

Web Development with Java

Tim Downey

Web Development
with Java
Using Hibernate, JSPs and Servlets

Tim Downey, BS, MS
Florida International University
Miami, FL 33199, USA

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007925710

ISBN: 978-1-84628-862-3 e-ISBN: 978-1-84628-863-0

Printed on acid-free paper

© Springer-Verlag London Limited 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the pub-
lishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by
the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specifi c statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the informa-
tion contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

To Bobbi, my sweetheart, with all my love.

Preface

I have been teaching web development for ten years. I started with Perl.
I can still remember the behemoth programs that contained all the
logic and HTML. I remember using a text editor to write the program.
Debugging consisted of a lot of print statements. It was a fun time, full
of exploration, but I do not miss them.

Five years ago, I made the move to Java and Java servlets. Life became
much simpler with the use of NetBeans. It has been a critical component
in developing Web applications using Java. Debugging a web application
in NetBeans is just as easy as debugging any Java application.

This book is meant for students who have a solid background in
programming, but who do not have any database training. Until two
years ago, my students used a glorifi ed HashMap to save data. Then a
former student gave me the word: Hibernate. For anyone with a pro-
gramming background in Java, using Hibernate to save data to a rela-
tional database is a simple task.

I have always been a proponent of automating the common tasks
that Web applications perform. There are many packages that can sim-
plify the job of a Web developer: Log4j, BeanUtils and Hibernate. I have
created additional classes that can automate additional tasks.

Readers of this book should have a good background in Java pro-
gramming. The book uses HTML, HTML Forms, Cascading Style Sheets
and XML as tools. Each topic will receive an introduction, but the full
scope of the area will not be explored. The focus of the book is on Java
Servlets that use Java Server Pages and connect to a MySQL database
using Hibernate. No SQL will be covered in the book, except for a short
section in the Appendix for those who want to see what Hibernate is
doing.

I am grateful to the community of web developers, who have pro-
vided all the excellent tools for creating web applications: Apache,
Tomcat, Hibernate, Java Servlets, Java Server Pages, NetBeans, Log4j,
Commons.

I am thankful to Bobbi, my sweetheart, for all of her love and support.
Without Bobbi, this book would not have been fi nished. I also want to
thank Kip Irvine for encouraging me to write. Without Kip, this book
would never have been started.

 Tim Downey
Miami, FL

vii

Contents

Preface . vii

1 Browser – Server Communication 1
 1.1 Hypertext Transfer Protocol 1
 1.1.1 Request Format 2
 1.1.2 Response Format 2
 1.1.3 Content Type 3
 1.2 Markup Language . 3
 1.2.1 Hypertext Markup Language 4
 1.2.2 Basic Tags for a Web Page 5
 1.2.3 What Is the HT in HTML? 10
 1.3 HTML Forms . 12
 1.3.1 Form Elements 12
 1.3.2 Representing Data 14
 1.3.3 Transmitting Data over the Web 14
 1.4 Processing Form Data 16
 1.4.1 Web Application 16
 1.4.2 JSP . 17
 1.4.3 Initialising Form Elements 19
 1.5 The Truth About JSPs 21
 1.5.1 Servlet for a JSP 22
 1.5.2 Handling a JSP 24
 1.6 Tomcat and NetBeans 27
 1.6.1 Creating a Project in NetBeans 27
 1.6.2 Web Project in NetBeans 27
 1.7 Summary . 29
 1.8 Chapter Review . 29

2 Controllers . 32
 2.1 Sending Data to Another Form 32
 2.1.1 Action Attribute 33
 2.1.2 Hidden Field Technique 35
 2.1.3 Sending Data to Either of Two Pages 39

ix

 2.2 Using a Controller . 42
 2.2.1 Controller Details 43
 2.2.2 JSP Controller 45
 2.2.3 JSPs versus Servlets 49
 2.2.4 Controller Servlet 49
 2.2.5 Servlet Access 52
 2.2.6 Servlet Directory Structure 55
 2.2.7 Servlet Engine for a Servlet 57
 2.3 Servlets in NetBeans 58
 2.3.1 Source Packages 58
 2.3.2 Including Source Files in a WAR File 59
 2.3.3 Web Application Files 59
 2.4 Summary . 60
 2.5 Chapter Review . 61

3 Java Beans and Controller Helpers 64
 3.1 Application: Start Example 64
 3.2 Java Bean . 66
 3.2.1 Creating a Data Bean 67
 3.2.2 Using the Bean in a Web Application 69
 3.3 Application: Data Bean 70
 3.3.1 Controller: Data Bean 71
 3.3.2 Accessing the Bean in the JSP 72
 3.3.3 JSPs: Data Bean 73
 3.4 Application: Default Validation 74
 3.4.1 Java Bean: Default Validation 74
 3.4.2 Controller: Default Validation 75
 3.5 Member Variables in Servlets 77
 3.5.1 Threads . 77
 3.5.2 The Problem with Member Variables 78
 3.5.3 Local versus Member Variables 79
 3.6 Application: Shared Variable Error 80
 3.6.1 Controller: Shared Variable Error 80
 3.7 Reorganising the Controller 83
 3.7.1 Creating the Helper Base 84
 3.7.2 Creating the Controller Helper 85
 3.7.3 JSPs: Reorganised Controller 88
 3.7.4 Controller: Reorganised Controller 89
 3.8 Application: Reorganised Controller 90
 3.9 Model, View, Controller 91
 3.10 Summary . 91
 3.11 Chapter Review . 92

4 Enhancing the Controller . 95
 4.1 Logging in Web Applications 95
 4.1.1 Logging with Log4j 96
 4.1.2 Confi guring Log4j 96
 4.1.3 Retrieving the Logger 100
 4.2 Eliminating Hidden Fields 101
 4.2.1 Retrieving Data from the Session 102

x Contents

 4.3 Specifying the Location of the JSPs 105
 4.3.1 JSPs in the Directory Where the Controller
 Is Mapped . 107
 4.3.2 JSPs in a Different Visible Directory 107
 4.3.3 JSPs in a Hidden Directory 108
 4.3.4 JSPs in the Controller’s Directory 108
 4.3.5 Where Should JSPs Be Located? 108
 4.4 Controller Logic . 109
 4.4.1 Java Annotations 111
 4.4.2 Executing the Correct Button Method 112
 4.5 Filling a Bean . 113
 4.6 Application: Enhanced Controller 115
 4.6.1 JSPs: Enhanced Controller 115
 4.6.2 ControllerHelper: Enhanced
 Controller . 116
 4.6.3 Controller: Enhanced Controller 118
 4.7 Libraries in NetBeans 119
 4.7.1 Libraries . 119
 4.8 Summary . 119
 4.9 Chapter Review . 120

5 Hibernate . 122
 5.1 Required Validation 122
 5.1.1 Regular Expressions 122
 5.1.2 Hibernate Validation 126
 5.1.3 Implementing Required Validation 128
 5.2 Application: Required Validation 133
 5.3 POST Requests . 134
 5.3.1 POST versus GET 134
 5.4 Application: POST Controller 137
 5.4.1 Controller: POST Controller 138
 5.4.2 ControllerHelper: POST Controller. 138
 5.4.3 JSPs: Updating the JSPs with POST 139
 5.5 Saving a Bean to a Database 140
 5.5.1 Hibernate JAR Files 140
 5.5.2 JAR File Modifi cations and
 Deployment 141
 5.5.3 Hibernate Persistence: Confi guration 141
 5.5.4 Closing Hibernate 147
 5.5.5 Persistent Annotations 148
 5.5.6 Accessing the Database 151
 5.5.7 Making Data Available 154
 5.5.8 Data Persistence in Hibernate 156
 5.6 Application: Persistent Data 158
 5.6.1 Controller: Persistent Data 158
 5.6.2 ControllerHelper: Persistent Data 159
 5.7 Hibernate Confi guration Files 160
 5.7.1 XML File . 160
 5.7.2 File Location 161
 5.7.3 Simplifi ed Controller Helper 161

Contents xi

 5.8 Summary . 162
 5.9 Chapter Review . 162

6 Advanced HTML and Form Elements 166
 6.1 Images . 167
 6.2 HTML Design . 167
 6.2.1 Inline and Block Tags 168
 6.2.2 General Style Tags 168
 6.2.3 Specifi c Style Tags 169
 6.2.4 Layout Tags . 171
 6.3 Cascading Style Sheets 174
 6.3.1 Adding Style 174
 6.3.2 Defi ning Style 175
 6.4 Form Elements . 181
 6.4.1 Input Elements 181
 6.4.2 Textarea Element 183
 6.4.3 Select Elements 183
 6.4.4 Bean Implementation 184
 6.5 Application: Complex Elements 188
 6.5.1 Controller: Complex Elements 188
 6.5.2 ControllerHelper: Complex Elements 188
 6.5.3 Edit.jsp: Complex Elements 188
 6.5.4 Java Bean: Complex Elements 190
 6.5.5 Confi rm.jsp, Process.jsp: Complex
 Elements . 190
 6.6 Using Advanced Form Elements 192
 6.6.1 Initialising Form Elements 192
 6.6.2 Map of Checked Values 193
 6.6.3 Automating the Process 197
 6.7 Application: Initialised Complex Elements 200
 6.7.1 Java Bean: Initialised Complex
 Elements . 201
 6.7.2 HelperBase: Initialised Complex
 Elements . 201
 6.7.3 ControllerHelper: Initialised Complex
 Elements . 202
 6.7.4 Edit.jsp: Initialised Complex Elements 203
 6.7.5 Saving Multiple Choices 203
 6.8 Application: Complex Persistent 205
 6.8.1 Java Bean: Complex Persistent 205
 6.8.2 Process.jsp: Complex Persistent 206
 6.9 Summary . 206
 6.10 Chapter Review . 207

7 Accounts, Cookies and Carts 213
 7.1 Retrieving Rows from the Database 214
 7.1.1 Finding a Row 214
 7.1.2 Validating a Single Property 215
 7.2 Application: Account Login 216

xii Contents

 7.2.1 Java Bean: Account Login 216
 7.2.2 Login.jsp: Account Login 216
 7.2.3 ControllerHelper: Account Login 217
 7.3 Removing Rows from the Database 218
 7.4 Application: Account Removal 218
 7.4.1 Process.jsp: Account Removal 218
 7.4.2 ControllerHelper: Account Removal 219
 7.5 Cookies . 220
 7.5.1 Defi nition . 221
 7.5.2 Cookie Class 221
 7.6 Application: Cookie Test 222
 7.6.1 JSPs: Cookie Test 222
 7.6.2 Showing Cookies 224
 7.6.3 Setting Cookies 224
 7.6.4 Deleting Cookies 225
 7.6.5 Finding Cookies 226
 7.6.6 Cookie Utilities 227
 7.6.7 Path Specifi c Cookies 228
 7.7 Application: Account Cookie 228
 7.7.1 Edit.jsp: Account Cookie 228
 7.7.2 Process.jsp: Account Cookie 229
 7.7.3 ControllerHelper: Account Cookie 229
 7.8 Shopping Cart . 230
 7.8.1 Catalogue Item 233
 7.8.2 Create Catalogue Database 235
 7.8.3 Shopping Cart Bean 237
 7.9 Application: Shopping Cart 240
 7.9.1 ControllerHelper: Shopping Cart 241
 7.9.2 BrowseLoop.jsp: Shopping Cart 244
 7.9.3 Cart.jsp: Shopping Cart 247
 7.9.4 Shopping Cart: Enhancement 247
 7.10 Summary . 249
 7.11 Chapter Review . 250

Appendix . 253
 A.1 Classpath and Packages 253
 A.1.1 Usual Suspects 253
 A.1.2 What Is a Package? 254
 A.2 JAR File Problems . 254
 A.2.1 Hibernate . 255
 A.2.2 MySQL Driver 256
 A.2.3 Hibernate Annotations 256
 A.3 MySQL . 256
 A.4 Auxiliary Classes . 257
 A.4.1 Annotations 258
 A.4.2 Cookie Utility 258
 A.4.3 Enumerations 259
 A.4.4 Helper Base . 260
 A.4.5 Hibernate Helper 268

Contents xiii

 A.4.6 InitLog4j Servlet 276
 A.4.7 PersistentBase Class 277
 A.4.8 Webapp Listener 278

Glossary . 279

References . 280

Index . 281

xiv Contents

1 Browser – Server Communication

This chapter explains how information is sent from a browser to a server. It begins
with a description of the request from a browser and a response from a server.
Each of these has a format that is determined by the Hypertext Transfer Protocol
[HTTP].

The chapter continues with the explanation of markup languages, with a
detailed description of the Hypertext Markup Language [HTML], which is used to
send formatted content from the server to the browser. One of the most important
features of HTML is its ability to easily request additional information from the
server through the use of hypertext links.

HTML forms are also covered. These are used to send data from the browser back
to the server. Information from the form must be formatted so that it can be sent
over the web. The browser and server handle encoding and decoding the data.

Simple web pages cannot process form data that is sent to them. One way to
process form data is to use a web application and a Java Server Page [JSP]. In a
JSP, the Expression Language [EL] simplifi es access to the form data and can be
used to initialise the form elements with the form data that is sent to the page.

JSPs are processed by a program know as a servlet engine. The servlet engine
receives the request and response data from the web server and processes the
request from the browser. The servlet engine translates all JSPs into programs
known as servlets.

Servlets and JSPs must be run from a servlet engine. Tomcat is a popular servlet
engine. NetBeans is a development environment that is tailored for web develop-
ment. NetBeans is packaged with Tomcat.

1.1 Hypertext Transfer Protocol

Whenever someone accesses a web page on the Internet, there is communication
between two computers. On one computer there is a software program know as a
browser, on the other is a software program known as a web server. The browser
sends a request to the server and the server sends a response to the browser. The
request contains the name of the page that is being requested and information
about the browser that is making the request. The response contains the page that
was requested (if it is available), information about the page and information
about the server sending the page – see Figure 1.1.

1

2 Web Development with Java

Browser Server

GET /index .html HTTP/1.1
[Request Headers]
[Blank Line]
[Optional Content]

Request

Response

200 OK HTTP /1.1
[Response Headers]
[Blank Line]
<html>
...

Figure 1.1 The request and response have specifi c formats, as specifi ed by the HTTP protocol.

When the browser makes the request, it mentions the protocol that it is using:
HTTP/1.1. When the server sends the response, it also identifi es the protocol it is
using: HTTP/1.1. A protocol is not a language; it is a set of rules that must be fol-
lowed. For instance, one rule in HTTP is that the fi rst line of a request will contain
the type of request, the address of the page on the server and the version of the
protocol that the browser is using. Another rule is that the fi rst line of the response
will contain a numeric code indicating the success of the request, a sentence
describing the code and the version of the protocol that the server is using.

Protocols are used in many places, not just with computers. When the leaders
of two countries meet, they must decide on a common protocol in order to com-
municate. Do they bow or shake hands when they meet? Do they eat with chop-
sticks or silverware? It is the same situation for computers, in order for the browser
and server to communicate, they must decide on a common protocol.

1.1.1 Request Format

The request from the browser has the following format in HTTP:

1. The fi rst line contains the type of request, the name of the requested page and
the protocol that is being used.

2. Subsequent lines contain information about the browser and the request.
3. A blank line indicates the end of the request headers.
4. In a POST request, there can be additional information sent after the blank

line.

1.1.2 Response Format

The response from the server has the following format in HTTP:

1. The fi rst line contains the status code, a brief description of the status code and
the protocol being used.

2. Subsequent lines contain information about the server and the response.

Browser – Server Communication 3

3. A blank line indicates the end of the response headers.
4. In a successful response, the content of the page will be sent after the blank

line.

1.1.3 Content Type

The server must also identify the type of information that is being sent. This is
known as the content type. There are content types for text, graphics, spreadsheets,
word processors and more.

These content types are expressed as Multipurpose Internet Mail Extensions
[MIME] types. MIME types are used by web servers and web browsers. Each will
contain a fi le that has a table of MIME types with the associated fi le extension for
that type.

MIME types are defi ned by a general type followed by a specifi c type. For
example, there is a general type for text that has several specifi c types for plain
text, HTML text and style sheet text. These types are represented as text/plain,
text/html and text/css, respectively. When the server sends a fi le to the browser, it
will also include the MIME type for the fi le in the header that is sent to the
browser.

MIME types are universal. All systems have agreed to use MIME types to iden-
tify the content of a fi le transmitted over the web. File extensions are too limiting
for this purpose. Many different word processor programs might use the extension
.doc to identify a fi le. For instance, .doc might refer to an MS WORD document or
to an MS WORDPAD document. It is impossible to tell from the extension which
program actually created the program. In addition, other programs could use
the .doc extension to identify a program: for instance, WordPerfect could also use
the .doc extension. Using the extension to identify the content of the fi le would be
too confusing.

The most common content type on the web is HTML text, represented as the
MIME type text/html.

1.2 Markup Language

I am confi dent that most students have seen a markup language. I remember my
days in English composition classes: my returned papers would always have cryptic
squiggles written all over them (Figure 1.2).

Some of these would mean that a word was omitted (^), that two letters were
transposed (a sideways “S”, enclosing the transposed letters), or that a new para-
graph was needed (a backwards, double-stemmed “P”). These marks were invalu-
able to the teacher who had to correct the paper because they conveyed a lot of

Figure 1.2 Editors use markup to annotate text.

4 Web Development with Java

meaning in just a few pen strokes. Imagine if there were a program that would
accept such a paper that is covered with markup, read the markup and generate a
new version with all the corrections made.

There are other forms of markup languages. The script of a play has a markup
language that describes the action that is proceeding while the dialog takes place.
For instance, the following is a hypothetical script for The Three Stooges:

Moe: Oh, a wise guy, huh? <Pulls Larry’s hair>
Larry: It wasn’t me. <Hits Curly in the stomach>
Moe: What are you doing? <Tries to poke Curly in the eye>
Curly: Nyuk, nyuk, nyuk. <Places hand in front of eyes>
Moe: Ignoramus. <Bonks Curly on top of the head>

Word processors have an internal markup language that is used to indicate the
format of the text: bold, italic, font, colour, etc. These codes are hidden from the
user. WordPerfect has an additional view of the document that displays all of these
hidden codes (Figure 1.3).

There are two parts to any markup language

1. The plain text
2. The markup, which contains additional information about the plain text

1.2.1 Hypertext Markup Language

HTML is the markup language for the web. It is what allows the browser to display
colours, fonts, links and graphics. All markup is enclosed within the angle brackets
< and >. Directly adjacent to the opening bracket is the name of the tag. There can
be additional attributes after the name of the tag and the closing bracket.

HTML tags are intermixed with plain text. The plain text is what the viewer of
a web page will see. The HTML tags are commands to the browser for displaying
the text. In this example, the plain text “This text is underlined” is enclosed within
the HTML tags for underlining:

<u>This text is underlined</u>

The viewer of the web page would see: This text is underlined.
There are two types of HTML tags: singletons and paired tags.

Figure 1.3 Word processors use markup to format text.

Browser – Server Communication 5

Singletons have a limited amount of text associated with them or they have no
text at all. Singletons only have one tag. Table 1.1 gives two examples of singleton
tags.

Paired tags are designed to contain many words and other tags. These tags have
an opening and a closing tag. The text that they control is placed between the
opening and closing tags. The closing tag is the same as the opening tag, except
the tag name is preceded by a forward slash /. Table 1.2 gives four examples of
paired tags.

1.2.2 Basic Tags for a Web Page

We are very sophisticated listeners. We can understand many different accents. We
can understand when words are slurred together. However, if we were to write out
the phonetic transcription of our statements, they would be unreadable. There is
a correct way to write our language, but a sophisticated listener can detect and
correct many errors in pronunciation.

For instance, most English speakers would understand me if I asked the
question

Jeet yet?

In print, it is incomprehensible. A proper response might be

No, joo?

Or,

Yeah, I already ate.

As we become more profi cient in a language, we are able to understand it, even
when people do not enunciate clearly.

In the same way, all markup languages have a format that must be followed in
order to be correct. Some language interpreters are more sophisticated than others

Table 1.2 Examples of paired tags.

Tag Explanation

bold The enclosed text is rendered in a thicker font.
<u>underlined</u> The enclosed text is rendered with an underline.
<i>italicised</i> The enclosed text is rendered in an italic font.
<p>paragraph</p> The enclosed text will have at least one empty line preceding it.

Table 1.1 Examples of singletons.

Tag Explanation

 Insert a line break into the document.
<input> Insert a form element into the document. This is a tag that has additional attributes,

which will be explained below.

6 Web Development with Java

and can detect and correct mistakes in the written format. For example, a para-
graph tag in HTML is a paired tag and most browsers will render paragraphs
correctly, even if the closing paragraph tag is missing. The reason is that paragraph
tags cannot be nested one inside the other, so when a browser encounters a new
<p> tag before seeing the closing </p> for the current paragraph, the browser
inserts a closing </p> and then begins the new paragraph. However, if an XML
interpreter were used to read the same HTML fi le with the missing </p> tag, the
interpreter would report an error instead of continuing to parse the fi le. It is better
to code all the tags that are defi ned for a well-formed HTML document, than to
rely on browsers to fi ll in the missing details.

Standard Tags

The HTML specifi cation defi nes a group of standard tags that control the structure
of the HTML document. These tags will contain plain text and other tags.

<html>html code</html>

The html tags enclose all the other tags and text in the document.

<head>browser command tags</head>

The head tags enclose tags that inform the browser about how to display the
entire page. These control how the page appears in the browser, but do not
contain any content for the page. This paired tag belongs within the paired
<html> tags.

<body>body tags</body>

The body tags contain all the plain text and HTML tags that are to be dis-
played in the browser window. This paired tag belongs within the paired
<html> tags.

The <head> section does not contain normal markup tags, like bold and italic,
but instead contains tags that indicate how the browser should display the page.

<title>title text</title>

The title tags enclose the text that will display in the title bar of the browser
window.

<meta http-equiv=”...” content=”...”>

This singleton indicates extra information for the browser. This tag can be
repeated to include different information for the browser. In a standard page,
there should be a meta tag with http-equiv of content-type and content of
text/html;charset=utf-8. These indicate the type of text that is in the HTML
page and the character set for the language that is being used.

Browser – Server Communication 7

HTML Validation

The WWW Consortium [W3C] publishes the HTML standard and provides tools
for HTML validation that will test that a page has the correct HTML structure.
In order to comply with the HTML specifi cation, all web pages should have the
following structure.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Simple Page</title>
 </head>
 <body>
 <p>
 This is a <i>simple</i> web page.
 </body>
</html>

1. The DOCTYPE defi nes the type of markup that is being used. It precedes the
<html> tag because it defi nes which version of HTML is being used.

2. All the tags and plaintext for the page are contained within the paired <html>
tags.
a. Place a <head> section within the paired <html> tags.

 i. Place a paired <title> tag within the <head> section.
ii. Place a singleton <meta> tag for the content type within the <head>

section.
b. Place a <body> section within the paired <html> tags.

3. The DOCTYPE and meta tags are required if the page is to be validated by W3C
for correct HTML syntax. Go to http://www.w3.org to access the HTML validator.

There is no excuse for a web page to contain errors. With the use of the validation
tool at http://www.w3.org, all HTML pages should be validated to ensure that they
contain all the basic tags.

Layout versus Style

There are two different types of information that are contained in each HTML
page: layout and style. The basic layout is covered in this chapter; advanced layout
and style are covered in Chapter Six. Style information contains things like the
colours and font for the page. The recommended way to handle style and layout
is to place all the layout tags in the HTML page and to place all the style informa-
tion in a separate fi le, called a style sheet. For the interested student, the HTML
and style information from Chapter Six can be read at any time.

There are different DOCTYPE statements that can be used for HTML pages:
strict and transitional. The strict one is the recommended one, since it enforces
the rule that all style information be contained in a separate fi le. All pages for this
book will use the strict DOCTYPE for HTML pages.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>

8 Web Development with Java

Word Wrap and White Space

Most of us are used to typing text in a word processor and letting the program deter-
mine where the line breaks belong. This is know as word wrap. The only time that
we are required to hit the enter key is when we want to start a new paragraph.

Browsers will use word wrap to display text, even if the enter key is pressed.
Browsers will treat a new line character, a tab character and multiple spaces as
a single space. In order to insert a new line, tab or multiple spaces in an HTML
page, markup must be used: if it is not plain text, then it must be placed
in markup.

Browsers take word wrap one step further. Browsers will compress all consecu-
tive white space characters into a single space character. The common white space
characters are the space, the tab and the new line character. If there are fi ve spaces
at the start of a line, they will be compressed into one space.

The following listing contains a web page that has a poem.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>A Poem</title>
 </head>
 <body>
 Roses are red
 Violets are blue
 This could be a poem
 But not a haiku

 A haiku has a fixed structure. The first line has
 five syllables, the second line has seven syllables
 and the third line has five syllables. Therefore,
 the previous poem cannot be a haiku.
 </body>
</html>

Even though the poem has four lines, the poem will appear as one line in the
browser. This is because there is no markup to indicate that one line has ended
and another line should begin. The browser will start a new line if the poem would
extend beyond the right margin of the browser.

Try It http://bytesizebook.com/book/ch1/poem.html

Open the link in a browser and view the poem (Figure 1.4). Resize the window and
notice how the browser will break the text in different places. If the window is large
enough, the entire page would be displayed on one line.

Line Breaks

Two of the tags that can be used to start a new line are
 and <p>. The

tag is short for break and starts a new line directly under the current line. It is a

Browser – Server Communication 9

singleton tag, so it does not have a closing tag. The <p> tag is short for paragraph
and skips at least one line and then starts a new line. It is a paired tag, so it is
closed with the </p> tag.

As was mentioned above, browsers have the ability to interpret HTML even if
some tags are missing. The closing paragraph tag is such a tag. It is not possible
to nest one paragraph inside another, so if the browser encounters two paragraph
tags without closing tags, as in <p>One<p>Two, then it will interpret this as
<p>One</p><p>Two</p>. Even the validators at w3.org will accept HTML that
does not have closing paragraph tags.

Listing 1.1 contains the HTML page for the poem, using markup for line breaks
and paragraph tags.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>A Poem</title>
 </head>
 <body>
 <p>
 Roses are red

 Violets are blue

 This could be a poem

 But not a haiku

 <p>
 A haiku has a fixed structure. The first line has fi ve
 syllables, the second line has seven syllables
 and the third line has five syllables. Therefore,
 the previous poem cannot be a haiku.
 </body>
</html>

Listing 1.1 A four-line poem displayed using HTML.

When displayed in a browser, each line of the poem will appear on a separate line.
The paragraph that follows the poem will still be displayed using word wrap, since
no line breaks were inserted into it.

Figure 1.4 How the poem will appear in the browser.

10 Web Development with Java

Try It http://bytesizebook.com/book/ch1/poem_formatted.html

Open the page in a browser to see how it looks (Figure 1.5). Resize the window
and notice that the poem displays on four lines, unless the widow is very small.

Most browsers have an option for viewing the actual HTML that was sent from
the server. If you view the source, you will see the same HTML code that was dis-
played in Listing 1.1.

1.2.3 What Is the HT in HTML?

The HT in HTML stands for Hypertext. Hypertext is the ability to click on a link
in one page and have another page open. If you have ever clicked on a link in a
web page to open another page, then you have used a hypertext link.

There are two parts to a hypertext link: the location of the new page and the
link text that appears in the browser. The location of the pages is specifi ed as a
Uniform Resource Locator [URL], which contains four parts: protocol, server, path,
name. The protocol could be http, ftp, telnet and others. The protocol is followed
by a colon and two slashes (://). After the protocol is the server, followed by a slash
and the path of the directory that contains the resource. The name of the resource
follows the path. protocol://server/path/name

The URL of the hypertext link is not displayed in the browser, but it is associ-
ated with the underlined text on the web page. Another way to say this is that the
URL has to be included in the markup, since it does not appear as plain text.

Anchor Tag

The tag for a hypertext link is the paired tag <a>, which is short for anchor.

 Visible text in browser

Notice that the text that is visible in the browser is not inside a tag, but that the
URL of the fi le is. This is an example of a tag that has additional information stored
in it. The additional information is called an attribute. The URL of the page is

Figure 1.5 How the formatted poem will appear in the browser.

Browser – Server Communication 11

stored in an attribute named href. Attributes in HTML tags provide extra informa-
tion that is not visible in the browser.

This agrees with the basic defi nition of HTML as having plain text and tags.
The tags contain extra information about how to display the plain text. In this case,
when the user clicks on the plain text, the browser will read the URL from the href
attribute and request that page from the server.

It may not seem apparent why this tag is called an anchor tag. An anchor tag
in HTML is like the anchor of a ship. The anchor for a ship connects two parts:
the ship, which is visible from the surface of the water, and the bottom of the ocean.
When the anchor is in use, it is not in the ship, it is in the bottom of the ocean.
The anchor HTML tag connects the visible text in the browser to the physical
location of a fi le.

Absolute and Relative References

The href attribute of the anchor tag contains the URL of the destination page.
When using the anchor tag to reference other pages on the web, you must know
the complete URL of the resource in order to create a link to it. However, depend-
ing on where the resource is located, you may be able to speed up the loading of
your page by using a relative reference.

1. If the resource is not on the same server, then you must specify the entire URL,
starting with http://. This is known as an absolute reference.

 Some Page Somewhere on the web

2. If the resource is on the same server, but is not descended from the current
directory, then include the full path from the document root, starting with
a /.

 Some Page on the Current Server

3. If the resource is in the same directory as the HTML page that references it,
then only include the fi le name, not the server or the directory.

 Some Page

4. If the resource is in a subdirectory of the directory where the HTML page that
references it is located, then include the name of the subdirectory and the fi le
name.

 Some Page in Some Subdir

12 Web Development with Java

There are three types of references.

1. Absolute
2. Relative from document root
3. Relative from current directory

There are just a few rules to determine the kind of reference.

1. If the URL begins with a protocol (like http://, ftp://, or telnet://), then it is an
absolute reference to that location.

2. If the URL begins with a /, then it is a relative reference from the document
root of the current server.

3. In all other cases, the URL is a relative reference from the current directory.

1.3 HTML Forms

If you have ever logged into a web site, then you have used an HTML form to
supply your username and password. A form will have places where a user can
enter data. These are known as form elements and can be for one line of text,
several lines of text, drop down lists and buttons. The form in Figure 1.6, which is
from Florida International University, uses several form elements for lines of text
and a button for submitting the data to the server.

1.3.1 Form Elements

The form and the form elements are defi ned using HTML tags. The opening form
tag is <form> and the closing tag is </form>. Plain text, other HTML tags and
form element tags can be placed between the opening and closing form tags. There
are many form elements, but only two of them will be introduced now. Table 1.3

Figure 1.6 An entry form from FIU.

Table 1.3 Two essential form element types.

Type Example

text <input type=”text” name=”hobby” value=””>
 The value attribute is the text that appears within the element when the page is loaded.
submit <input type=”submit” name=”nextButton” value=”Next”>
 The value attribute is the text that appears on the button in the browser.

Browser – Server Communication 13

defi nes the two essential form elements: text and submit. Additional form elements
are covered in Chapter Six.

Each of these has the same tag name (input) and attributes (type, name,
value).

1. The HTML tag name is input.
2. There are many different form elements that use the input tag. The type attri-

bute identifi es which form element to display.
3. There could be several form elements in a form. The name attribute should be

a unique identifi er for the element.
4. The value attribute stores the data that is in the element. The value that is hard

coded in the element is the value that is displayed in the browser when the
HTML page is loaded.

5. The name and value attributes are used to send data to the server. When the
form is submitted, the data for this element will be sent as name=value.
The value that will be sent will be the current data that is displayed in
the element.

Listing 1.2 is an example of a simple web page that has a form in it.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>First Form</title>
 </head>
 <body>
 <form>
 <p>
 This is a simple HTML page that has a form in it.
 <p>
 Hobby: <input type=”text” name=”hobby”

value=””>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
 </form>
 </body>
</html>

Listing 1.2 A web page with a form.

The form has an input element of type text with a name of hobby and an input
element of type submit with a name of confi rmButton. The name that appears on
the button is Confi rm. Notice that there are HTML tags, plain text and form ele-
ments between the opening and closing form tags.

Try It http://bytesizebook.com/book/ch1/OnePage/SimpleForm.html

The page will display a text box and a submit button (Figure 1.7). Open the page
in a browser, enter some data in the text box and submit the form.

14 Web Development with Java

1.3.2 Representing Data

In a two-dimensional world, it is very easy to create lists of data. For example, Table
1.4 displays a list of colour preferences in a table.

How would these be written in a one-dimensional world? In other words, how
would all of this data be combined into one string of text?

In addition to the data that is in the table, the structure of the table would also
need to be stored in the string. This table has four rows and two columns. There
would need to be a way to indicate the end of one row and the start of the next.
There would need to be a way to indicate the end of one column and the start of
the next.

One technique for data formatting is to choose special characters to represent
the end of a row and the end of a column. It doesn’t matter which characters are
used, as long as they are different. It is also helpful if the characters that are
chosen are not common characters. For example, the ampersand and equal sign
could be used.

1. & is used to separate rows
2. = is used to separate the two columns in a row

Using this technique, the above list could be represented as a string. The structure
of the table is embedded in the string with the addition of special characters.

foreground=black&background=white&border=red&link=blue

1.3.3 Transmitting Data over the Web

When the user activates a submit button on a form, the data in the form elements
are sent to the server. The default destination on the server is the URL of the
current page. All the data in the form elements are placed into one string that is
sent to the server. This string is known as the query string. The data from the
form is placed into the query string as name=value pairs.

Table 1.4 A table of colour preferences.

foreground black
background white
border red
link blue

Figure 1.7 A form with a text box and a submit button.

Browser – Server Communication 15

1. Each input element of type text or submit with a name attribute will have its
data added to the query string as a name = value pair.

2. If there are many name = value pairs, then they are separated by an ampersand,
&.

3. If a form element does not have a name attribute, then it is not sent to the
server.

4. In the default case, the query string is sent to the server by appending it to the
end of the URL. A question mark is used to separate the end of the URL from
the start of the query string.

If the user entered skiing in the hobby element and clicked the Confi rm button of
the form, then the query string that is sent from the browser would look like the
following string.

hobby=skiing&confi rmButton=Confi rm

A question mark and the query string are appended to the URL. The request sent
to the browser would contain the following URL.

http://store.com/buy.htm?hobby=skiing&confi rmButton=Confi rm

If the user had entered the hobby as water skiing, then the query string would
appear as the following string.

hobby=water+skiing&confi rmButton=Confi rm

Notice that the space between water and skiing has been replaced by a plus sign.
A space would break the URL in two. This is the fi rst example of a character that
cannot be represented normally in a URL; there will be other characters that must
be translated before they can be entered in a query string. Please be aware that
the browser does this translation automatically and that the server will do the
reverse translation automatically. This is known as HTML encoding and HTML
decoding.

Try It http://bytesizebook.com/book/ch1/OnePage/SimpleForm.html

Open the form, enter a hobby and click the Confi rm button. The same page will
redisplay, but the query string will be appended to the URL (Figure 1.8).

Many fi rst-time observers will think that nothing is happening when the submit
button on the form is clicked, except that the value that was entered into the text

Figure 1.8 After entering data and clicking the button, the query string will appear in the URL.

16 Web Development with Java

box has disappeared. In reality, a new request for the same page was made to the
server with the query string, containing the data from the form appended to the
URL of the request. A complete request was made by the browser; a complete
response was sent by the server.

1.4 Processing Form Data

If the data from a form is sent to a simple HTML page, then there is no way for
the HTML page to retrieve the data that was sent from the browser. In order to
process the data, the page should be a JSP or a servlet in a web application.

1.4.1 Web Application

A web application consists of a directory structure and some required fi les. The
directory structure is the same for all web applications. One of the required fi les
is the web.xml fi le, which is used to initialise the web application.

Directory Structure

The root directory can have any name, like FirstApp, but the subdirectories must
have the names WEB-INF, lib and classes as shown in Figure 1.9.

The root directory (i.e. FirstApp) of the web application is the standard location
for HTML fi les. The WEB-INF directory contains the web.xml fi le. The lib directory
is where jar fi les will be placed to add non-standard features to the web applica-
tion. The classes directory is where the programs and supporting fi les for your web
application will be placed.

Only the root directory is visible from the Internet. That is why HTML fi les are
placed in the root of the web application. Any fi le that is to be accessed from the
web must be visible from the root of the web application.

The WEB-INF directory and its contents cannot be accessed directly from the
web. A method will be covered in the next chapter for making selected fi les, which
are descended from WEB-INF, visible from the web.

web.xml

There is one required fi le, named web.xml, that belongs in the WEB-INF directory.
It contains XML that defi nes any special features for the web application. XML is
similar to HTML, but there are no predefi ned tags. Each application defi nes its
own tags. In this book, it will be assumed that the web application supports the
new EL that is included in JSP 2.0. As such, the web.xml fi le for a web application

Figure 1.9 A web application has a specifi c directory structure.

Browser – Server Communication 17

should contain the XML in the following listing, at the least. More content will be
added to the web.xml fi le as the applications become more robust.

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app xmlns=”http://java.sun.com/xml/ns/j2ee”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd”
 version=”2.4”>

 <display-name>myApp</display-name>
 <description>
 Simple Web Application with Expression Language
 </description>

 <session-confi g>
 <session-timeout>
 30
 </session-timeout>
 </session-confi g>

 <welcome-fi le-list>
 <welcome-fi le>
 index.jsp
 </welcome-fi le>
 <welcome-fi le>
 index.html
 </welcome-fi le>
 <welcome-fi le>
 index.htm
 </welcome-fi le>
 </welcome-fi le-list>
</web-app>

Web Application Location

Web applications are run by servlet engines. Each servlet engine will have a special
location for web applications. For the Tomcat servlet engine, all web applications
should be located in the webapps directory.

NetBeans is a Java development environment that is packaged with Tomcat. It
is very easy to confi gure NetBeans to run web applications. There will be a discus-
sion of NetBeans in a later section in this chapter.

For other servlet engines, check the documentation to determine where web
applications should be placed.

1.4.2 JSP

A Java Server Page [JSP] contains HTML tags and plain text, just like a regular web
page. In addition, a JSP can contain Java code that is executed when the page is
displayed. As long as it is contained in a web application, a JSP will be able to
process the form data that is sent to it.

18 Web Development with Java

JSP Location

For now, the location of JSPs will be in the root directory of the web application,
not in the WEB-INF directory. The WEB-INF directory is not accessible directly
through a web browser. Later, you will see how it is possible to place a JSP inside
the WEB-INF directory so that access to the JSP can be restricted.

Accessing Form Data

In the servlet specifi cation 2.0, there is a new language that has been added to JSPs
that simplifi es access to objects that are available to a JSP. This language is known
as the Expression Language [EL]. EL statements start with a dollar sign and are
surrounded by curly braces.

${EL-statement}

The EL statement for accessing data in the query string uses the word param and
the name of the form element that contained the data.

${param.name_of_element}

Consider the query string of hobby=water+skiing. To retrieve the value of
the hobby parameter from the query string, insert ${param.hobby} anywhere
inside the JSP.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>First JSP</title>
 </head>
 <body>
 <form>
 <p>
 This is a simple HTML page that has a form in it.
 <p>
 The hobby was received as: ${param.hobby}
 <p>
 Hobby: <input type=”text” name=”hobby”

value=””>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
 </form>
 </body>
</html>

The source code for this page looks just like the HTML page that contained the
simple form in Listing 1.2, except that it includes one instance of an EL statement,
${param.hobby}, and has the extension jsp instead of html. These changes
allow the value that is present in the query string to be displayed in the browser.

Browser – Server Communication 19

This is an example of a dynamic page. It changes appearance based upon the data
that is entered by the user.

Try It http://bytesizebook.com/book/ch1/OnePage/First.jsp

Type in a hobby and click the Confi rm button. The form data will be sent back to
the current page in the query string. Figure 1.10 shows the value that is in the
query string being displayed in the body of the JSP.

1.4.3 Initialising Form Elements

Using the ${param.hobby} syntax, it is possible to initialise a form element with
the value that was sent to the page. The trick is to set the value attribute of the
form element with the parameter value: value=”${param.hobby}”. The
value attribute holds the data that will appear in the form element when the page
is loaded.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Initialized JSP</title>
 </head>
 <body>
 <form>
 <p>
 This is a simple HTML page that has a form in it.
 <p>
 The hobby was received as: ${param.hobby}
 <p>
 Hobby: <input type=”text” name=”hobby”

value=”${param.hobby}”>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
 </form>
 </body>
</html>

Figure 1.10 The value from the query string is displayed in the page.

20 Web Development with Java

Try It http://bytesizebook.com/book/ch1/OnePage/FormInitialized.jsp

Before entering a hobby in the form element, examine the source of the page in
the browser. Notice that the value for the hobby element is the empty string.

...

<form>
 <p>
 This is a simple HTML page that has a form in it.
 <p>
 The hobby was received as:
 <p>
 Hobby: <input type=”text” name=”hobby”

value=””>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
</form>
...

Now enter a hobby and click the Confi rm button (Figure 1.11).
Open the source of the page in the browser. You will see that the value that was

sent from the browser to the server is now hard coded in the form element. Try a
hobby that has multiple words, too.

...

<form>
 <p>
 This is a simple HTML page that has a form in it.
 <p>
 The hobby was received as: water skiing
 <p>
 Hobby: <input type=”text” name=”hobby”

value=”water skiing”>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
</form>
...

Remember to use the quotes around the values. If the quotes are omitted and
the value has multiple words in it, then only the fi rst will be placed in the

Figure 1.11 The input element is initialised with the value from the query string.

Browser – Server Communication 21

element. Never write the value as value=${param.hobby}; always include
the quotes.

Try It http://bytesizebook.com/book/ch1/OnePage/FormInitializedBad.jsp

In this example, the quotes have been omitted for the value. To see the problem,
enter more than one word in the hobby element.

In Figure 1.12, you will see that the correct value is displayed in the plain text,
but that the value in the form element is incorrect. For example, if the hobby is
entered as water skiing, then the form element will only display water.

The reason becomes clear when the HTML code for the form element is viewed
in the browser:

<input type=”text” name=”hobby” value=water skiing>

Without the quotes around the value attribute, the browser sees the following
attributes: type, name, value and skiing. The browser doesn’t know what the skiing
attribute is, so the browser ignores it. Compare this with the correct format for the
input element:

<input type=”text” name=”hobby” value=”water skiing”>

Now the browser sees the correct attributes: type, name and value.

1.5 The Truth About JSPs

JSPs look like HTML pages, but they can generate dynamic content. Whenever
there is dynamic content, there is a program working in the background. HTML
pages are plain text. If a JSP is not in a web application, then there would be no
dynamic content and they would be treated as plain text.

JSPs are abstractions: they are translated into Java programs known as servlets.
The program that translates them into servlets is known as the servlet engine.
It is the task of the servlet engine to translate the JSPs into servlets and to
execute them.

Figure 1.12 The input element is not initialised properly for values that have multiple words.

22 Web Development with Java

Servlets only contain Java code. All the plain text from the JSP has been trans-
lated into write statements. The EL statements have been translated into com-
plicated Java expressions.

1.5.1 Servlet for a JSP

The following listing contains the servlet that was created by the servlet engine
for the last page. The contents of the page can be seen in the out.write
statements.

package org.apache.jsp.ch2.TwoPages;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;

public fi nal class Edit_jsp
extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime JspSourceDependent

{

private static java.util.Vector _jspx_dependants;

public java.util.List getDependants() {
return _jspx_dependants;

 }

public void _jspService(HttpServletRequest request,
 HttpServletResponse response)

throws java.io.IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;
 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 JspWriter _jspx_out = null;
 PageContext _jspx_page_context = null;

try {
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType(“text/html”);
 pageContext = _jspxFactory.getPageContext(

this, request, response,
null, true, 8192, true);

 _jspx_page_context = pageContext;
 application = pageContext.getServletContext();
 config = pageContext.getServletConfi g();
 session = pageContext.getSession();
 out = pageContext.getOut();
 _jspx_out = out;

 out.write(“<!DOCTYPE HTML PUBLIC” +);
 out.write(“\”-//W3C//DTD HTML 4.01//EN\”>\n”);

Browser – Server Communication 23

 out.write(“<html>\n”);
 out.write(“ <head>\n”);
 out.write(“ <meta http-equiv=\”content-type”);
 out.write(“ “);

 out.write(“ content=\”text/html;charset=utf-8\”>\n”);
 out.write(“ <title>Simple Edit Page</title>\n”);
 out.write(“ </head>\n”);
 out.write(“ <body>\n”);
 out.write(“ <p>This is a simple HTML page that”);
 out.write(“ has a form in it.\n”);
 out.write(“ <form action=\”Confi rm.jsp\”>\n”);
 out.write(“ <p>\n”);
 out.write(“ If there is a value for the hobby”);
 out.write(“ in the query string,”);
 out.write(“ then it is used to initialize the”);
 out.write(“ hobby element.\n”);
 out.write(“ \n”);
 out.write(“ <p>\n”);
 out.write(“ Hobby: <input type=\”text\” name=”);
 out.write(“\”hobby\” value=\””);
 out.write((java.lang.String)

org.apache.jasper.runtime PageContextImpl.
 proprietaryEvaluate(“${param.hobby}”,
 java.lang.String.class,
 PageContext)_jspx_page_context, null,
 false));
 out.write(“\”>\n”);
 out.write(“ “);
 out.write(“<input type=\”submit\””);
 out.write(“ name=\”confi rmButton\”
 out.write(“ “);
 out.write(“ value=\”Confi rm\”>\n”);
 out.write(“ \n”);
 out.write(“ </form>\n”);
 out.write(“ </body>\n”);
 out.write(“</html>\n”);
 out.write(“\n”);
 out.write(“\n”);
 } catch (Throwable t) {

if (!(t instanceof SkipPageException)){
 out = _jspx_out;

if (out != null && out.getBufferSize() != 0)
 out.clearBuffer();

if (_jspx_page_context != null)
 _jspx_page_context.handlePageException(t);
 }
 } fi nally {

if (_jspxFactory != null)
 _jspxFactory.releasePageContext(
 _jspx_page_context);

 }
 }
}

24 Web Development with Java

It is actually a complicated matter to generate dynamic content. The EL statement
in the JSP is responsible for the dynamic content. In the above servlet, the actual
Java code for the EL statement of ${param.hobby} is

out.write((java.lang.String)
 org.apache.jasper.runtime.PageContextImpl.
 proprietaryEvaluate(“${param.hobby}”,
 java.lang.String.class,
 PageContext)_jspx_page_context, null,
 false));

The beauty of a JSP is that the servlet engine implements most of the details auto-
matically. The developer can simply write HTML statements and EL statements to
generate programs that can process dynamic data.

1.5.2 Handling a JSP

Web servers know how to deliver static content, but need separate programs to
handle dynamic content. If there is a request made to the server for a JSP, then the
server must send the request to another program to complete the request. In particu-
lar, if a web page has a form for entering data and sends the data to a JSP, then a
special program know as a servlet engine will handle the request. A servlet engine is
a program running on the server that knows how to execute JSPs and servlets. There
are several different servlet engines: Tomcat and JRun are two popular choices.

JSP Request Process

When the user fi lls in data in a form and clicks a button, a request is made from
the browser to the web server (Figure 1.13).

The web server recognises that the extension of the request is .jsp, so it calls a
servlet engine to process the JSP. The web server administrator must confi gure the
web server so that it sends all .jsp fi les to the servlet engine. There is nothing magical
about the .jsp extension, it could be set to any extension at all (Figure 1.14).

The web server sends the request information that it received from the browser
to the servlet engine. If this were a request for a static page, the server would send
a response to the browser; instead, the server sends the response information to
the servlet engine. The servlet engine takes this request and response information
and sends a response back to the browser (Figure 1.15).

Web
Server

Request from Browser

GET /some .jsp HTTP /1.1
...

Figure 1.13 The browser makes a request to the server for a dynamic page.

Browser – Server Communication 25

Figure 1.14 The web server sends the request for a JSP to the servlet engine.

Servlet
Engine

Response to Browser

Figure 1.15 The servlet engine sends a response back to the browser.

Putting all the steps together gives the complete picture of how a request for a
JSP is handled: the request is made; the server calls another program to handle
the request; the other program, which is known as a servlet engine, sends the
response to the browser (Figure 1.16).

Servlet Engine Response

Inside the servlet engine, there are steps that are followed to take the request
information and generate a response. The servlet engine must translate the JSP
into a servlet, load the servlet into memory, encapsulate the data from the browser
and generate the response.

Translating the JSP The servlet engine must translate all JSPs into servlets.
The servlet engine will keep a copy of the translated servlet so that the engine
does not need to retranslate the JSP on every request. The servlet engine will
only create the servlet when the servlet does not exist or when the source JSP has
been modifi ed.

Loading the Servlet A servlet is loaded into memory upon the fi rst request
made to it after the servlet engine has been started or restarted. The servlet
.class fi le is stored on disk. Upon the fi rst request to the servlet, the.class
fi le is loaded into memory. Once a servlet has been loaded into memory, it will
remain there, waiting for calls to its methods. It is not removed from memory after
each request; this enables the servlet engine to process requests faster.

Request and Response Information The web server sends the request informa-
tion that it received from the browser to the servlet engine. The server also sends

Web

Server

Servlet

Engine

GET , /some .jsp ,

HTTP , 1 .1 , Mozilla ,

...

Response Data

text /html , Apache ,

HTTP , 1 .1 ,

...

Request Data

26 Web Development with Java

the response information to the servlet engine. The servlet engine takes this infor-
mation and creates two objects: one that encapsulates the request information and
one that encapsulates the response information. These two objects are all that are
needed to communicate with the browser; all of the information that the browser
sent is in the request object; all the information that is needed to send data to the
browser is in the response object.

Servlet Method to Handle Request Generating the response is done in the
_jspService method of the generated servlet. The method has two parameters:
the request and the response. These parameters are the objects that the servlet
engine generated from the request data that was sent from the browser and
from the response data that was forwarded by the web server. These objects are
of the types javax.servlet.http.HttpServletRequest and javax.
servlet.http.HttpServletResponse.

Figure 1.17 The servlet engine handling a request for a JSP.

Figure 1.16 The complete request and response cycle.

Web

Server

Servlet

Engine

GET , /some .jsp ,

HTTP , 1 .1, Mozilla ,

...

Response Data

text /html , Apache ,

HTTP , 1.1 ,

...

Request DataRequest from Browser

GET /some .jsp HTTP /1.1

...

Response to Browser

Create servlet , if new or modified JSP

Load servlet , if not in memory

Create request and response objects
from data sent from web server

Call _ jspService method with the
request and response objects

Response
Object

Request
Object

Browser – Server Communication 27

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws java.io.IOException, ServletException

Whenever a request is made for a JSP, the servlet engine might have to create the
servlet and might have to load it into memory. If the servlet is recreated, then it
will have to be reloaded into memory. However, even if the servlet is not recreated,
the servlet might need to be loaded into memory. Whenever the servlet engine is
restarted, then all servlets are removed from memory; when the next request is
made to the servlet, it will need to be reloaded into memory.

Figure 1.17 summarises the steps that are followed by the servlet engine when
it receives a request for a JSP.

1.6 Tomcat and NetBeans

In order to run servlets and JSPs, it is necessary to install a servlet engine.
A popular servlet engine is Tomcat, which is an Apache project.

While it is possible to download and install Tomcat, it is easier to download and
install NetBeans, which is packaged with Tomcat. NetBeans is an excellent develop-
ment environment for Java and it allows the developer to debug web applications
just as easily as any other Java application. It is possible to use Tomcat from within
NetBeans without having to know anything about Tomcat confi guration. NetBeans
is open source and can be downloaded for free from http://netbeans.org.

NetBeans organises applications into projects. There are several templates for
creating typical projects; one of these templates is for a web application. When the
NetBeans project is built, the corresponding fi le structure for a web application
will be created.

1.6.1 Creating a Project in NetBeans

In order to work on a fi le in NetBeans, it is necessary to create a project.

1. From the File menu, select New Project . . .
2. Choose the Category of project as Web.
3. Choose the Project type as Web Application.
4. Enter a Project Name and a Project Location.
5. Use the default context path and use J2EE 1.4.
6. Do NOT set the source level to 1.4. Be sure that Java 1.5 or higher is installed

on the system.
7. After clicking fi nish, there should be a project listed in your Projects tab. It will

look something like Figure 1.18.

1.6.2 Web Project in NetBeans

A web project in NetBeans is a set of directories and fi les that allow for servlets
and JSPs to be executed and debugged. By placing the HTML, JSP and servlet fi les
in the correct folders, a web project can be executed from within NetBeans.

28 Web Development with Java

The web project does not have the structure of a web application; however,
when a project is built, the corresponding web application structure will be
created. The fi les from the project folders will be copied into the folders of the
web application.

There are three main folders that are used for a web project: Web Pages, Source
Packages and Libraries. The Web Pages folder will be discussed in this chapter,
since it is the one that is visible from the web. The other two folders will be covered
in detail in Chapters Two and Four.

Web Pages

The Web Pages folder is for HTML pages, images, CSS style sheets and some JSPs.
Table 1.5 explains the directories and fi les that will be found in this folder when a
new project is created.

Try It http://netbeans.org

Download and install the latest NetBeans from http://netbeans.org. In order to use
the EL statements, Java 1.5 or higher must be installed on the system.

Figure 1.18 The Projects tab in NetBeans.

Table 1.5 Contents of the Web Pages folder.

Web Pages This is the main folder for content that is visible from the web application.
Place the JSPs from this chapter in this folder.

index.jsp This is the default web page when this web application is loaded from Tomcat.
Place hypertext links in this page to your JSPs and servlets. When the web
application is run, this is the page that will appear in the web browser.

WEB-INF This subdirectory contains the web.xml fi le. It controls the web application.
More information about this fi le will be provided in Chapter Two.

Browser – Server Communication 29

Create a web application and copy the JSPs into the Web Pages folder. Subfol-
ders can also be created. For now, do not place any JSPs under the WEB-INF
directory.

Edit the index.jsp fi le by adding hypertext links to the JSPs.
Run the web application, follow the links to the JSPs and enjoy running a

dynamic application.

1.7 Summary

The communication between the browser and server is controlled by the HTTP
protocol. The two major parts of the protocol cover the request and response: the
request from the browser and the response from the server must have specifi c
formats. The server also indicates the type of the content that is being sent to the
browser, so that the browser will know how to display it.

Markup languages are useful for annotating plain text. HTML is the markup
language that is used on the Internet. The most common content sent on the web
is HTML. Each HTML tag has a similar structure. To be well formed, an HTML
page should have a set of basic tags. The most important tag in HTML is the anchor
tag. The anchor tag can use relative and absolute references to other fi les.

HTML forms are the way that browsers accept information from a user and
send it to the server. The basic input tags were covered: text and submit. When the
browser sends the data to the server, the data must be formatted so that it can be
passed in a URL. It is placed in the query string.

In order to process data from a user, the data must be received by a dynamic
page in a web application. Of most importance in a web application is the web.xml
fi le, which is used to confi gure the web application. A web application must have
a specifi c directory structure. JSPs are one of the ways that dynamic content can
be displayed in a web application. The expression language is used to display
dynamic content from within a JSP. EL can be used to initialise form elements with
data that is sent to the page.

JSPs are an abstraction: they are translated into Java programs, know as servlets,
by the servlet engine. The servlet engine is an application that is called by the web
server to handle JSPs and servlets. It is possible to write servlets directly, without
creating a JSP. If a page has more Java than HTML, then it should be written as a
servlet, not as a JSP. The servlet engine encapsulates the request and response
information from the server into objects and passes them to the servlets.

NetBeans is an excellent development environment for web applications. Net-
Beans is packaged with Tomcat and is integrated with the default browser on a
system. After creating a project, a web application can be executed with the click
of a button.

1.8 Chapter Review

Terms

 1. Browser
 2. Server

30 Web Development with Java

 3. Request
 4. Response
 5. Protocol
 6. URL
 7. Markup Language
 8. HTML

a. Singleton Tag
b. Paired Tag

 9. Hypertext Link
a. Relative
b. Absolute

10. HTML Form
11. Query String
12. Web Application
13. web.xml
14. ${param.element_name}

Tags

1. HTML
2. HEAD
3. BODY
4. DOCTYPE
5. META
6. TITLE
7. BR
8. P
9. INPUT

a. TEXT (name and value attributes)
b. SUBMIT (name and value attributes)

Questions

1. What are the three things that belong in the fi rst line of a request from the
browser?

2. What are the three things that belong in the fi rst line of a response from the
server?

3. What types of information are contained in the request header?
4. What types of information are contained in the response header?
5. Besides the ?, = and &, list fi ve additional characters that are encoded by the

browser.
6. What is the purpose of MIME types?

Browser – Server Communication 31

7. What are the two parts of every markup language?
8. What two tags are needed in order to use the W3C validator?
9. What is word wrap?

Tasks

1. Write a complete HTML page, including TITLE, DOCTYPE and META tags.
Validate the page for correct HTML syntax, at http://www.w3c.org/. Introduce
some errors into your page and validate again, to see the error messages that
the validator generates.

2. Write hypertext links to the following locations. Use a relative reference when-
ever possible.
a. To the site http://www.microsoft.com
b. To the fi le page2.html that is in the same directory as the current page.
c. To the fi le page3.html that is in a subdirectory named special of the

current directory.
d. To the fi le page4.html that is in a subdirectory named common of the

document root of the web server.
3. Write a complete HTML page that has an HTML form with a text input fi eld

and a submit button. Validate the page for correct HTML syntax, at http://www.
w3c.org/.
a. Rewrite the page so that it echoes the value for the input fi eld if it is in the

Query String.
b. Rewrite the page so that it initialises the input element with the value for it

in the Query String.
4. Write the Query String that would be created from an HTML form that has two

input elements named fi rst and last. Assume that the user has entered a
value of Fred for fi rst and Flintstone for last.

5. Create a Web Application with a complete web.xml fi le.
a. Place the HTML page from question 1 into the web application.
b. Place the JSP from question 3 into the web application.
c. In the HTML page, add a hypertext link to the JSP.
d. Access the HTML page from the web.
e. Access the JSP from the web.

32

2 Controllers

Web applications are more similar than different. If you describe a web site where
you buy things, you will probably say that there is a page where you enter personal
information, then there is a page where you confi rm that your information is
correct and then the site processes your order. These pages could be named the
edit page, the confi rm page and the process page. For the next few chapters, this
will be the basic structure of all the examples of web applications.

Web applications need to be able to send data from one page to the next. The
form tag allows one page to send data to any other page. All data that is in named
form elements can be sent to any page when a button in a form is clicked.

Pages that have visible form elements for entering data can easily send data to
another page; however, not all pages have visible form elements for entering data.
Typically, the confi rm page will display the user’s data as plain text, not in visible
form elements. There is a non-visible form element that can be added to a form
that will hold the user’s data, so that it can be sent to the next page when a button
is clicked.

Some pages in a web application need to be able to send data to more than one
page. The confi rm page in a typical web site is a common example. If there is an
error in the data, the user will send the data back to the edit page. If the data is
correct, the user will send the data to the process page. In order to handle this task
effi ciently, a separate page or program, known as a controller, will be used.

The main task of the controller is to determine the next page to display. Based
on the button that the user clicks, the controller will forward the request to the
correct JSP. A controller can be written as a JSP, but it is better to write the control-
ler as a Java program known as a servlet.

A servlet is a Java program that is compiled to a .class fi le. The .class fi le
must be in the classes directory of a web application in order to be executed. By
default, .class fi les cannot be accessed from the web, but they can be made
visible by adding tags to the web.xml fi le of the web application.

2.1 Sending Data to Another Form

When the user clicks a submit button in a form, by default, the data is sent back
to the current URL. At the server, the current URL then processes the data and
resends its content to the browser. It is possible to override this default behaviour
so that the data entered in one page can be sent to another page (Figure 2.1).

Controllers 33

Each form has an optional action attribute that specifi es the URL of the page that
should receive the data.

2.1.1 Action Attribute

The action attribute should specify the URL of a JSP or servlet that will process
the data and return a new HTML page for the browser to display.

...

<form action=”Confi rm.jsp”>
...

The action attribute of the form tag controls where the data is sent and the page
that will be displayed. For example, Listing 2.1 shows how the edit page, could send
its data to Confi rm.jsp.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Simple Edit Page</title>
 </head>
 <body>
 <p>This is a simple HTML page that has a form in it.
 <form action=”Confi rm.jsp”>
 <p>
 If there is a value for the hobby in the query
 string, then it is used to initialize the hobby
 element.
 <p>
 Hobby: <input type=”text” name=”hobby”

value=”${param.hobby}”>
 <input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
 </form>
 </body>
</html>

Listing 2.1 A JSP that sends data to a different page.

Relative and Absolute References

Just like the href attribute in an anchor tag, the action attribute can be a relative
reference to a JSP or servlet, or can be an absolute reference to a JSP or servlet on
another server.

Edit
Page

Confirm
Page

Figure 2.1 The data from the edit page can be forwarded to the confi rm page.

34 Web Development with Java

1. If the resource is not on the same server, then you must specify the entire URL,
starting with http://.

<form action=”http://server.com/path/Confi rm.jsp”>

2. If the JSP or servlet is on the same server, but is not descended from the current
directory, then include the full path from the document root, starting with
a /.

<form action=”/path/Confi rm.jsp”>

3. If the JSP or servlet is in the same directory as the HTML page that references
it, then only include the fi le name, not the server, nor the directory.

<form action=”Confi rm.jsp”>

4. If the JSP or servlet is in a subdirectory of the directory where the HTML page
that references it is located, then include the name of the subdirectory and the
fi le name.

<form action=”path/Confi rm.jsp”>

Retrieving the Value of a Form Element

When a button is clicked in a form, the data from the form is placed into the query
string. The query string is sent to the page that is specifi ed in the action attribute
of the form. This page can retrieve the value of the form element by using EL, just
as the edit page used EL to initialise the form element with the value from the
query string.

The next listing shows the contents of Confi rm.jsp, the JSP that processes the
data and displays a new HTML page. It displays the value of the form parameter
that was sent to it, using the EL statement ${param.hobby}. Once the data has
been placed into the query string, it can be retrieved by any JSP.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Simple Confirmation Page</title>
 </head>
 <body>
 <p>The value of the hobby that was sent to

this page is: ${param.hobby}.
 </body>
</html>

Try It http://bytesizebook.com/book/ch2/TwoPages/Simple/Edit.jsp

Enter some data into the hobby element (Figure 2.2).

Controllers 35

Click the confi rm button and look at the URL in the browser window (Figure
2.3). The URL is for the confi rm page and contains the data that was sent from the
edit page: the hobby and the button. The hobby is displayed in the browser
window.

Notice that

1. The URL has changed.
2. The data that was entered in the fi rst page is sent to the second page in the

query string via the URL.
3. The data that was entered in the fi rst page has been displayed in the second

page.

2.1.2 Hidden Field Technique

There are now two JSPs: Edit.jsp and Confi rm.jsp. The edit page can send
data to the confi rm page. The next challenge is to allow the confi rm page to send
the data back to the edit page (Figure 2.4).

If you think about web pages that you have visited, you will realise that when
a web page accepts information from the user, data can only be changed on one
page: the data entry page. Furthermore, once data has been entered into the site,
the user usually has the ability to confi rm that the information is correct, before
submitting the data to be processed.

This is the structure of the next example. The user can enter and edit data in
the edit page, but cannot edit data in the confi rm page; the confi rm page will only
display the data that was entered in the edit page and provide a button that will
allow the user to return to the edit page to make corrections.

When accepting data from the user, it is important to validate that the data is
correct. The simplest way to do this is to allow the user to confi rm that the data is

Figure 2.2 Edit.jsp with some data entered into the hobby element.

Figure 2.3 The confi rm page with data that was sent from the edit page.

36 Web Development with Java

valid. It is essential that the page, in which the user confi rms that the data is correct,
does not allow the user to edit the data. In this case, there would need to be another
page for the user to validate that the new data is correct. This leads to an infi nite
chain of confi rmation pages. It is much simpler to ask the user to confi rm the data
and return the user to the fi rst page if there is an error.

First Attempt

The fi rst attempt would be to add a form with a button to Confi rm.jsp (Listing
2.2). This will allow the application to return to the edit page when the user clicks
the button.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Simple Confirmation Page</title>
 </head>
 <body>
 <p>The value of the hobby that was sent to

this page is: ${param.hobby}.
 <form action=”Edit.jsp”>
 <p>
 If there is an error, please select <i>Edit</i>.

 <input type=”submit” name=”editButton”
 value=”Edit”>
 </form>
 </body>
</html>

Listing 2.2 A confi rm page that fails to send data back to the edit page.

This approach will allow the confi rm page to call the edit page, but the data from
the edit page will be lost.

Try It http://bytesizebook.com/book/ch2/TwoPages/Error/Edit.jsp

Enter a hobby and click the confi rm button (Figure 2.5). Notice that the data that
was entered in the edit page has been sent to the confi rm page via the query string
and that the data has been displayed in the JSP.

Click the edit button on the confi rm page to return to the edit page (Figure 2.6).
Notice that the hobby fi eld does not have the value that was sent to the confi rm
page. The original data from the edit page has been lost.

Examine the URL and you will see why it failed: there is no hobby listed in the
query string. The only data in the query string is the button that was clicked in
the confi rm page.

Edit
Page

Confirm
Page

Figure 2.4 The data that was sent to the confi rm page can be returned to the edit page.

Controllers 37

.../ch2/TwoPages/Error/Edit.jsp?editButton=Edit

For now, the only way to send data from one page to another is to place it in the
query string. Even though the value of the hobby was sent to the confi rm page, the
value was not put back into the query string when control was returned to the edit
page. That is the reason why the value of the hobby was lost.

Second Attempt – Hidden Fields

One way to place data into the query string is to place the data in a named element
within a form. This was done when the data was sent from the edit page.

Hobby: <input type=”text” name=”hobby”
value=”${param.hobby}”>

In the fi rst attempt (Listing 2.2), the confi rm page did not have an input element
for the hobby in its form. In order to send the hobby to another page, an input
element must be added for it in the form.

However, remember that the design of this application is mimicking the design
of many web sites: the user should not be able to edit the data on the confi rm page.
If a normal text element were added to the confi rm page, then the user would be
able to change the data on this page. This contradicts the intended design.

The solution is to add a special form element whose value cannot be changed
by the user. This is known as a hidden element. It is not visible in the browser, so
it cannot be changed by the user. It has the same structure as a text element, but
the type attribute of the form element is set to hidden. It will behave just like a
visible element; when a button is clicked, the value from the hidden element will
be added to the query string and sent to the action page.

Figure 2.5 The data is sent correctly from the edit page to the confi rm page.

Figure 2.6 The data is not returned from the confi rm page to the edit page.

38 Web Development with Java

<input type=”hidden” name=”hobby”
 value=”${param.hobby}”>

By adding this element to the form, the Confi rm.jsp page will work as planned.
Notice that the value to save in the hidden element is the value that was sent to
this page.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Confi rmation Page with Edit Option</title>
 </head>
 <body>
 <p>The value of the hobby that was sent to

this page is: ${param.hobby}.
 <form action=”Edit.jsp”>
 <p>
 If there is an error, please select <i>Edit</i>.

 <input type=”hidden” name=”hobby”
 value=”${param.hobby}”>
 <input type=”submit” name=”editButton”
 value=”Edit”>
 </form>
 </body>
</html>

Be sure that the name of the hidden element is the same name as the original text
element in the edit page. In fact, the only difference between the visible element
in the edit page and the hidden element in the confi rm page is the type attribute
of the elements (Table 2.1).

Try It http://bytesizebook.com/book/ch2/TwoPages/Edit.jsp

Enter a hobby and click the confi rm button. Choose the edit button from the
confi rm page and return to the edit page (Figure 2.7).

This time, it works.

1. The hobby cannot be changed on the confi rm page
2. The hobby can be sent back to the edit page.
3. The hobby appears in the query string that is sent to either page.
4. The name of the element is hobby regardless of whether it is the text element

or the hidden element.

Table 2.1 Comparison of text and hidden elements.

Edit Page Hobby: <input type=”text” name=”hobby”
 value=”${param.hobby}”>
Confi rm <input type=”hidden” name=”hobby”
Page value=”${param.hobby}”>

Controllers 39

2.1.3 Sending Data to Either of Two Pages

The application can now pass the data back and forth between two pages and only
one of the pages can change the data. This is a good start, but now there needs to
be a new page that can process the user’s data (Figure 2.8).

Once the user has entered data into a web site, there is usually a button that
allows the user to return to the fi rst page and edit the data. There is also a button
that allows the user to confi rm that the data is correct. When this button is clicked,
the web site processes the user’s data.

To implement this design, a new page must be added to the application. This
will be the process page and will have the name Process.jsp. At this stage of
development, there is nothing to do in the process page. Eventually, this is where
the database will be accessed. For now, the process page will only echo the data
that the user has entered (Listing 2.3).

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Process Page</title>
 </head>
 <body>
 <p>
 Thank you for your information. Your hobby
 of ${param.hobby} will be added to
 our records, eventually.
 </p>
 </body>
</html>

Listing 2.3 The process page.

Figure 2.7 The data is returned from the confi rm page to the edit page.

Edit
Page

Confirm
Page

Process
Page

Figure 2.8 The confi rm page can send data to the edit page or the process page.

40 Web Development with Java

The fi rst half of the intended design has been implemented in our web application.
The additional requirement is that the data from the confi rm page can also be sent
to the process page. This presents a problem: a form can only have one action
attribute, so can send data to only one page. The action attribute in a form can
only specify one address. Even if there are multiple buttons in a form, they will all
send the data to the same page.

Inefficient Solution: Adding Another Form

A solution to the problem of sending data to two different pages will be covered
now, but a better technique will be revealed in the next section of the chapter. The
current technique is being covered in order to demonstrate the limitations of only
using JSPs to design a web application.

The solution to this problem, using JSPs, is not a pretty solution. The solution
is to have two forms in the confi rm page (Listing 2.4). Each form will have its own
action attribute; each form will have its own button. One form will have an action
that points to the edit page, the other form will have an action that points to the
process page.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
content=”text/html;charset=utf-8”>
 <title>Confi rmation Page with Edit/Process Options</title>
 </head>
 <body>
 <p>The value of the hobby that was sent to

 this page is: ${param.hobby}
 <p>
 If there is an error, please select <i>Edit</i>,
 otherwise please select <i>Process</i>.
 <form action=”Edit.jsp”>
 <input type=”hidden” name=”hobby”
 value=”${param.hobby}”>
 <input type=”submit” name=”editButton”
 value=”Edit”>
 </form>
 <form action=”Process.jsp”>
 <input type=”hidden” name=”hobby”
 value=”${param.hobby}”>
 <input type=”submit” name=”processButton”
 value=”Process”>
 </form>
 </body>
</html>

Listing 2.4 An ineffi cient solution that requires two forms.

In order to return to the edit page, the user will click the edit button, which is in
the form with the action set to the edit page. In order to confi rm the data and

Controllers 41

continue to the next step, the user will click the process button, which is in the
form with the action set to the process page.

Notice that the hidden data must be included in each form. Imagine if there
were three possible destinations: there would be three separate forms with dupli-
cate copies of the hidden fi elds. Imagine if there were ten fi elds of data: it would
not take long for this technique to become diffi cult to update. This is the reason
why this is an ineffi cient technique. As a web application becomes more robust
and offers the user many different options, the technique of using a separate form
for each action becomes unwieldy.

Instead of having multiple forms with one button, it would be better to have
one form with multiple buttons. This could be accomplished by adding Java code
to the JSP or by adding Javascript to the JSP; however, this would tend to scatter
the logic for the application amongst separate pages. There is a better solution that
uses a separate Java program to decide which button was clicked. Such a solution
will be covered in the section on controllers.

Try It http://bytesizebook.com/book/ch2/ThreePages/Edit.jsp

Enter data in the edit page and click the confi rm button (Figure 2.9). From the
confi rm page, it is possible to send the data back to the edit page (Figure 2.10) or
forward to the process page (Figure 2.11).

This solution does have the desired effect, but it is diffi cult to maintain. A better
solution will be discussed in the next section.

Figure 2.9 The confi rm page now has two buttons.

Figure 2.10 The data can be seen in the edit page. The URL contains Edit.jsp.

42 Web Development with Java

2.2 Using a Controller

A better solution to the problem of sending data to either of two pages is to use a
fourth page. The idea is to use the fourth page as a control centre. In this technique,
the action attribute of all the forms is set to the fourth page (Figure 2.12). The
fourth page then decides which of the other pages to present. The fourth page will
not contain any HTML code; it will only contain Java code. The fourth page is
known as a controller.

In this technique, each page has only one form, but may have multiple buttons
in a form. For example, the confi rm page will have a single form with two buttons.
The action attribute of the form will be set to the controller and each button will
have a unique name. The controller will determine which page to display next,
based upon the button that was clicked.

...
<form action=”Controller.jsp”>
 <p>
 <input type=”hidden” name=”hobby”
 value=”${param.hobby}”>
 <input type=”submit” name=”editButton”
 value=”Edit”>
 <input type=”submit” name=”processButton”
 value=”Process”>

</form>
...

Think of a controller as a gateway on a network. Computers on the network want
to be able to communicate with each other, but each computer does not want to
have to know the address of all the other computers on the network. The gateway

Edit
Page

Confirm
Page

Process
Page

Controller
Page

Figure 2.11 The data can be seen in the process page. The URL contains Process.jsp.

Figure 2.12 Each page only communicates with the controller.

Controllers 43

simplifi es the process of communication, since each computer only has to know
the location of the gateway. The gateway knows the location of all the computers
on the network. Additional computers can be added to the network and only the
gateway will be affected.

2.2.1 Controller Details

The controller only contains Java code. Each JSP will send its data to the controller.
The controller determines which button was clicked and then forwards control
to the corresponding JSP to complete the request.

The controller simplifi es the way that JSPs communicate with each other. Each
JSP only knows the location of the controller. The controller knows the location
of all the pages. If a new page is added, then only the controller is changed: all the
other pages remain the same.

One of the functions of the controller is to determine what the next page is,
based upon which button was clicked. All buttons should have a name. When the
button is clicked, it will be added to the query string. By inspecting the query
string, the controller can determine which button was clicked.

The query string is sent to the server as part of the request from the browser.
Since the controller is a JSP, it will be handled by the servlet engine. The servlet
engine creates an object that encapsulates all of the information that was sent from
the browser, including the query string. This object is known as the request object
and has a method in it than can retrieve the value of a parameter in the query
string.

The controller also received the response object from the servlet engine. All the
details for communicating with the browser are encapsulated in the response object.

Based on the button that the user clicked, the controller will send the request
and response objects to the correct JSP. The JSP will use the request object to access
the query string. It will use the response object to send the HTML code to the
browser.

The basic tasks of the controller will be implemented with Java code. In the fi rst
example, the Java code will be embedded in a JSP. Later, the Java code will be placed
in a user-created servlet.

Request and Response Objects

When the servlet engine handles a JSP, it creates an object that encapsulates all
the information that was sent in the request from the browser. This object is known
as the request object and is accessible from Java code within a JSP. The class of the
object is HttpServletRequest.

The servlet engine also creates an object that encapsulates all the information
that is needed to respond to the browser. This object is known as the response
object and is accessible from Java code within a JSP. The class of the object is
HttpServletResponse.

Referencing Parameters

Java code cannot use the new expression language for accessing parameters. Java
code must use the traditional technique of passing parameters to a method of an

44 Web Development with Java

object. To reference a query string parameter from Java code, pass the name of the
form element to the getParameter method of the request object.

request.getParameter(“hobby”)

When accessing a parameter from Java code, use the Java expression request.
getParameter(“xxx”). When accessing a parameter from HTML, use the
expression language ${param.xxx}.

Testing for the Presence of a Button

The most important test in the controller is for the presence of a named button.
Even if there are multiple buttons on a page, only the one that is clicked will appear
in the query string. When the getParameter method is called with a button
name, then either the value of the button will be returned or null will be returned.
To test if a particular button was clicked, test if the value returned is not null.

if (request.getParameter(“processButton”) != null)

The value of the button is irrelevant to the controller; only the name of the button
is important. The value of the button is what is visible on the button in the browser
window; the controller does not need to know what that value is. The controller
is only concerned with which button was clicked; that can be determined by
looking at the name of the button.

Control Logic

The JSP indicates the next page by the name of a button. The JSP does not know
the physical location of the next page. This is analogous to a gateway on a network
when a computer name is used to identify a computer instead of its IP address.

The following list summarises how the JSP and the controller interact.

1. The action of each form in each JSP is set to the controller’s URL.
2. In the JSPs, each submit button has been given a unique name.
3. By testing for the presence of a name, the controller can decide which page to

call next.
4. The controller knows the URL of all the JSPs that it controls.

The controller uses a nested if block, written in Java, to decide which page to
display based on which submit button was clicked.

...

if (request.getParameter(“processButton”) != null)
{
 address = “Process.jsp”;
}
else if (request.getParameter(“confirmButton”) != null)
{
 address = “Confi rm.jsp”;
}

Controllers 45

else
{
 address = “Edit.jsp”;
}
...

Forwarding Control to Another JSP

Once the controller has determined the address of the next JSP, it must send the
request and response objects to the JSP. The request and response objects contain
all of the information from the browser and all of the information for sending data
back to the browser. By sending the request and response objects to the JSP, the
controller is sending complete ownership of the request to the JSP. It will be the
responsibility of the JSP to complete the response to the browser.

Two steps are needed in order for the controller to pass control of the request
to another JSP. First, a communication channel must be created for the controller
to communicate with the JSP. This channel is known as a Request Dispatcher. The
request dispatcher is created for the URL of the next JSP. Second, the controller
forwards the request and response objects to this dispatcher, which passes them
to the JSP.

RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
dispatcher.forward(request, response);

Forwarding control to another JSP is a two-step process, just like opening a fi le for
writing. When writing a fi le, the fi le must be opened before it can be written. When
a fi le is opened, the actual location of the fi le is specifi ed. Once the fi le is opened,
data can be written to the fi le. The request dispatcher is similar: fi rst, open the
dispatcher for the address of a JSP, then use the dispatcher to send objects to the
JSP.

2.2.2 JSP Controller

Controllers can be written as JSPs or as servlets. Since the controller will not
contain any HTML, it is better to write it as a servlet. However, it is easier to
understand a controller if it is fi rst written as a JSP. Therefore, the general concept
of a controller will be demonstrated in a JSP, then servlets will be introduced and
the controller will be rewritten as a servlet. After the fi rst example using a JSP, all
controllers will be written as servlets.

Including Java Code

JSP controllers do not contain any HTML code, they only contain Java code. A
special syntax is used to include arbitrary Java code in a JSP. Place all the Java code
between special opening and closing tags: <% and %>.

<%
//place a block of Java code here
%>

46 Web Development with Java

Controller Code

Listing 2.5 contains the complete JSP for the controller. Notice that there is only
Java code, there is no HTML.

<%
 String address;

if (request.getParameter(“processButton”) != null)
 {
 address = “Process.jsp”;
 }
else if (request.getParameter(“confirmButton”) != null)

 {
 address = “Confi rm.jsp”;
 }
else

 {
 address = “Edit.jsp”;
 }

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
%>

Listing 2.5 Listing for a JSP Controller.

Edit Page

The edit page is the same as the one from Listing 2.1, except for the action attribute
of the form.

...

<form action=”Controller.jsp”>
...

Confirm Page

Listing 2.6 contains the confi rm page that is used with a controller.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>
 Confirmation Page with Edit/Process Options
 </title>
 </head>
 <body>
 <p>The value of the hobby that was sent to
 this page is: ${param.hobby}.

Controllers 47

 <p>
 If there is an error, please select <i>Edit</i>,
 otherwise please select <i>Process</i>.

 <form action=”Controller.jsp”>
 <p>
 <input type=”hidden” name=”hobby”
 value=”${param.hobby}”>
 <input type=”submit” name=”editButton”
 value=”Edit”>
 <input type=”submit” name=”processButton”
 value=”Process”>

 </form>
 </body>
</html>

Listing 2.6 Effi cient solution for sending data to one of two pages.

Notice the following about the confi rm page:

1. There are two buttons in one form.
2. The action is to the controller.
3. There is one set of hidden fi elds.

This is a much cleaner solution than Listing 2.4 for sending data to one of two
pages. It had a separate form for each button and each form had to have its own
set of hidden fi elds.

Process Page

The process page to be used with the controller is exactly the same as
Listing 2.3.

Try It http://bytesizebook.com/book/ch2/jspController/Controller.jsp

When the controller is accessed, the Edit.jsp is the fi rst page displayed (Figure
2.13), because it was set as the default in the controller and no form button is
clicked when the controller is accessed for the fi rst time. Notice that there is no
query string and that the URL points to the controller.

Figure 2.13 The fi rst page that the controller displays is the edit page.

48 Web Development with Java

Enter a hobby and visit each page: confi rm page (Figure 2.14), edit page (Figure
2.15), process page (Figure 2.16). Examine the URL and query string for each page.
The URL for each page is the same.

.../ch2/jspController/Controller.jsp

The query string for each page changes. The query string will contain the name
of the button that was clicked. The name of the button was chosen so that it cor-
responds to the actual JSP that is being displayed. For instance, when the query
string contains confi rmButton, the JSP being displayed is Confi rm.jsp. The
address of the JSP does not appear in the URL because the request was made to
the controller. The fact that the controller did not complete the request, but
forwarded it to another JSP is not visible to the browser.

There are four key points about the controller application.

1. The action attribute of each form has been set to Controller.jsp.
2. Each button in each form has a unique name. When a named button is clicked,

its name and value will appear in the query string. If there are multiple buttons
on a page, only the name and value of the button that is clicked will appear in
the query string.

3. For each page, the URL contains a name and value in the query string for the
button that was clicked. This name is what the controller uses to determine the
next page; the value is not tested.

Figure 2.14 The confi rm page with data sent from the edit page.

Figure 2.15 The edit page with data sent from the confi rm page.

Controllers 49

4. Except for the query string, the URL always remains the same, as long as the
controller is called fi rst.

2.2.3 JSPs versus Servlets

The controller only contains Java code, there is no HTML in it. JSPs are designed
to have HTML with a little bit of Java code. Whenever a JSP contains mostly Java
code with very little or no HTML, then it should be written from scratch as a
servlet, not as a JSP. A servlet has several advantages.

1. The servlet engine will not have to create the servlet from the JSP when it is
called the fi rst time.

2. A Java IDE can be used to develop and test the Java code. It is diffi cult to debug
Java code that is embedded in a JSP.

Compare these with the advantages of a JSP:

1. It is easy to write HTML.
2. The servlet will be recreated whenever the JSP is modifi ed.

The decision of using a JSP or a servlet should depend upon the mix of HTML
and Java code.

1. If there is a lot of HTML with a small amount of Java, then use a JSP.
2. If there is a lot of Java with a small amount of HTML, then use a servlet.
3. If there is an equal amount of Java and HTML then redesign your application

so that it uses a controller. Place most of the Java in the controller and create
separate JSPs for the HTML.

2.2.4 Controller Servlet

The same application that was just written using a JSP controller will now be
rewritten using a servlet. Servlets are Java programs that extend a base class for a
generic servlet. Follow these steps to write a servlet from scratch.

1. Place the servlet in a package so that its location is never left to the default
implementation of the servlet engine.

2. Import the following classes.

Figure 2.16 The process page with data sent from the confi rm page.

50 Web Development with Java

import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

3. Make the class public and extend it from HttpServlet. This is a wrapper for
the abstract class GenericServlet. It has no functionality; it only defi nes
all the methods that are specifi ed in GenericServlet. To create a servlet
that does something, override some methods from HttpServlet.

4. Include a method with the following signature and place the controller logic in
this method.

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException

JSPs for Servlet Controller

The JSPs for the servlet controller are identical to the JSPs for the JSP Controller,
except that the action statement in each form is set to “Controller” instead of to
“Controller.jsp”.

...

<form action=”Controller”>
...

Servlet Controller Code

Listing 2.7 contains the controller as a servlet. Notice that the contents of the
doGet method in the servlet are identical to the Java code that was inserted into
the JSP controller (see Listing 2.5).

package ch2.servletController;

import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Controller extends HttpServlet
{

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException
 {

 String address;

Controllers 51

if (request.getParameter(“processButton”) != null)
 {
 address = “Process.jsp”;
 }

else if (request.getParameter(“confirmButton”) != null)
 {
 address = “Confi rm.jsp”;
 }

else
 {
 address = “Edit.jsp”;
 }

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 2.7 The code for the servlet controller.

Servlet Location

The source fi le for a servlet can be anywhere, but the .class fi le must be in a
subdirectory of the classes directory in the web application. The servlet should be
in a package.

The package must agree with the subdirectory of classes that the servlet is in.
Do not include the classes directory in the package statement. The classes directory
must already be in the CLASSPATH or Java will not search it for class fi les.

To determine the package, start with subdirectories of the classes directory. If
the servlet is in the classes/store directory, then the package will be store. If the
servlet is in the classes/store/hardware directory, then the package will have to be
store.hardware.

For this example, the directory must be classes/ch2/servletController in order to
agree with a package of ch2.servletController.

package ch2.servletController;

The package for a Java class must agree with its location in the fi le system.

Servlet Identity

Every servlet has a fully qualifi ed class name that consists of two pieces of infor-
mation: the package it is in and the name of its class.

package ch2.servletController;
...
public class Controller extends HttpServlet

The fully qualifi ed class name is the combination of the package name with the
name of the class. Use a period to connect the package and the name together.

ch2.servletController.Controller

52 Web Development with Java

The fully qualifi ed class name uniquely identifi es the servlet. It will be used to refer
to the servlet without ambiguity.

Servlet Compilation

A servlet is compiled just like any other Java program: from the command line or
from an Integrated Development Environment [IDE].

1. NetBeans is the best IDE for compiling, running and debugging servlets, because
it has an instance of the Tomcat servlet engine installed with it.

2. For command line compilation,
a. javac is used to compile
b. be sure that servlet-api.jar and the classes directory of your web application

are in the CLASSPATH of your environment.

2.2.5 Servlet Access

As was mentioned in Chapter One, the WEB-INF directory is not available from
the web. Therefore, the classes subdirectory of WEB-INF is not available from the
web. In that case, how can the servlet be accessed?

The answer to the question lies within the web.xml fi le. It is possible to create a
shortcut in the web.xml fi le. Such a shortcut associates a .class fi le with a URL
that will be accessible from the web. This shortcut is known as a servlet mapping.

Servlets are usually more powerful than JSPs; therefore, the servlet engine
designers made it more diffi cult to access them from the web. By default, no serv-
lets can be accessed without registering them in the web.xml fi le of the web appli-
cation. There are two parts to registering a servlet: creating a short name and
defi ning a servlet mapping.

Short Name for Servlet

Class fi les that are in packages have very long names. It is possible to create a short
name for these long names. The short name is used internally by the servlet engine
to refer to the servlet. Tags are added to the web.xml fi le to create a short name.

<servlet>
 <servlet-name>FirstController</servlet-name>
 <servlet-class>ch2.servletController.Controller</servlet-
class>
</servlet>

This creates a short name of FirstController for the fully qualifi ed name
ch2.servletController.Controller. There is nothing special about the
short name; it can be any name. Here is another example that creates a different
short name for the same controller.

<servlet>
 <servlet-name>Overseer</servlet-name>
 <servlet-class>ch2.servletController.Controller</servlet-
class>
</servlet>

Controllers 53

Servlet Mapping

Associating a URL with a short name is known as creating a servlet mapping. The
servlet mapping associates the short name for a servlet fi le with a URL that will
be accessible from the web. The URL does not need to be an actual URL in the
web application, it can be totally fi ctitious. The URL must begin with a slash. The
slash corresponds to the root of the web application, not to the root of the web
server.

<servlet-mapping>
 <servlet-name>FirstController</servlet-name>
 <url-pattern>/ch2/servletController/Controller</url-pattern>
</servlet-mapping>

The servlet tag and the servlet-mapping tag both have a servlet-name tag in them.
The name in the servlet-name tag in the servlet-mapping tag must match the name
in the servlet-name tag in the servlet tag.

The URL pattern is used to request the servlet. The request is sent to the servlet
engine, which searches the web.xml fi le for a matching pattern. If a match is found,
then the servlet name is used to locate the corresponding servlet defi nition. The
defi nition contains the path to the actual class fi le. Figure 2.17 shows the order of
steps for a request for a servlet.

The URL that is chosen for the servlet can simplify the servlet. In this example,
the servlet has been mapped to the same directory where the JSPs it controls are
located. This makes it possible for the controller to use a simple relative reference
when creating the request dispatcher for the desired JSP. Even though the JSPs and
servlets are in different physical locations, the servlet mapping allows the servlet
engine to treat them as though they were in the same directory.

Figure 2.17 The steps that are followed to fi nd a class fi le.

request URL from browser

web .xml

<servlet >
 <servlet -name >
 FirstController
 </servlet -name >
 <servlet -class >
 ch2.servletController .Controller
 </servlet -class>
 </servlet >
 <servlet -mapping >
 <servlet -name >
 FirstController
 </servlet -name >
 <url-pattern>
 / ch2/servletController /Controller
 </url-pattern >
 </servlet -mapping >

bytesizebook .com/book /ch2/servletController /Controller

hidden files

1 . Browser Request

2 . Match URL pattern

3 . Match servlet name

4 . Access class file

1

2

3WEB
classes

ch 2
servletController

Controller

4

- INF

.class

54 Web Development with Java

The URL that is chosen can be an actual directory in the web application, or
it can be fi ctitious. A different servlet mapping for the same short name could
be /Moe/Larry/Cheese; however, in this case, the servlet would not be able to use
relative references for the JSPs it controls.

<servlet-mapping>
 <servlet-name>FirstController</servlet-name>
 <url-pattern>/Moe/Larry/Cheese</url-pattern>
</servlet-mapping>

The URL pattern is always within the web application. The pattern must start
with a /. This means that the URL starts from the root of the web application,
not the root of the web server. If the name of the web application is book,
and is running on xyz.com, then the URLs for the two servlet mappings just
defi ned would be

http://xyz.com/book/ch2/servletController/Controller
http://xyz.com/book/Moe/Larry/Cheese

To determine what the complete URL is to access the controller, start with the
URL to the web application root and append the name that is in the url-pattern
tag.

When a request for a URL reaches the servlet engine, the servlet engine
will look at the list of servlet mappings and fi nd the short name for the servlet.
Then the servlet engine will look up the fully qualifi ed name of the servlet
and call the servlet. For each of the above URLs, the servlet engine would call the
ch2.servletController.Controller servlet.

Order within web.xml
The order within web.xml is signifi cant. If tags are placed in the wrong order, then
the web application will not be able to run. Be sure that the servlet tag for the
servlet is defi ned before the servlet-mapping tag. The following listing shows a
web.xml fi le with servlet and servlet-mapping defi nitions.

<?xml version=”1.0” encoding=”UTF-8”?>
<web-app version=“2.4“
 xmlns=“http://java.sun.com/xml/ns/j2ee“
 xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance“
 xsi:schemaLocation=“http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd“>
 <servlet>
 <servlet-name>
 FirstController
 </servlet-name>
 <servlet-class>
 ch2.servletController.Controller
 </servlet-class>
 </servlet>

Controllers 55

 <servlet-mapping>
 <servlet-name>
 FirstController
 </servlet-name>
 <url-pattern>
 /ch2/servletController/Controller
 </url-pattern>
 </servlet-mapping>
 <session-confi g>
 <session-timeout>
 30
 </session-timeout>
 </session-confi g>
 <welcome-fi le-list>
 <welcome-fi le>
 index.jsp
 </welcome-fi le>
 <welcome-fi le>
 index.html
 </welcome-fi le>
 <welcome-fi le>
 index.htm
 </welcome-fi le>
 </welcome-fi le-list>
</web-app>

2.2.6 Servlet Directory Structure

After creating the servlet mapping, the servlet engine will look for the servlet at
the URL that was specifi ed.

For this servlet example, the JSPs are in the /ch2/servletController
subdirectory of the root of the web application. On this site, the web application
is titled book, so the JSPs are actually located in the directory /book/ch2/
servletController.

The servlet is in a package named ch2.servletController, so it is located
in the subdirectory /ch2/servletController in the classes directory of the
web application. This directory is not visible from the web, so a servlet mapping
is created for the servlet, which equates the servlet to a URL that is visible from
the web.

The simplest way to implement the mapping is to equate it to the directory
where the JSPs are located. This is what was done in this example. The URL pattern
/ch2/servletController is relative to the root of the web application, so it
is the same URL as the directory of the JSPs.

By mapping the controller to the directory where the JSPs are located, the con-
troller can use a relative reference for the address of the next page.

...

else if (request.getParameter(“confirmButton”) != null)
{
 address = “Confi rm.jsp”;
}
...

56 Web Development with Java

When a Request Dispatcher is created, the argument contains the address of the
next JSP.

...

RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
dispatcher.forward(request, response);
...

This address is similar to the action attribute in a form. However, the address is
limited to relative references from the current directory and relative references
from the root of the web application.

1. If the next JSP is in the directory where the controller is mapped, then only
include the fi le name of the JSP.

address = “Confi rm.jsp”

2. If the next JSP is not in the directory where the controller is mapped, then the
JSP must be in another directory in the web application. The address for this
JSP must start with / and must include the complete path from the root of the
web application to the JSP. Do not include the name of the web application in
the path.

address = “/ch2/servletController/Confi rm.jsp”;

Figure 2.18 is a diagram of the directory structure of the web application and the
location of the JSPs and the servlet. The servlet mapping makes a logical mapping
of the servlet to the same directory as the JSPs.

Figure 2.18 The structure of a web application.

Controllers 57

Try It http://bytesizebook.com/book/ch2/servletController/Controller

Access the controller by appending the url-pattern to the end of the URL for the
web application.

bytesizebook.com/book/ch2/servletController/Controller

From the browser, this application behaves exactly the same as the JSP Controller
example. The only difference is the URL. The URL for the controller was chosen
so that the servlet appears to be in the same directory as the JSPs.

Instead of typing in the URL of the controller, type in the URL for the
servletController directory. You will see a directory listing that contains all
of the JSPs for this application. You will not see the controller in this directory
(Figure 2.19). The servlet engine has created an internal link to the controller from
this directory, but the link is not visible in the browser. The only way that you know
that the link exists is by accessing the controller.

2.2.7 Servlet Engine for a Servlet

Table 2.2 summarises the key features of a servlet. The servlet engine handles a
request for a servlet in almost the same way that it handles a request for a JSP (see
Figure 1.17). The only differences are that the name of the method that the engine
calls is different and that the servlet engine will not recompile the servlet if
the .java fi le changes. The servlet engine calls the doGet method instead of the

Figure 2.19 Listing of the directory where the controller servlet is mapped.

Table 2.2 The key points for a servlet.

doGet This is the method that does all the work. It is similar to the
_jspService method in a servlet for a JSP.

HttpServlet This is an abstract wrapper class. It has default implementations of all
the abstract methods. In order to make a useful servlet, it is necessary
to defi ne at least one of these methods. In this fi rst example, the class
is defi ning the doGet method.

HttpServletRequest This class encapsulates the information that is sent from the browser
to the server.

HttpServletResponse This class encapsulates the information that will be sent from the
server back to the browser.

58 Web Development with Java

_ jspService method and it is up to the developer to recompile the .java fi le when-
ever it changes (Figure 2.20).

The servlet engine will not automatically reload the .class fi le when it changes.
It is up to the developer to reload the web application so that a servlet will be
reloaded when it is requested the next time. Some servlet engines can be confi g-
ured to automatically reload when a .class fi le changes, but it is not the default
behaviour of the servlet engine.

2.3 Servlets in NetBeans

NetBeans is the perfect tool for developing web applications. After creating a web
project, the web application can be run from within NetBeans by clicking on the
Run -> Main Project menu. When this is done, Tomcat will be started, the servlet
will be loaded into memory, a web browser will be opened and the default page
for the web application will be displayed. Hypertext links can be added on this
page that lead to the URLs of JSPs and servlets.

After building a web project in NetBeans, it is possible to execute servlets from
it. The servlets must be placed in the Source Packages folder. Always place servlets
in packages. When the project is built, the source packages will be copied into the
classes folder of the web application structure.

Once a web project has been created and tested locally, it is a simple matter to
upload the web application to a remote server. Every time that a web project is
built, NetBeans packages all the fi les that are needed for a servlet engine into a
Web Archive [WAR]. A WAR archive is a zip fi le containing all the fi les for the web
application. If this is uploaded to a remote server, it can be deployed without
making any modifi cations.

2.3.1 Source Packages

The Source Packages folder in a NetBeans project contains all the source fi les and
packages for Java servlets. Place all source fi les in a package. All of the servlet

Load servlet , if not in memory

Create request and response objects
from data sent from web server

Call doGet method with the
request and response objects

Response
Object

Request
Object

Figure 2.20 Servlet engine handling a request for a servlet.

Controllers 59

examples in this book have been placed in packages. Place these packages in this
folder. The source packages folder is added to the classpath variable, so every
package that is placed in this folder can be found by Java at runtime. See the
Appendix for a discussion of Java packages.

There are two ways to create the folder structure for a package. One way is to
add new folders within the Source Packages folder. Another way is to add a new
package using a NetBeans wizard. In the wizard, all of the folders for a package
can be created at once. For example, if there is a servlet in a package named edu.
fi u.cis, then all the necessary folders for the package can be created by adding
a package named edu.fi u.cis to the source packages folder.

The <default package> is the package that has no name. Avoid using it.
It is better to always place your servlets in a named package. Strange things can
happen if you place servlets in the default package. The only fi les that should be
placed here are confi guration fi les, like those for Hibernate and Log4j.

There are several templates for creating fi les in NetBeans. When creating a
servlet, there are two choices. An empty class fi le can be created. It is then up to
the developer to add all the code for the servlet and to create the servlet mapping
for the servlet. There is also a template for a servlet. When this template is used,
the default methods for a servlet are defi ned and a servlet mapping is added to
the web.xml fi le.

When the NetBeans wizard is used to create a servlet, there are options for
defi ning the servlet mapping. By using the wizard, it will not be necessary to edit
the web.xml fi le to defi ne a servlet mapping. If the template is not used to create
the servlet, then the servlet defi nition and servlet mapping will need to be added
to the web.xml fi le manually.

2.3.2 Including Source Files in a WAR File

Developing locally and deploying on a remote server is a common practice for
creating web applications. By default, the .java fi les are not added to the WAR
fi le when the web project is built. In order to be able to modify servlets on the
remote server, the source fi les need to be added to the WAR. To have them added
to the WAR fi le, right-click on the name of the project in the project window and
select properties.

From the properties screen, select Build -> Packaging. Edit the Exclude From
WAR File box and remove **/*.java,. This will allow the .java fi les to be
included in the WAR fi le.

When the WAR fi le is uploaded to the remote servlet engine, it can be deployed
without modifi cation. This is the standard way that web applications are created:
develop locally, run remotely.

2.3.3 Web Application Files

A Project in NetBeans is an abstraction of a web application. When the project
is built, the corresponding web application structure is created. However, not all
of the directories are visible from the project view, but they are visible from
the Files view.

60 Web Development with Java

The web subdirectory of build contains the actual web application directory for
your project.

The dist directory contains the WAR fi le.
The .class fi les for your servlets are located in the build directory. Open the web

subdirectory of build. In the WEB-INF is located the classes directory, which con-
tains the .class fi les for the servlets.

Do not edit fi les from this tab. Whenever the project is built, the WAR fi le is
created and these fi les are recreated. The fi les from the project folders are copied
to the fi les in the web application. Any changes that were made directly to fi les in
the web application folders will be lost when the project is rebuilt. Always edit fi les
in the project folders.

Try It http://netbeans.org

If you have not already done so, download a copy of the latest NetBeans
package.

Add a package to the Source Packages folder and add a servlet to the
package.

Defi ne a servlet mapping for the servlet, so that it can be accessed from the
web.

Edit the index.jsp page in the Web Pages folder. Add a relative URL to the servlet.
To make a relative URL to the servlet from this page, create a hypertext link that
contains the URL pattern from the servlet mapping, except remove the leading
slash from it.

Build and run the web application. The index.jsp page will appear in the browser.
Follow the link to the servlet.

2.4 Summary

Typical web applications have an edit page, a confi rm page and a process page.
The edit page contains visible form elements where the user can enter information.
The confi rm page has two buttons: one for sending the data back to the edit page
and one for sending the data to the process page. The process page shows the
results of processing the user’s data. The form tag has an attribute, named action,
which allows the form to send the data to any other page. The page could be in
the current directory, in a different directory on the same server or on a different
server. All data that is in a named form element will be sent to the URL that is in
the action attribute. It is important that the element has a name or it will not be
added to the query string.

Only the edit page has visible form elements for the user to enter data. The
confi rm page only shows the data as plain text: plain text is never sent to the next
page when a button is clicked. In order for the data to be sent, it must be in a
named form element. There is a non-visible form element, whose type is hidden,
that can be used to store the data that was received by the current page. When a
button is clicked, the data will be sent to the next page. If the current JSP places
the data that it receives into the hidden fi elds, then the user’s data can be passed
on to the next page.

Some pages in web applications need to send data to one of two pages: for
example, the confi rm page. There are two buttons on the confi rm page: one that

Controllers 61

sends the data back to the edit page and one that sends the data on to the process
page. Using a simple JSP to solve this problem requires two separate forms in the
page; each form would have a separate copy of the hidden fi elds. Such a solution
is diffi cult to read and diffi cult to modify. There is a better solution for this situa-
tion: use a separate program to determine the next page based on the button that
the user clicks.

Such a program is known as a controller. Instead of hard coding the name of
the next page into the action attribute, all JSPs send the data to the controller. It
is important that the buttons in the forms are named, so that the controller will
know which button the user clicked. The controller will calculate the URL of the
next JSP and send the user’s data to that page.

Controllers can be written as JSPs or as servlets. The fi rst example of a
controller was developed as a JSP; however, it is better to write the controller
as a servlet, since it has no HTML in it. It is easier to debug Java code if it is
in a servlet.

Since servlets are Java programs, the details of creating, compiling, and access-
ing servlets were covered. Creating and compiling servlets is the same as creating
and compiling any Java program. Accessing the servlet is more diffi cult because it
must be placed in a web application. The web.xml fi le is used to create a URL
mapping that can be used to access the servlet. If this URL mapping is not created
in the web.xml fi le, then the servlet cannot be accessed from the web.

2.5 Chapter Review

Terms

1. Form’s Action Attribute
a. Relative
b. Absolute

2. Controller
a. JSP
b. Servlet

3. Query String

Java

1. _jspService
2. javax.servlet.http.HttpServletRequest

a. getParameter
b. getRequestDispatcher

3. javax.servlet.http.HttpServletResponse
4. javax.servlet.ServletException
5. javax.servlet.RequestDispatcher

a. forward

62 Web Development with Java

Tags

1. JSP
a. ${param.element_name}
b. <% java code %>

2. INPUT
a. HIDDEN

Questions

 1. What is contained in the request object that is sent to the _jspService
method?

 2. What is contained in the response object that is sent to the _jspService
method?

 3. How often is the servlet for a JSP generated?
 4. How often is the .class fi le for a servlet generated?
 5. How can data be entered in a form on one page and be sent to a different

page?
 6. How is a parameter in the query string retrieved from Java code?
 7. What is the purpose of the nested if block in a controller?
 8. Write the statements that belong in a controller that will forward the request

and response to the JSP named “Example.jsp”.
 9. What are the advantages of using a JSP over a servlet?
10. What are the advantages of using a servlet over a JSP?
11. Where does the .class fi le for a servlet belong in a web application?
12. Assume that a form has two text boxes named fi rstName and lastName.

a. Write the query string if the user enters Fred for the fi rstName and Flint-
stone for the lastName.

b. Write the query string if the user enters John Quincy for the fi rstName
and Adams III for the lastName.

c. Write the query string in the event that the user enters Laverne & Shirley
for the fi rstName and leaves the lastName blank.

d. Write the EL statements that will display the values for the fi rst name and
last name.

13. A confi rmation page was covered in this chapter that could send data to one
of two pages. There were two techniques discussed for achieving this. Sum-
marise the differences between these two techniques.

14. Summarise the differences in how the Tomcat engine handles a JSP and a
servlet.

15. Assume there is a class named MyJavaExample in a package named book.
webdev. Create a servlet defi nition and servlet mapping for this class as
follows.
a. Create a servlet defi nition of MyExample for this class in web.xml.
b. Associate the URL /book/webdev/MyExample with the short name

that was just created in the web.xml.

Controllers 63

Tasks

1. Another form element is a password text box. Its type is PASSWORD.

<input type=”password” name=”secretCode”>

Create a JSP that has a text box, a password text box and a button. Send the data
from the form to a second JSP in which the values from the text box and the pass-
word text box are displayed.

2. Create a form with three text boxes and a button. Initialise the text elements
with corresponding data from the query string. Send the data to a second page
that will display the values that are sent to it. The second page should have
hidden fi elds and a button so that the data can be sent back to the fi rst page.
a. Implement this design without using a controller.
b. Implement this design with a JSP controller.
c. Implement this design with a servlet controller.

3. Create a page with three text boxes and three buttons. Create three more distinct
JSPs. Each button on the fi rst page will send the data from the form to a differ-
ent page.
a. Implement this design with a JSP controller.
b. Implement this design with a servlet controller.
c. How could this design be implemented without using a controller and

without embedding code in the fi rst JSP?

64

3 Java Beans and Controller Helpers

With the introduction of a controller servlet, it is now possible to add all the power
and convenience of Java to the development process. It is possible to create auxil-
iary classes in the web application that will simplify development.

One of the most powerful classes that can be added to a web application is
one that contains all the data that was entered by the user. All of the data from
the user is available from the request object, but the request object also contains
a lot of other information that is not related to the user’s data. It will be a better
design to create a new class that only contains the data. Such a class is known
as a bean.

With the introduction of a bean, it is a simple matter to add validation to the
web application. One type of validation is default validation. In default validation,
the user’s data must meet criteria. If the data does not meet the criteria, then a
default value is used in place of the data that the user entered.

While servlets are very powerful tools for implementing dynamic content on
the web, they do have a limitation: member variables. Member variables are useful
when designing object-oriented programs, but they are dangerous to use in
a servlet. In order to circumvent this limitation, an auxiliary class will be added
to the web application that is created by the controller and can use member
variables.

With the addition of these new classes, the servlet from the last chapter will be
reorganised. It will still perform the same functions, but it will be redesigned to
use a class for the data and a class that does the work of the controller. The JSPs
for the web application will also need some minor changes.

3.1 Application: Start Example

In order to demonstrate the new features clearly, the web application from the last
chapter will be modifi ed with the addition of a new text element and the addition
of a button on the process page that will allow the user to edit the data again.

These are the changes that will need to be made to the web application.

1. The edit page will have a new text element added.
2. There will be an additional hidden fi eld in the confi rm page.
3. There will be a new form, hidden fi elds and a button on the process page.

Java Beans and Controller Helpers 65

The fi rst controller in this chapter will be identical to the servlet controller from
the last chapter (see Listing 2.7), except that it is in a different package.

1. For organisation, the controller for this example has been placed in a package
named ch3.startExample.

2. In the web.xml fi le of the web application, the controller has been mapped to
the URL /ch3/startExample/Controller.

3. The JSPs for the web application have been placed in the directory named
/ch3/startExample.

Figure 3.1 shows the location of the fi les for the Start Example controller.
Just like the servlet controller from the last chapter, this controller has been

mapped to the directory where the JSPs are located.

...
<servlet>
 <servlet-name>
 StartExampleCh3
 </servlet-name>
 <servlet-class>
 ch3.startExample.Controller
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>
 StartExampleCh3
 </servlet-name>
 <url-pattern>
 /ch3/startExample/Controller
 </url-pattern>
</servlet-mapping>
...

The edit page is similar to Listing 2.1, but will have an additional input fi eld for a
property named aversion.

Figure 3.1 The location of fi les for the Start Example.

66 Web Development with Java

Aversion:
<input type=”text” name=”aversion”

 value=”${param.aversion}”>

The confi rm page is similar to Listing 2.6, but will echo the new property and have
an additional hidden fi eld for the new property.

The value of the aversion that was sent to
this page is: ${param.aversion}
...
<input type=”hidden” name=”aversion”
 value=”${param.aversion}”>

The Process page is similar to Listing 2.3, but will echo the new property and will
have a form with a button, for returning to the edit page, and two hidden fi elds.

Thank you for your information. Your hobby of
${param.hobby} and aversion of
${param.aversion} will be added to our
records, eventually.
...
<form action=”Controller”>
 <input type=”hidden” name=”hobby”

 value=”${param.hobby}”>
 <input type=”hidden” name=”aversion”

 value=”${param.aversion}”>
 <p>
 <input type=”submit” name=”editButton”

 value=”Edit”>
</form>

3.2 Java Bean

Controllers are all very similar. They have two basic tasks: process the user data
and forward the request to the next JSP. It is a good design principle to encapsulate
all the data processing into a separate class.

When data is sent from a browser, it is sent as individual pieces of data. It would
be easier to manipulate this data in the web application if it were all placed into
one class. This class would have ways to access and modify the data and would
have additional helper methods for processing the data. Such a class is known as
a bean.

A piece of data in the bean is known as a property. A typical property will
have an accessor and a mutator. The accessor is used to retrieve the data associated
with the property, the mutator is used to store the data associated with the
property. An important aspect of a property is that it hides the implementation
of the data.

In the next example, each property will hide a string variable, but it could also
hide an integer or a double. Properties can also encapsulate more complex data
structures like lists or maps. The point of encapsulating data in a property is that
when the implementation for the data changes, no other classes that use the prop-
erty will need to be changed.

Java Beans and Controller Helpers 67

In a web application, the data can be accessed from the controller and the JSPs.
Soon, the data will also be accessed by a database. In this type of application, it is
essential to have a central class for the data that uses a standard way to retrieve
the data; a bean is such a class. In the future, if the data changes, then only the
bean will need to be updated, not all the classes that use the data.

The standard format of a bean requires that the names of the accessor/mutator
pair have a fi xed syntax.

1. The mutator will be of the form setXxx.
2. The accessor will be of the form getXxx.
3. set and get are in lowercase.
4. The fi rst letter after set or get is uppercase. All letters after that can be uppercase

or lowercase.

The accessor/mutator pair should operate on the same type.

1. The mutator has a parameter that must have the same type as the return value
of the accessor.

2. The accessor returns a value that must have the same type as the parameter to
the mutator.

The next listing shows a complete property named hobby. It makes no difference
what the name of the variable is in the bean, since the variable is protected. What
makes this a property is that there are methods named getHobby and setHobby
that operate on the same type.

protected String hobby;
public void setHobby(String hobby) {

this.hobby = hobby;
}
public String getHobby() {

return hobby;
}

3.2.1 Creating a Data Bean

Beans should be used to store the elements coming from the form. The names of
the properties in the bean should correspond with the names of the form elements
in the JSPs. If the form has an input element named hobby, then the bean should
have a property with an accessor named getHobby and a mutator named
setHobby.

The bean for our web application will have two properties: hobby and
aversion. These correspond to the input elements that are in the JSPs for this web
application. For each input element that contains data to be processed, create
a corresponding property in the bean.

Java Bean: Request Data

When encapsulating data, the fi rst step is to recognise what the data is. In a web
application, the user enters the data in form elements. In our application, all the
data is entered in the edit page. A bean will be created which has properties that
correspond to the input elements that are in the edit page.

68 Web Development with Java

...

Hobby:
<input type=”text” name=”hobby”

value=”${param.hobby}”>

Aversion:
<input type=”text” name=”aversion”

 value=”${param.aversion}”>
...

There are two input elements in the edit page that contain data to be processed:
hobby and aversion. Table 3.1 shows the relationship between the input elements
in the form and the corresponding properties in a bean.

A bean that encapsulates the web application data will need to have properties
with these accessors and mutators. The next listing contains a bean with a property
for the hobby and aversion. Note that in the JSP, the names are all lowercase, but
in the bean, the fi rst letter after get or set is uppercase.

package ch3.dataBean;

public class RequestData {

protected String hobby;
protected String aversion;

public RequestData() {
 }

public void setHobby(String hobby) {
this.hobby = hobby;

 }

public String getHobby() {
return hobby;

 }

public void setAversion(String aversion) {
this.aversion = aversion;

 }

public String getAversion() {
return aversion;

 }
}

Table 3.1 The relationship between the form element name and the
accessor/mutator names.

Element Name Accessor Name Mutator Name

name=”hobby” getHobby setHobby
name=”aversion” getAversion setAversion

Java Beans and Controller Helpers 69

3.2.2 Using the Bean in a Web Application

Now that the bean class exists, it must be incorporated into the web application.
It must be added to the controller and accessed in the JSP.

The controller is in charge of all of the logic in the web application, so it is the
controller’s responsibility to create the bean. Once the bean has been created, it
must be fi lled with the data from the request and placed somewhere so that the
JSPs will have access to it.

Each JSP is primarily HTML, with some data to display from the controller. A
special syntax is used in a JSP for accessing the data from a bean.

Creating and Filling the Bean

The controller will create the bean. In this example, the name of the bean class is
RequestData, which is in the ch3.dataBean package.

RequestData data = new RequestData();

The most important thing that the controller can do is to get the new data that
was just sent from the user and copy it into the bean. The controller must call the
mutators for the properties in the bean in order to fi ll them with the data from
the request.

data.setHobby(request.getParameter(“hobby”));
data.setAversion(request.getParameter(“aversion”));

We are calling getParameter to retrieve the data from the request parameters
and then calling the bean’s mutators to copy the data to the bean.

Making the Bean Accessible to the JSPs

The controller is a separate class from the JSPs. The bean has been created as a
local variable in the controller. The last detail to work out is how to let the JSP
access this bean.

There is an object which is maintained by the servlet engine that can hold
arbitrary data for the web application. This object is known as the session; the data
in it can be accessed by the controller and by all of its JSPs. If the controller places
the bean in this object, then it can be retrieved in all of the JSPs. From inside the
controller, the session can be retrieved with the method getSession.

Additional information can be added to the session by using the method
setAttribute. This method associates a simple name with an object. In our
application, it will be used to associate a name with the bean that holds the data.
For example, if a new bean has already been created and named data, then it can
be added to the session with the following statement.

request.getSession().setAttribute(“refData”, data);

The second parameter is the bean, which contains the data; the fi rst parameter is
an arbitrary name. Figure 3.2 is a representation of how the session is changed
after a call to the setAttribute method.

70 Web Development with Java

Two steps are required to make the bean accessible to a JSP.

1. Retrieve the session object for the request with the getSession method.
2. Call the setAttribute method to associate a name with the bean.

3.3 Application: Data Bean

All the previous steps can now be put together to create an application that uses
a bean to encapsulate the request data. In addition to these new steps, it is neces-
sary to know the details that were introduced in Chapter Two: the location of the
JSPs, the visible URL for the controller, the package of the controller and the
package for the bean.

1. The JSPs for the web application have been placed in the /ch3/dataBean
directory.

2. In the web.xml fi le of the web application, the controller has been mapped to
the URL /ch3/dataBean/Controller. Notice that the path in the URL is
the same as the path to the JSPs. This allows the controller to use a relative
reference in the address for the JSPs.

3. The controller for this example has been placed in a package named ch3.
dataBean. It is not necessary that the name of the package resemble the path
to the JSPs. This was done just as an organisational tool. By keeping the package
and the path similar, it is easier to remember that they correspond to the same
servlet.

4. The bean is in the same package as the controller.

Figure 3.3 shows the location of the fi les for the Data Bean Controller.
The location of the controller and the location of the JSPs are needed in order

to create the servlet defi nition and the servlet mapping in the web.xml fi le.

...

<servlet>
 <servlet-name>ControllerBean</servlet-name>
 <servlet-class>ch3.dataBean.Controller</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>ControllerBean</servlet-name>
 <url-pattern>/ch3/dataBean/Controller</url-pattern>
</servlet-mapping>
...

dataSession

"refData "

Request Data

String hobby
String aversion

getHobby ()
getAversion ()

Figure 3.2 The effect of calling getSession().setAttribute(“refData”, data).

Java Beans and Controller Helpers 71

3.3.1 Controller: Data Bean

There are now fi ve tasks that a controller performs. In Listing 3.1, identify the
sections of code that implement these fi ve tasks:

1. creating the bean
2. making the bean accessible to the JSPs
3. copying the request parameters into the bean
4. decoding the button name into an address
5. forwarding the request and response to the JSP.

package ch3.dataBean;

import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Controller extends HttpServlet
{

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException
 {
 RequestData data = new RequestData();
 request.getSession().setAttribute(“refData”, data);

 data.setHobby(request.getParameter(“hobby”));
 data.setAversion(request.getParameter(“aversion”));

Figure 3.3 The location of the fi les for the Data Bean Controller.

72 Web Development with Java

 String address;

if (request.getParameter(“processButton”) != null)
 {
 address = “Process.jsp”;
 }

else if (request.getParameter(“confirmButton”) != null)
 {
 address = “Confi rm.jsp”;
 }

else
 {
 address = “Edit.jsp”;
 }

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 3.1 A controller that uses a data bean.

3.3.2 Accessing the Bean in the JSP

All the details for adding a bean to the controller have been covered. The controller
has even made the bean available to the JSPs. The last step is for the JSPs to access
the data.

In a JSP, EL can be used to access the bean that was stored in the session. The
bean is accessed by the name that was used in the call to the setAttribute
method in the controller. In our example, the name refData was used by the con-
troller when adding the bean to the session. The bean was added to the session
with the call to setAttribute:

request.getSession().setAttribute(“refData”, data);

The second parameter is the bean, which contains the data; the fi rst parameter is
an arbitrary name. Place the name in an EL statement and the bean will be
retrieved. Do not use quotes around the name in the EL statement.

 ${refData}

In addition to accessing the entire bean, EL can access every public accessor
that is in the bean. The servlet engine translates all EL statements into Java code.
Table 3.2 shows the equivalent Java code for the EL statements in the edit page.

Table 3.2 EL statements and the equivalent Java code.

EL Statement in JSP Equivalent Java in Controller

${refData.hobby} data.getHobby()
${refData.aversion} data.getAversion()

Java Beans and Controller Helpers 73

Figure 3.4 demonstrates how the EL in the JSP can access the public accessor from
the bean.

3.3.3 JSPs: Data Bean

All references to the data should use the bean and not the request parameters.
This is possible since all the data from the query string was copied into the
bean in the controller. In the JSPs, replace all occurrences of ${param.hobby}
with ${refData.hobby}, and replace all ${param.aversion} with
${refData.aversion}.

In the edit page, use the bean to initialise the input elements with any data that
was passed in the query string.

Hobby:
<input type=”text” name=”hobby”
 value=”${refData.hobby}”>

Aversion:
<input type=”text” name=”aversion”
 value=”${refData.aversion}”>

In the confi rm and process pages, use the bean to retrieve the values for the hobby
and aversion that were sent in the query string.

The value of the hobby that was sent to
this page is: ${refData.hobby}

The value of the aversions that was sent to
this page is: ${refData.aversion}

Use the bean to initialise the hidden elements with any data that was passed in the
query string.

<input type=”hidden” name=”hobby”
 value=”${refData.hobby}”>
<input type=”hidden” name=”aversion”
 value=”${refData.aversion}”>

data

Session

"refData"

EL in JSP
${refData.hobby}

refData

Request Data

String hobby
String aversion

getHobby ()
getAversion ()

.hobby

Figure 3.4 ${refData.hobby} accesses data.getHobby() in controller.

74 Web Development with Java

The purpose of the bean is to encapsulate the data for the web application. In the
controller, all the request data from the query string was copied to the bean.
Once the data is in the bean, all references to the data should use the bean. In the
JSPs, all references to the request parameters should be replaced with references
to the bean.

Try It http://bytesizebook.com/book/ch3/dataBean/Controller

This application does not look any different from the one developed in the last
chapter. However, it is implemented with a bean.

3.4 Application: Default Validation

So far, there has not been much of a motivation for using a bean, other than dem-
onstrating the advanced features of Java. However, a bean is a powerful class. The
bean can be enhanced to validate that the user has entered some data. This will
use default validation.

Default validation is used to fi ll in fi elds with default values, if the user leaves
out some data. This is not the most powerful way to do validation, but it is simple
and offers a good introduction to two topics at once: validation and enhancing
the bean.

A new bean and controller will be created to demonstrate default validation. In
order to keep the code organised better, each new controller and bean will be
created in a new package. If the JSPs are changed, then they will also be placed in
a new directory, while the names of the JSPs will remain the same: Edit.jsp, Confi rm.
jsp and Process.jsp. If the JSPs are the same as another example, then those JSPs
will be used.

3.4.1 Java Bean: Default Validation

This bean is similar to the last example, but the accessors now do default valida-
tion. For each property, a helper method has been added that will test if the user
has entered data into the input fi eld. If the data is empty, then a default value will
be supplied.

For example, there is a helper method in the bean that tests if the hobby element
is valid. A simple validation is used: the hobby cannot be null or empty.

...
public boolean isValidHobby() {
return hobby != null && !hobby.trim().equals(“”);

}
...

This helper method is called by the accessor for the hobby property. If the hobby
does not pass the validation, then the accessor will return a default string, instead
of null or empty. If the hobby passes the validation, then the value that the user
entered will be returned by the accessor.

Java Beans and Controller Helpers 75

...

public String getHobby() {
if (isValidHobby()) {
return hobby;

 }
return “No Hobby”;

}
...

A similar helper method has been added for the aversion property, which is called
from the accessor for the aversion.

The validation has been placed in the accessor, but it could easily have been
placed in the mutator. It is a matter of personal preference. If the validation is done
in the mutator, then the actual value that the user entered will be lost. By placing
the validation in the accessor, the user’s invalid data is still in the bean. It is con-
ceivable that the validation test could change and that an invalid value today could
become a valid value tomorrow. Because of this, I prefer to place the validation in
the accessor.

3.4.2 Controller: Default Validation

The only differences between the controller for this example and the Data Bean
controller of Listing 3.1 are the name of the bean, the URL for the controller
and the name of package. Since nothing has changed in this example as far as
the JSPs are concerned, this controller will use the same JSPs that were used in
the last example.

The next listing shows the part of the controller that has changed. Notice
that the URL for the JSP must include a path. This is necessary because the
controller is being mapped to /ch3/defaultValidate/Controller, while
the JSPs are the ones from the previous application and are already located in the
/ch3/dataBean folder.

...

String address;
if (request.getParameter(“processButton”) != null)
{
 address = “/ch3/dataBean/Process.jsp”;
}
else if (request.getParameter(“confirmButton”) != null)
{
 address = “/ch3/dataBean/Confi rm.jsp”;
}
else
{
 address = “/ch3/dataBean/Edit.jsp”;
}
...

Notice that the name of the web application is not included in the URL. Web
applications can only forward to URLs that are within the web application, so the

76 Web Development with Java

name of the web application is always assumed and should not be included in the
URL that is used to forward to a JSP.

The following excerpt from the web.xml fi le shows the servlet mapping for this
controller. The URL pattern does not correspond to a physical directory in the web
application, but this is irrelevant; the URL can still be used to access the controller.
The servlet engine will intercept the URL for the controller and route it to the
correct location. This demonstrates the point that the URL pattern can be any
string at all.

...

<servlet>
 <servlet-name>DefaultController</servlet-name>
 <servlet-class>ch3.defaultValidate.Controller</servlet-
class>
</servlet>
<servlet-mapping>
 <servlet-name>DefaultController</servlet-name>
 <url-pattern>/ch3/defaultValidate/Controller</url-pattern>
</servlet-mapping>
...

Figure 3.5 shows the location of the fi les for the Data Bean Controller. There are
no new JSPs for this example, it uses the JSPs from the previous example.

By making a few modifi cations to the bean, and minor modifi cations to the con-
troller, the web application now does default validation. This is a simple example of
how a bean is the perfect place for extending the capabilities of the web application.

Try It http://bytesizebook.com/book/ch3/defaultValidate/Controller

This application will supply default values if the user leaves either input fi eld empty.

Figure 3.5 The location of the fi les for the Default Validate Controller.

Java Beans and Controller Helpers 77

When the application starts, the default values have already been supplied by
the bean. Erase the values that are there and click the confi rm button. You will see
that on the next page the default values have been provided by the bean again.

3.5 Member Variables in Servlets

In object-oriented design, member variables are powerful tools. By using member
variables, the number of parameters that must be passed to methods can be
reduced. Member variables also allow for encapsulation of data: access to the
underlying variable can be limited through the use of methods. However, using
member variables in servlets is dangerous and can lead to bugs.

3.5.1 Threads

Consider the process of fi lling out a form on a web site: the user visits a web site
that has a form; the user fi lls in the data on the form; the user clicks the submit
button on the form. If there were multiple requests at the same time, then the server
would process each set of data independently: the data from one request would not
be mixed up with the data from another. The server ensures that the data is pro-
cessed independently by using threads. A thread is like a separate process on the
computer: each thread runs independently of all other threads. Each request to a
web application creates a new thread on the server (Figure 3.6).

Multiple requests to a web application are like students taking a midterm exam
(Table 3.3).

start threadrequest Thread

obj.doGet ()

Servlet

Engine

request

request start thread Thread

obj.doGet ()

start thread Thread

obj.doGet ()

Servlet

load once obj

Figure 3.6 Each request is handled in a new thread.

Table 3.3 Requests compared with an exam.

Student Servlet Engine

A student asks the teacher for a test. A request is sent to the servlet engine.
A student receives the test paper. A thread is started for each request.
Each student works on the exam. The thread processes the doGet method of the servlet.

78 Web Development with Java

Each student is like a separate thread performing the same steps on different
data.

3.5.2 The Problem with Member Variables

After a servlet is called for the fi rst time, the servlet engine will load the servlet
into memory and execute it. The servlet will stay in memory until the servlet
engine is stopped or restarted. Member variables exist as long as the servlet is in
memory.

When a request is received from a browser, the server starts a new thread to
handle the request. As soon as the request has been handled, the thread is released.
The thread is created by the servlet engine and has access to the servlet’s member
variables. The member variables exist before the thread starts and will continue
to exist after the thread has ended.

Member variables in the servlet can be accessed by all of the threads. If two
threads attempt to save a value to a member variable, only the value written by the
last thread will be stored.

Continuing the analogy of the midterm exam, using a member variable is like
writing an answer on the board in the front of the room. This might not seem like
a bad idea until you realise that the board can only hold one answer to each ques-
tion; only the response of the last student who answers the question will be
recorded. Only the last student who writes the answer on the board will receive
credit for that question.

The problem with member variables makes them dangerous to use in a servlet.
Think of member variables in a servlet as being more like static variables in a
simple Java program. Because of this, it is better to avoid using member variables
in a servlet.

It is possible that the simple example of x = x + 1 can return the wrong result,
if enough simultaneous requests are made. Consider the steps that are taken by a
computer in order to complete this task:

1. read x from memory into the CPU
2. increment the value in the CPU by 1
3. write the value from the CPU back to x, in memory.

Consider two different requests, A and B. Each would try to increment x, and the
steps from Table 3.4 would be needed.

Assuming that both threads are being executed on the same processor, all that
is guaranteed is that request A performs these tasks in the order A1, A2, A3 and
that request B performs these tasks in the order B1, B2, B3. However, there is no

Table 3.4 Two threads executing the same commands.

Thread A Thread B

A1 read x B1 read x
A2 increment B2 increment
A3 write x B3 write x

Java Beans and Controller Helpers 79

rule that states that request A will complete all of its steps before request B begins
its steps. Since the two requests are in different threads, it is up to the CPU to
schedule time for each request.

The CPU might perform these steps in the order A1, A2, B1, B2, A3, B3. In this
case, both requests will wind up with the same value for x, since they both read
the value of x before either request writes the new value of x. It is important to
understand that arithmetic only occurs in the CPU and that the results need to be
written back to memory. Table 3.5 shows the values of x as it is changed by each
thread.

Both threads incremented x and both threads received the same value for x.
This is the type of error that occurs when member variables are used incorrectly
in a servlet.

In an actual case, this error happened in a chat program. From time to time,
the comments made by one user would be attributed to a different user. This
occurred because the user name was being stored in a member variable. If enough
people were on line at the same time, the error would occur.

3.5.3 Local versus Member Variables

If two users on different machines access the servlet at the same time, then each
one will have its own doGet running in its own thread. Variables that are local to
the doGet procedure are private variables that cannot be accessed by a different
thread. However, member variables are shared by all the threads.

Consider a controller that has a member variable, x. Assume that the doGet
method has a local variable, y. If the doGet method increments both x and y, then
what values will they have after three requests have been made?

Figure 3.7 demonstrates how these variables will be changed. Each new request
will create a separate thread to run the doGet method. Each thread will have its
own local copy of the variable y. There will only be one instance of the variable x
and each thread will access that one instance. The value of x after three requests
will be 3. The value of y for each request will be 1.

The servlet is loaded and executed by the servlet engine the fi rst time the
servlet is called. After that, the servlet resides in memory and handles requests
from browsers. Each request is handled in a different thread. This means that
the member variables of the servlet are created and initialised when the servlet
is fi rst loaded and executed. Each request will share the member variables.
Local variables inside the doGet method are created each time the method
is called.

Table 3.5 The values of shared variable x.

Step Value in CPU Value in x

A1: read x 0 0
A2: incr x 1 0
B1: read x 0 0
B2: incr x 1 0
A3: write x 1 1
B3: write x 1 1

80 Web Development with Java

...
int x = 0;

public void doGet ...{
 int y = 0;
 x = x + 1;
 y = y + 1;
}
...

Servlet

x is 1
y is 1

x is 3
y is 1

x is 2
y is 1

doGet(request, response)

local variable y is
created and initialised

doGet(request, response)

local variable y is
created and initialised

doGet(request, response)

local variable y is
created and initialised

Member variable x is
created and initialised
when the servlet is loaded
into memory.

x = x + 1;
y = y + 1;

Thread

x = x + 1;
y = y + 1;

Thread

x = x + 1;
y = y + 1;

Thread

Figure 3.7 How a servlet processes member and local variables.

3.6 Application: Shared Variable Error

Programmers must resist the desire to create member variables in servlets to
avoid passing parameters to methods. Even though object-oriented design pro-
motes the use of member variables, it can cause intermittent errors when used in
a servlet.

It is diffi cult to create an example that always produces incorrect answers, but
with enough requests, most servlets that use member variables will have errors.
Of course, it is possible to use member variables if the intent is to share data across
all requests. In this case, care must be taken to synchronize all access to the shared
variable. This example demonstrates that something as simple as adding 1 to a
shared variable can produce incorrect answers.

3.6.1 Controller: Shared Variable Error

The controller for this application is very simple. It always transfers control to the
same JSP. The only work that it performs is to increment a member variable by 1.
In order to cause an error each time a request is processed, the work has been
placed in a helper method.

...
protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

Java Beans and Controller Helpers 81

throws ServletException, IOException {

 String address = jspLocation() + “Edit.jsp”;

 incrementSharedVariable();

 request.setAttribute(“accessCount”, accessCount);
 request.getRequestDispatcher(address)
 .forward(request, response);
}
...

Describing the error is easier than causing the error in a servlet. Such an error will
only occur if two requests are made very close to each other. Usually, this will
occur in a servlet that receives many requests. There is a low probability that this
error will occur, but, with enough requests, it can happen.

There is a static method in the thread class that tells the CPU to stop processing
the current thread for a period of time. The result of this is that the CPU will allow
other threads to run and then will return to this thread after the specifi ed time
has elapsed. The name of this method is sleep. By using it, we can force the CPU
to stop processing the current thread and to start processing another thread. It is
not possible to know which thread will be selected by the CPU; however, if we put
the current thread to sleep for a long enough time, then we can be assured that
the CPU will access all other threads before returning to this one.

In this example, the value of the shared variable is copied into a local, private
variable; the local variable is then incremented and the thread is put to sleep; the
thread copies the local variable back to the shared variable when it wakes up.

This mimics the action of the thread copying the value of a variable into the
CPU; the thread incrementing the value and being interrupted by the CPU; the
thread writing the value in the CPU back to memory when it regains control.

The advantage of doing this is to be able to set the length of time that the thread
sleeps. Instead of losing control for a few milliseconds, we can force the thread to
sleep for many seconds. This will give us slow humans the ability to cause this
error every time.

...
public int accessCount = 0;
...
public void incrementSharedVariable() {

int temp = accessCount;
 temp++;
 System.out.println(temp);

try {
 Thread.sleep(3000);
 } catch (java.lang.InterruptedException ie) {

 }
 accessCount = temp;
}
...

If two threads are started within a few seconds of each other, this arrangement
will force the execution of the statements similar to what was outlined above: A1,

82 Web Development with Java

A2, B1, B2, A3, B3. To see the effect, open two browsers and execute the servlet in
each one. Be sure to start both requests to the servlet within a few seconds of each
other. It is important that this is done in two different brands of browsers since
the servlet engine will only allow one thread per browser brand.

Try It http://bytesizebook.com/book/ch3/sharedVariable/error/Controller

Open two different browsers, not just two instances of the same browser, as Tomcat
does not allocate a new thread to the same servlet from the same browser. After
doing this, you will see that both instances display the same number, even though
both of them were incrementing the same shared variable.

Synchronizing

There are two solutions to this problem: synchronize access to the shared variable
and avoid using member variables in servlets. The simpler solution is to avoid
using member variables in servlets; however, it is possible to avoid this problem
by using a synchronization block.

...
public void incrementSharedVariable() {

synchronized (this) {
int temp = accessCount;

 temp++;
 System.out.println(temp);

try {
 Thread.sleep(3000);
 } catch (java.lang.InterruptedException ie) {
 }
 accessCount = temp;
 }
}
...

A synchronization block forces the CPU to give the thread all the time it needs to
complete the block, without being interrupted. It is best to keep the synchronized
block as short as possible so that the CPU is not limited in how it allocates time
segments to threads. By synchronizing the access to the shared variable, there is
no error.

This was an example where the programmer wanted to have shared access to a
member variable. In this case, synchronization fi xed the error. However, there are
very few instances where shared access to a member variable is needed.

Even with synchronization, never place the request object in a member variable
in a servlet; otherwise all active threads will have access to the parameters of the
thread that set the member variable last. This would be a bad idea if this were an
application for Swiss bank accounts.

Try It http://bytesizebook.com/book/ch3/sharedVariable/Controller

Open two different browsers, not just two instances of the same browser, as Tomcat
does not allocate a new thread to the same servlet from the same browser. After
doing this, you will see that both instances display different numbers.

Java Beans and Controller Helpers 83

Notice that the requests take longer to complete. Instead of taking around three
seconds to complete both requests, it now takes six seconds. The CPU must allow
the thread to sleep and wake up before it gives access to the second thread. This
is another reason for not using synchronized, shared variables in servlets.

When to Use Member Variables in Servlets

The simple answer to the question is to never use member variables in servlets.
There will never be synchronization issues if there are no member variables in
servlets.

Another way to answer the question of using member variables is to ask the
question, “Should this data be shared amongst all requests?” If the answer is “Yes”,
then it is safe to use a synchronized member variable. If the answer is “No”, then
use local variables inside methods and pass the data to other methods via
parameters.

3.7 Reorganising the Controller

Member variables are useful; it would be nice to be able to use them in a controller.
For instance, controllers communicate with the browser through the request and
response objects. Any helper method that needs to know information about the
request or that needs to add information to the response would need to have these
objects passed to it as parameters. It would be easier to place these two objects
into member variables, so that they could be accessed by every method in the
controller.

The problem with member variables is only limited to classes that extend
HttpServlet. However, member variables can be used in every class that does not
extend HttpServlet. For this reason, a helper class will be created that will be used
to store the request and response objects. This helper class can have helper methods,
too. These helper methods will have direct access to the request and response
objects. Even a doGet method can be added to the helper class, so that the con-
troller only needs to call doGet in the helper.

In addition to the request and response objects, the helper class will have
a member variable for the bean that contains all of the user’s data. This will
make it easier for the controller to process the data. A helper method named
getData will be added so that the data in the bean can be accessed from the JSPs
using EL.

From now on, whenever a controller is created, a helper class will also be
created. Most of the work that could be done in the controller will be done in the
helper class, instead. It will be easier to do the work of the controller in the helper
class because of the member variables.

There are two types of variables that can be added to the helper class. Some of
the variables that are added are not specifi c for a controller, but are common to
all controllers. For example, the request and response objects have the same struc-
ture for all controllers. On the other hand, some variables are unique to a control-
ler, like the bean that encapsulates the request data.

This is a perfect place to use inheritance. Those variables that are common to
all controllers can be placed in a base class, while the ones that are specifi c to a
controller will be placed in a class that extends the base class. The base class will

84 Web Development with Java

be called HelperBase and the extended class will typically be called
ControllerHelper.

Figure 3.8 shows the relationship between the two classes, the member variables
in each and the helper methods in each.

3.7.1 Creating the Helper Base

The helper base will contain the member variables that are common to all control-
lers, like the request and response objects. These objects have the same structure
regardless of the controller that is using them. Helper methods will be added to
the class to facilitate access to these variables. There needs to be a helper method
that sets the request and response objects. These should be set as soon as the helper
base is created. The most logical place to set them is in the constructor for the
helper base class. The helper base will not have a default constructor, it will only
have a constructor that has parameters for the request and response objects.
Whenever a new helper base object is constructed, the current request and response
objects will need to be passed to the constructor.

package ch3.reorganised;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class HelperBase {

protected HttpServletRequest request;
protected HttpServletResponse response;

public HelperBase(HttpServletRequest request,
 HttpServletResponse response) {

this.request = request;
this.response = response;

 }

}

HelperBase

HttpServletRequest request
HttpServletResponse response

ControllerHelper

RequestData data

doGet()
getData()

Figure 3.8 ControllerHelper will inherit from HelperBase.

Java Beans and Controller Helpers 85

For the current example, the helper base class will be placed in the same package
as the controller. In the future, as more features are added to the helper base class,
it will be placed in a more centrally located package.

3.7.2 Creating the Controller Helper

The main motivation for using a controller helper is to be able to use member
variables. There are two types of member variables: those that are created in the
controller helper and those that are created in the helper base.

The controller helper will be placed into the session. This means that the
member variables in it can be made visible to the session. In order to make a
member variable visible from the session, an accessor for the variable needs to be
added to the controller helper. The member variables in the controller helper can
be accessed from a JSP just like the member variables in a bean are accessed: by
using an accessor.

The controller helper will do all the work for the controller. The controller will
still receive the request from the browser, but will then delegate the work to the
controller helper. For this reason, the controller helper will have a doGet method
that does all the work that the controller used to do. The controller will only create
the controller helper and call its doGet method.

Controller Helper Variables

The controller helper will contain variables that are specifi c to the current control-
ler, like the bean that contains the request data. The bean will have a different
structure for each controller, since each bean will contain different properties that
encapsulate the data that the user enters. For this reason, it cannot be placed in
the HelperBase. In the future, additional member variables will be added to the
controller helper.

protected RequestDataDefault data =
new RequestDataDefault();

Initialise Helper Base Variables

The controller helper will extend the helper base and must initialise the request
and response variables that are stored in it. The constructor for the controller
helper will have parameters for the request and response objects. The constructor
must call the base class constructor with these parameters. The call to
super(request, response) must be the fi rst statement in the constructor.
The call to the base constructor will set the values of the request and response
objects in the helper base class.

public ControllerHelper(HttpServletRequest request,
 HttpServletResponse response) {

super(request, response);
}

86 Web Development with Java

Making Variables Visible from the Session

There needs to be a helper method that allows the data to be retrieved from the
JSPs, using EL. Remember that EL statements are translated into calls to accessors,
so there should be an accessor in the controller helper that returns the bean. This
accessor only needs to return the type Object because the EL uses refl ection to
determine the methods an object has. Without this method, the bean would not
be accessible from the JSPs.

public Object getData() {
return data;

}

Doing the Work of the Controller

The ControllerHelper will also have a doGet method that is similar to
the code that has been in previous controllers. It does not need the request
and response objects passed to it, since it can access them directly from the helper
base class.

Five basic steps were performed by the doGet method in the servlet controller
from Listing 2.7: create the bean, make the bean accessible, fi ll the bean, translate
the button name and forward to the next page.

This method does not need to create a bean, since the bean has been added to
the controller helper as a member variable and is created when the controller
helper is constructed.

Instead of placing the bean in the session, the controller helper will place itself
in the session. In conjunction with the getData accessor, the bean will still be
accessible from the JSPs.

The remaining steps for a controller are performed just like the previous
controller.

protected void doGet()
throws ServletException, IOException

{
 request.getSession().setAttribute(“helper”, this);

 data.setHobby(request.getParameter(“hobby”));
 data.setAversion(request.getParameter(“aversion”));

 String address;

if (request.getParameter(“processButton”) != null)
 {
 address = “Process.jsp”;
 }
else if (request.getParameter(“confirmButton”) != null)

 {
 address = “Confi rm.jsp”;
 }
else

Java Beans and Controller Helpers 87

 {
 address = “Edit.jsp”;
 }

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
}

Complete Controller Helper

The next listing shows the complete code for a simple controller helper. It is using
the bean from the DefaultValidate application – the controller helper has imported
the class for the bean. The JSPs for the application will be rewritten in the next
section. Since a relative reference is being used in the address for the JSP, it is
assumed that the controller will be mapped to the directory that contains the
JSPs.

package ch3.reorganised;

import java.io.IOException;
import javax.servlet.RequestDispatcher;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import ch3.defaultValidate.RequestDataDefault;
public class ControllerHelper extends HelperBase {

protected RequestDataDefault data =
new RequestDataDefault();

public ControllerHelper(HttpServletRequest request,
 HttpServletResponse response) {

super(request, response);
 }

public Object getData() {
return data;

 }

protected void doGet()
throws ServletException, IOException

 {
 request.getSession().setAttribute(“helper”, this);

 data.setHobby(request.getParameter(“hobby”));
 data.setAversion(request.getParameter(“aversion”));

 String address;

if (request.getParameter(“processButton”) != null)
 {

88 Web Development with Java

 address = “Process.jsp”;
 }

else if (request.getParameter(“confirmButton”) != null)
 {
 address = “Confi rm.jsp”;
 }

else
 {
 address = “Edit.jsp”;
 }

 RequestDispatcher dispatcher =
 request.getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }

}

The controller helper looks very similar to the controller from previous examples.
At this point, there does not seem to be a justifi cation for going to all of this trouble.
However, this reorganisation will simplify the implementation of features that will
be added to the controller.

3.7.3 JSPs: Reorganised Controller

The only difference between the JSPs for this example and the JSPs from the previ-
ous example is how the data is retrieved from the session. The servlet controller
from earlier in the chapter placed the bean in the session and accessed the bean
from the JSP. The current example placed the controller helper into the session.
This requires an extra step to access the data.

The controller helper is added to the session under the name of helper. Any
public accessors in the controller helper can be accessed from the JSP using EL. In
particular, the getData accessor can be accessed from the bean using ${helper.
data}. This will return the bean that contains the data.

Once the bean is accessible, then all its public accessors are accessible. In par-
ticular, the getHobby accessor could be called to retrieve the hobby that the user
entered. The EL statement that would do this is ${helper.data.hobby}
(Figure 3.9).

To modify the JSPs for this example, replace all ${refData.hobby} with
${helper.data.hobby} and replace all ${refData.aversion} with
${helper.data.aversion}.

In the edit page, use the helper to access the bean, then access the bean to
initialise the input elements with any data that was passed in the query string.

Hobby:
<input type=”text” name=”hobby”

value=”${helper.data.hobby}”>

Aversion:
<input type=”text” name=”aversion”

value=”${helper.data.aversion}”>

Java Beans and Controller Helpers 89

In the confi rm and process pages, use the helper to access the bean, then access
the bean to retrieve the values for the hobby and aversion that were sent in the
query string.

The value of the hobby that was sent to
this page is: ${helper.data.hobby}

The value of the aversions that was sent to
this page is: ${helper.data.aversion}

In the confi rm and process pages, use the helper to access the bean, then access
the bean to initialise the hidden elements with any data that was passed in the
query string.

<input type=”hidden” name=”hobby”
 value=”${helper.data.hobby}”>
<input type=”hidden” name=”aversion”
 value=”${helper.data.aversion}”>

3.7.4 Controller: Reorganised Controller

The last detail is to modify the controller so that it uses the controller helper. The
controller only has to construct a controller helper and call its doGet method.

package ch3.reorganised;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

data

Session

"helper "
EL in JSP
${helper .data.hobby } helper

Request Data

String hobby
String aversion

getHobby ()
getAversion ()

helper

ControllerHelper

RequestData data

getData ()
doGet ()

.hobby

.data

Figure 3.9 EL statement that uses the helper to access the hobby from the data bean.

90 Web Development with Java

public class Controller extends HttpServlet {

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
 ControllerHelper helper =

new ControllerHelper(request, response);
 helper.doGet();
 }
}

3.8 Application: Reorganised Controller

With the above modifi cations, the Default Validate application can be rewritten.
The HelperBase, ControllerHelper and Controller were developed in
the last three sections. All the Java fi les have been placed into the package named
ch3.reorganised (Figure 3.10).

In web.xml, the controller has been mapped to /ch3/reorganised/Controller,
which is the directory where the JSPs have been placed. Even though the controller
is using a helper, the controller is still the class that is visible from the web, because
it is the class that extends HttpServlet. The controller helper, helper base and bean
classes should not be added to the web.xml fi le. They are not visible from the web,
so they do not need entries in the web.xml fi le.
...

<servlet>
 <servlet-name>Reorganised</servlet-name>
 <servlet-class>ch3.reorganised.Controller</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Reorganised</servlet-name>
 <url-pattern>/ch3/reorganised/Controller</url-pattern>
</servlet-mapping>
...

Figure 3.10 The location of fi les for the Reorganised Controller.

Java Beans and Controller Helpers 91

Try It http://bytesizebook.com/book/ch3/reorganised/Controller

This controller behaves exactly like the DefaultValidate controller. The only differ-
ence is that the controller has been reorganised using a controller helper class and
a helper base class.

3.9 Model, View, Controller

There are three major components in a web application: the bean, the JSPs and the
controller. These components are know as the Model, View, Controller [MVC].

Model

The model defi nes the data that will be used in the application. It also defi nes
the operations that can be performed on the data. In a web application, the
bean is the model.

View

The view displays the data to the user. The view does not do any of the pro-
cessing of the data, it only presents the data. There are usually multiple views
in an application. In a web application, each JSP is a separate view.

Controller

The controller is the program that ties the views and the models together.
In a web application the controller servlet is the controller.

The model is where the data processing will be done. The most important aspect
of a web application is data processing. The model encapsulates the data and all
the methods that work on it.

The controller is important because it is the program that is handling the
request from the browser and sending a response back to the server. The controller
will delegate responsibility to the model whenever it can.

The views are simple. They contain HTML and a few directives to display the
data from the model. It is best not to add code to the view.

3.10 Summary

This chapter introduced Java beans, which are used to encapsulate the data that is
sent from a request. The basic structure of a bean was covered, as well as how a
bean can be incorporated into a web application. To demonstrate the power of a
bean, the additional feature of default validation was added.

One of the shortcomings of a servlet is the problem with using member vari-
ables. This restriction goes against one of the basic concepts of object-oriented
design. This problem was discussed in detail and two solutions to the problem
were offered: avoid using member variables or use synchronization blocks.
Synchronization blocks should only be used when data needs to be shared
amongst all requests. For most situations, member variables should be avoided
in servlets.

92 Web Development with Java

A helper class was introduced that can use member variables to simplify the
tasks of the controller. The helper class contained a member variable for the bean
that encapsulates the request data. A base class was introduced for member vari-
ables that are the same for all controllers. The fi rst variables that were added to
this class were for the request and response objects. Together, these classes allow
easy access to all the objects that are needed in an application.

In the future, every controller will have a controller helper that is extended from
the base class. All request and response processing will be done in the helper
class.

The addition of the bean to a web application adds the fi nal component of the
MVC structure. The model is the bean; the views are the JSPs; the controller is the
servlet that extends HttpServlet.

3.11 Chapter Review

Terms

 1. Java Bean
 2. Property
 3. Accessor
 4. Mutator
 5. Default Validation
 6. Default Value
 7. Variables

a. Member
b. Local

 8. Thread
 9. Synchronization
10. Controller Helper
11. Helper Base
12. MVC

New Java

1. request.getSession().setAttribute
2. super
3. synchronized

Tags

1. ${param.name}
2. ${bean.property}
3. ${helper.bean.property}

Java Beans and Controller Helpers 93

Questions

1. When discussing threads, the steps A1, A2, A3 must execute in order, and the
steps B1, B2, B3 must execute in order. However, there is no restriction on how
the A steps relate to the B steps. Other than the sequence A1, A2, B1, B2, A3, B3
explained above, what other sequences will cause both threads to obtain a value
of 1 for x?

2. What would be the name of the mutator and accessor in a bean for form
elements with the following names?
a. fun
b. moreFun
c. tOoMuChFuN
d. wAYTOOMUCHFUN

3. What would be the name of the form element that would correspond with the
following accessors in a bean?
a. getBetter
b. getOutOfHere
c. getOFFMYCLOUD

4. What methods in the helper and the bean are called when the EL statement
${helper.data.hobby} is executed?

5. What determines if a member variable should be declared in the helper base
or in the controller helper?

6. What method must be added to the controller helper in order to allow a member
variable to be accessed from a JSP?

Tasks

1. Create a bean that encapsulates the data in a form with elements named name,
city and country.
a. Add default values to the accessors for city and two-letter country code. Use

a city and country of your choice for the default values. Use the default values
if user leaves the city or the country blank.

b. Change the validation in the last question so that the country must be GB,
US or DE. If the country is GB, then the city must be London, Oxford or
Leeds. If the country is US, then the city must be New York, Los Angeles or
Miami. If the country is DE, then the city must be Berlin, Frankfurt or Baden-
Baden. Add additional countries and cities of your choice. If the country is
not valid, then choose a default country and city. If the country is valid, but
the city is not valid, choose a default city for that country.

2. In a servlet,
a. Write the statements that will add a bean named preferences to the

session attributes.
b. Write the statements that will copy the request parameters into a bean object

named fruit that has properties named apples and bananas with data
from the query string. Assume that the form elements in the query string
have the same names as the bean properties.

94 Web Development with Java

3. In a JSP,
a. Write the EL statements that will display the values of the query string

parameters named bookName and bookAuthor.
b. Write the EL statements that will display the values of session attributes

named salesManager and accountant.
c. Write the EL statements that will display the values of the bean properties

named car and boat. Assume that the bean has been added to the session
attributes with the name vehicles.

d. Write the EL statements that will display the values of the bean properties
named car and boat. Assume that the bean has been added to the helper
and that the helper has been added to the session attributes. Assume that
there is a getData method in the helper that returns the bean.

4. Create a new controller application that accepts the data from question 1. Create
a bean and a controller helper for this application.

95

4 Enhancing the Controller

The previous chapter introduced the idea of a helper class that has easy access to
all the objects that are used in a controller application: the bean, the request, the
response. This chapter builds on this framework and adds features to the helper
class and its base class.

Many tasks are common to all controller applications. These tasks include
specifying the location of the JSPs, eliminating hidden fi elds, fi lling a bean, using
a logger and decoding a button name into an address. Other common capabilities
will be added to the controller application in future chapters.

Some of these tasks require specifi c information about the current controller
application, so they will be added to the controller helper class. Others are common
to all controller applications, so they will be added to the helper base class.

Up until now, all the features that have been used are part of the normal servlet
engine. From now on, additional features will be added to the servlet engine by
including Java Archive [JAR] fi les. JAR fi les are actually zip archives with the exten-
sion .jar that can be read by the Java Virtual Machine [JVM]. Typically, a developer
who wants to add a feature to the servlet engine will package all the necessary
class fi les in a JAR. Then, anyone who wants to incorporate the new feature into
the servlet engine only has to place the JAR into a specifi c directory in the web
application where the servlet engine can fi nd it. This directory is the lib subdirec-
tory of the WEB-INF directory.

4.1 Logging in Web Applications

When debugging a Java application, it can be useful to display error messages
when some exception fi res. A standard technique is to use System.out.

System.out.println(“Something bad happened”);

In a servlet, this is not a very useful technique. In a typical Java application,
System.out is routed to the monitor, so the error will display on the current
monitor. However, a servlet is not connected to a monitor; it is run by the servlet
engine. The servlet engine is not connected to a monitor either; the servlet engine
routes System.out to a log fi le that is owned by the system administrator and
cannot be accessed by a typical developer.

96 Web Development with Java

Instead of using System.out, it is better to create a log fi le that the developer
can read.

4.1.1 Logging with Log4j

There is a package named Log4j that can be used to open and write to a log fi le.
To implement it, add the following jar fi le to the lib directory of the web applica-
tion. This fi le can be downloaded from http://bytesizebook.com/jar or the most
recent version of the JAR can be retrieved from http://logging.apache.org/log4j/
docs/download.html.

log4j-1.2.11.jar

One of the nicest features of a Log4j logger is that an error message can be given
an error level. The log fi le also has a level; it will only record error messages that
have the same level or a more severe level. Those messages that have a less severe
error level will be not be written to the log fi le. This feature allows the developer
to add error messages that will only display when trying to trace an error. By
changing the level of the log fi le to a more severe level, the less severe messages
will not be written to the log fi le.

There are fi ve error levels for a log fi le: Level.FATAL, Level.ERROR,
Level.WARN, Level.INFO, Level.DEBUG. These error levels range from
the level that records the fewest number of messages to the level that records the
highest number of messages.

There are fi ve error methods that a logger can use to write to a log fi le:
fatal(), error(), warn(), info(), debug(). For each of these methods,
a message will be written to the fi le, only if the level of the log fi le includes that
type of message. For instance, warn() will only write to the log fi le if the level of
the log fi le is Level.WARN, Level.INFO or Level.DEBUG; debug() will
only write to the log fi le if the level of the fi le is Level.DEBUG.

4.1.2 Configuring Log4j

There are many ways to confi gure Log4j; one way is to use an initialisation servlet.
An initialisation servlet is different from a normal servlet. The initialisation servlet
should only have its code executed once. It should never be called by the user; it
should only be called by the servlet engine. To prevent users from executing the
servlet, it will not have a doGet method.

Log File Location

One advantage of using a servlet to initialise Log4j is that the location of the actual
log fi le can be specifi ed using a relative reference from the root of the current web
application. This allows the log fi le to be made portable; whenever the web applica-
tion is deployed, the log fi le will be deployed with it. In order to retrieve the path
to the root of the web application on the current computer, use the two methods
getServletContext().getRealPath().

The log fi le should never be placed in a location that can be viewed from the
web. By placing the log fi le in the WEB-INF directory, it cannot be accessed from
the web. Use the following command to specify that the log fi le is located in a fi le
named error.log located in the logs subdirectory of WEB-INF. Be sure that the fi le
already exists and is writable by the servlet engine.

Enhancing the Controller 97

getServletContext().getRealPath(“/WEB-INF/logs/error.log”)

Loggers

Log4j uses a class named Logger to encapsulate the process of writing messages
to a log fi le. There could be many different loggers that write to the same log fi le.
In web applications that use many different packages, it is common that many
loggers will write to one log fi le.

There is a default logger that should be initialised when using Log4j. This logger
is known as the root logger. This logger is always available. This is the logger that
will record all messages that are written to any other logger. This is the only logger
that needs to be defi ned. By defi ning the root logger, all messages from all packages
can be recorded.

Once Log4j has been initialised, any application can retrieve a logger and write
to it. The logger can be given a name, so that different parts of the same applica-
tion can write to the same logger.

Helper Methods

To simplify the initialisation of Log4j, two helper methods will be created. One
helper method is used to open the actual fi le that will contain the error messages.
The other helper method will confi gure the object that is used to write to the fi le.

In order to associate an actual fi le with the logger, there is a class named
Appender. An appender is created with the name of the fi le that will hold the
error messages and the pattern to be used for each message.

The name of the fi le will be passed to the method. The name will be translated
into a path that is relative to the root of the web application. The pattern can
include many things, like the date, the method that threw the error, the error
message, etc.

private FileAppender getAppender(String fileName) {
 RollingFileAppender appender = null;
try {

 appender = new RollingFileAppender(
new PatternLayout(“%-5p %c %t%n%29d - %m%n”),

 getServletContext().getRealPath(fi leName),
 true);
 appender.setMaxBackupIndex(5);
 appender.setMaxFileSize(“1MB”);
 } catch (IOException ex) {
 System.out.println(
 “Could not create appender for “
 + fileName + “:”
 + ex.getMessage());
 }
return appender;

}

To initialise a logger, retrieve the logger from Log4j, using the static methods
Logger.getLogger(name) or Logger.getRootLogger(). These will
create the logger or return it if it had been created already. Log4j keeps track of
all the loggers that have been opened.

98 Web Development with Java

The next steps are to set the level and the appender. A helper method has been
added to the servlet for these steps.

private void initLogger(String name,
 FileAppender appender,
 Level level)
{
 Logger logger;
if (name == null) {

 logger = Logger.getRootLogger();
 } else {
 logger = Logger.getLogger(name);
 }
 logger.setLevel(level);
 logger.addAppender(appender);
 logger.info(“Starting “ + logger.getName());
}

Init Method

In each servlet, there is a method that is executed when it is loaded into memory:
init. Servlets are loaded into memory by the servlet engine when they are
accessed for the fi rst time. They remain in memory until the web application shuts
down. Whenever an action needs to be executed once, then it can be placed in the
init method.

With the aid of the helper methods, it is a simple matter to confi gure the root
logger. By passing a null value as the fi rst parameter, the helper method will create
the root logger.

FileAppender appender = getAppender(logPath);
if (appender == null) return;
initLogger(null, appender, Level.ERROR);

It is also possible to defi ne additional loggers that can be confi gured differently
from the root logger. By using separate loggers, it is possible to limit the number
of messages from one logger, while allowing many messages from another.

For instance, in a later section of the chapter, a new package will be introduced
that automates copying the request parameters to the bean. A separate logger could
be opened for this package with a different level. This new logger could be set to
Level.DEBUG, while the root logger is set to Level.ERROR. The new package could
generate a lot of information that could be useful while debugging and the other
packages in the web application would only write error messages to the log fi le.

private static final String logPath =
 “/WEB-INF/logs/error.log”;
public void init() {
 FileAppender appender = getAppender(logPath);
if (appender == null) return;

 initLogger(null, appender, Level.ERROR);
 initLogger(“org.apache.commmons.beanutils”,

appender, Level.DEBUG);
}

Enhancing the Controller 99

Initialisation Servlet

Putting this all together yields the initialisation servlet for Log4j. This servlet has
been placed in the shared package. This is a package which will be used throughout
the book that will contain classes that will be used by many different controllers.
The complete InitLog4j servlet can be found in the Appendix.

package shared;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import org.apache.log4j.FileAppender;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.PatternLayout;
import org.apache.log4j.RollingFileAppender;

public class InitLog4j extends HttpServlet {

private static final String logPath =
 “/WEB-INF/logs/error.log”;

public void init() {
 ...
 }

private FileAppender getAppender(String fileName) {
 ...
 }

private void initLogger(String name,
 FileAppender appender,
 Level level)
 {
 ...
 }
}

Since this servlet does not have a doGet method, there is no way to call it from
the web. The servlet needs to be called by the web application when the web
application starts. This can be accomplished by modifying the web.xml.

A servlet defi nition will be created for the servlet in the web.xml fi le. There is
a tag named load-on-startup that tells the servlet engine to start the associ-
ated servlet whenever the web application starts.

...

<servlet>
 <servlet-name>InitLog4j</servlet-name>
 <servlet-class>shared.InitLog4j</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
...

100 Web Development with Java

By removing the doGet method from the servlet, adding an init method and
confi guring the servlet to load when the servlet engine starts, the initialisation
servlet will only be run once and cannot be accessed by the user. No servlet
mapping will be created for the initialisation servlet.

4.1.3 Retrieving the Logger

The helper base class has been renamed HelperBaseCh4 and has been placed in
the shared package. Each of the next three chapters will add features to the helper
base, so there will be a distinct helper base for each chapter: HelperBaseCh4,
HelperBaseCh5 and HelperBaseCh6. They have been placed into the shared package
because they do not contain specifi c details for any controller helper and can be
accessed from any package.

A variable for a logger will be added to the application. Since the logger is the
same for all controllers, it will be placed in the helper base class. It will be declared
as a member variable that will be initialised when the helper base class is created.
The helper base class now has three member variables: request, response, logger
(Figure 4.1). Each is initialised in the constructor.

To initialise the logger, call the static method Logger.getLogger with
an arbitrary name. This will create a new logger that is inherited from the root
logger, so it will use the same appender that the root logger uses. It is also possible
to change the level of the new logger, without changing the level of the root
logger.

...

protected HttpServletRequest request;
protected HttpServletResponse response;
protected Logger logger;

public HelperBaseCh4(HttpServletRequest request,
 HttpServletResponse response) {
this.request = request;
this.response = response;

 logger = Logger.getLogger(“bytesizebook.webdev”);
 logger.setLevel(Level.DEBUG);
}
...

Once it is retrieved into a member variable, the logger can be accessed from any
method in the controller helper and helper base classes. There are fi ve methods to
write errors with a specifi c level:

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger

Figure 4.1 Add the logger to the helper base class.

Enhancing the Controller 101

1. logger.debug(“message”);
2. logger.info(“message”);
3. logger.warn(“message”);
4. logger.error(“message”);
5. logger.fatal(“message”);

Use these to write a message with a given severity level to the log fi le. Only those
messages that have the same or higher severity as the level of the logger will be
written to the fi le.

The next few sections will all use the logger to write error messages to the log
fi le.

4.2 Eliminating Hidden Fields

In the Reorganised Controller example from Chapter Three, the controller helper
is saved in the session and can be accessed from a JSP using the EL statement of
${helper}. The controller helper has a member variable for the bean that con-
tains the user’s data. Because there is also a getData method, the data in the
bean can also be retrieved in a JSP using the EL statement of ${helper.data}.
The fact that the helper is in the session has an added benefi t: the JSPs no longer
need hidden fi elds to pass data from one page to the next.

The session attributes exist as long as the user does not close the browser and
continues to interact with the controller. The information that is in the controller
helper is available for the JSPs to access. Furthermore, the information will still be
available the next time the controller is called during the same session. The con-
troller helper for the next request only needs to retrieve the data that is in the
session (Figure 4.2).

Consider how the data is stored in the session and retrieved from the session.

1. The controller helper has a bean that contains the data that was entered by the
user.

2. The controller helper writes itself to the session so that the JSPs can access it.
The data bean can also be accessed.

Session

"helper"

Request 1 Request 2

Fills bean from
query string .
Places helper
in session .

Retrieves bean
from session .

JSP 1

Retrieves bean
from session .

Figure 4.2 The data is always available from the session.

102 Web Development with Java

3. The hidden fi elds were used to store this data and send it back to the application
when a form button was clicked.

4. The data that is in the session was used to initialise the values in the hidden
fi elds. This means that the data that the hidden fi elds are sending back to the
controller is identical to the data that is already in the session.

5. Since the data is in the session and the session exists from request to request,
the hidden fi elds are no longer needed.

6. The controller helper for the next request can retrieve the data from the session,
instead of from the query string.

4.2.1 Retrieving Data from the Session

Each time a new request is made, the controller helper is added to the session.
If there is already a controller helper in the session, then it should be retrieved
and its data should be copied into the current controller helper. A method will
be added to the helper base class to do this: addHelperToSession. Every
time this method is called, the current controller helper will be saved in the
session. This method will have two parameters that control how the session
is accessed.

There may be times when the application creates a new helper, but does not
want to retrieve the previous one from the session. For this reason, the method
will have a parameter that will control if the old helper in the session is accessed.
If it is not accessed, then the data from the previous helper will not be copied into
the current helper.

There may be times when helpers from different applications are saved in the
session at the same time. To allow this, there is an additional parameter to the
addHelperToSession method that specifi es the name that is used to save
the object in the session.

Helper Base: Eliminating Hidden Fields

Three modifi cations need to be made to the helper base class to eliminate the need
for hidden fi elds.

If there is a controller helper in the session with the correct name, then its
values will be copied to the current helper. This requires an additional method
named copyFromSession. This method should not be defi ned in the base class,
since it needs to know the names of all the properties in the bean. For this reason,
it is declared as an abstract method in the base class; this will force the derived
class to defi ne it.

protected abstract void copyFromSession(Object helper);

Through polymorphism, the copyFromSession method in the derived class
will be called at runtime, even though the call is made from a method in the base
class. By having an abstract method in the class, the helper base will have to be
declared as an abstract class.

Enhancing the Controller 103

public abstract class HelperBaseCh4 {
 ...
}

The next listing contains the code for the addHelperToSession method that
checks the session for previous data and adds the current helper to the session.
There are two parameters to this method: the name to use to retrieve the data and
a parameter that indicates if any previous data in the session should initialise the
current helper. The method makes a polymorphic call to the copyFromSession
method, which will be resolved at runtime to a method in the derived controller
helper.

...
public void addHelperToSession(String name,

SessionData state) {
if (SessionData.READ == state) {

 Object sessionObj =
 request.getSession().getAttribute(name);

if (sessionObj != null) {
 copyFromSession(sessionObj);
 }
 }
 request.getSession().setAttribute(name, this);
}
...

The fi rst parameter to this method is a string that identifi es the object that is
placed in the session. This name should be unique. If the same name is used for
different controllers that are running at the same time, then each controller will
erase the data from the other controller. By having unique names, more than one
object can be stored in the session. Each controller would use its name to retrieve
its object from the session.

With that said, all of the controller helpers in this book will always use the name
helper for the session object. The reason for this is that each controller that is
developed is an extension of the controllers before it. These controllers are not
intended to run at the same time. If these controllers were designed to run at
the same time, then each one should use a different name when adding data to
the session.

The second parameter to this method is an enumeration type named
SessionData and has the values READ and IGNORE (Figure 4.3). When the
old helper in the session should be used to initialise the current helper, call

enum SessionData

READ
IGNORE

Figure 4.3 The SessionData enumeration.

104 Web Development with Java

addHelperToSession with the value SessionData.READ. If this is the
start of a new request and the old session helper should not be used to initialise
the current helper, then call addHelperToSession with the value Session-
Data.IGNORE.

Controller Helper: Eliminating Hidden Fields

There are two modifi cations to the controller helper to eliminate the need for
hidden fi elds. The copyFromSession method is defi ned and the doGet method
must be modifi ed so that it always updates the session with itself and checks the
session for old data.

The copyFromSession method must be defi ned in every controller helper
that extends the helper base class. The helper base is now an abstract class. Every
class that extends it must implement its abstract method. The helper base and
controller helper class diagrams are listed in Figure 4.4. Both classes defi ne the
copyFromSession method. In the base class, it is an abstract method. In the
extended class, it must be implemented.

For example, the controller that will be developed in this chapter defi nes a
copyFromSession method that sets the bean for the controller helper to the
bean that was found in the session.

public void copyFromSession(Object sessionHelper) {
if (sessionHelper.getClass() == this.getClass()) {

 data = ((ControllerHelper)sessionHelper).data;
 }
}

It is necessary to test that the controller helper that is in the session has the same
type as the controller helper for the current application. It is possible that there is

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger

ControllerHelper

RequestData data

doGet()
getData()
copyFromSession ()

abstract copyFromSession ()
addHelperToSession ()

Figure 4.4 The copyFromSession method is defi ned in the helper base and controller helper.

Enhancing the Controller 105

a helper from a previous application in the session that was stored with the same
name as the helper for the current application. By testing the type, a class cast
exception is avoided.

The doGet method in the controller helper will be modifi ed to call the
addHelperToSession method. It should be called every time a request is
made so that any previous values can be retrieved and to add the current bean to
the session. For now, call this method with SessionData.READ.

...

protected void doGet()
throws ServletException, IOException
{
 addHelperToSession(“helper”, SessionData.READ);
...

By calling this method for each request, the JSPs no longer need to have hidden
fi elds. This simplifi es the JSPs. However, hidden fi elds still have an advantage over
the session data: hidden fi elds never expire. There may be times when a hidden
fi eld will be more useful than using the session.

4.3 Specifying the Location of the JSPs

In the Data Bean controller, from Chapter Three, the JSPs were in a directory that
was visible from the web and the controller was mapped to that directory; a rela-
tive reference could be used to specify the address of the JSPs, since the controller
was mapped to the same directory.

if (request.getParameter(“processButton”) != null)
{
 address = “Process.jsp”;
}
else if (request.getParameter(“confirmButton”) != null)
{
 address = “Confi rm.jsp”;
}
else
{
 address = “Edit.jsp”;
}

In the Default Validate controller, from Chapter Three, the JSPs were in a visible
directory that was different from the directory where the controller was mapped;
a path had to be added to the address of the JSP, since the controller was not
mapped to the directory of the JSPs.

if (request.getParameter(“processButton”) != null)
{
 address = “/ch3/dataBean/Process.jsp”;
}
else if (request.getParameter(“confirmButton”) != null)
{

106 Web Development with Java

 address = “/ch3/dataBean/Confi rm.jsp”;
}
else
{
 address = “/ch3/dataBean/Edit.jsp”;
}

In this example, if the location of the JSPs were changed, this would require modi-
fying several lines of code. A more effi cient solution is to encapsulate the path to
the JSPs in a helper method. By adding a method to the bean that generates the
location of the JSPs, it is easy to modify the application in the future if the JSPs
are moved (Figure 4.5).

The method has one parameter that is the fi le name of the next JSP. The method
will append this name to the path of the JSPs. By adding the path in a separate
method, it will be easier to move the JSPs in the future.

protected String jspLocation(String page) {
return “/ch3/dataBean/” + page;

}

The path should not include the name of the web application. The controller
cannot access paths outside the web application, so the name of the web applica-
tion is assumed.

The address of each JSP that is used in the bean must use this method to gener-
ate the address of the JSP.

if (request.getParameter(“processButton”) != null)
{
 address = jspLocation(“Process.jsp”);
}
else if (request.getParameter(“confirmButton”) != null)
{
 address = jspLocation(“Confi rm.jsp”);
}
else
{
 address = jspLocation(“Edit.jsp)”;
}

ControllerHelper

RequestData data

doGet()
getData()
copyFromSession ()
jspLocation()

Figure 4.5 The jspLocation method is added to the controller helper.

Enhancing the Controller 107

In the future, if the location of the JSPs is changed, then only the return value of
this method needs to be changed in order to update the controller helper.

Let’s see how to use this method when the JSPs are in a visible directory, a
hidden directory and the same physical directory as the controller.

4.3.1 JSPs in the Directory Where the Controller Is Mapped

If the JSPs are in a visible directory and the controller is mapped to that directory,
then return the parameter that was passed to the jspLocation method.

protected String jspLocation(String page) {
return page;

}

This will look for the JSP in the same directory where the controller is mapped.
The controller’s .class fi le is not visible from the web, which is why a servlet

mapping is created in the web.xml for the controller. The servlet mapping defi nes
a URL that is visible from the web that can be used to access the controller. If the
directory of this URL is also a physical directory in the web application, then the
JSPs can be placed in that directory and a relative reference can be used to specify
the URL of the JSPs. This is the technique that has been used for all controllers
before the Default Validate controller (Table 4.1).

In each case, the path that was used in the URL pattern for the controller is the
same as the path to the edit page. Since the directory for the servlet mapping and
the directory for the JSPs are the same, the URL of the JSP can be specifi ed by
using the name of the JSP only.

4.3.2 JSPs in a Different Visible Directory

If the JSPs are in a visible directory, but not in the same directory as where the
controller is mapped, then append the name of the page to the path to the JSPs.
This path must start with a slash, which represents the root of the web application.
Do not include the name of the web application in the path.

For example, in the Default Validate controller, the controller was mapped to
the URL /ch3/defaultValidate/Controller, but the JSPs were located
in the /ch3/dataBean/ directory. The method would return this path:

protected String jspLocation(String page) {
return “/ch3/dataBean/” + page;

}

Table 4.1 The relationship between the servlet mapping and the
location of the JSPs.

URL Pattern JSP Location

/ch2/servletController/Controller /ch2/servletController/Edit.jsp
/ch3/startExample/Controller /ch3/startExample/Edit.jsp
/ch3/dataBean/Controller /ch3/dataBean/Edit.jsp

108 Web Development with Java

4.3.3 JSPs in a Hidden Directory

If the JSPs are not in a visible directory, then it will always be necessary to return
the full path to the JSPs.

The WEB-INF directory cannot be accessed from the web. By placing the JSPs
in this directory they cannot be accessed directly from the web, they can only be
accessed through the servlet. The servlet has access to all the fi les and directories
in the web application.

For example, if the JSPs are located in WEB-INF as

WEB-INF/Edit.jsp
WEB-INF/Confi rm.jsp
WEB-INF/Process.jsp

then they cannot be accessed from the web. By setting the base path to /WEB-INF/
in the jspLocation method, the servlet will be able to access the JSPs.

protected String jspLocation(String page) {
return “/WEB-INF/” + page;

}

4.3.4 JSPs in the Controller’s Directory

We can take this concept one step further and place the JSPs in the same physical
directory as the controller.

protected String jspLocation(String page) {
return “/WEB-INF/classes/ch3/defaultValidateHidden/” + page;

}

This has advantages and disadvantages. One advantage is that applications will be
easier to develop. It will not be necessary to change to different directories to edit
the fi les that are in the application. One disadvantage is that if there are JSP devel-
opers and servlet developers, then they would each have access to all the fi les. This
might not be acceptable. It might be better to place the JSPs in one directory and
the servlet in another directory.

4.3.5 Where Should JSPs Be Located?

By creating the jspLocation method in the controller, it is easy to modify the loca-
tion of the JSPs. However, this raises the question of where the JSPs should be
placed. The answer to this question depends on your development needs.

Single Developer

If there is only one developer who is maintaining the JSPs and the controller,
then it is easier to place the JSPs in the same directory as the controller’s .class
fi le. This is the approach that will be used for the remainder of this book.

Enhancing the Controller 109

HTML Developer and Controller Developer

If there are separate developers for HTML and for the controller, then the
JSPs should be kept in a separate directory from the controller’s .class fi le.
This would allow the system administrator to allow different access permis-
sions to the different directories.

Visible versus Hidden

It is recommended to have the JSPs in a hidden directory. The intent of the
controller is that all requests should be made to the controller and that the
controller will forward the request to the proper JSP. If the JSPs are in a
directory that is visible from the web, then it would be possible for a user to
circumvent the controller and access the pages directly; this could result in
unexpected results.

4.4 Controller Logic

Every controller needs to translate the button that the user clicked into the address
for the next JSP. Each controller has a series of nested if statements that do this
translation.

...

if (request.getParameter(“processButton”) != null)
{
 address = “Process.jsp”;
}
else if (request.getParameter(“confirmButton”) != null)
{
 address = “Confi rm.jsp”;
}
else
{
 address = “Edit.jsp”;
}
...

This is the logic for the simplest controller. However, in addition to calculating the
next address, there will usually be tasks to perform when different buttons are
clicked. The following listing is an example of a more complicated controller.

if (request.getParameter(“processButton”) != null)
{
 hibernateHelper.updateDB(data);
 request.setAttribute(
 “database”,
 hibernateHelper.getListData(RequestData.class));
 address = jspLocation(“Process.jsp”);
}
else if (request.getParameter(“confirmButton”) != null)
{

110 Web Development with Java

 fi llBeanFromRequest(data);
 String address;
if (isValid(data)) {

 address = jspLocation(“Confi rm.jsp”);
 } else {
 address = jspLocation(“Edit.jsp”);
 }
}
else
{
 address = jspLocation(“Edit.jsp”);
}

A more organised solution would be to write a separate method for each button.
In the method, the next address would be calculated and the tasks for that button
would be executed (Listing 4.1).

public String processMethod() {
 hibernateHelper.updateDB(data);
 request.setAttribute(
 “database”,
 hibernateHelper.getListData(RequestData.class));
return jspLocation(“Process.jsp”);

}

public String confirmMethod() {
 fi llBeanFromRequest(data);
 String address;
if (isValid(data)) {

 address = “Confi rm.jsp”;
 } else {
 address = “Edit.jsp”;
 }
return jspLocation(address);

}

public String editMethod() {
return jspLocation(“Edit.jsp”);

}

protected void doGet()
throws ServletException, java.io.IOException
{
 updateSession(“helper”, SessionData.READ);

if (request.getParameter(“processButton”) != null)
 {
 address = processMethod();
 }
else if (request.getParameter(“confirmButton”) != null)

 {
 address = confirmMethod();
 }
else

Enhancing the Controller 111

 {
 address = editMethod();
 }

 request.getRequestDispatcher(address)
 .forward(request, response);
}

Listing 4.1 A more organised controller helper.

4.4.1 Java Annotations

Java annotations are new in JDK 1.5. Annotations are used to mark up the Java
code. Before there were annotations, separate confi guration fi les were used to
defi ne how a package would be initialised. With annotations, the statements that
were in a confi guration fi le can now be placed in the Java code itself. Annotations
make it easier to confi gure a package.

Annotations start with the @ symbol. There are annotations for classes, for
methods and for variables. Each annotation can have optional parameters. The
annotation must precede what it modifi es.

Extending Listing 4.1 and using annotations, it is now possible to automate the
nested if block and place it into the helper base class. The idea is to mark each
method with an annotation that associates the name of the button with the method
and to replace the nested if block with a call to a method that loops through the
button names in the annotations, looking for the one that matches the user’s
choice.

@ButtonMethod(buttonName=”processButton”)
public String processMethod() {
 hibernateHelper.updateDB(data);
 request.setAttribute(
 “database”,
 hibernateHelper.getListData(RequestData.class);
return jspLocation(“Process.jsp”);

}

@ButtonMethod(buttonName=”confi rmButton”)
public String confirmMethod() {
 fi llBeanFromRequest(data);
 String address;
if (isValid(data)) {

 address = “Confi rm.jsp”;
 } else {
 address = “Edit.jsp”;
 }
return jspLocation(address);

}

@ButtonMethod(buttonName=”editButton”, isDefault=true)
public String editMethod() {
return jspLocation(“Edit.jsp”);

}

112 Web Development with Java

protected void doGet()
throws ServletException, java.io.IOException {
 updateSession(“helper”, SessionData.READ);

 String address = executeButtonMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
}

The annotations must precede the method that they modify. The annotations
contain information about the method. In this example, the annotation is named
@ButtonMethod. The intent of the annotation is to associate the name of a
button with the method, so that the method can be called whenever that button
is clicked. The executeButtonMethod will determine which method to call.

Two attributes can be included in the annotation: buttonName and isDefault.
Set the buttonName attribute to the name that appears in the form element in the
JSP for the button. The name of the button in the form element must agree with
the buttonName attribute.

For example, the following form element is a submit button with a name of
confi rmButton.

<input type=”submit” name=”confi rmButton”
 value=”Confi rm”>

In order to associate the above button with a method in the controller helper,
annotate a method with the ButtonMethod annotation and set the value of the
buttonName attribute to confi rmButton.

@ButtonMethod(buttonName=”confi rmButton”)
public String confirmMethod() {
 ...
}

Set the isDefault attribute to the boolean value true if this is the method that
should be called when no button has been clicked. One of the button methods
should be marked as the default. Do not include true in quotes, it must be a boolean
value.

4.4.2 Executing the Correct Button Method

The work of calling the correct method is relegated to the helper base class. A new
method named executeButtonMethod will be added to the helper base class
(Figure 4.6).

Refl ection is used to retrieve all the methods in the controller helper and look
for those that are marked with the ButtonMethod annotation. If an annotated
method is found and its ButtonName attribute is found in the query string
parameters, then the method is executed. The essential details are contained in the
next listing.

Enhancing the Controller 113

Method[] methods = clazz.getDeclaredMethods();
for(Method method : methods) {
 ButtonMethod annotation =
 method.getAnnotation(ButtonMethod.class);
if (annotation != null) {
if (request.getParameter(annotation.buttonName())

 != null)
 {
 result = invokeButtonMethod(method);

break;
 }
 }
}

The innermost if should look familiar. It is testing for the presence of a button
name in the query string. This is exactly what the nested if in the fi rst controller
did. This method automates this by using a loop. In order to handle a new button
in the controller helper, all that is needed is an annotated method that performs
the tasks for that button.

4.5 Filling a Bean

In all controllers up to this point, the mutators for each property in the bean
needed to be called in order to copy the data from the request into the bean.

data.setHobby(request.getParameter(“hobby”));
data.setAversion(request.getParameter(“aversion”));

Wouldn’t it be nice if someone would write a Java package that would automate
this process?

There is an extension to Java that allows all the information from the request
to be sent to the bean. This extension will call the mutators automatically.

It is important that the name of the form element corresponds to the name of
the mutator. To determine what the name of the form element should be, take the
name of the mutator and remove the word set, then change the fi rst letter to low-
ercase. If the names do not correspond correctly, then the data will not be copied
from the request to the bean.

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger

abstract copyFromSession ()
addHelperToSession ()
executeButtonMethod ()

Figure 4.6 The executeButtonMethod method is added to the helper base class.

114 Web Development with Java

Table 4.2 shows the relationship between the name of a form element and the
name of the corresponding mutator.

In order to have the mutators called automatically for all data that is in the
query string, include the following JAR fi les into the lib directory of the web appli-
cation. These can be downloaded from http://bytesizebook.com/jar or the latest
versions can be downloaded from http://jakarta.apache.org/commons/.

commons-collections-2.1.1.jar
commons-logging-1.0.4.jar
commons-beanutils.jar

The magical method that calls all the mutators is named populate and is located
in the org.apache.beanutils.BeanUtils package. It has two parameters:
the bean to fi ll and a map that contains the data from the query string.

org.apache.commons.beanutils.BeanUtils.
 populate(data, request.getParameterMap());

The method can throw several exceptions, so it is best to place the call inside a
method that can catch any errors.

public void fillBeanFromRequest(Object data) {
try {

 org.apache.commons.beanutils.BeanUtils.
 populate(data, request.getParameterMap());
 } catch (IllegalAccessException iae) {
 logger.error(“Populate - Illegal Access.”, iae);
 } catch (InvocationTargetException ite) {
 logger.error(“Populate - Invocation Target.”, ite);
 }
}

If there is an exception, a message is written to the logger. In addition to these
messages, if BeanUtils encounters an error, it will also write a message to the log
fi le via its own logger org.apache.commons.beanutils.ConvertUtils.
This logger was also declared in the InitLog4j servlet.

This method receives the data as an Object. This means that the method does
not have access to any specifi c information about the bean. All that this method
knows is that an object has been passed to it. For this reason, the method can be
added to the helper base class (Figure 4.7).

Now that the session is being used to retrieve previous values entered by the
user, the values from the request only need to be added to the bean when the values

Table 4.2 The form element name corresponds to the name
of the mutator.

Element Name Mutator

value setValue
longName setLongName

Enhancing the Controller 115

change. In other words, the only time that this method needs to be called is when
there are visible form elements that can be changed by the user. In the current
example, this only happens when the user clicks the button named confi rmButton.
Using annotations, the only method that needs to call fi llBeanFromRequest
is the method that corresponds to the confi rm button. No other pages have visible
form elements.

@ButtonMethod(buttonName=”confi rmButton”)
public String confirmMethod() {
 fi llBeanFromRequest(data);
return jspLocation(“Confi rm.jsp”);

}

4.6 Application: Enhanced Controller

All of the above enhancements will now be combined into a controller
application.

1. The controller and controller helper classes will be placed in the ch4.enhanced
package.

2. The JSPs will be placed in the same directory as the controller.
3. It makes no difference what the URL pattern is for the controller, since the

controller specifi es the path to the JSPs. For simplicity, the controller has been
mapped to /ch4/enhanced/Controller.

4. Classes that are shared by many controllers have been placed in the shared
package.

Figure 4.8 shows the directory structure and fi le locations for this application.

4.6.1 JSPs: Enhanced Controller

The JSPs are similar to the JSPs from the Reorganised Controller in Chapter Three,
except all of the hidden fi elds have been removed from the process and confi rm
pages. All the JSPs have been placed in the controller’s directory.

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger

abstract copyFromSession ()
addHelperToSession ()
executeButtonMethod ()
fillBeanFromRequest ()

Figure 4.7 The fi llBeanFromRequest method is added to the helper base class.

116 Web Development with Java

4.6.2 ControllerHelper: Enhanced Controller

The controller helper is extended from the helper base class from this chapter. The
complete listing for the helper base class for Chapter Four is in the Appendix. The
controller helper will do the following:

1. use a bean to encapsulate the data from the user;
2. use a logger to record any errors;
3. eliminate hidden fi elds;
4. use a method to specify that the JSPs are in the same directory as the

controller;
5. use annotations to execute a method based on the button the user clicked;
6. automatically copy the query string data into the bean.

The complete listing of the controller helper is in Listing 4.2.

package ch4.enhanced;

import java.io.IOException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import shared.ButtonMethod;
import shared.HelperBaseCh4;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

Figure 4.8 The location of fi les for the Enhanced Controller.

Enhancing the Controller 117

import ch3.defaultValidate.RequestDataDefault;

public class ControllerHelper extends HelperBaseCh4 {

private RequestDataDefault data =
new RequestDataDefault();

public ControllerHelper(HttpServletRequest request,
HttpServletResponse response) {

super(request, response);
 }

public Object getData() {
return data;

 }

public void copyFromSession(Object sessionHelper) {
if (sessionHelper.getClass() == this.getClass()) {

 data = ((ControllerHelper)sessionHelper).data;
 }
 }

protected String jspLocation(String page) {
return “/WEB-INF/classes/ch4/enhanced/” + page;

 }

 @ButtonMethod(buttonName=”editButton”, isDefault=true)
public String editMethod() {
return jspLocation(“Edit.jsp”);

 }

 @ButtonMethod(buttonName=”confi rmButton”)
public String confirmMethod() {

 fi llBeanFromRequest(data);
return jspLocation(“Confi rm.jsp”);

 }

 @ButtonMethod(buttonName=”processButton”)
public String processMethod() {
return jspLocation(“Process.jsp”);

 }

protected void doGet()
throws ServletException, IOException

 {
 addHelperToSession(“helper”, SessionData.READ);

 String address = executeButtonMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
 }

}

Listing 4.2 Enhanced Controller Helper.

118 Web Development with Java

The application uses the bean that was developed in the Default Validate
controller, RequestDataDefault. The class for the bean is imported so that it
is easier to reference the class.

The ButtonMethod class is needed to annotate the methods that are
associated with button names. This class will be used by all controllers that are
developed later in the book. It has been placed in a package named shared. This
package will be used to hold classes that might be used by all controllers.
The HelperBaseCh4 class has also been added to the shared package, as it can
be used by all controllers. Both of these classes have been imported in the
controller helper.

The jspLocation method returns the full path for each JSP. This means that
the JSPs for this application should be placed in the directory of the controller. It
also means that the JSPs cannot be accessed directly from the web; they can only
be accessed through the controller.

Each button that the user can click has a corresponding method that has been
annotated with the name of the button. The edit method has also been set as the
default method, in the case that the user does not click a button.

The copyFromSession method is the implementation of the abstract
method that was declared in the helper base class. The copyFromSession
method is needed to copy session information into the current controller helper.
There is only one member variable in the controller helper that needs to be copied.
The parameter is passed as an object, so it must be cast to the type of the current
class in order to access the data variable. If the parameter is not the correct type,
then the data in the session will be ignored.

4.6.3 Controller: Enhanced Controller

The controller is simplifi ed; it only needs to create the controller helper and call
its doGet method (Listing 4.3).

package ch4.enhanced;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Controller extends HttpServlet {

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws ServletException, IOException {
 ControllerHelper helper =

new ControllerHelper(request, response);
 helper.doGet();
 }
}

Listing 4.3 Enhanced Controller Helper.

Enhancing the Controller 119

Try It http://bytesizebook.com/book/ch4/enhanced/Controller

This application looks the same as the others, but it is now using a controller
helper.

4.7 Libraries in NetBeans

JAR fi les are added to the Libraries folder of a NetBeans project. When the project
is built, all the JAR fi les are copied into the corresponding lib directory of the web
application structure.

4.7.1 Libraries

To add JAR fi les to your web application, follow these steps.

1. Download the JAR fi les to your computer.
2. From an open NetBeans project, right-click on the project name in the Projects

tab.
3. Select Properties.
4. Select Libraries.
5. Click the Add Jar/Folder button.
6. Navigate to the directory where the downloaded JAR fi les are.
7. Select all the JAR fi les you want to include in the web application.

Every JAR that is added to the Libraries folder will be added to the CLASSPATH
variable, automatically.

4.8 Summary

From now on, all controllers will have a helper class to facilitate performing the
controller’s tasks. All controller applications perform similar tasks. Some of these
tasks use objects that are the same for all controllers; these objects can be stored
in the base class. Other tasks require the details of the current application; these
belong in the helper class. In this chapter, many of these common tasks were
explored.

There are tasks that are common to all controllers: creating a logger, eliminating
hidden fi elds, automating the controller logic and fi lling the bean. These tasks have
been implemented so that they do not access any of the individual data members
of the bean, so they can be placed in the base class. All controller helpers that are
extended from the base class will have access to these features. The base class has
been placed in the shared package, so that all future controller helpers can have
access to it.

The tasks that require the knowledge of the current application are specifying
the location of the JSPs and copying the data from one bean to another. The
copyFromSession method is needed so that hidden fi elds can be eliminated;
the data from the session must be copied into the current bean. These tasks were
added to the controller helper.

120 Web Development with Java

4.9 Chapter Review

Terms

 1. Logger
 2. Logger Path
 3. Logger Name
 4. Logger Initialisation Servlet
 5. Initialisation Parameter
 6. Session
 7. Annotations
 8. ButtonMethod Annotation

a. buttonName
b. isDefault

 9. Default Value
10. Filling a Bean

New Java
 1. Logger.getLogger
 2. Logger.fatal
 3. Logger.error
 4. Logger.warn
 5. Logger.info
 6. Logger.debug
 7. Level.FATAL
 8. Level.ERROR
 9. Level.WARN
10. Level.INFO
11. Level.DEBUG
12. addHelperToSession(name, SessionData)
13. jspLocation
14. exceutButtonMethod
15. request.getParameter(btnMethod.buttonName()) != null
16. fi llBeanFromRequest
17. Enumerations

a. SessionData {READ, IGNORE}

Tags
1. <load-on-startup>
2. <init-param>
3. <param-name>
4. <param-value>

Enhancing the Controller 121

Questions

 1. How are additional packages added to a web application?
 2. Why was a method added to the servlet that returns the path to a JSP?
 3. Explain how the level of the logger controls the number of messages that are

written to the log fi le.
 4. Explain how hidden fi elds can be removed from an application.
 5. Explain what the parameters to addHelperToSession do.
 6. What should jspLocation return if the JSPs are located in the directory

where the servlet is mapped?
 7. What should jspLocation return if the JSPs are located in the same

directory as the servlet class?
 8. Explain what the ButtonMethod annotation does. Explain what the

parameters do.
 9. Explain what executeButtonMethod does.
10. Write the Java code that will test if the button named confi rmButton is in the

query string.
11. Write the Java code that will copy the data from the query string into the

bean.

Tasks

1. Use a logger, named com.bytesizebook.test, to write fi ve different messages to
the log fi le. Each message should have a different error level.

2. For the InitLog4j servlet, look up the PatternLayout class and investigate the
constructor. Determine what each character means in the layout. Devise a new
layout for your error messages.

3. Implement the Enhanced Controller in your own web application. Modify the
JSPs to use your own fi elds, with names other than hobby and aversion. Create
a bean that corresponds to your data. Modify the controller helper so that it
uses your bean and your data.

122

5 Hibernate

Two very important processes are needed in any web site: data validation and data
persistence. Both of these can be automated with a package named Hibernate.

Default validation was introduced in Chapter Three. Required validation will
be introduced in this chapter. Validation is so important that there is a part of
standard Java that can simplify it: regular expressions. Hibernate will use regular
expressions to perform sophisticated required validation on string data.

Data persistence is the process of saving data to a database. Hibernate makes
this a simple task by letting the developer work only with the bean and not with
SQL statements. When data is retrieved from the database, it will be in the form
of a collection of beans.

5.1 Required Validation

Default validation is used to supply a value for a property that the user left blank.
It is up to the developer to choose a reasonable default value, because not all prop-
erties have an obvious default. An area code could have a default value of the local
area code, but a bank account number does not have a good default value. In the
latter case, it is better to inform the user that something is missing and allow the
user to supply the missing data; this is known as required validation.

In our application, if there is invalid data, then the user will remain on the edit
page. Only when all the data is valid can the user proceed to the confi rm page
(Figure 5.1).

Required validation should be done every time the user enters new data. It
should also be done before data is entered into a database. Since the session is being
used to store data, there is the possibility that the session expires and all the data is
lost. In such a case, it would be a mistake to enter empty data into the database.

One of the most powerful tools for performing required validation on string
data is regular expressions.

5.1.1 Regular Expressions

Validation is such a common task that there is an entire language dedicated to
declaring patterns that can be used to test the format of a string. This language is

Hibernate 123

known as regular expressions. Regular expressions are strings that contain wild-
cards, special characters and escape sequences. For example, a regular expression
can be used to test if a string is a valid zip code, user ID or social security number.
A regular expression can also be used to test if a string matches an integer or a
double, but this can be done more easily by parsing the string to the desired type
and catching an exception if the parsing fails.

A sequence of regular expression characters is known as a pattern. The follow-
ing patterns can be used to test for a valid Zip Code, SSN and User ID,
respectively.

Zip Code: \d{5}(?:-\d{4})?

SSN: \d{3}([-]?)\d{2}\1\d{4}

User ID: [a-zA-Z]{3,5}[a-zA-Z0-9]?\d{2}

These probably look very strange and cryptic now, but soon they will be very
clear.

Character Classes

Square brackets defi ne a character class. The character class pattern will match
any single character that is in the brackets. For instance, the class [xyz] will
match x, y or z, but only one of them. If the class starts with ^, then it will match
all characters that are not listed inside the brackets.

A hyphen can be used to include a range of characters: [a-z] will match any
lowercase letter. More than one hyphen can be used: [a-zA-Z] will match any
letter. The order of letters is based on the ASCII numbering system for characters.
This means that [a-Z] (lowercase a – uppercase Z) will not match any letters
because lowercase a has a higher ASCII number than uppercase Z. [A-z] will
match all letters, but will also match some additional symbols, since the symbols
[\]∧_′ have ASCII numbers between uppercase Z and lowercase a.

[abc] a, b or c (simple class)

[^abc] any character except a, b or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

Predefined Character Classes

Some character classes are used so often that there are special characters and
escape sequences for them. Table 5.1 lists the special classes with their meaning.

Valid Data

Edit
Page

Confirm
Page

Invalid Data

Figure 5.1 The application will remain on the edit page until valid data is entered.

124 Web Development with Java

Repetition

Table 5.2 lists special characters and operators that indicate that the previous
pattern could be repeated or that the previous pattern is optional.

Alternation

Character classes allow for the selection of a single character, but do not allow for
the choice amongst different words. In this case the operator | is used to indicate
alternation. For example yes|no would match the word yes or the word no. This
can be extended for as many choices as are needed: yes|no|maybe will match
the word yes, no or maybe, but only one of them.

Grouping and Capturing

It is possible to use parentheses to group several patterns into one pattern. A group
can then have repetition sequences applied to it. For example, (a[0-5]b)+ will
match a0b, a1b, a5ba0ba4b and many more.

There are two types of parentheses: (pattern) and (?:pattern). The fi rst
type will capture what was matched inside the parentheses; the second is non-
capturing and is only used for grouping.

If the capturing parentheses are used, then the pattern that was matched
can be retrieved later in the regular expression. Retrieve a captured value with

Table 5.1 Special character classes.

Character Class Meaning

. Any character, except line terminators
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

Table 5.2 Repetition symbols.

Repetition Symbol Meaning

* Matches zero or more occurrences of the preceding pattern. This means that
the preceding pattern might not be in the pattern or it might appear repeatedly,
in sequence.

? Matches zero or one occurrence of the preceding pattern. This means that if
the pattern is in the string, then it appears once, but that it might not be there
at all.

+ Matches one or more occurrences. This is like *, except that the pattern must
appear at least once.

{m,n} Specifi es a range of times that the pattern can repeat. It will appear at least m
times in sequence, but no more than n times. The character ? is the same as
{0,1}.

{m} Specifi es that the preceding pattern will match exactly m times.
{m,} Specifi es that the preceding pattern will match at least m times. The character *

is the same as {0,}. The character + is the same as {1,}.

Hibernate 125

\1 … \9. The number refers to the order that the parentheses in the regular
expression were evaluated. Up to nine different patterns can be captured and
accessed in a regular expression.

If the string aabyesbb were matched against the pattern ([ab]+)(yes|no).*,
then \1 would be aab and \2 would be yes.

Ignoring Case

It is possible to ignore the case of the letters that are being tested. For example, if
the word yes is a valid response, then all variations of case should also be accepted,
like YES and Yes. Entering all the possible combinations could be done like
[yY][eE][sS], but there is an easier way. If the regular expression starts with
the symbols (?i), then the case of the response will not be considered. The
expression (?i)yes|no is the same as [yY][eE][sS]|[Nn][Oo].

Examples Explained

It is now possible to explain the meaning of the patterns that were mentioned at
the start of this section. Three patterns were introduced: one for a zip code, one
for a social security number and one for a user identifi cation number.

A zip code has two formats: fi ve digits or fi ve digits, a hyphen and four more
digits. The pattern for the zip code was \d{5}(?:-\d{4})?. This indicates that
the pattern starts with fi ve digits. The 5 within the braces indicates that the previ-
ous pattern should match fi ve times. The previous pattern is a digit. Together, this
means that there should be fi ve digits.

A non-capturing parenthesis is used to group the next part of the pattern. The
question mark at the end of the closing parenthesis indicates that the entire group
is optional. The pattern within the group is a hyphen followed by four digits.

A social security number is nine digits. Typically, the digits are written in two
different ways: as nine digits or as three digits, a hyphen, two digits, another
hyphen and four more digits.

The pattern for the social security number was \d{3}(-?)\d{2}\1\d{4}.
The pattern starts with three digits. After the fi rst three digits, there is a capturing
group. Whatever matches inside the parentheses will be remembered and can be
recalled later in the pattern as \1. Inside the group is an optional hyphen.

The next part of the pattern matches two more digits. After the digits is the
symbol for the grouped pattern from earlier in the regular expression: \1. What-
ever was matched earlier must be matched again. If a hyphen was used earlier in
the expression, then a hyphen must be used here. If a hyphen was not matched
earlier, then a hyphen cannot be entered here. The last part of the pattern matches
four more digits.

The use of the capturing group is very powerful. This guarantees that there are
either two hyphens in the correct places or there are no hyphens. The placement
of the ? is very important: try to determine what would happen if the pattern used
([-])? instead of ([-]?).

An example of a user identifi cation number might be from three to fi ve letters
followed by three digits or three to six letters followed by two digits. A simple
solution would be to use alternation and defi ne two separate patterns:

[a-zA-Z]{3,5}\d{3}|[a-zA-Z]{3,6}\d{2}.

126 Web Development with Java

However, both of these patterns begin and end with the same sequences, the only
difference is the character where letters become digits. By placing an optional
character that can be a letter or a digit at this point, the pattern can be rewritten
as follows:

[a-zA-Z]{3,5}[a-zA-Z0-9]?\d{2}.

When writing regular expressions in Java, each \ character must be written as
double backslashes, \\. In a traditional regular expression, there would only be
one backslash, but in Java there must be two. This is necessary so that the
escape sequence is passed to the regular expression and not intercepted by Java.
Escape sequences in Java are one backlash character. So it is necessary to escape
the escape in order for Java to ignore something like \d. If you leave the \d in a
pattern, Java will complain that it is an illegal escape sequence. By placing a back-
slash before the escape sequence, Java will translate the \\ into a single \ and send
it to the regular expression.

Try It http://bytesizebook.com/book/ch5/TestRegEx

This servlet tests several strings to see if they match the above patterns. It is also
possible to enter a string and test it against any of these patterns.

5.1.2 Hibernate Validation

Required validation is such a common task that someone has gone to all the
trouble to create a package that automates the process. This package is named
Hibernate.

It is not part of the standard servlet engine, so the following JAR fi les must be
placed in the lib directory of the web application in order to enable Hibernate.
Download these from http://hibernate.org or from the book’s Web site.

hibernate3.jar hibernate–validator.jar
hibernate-annotations.jar ejb3-persistence.jar

Hibernate can be confi gured with a separate fi le or with Java annotations.
Java annotations will be used in this book. Java annotations were introduced
in the last chapter.

Annotating a Bean for Hibernate

Using annotations, it is a simple task to mark some methods as requiring valida-
tion. The methods to mark are the accessors. Two annotations are used for validat-
ing string properties: Pattern and NotNull.

The @Pattern annotation has a required attribute named regex that is a
regular expression. If the complete string returned from the accessor matches the
regular expression, then the property is valid, otherwise it is invalid.

There is an optional attribute named message that is the error message
that will be created if the property is not valid. The default message is “must
match regex”.

Hibernate 127

The @NotNull annotation tests that the property has a value. If the value
returned from the accessor is not null, then the property is considered valid, oth-
erwise it is invalid.

There is an optional attribute named message that is the error message
that will be created if the property is not valid. The default message is “may not
be null”.

By default, the entire string must match the regular expression. If the regular
expression only needs to match a substring, then the characters .* can be added
to the beginning and end of the pattern. The .* at the start indicates that there
can be any other characters before the pattern. The .* at the end means there can
be other characters after the pattern.

In our example, the only validation that will be needed is that the hobby and
aversion cannot be null or empty. Each accessor will have the Pattern and
NotNull annotations. To be non-empty, a test can be made for a non-space
character anywhere in the string. The pattern .*\\S.* will match any characters,
followed by a non-space character, followed by more characters. The characters
before and after the non-space character are optional. The double-backslash is
needed in the expression because the string is being written in a Java fi le.

The default error message will be used for the NotNull annotation and a new
message will be defi ned for the Pattern annotation.

@Pattern(regex=“.*\\S.*”, message=“cannot be empty”)
@NotNull

Both of these annotations must be valid in order for the property to be valid. If
there is more than one annotation for validation on the accessor, then the valida-
tion for the property is the logical AND of the result of each validation.

Place these annotations in the bean directly before the accessor for each prop-
erty that is being validated.

...

public void setHobby(String hobby) {
this.hobby = hobby;

}

@Pattern(regex=“.*\\S.*”, message=“cannot be empty”)
@NotNull
public String getHobby() {

return hobby;
}
public void setAversion(String aversion) {

this.aversion = aversion;
}

@Pattern(regex=“.*\\S.*”, message=“cannot be empty”)
@NotNull
public String getAversion() {

return aversion;
}
...

128 Web Development with Java

Creating the Error Messages

When using required validation, it is important to be able to display an error
message for any data that is invalid. It is a simple task to create an array of these
messages using Hibernate.

Each message that Hibernate generates is of a type named InvalidValue.
This type has properties for the name of the property that generated the error and
the message that was created.

An array of validation messages is created by using the Hibernate
ClassValidator class. A ClassValidator object is constructed by
passing it the class object of the bean. Once the object has been created, use the
getInvalidValues method to retrieve an array of error messages.

InvalidValue[] validationMessages;
ClassValidator requestValidator =

new ClassValidator(data.getClass());
validationMessages =
 requestValidator.getInvalidValues(data);

For each annotated property in the bean, if the user enters invalid data then an
error message for it will be placed in the array.

5.1.3 Implementing Required Validation

The array of validation messages that is created by Hibernate does not lend itself
to easy access in a JSP. In order to fi nd the error message for a property, a linear
search would need to be performed. It would be better if there were direct access
to the errors, so that the error for a property could be retrieved using the name
of the property. To this end, the interface to the error messages will be enhanced.
A map named errorMap will be created from the array of validation messages.
A map can be accessed using a string, instead of an integer. This map will be used
by the JSPs to access the error messages.

In order to make the error messages more accessible, the following will be
added to the helper base class.

1. errorMap
2. setErrors()
3. isValid()
4. getErrors()

None of these changes requires knowledge of the specifi c application, so all the
features will be added to the helper base class in the shared package (Figure 5.2).
The helper base class for this chapter is named HelperBaseCh5 and can be
found in the Appendix.

java.util.Map

What is a map?
Think of a map of a city: it contains symbols that represent real things. For

instance, on a map, the symbol in Figure 5.3 represents a school. It is just a symbol,

Hibernate 129

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger
Map errorMap

abstract copyFromSession ()
addHelperToSession ()
executeButtonMethod ()
fillBeanFromRequest ()
setErrors()
getErrors()
isValid ()

Figure 5.2 The error map and methods are added to the helper base class.

Figure 5.3 A symbol for a school on a topographic map.

but if you live near the school, then seeing the symbol on the map will bring the
actual school into your awareness. There are other symbols for parks, railroad
tracks, etc. So, a map is a collection of simple symbols that represent other
objects.

In Java, there is a data structure that is called a Map. It is called a Map because
it is like a map. In the Map, one object can be associated with another object.
Usually, a simple object is associated with a more complicated object. In this way,
the more complicated object can be retrieved using the simple object.

We have already seen something similar to a Map; when the controller helper
places itself into the session, it is placed into a data structure like a Map.

request.getSession().setAttribute(“helper”, this);

The session has a method named setAttribute that associates a simple
object with a more complicated object: the string helper is associated with
the object this. In the JSP, the more complicated object can be retrieved
by using the simpler object.

${helper}

From a JSP, EL can be used to access the complicated object that was placed
into the session. By using the string helper, the EL statement can retrieve the
object this.

130 Web Development with Java

The Java Map is contained in the package java.util. It has two primary
methods: put and get. The method put is used to associate one object, know as
a key, with another object, known as a value. The method get is used to retrieve
the value, by passing it a key.

A Map is an interface: it cannot be instantiated. In order to create a Map,
it is necessary to create one of the concrete classes that implement the Map
interface. One such class is HashMap: it implements the Map interface using
a hash table.

When creating a Map, generics from Java 1.5 should be used. The type of the
key and the type of the value should be indicated when the Map is created. This
allows values to be retrieved from the Map without casting them and allows for
syntax checking.

As an example, a Map will be instantiated, a bean will be instantiated, the bean
will be placed in the map and the bean will be retrieved from the map. The Map
will have a key that is a string and a value that is a bean.

java.util.Map<String, MyBean> myMap
 = new java.util.HashMap<String, MyBean>();
MyBean bean = new MyBean();
myMap.put(“theBean”, bean);
MyBean anotherBean = myMap.get(“theBean”);

A Map is like a database: a simple key is used to retrieve a complicated value. All
of the complicated data can be saved in one collection and can be retrieved
easily.

errorMap

A map will be added to the helper base class that will associate the name of a
property with the error message for that property. The map can be used for
random access into the error messages. By using the map, it will be easy to retrieve
one error message at a time in the JSP.

java.util.Map<String, String> errorMap =
new java.util.HashMap<String, String>();

This map will be fi lled from within the setErrors method, described next.

setErrors

The setErrors method sets the validation messages and fi lls the error map.
The fi rst part of the method sets the validation messages, as was explained
above. The second half of the method creates the error map by looping through
the array of messages and adding an entry to the map. The property name is
used as the key to the map and the error message is the value in the map. It is
important to clear the old error map and only fi ll the map if there are validation
messages.

Hibernate 131

public void setErrors(Object data) {
 InvalidValue[] validationMessages;
 ClassValidator requestValidator =

new ClassValidator(data.getClass());
 validationMessages =
 requestValidator.getInvalidValues(data);

 errorMap.clear();
if (validationMessages.length != 0) {

for(InvalidValue msg : validationMessages) {
 errorMap.put(msg.getPropertyName(),
 msg.getMessage());
 }
 }
}

The InvalidValue class has accessors for retrieving the key and the value for
a message. These methods cannot be accessed from a JSP, which is why they are
being used to add values to the error map. As will be seen shortly, any map can be
accessed easily from a JSP.

isValid

The isValid method will return true if all the validations succeed; otherwise
it will return false. This is the method that must be called in order to do required
validation. It will set the error messages and the error map, by calling setErrors,
and return a boolean value indicating if there are any errors. If the error map is
empty, then there are no errors, so the data must be valid.

public boolean isValid(Object data) {
 setErrors(data);

return errorMap.isEmpty();
}

getErrors

The getErrors method will return the error map variable, so that the errors
can be retrieved in a JSP. The errorMap has been added as a member variable
to the helper base class, in order for the errors to be accessible from the JSP, there
must be an accessor that returns it. The only purpose for this accessor is so that
the error messages can be retrieved from a JSP.

public java.util.Map getErrors() {
return errorMap;

}

Setting the Error Messages

Required validation should be done every time the user enters new data. In our
application, this happens when the user clicks the confi rm button on the edit page.
Required validation should be done in the controller helper in the method that
corresponds to the confi rm button.

132 Web Development with Java

@ButtonMethod(buttonName=“confi rmButton”)
public String confirmMethod() {
 fi llBeanFromRequest(data);
 String address;

if (isValid(data)) {
 address = jspLocation(“Confi rm.jsp”);
 } else {
 address = jspLocation(“Edit.jsp”);
 }

return address;
}

Call isValid in this method to test if the data is valid and return a different
address based on the result. If the data is valid, return the address of the confi rm
page, otherwise, return the address of the edit page. In this way, the user cannot
proceed to the confi rm page until the data is valid.

This is an example where the confi rm page should not be in a directory that is
accessible by the user. If it were, then a user would be able to call the confi rm page
directly, thereby circumventing the validation.

The method isValid indicates if the data is valid, but it also creates the array
of validation messages and the error map. If isValid is not called, then the error
messages will not be created.

Retrieving Error Messages

The error messages can be retrieved from the edit page using EL. Since there is a
method named getErrors in the helper, it can be accessed from the JSP as
${helper.errors}. This returns a map. An individual message in a map can
be retrieved by placing the name of the property in quotes inside square brackets
as ${data.error[“hobby”]}. Additionally, the dot notation can be used:
${data.error.hobby}.

Figure 5.4 A JSP can access the error in the error map.

Hibernate 133

Error Map

Session

"helper"
EL in JSP
${helper.errors.hobby} helper

.errors

element
name

error
message

aversion cannot be null

hobby cannot be empty

.hobby

Figure 5.5 Accessing an error message from a JSP.

Hobby ${helper.errors.hobby}
<input type=“text” name=“hobby”

value=“${helper.data.hobby}”>

Aversion ${helper.errors.aversion}
<input type=“text” name=“aversion”

value=“${helper.data.aversion}”>

When isValid is not called in the doGet method, then all of these references
to the error messages will return null, which will be displayed as an empty
string by EL. When isValid is called and there is an error for the hobby property,
then the reference will return the error message for the hobby (Figure 5.4). The
message that is displayed is the message that was defi ned in the annotation for
the hobby.

Figure 5.5 shows how EL can be used to access an error message from a JSP.

5.2 Application: Required Validation

An application that performs required validation can be created by incorporating
the above changes into our application.

Bean

The bean will have the validation annotations added to the accessors for the
hobby and aversion.

Helper Base

The helper base class, in the shared package, will have the error map and
the methods for the interface to the errors added to it. The complete helper
base class for Chapter Five can be found in the Appendix.

134 Web Development with Java

Controller Helper

The controller helper will modify the code in the method for the confi rm
button. The method will test if the data is valid and will set the address of
the next page accordingly. The controller helper will also set the path of the
JSPs to be the same as the folder that contains the controller’s class.

Controller

The controller is like the controller from the last chapter.

JSPs

The edit page will have the EL statements added for the error messages. The
confi rm and process pages do not change.

Location and Mapping

The controller and controller helper will be in the same package. The JSPs
will be in the same folder as the controller. Since the controller helper will
specify the location of the JSPs, the controller can be mapped to any URL.

Try It http://bytesizebook.com/book/ch5/requiredValidation/Controller

Leave the hobby and aversion empty and you will not be able to proceed beyond
the edit page. If one fi eld is empty, then one error message appears. If both fi elds
are empty, then both error messages appear.

5.3 POST Requests

If the user is entering personal data, like a bank account number, there is a small
problem with the application: the bank account number will be saved in the URL
in the history fi le of the browser. This means that any other user of the computer
could see the user’s bank account number by browsing through the history fi le.
Now, if the password were also entered, then there is a big problem. There is a
simple way to fi x this problem.

5.3.1 POST versus GET

Up to this point, every servlet has used one type of request: GET. This is the default
type of request. Whenever a hypertext link is followed or a URL is typed into the
location box of a window, then a GET request is made. However, when a button on
a form is clicked, there is a choice of request types: GET or POST. The POST request
is identical to a GET request, except for the location of the data from the form.

Format of GET Requests

A GET request sends the data from the form via the URL. Until now, every form
has used this method to send data to the server. Below is an example of a GET
request from the edit page from Chapter Three.

Hibernate 135

GET /?hobby=hiking&confi rmButton=Confi rm HTTP/1.1
Host: tim.cs.fi u.edu:9000
User-Agent: Mozilla/5.0 (Windows; U; ...
Accept: image/png,image/jpeg,image/gif,text/css,*/*
Accept-Language: en,es;q=0.8,fr;q=0.5,en-us;q=0.3
Accept-Encoding: gzip,defl ate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://localhost:8085/book/ch5/request_get.jsp

Many request headers provide information about the browser that made the
request. The data from the form has been placed in the URL in the fi rst line of the
request.

Format of POST Requests

A POST request sends the data from the form as part of the request. When POST is used,
the data will not appear in the URL, but will be attached to the end of the request.

POST / HTTP/1.1
Host: tim.cs.fi u.edu:9000
User-Agent: Mozilla/5.0 (Windows; U; ...
Accept: image/png,image/jpeg,image/gif,text/css,*/*
Accept-Language: en,es;q=0.8,fr;q=0.5,en-us;q=0.3
Accept-Encoding: gzip,defl ate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Referer: http://localhost:8085/book/ch5/request_post.jsp
Content-Type: application/x-www-form-urlencoded
Content-Length: 34

hobby=hiking&confi rmButton=Confi rm

The headers are mostly the same as for a GET request, except there are two addi-
tional ones: Content-Type and Content-Length. These extra headers indicate the
type and amount of additional content that follows the headers. The data from the
form is formatted the same way as in a GET request. The only difference is that
the data follows the request headers, after a blank line.

What does the word post mean? It means to send, but it also means after. That
is a precise defi nition of a POST request: it posts the data, post the request.

Method Attribute

The method of a form can be changed to POST by adding the method attribute
to the opening form tag. If the method of a form is set to POST, then all buttons
clicked in that form will generate POST requests to the server.

<form method=“POST” action=“Controller”>
 <p>
 If there are values for the hobby and aversion
 in the query string, then they are used to
 initialize the hobby and aversion text elements.

136 Web Development with Java

 <p>
 Hobby ${helper.errors.hobby}
 <input type=“text” name=“hobby”
 value=“${helper.data.hobby}”>

 Aversion ${helper.errors.aversion}
 <input type=“text” name=“aversion”
 value=“${helper.data.aversion}”>
 <p>
 <input type=“submit” name=“confi rmButton”
 value=“Confirm”>
</form>

This is the same form that was used in the Required Validation example, except
that the method has been changed to POST.

Motivation for POST

The only other difference between GET and POST is how they are created.

1. There are three ways that a GET request is generated:
a. The user types a URL into the browser.
b. The user follows a hypertext link.
c. The user clicks a button in a form, whose method is GET.

2. A POST request is only generated when the user clicks a button on a form,
whose method is POST.

The fact that POST can only be generated as a result of clicking a button on a form
allows the conclusion that if a POST request is made, then it cannot be the fi rst
access to the application. The fi rst access would be made by following a hypertext
link or by typing a URL into the location box of a browser; both of these techniques
use a GET request.

There are several reasons for using POST.

Hides Data

The data from a POST request cannot be seen in the URL. This is useful
when the data contains a password.

More Data

There is no limit to the amount of data that can be transmitted using a POST
request. A fi le can be opened to store all the data from a POST request; as
more data is received over the network, the data can be written to the fi le.
GET requests always have a limit to the amount of data that can be sent,
because there is a limited amount of space for storing the URL.

More Secure

Since the data is not in the URL, the data will not be saved in the browser’s
history fi le. Since an unlimited amount of data can be sent, there is no danger
of hacking the server by a buffer overrun attack.

Hibernate 137

Handling POST

In a servlet, there is another method that can be overridden: doPost. It has the
exact same signature as the doGet method. It will be called if a form changes its
method to POST and submits data to the servlet.

public class Controller extends HttpServlet {

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
 ...
 }

protected void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
 ...
 }
}

A doPost method will be added to the helper, too. Like its doGet method, this
will be called from the controller. Since the request and response objects are
already declared in the helper base, this method does not need any parameters.

protected void doPost()
throws ServletException, java.io.IOException {
 ...
}

Figure 5.6 demonstrates that the controller and controller helper classes will each
have a doPost method.

5.4 Application: POST Controller

The Required Validation example will be redesigned using doGet and doPost.
Just as the doGet method was handled, the controller will defer the doPost
method to the controller helper. In the controller helper, these methods will be

ControllerHelper

RequestData data

doGet()
getData()
copyFromSession ()
jspLocation ()
doPost ()

Controller

doGet()
doPost ()

Figure 5.6 The controller and controller helper classes have a doPost method.

138 Web Development with Java

designed to perform different tasks: the doPost method will behave exactly like
the doGet method from the previous example; the doGet method will handle
all GET requests like they are the fi rst request to the controller. The JSPs will be
modifi ed so that all forms use the POST method.

5.4.1 Controller: POST Controller

A new method will be added to the controller: doPost. It has the exact same
signature as the doGet method. To be consistent with how the doGet method is
handled, the controller will defer the doPost to the controller helper.

protected void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
 ControllerHelper helper =

new ControllerHelper(request, response);
 helper.doPost();
}

If a controller does not handle the doPost method, then an error will be gener-
ated whenever a POST request is made (Figure 5.7).

A similar error would occur if a GET request was made and there was not a
doGet method.

5.4.2 ControllerHelper: POST Controller

If all the forms in an application use the POST method, then the doGet and
doPost methods can perform different tasks in the web application. The doGet
method can be used to show the welcome page only. Such a technique could be
used if the user had to log into the site using a username and password. The
doPost method can be used to process the user’s data that has been entered via
a form. Since the only way that a POST request can be made is from a form, the
developer can assume that the user has entered data already.

Figure 5.7 An error will occur if the doPost method is not created.

Hibernate 139

doPost

The doPost method will perform all the same tasks as the previous doGet
method: check for data in the session; execute the method for the button; forward
to the next JSP. Except for the name of the method, this is identical to the previous
doGet method.

protected void doPost()
throws ServletException, java.io.IOException {
 addHelperToSession(“helper”, SessionData.READ);

 String address = executeButtonMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
}

doGet

The doGet method will assume this is the fi rst access to the application: it will
not check if there is previous data in the session, when placing the bean in the
session, and it will always display the edit page.

Since this is being treated as a fi rst request to the application, the data in the
session should be ignored. In the call to addHelperToSession set the second
parameter to SessionData.IGNORE; the current controller helper will be
added to the session, but any previous data will not be read from the session.

protected void doGet()
throws ServletException, java.io.IOException {
 addHelperToSession(“helper”, SessionData.IGNORE);

 String address = editMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
}

Many web sites will give the user the opportunity to start over. Whenever I book
an airline reservation, I will look for several different options. The site that I use
allows me to click a button to start over. When I do that, all of the previous fl ight
information that I obtained is removed, so that I can begin a new search.

The simplest way to implement such a feature is to use a GET request when all
the old information should be ignored and to use a POST request when informa-
tion should be carried from request to request.

5.4.3 JSPs: Updating the JSPs with POST

The fi nal change to be made is to change all the form elements in the JSPs so that
they use the POST method.

<form method=“POST” action=“Controller”>

140 Web Development with Java

It is important that all of the form tags use the POST method. If one is omitted,
then the user will be redirected to the edit page, regardless of the button that is
clicked. The only time a form should use the GET method is when all the old data
should be ignored and new data is to be entered into the edit page.

Try It http://bytesizebook.com/book/ch5/postServlet/Controller

Notice that as you navigate from page to page the URL does not change, but the data
is still transmitted to each page. Instead of placing the data in the URL like a GET
request does, the POST request adds it to the end of the request from the browser.

Next, instead of clicking a button, click in the URL window in the browser and
hit the enter key: you will always be taken to the edit page and the old data will
be destroyed.

5.5 Saving a Bean to a Database

The next feature that will be added to the servlet engine will be the ability to save
a bean to a relational database. The package that will be used is Hibernate. We
have already seen how Hibernate can be used to validate input, now it will be used
to save data to a database.

Structured Query Language [SQL] is a standard language for accessing a rela-
tional database. The details of SQL are beyond the scope of this book, so this would
seem to indicate that accessing a relational database from our web application
would not be possible. However, there is Hibernate! The beauty of Hibernate is
that a relational database that uses SQL can be accessed without learning SQL.

Hibernate focuses on the data. If a bean is sent to Hibernate, it will generate all
the SQL statements to save the bean in the database. Hibernate can also generate
all the SQL for creating the database tables from a bean. Hibernate can also take
a bean and update it in the database or remove it entirely. By creating a bean in a
web application, most of the work of saving it to a database can be handled by
Hibernate, without knowing one statement of SQL.

5.5.1 Hibernate JAR Files

Saving data to a database is a complex process, so it stands to reason that a lot of
JAR fi les will need to be added to the servlet engine in order to enable this feature.
As of Hibernate 3.2, the JAR fi les that are needed at runtime are listed in Table 5.3.

Table 5.3 JAR fi les needed for Hibernate.

antlr-2.7.6.jar asm-attrs.jar
asm.jar c3p0-0.9.0.jar
cglib-2.1.3.jar commons-collections-2.1.1.jar
commons-logging-1.0.4.jar dom4j-1.6.1.jar
ehcache-1.1.jar ejb3-persistence.jar
hibernate3.jar hibernate-annotations.jar
jdbc2_0-stdext.jar jta.jar
log4j-1.2.11.jar xerces-2.6.2.jar

Hibernate 141

With the Hibernate distribution, there are optional JAR fi les for the cache,
SAX parser, etc. View the README fi le in the lib directory of the Hibernate
distribution for more information. Hibernate can be downloaded from http://
hibernate.org. All of the JAR fi les listed here can also be obtained from http://
bytesizebook.com.

From Table 5.3, the following have been added for features that were used in
Chapters Three and Four:

commons-collections-2.1.1.jar

commons-logging-1.0.4.jar

log4j-1.2.11.jar

In addition to these fi les, it is also necessary to have a JAR fi le for the type of
database that will be accessed. In this book, we will use the following JAR for
MySQL. There is a short section in the Appendix which contains instructions on
how to connect to MySQL; mysql-connector-java-5.0.4-bin.jar.

5.5.2 JAR File Modifications and Deployment

A servlet engine is a complex piece of software that uses many packages from
many different sources. This always introduces the problem of memory leaks
caused by one package maintaining static pointers to the classes in another
package.

In Tomcat releases prior to 6, a memory leak was caused whenever a JSP used
expression language. In those releases, the commons-el JAR needs to be modifi ed
to remove the leak. In Tomcat 6, a different JAR fi le has been used to implement
the expression language and the leak has been fi xed.

There are also memory leaks that are annoying, but not fatal. These will cause
a leak the fi rst time a class is loaded, but will not leak more memory after that.
These leaks usually involve a static variable that references an object. Often, the
leak can be removed by using a weak reference to the static object.

ZIP Files

The JAR fi les for all the web applications in the book have been placed into two
ZIP fi les that can be downloaded from http://bytesizebook.com. One fi le contains
the Hibernate related JAR fi les. The other fi le contains the non-Hibernate related
JAR fi les. Both ZIP fi les should be unpacked in the lib directory of the web
application.

1. http://bytesizebook.com/hibernate.zip (6 MB)
2. http://bytesizebook.com/non-hibernate.zip (1 MB)

5.5.3 Hibernate Persistence: Configuration

It is also necessary to confi gure Hibernate. There are several options for confi gur-
ing Hibernate which can be used individually or can be combined. Two of the
options are to use Java or to use XML.

142 Web Development with Java

1. Each of the confi guration options can be defi ned inside a Java program. For the
fi rst example, this is the technique that will be used, so that none of the details
for Hibernate are hidden in some other confi guration fi le.

2. An XML fi le can be created. Each property has its own XML tag. Such a fi le of
properties is placed in the class path of the web application and the fi le will be
read automatically when Hibernate is confi gured.

Programmatic Configuration

One common mistake when using confi guration fi les is placing them in the wrong
location. When this happens, the confi guration could be correct, but the program
cannot fi nd the fi le. To a novice, it will look like the confi guration is wrong. For
this reason, the fi rst example will confi gure Hibernate in the controller helper,
where there is no possible problem of fi nding the confi guration directives. Once
the initialisation works, it will be a simple matter to move the code into a separate
confi guration fi le.

There is a Java class named Properties that implements the Map interface.
The key and value must be strings. This class is used to set the confi guration for
Hibernate.

The following properties are used to confi gure Hibernate. The fi rst set will be
the same for everyone connecting to the MySQL database. The second set of prop-
erties contain the URL, username and password for accessing the database. These
must be updated with your information.

Properties props = new Properties();
props.setProperty(“hibernate.dialect”,
 “org.hibernate.dialect.MySQLDialect”);
props.setProperty(“hibernate.connection.driver_class”,
 “com.mysql.jdbc.Driver”);
props.setProperty(“hibernate.c3p0.min_size”, “1”);
props.setProperty(“hibernate.c3p0.max_size”, “5”);
props.setProperty(“hibernate.c3p0.timeout”, “300”);
props.setProperty(“hibernate.c3p0.max_statements”,
 “50”);
props.setProperty(“hibernate.c3p0.idle_test_period”,
 “300”);

props.setProperty(“hibernate.connection.url”,
 “jdbc:mysql://SERVER:PORT/DATABASE”);
props.setProperty(“hibernate.connection.username”,
 “USERNAME”);
props.setProperty(“hibernate.connection.password”,
 “PASSWORD”);

These statements will be placed in a method named initHibernate in the
controller helper.

HibernateHelper Class

There are many methods that are used to access Hibernate. All of these methods
have been encapsulated into a helper class named HibernateHelper (Figure

Hibernate 143

5.8). The complete listing of this class is in the Appendix. There are methods for
initialising, closing, saving, deleting, etc. This helper class can be downloaded from
http://bytesizebook.com. It should be placed into a package named shared.

These methods are exactly the same for all web applications, except for the
names of the tables that are accessed. A helper class has been created that contains
all of these methods. Since they are the same for all web applications, they have
been created as static methods. Whenever a method is to be called that uses Hiber-
nate, the method will be in the Hibernate helper class.

The method for initialising Hibernate is initSessionFactory. It has two
parameters: the initialisation properties and the class object for the bean. Since
these two parameters may change from web application to web application, the
call to this method should be made from the controller helper.

HibernateHelper.initSessionFactory(
 props,
 RequestDataPersistent.class);

If there are multiple tables in the servlet, they can all be sent to the method by
adding a new argument for each.

initSessionFactory(props,
 table1.class,
 table2.class,
 table3.class);

The Hibernate helper class maintains a list of database tables that can be accessed
by Hibernate. Whenever initSessionFactory is called, the class objects
are added to the list, if they are not already in it. If one is added to the list, then
Hibernate is closed and reinitialised. If the class objects are already in the list,
then Hibernate already has the ability to access them, so no initialisation needs
to be done.

Creating the SQL Tables

Hibernate has the ability to create a table in the database from your bean. This is
amazing: no SQL needs to be coded in order to create the table. This is controlled
by an additional property.

HibernateHelper

static initSessionFactory ()
static closeFactory ()
static testDb ()
static getListData ()
static updateDb ()

Figure 5.8 The HibernateHelper class.

144 Web Development with Java

Whenever the tables are recreated, the data that is in them is erased. Therefore,
this property should usually not be included, so that the data in the database
does not get erased. It should only be added when the structure of the bean has
changed, so that the table will be recreated to match the new structure. However,
adding statements to the controller, recompiling, removing statements and recom-
piling is a recipe for disaster. There are three solutions for avoiding this unhappy
situation.

1. Manually create the database tables in MySQL before running the servlet the
fi rst time.

2. Add the property to a separate XML fi le, when the tables need to be created.
The next time the servlet engine starts, it will read the value of this property
from the fi le and create the tables. Remove the property from the XML fi le after
the servlet is running.

3. Add an initialisation parameter to the web.xml fi le and read it during servlet
initialisation. Conditionally include the property whenever the initialisation
parameter is true.

I prefer the third choice: use the web.xml fi le. By using the web.xml fi le, the ini-
tialisation parameter is written in code, so there is no question of forgetting its
syntax. It is easy to remember the syntax of the parameter in the web.xml fi le: it
will be either true or false.

Initialisation Parameters in web.xml

The servlet tag has already been used in the web.xml fi le. Initialisation
parameters are added to this tag, using a nested init-param tag.

The init-param tag has two nested tags. Defi ne the name of the initialisation
parameter with the param-name tag. Defi ne the value of the parameter with the
param-value tag.

Add a parameter named create to the servlet tag. It will have a value of
true or false. If the value is set to true, then the controller will add the prop-
erty for creating the database tables when Hibernate is confi gured. All other values
will be interpreted to mean that the tables should not be created.

<servlet>
 <servlet-name>PersistentController</servlet-name>
 <servlet-class>ch5.persistentData.Controller</servlet-class>
 <init-param>
 <param-name>create</param-name>
 <param-value>false</param-value>
 </init-param>
</servlet>

Reading Initialisation Parameters

The value of an initialisation parameter is retrieved from a servlet using the
getInitParameter method of the servlet. This method returns a string, so the
value must be cast to boolean in order to store it in a variable.

Hibernate 145

boolean create =
 Boolean.parseBoolean(getInitParameter(“create”));

If the create parameter in the web.xml is set to true, then the boolean variable
will be set to true. If the parameter does not exist or has any value except true,
then the variable will be set to false.

Conditionally Creating the Tables

After reading the initialisation parameter from the web.xml fi le, the boolean vari-
able can be used to conditionally call a method from the Hibernate helper that
will create the table. In this method, the additional property for creating the table
will be added to the other properties that initialise Hibernate. The developer does
not need to remember what the property is. By including true in the web.xml fi le,
the table will be created. The method that creates the table has the exact same
parameters as the initSessionFactory method.

if (create) {
 HibernateHelper.createTable(
 props,
 RequestDataPersistent.class);
}

Set the initialisation parameter to true and restart the web application. The tables
will be recreated. Afterwards, reset the parameter to false, so that the next time
the web application is restarted, the tables will not be recreated and the new data
will not be lost.

Initialising Hibernate in the Controller Helper

The controller helper will declare a public method that encapsulates all the com-
mands to initialise Hibernate: setting the necessary properties, conditionally creat-
ing the table and calling the initSessionFactory method. The method will
have a boolean variable passed to it that indicates whether the tables should be
created in the database.

static public void initHibernate(boolean create) {
 Properties props = new Properties();
 props.setProperty(“hibernate.dialect”,

 “org.hibernate.dialect.MySQLDialect”);
 props.setProperty(“hibernate.connection.driver_class”,

 “com.mysql.jdbc.Driver”);
 props.setProperty(“hibernate.c3p0.min_size”, “1”);
 props.setProperty(“hibernate.c3p0.max_size”, “5”);
 props.setProperty(“hibernate.c3p0.timeout”, “300”);
 props.setProperty(“hibernate.c3p0.max_statements”,

 “50”);
 props.setProperty(“hibernate.c3p0.idle_test_period”,

 “300”);

146 Web Development with Java

 props.setProperty(“hibernate.connection.url”,
 “jdbc:mysql://SERVER:PORT/DATABASE”);

 props.setProperty(“hibernate.connection.username”,
 “USERNAME”);

 props.setProperty(“hibernate.connection.password”,
 “PASSWORD”);

if (create) {
 HibernateHelper.createTable(

 props,
 RequestDataPersistent.class);

 }

 HibernateHelper.initSessionFactory(
 props,
 RequestDataPersistent.class);
}

This method does not use any non-static members in the controller helper, so it
is declared as a static method. This allows it to be called without instantiating a
controller helper.

Using init in the Controller

Hibernate is initialised with many properties, like username and password. These
properties should be set once, when the servlet is fi rst loaded into memory. Recall
from the Log4j servlet in Chapter Four, that the init method in a servlet is exe-
cuted when it is loaded into memory. An init method will be added to the con-
troller (Figure 5.9).

In the method, read the parameter from the web.xml fi le that controls whether
the database tables are created. Pass this parameter to the method in the controller
helper that initialises Hibernate. By calling it from init, the initialisation will
only occur once.

Since the method that initialises Hibernate was declared as a static method in
the controller helper, it can be called from the controller without having to instan-
tiate a controller helper object.

public void init() {
boolean create =

 Boolean.parseBoolean(getInitParameter(“create”));
 ControllerHelper.initHibernate(create);
}

Controller

doGet()
doPost ()
init()

Figure 5.9 An init method is added to the controller.

Hibernate 147

5.5.4 Closing Hibernate

Closing Hibernate is imperative. If the web application closes without releasing
the resources that Hibernate uses, there will be a memory leak in the servlet
engine. The closeFactory method has been added to the Hibernate helper
class to close Hibernate.

public void closeFactory(SessionFactory factory) {
 ...
}

The diffi cult part is to know when to call this method. Each servlet in the web
application uses the same static helper class to make connections to the database
server. If one servlet closes Hibernate, this means that it will be closed for all
servlets.

Since the Hibernate helper class only has static members and methods, the class
will exist until the web application is stopped. Static variables will not be garbage
collected until the class is removed from memory. There is no method that is called
when a class is removed from memory. However, it is possible to detect when the
web application is stopped.

There is an interface named ServletContextListener that has two
methods that will be called when the web application starts and when the web
application stops. By adding a class to the web application that implements the
interface and confi guring the web.xml fi le to call this class, Hibernate can be closed
only when the web application is stopped.

This is also the place for the web application to close any other resources that
it is using. In addition to closing hibernate, the web application should deregister
the SQL drivers that it is using.

try {
 Enumeration<Driver> enumer = DriverManager.getDrivers();
while (enumer.hasMoreElements()) {

 DriverManager.deregisterDriver(enumer.nextElement());
 }
} catch (java.sql.SQLException se) {
 se.printStackTrace();
}

Servlet Context Listener

The context listener interface only has two methods: one that is called when the
web application starts and one that is called when the web application stops. Defi ne
a class that implements this interface. There is nothing to do when the web appli-
cation starts, but close Hibernate when the web application stops. By closing
Hibernate when the web application stops, all the resources for Hibernate will be
released.

package shared;

import java.sql.Driver;
import java.sql.DriverManager;

148 Web Development with Java

import java.sql.SQLException;
import java.util.Enumeration;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class WebappListener implements ServletContextListener
{
public void contextInitialized(ServletContextEvent sce)

 {}

public void contextDestroyed(ServletContextEvent sce)
 {

try {
 Enumeration<Driver> enumer = DriverManager.getDrivers();

while (enumer.hasMoreElements()) {
 DriverManager.deregisterDriver(enumer.nextElement());
 }
 } catch (java.sql.SQLException se) {
 se.printStackTrace();
 }
 shared.HibernateHelper.closeFactory();
 }
}

Calling the Listener

The context listener must be called by the servlet engine when the web application
starts. This is done by adding some tags to the web.xml fi le. The only parameter
that is needed is the class for the above listener class.

<listener>
<listener-class>shared.WebappListener</listener-class>
</listener>

When the web application starts, it will load the listener class into memory
and the contextInitialized method will be called. The listener class
will remain in memory as long as the web application is running. When the web
application receives a command to stop, it will fi rst call the contextDestroyed
method.

5.5.5 Persistent Annotations

Hibernate operates through beans. Hibernate will create the table in the database
based on the structure of the bean. Most of the information that Hibernate needs
can be derived from the standard structure of the bean, but there are a few details
that have to be confi gured. These additional details could be added to a separate
confi guration fi le, but Hibernate supports annotations from Java 1.5. By using
annotations, the additional confi guration parameters can be placed in the bean
class. The advantage of this is that the confi guration information is physically
located next to what it modifi es.

Hibernate 149

A table in a database is organised in columns, just like a table in a spreadsheet.
By default, a column will be created for each property that is in the bean. Each row
in the table represents all the data for one bean object (Figure 5.10).

The tables that are based upon a bean need a column that identifi es each row
uniquely. In other words, the value that is stored in that column is different for
each row in the table. For instance, a student ID or a bank account number would
be examples of such a column. This column is known as a primary key.

Once the primary key for a row has been created, it is important that it never
changes. For this reason, it is better to create a separate column that has nothing
to do with the data that is being entered by the user. Most relational databases have
the ability to generate a primary key automatically. By allowing the database to
manage the primary key, there is never a concern that two rows in the database
will have the same value for the primary key. Hibernate has annotations for declar-
ing the primary key.

There are four annotations that are used to give Hibernate additional informa-
tion about the structure of the table that it creates for the bean.

1. @Entity
2. @Id
3. @GeneratedValue
4. @Transient

Creating a Separate Table

The @Entity annotation precedes the defi nition of the bean class. It indicates
that the class will be represented in the database as a separate table. The name of
the table in the database will be the same as the name of the bean class.

...

@Entity
public class RequestDataPersistent
...

This annotation is located in the javax.persistence package.

Table

id aversionhobby

2 carswalking

1 rocksskiing

column

record

Figure 5.10 A table has columns and rows.

150 Web Development with Java

Creating a Primary Key

For the primary key, add a Long fi eld with mutators and accessors. Use the @Id
annotation to mark it as the primary key. The mutator is made protected to limit
how the fi eld is modifi ed. Only the database should change the value of this fi eld.

Our examples will not always have a primary key like an account number or
student ID, so we will have the database manage the fi eld. The database will create
a unique value for each new row that is added to the table; this is controlled with
the @GeneratedValue annotation.

protected Long id;

@Id
@GeneratedValue
public Long getId() { return id; }

protected void setId(Long id) { this.id = id; }

The @GeneratedValue annotation is telling the database to assign numbers to
the id and to be sure that they are unique. This precedes the accessor for the
primary key of the table. It indicates that the database will generate the primary
key when a row is added to the database.

Both of these annotations are located in the javax.persistence
package.

PersistentBase Class

All of the beans that are marked with the Entity annotation should have a
primary key. For all such examples in this book, the primary key will be generated
by the database, by inserting the above code into the bean. As a convenience, there
is a base class named PersistentBase that contains this annotated property.
Instead of typing the above code into the bean, if the bean extends this class, then
the primary key will be created for it.

...

@Entity
public class RequestDataPersistent

extends shared.PersistentBase
{
...

Transient Fields

By default, any property in the bean that has an accessor will have a column created
for it in the database table. There will be situations where a property does not
need to be saved in the database. In such cases, if the property is preceded by
the @Transient annotation, then Hibernate will not create a column in the
table for the property and will ignore the property when the bean is saved to
the table.

Any method name that begins with is or get is considered an accessor and
Hibernate will try to create a column for it and try to save it to the database.

Hibernate 151

As an example of a fi eld that does not need to be saved in the table, consider
the isValidHobby method from the Default Validation example in Chapter
Three. This is an accessor, since it begins with is, but it should not be saved to the
database. Hopefully, the only data that is saved to the database is valid. If this
method is in a bean that is being saved to a database, then it should be marked as
transient.

@Transient
public boolean isValidHobby() {
return hobby != null && !hobby.trim().equals(“”);

}

This annotation is located in the javax.persistence package.

5.5.6 Accessing the Database

Hibernate uses sessions and transactions to manage the access to the database. A
session in Hibernate is used to connect to the database. Sessions are obtained from
the session factory that was created in initSessionFactroy. A transaction is
used to update data in the database.

In its simplest format, the way that the database is accessed is to obtain a
session, obtain a transaction, do the work in the database, send the transaction to
the database and close the session.

session = factory.openSession();
Transaction tran = session.beginTransaction();

someDatabaseProcess();

tran.commit();
session.close();

The details of the session and transaction are the same, regardless of the type of
work that is being done in the database: retrieving, saving, deleting. There is a
separate method in the Hibernate helper class for each operation in the database.
The details of these methods can be found in the listing of the Hibernate helper
class in the Appendix.

Testing the Connection

When Hibernate is confi gured and a session factory is created in the
initSessionFactory method, there is the possibility that the session factory
was not created. If the information to connect to the database is incorrect or the
format of the bean is incorrect, the creation of the session factory will fail.

A method has been added to the Hibernate helper class that tests if the session
factory has been created. If it hasn’t, then the method will create an error page
containing the error that occurred. In order to send this page back to the browser,
the response object will be passed to the method.

152 Web Development with Java

public boolean testDB(HttpServletResponse response)
throws IOException, ServletException {
if (!isSessionOpen()) {

 writeError(response);
 }
return isSessionOpen();

}

There are several overloaded versions of this method in the Hibernate helper class.
The one that does all the work is an example of creating an HTML error page in
Java and sending it back to the browser, instead of forwarding the request to a JSP
that displays the error message. The response object is all that is needed to send
a page back to the browser. The entire page must be coded in Java. This means
that all the HTML statements must be enclosed in quotation marks, since they are
plain text.

public void writeError(HttpServletResponse response,
 String title,
 Exception ex)

throws java.io.IOException, ServletException
{
 java.io.PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.println(“<html>”);
 out.println(“ <head>”);
 out.println(“ <title>” + title + “</title>”);
 out.println(“ </head>”);
 out.println(“ <body>”);
 out.println(“<h2>” + title + “</h2>”);
if (ex != null) {
if (ex.getMessage() != null) {

 out.println(
“<h3>“ + ex.getMessage() + “</h3>”);

 }
if (ex.getCause() != null) {

 out.println(
“<h4>“ + ex.getCause() + “</h4>”);

 }
 StackTraceElement[] trace = ex.getStackTrace();

if (trace != null && trace.length > 0) {
 out.print(“<pre>”);
 ex.printStackTrace(out);
 out.println(“</pre>”);
 }
 } else {
 out.println(“Hibernate must be initialized”);
 }
 out.println(“ </body>”);
 out.println(“</html>”);
 out.close();
}

The response object contains all the information that is needed to communicate
with the browser. The most important piece of information is the stream that is

Hibernate 153

used to send data to the browser. This stream can be retrieved from the response
object with a call to the getWriter method.

When a servlet generates a response to send to the browser, it is the servlet’s
responsibility to inform the browser of the content that is being sent. The default
content is text/plain. In order to have all browsers interpret the content correctly,
the content type must be set as text/html. The content type is set with the
setContentType method in the response object.

This example of generating a simple error page entirely from within a servlet
makes me very grateful for JSPs.

Retrieving Data

Data is retrieved from a table using the getListData method. The method
returns a collection of beans. Each bean contains the data from one row in the data-
base table (Figure 5.11). Hibernate generates a bean for each row in the database
and places them into a collection. This collection is returned from the method.

This method is overloaded several times in the Hibernate helper class. One
version accepts a parameter that is the class object for the bean class. Since this
method will be called from the controller helper, the simplest way to retrieve the
class object of the bean is from the bean itself: data.getClass().

java.util.List list =
 HibernateHelper.getListData(data.getClass());

This call to the method returns a list of beans. Each bean in the list represents a
row from the table.

Saving Data

The method to save data to the database is updateDB, which has a parameter
that is the bean containing the data to save. Since this will be called from the con-
troller helper, the bean object to save will be named data.

id aversionhobby

2 carswalking

1 rocksskiing

3 walkersdriving

3

walkers

driving

Database Table

Beans created from
database by Hibernate

1

rocks

skiing

2

cars

walking

List of beans returned
from getListData

Figure 5.11 A collection of beans is created by Hibernate.

154 Web Development with Java

HibernateHelper.updateDB(data);

Hibernate will determine the type of the bean by using refl ection. From the type
of the bean, Hibernate will determine the name of the table in the database.

If the bean had been retrieved from the database, then it will replace the data
that is in the database. If the bean was not retrieved from the database, then it will
be added to the database, even if there is duplicate data in the database. As long
as the primary key is null, the bean will be added as a new row in the table. Hiber-
nate uses the primary key to determine if a row has been saved to the database.
This is a major reason for allowing Hibernate to manage the primary key.

5.5.7 Making Data Available

Once the data has been retrieved from the database, it needs to be displayed in a
JSP. Whether the collection of beans that is retrieved from the database contains
all the rows or just some of the rows, the collection must be made available for
JSPs and the JSPs must be able to display this data in a readable format.

Placing Data in the Request

The getListData method is used to retrieve data from the database; however,
the data will not be available to the JSPs. So far, the only way that an object will
be accessible from a JSP is to add it to the session or to add an accessor for it in
the controller helper.

The list of rows from the database should not be added to the controller helper
as a member variable. Once it is in the controller helper, it would be passed from
request to request via the session. This is a waste of resources, since the data is
already saved in the database.

The list of rows should not be added directly to the session for the same reason.
Furthermore, objects that have been retrieved from the database and then stored
directly in the session may cause thread death in the web application.

There is a third way to make an object accessible in a JSP. Arbitrary objects can
be placed in the request object by the controller helper and retrieved by the JSPs,
just like the session object. However, the request object is destroyed when the
request is fi nished. This will avoid the problem of thread death.

Objects are added to the request object similarly to how they are added to the
session. Set an attribute in the request object for the collection that was retrieved
from the call to getListData.

java.util.List list =
 HibernateHelper.getListData(data.getClass());
request.setAttribute(“database”, list);

Displaying Data in the JSP

Request attributes are retrieved in the JSP in the same way that session attributes
are retrieved. If the attribute was set with the name database, then it can be
retrieved using EL as ${database}. Notice that this is not part of the helper: it
is a separate object stored in the request.

Hibernate 155

The only complication is that this is a collection of data and a loop will be
needed to access all the individual beans in the collection. There are two ways that
loops can be added to a JSP: using Java and using HTML. In order to separate Java
coding from HTML presentation as much as possible, the ability to loop will be
added to the JSP using custom HTML tags.

It is a good design principle to reduce the amount of Java code that is exposed
in a JSP. The chief justifi cation is so that a non-programmer could maintain the
JSPs. If there is Java code embedded in a JSP, then there is always the possibility
of an exception. If the JSP throws an exception, then a stack trace will be displayed
to the user. Such a page would not instil much confi dence in your site by the user.
The less Java code that is being maintained by a non-programmer means the less
chance of seeing a stack trace.

Another strong reason for not placing Java code in a JSP is so that the applica-
tion logic is not scattered amongst many different fi les. When it is time to change
the logic of an application, it is preferable to have the code in as few different fi les
as possible.

Looping in a JSP

Using HTML to loop in a JSP means that custom HTML tags must be created.
Wouldn’t it be nice if someone would create a package of custom tags that would
allow looping in a JSP?

There is a package of custom tags that is know as the Java Standard Template
Library [JSTL]. To install the library, add the following jar fi les to the lib directory
of the web application.

jstl.jar
standard.jar

Add JSTL to a JSP by adding the following tag. It is a directive that informs the
JSP that additional HTML tags will be used and that they are defi ned at the given
location. It also indicates that the new HTML tags will be preceded by a given
prefi x: core. Only include it once in each JSP that uses it, no matter how many
JSTL tags are used in the page.

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core”
 prefix=”core” %>

JSTL adds HTML tags that can be used in JSPs. These tags allow for looping and
conditional testing, without having to expose Java code to the JSP.

One of theses tags is a forEach tag. It has two parameters that are similar to
a for statement in Java 1.5. The fi rst parameter is named var and it represents
the loop control variable. The second parameter is named items and is the col-
lection that is being looped through. On each pass through the loop the var
becomes the next element in the items collection. The value of the control vari-
able can be retrieved in the body of the tag, using EL.

<core:forEach var=”control” items=”collection”>
 do something with ${control}
</core:forEach>

156 Web Development with Java

Looping through the Database

In the JSP, use a JSTL loop to access all the rows in the database and display the
details. On each pass through the loop, the var will be another bean that was
retrieved from the database (Figure 5.12).

Every public accessor in the bean can be accessed from a JSP using EL. The
bean has three public accessors: getId, getHobby and getAversion. If the
name of the loop control variable is row, then these can be accessed using EL of
${row.id}, ${row.hobby} and ${row.aversion}.

<core:forEach var=”row” items=”${database}”>
 ${row.id},
 ${row.hobby},
 ${row.aversion}

</core:forEach>

The above statement will display all the data from the database. Each row will
appear on its own line with its id, hobby and aversion displayed.

5.5.8 Data Persistence in Hibernate

There are several methods in Hibernate that can be used to save data to the data-
base: save, update, saveOrUpdate. The save method will always write a new
row to the database. The update method will only work if the bean was previously
saved to the database, in which case the data in the bean will replace the data in
the database. The third method is a combination of these two. If the bean has not
been saved previously, then it will be added to the database; otherwise, it will
update the bean in the database.

The method that is used by the updateDB method in Hibernate helper is the
saveOrUpdate method. If a bean that has already been saved in the database,
then any changes to this bean will update the row in the database, instead of adding
a duplicate row.

By placing such a bean in the session, it means that all JSPs will be accessing
and modifying the data that was retrieved from the database. When the

Request

<core :forEach var =" record " items =" ${ database }">

 ${ record .id },

 ${ record .hobby },

 ${ record .aversion }< br >

</core :forEach >

"database"

1, skiing, rocks

2, walking , cars

3,driving , walkers

List of beans created
by Hibernate

4, skating, heat

5, sailing, reefs

Figure 5.12 Accessing each row from the database from a JSP.

Hibernate 157

updateDB method is called, the new data will replace the data that is in the
database.

Reading Session Data

Whenever the session is used, care must be taken when the session data is passed
to a collection or to a database. Once the bean from the user has been saved into
the database, Hibernate will set its primary key. The next time the bean is written
to the database, the values that are in the bean will be used to update the row in
the database that has the same primary key.

If a bean has been placed in the session, the next time a button is clicked, the
bean will be copied into the current application. The primary key will be copied
from the session bean into the current bean. If the primary key of the session bean
had been set by Hibernate, then the current bean will have a valid primary key,
too. When the current bean is sent to the database, it will replace the data in the
database, instead of adding a new row (Figure 5.13).

If the user accesses the application via a GET request, then the old data from
the session will be discarded. Even if the data that the user enters is identical to
the data in the database, the bean will add a new row to the database. The reason
for this is that the primary key will be null and can only be set by Hibernate; it is
not possible to set the primary key from user input.

In the Post Servlet application, there is a distinction between GET and
POST requests. GET requests do not read data from the session; POST requests
do. An additional form can be added to a JSP that allows the user to initiate a GET
request, thereby starting the application from the beginning.

<form method=”GET” action=”Controller”>
 <p>
 <input type=”submit” name=”editButton”

 value=”New”>
</form>

id aversionhobby

2 carswalking

1 rocksskiing

null

walkers

driving

Create a new row in the
table, since the id is null

id aversionhobby

2 carswalking

1 rocksskiing

3 walkersdriving 3

reefs

boating

Update the row that has
the same id .

Database Table

Database Table

Bean

Bean

Figure 5.13 Data persistence depends on the primary key.

158 Web Development with Java

Contrast this form with the form that is already in the process page. This form
uses POST and allows the user to edit the current data.

<form method=”POST” action=”Controller”>
 <p>
 <input type=”submit” name=”editButton”

value=”Edit”>
</form>

Both buttons have the same name, they only have different words on the button.
The big difference is the type of the request that the forms use. With the GET
request, the session will not be read, so a new bean will be used to retrieve the
user’s data. With the POST request, the old bean will be copied into the current
application. The effect of this is that when the bean is saved to the database, it will
replace the data that was already saved in the database.

5.6 Application: Persistent Data

The Post Controller example can be extended to save data to the database. The
following modifi cations need to be made.

 1. Add the Hibernate JAR fi les to the lib directory of the web application.
 2. Initialise Hibernate when the controller is loaded into memory.
 3. Add the WebappListener class to the shared package.
 4. Add the statements to the web.xml fi le for starting the listener class.
 5. Annotate the bean class as an entity.
 6. Add an Id fi eld to the bean, by extending it from PersistentBase.
 7. If there are any properties in the bean that do not need to be saved, mark them

as transient.
 8. Add the statements to the web.xml fi le for the Hibernate initialisation param-

eter for creating the database tables.
 9. Add the initHibernate method to the controller helper.
10. In the process method of the controller helper, validate the data again, save

the data and add the list of beans from the database to the request object.
11. In the process page, display the data from the database, using EL.

5.6.1 Controller: Persistent Data

The details of the init method have already been covered. All that is left is to
show the skeleton of the controller to see where this method belongs.

package ch5.persistentData;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

Hibernate 159

public class Controller extends HttpServlet {

public void init() {
 ...
 }

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
 ...
 }

protected void doPost(HttpServletRequest request,
 HttpServletResponse response)

throws IOException, ServletException {
 ...
 }
}

5.6.2 ControllerHelper: Persistent Data

The other steps above have been covered in detail, except for modifying the con-
troller helper so that it writes to the database. The data will be saved to the database
when the user clicks the process button. The data does not need to be written until
this point, because the user has not confi rmed that the data is correct.

Be sure to validate the data before it is written to the database. This may seem
redundant, but the data is being saved in the session. Sessions expire after a period
of inactivity. It is possible that the user entered all the data and then clicked the
process button many hours later. In this case, the data would be lost and an empty
bean would be added to the database. To avoid this, validate again; if the data is
invalid, route the user to an expiration page.

The data retrieved from the database will be made available for JSPs, so it is
added to the request object. It is essential that the database is added to the request
object and not the session object.

Modify the method that is associated with the process button so that it validates
the data, writes to the database and makes the list of data available to the JSPs.

@ButtonMethod(buttonName=”processButton”)
public String processMethod() {
if (!isValid(data)) {
return jspLocation(“Expired.jsp”);

 }
 HibernateHelper.updateDB(data);
 java.util.List list =
 HibernateHelper.getListData(data.getClass());
 request.setAttribute(“database”, list);
return jspLocation(“Process.jsp”);

}

The doGet and doPost methods should be modifi ed to test that Hibernate has
been confi gured properly. Wrap the normal statements in these methods with a

160 Web Development with Java

call to the testDB method in the Hibernate helper. If there is an error, the method
will send an error page to the browser.

protected void doGet()
throws ServletException, java.io.IOException {
if (HibernateHelper.testDB(response)) {

 addHelperToSession(“helper”, SessionData.IGNORE);

 String address = editMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
 }
}

protected void doPost()
throws ServletException, java.io.IOException {
if (HibernateHelper.testDB(response)) {

 addHelperToSession(“helper”, SessionData.READ);

 String address = executeButtonMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
 }
}

The other changes to make to the controller helper are to rename all occurrences
of the bean class to the name of the annotated bean class and to modify the return
value of jspLocation to point to the directory of the JSPs.

Try It http://bytesizebook.com/book/ch5/persistentData/Controller

Enter some data and navigate to the process page: all the data you entered will be
displayed, along with data that is already in the database.

That is all there is to it! Honestly, it may seem a little complicated at fi rst, but that
is only because you might not be familiar with what would need to be done if this
task were completed using SQL alone. Hibernate generates all the SQL statements
that are needed to access the database. It will even create the tables in the database.

5.7 Hibernate Configuration Files

Some of the properties for Hibernate will be the same every time you call it.
Instead of placing these in the servlet, they can be placed in a confi guration fi le
named hibernate.cfg.xml. This is an XML fi le and will take precedence over
the properties added in the initHibernate method of the controller helper.

5.7.1 XML File

The statements in the XML fi le are similar to the statements that were added as
properties in Java code. Be sure to update the connection URL, username and

Hibernate 161

password for your database server. If you are using a different type of database,
you will need to update the dialect and driver class.

<?xml version=’1.0’ encoding=’utf-8’?>
<!DOCTYPE hibernate-configuration PUBLIC
“-//Hibernate/Hibernate Configuration DTD 3.0//EN”>
<hibernate-confi guration>
 <session-factory>
 <property name=”dialect”>
 org.hibernate.dialect.MySQLDialect
 </property>
 <property name=”connection.driver_class”>
 com.mysql.jdbc.Driver
 </property>
 <property name=”connection.url”>
 jdbc:mysql://your-server:your-port/your-database
 </property>
 <property name=”connection.username”>
 your-user-name
 </property>
 <property name=”connection.password”>
 your-password
 </property>
 <property name=”c3p0.min_size”>1</property>
 <property name=”c3p0.max_size”>5</property>
 <property name=”c3p0.timeout”>300</property>
 <property name=”c3p0.max_statements”>50</property>
 <property name=”c3p0.idle_test_period”>300</property>
 </session-factory>
</hibernate-confi guration>

5.7.2 File Location

Place this fi le in the classes directory of the web application, since your web appli-
cation will always have access to it. If you are using NetBeans, then place it in the
Source Packages folder, under the default package.

5.7.3 Simplified Controller Helper

This fi le simplifi es the initHibernate method of the controller helper.

static public void initHibernate (boolean create) {
if (create) {

 HibernateHelper
 .createTable(RequestDataPersistent.class);
 }
 HibernateHelper
 .initSessionFactory(RequestDataPersistent.class);
}

162 Web Development with Java

5.8 Summary

Required validation is used to verify that the user has entered valid data. Regular
expressions are a powerful tool for performing complicated validations with
simple code.

Hibernate can simplify the process of required validation. It is easy to specify
the validation rules using annotations in Hibernate and to generate an array of
error messages. Hibernate’s array is not as convenient as is needed in a JSP, so a
map was created that contains the error messages and can be accessed easily from
a JSP. The methods isValid and getErrors were also added to facilitate gen-
erating and retrieving the error messages.

Two types of requests can be made to a servlet: post and get. POST requests
can send an unlimited amount of data and the data cannot be viewed in the URL.
GET requests are useful for bookmarking a page with the parameters that
were needed to fi nd the page. A servlet can handle the two types of requests
differently.

Hibernate can be used to save data to a relational database. Once Hibernate has
been confi gured, it is a simple matter to save a bean to a database. Retrieving the
data from the database is also a simple task.

Hibernate can use annotations to indicate how the table in the database can be
created from the bean. Through the use of annotations, the confi guration state-
ments can be placed in the bean instead of in a separate confi guration fi le.

If rows from the database are sent to the JSP, then a loop is needed to
display the data. It is better to use a custom HTML tag than to add Java code
to the JSP. The JSTL has many useful predefi ned tags, including a tag that
does looping.

Once a servlet has been confi gured, it is easy to place all of the confi guration
parameters into a confi guration fi le that can be accessed by all the controllers.

5.9 Chapter Review

Terms

 1. Required Validation
 2. Regular Expressions
 3. Character Class
 4. Predefi ned Character Class
 5. Repetition
 6. Alternation
 7. Grouping
 8. Capturing
 9. Map
10. Hibernate Validation Messages
11. Java Annotations
12. Error Map
13. Retrieving Error Messages

Hibernate 163

14. Request Types
a. GET
b. POST

15. Initialisation Parameter
16. Primary Key
17. Transient Field

Java

1. Annotations
a. @Pattern(regex=“. . .”, message=“. . .”)
b. @NotNull
c. @Entity
d. @Id
e. @Transient
f. @GeneratedValue

2. Required Validation
a. errorMap
b. setErrors
c. isValid
d. getErrors

3. POST Request
4. GET Request
5. Hibernate Helper

New Java

1. request.setAttribute
2. Servlet Methods

a. doPost
b. init

3. Hibernate Helper
a. updateDB
b. getListData

4. JSTL
5. Looping in a JSP

Tags

1. <form method=“POST”>
2. ${helper.errors.hobby}

164 Web Development with Java

3. taglib statement for JSTL
4. forEach in JSTL

Questions

 1. If a bean is passed to a method only as an Object, what must be done in
order to access the public methods in the bean from inside the method?

 2. How are the validation errors retrieved from a JSP?
 3. Why does the method setErrors create a map of error messages, in addi-

tion to the Hibernate validation messages?
 4. Name two advantages of a POST request over a GET request.
 5. Name an advantage of a GET request over a POST request.
 6. How is a GET request generated from a browser?
 7. How is a POST request generated from a browser?
 8. Name an advantage for having two different methods for handling GET and

POST requests.
 9. What can be done in an application to ensure that whenever a user clicks a

button in a form, then a POST request will be made to the controller?
10. What are the three Hibernate properties that must be changed in order to

connect to a MySQL server?

Tasks

1. Create regular expressions for the following.
a. Match one of the following words, ignoring case. Try to create one expression:

ned, net, nod, not, ped, pet, pod, pot, red, ret, rod, rot, bed, bet, bod, bot.
b. A full name.

 i. There must be at least two words.
 ii. Each of the two words must start with an uppercase letter.

c. A telephone number with the following formats
 i. 999-999-9999
 ii. 999.999.9999
iii. 999 999 9999
 iv. 9999999999

2. Initialisation Parameters.
a. Defi ne a servlet tag in web.xml for a servlet that will have an initialisation

parameter named interest with a value of 4.23.
b. Write the Java code that would read the value of the initialisation parameter

and cast it to a double.
c. Add an initialisation parameter for the database username for a controller

that uses Hibernate to save data. Read the initialisation parameter in
the init method and use its value as the username when confi guring
Hibernate.

Hibernate 165

3. If a bean has properties named make, model and year, then write the code for
a JSP that will display all the values for a collection of these beans. Assume that
the collection was sent under the name “database”.

4. Write an application that accepts city, state, and zip. Validate that the zip code
is 5 digits and that the state is FL, GA, NO, LA or MS. Write the data to a
database.

5. Write an application that accepts fi rst name, last name and email. Validate that
the email has one @ sign in it, and has text before and after the @ sign. Write
the valid data to a database and display all the values that are in the database.

166

6 Advanced HTML and Form Elements

The fi rst time I saw a web page, I was amazed at hypertext links, images, advanced
layout, colours and fonts. Of these, hypertext links already existed in another pro-
tocol on the web: gopher. Gopher used a series of index pages to navigate a site;
the links on one index would take you to another index page or to some text fi le.
Libraries were the principal users of the gopher protocol. A lot of information
could be retrieved using gopher; however, it never became popular like the web.
It was the remaining features that made the web as popular as it is: images,
advanced layout, colours and fonts.

It has been said that a picture is worth a thousand words. This is certainly true
for the web. An HTML tag is used to include an image in the current page. This
tag is different from all the other tags: it inserts a separate fi le into the current
page at the location of the tag.

There are two aspects of every HTML page: the layout of the page and the style
used to display the page. The layout indicates that some text should stand out from
the rest of the text, regardless of the browser that is used to display it. The style
controls the actual appearance of the text: how much larger than normal text it
will be, how many lines precede and follow the text, the type of font that is used
to display the text. Many other aspects, like the colour of the text, could also be
controlled by the style.

HTML tags have a mix of layout and style. Some tags are very specifi c about
the layout, while others are more specifi c about the style. Those that indicate a
specifi c layout include tables, lists, and rules. Those that indicate a specifi c style
include italic, bold and underline. Many more tags are more generic about the
layout and the style. These tags are intended to be used with a separate fi le that
defi nes the style to be used for these tags.

A separate syntax is used to describe the style used in a page: Cascading Style
Sheets [CSS]. By using CSS, the style defi nition can be saved in one fi le that can be
used by multiple HTML pages; such a fi le is known as a style sheet. By using a style
sheet, only one fi le needs to be edited in order to change the appearance of all
pages that use it.

The recommended way to create HTML pages is to use HTML to defi ne
the layout of the page and to use a style sheet to control the appearance of the
page.

There are other input elements besides the text box. There are elements for
entering passwords and many lines of text. There are also elements for displaying

Advanced HTML and Form Elements 167

checkbox and radio button groups, as well as elements for drop down and multiple
selection lists.

Checkbox groups and multiple selection lists are more diffi cult to initialise with
data from the query string. A technique will be introduced to simplify the process.
It is also more diffi cult to save the multiple values, if they are to be saved in a
readable format in the database.

6.1 Images

Images are different from other tags. They reference an external fi le, but the
content of the fi le is displayed in the current fi le. The tag for embedding an image
in a page is and it has an attribute named src for indicating the location
of the image fi le.

When referencing graphics on the web, you must know the complete URL of the
source in order to create a link to it. However, depending on where the resource
is located, you may be able to speed up the loading of your page by using relative
references. The src attribute uses relative and absolute references just like the
action attribute in a form.

1. If the resource is not on the same server, then you must specify the entire
URL.

2. If the resource is on the same server, but is not descended from the current
directory, then include the full path from the document root, starting with a /.

3. If the resource is in the same directory as the HTML page that references it,
then only include the fi le name, not the server or the directory.

4. If the resource is in a subdirectory of the directory where the HTML page that
references it is located, then include the name of the subdirectory and the fi le
name.

6.2 HTML Design

HTML tags contain layout and style. The basic layout for a tag is whether it is
an inline tag or a block tag: inline tags are embedded in the current line,
whereas block tags start a new line. A default style has been defi ned for each
HTML tag.

168 Web Development with Java

For instance, HTML has a tag for emphasis, . To the HTML designer, the
use of this tag meant that the text should indicate emphasis, but did not defi ne
what emphasis meant. The only things that the designer knew was that this was
an inline tag, so the text would be embedded in the current line, and that the text
would look different from normal text, when displayed in the browser. It was up
to the browser to implement emphasis: it might underline the text; it might make
the text bold; it might invert the colours of the foreground and background. The
designer could not specify how the text should be emphasised. There were many
such tags that could be used to specify general style, but not to specify the exact
appearance.

Other tags are more specifi c about the style that is used for them. For instance,
the italic tag, <i>, indicates that text should be italicised. Most display monitors
and browsers can display italicised text, so it is not a bad design to insist that the
browser use italics.

There are tags that are more specifi c about the layout that is used to display
them. There are tags for organising data into a list and a table. There is a tag for
inserting lines into a page.

Designers liked the ability to specify the exact appearance of the page, so more
ways to specify style were added to HTML. A tag to specify the font to be used for
text was added. Also, attributes were added to individual tags to specify colour and
alignment. However, these additional ways to add style made it diffi cult to update
a web site. These style tags that were placed in the layout tags are now deprecated
and should not be used.

6.2.1 Inline and Block Tags

There are two ways that tags are inserted into pages: inline and block. Inline tags
can be embedded in a line of text. Block tags will start on a new line. The emphasis
tag, em, is an inline tag: it can be used repeatedly in the same sentence. The para-
graph tag, p, is a block tag: every appearance of the tag will start a new line. If the
emphasis tag is used several times in one sentence, there will still be only one
sentence in the browser.

This is a sentence with several
points of emphasis.

If the paragraph tag is used several times in the same line, there will be many lines
in the browser.

This is a paragraph</p><p>So is this</p><p>And one
more to make a point</p>

The above lines of HTML will appear, in most browsers, as Figure 6.1.

6.2.2 General Style Tags

There are many tags in HTML that can be used to add style to a document. These
styles are named for the type of text that they represent in a document. There are

Advanced HTML and Form Elements 169

tags for citations, variables, inserted text, deleted text, etc. There is no indication
in the tag as to how it will be displayed in a browser; in fact, several of these tags
might have the same appearance in a browser. Table 6.1 lists the inline tags and
Figure 6.2 shows how they would appear in a browser.

Many of the inline tags seem to do the same thing; for instance, kbd, sample
and code all use a fi xed space font to display the text. As will be covered soon,
through the use of a style sheet, the web designer could defi ne these tags differ-
ently. The style could also be changed easily in the future.

There are also different tags defi ned for blocks of code. These are six tags for
headings, one for preformatted text and one for quoted text. Figure 6.3 lists the
block tags and how they appear in a browser.

6.2.3 Specific Style Tags

As HTML and display monitors progressed, additional tags were added that could
control style directly: the italic tag, <i>, was used in place of the emphasis tag.
The emphasis tag still exists, but on most browsers it displays text in italics. Table
6.2 lists the tags for a specifi c style. The name of the tag indicates how it will appear
in the browser.

It would lead to confusion if a designer redefi ned how these tags appeared.
While it is understood that the em tag might not show in italics, it is assumed that
the i tag will use italics. It would be proper to change other characteristics for the
i tag, but it should always use italics.

Figure 6.1 Inline and block tags viewed in a browser.

Table 6.1 Inline tags and how they appear in a browser.

Tag Description

acronym Intended for acronyms, like IBM and MODEM.
cite Indicates that text is included from another source.
code Intended to markup code from a program.
del Indicates that text is to be deleted.
ins Indicates that text that has been inserted.
dfn Used to markup text that is a defi nition.
em Used to markup text with emphasis.
kbd Indicates that text is to be entered from the keyboard.
abbr Used to markup text that is an abbreviation.
samp Used to markup text that is taken from another source.
strong Used to markup text that is put forth in a strong way.
var Used to markup text that represents a variable from a program.

170 Web Development with Java

Figure 6.2 Inline tags and how they appear in a browser.

Table 6.2 Tags for specifi c style.

Tag Style

i italics
u underline
b bold
q quotes
strike line through the text
super superscript
sub subscript

Figure 6.3 Block tags and how they appear in a browser.

Advanced HTML and Form Elements 171

6.2.4 Layout Tags

There are more ways to lay out a web page than using the paragraph and line break
tags. Lists are a useful way to display a table of contents at the top of a page. Tables
are used by most news service sites to lay out the material to look like a newspaper
page. Horizontal lines can be added to separate sections of text.

Consider the table of contents at the top of a page; such a layout cannot be
achieved using paragraph and line breaks. There is no way to indent text or to
insert automatic numbering using such simple tags. Think of the web site of any
news service: the content is displayed like a newspaper page. Text and images are
arranged in columns on the page. There is no way to do this using paragraph and
line break tags alone.

Lists

Lists are a good way to organise data in an HTML page. There are three types of
lists: ordered, unordered and defi nition.

Ordered and unordered lists have similar structures. They each use nested
 tags to indicate an item in the list. All the items in the list are enclosed within
the paired tags for the list. Ordered lists start with and end with .
Unordered lists start with and end with . List items for ordered lists
will have a number inserted automatically. List items for unordered lists will have
a bullet inserted automatically.

 First
 Second
 Third

 Red
 Green
 Blue

Defi nition lists start with the <dl> tag and end with the </dl> tag. Two tags are
needed to defi ne each item in a defi nition list: the term and the defi nition. The
idea of a defi nition list is that there will be a short term, and then a longer defi ni-
tion of this term. Use the <dt> tag to indicate the term, and use the <dd> tag to
indicate the defi nition.

<dl>
 <dt>Miami
 <dd>
 A city in Florida that has a tropical climate.
 <dt>Maine
 <dd>
 A state in the northeast part of the country.
 <dt>Marne
 <dd>
 A river in France.
</dl>

172 Web Development with Java

Figure 6.4 shows how the different lists might appear in a browser.

Tables

Tables are the most sophisticated and most complicated way to layout HTML. Most
pages for news agencies use tables to arrange the content on the site. Tables begin
with the <table> tag and end with the </table> tag. Tables use nested <tr>
tags to indicate rows in the table. Each row has nested <td> tags that indicate the
data that is in each row. Each <td> tag represents one square in the table. The
browser will adjust the table so that all rows will display the same number of
squares, even if the rows are defi ned with different numbers of <td> tags. The
row with the most <td> tags determines the number of squares for all the rows
in the table.

The default for a <td> tag is that it is equivalent to one square in the table.
This can be altered with the rowspan and colspan attributes in the <td> tag. The
rowspan indicates that the <td> tag will cover successive squares in different rows,
starting in the current row. The colspan indicates that the <td> will occupy suc-
cessive squares in the same row. A <td> tag can have both rowspan and colspan
attributes.

<table border=1>
 <tr>
 <td rowspan=2>

 </td>
 <td colspan=2>

 </td>
 </tr>
 <tr>
 <td rowspan=2 colspan=2>

Figure 6.4 The HTML code for lists and how they might appear in a browser.

Advanced HTML and Form Elements 173

 </td>
 </tr>
 <tr>
 <td>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td>
 </td>
 <td>
 </td>
 </tr>
</table>

Figure 6.5 shows how a table might appear in a browser. Notice the effect of the
rowspan and colspan attributes.

1. The fi rst cell in the table extends over two rows.
2. The second cell in the fi rst row extends over two columns.
3. The second row is partially fi lled by the fi rst cell from the fi rst row.
4. The cell in the second row extends over two rows and two columns.
5. The third row is partially fi lled by the cell from the second row.
6. The fourth row defi nes all its own cells.

In addition to the <td> tag, there is also the <th> tag. The <th> tag behaves just
like a <td> tag, except that the all text in it is centred and is bold.

Figure 6.5 Viewing a table from a browser.

174 Web Development with Java

6.3 Cascading Style Sheets

As HTML progressed, more tags were added to control style. However, this soon
became unmanageable. Additional attributes were added to the body tag to control
the background colour of the page and the text colour of the page. Additional
attributes were added to each tag to control alignment; tables could specify borders
and padding. Soon, style information was added throughout the layout. If a web
site wanted to change the style that was used on every page, there was a lot of
tedious editing to do.

While tags like italic had style embedded, it would still be a good design to use
the italic tag: a designer would rarely think that all italic text should now be under-
lined. However, if code was embedded in every page that defi ned the colour of the
text, it is quite reasonable to want to change the colour from time to time: this
would be time consuming if the style were embedded in each page.

Style sheets allow the designer to place all the style in a separate fi le. Many
HTML pages can use the same style sheet. The style for all the general styles, like
kbd, sample and var, can be redefi ned using a style sheet.

6.3.1 Adding Style

The simplest way to add style to an HTML page is to include a style sheet.
The style sheet is a separate fi le that contains style defi nitions. The contents of
the fi le will be covered in the next section. Use a <link> tag in the head
section of the HTML fi le to include the style sheet. The <link> tag has three
attributes

Href

This contains the URL for the style sheet fi le. It has the same format as the
HREF attribute in the anchor tag, <a>.

Rel

This will always have a value of stylesheet.

Type

This will have a value of text/css.

For example, if the style sheet is named style.css and is located in the same
directory as the HTML fi le, then the basic tags for an HTML page might look like
the following.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <link rel=“stylesheet” type=“text/css”
 href=“style.css”>

Advanced HTML and Form Elements 175

 <meta http-equiv=“content-type”
 content=“text/html;charset=utf-8”>
 <title>Simple Page</title>
 </head>
 <body>
 <p>
 This is a <i>simple</i> web page.
 </p>
 </body>
</html>

Whatever styles are defi ned in the fi le, style.css would be applied to the web page.
Any changes to the style sheet would affect the web page the next time it was
loaded into a browser. If the style sheet was referenced from 100 different pages,
then every change to the style sheet would immediately affect all 100 pages.

6.3.2 Defining Style

CSS have been defi ned by W3C. CSS is a recommendation that has been adopted
by most web browsers. Each browser is different in its level of compliance with the
W3C recommendation. Some features will work one way on one browser and
another way on a different browser. The effects will be similar, but will have slight
differences.

The best way to defi ne a style sheet is to place it in a separate fi le from the
HTML that it will control. The reason for this is so that the style sheet can be used
by many different pages. If the style needs to be changed, then it can be modifi ed
in one place and all the pages that reference it will be updated as well.

A style sheet fi le contains one or more style blocks. A style block contains
one or more of the styles that have been defi ned by W3C. A style block has
an HTML tag and a set of curly braces that enclose the styles that will be applied
to it.

HTML_tag {
 style-name: style-value;
 style-name: style-value;
 style-name: style-value;
}

The name of the style block must match an HTML tag. The styles within the block
will be applied to all tags that have that name.

Scales

Many of the styles deal with a measurement. Table 6.3 lists many different ways
that length can be specifi ed in a style sheet.

Common Styles

There are many styles defi ned for CSS. Only a few will be used in this book. The
basic styles to be used are in the following list.

176 Web Development with Java

Table 6.3 CSS Measurements.

Abbreviation Measurement

px pixels – dots on the screen. Usually there are 96 to the inch
pt points – a point is 1/72″ and is usually used to specify a font size
in inches
cm centimetres
em the height of the letter M in the current font
ex the height of the letter x in the current font
% percentage of the parent’s property

Background-color: Green;

The colour can be a standard colour name or can be a three or six hex digit
number (#036 or #003568).

Background-image: Url(fi u.gif);

Enclose the path to the image inside the parentheses. Do not have a space
after url.

Color: #003399;

The colour can be a standard colour name or can be a three or six hex digit
number (#036 or #003568).

Font-family: Bazooka, “Comic Sans MS”, Sans-serif;

A number of fonts can be listed. Separate the names by a comma. Enclose
multi-word fonts in quotes. The browser will use the fi rst font that it fi nds.
List your fonts from most specifi c to most general. The generic font family
names serif, monospace, cursive, fantasy and sans-serif can be used as the
last option in the list. They act as defaults; if the browser can’t fi nd any other
font specifi ed, it will be guaranteed to have one of each of these font family
categories.

Font-size: 30 pt;

Change the size of the font. The measurement is required. Do not have a
space between the number and pt. Internet Explorer will default to pt, but
other browsers will not. If you want your page to be readable in all browsers,
then include the measurement.

Font-style: Italic;

Choices are italic, normal, oblique.

Font-weight: Bold;

Choices are bold, lighter, bolder, normal.

Text-align: Left;

Choices are left, right, center, justify.

Text-decoration: Underline;

Choices are underline, overline, none, line-through, blink, normal.

Advanced HTML and Form Elements 177

Text-transform: Lowercase;

Choices are lowercase, uppercase, normal, capitalize.

Margin-left: 20%;

Indents the object from the left margin. You can use a percentage or a
number.

Margin-right: 20%;

Indents the object from the right margin. You can use a percentage or a
number.

Text-indent: 20%;

Indents the fi rst line of text from the margin. You can use a percentage or a
number. The value may also be negative.

List-style-type: Lower-alpha;

Choices are decimal, lower-alpha, upper-alpha, lower-roman, upper-roman,
disc, circle, square.

Width: 100 px;

Sets the width of the element. Any measurement can be used to defi ne the
width.

Default Styles

The above styles should be included within curly braces after the name of the
HTML tag to be affected. To affect the entire document, include the properties with
the style block for the body tag. The following will make the text colour red for
the document, everything will be aligned to the centre and there will be a left
margin that is 20% of the total width of the page.

body {
 color: red;
 text-align: center;
 margin-left: 20%;
}

It is also possible to defi ne styles for just a paragraph, table or any other HTML
tag. The following will force all paragraphs to have blue text and to be aligned to
the right.

p {
 color: blue;
 text-align: right;
}

Since the <p> tag is nested within the <body> tag in HTML pages, it will inherit
the left margin that was set in the body tag.

178 Web Development with Java

Multiple Definition

It is possible to have the same style apply to several tags. Use a comma to separate
the names of tags that should use this style. The following style would apply to all
<h1> and <h2> tags.

h1, h2 {
 text-align: center;
}

Nested Definition

It is possible to indicate that a style should be used only if it is nested inside other
tags. Specify the order of nested tags that must appear in order to use this style.
For example, to control a heading that appears inside a table element, use the
following.

td h1 {
 font-size: 20pt;
}

Named Styles

It is also possible to defi ne several styles for a specifi c tag. For instance, the <td>
tag could have several styles like these.

td.money {
 color: green;
 text-align: left;
}

td.sky {
 color: lightblue;
 text-align: center;
}

Then the particular td would be specifi ed with the class attribute within the td tag
in the HTML code.

<table>
 <tr>
 <td>Normal
 <td class=“sky”>TD with sky style
 <td class=“money”>TD with money style
</table>

Generic Styles

Styles that can be applied to all tags can be created by naming the tag, but omitting
the name of an HTML tag. For instance, to create a style to set the colour to orange
that can be used with any HTML tag, just give it a name that starts with a
period.

Advanced HTML and Form Elements 179

.warning {
 color: orange;
}

Then any tag could be specifi ed with the class attribute within the tag in the HTML
code.

<b class=“warning”>This is a bold warning.
<i class=“warning”>This is an italicised warning.</i>

Pseudo Styles

In addition to the normal tags like body, p and td, there are some pseudo-tags that
allow the hypertext links to be controlled.

A:Link

Controls the appearance of an unvisited hypertext link.

A:Visited

Controls the appearance of a visited hypertext link.

Style Examples

The following listing contains the code for a style sheet that includes styles similar
to those listed above.

body {
 text-align: center;
}

p {
 font-style: italic;
 text-align: right;
}

td.under {
 text-decoration: underline;
 text-align: right;
}

td.center {
 font-weight: bold;
 text-align: center;
}

.warning {
 font-size: 150%;
}

180 Web Development with Java

Next is an example of a page that uses the above style sheet. Notice how the specifi c
td tag is specifi ed by <td class=“under”> or <td class=“left”>.

<html>
 <head>
 <title>Test page for CSS</title>
 <link REL=“stylesheet” TYPE=“text/css”
 HREF=“test.css”>
 </head>
 <body>
 This is some text that is not included in
 a paragraph. It should be centred across the page.
 <p>
 This is the text for the paragraph. It should
 be italicised and aligned to the right side of the
 page.
 <table border>
 <tr>
 <td>Normal Text</td>
 <td>is not centred. It is not centred because
 tables have a default alignment of left, so
 the centre of the body does not cascade. It
 has a bold <b class=“warning”>warning.
 </td>
 </tr>
 <tr>
 <td class=“under”>In a TD: under</td>
 <td class=“under”>is underlined and right aligned</td>
 </tr>
 <tr>

Figure 6.6 A page that uses a style sheet, as seen in a browser.

Advanced HTML and Form Elements 181

 <td class=“center”>In a TD: centre</td>
 <td class=“center”>is bold and centred</td>
 </tr>
 </table>
 <p>
 This is in a paragraph, too. It has right alignment.
 It has an underlined <u class=“warning”>warning</u>.
 </p>
 This is not in a paragraph, it is centred.
 It has an italic <i class=“warning”>warning</i>.
 </body>
</html>

The above page will look like Figure 6.6, when viewed in a browser.

6.4 Form Elements

While being able to enter text in a form and to click a button is all that is needed
for data entry, there are form element tags that allow more fl exibility when
entering data. These tags specify a layout to be used in the browser. There are
tags for passwords, multiple lines of text, radio buttons, checkbox buttons and
selection lists.

Although there are many ways for the user to enter data in a form, they all have
one of three HTML syntaxes: those that look like the input tag, the textarea tag
and the select tag.

The input tags already include the text tag and the button tag for submitting
data. In addition, there is a variation for entering a password, displaying a radio
button and displaying a checkbox button.

The textarea tag is used to enter multiple lines of text.
The select tag can display a drop down list or a multiple selection list. The drop

down list only allows one option to be chosen and the available options can be
viewed from a list that drops down from the element in the browser. The multiple
selection list allows more than one option to be chosen and displays a scrollable
window that displays the available options.

6.4.1 Input Elements

Up until this point, all HTML forms have used only three different form elements:
text, hidden, and submit. All three of these use the same tag: input.

<input type=“text” name=“hobby”
value=“${helper.data.hobby}”>

<input type=“hidden” name=“hobby”
 value=“${helper.data.hobby}”>
<input type=“submit” name=“confi rmButton”
 value=“Confi rm”>

Additional elements have this same format. The only difference is the content of
the type attribute.

182 Web Development with Java

The password type behaves just like a text box, but the value in the browser
appears as a row of asterisks. There is not really any security in this. If the form
uses the GET method, then the value will appear as plain text in the query
string.

<input type=”password” name=”pswd”
 value=”${helper.data.pswd}”>

The radio type has the appearance of a radio button. The user cannot change the
value: it is hidden. The button can have two states: checked and unchecked. If it is
in the checked state when the form is submitted, then the value will be sent to the
server.

There is an additional attribute for radio elements named checked. If this
word appears in the tag, then the button will be checked whenever the page is
loaded.

<input type=“radio” name=“happiness”
 value=“1” checked>

The checkbox type has the appearance of a checkbox button. The user cannot
change the value: it is hidden. It can have two states: checked and unchecked. If it
is in the checked state when the form is submitted, then the value will be sent to
the server.

There is an additional attribute for check box elements named checked. If this
word appears in the tag, then the button will be checked whenever the page is
loaded.

<input type=“checkbox” name=“extra”
 value=“sprinkles” checked>

Radio Group

Radio buttons are most useful when they are placed in groups. A group of radio
buttons all have the same name, with different values. Only one of the radio
buttons with that name can be in the checked state at any time. Whichever one is
checked, that is the value that will be sent in the query string.

In the following listing, if Ecstatic is checked by the user, then the radio group
will be included in the query string as happiness=2. Even though Elated is
checked when the page is loaded, the value that the user selects will override the
initial value.

Level of Happiness:

<input type=“radio” name=“happiness”
 value=“1” checked>
 Elated
<input type=“radio” name=“happiness”
 value=“2”>
 Ecstatic
<input type=“radio” name=“happiness”
 value=“3”>
 Joyous

Advanced HTML and Form Elements 183

It is not necessary that the values for a radio group be numeric. All values are
actually strings, even if they appear to be numeric. Numbers were used in this
example only to demonstrate that numbers can be used as values.

Checkbox Group

A group of checkboxes all have the same name, with different values. More than
one element in a checkbox group can be in the checked state at any time. Checkbox
groups are especially useful for the programmer. In a servlet, a checkbox group
can be processed using a loop.

All the checked values will be sent in the query string as separate name = value
pairs. For instance, if Chocolate Sprinkles and Hot Fudge are checked, then they
would be included in the query string as extra=sprinkles&extra=fudge.

Preferred Extras:

<input type=“checkbox” name=“extra”
 value=“sprinkles”>
 Chocolate Sprinkles
<input type=“checkbox” name=“extra”
 value=“fudge” checked>
 Hot Fudge
<input type=“checkbox” name=“extra”
 value=“cream”>
 Whipped Cream

6.4.2 Textarea Element

Text boxes can only include one line of text. To enter multiple lines of text, use a
textarea element.

<textarea name=“comments”></textarea>

This will display as a box in which text can be typed. All the text in the box
will be sent to the server when the form is submitted. If you want an initial value
to display when the page is loaded, place it between the opening and closing
textarea tags.

6.4.3 Select Elements

There are two types of select lists: single selection lists and multiple selection lists.
The single selection list is also known as a drop down list. The multiple selection
list is also known as a scrollable list.

Single Selection List

This appears in the browser as a drop down list of values. Whichever value the
user selects, that is the value that will be sent to the browser. The fi rst value in the
list is the default value that will be sent to the browser, if the user does not make
a selection.

184 Web Development with Java

The selection list has nested tags for each of the options in the list. To have one
of them selected as the default, include an attribute named selected in the
option.

Grade
<select name=“grade”>
 <option value=“4.0”>A
 <option value=“3.67”>A-
 <option value=“3.33” selected>B+
 <option value=“3.00”>B
 <option value=“2.67”>B-
 <option value=“2.33”>C+
 <option value=“2.00”>C
</select>

It is not necessary that the values for a select list be numeric. All values are actually
strings, even if they appear to be numeric. Numbers were used in this example
only to demonstrate that numbers can be used as values.

Multiple Selection List

The only differences between the single selection list and the multiple selection
list are two attributes: multiple and size. The attribute multiple indicates that more
than one option may be selected by using the shift or control keys. The attribute
size is used to set the number of options that are visible in the scrollable window.
If the size is omitted then all the options will be visible in the window and the
scroll bars will not function.

<select name=“team” multiple size=“2”>
 <option value=“heat”>Heat
 <option value=“marlins”>Marlins
 <option value=“dolphins”>Dolphins
 <option value=“panthers”>Panthers
</select>

6.4.4 Bean Implementation

With the introduction of additional form elements, the bean must be modifi ed to
handle the new elements. Some of the new elements are handled the same way
that text boxes are handled. Other elements require more work to store the multi-
ple values in the bean and to display the values in a JSP.

Bean Properties

All the bean properties we have seen until now have been single-valued: the vari-
able is a primitive type; the mutator has a primitive parameter; the accessor
returns a primitive type (Listing 6.1).

Advanced HTML and Form Elements 185

protected String comments;
public void setComments(String comments) {

this.comments = comments;
}

public String getComments() {
return comments;

}

Listing 6.1 Template for a single-valued property.

With the introduction of checkbox groups and multiple selection lists, there must
be a way to store the multiple values in the bean. This requires the notion of a
multiple-valued bean property. If a property in a bean is multiple-valued, then
declare the variable as an array and change the signatures of the mutator and
accessor to agree (Listing 6.2).

protected String[] extra;
public void setExtra(String[] extra) {

this.extra = extra;
}

public String[] getExtra() {
return extra;

}

Listing 6.2 Template for a multiple-valued property.

Even though there are many different form elements, there are only two types of
bean properties: single-valued and multiple-valued. In the bean, there is no way
to determine if a single-valued property was set using a text box or a radio button;
there is no way to determine if a multiple-valued property was set using a check-
box group or a multiple selection list. This makes it easier for the developer to
implement a bean: there are only two possible choices for implementing a bean
property.

Filling the Bean

For multiple-valued elements, there will be multiple name = value pairs in the
query string. For instance, if a checkbox group named team has the teams heat
and marlins checked, then the query string will appear as

?team=heat&team=marlins

For these elements, another method that is part of the request object will retrieve
all of these values: getParameterValues. This method returns an array of
strings that contains all of the values that are in the query string. If there are no
values, then the method returns null.

In order to copy all the values from the query string, it would be necessary to
call the property’s accessor with the values from the query string.

data.setTeam(request.getParameterValues(“team”));

186 Web Development with Java

The good news is that the fi llBeanFromRequest method that has been used to
copy the values from the query string to the bean will also work for multiple-valued
properties. The fi llBeanFromRequest method that is in the bean base class
does not need to be modifi ed to work for multiple-valued properties.

Until now, all properties have been strings. In the bean for this example, the
happiness property has been defi ned as an integer and the grade property has
been defi ned as a double.

protected int happiness;
protected double grade;
public void setHappiness(int happiness) {

this.happiness = happiness;
}

public int getHappiness() {
return happiness;

}
...
public void setGrade(double grade) {

this.grade = grade;
}

public double getGrade() {
return grade;

}

This was done to demonstrate that the fi llBeanFromRequest method could
also process these types; it will convert the value from the string in the form into
the correct numeric type. If there is an error, then a value of zero is returned.

Please do not think that all radio groups must use integers or that all single
select lists must use doubles. These types were chosen for demonstration purposes
and a string could have been used for either of these properties.

Resetting Nullable Fields

As long as a form element that is a text box has a name, then data for the text box
will be sent in the query string. If no data is entered by the user, then the name of
the text box will be in the query string, but the value will be the empty string.

hobby=&confi rmButton=Confi rm

This is also true for hidden elements, password elements, text areas and single
selection lists.

Radio groups, checkbox groups and multiple selection lists are different. If the
user does not make a choice in these elements, then the name of the element will
not be in the query string.

This causes a problem for the fi llBeanFromRequest method. It calls the muta-
tors for all the properties that are named in the query string. If the name of a property
is not in the query string, then the mutator of that property will not be called.

Imagine that the user makes some choices in a checkbox group and hits the
confi rm button. The values that the user chose will be placed into the query string.

Advanced HTML and Form Elements 187

extras=fudge&extras=cream&confi rmButton=Confi rm

When the values from the query string are copied to the bean, the mutator for the
property will be called, with an array containing fudge and cream. A bean with
these values will be placed in the session.

Now imagine that the user clicks the edit button, returns to the edit page and
unchecks all the values. When the user clicks the confi rm button, the name of the
checkbox group will not be in the query string, because all of the values were
unchecked.

confi rmButton=Confi rm

In this case, the mutator for the checkbox group’s property will not be called, since
the fi llBeanFromRequest method only calls the mutators for properties that
are in the query string. The effect of this is that the old values from the session
will not be erased. The only way to erase those values is to call the setter again
with new values. Since the user did not specify any new values, then the old values
will still be there.

The solution to this problem is to manually call the setters for those properties
that might not be included in the query string. These types of elements are often
called nullable elements. Create a method that will call the mutators for each of
the nullable elements.

public void resetNullable() {
 data.setExtra(null);
 data.setTeam(null);
 data.setHappiness(0);
}

Use appropriate values to reset the properties. Call this method before new values
are copied from the request into the bean.

resetNullable();
fi llBeanFromRequest(data);

Accessing Multiple-Valued Properties

Since the accessors for multiple-valued elements return arrays, the JSP can access
the values using a loop like the one that was used for displaying the database in
Chapter Five. In this case, the array contains strings, so it is easy to display each
of the values.

Notice that the taglib statement must appear in the confi rm page once and
before any references to its tags.

<%@ taglib uri=“http://java.sun.com/jsp/jstl/core”
 prefix=“core” %>

<core:forEach var=“extra”
 items=“${helper.data.extra}”>
 ${extra}

188 Web Development with Java

</core:forEach>

...

<core:forEach var=“team”
 items=“${helper.data.team}”>
 ${team}
</core:forEach>

In these two examples, the multiple values have been displayed using one of the
advanced layout tags: unordered list. The opening and closing list tags are placed
before and after the loop tag. In the loop, each element in the array is displayed
with a list item tag.

6.5 Application: Complex Elements

An application will be developed that uses all of these new form elements. There
will be a password fi eld, a radio group, a checkbox group, a textarea for multiple
lines of text, a single selection list (drop down list) and a multiple selection list
(scrollable list).

6.5.1 Controller: Complex Elements

In order to see what the query string looks like for each request, all forms will use
the GET method. The controller will only need to be able to process GET requests.

6.5.2 ControllerHelper: Complex Elements

The controller helper will be the same as the controller helper from the Enhanced
example in Chapter Four, except for the name of the bean, the helper base class
and the location of the JSPs. The helper base will be the one from Chapter Five.

6.5.3 Edit.jsp: Complex Elements

The edit page is the page that defi nes the data for the application. The edit page
is where the user will enter all the data, so this is the page that will be defi ned fi rst.
All the other pages depend on this page; the bean will depend on the names of the
form elements that are added to this page.

Listing 6.3 shows the edit page. It has a password fi eld, a radio group, a checkbox
group, a textarea, a single selection list and a multiple selection list. Each of these
elements in the form is identical to the examples that were just developed above.

<!DOCTYPE html PUBLIC “-//W3C//DTD html 4.01//EN”>
<html>
<head>
 <meta http-equiv=“content-type”

 content=“text/html;charset=utf-8”>

Advanced HTML and Form Elements 189

 <title>Complex Form - Edit Page</title>
 <link rel=“stylesheet” href=“/book/complex.css”

 type=“text/css”>
</head>
<body>
 <form method=“get” action=“Controller”>
 Secret Code
 <input type=“password” name=“secretCode”>

 Level of Happiness:

 <input type=“radio” name=“happiness”
 value=“1” checked>
 Elated
 <input type=“radio” name=“happiness”
 value=“2”>
 Ecstatic
 <input type=“radio” name=“happiness”
 value=“3”>
 Joyous

 Preferred Extras:

 <input type=“checkbox” name=“extra”
 value=“sprinkles”>
 Chocolate Sprinkles
 <input type=“checkbox” name=“extra”
 value=“fudge” checked>
 Hot Fudge
 <input type=“checkbox” name=“extra”
 value=“cream”>
 Whipped Cream

 Comments<textarea name=“comments”></textarea>

 Grade
 <select name=“grade”>
 <option value=“4.0”>A
 <option value=“3.67”>A-
 <option value=“3.33” selected>B+
 <option value=“3.00”>B
 <option value=“2.67”>B-
 <option value=“2.33”>C+
 <option value=“2.00”>C
 </select>

 Team
 <select name=“team” multiple size=“2”>
 <option value=“heat”>Heat
 <option value=“marlins”>Marlins
 <option value=“dolphins”>Dolphins
 <option value=“panthers”>Panthers
 </select>

 <input type=“submit” name=“confi rmButton”

 value=“Confi rm”>
 </form>
</body></html>

Listing 6.3 An edit page that uses complex form elements.

190 Web Development with Java

6.5.4 Java Bean: Complex Elements

The edit page is the most important fi le in the application; it defi nes the data. Once
the edit page has been created, it is a straightforward process to create the bean.

The names of the bean properties will correspond to the names of the form
elements in the edit page. The type of form element that is used in the edit page
will determine whether the bean uses a single-valued property or a multiple-
valued property.

The names and types of the form elements from the edit page are listed in Table
6.4 along with the corresponding name of the accessor for the property and the
type of the property.

All of the single-valued properties will look like the property for the text area
fi eld, comments, from Listing 6.1.

All of the multiple-valued properties will look like the property for the check-
box group, extra, from Listing 6.2.

The only differences for the other elements will be the name of the property
and, possibly, the type of the property.

6.5.5 Confirm.jsp, Process.jsp: Complex Elements

The data from the bean is displayed in the confi rm page. A nested ordered list is
used to display the data from the bean. A loop is used to display the data from the
multiple-valued elements: extra and team (Listing 6.4).

...
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core”

 prefi x=”core” %>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Complex Form - Confirm Page</title>
 </head>
 <body>
 <p>
 This page displays the values from some
 complex form elements.
 </p>

Table 6.4 Correlation between the form elements and the bean
properties.

Element Property

Name Type Accessor Type

secretCode password getSecretCode single-valued
happiness radio getHappiness single-valued
extra checkbox getExtra multiple-valued
comments textarea getComments single-valued
grade select getGrade single-valued
team select getTeam multiple-valued

Advanced HTML and Form Elements 191

 Secret Code: ${helper.data.secretCode}
 Level of Happiness: ${helper.data.happiness}
 Extras:

 <core:forEach var=”extra”

 items=”${helper.data.extra}”>
 ${extra}
 </core:forEach>

 Comments: ${helper.data.comments}
 Grade: ${helper.data.grade}
 Teams:

 <core:forEach var=”team”

 items=”${helper.data.team}”>
 ${team}
 </core:forEach>

...

Listing 6.4 A confi rm page that loops through the values in complex form elements.

Except for having only one button, instead of two, the process page is identical to
the confi rm page.

Try It http://bytesizebook.com/book/ch6/complexForm/Controller

See how the elements look and interact with them. Submit the form to inspect the
query string.

Choose some values in the form (Figure 6.7).
Click the confi rm button. The chosen values are displayed in the page and

appear in the query string (Figure 6.8).
The entire query string will not be visible in the location window of the browser.

If it could all be seen at once, it would look like the following string. The multiple-
valued properties each have more than one item selected, so each one has multiple
entries in the query string.

Figure 6.7 Make some choices in the form elements.

192 Web Development with Java

?secretCode=secret+code&happiness=1&extra=fudge&extra=cream
&comments=Enter+some+values+and+click+the+button.
&grade=3.67&team=heat&team=marlins&confi rmButton=Confi rm

6.6 Using Advanced Form Elements

Using these new tags makes it easier for the user to enter data, but makes life a
little more complicated for the developer. There is a new technique for initialising
buttons in the checked state and for initialising the selection lists with selected
options that are in the query string. For elements that allow the user to select
multiple choices, a new technique is needed to save the data to the database.

6.6.1 Initialising Form Elements

Initialising password fi elds is identical to initialising text elements.

<input type=”password” name=”secretCode”
 value=”${helper.data.secretCode}”>

Textareas are a little different, because they are paired tags. Place the initial value
between the opening and closing tags.

<textarea name=”comments”
 >${helper.data.comments}</textarea>

The radio, checkbox and selection lists are a bit more complicated. The initial state
of a radio button or checkbox button is controlled by an attribute named checked.
If this attribute is present in the tag, then the button will be in the checked state;
if the attribute is missing, then the button will be in the unchecked state.

Figure 6.8 The confi rm page with all the choices listed.

Advanced HTML and Form Elements 193

In the following listing, the radio button for Elated will be in the checked state
every time the page is loaded; the Ecstatic button will not be checked.

<input type=”radio” name=”happiness”
 value=”1” checked>
 Elated
<input type=”radio” name=”happiness”
 value=”2”>
 Ecstatic

Somehow, if the value associated with the checkbox or radio button is in the query
string, then the button should have the word checked inserted into the tag.

One way to solve this problem is to place each tag in an if block and test if
the corresponding value is in the query string. This gets very messy, very quickly.
It would make the JSP very diffi cult to read, because there would be many if
statements scattered amongst the HTML. There is a better solution that uses
a map.

A solution to the problem of initialising form buttons, which avoids using any
if statements to determine if checked should be inserted into the tag, is to add a
map to the helper base that will associate the string checked with those values that
are in the query string.

The idea is to create a map that associates a form element with the word
checked. Each radio button or checkbox button in the form will have an entry in
the map, if the button was checked by the user. If the user did not check the button,
then that button will not have an entry in the map.

6.6.2 Map of Checked Values

The way this will be done is to create a map of maps. There will be a map for each
radio group or checkbox group that has a button checked. Each of these maps will
be placed in an all-encompassing map. This will allow the JSP to access the big
map and be able to access the individual maps by the name of the radio group or
checkbox group.

Each of the smaller maps will associate a string with a string, so the map should
be instantiated as such.

Map<String, String>

The all-encompassing map will associate a string with one of the smaller
maps. This map will have a key that is a string, but the value will be a smaller
map.

Map<String, Map<String, String>>

The map will store the word checked for all those buttons that have been checked
by the user, so it will be called checked.

Map<String, Map<String, String>> checked
 = new HashMap<String, Map<String, String>>();

194 Web Development with Java

One way to envision this is to think of a map of the world. Each country will be
represented on the world map, but to obtain specifi c information about a country,
a more detailed map for just that country would be needed.

A Small Map

For each radio and checkbox group that has a button checked, there must be a
small map added to the big map. Each group will have its own small map inside
the larger map.

Consider a radio group named happiness.

<input type=”radio” name=”happiness” value=”1”>Elated
<input type=”radio” name=”happiness” value=”2”>Ecstatic
<input type=”radio” name=”happiness” value=”3”>Joyous

A small map must be created for the radio group in the checked map. The name
of the group will be used as the key to retrieve the small map from the checked
map.

checked.put(“happiness”,
new HashMap<String, String>());

Each checked button in the group will be added to this small map.

Adding a Key

If the user has chosen Ecstatic in the radio group, then the value in the query string
for the radio group will be 2. That is the string that will be used as the key for the
radio group’s map; the value will be the word checked.

checked.get(“happiness”).put(“2”, “checked”);

The call to checked.get(“happiness”) returns the map for the radio group.
In this map, the word checked is associated with the key 2 by using the put method
of the small map.

Figure 6.9 shows the big map with a small map for a radio group and a small
map for a checkbox group.

Checked Map

group
name

happiness

extra

2

valuekey

checked

Happiness Map

sprinkles

valuekey

checked

Extra Map

fudge checked

Figure 6.9 The big map with two small maps.

Advanced HTML and Form Elements 195

Retrieving Map Values

Later, to determine if the Ecstatic button should be checked, use the name of the
group to retrieve the small map for the group, then retrieve the word stored in the
map for the button, using the button’s value as the key to the map.

checked.get(“happiness”).get(“2”)

Assuming that the user clicked this button, this will return the word checked.
Notice that the parameter to the fi rst get is the name of the group for the button

and the parameter to the second get is the value of the button.

<input type=”radio” name=”happiness” value=”2”>Ecstatic

What will be returned if the map is accessed with the other values in the radio group?

checked.get(“happiness”).get(“1”)
checked.get(“happiness”).get(“3”)

In both cases, the map will return null. Since neither button was clicked, then
neither value was sent in the query string and neither value was placed into the
map for the radio group.

Select lists use the word selected to select an option in the list. In addition to a
map for the checked values, a similar map will be created for the selection lists.
This map will associate the word selected with those values that have been chosen
by the user.

Modifying the Helper Base

Both of these maps will be added to the helper base class.

protected Map<String, Map<String, String>> checked =
new HashMap<String, Map<String, String>>();

protected Map<String, Map<String, String>> selected =
new HashMap<String, Map<String, String>>();

Two accessors will be added to the helper base class so that the maps can be
accessed from a JSP.

public Map getChecked() {
return checked;

}

public Map getSelected() {
return selected;

}

For each selected group or list, a new map must be created. If the map for a group
or list does not exist when an item is added, then the map will be created for that
group. This will be encapsulated in a method that accepts the name of the group
or list and the value that the user has chosen. If there is no map for the group or
list, then a new map will be created. Then, the appropriate word will be added to
the map for the value.

196 Web Development with Java

public void addChecked(String group, String item) {
if (checked.get(group) == null) {

 checked.put(group,
new HashMap<String, String>());

 }
 checked.get(group).put(item, “checked”);
}
public void addSelected(String list, String item) {
if (selected.get(list) == null) {

 selected.put(list,
new HashMap<String, String>());

 }
 selected.get(list).put(item, “selected”);
}

A method will be added for clearing all values from the maps.

public void clearMaps() {
 checked.clear();
 selected.clear();
}

Figure 6.10 contains a diagram of the helper base class. The maps, accessors and
helper methods have been added. An additional method has been added, which
will be explained in the next section.

HelperBase

HttpServletRequest request
HttpServletResponse response
Logger logger
Map errorMap
Map checked
Map selected

abstract copyFromSession ()
addHelperToSession ()
executeButtonMethod ()
fillBeanFromRequest ()
setErrors()
getErrors()
isValid ()
addChecked ()
addSelected ()
getChecked ()
getSelected ()
clearMaps()
setCheckedAndSelected ()

Figure 6.10 The helper base class with the checked and selected maps.

Advanced HTML and Form Elements 197

6.6.3 Automating the Process

The process of calling the addChecked and addSelected methods can be
automated by annotating the properties in the bean that correspond to radio
groups, checkbox groups and selection lists. A new annotation will be used to mark
the accessors of those properties.

Since these properties are set by adding the checked or selected attribute to the
element in the form, the annotation will be called SetByAttribute. The anno-
tation will have an attribute that indicates whether this property is set by using
the word checked or selected. To reduce errors, an enumeration has been created
for the two possible values (Figure 6.11).

The annotation uses a value from the enumeration to confi gure the property.
For those properties that correspond to radio and checkbox groups, use the
AttributeType.CHECKED value; for those that correspond to selection lists,
use the AttributeType.SELECTED value.

import shared.SetByAttribute;
import shared.AttributeType;
...
@SetByAttribute(type=AttributeType.CHECKED)
public int getHappiness() {

return happiness;
}

@SetByAttribute(type=AttributeType.SELECTED)
public double getGrade() {

return grade;
}

Like the ButtonMethod annotation, a method has been added to the helper base
that loops through all the methods in the bean and looks for those that have been
marked with the SetByAttribute annotation. For those accessors that have
been marked, the appropriate addChecked or addSelected method will be
called. If the accessor returns an array, then all of the values will be added to the
map. The name of this method is setCheckedAndSelected; it has been added
to the helper base class.

protected void setCheckedAndSelected(Object data) {
 ...
}

By calling setCheckedAndSelected, all the values in the bean for radio
groups, checkbox groups and selection lists will be added to the corresponding

enum AttributeType

CHECKED
SELECTED

Figure 6.11 The enumeration of AttributeType.

198 Web Development with Java

checked or selected map. As long as the annotations have been added in the bean,
this is the only method that needs to be called to add the values to the maps.

Setting the Maps

The maps should be fi lled every time that the bean has new data added to it. This
corresponds to the time when fi llBeanFromRequest is called.

fi llBeanFromRequest(data);
setCheckedAndSelected(data);

JSP Access

The big payoff for this technique can be seen from a JSP. Since accessors were
added to the helper base that return the all-encompassing maps for checked and
selected, then EL can access the maps from a JSP.

${helper.checked}
${helper.selected}

EL is especially useful when accessing a map; the get method of a map can be
accessed using the dot notation. Therefore, the map for the radio group can also
be retrieved.

${helper.checked.happiness}

Finally, the word associated with the value 2 in the radio group can be retrieved.
For those values in a map that are numbers or have embedded spaces, the dot
notation cannot be used to retrieve them. However, EL also allows array notation
to be used to access the get method of a map.

${helper.checked.happiness[“2”]}

Consider the complete radio group that has the code added to it for retrieving the
values from its map.

Level of Happiness:
<input type=”radio” name=”happiness” value=”1”
 ${helper.checked.happiness[“1”]}>Elated
<input type=”radio” name=”happiness” value=”2”
 ${helper.checked.happiness[“2”]}>Ecstatic
<input type=”radio” name=”happiness” value=”3”
 ${helper.checked.happiness[“3”]}>Joyous

Ask yourself what will happen if the user chooses the Ecstatic button.
In this case, ${helper.checked.happiness[“2”]} will return the

value checked. Both ${helper.checked.happiness[“1”]} and ${data.
checked.happiness[“3”]} will return null, which EL will render as the
empty string.

Advanced HTML and Form Elements 199

The radio group will be returned to the browser with the button for Ecstatic
checked and the other buttons unchecked.

Level of Happiness:
<input type=”radio” name=”happiness” value=”1”

>Elated
<input type=”radio” name=”happiness” value=”2”

 checked>Ecstatic
<input type=”radio” name=”happiness” value=”3”

>Joyous

A similar process will occur if the user checks one of the other buttons. The trick
is that the value that was sent in the query string to the controller has been used
as a key in the map for the radio group, while the other values in the radio group
have not been added to the map.

Data Flow

To take a closer look at how the data moves from the JSP to the controller and
back again, modify the checkbox group in the JSP so that all the boxes whose
values are in the query string are checked when the page is loaded.

<input type=”checkbox” name=”extra” value=”sprinkles”
 ${helper.checked.extra.sprinkles}>
 Chocolate Sprinkles
<input type=”checkbox” name=”extra” value=”fudge”
 ${helper.checked.extra.fudge}>
 Hot Fudge
<input type=”checkbox” name=”extra” value=”cream”
 ${helper.checked.extra.cream}>
 Whipped Cream

Assuming that the user selects sprinkles and fudge, this is the path that the data
would follow.

1. There are three options in the checkbox group: sprinkles, fudge, and cream.
2. The user selects sprinkles and fudge.
3. The query string would contain extra=sprinkles&extra=fudge.
4. These values would be placed into an array by the servlet engine:
{“sprinkles”, “fudge”}

5. This array would be returned by the getExtra method in the bean.
6. The setCheckedAndSelected method would loop through these values

and call addChecked for each, adding sprinkles and fudge to the hash map
for the checkbox group.

7. The map for the checkbox group would be created before the fi rst value is added
to it.

8. The map for the checkbox group would have the pairs
(“sprinkles”, “checked”) and (“fudge”, “checked”) in it.

9. In the JSP

200 Web Development with Java

a. ${helper.checked.extra[“sprinkles”]} would return the value
checked.

b. ${helper.checked.extra[“fudge”]} would return the value checked.
c. ${helper.checked.extra[“cream”]} would return null and

would be displayed as the empty string.

Figure 6.12 demonstrates how the EL statement in a JSP accesses a small map for
a checkbox group named extra.

6.7 Application: Initialised Complex Elements

The Complex Form example will be modifi ed so that the form elements are ini-
tialised with data that is in the query string. This means that if the user enters data
in the edit page, proceeds to the confi rm page and returns to the edit page, then
all of the user’s choices will be initialised in the form.

1. The controller will handle GET and POST requests.
2. The JSP forms will be modifi ed so that they use the POST method.
3. The maps for the checked and selected values will be added to the helper base.
4. The accessors and helper methods for the checked and selected maps will be

added to the helper base.
5. The methods for automating the process of setting the values in the maps will

be added to the helper base.
6. The bean will be annotated with the SetByAttribute annotation.
7. The edit page will have the EL added to it for retrieving the checked and selected

attributes.

Checked Map

Session

"helper"
EL in JSP
${helper .checked .extra .sprinkles } helper

group
name

happiness

extra

2

.extra

valuekey

checked

Happiness Map

sprinkles

valuekey

checked

Extra Map

fudge checked

.checked

Figure 6.12 Accessing the small map for a checkbox group.

Advanced HTML and Form Elements 201

6.7.1 Java Bean: Initialised Complex Elements

Annotate all the accessors for radio groups, checkbox groups and select lists with
the SetByAttribute annotation.

...
@SetByAttribute(type=AttributeType.CHECKED)
public int getHappiness() {

return happiness;
}

@SetByAttribute(type=AttributeType.SELECTED)
public double getGrade() {

return grade;
}

@SetByAttribute(type=AttributeType.CHECKED)
public String[] getExtra() {

return extra;
}

@SetByAttribute(type=AttributeType.SELECTED)
public String[] getTeam() {
return team;

}
...

6.7.2 HelperBase: Initialised Complex Elements

The maps for checked and selected values will be added to the helper base class as
member variables. The helper methods for setting values in the maps will be
added. Accessors will be added for retrieving the maps from JSPs. The method for
automating the process will be added.

protected Map<String, Map<String, String>> checked =
new HashMap<String, Map<String, String>>();

protected Map<String, Map<String, String>> selected =
new HashMap<String, Map<String, String>>();

...
public Map getChecked() {
return checked;

}

public Map getSelected() {
return selected;

}
...
protected void setCheckedAndSelected(Object data) {
 ...
}

202 Web Development with Java

Additional methods for using the maps have also been added to the helper base.
See the Appendix for a complete listing of the Helper Base class for Chapter 6.

6.7.3 ControllerHelper: Initialised Complex Elements

Up until now, whenever data was copied from the session, only the bean was
copied. Now, there is additional data to be copied from the session into the current
helper: the maps for selected and checked values. The copy method needs to be
updated so that the maps are copied from the data in the session into the current
helper.

...
public void copyFromSession(Object sessionHelper) {
if (sessionHelper.getClass() == this.getClass()) {

 ControllerHelper helper =
 (ControllerHelper) sessionHelper;
 data = helper.data;
 checked = helper.checked;
 selected = helper.selected;
 }
}
...

The radio groups, checkbox groups and multiple select lists might not have any
choices chosen by the user. In order to delete all the old values from the session,
call the mutator for each nullable property. A method named resetNullable will be
added to the controller helper. In it, each of the mutators for the radio, checkbox
and multiple selection list have been called with appropriate values.

...
public void resetNullable() {
 data.setExtra(null);
 data.setTeam(null);
 data.setHappiness(0);
}
...

Reset the nullable elements before new data is added to the bean. Add the values
for the checked and selected maps after new data has been added to the bean.
Perform these tasks in the method for the confi rm button, since this is the only
time when there is new data.

...
@ButtonMethod(buttonName=”confi rmButton”)
public String confirmMethod() {
 resetNullable();
 fi llBeanFromRequest(data);
 setCheckedAndSelected(data);
 String address;
if (isValid(data)) {

 address = jspLocation(“Confi rm.jsp”);

Advanced HTML and Form Elements 203

 } else {
 address = jspLocation(“Edit.jsp”);
 }
return address;

}
...

It is not necessary to reset the maps for the selected and checked values, since
these are reset every time that setCheckedAndSelected is called.

6.7.4 Edit.jsp: Initialised Complex Elements

Initialise the checkbox buttons with the values from the query string, by including
the code that accesses the maps. Each reference will be similar.

<input type=”checkbox” name=”extra” value=”sprinkles”
 ${helper.checked.extra.sprinkles}>
 Chocolate Sprinkles

The radio group is initialised in a similar way.
Initialise each option in the multiple selection list with the values from the

query string by including the code that accesses the maps. Each reference will be
similar.

<option value=”heat”
 ${helper.selected.team.heat}>
 Heat

The single selection list is initialised in a similar way.

Try It http://bytesizebook.com/book/ch6/complexInit/Controller

Enter some values into the form, then click the confi rm button. From the confi rm
page, click the edit button and you will see the edit page initialised with all the
values that were selected before.

6.7.5 Saving Multiple Choices

It is not diffi cult to save a bean that uses the advanced form elements. The single-
valued properties behave just like text boxes. For multiple-valued properties, the
accessors need two additional Hibernate annotations.

@CollectionOfElements
@IndexColumn

The CollectionOfElements attribute means that Hibernate will create an
additional table for the multiple-valued property. This is completely transparent
at the Java class level. Figure 6.13 is an example of data that is in the main table
for the bean that has been developed in this chapter. It does not include the data
for the multiple-valued properties; that data is stored in separate tables.

204 Web Development with Java

Figure 6.13 The data for the one-to-many properties is not in the main table.

The data for each multiple-valued property is stored in a separate table. Each
separate table is related to the main table for the bean. In order to build this rela-
tionship, each row in the separate table will contain the primary key of the related
row in the main table. However, there can be multiple rows in the separate table
for one row in the main table.

In order to identify each of the rows uniquely, there is a secondary key in the
related table. The secondary key distinguishes amongst multiple values for the
same row in the main table. This is an example of a table that has a composite
primary key. It is made up of two columns: the primary key from the main table
and the secondary key from the related table. The secondary key will be generated
by the database and is referred to as an index column.

Figure 6.14 shows the values for the checkbox group, named extra. The fi rst
column in the table contains the primary key from the main table. The last column
in the table contains the secondary key. The primary key and the secondary key
together will uniquely identify each row in this table.

The IndexColumn attribute sets the name of the column for the secondary
key in the separate related table. The base attribute is where to start indexing.
The usual values are zero or one.

...
@CollectionOfElements
@IndexColumn(name=”extra_pos”, base=0)
@SetByAttribute(type=AttributeType.CHECKED)
public String[] getExtra() {

return extra;
}
...

Only annotate properties that return an array with these annotations. If single-
valued properties are annotated with them, there will be a runtime error.

Figure 6.14 The data for each one-to-many property is in a separate table.

Advanced HTML and Form Elements 205

6.8 Application: Complex Persistent

The Complex Initialised example will be extended by saving data to the database.
Review the steps from Chapter Five for writing an application that saves data to a
database.

The only additional step that is needed to write a multiple-valued property to
the database is to annotate the accessor of the property.

In the controller helper, instead of using Java to confi gure hibernate, use a
hibernate.cfg.xml (see Chapter Five). Place this fi le in the classes directory
of the web app. Be sure to update the fi le with your server, port, username, pass-
word and database.

...

<property name=”connection.url”>
 jdbc:mysql://your-server:your-port/your-database
</property>
<property name=”connection.username”>
 your-user-name
</property>
<property name=”connection.password”>
 your-password
</property>
...

6.8.1 Java Bean: Complex Persistent

Each of the multiple-valued properties from the Initialised Complex Elements
application needs to be annotated with two annotations. Only place these
annotations before the properties that return arrays, CollectionOfElements and
IndexColumn.

import org.hibernate.annotations.IndexColumn;
import javax.persistence.CollectionOfElements;
import shared.SetByAttribute;
...

@CollectionOfElements
@IndexColumn(name=”extra_pos”, base=0)
@SetByAttribute(type=AttributeType.CHECKED)
public String[] getExtra() {

return extra;
}

@CollectionOfElements
@IndexColumn(name=”team_pos”, base=0)
@SetByAttribute(type=AttributeType.SELECTED)
public String[] getTeam() {

return team;
}
...

206 Web Development with Java

6.8.2 Process.jsp: Complex Persistent

The only JSP that needs to be changed is the process JSP. It will display the list of
data that is in the database. This is not a normal feature in an application; it is
done in this application to demonstrate that the data has been updated in the
database.

A table is used to organise the data in the database. An outer loop is used to
access each row in the database; each fi eld from the row is displayed in its own cell
in the table. For a cell that contains a multiple-valued property, there is an inner
loop that displays all of the property’s values. The taglib statement for the JSTL
must be included in the JSP before the fi rst reference to a core tag.

<%@ taglib uri=”http://java.sun.com/jsp/jstl/core”
 prefi x=”core” %>

...
<table>
 <core:forEach var=”record” items=”${database}”>
 <tr>
 <td>${record.secretCode}
 <td>${record.happiness}
 <td>

 <core:forEach var=”extra”
 items=”${record.extra}”>
 ${extra}
 </core:forEach>

 <td>${record.comments}
 <td>${record.grade}
 <td>

 <core:forEach var=”team”
 items=”${record.team}”>
 ${team}
 </core:forEach>

 </tr>
 </core:forEach>
</table>
...

Try It http://bytesizebook.com/book/ch6/complexPersistent/Controller

Enter some data in the form, confi rm the data and view all the rows from the
database.

6.9 Summary

The basic structure of a web application was developed in the fi rst four chapters.
This chapter introduced features that added more style to a web application, not
more substance.

Advanced HTML and Form Elements 207

There are more advanced ways to arrange content in a web page than using
paragraph tags and new line tags. These advanced layout tags give the developer
more control over how the content is arranged in the page. List tags allow indexes
and table of contents to be generated with ease. A table tag allows content to be
arranged like a newspaper page.

There are also additional tags that add style to the page. These tags are of a
generic sort; they allow the developer to arrange content according to what the
content represents and not the actual style of the content. It is up to the browser
to decide how to display these elements.

Some tags allow the developer to set the style directly. These tags are an aber-
ration from the generic style of most HTML tags. They were added to HTML when
it was assumed that all display monitors could display basic styles like italic, bold
and underline.

Web designers wanted more ways to set the style of a page. Developing more
tags like italic was one possibility, but it was not a good possibility. Instead, it was
recommended that style be separated from the HTML as much as possible. The
way to do this was with cascading style sheets. This allowed the developer to defi ne
the style for a web site in one fi le and let all the HTML fi les use the same style
sheet. This is now the preferred way to add style to a web site.

There are also additional tags for specifying input in an HTML form. While text
boxes and submit buttons are all that are needed for user input, there are addi-
tional input elements that use radio buttons, checkbox groups, drop down lists,
scrollable lists, password fi elds and multi-line text boxes. These elements make it
easier for a user to enter data in a form.

While these new tags make it easier for the user, they add some complexity to
the web application for the developer. It is more diffi cult to initialise some of these
elements with data in the query string and it is more diffi cult to save some of them
to a database.

6.10 Chapter Review

Terms

 1. Inline tag
 2. Block tag
 3. Ordered list
 4. Unordered list
 5. Defi nition list
 6. Table

a. Table row
b. Table data
c. Table heading

 7. Embedded image
 8. Cascading Style Sheet (CSS)

a. Scales
b. Default styles

208 Web Development with Java

c. Multiple defi nitions
d. Nested styles
e. Named styles
f. Generic styles
g. Pseudo styles
h. Class
i. Font family
j. Generic font family

 9. External style sheet
10. Radio group
11. Checkbox group
12. Selection lists
13. Single-valued properties
14. Multiple-valued properties
15. Nullable fi elds
16. Map of checked values
17. Map of selected values

New Java

1. Annotations
a. @CollectionOfElements
b. @IndexColumn(name = “...”, base = 0)
c. @SetByAttribute(type = AttributeType....)

2. Enumerations
a. AttributeType { CHECKED, SELECTED }

Tags

 1. JSP
a. ${helper.checked}
b. ${helper.selected}
c. ${helper.checked.extra}
d. ${helper.selected.team}
e. ${helper.checked.extra.fudge}
f. ${helper.selected.team.heat}
g. ${helper.checked.extra[“whipped cream”]}
h. ${helper.selected.team[“2”]}

 2. u
 3. b
 4. i
 5. h1 . . . h6

Advanced HTML and Form Elements 209

 6. ol
a. li

 7. ul
a. li

 8. dl
a. dt
b. dd

 9. table
a. tr
b. td

 i. rowspan attribute
 ii. colspan attribute

c. th
10. img

a. src attribute
11. link

a. href attribute
b. rel attribute
c. type attribute

12. Form elements
a. input

 i. password
 ii. radio

 A. checked attribute
iii. checkbox

 A. checked attribute
b. textarea
c. select

 i. multiple attribute
 ii. size attribute
iii. Option

 A. selected attribute

Style

 1. background-color
 2. background-image
 3. color
 4. font-family
 5. font-size
 6. font-weight
 7. font-style

210 Web Development with Java

 8. text-decoration
 9. text-transform
10. text-align
11. text-indent
12. margin-left
13. margin-right
14. width
15. list-style-type

Questions

 1. What is the difference between an inline tag and a block tag?
 2. How many predefi ned headings are there?
 3. How is the tag different from the tag?
 4. How is the <th> tag different from the <td> tag?
 5. What does the rowspan attribute control?
 6. What does the colspan attribute control?
 7. List the fi xed scales in a style sheet.
 8. List the relative scales in a style sheet.
 9. What is a font family?
10. What is a generic font family?
11. How can bold tags inside paragraphs be given a different appearance from

bold tags inside tables?
12. How can two paragraphs have different styles defi ned for them?
13. What is a generic style?
14. If special is a named style for paragraphs, how can a paragraph in an HTML

page be given this named style?
15. List all the different types of input elements in a form (not just the new ones

from this chapter).
16. Explain how a radio button can be placed into the checked state.
17. What would the query string look like if a password fi eld named secret had

the value top secret code typed into it?
18. What would the query string look like if a textarea named comments had the

value I love Java typed into it?
19. What would the query string look like if a radio group named team had the

value marlins checked?
20. What would the query string look like if a single selection list named team

had the value panthers selected?
21. What would the query string look like if a checkbox group named team had

the two values heat and dolphins checked?
22. What would the query string look like if a multiple selection list named team

had the two values hurricanes and dolphins selected?
23. What is the difference between the mutator for a single-valued property and

the mutator for a multiple-valued property in a bean?

Advanced HTML and Form Elements 211

24. Write the JSP code that will display all the values for a checkbox group named
team.

25. Write the JSP code that will display all the values for a multiple selection list
named team.

26. Explain how a hash map is used to simplify the initialisation of a checkbox
group in a JSP.

27. What annotations are needed to save a checkbox group to a database?
28. What annotations are needed to save a multiple selection list to a database?
29. Explain how nested loops are used to display all the values in a collection of

beans, if there are multiple-valued properties in the bean.

Tasks

 1. Create an HTML page that has six paragraphs. Give each paragraph a different
heading from the predefi ned headings. Include some content in each para-
graph. Be sure that each heading is separate from each paragraph.

 2. Create an HTML page that has three paragraphs. Make one paragraph bold,
one italic and one underlined.

 3. Create an HTML page that has a table with four rows and three columns.
Include text or graphics in each cell in the table.
a. Make one of the cells in the table span two rows.
b. Make one of the cells in the table span two columns.
c. Make one of the cells span two columns and two rows.

 4. Create a style sheet that will set the colours, margins and font for a page. Give
a list of preferred fonts, with a fi nal choice that is one of the generic font
families.

 5. Create an HTML page that has an outline. There should be three levels in the
outline. Create a style sheet for the page that will set the numbering for the
outline as uppercase Roman letters, then uppercase English letters, then
decimal numbers.

 6. Create a style sheet that forces all predefi ned headings to be displayed in
uppercase letters. Create an HTML page that uses this style sheet and demon-
strates the styles.

 7. Create a style sheet that sets the margin for all paragraphs to fi ve widths of
the letter ‘x’. In this style sheet, also create a named style for paragraphs that
creates a hanging indent. A hanging indent indents the entire paragraph,
except for the fi rst line. Create an HTML page that uses this style sheet and
demonstrates the styles.

 8. Create an HTML page that has three paragraphs. Make one paragraph bold,
one italic, and one underlined. Do not use the bold, italic and underline tags.
Create a style sheet for the page that defi nes three named styles for
paragraphs.

 9. Create a style sheet that will set the width of ordered lists to 3/4 the width
of the page. Also set the width of horizontal rulers to 3/4 the width of the
page. Create an HTML page that uses this style sheet and demonstrates
the styles.

212 Web Development with Java

10. Create an application with a JSP that has a form with a textarea and a
password.
a. Create a bean to encapsulate the data.
b. Create a controller.
c. Validate that the password has at least six characters.
d. Validate that the textarea has at least six words.
e. If the data is invalid, display the form again with the textarea and password

initialised with any values that the user had supplied.
f. If the data is valid, display the data and allow the user to confi rm it or edit

it.
g. If the user confi rms the data, save it to a database and display a page with

the user’s data.
11. Create an application with a JSP that has a form with a radio group and a

single selection list.
a. Create a bean to encapsulate the data.
b. Create a controller.
c. Validate that at least one of the radio buttons has been checked.
d. Validate that at least one of the options in the list has been selected.
e. If the data is invalid, display the form again with the radio group and list

initialised with any values that the user had supplied.
f. If the data is valid, display the data and allow the user to confi rm it or edit

it.
g. If the user confi rms the data, save it to a database and display a page with

the user’s data.
12. Create an application with a JSP that has a form with a checkbox group and a

multiple selection list.
a. Create a bean to encapsulate the data.
b. Create a controller.
c. Validate that at least two of the checkboxes are checked.
d. Validate that not all of the items in the selection list are selected.
e. If the data is invalid, display the form again with the checkbox group and

list initialised with any values that the user had supplied.
f. If the data is valid, display the data and allow the user to confi rm it or edit

it.
g. If the user confi rms the data, save it to a database and display a page with

the user’s data.
h. Note: There is an annotation for Hibernate that tests the size of an array

@Size(min=x,max=y)

213

7 Accounts, Cookies and Carts

An application will be developed that requires a user to log into the site. Once the
user has logged in, the user’s previous data will be retrieved from the database.
Once a bean has been retrieved from the database, any changes to that bean
will replace the data that is already in the database, instead of adding a new row.
Hibernate determines if a bean has already been written to the database by looking
at the primary key. If the primary key has not been set, then Hibernate will add
the bean to the database; if the primary key is not null, then Hibernate will update
the corresponding row in the database.

Finding a row in the database using the primary key is a simple matter. However,
the primary key that we have been using has been generated by the database
and its value is unknown to the user. In order to fi nd a row in the database,
there must be a way for the user to uniquely specify the desired row. In the simple
case, there will be a fi eld that uniquely identifi es each row in the database,
like social security number, phone number, email address or account number.
In other cases, several fi elds might need to be combined to identify a row. We
shall only consider the simple case where one fi eld can identify a row. Once
a bean has been retrieved from the database, it will be placed in the session
and used to store all the information that the user enters. When this bean is
written to the database, the values will be used to update the row that is already
in the database.

Web applications are stateless: the developer must add code so that the applica-
tion will remember what the user has done recently. Because of this, it is diffi cult
to identify users until they log into a database. For this reason, cookies were devel-
oped. Cookies allow information to be stored on a user’s computer. When the user
visits a site, the stored information is sent to the site. The application can use this
information to identify the user.

Cookies can be created for specifi c URLs and specifi c times. More than one
cookie can be set by an application and more than one cookie can be received by
an application. An application can delete a cookie by setting its time to zero. A
user can delete a cookie through the browser’s menus.

Most e-commerce sites allow the user to enter data into a shopping cart. This
allows the user to browse the site, adding items to the cart for later purchase. A
shopping cart is easy to implement using Java 1.5 generics. A complete application
will be developed that uses a shopping cart.

214 Web Development with Java

7.1 Retrieving Rows from the Database

For all the applications that have been developed in this book, a primary key has
been assigned by the database to each row that is added to a table. This primary
key is used internally by the database and has no relationship with the data that
is being stored. By allowing the database to assign the primary key, we are relieved
of the responsibility of ensuring that each row in the database has a unique
primary key value. However, there is a drawback; the user does not know the value
of this primary key, so cannot use it to retrieve the row from the database.

In order to retrieve a row from the database, it is necessary to be able to identify
a row based upon the values that are stored in the row. In many applications, there
will be a fi eld in the data that can be used to identify the row uniquely: social
security number, phone number, username, email address or account number. In
other applications, it may be more diffi cult. It may be necessary to look at several
fi elds in order to identify a row. For instance, a person’s address could be used to
identify a row, but this would require looking at several fi elds: street, apartment,
city, postal code.

When retrieving a row from the database, it is common to validate the fi elds
that are used to identify a row, before validating any new data that the user will
enter. The isValid method developed in Chapter Five is an all-or-nothing
approach. A new method will be introduced that can validate one fi eld at a time.

Once a row has been retrieved and placed into the session, it is only necessary
to use the bean that has been added to the session. As long as all changes are made
to that bean, then when the bean is written to the database, it will update the
information that is in the database.

7.1.1 Finding a Row

Hibernate has the ability to retrieve a row from the database using one or more
fi elds. There are several methods that can be used: SQL, Hibernate SQL, Criteria.
The Criteria technique will be used in this book; it uses Java and requires no
knowledge of SQL. The Hibernate Criteria class is a robust class. Only a simple
example will be used here. Refer to the references for more information.

The Hibernate helper class has a method that will retrieve all rows that match
a given fi eld. The class that contains the property, the name of the property and
the value to match are passed to the method. The method then creates search cri-
teria that Hibernate will use to fi nd all rows that match the criteria.

public java.util.List getListData(
 Class classBean, String strKey, Object value)
{
 java.util.List result = new java.util.ArrayList();

 Session session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 Criteria criteria =
 session.createCriteria(classBean);
if (strKey != null) {

Accounts, Cookies and Carts 215

 criteria.add(Restrictions.like(strKey, value));
 }
 result = criteria.list();

 tx.commit();
 session.close();
return result;

}

Another method in Hibernate helper will return the fi rst row that matches the
given criteria.

public Object getFirstMatch(
 Class classBean, String strKey, Object value) {
 java.util.List records =
 getListData(classBean, strKey, value);
if (records != null && records.size() > 0) {
return records.get(0);

 }
return null;

}

The method getFirstMatch will be used to retrieve the bean for a persistent
row and set it as the bean in the session. If a bean is returned from this method,
it will be set as the bean in the session.

...
Object dataPersistent = HibernateHelper
 .getFirstMatch(data, “accountNumber”,
 data.getAccountNumber());
if (dataPersistent != null) {
 data = (RequestDataAccount)dataPersistent;
}
...

7.1.2 Validating a Single Property

The account number will be used to fi nd a row in the database. It should be vali-
dated before it is used to access the database. At the least, it should be tested that
it is not null or empty. New methods have been added to the helper base class that
allow for one fi eld in a bean to be tested, instead of testing all the fi elds in the bean
at once.

To validate one fi eld, the validation messages must be set fi rst. In order to do
this, call the setErrors method. Previously, this method was called by the
isValid method, but now it will be more effi cient if it is called directly. It only
needs to be called once, since it will create the validation errors for all the proper-
ties in the bean.

After calling setErrors, the isValidProperty method can be called for
as many properties as need to be validated. Only call setErrors once, no matter
how many times isValidProperty is called.

216 Web Development with Java

...

setErrors(data);
if (isValidProperty(“accountNumber”)) {
...

7.2 Application: Account Login

An application will be developed that is based upon the Persistent Data example
from Chapter Five.

1. The bean will be modifi ed so that it has an account number.
2. The account number will be validated as being two letters followed by three

digits.
3. Each user will be required to log into the site by specifying an account

number.
4. If the user has saved data before, then the data from the database will be used

to initialise the data in the edit page.
5. The bean that is retrieved from the database will be placed in the session and

will be accessible from all of the JSPs.
6. When the data is written to the database, the new data will overwrite the previ-

ous data in the database.

The simplicity of this application is that once the user has logged into the site,
the code is exactly the same is it was in Chapter Five. By adding a front end of
a login page, the user is able to retrieve and edit the data in the database.

7.2.1 Java Bean: Account Login

The only change to the bean is the addition of the account number property. It is
important to realise that this fi eld is not the primary key for the bean; the primary
key is still needed. The primary key is used internally by the database; the account
number is used by the user to identify each row in the database.

...

@Pattern(regex=”[a-zA-Z]{2}\\d{3}”,
 message=”must be in the format AA999.”)

public String getAccountNumber() {
return accountNumber;

}
public void setAccountNumber(String accountNumber) {

this.accountNumber = accountNumber;
}
...

7.2.2 Login.jsp: Account Login

There is a new JSP added to this application. It contains the account number
element and a button for logging into the site.

Accounts, Cookies and Carts 217

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>Login Page</title>
 </head>
 <body>
 <p>Please enter your account number

to access your data.
 <form method=”POST” action=”Controller”>
 <p>
 Account Number ${helper.errors.accountNumber}
 <input type=”text” name=”accountNumber”
 value=”${helper.data.accountNumber}”>
 <input type=”submit” name=”loginButton”
 value=”Login”>
 </p>
 </form>
 </body>
</html>

7.2.3 ControllerHelper: Account Login

When the user selects the login button from the login page, the controller will
validate that the account number has the correct format and will search the data-
base for a row that has that account number. If it fi nds one, then the bean that is
returned from Hibernate will replace the one that is in the session.

For the rest of the session, all changes that are entered by the user will be stored
in this bean. When the bean is written to the database, Hibernate will realise that
it is a bean that came from the database and will update the values for that row in
the database, instead of adding a new row.

The method for the login page is similar to the method for the confi rm page, except
it is only validating that the account number has the right format. The other properties
in the bean will still be validated when the user selects the confi rm button.

@ButtonMethod(buttonName=”loginButton”)
public String loginMethod() {
 String address;
 fi llBeanFromRequest(data);
 setErrors(data);
if (isValidProperty(“accountNumber”)) {

 Object dataPersistent = HibernateHelper
 .getFirstMatch(data, “accountNumber”,
 data.getAccountNumber());

if (dataPersistent != null) {
 data = (RequestDataAccount)dataPersistent;
 }
 address = “Edit.jsp”;
 } else {
 address = “Login.jsp”;
 }
return jspLocation(address);

}

218 Web Development with Java

Try It http://bytesizebook.com/book/ch7/accountLogin/Controller

Log into the site. Use an account that is two letters followed by three digits. Enter
some data into the database.

Move the cursor into the location bar of the browser and hit the enter key. This
will start the application from the beginning. Log into the site with the same
account number. The data that was entered into the site will still be there.

Close the browser and reopen it. This will close the session. Log into the applica-
tion again with the same account number. The data is still there. Change the data
and save it to the database. Log into the site again. The new data will be retrieved.

7.3 Removing Rows from the Database

Building on the last application, it is an easy matter to remove rows from the
database. The method removeDB, in the Hibernate helper class, allows a row to
be removed from the database.

public void removeDB(Object obj) {
 ...
}

Once the bean has been saved to the database, it can be removed by calling this
method.

7.4 Application: Account Removal

This application only has a few changes from the last one, so inheritance can be
used to implement the controller helper. The process page has a new button for
removing the account that was just added. There is a new method in the controller
helper to process the new button.

7.4.1 Process.jsp: Account Removal

The process page has a new button for removing the current bean from the data-
base. This could have been done from any page in the application, once the user
has logged in.

...

<form method=”POST” action=”Controller”>
 <p>
 Edit the current record.
 <input type=”submit” name=”editButton”
 value=”Edit”>
 Remove the current record.
 <input type=”submit” name=”removeButton”
 value=”Remove”>
 </p>
</form>
...

Accounts, Cookies and Carts 219

7.4.2 ControllerHelper: Account Removal

Since this application is identical to the previous application, except for the addi-
tion of a new button for removing rows, the controller helper can be extended
from the Account Login controller helper. The bean from that application can also
be reused.

The method to process the removal button calls the removeDB method with
the bean that was just saved to the database. If the removeDB method is called
with a row that was never saved, then Hibernate will ignore the request. After
removing the row, it is necessary to erase all the data from the bean. The simplest
way to do this is to create a new bean.

package ch7.accountRemove;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import shared.ButtonMethod;
import shared.HibernateHelper;

public class ControllerHelper
extends ch7.accountLogin.ControllerHelper {

public ControllerHelper(HttpServletRequest request,
 HttpServletResponse response)

 {
super(request, response);

 }

public String jspLocation(String page) {
return “/WEB-INF/classes/ch7/accountRemove/” + page;

 }

 @ButtonMethod(buttonName=”removeButton”)
public String removeMethod() {

 HibernateHelper.removeDB(data);
 data = new ch7.accountLogin.RequestDataAccount();

return jspLocation(“Login.jsp”);
 }

protected void doGet()
throws ServletException, java.io.IOException {
super.doGet();

 }

protected void doPost()
throws ServletException, java.io.IOException {
super.doPost();

 }
}

Try It http://bytesizebook.com/book/ch7/accountRemove/Controller

To see that a record has been removed from the database, follow these steps.

220 Web Development with Java

1. Log into the site with an account number that is already in the database.
2. Proceed to the process page.
3. Click the remove button to delete the current bean from the database.
4. Click in the location window of the browser and hit the enter key. This will

delete the data from the session and display the login page.
5. Enter a different account number, enter some data and view the database.
6. The database will appear on the process page, but there will be no row for the

account number that was just deleted.

7.5 Cookies

A server has the ability to ask a browser to store information. The next time the
browser requests data from that server, the browser will send the stored data back
to the server. A piece of information that is being stored is known as a cookie.

Many sites use cookies to identify users. Sites will ask if you would like your
information remembered on the current computer, so that the next time you
access the same site from that computer, you will not need to enter your data again.
It is important to understand that the information is only being stored on the
current computer; if you log into the site from a different computer, you will need
to enter your data again.

Many sites offer to remember a user on the current computer. Such sites typi-
cally have a checkbox to indicate that the user’s information should be stored on
the local computer (Figure 7.1).

If this is checked, then the user’s data will be stored as a cookie on the current
computer. Whenever you see such a request, the site is asking to store information
on your computer in a cookie.

Figure 7.1 Yahoo! offers to remember data on the current computer.

Accounts, Cookies and Carts 221

7.5.1 Definition

Cookies are stored in a cookie jar. In computer terms, a cookie is a row in a data-
base and the cookie jar is the database. The primary key to the database is the URL
of the site that the user is requesting.

On every request that is made by the user, the browser searches through the
database, looking for any cookies that were created for the current URL. All the
cookies that are found are sent to the server as part of the request headers.

Table 7.1 lists the information that is stored in a cookie.
The cookie is stored in the browser under the name with the given value. Every

time a request is made, the browser looks through all the cookies and sends all
cookies to the request that match the domain and path of the request. Periodically,
the browser will inspect the expiration date of all its cookies and delete those that
have expired.

7.5.2 Cookie Class

The java package javax.servlet.http.cookie encapsulates this informa-
tion and is defi ned in the Cookie class. There are accessors and mutators for all
of the above properties.

Table 7.1 Information stored in a cookie.

Property Purpose

name The name is used as the index into the browser’s store of cookies.
value The value is the data associated with the cookie.
expiration The expiration is the date and time when the browser should remove the cookie from

its store.
domain The domain is the Internet domain that can receive the cookie from the browser.
path The path is the prefi x for all URLs in the domain that can receive the cookie.
secure Secure indicates if the cookie should only be sent over secure connections.

Cookie

The constructor takes the name and value as parameters.

Cookie team = new Cookie(“team”,”marlins”);

setName/getName

It is not necessary to call setName since the name is included in the
constructor.

setValue/getValue

It is not necessary to call setValue since the value is included in the
constructor.

setMaxAge/getMaxAge

The default age is –1 seconds, which means that the cookie will be deleted
when the browser closes. Set the age to 0 seconds to have the browser delete

222 Web Development with Java

the cookie immediately. Use a positive number of seconds to indicate how
long the browser will keep the cookie. The number of seconds will be trans-
lated into a date by the Cookie class.

setDomain/getDomain

The default domain is the server that set the cookie. This can be changed to
the subdomain of the computer. If the domain starts with a dot, then the
cookie can be sent back to all servers on the subdomain. The domain must
always be to an actual domain or subdomain and it must be the domain or
subdomain of the server that set the cookie.

setPath/getPath

The default path is the path to the directory of the servlet that set the
cookie.

setSecure/getSecure

The default security level is that the cookie can be sent over any type of
connection.

7.6 Application: Cookie Test

A controller application will now be developed to explain and test the different
actions for creating, deleting and fi nding cookies. The application will not receive
any data from the user, so there is no need for a bean. This simplifi es the doGet
method in the controller helper, since there is no need to update the session.

...

protected void doGet()
throws ServletException, IOException
{
 String address = executeButtonMethod();

 request.getRequestDispatcher(address)
 .forward(request, response);
}
...

The controller is the same as the controller for the Enhanced application from
Chapter Four.

7.6.1 JSPs: Cookie Test

There is only one JSP for this application. The primary function of the page is to
list the cookies that were sent to it from the browser. The page loops through the
cookies that were sent to it.

A map of the cookies can be retrieved from a JSP using the EL statement of
${cookie}. A loop can be placed into the JSP to access the elements in the map.

Accounts, Cookies and Carts 223

Each element in the map has public accessors to retrieve the key and the value.
The key is the name of the cookie and the value is the cookie.

If there is a loop control variable named element, then each cookie can be
retrieved from the map with ${element.value}. Since the value in the map
is a cookie, its name and value can be retrieved from the cookie’s public accessors.
The EL statements to access the name and value from the cookie in the map are
${element.value.name} and ${element.value.value}. The name
and value of the cookie are displayed in a table.

...

<table border>
 <tr><th>Name<th>Value
 <core:forEach var=”element” items=”${cookie}”>
 <tr><td>${element.value.name}<td>${element.value.value}
 </core:forEach>
</table>
...

This application will also create a cookie that can only be read by one URL. Two
servlet mappings will be created so that this servlet can be called by two different
URLs. In this way, the servlet will have access to different cookies based upon the
URL that is used to access it. Edit the web.xml fi le to add two mappings for this
application.

<servlet-mapping>
 <servlet-name>CookieController</servlet-name>
 <url-pattern>
 /ch7/cookie/Controller
 </url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>CookieController</servlet-name>
 <url-pattern>
 /ch7/cookie/specifi c/Controller
 </url-pattern>
</servlet-mapping>

There are two forms in the JSP. Each form has a different URL in the action attri-
bute. However, each URL is mapped to the same servlet in the web.xml fi le. The
buttons in the second form create and access a cookie that can only be accessed
from the URL used in that form. The buttons in the fi rst form create cookies that
can be accessed by both URLs.

...
<form action=”/book/ch7/cookie/Controller”>
 <input type=”submit” name=”showCookieButton”

 value=”Show Cookies”>
 <input type=”submit” name=”setCookieButton”

 value=”Set Cookies”>
 <input type=”submit” name=”deleteCookieButton”

 value=”Delete Cookie”>

224 Web Development with Java

 <input type=”submit” name=”fi ndCookieButton”
 value=”Find Cookie”>

</form>
<form action=”/book/ch7/cookie/specifi c/Controller”>
 <input type=”submit” name=”showCookieButton”

 value=”Show Specific Cookies”>
 <input type=”submit” name=”setSpecifi cCookieButton”

 value=”Set Specific Cookie”>
</form>
...

Figure 7.2 shows how the page will appear in a browser.

7.6.2 Showing Cookies

All the work for showing cookies is done in the JSP. The default button in the
controller helper only needs to return the address of the JSP.

...
buttonName=”showCookieButton”, isDefault=true)
public String showMethod() {
return jspLocation(“ShowCookies.jsp”);

 }
...

7.6.3 Setting Cookies

Setting a cookie is a two-step process: create the cookie and then attach it to the
response with the addCookie method.

The action for the Set Cookie button will construct two cookie objects, change
some default values and attach the cookies to the response. One of the cookies will
have the default age, so it will be deleted when the browser is closed. The other

Figure 7.2 The JSP for testing cookies.

Accounts, Cookies and Carts 225

cookie will have its age set to 15 seconds. After setting the cookie, the browser will
delete it after 15 seconds.

...

@ButtonMethod(buttonName=”setCookieButton”)
public String setMethod() {
 Cookie dolphins
 = new Cookie(“dolphins”,

“The Dolphins are here to stay”);
 dolphins.setPath(“/”);
 response.addCookie(dolphins);

 Cookie marlins
 = new Cookie(“marlins”,

“The Marlins will be gone soon”);
 marlins.setMaxAge(15);
 marlins.setPath(“/”);
 response.addCookie(marlins);

return jspLocation(“ShowCookies.jsp”);
}
...

Be sure to change any default values before attaching the cookie to the response.
The addCookie method generates a string that contains all the information
about the cookie. This string is created during the call to addCookie and is
added to the response headers at that time. Subsequent changes to the cookie will
not alter the string that is already in the response headers.

Try It http://bytesizebook.com/book/ch7/cookie/Controller

An additional cookie might be displayed, named JSESSIONID, which was not
created by the application. This is the cookie that is used to maintain the session
for the servlet engine.

Since web applications are stateless, information must be stored on the browser
in order to identify the current session. There are several places where the identi-
fying data could be stored: in a hidden fi eld, in the URL or in a cookie. The simplest
solution is to use a cookie. The servlet engine can also be confi gured so that it will
use the URL to store the identifying information.

Click the Set Cookies button, followed by the Show Cookies button. Cookies are
only set in the response. In order to see the state of the cookies after the previous
response, it is necessary to make a new request.

7.6.4 Deleting Cookies

The path and domain of a cookie must be known in order to delete the cookie.
The cookies that are retrieved from the browser only have a name and value: the
domain and path information are null. There is no way to know the path
and domain of the original cookie by reading the cookie from the browser. If the
domain was set to something other than the default when the cookie was created,
then that domain will need to be set again, in order to delete that cookie.

226 Web Development with Java

The action for the Delete Cookie button will delete one of the cookies that was
created when the Set Cookies button was clicked. It will delete the cookie that
expires in 15 seconds. So, if too much time has elapsed, there won’t be a cookie to
delete. By setting the age to zero and adding the cookie to the response, the browser
will delete the cookie that it has in its store.

...

@ButtonMethod(buttonName=”deleteCookieButton”)
public String deleteMethod() {
 Cookie marlins = new Cookie(“marlins”, “bye-bye”);
 marlins.setMaxAge(0);
 marlins.setPath(“/”);
 response.addCookie(marlins);
return jspLocation(“ShowCookies.jsp”);

}
...

Try It http://bytesizebook.com/book/ch7/cookie/DeleteCookies

Run the application and click the Set Cookies button. Click the Show Cookies button
to see the current state of the cookies. Remember that cookies are sent in the
response, so an additional request is needed to see what happened to the cookies
after the last response.

To delete a cookie, click the Delete Cookies button. This will delete one of the
cookies. To see that it has been deleted, click the Show Cookies button once again.

7.6.5 Finding Cookies

There can be more than one cookie that is sent to the servlet, even if the servlet
only sets one cookie. This can happen when other servlets on the same subdomain
set a cookie that can be accessed from the entire subdomain.

It is necessary to do a linear search through the array of cookies in order to
fi nd the desired one in a controller. If there are no cookies, then the array will be
null, so it is important to test for this before accessing the array.

The action for the Find Cookie button will look for one of the cookies that was
created when the Set Cookies button was clicked. It will look for the cookie that expires
in 15 seconds. So, if too much time has elapsed, there won’t be a cookie to fi nd.

Whether or not the cookie is found, a value is set and made available to the JSP.
The value is added to the request object. Since the cookie is sent from the browser
on each request, it does not make any sense to save this value in the session object.

...

@ButtonMethod(buttonName=”fi ndCookieButton”)
public String findMethod() {
 Cookie[] cookieArray = request.getCookies();
 Cookie marlins = null;
if (cookieArray != null) {

for (Cookie cookie : cookieArray) {
if (cookie.getName().equals(“marlins”)) {

 marlins = cookie;
 }
 }
 }

Accounts, Cookies and Carts 227

 String result = “The Marlins have left town”;
if (marlins != null) {

 result = marlins.getValue();
 }
 request.setAttribute(“marlins”,result);

return jspLocation(“ShowCookies.jsp”);
}
...

In a JSP it is possible to locate a cookie without doing a linear search, if you know
the name of the cookie.

${cookie.marlins.value}

Try It http://bytesizebook.com/book/ch7/cookie/FindCookie

To see a search in action, follow the buttons in this order.

1. Set Cookies
2. Find Cookie
3. Delete Cookie
4. Find Cookie

Each time that Find Cookie is called, a linear search is performed on the cookies
that are received by the application.

7.6.6 Cookie Utilities

A class has been added to the shared package that has two static methods for
retrieving cookies. Each method performs a linear search through the cookies that
are sent from the browser. Each looks for a cookie with a given name: one returns
the cookie, the other returns the value in the cookie. The name of the class is
CookieUtil.

public class CookieUtil {

static
public Cookie findCookie(HttpServletRequest request,

 String name)
 {
 ...
 }

static
public String findCookieValue(HttpServletRequest request,

 String name)
 {
 ...
 }

}

The complete listing of the CookieUtil class can be found in the Appendix.

228 Web Development with Java

7.6.7 Path Specific Cookies

The cookies that were created above changed the path to /, meaning that all serv-
lets on the server will receive the cookie. If the path is not set, then it will default
to the path of the directory of the servlet that set the cookie.

The action for the Set Specifi c Cookie button will create a cookie without setting
its path. This means that only the current URL will receive the cookie. The button
is located in the second form in the JSP. This form accesses the controller through
a different URL. Only the buttons for setting and showing the specifi c button will
have access to this cookie.

All of the cookies from the previous examples can be viewed from this URL,
since the path was set so that those cookies are sent to all URLs on the server.

...

@ButtonMethod(buttonName=”setSpecifi cCookieButton”)
public String setSpecificMethod() {
 Cookie specifi c
 = new Cookie(“specifi c”,

“Not all pages can see this cookie”);
 specifi c.setMaxAge(15);
 response.addCookie(specifi c);
return jspLocation(“ShowCookies.jsp”);

}
...

Try It http://bytesizebook.com/book/ch7/cookie/specific/SetCookie

To experiment with the cookie that is only seen from one URL, click the buttons
in the following order.

1. Set Specifi c Cookie
2. Show Specifi c Cookie
3. Show Cookie – the specifi c cookie will not be seen, since the URL does not

match the one that set the cookie.
4. Show Specifi c Cookie – the specifi c cookie will be seen. The cookie will expire

after 15 seconds.

7.7 Application: Account Cookie

The Account Login application can be extended to implement cookies. Whenever
a bean is written to the database, its account number will be stored as a cookie.
The next time a GET request is made, the account number can be retrieved from
the cookie and used to retrieve the user’s data. By using a cookie, the user will not
have to see the login page. A new button will be added to the edit and process
pages, in case a different user wants to log in.

7.7.1 Edit.jsp: Account Cookie

A new button is added to the edit page, to allow a different user to log in.

Accounts, Cookies and Carts 229

...

<input type=”submit” name=”confi rmButton”
 value=”Confi rm”>
<input type=”submit” name=”newUserButton”
 value=”New User”>
...

7.7.2 Process.jsp: Account Cookie

A new button is added to the process page, to allow a new user to log in.

...

<input type=”submit” name=”editButton”
 value=”Edit”>
<input type=”submit” name=”newUserButton”
 value=”New User”>
...

7.7.3 ControllerHelper: Account Cookie

When using a cookie, two questions need to be answered:

1. When will it be created?
2. When will it be read?

In this application the cookie will be written whenever the data is saved to the
database. This makes the most sense, since the idea of having a cookie is so that
data that has already been stored in the database can be retrieved automatically.
Notice that only the account number is being saved in the cookie.

@ButtonMethod(buttonName=”processButton”)
public String processMethod() {
if (!isValid(data)) {
return jspLocation(“Expired.jsp”);

 }
 response.addCookie(

new Cookie(“account”, data.getAccountNumber()));
 HibernateHelper.updateDB(data);
 List list = HibernateHelper
 .getListData(RequestDataAccount.class);
 request.setAttribute(“database”, list);
return jspLocation(“Process.jsp”);

}

The cookie will be retrieved whenever there is a GET request to the application.
A GET request signifi es that a new user is trying to access the application. At that
time, the cookies will be searched for an account number. If there is an account
number, then the database will be searched. If a bean is returned from the database,
it will replace the bean that is stored in the session and the next page will be the
edit page, instead of the login page.

230 Web Development with Java

@ButtonMethod(isDefault=true)
public String getMethod() {
 String address = “Login.jsp”;
 Cookie accountCookie =
 CookieUtil.findCookie(request, “account”);
if (accountCookie != null) {

 Object dataPersistent = HibernateHelper
 .getFirstMatch(data,
 “accountNumber”,

accountCookie.getValue());
if (dataPersistent != null) {

 data = (RequestDataAccount)dataPersistent;
 }
 address = “Edit.jsp”;
 }
return jspLocation(address);

}

When the New User button is clicked from the edit or process pages, it signifi es
that the cookie does not have the correct account number for the current user.
As a result, the data that is stored in the bean should be cleared, by creating
a new bean.

@ButtonMethod(buttonName=”newUserButton”)
public String newUserMethod() {
 data = new RequestDataAccount();
return jspLocation(“Login.jsp”);

}

Try It http://bytesizebook.com/book/ch7/accountCookie/Controller

Enter an account number and save some data to the database. When the process
page is displayed, the cookie is sent to the browser.

Click in the URL location in the browser and hit the enter key. This will create
a new request that will not read data from the session. The cookie will be sent
from the browser. The value of the cookie will be used to retrieve data from the
database. The login page will be skipped and the edit page will be displayed with
the data from the database.

Click the New User button and a new request will be made that does not read
the cookie.

7.8 Shopping Cart

A shopping cart is designed to access a database of items and to keep track of
which items the user wants. A simple shopping cart application will be developed
in this section. The application will be for a bookstore. The fi rst page will display
all the books that are available (Figure 7.3).

The user can click on any of the buttons to view the details for that item: name,
description, cost and item Id (Figure 7.4).

Accounts, Cookies and Carts 231

Figure 7.3 All items are listed when the user visits the site.

Figure 7.4 Details of a selected item are displayed.

After the user has selected some items, the View Cart button can be clicked to
see a summary of the items that have been selected (Figure 7.5).

After reviewing the items, the user can process the cart, which calculates the
total cost and the number of items (Figure 7.6).

The most important aspect of a shopping cart is the item that will be placed
in the cart. The item is the data that will be entered by the user. The data will be
specifi c to the application.

232 Web Development with Java

Figure 7.5 The cart contains all the items that were selected.

Figure 7.6 The total cost is calculated when the cart is processed.

There will be a database of items that are available from the store. It is the
developer’s responsibility to keep this database up to date.

Keeping the item information in a separate table makes it easier to keep the
information on the web site up to date. The only information that is hard coded
into the JSP is the item Id, which should never change. The rest of the information
about an item is generated from the database whenever a page is reloaded.

Accounts, Cookies and Carts 233

The shopping cart itself is very simple. It only needs a collection of objects
and methods for adding and deleting items from the collection. Shopping carts
are all very similar. Generics from Java 1.5 can be used to develop the shopping
cart class.

7.8.1 Catalogue Item

The fi rst thing that is needed for a shopping cart is a database that defi nes all
the items that can go into the cart. An item in the database should have the
following.

1. a name
2. a description
3. a price
4. an item Id

These would be implemented as standard properties in the bean. Only two of them
will need annotations, as described below.

Catalogue Item Class

A separate table for the items will be created in the database, so the bean should
be marked as an entity. Even though the item Id could be used as the primary
key in the database, this application will still let the database manage an inter-
nal column that will be used as the primary key. The item class will extend the
PersistentBase class, which contains an identifi er for a primary key.

@Entity
public class CatalogItem
extends shared.PersistentBase {

Catalogue Item Constructors

Besides the default constructor, there will be a constructor that will set the values
of all the properties. This will make it easy to create a complete item that can be
added to the database of items. The default constructor will choose some default
values for the properties. The default item Id will be null. An item with an Id of
null should never be added to the database.

public CatalogItem() {
this (null, “”, “”, 0.00);

}
public CatalogItem(String itemId, String name,
 String description, double price)
{
 setItemId(itemId);
 setName(name);
 setDescription(description);
 setPrice(price);
}

234 Web Development with Java

Catalogue Item Text Fields

When a column for a string property is added to a database table, the maximum
length of the string must be set. The default length of a string column is database
specifi c, but might be 255 characters. If a fi eld represents a phone number of an
identifi cation number, then 255 characters would be too many. If a fi eld represents
a catalogue description, then 255 characters might not be enough. Figure 7.7 show
the default implementation of three text fi elds from the CatalogItem class in
the MySQL database server.

Hibernate has annotations that will give the database server a hint for setting
the width of a column in a table.

The Hibernate annotation @Length validates the minimum and maximum
length of a string. This annotation also tells the database server what the width of
the column in the database should be. For example, by adding validation that tests
that the length of a text fi eld in the database does not exceed 50, Hibernate will
give the column a width of 50 in the table.

@Length(min=1,max=50)
public String getName() {
return name;

}

The description of a catalogue item could be very long. The default length of a
string column in a table is database specifi c, but might only be 255 characters.
When large amounts of text need to be entered, the fi eld should be declared as a
large object. The annotation that defi nes a property as a large object is @Lob. As
the name implies, a large object property can contain a lot of information.

@Lob
public String getDescription() {
return description;

}

The @NotNull annotation is very useful for a database. By marking a fi eld with
it, then the fi eld must always have a value before data is entered into the database.
This is particularly helpful when the session is being used to store user data.

If the user does not interact with the server for an extended period, then the
session will be closed and the user data will be lost. If the user subsequently
attempts to save that data, a check should be made by the database that the user
data is still valid. The simplest way to accomplish this is to mark at least one

Figure 7.7 Strings have a default width of 255 characters.

Accounts, Cookies and Carts 235

fi eld as not null. If there is an attempt to write a null fi eld to that column in the
database, an exception will be thrown. This is considered a last chance test.
Hopefully, the controller will test that the data is valid before attempting to write
to the database.

@NotNull
@Length(min=1,max=10)
public String getItemId() {
return itemId;

}

Figure 7.8 shows the CatalogItem class that has used annotations to set the
length of two of the text fi elds and has marked the third as a large object. The
itemId fi eld has also been marked as not null, since every item in the database
should have an item identifi cation code.

7.8.2 Create Catalogue Database

The next step is to defi ne some items and create a database for them. This will
only be done once by the site administrator. This database will not be modifi ed by
the cart: it is just a list of items that are available. Additional controllers could be
defi ned to add items to the current database of items.

The controller will need access to Hibernate, but will not need any JSPs. The
user interface is very simple in this administrator application, so the controller
will send the response directly to the browser without using a JSP.

Controller with No JSPs

This controller is only supposed to be run by the site administrator to create the
catalogue database. It does not need a sophisticated user interface; just a simple
message, indicating that the database was created successfully, is enough. In such
a situation, it is possible for the controller to write text directly to the browser.

As part of the response object, there is a method that returns a PrintWriter that
has direct access to the browser. Whatever is written to the writer will be sent to
the browser. It is possible to create an entire HTML page to send, but it is easier
to just send a simple text message.

response.getWriter().print(“Catalogue Created”);

Figure 7.8 Text fi elds whose length has been specifi ed.

236 Web Development with Java

Catalogue Controller

The complete controller to create the catalogue must initialise Hibernate in the
init method. It is assumed that the properties for initialising Hibernate are in a
confi guration fi le.

The doGet method is very simple; it only needs to call updateDb to write the
catalogue items to the database and to use the writer from the response object to
send a simple message to the browser. The updateDb method in the hibernate
helper has been overloaded to accept a list of items.

package ch7.catalog;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.hibernate.cfg.Environment;
import shared.HibernateHelper;

public class CreateCatalog extends HttpServlet {

public void init() {
 HibernateHelper.createTable(CatalogItem.class);
 HibernateHelper.initSessionFactory(CatalogItem.class);
 }

static List<CatalogItem> itemList =
new ArrayList<CatalogItem>();

static {
 itemList.add(new CatalogItem(
 “A1”, “The Foundation Trilogy”,
 “A very fine book. Why not buy one?”, 1.11));
 itemList.add(new CatalogItem(
 “T2”, “The Hobbit”,
 “A very fine book. Why not buy two?”, 2.22));
 itemList.add(new CatalogItem(
 “Y3”, “Light on Yoga”,
 “A very fine book. Why not buy three?”, 3.33));
 itemList.add(new CatalogItem(
 “M4”, “Blue Monkey Sideshow”,
 “A very fine book. Why not buy four?”, 4.44));
 };

protected void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
if (HibernateHelper.testDB(response)) {

 HibernateHelper.updateDB(itemList);
 response.getWriter().print(“Catalogue Created”);

 }
 }
}

Accounts, Cookies and Carts 237

7.8.3 Shopping Cart Bean

Now that the catalogue of items exists, the shopping cart can be defi ned. The shop-
ping cart should be able to store all the items that a user has selected. The details of
the item are not important for the shopping cart; the cart only needs to be able to
add an item, retrieve all items and clear all items. Additional properties will be added
to the cart for storing the total cost and number of items that are in the cart.

Other features could be added to the cart, like the ability to delete an individual
item or to maintain a count for each item in the cart. The implementation of these
additional features will be left as exercises.

Since the details of the item that is being placed into the cart are unimportant
to the cart, generics from Java 1.5 will be used to defi ne the cart. By using generics,
the objects returned from the cart will not need to be cast to the correct type and
syntax checking can be performed on objects returned from the cart.

public class ShoppingCart<Item> {
 ...
}

When the cart is created, the type of item that will be placed into the cart is
included in the defi nition. For example, in the shopping cart application in this
chapter, a shopping cart for the CatalogItem will be created.

private ShoppingCart<CatalogItem> cart =
new ShoppingCart<CatalogItem>();

This will allow the shopping cart to return a specifi c type from a method, instead
of returning an Object.

Cart Data Structure

The cart will have a list of items from the database. Since the cart was declared
with a generic type named Item, this generic type can be used to defi ne the type
of object that is placed into the list.

private List<Item> items;

The cart will be recreated whenever all the items should be removed from it. When
creating the cart, the type of element that is in the cart is included in the call to
the constructor. An ArrayList will be used to store the items. The method
resetItems will be used to clear all the items from the cart.

public void resetItems() {
 items = new ArrayList<Item>();
...

When the shopping cart is created, it will also create the list that stores the items,
by calling the resetItems method.

public ShoppingCart() {
 resetItems();
...

238 Web Development with Java

Accessing Items

There are only two additional features that are essential for a shopping cart: adding
items and retrieving items.

When retrieving the items, the entire list of items will be returned. Individual
access to the items can be handled in the controller helper, where the details
of the items will be known. The getItems method will return a generic list
of items, so that the objects retrieved from it will not need to be cast to the
correct type.

public List<Item> getItems() {
return items;

}
public void addItem(Item item) {
 items.add(item);
}

Total and Count

Additional properties will be added to the shopping cart for storing the total cost
of the items and the count of all the items. There will be normal accessors and
mutators for the total and count. These properties are not essential to a cart, they
could always be generated when needed; however, they demonstrate that addi-
tional features could be added to the cart to make it more robust.

private double total;
private int count;

public void setTotal(double total) {
this.total = total;

}

public double getTotal() {
return total;

}

public void setCount(int count) {
this.count = count;

}

public int getCount() {
return count;

}

Additionally, there will be an accessor that returns the total as currency, a method
for adding to the total and a method for incrementing the count. To format the
total as currency, create a number format for the currency that is defi ned for the
current region.

private static NumberFormat currency =
 NumberFormat.getCurrencyInstance();

public void addTotal(double amount) {
 total += amount;
}

Accounts, Cookies and Carts 239

public String getTotalAsCurrency() {
return currency.format(total);

}

public void incrCount() {
 count++;
}

Complete Shopping Cart

The complete cart is simple and generic. It could be used for any application with
any item. Any application that needs a shopping cart would only need to defi ne
the item class and use it to construct the shopping cart, as will be done in the
shopping cart application in this chapter.

package ch7.catalog;
import java.util.List;
import java.util.ArrayList;
import java.text.NumberFormat;
public class ShoppingCart<Item> {

private static NumberFormat currency =
 NumberFormat.getCurrencyInstance();

private List<Item> items;
private double total;
private int count;

public ShoppingCart() {
 resetItems();
 }

public void resetItems() {
 items = new ArrayList<Item>();
 total = 0.0;
 count = 0;
 }

public void setItems(List<Item> items) {
this.items = items;

 }

public List<Item> getItems() {
return items;

 }

public void addItem(Item item) {
 items.add(item);
 }

public void setTotal(double total) {
this.total = total;

 }

240 Web Development with Java

public double getTotal() {
return total;

 }

public void setCount(int count) {
this.count = count;

 }

public int getCount() {
return count;

 }

public void addTotal(double amount) {
 total += amount;
 }

public String getTotalAsCurrency() {
return currency.format(total);

 }

public void incrCount() {
 count++;
 }
}

7.9 Application: Shopping Cart

Now that the items, the item database and the shopping cart bean have been
defi ned, it is possible to defi ne the shopping cart application. The controller for
this application is identical to previous controllers that save data to a database; all
the work is done in the controller helper.

This is a simple cart. If more than one item is added to the cart, then two identi-
cal beans will be added to the cart. Figure 7.9 shows how the cart would appear if

Y3

Light on Yoga

A very fine book ...

3.33

CatalogItem ShoppingCart

M4

Blue Monkey
Sideshow

A very fine book ...

4.44

CatalogItem

A1

Foundation Trilogy

A very fine book ...

1.11

CatalogItem

Y3

Light on Yoga

A very fine book ...

3.33

CatalogItem

M4

Blue Monkey
Sideshow

A very fine book ...

4.44

CatalogItem

Figure 7.9 Multiple beans with the same values might be in the cart.

Accounts, Cookies and Carts 241

two of the same items were added to the cart. It is left as an exercise to modify the
cart so that there is only one bean for each item that is ordered.

7.9.1 ControllerHelper: Shopping Cart

If the user is viewing a catalogue item, then the item Id should be sent to the con-
troller when a button is clicked. When the application receives the item Id, the
item information will be read from the database. The bean that is returned from
Hibernate will be set as the bean in the controller helper. When the bean is
returned in the next response, the details of the item can be viewed in the JSP.

In addition to the current item bean, the shopping cart bean is also kept in the
helper. This is the fi rst application that has two beans: the current catalogue item
and the shopping cart (Figure 7.10).

The controller helper will have member variables for both of these beans.

private CatalogItem item = new CatalogItem();
private ShoppingCart<CatalogItem> cart =

new ShoppingCart<CatalogItem>();

Both of these beans should be accessible from the JSPs, so accessors for each will
be added to the controller helper.

public Object getItem() {
return item;

}

public Object getCart() {
return cart;

}

The copyFromSession method should copy both beans from the session data.
It is necessary to copy all the member variables that hold user data or the data
will be lost.

ControllerHelper

CatalogItem item
ShoppingCart cart

doGet()
doPost ()
getItem()
getCart()
copyFromSession ()
jspLocation()

Figure 7.10 The controller helper for the shopping cart has two beans.

242 Web Development with Java

public void copyFromSession(Object sessionHelper) {
if (sessionHelper.getClass() == this.getClass()) {

 item = ((ControllerHelper)sessionHelper).item;
 cart = ((ControllerHelper)sessionHelper).cart;
 }

There are many buttons in this application, so there will be many methods to
perform the tasks for the buttons. The default method should make the list of
catalogue items available to the fi rst page, BrowserLoop.jsp. As before, the items
from the database are not added to the session, they are only added to the request
attributes. If they were added directly to the session, then the web application
would crash whenever it was reloaded.

@ButtonMethod(isDefault=true)
public String methodDefault() {
 java.util.List list = HibernateHelper
 .getListData(CatalogItem.class);
 request.setAttribute(“allItems”, list);
return jspLocation(“BrowseLoop.jsp”);

}

The remaining buttons perform specifi c actions based on the button that the user
clicked. Two of these methods encapsulate calls to methods in the shopping cart.
When the user selects Add Cart or Empty Cart, the controller helper only has to
call the corresponding method from the cart. After doing the specifi c tasks, the
methods call the default method.

Using the session always complicates matters, especially when an item that is
in the session has also been placed into a separate collection (Figure 7.11). In this
case, after an item has been added to the cart, the item will still be in the session.
Upon the next request, the item in the session could be populated with new data.
If this happens, then the data in the collection will be changed, too.

This problem can be avoided by creating a new bean after the current item is
added to the cart. This will create a new, empty bean that will be accessed from
the session. The item that was just added will no longer be accessible from the
session.

ShoppingCart

After the current
item is added to

the cart, it can be
accessed from the

cart and the
session .

M4

Blue Monkey
Sideshow

A very fine book ...

4.44

CatalogItem

A1

Foundation Trilogy

A very fine book ...

1.11

CatalogItem

Session

"cart"

"item"

Y3

Light on Yoga

A very fine book ...

3.33

CatalogItem

Figure 7.11 The item is in the session and in the shopping cart.

Accounts, Cookies and Carts 243

@ButtonMethod(buttonName=”addCart”)
public String methodAddCart() {
 cart.addItem(item);
 item = new CatalogItem();
return methodDefault();

}

@ButtonMethod(buttonName=”emptyCart”)
public String methodEmptyCart() {
 cart.resetItems();
return methodDefault();

}

The button for viewing an item is more complicated. When the user chooses an
item to view, the item Id is sent to the controller. The helper needs to look in the
database of items and check that a valid Id was sent. If it is a valid Id, then the
bean from the database is set as the bean in the helper. This is similar to the tech-
nique used in the Account Login application, when testing if the account was
already in the database.

@ButtonMethod(buttonName=”viewItem”)
public String methodViewItem() {
 fi llBeanFromRequest(item);
if (item.getItemId() != null) {

 Object dbObj = HibernateHelper.
 getFirstMatch(item, “itemId”,
 item.getItemId());

if (dbObj != null) {
 item = (CatalogItem)dbObj;
 }
 }
return methodDefault();

}

The View Cart method only has to redirect the application to the JSP that displays
the contents of the cart. All the details of displaying the cart are encapsulated
in the Cart page.

@ButtonMethod(buttonName=”viewCart”)
public String methodViewCart() {
return jspLocation(“Cart.jsp”);

}

The fi nal button is the one to process the cart. The corresponding method will
loop through all the items, counting them and adding the price to the total in the
cart. The method redirects to the fi nal JSP in the application, Process.jsp.

@ButtonMethod(buttonName=”processCart”)
public String methodProcessCart() {
for(CatalogItem item : cart.getItems()) {

 cart.addTotal(item.getPrice());
 cart.incrCount();
 }
return jspLocation(“ProcessCart.jsp”);

}

244 Web Development with Java

The JSPs will be located in the same directory as the Controller.

public String jspLocation(String page) {
return “/WEB-INF/classes/ch7/catalog/” + page;

}

7.9.2 BrowseLoop.jsp: Shopping Cart

The main page of the application is the page that displays all the catalogue items
that are in the catalogue item database. These are the items that can be placed in
the shopping cart. If the user selects an item from the catalogue, its details will be
displayed in the page.

When the page is fi rst loaded, no item has been selected from the catalogue.
In this case, the bean that has been sent to the JSP contains default information,
including a null item Id. A bean with a null item Id should not be displayed in
the page. There needs to be a way to hide the details of the bean when the item
Id is null.

There are several ways to resolve the problem of conditionally showing an item
from the catalogue. The simplest solution is to use a valid, default item Id when
the page is fi rst loaded, so that an item will always be displayed. A second solution
is to conditionally generate the HTML for the item information in the controller
and send it to the JSP. A third solution is to put an if statement into the JSP. The
third solution will be used in this page, using another custom tag from JSTL.

Another problem in this page is to identify which item the user selected. A
common technique for doing this is to have a separate button for each item in the
catalogue, but then how is each button made unique?

A complicated solution would be to name each button with the item Id, but this
would require many button methods in the controller. A simpler solution is to
place each button in a separate form and to place a hidden fi eld in each form,
containing the item Id. Each button will have the same name, so there will only
be one button method for all the items. The item Id can be retrieved from the
hidden fi eld.

Display Catalogue

The catalogue of items was added to the request attributes in the controller helper.
This is the same way that the database was sent to the JSP in previous examples.

@ButtonMethod(isDefault=true)
public String methodDefault() {
 java.util.List list = HibernateHelper
 .getListData(CatalogItem.class);
 request.setAttribute(“allItems”, list);
return jspLocation(“BrowseLoop.jsp”);

}

The catalogue database can be retrieved using EL as ${allItems}. The
individual items can be accessed just like any other collection: using a forEach
tag.

Accounts, Cookies and Carts 245

<core:forEach var=”oneItem” items=”${allItems}”>
access ${oneItem} here

</core:forEach>

Each item will have its own form, button and hidden fi eld. The hidden fi eld will
contain the item Id and can be used by the controller to access the database of
catalogue items. When the user clicks a button, the data for that item will appear
in the page.

...

<core:forEach var=”oneItem” items=”${allItems}”>
 <form method=’post’ action=”Controller”>
 <p>
 ${oneItem.name}
 <input type=’hidden’ name=’itemId’

 value=’${oneItem.itemId}’>
 <input type=’submit’ name=’viewItem’

 value=’View Item’>
 </form>
</core:forEach>
...

This is an example where a hidden fi eld is needed; this technique could not be
implemented using the session. There must be some information in the form that
identifi es the item Id.

Each button has the same name, which will correspond to one method in the
controller helper. The controller helper will retrieve the value from the hidden fi eld
and use it to read the item information from the catalogue database.

Conditional Tag

The JSP will always receive a bean, but sometimes it will only have default data
and not data from the database. In this case, the page should not display the bean.
This means that a decision needs to be made in the JSP. As before, there are two
ways to do this: use a custom HTML tag that performs an if statement or use
Java code in the JSP.

It is better to use a custom HTML tag to solve the problem. It is better if the
code in a JSP contains as much HTML as possible, so that an HTML designer could
maintain the page more easily. Using a custom HTML tag also eliminates the pos-
sibility of unfriendly stack traces.

There is a tag from JSTL that defi nes an if statement.

<core:if test=”boolean condition”>
conditional processing

</core:if>

With this tag, it is possible to conditionally include details about an item. The
condition will be that the item Id is not null. If it isn’t, then the additional HTML
code between the tags will be displayed.

246 Web Development with Java

<core:if test=”${helper.item.itemId != null}”>
HTML for item details

</core:if>

BrowseLoop

The BrowseLoop JSP will use nested tables to layout the data. One nested table will
contain the list of catalogue items with their forms, hidden fi elds and buttons. If
the user has selected an item, then the details will appear in another cell of this
table. The other nested table contains the button for viewing the cart.

The fi rst nested table contains the loop that generates the form for each
button and contains the conditional code for displaying the item details. The
Boolean condition for the core:if statement tests if the item Id is not null.
If the item Id is null, then the bean is a default bean and the user did not choose
an item yet.

...

<table border>
 <tr>
 <td rowspan=”4” align=”right”>
 <core:forEach var=”oneItem” items=”${allItems}”>
 <form method=’post’ action=”Controller”>
 <p>
 ${oneItem.name}
 <input type=’hidden’ name=’itemId’
 value=’${oneItem.itemId}’>
 <input type=’submit’ name=’viewItem’
 value=’View Item’>
 </form>
 </core:forEach>
 <core:if test=”${helper.item.itemId != null}”>
 <td>
 ${helper.item.name}
 <tr>
 <td>
 ${helper.item.description}
 <tr>
 <td>
 ${helper.item.price}
 <tr>
 <td>
 <form action=”Controller” method=”post”>
 <p>
 <input type=”hidden” name=”itemId”

value=”${helper.item.itemId}”>
 <input type=”submit” name=”addCart”

value=”Add To Cart”>
 <input type=”reset”>
 </form>
 </tr>
 </core:if>
</table>
...

Accounts, Cookies and Carts 247

7.9.3 Cart.jsp: Shopping Cart

The cart page is simple: it only needs to display the items that are in the cart. The
cart has been added to the session, so it can be retrieved in the JSP. Once again, a
loop will be used to display all the items from a collection. A table will be used to
organise the items from the catalogue into a grid.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN”>
<%@ taglib uri=”http://java.sun.com/jsp/jstl/core”

 prefi x=”core” %>
<html>
 <head>
 <meta http-equiv=”content-type”
 content=”text/html;charset=utf-8”>
 <title>View Cart</title>
 </head>
 <body>
 <table border>
 <core:forEach var=”oneItem”
 items=”${helper.cart.items}”>
 <tr>
 <td>${oneItem.itemId}
 <td>${oneItem.name}
 <td>${oneItem.price}
 </core:forEach>
 </table>
 <hr>
 <form method=”post” action=”Controller”>
 <p>
 <input type=”submit” name=”shop”
 value=”Continue Shopping”>
 <input type=”submit” name=”processCart”
 value=”Process Cart”>
 <input type=”submit” name=”emptyCart”
 value=”Empty Cart”>
 </form>
 </body>
</html>

The process cart page is similar. It displays the cart.

Try It http://bytesizebook.com/book/ch7/catalog/Controller

View some items, add them to the shopping cart, process the cart.

7.9.4 Shopping Cart: Enhancement

The shopping cart is only part of a complete web application. After obtaining the
cart of items from the user, a typical web site would than obtain the user’s billing
information. This could be accomplished from the process page, by adding a
button that would send the user to an edit page, in which the user would enter the

248 Web Development with Java

billing information. The edit page would be like the edit pages from the other
examples in this book. There would then be a confi rm page and a process page.
The user’s data would be entered into a database of user data.

Such an application would be using two tables from the database: one for the
catalogue items and one for the user’s data. There would also be three beans in
the application: catalogue item, shopping cart, user information. Each of these
beans would need an accessor in the controller helper and would need to be copied
from the session data.

protected RequestDataAddress data =
new RequestDataAddress();

private CatalogItem item = new CatalogItem();
private ShoppingCart<CatalogItem> cart =

new ShoppingCart<CatalogItem>();
...
public Object getData() {
return data;

}

public Object getItem() {
return item;

}

public Object getCart() {
return cart;

}
...
public void copyFromSession(Object sessionHelper) {
if (sessionHelper.getClass() == this.getClass()) {

 data = ((ControllerHelper)sessionHelper).data;
 item = ((ControllerHelper)sessionHelper).item;
 cart = ((ControllerHelper)sessionHelper).cart;
 }
}

The details of implementing such an application are left to the reader. The only
difference between this application and previous applications is that two tables are
being used in the database. When Hibernate is confi gured, all the tables that are
marked as entities must be included in the call to initSessionFactory.

HibernateHelper
 .initSessionFactory(RequestDataAddress.class,
 CatalogItem.class);

The catalogue item table should not be created by this application. It is created
with a separate controller. For this reason, the call to createTable will
only have one table, while the call to initSessionFactory will have both
tables.

static public void initHibernate(boolean create) {

if (create) {
 HibernateHelper

Accounts, Cookies and Carts 249

 .createTable(RequestDataAddress.class);
 }

 HibernateHelper
 .initSessionFactory(RequestDataAddress.class,
 CatalogItem.class);
}

7.10 Summary

It is better to let Hibernate manage the primary key, since it is used to indicate
data persistence. There is often a separate key in the user’s data that can also be
used to identify a row. Other times, several fi elds will need to be combined to
uniquely identify each row.

Finding a value in the database can be accomplished by using the Criteria class
in Hibernate. Once an object has been retrieved from the database, Hibernate will
remember that it came from the database and will update the row, instead of
adding a new one.

An application was developed that forced the user to log into the site. By doing
this, the user’s data can be retrieved from the database and stored in the session.
When the bean in the session is written to the database, it will replace the old data
in the database.

Cookies can be used to remember information about a user, so that personal
information can be displayed every time the user visits a site. Cookies are stored
in the browser and are sent back to the site that created it, whenever that site is
visited. The user has control over cookies and can delete them at any time.

Cookies have a name and a value. Cookies can be created that will exist for a
specifi c time and be sent to a specifi c server or page. Cookies can be confi gured
so that they are only sent over a secure connection. Cookies are sent to the browser
as part of the response headers.

Cookies can be used to save a user Id, so that the next time a site is accessed,
the user does not have to log in. The browser will send the Id to the controller and
the controller will use it to access the database.

Many sites have shopping cart applications that allow users to select and add
items. Shopping carts are fairly simple in that they only need to be able to store
the items, clear the items and add an item. The item that is stored in the shopping
cart is not important when implementing a shopping cart. A shopping cart can be
developed using Java 1.5 generics.

An application that uses a shopping cart was developed. A database of items
was created. The same bean that was used to create the database was also used in
the application. It is a natural choice, since the user will be selecting items from
the catalogue to be added to the shopping cart.

The database will set the maximum length for a text fi eld when a column is
added to the table for the fi eld. It is better to set the maximum value than to use
the default length. Hibernate has annotations that will indicate the preferred
length of the column in the table.

A new tag that implements an if statement was introduced from the JSTL. By
using this tag, conditional content can be added to a JSP. This is a better approach
than using Java, since Java can generate stack traces and Java can be diffi cult to
change for an HTML developer.

250 Web Development with Java

7.11 Chapter Review

Terms

1. Criteria Class
2. Cookie

a. Name
b. Value
c. Expiration
d. Domain
e. Path
f. Secure

3. Cookie Operations
a. Sending
b. Accessing
c. Deleting
d. Finding

4. Path Specifi c Cookies
5. Catalogue Item and Catalogue
6. Shopping Cart Bean

a. add
b. reset
c. set total
d. set count

New Java

1. Cookie Class
a. Constructors
b. getName, setName
c. getValue, setValue
d. getMaxAge, setMaxAge
e. getDomain, setDomain
f. getPath, setPath
g. getSecure, setSecure
h. Default Values

2. isValidProperty

Tags

1. core:if

Accounts, Cookies and Carts 251

Questions

1. Why was a new bean created after a row was removed from the database?
2. Explain the steps that are followed to retrieve a bean from the database and

copy it into the current controller helper.
3. Explain the steps that are followed to read a cookie from the browser and then

test if there is a corresponding row in the database.
4. Why does the new user method create a new bean?
5. What are the default values for all the properties in a cookie?
6. In a cookie, what does a maximum age of zero mean? What does a maximum

age of – 1 mean?
7. What does it mean when the value of the domain property in a cookie starts

with a period?
8. What does it mean when the value of the path property in a cookie is

“/accounting”?

Tasks

 1. Create the following cookie and add it to the response.
a. Name it fruit and give it a value of orange.
b. Have it expire when the browser closes.
c. Have it returned only to the domain and path that created it.
d. It may be sent over a non-secure connection.

 2. Create the following cookie and add it to the response.
a. Name it vegetable and give it a value of broccoli.
b. Have it expire in one year.
c. Have it returned to all subdomains of fi u.edu and to all paths.
d. It may be sent over a secure connection only.

 3. For the create catalog servlet, add a web interface, so that items can be added
to and deleted from the database.

 4. Write the code that belongs in a JSP that will loop through all the cookies that
it received.

 5. Write the code that belongs in a controller that will delete a cookie named pen
that can be read by all paths that begin with /bic on the www.pensforsale.com
domain. Don’t just create the cookie, be sure that the cookie is sent to the
browser.

 6. Write the code that belongs in a servlet that will fi nd a cookie named auto.
 7. Modify the getListData method so that two different properties and values

can be sent to it. Add an additional criterion to the search.
 8. Modify the getListData method so that a variable number of properties

and values can be sent to it. Add an additional criterion to the search for each
new property. Hint: The initSessionFactory method has a parameter
that can accept a variable number of arguments.

252 Web Development with Java

 9. For the shopping cart application, only allow one instance of an item in the
cart and keep a total of the number of copies that are wanted. On the confi rm
page, add a text box for changing the current item count and a button to
recalculate the total, for each item.

10. For the shopping cart application, after the cart has been processed, allow the
user to proceed to additional pages, named edit, confi rm and process, in which
the user’s billing information is added. Save the billing address and the pur-
chased items in a new table in the database.

253

Appendix

The relationship between the CLASSPATH and packages is explained. When
complex applications are developed that require the use of many additional pack-
ages, it is necessary to understand how Java fi nds packages at runtime.

With any complex software package, there can be diffi culties using it. There can
be confl icts between separate packages that lead to memory leaks. Some of these
problems can be avoided by moving the packages to another location. Some need
to be modifi ed. Two packages need to have methods called to avoid memory leaks
and errors. The details of memory leaks are explained in this Appendix.

Hibernate can be used without any knowledge of SQL. For those that still want
to see what Hibernate is doing on the database server, simple commands for the
MySQL database server have been explained. Using these commands it will be
possible to log onto the server and list the contents of the tables that have been
created by Hibernate.

The remainder of the Appendix lists the contents of the auxiliary classes that
were used in the book. The helper classes use many standard Java techniques to
implement some of the features in the book. A detailed explanation of these tech-
niques belongs in a book on Java. Hopefully, the contents of these fi les are easy to
understand. The Javadoc statements have been removed from these fi les, but can
be accessed at http://bytesizebook.com/book/doc.

A.1 Classpath and Packages

When using Java, it is important to understand the concepts of the classpath and
packages. The two concepts are intertwined; one will not make any sense until the
other is understood. When Java looks for packages, it searches the classpath.

A.1.1 Usual Suspects

There is a great scene at the end of the movie Casablanca. Humphrey Bogart has
just killed the German Commander in front of the Chief of Police. The Chief then
calls his offi ce and informs them that the Commander has been murdered and
that they should round up the usual suspects.

254 Appendix

For Java, the CLASSPATH variable is a list of the usual suspects. When Java
wants to fi nd a class fi le, it searches through all of the directories that are listed in
the CLASSPATH. In order to have Java look in new places, just add more paths to
the CLASSPATH variable.

For example, suppose the CLASSPATH contains

1. /myData
2. /myFiles
3. /myStuff

Java will check the following paths to fi nd a class fi le named myFile.class.

1. /myData/myFile.class
2. /myFiles/myFile.class
3. /myStuff/myFile.class

There are also system paths that are searched that are not listed in the
CLASSPATH.

A.1.2 What Is a Package?

The simplest defi nition of a package is a folder that contains Java class fi les.
However, packages do more than that. They also indicate where a Java class can
be found. Essentially, packages allow for an extension to the CLASSPATH list,
without adding new paths to it.

If the class fi le myFile.class was in a package named jbond007, then Java
will check the following paths to fi nd the class fi le.

1. /myData/jbond007/myFile.class
2. /myFiles/jbond007/myFile.class
3. /myStuff/jbond007/myFile.class

If the class fi le myFile.class was in a package named agents.jbond007,
then Java will check the following paths to fi nd the class fi le.

1. /myData/agents/jbond007/myFile.class
2. /myFiles/agents/jbond007/myFile.class
3. /myStuff/agents/jbond007/myFile.class

Every section of the package name corresponds to a subdirectory in the fi le system.
The fi rst part of the package name corresponds to a directory on the fi le system
that must be a subdirectory of a path in the CLASSPATH variable.

A.2 JAR File Problems

Java loads .class fi les when they are fi rst accessed. At different times, Java uses dif-
ferent class loaders to create the class that is defi ned in the .class fi le. When a class
is created, its information is stored in a separate part of memory that is never

Appendix 255

garbage-collected by the JVM. The memory can be released when the class loader
is removed; however, if there is still a reference from a different class loader to any
object that was created by the class loader being removed, then none of the class
defi nitions that were loaded by the class loader will be released. This is known as
a memory leak.

Each web application has its own class loader. This is what makes it possible to
restart a web application without restarting the entire JVM. There are class loaders
for running the JVM and there is a class loader for the web application. When the
web application is restarted, the class loader is reinitialised. As long as there are
no active references to the objects created by the web application’s class loader, all
of the permanent memory that was allocated by the class loader will be released.
If there is still an active reference, then none of the class information will be
released and there will be a memory leak.

Other memory leaks can be caused by the programmer. Many packages have
methods that should be called in order to release all the reources that are being
used by the package. This is analogous to closing a fi le: there is a method to close
the fi le, but the programmer must call it. If the fi le is not closed, then some data
might not be written to the fi le. In the same way, the methods that exist for releas-
ing resources must be called by the programmer, or the application will have a
memory leak.

There are two types of memory leaks: catastrophic and one-timers. Catastrophic
errors can cause the servlet engine to crash. The one-timers will usually not cause
the servlet engine to crash; they will only force the engine to hold onto more
resources than it needs.

If a web application with a catastrophic leak is reloaded enough times, then it
will crash the servlet engine. Each time it is reloaded, it maintains a reference to
the previous class loader. All the class data from the old class loader cannot be
released and then a new class loader is created. If it is reloaded ten times, then
there will be ten copies of the class data. If it is reloaded enough times, all of the
memory in the servlet engine will be used and the engine will crash.

The one-timers only hold onto extra memory during the fi rst reload; they
do not leak more memory on subsequent reloads. The one-timers are usually
caused by a static reference to an object. When the static reference is loaded by
one class loader and the object is loaded by a different class loader, then there is
a memory leak. Often, these leaks can be removed by using a weak reference to
the object.

As of the publication of this book, Tomcat 6 is available as well as Hibernate
3.2.4. These packages have removed all of the catastrophic memory leaks. However,
it is still up to the programmer to call all the necessary methods to release resources;
otherwise, there will be catastrophic memory leaks.

A.2.1 Hibernate

Hibernate can cause a catastrophic memory leak, if the programmer does not
release Hibernate’s resources. There is a method in the Hibernate package that
must be called before the web application closes: closeFactory(). If this is
not called, then every time the web application is reloaded, the previous class
loader and all of its memory will not be released.

256 Appendix

The call to this method has been encapsulated in the closeHibernate
method of the HibernateHelper class.

A.2.2 MySQL Driver

The MySql driver is used in this book, but this section applies to any SQL driver that
is used. Once a driver has been registered with Java, then it must be deregistered
before the web application is stopped; otherwise, there will be a catastrophic memory
leak.

One technique is to deregister all of the drivers. An enumeration of all of the
drivers can be obtained from the DriverManager class. Loop through each
driver and deregister it.

try {
 Enumeration<Driver> enumer = DriverManager.getDrivers();
while (enumer.hasMoreElements()) {

 DriverManager.deregisterDriver(enumer.nextElement());
 }
} catch (java.sql.SQLException se) {
 se.printStackTrace();
}

A.2.3 Hibernate Annotations

This section is not about a memory leak, but it is a warning to developers who have
used earlier versions of Hibernate. In earlier versions, a multiple-valued bean pro-
perty was annotated with @OneToMany to indicate that it will have a separate
table created for it in the database. This table was created by Hibernate, without
having to be defi ned. In Hibernate 3.2, this annotation is only to be used for entities
that have been defi ned by the programmer, an implicit table cannot be created by
using this annotation. The @CollectionOfElements annotation should be
used, instead, to indicate that Hibernate should create an implicit, related table in
the database.

A.3 MySQL

Although Hibernate eliminates the necessity of knowing SQL, sometimes curiosity
gets the better of us and we want to see what Hibernate is doing. An example will
be presented that demonstrates how to issue a few SQL commands in the MySQL
database server to see the structure of the tables that Hibernate has created. A
command will also be supplied that shows all the records in a table. These com-
mands are very simple SQL commands. Only the bare minimum of statements will
be introduced.

Additional commands will be supplied that are specifi c to the MySQL database.
These additional commands are needed in order to log onto the server. The MySQL
server is a free relational database. The source code can be obtained at http://
mysql.org.

Appendix 257

Two essential pieces of information are needed to log onto any server: user-
name and password.

To access the MySQL database, issue the following command. This command
will connect to the MySQL server that is installed on the local machine. Enter your
password after MySQL prompts you for it.

mysql -u username -p <Enter Key>
password

View all databases in the server with the following command. Don’t forget the ; at
the end.

show databases;

Select a database named db_name with the following command. This is the only
command that does not need a ; at the end.

use db_name

Once a database has been chosen, the names of all the tables can be displayed.

show tables;

There won’t be any tables until you create a servlet that saves data to a database.
Once you have a table, you can view the structure of a table named name-of-table
with the following command.

describe name-of-table;

Use the select statement to see all the records in the table.

select * from name-of-table;

Exit MySQL with the following command.

exit;

These are the only commands that are needed to see what Hibernate has
done.

A.4 Auxiliary Classes

Many classes that were used in the book were not explained in complete detail.
The parts that were relevant to the theme of the book were covered, but the
remaining parts of these classes were not covered. Most of the uncovered details
deal with annotations, enumerations, error handling and refl ection. A complete
explanation of the code from these fi les belongs in a Java programming text.

258 Appendix

A.4.1 Annotations

In addition to the annotations that are used by Hibernate, two other annotations
were used in the book. ButtonMethod was used to annotate a method that does
the processing associated with a button on a form. SetByAttribute was used
on bean property accessors to indicate if the property is initialised by including
an extra attribute in the defi nition of the form element in the JSP.

ButtonMethod

Listing A.1 is the ButtonMethod annotation. Place this annotation before a
method that does the processing associated with a button in a form. The method
that is annotated should have no parameters and should return a string.

package shared;

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface ButtonMethod {
 String buttonName() default “”;

boolean isDefault() default false;
}

Listing A.1 The ButtonMethod annotation.

SetByAttribute

Listing A.2 is the SetByAttribute annotation. Place the annotation before the
accessor of a bean property that is associated with a form element that is a button
group or a select list. These types of form elements are initialised by including an
extra attribute in the element. The type of the additional attribute is defi ned in
the AttributeType parameter of the annotation.

package shared;

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface SetByAttribute {
 AttributeType type();
}

Listing A.2 The SetByAttribute annotation.

A.4.2 Cookie Utility

The cookies that are retrieved in a servlet cannot be accessed randomly; it is nec-
essary to do a linear search each time a cookie is needed. To facilitate this task, a

Appendix 259

utility class of static methods was created that will perform such linear searches.
A cookie can be retrieved by name; either the cookie or the cookie’s value can be
returned (Listing A.3).

package shared;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;

public class CookieUtil {

static
public Cookie findCookie(HttpServletRequest request,

 String name)
 {

if (request.getCookies() == null) return null;
for(Cookie cookie : request.getCookies()) {
if (cookie.getName().equals(name)) return cookie;

 }
return null;

 }

static
public String findCookieValue(HttpServletRequest request,

 String name)
 {
 Cookie cookie = findCookie(request, name);

if (cookie != null) {
return cookie.getValue();

 }
return null;

 }

}

Listing A.3 The CookieUtil class.

A.4.3 Enumerations

Enumerations are new in Java 1.5. They are an excellent way to create self-
documenting code. The SessionData enumeration is used to indicate if the data
that is already in the session should be read or ignored. The AttributeType
enumeration is used by the SetByAttribute annotation to indicate the type of
the attribute that is used to initialise a form element.

Session Data

Listing A.4 is the SessionData enumeration, which is defi ned in the
HelperBaseCh4 class. It is used as a parameter to the addHelperToSession
method. While this parameter could have been implemented with a boolean vari-
able, it is clearer to understand what SessionData.READ means than to remem-
ber what true means in this context.

260 Appendix

protected enum SessionData { READ, IGNORE };

Listing A.4 The SessionData enumeration from HelperBaseCh4.

Attribute Type

Listing A.5 is the AttributeType enumeration. This is used in the
SetByAttribute annotation. Certain form elements are initialised by adding
an attribute to the form element. This form element attribute is named either
checked or selected. This enumeration encapsulates these values.

package shared;

public enum AttributeType { CHECKED, SELECTED }

Listing A.5 The AttributeType enumeration.

A.4.4 Helper Base

The helper base classes have been used since Chapter Four. The subsequent helper
base classes from each chapter extend the helper base from the previous chapter.
Most of the details of the classes were covered in the book, but not every version
of an overloaded method was covered. Refl ection was also used in several places
to simplify the work of the controller helper; the details of using refl ection should
be covered in a Java programming text.

Helper Base Chapter Four

This base class has member variables for the request, response and logger. These
are initialised when the base class is constructed. There are also default implemen-
tations of the doGet and doPost methods that only display an error. The session
is used to store data, the population of a bean is automated and refl ection is used
to execute a method that is associated with a button. Listing A.6 is the helper base
class from Chapter Four.

package shared;

import java.io.IOException;
import java.io.PrintWriter;
import java.lang.refl ect.InvocationTargetException;
import java.lang.refl ect.Method;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public abstract class HelperBaseCh4 {

protected enum SessionData { READ, IGNORE };

Appendix 261

private Method methodDefault = null;

protected HttpServletRequest request;
protected HttpServletResponse response;
protected Logger logger;

public HelperBaseCh4(HttpServletRequest request,
 HttpServletResponse response) {
this.request = request;
this.response = response;

 logger = Logger.getLogger(“bytesizebook.webdev”);
 logger.setLevel(Level.DEBUG);
 }

protected void doGet()
throws ServletException, IOException {

 response.getWriter()
 .print(“The doGet method must be overridden” +

“ in the class that extends HelperBase.”);
 }

protected void doPost()
throws ServletException, IOException {

 response.getWriter()
 .print(“The doPost method must be overridden” +
 “ in the class that extends HelperBase.”);
 }

protected abstract void copyFromSession(Object helper);

public void addHelperToSession(String name,
 SessionData state) {

if (SessionData.READ == state) {
 Object sessionObj =
 request.getSession().getAttribute(name);

if (sessionObj != null) {
 copyFromSession(sessionObj);
 }
 }
 request.getSession().setAttribute(name, this);
 }

public void addHelperToSession(String name,
boolean checkSession) {

if (checkSession) {
 Object sessionObj =
 request.getSession().getAttribute(name);

if (sessionObj != null) {
 copyFromSession(sessionObj);
 }
 }
 request.getSession().setAttribute(name, this);
 }

262 Appendix

protected String executeButtonMethod()
throws ServletException, IOException {

 String result = “”;
 methodDefault = null;
 Class clazz = this.getClass();
 Class enclosingClass = clazz.getEnclosingClass();

while (enclosingClass != null) {
 clazz = this.getClass();
 enclosingClass = clazz.getEnclosingClass();
 }

try {
 result = executeButtonMethod(clazz, true);
 } catch (Exception ex) {
 writeError(request, response,

“Button Method Error”, ex);
return “”;

 }

return result;
 }

protected
 String executeButtonMethod(Class clazz,

boolean searchForDefault)
throws IllegalAccessException, InvocationTargetException

 {
 String result = “”;
 Method [] methods = clazz.getDeclaredMethods();

for(Method method : methods) {
 ButtonMethod annotation =
 method.getAnnotation(ButtonMethod.class);

if (annotation != null) {
if (searchForDefault && annotation.isDefault())

 {
 methodDefault = method;
 }

if (request.getParameter(annotation.buttonName())
 != null)
 {
 result = invokeButtonMethod(method);

break;
 }
 }
 }

if (result.equals(“”)) {
 Class superClass = clazz.getSuperclass();

if (superClass != null) {
 result =
 executeButtonMethod(superClass,
 methodDefault == null);
 }

if (result.equals(“”)) {
if (methodDefault != null) {

 result = invokeButtonMethod(methodDefault);
 } else {

Appendix 263

 logger.error(
 “(executeButtonMethod) No default method “ +
 “was specified, but one was needed.”);
 result = “No default method was specifi ed,.”;
 }
 }
 }

return result;
 }

protected String invokeButtonMethod(Method buttonMethod)
throws IllegalAccessException, InvocationTargetException

 {
 String resultInvoke = “Could not invoke method”;

try{
 resultInvoke =

 (String) buttonMethod.invoke(this,
 (Object[]) null);
 } catch (IllegalAccessException iae) {
 logger.error(“(invoke) Button method is not public.”,
 iae);

throw iae;
 } catch (InvocationTargetException ite) {
 logger.error(“(invoke) Button method exception”,
 ite);

throw ite;
 }

return resultInvoke;
 }

public void fillBeanFromRequest(Object data) {
try {

 org.apache.commons.beanutils.BeanUtils.
 populate(data, request.getParameterMap());

 } catch (IllegalAccessException iae) {
 logger.error(“Populate - Illegal Access.”, iae);
 } catch (InvocationTargetException ite) {
 logger.error(“Populate - Invocation Target.”, ite);
 }
 }

public void populateThrow(Object data)
throws IOException, ServletException {
try {

 org.apache.commons.beanutils.BeanUtils.
 populate(data, request.getParameterMap());

 } catch (IllegalAccessException iae) {
 logger.error(“Populate - Illegal Access.”, iae);
 writeError(request, response,

“Populate - Illegal Access.”, iae);
 } catch (InvocationTargetException ite) {
 logger.error(“Populate - Invocation Target.”, ite);
 writeError(request, response,

“Populate - Invocation Target.”, ite);
 }
 }

264 Appendix

static public void writeError(
 javax.servlet.http.HttpServletRequest request,
 javax.servlet.http.HttpServletResponse response,
 String title,
 Exception ex)

throws IOException, ServletException
 {
 java.io.PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.println(“<html>”);
 out.println(“ <head>”);
 out.println(“ <title>” + title + “</title>”);
 out.println(“ </head>”);
 out.println(“ <body>”);
 out.println(“<h2>” + title + “</h2>”);

if (ex.getMessage() != null)
 out.println(“ <h3>” + ex.getMessage()+ “</h3>”);

if (ex.getCause() != null)
 out.println(“ <h4>” + ex.getCause()+ “</h4>”);
 StackTraceElement[] trace = ex.getStackTrace();

if (trace != null && trace.length > 0)
 out.print(“<pre>”);
 ex.printStackTrace(out);
 out.println(“</pre>”);
 out.println(“ </body>”);
 out.println(“</html>”);
 out.close();
 }
}

Listing A.6 The helper base class from Chapter Four.

Helper Base Chapter Five

The Chapter Five helper base class adds the enhanced interface for accessing the
Hibernate validation messages (Listing A.7).

package shared;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.hibernate.validator.ClassValidator;
import org.hibernate.validator.InvalidValue;

public abstract class HelperBaseCh5 extends HelperBaseCh4 {

public HelperBaseCh5(HttpServletRequest request,
 HttpServletResponse response) {

super(request, response);
 }

 java.util.Map<String, String> errorMap =
new java.util.HashMap<String, String>();

Appendix 265

public void setErrors(Object data) {
 InvalidValue[] validationMessages;
 ClassValidator requestValidator =

new ClassValidator(data.getClass());
 validationMessages =

requestValidator.getInvalidValues(data);

 errorMap.clear();
if (validationMessages.length != 0) {

for(InvalidValue msg : validationMessages) {
 errorMap.put(msg.getPropertyName(),
 msg.getMessage());
 }
 }
 }

public boolean isValid(Object data) {
 setErrors(data);

return errorMap.isEmpty();
 }

public java.util.Map getErrors() {
return errorMap;

 }

public boolean isValidProperty(String name) {
 String msg = errorMap.get(name);

return msg == null || msg.equals(“”);
 }

}

Listing A.7 The helper base class from Chapter Five.

Helper Base Chapter Six

The Chapter Six helper base class adds the maps for initialising complex form
elements (Listing A.8).

package shared;

import java.lang.refl ect.InvocationTargetException;
import java.lang.refl ect.Method;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public abstract class HelperBaseCh6 extends HelperBaseCh5 {

protected Map<String, Map<String, String>> checked =
new HashMap<String, Map<String, String>>();

266 Appendix

protected Map<String, Map<String, String>> selected =
new HashMap<String, Map<String, String>>();

public HelperBaseCh6(HttpServletRequest request,
 HttpServletResponse response) {

super(request, response);
 }

protected void setCheckedAndSelected(Object data) {
 setCheckedAndSelected(data, data.getClass());
 }

protected void setCheckedAndSelected(Object data,
 Class clazz) {
 Method [] allMethods = clazz.getDeclaredMethods();
 Method methodDefault = null;

for (Method method : allMethods) {
 SetByAttribute propAnnotation = method
 .getAnnotation(SetByAttribute.class);

if (propAnnotation!=null) {
 String property = method.getName();
 java.util.regex.Pattern pattern
 = java.util.regex.Pattern.compile(“get(.+)”);
 java.util.regex.Matcher matcher
 = pattern.matcher(property);

int index = property.indexOf(“get”);
if (!matcher.matches()) {

 logger.error(property + “ must be an accessor.”);
 } else {
 property = matcher.group(1);
 property = property.substring(0,1).toLowerCase()
 + property.substring(1);
 clearProperty(property,
 propAnnotation.type());

if (method.getReturnType().isArray()) {
 Object[] result =
 (Object[]) invokeGetter(data, method);

if (result != null) {
for(Object obj: result) {

 addChoice(property, obj.toString(),
 (AttributeType)propAnnotation.type());
 }
 }
 } else {
 Object result = invokeGetter(data, method);

if (result != null) {
 addChoice(property, result.toString(),
 (AttributeType)propAnnotation.type());
 }
 }
 }
 }
 }
 Class parentClass = clazz.getSuperclass();

Appendix 267

if (parentClass != null) {
 setCheckedAndSelected(data, parentClass);
 }
 }

protected Object invokeGetter(Object obj, Method method)
 {
 Object result = null;

try{
 result = method.invoke(obj, (Object[]) null);
 } catch (IllegalAccessException iae) {
 logger.error(“(invoke) Accessor needs public access”,
 iae);
 } catch (InvocationTargetException ite) {
 logger.error(“(invoke) Accessor threw an exception”,

ite);
 }

return result;
 }

public Map getChecked() {
return checked;

 }

public Map getSelected() {
return selected;

 }

public void addChecked(String group, String item) {
if (checked.get(group) == null) {

 checked.put(group,
new HashMap<String, String>());

 }
 checked.get(group).put(item, “checked”);
 }

public void addSelected(String list, String item) {
if (selected.get(list) == null) {

 selected.put(list,
 new HashMap<String, String>());
 }
 selected.get(list).put(item, “selected”);
 }

public void addChoice(String list,
 String item,
 AttributeType type) {

if (type == null) return;
if (AttributeType.CHECKED == type) {

 addChecked(list, item);
 }

if (AttributeType.SELECTED == type) {
 addSelected(list, item);
 }
 }

268 Appendix

public void clearProperty(String property,
 AttributeType type) {
 Map<String, String> propMap;

if (AttributeType.CHECKED == type) {
 propMap = checked.get(property);

if (propMap != null) {
 propMap.clear();
 }
 } else if (AttributeType.SELECTED == type) {
 propMap = selected.get(property);

if (propMap != null) {
 propMap.clear();
 }
 }
 }

public void clearMaps() {
 checked.clear();
 selected.clear();
 }

}

Listing A.8 The helper base class from Chapter Six.

A.4.5 Hibernate Helper

The Hibernate helper class encapsulates access to the Hibernate methods. Hiber-
nate uses transactions and session to access the database. The details of using these
are placed in the Hibernate helper methods.

Saving Data

The saveOrUpdate method is used to add new objects in, or update existing
objects to the database. Hibernate uses sessions and transactions to interact
with the database. The details of sessions and transactions are outside the scope
of this text.

public void updateDB(Object obj) {
 Session session = null;
try {

 session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 session.saveOrUpdate(obj);

 tx.commit();
 } fi nally {

if (session != null) session.close();
 }
}

Appendix 269

static
public void updateDB(java.util.List list) {

 Session session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

for(Object obj : list) {
 session.saveOrUpdate(obj);
 }

 tx.commit();
 session.close();
}

Retrieving Data

Retrieving data is accomplished by using a Criteria object. This method returns
all the records from the database. If a key and value are sent to the method, then
only the records that match the value for that key will be returned. This method
could be extended to include additional criteria, so that a more complicated search
could be performed.

public java.util.List getListData(
 Class classBean, String strKey, Object value)
{
 java.util.List result = new java.util.ArrayList();

 Session session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 Criteria criteria =
 session.createCriteria(classBean);
if (strKey != null) {

 criteria.add(Restrictions.like(strKey, value));
 }
 result = criteria.list();

 tx.commit();
 session.close();
return result;

}

Removing Data

Once a record has been found, Hibernate will remember that it was retrieved from
the database. By sending the same object to the remove method, it will be deleted
from the database.

public void removeDB(Object obj) {
 Session session = null;
try {

 session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

270 Appendix

 session.delete(obj);

 tx.commit();
 } fi nally {

if (session != null) session.close();
 }
}

Hibernate Helper Class

Listing A.9 is the complete Hibernate helper class.

package shared;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.log4j.Logger;
import org.hibernate.Criteria;
import org.hibernate.HibernateException;
import org.hibernate.Query;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.AnnotationConfi guration;
import org.hibernate.cfg.Confi guration;
import org.hibernate.cfg.Environment;
import org.hibernate.criterion.Restrictions;

public class HibernateHelper {

static protected Logger log =
 Logger.getLogger(“bytesizebook.webdev”);

static protected List<Class> listClasses = new
ArrayList<Class>();
static protected SessionFactory sessionFactory;
static protected Exception lastError;

static
public void initSessionFactory(Properties props,

 Class... mappings) {
if (addMappings(listClasses, mappings)) {

 closeFactory(sessionFactory);
 sessionFactory = createFactory(props, listClasses);
 }
 }

Appendix 271

static
public void initSessionFactory(Class... mappings) {

 initSessionFactory(null, mappings);
 }

static
public void createTable(Properties props,

 Class... mappings) {
 List<Class> tempList = new ArrayList<Class>();
 SessionFactory tempFactory = null;

 addMappings(tempList, mappings);
if (props == null) props = new Properties();

 props.setProperty(Environment.HBM2DDL_AUTO, “create”);
 tempFactory = createFactory(props, tempList);
 closeFactory(tempFactory);
 }

static
public void createTable(Class... mappings) {

 createTable(null, mappings);
 }

static
protected boolean addMappings(List<Class> list, Class...

mappings) {
boolean bNewClass = false;
for (Class mapping : mappings) {
if (!list.contains(mapping)) {

 list.add(mapping);
 bNewClass = true;
 }
 }

return bNewClass;
 }

static
protected SessionFactory createFactory(

 Properties props,
 List<Class> list) {
 SessionFactory factory = null;
 AnnotationConfiguration cfg =

new AnnotationConfi guration();
try {
if (props != null) cfg.addProperties(props);

 confi gureFromFile(cfg);
for (Class mapping : list) {

 cfg.addAnnotatedClass(mapping);
 }
 factory = buildFactory(cfg);
 testConnection(factory);
 } catch (Exception ex) {
 log.error(“SessionFactory creation failed.”, ex);
 lastError = ex;
 closeFactory(factory);

272 Appendix

 factory = null;
 }

return factory;
 }

static
protected void confi gureFromFile(Confi guration cfg)
throws Exception {
try {

 cfg.confi gure();
 } catch (HibernateException ex) {

if (ex.getMessage().equals(
 “/hibernate.cfg.xml not found”)) {
 log.warn(ex.getMessage());
 } else {
 log.error(“Error in hibernate “ +

 “confi guration file.”, ex);
throw ex;

 }
 }
 }

static
protected SessionFactory buildFactory(Configuration cfg)
throws Exception

 {
 SessionFactory factory = null;

try {
 factory = cfg.buildSessionFactory();
 } catch (Exception ex) {
 closeFactory(factory);
 factory = null;

throw ex;
 }

return factory;
 }

static
protected void testConnection(SessionFactory factory)
throws Exception {

 Session session = null;
try {

 session = factory.openSession();
 Transaction tran = session.beginTransaction();

 someDatabaseProcess();

 tran.commit();
 session.close();
 } catch (Exception ex) {
 log.error(“Database transaction failed.”, ex);

if (session != null) session.close();
throw ex;

 }
 }

Appendix 273

static
protected void someDatabaseProcess() {}

static
public void closeFactory(SessionFactory factory) {
if (factory != null) {

 factory.close();
 }
 }

static
public void closeFactory() {

 closeFactory(sessionFactory);
 }

static
public Exception getLastError() {
return lastError;

 }

static
public void updateDB(Object obj) {

 Session session = null;
try {

 session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 session.saveOrUpdate(obj);

 tx.commit();
 } fi nally {

if (session != null) session.close();
 }
 }

static
public void updateDB(java.util.List list) {

 Session session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

for(Object obj : list) {
 session.saveOrUpdate(obj);
 }

 tx.commit();
 session.close();
 }

static
public void saveDB(Object obj) {

 Session session = null;
try {

 session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

274 Appendix

 session.save(obj);

 tx.commit();
 } fi nally {

if (session != null) session.close();
 }
 }

static
public void removeDB(Object obj) {

 Session session = null;
try {

 session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 session.delete(obj);

 tx.commit();
 } fi nally {

if (session != null) session.close();
 }
 }

static
public java.util.List getListData(

 Class classBean, String strKey, Object value)
 {
 java.util.List result = new java.util.ArrayList();

 Session session = sessionFactory.openSession();
 Transaction tx = session.beginTransaction();

 Criteria criteria =
 session.createCriteria(classBean);

if (strKey != null) {
 criteria.add(Restrictions.like(strKey, value));
 }
 result = criteria.list();

 tx.commit();
 session.close();

return result;
 }

static
public java.util.List getListData(

 Class classBean) {
return getListData(classBean, null, null);

 }

static
public Object getFirstMatch(

 Class classBean, String strKey, Object value) {
 java.util.List records =
 getListData(classBean, strKey, value);

Appendix 275

if (records != null && records.size() > 0) {
return records.get(0);

 }
return null;

 }

static
public Object getFirstMatch(

 Object data, String strKey, Object value) {
return getFirstMatch(data.getClass(),

 strKey, value);
 }

static
public Object getKeyData(Class beanClass, long itemId) {

 Object data = null;
 Session session = sessionFactory.openSession();

 data = session.get(beanClass, itemId);

 session.close();

return data;
 }

static
public boolean isSessionOpen() {
return sessionFactory != null;

 }

static
public boolean testDB(HttpServletResponse response)
throws IOException, ServletException {
if (!isSessionOpen()) {

 writeError(response);
 }

return isSessionOpen();
 }

static
public void writeError(HttpServletResponse response,

 String title,
 Exception ex)
throws java.io.IOException, ServletException

 {
 java.io.PrintWriter out = response.getWriter();
 response.setContentType(“text/html”);
 out.println(“<html>”);
 out.println(“ <head>”);
 out.println(“ <title>” + title + “</title>”);
 out.println(“ </head>”);
 out.println(“ <body>”);
 out.println(“<h2>” + title + “</h2>”);

if (ex != null) {
if (ex.getMessage() != null) {

276 Appendix

 out.println(
 “ <h3>” + ex.getMessage() + “</h3>”);
 }

if (ex.getCause() != null) {
 out.println(
 “ <h4>” + ex.getCause() + “</h4>”);
 }
 StackTraceElement[] trace = ex.getStackTrace();

if (trace != null && trace.length > 0) {
 out.print(“<pre>”);
 ex.printStackTrace(out);
 out.println(“</pre>”);
 }
 } else {
 out.println(“Hibernate must be initialized”);
 }
 out.println(“ </body>”);
 out.println(“</html>”);
 out.close();
 }

static
public void writeError(HttpServletResponse response)
throws java.io.IOException, ServletException {

 writeError(response,
 “Hibernate Initialization Error”,
 lastError);
 }
}

Listing A.9 The Hibernate helper class.

A.4.6 InitLog4j Servlet

A servlet is used to confi gure Log4j. Listing A.10 is the complete InitLog4j servlet.

package shared;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import org.apache.log4j.FileAppender;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.apache.log4j.PatternLayout;
import org.apache.log4j.RollingFileAppender;

public class InitLog4j extends HttpServlet {

private static fi nal String logPath =
 “/WEB-INF/logs/error.log”;

public void init() {
 FileAppender appender = getAppender(logPath);

if (appender == null) return;
 initLogger(null, appender, Level.ERROR);

Appendix 277

 initLogger(“org.apache.commmons.beanutils”,
 appender, Level.DEBUG);
 }

private FileAppender getAppender(String fileName) {
 RollingFileAppender appender = null;

try {
 appender = new RollingFileAppender(

new PatternLayout(“%-5p %c %t%n%29d - %m%n”),
 getServletContext().getRealPath(fi leName),
 true);
 appender.setMaxBackupIndex(5);
 appender.setMaxFileSize(“1MB”);
 } catch (IOException ex) {
 System.out.println(
 “Could not create appender for “
 + fileName + “:”
 + ex.getMessage());
 }

return appender;
 }

private void initLogger(String name,
 FileAppender appender,
 Level level)
 {
 Logger logger;

if (name == null) {
 logger = Logger.getRootLogger();
 } else {
 logger = Logger.getLogger(name);
 }
 logger.setLevel(level);
 logger.addAppender(appender);
 logger.info(“Starting “ + logger.getName());
 }
}

Listing A.10 The InitLog4j servlet.

A.4.7 PersistentBase Class

It is a repetitive task to make a bean into a persistent bean. To facilitate this task,
a base class was created that contains the defi nition of a primary key (Listing A.11).
By extending this class, a primary key will be added to the bean.

package shared;

import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.MappedSuperclass;

@MappedSuperclass
public class PersistentBase {

278 Appendix

protected Long id;

 @Id
 @GeneratedValue

public Long getId() { return id; }

protected void setId(Long id) { this.id = id; }

public PersistentBase() {
 }

}

Listing A.11 The PersistentBase class.

It is recommended that such a primary key is used, even if there is a natural
primary key in the data. This is because the primary key plays a fundamental role
in how Hibernate maintains state.

A.4.8 Webapp Listener

In order to be sure that Hibernate is closed before the web application is stopped,
a reference to a context listener was added to the web.xml fi le. Listing A.12 contains
the source code for this listener.

package shared;

import java.sql.Driver;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.util.Enumeration;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class WebappListener implements ServletContextListener
{
public void contextInitialized(ServletContextEvent sce)

 {}

public void contextDestroyed(ServletContextEvent sce)
 {

try {
 Enumeration<Driver> enumer = DriverManager.getDrivers();

while (enumer.hasMoreElements()) {
 DriverManager.deregisterDriver(enumer.nextElement());
 }
 } catch (java.sql.SQLException se) {
 se.printStackTrace();
 }
 shared.HibernateHelper.closeFactory();
 }
}

Listing A.12 The WebappListener class that is used to close Hibernate.

279

Glossary

CSS – Cascading Style Sheets
EL – Expression Language
HTML – Hypertext Markup Language
HTTP – Hypertext Transfer Protocol
IDE – Integrated Development Environment
JAR – Java Archive
JSP – Java Server Page
JSTL – Java Standard Template Library
JVM – Java Virtual Machine
MIME – Multipurpose Internet Mail Extensions
MVC – Model, View, Controller
SQL – Structured Query Language
URL – Uniform Resource Locator
W3C – WWW Consortium
WAR – Web Archive

280

References

Additional Resources

Books

Bauer C, King G, (2005) Hibernate in Action, Manning, Greenwich.
Chopra V, Galbraith B, Li S, Wiggers C, Bakore A, Bhattacharjee D, et al., (2002)

Professional Apache Tomcat, Wrox, Birmingham.
Hall M, (2002) More Servlets and Java Server Pages, Sun, Palo Alto.
Hall M, Brown L, (2004) Core Servlets and Java Server Pages, Second Edition, Sun,

Santa Clara.
Ragget D, Lam J, Alexander I, Kmiec M, (1998) Raggett on HTML 4, Second Edition,

Addison-Wesley, Harlow.
Stein L, (1997) How to Set Up and Maintain a Web Site, Second Edition, Addison-

Wesley, Reading.

Web Sites

Hibernate, http://www.hibernate.org/247.html
Hibernate Annotations, http://www.hibernate.org/hib_docs/annotations/api/

index.html?org/hibernate/annotations/package-summary.html
Hibernate Validator, http://www.hibernate.org/hib_docs/annotations/reference/

en/html/validator.html
Jakarta Commons, http://jakarta.apache.org/commons/
Java, http://sun.comJava
Log4j, http://logging.apache.org/log4j/docs/
Memory Leaks and Class Loaders, Frank Kieviet Blog,
http://blogs.sun.com/fkieviet/entry/classloader_leaks_the_dreaded_java
NetBeans, http://netbeans.org
Regular Expressions, http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/

Pattern.html
Tomcat, http://tomcat.apache.org/

281

Index

${param.name_of_element} 18
${param.hobby} 18
${param.hobby} 34
${database} 154
${helper.checked} 198
${helper.selected} 198

A
Absolute reference 12, 33
Accessing multiple-valued properties 187
Accessor

see Controller helper
see Expression language
see Java bean
see Java server page

Accounts, cookies and carts 213
Action 33–4, 40, 49
Anchor tag 10
Annotation

large object 234
lob 234
NotNull 235

Annotations 111, 258
button method 112
 button name 112
 executing 112
 is default 112
hibernate 126
location 112, 127
persistent 148–52
 entity 149
 GeneratedValue 150
 id 150
 transient 150
SetByAttribute 197
validation
 notNull 127
 pattern 126

Application
account cookie 228–9
account login 216–7
account removal 218–9

complex elements 188
complex persistent 205–6
data bean 70–4
default validation 74–7
enhanced controller 115–18
initialised complex elements 200–3
persistent data 158–60
POST controller 137–9
reorganised controller 90
required validation 133
shared variable error 80–1
shopping cart 240–9
 BrowseLoop 246
 conditional tag 245
 display catalog 244
start example 64–5

Attribute 11
action 33–4, 40, 48
href 11
length 234
message 126
method 135
name 13
regex 126
type 13
value 13

Attribute type 260
Auxiliary classes 257

B
Basic tags for a web page 5–10
Bean, see Java bean
Br, see Tags, break
BrowseLoop.jsp

shopping cart 244
Browser 1
Browser – server communication 1
Button

clicked 44
name 48
value 48

ButtonMethod 258

282 Index

C
Cart, see Shopping cart
Cart.jsp

shopping cart 247
Cascading style sheets 166, 174
Catalog item 233–4

class 233
constructors 233
text fi elds 234

Classpath
and packages 253
usual suspects 253

Closing hibernate 147
Compilation 52
Confi guration, see Persistence
Confi rm.jsp

complex elements 190
Confi rm page 46
Content type 3
Context listener 278
Controller 42–6

as JSP 45
code 46
complex elements 188
control logic 44
data bean 71
default validation 75
details 43–5
dispatcher 45
enhanced controller 118
fi ve tasks 71
forward 45
logic 109–12
package 74
persistent data 158
POST controller 138
referencing parameters 43
reorganised controller 89
request dispatcher 45
request object 43
response object 43
servlet 49–50
 access 52
 code 50
 compilation 52
 location 51
 package 51
 relative references 55
 servlet mapping 53
 short name 52
 URL pattern 54
servlet vs JSP 49
shared variable error 80
testing for button 44
translate button 109
with no JSPs 235

Controller helper
accessor 86
account cookie 229
account login 217
account removal 219

complete code 87
complex elements 188
creating 85–7
doGet 86
eliminating hidden fi elds 104
enhanced controller 116–17
initialised complex elements 202
initialise helper base 85
making variables visible 86
persistent data 159
POST controller 138
 doGet 139
 doPost 139
 SessionData 139
shopping cart 241
variables 85
work of controller 86

Cookie 220
class 221
 getDomain 222
 getMaxAge 222
 getName 222
 getPath 222
 getSecure 222
 getValue 222
 setDomain 222
 setMaxAge 222
 setName 222
 setPath 222
 setSecure 222
 setValue 222
creating 229
defi nition 221
deleting 225
fi nding 226
path specifi c 228
reading 229
sending 222, 224
utilities 227

Cookie utility 258
Creating the controller helper 85–7
Creating the helper base 84
CSS, see Cascading style sheets

D
Database, see Persistence
Data bean

fi les 70
java bean 69
java server page 73
servlet mapping 71

Data entry 35
Data formatting 14
Data persistence in hibernate 156–7
Default validation 64

fi les 76
methods 74
servlet mapping 76

Dispatcher 45
Displaying data in the JSP 154

Index 283

DOCTYPE 7
strict 7
transitional 7

DoGet 139
DoPost 139
Dynamic content 21, 24

E
Edit.jsp

account cookie 228
complex elements 188
initialised complex elements 203

Edit page 46
EL, see Expression language
Enhanced controller

fi les 115
Enumeration

AttributeType 197, 260
 CHECKED 197
 SELECTED 197
session data 259
 IGNORE 103
 READ 103

Enumerations 259
Expression language 1, 18

${param.name_of_element} 18
${param.hobby} 18
${param.hobby} 34
${database} 154
${helper.checked} 198
${helper.selected} 198
accessor, referencing 72
parameter 44
retrieve database rows 154

F
Form

action 33
destination 14

Format of GET requests 134
Format of POST requests 135
Form elements 12–13, 181–4

advanced 166
bean implementation 184–7
checkbox group 183
hidden 37
initialise 19–20
initialising 192–5
 automating the process 197
 data fl ow 199
 JSP access 198
 map of checked values 193
 modifying the helper base 195
 retrieving map values 195
 small map 194
input 13
input elements 181
multiple selection list 184
radio group 182

related to properties 190
setCheckedAndSelected 197
setting the maps 198
single selection list 183
submit 13
text 13
using 192–9

Forward 45
Forwarding control to another JSP 45

G
GenericServlet 50
GetFirstMatch 215
GET request

creating 136
format of 134

GetSession 69

H
Handling a JSP 24
Helper base 260

chapter fi ve 128, 264–5
chapter four 100, 260–4
chapter six 265–7
creating 84
eliminating hidden fi elds 102
initialised complex elements 201
initialise variables 85

Hibernate
annotations, see Annotations
class validator 128
closing 147
confi guration
 fi le location 161
 simple controller 161
creating error messages 128
initialise 145
invalid value 128
persistence, see Persistence
save 156
saveOrUpdate 156
session data 157
update 156
validation, see Validation, required

Hibernate confi guration fi les 160
Hibernate helper 268

class 270–6
removing data 269
retrieving data 269
saving data 268

HibernateHelper, see Persistence
Hidden fi eld 35–9

add helper to session 103
controller helper
 addHelperToSession 105
 copy from session 104
 doGet 105
copy from session 102
eliminate 101–3

284 Index

Hidden fi eld (cont.)
helper base 102
session data enumeration, see Enumeration

Hidden fi eld technique 35
Href 11
HTML, see Hypertext markup language
HTTP, see Hypertext transfer protocol
Http-equiv 6
HttpServlet 50
Hypertext link 10–11
Hypertext markup language 1, 4

advanced 166
block tags 168
decoding 15
design 167
encoding 15
form 12–14
form elements, see Form elements
general style tags 168–9
hypertext link 10–11
images 167
inline tags 168
layout 7
layout tags 171–4
lists 171
select elements 183
specifi c style tags 169
tables 172
validation 7
word wrap 8–10

Hypertext transfer protocol 1
request headers 2
response headers 3

I
IDE, see Integrated development environment
Images 167
Including java code 45
Ineffi cient solution

adding another form 40
Initialising form elements 19–20
Init method 98
Integrated development environment 52

J
JAR, see Java archive
Java

criteria 214
generics 130
HashMap 130
including 45
map 128
 get 130
 put 130
properties 142
ServletContextListener, see Persistence

Java annotations, see Annotations
Java archive 95

commons beanutils 114

commons collections 114
hibernate 126
hibernate annotations 126
hibernate validation 126
java persistence 126
JSTL 155
log4j 96
modifi cations 141
MySQL 141
persistence 140
problem
 hibernate 255
 hibernate annotations 256
 MySQL driver 256
problems 254
ZIP fi les 141

Java bean 64, 66–9
access from JSP 72
accessor 66, 67
account login 216
annotating
 required validation 126
bean properties 184
complex elements 190
complex persistent 205
creating 67–8
default validation 74
fi llBeanFromRequest 186
fi lling 69, 113–4, 185
 fi llBeanFromRequest method 114
 mutator 114
 new data 114
 populate method 114
format 67
form elements 68
initialised complex elements 201
mutator 66, 67
nullable fi eld 187
placing in session 69
properties
 multiple-valued 185, 187
 related to form elements 190
 single-valued 184
request data 67

Java server page 1, 17
abstractions 21
accessing form data 18
access multiple-valued 187
advantages 49
controller 45
data from database 154
enhanced controller 115
for servlet controller 50
including java code 45
location 18
 advantages 108
 in controller 108
 in hidden directory 108
 in visible directory 107
 jspLocation method 106
 specifying 105–8

Index 285

 URL pattern 107
 where controller is mapped 107
looping 155
loop through database 156
parameter 44
public accessors 88
reorganised controller 88
request process 24
reuse 75
translate to servlet 26
versus servlet 49

Java standard template library 155
forEach 155
if tag 245
looping 155

Java virtual machine 95
JSESSIONID 225
JSP, see Java server page
JspService 24–5, 26
JSTL, see Java standard template library
JVM, see Java virtual machine

L
Layout tags 171–4
Layout versus style 7
Line breaks 8
Lists 171
Log4j 96

appender 97
confi gure 96–9
 servlet 96
error levels 96
error methods 96
helper methods 97
initialisation servlet 99
java archive 96
log fi le location 96
logger 97
 beanutils 114
 retrieve 97, 100
servlet 276
using 100

Loggers, see Log4j
Logging in web applications 95–100
Login.jsp

account login 216

M
Making data available 154–6
Map, see Java
Mapping 53
Markup language 3
Member variables 77–91

in servlet 77–84
problem 78
versus local 79
when to use 83

Meta 6
Method attribute 135

MIME, see Multipurpose internet mail
extensions

Model, view, controller 91
Multipurpose internet mail extensions 3

text/css 3
text/html 3
text/plain 3

Mutator
see Java bean, mutator

MVC, see Model, view, controller
MySQL 256

N
Name 13
Name = value pairs 14
Netbeans 27

including source fi les in a WAR fi le 59
libraries 119
project 27
servlets 58
web application fi les 59
web project 27
 libraries 119
 source packages 58
 web pages 28

O
Order within web.xml 54

P
P, see Tags, paragraph
Package

and classpath 253
what is a package? 254

Parameters 18, 44
referencing 43

Persistence 140–63, 215
access 151–3
closing 147
confi guration 141–5
 initHibernate 142
 password 142
 programmatically 142
 URL 142
 username 142
 XML fi le 160
controller
 init 146
controller helper 145
creating tables 143
 conditionally 145
 getInitParameter 145
 web.xml 144
criteria 214
data in request object 154
fi nding a row 214
HibernateHelper 143
 getListData 153

286 Index

Persistence (cont.)
 initSessionFactory 143
 testDB 151
 updateDB 153
 writeError 152
intiSessionFactory 151
make data available 154–6
MySQL 256
PersistentBase class 150, 277
primary key 149
removeDB 218
removing rows 218
retrieve data 153
retrieving rows 214
save data 153
saving multiple choices 203
ServletContextListener 147
 calling 148
 confi gure 148
 XML fi le 148
test connection 151
transient 151
validate data 159

PersistentBase class 150
Placing data in the request 154
Plain text 4
POST controller

java server page 139
POST request 134–7

advantages 136
creating 136
doPost 137
error 138
format of 135
handling 137
method 137

POST versus GET 134–6
Primary key 149

creating 150
Process.jsp

account cookie 229
account removal 218
complex elements 190
complex persistent 206

Processing form data 16
Process page 47
Properties 142
Protocol 2

Q
Query string 14, 37, 48

button 44
parameters 18

R
Reading session data 157
Reference

absolute 33
relative 33

Referencing parameters 43
Regular expressions 122–5

() 124
* 124
+ 124
? 124
alternation 124
backslashes 126
capturing 124
character class 123
 predefi ned 123
examples 125
grouping 124
ignoring case 125
non-capturing 124
parentheses 124
pattern 123
repetition 124
{m,n} 124
| 124

Relative and absolute references 33
Relative reference 11, 33
Reorganised controller

fi les 90
servlet mapping 91

Reorganising the controller 83–91
Representing data 14
Request 1, 24

format 2
headers 2

Request and response objects 43
Request dispatcher 45
Request object 26, 43
Required validation, see Validation
Resetting nullable fi elds 186
Response 1, 25

format 2
headers 3

Response object 26, 43
Retrieving data 153
Retrieving rows from the database 214
Retrieving the value of a form element 34

S
Saving data 153
Select elements 183
Send data 37
Sending data to another form 32
Sending data to either of two pages 39–42
Servlet 21–3

advantages 49
class name 51
controller 49–50
directory structure 55–6
identity 51
init method 98
loaded 26
mapping 53
member variables 77–84
parameters 44

Index 287

short name 52
ServletContextListener, see Persistence
Servlet engine 57

_jspService 26
dynamic content 24
for JSP 24–6
for servlet 57
in memory 78
request 24
request object 26
response 25
response object 26

Servlet engine for a servlet 57
Servlet engine response 25–6
Servlet for a JSP 22–3
Servlet identity 51
Servlet location 51
Servlet mapping 53
Session 69, 101

getSession 69
retrieving data 102–3
setAttribute 69

Session data 259
IGNORE 157
READ 157

Session data enumeration, see Enumeration
SetAttribute 69
SetByAttribute 258
SetCheckedAndSelected 197
Shopping cart 230–2

accessing items 238
add item 242
bean 237–240
browse items 244
complete cart 239
copyFromSession 241
creating catalog 235–6
 controller 236
data structure 237
empty cart 242
enhancement 247
process cart 244
resetItems 237
total and count 238
view cart 243
view item 243

Short name for servlet 52
SQL, see Structured query language
Standard tags 6
Start example

controller 65
fi les 65
JSPs 65
servlet mapping 65

Structured query language 140
Style

adding style 174
common styles 175
default styles 177
defi ning style 175–181
examples 179

generic styles 178
multiple defi nition 178
named styles 178
nested defi nition 178
pseudo styles 179
scales 175

Synchronizing 82

T
Tables 172
Tags

body 6
break 8
form 12–14
head 6
html 6
meta 6
paired tags 5
paragraph 9
singletons 5
standard tags 6
title 6

Testing for the presence of a button 44
Testing the connection 151
Text 4
Textarea element 183
The truth about JSPs 21
Threads 77

local variable 79
member variables 78
 increment 78
schedule time 79
share data 80
sleep 81
syncrhonizing 82

Tomcat and NetBeans 27
Transient fi elds 150
Transmitting data over the web 14–15
Type 13

U
Uniform resource locator 10
URL, see Uniform resource locator
Using a controller 42

V
Validating a single property 215
Validation 7, 35

methods 74
required 122, 126–8
 controller helper 131
 errorMap 130
 getErrors 131
 implementing 128–33
 isValid 131
 java server page 132
 retrieving 132
 setErrors 130

288 Index

Validation (cont.)
 setting 131
single property 215
 isValidProperty 215
 setErrors 215

Value 13

W
W3C, see WWW consortium
WAR, see Web archive
Web.xml 16

order within 54
Web application 16–17

classes 16
confi rm 35
confi rm page 32
data entry 35
directory structure 16, 56
dynamic content 21
edit page 32
extending with JAR 95

JSP 17
lib 16
location 17
logging 95–100
process page 32, 39
send data 37
servlet 21–3
using a bean 69–74
validation 36
WEB-INF 16
web.xml 16

Webapp listener 278
Web archive 58
Web server 1
Where should JSPs be located? 108
Word wrap 8–10
Word wrap and white space 8
WWW consortium 7

X
XML fi le 160

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

