2d(0,400);
16
17 Pnt2d q1 = new Pnt2d(0,60);
18 Pnt2d q2 = new Pnt2d(400,20);
19 Pnt2d q3 = new Pnt2d(300,400);
20 Pnt2d q4 = new Pnt2d(30,200);
21

22 ProjectiveMapping map =
23 ProjectiveMapping.makeMapping(p1,p2,p3,p4,q1,q2,q3,q4);
24 PixelInterpolator ipol = new BilinearInterpolator();
25 map.applyTo(ip, ipol);
26 }
27 } // end of class Geometry_ProjectiveMapping

16.5 Exercises

Exercise 16.1. Show that a straight line y = kx+d in 2D is mapped to
another straight line under a projective transformation (Eqn. (16.17)).

Exercise 16.2. Show that parallel lines remain parallel under affine
transformation (Eqn. (16.13)).

Exercise 16.3. Implement the nonlinear geometric transformations
RippleMapping (Eqns. (16.40) and (16.41)) and SphereMapping (Eqns.
(16.42) and (16.43)) as Java classes analogous to the implementation of
TwirlMapping (p. 422). Also create suitable ImageJ plugins and use
them to test these mappings.

Exercise 16.4. Design a nonlinear geometric transformation similar to
the ripple transformation (Eqns. (16.40) and (16.41)) that uses a saw-
tooth function instead of a sinusoid for the distortions in the horizontal
and vertical directions. Use the class TwirlMapping (p. 422) as a tem-
plate for your implementation.

Exercise 16.5. The one-dimensional interpolation function by Mitchell
and Natravali wmn(x) is defined as a general spline function wcs(x, a, b) 427



16 Geometric Operations (Eqn. (16.59)). Show that this function can be expressed as the weighted
sum of a Catmull-Rom function wcrm(x) (Eqn. (16.57)) and a cubic B-
spline wcbs(x) (Eqn. (16.58)) in the form

wmn(x) = wcs

(
x, 1

3 , 1
3

)
= 1

3 ·
[
2 · wcs(x, 0.5, 0) + wcs(x, 0, 1)

]
= 1

3 ·
[
2 · wcrm(x) + wcbs(x)

]
.

Exercise 16.6. Implement the two-dimensional Mitchell-Netravali in-
terpolation as defined by Eqn. (16.59) and Eqn. (16.75) as a Java class
analogous to the class BicubicInterpolator (p. 425). Compare the
results with those of the bicubic interpolation.

Exercise 16.7. Implement the two-dimensional Lanczos interpolation
with a WL3 kernel as defined in Eqn. (16.77) as a Java class analogous
to the class BicubicInterpolator (p. 425). Compare the results to the
bicubic interpolation.

Exercise 16.8. The one-dimensional Lanczos interpolation kernel of or-
der n = 4 is (analogous to Eqn. (16.65)) defined as

wL4 =

{
4 · sin(π x

4 )·sin(πx)

π2x2 for 0 ≤ |x| < 4
0 for |x| ≥ 4.

(16.78)

Generalize the two-dimensional L3 kernel in Eqn. (16.77) to Ln, where
n (the number of “taps”) can be chosen arbitrarily, and implement this
interpolator as a Java class analogous to BicubicInterpolator (p. 425).
How many image pixels are used in the interpolation for a given n?
Perform tests on suitable images to see how the interpolation performs
when n is increased.

428



17

Comparing Images

When we compare two images, we are faced with the following basic
question: when are two images the same or similar, and how can this
similarity be measured? Of course one could trivially define two images
I1, I2 as being identical when all pixel values are the same (i. e., the dif-
ference I1− I2 is zero). Although this kind of definition may be useful in
specific applications, such as for detecting changes in successive images
under constant lighting and camera conditions, simple pixel differencing
is usually too inflexible to be of much practical use. Noise, quantization
errors, small changes in lighting, and minute shifts or rotations can all
create large numerical pixel differences for pairs of images that would
still be perceived as perfectly identical by a human viewer. Obviously,
human perception incorporates a much wider concept of similarity and
uses cues such as structure and content to recognize similarity between
images, even when a direct comparison between individual pixels would
not indicate any match. The problem of comparing images at a struc-
tural or semantic level is a difficult problem and an interesting research
field, for example in the context of image-based searches on the Internet
or database retrieval.

This chapter deals with the much simpler problem of comparing im-
ages at the pixel level; in particular, localizing a given subimage—often
called a “template”—within some larger image. This task is frequently
required, for example, to find matching patches in stereo images, to local-
ize a particular pattern in a scene, or to track a certain pattern through
an image sequence. The principal idea behind “template matching” is
simple: move the given pattern (template) over the search image, mea-
sure the difference against the corresponding subimage at each position,
and record those positions where the highest similarity is obtained. But
this is not as simple as it may initially sound. After all, what is a suit-
able distance measure, what total difference is acceptable for a match, 429



17 Comparing Images

Fig. 17.1
Are these images the “same”?
Simply measuring the differ-

ence between pixel values will
return a large distance between
the original image (a) and any
of the five other images (b–f).

(a) (b) (c)

(d) (e) (f)

and what happens when brightness or contrast changes (Fig. 17.1)? We
already touched on this problem of invariance under geometric transfor-
mations when we discussed the shape properties of segmented regions in
Sec. 11.4.2. However, geometric invariance is not our main concern in
the remaining part of this chapter, where we describe only the most basic
template-matching techniques: correlation-based methods for intensity
images and “chamfer-matching” for binary images.

17.1 Template Matching in Intensity Images

First we look at the problem of localizing a given reference image (tem-
plate) R within a larger intensity (grayscale) image I, which we call the
search image. The task is to find those positions where the contents of
the reference image R and the corresponding subimage of I are either
the same or most similar. If we denote by

Rr,s(u, v) = R(u − r, v − s)

the reference image R shifted by the distance (r, s) in the horizontal and
vertical directions, respectively, then the matching problem (illustrated
in Fig. 17.2) can be summarized as430



17.1 Template Matching in
Intensity Images(0, 0)
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Rr,s
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reference image R shifted to (r, s)

search region

Fig. 17.2
Geometry of template matching.
The reference image R is shifted
across the search image I by an
offset (r, s) using the origins of the
two images as the reference points.
The dimensions of the search im-
age (wI × hI) and the reference
image (wR × hR) determine the
maximal search region for this
comparison.

Given are the search image I and the reference image R. Find the
offset (r, s) such that the similarity between the shifted reference
image Rr,s and the corresponding subimage of I is a maximum.

To successfully solve this task, several issues need to be addressed such
as determining a minimum similarity value for accepting a match and
developing a good search strategy for finding the optimal displacement.
First and most important, a suitable measure of similarity between sub-
images must be found that is reasonably tolerant against intensity and
contrast variations.

17.1.1 Distance between Image Patterns

To quantify the amount of agreement, we compute a “distance” d(r, s)
between the shifted reference image R and the corresponding subimage
of I for each offset position (r, s) (Fig. 17.3). Several distance measures
have been proposed for two-dimensional intensity images, including the
following three basic definitions:1

Sum of absolute differences:

dA(r, s) =
∑

(i,j)∈R

|I(r + i, s + j) −R(i, j)| ; (17.1)

Maximum difference:

dM (r, s) = max
(i,j)∈R

|I(r+i, s+j)−R(i, j)| ; (17.2)

1 We use the short notation (i, j) ∈ R to specify the set of all possible template
coordinates { (i, j) | 0 ≤ i < wR, 0 ≤ j < hR }. 431
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Fig. 17.3
Measuring the distance be-

tween two-dimensional image
functions. The reference image
R is positioned at offset (r, s)
on top of the search image I .

search image I

reference image Rr,s

distance for position (r, s)

Sum of squared differences:

dE(r, s) =
[ ∑
(i,j)∈R

(
I(r+i, s+j)−R(i, j)

)2 ]1/2

. (17.3)

This is also called the N -dimensional Euclidean distance, with N being
the number of pixels (treated as elements of N -dimensional vectors) used
in the distance computation.

Distance and correlation

Because of its formal properties, the N -dimensional distance dE (Eqn.
(17.3)) is of special importance and well-known in statistics and op-
timization. To find the best-matching position between the reference
image R and the search image I, it is sufficient to minimize the square
of dE (which is always positive), which can be expanded to

d2
E(r, s) =

∑
(i,j)∈R

(
I(r+i, s+j)−R(i, j)

)2 (17.4)

=
∑

(i,j)∈R

I2(r+i, s+j)

︸ ︷︷ ︸
A(r, s)

+
∑

(i,j)∈R

R2(i, j)

︸ ︷︷ ︸
B

− 2
∑

(i,j)∈R

I(r+i, s+j) · R(i, j)

︸ ︷︷ ︸
C(r, s)

.

Notice that the term B in Eqn. (17.4) is the sum of the squared pixel
values in the reference image R, a constant value (independent of r, s)
that can thus be ignored. The term A(r, s) is the sum of the squared
values within the subimage of I at the current offset (r, s). C(r, s) is the
so-called linear cross correlation (�) between I and R, which is defined
in the general case as

(I � R)(r, s) =
∞∑

i=−∞

∞∑
j=−∞

I(r+i, s+j) ·R(i, j), (17.5)

which—since R and I are assumed to have zero values outside their
boundaries—is furthermore equivalent to432
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wR−1∑
i=0

hR−1∑
j=0

I(r + i, s + j) · R(i, j) =
∑

(i,j)∈R

I(r + i, s + j) · R(i, j),

and thus the same as C(r, s) in Eqn. (17.4). As we can see in Eqn.
(17.5), correlation is in principle the same operation as linear convolu-
tion (see Sec. 6.3.1, Eqn. (6.14)), with the only difference being that the
convolution kernel (R(i, j) in this case) is implicitly mirrored.

If we assume for a minute that A(r, s)—the “signal energy”— in Eqn.
(17.4) is constant throughout the image I, then A(r, s) can also be ig-
nored and the position of maximum cross correlation C(r, s) coincides
with the best match between R and I. In this case, the minimum of
d2

E(r, s) (Eqn. (17.4)) can be found by computing the maximum value of
the correlation I �R only. This could be interesting for practical reasons
if we consider that the linear convolution (and thus the correlation) with
large kernels can be computed very efficiently in the frequency domain
(see also Sec. 14.5).

Normalized cross correlation

Unfortunately, the assumption made above that A(r, s) is constant does
not hold for most images, and thus the result of the cross correlation
strongly varies with intensity changes in the image I. The normalized
cross correlation compensates for this dependency by taking into account
the energy in the reference image and the current subimage:

CN (r, s) =
C(r, s)√

A(r, s) · B =
C(r, s)√

A(r, s) · √B

=

∑
(i,j)∈R

I(r+i, s+j) ·R(i, j)

[ ∑
(i,j)∈R

I2(r+i, s+j)
]1/2

·
[ ∑
(i,j)∈R

R2(i, j)
]1/2

. (17.6)

If the values in the search and reference images are all positive (which is
usually the case), then the result of CN (r, s) is always in the range [0, 1],
independent of the remaining contents in I and R. In this case, the re-
sult CN (r, s) = 1 indicates a maximum match between R and the current
subimage of I at the offset (r, s), while CN (r, s) = 0 signals no agree-
ment. Thus the normalized correlation has the additional advantage of
delivering a standardized match value that can be used directly (using
a suitable threshold between 0 and 1) to decide about the acceptance or
rejection of a match position.

In contrast to the “global” cross correlation in Eqn. (17.5), the expres-
sion in Eqn. (17.6) is a “local” distance measure. However, it, too, has
the problem of measuring the absolute distance between the template
and the subimage. If, for example, the overall intensity of the image I is 433



17 Comparing Images altered, then even the result of the normalized cross correlation CN (r, s)
may also change dramatically.

Correlation coefficient

One solution to this problem is to compare not the original function
values but the differences with respect to the average value of R and
the average of the current subimage of I. This modification turns Eqn.
(17.6) into

CL(r, s) =

∑
(i,j)∈R

(
I(r+i, s+j)−Ī(r, s)

) · (R(i, j)−R̄
)

[ ∑
(i,j)∈R

(
I(r+i, s+j)−Īr,s

)2]1/2

·
[ ∑
(i,j)∈R

(
R(i, j)−R̄

)2
︸ ︷︷ ︸

S2
R = K · σ2

R

]1/2
,

(17.7)

where the average values Īr,s and R̄ are defined as

Īr,s =
1
K

·
∑

(i,j)∈R

I(r+i, s+j) and R̄ =
1
K

·
∑

(i,j)∈R

R(i, j), (17.8)

respectively (K = |R| being the number of pixels in the reference image
R). In statistics, the expression in Eqn. (17.7) is known as the correlation
coefficient. However, different from the usual application as a global
measure in statistics, CL(r, s) describes a local, piecewise correlation
between the template R and the current subimage (at offset r, s) of
I. The resulting values of CL(r, s) are in the range [−1, 1] regardless
of the contents in R and I. Again a value of 1 indicates maximum
agreement between the compared image patterns, while −1 corresponds
to a maximum mismatch. The term

S2
R = K · σ2

R =
∑

(i,j)∈R

(
R(i, j)− R̄

)2 (17.9)

in the denominator of Eqn. (17.7) is K times the variance (σ2
R) of the

values in the template R, which is constant and thus needs to be com-
puted only once. Due to the fact that σR = 1

K

∑
R2(i, j) − R̄2, the

expression in Eqn. (17.9) can be reformulated as

S2
R =

∑
(i,j)∈R

R2(i, j) − K · R̄2

=
∑

(i,j)∈R

R2(i, j) − 1
K
·
(∑
(i,j)∈R

R(i, j)
)2

. (17.10)
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By inserting the results from Eqns. (17.8) and (17.10) we can rewrite
Eqn. (17.7) as

CL(r, s) =

∑
(i,j)∈R

(
I(r+i, s+j) ·R(i, j)

) − K ·Īr,s ·R̄
[ ∑
(i,j)∈R

I2(r+i, s+j) − K · Ī2
r,s

]1/2

· SR

(17.11)

and thereby obtain an efficient way to compute the local correlation
coefficient. Since R̄ and SR =

√
S2

R must be computed only once and the
local average of the current subimage Īr,s is not immediately required
for summing up the differences, the whole expression in Eqn. (17.11)
can be computed in one common iteration, as described in Alg. 17.1.
A sample Java implementation of this procedure is given by the class
CorrCoeffMatcher in Progs. 17.1 and 17.2 (Sec. 17.1.2).

Examples and discussion

Figure 17.4 compares the performance of the described distance func-
tions in a typical example. The original image (Fig. 17.4 (a)) shows a
repetitive flower pattern under uneven lighting and due to differences in
local intensity. One instance of the repetitive pattern was extracted as
the reference image (Fig. 17.4 (b)).

• The sum of absolute differences (Eqn. (17.1)) in Fig. 17.4 (c) shows a
distinct peak value at the original template position, as does the Eu-
clidean distance (Eqn. (17.3)) in Fig. 17.4 (e). Both measures work
satisfactorily in this regard but are strongly affected by global inten-
sity changes, as demonstrated in Figs. 17.5 and 17.6.

• The maximum difference (Eqn. (17.2)) in Fig. 17.4 (d) proves com-
pletely useless as a distance measure since it responds more strongly
to the lighting changes than to pattern similarity. As expected, the
behavior of the global cross correlation in Fig. 17.4 (f) is also unsat-
isfactory. Although the result exhibits a local maximum at the true
template position (hardly visible in the printed image), it is com-
pletely dominated by the high-intensity responses in the brighter
parts of the image.

• The result from the normalized cross correlation in Fig. 17.4 (g) ap-
pears naturally very similar to the Euclidean distance (Fig. 17.4 (e))
because in principle it is the same measure. As expected, the corre-
lation coefficient (Eqn. (17.7)) in Fig. 17.4 (h) yields the best results.
Distinct peaks of similar intensity are produced for all six instances
of the template pattern, and the result is unaffected by changing
lighting conditions. In this case, the values range from −1.0 (black)
to +1.0 (white), and zero values are shown as gray. 435
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Fig. 17.4
Comparison of various distance

functions. From the original
image (a), the marked section
is used as the reference image
R, shown enlarged in (b). In

the resulting difference images
(c–h), brightness corresponds
to the amount of agreement.
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1: CorrelationCoefficient (I,R)
I(u, v): search image of size wI × hI

R(i, j): reference image of size wR × hR

Returns C(r, s) containing the values of the correlation coefficient
between I and R positioned at (r, s).

Step 1–initialize:
2: K ← wR · hR

3: ΣR ← 0, ΣR2 ← 0
4: for i ← 0 . . . (wR−1) do
5: for j ← 0 . . . (hR−1) do
6: ΣR ← ΣR + R(i, j)

7: ΣR2 ← ΣR2 +
(
R(i, j)

)2
8: R̄ ← ΣR/K � Eqn. (17.8)

9: SR ←
√

ΣR2 − K ·R̄2 =
√

ΣR2 − Σ2
R/K � Eqn. (17.10)

Step 2—compute the correlation map:
10: C ← new map of size (wI−wR+1) × (hI−hR+1), C(r, s) ∈ R

11: for r ← 0 . . . (wI−wR) do � place R at position (r, s)
12: for s ← 0 . . . (hI−hR) do

Compute correlation coefficient for position (r, s):
13: ΣI ← 0, ΣI2 ← 0, ΣIR ← 0
14: for i ← 0 . . . (wR−1) do
15: for j ← 0 . . . (hR−1) do
16: aI ← I(r+i, s+j)
17: aR ← R(i, j)
18: ΣI ← ΣI + aI

19: ΣI2 ← ΣI2 + a2
I

20: ΣIR ← ΣIR + aI · aR

21: Īr,s ← ΣI/K � Eqn. (17.8)

22: C(r, s) ← ΣIR − K ·Īr,s ·R̄√
ΣI2 − K ·Ī2

r,s · SR

=
ΣIR − ΣI ·R̄√

ΣI2 − Σ2
I /K · SR

23: return C. � C(r, s) ∈ [−1, 1]

Algorithm 17.1
Computing the correlation coeffi-
cient. Given is the search image
I and the reference image (tem-
plate) R. In Step 1, the template’s
average R̄ and variance term SR

are computed once. In Step 2, the
match function is computed for
every template position (r, s) as
prescribed by Eqn. (17.11). The
result is a map of correlation val-
ues C(r, s) ∈ [−1, 1] that is re-
turned. Notice that the computa-
tion in line 22 can be performed
in two different ways—the second
version does not require the aver-
age Īr,s (computed in line 21).

Figure 17.5 compares the results of the Euclidean distance against
the correlation coefficient under globally changing intensity. For this
purpose, the intensity of the reference image R is raised by 50 units
such that the template is different from any subpattern in the original
image. As can be seen clearly, the initially distinct peaks disappear in
the Euclidean distance (Fig. 17.5 (c)), while the correlation coefficient
(Fig. 17.5 (d)) naturally remains unaffected by this change.

In summary, the correlation coefficient can be recommended as a
reliable measure for template matching in intensity images under realistic
lighting conditions. This method proves relatively robust against global
changes of brightness or contrast and tolerates small deviations from the
reference pattern. Since the resulting values are in the fixed range of 437
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Fig. 17.5
Effects of changing global inten-
sity. Original reference image R:

the results from both the Eu-
clidean distance (a) and the corre-
lation coefficient (b) show distinct

peaks at the positions of maxi-
mum agreement. Modified refer-

ence image R′ = R + 50: the peak
values disappear in the Euclidean
distance (c), while the correlation
coefficient (d) remains unaffected.

Fig. 17.6
Euclidean distance under global

intensity changes. Distance func-
tion for the original template R
(left), with the template inten-

sity increased by 25 units (center)
and 50 units (right). Notice that
the local peaks disappear as the
template intensity (and thus the
total distance between the image

and the template) is increased.

[−1, 1], a simple threshold operation can be used to localize the best
match points (Fig. 17.7).

17.1.2 Implementation

Programs 17.1 and 17.2 lists a Java implementation of template matching
based on the local correlation coefficient (Eqn. (17.7)). The application
assumes that the search image (imgFp) and the reference image (refFp)
are already available as objects of type FloatProcessor. They are used
to create a new instance of class CorrCoeffMatcher, as illustrated in the
following example:438
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(a) (b) (c)

Fig. 17.7
Detection of match points by sim-
ple thresholding: correlation coeffi-
cient (a), positive values only (b),
and values greater than 0.5 (c).
The remaining peaks indicate the
positions of the six similar (but
not identical) tulip patterns in the
original image (Fig. 17.4 (a)).

1 FloatProcessor imgP = ... // search image
2 FloatProcessor refP = ... // reference image
3 CorrCoeffMatcher matcher = new CorrCoeffMatcher(imgP, refP);
4 FloatProcessor matchP = matcher.computeMatch();

The correlation coefficient is computed by the method computeMatch()
and returned as a new image (matchFp) of type FloatProcessor. The
performance can be improved by using direct access to the pixel arrays
(instead of the access methods getf() and setf(); see also Sec. 3.7).

Shape of the template

The shape of the reference image does not need to be rectangular as in
the previous examples, although it is convenient for the processing. In
some applications, circular, elliptical, or custom-shaped templates may
be more applicable than a rectangle. In such a case, the template may
still be stored in a rectangular array, but the relevant pixels must some-
how be marked (e. g., using a binary mask). Even more general is the
option to assign individual continuous weights to the template elements
such that, for example, the center of a template can be given higher sig-
nificance in the match than the peripheral regions. Implementing such
a “windowed matching” technique should be straightforward and require
only minor modifications to the standard approach.

17.1.3 Matching under Rotation and Scaling

Correlation-based matching methods applied in the way described in this
section cannot handle significant rotation or scale differences between the
search image and the template. One obvious way to overcome rotation
is to match using multiple rotated versions of the template, of course
at the price of additional computation time. Similarly, one could try to
match using several scaled versions of the template to achieve scale in-
dependence to some extent. Although this could be combined by using a
set of rotated and scaled template patterns, the combinatorially growing
number of required matching steps could soon become prohibitive for a
practical implementation. 439



17 Comparing Images

Program 17.1
Class CorrCoeffMatcher. This is

a direct implementation of Alg.
17.1. The constructor method

(lines 11–36) computes the mean
R̄ = meanR (Eqn. (17.8)) and the
variance term SR = varR (Eqn.

(17.10)) of the reference image R.

1 class CorrCoeffMatcher {
2 FloatProcessor I; // image
3 FloatProcessor R; // template
4 int wI, hI; // width/height of image
5 int wR, hR; // width/height of template
6 int K; // size of template
7
8 float meanR; // mean value of template (R̄)
9 float varR; // square root of template variance (σR)

10
11 public CorrCoeffMatcher( // constructor method
12 FloatProcessor img, // search image (I)
13 FloatProcessor ref) // reference image (R)
14 {
15 I = img;
16 R = ref;
17 wI = I.getWidth();
18 hI = I.getHeight();
19 wR = R.getWidth();
20 hR = R.getHeight();
21 K = wR * hR;
22
23 // compute the mean (R̄) and variance term (SR) of the template:
24 float sumR = 0; // ΣR =

∑
R(i, j)

25 float sumR2 = 0; // ΣR2 =
∑

R2(i, j)
26 for (int j = 0; j < hR; j++) {
27 for (int i = 0; i < wR; i++) {
28 float aR = R.getf(i, j);
29 sumR += aR;
30 sumR2 += aR * aR;
31 }
32 }
33 meanR = sumR / K; // R̄ = [

∑
R(i, j)]/K

34 varR = // SR = [
∑

R2(i, j) − K ·R̄2]1/2

35 (float) Math.sqrt(sumR2 - K * meanR * meanR);
36 }
37
38 // continued...

Solutions to the rotation and scaling problems (such as matching
in logarithmic-polar space [108]) exist but go beyond the elementary
techniques described here. Also interesting in this context are affine
matching methods, which have received strong interest in recent years,
particularly for wide-baseline stereo applications, motion tracking, image
retrieval, and panoramic image stitching. These methods rely on local
statistical features that are invariant under affine image transformations
(including rotation and scaling) [66, 86, 101].

440



17.2 Matching Binary Images40 public FloatProcessor computeMatch() {
41 FloatProcessor C = new FloatProcessor(wI-wR+1, hI-hR+1);
42 for (int r = 0; r <= wI-wR; r++) {
43 for (int s = 0; s <= hI-hR; s++) {
44 float d = getMatchValue(r,s);
45 C.setf(r, s, d);
46 }
47 }
48 return C;
49 }
50

51 float getMatchValue(int r, int s) {
52 float sumI = 0; // ΣI =

∑
I(r+i, s+j)

53 float sumI2 = 0; // ΣI2 =
∑

(I(r+i, s+j))2

54 float sumIR = 0; // ΣIR =
∑

I(r+i, s+j) · R(i, j)
55
56 for (int j = 0; j < hR; j++) {
57 for (int i = 0; i < wR; i++) {
58 float aI = I.getf(r+i, s+j);
59 float aR = R.getf(i, j);
60 sumI += aI;
61 sumI2 += aI * aI;
62 sumIR += aI * aR;
63 }
64 }
65 float meanI = sumI / K; // Īr,s = ΣI/K
66 return (sumIR - K * meanI * meanR) /
67 ((float)Math.sqrt(sumI2 - K * meanI * meanI) * varR);
68 }
69
70 } // end of class CorrCoeffMatcher

Program 17.2
Class CorrCoeffMatcher
(continued). The method
computeMatch() (lines 40–49)
computes the correlation coeffi-
cient for the reference image R and
the corresponding subimage of I
at all positions (r, s). The method
getMatchValue(r,s) (lines 51–
70) returns the local correlation
coefficient C(r, s) (Eqn. (17.11)).

17.2 Matching Binary Images

As became evident in the previous section, the comparison of intensity
images based on correlation may not be an optimal solution but is suf-
ficiently reliable and efficient under certain restrictions.

17.2.1 Direct Comparison

If we compare binary images in the same way, by counting the number of
identical pixels in the search image and the template, the total difference
will only be small when most pixels are in exact agreement. Since there is
no continuous transition between pixel values, the distribution produced
by a simple distance function will generally be ill-behaved (i. e., highly
discontinuous with many local maxima; see Fig. 17.8).

The problem with directly comparing binary images is that even the
smallest deviations between image patterns, such as those caused by a 441
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Fig. 17.8
Direct comparison of binary im-
ages. Given are a binary search

image (a) and a binary refer-
ence image (b). The local sim-
ilarity value for any template

position corresponds to the rela-
tive number of matching (black)
foreground pixels. High similar-

ity values are shown as bright
spots in the result (c). While

the maximum similarity is nat-
urally found at the correct posi-
tion (at the center of the glyph
B) the match function behaves

wildly, with many local maxima.

(a) (b) (c)

small shift, rotation, or distortion, can create very high distance values.
Shifting a thin line drawing by only a single pixel, for example, may be
sufficient to switch from full agreement to no agreement at all (i. e., from
zero difference to maximum difference). Thus a simple distance function
gives no indication how far away and in which direction to search for a
better match position.

Our goal is to find the position where a maximum number of fore-
ground pixels in the search image and the template coincide using a
distance function that is smooth and more tolerant against small devia-
tions between the binary image patterns.

17.2.2 The Distance Transform

A first step in this direction is to record the distance to the closest
foreground pixel for every position (u, v) in the search image I. This
gives us the minimum distance (though not the direction) for shifting a
particular pixel onto a foreground pixel. Starting from a binary image
I(u, v) = I(p), we denote

FG(I) = {p | I(p) = 1}, (17.12)
BG(I) = {p | I(p) = 0}, (17.13)

as the set of coordinates of the foreground and background pixels, re-
spectively. The so-called distance transform of I, D(p) ∈ R, is defined
as

D(p) = min
p′∈FG(I)

dist(p, p′) (17.14)

for all p = (u, v), where u = 0 . . .M−1, v = 0 . . .N−1 (for image size
M × N). If I(p) is a foreground pixel itself (i. e., p ∈ FG), then the
distance D(p) = 0 since no shift is necessary for moving this pixel onto
a foreground pixel.

The function dist(p, p′) in Eqn. (17.14) measures the geometric dis-
tance between the two coordinate points p = (u, v) and p′ = (u′, v′).
Examples of suitable distance functions are the Euclidean distance442
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Fig. 17.9
Example of a distance transform
of a binary image using the Man-
hattan distance dM ().

dE(p, p′) = ‖p− p′‖ =
√

(u − u′)2 + (v − v′)2 ∈ R
+ (17.15)

or the Manhattan distance2

dM (p, p′) = |u− u′| + |v − v′| ∈ N0. (17.16)

Figure 17.9 shows a simple example of a distance transform using the
Manhattan distance dM ().

The direct implementation of the distance transform (following the
definition in Eqn. (17.14)) is computationally expensive because the clos-
est foreground pixel must be found for each pixel position p (unless I(p)
is a foreground pixel itself).3

Chamfer algorithm

The so-called chamfer algorithm [11] is an efficient method for comput-
ing the distance transform. Similar to the sequential region labeling
algorithm (Alg. 11.2 in Sec. 11.1.2), the chamfer algorithm traverses the
image twice by propagating the computed values across the image like a
wave. The first traversal starts at the upper left corner of the image and
propagates the distance values downward in a diagonal direction. The
second traversal proceeds in the opposite direction from the bottom to
the top. For each traversal, a “distance mask” is used for the propagation
of the distance values; that is,

ML =

⎡
⎢⎣ mL

2 mL
3 mL

4

mL
1 × ·
· · ·

⎤
⎥⎦ and MR =

⎡
⎢⎣ · · ·

· × mR
1

mR
4 mR

3 mR
2

⎤
⎥⎦ (17.17)

for the first and second traversals, respectively. The values in ML and
MR describe the geometric distance between the current pixel (marked
×) and the relevant neighboring pixels. They depend upon the distance

2 Also called “city block distance”.
3 A simple (brute force) algorithm for the distance transform would perform

a full scan over the entire image for each processed pixel, resulting in O(N2 ·
N2) = O(N4) steps for an image of size N × N . 443
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Algorithm 17.2
Chamfer algorithm for computing
the distance transform. From the

binary image I , the distance trans-
form D (Eqn. (17.14)) is computed

using a pair of distance masks
(Eqn. (17.17)) for the first and sec-
ond passes. Notice that the image
borders require special treatment.

1: DistanceTransform (I)
I : binary image of size M × N .
Returns the distance transform of image I .

Step 1—initialize:
2: D ← new distance map of size M × N , D(u, v) ∈ R

3: for all image coordinates (u, v) do
4: if I(u, v) = 1 then
5: D(u, v) ← 0 � foreground pixel (zero distance)
6: else
7: D(u, v) ← ∞ � background pixel (infinite distance)

Step 2—L→R pass (using distance mask ML = mL
i ):

8: for v ← 1, 2, . . . , N−1 do � top → bottom
9: for u ← 1, 2, . . . , M−2 do � left → right

10: if D(u, v) > 0 then
11: d1 ← mL

1 + D(u−1, v)
12: d2 ← mL

2 + D(u−1, v−1)
13: d3 ← mL

3 + D(u, v−1)
14: d4 ← mL

4 + D(u+1, v−1)
15: D(u, v) ← min(d1, d2, d3, d4)

Step 3—R→L pass (using distance mask MR = mR
i ):

16: for v ← N−2, . . . , 1, 0 do � bottom → top
17: for u ← M−2, . . . , 2, 1 do � right → left
18: if D(u, v) > 0 then
19: d1 ← mR

1 + D(u+1, v)
20: d2 ← mR

2 + D(u+1, v+1)
21: d3 ← mR

3 + D(u, v+1)
22: d4 ← mR

4 + D(u−1, v+1)
23: D(u, v) ← min(D(u, v), d1, d2, d3, d4)

24: return D.

function dist(p, p′) used. In particular, the distance masks for the Man-
hattan distance (Eqn. (17.16)) are

ML
M =

⎡
⎣ 2 1 2

1 × ·
· · ·

⎤
⎦ , MR

M =

⎡
⎣ · · ·

· × 1
2 1 2

⎤
⎦ , (17.18)

and similarly for the Euclidean distance (Eqn. (17.15))

ML
E =

⎡
⎣
√

2 1
√

2
1 × ·
· · ·

⎤
⎦ , MR

E =

⎡
⎣ · · ·

· × 1√
2 1

√
2

⎤
⎦ . (17.19)

Algorithm 17.2 outlines the chamfer method for computing the dis-
tance transform D(u, v) for a binary image I(u, v) using 3× 3 pixel dis-
tance masks. For the Manhattan distance, the chamfer algorithm com-
putes the distance transform exactly using the masks in Eqn. (17.18).
The result obtained with the mask for the Euclidean distance (Eqn.444



17.2 Matching Binary Images

Fig. 17.10
Distance transform with the cham-
fer algorithm: original image with
black foreground pixels (left), and
results of distance transforms us-
ing the Manhattan distance (cen-
ter) and the Euclidean distance
(right). The brightness (scaled to
maximum contrast) corresponds
to the estimated distance to the
nearest foreground pixel.

(17.19)) is only an approximation to the actual distance to the nearest
foreground pixel, which is nevertheless more accurate than the estimate
produced by the Manhattan distance. As demonstrated by the examples
in Fig. 17.10, the distances obtained with the Euclidean masks are exact
along the coordinate axes and the diagonals but are overestimated (i. e.,
too high) for all other directions.

A more precise approximation can be obtained with distance masks
of greater size (e. g., 5 × 5 pixels; see Exercise 17.3), which include the
exact distances to pixels in a larger neighborhood [11]. Furthermore,
floating point-operations can be avoided by using distance masks with
scaled integer values, such as the masks

ML
E′ =

⎡
⎣ 4 3 4

3 × ·
· · ·

⎤
⎦ and MR

E′ =

⎡
⎣ · · ·
· × 3
4 3 4

⎤
⎦ (17.20)

for the Euclidean distance. Compared with the original masks (Eqn.
(17.19)), the resulting distance values are scaled by about a factor of 3.
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17 Comparing Images 17.2.3 Chamfer Matching

The chamfer algorithm offers an efficient way to approximate the dis-
tance transform for a binary image of arbitrary size. The next step is to
use the distance transform for matching binary images. Chamfer match-
ing (first described in [7]) uses the distance transform to localize the
points of maximum agreement between a binary search image I and a
binary reference image (template) R. Instead of counting the overlap-
ping foreground pixels as in the direct approach (Sec. 17.2.1), chamfer
matching uses the accumulated values of the distance transform as the
match score Q. At each position (r, s) of the template R, the distance
values corresponding to all foreground pixels in R are accumulated,

Q(r, s) =
1
K

·
∑

(i,j)∈FG(R)

D(r + i, s + j), (17.21)

where K = |FG(R)| denotes the number of foreground pixels in the
template R.

The complete procedure for computing the match score Q is sum-
marized in Alg. 17.3. If at some position each foreground pixel in the
template R coincides with a foreground pixel in the image I, the sum of
the distance values is zero, which indicates a perfect match. The more
foreground pixels of the template fall onto distance values greater than
zero, the larger is the resulting score value Q (sum of distances). The
best match is found at the global minimum of Q,

popt = (ropt, sopt) = argmin
(r,s)

Q(r, s). (17.22)

The example in Fig. 17.11 demonstrates the difference between direct
pixel comparison and chamfer matching using the binary image shown in
Fig. 17.8. Obviously the match score produced by the chamfer method
is considerably smoother and exhibits only a few distinct local max-
ima. This is of great advantage because it facilitates the detection of
optimal match points using simple local search methods. Figure 17.12
shows another example with circles and squares. The circles have differ-
ent diameters and the medium-sized circle is used as the template. As
this example illustrates, chamfer matching is tolerant against small-scale
changes between the search image and the template and even in this case
yields a smooth score function with distinct peaks.

While chamfer matching is not a “silver bullet”, it is efficient and
works sufficiently well if the applications and conditions are suitable. It
is most suited for matching line or edge images where the percentage
of foreground pixels is small, such as for registering aerial images or
aligning wide-baseline stereo images. The method tolerates deviations
between the image and the template to a small extent but is of course not
generally invariant under scaling, rotation, and deformation. Because
the method is based on minimizing the distances to foreground pixels, the446



17.3 Exercises1: ChamferMatch (I,R)
I : binary search image of size wI × hI

R: binary reference image of size wR × hR

Returns a two-dimensional map of match scores.

Step 1—initialize:
2: D ← DistanceTransform(I) � see Alg. 17.2
3: K ← number of foreground pixels in R
4: Q ← new match map of size (wI−wR+1)× (hI−hR+1), Q(r, s) ∈ R

Step 2—compute the match score:
5: for r ← 0 . . . (wI−wR) do � place R at (r, s)
6: for s ← 0 . . . (hI−hR) do

Get match score for template placed at (r, s):
7: q ← 0
8: for i ← 0 . . . (wR−1) do
9: for j ← 0 . . . (hR−1) do

10: if R(i, j) = 1 then � foreground pixel in template
11: q ← q + D(r+i, s+j)
12: Q(r, s) ← q/K

13: return Q.

Algorithm 17.3
Chamfer matching. Given is a bi-
nary search image I and a binary
reference image (template) R. In
step 1, the distance transform D
is computed for the image I us-
ing the chamfer algorithm (Alg.
17.2). In step 2, the sum of dis-
tance values is accumulated for all
foreground pixels in template R
for each template position (r, s).
The resulting scores are stored in
the two-dimensional match map D
that is returned.

quality of the results deteriorates quickly when images contain random
noise (“clutter”) or large foreground regions. One way to reduce the
probability of false matches is not to use a linear summation (as in Eqn.
(17.21)) but add up the squared distances,

Qrms(r, s) =

√√√√ 1
K

·
∑

(i,j)∈FG(R)

D2(r + i, s + i) (17.23)

(“root mean square” of the distances) as the match score between the
template R and the current subimage, as suggested in [11]. Also, hierar-
chical variants of the chamfer method have been proposed [12] to reduce
the search effort as well as to increase robustness.

17.3 Exercises

Exercise 17.1. Implement the chamfer-matching method (Alg. 17.2) for
binary images using the Euclidean distance and the Manhattan distance.

Exercise 17.2. Implement the exact Euclidean distance transform us-
ing a “brute-force” search for each closest foreground pixel (this may take
a while to compute). Compare your results with the approximation ob-
tained with the chamfer method (Alg. 17.2), and compute the maximum
deviation (in percent).
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17 Comparing Images

Fig. 17.11
Direct pixel comparison vs. cham-
fer matching (see original images
in Fig. 17.8). Unlike the results

of the direct pixel comparison
(a), the chamfer match score Q
(b) is much smoother. It shows

distinct peak values in places
of high agreement that are easy
to track down with local search

methods. The match score Q
(Eqn. (17.21)) in (b) is shown
inverted for easy comparison.

direct comparison chamfer matching

(a) (b)

Exercise 17.3. Modify the chamfer algorithm for computing the dis-
tance transform (Alg. 17.2) by replacing the 3 × 3 pixel Euclidean dis-
tance masks (Eqn. (17.19)) with the following masks of size 5× 5 pixels:

ML =

⎡
⎢⎢⎣

· 2.236 · 2.236 ·
2.236 1.414 1.000 1.414 2.236

· 1.000 × · ·
· · · · ·
· · · · ·

⎤
⎥⎥⎦, MR =

⎡
⎢⎢⎣

· · · · ·
· · · · ·
· · × 1.000 ·

2.236 1.414 1.000 1.414 2.236

· 2.236 · 2.236 ·

⎤
⎥⎥⎦.

Compare the results with those obtained with the standard masks. Why
are no additional mask elements required along the coordinate axes and
the diagonals?

Exercise 17.4. Implement the chamfer-matching technique using (a)
the linear summation of distances (Eqn. (17.21)) and (b) the summation
of squared distances (Eqn. (17.23)) for computing the match score. Select
suitable test images to find out if version (b) is really more robust in
terms of reducing the number of false matches.

Exercise 17.5. Adapt the template-matching method described in Sec.
17.1 for the comparison of RGB color images.448



17.3 Exercises

Fig. 17.12
Chamfer matching under varying
scales. Binary search image with
three circles of different diame-
ters and three identical squares
(a). The medium-sized circle at
the top is used as the template
(b). The result from a direct pixel
comparison (c, e) and the result
from chamfer matching (d, f).
Again the chamfer match pro-
duces a much smoother score,
which is most notable in the 3D
plots shown in the bottom row
(e, f). Notice that the three cir-
cles and the squares produce high
match scores with similar absolute
values (f).
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Appendix A

Mathematical Notation

A.1 Symbols

The following symbols are used in the main text primarily with the
denotations given below. While some symbols may be used for purposes
other than the ones listed, the meaning should always be clear in the
particular context.

{a, b, c, d, . . .} A set ; i. e., an unordered collection of distinct ele-
ments. A particular element x can be contained in
a set at most once. A set may also be empty ({ }).

(a1, a2, . . . an) A vector ; i. e., a fixed-size collection of elements of
the same type. (a1, a2, . . . an)T denotes the transposed
(i. e., column) vector. In programming, vectors are
usually implemented as one-dimensional arrays, with
elements being referred to by position (index).

[c1, c2, . . . cm] A sequence or list ; i. e., a collection of elements of vari-
able length. Elements can be added to the sequence
(inserted) or deleted from the sequence. A sequence
may be empty ([ ]). In programming, sequences are
usually implemented with dynamic data structures,
such as linked lists. Java’s Collections framework (see
also Appendix B.2.7) provides numerous ready-to-use
implementations.

〈α1, α2, . . . αk〉 A tuple; i. e., an ordered list of elements, each possibly
of a different type. Tuples are typically implemented
as objects (in Java or C++) or structures (in C) with
elements being referred to by name.
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∗ Linear convolution operator (Sec. 6.3.1).

� Linear correlation operator (Sec. 17.1.1).

⊕ Morphological dilation operator (Sec. 10.2.3).

� Morphological erosion operator (Sec. 10.2.4).

∂ Partial derivative operator (Sec. 7.2.1). For example,
∂f
∂x (x, y) denotes the first derivative of the function
f(x, y) along the x variable at position (x, y), ∂2f

∂2x (x, y)
is the second derivative, etc.

∇ Gradient. ∇f is the vector of partial derivatives of a
multidimensional function f (Sec. 7.2.1).

�x� “Floor” of x, the largest integer z ∈ Z smaller than
x ∈ R (i. e., z = �x� ≤ x). For example, �3.141� = 3,
�−1.2� = −2.

a Pixel value (usually 0 ≤ a < K).

ArcTan(x, y) Inverse tangent function, similar to arctan
(

y
x

)
=

tan−1
(

y
x

)
but with two arguments and returning an-

gles in the range [−π, +π] (i. e., covering all four quad-
rants). It corresponds to the ArcTan(x,y) function in
Mathematica and the Java method Math.atan2(y,x)
(Secs. 7.3, B.1.6).

card{. . .} Cardinality (size) of a set, cardA ≡ |A| (Sec. 4.1).
DFT Discrete Fourier transform (Sec. 13.3).

F Continuous Fourier transform (Sec. 13.1.4).

g(x), g(x, y) One- and two-dimensional continuous functions
(x, y ∈ R).

g(u), g(u, v) One- and two-dimensional discrete functions (u, v ∈
Z).

G(m), G(m, n) One- and two-dimensional discrete Fourier spectra
(m, n ∈ Z).

h(i) Histogram of an image at pixel value (or bin) i (Sec.
4.1).

H(i) Cumulative histogram of an image at pixel value (or
bin) i (Sec. 4.6).

I(u, v) Intensity value of the image I at (integer) position
(u, v).

i Imaginary unit, i2 = −1 (see Sec. 1.3).
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A.3 Complex NumbersK Number of possible pixel values.

M, N Number of columns (width) and rows (height) of an
image (0 ≤ u < M , 0 ≤ v < N).

mod Modulus operator: (a mod b) is the remainder of the
integer division a/b (Sec. 13.4, B.1.2).

p(i) Probability density function (Sec. 5.6.1).

P(i) Probability distribution function or cumulative prob-
ability density (Sec. 5.6.1).

Q Quadrilateral (Sec. 16.1.4).

round(x) Rounding function: rounds x to the nearest integer.
round(x) = �x + 0.5� (Sec. 16.3.1).

truncate(x) Truncation function: truncates x toward zero to the
closest integer. For example, truncate(3.141) = 3,
truncate(−2.5) = −2.

S1 Unit square (Sec. 16.1.4).

A.2 Set Operators

|A| The size (number of elements) of the set A (equivalent
to cardA).

∀x . . . “All” quantifier (for all x, . . . ).

∃x . . . “Exists” quantifier (there is some x for which . . . ).

∪ Set union (e. g., A ∪B).

∩ Set intersection (e. g., A ∩B).⋃
Ri

Union over multiple sets Ri.⋂
Ri

Intersection over multiple sets Ri.

A.3 Complex Numbers

Definitions:

z = a + ib, z, i ∈ C, a, b ∈ R, i2 = −1, (A.1)

z∗ = a− ib (conjugate complex), (A.2)

sz = sa + isb, s ∈ R, (A.3) 453
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|z| =
√

a2 + b2, |sz| = s|z|, (A.4)

z = a + ib
= |z| · (cosψ + i sin ψ) (A.5)

= |z| · eiψ, where ψ = tan−1(b/a), (A.6)

Re
(
a + ib

)
= a, Re

(
eiϕ
)

= cosϕ, (A.7)

Im
(
a + ib

)
= b, Im

(
eiϕ
)

= sin ϕ, (A.8)

eiϕ = cosϕ + i · sinϕ, (A.9)

e−iϕ = cosϕ− i · sinϕ, (A.10)

cos(ϕ) = 1
2 ·
(
eiϕ + e−iϕ

)
, (A.11)

sin(ϕ) = 1
2i ·

(
eiϕ − e−iϕ

)
, (A.12)

Arithmetic operations:

z1 = (a1 + ib1) = |z1| eiϕ1 ,

z2 = (a2 + ib2) = |z2| eiϕ2 ,

z1 + z2 = (a1 + b1) + i(b1 + b2), (A.13)

z1 · z2 = (a1a2 − b1b2) + i(a1b2 + b1a2) (A.14)

= |z1| · |z2| · ei(ϕ1+ϕ2), (A.15)

z1

z2
=

a1a2 + b1b2

a2
2 + b2

2

+ i
a2b1 − a1b2

a2
2 + b2

2

(A.16)

=
|z1|
|z2| · e

i(ϕ1−ϕ2). (A.17)

A.4 Algorithmic Complexity and O Notation

The term “complexity” describes the effort (i. e., computing time or stor-
age) required by an algorithm or procedure to solve a particular problem
in relation to the “problem size” n. Often complexity is reported in the
literature using “big O” (O) notation [39, Sec. 9.2], as in the following
example. Consider a spreadsheet with 20 columns and 30 rows. Obvi-
ously, adding up all the entries in the spreadsheet requires performing
30 · 20 additions. We can be more general by representing the number
of columns and rows by M and N , respectively, and saying it requires
M ·N additions. What if we want to replace each location with the sum
of its eight neighbors? Then it would require M ·N · 8 operations. If we
compare these two algorithms, we see that, at their core, both require454
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and O Notation

doing some number of operations M · N times. Since big O notation
factors out constants (such as 8), we could say that the complexity of
both of these algorithms is O(MN).

O(MN) is an upper bound on the number of operations an algorithm
requires on an input of size MN . We can simplify this, since typical
images have roughly the same number of rows and columns, by selecting
the larger of the rows and columns n = max(M, N) and replacing it with
n. Now, since we know n·n ≥ M ·N we can say their complexity isO(n·n)
or, more commonly, O(n2). Big O notation lets us compare classes of
algorithms—in this case we discovered that both our algorithms belong
to the O(n2) class. This tells us that, no matter how much we optimize
our code, at the heart our algorithm will require n2 operations.

Similarly, the direct computation of the linear convolution (Sec. 6.3.1)
for an image of size n × n and a convolution kernel of size k × k has
the time complexity O(n2k2). As another example, the fast Fourier
transform (FFT, see Sec. 13.4.2) of a signal vector of length n = 2k

requires only O(n log2(n)
)
time.

Additional details on complexity can be found in any good book on
computer algorithms, such as [2, 25].
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Appendix B

Java Notes

As an undergraduate text for engineering curricula, this book assumes
basic programming skills in a procedural language, such as C or Java.
The examples in the main text should be easy to understand with the
help of some introductory book on Java or one of the many online tu-
torials. Experience shows, however, that difficulties with some basic
Java concepts pertain even at higher levels and frequently cause com-
plications. The following sections aim at resolving some of these typical
problem spots.

B.1 Arithmetic

Java is a “strongly typed” programming language, which means in par-
ticular that any variable has a fixed type that cannot be altered dynam-
ically. Also, the result of an expression is determined by the types of the
involved operands and not (in the case of an assignment) by the type of
the “receiving” variable.

B.1.1 Integer Division

Division involving integer operands is a frequent cause of errors. If the
variables a and b are both of type int, then the expression (a / b)
is evaluated according to the rules of integer division. The result—the
number of times b is contained in a—is again of type int. For example,
after the Java statements

int a = 2;
int b = 5;
double c = a/b; 457



Appendix B
Java Notes

the value of c is not 0.4 but 0.0 because the expression a/b on the right
produces the int value 0, which is then automatically converted to the
double value 0.0.

If we wanted to evaluate a/b as a floating-point operation (as most
pocket calculators do), at least one of the involved operands must be
converted to a floating-point value, for example by an explicit type cast
(double):

double c = (double) a / b;

Notice that the type cast (double) only applies to the immediately
following term (a) and not the entire expression a / b; i. e., the value of
the second operand (b) in this division is still of type int.

Example

Assume, for example, that we want to scale any pixel value a of an image
such that the maximum pixel value amax is mapped to 255 (see Ch. 5). In
mathematical notation, the scaling of the pixel values is simply expressed
as

c ← a

amax
· 255,

and it may be tempting to convert this 1:1 into Java code, such as

int a_max = ip.getMaxValue();
...
int a = ip.getPixel(u,v);
int c = (a / a_max) * 255; ← problem!
ip.putPixel(u,v,a);

...

As we can easily predict, the image will be all black (zero values), except
those pixels whose value was a_max originally (they are set to 255). The
reason is again the division (a / a_max) with two operands of type int,
where the result is zero whenever the divisor (a_max) is greater than the
dividend (a).

Of course, the entire operation could be performed in the floating-
point domain by converting one of the operands (as shown earlier), but
this is not even necessary in this case. Instead, we may simply swap the
order of operations and start with the multiplication,

int c = a * 255 / a_max;

Why does this work? The subexpression a * 255 is evaluated first,1 gen-
erating large intermediate values that pose no problem for the subsequent
(integer) division.In addition, rounding should always be considered to
obtain more accurate results when computing fractions of integers (see
Sec. B.1.5).
1 In Java, expressions at the same level are always evaluated in left-to-right

order, and therefore no parentheses are required in this example (though
they would not do any harm either).458



B.1 ArithmeticB.1.2 Modulus Operator

The result of the modulus operator

a mod b

(used in several places in the main text) is defined [39, p. 82] as the
remainder of the integer division a/b,

a mod b �
{

a for b = 0
a − b ·

⌊a

b

⌋
otherwise. (B.1)

Unfortunately, this type of mod operator (or an equivalent library
method) is not available in the standard Java API. Java’s native % (re-
mainder) operator, defined as

a % b � a− b · truncate
(a

b

)
for b �= 0, (B.2)

is often used in this context, but produces the same results only for
positive operands a ≥ 0 and b > 0. For example,

13 mod 4 → 1
13 mod −4 → −3

−13 mod 4 → 3
−13 mod −4 → −1

13 % 4 → 1
13 % −4 → 1

−13 % 4 → −1
−13 % −4 → −1

The following Java method implements the mod operation according to
the definition in Eqn. (B.1):

static int Mod(int a, int b) {
if (b == 0)
return a;

if (a * b >= 0)
return a - b * (a / b);

else
return a - b * (a / b - 1);

}

B.1.3 Unsigned Bytes

Most grayscale and indexed images in Java and ImageJ are composed of
pixels of type byte, and the same holds for the individual components
of most color images. A single byte consists of eight bits and can thus
represent 28 = 256 different bit patterns or values, usually mapped to
the numeric range 0 . . . 255. Unfortunately, Java (unlike C and C++)
does not provide a suitable “unsigned” 8-bit data type. The primitive
Java type byte is “signed”, using one of its eight bits for the ± sign, and
can represent values in the range −128 . . .127.

Java’s byte data can still be used to represent the values 0 to 255, but
conversions must take place to perform proper arithmetic computation.
For example, after execution of the statements 459
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int a = 200;
byte b = (byte) a;

the variables a (32-bit int) and b (8-bit byte) contain the binary pat-
terns

a = 00000000000000000000000011001000
b = 11001000

respectively. Interpreted as a (signed) byte value, with the leftmost bit2
as the sign bit, the variable b has the decimal value −56. Thus, after
the statement

int a1 = b; // a1 == -56

the value of the new int variable a1 is −56 ! To (ab-)use signed byte
data as unsigned data, we can circumvent Java’s standard conversion
mechanism by disguising the content of b as a logic (i. e., nonarithmetic)
bit pattern; e. g., by

int a2 = (0xff & b); // a2 == 200

where 0xff (in hexadecimal notation) is an int value with the binary
bit pattern 00000000000000000000000011111111 and & is the bitwise
AND operator. Now the variable a2 contains the right integer value
(200) and we thus have a way to use Java’s (signed) byte data type for
storing unsigned values. Within ImageJ, access to pixel data is routinely
implemented in this way, which is considerably faster than using the
convenience methods getPixel() and putPixel().

B.1.4 Mathematical Functions (Class Math)

Java provides the standard mathematical functions as static methods
in class Math, as listed in Table B.1. The Math class is part of the
java.lang package and thus requires no explicit import to be used.
Most Math methods accept arguments of type double and also return
values of type double. As a simple example, a typical use of the cosine
function y = cos(x) is

double x;
double y = Math.cos(x);

Similarly, the Math class defines some common numerical constants as
static variables; e. g., the value of π could be obtained by

double x = Math.PI;

2 Java uses the standard “2s-complement” representation, where a sign bit =
1 stands for a negative value.460



B.1 Arithmeticdouble abs(double a) double max(double a, double b)

int abs(int a) float max(float a, float b)

float abs(float a) int max(int a, int b)

long abs(long a) long max(long a, long b)

double ceil(double a) double min(double a, double b)

double floor(double a) float min(float a, float b)

double rint(double a) int min(int a, int b)

long round(double a) long min(long a, long b)

int round(float a) double random()

double toDegrees(double rad) double toRadians(double deg)

double sin(double a) double asin(double a)

double cos(double a) double acos(double a)

double tan(double a) double atan(double a)

double atan2(double y, double x)

double log(double a) double exp(double a)

double sqrt(double a) double pow(double a, double b)

double E double PI

Table B.1
Methods and constants defined by
Java’s Math class.

B.1.5 Rounding

Java’s Math class (confusingly) offers three different methods for round-
ing floating-point values:

double rint (double x)
long round (double x)
int round (float x)

For example, a double value x can be rounded to int in one of the
following ways:

double x; int k;
k = (int) Math.rint(x);
k = (int) Math.round(x);
k = Math.round((float)x);

If the argument x is known to be positive (as is typically the case with
pixel values) rounding can be accomplished without using any method
calls by

k = (int) (x + 0.5); // works for x ≥ 0 only!

In this case, the expression (x + 0.5) is first computed as a floating-
point (double) value, which is then truncated (toward zero) by the ex-
plicit (int) typecast. 461
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B.1.6 Inverse Tangent Function

The inverse tangent function ϕ = tan−1(a) or ϕ = arctan(a) is used in
several places in the main text. This function is implemented by the
method atan(double a) in Java’s Math class (Table B.1). The return
value of atan() is in the range [−π . . . π] and thus restricted to only two
of the four quadrants. Without any additional constraints, the resulting
angle is ambiguous. In many practical situations, however, a is given as
the ratio of two catheti (Δx, Δy) of a right-angled triangle in the form

ϕ = tan−1
(Δy

Δx

)
,

for which we used the (self-defined) two-parameter function

ϕ = ArcTan(Δx, Δy)

in the main text. The function ArcTan(Δx, Δy) is implemented by the
static method atan2(dy,dx) in Java’s Math class and returns an unam-
biguous angle ϕ in the range [−π . . . π]; i. e., in any of the four quadrants
of the unit circle.3

B.1.7 Float and Double (Classes)

The representation of floating-point numbers in Java follows the IEEE
standard, and thus the types float and double include the values

POSITIVE_INFINITY
NEGATIVE_INFINITY
NaN (“not a number”)

These values are defined as constants in the corresponding wrapper
classes Float and Double, respectively. If such a value occurs in the
course of some computation (e. g., POSITIVE_INFINITY as the result of
dividing by zero),4 Java continues without raising an error.

B.2 Arrays and Collections

B.2.1 Creating Arrays

Unlike in most traditional programming languages (such as FORTRAN
or C), arrays in Java can be created dynamically, meaning that the size
of an array can be specified at runtime using the value of some variable
or arithmetic expression. For example:
3 The function atan2(dy,dx) is available in most current programming lan-

guages, including Java, C, and C++.
4 In Java, this only holds for floating-point operations. Integer division by

zero still causes an exception.462



B.2 Arrays and Collectionsint N = 20;
int[] A = new int[N];
int[] B = new int[N*N];

Once allocated, however, the size of any Java array is fixed and cannot be
subsequently altered. For additional variability, Java provides a number
of universal container classes (e. g., the class Vector) for a wide range of
applications.

After its definition, an array variable can be assigned any other com-
patible array or the constant value null; e. g.,

A = B; // A now points to B’s data
B = null;

Through the assignment A = B above, the array initially referenced by
A becomes unaccessible and thus turns into garbage. In contrast to C
and C++, where unnecessary storage needs to be deallocated explicitly,
this is taken care of in Java by its built-in “garbage collector”. It is also
convenient that newly created arrays of numerical element types (int,
float, double, etc.) are automatically initialized to zero.

B.2.2 Array Size

Since an array may be created dynamically, it is important that its actual
size can be determined at runtime. This is done by accessing the length
attribute5 of the array:

int k = A.length; // number of elements in A

It may be surprising that Java arrays may have zero (not null) elements!
If an array has more than one dimension, the size (length) along every
dimension must be derived separately. The size is a property of the array
itself and can therefore be obtained inside any method from array argu-
ments passed to it. Thus (unlike in C, for example) it is not necessary
to pass the size of an array as a separate function argument.

B.2.3 Accessing Array Elements

In Java, the index of the first array element is always 0 and the index
of the last element is N−1 for an array with a total of N elements. To
iterate through a one-dimensional array A of arbitrary size, one would
typically use a construct like

for (int i = 0; i < A.length; i++) {
// do something with A[i]

}

Since images in Java and ImageJ are stored as one-dimensional arrays
(accessible through the ImageProcessor method getPixels()), most
point operations can be efficiently implemented in this way (see Prog.
C.1 on p. 491 for an example).
5 Notice that the length attribute of an array is not a method! 463
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B.2.4 Two-Dimensional Arrays

Multidimensional arrays are a common cause of misunderstanding. In
Java, all arrays are one-dimensional, and multidimensional arrays are
implemented as one-dimensional arrays of subarrays (Fig. B.1). If, for
example, the 3 × 3 matrix

A =

⎡
⎢⎣ a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

⎤
⎥⎦ =

⎡
⎢⎣ 1 2 3

4 5 6
7 8 9

⎤
⎥⎦ (B.3)

is represented as a two-dimensional floating-point array,

double[][] A = {{1,2,3},
{4,5,6},
{7,8,9}};

then A is really a one-dimensional array containing three items, each of
which is again a one-dimensional array of type double.

Fig. B.1
Multidimensional arrays are
implemented in Java as one-

dimensional arrays whose elements
are again one-dimensional arrays.

The usual assumption is that the array elements are arranged in row-
first ordering, as illustrated in Fig. B.1. The first index thus corresponds
to the row number r and the second index corresponds to the column
number c,

ar,c ≡ A[r][c] .

This is quite convenient, because the array initialization in the code
segment above looks exactly the same as the original matrix in Eqn.
(B.3).

If the matrix represents an image or filter kernel, then of course the
row index corresponds to the vertical coordinate v (or j) and the column
index corresponds to the horizontal coordinate u (or i). For example, if
we represent the filter kernel

H(i, j) =

⎡
⎢⎣ H(0, 0) H(1, 0) H(2, 0)

H(0, 1) H(1, 1) H(2, 1)
H(0, 2) H(1, 2) H(2, 2)

⎤
⎥⎦ =

⎡
⎢⎣−1 −2 0
−2 0 2

0 2 1

⎤
⎥⎦
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B.2 Arrays and Collectionsas a two-dimensional Java array,

double[][] H = {{-1,-2, 0},
{-2, 0, 2},
{ 0, 2, 1}};

then the indices must be reversed in order to access the right elements.
In this particular case,

H(i, j) ≡ H[j][i].

This scheme was used, for example, for implementing the 3 × 3 filter
plugin in Prog. 6.2 (p. 94).

Size of Multi-Dimensional Arrays

The size of a multidimensional array can be obtained by querying the
size of its subarrays. For example, given the following three-dimensional
array with dimensions P ×Q×R,

int B[][][] = new int[P][Q][R];

the size of B along its three dimensions is obtained by the statements

int p = B.length; // = P
int q = B[0].length; // = Q
int r = B[0][0].length; // = R

At least this works for “rectangular” Java arrays, multidimensional arrays
with all subarrays at any level being of the same length. If this is not
the case, the length of each subarray must be determined individually
to avoid “index-out-of-bounds” errors. Thus a “bullet-proof” iteration
over all elements of a three-dimensional—potentially “non-rectangular”—
array C should be implemented as follows:

for (int i = 0; i < C.length; i++) {
for (int j = 0; j < C[i].length; j++) {
for (int k = 0; k < C[i][j].length; k++) {

// do something with C[i][j][k]
}

}
}

B.2.5 Cloning Arrays

Java arrays implement the standard java.lang.Cloneable interface
and provide clone() methods to perform a single-level (“shallow”) form
of duplication; i. e., to make a copy of the top-level structure of the array.
Applied to a one-dimensional array of primitive element type, e. g.,

int[] A1 = {1,2,3,4};
int[] A2 = (int[]) A1.clone(); 465



Appendix B
Java Notes

Program B.1
Utility method duplicateArray()

for cloning arrays of any el-
ement type and dimension-

ality. Objects inside the
array are not duplicated.

1 import java.lang.reflect.Array;
2

3 public static Object duplicateArray(Object orig) {
4 Class origClass = orig.getClass();
5 if (!origClass.isArray())
6 return null; // no array to duplicate
7 Class compType = origClass.getComponentType();
8 int n = Array.getLength(orig);
9 Object dup = Array.newInstance(compType, n);

10 if (compType.isArray()) // array elements are arrays again:
11 for (int i = 0; i < n; i++)
12 Array.set(dup, i, duplicateArray(Array.get(orig, i)));
13 else // array elements are objects or primitives:
14 System.arraycopy(orig, 0, dup, 0, n);
15 return dup;
16 }

the result A2 is an exact and independent copy of the array A1, as one
would expect. If the original array contains real (i. e., nonprimitive) Java
objects, clone() does not duplicate the individual objects themselves,
but the cells of both arrays refer to the same original objects.

Similarly, applying clone() to a two-dimensional (or multidimensio-
nal) array duplicates only the top-level structure of that array but
none of its subarrays. Java has no standard method for doing a full-
depth duplication of multidimensional arrays. The (nontrivial) method
duplicateArray() in Prog. B.1 shows how this could be accomplished
recursively for arrays of any element type and dimensionality.

B.2.6 Arrays of Objects, Sorting

In Java, as mentioned earlier, we can create arrays dynamically; i. e., the
size of an array can be specified during execution. This is convenient
because we can adapt the size of the arrays to the actual problem. For
example, we could write

Corner[] cornerArray = new Corner[n];

to create an array that can hold n objects of type Corner (as defined in
Sec. 8.3). But be aware that the new array is not filled with corners yet
but initialized with null (i. e., empty references), so the array is really
empty. We can insert a Corner object into its first (or any other) cell by

cornerArray[0] = new Corner(10,20,6789.0f);

Arrays can be sorted quickly using the static utility methods in the
java.util.Arrays class,

Arrays.sort(type[] arr)466



B.2 Arrays and Collectionswhere arr can be any array of primitive type (int, float, etc.) or
an array of objects. In the latter case, the array may not have null
entries. Also, the class of every contained object must implement the
Comparable interface, i. e., provide a public method

int compareTo(Object obj)

that must return an int value of −1, 0, or 1, depending upon the in-
tended order relation to the other object obj. For example, within the
Corner class, the compareTo() method could be defined as follows:

public int compareTo (Object obj){ // in class Corner
Corner c2 = (Corner) obj;
if (this.q > c2.q) return -1;
if (this.q < c2.q) return 1;
else return 0;

}

which implicitly assumes that objects of class Corner need never be
compared with any other type of object.6

In summary, arrays are highly efficient data structures that allow fast
searching and sorting and therefore should be used whenever fixed size
is not a problem.

B.2.7 Collections

Once created, arrays in Java are of fixed size and cannot be expanded or
shrunk. To use an array for collecting the corners detected in an image
may thus not be a good idea because we do not know a priori how many
corners the image contains. If we make the initial array too small, we
will run out of space during the process. If we make the array as large
as possibly needed, we will probably waste a lot of memory most of the
time.

When we try to extract entities (e. g., corner points) from images,
we do not know in advance how many of them we are going to find.
Also, the properties of these items of interest may vary. This is a fre-
quent situation, and while most simple processes in digital imaging are
done with fixed-sized arrays of numbers, dynamic data structures are
often needed for advanced tasks. Incidentally, this is also one of Java’s
strongest aspects. In fact, Java provides a complete collection frame-
work with several convenient data structures that would be complicated
to implement by oneself.

A “collection” represents a group of objects, known as its elements.
So arrays, which we have been using over and over again, are of course
collections. The Java collections framework is a unified architecture for
6 Note that the typecast (Corner)obj (line 2 in method compareTo) is po-

tentially dangerous and will create a runtime exception if obj is not of type
Corner. 467
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representing and manipulating collections, allowing them to be manip-
ulated independently of the details of their representation. It reduces
programming effort while delivering high performance. It allows for in-
teroperability among unrelated APIs, reduces effort in designing and
learning new APIs, and fosters software reuse. The framework is based
on six collection interfaces. It includes implementations of these inter-
faces and algorithms to manipulate them. Some types of collections allow
duplicate elements and others do not, and some collections are ordered
and others unordered.

The Java SDK does not provide any direct implementations of this
interface but implements more specific subinterfaces such as Set and
List. This interface is typically used to pass collections around and
manipulate them where maximum generality is desired. Concrete imple-
mentations of the Collection interface include the classes Vector (used
to collect corners in Sec. 8.3 (p. 150)) and ArrayList, as well as HashSet
for the convenient construction of hash tables.

Additional details and application examples can be found in the Java
SDK documentation. For general hints on effective programming in Java,
[9] is a particularly valuable source.
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C.1 Installation and Setup

The most up-to-date information about downloading and installation is
found on the ImageJ Website

http://rsb.info.nih.gov/ij/.

Currently this site contains complete installation packages for Linux
(x86), Macintosh (OS 9, OSX), and Windows. The following informa-
tion mainly refers to the Windows installation but is quite similar for
the other platforms.

ImageJ can be installed in any file directory (which we refer to as
<ij>) and can be used without installing any additional software (in-
cluding the Java runtime). Figure C.1 (a) shows the contents of the in-
stallation directory (under Windows) with the following main contents:

<ij>/jre
A complete Java runtime environment, the “Java Virtual Machine”
(JVM). This is required for actually executing Java programs.

<ij>/macros
Directory containing ImageJ macros, short programs written in
ImageJ’s macro language (not covered here).

<ij>/plugins
This directory contains all ImageJ plugins written by the user. It
comes with some simple example plugins stored in subdirectories
(Fig. C.1 (b)). Notice that user-defined plugins may not be located
deeper than one level below the plugins directory. Otherwise the
plugins are not recognized by ImageJ.

<ij>/ij.jar
A Java archive file that contains the entire core functionality of Im-
ageJ. Only this file needs to be replaced when ImageJ is updated to 469
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Fig. C.1
ImageJ installation under Win-
dows. Contents of the installa-
tion directory <ij> (a) and its

subdirectory <ij>/plugins (b).

a newer version. JAR files are ZIP-compressed archives containing
collections of binary Java (.class) files.

<ij>/IJ_Prefs.txt
A text file used to define various settings and user options for
ImageJ.

<ij>/ImageJ.cfg
Specifies the path to launch Java and startup parameters for the
Java runtime. Under Windows, this is typically by the lines

.
jre\bin\javaw.exe
-Xmx340m -cp ij.jar ij.ImageJ

The option -Xmx340m in this case specifies that 340 MB of storage
are allocated for the Java process. This may be too small for some
applications and can be increased (up to about 1.7 GB on a 32-bit
system) by editing this file or through the Edit→Options→Memory
menu in ImageJ.

<ij>/ImageJ.exe
A small launch program that invokes Java and ImageJ and can
be used like any native Windows program.

For writing new plugin programs, we also need a text editor for edit-
ing the Java source files and a Java compiler. The Java runtime envi-
ronment (JRE) included with ImageJ contains both, even a compiler,1
such that no additional software is required to get started. However,
this basic programming environment is insufficient in practice even for
small projects. Instead, it is recommended to embark on one of the freely
available integrated Java programming environments, such as Eclipse,2
NetBeans,3 or Borland JBuilder.4 These products also give superior sup-
1 Unfortunately, the built-in compiler (contained in jre/lib/ext/tools.jar)

does not support the language features introduced with Java 1.5 or higher
and is thus incompatible with many examples in this book.

2 www.eclipse.org.
3 www.netbeans.org.
4 www.borland.com/jbuilder.470



C.2 ImageJ APIport for managing larger plugin projects and provide context-dependent
editing capabilities and advanced syntax analysis, which help to avoid
many programming errors that may otherwise cause fatal execution er-
rors.

C.2 ImageJ API

The complete documentation and source code for the ImageJ API5 is
available online at

http://rsb.info.nih.gov/ij/developer/.

Both are extremely helpful resources for developing new ImageJ plugins,
as is the ImageJ programming tutorial written by Werner Bailer [4]. In
addition, the standard Java API documentation (available online at Sun
Microsystems6) should always be at hand for any serious Java program-
ming. In the following, we give a brief description of the most important
packages and classes in the ImageJ API.7

C.2.1 Images and Processors

While the ImageJ API makes it easy to work with images on the pro-
gramming level, their internal representation is fairly complex and in-
corporates several objects of different classes. Some of these classes are
unique to ImageJ, while others are standard Java (AWT) classes or de-
rived from standard classes. Figure C.2 contains a simplified diagram
that shows the relationships between the key image objects.

The actual image data (pixels) are stored in either an
ImageProcessor or ImageStack object, depending on whether it is a sin-
gle image or a sequence (stack) of images, respectively. ImageProcessor
or ImageStack objects can be used to process images but have no
screen representation. Visible images are based on an ImagePlus ob-
ject, which links to an AWT Image and ImageWindow (a subclass of
java.awt.Frame) to map the image’s pixel data onto the screen.

C.2.2 Images (Package ij)

ImagePlus (class)
This is an extended variant of the standard Java class java.awt.
Image for representing images (Fig. C.3). An ImagePlus object
represents an image (or image sequence) that can be displayed on
the screen. It contains an instance of the class ImageProcessor
(see below) that is not visible but provides the functionality for
processing the corresponding image.

5 Application programming interface.
6 http://java.sun.com/reference/api/.
7 The UML diagrams in Figs. C.3–C.6 are taken from the ImageJ Website. 471
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Fig. C.2
Internal representation of im-

ages and image stacks in ImageJ
(simplified). ImageProcessor

and ImageStack objects contain
the actual pixel data of images
and image sequences (stacks),

respectively. A single image
is stored in memory as a one-

dimensional array of numerical
pixel values. Image stacks are

stored as a one-dimensional array
of pixel arrays. ImageProcessor
and ImageStack objects can be
used to process and convert im-

ages but are not necessarily visi-
ble on screen. Opening, storing,
and displaying an image or im-

age stack requires an ImagePlus
object, which uses standard

AWT mechanisms for mapping
to the screen (classes Image,
ImageWindow, ImageCanvas).

ImageStack (class)
An extensible sequence (“stack”) of images that is usually attached
to an ImagePlus object (see Fig. C.2).

C.2.3 Image Processors (Package ij.process)

ImageProcessor (class)
This is the (abstract) superclass for the four image processor
classes available in ImageJ: ByteProcessor, ShortProcessor,
FloatProcessor, ColorProcessor (Fig. C.4). Processing images
is mainly accomplished with objects of class ImageProcessor or
one of its subclasses, while ImagePlus objects (see above) are
mostly used for displaying and interacting with images.

ByteProcessor (class)
Image processor for 8-bit (byte) grayscale and indexed color im-
ages. The derived subclass BinaryProcessor implements binary
images that may only contain pixel values 0 and 255.

ShortProcessor (class)
Image processor for 16-bit grayscale images.472



C.2 ImageJ API

Fig. C.3
Class diagram for ImageJ package
ij.

Fig. C.4
Class diagram for the ImageJ
package ij.process.

FloatProcessor (class)
Image processor for 32-bit floating-point (float) images.

ColorProcessor (class)
Image processor for 32-bit color (3 × 8 bits RGB plus 8-bit α-
channel) images.

C.2.4 Plugins (Packages ij.plugin, ij.plugin.filter)

PlugIn (interface)
Interface for generic ImageJ plugins that import or display images
or plugins that do not use any images.

PlugInFilter (interface)
Interface for ImageJ plugins that process (and usually modify)
images.

473



Appendix C
ImageJ Short Reference

Fig. C.5
Class diagram for the Im-

ageJ package ij.gui.

C.2.5 GUI Classes (Package ij.gui)

ImageJ’s GUI8 classes provide the basic functionality for displaying and
interacting with images (Fig. C.5):

ColorChooser (class)
Displays a dialog window for interactive color selection.

NewImage (class)
Provides the functionality for creating new images interactively
and through static methods (see Sec. C.3.4).

GenericDialog (class)
Provides configurable dialog windows with a set of standard in-
teraction fields.

ImageCanvas (class)
This subclass of the standard Java class java.awt.Canvas de-
scribes the mapping (source rectangle, zoom factor) for displaying
the image in a window. It also handles the mouse and keyboard
events sent to that window.

ImageWindow (class)
This subclass of the standard Java class java.awt.Frame repre-
sents a screen window for displaying images of type ImagePlus.
An object of class ImageWindow contains an instance of class

8 Graphical user interface.474



C.2 ImageJ APIImageCanvas (see above) for the actual presentation of the im-
age.

Roi (class)
Defines a rectangular “region of interest” (ROI) and is the su-
perclass of other ROI classes: Line, OvalRoi, PolygonRoi (with
subclass FreehandRoi), and TextRoi.

C.2.6 Window Management (Package ij)

WindowManager (class)
Provides a set of static methods to manage ImageJ’s screen win-
dows (Fig. C.3).

C.2.7 Utility Classes (Package ij)

IJ (class)
Provides a set of static utility methods, including methods for
selecting, creating, opening, and saving images and obtaining in-
formation about the operating environment (Sec. C.21.2).

C.2.8 Input-Output (Package ij.io)

The ij.io package contains classes for reading (loading) and writing
images from and to files in various image formats and encodings (Fig.
C.6).

Fig. C.6
Class diagram for ImageJ package
ij.io.
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C.3 Creating Images and Image Stacks

In ImageJ, images, image stacks, and image processors can be created in
a variety of different ways, either from existing images or from scratch.

C.3.1 ImagePlus (Class)

The class ImagePlus implements the following constructor methods for
creating images:

ImagePlus ()
Constructor method: creates a new ImagePlus object without
initialization.

ImagePlus (String pathOrURL)
Constructor method: opens the image file (TIFF, BMP, DICOM,
FITS, PGM, GIF, or JPEG format) or URL (TIFF, DICOM, GIF,
or JPEG format) specified by the location pathOrURL in a new
ImagePlus object.

ImagePlus (String title, Image img )
Constructor method: creates a new ImagePlus object with the
name title from a given image img of the standard Java type
java.awt.Image.

ImagePlus (String title, ImageProcessor ip )
Constructor method: creates a new ImagePlus image with the
name title from a given ImageProcessor object ip.

ImagePlus (String title, ImageStack stack )
Constructor method: creates a new ImagePlus object with the
name title from a given image stack.

Other methods:
ImageStack createEmptyStack ()

Creates a new, empty stack with the same width, height, and
color table as the given ImagePlus object to which this method
is applied.

ImageStack getStack ()
Returns the image stack associated with the ImagePlus object to
which this method is applied. If no stack exists, a new single-
slice stack is created with the contents of that image (by calling
createEmptyStack()).

C.3.2 ImageStack (Class)

The class ImageStack (in package ij) provides the following construc-
tor methods for creating image stacks (usually contained inside an
ImagePlus object):476
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Image Stacks

ImageStack (int width, int height)
Constructor method: creates a new, empty image stack of size
width × height.

ImageStack (int width, int height, ColorModel cm )
Constructor method: creates a new, empty image stack of size
width × height with the color model cm (of type java.awt.
image.ColorModel).

C.3.3 IJ (Class)

static ImagePlus createImage (String title, String type,
int width, int height, int slices)

Creates a new ImagePlus object. type should contain the string
"8", "16", "32", or "RGB" for creating 8-bit grayscale, 16-bit
grayscale, float, or RGB images, respectively. In addition, type
can be used to specify a fill option by attaching the string "white",
"black", or "ramp" (the default is "white"). For example, the
type string "16ramp" would specify a 16-bit grayscale image ini-
tially filled with a black-to-white ramp. width and height spec-
ify the size of the image, and slices specifies the number of stack
slices (use 1 for a single image). The new image is returned but
not automatically displayed (use show()).

static void newImage (String title, String type,
int width, int height)

Creates a new image and displays it. The meaning of the pa-
rameters is the same as above. No reference to the new image is
returned (IJ.getimage() may be used to obtain the active im-
age).

C.3.4 NewImage (Class)

The class NewImage (in package ij.gui) implements several static meth-
ods for creating single images of type ImagePlus and image stacks:

static ImagePlus createByteImage (String title,
int width, int height, int slices, int fill )

Creates a single 8-bit grayscale image or stack (if slices > 1)
of size width × height with the name title. Admissible values
for the fill argument are the constants NewImage.FILL_BLACK,
NewImage.FILL_WHITE, and NewImage.FILL_RAMP.

static ImagePlus createShortImage (String title,
int width, int height, int slices, int fill )

Creates a single 16-bit grayscale image or stack.
static ImagePlus createFloatImage (String title,

int width, int height, int slices, int fill )
Creates a single 32-bit float image or stack. 477



Appendix C
ImageJ Short Reference

static ImagePlus createRGBImage (String title,
int width, int height, int slices, int fill)

Creates a single 32-bit RGB image or stack.
static ImagePlus createImage (String title, int width,

int height, int slices, int bitDepth, int fill )
Generic method that creates and returns an 8-bit grayscale, 16-
bit grayscale, float, or RGB image depending upon the value of
bitDepth, which can be 8, 16, 32, or 24, respectively. The other
parameters have the same meanings as above.

C.3.5 ImageProcessor (Class)

java.awt.Image createImage ()
Creates a copy of the ImageProcessor object and returns it as a
standard Java AWT image.

C.4 Creating Image Processors

In ImageJ, ImageProcessor objects represent images that can be cre-
ated, processed, and destroyed but are not generally visible on the screen
(see Sec. 3.14 on how to display images).

C.4.1 ImagePlus (Class)

ImageProcessor getProcessor ()
Returns a reference to the image’s ImageProcessor object. If
there is no ImageProcessor, a new one is created. Returns null
if this image contains no ImageProcessor and no AWT image.

void setProcessor (String title, ImageProcessor ip )
Replaces the image’s current ImageProcessor, if any, by ip. If
title is null, the image title remains unchanged.

C.4.2 ImageProcessor (Class)

ImageProcessor createProcessor (int width, int height)
Returns a new, blank ImageProcessor object of the specified size
and the same type as the processor to which this method is ap-
plied. This is an abstract method that is implemented by every
subclass of ImageProcessor.

ImageProcessor duplicate ()
Returns a copy of the image processor to which this method is
applied. This is an abstract method that is implemented by every
subclass of ImageProcessor.
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C.4.3 ByteProcessor (Class)

ByteProcessor (Image img )
Constructor method: creates a new ByteProcessor object from
an 8-bit image img of type java.awt.Image.

ByteProcessor (int width, int height)
Constructor method: creates a blank ByteProcessor object of
size width × height.

ByteProcessor (int width, int height, byte[] pixels,
ColorModel cm )

Constructor method: creates a new ByteProcessor object of the
specified size and the color model cm (of type java.awt.image.
ColorModel), with the pixel values taken from the one-dimen-
sional byte array pixels.

C.4.4 ColorProcessor (Class)

ColorProcessor (Image img )
Constructor method: creates a new ColorProcessor object from
the RGB image img of type java.awt.Image.

ColorProcessor (int width, int height)
Constructor method: creates a blank ColorProcessor object of
size width × height.

ColorProcessor (int width, int height, int[] pixels)
Constructor method: creates a new ColorProcessor object of the
specified size with the pixel values taken from the one-dimensional
int array pixels.

C.4.5 FloatProcessor (Class)

FloatProcessor float[][] pixels
Constructor method: creates a new FloatProcessor object from
the two-dimensional float array pixels, which is assumed to
store the image data as pixels[u][v] (i. e., in column-first or-
der).

FloatProcessor int[][] pixels
Constructor method: creates a new FloatProcessor object from
the two-dimensional int array pixels ; otherwise the same as
above.

FloatProcessor (int width, int height)
Constructor method: creates a blank FloatProcessor object of
size width × height.

FloatProcessor (int width, int height, double[] pixels)
Constructor method: creates a new FloatProcessor object of
the specified size with the pixel values taken from the one-dimen-
sional double array pixels. The resulting image uses the default
grayscale color model. 479
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FloatProcessor (int width, int height, int[] pixels)
Same as above with pixels being an int array.

FloatProcessor (int width, int height, float[] pixels,
ColorModel cm )

Constructor method: creates a new FloatProcessor object of the
specified size with the pixel values taken from the one-dimensional
float array pixels. The resulting image uses the color model cm
(of type java.awt.image.ColorModel), or the default grayscale
model if cm is null.

C.4.6 ShortProcessor (Class)

ShortProcessor (int width, int height)
Constructor method: creates a new ShortProcessor object of the
specified size. The resulting image uses the default grayscale color
model, which maps zero to black.

ShortProcessor (int width, int height, short[] pixels,
ColorModel cm )

Constructor method: creates a new ShortProcessor object of the
specified size with the pixel values taken from the one-dimensional
short array pixels. The resulting image uses the color model cm
(of type java.awt.image.ColorModel), or the default grayscale
model if cm is null.

C.5 Loading and Storing Images

C.5.1 IJ (Class)

The class IJ provides the static method void run() for executing com-
mands that apply to the currently active image. I/O commands include:

IJ.run("Open...")
Displays a file open dialog and then opens the image file selected
by the user. Displays an error message if the selected file is not
in one of the supported formats or if it is not found. The opened
image becomes the active image.

IJ.run("Revert")
Reverts the active image to the original file version.

IJ.run("Save")
Saves the currently active image.

Class IJ also defines the following static methods for image I/O:
static void open ()

Displays a file open dialog and then opens the image file (TIFF,
DICOM, FITS, PGM, JPEG, BMP, GIF, LUT, ROI, or text for-
mat) selected by the user. Displays an error message if the selected
file is not in one of the supported formats or if it is not found. No480
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reference to the opened image is returned (use IJ.getimage() to
obtain the active image).

static void open (String path )
Opens and displays an image file specified by path ; otherwise the
same as open() above. Displays an error message if the specified
file is not in one of the supported formats or if it is not found.

static ImagePlus openImage (String path)
Tries to open the image file specified by path and returns a Clas-
sImagePlus object (which is not automatically displayed) if suc-
cessful. Otherwise null is returned and no error is raised.

static void save (String path )
Saves the currently active image, lookup table, selection, or text
window to the specified file path, whose extension encodes the
file type. path must therefore end in ".tif", ".jpg", ".gif",
".zip", ".raw", ".avi", ".bmp", ".lut", ".roi", or ".txt".

static void saveAs (String format, String path)
Saves the currently active image, lookup table, selection (region
of interest), measurement results, XY coordinates, or text window
to the specified file path. The format argument must be "tif",
"jpeg", "gif", "zip", "raw", "avi", "bmp", "text image",
"lut", "selection", "measurements", "xy", or "text"

C.5.2 Opener (Class)

Opener is used to open TIFF (and TIFF stacks), DICOM, FITS, PGM,
JPEG, BMP, or GIF images, and lookup tables, using a file open dialog
or a path.

Opener ()
Constructor method: creates a new Opener object.

void open ()
Displays a file open dialog box and then opens the file selected by
the user. Displays an error message if the selected file is not in
one of the supported formats. No reference to the opened image
is returned (use IJ.getimage() to obtain the active image).

void open (String path )
Opens and displays a TIFF, DICOM, FITS, PGM, JPEG, BMP,
GIF, LUT, ROI, or text file. Displays an error message if the
file specified by path is not in one of the supported formats. No
reference to the opened image is returned (use IJ.getimage() to
obtain the active image).

ImagePlus openImage (String path)
Attempts to open the specified file as a TIF, BMP, DICOM,
FITS, PGM, GIF or JPEG image. Returns a new ImagePlus
object if successful, otherwise null. Activates the plugin
HandleExtraFileTypes if the file type is not recognized. 481
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ImagePlus openImage (String directory, String name )
Same as above, with path split into directory and name.

void openMultiple ()
Displays a standard file chooser and then opens the files selected
by the user. Displays error messages if one or more of the selected
files is not in one of the supported formats. No reference to the
opened images is returned (methods in class WindowManager can
be used to access these images; see Sec. C.20.1).

ImagePlus openTiff (String directory, String name)
Attempts to open the specified file as a TIFF image or image
stack. Returns an ImagePlus object if successful, null otherwise.

ImagePlus openURL (String url )
Attempts to open the specified URL as a TIFF, ZIP-compressed
TIFF, DICOM, GIF, or JPEG image. Returns an ImagePlus
object if successful, null otherwise.

void setSilentMode (boolean mode )
Turns silent mode on or off. The “Opening: path” status message
is not displayed in silent mode.

C.5.3 FileSaver (Class)

Saves images in TIFF, GIF, JPEG, RAW, ZIP, and text formats.

FileSaver (ImagePlus im )
Constructor method: creates a new FileSaver for a given Image-
Plus object.

boolean save ()
Tries to save the image associated with this FileSaver as a TIFF
file. Returns true if successful or false if the user cancels the file
save dialog.

boolean saveAsBmp ()
Saves the image associated with this FileSaver in BMP format
using a save file dialog.

boolean saveAsBmp (String path)
Saves the image associated with this FileSaver in BMP format
at the specified path.

boolean saveAsGif ()
Saves the image associated with this FileSaver in GIF format
using a save file dialog.

boolean saveAsGif (String path)
Saves the image associated with this FileSaver in GIF format at
the specified path.

boolean saveAsJpeg ()
Saves the image associated with this FileSaver in JPEG format
using a save file dialog.482
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boolean saveAsJpeg (String path )
Saves the image associated with this FileSaver in JPEG format
at the specified path.

boolean saveAsLut ()
Saves the lookup table (LUT) of the image associated with this
FileSaver using a save file dialog.

boolean saveAsLut (String path )
Saves the lookup table (LUT) of the image associated with this
FileSaver at the specified path.

boolean saveAsPng ()
Saves the image associated with this FileSaver in PNG format
using a save file dialog.

boolean saveAsPng (String path )
Saves the image associated with this FileSaver in PNG format
at the specified path.

boolean saveAsRaw ()
Saves the image associated with this FileSaver in raw format
using a save file dialog.

boolean saveAsRaw (String path )
Saves the image associated with this FileSaver in raw format at
the specified path.

boolean saveAsRawStack (String path )
Saves the stack associated with this FileSaver in raw format at
the specified path.

boolean saveAsRaw ()
Saves the image associated with this FileSaver in raw format
using a save file dialog.

boolean saveAsRaw (String path )
Saves the image associated with this FileSaver in raw format at
the specified path.

boolean saveAsText ()
Saves the image associated with this FileSaver as tab-delimited
text using a save file dialog.

boolean saveAsText (String path )
Saves the image associated with this FileSaver as tab-delimited
text at the specified path.

boolean saveAsTiff ()
Saves the image associated with this FileSaver in TIFF format
using a save file dialog.

boolean saveAsTiff (String path )
Saves the image associated with this FileSaver in TIFF format
at the specified path. 483
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boolean saveAsTiffStack (String path )
Saves the stack associated with this FileSaver as a multiimage
TIFF at the specified path.

boolean saveAsZip ()
Saves the image associated with this FileSaver as a TIFF in a
ZIP archive using a save file dialog.

boolean saveAsZip (String path)
Saves the image associated with this FileSaver as a TIFF in a
ZIP archive at the specified path.

C.5.4 FileOpener (Class)

FileOpener (FileInfo fi )
Constructor method: creates a new FileOpener from a given
FileInfo object fi. Use im.getFileInfo() or im.get-
OriginalFileInfo() to retrieve the FileInfo from a given
ImagePlus object im.

void open ()
Opens the image from the location specified by this FileOpener
and displays it. No reference to the opened image is returned (use
IJ.getimage() to obtain the active image).

ImagePlus open (boolean show )
Opens the image from the location specified by this FileOpener.
The image is displayed if show is true. Returns an ImagePlus
object if successful, otherwise null.

void revertToSaved (ImagePlus im )
Restores im to its original disk or network version.

Here is a simple example that uses the classes Opener, FileInfo, and
FileOpener for opening and subsequently reverting an image to its orig-
inal:

Opener op = new Opener();
op.open();
ImagePlus im = IJ.getImage();
ImageProcessor ip = im.getProcessor();
ip.invert();
im.updateAndDraw();
// .... more modifications
// revert to original:
FileInfo fi = im.getOriginalFileInfo();
FileOpener fo = new FileOpener(fi);
fo.revertToSaved(im);
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C.6.1 ImageProcessor (Class)

int getHeight ()
Returns this image processor’s height (number of lines).

int getWidth ()
Returns this image processor’s width (number of columns).

boolean getInterpolate ()
Returns true if bilinear interpolation is turned on for this proces-
sor.

void setInterpolate (boolean interpolate)
Turns pixel interpolation for this processor on or off. If turned
on, the processor uses bilinear interpolation for getLine() and
geometric operations such as scale(), resize(), and rotate().

C.6.2 ColorProcessor (Class)

static double[] getWeightingFactors ()
Returns the weights used for the red, green, and blue compo-
nent (as a 3-element double-array) for converting RGB colors to
grayscale or intensity (see Sec. 12.2.1). These weights are used,
for example, by the methods getPixelValue(), getHistogram(),
and convertToByte() to perform color conversions. The weights
can be set with the static method setWeightingFactors() de-
scribed below.

static void setWeightingFactors
(double wr, double wg, double wb )

Sets the weights used for the red, green, and blue components for
color-to-gray conversion (see Sec. 12.2.1). The default weights in
ImageJ are wR = wG = wB = 1

3 . Alternatively, if the “Weighted
RGB Conversions” option is selected in the Edit→Options→Conver-
sions dialog, the standard ITU-BT.709 [55] weights (wR = 0.299,
wG = 0.587, wB = 0.114) are used.

C.7 Accessing Pixels

The ImageJ class ImageProcessor provides a large variety of methods
for accessing image pixels. All methods described in this section are
defined for objects of class ImageProcessor.

C.7.1 Accessing Pixels by 2D Image Coordinates

Methods performing coordinate checking
The following methods are tolerant against passing out-of-bounds coor-
dinate values. Reading pixel values from positions outside the image 485
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canvas usually returns a zero value, while writing to such positions has
no effect.

int getPixel (int u, int v )
Returns the pixel value at the image coordinate (u, v ). Zero is
returned for all positions outside the image boundaries (no er-
ror). Applied to a ByteProcessor or ShortProcessor, the re-
turned int value is identical to the numerical pixel value. For
images of type ColorProcessor, the αRGB bytes are arranged
inside the int value in the standard way (see Fig. 12.6). For
a FloatProcessor, the returned 32-bit int value contains the
bit-pattern of the corresponding float pixel value, and not a con-
verted numerical value! A bit pattern p may be converted to a nu-
meric float-value using the method Float.intBitsToFloat(p)
(in package java.lang.Number).

void putPixel (int u, v, int value )
Sets the pixel at image coordinate (u, v ) to value. Coordi-
nates outside the image boundaries are ignored (no error). For
images of types ByteProcessor and ShortProcessor, value is
clamped to the admissible range. For a ColorProcessor, the 8-bit
αRGB values are packed inside value in the standard arrange-
ment. For a FloatProcessor, value is assumed to contain the
32-bit pattern of a float value, which can be obtained using the
Float.floatToIntBits() method.

int[] getPixel (int u, int v, int[] iArray)
Returns the pixel value at the image coordinate (u, v ) as an
int array containing one element or, for a ColorProcessor,
three elements (RGB component values with iArray[0]= R,
iArray[1]= G, iArray[2]= B). If the argument passed to
iArray is a suitable array (i. e., of proper size and not null),
that array is filled with the pixel value(s) and returned; otherwise
a new array is returned.

void putPixel (int u, int v, int[] iArray)
Sets the pixel at position (u, v ) to the value specified by the
contents of iArray, which contains either one element or, for a
ColorProcessor, three elements (RGB component values, with
iArray[0]= R, iArray[1]= G, iArray[2]= B).

float getPixelValue (int u, int v )
Returns the pixel value at the image coordinate (u, v ) as a float
value. For images of types ByteProcessor and ShortProcessor,
a calibrated value is returned that is determined by the proces-
sor’s (optional) calibration table. Invoked on a FloatProcessor,
the method returns the actual (numeric) pixel value. In the case
of a ColorProcessor, the gray value of the corresponding RGB
pixel is returned (computed as a weighted sum of the RGB compo-486
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setWeightingFactors() (see p. 485).

void putPixelValue (int u, int v, double value)
Sets the pixel at position (u, v ) to value (after clamping to the
appropriate range and rounding). On a ColorProcessor, value
is clamped to [0 . . . 255] and assigned to all three color components,
thus creating a gray color with the luminance equivalent to value.

Methods without coordinate checking

The following methods are faster at the cost of not checking the validity
of the supplied coordinates, i. e., passing out-of-bounds coordinate values
will result in a runtime exception.

int get (int u, v )
This is a faster version of getPixel() that does not do bounds
checking on the coordinates.

void set (int u, int v, int value)
This is a faster version of putPixel() that does not clamp out-of-
range values and does not do bounds checking on the coordinates.

float getf (int u, v )
Returns the pixel value as a float; otherwise the same as get().

void setf (int u, int v, float value )
Sets the pixel at (u, v ) to the float value value ; otherwise the
same as set().

C.7.2 Accessing Pixels by 1D Indices

These methods are useful for processing images if the individual pixel
coordinates are not relevant, e. g., for performing point operations on all
image pixels.

int get (int i )
Returns the content of the ImageProcessor’s pixel array at posi-
tion i as an int value, with 0 ≤ i < w ·h (w, h are the width and
height of the image, respectively). The method getPixelCount()
(see below) retrieves the size of the pixel array.

void set (int i, int value)
Inserts value at the image’s pixel array at position i .

float getf (int i )
Returns the content of the image processor’s pixel array at posi-
tion i as a float value.

void setf (int i, float value )
Inserts value at the image’s pixel array at position i .

int getPixelCount ()
Returns the number of pixels in this image, i. e., the length of the
pixel array. 487
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Pixel access is faster with the above methods because the supplied index
i directly addresses the one-dimensional pixel array (see p. 490 for a
directly accessing the pixel array without using method calls, which is
still faster). Note that these methods are efficient at the cost of not
checking the validity of their arguments, i. e., passing an illegal index
will result in a runtime exception. The typical use of these methods is
demonstrated by the following example:

...
int M = ip.getPixelCount();
for (int i = 0; i < M; i++) {
int a = ip.get(i);
int b = ... ; // compute the new pixel value
ip.set(i, b);

}
...

Note that we explicitly define the range variable M instead of writing

for (int i = 0; i < ip.getPixelCount(); i++) ...

directly, because in this case the method getPixelCount() would be
(unnecessarily) invoked in every single iteration of the for-loop.

C.7.3 Accessing Multiple Pixels

Object getPixels ()
Returns a reference (not a copy!) to the processor’s one-dimen-
sional pixel array, and thus any changes to the returned pixel array
immediately affect the contents of the corresponding image. The
array’s element type depends on the type of processor:

ByteProcessor → byte[]
ShortProcessor→ short[]
FloatProcessor→ float[]
ColorProcessor→ int[]

Since the type (Object) of the returned object is generic, type
casting is required to actually use the returned array; e. g.,

ByteProcessor ip = new ByteProcessor(200, 300);
byte[] pixels = (byte[]) ip.getPixels();

Note that this typecast is potentially dangerous. To avoid a run-
time exception one should assure that processor and array types
match; e. g., using Java’s instanceof operator:

if (ip instanceof ByteProcessor) ... or
if (ip.getPixels() instanceof byte[]) ...

void setPixels (Object pixels)
Replaces the processor’s pixel array by pixels. The type and size
of this one-dimensional array must match the specifications of the
target processor (see getpixels()). The processor’s snapshot
array is reset.
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Returns a reference to the image’s snapshot (undo) array. If the
snapshot array is null, a copy of the processor’s pixel data is
returned. Otherwise the use of the result is the same as with
getPixels().

void getColumn (int u, int v, int[] data, int n )
Returns n contiguous pixel values along the vertical column u,
starting at position (u, v ). The result is stored in the array data
(which must not be null and at least of size n ).

void putColumn (int u, int v, int[] data, int n )
Inserts the first n pixels contained in data into the vertical column
u, starting at position (u, v ). data must not be null and at least
of size n.

void getRow (int u, int v, int[] data, int m )
Returns m contiguous pixel values along the horizontal line v,
starting at position (u, v ). The result is stored in the array data
(which must not be null and at least of size m ).

void putRow (int u, int v, int[] data, int m )
Inserts the first m pixels contained in data into the horizontal row
v, starting at position (u, v ). data must not be null and at least
of size m.

double[] getLine (double x1, double y1,
double x2, double y2 )

Returns a one-dimensional array containing the pixel values along
the straight line starting at position (x1, y1 ) and ending at
(x2, y2 ). The length of the returned array corresponds to the
rounded integer distance between the start and endpoint, any
of which may be outside the image bounds. Interpolated pixel
values are used if the processor’s interpolation setting is on (see
setInterpolate()).

void insert (ImageProcessor ip, int u, int v )
Inserts (pastes) the image contained in ip into this image at po-
sition (u, v ).

C.7.4 Accessing All Pixels at Once

int[][] getIntArray ()
Returns the contents of the image as a new two-dimensional int
array, by storing the pixels as array[u][v] (i. e., in column-first
order).

void setIntArray (int[][] pixels)
Replaces the image pixels with the contents of the two-dimensional
int array pixels, which must be of exactly the same size as the
target image. Pixels are assumed to be arranged in column-first
order (as above). 489



Appendix C
ImageJ Short Reference

float[][] getFloatArray ()
Returns the contents of the image as a new two-dimensional int
array, by storing the pixels as array [u][v] (i. e., in column-first
order).

void setFloatArray (float[][] pixels)
Replaces the image pixels with the contents of the two-dimensional
float array pixels, which must be of exactly the same size as the
target image. Pixels are assumed to be arranged in column-first
order (as above).

C.7.5 Specific Access Methods for Color Images

The following methods are only defined for objects of type Color-
Processor.

void getRGB (byte[] R, byte[] G, byte[] B )
Stores the red, green, and blue color planes into three separate
byte arrays R, G, B, whose size must be at least equal to the
number of pixels in this image.

void setRGB (byte[] R, byte[] G, byte[] B )
Fills the pixel array of this color image from the contents of the
byte arrays R, G, B, whose size must be at least equal to the
number of pixels in this image.

void getHSB (byte[] H, byte[] S, byte[] B )
Stores the hue, saturation, and brightness values into three sepa-
rate byte arrays H, S, B, whose size must be at least equal to the
number of pixels in this image.

void setHSB (byte[] H, byte[] S, byte[] B )
Fills the pixel array of this color image from the contents of the
byte arrays H (hue), S (saturation), and B (brightness), whose
size must be at least equal to the number of pixels in this image.

FloatProcessor getBrightness ()
Returns the brightness values (as defined by the HSV color model)
of this color image as a new FloatProcessor of the same size.

void setBrightness (FloatProcessor fp )
Replaces the brightness values (as defined by the HSV color
model) of this color image by the values of the corresponding
pixels in the specified FloatProcessor fp, which must be of the
same size as this image.

C.7.6 Direct Access to Pixel Arrays

The use of pixel access methods (such as getPixel() and putPixel) is
relatively time-consuming because these methods perform careful bounds
checking on the given pixel coordinates. The alternative methods set()
and get() do no bounds checking and are thus somewhat faster but still
carry the overhead of method invocation.490



C.7 Accessing Pixels1 public void run (ImageProcessor ip) {
2 // check if ip is really a valid ByteProcessor:
3 if (!(ip instanceof ByteProcessor)) return;
4 if (!(ip.getPixels() instanceof byte[])) return;
5 // get pixel array:
6 byte[] pixels = (byte[]) ip.getPixels();
7 int w = ip.getWidth();
8 int h = ip.getHeight();
9 // process pixels:

10 for (int v = 0; v < h; v++) {
11 for (int u = 0; u < w; u++) {
12 int p = 0xFF & pixels[v * w + u];
13 p = p + 1;
14 pixels[v * w + u] = (byte) (0xFF & p);
15 }
16 }
17 }

Program C.1
Direct pixel access for images of
type ByteProcessor. Notice the
use of the instanceof operator
(lines 3–4) to verify the correct
type of the processor. In this case
(since the pixel coordinates (u,
v) are not used in the computa-
tion), a single loop over the one-
dimensional pixel array could be
used instead.

If many pixels must be processed, direct access to the elements of
the processor’s pixel array may be considerably more efficient. For this
we have to consider that the pixel arrays of Java and ImageJ images are
one-dimensional and arranged in row-first order (also see Sec. B.2.3).

A reference to a processor’s one-dimensional pixel array pixels is ob-
tained by the method getPixels(). To retrieve a particular pixel at
position (u, v) we must first compute its one-dimensional index i, where
the width w (i. e., the length of each line) of the image must be known:

I(u, v) ≡ pixels [i] = pixels [v · w + u] .

Program C.1 shows an example for direct pixel access inside the run
method of a ImageJ plugin for an image of type ByteProcessor. The
bit operations 0xFF & pixels[] and 0xFF & p (lines 12 and 14,
respectively) are needed to use unsigned byte data in the range [0 . . . 255]
(as described in Sec. B.1.3). Analogously, the bit-mask 0xFFFF and a
typecast to (short) would be required when processing unsigned 16-bit
images of type ShortProcessor.

If, as in Prog. C.1, the pixels’ coordinates (u, v) are not used in the
computation and the order of pixels being accessed is irrelevant, a single
loop can be used to iterate over all elements of the one-dimensional pixel
array (of length w ·h). This approach is used, for example, to process all
pixels of a color image in Prog. 12.1 (p. 246). Also, one should consider
the 1D access methods in Sec. C.7.2 as a simple and similarly efficient
alternative to the direct access scheme described above.
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C.8 Converting Images

C.8.1 ImageProcessor (Class)

The class ImageProcessor implements the following basic methods for
converting between different types of images. Each method returns a
new ImageProcessor object unless the original image is of the desired
type already. If this is the case, only a reference to the source image is
returned, i. e., no duplication occurs.

ImageProcessor convertToByte (boolean doScaling)
Copies the contents of the source image to a new object of type
ByteProcessor. If doScaling is true, the pixel values are auto-
matically scaled to the range of the target image; otherwise the
values are clamped without scaling. If applied to an image of
type colorProcessor, the intensity values are computed as the
weighted sum of the RGB component values. The RGB weights
can be set using the method setWeightingFactors() (see p. 485).

ImageProcessor convertToShort (boolean doScaling)
Copies the contents of the source image to a new object of type
ShortProcessor. If doScaling is true, the pixel values are au-
tomatically scaled to the range of the target image; otherwise the
values are clamped without scaling.

ImageProcessor convertToFloat ()
Copies the contents of the source image to a new object of type
FloatProcessor.

ImageProcessor convertToRGB ()
Copies the contents of the source image to a new object of type
ColorProcessor.

C.8.2 ImagePlus, ImageConverter (Classes)

Images of type ImagePlus can be converted by instances of the class
ImageConverter (package ij.process). To convert a given ImagePlus
object imp, we first create an instance of the class ImageConverter for
that image and then invoke a conversion method; for example,

ImageConverter iConv = new ImageConverter(imp);
iConv.convertToGray8();

This destructively modifies the image imp to an 8-bit grayscale image by
replacing the attached ImageProcessor (among other things). No con-
version takes place if the original image is of the target type already. The
complete ImageJ plugin in Prog. C.2 illustrates how ImageConverter
could be used to convert any image to an 8-bit grayscale image before
processing.

In summary, the following methods are applicable to
ImageConverter objects:492



C.8 Converting Images1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageConverter;
4 import ij.process.ImageProcessor;
5

6 public class Convert_ImagePlus_To_Gray8
7 implements PlugInFilter {
8

9 ImagePlus imp = null;
10
11 public int setup(String arg, ImagePlus imp) {
12 if (imp == null) {
13 IJ.noImage();
14 return DONE;
15 }
16 this.imp = imp;
17 return DOES_ALL; // this plugin accepts any type of image
18 }
19
20 public void run(ImageProcessor ip) {
21 ImageConverter iConv = new ImageConverter(imp);
22 iConv.convertToGray8();
23 ip = imp.getProcessor(); // ip is now of type ByteProcessor
24 // process grayscale image ...
25 }
26

27 } // end of class Convert_ImagePlus_To_Gray8

Program C.2
ImageJ sample plugin for con-
verting any type of ImagePlus
image to 8-bit grayscale. The ac-
tual conversion takes place on line
22. The updated image processor
is retrieved (line 23) and can sub-
sequently be used to process the
converted image. Notice that the
original ImagePlus object imp is
not passed to the plugin’s run()
method but only to the setup()
method, which is called first (by
ImageJ’s plugin mechanism) and
keeps a reference in the instance
variable imp (line 16) for later use.

void convertToGray8 ()
Converts the source image to an 8-bit (byte) grayscale image.

void convertToGray16 ()
Converts the source image to a 16-bit (short) grayscale image.

void convertToGray32 ()
Converts the source image to a 32-bit (float) grayscale image.

void convertToRGB ()
Converts the source image to a 32-bit (int) RGB color image.

void convertToHSB ()
Converts a given RGB image to an HSB9 (hue, saturation, bright-
ness) stack, a stack of three independent grayscale images. May
not be applied to another type of image.

void convertHSBToRGB ()
Converts an HSB image stack to a single RGB image.

void convertRGBStackToRGB ()
Converts an RGB image stack to a single RGB image.

9 HSB is identical to the HSV color space (see Sec. 12.2.3). 493
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void convertToRGBStack ()
Converts an RGB image to a three-slice RGB image stack.

void convertRGBtoIndexedColor (int nColors)
Converts an RGB image to an indexed color image with nColors
colors.

void setDoScaling (boolean doScaling)
Enables or disables the scaling of pixel values. If doScaling is
true, pixel values are scaled to [0 . . . 255] when converted to 8-
bit images and to [0 . . . 65,535] for 16-bit images. Otherwise no
scaling is applied.

void getDoScaling ()
Returns true if scaling is enabled for that ImageConverter object.

C.9 Histograms and Image Statistics

C.9.1 ImageProcessor (Class)

int[] getHistogram ()
Returns the histogram of the image or the region of interest (ROI),
if selected. For images of type ColorProcessor, the intensity
histogram is returned, where intensities are computed as weighted
sums of the RGB components. The RGB weights can be set using
the method setWeightingFactors() (see p. 485).

double getHistogramMax ()
Returns the maximum pixel value used for computing histograms
of float images.

double getHistogramMin ()
Returns the minimum pixel value used for computing histograms
of float images.

int getHistogramSize ()
Returns the number of bins used for computing histograms of float
images.

void setHistogramRange (double histMin, double histMax)
Specifies the range of pixel values used for computing histograms
of float images.

int setHistogramSize (int size)
Specifies the number of bins used for computing histograms of
float images.

Additional statistics can be obtained through the class ImageStatistics
and its subclasses ByteStatistics, ShortStatistics, FloatStatis-
tics, ColorStatistics, and StackStatistics.

C.10 Point Operations
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C.10 Point OperationsC.10.1 ImageProcessor (Class)

Single-image operations

The following methods for objects of type ImageProcessor perform
arithmetic or logic operations with a constant scalar value as the second
operand. All operations are applied either to the whole image or to the
pixels within the region of interest, if selected.

void abs ()
Replaces every pixel by its absolute value.

void add (int value)
Increments every pixel by value.

void add (double value )
Increments every pixel by value.

void and (int value)
Bitwise AND operation between the pixel and value.

void applyTable (int[] lut )
Applies the mapping specified by the lookup table lut to each
pixel.

void autoThreshold ()
Converts the image to binary using a threshold determined auto-
matically from the original histogram.

void gamma (double g )
Applies a gamma correction with the gamma value g.

void log ()
Replaces every pixel a by log10(a).

void max (double value )
Maximum operation: pixel values greater than value are set to
value.

void min (double value )
Minimum operation: pixel values smaller than value are set to
value.

void multiply (double value)
All pixels are multiplied by value.

void noise (double r )
Increments every pixel by a random value with normal distribution
in the range ±r.

void or (int value)
Bitwise OR operation between the pixel and value.

void sqr ()
Replaces every pixel a by a2.

void sqrt ()
Replaces every pixel a by

√
a. 495
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void threshold (int th )
Threshold operation: sets every pixel a with a ≤th to 0 and all
other pixels to 255.

void xor (int value)
Bitwise exclusive-OR (XOR) operation between the pixel and
value.

Multi-image operations

The class ImageProcessor defines a single method for combining two
images:

void copyBits (ImageProcessor B, int u, int v, int mode )
Copies the image B into the target image at position (u, v ) us-
ing the transfer mode mode. The target image is destructively
modified, and B remains unchanged.

Admissible mode values are defined as constants by the Blitter interface
(see below); for example,

ipA.copyBits(ipB, 0, 0, Blitter.COPY);

for copying (pasting) the contents of image ipB into ipA. Another ex-
ample for the use of copyBits() can be found in Sec. 5.8.3 (page 81).

In summary, ij.process.Blitter defines the following mode values
for the copyBits()method (A refers to the target image, B to the source
image):

ADD
A(u, v) ← A(u, v) + B(u, v)

AND
A(u, v) ← A(u, v) ∧ B(u, v)
Bitwise AND operation.

AVERAGE
A(u, v) ← (A(u, v) + B(u, v))/2

COPY
A(u, v) ← B(u, v)

COPY_INVERTED
A(u, v) ← 255−B(u, v)
Only applicable to 8-bit grayscale and RGB images.

DIFFERENCE
A(u, v) ← |A(u, v) −B(u, v)|

DIVIDE
A(u, v) ← A(u, v)/B(u, v)

MAX
A(u, v) ← max(A(u, v), B(u, v))

MIN
A(u, v) ← min(A(u, v), B(u, v))496



C.12 Geometric OperationsMULTIPLY
A(u, v) ← A(u, v) ·B(u, v)

OR
A(u, v) ← A(u, v) ∨ B(u, v)
Bitwise OR operation.

SUBTRACT
A(u, v) ← A(u, v) −B(u, v)

XOR
A(u, v) ← A(u, v) xor B(u, v)
Bitwise exclusive OR (XOR) operation.

C.11 Filters

C.11.1 ImageProcessor (Class)

void convolve (float[] kernel, int w, int h )
Performs a linear convolution of the image with the filter matrix
kernel (of size w ×h ), specified as a one-dimensional float array.

void convolve3x3 (int[] kernel)
Performs a linear convolution of the image with the filter matrix
kernel (of size 3×3), specified as a one-dimensional int array.

void dilate ()
Dilation using a 3×3 minimum filter.

void erode ()
Erosion using a 3×3 maximum filter.

void findEdges ()
Applies a 3×3 edge filter (Sobel operator).

void medianFilter ()
Applies a 3×3 median filter.

void smooth ()
Applies a simple 3×3 average filter (box filter).

void sharpen ()
Sharpens the image using a 3×3 Laplacian-like filter kernel.

C.12 Geometric Operations

C.12.1 ImageProcessor (Class)

ImageProcessor crop ()
Creates a new ImageProcessor object with the contents of the
current region of interest.

void flipHorizontal ()
Destructively mirrors the contents of the image (or region of in-
terest) horizontally. 497
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void flipVertical ()
Destructively mirrors the contents of the image (or region of in-
terest) vertically.

ImageProcessor resize (int width, int height)
Creates a new ImageProcessor object containing a scaled copy
of this image (or region of interest) of size width × height.

void rotate (double angle)
Destructively rotates the image (or region of interest) angle de-
grees clockwise.

ImageProcessor rotateLeft ()
Rotates the entire image 90◦ counterclockwise and returns a new
ImageProcessor object that contains the rotated image.

ImageProcessor rotateRight ()
Rotates the entire image 90◦ clockwise and returns a new Image-
Processor object that contains the rotated image.

void scale (double xScale, double yScale)
Destructively scales (zooms) the image (or region of interest) in x
and y by the factors xScale and yScale, respectively. The size
of the image does not change.

void setBackgroundValue (double value)
Sets the background fill value used by the rotate() and scale()
methods.

boolean getInterpolate ()
Returns true if (bilinear) interpolation is turned on for this image
processor.

void setInterpolate (boolean interpolate)
Activates bilinear interpolation for geometric operations (other-
wise nearest-neighbor interpolation is used).

double getInterpolatedPixel (double x, double y )
Returns the interpolated pixel value for the continuous coordi-
nates (x, y ) using bilinear interpolation. In case of a Color-
Processor, the gray value resulting from nearest-neighbor inter-
polation is returned (use getInterpolatedRGBPixel() to obtain
interpolated color values).

double getInterpolatedRGBPixel (double x, double y )
Returns the interpolated RGB pixel value for the continuous coor-
dinates (x, y ) using bilinear interpolation. This method is defined
for ColorProcessor only.
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C.13.1 ImageProcessor (Class)

void drawDot (int u, int v )
Draws a dot centered at position (u, v ) using the current line
width and fill/draw value.

void drawLine (int u1, int v1, int u2, int v2 )
Draws a line from position (u1, v1 ) to position (u2, v2 ).

void drawOval (int u, int v, int w, int h )
Draws an axis-parallel ellipse with a bounding rectangle of size w
× height h, positioned at (u, v ). See also fillOval().

void drawPixel (int u, int v )
Sets the pixel at position (u, v ) to the current fill/draw value.

void drawPolygon (java.awt.Polygon p )
Draws the polygon p using the current fill/draw value. See also
fillPolygon().

void drawRect (int u, int v, int width, int height)
Draws a rectangle of size width × height and parallel to the
coordinate axes.

void drawString (String s )
Draws the string s at the current drawing position (set with
moveTo() or lineTo()) using the current fill/draw value and font.
Use setAntialiasedText() to control anti-aliasing for text ren-
dering.

void drawString (String s, int u, int v )
Draws the string s at position (u, v ) using the current fill/draw
value and font.

void fill ()
Fills the image or region of interest (if selected) with the current
fill/draw value.

void fill (ImageProcessor mask )
Fills the pixels that are inside both the region of interest and the
mask image mask, which must be of the same size as the image or
region of interest. A position is considered inside the mask if the
corresponding mask pixel has a nonzero value.

void fillOval (int u, int v, int w, int h )
Draws and fills an axis-parallel ellipse with a bounding rectangle
of size w × height h, positioned at (u, v ). See also drawOval().

void fillPolygon (java.awt.Polygon p )
Draws and fills the polygon p using the current fill/draw value.
See also drawPolygon().

void getStringWidth (String s )
Returns the width (in pixels) of the string s using the current
font. 499
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void insert (ImageProcessor src, int u, int v )
Inserts the image contained in src at position (u, v ).

void lineTo (int u, int v )
Draws a line from the current drawing position to (u, v ). Updates
the current drawing position to (u, v ).

void moveTo (int u, int v )
Sets the current drawing position to (u, v ).

void setAntialiasedText (boolean antialiasedText)
Specifies whether or not text is rendered using anti-aliasing.

void setClipRect (Rectangle clipRect)
Sets the clipping rectangle used by the methods lineTo(), draw-
Line(), drawDot(), and drawPixel().

void setColor (java.awt.Color color)
Sets the default fill/draw value for subsequent drawing operations
to the pixel value closest to the specified color.

void setFont (java.awt.Font font )
Sets the font to be used by drawString().

void setJustification (int justification)
Sets the justification used by drawString(). Admissible values for
justification are the constants CENTER_JUSTIFY, RIGHT_JUS-
TIFY, and LEFT_JUSTIFY (defined in class ImageProcessor).

void setLineWidth (int width)
Sets the line width used by lineTo() and drawDot().

void setValue (double value )
Sets the fill/draw value for subsequent drawing operations. No-
tice that the double parameter value is interpreted differently
depending on the type of image. For ByteProcessor, Short-
Processor, and FloatProcessor, the numerical value of value is
simply converted by typecasting to the corresponding pixel type.
For images of type ColorProcessor, value is first typecast to
int and the result is interpreted as a packed αRGB value.

C.14 Displaying Images and Image Stacks

Only images of type ImagePlus (which include stacks of images) may
be displayed on the screen using the methods below. In contrast, ob-
jects of type ImageProcessor are not visible themselves but can only be
displayed through an associated ImagePlus object, as described in Sec.
C.14.2.

C.14.1 ImagePlus (Class)

void draw ()
Draws the image and the outline of the region of interest (if se-500
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Image Stacks

lected). Does nothing if there is no window associated with this
image (i. e., show() has not been called).

void draw (int u, int v, int width, int height)
Draws the image and the outline of the region of interest (as above)
using the clipping rectangle specified by the four parameters.

int getCurrentSlice ()
Returns the index of the currently displayed stack slice or 1 if
this ImagePlus is a single image. Use setSlice() to display a
particular slice.

int getID ()
Returns this image’s unique ID number. This ID can be used with
the WindowManager’s method getImage() to reference a particu-
lar image.

String getShortTitle ()
Returns a shortened version of the image’s name.

String getTitle ()
Returns the image’s full name.

ImageWindow getWindow ()
Returns the window (of type ij.gui.ImageWindow, a subclass of
java.awt.Frame) that is being used to display this ImagePlus
image.

void hide ()
Closes any window currently displaying this image.

boolean isInvertedLut ()
Returns true if this image’s ImageProcessor uses an inverting
lookuptable (LUT) for displaying zero pixel values as white and
255 as black. The LUT can be inverted by calling invertLut()
on the corresponding ImageProcessor (which is obtained with
getProcessor()).10

void repaintWindow ()
Calls draw() to draw the image and also repaints the image win-
dow to update the header information (dimension, type, size).

void setSlice (int index )
Displays the specified slice of a stack. The parameter index must
be 1 ≤ index ≤ N , where N is the number of slices in the stack.
Redisplays the (single) image if this ImagePlus does not contain
a stack.

void setTitle (String title)
Sets the image name to title.

void show ()
Opens a window to display this image and clears the status bar
in the main ImageJ window.

10 The class ImagePlus also defines a method invertLookupTable(), but this
method is not public. 501
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void show (String statusMsg)
Opens a window to display this image and displays the text
statusMsg in the status bar.

void updateAndDraw ()
Updates this image from the pixel data in its associated Image-
Processor object and then displays it (by calling draw()).

void updateAndRepaintWindow ()
Calls updateAndDraw() to repaint the current pixel data and also
updates the header information (dimension, type, size).

C.14.2 ImageProcessor (Class)

As mentioned above, objects of type ImageProcessor are not visible
automatically but require an associatedImagePlus object to be seen on
the screen.

The ImageProcessor object passed to a typical ImageJ plugin (of
class PlugInFilter) belongs to a visible image and thus already has an
associated ImagePlus, which is passed to the setup() method of that
plugin. This ImagePlus object can be used to redisplay the image at
any time during plugin execution, as exemplified in Prog. C.3.

To display the contents of a new ImageProcessor, a correspond-
ing ImagePlus object must first be created for it using the constructor
methods described in Sec. C.3.1; e. g.,

ByteProcessor ip = new ByteProcessor(200,300);
ImagePlus im = new ImagePlus ("A New Image", ip);
im.show(); // show image on screen
ip.smooth(); // modify this image
im.updateAndDraw(); // redisplay modified image

Notice that there is no simple way to access the ImagePlus object
associated with a given ImageProcessor or determine if one exists at all.
In reverse, the image processor of a given ImagePlus can be obtained di-
rectly with the getProcessor()method (see Sec. C.21.1). Analogously,
an image stack associated with a given ImagePlus object is retrieved by
the method getStack() (see Sec. C.15.1).

The following methods for the class ImageProcessor control the
mapping between the original pixel values and display intensities:

ColorModel getColorModel ()
Returns this image processor’s color model (of type java.awt.
image.ColorModel): IndexColorModel for grayscale and indexed
color images, and DirectColorModel for RGB color images. For
processors other than ColorProcessor, this is the base lookup ta-
ble, not the one that may have been modified by setMinAndMax()
or setThreshold(). An ImageProcessor’s color model can be
changed with the method setColorModel().502
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1 import ij.IJ;
2 import ij.ImagePlus;
3 import ij.plugin.filter.PlugInFilter;
4 import ij.process.ImageProcessor;
5

6 public class Display_Demo implements PlugInFilter {
7 ImagePlus im = null;
8

9 public int setup(String arg, ImagePlus im) {
10 if (im == null) {
11 IJ.noImage();
12 return DONE;
13 }
14 this.im = im; // keep reference to associated ImagePlus
15 return DOES_ALL;
16 }
17

18 public void run(ImageProcessor ip) {
19 for (int i = 0; i < 10; i++) {
20 // modify this image:
21 ip.smooth();
22 ip.rotate(30);
23 // redisplay this image:
24 im.updateAndDraw();
25 // sleep 100 ms so user can watch:
26 IJ.wait(100);
27 }
28 }
29

30 } // end of class Display_Demo

Program C.3
Animation example (redisplaying
the image passed to an ImageJ
plugin). The ImagePlus object as-
sociated with the ImageProcessor
passed to the plugin is initially
received by the setup() method,
where a reference is stored in vari-
able im (line 14). Inside the run()
method, the ImageProcessor is
repeatedly modified (lines 21–22)
and subsequently redisplayed by
invoking updateAndDraw() on the
associated ImagePlus object im
(line 24).

ColorModel getCurrentColorModel ()
Returns the current color model, which may have been modified
by setMinAndMax() or setThreshold().

double getMax ()
Returns the largest displayed pixel value amax (pixels I(u, v) >
amax are mapped to 255). amax can be modified with the method
setMinMax().

double getMin ()
Returns the smallest displayed pixel value amin (pixels I(u, v) <
amin are mapped to 0). amin can be modified with the method
setMinMax().

void invertLut ()
Inverts the values in this ImageProcessor’s lookuptable for dis-
playing zero pixel values as white and 255 as black. Does nothing
if this is a ColorProcessor. 503
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boolean isInvertedLut ()
Returns true if this ImageProcessor uses an inverting lookupt-
able for displaying zero pixel values as white and 255 as black.

void resetMinAndMax ()
For ShortProcessor and FloatProcessor images, the amin and
amax values are recalculated to correctly display the image. For
ByteProcessor and ColorProcessor, the lookuptables are reset
to default values.

void setMinAndMax (double amin, double amax )
Sets the parameters amin and amax to the specified values. The
image is displayed by mapping the pixel values in the range
[amin . . . amax] to screen values in the range [0 . . . 255].

void setColorModel (java.awt.image.ColorModel cm )
Sets the color model. Except for ColorProcessor, cm must be of
type IndexColorModel.

C.15 Operations on Image Stacks

C.15.1 ImagePlus (Class)

For creating ready-to-use multislice stack images, see the methods for
class NewImage (Sec. C.3.4).

ImageStack createEmptyStack ()
Returns a new, empty stack with the same width, height, and
color table as the given ImagePlus object to which this method is
applied. Notice that the new stack is not automatically attached
to this ImagePlus by this method (use setStack() for this pur-
pose).

ImageStack getImageStack ()
Returns the image stack associated with the ImagePlus object to
which this method is applied. Calls getStack() if the image has
no stack yet.

ImageStack getStack ()
Returns the image stack associated with the ImagePlus object to
which this method is applied. If no stack exists, a new single-
slice stack is created with the contents of that image (by calling
createEmptyStack()). After adding or removing slices to/from
the returned ImageStack object, setStack() should be called to
update the image and the window that is displaying it.

int getStackSize ()
If this ImagePlus contains a stack, the number of slices is re-
turned; 1 is returned if this is a single image.

void setStack (String title, ImageStack stack)
Replaces the current stack of this ImagePlus, if any, with stack
and assigns the name title.
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C.15.2 ImageStack (Class)

For creating new ImageStack objects, see the constructor methods in
Sec. C.3.2.

void addSlice (String label, ImageProcessor ip )
Adds the image specified by ip to the end of the stack, assigning
the title label to the new slice. No pixel data are duplicated.

void addSlice (String label, ImageProcessor ip, int n )
Adds the image specified by ip to the stack following slice n,
assigning the title label to the new slice. The slice is added
to the beginning of the stack if n is zero. No pixel data are
duplicated.

void addSlice (String label, Object pixels)
Adds the image specified by pixels (which must be a suitable
pixel array) to the end of the stack.

void deleteLastSlice ()
Deletes the last slice in the stack.

void deleteSlice (int n )
Deletes the n th slice from the stack, where 1 ≤ n ≤ getsize().

int getHeight ()
Returns the height of the images in this stack.

Object[] getImageArray ()
Returns the whole stack as an array of one-dimensional pixel ar-
rays. Note that the size of the returned array may be greater than
the number of slices currently in the stack, with unused elements
set to null. No pixel data are duplicated.

Object getPixels (int n )
Returns the one-dimensional pixel array for the n th slice of the
stack, where 1 ≤ n ≤ getsize(). No pixel data are duplicated.

ImageProcessor getProcessor (int n )
Creates and returns an ImageProcessor for the n th slice of the
stack, where 1 ≤ n ≤ getsize(). No pixel data are duplicated.
The method returns null if the stack is empty.

int getSize ()
Returns the number of slices in this stack.

String getSliceLabel (int n )
Returns the label of the n th slice, where 1 ≤ n ≤ getsize().
Returns null if the slice has no label.

String[] getSliceLabels ()
Returns the labels of all slices as an array of strings. Note that
the size of the returned array may be greater than the number of
slices currently in the stack. Returns null if the stack is empty
or the label of the first slice is null.

String getShortSliceLabel (int n )
Returns a shortened version (up to the first 60 characters or first 505
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newline character and suffix removed) of the n th slice’s label,
where 1 ≤ n ≤ getsize(). Returns null if the slice has no label.

int getWidth ()
Returns the height of the images in this stack.

void setPixels (Object pixels, int n )
Assigns the pixel array pixels to the n th slice, where 1 ≤ n ≤
getsize(). No pixel data are duplicated.

void setSliceLabel (String label, int n )
Assigns the title label to the n th slice, where 1 ≤ n ≤
getsize().

C.15.3 Stack Example

Programs C.4 and C.5 shows a working example for the use of image
stacks that blends one image into another by a simple technique called
“alpha blending” by producing a sequence of intermediate images stored
in a stack. This is an extension of Progs. 5.5 and 5.6 (see p. 85), which
produce only a single blended image.

The background image (bgIp) is the current image (i. e., the image to
which the plugin is applied) that is passed to the plugin’s run()method.
The foreground image (fgIp) is selected through a dialog window (cre-
ated with GenericDialog), as well as the number of slices in the stack
to be created.

In the plugin’s run() method (Prog. C.5, line 64), a stack with
the required number of slices is created first using the static method
NewImage.createByteImage(). In the following loop, a varying trans-
parency value α (see Eqn. (5.42)) is computed for each frame, and the
corresponding stack image (slice) is replaced by the weighted sum of
the two original images. Note that the slices of a stack of size N are
numbered 1 . . .N (getProcessor() in line 71), in contrast to the usual
numbering scheme. A sample result and the corresponding dialog win-
dow are shown in Fig. C.7.

C.16 Regions of Interest

A region of interest (ROI) is used to select a particular image region for
subsequent processing and is usually specified interactively by the user.
ImageJ supports several types of ROI, including:

• rectangular (class Roi)
• elliptical (class OvalRoi)
• straight line (class Line)
• polygon/polyline (classes PolygonRoi, FreehandRoi)
• point set (class PointRoi)506



C.16 Regions of Interest1 import ij.IJ;
2 import ij.ImagePlus;
3 import ij.ImageStack;
4 import ij.WindowManager;
5 import ij.gui.*;
6 import ij.plugin.filter.PlugInFilter;
7 import ij.process.*;
8

9 public class Alpha_Blending_Stack implements PlugInFilter {
10 static int nFrames = 10;
11 ImagePlus fgIm; // foreground image (chosen interactively)
12
13 public int setup(String arg, ImagePlus imp) {
14 return DOES_8G;}
15
16 boolean runDialog() {
17 // get list of open images
18 int[] windowList = WindowManager.getIDList();
19 if(windowList==null) {
20 IJ.noImage();
21 return false;
22 }
23 String[] windowTitles = new String[windowList.length];
24 for (int i = 0; i < windowList.length; i++) {
25 ImagePlus imp = WindowManager.getImage(windowList[i]);
26 if (imp != null)
27 windowTitles[i] = imp.getShortTitle();
28 else
29 windowTitles[i] = "untitled";
30 }
31 GenericDialog gd = new GenericDialog("Alpha Blending");
32 gd.addChoice("Foreground image:",
33 windowTitles, windowTitles[0]);
34 gd.addNumericField("Frames:", nFrames, 0);
35 gd.showDialog();
36 if (gd.wasCanceled())
37 return false;
38 else {
39 int img2Index = gd.getNextChoiceIndex();
40 fgIm = WindowManager.getImage(windowList[img2Index]);
41 nFrames = (int) gd.getNextNumber();
42 if (nFrames < 2)
43 nFrames = 2;
44 return true;
45 }
46 } // continued...

Program C.4
Stack example—alpha blending
(part 1 of 2 ). This is an extended
version of the alpha blending ex-
ample described in the main text
(Progs. 5.5 and 5.6). It blends two
given images with incrementally
changing alpha weights and stores
the results in a new stack of im-
ages.
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Program C.5
Stack example—alpha
blending (part 2 of 2 ).

48 // class Alpha_Blending_Stack (continued)
49

50 public void run(ImageProcessor bgIp) {
51 // bgIp = background image
52

53 if(runDialog()) { //open dialog box (returns false if cancelled)
54 int w = bgIp.getWidth();
55 int h = bgIp.getHeight();
56
57 // prepare foreground image
58 ImageProcessor fgIp =
59 fgIm.getProcessor().convertToByte(false);
60 ImageProcessor fgTmpIp = bgIp.duplicate();
61

62 // create image stack
63 ImagePlus movie =
64 NewImage.createByteImage("Movie",w,h,nFrames,0);
65 ImageStack stack = movie.getStack();
66
67 // loop over stack frames
68 for (int i=0; i<nFrames; i++) {
69 // transparency of foreground image
70 double iAlpha = 1.0 - (double)i/(nFrames-1);
71 ImageProcessor iFrame = stack.getProcessor(i+1);
72
73 // copy background image to frame i
74 iFrame.insert(bgIp,0,0);
75 iFrame.multiply(iAlpha);
76

77 // copy foreground image and make transparent
78 fgTmpIp.insert(fgIp,0,0);
79 fgTmpIp.multiply(1-iAlpha);
80
81 // add foreground image frame i
82 ByteBlitter blitter =
83 new ByteBlitter((ByteProcessor)iFrame);
84 blitter.copyBits(fgTmpIp,0,0,Blitter.ADD);
85 }
86

87 // display movie (image stack)
88 movie.show();
89 }
90 }
91
92 } // end of class Alpha_Blending_Stack
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Fig. C.7
Alpha blending example using an
image stack (results of Progs. C.4
and C.5). Original images: fore-
ground image (a) and background
image (b); frames 3 and 6 of the
created image stack (c, d). Note
the horizontal “slider” button at
the window’s bottom for navigat-
ing through the stack. Dialog win-
dow for selecting the foreground
image and the stack size (e).

The corresponding classes are defined in the ij.gui package. ROI ob-
jects are usually associated with objects of type ImagePlus, as described
below.

C.16.1 ImagePlus (Class)

Roi getRoi ()
Returns the current ROI object (of type Roi or one of its sub- 509
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classes Line, OvalRoi, PolygonRoi, TextRoi) of this image. Re-
turns null if the image has no ROI.

void killRoi ()
Deletes the image’s current region of interest.

void setRoi (int u, int v, int w, int h )
Assigns a rectangular ROI (of size w × h and upper left corner
positioned at (u, v)) to this image and displays it.

void setRoi (java.awt.Rectangle rect )
Assigns the specified rectangular ROI to this image and displays
it.

void setRoi (Roi roi )
Assigns the specified ROI (of type Roi or any of its subclasses) to
this image and displays it. Any existing ROI is deleted if roi is
null or its width or height is zero.

ImageProcessor getMask ()
For images with nonrectangular ROIs, this method returns
a mask image (of type ByteProcessor); otherwise it returns
null. This method calls the getMask() method on the image’s
ImageProcessor object and returns the result (see Sec. C.16.3 for
details).

C.16.2 Roi, Line, OvalRoi, PointRoi, PolygonRoi (Classes)

Roi (int u, int v, int width, int height)
Constructor method: creates a rectangular ROI from the specified
parameters.

Roi (java.awt.Rectangle rect)
Constructor method: creates a rectangular ROI from a given
AWT Rectangle object rect.

Roi (int u, int v, ImagePlus imp )
Constructor method: starts the process of creating a user-defined
rectangular ROI from starting point (u, v ) in the image imp. The
user determines the size of the region interactively using rubber
banding.

Line (int u1, int v1, int u2, int v2 )
Constructor method: creates a straight-line ROI between points
(u1, v1 ) and (u2, v2 ).

Line (int u, int v, ImagePlus imp )
Constructor method: starts the process of creating a user-defined
straight-line ROI from starting point (u, v ) in the image imp.
The user determines the end of the line interactively using rubber
banding.

OvalRoi (int u, int v, int width, int height)
Constructor method: creates an elliptic ROI whose bounding box
is determined by the given parameters.510



C.16 Regions of InterestOvalRoi (int u, int v, ImagePlus imp )
Constructor method: starts the process of creating a user-defined
oval ROI from starting point (u, v ) in the image imp.

PolygonRoi (int[] xPnts, int[] yPnts, int n, int type)
Constructor method: creates a new polygon or polyline ROI from
the coordinate arrays xPnts and yPnts, where n is the number
of polygon points. Admissible values for type are Roi.POLYGON,
Roi.FREEROI, Roi.TRACED_ROI, Roi.POLYLINE, Roi.FREELINE,
or Roi.ANGLE.

PolygonRoi (java.awt.Polygon p, int type )
Creates a new polygon or polyline ROI from a given AWT Polygon
object. type is used as above.

PolygonRoi (int u, int v, ImagePlus imp )
Constructor method: starts the process of creating a user-defined
polygon or polyline ROI from starting point (u, v ) in the image
imp.

PointRoi (int[] xPnts, int[] yPnts, int n )
Constructor method: creates a new point-set ROI from the coor-
dinate arrays xPnts and yPnts, where n is the number of polygon
points.

PointRoi (int u, int v )
Constructor method: creates a new single-point PointRoi at po-
sition (u, v).

PointRoi (int u, int v, ImagePlus imp )
Creates a new PointRoi for the image imp using the screen coor-
dinates (u, v).

boolean contains (int u, int v )
Returns true if the point (u, v) is within this region of interest
and false otherwise.

C.16.3 ImageProcessor (Class)

An ImageProcessor object may also have an associated region of in-
terest. The mechanism is similar to but nevertheless different from the
one used for ImagePlus objects. In particular, a nonrectangular ROI is
represented by the bounding rectangle in combination with a mask of
the same size specified by a one-dimensional int array.

ImageProcessor getMask ()
For images with nonrectangular ROIs, this method returns a
mask image (of type ByteProcessor); otherwise it returns null.
Pixels “inside” the region of interest have nonzero mask values.
This mask image is used for efficiently testing whether a particular
(u, v) coordinate is inside or outside the ROI. Note that the origin
of the mask image is not the same as for the original image but is
anchored at the upper left corner of the ROI’s bounding box (see
Prog. C.6 and Fig. C.8 for an example). 511
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byte[] getMaskArray ()
Returns the mask’s byte array, or null if this image has no mask.
Note that the origin and the dimensions of the underlying mask
image are not the same as for the original image. The origin of the
mask is anchored at the upper left corner of the ROI’s bounding
box, and its size is identical to the size of the bounding box.

Rectangle getRoi ()
Returns a rectangle (of type java.awt.Rectangle) that repre-
sents the current region of interest.

void resetRoi ()
Sets the region of interest to include the entire image.

void setMask (ImageProcessor mask )
Defines a byte mask that limits processing to an irregular ROI.
The size of mask must be the same as the current region of in-
terest. Pixels “inside” the region of interest have nonzero mask
values.

void setRoi (int u, int v, int width, int height)
Defines a rectangular region of interest and deletes the associated
mask if rect is not the same size as the previous ROI.

void setRoi (java.awt.Rectangle rect )
Defines a rectangular region of interest and deletes the associated
mask if rect is not the same size as the previous ROI. If rect is
null, the ROI is reset (by calling resetRoi()).

void setRoi (Roi roi )
Defines a rectangular or nonrectangular region of interest that
consists of a rectangular ROI and a mask.

void setRoi (java.awt.Polygon poly )
Defines a polygon-shaped region of interest that consists of a rect-
angular ROI and a mask.

C.16.4 ImageStack (Class)

Only rectangular ROIs are applicable to image stacks:

java.awt.Rectangle getRoi ()
Returns an AWT Rectangle object that represents the current
region of interest for this image stack.

void setRoi (java.awt.Rectangle rect )
Specifies a rectangular region of interest for this entire image stack.

C.16.5 IJ (Class)

The following static ROI methods in class IJ apply to the currently
active (user-selected) image:
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Fig. C.8
Nonrectangular ROI example.
Original image with polygon-
shaped selection (a). Binary
mask image returned by the
ImageProcessor’s getMaskArray()
method (b). Note that the origin
of the mask image is positioned at
the upper left corner of the ROI’s
bounding box. Result with pixels
inside the ROI being modified (c).
See Prog. C.6 for implementation
details.

static void makeLine (int u1, int v1, int u2, int v2 )
Creates a straight-line selection (region of interest) on the cur-
rently active image (i. e., the image selected by the user).

static void makeOval (int u, int v, int w, int h )
Creates an elliptical region of interest of size (w × h) on the cur-
rently active image.

static void makeRectangle (int u, int v, int w, int h )
Creates a rectangular region of interest of size (w × h) on the
currently active image.

C.17 Image Properties

Sometimes it is necessary to pass results from one plugin to another, but
the run() method itself does not provide a return value. One solution
is to deposit the results of a plugin as a property in the corresponding
ImagePlus object. A property consists of a key/value pair, where key is
a string and value may be any Java object. In ImageJ, this mechanism
is implemented as a hash table and supported by the following methods.
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Program C.6
Working with a nonrectangu-

lar region of interest (ROI).
This example shows the use of a
mask image for processing non-

rectangular ROIs. Objects of class
ImageProcessor always return a
valid bounding box (Rectangle),

whether an ROI is selected or not
(line 15). If no ROI is selected,

the resulting rectangle covers the
full image. ImageProcessor only
returns a mask image (line 16) if
the specified ROI is nonrectangu-
lar (e. g., OvalRoi, PolygonRoi);
otherwise null is returned. The

processing loop (lines 29–30) only
scans over the bounding rectan-
gle of the ROI. Inside this loop

(line 31), the mask image is used
to determine if pixels are inside
the ROI or not. Only the pix-

els inside the ROI are modified
(see Fig. C.8 for example images).

1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageProcessor;
4 import java.awt.Rectangle;
5

6 public class Roi_Demo implements PlugInFilter {
7 boolean showMask = true;
8

9 public int setup(String arg, ImagePlus imp) {
10 return DOES_RGB;
11 }
12
13 public void run(ImageProcessor ip) {
14

15 Rectangle roi = ip.getRoi();
16 ImageProcessor mask = ip.getMask();
17 boolean hasMask = (mask != null);
18 if (hasMask && showMask) {
19 (new ImagePlus("The Mask", mask)).show();
20 }
21
22 // ROI corner coordinates:
23 int rLeft = roi.x;
24 int rTop = roi.y;
25 int rRight = rLeft + roi.width;
26 int rBottom = rTop + roi.height;
27
28 // process all pixels inside the ROI
29 for (int v = rTop; v < rBottom; v++) {
30 for (int u = rLeft; u < rRight; u++) {
31 if (!hasMask || mask.getPixel(u-rLeft, v-rTop) > 0) {
32 int p = ip.getPixel(u, v);
33 ip.putPixel(u, v, ~p); // invert pixel values
34 }
35 }
36 }
37 }
38
39 } // end of class Roi_Demo

C.17.1 ImagePlus (Class)

java.util.Properties getProperties ()
Returns the Properties object (a hash table) with all property
entries of this image, or null if the image has no properties.

Object getProperty (String key )
Returns the property value associated with key, or null if no such
property exists.514



C.18 User Interactionvoid setProperty (String key, Object value)
Adds a property with name key and content value to this image’s
properties. If a property with the same key already exists for this
image, it is replaced by the new value. If value is null, the
corresponding property is deleted.

Example

Program C.7 shows a simple example for the use of properties involving
two ImageJ plugins. The first plugin (Plugin_1) computes the histogram
of the image and inserts the result as a property with the key HISTOGRAM
(line 17). The second plugin (Plugin_2) uses the same key to retrieve the
histogram from the image’s properties (line 36) for further processing.
In this example, the common key is made available through the static
variable HistKey, defined in class Plugin_1 (line 35).

C.18 User Interaction

C.18.1 IJ (Class)

Text output, logging
static void error (String msg )

Displays the message msg in a dialog box titled “Image”.
static void error (String title, String msg )

Displays the message msg in a dialog box with the specified title.
static void log (String msg )

Displays a line of text (msg ) in ImageJ’s “Log” window.
static void write (String msg )

Writes a line of text (msg ) in ImageJ’s “Results” window.

Dialog boxes
static double getNumber (String prompt, double defVal)

Allows the user to enter a number in a dialog box.
static String getString (String prompt, double defStr)

Allows the user to enter a string in a dialog box.
static void noImage ()

Displays a “no images are open” dialog box.
static void showMessage (String msg )

Displays a message in a dialog box titled “Message”.
static void showMessage (String title, String msg )

Displays a message in a dialog box with the specified title.
static boolean showMessageWithCancel (String title,

String msg )
Displays a message in a dialog box with the specified title. Returns
false if the user pressed “Cancel”.
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Program C.7
Use of image properties (example).
Properties can be used to pass re-
sults from one plugin to another.
Here, the first plugin (Plugin_1)

computes the histogram of the
image in its run() method and

attaches the result as a prop-
erty to the ImagePlus object imp
(line 17). The second plugin re-
trieves the histogram from the
image (line 36) for further pro-

cessing. Note that the typecast to
int[] in line 36 is potentially dan-

gerous and should not be used
without additional measures.

Plugin_1.java:

1 import ij.ImagePlus;
2 import ij.plugin.filter.PlugInFilter;
3 import ij.process.ImageProcessor;
4
5 public class Plugin_1 implements PlugInFilter {
6 ImagePlus im;
7 public static final String HistKey = "HISTOGRAM";
8
9 public int setup(String arg, ImagePlus im) {

10 this.im = im;
11 return DOES_ALL + NO_CHANGES;
12 }
13
14 public void run(ImageProcessor ip) {
15 int[] hist = ip.getHistogram();
16 // add histogram to image properties:
17 im.setProperty(HistKey, hist);
18 }
19
20 } // end of class Plugin_1

Plugin_2.java:

21 import ij.IJ;
22 import ij.ImagePlus;
23 import ij.plugin.filter.PlugInFilter;
24 import ij.process.ImageProcessor;
25
26 public class Plugin_2 implements PlugInFilter {
27 ImagePlus im;
28

29 public int setup(String arg, ImagePlus im) {
30 this.im = im;
31 return DOES_ALL;
32 }
33
34 public void run(ImageProcessor ip) {
35 String key = Plugin1_.HistKey;
36 int[] hist = (int[]) im.getProperty(key);
37 if (hist == null){
38 IJ.error("This image has no histogram");
39 }
40 else {
41 // process histogram ...
42 }
43 }
44
45 } // end of class Plugin_2
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C.18 User InteractionProgress and status bar
static void showProgress (double progress)

Updates the progress bar in ImageJ’s main window, where 0 ≤
progress < 1. The length of the displayed bar is progress times
its maximum length. The progress bar is not displayed if the time
between the first and second calls to this method is less than 30
milliseconds. The bar is erased if progress≥ 1.

static void showProgress (int i, int n )
Updates the progress bar in ImageJ’s main window, where 0 ≤
i < n is the current index and n is the maximum index. The
length of the displayed bar is (i/n) times its maximum length.
The bar is erased if i ≥ n.

static void showStatus (String msg )
Displays a message in the ImageJ status bar.

Keyboard queries
static boolean altKeyDown ()

Returns true if the alt key is down.
static boolean escapePressed ()

Returns true if the esc key was pressed since the last ImageJ
command started to execute or since resetEscape() was called.

static void resetEscape ()
This method sets the esc key to the “up” position.

static boolean shiftKeyDown ()
Returns true if the shift key is down.

static boolean spaceBarDown ()
Returns true if the space bar is down.

Miscellaneous
static void beep ()

Emits a beep signal.
static ImagePlus getImage ()

Returns a reference to the active image, i. e., the ImagePlus object
currently selected by the user.

static void wait (int msecs)
Waits (suspends processing) for msecs milliseconds.

C.18.2 GenericDialog (Class)

The class GenericDialog offers a simple mechanism for creating dialog
windows containing multiple fields of various types. The layout of these
dialog windows is created automatically. A small example and the cor-
responding results are shown in Prog. C.8. Other examples can be found
in Secs. 5.8.5 and C.15.3. For additional details, see the ImageJ online
documentation and the tutorial in [4]. 517
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Program C.8
Use of the GenericDialog class
(example). This ImageJ plugin

creates a new image with the title
and size specified interactively

by the user. The corresponding
dialog window is shown below.

1 import ij.ImagePlus;
2 import ij.gui.GenericDialog;
3 import ij.gui.NewImage;
4 import ij.plugin.PlugIn;
5

6 public class Generic_Dialog_Example implements PlugIn {
7 static String title = "New Image";
8 static int width = 512;
9 static int height = 512;

10
11 public void run(String arg) {
12 GenericDialog gd = new GenericDialog("New Image");
13 gd.addStringField("Title:", title);
14 gd.addNumericField("Width:", width, 0);
15 gd.addNumericField("Height:", height, 0);
16 gd.showDialog();
17 if (gd.wasCanceled())
18 return;
19 title = gd.getNextString();
20 width = (int) gd.getNextNumber();
21 height = (int) gd.getNextNumber();
22
23 ImagePlus imp = NewImage.createByteImage(
24 title, width, height, 1, NewImage.FILL_WHITE);
25 imp.show();
26 }
27
28 } // end of class Generic_Dialog_Example

C.19 Plugins

ImageJ plugins come in two different variants, both of which are imple-
mented as Java “interfaces”:

• PlugIn: can be applied without any image and is used to acquire
images, display windows, etc.

• PlugInFilter: is applied to process an existing image.

C.19.1 PlugIn (Interface)

The PlugIn interface only specifies the implementation of a single
method:

void run (String arg )
Starts this plugin, where arg is used to specify options (may be
an empty string).
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C.19 PluginsC.19.2 PlugInFilter (Interface)

The PlugInFilter interface requires the implementation of the following
two methods:

void run (ImageProcessor ip )
Starts this plugin. The parameter ip specifies the image (Image-
Processor object) to which this plugin is applied.

int setup (String arg, ImagePlus im )
When the plugin is applied, the setup() method is called before
the run() method. The parameter im refers to the target image
(ImagePlus object) and not its ImageProcessor! If access to im
is required within the run() method, it is usually assigned to a
suitable object variable of this plugin by the setup()method (see,
e. g., Prog. C.3). Note that the plugin’s setup() method is called
even when no images are open—in this case null is passed instead
of the currently active image! The return value of the setup()
method is a 32-bit (int) pattern, where each bit is a flag that
corresponds to a certain feature of that plugin. Different flags can
be easily combined by summing predefined constants, as listed
below. The run() method of the plugin is not invoked if setup()
returns DONE.

The following return flags for the setup() method are defined as int
constants in the class PlugInFilter:

DOES_8G
This plugin accepts (unsigned) 8-bit grayscale images.

DOES_8C
This plugin accepts 8-bit indexed color images.

DOES_16
This plugin accepts (unsigned) 16-bit grayscale images.

DOES_32
This plugin accepts 32-bit float images.

DOES_RGB
This plugin accepts 3 × 8 bit RGB color images.

DOES_ALL
This plugin accepts any type of image (DOES_ALL = DOES_8G +
DOES_8C+ DOES_16+ DOES_32+ DOES_RGB).

DOES_STACKS
The plugin’s run method shall be applied to all slices of a stack.

DONE
The plugin’s run method shall not be invoked.

NO_CHANGES
The plugin does not modify the original image.

NO_IMAGE_REQUIRED
This plugin does not require that an image be open. In this case,
null is passed to the run() method as the argument for ip. 519
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NO_UNDO
This plugin does not require undo.

ROI_REQUIRED
This plugin requires a region of interest (ROI) to be explicitly
specified.

STACK_REQUIRED
This plugin requires a stack of images.

SUPPORTS_MASKING
For nonrectangular ROIs, this plugin wants ImageJ to automat-
ically restore that part of the image that is inside the bounding
rectangle but outside of the ROI. This greatly simplifies the use
of nonrectangular ROIs.

The flags above are integer values, each with only a single bit set (1) and
the remaining bits being zero. Flags can be combined either by a bitwise
OR operation (e. g., DOES_8G | DOES_16) or by simple arithmetic addi-
tion. For example, the setup() method for a PlugInFilter that can
handle 8- and 16-bit grayscale images and does not modify the original
image could be defined as follows:

public int setup (String arg, ImagePlus im) {
return DOES_8G + DOES_16G + NO_CHANGES;

}

C.19.3 Executing Plugins: IJ (Class)

static Object runPlugIn (String className, String arg )
Creates a new plugin object of class className and executes its
run() method, passing the string argument arg. If the plugin
is of type PlugInFilter, the new instance is applied to the cur-
rently active image by first invoking the setup() method. The
runPlugIn()method returns a reference to the new plugin object.
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C.20 Window ManagementC.20 Window Management

C.20.1 WindowManager (Class)

The class ij.WindowManager defines a set of static methods for manip-
ulating the screen windows in ImageJ:

static boolean closeAllWindows ()
Closes all windows and returns true if successful. Stops and re-
turns false if the “save changes” dialog is canceled for any unsaved
image.

static ImagePlus getCurrentImage ()
Returns the currently active image of type ImagePlus.

static ImageWindow getCurrentWindow ()
Returns the currently active window of type ImageWindow.

static int[] getIDList ()
Returns an array containing the IDs of all open images, or null
if no image is open. The image IDs are negative integer values.

static ImagePlus getImage (int imageID)
For imageID less than zero, this method returns the ImagePlus
object with the specified imageID. It returns null if either
imageID is zero, no open image has a matching ID, or no images
are open at all. For imageID greater than zero, it returns the
image at the corresponding position in the image array delivered
by getIDList().

static ImagePlus getImage (String title)
Returns the first image that has the specified title or null if no
such image is found.

static int getImageCount ()
Returns the number of open images.

static ImagePlus getTempCurrentImage ()
Returns the image temporarily made current (by setTempCur-
rentImage()), which may be null.

static int getWindowCount ()
Returns the number of open image windows.

static void putBehind ()
Moves the current active image to the back and activates the next
image in a cyclic fashion.

static void repaintImageWindows ()
Repaints all open image windows.

static void setCurrentWindow (ImageWindow win )
Makes the specified image active.

static void setTempCurrentImage (ImagePlus im )
Makes im temporarily the active image and thus allows processing
of images that are currently not displayed in a window. Another
call with the argument null reverts to the previously active image.
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C.21 Additional Functions

C.21.1 ImagePlus (Class)

Locking and unlocking images

ImageJ plugins may execute simultaneously as different Java threads
in the same runtime environment. Locking may be required to avoid
mutual interferences between plugins that operate on the same image.

boolean lock ()
Locks this image so other threads can test to see if it is in use.
Returns true if the image was successfully locked. Beeps, displays
a message in the status bar, and returns false if the image is
already locked.

boolean lockSilently ()
Similar to lock but does not beep. Displays an error message if
the attempt to lock the image fails.

void unlock ()
Unlocks this image.

Internal clipboard

ImageJ maintains a single internal clipboard image (as an ImagePlus
object) that can be manipulated interactively with the Edit menu or
accessed through the following methods:

void copy (boolean cut )
Copies the contents of the current selection (region of interest)
to the internal clipboard. The entire image is copied if there is
no selection. The selected part of the image is cleared (i. e., filled
with the current background value or color) if cut is true.

void paste ()
Inserts the contents of the internal clipboard into this (ImagePlus)
image. If the target image has a selection the same size as the im-
age on the clipboard, the clipboard content is inserted into that
selection, otherwise the clipboard content is inserted into the cen-
ter of the image.

static ImagePlus getClipboard ()
Returns the internal clipboard (as an ImagePlus object) or null if
the internal clipboard is empty. Note that this is a static method
and is thus called in the form ImagePlus.getClipboard().

File information

FileInfo getFileInfo ()
Returns a FileInfo object containing information, including the
pixel array, needed to save this image. Use getOriginalFile-
Info() to get a copy of the FileInfo object used to open the
image.522



C.21 Additional FunctionsFileInfo getOriginalFileInfo ()
Returns the FileInfo object that was used to open this im-
age. This includes fields such as fileName (String), directory
(String), and description (String). Returns null for images
created internally or using the File→New command.

C.21.2 IJ (Class)

Directory information
static String getDirectory (String target)

Returns the path to ImageJ’s home, startup, plugins, macros,
temp, or image directory, depending on the value of target
("home", "startup", "plugins", "macros", "temp", or "image").
If target (which may not be null) is none of the above, the
method displays a dialog and returns the path to the directory
selected by the user. null is returned if the specified directory is
not found or the user cancels the dialog.

Memory management
static long currentMemory ()

Returns the amount of memory (in bytes) currently being used by
ImageJ.

static String freeMemory ()
Runs the garbage collector and returns a string showing how much
of the available memory is in use.

static long maxMemory ()
Returns the maximum amount of memory available to ImageJ or
zero if ImageJ is unable to determine this limit.

System information
static String getVersion ()

Returns ImageJ’s version number as a string.
static boolean isJava2 ()

Returns true if ImageJ is running on Java 2.
static boolean isJava14 ()

Returns true if ImageJ is running on a Java 1.4 or greater JVM.
static boolean isMacintosh ()

Returns true if the current platform is a Macintosh computer.
static boolean isMacOSX ()

Returns true if the current platform is a Macintosh computer
running OS X.

static boolean isWindows ()
Returns true if this machine is running Windows.

static boolean versionLessThan (String version)
Displays an error message and returns false if the current version
of ImageJ is less than the one specified.
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Source Code

D.1 Harris Corner Detector

The following Java source code represents a complete implementation
of the Harris corner detector, as described in Ch. 8. It consists of the
following classes (files):

• Harris_Corner_Plugin: a sample ImageJ plugin that demonstrates
the use of the corner detector.

• Corner (p. 527): a class representing an individual corner object.
• HarrisCornerDetector (p. 527): the actual corner detector. This
class is instantiated to create a corner detector for a given image.

D.1.1 Harris_Corner_Plugin (Class)

1 import harris.HarrisCornerDetector;
2 import ij.IJ;
3 import ij.ImagePlus;
4 import ij.gui.GenericDialog;
5 import ij.plugin.filter.PlugInFilter;
6 import ij.process.ImageProcessor;
7
8 public class Harris_Corner_Plugin implements PlugInFilter {
9 ImagePlus im;

10 static float alpha = HarrisCornerDetector.DEFAULT_ALPHA;
11 static int threshold = HarrisCornerDetector.

DEFAULT_THRESHOLD;
12 static int nmax = 0; //points to show
13

14 public int setup(String arg, ImagePlus im) {
15 this.im = im; 525
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16 if (arg.equals("about")) {
17 showAbout();
18 return DONE;
19 }
20 return DOES_8G + NO_CHANGES;
21 }
22
23 public void run(ImageProcessor ip) {
24 if (!showDialog()) return; //dialog canceled or error
25 HarrisCornerDetector hcd =
26 new HarrisCornerDetector(ip,alpha,threshold);
27 hcd.findCorners();
28 ImageProcessor result = hcd.showCornerPoints(ip);
29 ImagePlus win =
30 new ImagePlus("Corners from " + im.getTitle(),

result);
31 win.show();
32 }
33
34 void showAbout() {
35 String cn = getClass().getName();
36 IJ.showMessage("About "+cn+" ...",
37 "Harris Corner Detector");
38 }
39
40 private boolean showDialog() {
41 // display dialog, and return false if canceled or in error.
42 GenericDialog dlg = new GenericDialog("Harris Corner

Detector", IJ.getInstance());
43 float def_alpha = HarrisCornerDetector.DEFAULT_ALPHA;
44 dlg.addNumericField("Alpha (default: "+def_alpha+")",

alpha, 3);
45 int def_threshold = HarrisCornerDetector.

DEFAULT_THRESHOLD;
46 dlg.addNumericField("Threshold (default: "+def_threshold+

")", threshold, 0);
47 dlg.addNumericField("Max. points (0 = show all)", nmax,

0);
48 dlg.showDialog();
49 if(dlg.wasCanceled())
50 return false;
51 if(dlg.invalidNumber()) {
52 IJ.showMessage("Error", "Invalid input number");
53 return false;
54 }
55 alpha = (float) dlg.getNextNumber();
56 threshold = (int) dlg.getNextNumber();
57 nmax = (int) dlg.getNextNumber();
58 return true;
59 }
60 } // end of class Harris_Corner_Plugin
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1 package harris;
2 import ij.process.ImageProcessor;
3
4 class Corner implements Comparable {
5 int u;
6 int v;
7 float q;
8
9 Corner (int u, int v, float q) {

10 this.u = u;
11 this.v = v;
12 this.q = q;
13 }
14
15 public int compareTo (Object obj) {
16 // used for sorting corners by corner strength q
17 Corner c2 = (Corner) obj;
18 if (this.q > c2.q) return -1;
19 if (this.q < c2.q) return 1;
20 else return 0;
21 }
22
23 double dist2 (Corner c2) {
24 // returns the squared distance between this corner and corner c2
25 int dx = this.u - c2.u;
26 int dy = this.v - c2.v;
27 return (dx*dx)+(dy*dy);
28 }
29

30 void draw(ImageProcessor ip) {
31 // draw this corner as a black cross in ip
32 int paintvalue = 0; // black
33 int size = 2;
34 ip.setValue(paintvalue);
35 ip.drawLine(u-size,v,u+size,v);
36 ip.drawLine(u,v-size,u,v+size);
37 }
38

39 } // end of class Corner

D.1.3 File HarrisCornerDetector (Class)

1 package harris;
2 import ij.IJ;
3 import ij.ImagePlus;
4 import ij.plugin.filter.Convolver;
5 import ij.process.Blitter;
6 import ij.process.ByteProcessor; 527
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7 import ij.process.FloatProcessor;
8 import ij.process.ImageProcessor;
9 import java.util.Arrays;

10 import java.util.Collections;
11 import java.util.List;
12 import java.util.Vector;
13
14 public class HarrisCornerDetector {
15
16 public static final float DEFAULT_ALPHA = 0.050f;
17 public static final int DEFAULT_THRESHOLD = 20000;
18 float alpha = DEFAULT_ALPHA;
19 int threshold = DEFAULT_THRESHOLD;
20 double dmin = 10;
21 final int border = 20;
22
23 // filter kernels (1D part of separable 2D filters)
24 final float[] pfilt = {0.223755f,0.552490f,0.223755f};
25 final float[] dfilt = {0.453014f,0.0f,-0.453014f};
26 final float[] bfilt = {0.01563f,0.09375f,0.234375f,0.3125f

,0.234375f,0.09375f,0.01563f};
27 // = [1, 6, 15, 20, 15, 6, 1]/64
28 ImageProcessor ipOrig;
29 FloatProcessor A;
30 FloatProcessor B;
31 FloatProcessor C;
32 FloatProcessor Q;
33 List<Corner> corners;
34
35 HarrisCornerDetector(ImageProcessor ip) {
36 this.ipOrig = ip;
37 }
38

39 public HarrisCornerDetector(ImageProcessor ip,
40 float alpha, int threshold)
41 {
42 this.ipOrig = ip;
43 this.alpha = alpha;
44 this.threshold = threshold;
45 }
46
47 public void findCorners() {
48 makeDerivatives();
49 makeCrf(); //corner response function (CRF)
50 corners = collectCorners(border);
51 corners = cleanupCorners(corners);
52 }
53

54 void makeDerivatives() {
55 FloatProcessor Ix =
56 (FloatProcessor) ipOrig.convertToFloat();
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58 (FloatProcessor) ipOrig.convertToFloat();
59
60 Ix = convolve1h(convolve1h(Ix,pfilt),dfilt);
61 Iy = convolve1v(convolve1v(Iy,pfilt),dfilt);
62
63 A = sqr((FloatProcessor) Ix.duplicate());
64 A = convolve2(A,bfilt);
65
66 B = sqr((FloatProcessor) Iy.duplicate());
67 B = convolve2(B,bfilt);
68
69 C = mult((FloatProcessor)Ix.duplicate(),Iy);
70 C = convolve2(C,bfilt);
71 }
72
73 void makeCrf() { // corner response function (CRF)
74 int w = ipOrig.getWidth();
75 int h = ipOrig.getHeight();
76 Q = new FloatProcessor(w,h);
77 float[] Apix = (float[]) A.getPixels();
78 float[] Bpix = (float[]) B.getPixels();
79 float[] Cpix = (float[]) C.getPixels();
80 float[] Qpix = (float[]) Q.getPixels();
81 for (int v=0; v<h; v++) {
82 for (int u=0; u<w; u++) {
83 int i = v*w+u;
84 float a = Apix[i], b = Bpix[i], c = Cpix[i];
85 float det = a*b-c*c;
86 float trace = a+b;
87 Qpix[i] = det - alpha * (trace * trace);
88 }
89 }
90 }
91
92 List<Corner> collectCorners(int border) {
93 List<Corner> cornerList = new Vector<Corner>(1000);
94 int w = Q.getWidth();
95 int h = Q.getHeight();
96 float[] Qpix = (float[]) Q.getPixels();
97 for (int v=border; v<h-border; v++){
98 for (int u=border; u<w-border; u++) {
99 float q = Qpix[v*w+u];

100 if (q>threshold && isLocalMax(Q,u,v)) {
101 Corner c = new Corner(u,v,q);
102 cornerList.add(c);
103 }
104 }
105 }
106 Collections.sort(cornerList);
107 return cornerList;
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108 }
109

110 List<Corner> cleanupCorners(List<Corner> corners) {
111 double dmin2 = dmin*dmin;
112 Corner[] cornerArray = new Corner[corners.size()];
113 cornerArray = corners.toArray(cornerArray);
114 List<Corner> goodCorners =
115 new Vector<Corner>(corners.size());
116 for (int i=0; i<cornerArray.length; i++){
117 if (cornerArray[i] != null){
118 Corner c1 = cornerArray[i];
119 goodCorners.add(c1);
120 // delete all remaining corners close to c
121 for (int j=i+1; j<cornerArray.length; j++){
122 if (cornerArray[j] != null){
123 Corner c2 = cornerArray[j];
124 if (c1.dist2(c2)<dmin2)
125 cornerArray[j] = null; //delete corner
126 }
127 }
128 }
129 }
130 return goodCorners;
131 }
132
133 void printCornerPoints(List<Corner> crf) {
134 int i = 0;
135 for (Corner ipt: crf){
136 IJ.write((i++) + ": " + (int)ipt.q + " " + ipt.u + " " +

ipt.v);
137 }
138 }
139

140 public ImageProcessor showCornerPoints(ImageProcessor ip) {
141 ByteProcessor ipResult = (ByteProcessor)ip.duplicate();
142 // change background image contrast and brightness
143 int[] lookupTable = new int[256];
144 for (int i=0; i<256; i++){
145 lookupTable[i] = 128 + (i/2);
146 }
147 ipResult.applyTable(lookupTable);
148 // draw corners:
149 for (Corner c: corners) {
150 c.draw(ipResult);
151 }
152 return ipResult;
153 }
154

155 void showProcessor(ImageProcessor ip, String title) {
156 ImagePlus win = new ImagePlus(title,ip);
157 win.show();
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159

160 // utility methods for float processors —
161
162 static FloatProcessor convolve1h
163 (FloatProcessor p, float[] h) {
164 Convolver conv = new Convolver();
165 conv.setNormalize(false);
166 conv.convolve(p, h, 1, h.length);
167 return p;
168 }
169
170 static FloatProcessor convolve1v
171 (FloatProcessor p, float[] h) {
172 Convolver conv = new Convolver();
173 conv.setNormalize(false);
174 conv.convolve(p, h, h.length, 1);
175 return p;
176 }
177

178 static FloatProcessor convolve2
179 (FloatProcessor p, float[] h) {
180 convolve1h(p,h);
181 convolve1v(p,h);
182 return p;
183 }
184

185 static FloatProcessor sqr (FloatProcessor fp1) {
186 fp1.sqr();
187 return fp1;
188 }
189
190 static FloatProcessor mult (FloatProcessor fp1,

FloatProcessor fp2) {
191 int mode = Blitter.MULTIPLY;
192 fp1.copyBits(fp2, 0, 0, mode);
193 return fp1;
194 }
195

196 static boolean isLocalMax (FloatProcessor fp,int u,int v) {
197 int w = fp.getWidth();
198 int h = fp.getHeight();
199 if (u<=0 || u>=w-1 || v<=0 || v>=h-1)
200 return false;
201 else {
202 float[] pix = (float[]) fp.getPixels();
203 int i0 = (v-1)*w+u, i1 = v*w+u, i2 = (v+1)*w+u;
204 float cp = pix[i1];
205 return
206 cp > pix[i0-1] && cp > pix[i0] && cp > pix[i0+1] &&
207 cp > pix[i1-1] && cp > pix[i1+1] &&
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208 cp > pix[i2-1] && cp > pix[i2] && cp > pix[i2+1] ;
209 }
210 }
211
212 } // end of class HarrisCornerDetector

D.2 Combined Region Labeling and Contour Tracing

The following Java source code represents a complete implementation of
the combined region labeling and contour tracing algorithm described in
Sec. 11.2. It consists of the following classes (files):

• Contour_Tracing_Plugin: a sample ImageJ plugin that demon-
strates the use of this region labeling implementation.

• Contour (p. 533): a class representing a contour object.
• BinaryRegion (p. 535): a class representing a binary region object.
• ContourTracer (p. 536): the actual region labeler and contour
tracer. This class is instantiated to create a region labeler for a
given image.

• ContourOverlay (p. 541): a class for displaying contours as vector
graphics on top of images.

D.2.1 Contour_Tracing_Plugin (Class)

1 import java.util.List;
2 import regions.BinaryRegion;
3 import regions.RegionLabeling;
4 import contours.Contour;
5 import contours.ContourOverlay;
6 import contours.ContourTracer;
7

8 import ij.IJ;
9 import ij.ImagePlus;

10 import ij.gui.ImageWindow;
11 import ij.plugin.filter.PlugInFilter;
12 import ij.process.ImageProcessor;
13

14 // This plugin implements the combined contour tracing and
15 // component labeling algorithm as described in [22].
16 // It uses the ContourTracer class to create lists of points
17 // representing the internal and external contours of each region in
18 // the binary image. Instead of drawing directly into the image,
19 // we make use of ImageJ’s ImageCanvas to draw the contours
20 // in a separate layer on top of the image. It illustrates how to use
21 // the Java2D API to draw the polygons and scale and transform
22 // them to match ImageJ’s zooming.
23
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25 public class Contour_Tracing_Plugin implements PlugInFilter
26 {
27 ImagePlus origImage = null;
28 String origTitle = null;
29 static boolean verbose = true;
30
31 public int setup(String arg, ImagePlus im) {
32 origImage = im;
33 origTitle = im.getTitle();
34 RegionLabeling.setVerbose(verbose);
35 return DOES_8G + NO_CHANGES;
36 }
37
38 public void run(ImageProcessor ip) {
39 ImageProcessor ip2 = ip.duplicate();
40
41 // label regions and trace contours
42 ContourTracer tracer = new ContourTracer(ip2);
43
44 // extract contours and regions
45 List<Contour> outerContours = tracer.getOuterContours();
46 List<Contour> innerContours = tracer.getInnerContours();
47 List<BinaryRegion> regions = tracer.getRegions();
48 if (verbose) printRegions(regions);
49
50 // change lookup table to show gray regions
51 ip2.setMinAndMax(0,512);
52 // create an image with overlay to show the contours
53 ImagePlus im2 = new ImagePlus("Contours of " + origTitle,

ip2);
54 ContourOverlay cc = new ContourOverlay(im2, outerContours,

innerContours);
55 new ImageWindow(im2, cc);
56 }
57
58 void printRegions(List<BinaryRegion> regions) {
59 for (BinaryRegion r: regions) {
60 IJ.write("" + r);
61 }
62 }
63
64 } // end of class Contour_Tracing_Plugin

D.2.2 Contour (Class)

1 package contours;
2 import ij.IJ;
3 import java.awt.Point;
4 import java.awt.Polygon;
5 import java.awt.Shape; 533
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6 import java.awt.geom.Ellipse2D;
7 import java.util.ArrayList;
8 import java.util.Iterator;
9 import java.util.List;

10

11 public class Contour {
12 static int INITIAL_SIZE = 50;
13 int label;
14 List<Point> points;
15
16 Contour (int label, int size) {
17 this.label = label;
18 points = new ArrayList<Point>(size);
19 }
20
21 Contour (int label) {
22 this.label = label;
23 points = new ArrayList<Point>(INITIAL_SIZE);
24 }
25

26 void addPoint (Point n) {
27 points.add(n);
28 }
29

30 Shape makePolygon() {
31 int m = points.size();
32 if (m>1) {
33 int[] xPoints = new int[m];
34 int[] yPoints = new int[m];
35 int k = 0;
36 Iterator<Point> itr = points.iterator();
37 while (itr.hasNext() && k < m) {
38 Point cpt = itr.next();
39 xPoints[k] = cpt.x;
40 yPoints[k] = cpt.y;
41 k = k + 1;
42 }
43 return new Polygon(xPoints, yPoints, m);
44 }
45 else { // use circles for isolated pixels
46 Point cpt = points.get(0);
47 return new Ellipse2D.Double
48 (cpt.x-0.1, cpt.y-0.1, 0.2, 0.2);
49 }
50 }
51
52 static Shape[] makePolygons(List<Contour> contours) {
53 if (contours == null)
54 return null;
55 else {
56 Shape[] pa = new Shape[contours.size()];
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57 int i = 0;
58 for (Contour c: contours) {
59 pa[i] = c.makePolygon();
60 i = i + 1;
61 }
62 return pa;
63 }
64 }
65
66 void moveBy (int dx, int dy) {
67 for (Point pt: points) {
68 pt.translate(dx,dy);
69 }
70 }
71
72 static void moveContoursBy
73 (List<Contour> contours, int dx, int dy) {
74 for (Contour c: contours) {
75 c.moveBy(dx, dy);
76 }
77 }
78
79 } // end of class Contour

D.2.3 BinaryRegion (Class)

1 package regions;
2 import java.awt.Rectangle;
3 import java.awt.geom.Point2D;
4

5 public class BinaryRegion {
6 int label;
7 int numberOfPixels = 0;
8 double xc = Double.NaN;
9 double yc = Double.NaN;

10 int left = Integer.MAX_VALUE;
11 int right = -1;
12 int top = Integer.MAX_VALUE;
13 int bottom = -1;
14
15 int x_sum = 0;
16 int y_sum = 0;
17 int x2_sum = 0;
18 int y2_sum = 0;
19

20 public BinaryRegion(int id){
21 this.label = id;
22 }
23
24 public int getSize() { 535
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25 return this.numberOfPixels;
26 }
27
28 public Rectangle getBoundingBox() {
29 if (left == Integer.MAX_VALUE)
30 return null;
31 else
32 return new Rectangle
33 (left, top, right-left+1, bottom-top+1);
34 }
35

36 public Point2D.Double getCenter(){
37 if (Double.isNaN(xc))
38 return null;
39 else
40 return new Point2D.Double(xc, yc);
41 }
42
43 public void addPixel(int x, int y){
44 numberOfPixels = numberOfPixels + 1;
45 x_sum = x_sum + x;
46 y_sum = y_sum + y;
47 x2_sum = x2_sum + x*x;
48 y2_sum = y2_sum + y*y;
49 if (x<left) left = x;
50 if (y<top) top = y;
51 if (x>right) right = x;
52 if (y>bottom) bottom = y;
53 }
54

55 public void update(){
56 if (numberOfPixels > 0){
57 xc = x_sum / numberOfPixels;
58 yc = y_sum / numberOfPixels;
59 }
60 }
61
62 } // end of class BinaryRegion

D.2.4 ContourTracer (Class)

1 package contours;
2 import java.awt.Point;
3 import java.util.ArrayList;
4 import java.util.LinkedList;
5 import java.util.List;
6 import regions.BinaryRegion;
7 import ij.IJ;
8 import ij.process.ImageProcessor;
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10 public class ContourTracer {
11 static final byte FOREGROUND = 1;
12 static final byte BACKGROUND = 0;
13 static boolean beVerbose = true;
14

15 List<Contour> outerContours = null;
16 List<Contour> innerContours = null;
17 List<BinaryRegion> allRegions = null;
18 int regionId = 0;
19
20 ImageProcessor ip = null;
21 int width;
22 int height;
23 byte[][] pixelArray;
24 int[][] labelArray;
25
26 // label values in labelArray can be:
27 // 0 ... unlabeled
28 // −1 ... previously visited background pixel
29 // > 0 ... a valid label
30
31 // constructor method
32 public ContourTracer (ImageProcessor ip) {
33 this.ip = ip;
34 this.width = ip.getWidth();
35 this.height = ip.getHeight();
36 makeAuxArrays();
37 findAllContours();
38 collectRegions();
39 }
40
41 public static void setVerbose(boolean verbose) {
42 beVerbose = verbose;
43 }
44
45 public List<Contour> getOuterContours() {
46 return outerContours;
47 }
48

49 public List<Contour> getInnerContours() {
50 return innerContours;
51 }
52
53 public List<BinaryRegion> getRegions() {
54 return allRegions;
55 }
56
57 // nonpublic methods
58
59 void makeAuxArrays() {
60 int h = ip.getHeight();
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61 int w = ip.getWidth();
62 pixelArray = new byte[h+2][w+2];
63 labelArray = new int[h+2][w+2];
64 // initialize auxiliary arrays
65 for (int v = 0; v < h+2; v++) {
66 for (int u = 0; u < w+2; u++) {
67 if (ip.get(u-1,v-1) == 0)
68 pixelArray[v][u] = BACKGROUND;
69 else
70 pixelArray[v][u] = FOREGROUND;
71 }
72 }
73 }
74

75 Contour traceOuterContour (int cx, int cy, int label) {
76 Contour cont = new Contour(label);
77 traceContour(cx, cy, label, 0, cont);
78 return cont;
79 }
80

81 Contour traceInnerContour(int cx, int cy, int label) {
82 Contour cont = new Contour(label);
83 traceContour(cx, cy, label, 1, cont);
84 return cont;
85 }
86
87 // trace one contour starting at (xS,yS) in direction dS
88 Contour traceContour (int xS, int yS, int label, int dS,

Contour cont) {
89 int xT, yT; // T = successor of starting point (xS,yS)
90 int xP, yP; // P = previous contour point
91 int xC, yC; // C = current contour point
92 Point pt = new Point(xS, yS);
93 int dNext = findNextPoint(pt, dS);
94 cont.addPoint(pt);
95 xP = xS; yP = yS;
96 xC = xT = pt.x;
97 yC = yT = pt.y;
98

99 boolean done = (xS==xT && yS==yT); // true if isolated pixel
100
101 while (!done) {
102 labelArray[yC][xC] = label;
103 pt = new Point(xC, yC);
104 int dSearch = (dNext + 6) % 8;
105 dNext = findNextPoint(pt, dSearch);
106 xP = xC; yP = yC;
107 xC = pt.x; yC = pt.y;
108 // are we back at the starting position?
109 done = (xP==xS && yP==yS && xC==xT && yC==yT);
110 if (!done) {

538



D.2 Combined Region
Labeling and Contour
Tracing

111 cont.addPoint(pt);
112 }
113 }
114 return cont;
115 }
116
117 int findNextPoint (Point pt, int dir) {
118 // starts at Point pt in direction dir, returns the
119 // final tracing direction, and modifies pt
120 final int[][] delta = {
121 { 1,0}, { 1, 1}, {0, 1}, {-1, 1},
122 {-1,0}, {-1,-1}, {0,-1}, { 1,-1}};
123 for (int i = 0; i < 7; i++) {
124 int x = pt.x + delta[dir][0];
125 int y = pt.y + delta[dir][1];
126 if (pixelArray[y][x] == BACKGROUND) {
127 // mark surrounding background pixels
128 labelArray[y][x] = -1;
129 dir = (dir + 1) % 8;
130 }
131 else { // found a nonbackground pixel
132 pt.x = x; pt.y = y;
133 break;
134 }
135 }
136 return dir;
137 }
138
139 void findAllContours() {
140 outerContours = new ArrayList<Contour>(50);
141 innerContours = new ArrayList<Contour>(50);
142 int label = 0; // current label
143

144 // scan top to bottom, left to right
145 for (int v = 1; v < pixelArray.length-1; v++) {
146 label = 0; // no label
147 for (int u = 1; u < pixelArray[v].length-1; u++) {
148
149 if (pixelArray[v][u] == FOREGROUND) {
150 if (label != 0) { // keep using the same label
151 labelArray[v][u] = label;
152 }
153 else {
154 label = labelArray[v][u];
155 if (label == 0) {
156 // unlabeled—new outer contour
157 regionId = regionId + 1;
158 label = regionId;
159 Contour oc = traceOuterContour(u, v, label);
160 outerContours.add(oc);
161 labelArray[v][u] = label;
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162 }
163 }
164 }
165 else { // background pixel
166 if (label != 0) {
167 if (labelArray[v][u] == 0) {
168 // unlabeled—new inner contour
169 Contour ic = traceInnerContour(u-1, v, label);
170 innerContours.add(ic);
171 }
172 label = 0;
173 }
174 }
175 }
176 }
177 // shift back to original coordinates
178 Contour.moveContoursBy (outerContours, -1, -1);
179 Contour.moveContoursBy (innerContours, -1, -1);
180 }
181

182
183 // creates a container of BinaryRegion objects
184 // collects the region pixels from the label image
185 // and computes the statistics for each region
186 void collectRegions() {
187 int maxLabel = this.regionId;
188 int startLabel = 1;
189 BinaryRegion[] regionArray =
190 new BinaryRegion[maxLabel + 1];
191 for (int i = startLabel; i <= maxLabel; i++) {
192 regionArray[i] = new BinaryRegion(i);
193 }
194 for (int v = 0; v < height; v++) {
195 for (int u = 0; u < width; u++) {
196 int lb = labelArray[v][u];
197 if (lb >= startLabel && lb <= maxLabel
198 && regionArray[lb]!=null) {
199 regionArray[lb].addPixel(u, v);
200 }
201 }
202 }
203

204 // create a list of regions to return, collect nonempty regions
205 List<BinaryRegion> regionList =
206 new LinkedList<BinaryRegion>();
207 for (BinaryRegion r: regionArray) {
208 if (r != null && r.getSize()>0) {
209 r.update(); // compute the statistics for this region
210 regionList.add(r);
211 }
212 }
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213 allRegions = regionList;
214 }
215
216 } // end of class ContourTracer

D.2.5 ContourOverlay (Class)

1 package contours;
2 import ij.ImagePlus;
3 import ij.gui.ImageCanvas;
4 import java.awt.BasicStroke;
5 import java.awt.Color;
6 import java.awt.Graphics;
7 import java.awt.Graphics2D;
8 import java.awt.Polygon;
9 import java.awt.RenderingHints;

10 import java.awt.Shape;
11 import java.awt.Stroke;
12 import java.util.List;
13
14 public class ContourOverlay extends ImageCanvas {
15 private static final long serialVersionUID = 1L;
16 static float strokeWidth = 0.5f;
17 static int capsstyle = BasicStroke.CAP_ROUND;
18 static int joinstyle = BasicStroke.JOIN_ROUND;
19 static Color outerColor = Color.black;
20 static Color innerColor = Color.white;
21 static float[] outerDashing = {strokeWidth * 2.0f,

strokeWidth * 2.5f};
22 static float[] innerDashing = {strokeWidth * 0.5f,

strokeWidth * 2.5f};
23 static boolean DRAW_CONTOURS = true;
24

25 Shape[] outerContourShapes = null;
26 Shape[] innerContourShapes = null;
27

28 public ContourOverlay(ImagePlus im,
29 List<Contour> outerCs, List<Contour> innerCs)
30 {
31 super(im);
32 if (outerCs != null)
33 outerContourShapes = Contour.makePolygons(outerCs);
34 if (innerCs != null)
35 innerContourShapes = Contour.makePolygons(innerCs);
36 }
37
38 public void paint(Graphics g) {
39 super.paint(g);
40 drawContours(g);
41 } 541
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42
43 // nonpublic methods
44
45 private void drawContours(Graphics g) {
46 Graphics2D g2d = (Graphics2D) g;
47 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
48

49 // scale and move overlay to the pixel centers
50 double mag = this.getMagnification();
51 g2d.scale(mag, mag);
52 g2d.translate(0.5-this.srcRect.x, 0.5-this.srcRect.y);
53
54 if (DRAW_CONTOURS) {
55 Stroke solidStroke = new BasicStroke
56 (strokeWidth, capsstyle, joinstyle);
57 Stroke dashedStrokeOuter = new BasicStroke
58 (strokeWidth, capsstyle, joinstyle, 1.0f,

outerDashing, 0.0f);
59 Stroke dashedStrokeInner = new BasicStroke
60 (strokeWidth, capsstyle, joinstyle, 1.0f,

innerDashing, 0.0f);
61
62 if (outerContourShapes != null)
63 drawShapes(outerContourShapes, g2d, solidStroke,

dashedStrokeOuter, outerColor);
64 if (innerContourShapes != null)
65 drawShapes(innerContourShapes, g2d, solidStroke,

dashedStrokeInner, innerColor);
66 }
67 }
68
69 void drawShapes(Shape[] shapes, Graphics2D g2d,
70 Stroke solidStrk, Stroke dashedStrk, Color col) {
71 g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
72 g2d.setColor(col);
73 for (int i = 0; i < shapes.length; i++) {
74 Shape s = shapes[i];
75 if (s instanceof Polygon)
76 g2d.setStroke(dashedStrk);
77 else
78 g2d.setStroke(solidStrk);
79 g2d.draw(s);
80 }
81 }
82
83 } // end of class ContourOverlay
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Index

Symbols
∗ (convolution operator), 99, 452
� (correlation operator), 432, 452
⊕ (dilation operator), 177, 452
� (erosion operator), 178, 452
? (operator), 267
� �, 47, 61, 452
∂, 119, 140, 452
∇, 119, 130, 452
& (operator), 244, 304, 460, 491
&& (operator), 150, 162, 203, 514
| (operator), 245, 304, 520
|| (operator), 514
˜ (operator), 514
» (operator), 245, 304
« (operator), 245
% (operator), 459

A
abs (method), 81, 461, 495
absolute value, 495
accessing pixels, 485
accumulator array, 159
achromatic, 260
acos (method), 461
ADD (constant), 82, 85, 496
add (method), 81, 495, 529, 530, 534,

540
addChoice (method), 86, 507
addNumericField (method), 86, 507,

518, 526
addSlice (method), 505
addStringField (method), 518
adjoint matrix, 382
Adobe

Illustrator, 15
Photoshop, 59, 94, 115, 134
RGB, 288

affine mapping, 378, 386
AffineMapping (class), 417, 418
AffineTransform (class), 413

aliasing, 329, 334, 337, 339, 350, 410
alpha

blending, 83, 85, 506
channel, 17, 244
value, 83, 244

altKeyDown (method), 517
ambient lighting, 280
amplitude, 314–316
AND (constant), 82, 496
and (method), 495
angular frequency, 314, 315, 334,

338, 344
anti-aliasing, 500
apply (method), 297
applyTable (method), 68, 77, 80,

152, 495, 530
applyTo (method), 415, 416, 421,

423, 426, 427
approximation, 401, 402
ArcTan function, 122, 350, 388, 452,

462
area

polygon, 224
region, 224

arithmetic operation, 81, 82, 495
array, 462–467

accessing elements, 463
creation, 462
duplication, 465
size, 463
sorting, 466
two-dimensional, 464

ArrayList (class), 149, 468, 534, 539
Arrays (class), 300, 466
Arrays.sort (method), 466
asin (method), 461
associativity, 101, 178
atan (method), 461
atan2 (method), 452, 461, 462
auto-contrast, 57

modified, 58 549



Index autoThreshold (method), 495
AVERAGE (constant), 82, 496
AWT, 244, 294

B
background, 173
bandwidth, 330
Bartlett window, 355, 357, 358
BasicStroke (class), 541, 542
basis function, 333–337, 344, 349,

367, 368, 373
beep (method), 517
bias problem, 165
bicubic interpolation, 407
BicubicInterpolator (class), 425,

426
big endian, 22–24
bilinear

interpolation, 405, 485
mapping, 385, 386

BilinearInterpolator (class), 424,
426

BilinearMapping (class), 421
binarization, 55
binary

image, 13, 129, 173, 189, 199, 472
morphology, 173–186

BinaryProcessor (class), 55, 195,
472

binnedHistogram (method), 48
binning, 46–48, 51
bit

mask, 244
operation, 246

bitmap image, 13, 218
bitwise AND operator, 460
black (constant), 541
black box, 99
black-generation function, 273
Blitter (interface), 82, 85
BMP, 20, 23, 246
bounding box, 225
box filter, 92, 102, 121, 497
Bradford model, 289, 292
BradfordAdaptation (class), 297
breadth-first, 202
Bresenham algorithm, 168
brightness, 54, 490
byte, 22
byte (type), 459, 472
ByteBlitter (class), 508

ByteProcessor (class), 82, 252, 253,
472

ByteStatistics (class), 494

C
C2-continuous, 400
camera obscura, 7
Canny edge operator, 127, 129
Canvas (class), 474
card, 38, 452, 453
cardinal spline, 398, 400
cardinality, 452, 453
Catmull-Rom interpolation, 400
CCITT, 15
Cdf (method), 70
cdf, see cumulative distribution

function
ceil (method), 461
CENTER_JUSTIFY (constant), 500
centralMoment (method), 229
centroid, 226
CGM format, 15
chain code, 219, 224
chamfer

algorithm, 443
matching, 446

chroma, 270
chromatic adaptation, 288

Bradford model, 289, 292
XYZ scaling, 289

ChromaticAdaptation (class), 297
CIE, 276

chromaticity diagram, 277, 280
L*a*b*, 275, 281, 282
standard illuminant, 279
XYZ, 276, 282, 285, 286, 295, 298

circle, 167, 380
circularity, 224
circumference, 223
city block distance, 443
clamping, 54, 92
clipboard, 522
clone (method), 299, 300, 416, 465
Cloneable (interface), 465
cloning arrays, 465
close (method), 193, 194
closeAllWindows (method), 521
closing, 185, 188, 193
clutter, 447
CMYK, 271–275
collectCorners (method), 149550



IndexCollections (class), 150
collision, 207
Color (class), 261–263, 294, 541, 542
color

count, 299
difference, 283
image, 13, 239–312, 473
keying, 266
management, 296
pixel, 242, 244, 245
saturation, 257
table, 243, 248, 250, 311
temperature, 279

color quantization, 43, 244, 250, 254,
301–310

3:3:2, 303
median-cut, 305
octree, 306
populosity, 305

color space, 253–299
CMYK, 271
colorimetric, 275–299
HLS, 258
HSB, 258, 295
HSV, 258, 295
in Java, 292–299
L*a*b*, 281
RGB, 240
sRGB, 283
XYZ, 276
YCbCr, 270
YIQ, 269
YUV, 268

color system
additive, 239
subtractive, 272

COLOR_RGB (constant), 248
ColorChooser (class), 474
ColorModel (class), 250, 294, 502,

503
ColorProcessor (class), 194, 245,

247, 251, 253, 257, 300, 473,
485

ColorSpace (class), 293–295, 297
ColorStatistics (class), 494
comb function, 327
commutativity, 100, 178, 179
compactness, 224
Comparable (interface), 467
compareTo (method), 150, 467, 527
comparing images, 429–450

complementary set, 176
Complex (class), 341
complex number, 316, 453
complexity, 454
component

histogram, 48
ordering, 242

computeMatch (method), 438, 441
computer

graphics, 2
vision, 3

concat (method), 417
concolve (method), 137
Concolver (class), 137
conic section, 380
connected components problem, 207
container, 149
contains (method), 511
contour, 127, 209–216
ContourOverlay (class), 216
contrast, 40, 54

automatic adjustment, 57
convertHSBToRGB (method), 254, 493
convertRGBStackToRGB (method),

493
convertRGBtoIndexedColor

(method), 254, 494
convertToByte (method), 85, 137,

196, 253, 257, 485, 492, 508
convertToFloat (method), 137, 253,

492, 528
convertToGray16 (method), 254, 493
convertToGray32 (method), 254, 493
convertToGray8 (method), 254, 493
convertToHSB (method), 254, 493
convertToRGB (method), 253, 254,

492, 493
convertToRGBStack (method), 494
convertToShort (method), 253, 492
convex hull, 225, 236
convexity, 225, 234
convolution, 99, 364, 433, 455

property, 324, 363
convolve (method), 114, 148, 497
convolve3x3 (method), 497
Convolver (class), 114, 148, 531
coordinate

Cartesian, 378
homogeneous, 377, 416

COPY (constant), 496
copy (method), 522 551



Index COPY_INVERTED (constant), 496
copyBits (method), 82, 85, 137, 193,

194, 496, 508, 531
Corner (class), 148, 150
corner, 139

detection, 139–153
point, 153
response function, 141, 145
strength, 141

CorrCoeffMatcher (class), 438, 440
correlation, 99, 364, 432

coefficient, 434
cos (method), 461
cosine function, 322

one-dimensional, 314
two-dimensional, 346, 347

cosine transform, 18, 367
cosine2 window, 357, 358
countColors (method), 300
counting colors, 299
createByteImage (method), 477,

508, 518
createEmptyStack (method), 476,

504
createFloatImage (method), 477
createImage (method), 477, 478
createProcessor (method), 192, 478
createRGBImage (method), 478
createShortImage (method), 477
creating

image processors, 478–480
new images, 52, 476–478

crop (method), 497
cross correlation, 432–435
CRT, 240
CS_CIEXYZ (constant), 295
CS_GRAY (constant), 295
CS_LINEAR_RGB (constant), 295
CS_PYCC (constant), 295
CS_sRGB (constant), 295
CS_sRGBt (constant), 297
cubic

B-spline interpolation, 401
interpolation, 397
spline, 400

cumulative
distribution function, 64
histogram, 50, 58, 62, 64

currentMemory (method), 523
cycle length, 314

D
D50, 279, 280, 295
D65, 280, 282, 284
DCT, 367–373

one-dimensional, 367, 368
two-dimensional, 370

DCT (method), 370
debugging, 112
deconvolution, 365
deleteLastSlice (method), 505
deleteSlice (method), 505
delta function, 325
depth-first, 202
derivative

estimation, 119
first, 118, 144
partial, 119
second, 126, 130

desaturation, 257
determinant, 382
DFT, 332–366, 452

one-dimensional, 332–341
two-dimensional, 343–366

DFT (method), 341
diameter, 226
DICOM, 31
DIFFERENCE (constant), 82, 194, 496
difference filter, 98
digital images, 8
dilate (method), 191, 193, 194, 497
dilation, 177, 187, 191, 497
Dirac function, 103, 179, 320, 325
DirectColorModel (class), 502
directory information, 523
discrete

cosine transform, 367–373
Fourier transform, 332–366, 452
sine transform, 367

displaying images, 500, 503
distance, 151, 431

city block, 443
Euclidean, 432, 443
Manhattan, 443
mask, 443
maximum difference, 431
sum of differences, 431
sum of squared differences, 432
transform, 442

DIVIDE (constant), 82, 496
DOES_16 (constant), 519
DOES_32 (constant), 519552



IndexDOES_8C (constant), 248, 249, 251,
519

DOES_8G (constant), 32, 45, 519
DOES_ALL (constant), 493, 519
DOES_RGB (constant), 246, 247, 519
DOES_STACKS (constant), 519
DONE (constant), 493, 503, 519
dots per inch (dpi), 11, 339
Double (class), 462
double (type), 92, 458
dpi, 339
draw (method), 152, 500, 501, 542
drawDot (method), 499, 500
drawLine (method), 152, 499, 527
drawOval (method), 499
drawPixel (method), 499
drawPolygon (method), 499
drawRect (method), 499
drawString (method), 499, 500
DST, 367
duplicate (method), 85, 93, 94, 109,

137, 152, 194, 416, 478, 508,
529, 533

duplicateArray (method), 466
DXF format, 15
dynamic range, 40

E
E (constant), 461
eccentricity, 231, 236
Eclipse, 34, 470
edge

filter, 497
map, 129, 155
sharpening, 130–137
strength, 141

edge operator, 120–127
Canny, 127, 129
compass, 123
in ImageJ, 125
Kirsch, 123
LoG, 126, 129
Prewitt, 120, 129
Roberts, 123, 129
Sobel, 120, 125, 129

effective gamma value, 79
eigenvalue, 141, 231
eigenvector, 141
ellipse, 170, 232, 380, 499
Ellipse2D (class), 534
elliptical window, 356

elongatedness, 231
EMF format, 15
Encapsulated PostScript (EPS), 15
erode (method), 193, 194, 497
erosion, 178, 187, 191, 497
error (method), 515
escapePressed (method), 517
Euclidean distance, 151, 438, 443
Euler number, 235
Euler’s notation, 316
executing plugins, 520
EXIF, 19, 284
exp (method), 461
exposure, 40

F
fast Fourier transform, 342, 345,

359, 364, 455
fax encoding, 219
feature, 222
FFT, see fast Fourier transform, see

fast Fourier transform
file format, 24

BMP, 20
EXIF, 19
GIF, 15
JFIF, 19
JPEG-2000, 19
magic number, 23
PBM, 21
Photoshop, 23
PNG, 16
RAS, 22
RGB, 22
TGA, 22
TIFF, 15
XBM/XPM, 22

file information, 522
FileInfo (class), 484, 522, 523
FileOpener (class), 484
FileSaver (class), 482
FileSaver (method), 482
fill (method), 52, 499
fillOval (method), 499
fillPolygon (method), 499
filter, 87–116, 497

average, 497
border handling, 91, 111
box, 92, 97, 102, 121, 497
color image, 136
computation, 91 553



Index debugging, 112
derivative, 119
difference, 98
edge, 120–125, 497
efficiency, 111
Gaussian, 97, 102, 114, 133, 140,

144
ImageJ, 113–115
impulse response, 103
in frequency space, 363
indexed image, 248
inverse, 364
kernel, 99
Laplace, 98, 131, 136
Laplacian, 116
linear, 89–104, 113, 497
low-pass, 97
mask, 89
matrix, 89
maximum, 105, 115, 197, 497
median, 106, 115, 173, 497
minimum, 105, 115, 197, 497
morphological, 173–197
nonlinear, 104–111, 115
normalized, 93
separable, 101, 102, 131
smoothing, 92, 94, 96, 134, 497
unsharp masking, 133
weighted median, 107

Find_Corners (plugin), 153
findCorners (method), 152
findEdges (method), 125, 497
FITS, 31
flipHorizontal (method), 497
flipVertical (method), 498
Float (class), 462
float (type), 473
floating-point image, 13, 473
FloatProcessor (class), 253, 438,

473
FloatStatistics (class), 494
floatToIntBits (method), 486
flood filling, 200–204
floor (method), 461
floor function, 453
font, 500
for-loop, 488
foreground, 173
four-point mapping, 380
Fourier, 317

analysis, 318

coefficients, 318
descriptor, 221
integral, 318
series, 317
spectrum, 222, 319, 330
transform, 314–452
transform pair, 320, 322, 323

Frame (class), 474, 501
FreehandRoi (class), 475, 506
freeMemory (method), 523
frequency, 314, 338

angular, 314, 315, 334, 344
common, 315
directional, 348
distribution, 63
effective, 348, 349
fundamental, 317, 318, 339
maximum, 329, 350
space, 320, 338, 363
two-dimensional, 348

fromCIEXYZ (method), 292–294, 297
function

basis, 333–337, 344
cosine, 314
delta, 325
Dirac, 320, 325
impulse, 320, 325
periodic, 314
sine, 314

fundamental
frequency, 317, 318, 339
period, 338

G
gamma (method), 81, 495
gamma correction, 72–80, 256, 292,

295, 298, 495
applications, 75
inverse, 79
modified, 76–80, 285

gamut, 273, 280, 283, 288
Adobe RGB, 288
sRGB, 288

garbage, 463
Gaussian

area formula, 224
distribution, 51
filter, 97, 102, 114, 133, 140, 144
filter size, 102
function, 321, 323
separable, 102554



Indexwindow, 355, 356, 358
GaussKernel1d (class), 137
GenericDialog (class), 84, 86, 474,

507, 517, 518, 526
geometric operation, 375–428, 497
get (method), 34, 54, 63, 111, 259,

487, 490, 534, 538
get2dHistogram (method), 301
getBitDepth (method), 248
getBlues (method), 249, 251
getBrightness (method), 490
getClipboard (method), 522
getColorModel (method), 249–251,

502
getColumn (method), 489
getComponents (method), 295
getCurrentColorModel (method),

503
getCurrentImage (method), 249, 521
getCurrentSlice (method), 501
getCurrentWindow (method), 521
getDirectory (method), 523
getDoScaling (method), 494
getf (method), 440, 441, 487
getFileInfo (method), 522
getFloatArray (method), 490
getGreens (method), 249, 251
getHeight (method), 33, 93, 485,

491, 505
getHistogram (method), 45, 52, 63,

68, 299, 485, 494
getHistogramMax (method), 494
getHistogramMin (method), 494
getHistogramSize (method), 494
getHSB (method), 490
getID (method), 501
getIDList (method), 86, 507, 521
getImage (method), 86, 484, 501,

507, 517, 521
getImageArray (method), 505
getImageCount (method), 521
getImageStack (method), 504
getIntArray (method), 489
getInterpolate (method), 485, 498
getInterpolatedPixel (method),

424, 425, 498
getInterpolatedRGBPixel

(method), 498
getInverse (method), 415
getLine (method), 485, 489
getMagnification (method), 542

getMapSize (method), 249–251
getMask (method), 510, 511, 514
getMaskArray (method), 512, 513
getMatchValue (method), 441
getMax (method), 503
getMin (method), 503
getNextChoiceIndex (method), 86,

507
getNextNumber (method), 86, 507,

518, 526
getNextString (method), 518
getNumber (method), 515
getOriginalFileInfo (method),

484, 523
getPixel (method), 33, 93, 109, 111,

245, 304, 460, 486, 490
getPixelCount (method), 487
getPixels (method), 463, 488, 491,

505, 529
getPixelsCopy (method), 489
getPixelSize (method), 249
getPixelValue (method), 485, 486
getProcessor (method), 85, 478,

484, 493, 501, 502, 505, 508
getProperties (method), 514
getProperty (method), 514, 516
getReds (method), 249, 251
getRGB (method), 490
getRoi (method), 509, 512, 514
getRow (method), 489
getShortSliceLabel (method), 505
getShortTitle (method), 86, 501,

507
getSize (method), 505
getSliceLabel (method), 505
getSliceLabels (method), 505
getStack (method), 476, 502, 504,

508
getStackSize (method), 504
getString (method), 515
getStringWidth (method), 499
getTempCurrentImage (method), 521
getTitle (method), 501, 526
getType (method), 248
getVersion (method), 523
getWeightingFactors (method),

257, 485
getWidth (method), 33, 93, 485, 491,

506
getWindow (method), 501
getWindowCount (method), 521 555



Index GIF, 15, 23, 31, 43, 219, 243, 248
gradient, 118, 119, 140, 144
graph, 207
Graphics (class), 541
graphics overlay, 216
Graphics2D (class), 542
grayscale

conversion, 256, 287
image, 12, 17, 472
morphology, 187–188

H
Hadamard transform, 372
HandleExtraFileTypes (class), 481
Hanning window, 354, 355, 357, 358
Harris corner detector, 140
HarrisCornerDetector (class), 148,

153
HashSet (class), 468
hasNext (method), 534
HDTV, 271
Hertz, 315, 339
Hessian normal form, 159, 166
hexadecimal, 245, 460
hide (method), 501
hierarchical techniques, 127
histogram, 37–51, 299–301, 452, 494

binning, 46
channel, 48
color image, 47
component, 48
computing, 44
cumulative, 50, 58, 64
equalization, 59
matching, 67
normalized, 63
specification, 62–72

HLS, 258, 264–266, 270
HLStoRGB (method), 268
homogeneous

coordinate, 377, 416
point operation, 53, 60, 63

hot spot, 89, 176
Hough transform, 130, 156–171

bias problem, 165
edge strength, 167
for circles, 167–169
for ellipses, 170
for lines, 156–167
generalized, 170
hierarchical, 167

HSB, see HSV
HSBtoRGB (method), 263, 264, 295
HSV, 254, 255, 258, 261, 266, 270,

295, 490
hue, 490
Huffman code, 18

I
i (imaginary unit), 316, 452, 453
ICC, 292

profile, 296
ICC_ColorSpace (class), 295, 296
ICC_Profile (class), 296
iDCT (method), 370
idempotent, 186
IJ (class), 475, 477, 480, 523
ij (package), 471, 475
ij.gui (package), 474, 509
ij.io (package), 475
ij.plugin (package), 473
ij.plugin.filter (package), 473
ij.process (package), 472
Illuminant (class), 297
illuminant, 279
Image (class), 476, 478
image

acquisition, 5
analysis, 3
binary, 13, 199, 472
bitmap, 13
color, 13, 473
compression and histogram, 43
coordinates, 11, 452
creating new, 52
defects, 42
depth, 12
digital, 8
display, 52
file, 480
file format, 5, 13
floating-point, 13, 473
grayscale, 12, 17, 472
height, 485
indexed color, 13, 17, 472
intensity, 12
loading, 480
locking, 522
palette, 13
parameter, 485
plane, 7
properties, 513–515556



Indexraster, 14
RGB, 473
size, 10
space, 100, 363
special, 13
statistics, 494
storing, 480
true color, 17
warping, 387
width, 485

ImageCanvas (class), 474, 541
ImageConverter (class), 253, 254,

492
ImageJ, 27–36

accessing pixels, 485
animation, 503
API, 471–475
directory, 523
displaying images, 500
filter, 113–115, 497
geometric operation, 413, 497
graphic operation, 499
GUI, 474
histogram, 494
image conversion, 492
installation, 469
loading images, 480
locking, 522
macro, 30, 34
main window, 30
memory, 523
open, 480
plugin, 31–35, 518
point operation, 80–86, 494
region of interest, 506
revert, 480
save, 480
snapshot, 35
stack, 30, 504, 505
storing images, 480
system information, 523
tutorial, 35
undo, 31, 35
Website, 35

ImagePlus (class), 153, 247, 251,
252, 471, 481, 509, 517, 522,
541

ImageProcessor (class), 32, 194,
246, 247, 249–253, 259, 463,
472, 485

ImageStack (class), 472, 505, 508,
512

ImageStatistics (class), 494
ImageWindow (class), 474, 533
impulse

function, 103, 320, 325
response, 103, 183

in place, 345
IndexColorModel (class), 249, 251,

252, 502
indexed color image, 13, 17, 243,

248, 254, 472
insert (method), 137, 489, 500, 508
instanceof (operator), 488, 491
intBitsToFloat (method), 486
Integer.MAX_VALUE (constant), 535
intensity

histogram, 48
image, 12

interest point, 139
interpolation, 392–410, 423–425, 485

B-spline, 400, 401
bicubic, 407, 409, 425
bilinear, 405, 409, 424, 498
by convolution, 397
Catmull-Rom, 399, 400, 425, 426
color, 498
cubic, 397
ideal, 393
kernel, 397
Lanczos, 402, 408, 428
linear, 397
Mitchell-Netravali, 400, 401, 428
nearest-neighbor, 397, 405, 409,

412, 424, 498
spline, 399
two-dimensional, 404–410

invalidNumber (method), 526
invariance, 224, 227, 228, 233, 234,

430
inverse

filter, 364
gamma function, 74
tangent function, 462

inversion, 55
invert (method), 55, 81, 193, 415,

417
invertLookupTable (class), 501
invertLut (method), 190, 501, 503
isInvertedLut (method), 501, 504
isJava14 (method), 523 557



Index isJava2 (method), 523
isLocalMax (method), 150
isMacintosh (method), 523
isMacOSX (method), 523
isNaN (method), 536
isotropic, 89, 119, 131, 133, 140, 153,

181
isWindows (method), 523
Iterator (class), 534
iterator (method), 534
ITU601, 271
ITU709, 75, 79, 256, 271, 284, 485

J
Jama (package), 381, 421, 422
Java

applet, 29
arithmetic, 457
array, 462–467
AWT, 31
class file, 34
collection, 462
compiler, 34
editor, 470
integer division, 63, 457
JVM, 23, 469, 523
mathematical functions, 460
rounding, 461
runtime environment, 29, 469, 470
virtual machine, 23, 469

JBuilder, 34, 470
JFIF, 19, 21, 23
JPEG, 15, 17–19, 21, 23, 31, 44, 219,

243, 284, 287, 312, 369
JPEG-2000, 19
JVM, 523

K
kernel, 99
killRoi (method), 510
Kirsch operator, 123

L
L*a*b*, 281
Lab_ColorSpace (class), 293, 297,

298
label, 200
Lanczos interpolation, 402, 408, 428
Laplace

filter, 98, 131, 132, 136
operator, 130

Laplacian of Gaussian (LoG), 116
LEFT_JUSTIFY (constant), 500
lens, 8
Line (class), 475, 506, 510
line, 499, 500

endpoints, 166
equation, 156, 159
Hessian normal form, 159
intercept/slope form, 156
intersection, 166

linear
convolution, 99, 497
correlation, 99
interpolation, 397
transformation, 382

linearity, 100, 321
LinearMapping (class), 416, 419
lines per inch (lpi), 11
lineTo (method), 500
LinkedList (class), 202, 540
List (interface), 149, 150, 468, 528,

534, 537, 540, 541
list, 451
little endian, 22–24
loading images, 480
local mapping, 389
lock (method), 522
locking images, 522
lockSilently (method), 522
LoG

filter, 116
operator, 129

log (method), 81, 461, 495, 515
logic operation, 495
lookup table, 80, 152, 190, 530
LSB, 22
luminance, 256, 270
LZW, 15

M
magic number, 23
major axis, 228
makeGaussKernel1d (method), 103,

137
makeIndexColorImage (method), 252
makeInverseMapping (method), 423
makeLine (method), 513
makeMapping (method), 418, 420
makeOval (method), 513
makeRectangle (method), 513
managing windows, 521558



IndexManhattan distance, 443
Mapping (class), 414
mapping

affine, 378, 386
bilinear, 385, 386
four-point, 380
function, 376
linear, 382
local, 389
nonlinear, 386
perspective, 380
projective, 380–386
ripple, 388
spherical, 388
three-point, 378
twirl, 387

mask, 134, 218
image, 511, 514

matchHistograms (method), 68
Math (class), 460, 461
Matrix (class), 421
MAX (constant), 82, 115, 496
max (method), 81, 461, 495
maximum

filter, 105, 197
frequency, 329, 350

maxMemory (method), 523
media-oriented color, 287
MEDIAN (constant), 115
median filter, 106, 115, 173, 497

cross-shaped, 110
weighted, 107

median-cut algorithm, 305
medianFilter (method), 497
memory management, 523
mesh partitioning, 389
MIN (constant), 82, 115, 496
min (method), 81, 461, 495
minimum filter, 105, 197
Mitchell-Netravali interpolation,

401, 428
mod operator, 340, 395, 453
modified auto-contrast, 58
modulus, see mod operator
moment, 219, 226–233

central, 227
Hu’s, 233, 236
invariant, 233
least inertia, 228

moment (method), 229
morphing, 390

morphological filter, 173–197
binary, 173–186
closing, 185, 188, 193
color, 187
dilation, 177, 187, 191
erosion, 178, 187, 191
grayscale, 187–188
opening, 185, 188, 193
outline, 181, 194

moveTo (method), 500
MSB, 22
multi-resolution techniques, 127
MULTIPLY (constant), 82, 497, 531
multiply (method), 81, 85, 137, 495,

508
My_Inverter (plugin), 33

N
NaN (constant), 462, 535
nearest-neighbor interpolation, 397
NearestNeighborInterpolator

(class), 424
NEGATIVE_INFINITY (constant), 462
neighborhood, 175, 200, 223
NetBeans, 34, 470
neutral

point, 279
neutral element, 179
NewImage (class), 474, 477, 508, 518
newImage (method), 477
next (method), 534
nextGaussian (method), 51
nextInt (method), 51
NIH-Image, 29
NO_CHANGES (constant), 35, 45, 251,

519
NO_IMAGE_REQUIRED (constant), 519
NO_UNDO (constant), 520
Node (class), 202
noImage (method), 36, 86, 493, 503,

507, 515
noise (method), 495
nominal gamma value, 79
nonhomogeneous operation, 53
nonmaximum suppression, 164
normal distribution, 51
normalCentralMoment (method), 229
normalization, 93
normalized histogram, 63
NTSC, 75, 267, 269
null (constant), 463 559



Index Nyquist, 330, 350

O
O notation, 454
object, 451
OCR, 222, 235
octree algorithm, 306
open (method), 193, 194, 480, 481,

484
Opener (class), 481
openImage (method), 481, 482
opening, 185, 188, 193
opening images, 480–482, 484
openMultiple (method), 482
openTiff (method), 482
openURL (method), 482
optical axis, 7
OR (constant), 82, 497
or (method), 495
orientation, 228, 348, 350
orthogonal, 373
oscillation, 314, 315
outer product, 102
outline, 181, 194
outline (method), 194, 195
OvalRoi (class), 475, 506, 510
overlay, 533

P
packed ordering, 242–244
PAL, 75, 267
palette, 243, 248, 250

image, see indexed color image
parameter space, 157
partial derivative, 119
Parzen window, 354, 355, 357, 358
paste (method), 522
pattern recognition, 3, 222
PDF, 15
pdf, see probability density function
perimeter, 223
period, 314
periodicity, 314, 344, 349, 352
perspective

image, 170
mapping, 380
transformation, 7

phase, 315, 339
angle, 316

Photoshop, 23
PI (constant), 461

PICT format, 15
piecewise linear function, 65
pinhole camera, 7
pixel, 5

value, 11
PixelInterpolator (class), 423
planar ordering, 242
Plessey detector, 140
PlugIn (interface), 31, 473, 518
PlugInFilter (interface), 31, 246,

473, 519
PNG, 16, 23, 31, 247, 248, 284
Pnt2d (class), 414
Point (class), 534, 535, 538
point operation, 53–86, 494

arithmetic, 80
effects on histogram, 55
gamma correction, 72
histogram equalization, 59
homogeneous, 80
in ImageJ, 80–86
inversion, 55
thresholding, 55

point set, 176
point spread function, 104
Point2D.Double (class), 536
PointRoi (class), 506
Polygon (class), 511, 534, 542
polygon, 499

area, 224
PolygonRoi (class), 475, 506, 510
pop (method), 203
populosity algorithm, 305
POSITIVE_INFINITY (constant), 462
PostScript, 15
pow (method), 77, 461
power spectrum, 339, 348
Prewitt operator, 120, 129
primary color, 240
print pattern, 363
probability, 64

density function, 63
distribution, 63

profile connection space, 292, 295
projection, 233, 237, 301
projective mapping, 380–386
ProjectiveMapping (class), 419, 426
pseudo-perspective mapping, 380
pseudocolor, 311
push (method), 203
putBehind (method), 521560



IndexputColumn (method), 489
putPixel (method), 33, 93, 94, 109,

111, 245, 460, 486, 490
putPixelValue (method), 487
putRow (method), 489
pyramid techniques, 127

Q
quadrilateral, 380
quantization, 10, 55, 301–310

linear, 303
scalar, 303
vector, 305

R
Random (package), 51
random

process, 63
variable, 64

random (method), 51, 461
random image, 51
rank (method), 115
RankFilters (class), 115
RAS format, 22
raster image, 14
RAW format, 247
reading and writing pixels, 485
Rectangle (class), 536
rectangular pulse, 321, 323

window, 356
reflect (method), 193
reflection, 177, 179, 180
refraction index, 388
region, 199–237

area, 224, 228, 236
centroid, 226, 236
convex hull, 225
diameter, 226
eccentricity, 231
labeling, 200–209
major axis, 228
matrix representation, 216
moment, 226
orientation, 228
perimeter, 223
projection, 233
run length encoding, 218
topology, 234

region of interest, 475, 481, 494, 495,
497, 501, 506–513, 520, 522

relative colorimetry, 289

remainder operator, 459
RenderingHints (class), 542
repaintImageWindows (method), 521
repaintWindow (method), 501
resampling, 390–392
resetEscape (method), 517
resetMinAndMax (method), 504
resetRoi (method), 512
resize (method), 485, 498
resolution, 10
reverting, 480, 484
revertToSaved (method), 484
RGB

color image, 239–253
color space, 240, 270
format, 22
image, 473

RGBtoHLS (method), 267
RGBtoHSB (method), 261–263, 295
RIGHT_JUSTIFY (constant), 500
rint (method), 461
ripple mapping, 388
Roberts operator, 123, 129
ROI, see region of interest
Roi (class), 475, 506
ROI_REQUIRED (constant), 520
rotate (method), 485, 498
rotateLeft (method), 498
rotateRight (method), 498
Rotation (class), 418, 426
rotation, 233, 361, 375, 377, 426
round (method), 77, 93, 94, 461
round function, 81, 453
rounding, 54, 82, 458, 461
roundness, 224
rubber banding, 510
run (method), 32, 480, 518, 519
run length encoding, 218
runPlugIn (method), 520

S
sampling, 325–330

frequency, 350
interval, 327, 328
spatial, 9
theorem, 329, 330, 337, 338, 350,

394
time, 9

saturation, 42, 257, 490
save (method), 481, 482
saveAs (method), 481 561



Index saveAsBmp (method), 482
saveAsGif (method), 482
saveAsJpeg (method), 482, 483
saveAsLut (method), 483
saveAsPng (method), 483
saveAsRaw (method), 483
saveAsRawStack (method), 483
saveAsText (method), 483
saveAsTiff (method), 483
saveAsTiffStack (method), 484
saveAsZip (method), 484
saving images, 480–484, 521
scale (method), 485, 498, 542
Scaling (class), 418
scaling, 233, 375, 377
separability, 101, 115, 181, 371
separable filter, 131
sequence, 451
Set (interface), 468
set, 176, 451
set (method), 34, 54, 63, 111, 259,

487, 490
setAntialiasedText (method), 500
setBackgroundValue (method), 498
setBrightness (method), 490
setClipRect (method), 500
setColor (method), 500, 542
setColorModel (method), 249, 250,

252, 504
setCurrentWindow (method), 521
setDoScaling (method), 494
setf (method), 441, 487
setFloatArray (method), 490
setFont (method), 500
setHistogramRange (method), 494
setHistogramSize (method), 494
setHSB (method), 490
setIntArray (method), 489
setInterpolate (method), 485, 489,

498
setJustification (method), 500
setLineWidth (method), 500
setMask (method), 512
setMinAndMax (method), 502–504,

533
setNormalize (method), 114, 137,

148, 531
setPixels (method), 488, 506
setProcessor (method), 478
setProperty (method), 515, 516
setRenderingHint (method), 542

setRGB (method), 490
setRoi (method), 510, 512
setSilentMode (method), 482
setSlice (method), 501
setSliceLabel (method), 506
setStack (method), 504
setStroke (method), 542
setTempCurrentImage (method), 521
setThreshold (method), 502, 503
setTitle (method), 501
setup (method), 32, 35, 85, 246, 248,

493, 519, 520, 525, 533
setValue (method), 52, 152, 500,

527
setWeightingFactors (method),

257, 485
Shah function, 327
Shannon, 330
Shape (class), 534, 541, 542
shape

feature, 222
number, 220, 221, 236

sharpen (method), 497
Shear (class), 418
shearing, 377
shift property, 324
shiftKeyDown (method), 517
short (type), 491
ShortProcessor (class), 253, 472,

491
ShortStatistics (class), 494
show (method), 52, 153, 247, 501,

502, 508, 514, 518, 530
showDialog (method), 86, 507, 518,

526
showMessage (method), 515, 526
showMessageWithCancel (method),

515
showProcessor (method), 530
showProgress (method), 517
showStatus (method), 517
signal space, 100, 320, 338
similarity, 324
sin (method), 461
Sinc function, 321, 394, 404
sine function, 322

one-dimensional, 314
sine transform, 367
size (method), 534
skeletonization, 195
skeletonize (method), 195562



Indexslice, 506
smooth (method), 497
smoothing filter, 89, 92
snapshot array, 489
Sobel operator, 120, 129, 497
software, 28
solve (method), 422
sort (method), 109, 150, 300, 466,

529
sorting arrays, 466
source-to-target mapping, 390
spaceBarDown (method), 517
spatial sampling, 9
special image, 13
spectrum, 313–373
spherical mapping, 388
spline

cardinal, 398, 400
Catmull-Rom, 399, 400, 402
cubic, 400, 401
cubic B-, 400–402, 428
interpolation, 399

sqr (method), 81, 495, 531
sqrt (method), 81, 461, 495
square window, 358
sRGB, 79, 256, 257, 283, 285, 286,

288, 292
ambient lighting, 280
grayscale conversion, 287
white point, 280

Stack (class), 202, 203
stack, 200, 246, 504, 505, 508, 512,

520
STACK_REQUIRED (constant), 520
StackStatistics (class), 494
standard deviation, 51
standard illuminant, 279, 288
storing images, 480
Stroke (class), 542
structure, 451
structuring element, 175, 176, 180,

181, 187, 191
SUBTRACT (constant), 82, 497
super (method), 541
super-Gaussian window, 355, 356
SUPPORTS_MASKING (constant), 520

T
tan (method), 461
tangent function, 462

target-to-source mapping, 387, 391,
415

template matching, 429–431, 440
temporal sampling, 9
TextRoi (class), 475, 510
TGA format, 22
thin lens, 8
thinning, 195
thread, 522
three-point mapping, 378
threshold, 55, 129, 163
threshold (method), 55, 496
TIFF, 15, 19, 21, 23, 31, 219, 246,

248
time unit, 315
toArray (method), 151, 530
toCIEXYZ (method), 292–295, 297
toDegrees (method), 461
topological property, 234
toRadians (method), 461
tracking, 139
transform pair, 320
TransformJ (package), 413
translate (method), 535, 542
Translation (class), 418
translation, 233, 377
transparency, 83, 244, 252
tree, 202
true color image, 13, 17, 241, 243,

244
truncate function, 453, 459
truncation, 82
tuple, 451
twirl mapping, 387
TwirlMapping (class), 422
type cast, 54, 458, 488
TYPE_Lab (constant), 297
TypeConverter (class), 252

U
undercolor-removal function, 273
undo array, 489
uniform distribution, 51
unit square, 386
unlock (method), 522
unsharp masking, 133–137
UnsharpMask (class), 136
unsharpMask (method), 137
unsigned byte (type), 459
updateAndDraw (method), 36, 52,
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Index updateAndRepaintWindow (method),
502

user interaction, 515–517

V
variance, 434
Vector (class), 149, 463, 468, 529
vector, 451

graphic, 14
graphics, 216

versionLessThan (method), 523
viewing angle, 280

W
wait (method), 517
Walsh transform, 372
warping, 387
wasCanceled (method), 86, 507, 518,

526
wave number, 334, 344, 349, 368
wavelet, 373
Website for this book, 35
white (constant), 541
white point, 258, 279, 282

D50, 279, 292
D65, 280, 284

window management, 521
windowed matching, 439
windowing, 352
windowing function, 354–357

Bartlett, 355, 357, 358
cosine2, 357, 358
elliptical, 355, 356
Gaussian, 355, 356, 358
Hanning, 355, 357, 358
Parzen, 355, 357, 358
rectangular pulse, 356
super-Gaussian, 355, 356

WindowManager (class), 86, 249, 475,
507, 521

WMF format, 15
write (method), 515

X
XBM/XPM format, 22
XOR (constant), 497
xor (method), 496
XYZ scaling, 289

Y
YCbCr, 272

YCbCr, 270
YIQ, 269, 272
YUV, 255, 268, 270, 272

Z
ZIP, 15
zoom, 498
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