
C++/CLI Primer
For .NET Development
—
Vivek Ragunathan

C++/CLI PRIMER
FOR .NET DEVELOPMENT

Vivek Ragunathan

C++/CLI Primer: For .NET Development

Vivek Ragunathan
San Jose, USA

ISBN-13 (pbk): 978-1-4842-2366-6 ISBN-13 (electronic): 978-1-4842-2367-3
DOI 10.1007/978-1-4842-2367-3

Library of Congress Control Number: 2016959666

Copyright © 2016 by Vivek Ragunathan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physi-
cal way, and transmission or information storage and retrieval, electronic adaptation, com-
puter software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trade-
mark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Rohan Walia
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie,
Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Deanna Hegle
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New
York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or pro-
motional use. eBook versions and licenses are also available for most titles. For more infor-
mation, reference our Special Bulk Sales–eBook Licensing web page at www.apress.com/
bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are
available to readers at www.apress.com/9781484223666. For detailed information about how
to locate your book’s source code, go to www.apress.com/source-code/. Readers can also
access source code at SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/bulk-sales
http://www.apress.com/9781484223666
http://www.apress.com/source-code/

To my wife, Neelima.

Contents
About the Author . vii

About the Technical Reviewer . ix

Chapter 1: Introduction ... 1

Chapter 2: Words of Agreement 3

Chapter 3: Unmanaged Programming Brief 5

Chapter 4: Managed Programming Brief 7

Chapter 5: W hat Is C++\CLI? .. 9

Chapter 6: Ty pes and Object Creation 11

Chapter 7: Primitive Ty pes Mapping 13

Chapter 8: User-Def ined Value Types 17

Chapter 9: Reference Ty pes ... 19

Chapter 10: Garbage Collection Intro 21

Chapter 11: Declaring and Consuming a
Managed Class ... 23

Chapter 12: Boxing/Unboxing ... 27

Chapter 13: Object Destruction 31

Chapter 14: Scope of a Managed Object 39

Chapter 15: Mixed Mode .. 41

Chapter 16: Equality and Identity 45

Chapter 17: Abstract Classes .. 47

Chapter 18: Nullptr .. 49

Chapter 19: Declaring Properties 51

Chapter 20: Strings ... 57

Chapter 21: Arrays—Not [] But cli::array<T^> 61

Chapter 22: A Second Look at GC 65

Chapter 23: Generics ... 71

Chapter 24: The Beginning .. 79

Index ... 81

vi Contents

About the Author
Vivek Ragunathan is a technology architect with exten-
sive experience in architecting, re-architecting, designing, and
implementing large-scale back-end/web applications. He calls
himself language agnostic, polyglot, linguist, and linguaphile. He
loves playing with different programming languages and is par-
ticularly interested in experimenting in how a language yields
itself in solving a given problem succinctly and elegantly. He
is skillful in object-oriented design, programming, and meth-
odologies and thoughtfully borrows and applies functional
programming concepts. Apart from programming, he loves
writing, photography (digital but not manipulated).

Vivek writes about programming on his blog A Developer’s
Experience (http://vivekragunathan.wordpress.com).

http://vivekragunathan.wordpress.com/

About the
Technical
Reviewer

Rohan Walia is a senior soft-
ware consultant with exten-
sive experience in client/server,
web-based, and enterprise
application development. He
is an Oracle Certified ADF
(Application Development
Framework) Implementation
Specialist and a Sun Certified
Java Programmer. Rohan is
responsible for designing and
developing end-to-end appli-
cations consisting of vari-
ous cutting-edge frameworks

and utilities. His areas of expertise are Oracle ADF, Oracle
WebCenter, Fusion, Spring, Hibernate, and Java/J2EE. When
he’s not working, Rohan loves to play tennis, hike, and travel.
Rohan would like to thank his wife, Deepika Walia, for using
all her experience and expertise when reviewing this book.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_1

 Introduction
 C++/CLI is unattractive, clumsy, and hard when compared to
other modern programming languages that run on the .NET
platform. That’s because it is powerful. Like light that can be
viewed as a wave or particle, C++/CLI can be exercised as an
unmanaged or managed language or actually as a sandwich
language to do mixed-mode programming, which is its real
power. That’s also why it is unique.

 In this book, I present some of the important aspects of the
C++/ CLI language that usually pose a barrier to program-
mers new to the language. I believe that this book will guide
you through that barrier. Beyond that barrier lies a world of
hard-core programming on the .NET platform.

 This book is not an extensive guide to master the C++\CLI
programming language ; rather, it is quick start learning mate-
rial that offers an easier way for an unmanaged C++ pro-
grammer to enter the world of managed programming, still
sticking to C++. The book should be helpful also for a C#, or
VB.NET, or a pure managed programmer too to program in
C++\CLI where the two programming worlds merge to offer
the most powerful programming environment.

 C H A P T E R

1

Chapter 1 | Introduction2

 In the book, I focus on highlighting features that distinguish
C++/CLI from C++ and other managed languages in general.
In that regard, I aim this book at programmers who have rea-
sonable experience programming in C++ or one of the other
unmanaged languages. This book is not appropriate for people
beginning to program; nor is C++/CLI, for that matter.

 I hope what you learn from this book proves to be useful in
your everyday programming life.

 Comparisons of C++\CLI with C# or other .NET languages
have not been made often, but if they are made, they are not
to win arguments but to show the differences and to under-
stand and appreciate gotchas and subtleties. There are abso-
lutely no references in this book to the obsolete Managed
Extensions for C++.

 So let’s jump right in!!!

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_2

 Words of
Agreement
 The word unmanaged in the broader sense encompasses
any and all technologies (Win32, COM, . . .) and programming
languages (C++, VB, Pascal, . . .) prior to the inception of .NET.
The word managed refers to the .NET technology itself and
only those programming languages that support program-
ming on the .NET platform. The words object and instance
have been used interchangeably for the managed object.

 The .NET refers to or is the programming technology, plat-
form, and standard. CLR (Common Language Runtime) is the
implementation of .NET and is the runtime engine (platform)
that programming languages such as C++/CLI or C# generate
IL (intermediate language) code to get hosted against. CLR is
the virtual processor that executes the IL generated by the
various programming languages available for programming on
the .NET platform. C++\CLI is the superior one of them. In
this book, in its entirety, I attempt to help you start learning
the same.

 C H A P T E R

2

Chapter 2 | Words of Agreement4

 In the rest of the book, C++ means the ANSI (American
National Standards Institute) ISO (International Organization
for Standardization; ANSI-ISO) C++ (originally conceived by
Bjarne Stroustrup). It is for programming in the unmanaged
world and cannot be used for programming on the .NET plat-
form. C++\CLI is not the same, and in this book, I will delve
into that in more detail. It must be considered as an entirely
different language whose subset is the features and facilities
of the ANSI-ISO C++. For the content of this article, unman-
aged refers to programming through C++, although gener-
ally speaking, it is equivalent to programming with any of the
other unmanaged programming languages such as VB (Visual
Basic).

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_3

 Unmanaged
Programming
Brief
 We have to reap what we sow. I mean, in C++ (unmanaged
world), if you allocate memory by new / malloc , then it is your
responsibility to deallocate memory using delete / free .
Forgetting to deallocate the allocated memory after the for-
mal consumption results in memory leaks. The compiler is
tightly bound to the underlying operating system (OS) and/or
hardware and uses the APIs (Application Program Interfaces)
exposed by the underlying OS for programming.

 C H A P T E R

3

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_4

 Managed
Programming
Brief
 Programming in the managed world comprises the pro-
gramming language used, the libraries (called the B ase C lass
 L ibrary [BCL]), and the CLR itself. The BCL is the gateway to
the platform on which the program will be executed. The BCL
provides all the APIs for programming and is organized under
various namespaces corresponding to the service intended—
file system, memory, network, user interface, process and
threads, and so forth. One of the several facilities in managed
programming is automatic memory management—allocation
is our wish, deallocation is automatically taken care of by the
CLR by a process called “ Garbage Collection .”

 C H A P T E R

4

Chapter 4 | Managed Programming Brief8

 Types in the managed world are entities that bear informa-
tion and on which operations are carried by calling methods.
Each type is unique by itself. For using the types, we create
instances of types and work with it. Types (and their associ-
ated operations) are packaged and deployed as assemblies.
An “assembly” is the ultimate unit of deployment, and is the
building block of a CLR-based application. An assembly is ver-
sioned, which serves as its identity. An assembly is similar to
the dynamic link library for the unmanaged world, although
assemblies are themselves dynamic link libraries or execut-
ables. Types packaged in an assembly are accessible from
outside based on the accessibility marked for the type. For
instance, a class type marked public is accessible from out-
side and so are its methods that are marked public .

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_5

 W hat Is
C++\CLI?
 I know that might sound like a boring start. But C++\CLI
needs a formal introduction. ANSI/ISO C++ is one of the
mainstream programming languages for programming on
Windows. The .NET is a new platform/technology that offers
hardware/platform independence unlike other older tech-
nologies. It has its own execution engine: a virtual proces-
sor, which is the CLR. While C++ generates an executable
for the target platform, the managed programming languages
generate IL code for the CLR. Programming languages are
required to be compliant with CLI and the CTS (Common
Type System) to be used for programming in the managed
world.

 C H A P T E R

5

Chapter 5 | W hat Is C++\CLI? 10

 ANSI/ISO C++ cannot be used to program on the .NET plat-
form because it is not compliant with the CLI/CTS. Hence,
C++\CLI is a new language (like C++ for C) that was invented
to program on the .NET platform. Though the syntax, gram-
mar, and some of the rules are the same as C++, it must not
be considered just an extension over C++. Instead, C++ is
a subset of C++\CLI, which is not the ultimate intent of the
invention.

 C++\CLI is a secular programming language, which means
it can be used for managed or unmanaged or mixed-mode
programming. Hence, legacy code that cannot be ported to
the .NET platform (using C# or any other .NET language of
choice) in a short time span can be easily ported with C++\
CLI. Also, any new code in such legacy C++ projects can be
written as pure managed code. It also bridges the gap for the
pure managed languages that are otherwise handicapped in
using unmanaged code. So, your C# project can now use your
complex algorithms or the bunch of hi-fi utilities written in
ANSI C++, just with a C++\CLI wrapper over them.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_6

 Ty pes and
Object
Creation
 There are three data types in C++\CLI —reference, value, and
native.

 Native types are those that already exist with C++, say int ,
 float , class , struct , and so forth. An instance of these
types is allocated on the stack when created statically. When
created dynamically (using the new keyword), they get allo-
cated on the heap. It is the responsibility of the programmer
to delete the allocated instance. Now, you as a C++ program-
mer might be well aware of the consequences if you fail to
delete. So scary . . . memory leaks!!!

 C H A P T E R

6

Chapter 6 | Ty pes and Object Creation12

 Value Types and Reference Types are a part of the managed
world. They behave as the CLI dictates, the prime doctrine
being to have a common base type: System::Object. The fol-
lowing are the methods exposed by System::Object :

 Method Name Return Type Accessibility
 Equals bool public

 GetType Type public

 ToString System::String^ public

 GetHashCode int public

 Finalize — protected

 MemberwiseClone System::Object^ protected

 ReferenceEquals bool public static

 From a quick look, it should be obvious that these listed in the
table are methods/operations that the runtime would require
on any object; hence, System::Object . And so is every type
derived from System::Object .

 Value Types are derived from System::ValueType , which is
further derived from System::Object . The value types are
always allocated on the stack. However, there are times when
they are transported to the heap. Although we associate Value
Types to being allocated on the stack, what is more important
about Value Types is the value/copy semantics.

 When a variable a of some value type is assigned to a vari-
able b of the same type, it is copied memberwise to the other
object, which is in contrast to a reference type. In the case of
reference types, an object would have been created on the
heap prior to assignment b = a , which both a and b would
be referring to.

 In C++/CLI, all primitive types are value types. User-defined
values can also be defined, which is discussed in detail in a
later section.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_7

 Primitive
Ty pes
Mapping
 Data Type Name Type Keyword
 Integer System.Int32 int

 Double System.Double double

 Character (2 bytes) System.Char char

 Character (1 Byte) System.Byte byte

 Boolean System.Boolean bool

 The preceding table list is not extensive.

 C H A P T E R

7

Chapter 7 | Primitive Ty pes Mapping14

 The following is the way primitive value types are declared
and used:

 enums
 The following is a typical declaration of a managed enumeration:

 The first thing about managed enumerations that differenti-
ates them from the unmanaged enumerations is that man-
aged enumerations must have names—for instance, Color .
Managed enumerations are scoped, which means that values
must be accessed using their enclosing enumeration name:
two enumerations can have the same value name. The default
underlying type of an enumeration is integer; but of course,
that can be chosen among signed and unsigned integers (int ,
 short , long), char , or bool .

Corporate Plasticity 15

 The following is an example of a managed enumeration whose
underlying type is bool :

 Anonymous managed enumerations are not supported.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_8

 User-Def ined
Value Types
 User-defined value types can be defined by decorating a
 class or struct with the value qualifier.

 Bear in mind that unlike C#, it is not the struct keyword
that makes it a value type. Just like C++, struct and class
in C++/CLI differ only by default visibility assumed by its
members. It is the value qualifier that makes it a value type.
Likewise, it is the ref qualifier that makes it a reference type.

 C H A P T E R

8

Chapter 8 | User-Def ined Value Types18

 The following is the way user-defined value types are declared
and used:

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_9

 Reference
Ty pes
 Reference types are class es and struct s decorated with
the ref qualifier. Instances of Reference Types are always allo-
cated on the heap. Here comes the interesting part. This heap
is not the same heap where your native types are allocated—
the unmanaged heap. This is a different area called the man-
aged heap . The native type or code has no idea or direct
reach to the managed heap. So then, how do we allocate on
the managed heap? Is it by using the new keyword? If so, how
does the new keyword know where to allocate then? To get
around, there is a newer keyword called gcnew .

 Keyword new allocates on the native heap, and gcnew allo-
cates on the managed heap.

 C H A P T E R

9

Chapter 9 | Reference Ty pes20

 Examples and code snippets are not appropriate yet, but just
consider the following for now:

 This is the conventional way of creating a managed object in
C++\CLI. As mentioned earlier, the instance is created on
the managed heap. The accessor for that instance is called the
object reference (objRef in the preceding code) or handle,
and it is allocated on the stack.

 Per C++\CLI convention, a reference to an object is called
a handle. However, let’s stick to (object) reference, which is
the widely used term in the managed world. The term object
reference must not in any way be related to the C++ refer-
ence. Therefore, the word reference in the rest of the book
refers to the managed object reference only, unless and until
explicitly distinguished.

 The instance cannot be accessed without the object refer-
ence. In essence, object references are address holders.
However, they are not like native pointers. Object references
are type aware, polymorphic, and exhibit the type’s behavior.
References do not follow pointer semantics. In other words,
references cannot be cast to any type desired or moved by
incrementing or decrementing the address. So, they are much
more intelligent address holders.

 An assignment of an object reference to another is a shallow
copy, in this case, the address. Hence, there can be more than
one reference to the instance on the managed heap. With
multiple references to an object, memory management is a
C++ programmer’s nightmare. Unless C++/CLI doesn’t offer
a better way to deal with the memory management, it would
be no better or no more powerful than C++.

 Enter . . . GC, aka Garbage Collection.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_10

 Garbage
Collection
Intro
 The managed programming model does not expect the pro-
grammer to perform manual memory management . It is not
required that the programmer write code such as delete
objRef to deallocate and return back the memory that was
allocated. Spare our poor programmers. The CLR is very
smart and reclaims memory through a process called Garbage
Collection, and the component of the CLR that performs
 automatic memory management is the Garbage Collector.
The abbreviation GC is used interchangeably for the process
and the component (depending on the context).

 C H A P T E R

10

Chapter 10 | Garbage Collection Intro22

 The Garbage Collector reclaims only those instances that are
not reachable, namely, for which you lose the object refer-
ences (such as objRef mentioned previously). If the object
reference goes out of scope, or if it was assigned null , the
instance it was referring to cannot be reached through this
reference anymore. In other words, for an instance memory
to be reclaimed by the GC, there must be no outstanding
references. This is the most compelling feature of the .NET.
Programmers are now free of the burden to write code to
delete the memory they allocate, which has been the tough
schooling they have gone through in the several years of pro-
gramming. Beware! Too much freedom results in chaos. Even
with GC, memory has to be allocated wisely because indisci-
plined allocations will degrade application performance. This
is one of the fundamental differences between native and
managed worlds.

 Although GC is responsible only for deallocating the mem-
ory, it is not so for the associated resource. For instance,
if you have opened a connection with a database, the GC
is not responsible for closing the connection; instead, it is
responsible only for reclaiming the memory allocated for the
 connection object .

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_11

 Declaring and
Consuming
a Managed
Class
 With the basics you learned in the previous chapters, it is
time to see stuff that works. The following is a snippet of a
 C++\CLI class (see Listing 11-1).

 C H A P T E R

11

Chapter 11 | Declaring and Consuming a Managed Class24

 Listing 11-1.

 Listing 11-1 is the typical way of declaring a managed class
in C++\ CLI . The ref keyword preceding the class keyword
distinguishes it as a managed class and as a candidate for get-
ting allocated on the managed heap. Let’s see how to create
an instance of the preceding class:

 The caret (̂) symbol specifies that the variable sysDir is a
reference to a managed object. You can call public methods,
and you can copy the reference to another reference variable:

 Now, sysDir and sysDir2 both refer to the same instance.
It is not required to explicitly delete the object as you would
have to do with C++. The memory reclamation part is now
a responsibility of the .NET runtime (GC) . This is really a big
relief for the programmer.

C++/CLI Primer 25

 The effect of calling delete on the instance (delete sysDir)
is discussed in Chapter 12 .

 The following is the way you invoke methods on the
 Directory instance :

 Consider the following method:

 The object reference now can be passed to methods as param-
eters and can be accessed the same way inside the methods
too. All of the references are to the same instance on the
managed heap. There is no copy construction involved any-
where because a copy of the object is not created. It is similar
to passing pointers in C++. In case you need to create a copy,
you should derive your class from the System:: IClonable
and implement the Clone() method . The actual depth of the
copy depends on your implementation. Each inner object may
or may not require a Clone method in turn. It might be very
hard at first for a C++ programmer to digest the practice
of passing around references for the same object, instead of
implementing and using a copy constructor. I guarantee that
in due course you will definitely learn to appreciate that pro-
gramming with objects on the heap and the memory reclama-
tion by garbage collector is a different model altogether.

http://dx.doi.org/10.1007/978-1-4842-2367-3_12

Chapter 11 | Declaring and Consuming a Managed Class26

 Consider the following code:

 An instance of the Directory class is created, and a refer-
ence to the allocated instance is returned. After returning, the
 dirObj will no longer refer to the object on the heap. It is the
responsibility of the calling method to grab the returned ref-
erence and preserve it so that GC does not mark the object
as orphaned or garbage. When there is at least one direct or
indirect object reference for a particular object, the GC will
not attempt to reclaim the memory being consumed by that
object.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_12

 Boxing/
Unboxing
 As we saw earlier, Value Types are allocated on the stack.
There are times when they are present on the managed heap.
For instance, when a method takes a System::Object (the
mother of all managed types) as the parameter for, say, print-
ing the contents, an object is allocated on the heap with the
value of the Value Type copied to it. This process is called
 boxing .

 The following is sample code that shows boxing:

 C H A P T E R

12

Chapter 12 | Boxing/Unboxing28

 Or see the following:

 The opposite of boxing is called unboxing : it is retrieving
the value of the instance from the heap and loading it on the
variable on the stack.

 Apart from boxing, a Value Type resides on the heap when it
is part of a reference type object.

 Boxing/unboxing should be obvious for primitive types.
How is it dealt with in the case of user-defined Value Types?
Consider the following Value Type:

C++/CLI Primer 29

 Let’s first consider unboxing . When Person object is unboxed,
the object is reconstructed on the stack. That means, apart
from object metadata, the Person fields get allocated on the
stack just like the primitive types. The reverse happens in the
case of boxing.

 Boxing and unboxing are applicable only for value types.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_13

 Object
Destruction
 This is a very fuzzy but interesting area.

 In C++, a destructor is a language construct to perform
cleanup on the object after its scope of use and before its
memory is reclaimed. Destruction in C++ is deterministic,
meaning you know exactly when an object has begun its
course of destruction. The destructor for an object allocated
on the stack is called when it goes out of scope. For an object
allocated on the heap, it is called when delete is called. If
you fail to call delete (after the formal consumption of the
object), the destructor is never called, and the memory held
by the object is not released—memory leaks. Now we know
that story.

 C H A P T E R

13

Chapter 13 | Object Destruction32

 On the contrary, managed object destruction is non-deter-
ministic, meaning the GC will reclaim object memory at an
arbitrary time (not definitely right after the scope of use)
and on an arbitrary thread. Ideally, there are no destructors
for managed objects (implemented in most other .NET lan-
guages) because the destruction of such objects is not deter-
ministic. C++/CLI is a class apart.

 When you are done using an object, there are two ways avail-
able to cleanup— dispose and finalize .

 Cleanup Dispose
 There are times when you know the scope of the object
use (lifetime). In such cases, you can invoke an explicit call
on the object to perform cleanup. Per the .NET recommen-
dation, you can perform an explicit cleanup by invoking the
 Dispose method on the object (if the object implements
 System::IDisposable). The dispose method is intended
solely for object/resource cleanup, while the object memory
is reclaimed during GC at a later and arbitrary point in time.

 Cleanup Finalize
 There is another, but last chance, in the lifetime of an object
to perform cleanup, even after you have given up all the ref-
erences to the object. That is when the object gets finalized.
When the garbage collector finds an orphaned or garbage
object, it adds that object to a special queue (called the
 Finalization Queue) if the object implements the Finalize
 method . A dedicated thread, called the Finalizer Thread ,
calls the Finalize() method—also called the finalizer
method —on each of the queued objects. This process is
called Finalization . The Finalize() is the last method call on
an object in its lifetime; after that, the object vanishes. Bear in
mind that resource cleanup can only be attempted in the
 finalize method. So you must be prepared for the worst.

C++/CLI Primer 33

 The Finalize method is called at an arbitrary point in time
long after the object is reachable from your code. There is no
order in which the finalizers are called. If object A contains
object B , it is not necessary that the finalizer for object B
be called first. The order is not guaranteed. Then what good
is a finalizer for? Theoretically, it is for releasing unmanaged
resources that the object might contain. Unmanaged objects
are not collected by the GC . They exist until they are explicitly
released.

 Finalization is a very involved process in the lifetime of an
object, the details of which are intricate and outside the
scope of this book. For the most part, you can consider it
as an undocumented feature. That is to say, you should never
put your code in a situation to rely on the finalization for
resource cleanup.

 Implementing a finalizer method is targeted only for particu-
lar classes of objects, specifically, those that rely on native
resources such as OS handles and so forth. During the course
of evolution of the CLR, even such classes of objects are
recommended to implement SafeHandle . In other words,
implementing a finalizer is highly discouraged.

 Implementing a finalizer has indirect consequence of affecting
the application performance because the GC cannot reclaim
the memory right away in its course of collection but defers
until after running through the finalizer.

 So, what would happen if you chose to Dispose and the
 Finalize method is also called on the object (assuming the
object implements the Finalize method)? Or what happens
when Dispose is called multiple times? It could be disastrous
to clean up an object more than once. So how do we then
avoid redundant cleanups? .NET recommends the Dispose
Pattern. The idea is to prevent detect and avoid Dispose -ing
an object more than once and also prevent the Finalize
from being invoked if you have already called Dispose .

 The garbage collector is exposed via the System.GC class .

Chapter 13 | Object Destruction34

 The following is the Dispose pattern implementation snippet:

C++/CLI Primer 35

 The GC.SupressFinalize method , when called for the
desired object, suppresses the finalizer from calling the
 Finalize method from being called on the object.

Chapter 13 | Object Destruction36

 To appeal to the C++ programmers, C++/CLI wisely reuses
the existing syntax to preserve the concepts and the prac-
tices. In C++\ CLI , it is not required to explicitly derive from
 System::IDisposable and implement the Dispose method.
Instead, the C++ destructor syntax is analogous to the
 InternalDispose method (see MyDisposableClass class).
When you implement a destructor using the conventional
C++ destructor syntax (~ClassName), the compiler auto-
matically derives the class from System::IDisposable and
implements the Dispose pattern for you. The skeleton of
the Dispose pattern is just a boilerplate, which the compiler
injects on your behalf if you provide the cleanup logic via the
destructor.

 If there is no destructor for a class, then it is not derived
from System.IDisposable , and C++/CLI assumes that you
made a conscious decision not to implement the Dispose
pattern. Because the destructor syntax has been chosen for
the Dispose method, the semantics is also preserved. That
means Dispose is automatically called when the object falls
out of scope. Whereas other .NET languages lack in this
aspect—destructor—C++/ CLI excels in exercising a hold on
the object lifetime, particularly the cleanup. This is one of the
distinguishing features in C++/CLI.

 Like the destructor or the Dispose method, the Finalize
method can also be defined syntactically with a !{ClassName} ;
instead of a ~ .

C++/CLI Primer 37

 Here is the refined MyDisposableClass class :

 Note that C++/CLI implements the Dispose pattern for you,
letting you focus on the cleanup logic.

Chapter 13 | Object Destruction38

 The following is likely a way that C++\ CLI implements the
 Dispose pattern for you:

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_14

 Scope of a
Managed
Object
 Consider the MyDisposableClass class that we saw ear-
lier. It is a reference type. So what does falling out of scope
mean for a reference type? To the .NET in general, it does not
make sense. However, in C++/ CLI , because it is related to a
destructor, it does make sense.

 C H A P T E R

14

Chapter 14 | Scope of a Managed Object40

 Now, take a look at this:

 Unlike earlier where we gcnew a managed object and declare
the variable with a ̂ , the dirObj in the preceding code does
neither. It resembles how in C++ you would declare an object
to be allocated on the stack.

 The Directory instance referred by the dirObj variable is
actually allocated on the managed heap, but it is declared in
a way (similar to C++) to be Dispose d when dirObj goes
out of scope. The compiler automatically inserts the call to
the Dispose method or the destructor call. Also, notice that
the members are accessed by a.(dot) operator instead of a
 -> operator. This resembles as if the object is allocated on
the stack and mirrors the C++ stack-based object seman-
tics . Isn’t that cool? This is also one of the cool features that
provide backward compatibility for the syntax. It shows that
the language designers have respect for the habits of C++
programmers.

 Although the dirObj resembles a stack-object, the associ-
ated reference type object is never allocated on the stack. It
is allocated on the managed heap.

 C++/CLI does not support declaring destructors or the
 Dispose method and the Finalize method for Value Types.
It is not a limitation but a (language) design choice.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_15

 Mixed Mode
 Mixed-mode programming is the absolute power of C++\ CLI .
That is why C++\CLI is the superior and mightiest of all pro-
gramming languages on the .NET.

 The relation between C++ and C++/CLI is similar to the one
between C++ and C. You can do C programming in C++. In
the same sense, you can do unmanaged C++ programming in
C++\CLI without using any of the managed features, not even
a managed class. Of course, there is no good reason to do so.
Also, you can do pure managed programming without using
any of the unmanaged practices . You can also do mixed-mode
programming, which means you can write an application that
has both managed and unmanaged classes interacting with
each other. That means there can be an object on the man-
aged heap and another on the unmanaged heap, and they can
invoke calls on one another. This is the hallmark of program-
ming with C++/CLI and has real world use cases. C++/CLI
wasn’t made for fun, nor is it a pet language.

 For instance, imagine your team had developed a hi-fi
image processing or math library in C++. You are mov-
ing your applications to the .NET platform. Let’s say you do
not have enough budget/time to rewrite your library in C#

 C H A P T E R

15

Chapter 15 | Mixed Mode42

(or VB.NET). The simplest approach is to recompile your exist-
ing code with C++\CLI and write a (managed) wrapper so that
they can be used by any . NET programming language . The time
and effort to write a managed wrapper compared to the effort
of rewriting and testing it is orders of magnitude less.

 The following is a managed class that interacts with an unman-
aged object:

C++/CLI Primer 43

 Likewise, an unmanaged class can bear a managed reference
and can invoke methods on it. Unlike a managed class holding
the pointer to unmanaged, it cannot directly have the refer-
ence; instead, it is done the following way:

 The keyword gcroot is a means for the managed code to
hold a reference to a managed instance. The gcroot is itself
an unmanaged entity. An instance of gcroot<managed> can
be a statically or dynamically allocated member inside the
unmanaged class; gcroot is what we call the gray area of the
.NET—neither managed nor unmanaged.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_16

 Equality and
Identity
 Two managed objects are said to be equal if their values are
same. The System::Object ’s Equals method can be used to
test equivalence. The Equals is an instance virtual method
and can be overridden in a derived class/struct because
equality of compound objects depends on the type. Two
managed objects are said to be identical if their references
point to the same object on the heap. The System::Object ’s
 ReferenceEquals static method can be used to test identity.

 The crux of CLI is the importance of a type of an object. Unlike
unmanaged objects, managed objects know who they are, right
from the moment they spring to life, either on the stack or on
the heap. The type information of an object can be obtained
by using the typeid operator and using System::Object ’s
 GetType method for the instances. The importance of the
type can be realized if you try the GetType in the constructor .
You will be surprised that it returns the type of the instance
being constructed. For instance, see the following case:

 C H A P T E R

16

Chapter 16 | Equality and Identity46

 The highlighted Console::WriteLine will output the type
of the instance being created and not always SomeClass . That
is, if an instance of SomeOtherClass is created, you will see
 SomeOtherClass in the output. Also, you will be thrilled to
know that the virtual calls in the constructor are directed
to the appropriate overrides. This, of course, is not recom-
mended usage and is not a good discipline. It is just being
pointed out to understand the importance of a Type .

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_17

 Abstract
Classes
 As you might already know, an abstract class is one whose
sole purpose is to act as a base class only, which means such
a class cannot be instantiated.

 In C++, the abstract class is declared only by declaring one or
more pure virtual functions . C++ does not provide a direct
language construct such as a keyword.

 C++/ CLI provides the abstract keyword for declaring
abstract classes. Also, methods can be decorated with the
 abstract keyword, in which case the containing class must
also be decorated the same way. The following are explana-
tory code snippets:

 C H A P T E R

17

Chapter 17 | Abstract Classes48

 or

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_18

 Nullptr
 When a C++ pointer is NULL , it does not point to any loca-
tion in the memory. Similarly, when an object reference does
not point to any object, its value is nullptr . The nullptr is
a keyword in C++\ CLI . However, unlike NULL, nullptr is
safer and is not a type. A NULL at the end of the day is an inte-
ger constant. Because nullptr is not a type, no type opera-
tions can be done on nullptr — sizeof(nullptr) , throw
nullptr , and so forth will all result in compiler errors .

• A nullptr can be assigned to an object
reference as part of the declaration or
later.

• A nullptr can be explicitly assigned
even when the reference is referring to
some other object.

 C H A P T E R

18

Chapter 18 | Nullptr50

• A nullptr can be used for comparing
with an object reference , but other arith-
metic operators (+, –, >, <, etc.) are not
allowed.

• if (dirObjRef == nullptr) {
*throw some exception or as
you wish....* }

• if (dirObjRef != nullptr) {
.... }

• A nullptr can be passed to methods as
 parameters and can return values too.

 and

• A nullptr can be assigned to a managed
reference, interior pointer (discussed
later), or a native pointer.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_19

 Declaring
Properties
 There is an easier and very elegant way in C++\CLI for writ-
ing get / set methods . A Property is a getter and/or setter
construct exposed on a class. The accessibility of the getter
and setter of the property can be chosen as per one’s needs.
For instance, it is possible to write a property that has a pub-
lic getter but private or protected setter.

 Let’s say we have a Status class, and it has a few param-
eters: some of which are writable, some only readable, and
some both readable and writable. Here is how to implement
 Status class with the above mentioned properties:

 C H A P T E R

19

Chapter 19 | Declaring Properties52

C++/CLI Primer 53

 Users of the Status class write code as shown in the
following:

 Properties are an elegant way of reading and writing data
members of a class. Accessing the data members of a class via
properties instead of conventional get/set methods enhances
the aesthetics of the client code.

Chapter 19 | Declaring Properties54

 Properties can be declared on a class, struct, or interface .
Therefore, they can be virtual: either get or set or both.
Properties can be static too, and the static applies to the
property as a whole.

 Besides data member properties, there is something called an
 Indexed property . It is essentially a property that provides
an indexing operator for the class. The indexing can be mul-
tidimensional. For instance, consider a class named Manager
that has an array of Reportee s as a member:

C++/CLI Primer 55

Chapter 19 | Declaring Properties56

 Here is how you can use the property on the Manager class:

 With the use of properties, methods such as GetSomeValue
and SetSomeValue(Value) are replaced by the short,
sweet, and elegant obj->* PropertyName * and obj-
>* PropertyName * = * SomeValue * syntax. It is recom-
mended very much that properties be used for only getting
and setting the corresponding entity of the class and to avoid
other unrelated operations.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_20

 Strings
 There has never been a type for string literals in C++. For
instance, the type of 2 is int , and the type of s is char .
Likewise, there is no inherent type for "Hello World" in the
language. It can be accessed as char * or const char * . But
it is not the native type of the string literal. In other words,
the language does not have a singular way of associating a
type to the literal. There is no keyword in the language for
a string like there is for int or char or bool . In many ways,
string is not a first-class citizen in the language.

 The .NET (CLR) associates System.String as the type for
strings. C# offers a string keyword too. Methods can be
directly invoked on string literals— "Hello World".Length
gives 12. This is not so in C++.

 In the later years of evolution, the language provided the
efficient and easy-to- use STL (Standard Template Library),
which has a std::string class for creating and managing
strings. Even std::string is not the native type of a string.
Therefore, when "Hello World" is passed as an argument
for a method

 C H A P T E R

20

Chapter 20 | Strings58

 it requires a conversion (using the ctor).

 If you had high hopes on C++\CLI to recognize a string as a
first-class citizen, you would be disappointed to know that
there is still no type for string literals. However, because C++\
CLI is a secular (managed/unmanaged) programming language ,
there are some interesting things to be noted.

 String literals in C++\CLI have the flexibility of associating
themselves with (the closest) managed or unmanaged types,
based on the context; and of course, managed types take
higher precedence. So, "Hello World" can be treated as
 System::String or const char * or char * . Let’s learn
that with an example:

 Which of the preceding methods do you think the following
call will bind to?

 The previous call will bind to the System::String^ overload.
As I said earlier, managed types are given higher precedence.
In the absence of the System::String^ overload, the call
will be bound to the overload with System::Object^ as the
 argument. The unmanaged const char * will be considered
in the absence of both of the managed types.

 Even among managed types, only those that are found clos-
est to the adopted string literals are considered; when none
are found compatible, the const char * overload takes
precedence. Types that require conversion (using conversion
operators or constructors) assume lower precedence, which
is the case with the std::string overload.

C++/CLI Primer 59

 So what do you think will happen with the following line of
code—compilation error, runtime error, or runs fine?

 Guesses apart, the preceding line of code will result in a
 compilation error . Now don't try to replace the -> with
 . (dot):. The compiler finds no context like a method call
to match the type of the string literal to an existing type,
which should convince you that there is no inherent com-
piler type for string literals—period. All the different flavors
of type matching for string literals may help us build a C++
world where "Hello World" s are one day System::String .
Therefore, try to write code (as much as possible) that binds
to System::String .

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_21

 Arrays—Not
[] But cli::
array<T^>
 A great relief that C++/CLI brings for C++ programmers
is maintaining arrays. The programmer had to be aware of
the array boundaries, range check during access, and other
such things. There is an array type that comes with C++\CLI.
It is a language-defined type . It is not a keyword, although
it is a reserved word. Any managed array is an instance of
the cli:: array class , which by itself is a reference type and
extends the System:: Array type . It can hold a fixed number
of value or reference types; fixed refers the fact that the size
of the array is determined at creation time and cannot be
changed after creating, although the array itself can be cre-
ated dynamically at runtime.

 C H A P T E R

21

Chapter 21 | Arrays—Not [] But cli::array<T^> 62

 The following are the typical ways of allocating an array of
 integers :

• The individual values of an array are
boxed if they are value types.

• Array index is zero based.

• The array type has methods for access-
ing and manipulating the contents of the
array.

C++/CLI Primer 63

• All operations on the array are bound
checked. Any access beyond the maxi-
mum size of the array results in an
exception— Index out of range .

• Arrays get allocated only on the heap;
hence, an array of value types gets all its
values boxed to the heap.

 A cli::array in C++\CLI is the emissary of the Array type
in the BCL (Base Class Library). For dynamically growing
arrays, use System.Collections.ArrayList or any of the
generic collections in the BCL.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_22

 A Second
Look at GC
 The following is a brief and conventional description of how
a garbage collector works:

 Garbage collector is the part of a runtime that takes
care of automatic memory management. That means
it is not only responsible for reclaiming memory but
allocating it too. You could say allocating is the other
side of the coin. If you visualize the managed heap as
an ice tray with a huge number of sequential ice molds
(holes) where an empty mold denotes a garbage or
unreferred object, then the garbage collector as part of
memory reclamation moves all empty molds between
the occupied ones such that the occupied molds are
kept contiguous. This is called compaction. Actually, the
moving of molds happens the other way—live objects
are moved to the first available empty spots.

 C H A P T E R

22

Chapter 22 | A Second Look at GC66

 Compaction prevents the managed heap from getting
fragmented over time, which is one of the theoritical
breakpoints for an unmanaged application. The effect of
compaction on allocation is very fast, unlike C++ runtime
in which a block memory of appropriate size has to
be looked up. The allocation pointer on the managed
heap is always at the start of the free memory. But
because compaction relocates a live object, the garbage
collector will have to update all of its references in the
application. For instance, if an instance (live object) “X”
is moved from address “A” to address “B,” then variables
that are currently referring to “X” at “A” will have to be
updated to point to “B.”

 Let’s stop there for a second and talk about the .NET GC.
The .NET GC has special requirements beyond the preceding
conventional description.

 C++/CLI is one of the languages that run on the .NET CLR.
That means all the power of the language comes from the
runtime—particularly the mixed mode. Now imagine that in
a particular mixed-mode scenario, a piece of managed code
makes a call to an unmanaged function passing the address
of a managed object—array/buffer—which the unmanaged
function fills with some data (e.g., image pixels or data from
a stream, etc.). If a GC is triggered during the time when the
call to the unmanaged function is in progress but not returned
yet, then the compaction is likely to move the managed
reference to the buffer elsewhere, away from the location that
the unmanaged function would be writing to. If that is allowed
to happen, the application will end up in a corrupted state.

 The GC cannot perform any updates in the unmanaged code.
Remember, the GC operates only on the managed heap. Of
course, the integrity of the managed–unmanaged call should
be preserved at any cost pre- and post-GC . One wild way to
resolve this conundrum is to not move the managed object
(array/buffer) during GC so that the unmanaged function is
transparent to GC. Well, that’s what it is: enter pin_ptr .

C++/CLI Primer 67

 pin_ptr<T>
 A pin_ptr<T> , which when instantiated for a managed type/
instance , pins the instance from being moved during garbage
collection (particularly compaction).

 Just as an interior_ptr is a superset of a native pointer, a
 pin_ptr is a superset of an interior_ptr .

 If pin_ptr were let loose, then one could pin every other
managed object and render the GC literally useless. Hence, a
 set of rules is imposed on a pin_ptr :

 1. If a member of an object is pinned, the
entire object is pinned. An object can-
not have a scattered layout. Its members
have to be packed logically contigu-
ous, although not necessarily physically.
Otherwise, it wouldn’t make sense to
call it an object of a certain type .

 2. The object is pinned only for as long as
a pin_ptr points to it. If a pin_ptr is
reassigned or assigned nullptr , then
the original object is no longer pinned.
It is analogous to losing a reference to a
managed object, thereby making it a can-
didate for GC.

 3. The object being pinned can be either a
value type or a member of a managed
object, although not the object itself. If
the managed object is an array, the pin-
ning can be attempted only on its ele-
ment while the entire array will be
pinned.

Chapter 22 | A Second Look at GC68

 4. A pin_ptr can only be a variable on
the stack. In other words, during a GC,
the only possible root for an object to
skip compaction should be on the stack.
This is to reduce the pinning scope of
the object from being pinned forever. By
limiting it to a local variable on the stack,
it is implicit the variable will eventually
fall out of scope, and the object will be
unpinned.

 Here is a quick example:

 In the preceding example, an unmanaged function
 SomeUnmanagedFunc is called to alter/update the contents of
a managed array chars . Note, as already mentioned in pin_
ptr rule number 3, although the first element of the array

C++/CLI Primer 69

(&chars[0]) is used for pinning, the entire array chars is
pinned. Only an element of the array can be used for pinning.

 interior_ptr< type >
 C++/CLI code, whether purely managed or purely unmanaged
or mixed mode, runs on the .NET CLR—meaning it is subject
to garbage collection. The GC follows a contiguous mode allo-
cation pattern for allocating memory. Compaction occurs (just
like a disk defragmenter) whenever GC reclaims memory from
garbage objects. Doing so changes the addresses of the objects
that escaped the collection. But the GC updates the already
existing live references to point to the newly moved locations.
However, such an update does not happen on a native pointer
that might be referring to reference types or its members.

 To handle such a scenario, we require an entity that is not
only pointer like, but it’s superset. That means it must be able
to point to a native or managed object, with a seamless syn-
tax. It must allow all operations, arithmetic too, if it points to
a native object. Enter interior_ptr .

• An interior_ptr can point to a mem-
ber of a reference type, an element of a
managed array, or any native object com-
patible with a native pointer.

• An interior pointer can only be declared
on the stack. Therefore, it cannot be
declared as a member of a class. They can
be local variables or method parameters.

• A method with interior_ptr , instead
of an equivalent native counterpart, has
the advantage of a seamless syntax and
works the same way.

Chapter 22 | A Second Look at GC70

 The following is an example of using an interior_ptr :

 A method that takes an interior_ptr as a parameter instead
of a raw pointer will have the flexibility to accept any of the
 interior_ptr s declared previously.

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_23

 Generics
 What templates mean to C++, so does generics to C++/
CLI. But C++/CLI supports both templates and generics and
allows mixing them too. Generics is a feature of the CLR, and
C++\CLI has its own syntax (like C# and VB.NET) to make
use of the feature.

 Before delving into generics, let’s think back a bit on tem-
plates. Unlike generics, templates is a compile time only feature.
So each instantiation of the template creates a new runtime
type based on the type parameters used. You could think of it
as a syntactic way, although not just a syntactic sugar, to avoid
 code proliferation when it is possible to generalize the imple-
mentation. Once compiled to binary, the template classes/
methods are no longer available or identified as they were
declared in code. Each instantiation of the template creates a
 discrete type per type parameter(s) with mangled, compiler-
generated, unique names.

 Also note that if a C++ template class/method , although
declared, is not instantiated anywhere in the code, it is omit-
ted from the binary.

 C H A P T E R

23

Chapter 23 | Generics72

 Template classes and methods are not identified as declared
in code at runtime; instead, they have compiler-generated
names.

 On the contrary, generics, apart from providing the facil-
ity of templates, are independent types themselves that are
preserved even postcompilation. All instances of a particular
generic type, say SomeClass<T> , are of the same generic type.
All instances of SomeClass<T> , with T as int , are of the same
type. This is an important distinction compared to templates.

 It is only at runtime that the specialized type instance, say
 SomeClass<int> , is created. Until then, generic types
(SomeClass<T>) exist in the assembly as one among several
other types. That means that unlike templates, generic types
are always part of the assembly even when they are not used/
referred anywhere in the code. For instance, if SomeClass<T>
was declared but not used anywhere in the code, it would still
be part of the assembly; this is not so if it was a template.

 Let’s try to get a sense of the feature with a couple of
examples:

C++/CLI Primer 73

 Example—Generic Method

Chapter 23 | Generics74

 Example—Generic Class

C++/CLI Primer 75

 The following is client code using the Stack<T> class :

Chapter 23 | Generics76

 Unlike C++ templates that are awaiting constraints, called
 concepts , for a long time now, C++/CLI generics has support
for type constraints. That means you can restrict what kind
of types are supported by a particular generic class/method.

C++/CLI Primer 77

 The following are some observations that we make from the
preceding example:

• SomeClass<T> will accept only types that
implement the IComparable interface.

• Although generic-type parameters such
as T previously can accept both managed
and unmanaged types, we can restrict to
only managed/ref types by specifying the
 gcnew constraint.

• T() is not creating an instance but
denotes using the default value of T .
Using nullptr directly in the method is
not valid because T is not restricted to
reference types. Value types cannot be
null. If T needs to be constrained only to
reference types, then where T : ref
class should be used.

 Unlike C#, C++/CLI allows enum to be specified in the type
constraint.

 What’s more adventurous in C++/CLI is not generics and
templates in silos but the mix. That’s right! Templates and
generics can coexist. Isn’t it cool ? A template class can have
generic classes and/or methods , but the other way around is
not possible or allowed. Imagine why!

 I’ll give you a hint: templates need to be instantiated in code
to make it into the assembly. Also, discrete types are created
per instantiation per type parameter.

 Here is an example of a managed template class:

Chapter 23 | Generics78

 Although managed, the class follows the same template rules.
That means one such managed type would be created per
instantiation per type. Also, SomeClass can be specialized,
such as the one following:

 Generics is a considerably vast area and requires devot-
ing time for exploration and revelation . You can read more
about generics at https://msdn.microsoft.com/en-us/
library/8z2kbc1y.aspx .

https://msdn.microsoft.com/en-us/library/8z2kbc1y.aspx
https://msdn.microsoft.com/en-us/library/8z2kbc1y.aspx

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3_24

 The
Beginning
 Well, there is only way to conclude. Let me put it this way.
C++\CLI is not uglier but mightier and superior. The syntax
might be a bit wild, and the concepts may be unconventional
for a C++ programmer. But on the whole, the real power is
unleashed by the capacity of the programmer. What you saw
in this book has brought you only to the doors of power
programming on the .NET platform . There is a lot more
to explore and a lot of ways in which the language can be
exploited for the better. It is only limited to our imagination.

 I hope that the topics discussed in the book have kindled
your interest to delve further and prove to be useful in your
endeavors with C++/CLI.

 For a lot more information on C++/ CLI and the .NET,
 Microsoft Developer Network (at https://msdn.micro-
soft.com/en-us/default.aspx) is one of the best places
that I would recommend.

 C H A P T E R

24

https://msdn.microsoft.com/en-us/default.aspx
https://msdn.microsoft.com/en-us/default.aspx

 A
 Abstract class

 C++/CLI class , 47

 description , 47

 explanatory code , 47

 virtual functions , 47

 American National Standards

Institute/International

Organization for

Standardization

(ANSI/ISO) , 4, 10

 Application Program

Interfaces (APIs) , 5

 Array

 BCL , 63

 cli:array class , 61

 integers , 62–63

 interior_ptr<type> , 69–70

 language-defined type , 61

 System::array type , 61

 Assembly , 8

 Automatic memory

management , 21

 B
 Base Class Library (BCL) , 7, 63

 Boxing process , 27, 29

 C
 C++\CLI programming language ,

1, 3, 5, 9–11, 17, 20, 23,

24, 38, 79

 C++ destructor , 31, 36

 Clone() method , 25

 Common Type System (CTS) , 9

 C++ stack-based object

semantics , 40

 D
 Directory instance , 25

 dirObj variable , 40

 Dispose method , 40

 Dispose pattern

implementation , 34

 Dispose cleanup , 32–33

 Index

I

© Vivek Ragunathan 2016
V. Ragunathan, C++/CLI Primer, DOI 10.1007/978-1-4842-2367-3

 E
 Enumeration (enums)

 bool type , 15

 description , 14

 managed and unmanaged , 14

 signed and unsigned

integers , 14

 Equals method , 45

 F
 Finalization process , 32–33

 Finalization queue , 32

 Finalizer method , 32

 Finalizer thread , 32

 G, H
 Garbage collection (GC) , 7

 automatic memory

management , 21

 database object , 22

 manual memory

management , 21

 memory reclamation , 25

 .NET GC (see .NET GC)

 object references , 22

 System.GC class , 33

 undisciplined allocations , 22

 GC . See Garbage collection (GC)

 GC.SupressFinalize method , 35

 Generics

 classes/methods , 74, 77

 code proliferation , 71

 concepts , 76

 C++ template

class/method , 71

 discrete type per type

parameter(s) , 71

 exploration and revelation , 78

 features , 72

 nullptr method , 77

 parameters , 77

 SomeClass<T> , 72, 78

 Stack<T> class , 75

 and templates , 71

 get/set methods , 51

 GetType method , 45

 I, J, K, L
 Indexed property , 54

 interior_ptr<type> array , 69–70

 InternalDispose method , 36

 M
 Managed heap , 19

 Manual memory management , 21

 Microsoft Developer Network , 79

 Mixed-mode programming

 C++\CLI class , 41

 gcroot keyword , 43

 hi-fi image processing/math

library , 41

 managed and unmanaged class ,

41, 42

 MyDisposableClass class , 36–37

 N
 Native types , 11

 .NET GC

 C++/CLI , 66

 pre- and post-GC , 66

 runtime , 24

 unmanaged function , 66

 .NET programming language , 2–3,

9, 42

 nullptr keyword

 C++\CLI class , 49

 compiler errors , 49

Index 82

 managed reference/interior/

native pointer. , 50

 object reference , 50

 parameters , 50

 O
 Object reference , 20

 Operating system (OS) , 5

 P, Q
 pin_ptr<T> array

 managed type/instance , 67

 set of rules , 67–68

 SomeUnmanagedFunc , 68

 Primitive value types , 14

 Property

 class, struct/interface , 54

 description , 51

 GetSomeValue and

SetSomeValue(Value) , 56

 indexing , 54

 Manager class , 56

 private/protected setter , 51

 reading and writing data

members , 53

 Reportees array , 54

 Status class , 53

 R
 ReferenceEquals static method , 45

 Reference types , 12, 19–20

 S
 SomeOtherClass , 46

 SomeUnmanagedFunc function , 68

 Standard Template

Library (STL) , 57

 STL . See Standard Template

Library (STL)

 String

 argument , 58

 compilation error , 59

 conversion operators/

constructors , 58

 int/char/bool , 57

 managed/unmanaged

programming

language , 58

 .NET (CLR) , 57

 STL , 57

 System::IClonable method , 25

 T
 typeid operator , 45

 U
 Unboxing process , 28–29

 User-defined value types , 17–18

 V, W, X, Y, Z
 Value types , 12

83Index

	Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	Chapter 2: Words of Agreement
	Chapter 3: Unmanaged Programming Brief
	Chapter 4: Managed Programming Brief
	Chapter 5: What Is C++\CLI?
	Chapter 6: Ty pes and Object Creation
	Chapter 7: Primitive Ty pes Mapping
	enums

	Chapter 8: User-Def ined Value Types
	Chapter 9: Reference Ty pes
	Chapter 10: Garbage Collection Intro
	Chapter 11: Declaring and Consuming a Managed Class
	Chapter 12: Boxing/Unboxing
	Chapter 13: Object Destruction
	Cleanup Dispose
	Cleanup Finalize

	Chapter 14: Scope of a Managed Object
	Chapter 15: Mixed Mode
	Chapter 16: Equality and Identity
	Chapter 17: Abstract Classes
	Chapter 18: Nullptr
	Chapter 19: Declaring Properties
	Chapter 20: Strings
	Chapter 21: Arrays—Not [] But cli:: array<T^>
	Chapter 22: A Second Look at GC
	pin_ptr<T>
	interior_ptr<type>

	Chapter 23: Generics
	Chapter 24: The Beginning
	Index

