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Preface

This volume presents papers collected on the occasion of the 12th Workshop on
Stochastic Models, Statistics and Their Applications, jointly organized by the Insti-
tute of Mathematics and Computer Science of Wrocław University of Technology,
the Institute of Computer Engineering, Control and Robotics, Wrocław University
of Technology, and by the Institute of Statistics of RWTH Aachen University. This
German series of workshops has been frequently held together with research groups
from Poland, i.e. as German–Polish events. It has become more and more interna-
tional and takes place at Wrocław for the second time.

We would like to thank the following colleagues who accepted our invitation
to organize an invited session: Marco Burkschat (Aachen), Maik Döring (Ho-
henheim), Dietmar Ferger (Dresden), Elżbieta Ferenstein (Warsaw), Josef Högel
(Ulm), Hajo Holzmann (Marburg), Piotr Jaworski (Warsaw), Uwe Jensen (Hohen-
heim), Sven Knoth (Hamburg), Wolfgang Kössler (Berlin), Jacek Koronacki (War-
saw), Adam Krzyżak (Montreal), Eckhard Liebscher (Merseburg), Ryszard Magiera
(Wrocław), Mirek Pawlak (Winnipeg), Rainer Schwabe (Magdeburg), Wolfgang
Schmid (Frankfurt Oder) Krzysztof Szajowski (Wrocław), Darus Uciński (Zielona
Góra), Christian Weiss (Hamburg), Aleksander Weron (Wrocław) and Rafał Weron
(Wrocław).

In order to prepare a volume representing the state of the art as well as most
recent trends in active research areas related to the workshop topics, we asked the
session organizers to invite their speakers and submit full papers. All submitted
papers undergone an intensive and critical peer-review process by members of the
program committee, session organizers and other recognized international experts,
but the authors are entirely responsible for the content and final form of the papers.
The editors would like to thank the colleagues who joined us as members of the pro-
ceedings’ program committee and helped us in handling and reviewing the papers:
Marco Burkschat (Aachen), Uwe Jensen (Hohenheim), Waltraud Kahle (Magde-
burg) and Sven Knoth (Hamburg). We are also indebted to the excellent and prompt
work of other referees. They did an excellent job and without their help it would not
have been possible to finish the volume timely.
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vi Preface

Part I presents the papers related to the invited plenary presentations held by
Laszlo Györfi (Budapest University of Technology and Economics and Hungarian
Academy of Sciences), Teresa Ledwina (Polish Academy of Sciences) and Marie
Hǔsková (Charles University of Prague). Part II collects articles about theory and
related topics. Papers addressing stochastic modeling, primarily in engineering and
related areas, methodological aspects and simulations are presented in Part III. Pa-
pers devoted to new algorithms, their improvement and study, or applications are
provided in Part IV.

The authors who have contributed to this volume come from Austria, Brazil,
Canada, Croatia, Czech Republic, Finland, France, Germany, Greece, Hungary,
Italy, Japan, Netherlands, Norway, Poland, Russia, Slovak Republic, Spain and
USA. It is our intention and hope that the preparation of the articles for this volume
as well as the talks and discussions at the workshop deepen existing cooperations
and partnerships and stimulate new collaborations.

We acknowledge the support of M.Sc. Annabel Prause who has helped us in
organizing the sessions and communicating with the session organizers. Dr. Mo-
hammed Abujarad and M.Sc. Evgenii Sovetkin handled the page proofs. Stefanie
Truong carefully prepared the list of contributors and Hassan Satvat helped to set
up and maintain the workshop’s website. Last but not least, we would like to thank
Springer for publishing this volume. Especially, we thank Ms. Alice Blanck for her
valuable cooperation and support and Mr. Frank Holzwarth for his technical assis-
tance.

Ansgar Steland
Krzysztof Szajowski
Ewaryst Rafajłowicz

Aachen, Germany
Wrocław, Poland

November 2014
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Chapter 1
Large Deviations of χ2 Divergence Errors
on Partitions

László Györfi

Abstract We discuss Chernoff-type large deviation results for χ2 divergence er-
rors on partitions. In contrast to the total variation and the I-divergence, the χ2-
divergence has an unconventional large deviation rate. In this paper we extend the
result of Quine and Robinson in Ann. Stat. 13:727–742, 1985 from uniform distri-
bution to arbitrary distribution.

1.1 Introduction

We consider the problem of testing an unknown probability distribution. The test
statistics are derived from dissimilarity measures of probability measures, like
φ-divergences introduced by Csiszár [7]. The three most important φ-divergences
in mathematical statistics and information theory are the total variation distance, the
information divergence and the χ2-divergence.

If μ and ν are probability measures on Rd (d ≥ 1), then the applications of large
deviation results in statistical analysis mainly concern the comparison of test proce-
dures using Bahadur efficiencies. We consider the problem of testing hypotheses

H0: ν = μ versus H1: ν �= μ
by means of test statistics Tn = Tn(X1, . . . ,Xn) where X1,X2, . . . are independent
and identically distributed random vectors along ν. Considering two tests reject-
ing H0 for large values of the statistics Tn,1 and Tn,2, then (see e.g. Bahadur [1],
Groeneboom and Shorack [11]) the efficiency e1,2 of Tn,1 with respect to Tn,2 is
calculated through the Bahadur exact slopes 2b1(ν) and 2b2(ν) for testing against
an alternative ν: e1,2 = b1(ν)

b2(ν)
. The functions b1 and b2 are then given by

bj (ν)= gj
(
ψj (ν)

)
, j = 1,2, (1.1)
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4 L. Györfi

provided

Tn,j →ψj (ν) a.s. as n→∞ under H1, (1.2)

lim
n→∞ETn,j = 0 as n→∞ under H0, (1.3)

and

lim
n→∞

1

n
ln P(Tn,j > ε)=−gj (ε) under H0, ε > 0, (1.4)

for j = 1,2. Such a limit assumption on the tail of the distribution of Tn,j means
that

P(Tn,j > ε)= e−n[gj (ε)+o(1)].
Each of the divergence measures defined below, when applied to the distance

between the null-hypothesis distribution μ and the empirical distribution μn, both
restricted to a partition, does lead to a test procedure. Hence the large deviation
results given in the subsequent sections offer the possibility to calculate exact Ba-
hadur slopes for these tests. Quine and Robinson [21] derived large deviation results
for test statistics for uniformity based on I -divergence and χ2-divergence, i.e. for
the classical likelihood ratio and chi-square goodness-of-fit tests. We also refer to
Nikitin [20] for a survey on Bahadur efficiencies of different well-known tests.

1.2 The L1 Error

If μ and ν are probability measures on Rd (d ≥ 1), then the total variation distance
between μ and ν is defined by

V (μ,ν)= sup
A

∣∣μ(A)− ν(A)∣∣,

where the supremum is taken over all Borel sets A.
We now consider some goodness of fit tests for H0 given in the Introduction. As-

sume a sample of independent, Rd valued random vectors X1, . . . ,Xn, distributed
according to a probability measure μ, and let μn denote the empirical measure.

Györfi and van der Meulen [13] introduced the test statistic

Jn =
mn∑

j=1

∣∣μ(An,j )−μn(An,j )
∣∣,

based on a finite partition Pn = {An,1, . . . ,An,mn}, (n ≥ 2), of Rd . These authors
also showed that under H0

P(Jn ≥ ε)≤ e−n( ε
2
8 +o(1)).

Let μ̄n and μ∗n be the restrictions of μ and μn to the partition Pn, then Jn =
2V (μ̄n,μ∗n).
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Beirlant et al. [2] proved the following large deviation property: Assume that

lim
n→∞max

j
μ(An,j )= 0 (1.5)

and

lim
n→∞

mn lnn

n
= 0. (1.6)

Then for all 0< ε < 2

lim
n→∞

1

n
ln P{Jn > ε} = −g(ε), (1.7)

where

g(ε)= inf
0<p<1−ε/2

(
p ln

p

p+ ε/2 + (1− p) ln
1− p

1− p− ε/2
)
. (1.8)

Biau and Györfi [4] gave an equivalent form of the rate function g:

g(ε)=max
s>0

[
sε+ 1− 2s

e2s − 1
− ln

(
e4s − 2e2s + 1

2s(e2s − 1)

)]
.

Moreover, they proved that without having the non-atomic condition (1.5), there is
a general, tight upper bound

P{Jn > ε} ≤ 2mne−ng(ε).
This upper bound implies strongly consistent tests for homogeneity and for inde-
pendence (cf. Biau and Györfi [4], and Gretton and Györfi [10]).

Remark 1.1 In Lemma 5.1 in Bahadur [1] it was observed that g(ε)= ε2

2 (1+o(1))
as ε→ 0. Local Bahadur efficiencies of the test Jn with respect to other goodness-
of-fit tests can now be computed on the basis of the above large deviation property.

1.3 The Information Divergence

The information divergence (also called I-divergence, Kullback–Leibler number,
relative entropy) of μ and ν is defined by

I (μ, ν)= sup
{Aj }

∑

j

μ(Aj ) log
μ(Aj )

ν(Aj )
,

where the supremum is taken over all finite Borel measurable partitions {Aj } of Rd .
In the literature on goodness-of-fit testing the following statistic is related to the

information divergence, namely the (reversed) I-divergence statistic

In = I
(
μ∗n, μ̄n

)=
mn∑

j=1

μn(An,j ) ln
μn(An,j )

μ(An,j )
.
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Kallenberg [16] and Quine and Robinson [21] proved that under (1.5) and (1.6),
for all ε > 0

lim
n→∞

1

n
ln P{In > ε} = −ε,

which means that

P{In > ε} = e−n(ε+o(1)).
This leads to a goodness-of-fit tests based on In.

1.4 The χ2-Divergence

The χ2-divergence measure between μ and ν is defined by

χ2(μ, ν)= sup
{Aj }

∑

j

(μ(Aj )− ν(Aj ))2
ν(Aj )

,

where again the supremum is taken over all finite Borel measurable partitions {Aj }
of Rd .

Of course the best known goodness-of-fit test is based on the χ2 statistic. We
refer to Neyman [19], Watson [23] for some important historic references. See also
Kallenberg et al. [17] for a more recent discussion. The χ2 or Pearson statistic is
given by

χ2
n = χ2(μ∗n, μ̄n

)=
mn∑

j=1

(μ(An,j )−μn(An,j ))2
μ(An,j )

,

Birgé and Massart [5], Castellan [6], and Mason, van Zwet [18] showed exponential
upper bounds on the tail distribution of the χ2-statistic. Concerning large deviations,
Quine and Robinson [21] proved that if

μ(An,j )= 1

mn
, j = 1, . . . ,mn (1.9)

and

m
3/2
n lnn

n lnmn
→ 0, (1.10)

then for all ε > 0

lim
n→∞

√
mn

n lnmn
ln P

{
χ2
n > ε

}=−√ε/2,
which means that

P
{
χ2
n > ε

}= e−
n lnmn√
mn
(
√
ε/2+o(1))

.
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Remark 1.2 Since E(In)≤ E(χ2
n )= mn−1

n
, (1.3) holds for the statistics In and χ2

n

when mn/n→ 0.

Remark 1.3 The previous large deviation result means that when mn→∞, the
Bahadur exact slope of the χ2-test is identically zero. Another interpretation is that
the tail of the χ2-test statistic is of sub-exponential nature, that is, is heavier than
an exponential tail. This is due to cells An,j with small probabilities, which put too
much weight on the squared difference (μ(An,j )− μn(An,j ))2. Based on the fact
that the limit distribution properties of the In and the χ2 divergences are equiv-
alent (cf. Beirlant, Györfi [3], Györfi, Vajda [12]), there is a widespread believe
in literature that the I-divergence test In and the χ2-test have a similar behaviour.
In contrast, their Bahadur slopes are quite different. Namely, Quine and Robinson
[21], Harremoës and Vajda [14, 15] proved that the information divergence statistic
is infinitely more Bahadur efficient than the χ2 divergence statistic.

Next we extend this sub-exponential rate of convergence such that don’t assume
anything on the underlying distribution μ and on the partition Pn.

Theorem 1.1 Suppose (1.5) and that

Mn := 1

min{μ(An,j ); j = 1, . . . ,mn} <∞

holds such that

mnM
1/2
n lnn

n lnMn
→ 0, (1.11)

then for all ε > 0

lim
n→∞

√
Mn

n lnMn
ln P

{
χ2
n > ε

}=−√ε/2.

In the proof of our theorem we shall use the following lemma.

Lemma 1.1 (Sanov [22], see p. 16 in Dembo, Zeitouni [9], or Problem 1.2.11 in
Csiszár and Körner [8].) Let Σ be a finite set of measurable sets (alphabet), Ln

be a set of types (possible empirical distributions) on Σ , and let Γ be a set of
distributions on Σ . Then

∣∣∣
∣
1

n
ln P

{
μ∗n ∈ Γ

}+ inf
τ∈Γ ∩Ln

I (τ, μ̄n)

∣∣∣
∣≤

|Σ | ln(n+ 1)

n
(1.12)

where |Σ | denotes the cardinality of Σ .

Proof of Theorem 1 Apply (1.12) for Σ = {An,1, . . . ,An,mn} such that

Γ = {
τ : χ2(τ, μ̄n)≥ ε

}
.



8 L. Györfi

Then, according to (1.12),
∣∣∣∣

√
Mn

n lnMn
ln P

{
χ2
n ≥ ε

}+
√
Mn

lnMn
inf

τ∈Γ ∩Ln

I (τ, μ̄n)

∣∣∣∣≤
mnM

1/2
n ln(n+ 1)

n lnMn
.

Therefore, because of (1.11),

lim
n→∞

√
Mn

n lnMn
ln P

{
χ2
n > ε

}=− lim
n→∞

√
Mn

lnMn
inf

τ∈Γ ∩Ln

I (τ, μ̄n)

=− lim
n→∞

√
Mn

lnMn
inf

χ2(τ,μ̄n)≥ε
I (τ, μ̄n).

Introduce the notations

τ̃ = (τ1, . . . , τmn)
and

μ̄n = (μ1, . . . ,μmn).

Without loss of generality assume that

μ1 = min
i=1,...,mn

{μi} = 1/Mn.

For fixed μ̄n, let τ1 >μ1 be arbitrary, while put

τi = 1− τ1
1−μ1

μi,

(i = 2, . . . ,mn). Then

I (τ̃ , μ̄n)=
mn∑

i=1

τi ln
τi

μi
= τ1 ln

τ1

μ1
+
mn∑

i=2

τi ln
1− τ1
1−μ1

= τ1 ln
τ1

μ1
+ (1− τ1) ln 1− τ1

1−μ1

= I((τ1,1− τ1), (μ1,1−μ1)
)
.

Similarly, we get that

χ2(τ̃ , μ̄n)=
mn∑

i=1

τ 2
i

μi
− 1

= τ
2
1

μ1
+
mn∑

i=2

(
1− τ1
1−μ1

)2

μi − 1

= τ
2
1

μ1
+ (1− τ1)

2

1−μ1
− 1

= χ2((τ1,1− τ1), (μ1,1−μ1)
)
.
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For the notation

λ := τ1

μ1

and for arbitrary ε > 0, choose λ such that

χ2(τ̃ , μ̄n)= χ2((τ1,1− τ1), (μ1,1−μ1)
)= ε,

i.e.,

λ= 1+√
ε(1−μ1)/μ1 = 1+√

ε(Mn − 1).

Notice that this is a fair choice of λ, since because of (1.5) μ1 can be small enough
such that for any fixed ε,

τ1 = λμ1 = μ1 +
√
ε(1−μ1)μ1 < 1.

Then

I (τ̃ , μ̄n)= I
(
(τ1,1− τ1), (μ1,1−μ1)

)= λμ1 lnλ+ (1− τ1) ln 1− τ1
1−μ1

.

Therefore√
Mn

lnMn
inf

χ2(τ,μ̄n)≥ε
I (τ, μ̄n)

≤
√
Mn

lnMn
I (τ̃ , μ̄n)

=
√
Mn

lnMn
I
(
(τ1,1− τ1), (μ1,1−μ1)

)

≤
√
Mn

lnMn

(
(1+√ε(Mn − 1)) ln(1+√ε(Mn − 1))

Mn
+ ln

Mn

Mn − 1

)

→√
ε/2,

and the lower bound

lim inf
n→∞

√
Mn

n lnMn
ln P

{
χ2
n > ε

}≥−√ε/2
in the theorem is proved. Concerning the upper bound one can show along similar
lines as in the proof of Theorem 3 in Beirlant et al. [2] that for all but finitely many n,
τ̃ is the minimizing distribution. �
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Chapter 2
Detection of Changes in INAR Models

Šárka Hudecová, Marie Hušková, and Simos Meintanis

Abstract In the present paper we develop on-line procedures for detecting changes
in the parameters of integer valued autoregressive models of order one. Tests statis-
tics based on probability generating functions are constructed and studied. The
asymptotic behavior of the tests under the null hypothesis as well as under certain
alternatives is derived.

2.1 Introduction

Studying the stability in time series is one of the important tasks of data analysis.
In many cases such tasks are formulated in terms of hypothesis testing (stability of
the system versus system instability) or as an estimation problem whereby certain
unknown quantities defining the system are estimated in order to detect a possible
change in the values of these quantities. This area is known as change point analysis
or structural break problem. Corresponding procedures come in two basic variants:
off-line (with all data being available at the beginning of the analysis) or on-line
procedures whereby observations arrive sequentially (one at a time) and statistical
analysis is performed with each incoming observation.
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So far the change-point problem has been studied mostly in time series with
continuous observations and consequently there is a huge literature on the problem,
either in classical ARMA-type time series or more recently in the popular GARCH
model; see for instance a recent survey paper [3].

There is a current interest however in studying the same problem with time series
of counts. This interest has been developed along with the introduction of several
corresponding models for such time series, which in turn is due to the fact that count
time series can prove useful in the analysis of data occurring in many applications,
such as finance (occurrence of events in a time period), climatology [16], medicine,
etc.

There are only a few papers dealing with detection of changes in integer valued
time series, a review of recent results can be found in [7] and [13]. In the off-line set-
ting, [10] derived results on likelihood ratio type statistics for detection of a change
in binary autoregressive time series, while [8] published results on CUSUM type
test statistics. Papers [9, 14] and [6] proposed and studied procedures in Poisson
autoregressive models.

The on-line procedures for detection of changes were studied in [19, 20] and by
[17] and [18] in connection of control charts, while in [14] the authors developed and
studied sequential CUSUM type procedures in various integer valued time series.

Here we focus on detection of changes in integer-valued autoregressive (INAR)
time series. The INAR model of order one (INAR(1) for short) (see [1, 2, 15]) is
specified by Eq. (2.1) below, and it incorporates a Bernoulli probability parameter as
well as another parameter indexing the family of the so-called innovations. In what
follows we develop detector statistics for detecting changes in these parameters in
the context of INAR(1) models. As already mentioned we will work with monitoring
schemes and hence propose sequential-type detector statistics. In the remainder of
the paper we introduce the INAR process and the test statistics in Sect. 2.2, while in
Sect. 2.3 we derive the limit properties of the procedures under the null as well as
under a certain class of alternatives. The proofs are postponed in Sect. 2.4.

2.2 Model and Procedures

The INAR(1) process {Yt } is defined by the equation

Yt = p ◦ Yt−1 + et , (2.1)

where p ◦ Yt−1 denotes a sum of Yt−1 independent Bernoulli variables all of which
are independent of Yt−1, the parameter p ∈ (0,1) denotes the probability of the
aforementioned Bernoulli variables and {et } is a sequence (often referred to as
‘innovations’) of independent and identically distributed (i.i.d.) nonnegative inte-
ger valued random variables with finite second moment and probability generating
function (PGF) denoted by ge(u)that is assumed to belong to a given family, i.e.,
ge(·) ∈ GΘ = {ge(u; θ); u ∈ [0,1], θ ∈Θ} with Θ being an open subset of R.

Under the above conditions the sequence {Yt } is stationary and ergodic. Given the
family GΘ of possible PGF for {et } the model depends on two parameters (p, θ) ∈
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(0,1)×Θ . In this connection we note that while the Poisson family has been by far
the most studied case, alternative families for {et } such as the zero-inflated Poisson
of [12], and the Poisson mixture of [16], have also been considered.

The proposed sequential test procedures for detecting changes in INAR(1) pro-
cesses will be based on properties of probability generating function (PGF) of the
observed variables. In this connection recall that the PGF of a random variable Y is
defined as

gY (u)=EuY , u ∈ [0,1],
and that under very mild conditions this PGF uniquely determines the underlying
distribution function of Y . The empirical version of the PGF is defined by

ĝY,n(u)= 1

n

n∑

i=1

uYi , u ∈ [0,1],

and was employed by [11] in the context of goodness-of-fit testing with certain
integer valued time series. This empirical PGF can be further used as the main tool
for the construction of detector statistics in count time series of a more general
nature. This is in fact a subject of a research project which is already in progress.
Here, however, and in order to stay within a relatively simple context, we focus on
procedures for detecting changes in the parameters of INAR(1) processes.

We are interested in investigating whether or not the parameters (p, θ) are the
same during the observational period. Toward this we introduce a slightly more
general model

Yt = pt ◦ Yt−1 + et , (2.2)

where pt ◦Yt−1 denotes a sum of Yt−1 independent Bernoulli variables all of which
are independent of Yt−1 and all have a success probability pt ∈ (0,1), and {et } is
a sequence of independent nonnegative integer valued random variables with finite
second moments such that PGF of et is ge(u; θt ), θt ∈Θ .

We consider a sequential setup where the observations arrive one after the other
and, additionally, assume that a historical data set (or training data) Y1, . . . , Ym fol-
lowing the INAR(1) model specified in Eq. (2.1) are given. Then we wish to test the
null hypothesis:

H0: (pt , θt )= (p0, θ0), 1≤ t <∞,
against the alternative

H1: there exist t0 such that (pt , θt )= (p0, θ0), 1≤ t ≤m+ t0
but (pt , θt )=

(
p0, θ0) m+ t0 < t <∞, (p0, θ0) �=

(
p0, θ0),

where the parameters p0,p
0 ∈ (0,1) and θ0, θ0 ∈Θ are unknown, and wherem+ t0

is an unknown change point. Clearly we are interested in testing the null hypothesis
that the parameters (p0, θ0) do not change, which means that model (2.1) holds true
with (p, θ)= (p0, θ0)while under the alternative the firstm+ t0 observations follow
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model (2.1) with parameter (p0, θ0) and afterwards it changes to another INAR(1)
model with parameter values (p0, θ0).

For detection of changes in the above model we apply the method developed in
[5] which was first applied in the context of linear regression and later on extended
to various other setups. In principle, we estimate the unknown parameters from
the historical data, then, having m + t observations, we calculate the test statistic
Q(m, t) that is sensitive w.r.t. a change in either of the parameters and according
to value of this statistic, we decide whether a change in either of the parameters
is indicated or not. In case of no indication of a change we continue with the next
observation. We note in this context of change-detection for the parameters of a
certain model, CUSUM type procedures are often used. Another possibility is to
use some functionals of estimators of unknown parameters based on historical data
Y1, . . . , Ym and on Ym+1, . . . , Ym+t , t = 1,2, . . . .

Here we deal with procedures based on probability generating function utilizing
the following property of the PGF of {Yt } under model (2.2)

E
(
uYt |Yt−1

)= (
1+ pt(u− 1)

)Yt−1ge(u; θt ), t ≥ 1, u ∈ [0,1],
E
(
uYt

)=E(1+ pt(u− 1)
)Yt−1ge(u; θt ), t ≥ 1, u ∈ [0,1].

Then under model (2.2), the quantities

t∑

s=1

(
uYs − (

1+ ps(u− 1)
)Ys−1ge(u; θs)

)
, t ≥ 2,

are partial sums of martingale differences for fixed u ∈ [0,1] which prompts the
idea of utilizing these quantities for constructing test procedures.

We suggest to test the null hypothesis H0 by means of the test statistics based on
the first m+ t observations

Sm(t)=
∫ 1

0

(
Qm,m+t (u, p̂m, θ̂m)− t

m
Q0,m(u, p̂m, θ̂m)

)2

w(u)du, t ≥ 1, (2.3)

where w(u) is a nonnegative weight function and

Q,j (u, p̂m, θ̂m)= 1√
m

j∑

s=+1

(
uYs − (

1+ p̂m(u− 1)
)Ys−1ge(u; θ̂m)

)
,

, j = 0, . . .

with (p̂m, θ̂m) being estimators of (p, θ) based on the historical data Y1, . . . , Ym.
The null hypothesis is rejected as soon as for some t

Sm(t)/q
2
γ (t/m)≥ c,

for an appropriately chosen c, where

qγ (s)= (1+ s)
(
s

s + 1

)γ
, s ∈ (0,∞), γ ∈ [0,1/2),
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is a boundary function. (Possible choices of boundary functions qγ (s) are discussed,
e.g., in [4].) In this case, we usually stop and confirm a change, otherwise we con-
tinue monitoring. The related stopping rule is defined as

τm(γ,T )= inf
{
1≤ t ≤mT : Sm(t)/q

2
γ (t/m)≥ c

}
,

τm(γ,T )=∞ if Sm(t)/q
2
γ (t/m) < c for all 1≤ t ≤ Tm,

for some fixed integer T > 0. It is required that under H0

lim
m→∞P

(
τm(γ,T ) <∞

)= α
for prechosen α ∈ (0,1) and under alternatives

lim
m→∞P

(
τm(γ,T ) <∞

)= 1.

The former requirement guarantees asymptotic level α, while the later one ensures
consistency. Hence in order to get an approximation for c = cα , the limit behavior
(m→∞) of

max
1≤t≤mT

Sm(t)/q
2
γ (t/m) (2.4)

under H0 has to be studied, while for consistency one has to investigate its limit
behavior under alternatives. Both tasks are taken up in the next section.

The question of the optimal choices of the weight function w and the boundary
function qγ in order the detection lag is as small as possible remains open. Some
practical recommendations are in the next section.

2.3 Asymptotic Results

Consider the INAR(1) process in Eq. (2.2) and denote the true value of ϑ = (p, θ)
under the null hypothesis H0 by ϑ0 = (p0, θ0). To study the limit distribution under
the null hypothesis H0 we assume the following:

(A.1) {Yt }t∈N is a sequence of random variables satisfying (2.1) with {et }t∈N being
a sequence of i.i.d. discrete nonnegative random variables with finite second
moment and PGF ge(·; θ), θ ∈Θ , where Θ is an open subset of R.

(A.2) ge(u; θ) has the first partial derivative w.r.t. θ for all u ∈ [0,1] fulfilling Lip-
schitz condition:

∣
∣∣∣
∂ge(u; θ)
∂θ

− ∂ge(u; θ)
∂θ

∣
∣∣∣
θ=θ0

∣
∣∣∣≤D1|θ0 − θ |v(u),

u ∈ [0,1], |θ − θ0| ≤D2,

and
∣∣∣∣
∂ge(u; θ)
∂θ

∣∣∣∣≤D3v(u), u ∈ [0,1], |θ − θ0| ≤D2

for some Dj > 0, j = 1,2,3, and some measurable function v(·).
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(A.3) 0<
∫ 1

0 w(u)du <∞,
∫ 1

0 w(u)v
2(u)du <∞.

(A.4) ϑ̂m = (p̂m, θ̂m)′ is estimator of ϑ0 = (p0, θ0)
′ satisfying

√
m(ϑ̂m − ϑ0)=OP (1).

Assumption (A.3) is satisfied by rather wide class of weight function w. Simple
practical choices are w(u)= ua , u ∈ [0,1], a ≥ 0.

In the following theorem we formulate the main assertion on limit behavior of
our test statistic defined in Eq. (2.4) under the null hypothesis H0.

Theorem 2.1 Let assumptions (A.1)–(A.4) be satisfied in model (2.1). Then under
the null hypothesisH0 the limit distribution (m→∞) of max1≤t≤mT Sm(t)/q2

γ (t/m)

with T > 0 fixed is the same as that of

sup
s∈(0,T /(T+1))

∫ 1

0

1

s2γ
Z2(s, u;p0, θ0)w(u)du,

where {Z(s,u;p, θ); s ∈ (0, T /(T +1)), u ∈ [0,1]} is a Gaussian process with zero
mean and covariance structure described by

cov
(
Z(s1, u1;p, θ),Z(s2, u2;p, θ)

)

=min(s1, s2)E
(
u
Y2
1 −E(uY2

1 |Y1
))(
u
Y2
2 −E(uY2

2 |Y1
))

where

E
(
uY2 |Y1

)= (
1+ p(u− 1)

)Y1ge(u; θ).

The explicit form of the limit distribution is not known. In order to approximate
this distribution one can replace the unknown parameters and covariance structure
by the respective estimators based on historical data and simulate the resulting pro-
cess. Another possibility is to use parametric bootstrap by estimating (p, θ) from
the historical data and then generate bootstrap observations along Eq. (2.1) with
(p, θ) replaced by their estimators. This possibility also leads to an asymptotically
correct approximation of the limit null distribution of the test statistic.

Next we shortly discuss the limit behavior of our test statistic under the following
class of alternatives:

H̃1: there exists 0< ν0 < T such that for t0 = mν0� variables {Yt }t≤m+t0
follow (2.2) with (p0, θ0) and {Ym+t0+t }t≥1 =d {Y 0

t }t≥1, where {Y 0
t }t≥1

follow (2.2) with (p0, θ0) �= (p0, θ0).

Notice that H̃1 slightly differs from the alternativeH1. In particular, H̃1 assumes that
the process {Yt } changes from one INAR(1) process to another one, both possibly
strictly stationary. This simplifies the formulation of the succeeding theorem and the
corresponding proof.

Theorem 2.2 Let {Yt }t≤m+t0 and {Y 0
t }t≥1 from H̃1 satisfy assumptions (A.1) with

parameters (p0, θ0) and (p0, θ0), respectively, and let also (A.2)–(A.4) be satisfied.
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Then under the alternative hypothesis H̃1 for any ν0 < s < T

1

m
Sm

(ms�)→ (s − ν0)

∫ 1

0

(
E
[(

1+ p0(u− 1)
)Y 0

1 ge
(
u, θ0)

− (
1+ p0(u− 1)

)Y1ge(u, θ0)
])2
w(u)du

in probability as m→∞.

Studying carefully the proofs one realizes that the proposed test procedures are
sensitive not only w.r.t. changes in the parameters p and/or θ but also w.r.t. changes
that leave these parameters invariant but involve a change in the distribution (and
hence the PGF) of the innovations et .

2.4 Proofs

Due to the space restriction and due to a certain similarity to the proof of Theo-
rem 4.1 in [11] we present only main steps of the proof of our Theorem 1.

By the Taylor expansion of Qm,m+t (u, p̂m, θ̂m) − t
m
Q0,m(u, p̂m, θ̂m) at p0, θ0

and by convergence properties of stationary sequences we realize that under H0
the limit behavior of max1≤t≤mT Sm(t)/q2

γ (t/m) does not change if the estimators
p̂m, θ̂m are replaced by their true values p0, θ0.

Since Qm,m+t (u,p0, θ0) and Q0,m(u,p0, θ0) are partial sums of bounded mar-
tingale differences we can apply theorems on their limit behavior. The proof can be
finished combining the arguments in the last part of the proof of Theorem 4.1 in [11]
and the proof of Theorem 1 in [4].
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P201/12/1277 and by AP research network grant Nr. P7/06 of the Belgian government (Belgian
Science Policy). The research of Šárka Hudecová was partially supported by the Czech Science
Foundation project DYME Dynamic Models in Economics No. P402/12/G097.

References

1. Al-Osh MA, Alzaid AA (1987) First-order integer-valued autoregressive (INAR(1)) process.
J Time Ser Anal 8:261–275

2. Alzaid AA, Al-Osh MA (1988) First-order integer-valued autoregressive (INAR(1)) process:
distributional and regression properties. Stat Neerl 42:53–61

3. Aue A, Horváth L (2013) Structural breaks in time series. J Time Ser Anal 34:1–16
4. Aue A, Horváth L, Hušková M, Kokoszka P (2006) Change-point monitoring in linear models

with conditionally heteroskedastic errors. Econom J 9:373–403
5. Chu C-SJ, Stinchcombe M, White H (1996) Monitoring structural change. Econometrica

64:1045–1065



18 Š. Hudecová et al.

6. Doukhan P, Kengne W (2013) Inference and testing for structural change in time series of
counts model. Available via ArXiv http://arxiv.org/pdf/1305.1751v1.pdf. Cited 13 Sep 2014

7. Fokianos K (2012) Count time series models. In: Subba Rao T, Subba Rao S, Rao CR (eds)
Handbook of statistics. Time series — methods and applications, vol 30. Elsevier, Amsterdam,
pp 315–348

8. Fokianos K, Gombay E, Hussein A (2014) Retrospective change detection for binary time
series models. J Stat Plan Inference 145:102–112

9. Franke J, Kirch C, Tadjuidje Kamgaing J (2012) Changepoints in time series of counts. J Time
Ser Anal 33(5):757–770

10. Hudecová Š (2013) Structural changes in autoregressive models for binary time series. J Stat
Plan Inference 143(10):1744–1752

11. Hudecová Š, Hušková M, Meintanis S (2014) Tests for time series of counts based on the
probability generating function. Statistics, doi:10.1080/02331888.2014.979826 (in press)

12. Jadi MA, Jones G, Lai CD (2012) First-order integer valued AR processes with zero inflated
Poisson innovations. J Time Ser Anal 33(6):954–963

13. Kirch C, Tadjuidje Kamgaing J (2015) Detection of change points in discrete valued time
series. In: Davis RA, Holan SA, Lund RB, Ravishanker N (eds) Handbook of discrete valued
time series. Chapman & Hall, London

14. Kirch C, Tadjuidje Kamgaing J (2014) Monitoring time series based on estimating functions.
Preprint. Available at http://www.math.kit.edu/stoc/~ckirch/seite/publications. Cited 13 Sep
2014

15. McKenzie E (1985) Some simple models for discrete variate time series. Water Resour Bull
21:645–650

16. Pavlopoulos H, Karlis D (2008) INAR(1) modeling of overdispersed count series with an
environmental application. Environmetrics 19(4):369–393

17. Weiss CH (2009) Modelling time series of counts with overdispersion. Stat Methods Appl
18:507–519

18. Weiss CH (2011) Detecting mean increases in Poisson INAR(1) processes with EWMA con-
trol charts. J Appl Stat 38(2):338–398

19. Weiss CH, Testik MC (2011) The Poisson INAR(1) CUSUM chart under overdispersion and
estimation error. IIE Trans 43:805–818

20. Yontay P, Weiss CH, Testik MC (2013) A two-sided cumulative sum chart for first-order
integer-valued autoregressive processes of Poisson counts. Qual Reliab Eng Int 29(1):33–42

http://arxiv.org/pdf/1305.1751v1.pdf
http://dx.doi.org/10.1080/02331888.2014.979826
http://www.math.kit.edu/stoc/~ckirch/seite/publications


Chapter 3
Visualizing Association Structure in Bivariate
Copulas Using New Dependence Function

Teresa Ledwina

Abstract Measuring a strength of dependence of random variables is an important
problem in statistical practice. We propose a new function valued measure of de-
pendence of two random variables. It allows one to study and visualize explicit de-
pendence structure, both in some theoretical models and empirically, without prior
model assumptions. This provides a comprehensive view of association structure
and makes possible much detailed inference than based on standard numeric mea-
sures of association. In this contribution, we focus on copula-based variant of the
measure. We present theoretical properties of the new measure of dependence and
discuss estimation of it. Some artificial and real data examples illustrate the behavior
and practical utility of the measure and its estimator.

3.1 Introduction

Measuring a strength of dependence of two random variables has long history and
wide applications. Detailed information can be found in Drouet Mari and Kotz [9]
as well as Balakrishnan and Lai [2], for example. Most of measures of dependence,
introduced in vast literature on the subject, are scalar ones. Such indices are called
global measures of dependence. However, nowadays there is strong evidence that an
attempt to represent complex dependence structure via a single number can be mis-
leading. To overcome this drawback, some local dependence functions have been in-
troduced as well. In particular, Kowalczyk and Pleszczyńska [14] invented function
valued measure of monotonic dependence, based on some conditional expectations
and adjusted to detect dependence weaker than the quadrant one. Next, Bjerve and
Doksum [5], Bairamov et al. [1] and Li et al. [17], among others, introduced local
dependence measures based on regression concepts. See the last mentioned paper
for more information. Holland and Wang [11] defined the local dependence func-
tion, which mimics cross-product ratios for bivariate densities and treats the two
variables in a symmetrical way. This function valued measure has several appealing
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properties and received considerable attention in the literature; cf. Jones and Koch
[13] for discussion and references. However, on the other hand, this measure has
some limitations: it is not normalized, requires existence of densities of the bivari-
ate distribution, and is intimately linked to strong form of dependence, the likelihood
ratio dependence. Recently, Tjøstheim and Hufthammer [21] extensively discussed
the role and history of local dependence measures in finance and econometrics.
They also proposed the new local dependence measure, the local correlation func-
tion, based on approximating of bivariate density locally by a family of Gaussian
densities. Similarly as the measure of Holland and Wang [11], this measure treats
both variables on the same basis. Though the idea behind the construction of this
measure is intuitive one its computation and estimation is a difficult and complex
problem. In Berentsen et al. [3] this theory is applied to describe dependence struc-
ture of different copula models. In particular, this work strongly emphasizes a need
for intuitive and informative diagnostic plots.

In this paper, we propose the new function valued measure of dependence of two
random variables X and Y and present its properties. The measure has simple form
and its definition exploits cumulative distribution functions (cdf’s), only. In particu-
lar, we do not assume existence of a density of the observed vector. We focus here
on copula-based variant of the measure which corresponds to some cdf on [0,1]2
with uniform marginals. General case is presented in Ledwina [15]. The measure
takes values in [−1,1] and treats both variables in a symmetrical way. The mea-
sure preserves the correlation order, or equivalently the concordance order, which
is the quadrant order restricted to the class of distributions with fixed marginals. In
particular, it is non-negative (non-positive) if and only if X and Y are positively
(negatively) quadrant dependent. Quadrant dependence is relatively weak, intuitive
and useful dependence notion, widely used in insurance and economics; see Dhaene
et al. [8] for an evidence and further references. The new measure obeys several
properties formulated in the literature as useful or desirable. It allows for readable
visualization of departures from independence. Simple and natural estimator of the
copula-based measure in the i.i.d. case is proposed and its appealing properties are
discussed. The estimator is simply standardized empirical copula. Due to theoretical
results proved in Ledwina and Wyłupek [16], the estimator can be effectively ex-
ploited to assess graphically underlying bivariate dependence structure and to build
some formal local and global tests. For some details see Sect. 3.3. Two illustrative
examples are given in Sect. 3.3 to support utility of the new solution.

3.2 Copula-based measure of dependence and its estimate

Consider a pair of random variables X and Y with joint cdf H and marginals F
and G. In this paper, to avoid technicalities and to concentrate on the main idea,
we restrict attention to cdf’s H with continuous marginals. Under such a restriction
there exists a unique copula C such that H(x,y)= C(F(x),G(y)). In other words,
C is the restriction to the unit square of the joint cdf of U = F(X) and V =G(Y).
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The copula captures the dependence structure among X and Y , irrespective of their
marginal cdf’s. This is important in many applications. For the related discussion
see Póczos et al. [19]. Below we show that properly standardized copula function
can be seen to be well defined function valued dependence measure.

Namely, set

q(u, v)= qC(u, v)= C(u, v)− uv√
uv(1− u)(1− v) , (u, v) ∈ (0,1)2, (3.1)

and define additionally w(u,v)= 1/
√
uv(1− u)(1− v).

Following Ledwina and Wyłupek [16], notice that the value of q at (u, v) can be
interpreted as correlation coefficient of two specific functions of U and V . Namely,
for u ∈ (0,1) and s ∈ [0,1] consider

φu(s)=−
√
(1− u)/u1[0,u](s)+

√
u/(1− u)1(u,1](s).

Then

q(u, v)=EC
[
φu(U) · φv(V )

]= CovC
(
φu(U),φv(V )

)= CorrC
(
φu(U),φv(V )

)
.

(3.2)

Remark 3.1 The last expression in (3.2) shows indeed that the function q is based
on aggregated local correlations. Moreover, the second expression in (3.2) implies
that q(u, v) can be interpreted as Fourier coefficient of C pertaining to the quasi-
monotone function φu(s) · φv(t), (s, t) ∈ [0,1]2.

The measure q fulfills natural postulates, motivated by the axioms formulated in
Schweizer and Wolff [20] and updated in Embrechts et al. [10].

Proposition 3.1 The copula based measure of dependence q , given by (3.1), has
the following properties.

1. −1≤ q(u, v)≤ 1 for all (u, v) ∈ (0,1)2.
2. By Fréchet–Hoeffding bounds for copulas, the property 1 can be further sharp-

ened to B∗(u, v) ≤ q(u, v) ≤ B∗(u, v), (u, v) ∈ (0,1)2, where B∗(u, v) =
w(u,v)× [max{u+ v− 1,0} − uv] and B∗(u, v)=w(u,v)[min{u,v} − uv].

3. q is maximal (minimal) if and only if Y = f (X) and f is strictly increasing
(decreasing) a.s. on the range of X.

4. q(u, v)≡ 0 if and only if X and Y are independent.
5. The equation q(u, v)≡ c, c a constant, can hold true if and only if c= 0.
6. q is non-negative (non-positive) if and only if (X,Y ) are positively (negatively)

quadrant dependent.
7. q is invariant to strictly increasing a.s. on ranges of X and Y , respectively,

transformations.
8. If X and Y are transformed by strictly decreasing a.s. functions then q(u, v)

transforms to q(1− u,1− v).
9. If f and g are strictly decreasing a.s. on ranges of X and Y , respectively, then
q’s for the pairs (f (X),Y ) and (X,g(Y )) take the forms −q(1 − u,v) and
−q(u,1− v), accordingly.
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10. q respects concordance ordering, i.e. for cdf’s H1 and H2 with the same
marginals and pertaining copulas C1 and C2, H1(x, y) ≤ H2(x, y) for all
(x, y) ∈R

2 implies qC1(u, v)≤ qC2(u, v) for all (u, v) ∈ (0,1)2.
11. If (X,Y ) and (Xn,Yn), n = 1,2, . . ., are pairs of random variables with

joint cdf’s H and Hn, and the pertaining copulas C and Cn, respectively,
then weak convergence of {Hn} to H implies qCn(u, v)→ qC(u, v) for each
(u, v) ∈ (0,1)2.

Proof The property 1 follows from (3.2), 3 is a consequence of 2. To jus-
tify 5 observe that the equation is equivalent to C(u, v) = Cc(u, v) = uv +
c
√
uv(1− u)(1− v). Since C is quasi-monotone, then Cc(u, v) should also possess

such a property. Since Cc(u, v) is absolutely continuous then quasi-monotonicity

is equivalent to ∂2

∂u∂v
Cc(u, v) ≥ 0 for almost all (u, v) ∈ [0,1]2 (in the Lebesgue

measure); cf. Cambanis et al. [7]. However, ∂2

∂u∂v
Cc(u, v) = 1 + c[u − 1/2][v −

1/2]w(u,v) and for c �= 0 this expression can be negative on the set of positive
Lebesgue measure. Properties 7–9 follow from Theorem 3 in Schweizer and Wolff
[20]. The convergence in 11 is due to continuity of C. The remaining properties are
immediate. �

Remark 3.2 The properties 4 and 7–9 provide some compromise to too demanding
postulates P4 and P5 discussed in Embrechts et al. [10]. The property 5 is very
different from respective property of the local dependence function of Holland and
Wang [11] which is constant for the bivariate normal distribution and some other
models; cf. Jones [12] for details.

Now, we discuss briefly estimation of q . Let (X1, Y1), . . . , (Xn,Yn) be a random
sample from cdf H . Furthermore, let Ri be the rank of Xi , i = 1, . . . , n, in the
sample X1, . . . ,Xn and Si the rank of Yi , i = 1, . . . , n, within Y1, . . . , Yn. Simple
estimate of C has the form

Cn(u, v)= 1

n

n∑

i=1

1

(
Ri

n+ 1
≤ u, Si

n+ 1
≤ v

)
, (u, v) ∈ [0,1]2. (3.3)

We shall consider the following estimator of q .

Qn(u, v)=w(u,v)
[
Cn(u, v)− uv

]= Cn(u, v)− uv√
uv(1− u)(1− v) , (u, v) ∈ (0,1)2.

(3.4)

Moreover, we set

Ln(u, v)=√nQn(u, v) (3.5)

for the standardized version of this estimate. So, Ln is the standardized empirical
copula. Simple algebra yields that for any (u, v) ∈ (0,1)2 it holds

Ln(u, v)= 1√
n

n∑

i=1

φu

(
Ri

n+ 1

)
φv

(
Si

n+ 1

)
+O

(
1√
n

)
. (3.6)
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Table 3.1 Simulated critical values of the test rejecting independence for large values of |Ln(u, v)|
for two selected (u, v), versus n and α

(u, v) α = 0.01 α = 0.05

n n

200 300 400 500 600 200 300 400 500 600

( 1
2 ,

1
2 ) 2.546 2.540 2.600 2.504 2.613 1.980 1.848 2.000 1.968 1.960

( 1
16 ,

1
16 ) 2.753 2.879 2.933 2.349 2.591 1.546 1.894 2.080 1.586 1.894

Therefore, up to deterministic term of the order O(1/
√
n), the standardized esti-

mator Ln(u, v) is a linear rank statistic with the quasi-monotone score generating
function φu · φv . Moreover, the definition of Ln and Proposition 1 in Ledwina and
Wyłupek [16] yield that

PC1

(
Ln(u, v)≥ c

)≥ PC2

(
Ln(u, v)≥ c

)
(3.7)

for any (u, v) ∈ (0,1)2, any c, any n, and any two copulas C1 and C2 such that C1

has larger quadrant dependence than C2. Summarizing the above mentioned results,
let us note that under independence Ln(u, v) is distribution free. So, given n, under
independence, the significance of the obtained values of this statistic can be eas-
ily assessed on a basis of simple simulation experiment. For large n one can rely
on asymptotic N(0,1) law of Ln(u, v). Due to (3.7), similar conclusions follow if
one likes to verify hypothesis asserting that qC(u, v)≥ 0. In particular, given n, we
are able to control the significance level over the whole set of positively quadrant
dependent distributions. Moreover, (3.7) implies that different levels of strength of
quadrant dependence of the underlying H ’s shall be adequately quantified by order
preserving Ln(u, v)’s. These results make the values of Ln(u, v), (u, v) ∈ (0,1)2,
a useful diagnostic tool allowing for easy graphical presentation and precise evalua-
tion of significance of different types of departures from independence. Heat map of
Ln(u, v)’s helps also to recognize regions in (0,1)2 in which independence, positive
quadrant dependence and, in consequence, some stronger forms of positive depen-
dence, etc are invalidated. This is obviously not the case when ones relies on graphs
ofCn(u, v) orCn(u, v)−uv, solely. Moreover, without using the ‘magnifying glass’
w(u,v) departures from independence can be hardly seen in some cases.

To close, note that, given u and v, the score generating function φu ·φv , appearing
in (3.6), is not smooth one and takes on at most four possible values, only. This
causes that, under independence, the convergence of Ln(u, v) to the limitingN(0,1)
law is not very fast. Moreover, the rate of convergence is expected to depend on u
and v, with the least favorable situation when (u, v) is close to the vertices of the
unit square. We illustrate these aspects in Table 3.1, where simulated critical values
of the test rejecting independence for large values of |Ln(u, v)| are given under
two choices of (u, v)’s, five different sample sizes, and two selected significance
levels α.
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Fig. 3.1 (a): dependence function q(u, v) for the Mai–Scherer copula; (b): scatter plot of
(Ri/(n + 1), Si/(n + 1)), i = 1, . . . , n, n = 500, of simulated observations from the copula;
(c): standardized estimator Ln(u, v) of q(u, v) on the grid G16. L∗ = 1.5, L∗ = 16.1

3.3 Illustration

3.3.1 Example 1: Extreme Value Copula

We start with simulated data set of size n = 500 from Mai–Scherer copula given
by C(u, v) = Ca,b(u, v)= min{ua, vb}min{u1−a, v1−b}, a = 0.9, b = 0.5; cf. Mai
and Scherer [18], p. 313. The copula possesses a singular part. In Fig. 3.1 we show
dependence functions q(u, v) for this model. The function is accompanied by scat-
ter plots of pseudo-observations (Ri/(n+ 1), Si/(n+ 1)), i = 1, . . . ,500, from the
simulated sample. The scatter plot nicely exhibits the singularity. Panel (c) in this
figure displays respective heat map of standardized correlations Ln(u, v)’s calcu-
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Fig. 3.2 (a): scatter plot of (Ri/(n + 1), Si/(n + 1)), i = 1, . . . , n, n = 230, for air-
craft data; (b): estimator Qn(u, v) of q(u, v) on the grid G16; (c): standardized estimator
Ln(u, v)=√nQn(u, v) on the grid G16. L∗ = −6.5, L∗ = 4.6

lated on the grid G16 = {(u, v) : u= i/16, v = j/16, i, j = 1, . . . ,15}. Each of 225
squares of size 0.0625× 0.0625 represents the respective value of Ln in its upper-
right corner. To simplify reading, the heat map is accompanied with two numbers

L∗ = min
1≤i,j≤15

Ln(i/16, j/16) and L∗ = max
1≤i,j≤15

Ln(i/16, j/16).

The copula represents positively quadrant dependent distribution. Under such de-
pendence large values of U tend to associate large values of V and similar pattern
applies to small values. This tendency is nicely seen in the figure. The points of the
grid G16 in which the estimated correlations Qn are significant on the levels 0.05
and 0.01 can be easily identified; cf. Table 3.1 and related comments. Some possibil-
ity of testing for positive local and/or global dependence is sketched in Sect. 3.3.2.
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Next example follows similar pattern. It concerns real data set considered earlier
by Jones and Koch [13] and Berentsen and Tjøstheim [4]. However, in contrast to
our approach based on scatter plots, they investigated the original bivariate observa-
tions. Below we use the same scale of intensity of colors in the heat map as above.
This allows one to compare how different degrees of association are reflected by our
estimators.

3.3.2 Example 2: Aircraft Data

Consider n = 230 aircraft span and speed data, on log scales, from years 1956–
1984, reported and analyzed in Bowman and Azzalini [6]. We summarize the data
in Fig. 3.2. Since in this example both negative and positive correlations appear,
we added respective signs to the colors in the heat map. The figure exhibits that
small and moderately large values of log speed are positively associated with log
span, while for the remaining cases the relation is reversed. Two, approximately
symmetrically located, regions of relatively strong dependence are seen. In general,
in this example, the strength of dependence is weaker than in the previous case.

Bowman and Azzalini [6], p. 42, used these data to discuss some drawbacks
of standard correlation measures when applied to invalidate independence. Indeed,
for these data classical Pearson’s, Spearman’s and Blomqvist’s rank statistics for
assessing lack of association yield simulated p-values 0.81, 0.74, and 0.79, re-
spectively. Kendall’s rank correlation gives simulated p-value 0.31, which also
seems to be too high, when one is looking at the magnitude of standardized lo-
cal correlations in Fig. 3.2. Combining the local correlations into global statistic
Lo = max1≤i,j≤15 |Ln(i/16, j/16)|, with large values being significant, basing on
10 000 Monte Carlo runs, we get p-value 0 for such global independence test. This
shows that local correlations prove to be more informative than each of the above
mentioned single classical global indices of association. Moreover, statistics L∗ and
L∗ can be successfully applied to detect positive and negative quadrant dependence;
cf. Ledwina and Wyłupek [16] for details on a very similar solution to L∗.

For further examples and more detailed discussion see Ledwina [15].
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Chapter 4
Smoothed Nonparametric Derivative Estimation
Based on Weighted Difference Sequences

Kris De Brabanter and Yu Liu

Abstract We present a simple but effective fully automated framework for esti-
mating derivatives nonparametrically based on weighted difference sequences. Al-
though regression estimation is often studied more, derivative estimation is of equal
importance. For example in the study of exploration of structures in curves, com-
parison of regression curves, analysis of human growth data, etc. Via the introduced
weighted difference sequence, we approximate the true derivative and create a new
data set which can be smoothed by any nonparametric regression estimator. How-
ever, the new data sets created by this technique are no longer independent and iden-
tically distributed (i.i.d.) random variables. Due to the non-i.i.d. nature of the data,
model selection methods tend to produce bandwidths (or smoothing parameters)
which are too small. In this paper, we propose a method based on bimodal kernels
to cope with the non-i.i.d. data in the local polynomial regression framework.

4.1 Introduction

The popularity of nonparametric methods have increased since their introduction in
the mid 1950s and early 1960s. One of the main reasons for their popularity is the
flexibility these methods possess. Since their introduction, many of their properties
have been rigorously investigated, see e.g. [6]. Most of the properties have been
established for nonparametric regression estimation, but not as much for nonpara-
metric derivative estimation even though the derivative of the regression estimate is
of great importance as well (e.g. inference about slopes of the regression estimates).
See e.g. comparison of regression curves [8], trend analysis in time series [11], the
exploration of structures in curves [1], analysis of human growth data [10], etc.
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In general there exist two approaches to nonparametric derivative estimation: Re-
gression/smoothing splines and local polynomial regression. Spline derivative esti-
mators can achieve the optimal L2 rate of convergence [13]. Further asymptotic the-
oretical properties (bias, variance and normality) were studied by [15]. However, to
introduce more flexibility in the smoothing process and to overcome the choosing of
the knots, smoothing splines are a very attractive method for derivative estimation.
However, choosing the smoothing parameter is still difficult [9]. According to [9],
data-driven methods are in general not the right way to deal with these problems and
user intervention is recommended. Also, the smoothing parameter for a smoothing
spline depends on the integer q while minimizing

∑n
i=1(m̂

(q)(xi)−m(q)(xi))2 [14].
In the context of kernel regression estimation, [7] proposed a generalized version

of the cross-validation technique to estimate the first derivative via kernel smooth-
ing using difference quotients. Unfortunately, the variance of difference quotients
is proportional to the square of sample size. Consequently, the estimation will be
rendered useless due to this large variance. On the other hand, the local polynomial
framework [5] offers a nice way of estimating derivatives.

Consider the bivariate data (X1, Y1), . . . , (Xn,Yn) which form an independent
and identically distributed (i.i.d.) sample from a population (X,Y ). Denote by
m(X)= E[Y |X] the regression function. The data is regarded to be generated from
the model

Y =m(X)+ e, (4.1)

where E[e|X] = 0, Var[e|X] = σ 2
e <∞ and X and e are independent. The aim of

this paper is to estimate the derivative m′ of the regression function m. In this paper
we choose the local polynomial regression estimator to smooth the data.

This paper is organized as follows: Sect. 4.2 gives a short overview of derivative
estimation in the fixed design setting and extends these results to the random design.
Section 4.3 describes how to obtain a bandwidth for the local polynomial regression
estimator in case of correlated errors in random design. Section 4.4 provides a sim-
ulation study of the proposed methodology. Finally, Sect. 4.5 states the conclusions
and discusses options for further research.

4.2 Derivative Estimation via a Weighted Difference Sequence

4.2.1 Fixed Design

If X denotes the closed real interval [a, b] then xi = a + (i − 1)(b − a)/(n− 1)
and denote d(X )= b− a. In what follows, we assume that the data is ordered i.e.
x1 ≤ x2 ≤ · · · ≤ xn. As mentioned in the introduction, for equispaced design the use
of difference quotients (Yi − Yi−1)/(xi − xi−1) may be natural, but their variances
areO(n2). Therefore, it is appropriate to reduce the variance by using the following
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weighted symmetric difference sequence to obtain the first order (noisy) derivative
estimator

Y
(1)
i = Y (1)(xi)=

k∑

j=1

wi,j ·
(
Yi+j − Yi−j
xi+j − xi−j

)
, (4.2)

where the weights wi,1, . . . ,wi,k sum up to one. Next, we need to determine the
weights such that the variance is minimized. Assume model (4.1) holds with equis-
paced design and let

∑k
j=1wj = 1. Then, for k + 1≤ i ≤ n− k, the weights

wi,j =wj = 6j2

k(k + 1)(2k + 1)
, j = 1, . . . , k (4.3)

minimize the variance of Y (1)i in (4.2), see [3]. Under this design setting, assume that
m is twice continuously differentiable on X ⊆ R. If the second order derivative of
m is finite on X , then for the weights (4.3), it follows that [3]

bias
(
Y
(1)
i

)=O(
n−1k

)
and Var

(
Y
(1)
i

)=O(
n2k−3)

uniformly for k+ 1≤ i ≤ n− k. Explicit bias and variance expressions for the inte-
rior and boundary region are given in [3]. If k→∞ as n→∞ such that nk−3/2 →
0 and n−1k→ 0 and under the previous stated assumptions, we have that for ε > 0

P
(∣∣Y (1)i −m′(xi)

∣∣≥ ε)→ 0.

The tuning factor k can be chosen via the rule of thumb

k̂ =
⌊(

16 σ̂ 2
e

(supx0∈X |m̂(2)(x0)|)2 d(X )4

)1/5

n4/5
⌋
,

where α� is the largest integer not greater than α. The error variance can be esti-
mated by means of any consistent error variance estimator and supx0∈X |m̂(2)(x0)|
can be obtained by fitting a local polynomial regression estimate of order p = 3
leading to the following (rough) estimate of the second derivative m̂(2)(x0)= 2β̂2.
By Jensen’s inequality we obtain the L1 rate of convergence

E
∣∣Y (1)i −m′(xi)

∣∣=O(
n−1/5).

A similar analysis can be made for higher order derivatives. We refer the reader
to [3].

4.2.2 Random Design

We assume that a density function f exists for the design points Xi ∈ [a, b] for all
i = 1, . . . , n. As before, we assume that the data is ordered i.e.X1 ≤X2 ≤ · · · ≤Xn.
Similarly, we need to find a sequence of weights such that the variance of (4.2) is
minimized. Under the constraint that the weights have to sum up to 1, we have for
k+ 1≤ i ≤ n− k and j = 1, . . . , k
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Var
(
Y
(1)
i

∣∣Xi+j , . . . ,Xi−j
)

= 2σ 2
e

[
1

(Xi+1 −Xi−1)2

(

1−
k∑

j=2

wi,j

)2

+
k∑

j=2

w2
i,j

(Xi+j −Xi−j )2
]

.

Setting the partial derivatives to zero and normalizing the weights such that they
sum up to 1, yield the following finite sample weights

wi,j = (Xi+j −Xi−j )2
∑k
l=1(Xi+l −Xi−l )2

. (4.4)

For further asymptotic analysis, the term Xi+j −Xi−j needs to rewritten as a func-
tion of the design density f . Since our data is sorted, we can use the following
approximation

Xi+j −Xi−j = 2j

nf (Xi)
+ op(j/n).

Assuming m is twice continuously differentiable X ⊆ R, m(2) is finite on X and
using the weights (4.4) gives for k + 1≤ i ≤ n− k and j = 1, . . . , k

∣∣bias
(
Y
(1)
i

∣∣Xi−j , . . . ,Xi+j
)∣∣≤ sup

x∈X

∣∣m(2)(x)
∣∣
∣∣∣∣∣

k∑

j=1

wi,j
(Xi+j −Xi−j )

4

∣∣∣∣∣

= 3k(k + 1) supx∈X |m(2)(x)|
4n(2k+ 1)f (Xi)

+ op
(
kn−1)

=Op
(
kn−1)

Var
(
Y
(1)
i

∣∣Xi−j , . . . ,Xi+j
)= 2σ 2

e

k∑

j=1

w2
i,j

(Xi+j −Xi−j )2

= 3σ 2
e n

2f 2(Xi)

k(k + 1)(2k+ 1)
+ op

(
n2k−3)=Op

(
n2k−3).

For a density f bounded away from zero,m(2) finite on X , k→∞ as n→∞ such
that nk−3/2 → 0 and n−1k→ 0, it follows that for ε > 0,

P
(∣∣Y (1)i −m′(Xi)

∣∣≥ ε)→ 0.

The asymptotic mean squared error of the first order derivative estimator can be
upperbounded by

MSE
(
Y
(1)
i

∣∣Xi−j , . . . ,Xi+j
)≤ 9k2(k + 1)2 sup2

x∈X |m(2)(x)|
16n2(2k + 1)2f 2(Xi)

+ 3σ 2
e n

2f 2(Xi)

k(k + 1)(2k + 1)
.

Minimizing the above expression w.r.t. k results in a value for k depending on Xi
and is given by

k(Xi)=
(

16σ 2
e f

4(Xi)

sup2
x∈X |m(2)(x)|

)1/5

n4/5. (4.5)
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Fig. 4.1 Simulated data set of size n = 250 from model (4.1) with m(X) = sin2{2π(X − 0.5)},
X ∼ U [0,1] and e ∼N(0,0.12). The full line shows the true first order derivative, the data points
show the empirical first order derivatives for k ∈ {2,5,7,13}

In order to obtain an estimator for k(Xi), one needs to replace σ 2
e and f (Xi) by

their consistent estimators. As in fixed design, the supremum of the absolute value
of the second order derivative function can be obtained by fitting a local cubic fit to
the original data. A global k can be obtained by minimizing the asymptotic mean
integrated squared error (AMISE) resulting into

k =
(

16σ 2
e

∫
f 2(x) dx

sup2
x∈X |m(2)(x)| ∫ 1

f 2(x)
dx

)1/5

n4/5. (4.6)

The expressions for a varying and global k can take any positive value. To be used
in practice, we round the value down to the smallest integer. The density f can be
estimated by e.g. kernel density estimation. The bandwidth of the kernel for den-
sity estimation can be obtained by the solve-the-equation plug-in bandwidth selec-
tor [12].

It immediately follows that the L2 rate of convergence in random design yields
(for k + 1≤ i ≤ n− k and j = 1, . . . , k)

E
(∣∣Y (1)i −m′(Xi)

∣∣2∣∣Xi−j , . . . ,Xi+j
)=Op

(
n−1/5).

It can be shown that using a local varying k always leads to an improvement over
a global k. In order to reduce the bias at the boundaries, some corrections also
need be to be taken into account. Figure 4.1 displays the empirical derivative for
k ∈ {2,5,7,13} generated from model (4.1) with m(X)= sin2{2π(X− 0.5)} where
X ∼U [0,1], n= 250 and e∼N(0,0.12).
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4.3 Smoothing the Noisy Derivative Data

It is clear that for the newly generated data set the independence assumption is no
longer valid since it is a weighted sum of differences of the original data set. In such
cases, it is known that data-driven bandwidth selectors and plug-ins break down [2].
In [4], the authors extend this approach to the random design setting. In order to
fit the newly obtained data set, we consider the following model for the first order
derivative:

Y (1)(X)=m′(X)+ ε
where E[ε|X] = 0 and Cov(εi, εj |Xi,Xj )= σ 2

e ρn(Xi−Xj). If the following holds:
f continuous and bounded away from zero,

∫
K(u)du= 1, K ≥ 0 and symmetric,

lim|u|→∞ |uK(u)| = 0, supu |K(u)|<∞, ρn is a stationary, symmetric correlation
function with |ρn(x)| ≤ 1, ∀x and ρn(0)= 1. Further assume short range correlation
i.e., ∃ξ > 0 : ∫ |ρn(t)|I (h−1t ≥ ξ) dt = o(∫ |ρn(t)|dt) and n

∫ |ρn(t−x)|f (t) dt =
O(1); then for a kernel K satisfying K(0)= 0, h→ 0 and nh→∞ as n→∞, the
correlation structure is removed in the model selection procedure without any prior
knowledge about its structure. Since these bimodal kernels introduce extra variance
into the estimate, we develop a relation between the bandwidth h of a unimodal
kernel K and the bandwidth hb of a bimodal kernel K . Consequently, the estimate
based on this bandwidth will be smoother than the one based on a bimodal kernel.
A remarkable consequence of using a kernel K satisfying K(0) = 0 is that we do
not need to use cross-validation (leave-one-out, v-fold, etc.), but simply minimizing
the residual sum of squares suffices to obtain the value for the bandwidth h! It is
easily verified that for local polynomial regression (p odd)

ĥ= Cp(K,K)ĥb,
where

Cp(K,K)=
[∫
K�2p (u)du{

∫
up+1K�p(u)du}2∫

K�2p (u)du{
∫
up+1K�p(u)du}2

]1/(2p+3)

.

The factor Cp(K,K) is easy to calculate. We take K(u) = (2/√π)u2 exp(−u2)

as bimodal kernel. K�p denotes the equivalent kernel, see [5]. For a Gaussian (uni-

modal) kernel and three different values of p, the factor Cp(K,K) equals 1.16231,
1.01431 and 0.94386 for p = 1,3,5 respectively.

4.4 Simulation

In a first simulation, consider the following two functionsm(X)= 1−6X+36X2−
53X3 + 22X5 and m(X)= sin(2πX) with n= 500 generated from a uniform dis-
tribution on [0,1]. The error variance was taken to be σ 2

e = 0.05 and e ∼N(0, σ 2
e )

for both functions. The value of k was obtained via (4.6) which was 6 and 7 respec-
tively for the first and second function (see Fig. 4.2). We used local cubic regression
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Fig. 4.2 First order derivative estimation. Estimated derivative by the proposed method (full line)
and true derivative (dashed line) for both functions. The value of k (global) was obtained via (4.6)

Fig. 4.3 First order
derivative estimation.
Estimated derivative by the
proposed method (full line)
for a varying k and true
derivative (dashed line)

(p = 3) with a Gaussian kernel to smooth the data. The bandwidths were selected
via the procedure discussed in Sect. 4.3.

In the second simulation, we illustrate the proposed estimator of the first order
derivative when k is a function of X, see (4.5). We consider the function m(X) =√
X(1−X) sin((2.1π)/(X+0.05)),X ∼U [0.25,1], n= 1000 and e∼N(0,0.12).

The density was estimated using kernel density estimation in combination with the
solve-the-equation bandwidth selector. The value of k varied between 8 and 17.
Figure 4.3 shows the result.

4.5 Conclusion

We proposed a methodology to estimate first order derivatives in the random design
setting without estimating the regression function via smoothing a weighted differ-
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ence sequence. We derived L2 rates and established consistency of the estimator.
The newly created data sets are no longer independent and identically distributed
random variables. Therefore, we used bimodal kernels in the local polynomial re-
gression framework. Future research will include the study of higher order deriva-
tives and behavior at the boundaries in the random design setting.
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Chapter 5
Model Selection Using Cramér–von Mises
Distance

Hong Chen, Maik Döring, and Uwe Jensen

Abstract In this paper we consider a model selection problem for the distribution
function of lifetimes in the presence of covariates. We propose a new model se-
lection method by defining the closeness between two distribution functions by the
Cramér–von Mises distance. This distance is used mostly in the literature to conduct
goodness of fit tests. Given a set of data and two competing classes of parametric dis-
tribution functions, we define a test statistic, to decide which class approximates the
underlying distribution better. With increasing sample size the asymptotic normality
property of our test statistic is shown under suitable conditions. As an example, we
apply our method to a real data set of lifetimes of DC-motors, which depend on the
covariate load.

5.1 Introduction

We are interested in the distribution of lifetimes of mechatronical systems in the
presence of covarivates. For that matter we consider a model selection problem for
the distribution function of the lifetimes. In a case study endurance tests on DC-
motors under particular load levels have been conducted at the Institute of Design
and Production in Precision Engineering of the University Stuttgart (see [2, 3]). For
each of the predetermined load levels, the lifetimes of several objects have been
observed. We denote the values of the load levels as zi with i = 1,2, . . . ,m, m ∈N

and the underlying distribution function of the lifetime of the motor for the load level
z asH(·|z). We want to answer the question, which parametric class of distributions
provides a good approximation for H .
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Let two potential model classes of distribution functions be

F = {
F(·|θ, z); θ ∈Θ,z ∈R

d
}

and G= {
G(·|γ, z);γ ∈ Γ, z ∈R

d
}
,

where Θ ⊂ R
p and Γ ⊂ R

q are compact subsets. As an example, F(·|θ, z) can
be an exponential and G(·|γ, z) a Weibull distribution for each values of (θ, γ, z).
The aim of this paper is to decide which model class lies closer to the underlying
distribution. Then the distribution function H(·|z) for a given value of z can be
estimated with that model. Notice that the two competing model classes may be
nested, overlapping or disjoint. Moreover, both, only one or neither of the models
may contain the underlying distribution function.

In the literature, various model selection methods have been discussed like
Akaike information criterion [1], Bayesian information criterion [10] or Mallows’s
Cp [7]. See also [4] for a summary of these methods. Unlike these methods, Vuong
[12] adopted the classical hypothesis testing framework and used the Kullback–
Leibler Information Criterion (KLIC) as a measure of distance between two distri-
butions. As we are interested in H , it would be reasonable to define a goodness of
fit criterion based on distribution functions.

On the other hand, goodness of fit tests based on empirical processes have been
used for a long time, see for example [5, 6] and [8, 9] for the case with censored
data. In these papers, the Cramér–von Mises distance between the fitted distribution
function and the empirical distribution function is used to construct tests.

In this paper we propose to use such distance measures for the construction of
a test to decide if F or G approximates H better. Unlike the KLIC, our distance
measure has a simpler interpretation. We introduce a test statistic, which is defined
by the distance measure of different estimates of H according to F and G. Here the
unknown parameters θ and γ are estimated by the maximum likelihood method.

To provide critical values the asymptotic normality property of our test statistic
is shown. For that purpose, we assume that the following regularity conditions hold
true, which are mainly based on the likelihood theory. They are formulated in terms
of F and it is understood that corresponding assumptions are also made on G.

A.1 For θ ∈Θ and i = 1, . . . ,m, the distribution F(·|θ, zi) has a density function
f (·|θ, zi) :R→R

+, which is strictly positive H(·|zi)-a.s.
A.2 The function logf is twice continuously differentiable in θ onΘ . Let ḟ denote

the derivative of f with respect to θ .
A.3 For θ ∈ Θ and i = 1, . . . ,m the functions logf (·|θ, zi), ḟ (·|θ, zi)/f (·|θ, zi)

and ∂2 logf (·|θ, zi)/∂θ2 are dominated by H(·|zi)-integrable functions inde-
pendent of θ . Hence, we can define

Af (θ) :=
m∑

i=1

∫ ∞

0

∂2 logf (x|θ, zi)
∂θ2

dH(x|zi).

A.4 The function
∑m
i=1

∫∞
0 logf (x|·, zi)dH(x|zi) has a unique maximum on Θ at

θ∗, where θ∗ is an interior point of Θ with Af (θ∗) �= 0. The value θ∗ is called
the pseudo-true value of θ for the model F .
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A.5 The derivative of F with respect to θ exists and is denoted as Ḟ , which is
bounded and continuous for all (x, θ) ∈ [0,∞)× δ(θ∗), where δ(θ∗) is an open
neighborhood of θ∗ in Θ .

A.6 For i = 1, . . . ,m the function ḟ 2(·|θ∗, zi)/f 2(·|θ∗, zi) is H(·|zi)-integrable.

The rest of this paper is organized as follows. In Sect. 5.2, the results for the
univariate case are presented. The case with a covariate will be treated in Sect. 5.3.
In the end, we give a short conclusion.

5.2 Model Selection Between Two Parametric Model Classes

In this section we consider the univariate case, i.e. m= 1, omitting the covariate z
in the argument of the functions. Let X1,X2, . . . ,Xn be i.i.d. random variables with
values in R

+ and distribution function H . The two competing classes of parametric
distributions reduce to

F = {
F(·|θ); θ ∈Θ ⊂R

p
}

and G= {
G(·|γ );γ ∈ Γ ⊂R

q
}
.

For the sake of simplicity, we assume p = q = 1. The results can be generalized to
the case with p > 1 or q > 1 directly. The log likelihood function for the model F
is defined as

logL(X1, . . . ,Xn, θ) :=
n∑

i=1

logf (Xi |θ).

Let the maximum likelihood estimator be θ̂n, such that

logL(X1, . . . ,Xn, θ̂n)= sup
θ∈Θ

logL(X1, . . . ,Xn, θ).

According to Theorem 2.2 in [13], under A.1–A.4, θ̂n exists and convergences to
θ∗ almost surely. In our paper the convergences hold for n→∞. We define the
distance between a model class F and a distribution function H by

dH (F )=
∫ ∞

0

(
H(x)− F(x|θ∗)

)2
dH(x).

Hence, the model with less distance can be viewed as closer to H . Let γ∗ and γ̂n
denote the pseudo-true value of γ for the model G and its maximum likelihood
estimator. Therefore, we propose a test of the null hypothesis

H 0: dH (F )= dH (G)
meaning that the two models are equally close to H , against

HF : dH (F ) < dH (G)

meaning F is closer to H than G or against

HG: dH (F ) > dH (G)
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meaning G is closer to H than F . In practice, H , θ∗ and γ∗ are unknown, however,
the difference of the distances can be estimated by the statistic

Tn :=
∫ ∞

0

(
Hn(x)− F(x|θ̂n)

)2
dHn(x)−

∫ ∞

0

(
Hn(x)−G(x|γ̂n)

)2
dHn(x),

where Hn is the empirical distribution function of X1, . . . ,Xn. Let g(·|γ ) and ġ
denote the density function of G(·|γ ) and the derivative of g with respect to γ ,
respectively. For the description of the asymptotic variance σ 2 of our test statistic
we denote

Cf :=A−1
f (θ∗)

∫ ∞

0

(
H(x)− F(x|θ∗)

)
Ḟ (x|θ∗)dH(x),

Cg :=A−1
g (γ∗)

∫ ∞

0

(
H(x)−G(x|γ∗)

)
Ġ(x|γ∗)dH(x),

N(x) := 2Cf
ḟ (x|θ∗)
f (x|θ∗) +

(
H(x)− F(x|θ∗)

)2

− 2Cg
ġ(x|γ∗)
g(x|γ∗) −

(
H(x)−G(x|γ∗)

)2

− 2
∫ x

0

(
G(u|γ∗)− F(u|θ∗)

)
dH(u),

σ 2 :=
∫ ∞

0
N2(x)dH(x)−

(∫ ∞

0
N(x)dH(x)

)2

.

For H ∈ F ∩G it follows under A.4 that H = F(·|θ∗)=G(·|γ∗), hence σ 2 = 0. In
this case N(0, σ 2) denotes the degenerate normal distribution.

Theorem 5.1 Let A.1–A.6 be satisfied. If H 0 holds, then
√
nTn

d−→ N(0, σ 2). If
HF holds, then

√
nTn tends to −∞ almost surely. If HG holds, then

√
nTn tends to

+∞ almost surely.

Proof First, we write

Hn(x)− F(x|θ̂n)=
(
H(x)− F(x|θ∗)

)− (
F(x|θ̂n)− F(x|θ∗)

)

+ (
Hn(x)−H(x)

)
.

Hence, we have
∫ ∞

0

(
Hn(x)− F(x|θ̂n)

)2
dHn(x)

=−2
∫ ∞

0

(
F(x|θ̂n)− F(x|θ∗)

)(
H(x)− F(x|θ∗)

)
dHn(x)

+
∫ ∞

0

(
H(x)− F(x|θ∗)

)2
dHn(x)

+ 2
∫ ∞

0

(
Hn(x)−H(x)

)(
H(x)− F(x|θ∗)

)
dHn(x)
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+
∫ ∞

0

(
F(x|θ̂n)− F(x|θ∗)

)2
dHn(x)

− 2
∫ ∞

0

(
Hn(x)−H(x)

)(
F(x|θ̂n)− F(x|θ∗)

)
dHn(x)

+
∫ ∞

0

(
Hn(x)−H(x)

)2
dHn(x). (5.1)

The first term in (5.1) can be written as

−2
∫ ∞

0

(
F(x|θ̂n)− F(x|θ∗)

)(
H(x)− F(x|θ∗)

)
dH(x)+ op(1/√n)

and the third term

2
∫ ∞

0

(
Hn(x)−H(x)

)(
H(x)− F(x|θ∗)

)
dH(x)+ op(1/√n),

respectively. Next, we show that the fourth term in (5.1) converges to 0 in probabil-
ity. By Theorem 3.2 in [13], under A.1–A.4,

√
n(θ̂n− θ∗) is asymptotically normal.

Given A.5,

√
n

∫ ∞

0

(
F(x|θ̂n)− F(x|θ∗)

)2
dHn(x)

≤ sup
x

√
n
(
F(x|θ̂n)− F(x|θ∗)

)2

= sup
x

√
nḞ 2(x|θ̃n)(θ̂n − θ∗)2 P−→ 0,

where θ̃n lies between θ̂n and θ∗. Analogously, for the fifth term, since supx |Hn(x)−
H(x)| a.s−→ 0,

√
n

∫ ∞

0

(
Hn(x)−H(x)

)(
F(x|θ̂n)− F(x|θ∗)

)
dHn(x)

P−→ 0.

The same holds true for
∫∞

0 (Hn(x)−G(x|γ̂n))2dHn(x). It follows that
√
nTn −√n

(
dH (F )− dH (G)

)

=−2
√
n

∫ ∞

0

(
F(x|θ̂n)− F(x|θ∗)

)(
H(x)− F(x|θ∗)

)
dH(x)

+√n
∫ ∞

0

(
H(x)− F(x|θ∗)

)2
d
(
Hn(x)−H(x)

)

+ 2
√
n

∫ ∞

0

(
G(x|γ̂n)−G(x|γ∗)

)(
H(x)−G(x|γ∗)

)
dH(x)

−√n
∫ ∞

0

(
H(x)−G(x|γ∗)

)2
d
(
Hn(x)−H(x)

)

+ 2
√
n

∫ ∞

0

(
Hn(x)−H(x)

)(
H(x)− F(x|θ∗)

)
dH(x)

− 2
√
n

∫ ∞

0

(
Hn(x)−H(x)

)(
H(x)−G(x|γ∗)

)
dH(x)+ op(1). (5.2)
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By A.5, the first term in (5.2) can be written as

−2
√
n(θ̂n − θ∗)

∫ ∞

0
Ḟ (x|θ∗)

(
H(x)− F(x|θ∗)

)
dH(x)+ op(1).

By A.3, A.4 and the proof of Theorem 3.2 in [13], we have

√
n(θ̂n − θ∗)=−A−1

f (θ∗)n
−1/2

n∑

i=1

ḟ (Xi |θ∗)
f (Xi |θ∗) + op(1)

=−A−1
f (θ∗)

√
n

∫ ∞

0

ḟ (x|θ∗)
f (x|θ∗)dHn(x)+ op(1)

=−A−1
f (θ∗)

√
n

∫ ∞

0

ḟ (x|θ∗)
f (x|θ∗)d

(
Hn(x)−H(x)

)+ op(1).

A similar result holds true for the third term in (5.2). Since φ(x) = ∫ x
0 (H(u) −

F(u|θ∗))dH(u) is of bounded variation on [0, T ] for each T < +∞, it follows
from A.6 that
√
nTn −√n

(
dH (F )− dH (G)

)

P−→ 2Cf
∫ ∞

0

ḟ (x|θ)
f (x|θ)dB

0(H(x)
)+

∫ ∞

0

(
H(x)− F(x|θ∗)

)2
dB0(H(x)

)

− 2Cg
∫ ∞

0

ġ(x|γ )
g(x|γ )dB

0(H(x)
)−

∫ ∞

0

(
H(x)−G(x|γ∗)

)2
dB0(H(x)

)

− 2
∫ ∞

0

∫ x

0

(
G(u|γ∗)− F(u|θ∗)

)
dH(u)dB0(H(x)

)

=
∫ ∞

0
N(x)dB0(H(x)

)
,

where B0 denotes a Brownian bridge process on [0,1], see Theorem 4.4.1 on
page 283 in [11]. Since N2(x) is H -integrable, we have that

∫∞
0 N(x)dB0(H(x))

is N(0, σ 2) distributed and the theorem follows. �

Moreover, the variance σ 2 can be estimated consistently by

σ̂ 2
n :=

∫ ∞

0
N̂2
n(x)dHn(x)−

(∫ ∞

0
N̂n(x)dHn(x)

)2

,

where

N̂n(x) := 2Ĉfn
ḟ (x|θ̂n)
f (x|θ̂n)

+ (
Hn(x)− F(x|θ̂n)

)2

− 2Ĉgn
ġ(x|γ̂n)
g(x|γ̂n) −

(
Hn(x)−G(x|γ̂n)

)2

− 2
∫ x

0

(
G(u|γ̂n)− F(u|θ̂n)

)
dHn(u),
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Ĉ
f
n := Â−1

f (θ̂n)

∫ ∞

0

(
Hn(x)− F(x|θ̂n)

)
Ḟ (x|θ̂n)dHn(x),

Ĉ
g
n := Â−1

g (γ̂n)

∫ ∞

0

(
Hn(x)−G(x|γ̂n)

)
Ġ(x|γ̂n)dHn(x),

Âf (θ) :=
∫ ∞

0

∂2 logf (x|θ)
∂θ2

dHn(x) and Âg(θ) :=
∫ ∞

0

∂2 logg(x|θ)
∂θ2

dHn(x).

If σ 2 > 0 and H 0 holds true, we have that√
nTn

σ̂n

d−→N(0,1).

Therefore, for a given significance level α, we decide for the hypothesis H 0, if
|√nTn/σ̂n| ≤ z1−α/2, where zα denotes the α-quantile of a standard normal dis-
tribution. The hypothesis HF or HG will be accepted, if

√
nTn/σ̂n > z1−α/2 or√

nTn/σ̂n < −z1−α/2, respectively. However, we propose to use the model with
less parameters, ever if H 0 is not rejected. The case σ 2 = 0, where we have that√
nTn→ 0 under H 0, will be considered in a forthcoming paper.

5.3 The Case with Covariate

Unlike the regular regression analysis, we assume that for each covariate value zi ,
i = 1,2, . . . ,m, there are n random variables Xi1,Xi2, . . . ,Xin with values in R

+.
Further, we assume that all random variables are independent and for each i, Xij
follow the same distribution function H(·|zi). Hence we can estimate H(·|zi) by
the empirical distribution function denoted as Hn(·|zi).

Given the two competing classes F and G as in the introduction of this paper,
the maximum likelihood estimators θ̂n and γ̂n for θ∗ and γ∗ can be defined similarly
as in the univariate case. Further, we define the distance from the two models to the
underlying distribution H as

dZH (F )=
m∑

i=1

dH(·|zi )
(
F(·|θ∗, zi)

)
, dZH (G)=

m∑

i=1

dH(·|zi )
(
G(·|γ∗, zi)

)
.

For each i let σi and σ̂i be the conditional version of σ and σ̂ and the statistic T Zn
be

T Zn :=
m∑

i=1

(∫ ∞

0

(
Hn(x|zi)− F(x|θ̂n, zi)

)2
dHn(x|zi)

−
∫ ∞

0

(
Hn(x|zi)−G(x|γ̂n, zi)

)2
dHn(x|zi)

)
.

Corollary 5.2 Let A.1–A.6 be satisfied. If dZH (F ) = dZH (G), then
√
nT Zn

d−→
N(0,

∑m
i=1 σ

2
i ) and σ̂i

a.s.−−→ σi , i = 1, . . . ,m. If dZH (F ) < d
Z
H (G), then

√
nT Zn tends

to −∞ almost surely. If dZH (F ) > d
Z
H (G), then

√
nT Zn tends to +∞ almost surely.
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We apply our test to the lifetime data of the DC-motors. For each of the five
load levels (2.5, 3.75, 5, 6.25, 7.5 mNm) we observed 16 lifetimes (see [2, 3]). As
an example, we want to select between the classes of the two-parametric Weibull
distributions and of the lognormal distributions.

F = {
Wei(θ1 + θ2 · z, θ3 + θ4 · z); θ1 + θ2 · z > 0, θ3 + θ4 · z > 0

}
,

G= {
LogN

(
γ1 + γ2 · z, (γ3 + γ4 · z)2

); γ3 + γ4 · z > 0
}
.

According to our data we get the estimates n1/2T Zn ≈ 0.0274 and
∑5
i=1 σ̂

2
i ≈

0.0067. Hence, we get the p-value ≈ 0.7382 and decide for H 0. This means, the
two model classes do not approximate the distribution of the lifetimes significantly
differently. However, the test statistic is positive, so we recommend the Weibull
model.

5.4 Conclusion

In this paper, we applied the Cramér–von Mises distance to describe the closeness
between two distributions. Other measures like Anderson–Darling distance or a
weighted version of Cramér–von Mises could also be used. The Cramér–von Mises
goodness of fit test is based, under different assumptions, on the asymptotic dis-
tribution of n · dHn(F ). We showed that n1/2 · (dHn(F (·|θ̂n)) − dHn(G(·|γ̂n))) is
asymptotically normal under H 0, where the variance σ 2 can be estimated consis-
tently. For σ 2 > 0 we stated a model selection method and the case σ 2 = 0 will be
investigated in a forthcoming paper.

According to our data example, the empirical distribution function is available
for each i = 1, . . . ,m. This motivates us to consider the asymptotics as n→∞ for
fixed m. A different point of view is to investigate the asymptotics for m→∞.

Moreover, the two competing distribution classes here are both parametric. The
extension to semiparametric and nonparametric classes or the case with censored
data will be part of future work.
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Chapter 6
Rate of Convergence of a Change Point
Estimator in a Misspecified Regression Model

Maik Döring

Abstract A parametric estimation problem is considered in a misspecified regres-
sion model, where the regression function has a smooth change point. The focus
lies on regression functions, which are continuous at the change point. Here, it is
not assumed that the true regression function belongs to the model class. However,
there exists a pseudo change point, such that the related regression function gives a
reasonable approximation. With increasing sample size the asymptotic behavior is
investigated of the least squares estimates of the change point. The consistency of
the change point estimator for the pseudo estimator is shown. It turns out that the
rate of convergence depends on the order of smoothness of the regression function
at the change point.

6.1 Introduction

Change point models are being used in many fields, for instance, archaeology,
econometrics, epidemiology, medicine and reliability. The problem to estimate the
location of a change point in a regression model has been studied in the literature
to some extent. In most cases locating a jump discontinuity is considered and prop-
erties of the estimators are studied, see for example [1, 2]. Müller [10] investigates
the problem of estimating a jump change point in the derivative of some order of
the regression function. A change of the slope of a linear function was considered
for example in [4, 5]. Hušková [6, 7] considers a least squares type estimator of the
parameters in a location model with gradual changes in a fixed design setup.

Here the focus lies on regression functions, which are continuous at the change
point in a random design regression model. Suppose an experimenter use such re-
gression functions with a change point, but the true underlying regression function
does not belong to the model. What is the asymptotic behavior of the least squares
estimator for the change point? It is shown under suitable conditions, that the pro-
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posed change point estimator is consistent for a pseudo change point. Further, the
rate of convergence is studied.

Let for n ∈N the observations (X,Y ), (X1, Y1), . . . , (Xn,Yn) be i.i.d. R2-valued
random variables. It is assumed that the distribution of X is absolutely continuous
with a density function dX , which is uniformly bounded on the unit interval [0,1].
Further it is assumed that the response variables Yi are given by the following re-
gression model

Yi = f (Xi)+ εi, 1≤ i ≤ n, n ∈N,

where f :R→R is an unknown continuous function. Let ε, ε1, . . . , εn for n ∈N be
i.i.d. real valued random variables. It is required that E(ε|X) = 0 a.s. and that the
random variable ε is suitably integrable. The function f should be approximated
by a parametric regression function fθ :R→R with an unknown change point θ ∈
(0,1) and known exponent q ∈ (0,∞) given by

fθ (x) := (x − θ)q1(θ,1](x),

where 1A is the indicator function of a set A. Observe that for small values of q , the
function θ→ fθ (x) is not differentiable in θ . The least squares error is considered
for any possible change point. For θ ∈ [0,1] and n ∈N define

Mn(θ) := −1

n

n∑

i=1

(
Yi − fθ (Xi)

)2
.

For n ∈N our estimator is defined as the maximizing point ofMn:

θ̂n := argmax
θ∈[0,1]

Mn(θ).

Here, the limit behavior will be studied of the least squares estimator θ̂n. The model
is misspecified in that f does not belong to the model. But, it is assumed that a
pseudo change point θ∗ ∈ (0,1) exists with

E
(
f (X)− fθ∗(X)

)2
<E

(
f (X)− fθ (X)

)2 ∀θ �= θ∗. (6.1)

This means in particular, that θ∗ is a unique maximizer of E(Mn). The consistency
of the proposed estimator is shown, i.e. θ̂n→ θ∗ as n→∞. In order to get a rate
of convergence, it is assumed that constants α > 0 and C > 0 exist, such that for all
θ ∈ [0,1]

−E(f (X)− fθ (X)
)2 +E(f (X)− fθ∗(X)

)2
<−C|θ − θ∗|α. (6.2)

It turns out that the rate of convergence of θ̂n depends on α and q .
The paper is organized as follows. Consistency is shown in Sect. 6.2 and the

rate of convergence of the estimator is considered in Sect. 6.3. In Sect. 6.4 some
conclusions are given.
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6.2 Consistency

To analyze the asymptotic behavior of the change point estimator, the theory of M-
estimators and empirical processes is used. For a fuller treatment see for example
[9, 12].

Theorem 6.1 Let E(|ε||X) < C1 a.s. for some positive constant C1 and assume
that (6.1) holds true. Then

lim
n→∞ θ̂n→ θ∗ a.s.

Proof It is to check whether all assumptions of the well-known argmax theorem are
satisfied. Let for θ ∈ [0,1] the functions mθ :R2 →R be defined by

mθ(e, x) := −2e
(
f (x)− fθ (x)

)− (
f (x)− fθ (x)

)2
.

Observe thatMn(θ)= M̃n(θ)− 1
n

∑n
i=1 ε

2
i , where

M̃n(θ) := 1

n

n∑

i=1

mθ(εi,Xi).

It follows that Mn and M̃n have the same maximizers. The random variables εi ,
1≤ i ≤ n are i.i.d. as well as Xi , 1≤ i ≤ n and E(ε|X)= 0 a.s., hence

E
(
M̃n(θ)

)=E(mθ(ε,X)
)=−E((f (X)− fθ (X)

)2)=: M̃(θ).
The function M̃ is continuous and by (6.1) it follows that θ∗ is a well separated
maximizer of M̃ . The definition of the estimator yields M̃n(θ̂n)= supθ∈[0,1] M̃n(θ)
directly. Next it is shown that limn→∞ supθ∈[0,1] |M̃n(θ)− M̃(θ)| = 0 a.s.

Let M := {mθ : θ ∈ [0,1]} be a set of function. Thus the following representation
is given.

sup
θ∈[0,1]

∣∣M̃n(θ)− M̃(θ)
∣∣= sup

m∈M

∣∣∣
∣∣
(1/n)

n∑

i=1

m(εi,Xi)−Em(ε,X)
∣∣∣
∣∣
.

For η > 0 let N[ ](η,M,L1) be the bracketing number of the class of functions M
related to the L1-norm, i.e. ‖m‖L1 =E(|m(ε,X)|), for details see Van der Vaart [12,
Chap. 19]. It will be shown that the bracketing number N[ ](η,M,L1) of the class
M is finite for any η > 0, hence M is a Glivenko-Cantelli class by Theorem 19.4
in [12] and the assertion follows.

Let 0 ≤ θ1 < θ2 ≤ 1 and fix e and x. Then the function m(·)(e, x) : [θ1, θ2] → R

has at least one minimizer θ and one maximizer θ . Hence

sup
θ∈[θ1,θ2]

mθ(e, x)− inf
θ∈[θ1,θ2]

mθ(e, x)

=−2e
(
f (x)− fθ (x)

)− (
f (x)− fθ (x)

)2 + 2e
(
f (x)− fθ (x)

)
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+ (
f (x)− fθ (x)

)2

= (
2e+ 2f (x)− fθ (x)− fθ (x)

) · (fθ (x)− fθ (x)
)

≤ C1 · |e| ·
(
fθ1(x)− fθ2(x)

)
, (6.3)

where C1 is a positive constant and independent of θ1 and θ2. The last inequality
follows since the function f is decreasing in θ . Let C̃ be a positive generic constant.
Since the density dX of the distribution X is uniformly bounded on the unit interval
and by E(|ε||X) < C a.s. it follows that

E
(

sup
θ∈[θ1,θ2]

mθ(ε,X)− inf
θ∈[θ1,θ2]

mθ(ε,X)
)

≤ C̃
(∫ 1

θ1

(x − θ1)qdx −
∫ 1

θ2

(x − θ2)qdx
)
≤ C̃(θ2 − θ1).

Using standard methods it follows for any η > 0 that N[ ](η,M,L1)≤ C̃/η <∞.
Hence limn→∞ supθ∈[0,1] |M̃n(θ)− M̃(θ)| = 0 a.s. Thus all assumptions of The-

orem 2.12 in [9] are satisfied and the assertion follows. �

6.3 Rate of Convergence

The rate of convergence is determined by α of (6.2) and q . Standard methods for
the analysis, like Taylor expansion, are not applicable for small values of q , since
the regression function θ→ fθ (x) is not differentiable.

Theorem 6.2 Let E(ε2|X) < C2 a.s. for some positive constant C2 and assume
that (6.2) holds true. Then for 0< q < 1/2 and α > q + 1

n1/(2α−2q−1) · (θ̂n − θ∗)=OP (1),
and for 1/2< q and α > 1

n1/(2α−2) · (θ̂n − θ∗)=OP (1).

Proof The main step of the proof is to show that there exists a constant C > 0 such
that for every sufficiently small δ > 0

E

(

sup
θ0−δ<θ<θ0+δ

∣∣∣∣∣
1√
n

n∑

i=1

(
mθ(εi,Xi)−mθ∗(εi,Xi)

−E(mθ(εi,Xi)
)+E(mθ∗(εi,Xi)

))
∣∣∣∣∣

)

≤ Cδβ(q),

where

β(q) :=
{
q + 1/2 0< q < 1/2
1 1/2< q.
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For 0< δ let Mδ be the following class of measurable functions:

Mδ := {mθ −mθ∗ : θ∗ − δ < θ < θ∗ + δ}.
With C1 > 0 of (6.3) letMδ :R2 →R be a measurable function defined by

Mδ(e, x) := C1|e|
(
fθ∗−δ(x)− fθ∗+δ(x)

)
.

Observe that the functionMδ is non-negative since the function f is decreasing in θ .
The function Mδ is an envelope function of the class Mδ , i.e. |m(e, x)| ≤Mδ(e, x)
for all x ∈R, e ∈R and for all m ∈Mδ . Let C̃ be a positive generic constant. Since
the density dX of the distribution X is uniformly bounded on the unit interval, by
Lemma 8 in [3] and E(ε2|X) < C a.s. it follows that

‖Mδ‖L2 ≤ C̃δβ(q) (6.4)

where the L2-norm is defined by ‖Mδ‖2
L2
=E(|Mδ(ε,X)|2).

For η > 0 let N[ ](η,Mδ,L2) be the bracketing number of the class of functions
Mδ related to the L2-norm. Analogously to (6.4), in view of (6.3), it follows that,
for 0≤ θ1 < θ2 < 1,

E
(∣∣∣ sup
θ1≤θ≤θ2

(
mθ(ε,X)−mθ∗(ε,X)

)− inf
θ1≤θ≤θ2

(
mθ(ε,X)−mθ∗(ε,X)

)∣∣∣
2)

≤E(C2
1ε

2(fθ1,q (X)− fθ2,q(X)
)2)≤ C̃(θ2 − θ1)2β(q).

Using standard methods it follows that for any η > 0

ln
(
N[ ](η,Mδ,L2)

)≤ ln
(
C̃δη−1/β(q))= (

1/β(q)
)

ln
(
(C̃δ)β(q)/η

)
.

Hence by Corollary 19.35 in [12] it follows that

E

(

sup
θ0−δ<θ<θ0+δ

∣∣∣∣∣
1√
n

n∑

i=1

(
mθ(εi,Xi)−mθ∗(εi,Xi)

−E(mθ(εi,Xi)
)+E(mθ∗(εi,Xi)

))
∣∣∣∣∣

)

=E
(

sup
m∈M

∣∣∣∣∣
1√
n

n∑

i=1

(
m(εi,Xi)−E

(
m(εi,Xi)

))
∣∣∣∣∣

)

≤ C̃
∫ ‖Mδ‖L2

0

(
max

{
1, ln

(
N[ ](η,Mδ,L2)

)})1/2
dη

≤ C̃
∫ δβ(q)

0

√
δβ(q)/η dη ≤ C̃δβ(q).

The definition of our estimator yields M̃n(θ̂n) ≥ M̃n(θ∗) and by Theorem 6.1 it
follows that θ̂n→ θ∗. By (6.2) all assumptions of Theorem 5.52 in [12] are sat-
isfied with α and β(q). Hence n1/(2α−2β(q))(θ̂n − θ∗) = OP (1) and the assertion
follows. �
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6.4 Discussion and Conclusion

It was shown that the least squares estimator for the change point is consistent for a
pseudo change point. Further the rate of convergence of the change point estimator
was analyzed. A quite simple model was considered, since the focus lies on the in-
vestigation of the different rates of convergence of θ̂n depending on q and α. Future
work is to show under additional conditions that the rates are optimal. For small
values of q the estimator shows a non-regular asymptotic behavior, since the regres-
sion function is not differentiable in θ . If q is large and assumption (6.1) holds true,
then it follows that α = 2, hence n1/2(θ̂n − θ∗)=OP (1). In this case the estimator
is asymptotically normal. In the following two particular types of functions f are
discussed.

1. The true model: f = fθ0 with θ0 ∈ (0,1).
It follows that θ0 = θ∗ and α = 2β(q), hence

θ̂n→ θ0 a.s.
n1/(2q+1) · (θ̂n − θ0)=OP (1) for 0< q < 1/2,

n1/2 · (θ̂n − θ0)=OP (1) for 1/2< q.

In [3] the convergence in distribution of the estimator was shown. For q > 1/2
the estimator is asymptotically normal and for 0< q < 1/2 the change point es-
timator converges to a maximizer of a fractional Brownian motion with drift. For
q = 1/2 the rate (n lnn)1/2 was proven. But in the last case the limiting distribu-
tion is also normal. Such non-regular behavior occurs also in similar models, see
for instance [6–8, 11].

2. A quite similar model: f (x)= (x − θ0)q0 1(θ0,1](x) with θ0 ∈ (0,1) and q0 �= q .
The function f is decreasing in θ0 and q0, i.e. for all x ∈ [0,1]

(x − θ1)q0 1(θ1,1](x)≥ (x − θ2)q0 1(θ2,1](x) θ1 < θ2,

(x − θ0)q1 1(θ0,1](x)≥ (x − θ0)q2 1(θ0,1](x) q1 < q2.

This gives for q0 < q and θ1 < θ0 < θ2 that

fθ2 ≤ fθ0 ≤min{f,fθ1} and M̃(θ2) < M̃(θ0) < M̃(θ1).

It follows for q0 < q that θ0 > θ∗. The same conclusion can be drawn for q0 > q ,
which implies that θ0 < θ∗. Hence the estimator is not consistent for θ0,

θ̂n→ θ∗ �= θ0 a.s.

Such situation occurs in models with continuous and stepwise linear func-
tions. That means, regression function with q = 1 are postulated. For example
let X uniformly distributed on the unit interval, then

∂

∂θ
M̃(θ)= ∂

∂θ

(−E((X− θ0)q0 1(θ0,1](X)− (X− θ)1(θ,1](X)
)2)

=− 2

q0 + 1
(1− θ0)q0+1 + 2

q0 + 1

(
max{θ, θ0} − θ0

)q0+1 + (1− θ)2.
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For q0 < 1, since θ0 > θ∗, it follows that

∂

∂θ
M̃(θ)= 0 ⇐⇒ 2

q0 + 1
(1− θ0)q0+1 = (1− θ)2.

Therefore, the pseudo change point is given by

θ∗ = 1− (
2/(q0 + 1)

)1/2
(1− θ0)(q0+1)/2.

For q0 > 1, since θ0 < θ∗, the pseudo change point θ∗ solves the following equa-
tion

0=− 2

q0 + 1
(1− θ0)q0+1 + 2

q0 + 1
(θ − θ0)q0+1 + (1− θ)2.

Observe that θ = 1 is a solution of the above equation, but it minimizes the
function M̃ . For q0 close to one, it follows as expected that θ∗ is close to θ0.
Further it can be shown that α = 2 and by standard methods the asymptotic
normality property of the change point estimator.
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Chapter 7
An Exact Formula for the Average Run Length
to False Alarm of the Generalized
Shiryaev–Roberts Procedure for Change-Point
Detection under Exponential Observations

Wenyu Du, Grigory Sokolov, and Aleksey S. Polunchenko

Abstract We derive analytically an exact closed-form formula for the standard
minimax Average Run Length (ARL) to false alarm delivered by the Generalized
Shiryaev–Roberts (GSR) change-point detection procedure devised to detect a shift
in the baseline mean of a sequence of independent exponentially distributed obser-
vations. Specifically, the formula is found through direct solution of the respective
integral (renewal) equation, and is a general result in that the GSR procedure’s non-
negativ headstart is not restricted to a bounded range, nor is there a “ceiling” value
for the detection threshold. Apart from the theoretical significance (in change-point
detection, exact closed-form performance formulae are typically either difficult or
impossible altogether to get, especially for the GSR procedure), the obtained for-
mula is also useful to a practitioner: in cases of practical interest, the formula is a
function linear in both the detection threshold and the headstart, and, therefore, the
ARL to false alarm of the GSR procedure can be easily computed.

7.1 Introduction

Quickest change-point detection is concerned with the design and analysis of re-
liable statistical machinery for rapid detection of changes that may spontaneously
affect a “live” process, continuously monitored via sequentially made observations.
See, e.g., [24] or [33, Part II]. A quickest change-point detection procedure is a
stopping time adapted to the observed data, and is a rule whereby one is to stop and
“sound an alarm” that the characteristics of the observed process may have (been)
changed. A “good” (i.e., optimal or nearly optimal) detection procedure is one that
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minimizes (or nearly minimizes) the desired detection delay penalty, subject to a
constraint on the false alarm risk. For an overview of the major optimality criteria
see, e.g., [18, 23, 32, 38] or [33, Part II].

A problem particularly persistent in applied change-point detection (e.g., in qual-
ity control) is evaluation of detection procedures’ performance. To that end, the
ideal would be to have the needed performance metrics expressed exactly and in a
closed and simple form. However, this is generally quite difficult mathematically,
if at all possible. Part of the reason is that the renewal equations that many popu-
lar performance metrics satisfy are Fredholm integral equations of the second kind
(possibly written as equivalent differential equations), and such equations seldom
allow for an analytical solution. As a result, the standard practice has been to eval-
uate the performance numerically (one particularly popular approach has been to
devise an asymptotic approximation of some sort). Nevertheless, some exact per-
formance formulae have been derived explicitly, although primarily for the “main-
stream” detection methods. For instance, a number of characteristics of the cele-
brated CUSUM “inspection scheme” (due to [13]) have been expressed explicitly,
e.g., in [1, 2, 6, 7, 25, 37],1 although for only a handful of scenarios. Likewise, exact
closed-form formulae for various performance metrics of the famous EWMA chart
(due to [26]) in an exponential scenario have been established, e.g., in [3, 12, 21]
(see footnote 1).

However, the corresponding progress made to date for the classical Shiryaev–
Roberts (SR) procedure (due to [27–29]) is far more modest (except for the
continuous-time case), and especially little has been done for the Generalized SR
(GSR) procedure, which was introduced recently in [11] as a “headstarted” version
of the classical SR procedure. Since the latter is a special case of the GSR pro-
cedure (when the headstart is zero), from now on we will follow [34] and use the
term “GSR procedure” to refer to both procedures. As a matter of fact, to the best
of our knowledge, exact and explicit formulae for a small subset of characteristics
of the GSR procedure have been obtained only in [4, 9, 10, 14, 22, 23, 35, 40].
The purpose of this work is to add on to this list. Specifically, we obtain an ex-
act, closed-form formula for the standard (minimax) Average Run Length (ARL) to
false alarm delivered by the GSR procedure devised to detect a jump in the common
baseline mean of a sequence of independent exponentially distributed observations.
The formula is found analytically, through direct solution of the respective renewal
(integral) equation, and is valid for an arbitrary (nonnegative) headstart, with the
detection threshold not restricted from above. Furthermore, the formula is remark-
ably simple (it is a function linear in the detection threshold and in the headstart)
and, unlike its complicated and cumbersome CUSUM and EWMA counterparts,
can be used to compute the GSR procedure’s ARL to false alarm (in the exponential
scenario) essentially “by hand”. This would clearly be of aid to a practitioner.

1By no means is this an exhaustive list of available papers on the subject.
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7.2 Preliminaries

The centerpiece of this work is the (minimax) Average Run Length (ARL) to false
alarm of the Generalized Shiryaev–Roberts (GSR) detection procedure (due to [11])
considered in the context of the basic minimax quickest change-point detection
problem (see, e.g., [8, 14]). As a performance metric, the ARL to false alarm was
apparently introduced in [13]; see also, e.g., [8].

Let f∞(x) and f0(x) denote, respectively, the observations’ pdf in the pre- and
post-change regime. Let Λn � f0(Xn)/f∞(Xn) be the “instantaneous” likelihood
ratio (LR) for the n-th data point, Xn. The GSR procedure (due to [11]) is then
formally defined as the stopping time

S r
A � inf

{
n≥ 1:Rrn ≥A

}
, such that inf{∅} =∞, (7.1)

where A> 0 is a detection threshold used to control the false alarm risk, and

Rrn+1 =
(
1+Rrn

)
Λn+1 for n= 0,1, . . . with Rr0 = r ≥ 0, (7.2)

is the GSR detection statistic. We remark that Rr0 = r ≥ 0 is a design parameter
referred to as the headstart and, in particular, when Rr0 = r = 0, the GSR procedure
is equivalent to the classical Shiryaev–Roberts (SR) procedure (due to [27–29]);
a brief account of the SR procedure’s history may be found, e.g., in [16]. Albeit
“young” (the GSR procedure was proposed in 2011), it has already been shown (see,
e.g., [17, 22, 30, 34, 35]) to possess very strong optimality properties, not exhibited
by the CUSUM scheme or the EWMA chart; in fact, in certain scenarios, the latter
two charts have been found experimentally to be inferior to the GSR procedure.

Let P∞ (E∞) be the probability measure (expectation) induced by the observa-
tions in the pre-change regime, i.e., when Xn ∝ f∞(x) for all n ≥ 1. The ARL to
false alarm of the GSR procedure is defined as ARL(S r

A)� E∞[S r
A]. A key prop-

erty of the GSR statistic (7.2) is that the sequence {Rrn − n− r}n≥0 is a zero-mean
P∞-martingale, i.e., E∞[Rrn − n− r] = 0 for all n ≥ 0 and all r . This and Doob’s
Optional stopping (sampling) theorem (see, e.g., [33, Theorem 2.3.1, p. 31]) imply
that E∞[RS r

A
−S r

A − r] = 0, so that ARL(S r
A) = E∞[RS r

A
] − r ≥ A − r . As a

result, to ensure that ARL(S r
A)≥ γ for a desired γ > 1, it suffices to pick A and r

from the solution set of the inequality A− r ≥ γ and such that A> 0 and r ≥ 0.
A more accurate result is the approximation ARL(S r

A) ≈ (A/ξ) − r valid
for sufficiently large A > 0; see, e.g., [15, Theorem 1] or [34]. To define ξ , let
Sn �

∑n
i=1 logΛn for n≥ 1, and let τa � inf{n≥ 1:Sn ≥ a} for a > 0 (again, with

the understanding that inf{∅} =∞). Then κa � Sτa −a is the so-called “overshoot”
(excess over the level a > 0 at stopping), and ξ � lima→∞E0[e−κa ], and is referred
to as the “limiting average exponential overshoot”; here E0 denotes the expecta-
tion under the probability measure induced by the observations in the post-change
regime, i.e., when Xn ∝ f0(x) for all n≥ 1. In general, ξ is clearly between 0 and
1, and is a model-dependent constant, which falls within the scope of nonlinear
renewal theory; see, e.g., [39], [38, Section II.C] or [33, Section 2.6].

We now state the main equation that we shall deal with (and, in fact, solve
analytically) in the next section in a certain exponential scenario. Let PΛ∞(t) �
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P∞(Λ1 ≤ t), t ≥ 0, be the cdf of the LR under probability measure P∞. Let
Rr=x0 = r = x ≥ 0 be fixed and define

K∞(x, y)�
∂

∂y
P∞

(
Rrn+1 ≤ y

∣∣Rrn = x
)= ∂

∂y
PΛ∞

(
y

1+ x
)
, for x, y ≥ 0, (7.3)

i.e., the transition probability density kernel for the homogeneous Markov process
{Rrn}n≥0 under probability measure P∞.

From now on, let (x,A)� ARL(S r=x
A ). It is shown, e.g., in [11], that (x,A)

is governed by the renewal equation

(x,A)= 1+
∫ A

0
K∞(x, y)(y,A)dy, (7.4)

where x ≥ 0 and A > 0. The question of existence and uniqueness of solution for
this equation has been answered in the affirmative, e.g., in [11]. It is this equation,
viz. the exact solution thereof in a specific exponential scenario, that is the center-
piece of this work.

Equation (7.4) is a Fredholm (linear) integral equation of the second kind. Since
for such equations an analytical solution is rarely a possibility, they are usually
solved numerically. Numerical schemes specifically for Eq. (7.4) have been devel-
oped and applied, e.g., in [11, 20, 36]. However, it turns out that in a certain expo-
nential scenario it is possible to solve (7.4) analytically, and, more importantly, the
solution is a simple linear function of x and A, just as one would expect from the
approximation ARL(S r

A) ≈ (A/ξ) − r mentioned earlier. This is the main result
of this paper, it generalizes [5, Proposition 1], and the details are given in the next
section.

7.3 The Main Result

We are now in a position to establish the main result of this work, i.e., derive analyti-
cally an exact closed-form formula for the ARL to false alarm exhibited by the GSR
procedure (7.1)–(7.2) “tasked” to detect a change in the baseline (common) mean
of a series of independent exponentially distributed observations. More concretely,
suppose the observations’ pre- and post-change pdf’s are

f∞(x)= e−x1{x≥0} and f0(x)= 1

1+ θ e
−x/(1+θ)1{x≥0}, (7.5)

respectively, where θ > 0, a known parameter with an obvious interpretation: it
is the magnitude of the shift in the mean of the exponential distribution, so that
the higher (lower) the value of θ , the more (less) contrast the mean shift is, and
the easier (harder) it is to detect. We shall from now on refer to this scenario as
the E (1)-to-E (1+ θ) model, to reflect not only the throughout “exponentiality” of
the data, but also that their mean is 1 pre-change and 1+ θ > 1 post-change. For a
motivation to consider this model, see, e.g., [4, 31], or [33, Section 3.1.6].



7 On the ARL to False Alarm of the Generalized Shiryaev–Roberts Procedure 61

To “tailor” the general equation (7.4) on the ARL to false alarm to the E (1)-to-
E (1 + θ) model, the first step is to find Λn � f0(Xn)/f∞(Xn). To that end, it is
easy to see from (7.5) that

Λn = 1

1+ θ exp

{
θ

1+ θ Xn
}
, n≥ 1, (7.6)

and we note that since Xn ≥ 0 w.p. 1 for all n≥ 1 under any probability measure, it
can be deduced that Λn ≥ 1/(1+ θ) w.p. 1 for all n ≥ 1, also under any probabil-
ity measure. The latter inequality is a circumstance with consequences, which are
illustrated in the following two results.

Lemma 7.1 For the E (1)-to-E (1+ θ) model (7.5), the pre-change transition prob-
ability density kernel, K∞(x, y), defined by (7.3), is given by the formula:

K∞(x, y)= θ−1(1+ θ)−1/θ y−2−1/θ (1+ x)1+1/θ1{y≥(1+x)/(1+θ)}, (7.7)

where it is understood that x ≥ 0.

Proof The desired result can be established directly from (7.3), i.e., the defini-
tion of the pre-change transition probability density kernel, K∞(x, y), combined
with (7.6), i.e., the formula for the LR specific to the E (1)-to-E (1+ θ) model (7.5).
The presence of the indicator function in the right-hand side of (7.7) is an implica-
tion of the aforementioned inequality Λn ≥ 1/(1+ θ) valid w.p. 1 for all n≥ 1 and
under any probability measure. �

Now, with (7.7) put in place of K∞(x, y) in the general equation (7.4) the latter
takes on the form

(x,A)= 1+ θ−1(1+ θ)−1/θ (1+ x)1+1/θ
∫ A

(1+x)/(1+θ)
y−2−1/θ (y,A)dy, (7.8)

where x ≥ 0 and A> 0, and we recall that (x,A)� E∞[S r=x
A ]. It is this equation

that we shall now attempt solve explicitly. To that end, a natural point of departure
here would be the aforementioned approximation ARL(S r

A) ≈ (A/ξ) − r , where
ξ is the limiting average exponential overshoot formally defined in the preceding
section. It is known (see, e.g., [31]) that ξ = 1/(1 + θ) ∈ (0,1) for the E (1)-to-
E (1 + θ) model (7.5). Hence, at least for large enough A’s, the solution to (7.8)
should behave roughly as (x,A) ≈ A(1+ θ)− x. As will be shown shortly, this
is, in fact, precisely the behavior of the solution, without A having to be large.
However, the aforementioned fact that Λn ≥ 1/(1 + θ) w.p. 1 under any measure
makes things a bit complicated.

Lemma 7.2 For the E (1)-to-E (1+ θ) model (7.5), at each epoch n≥ 0 and under
any probability measure, the GSR statistic Rrn has a deterministic lower bound, i.e.,
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Rrn ≥ Brn w.p. 1, for each n≥ 0 and under any probability measure, where

Brn �
1

θ

[
1− 1

(1+ θ)n
]
+ r

(1+ θ)n , n≥ 0, (7.9)

and r is the GSR statistic’s headstart, i.e., Rr0 = r ≥ 0.

Proof It is merely a matter of “unfolding” the recursion Rrn = (1+Rrn−1)Λn, n≥ 1,
one term at a time, and applying, at each step, the inequality Λn ≥ 1/(1+ θ) valid
w.p. 1 under any probability measure. �

At this point note that since 1+ θ > 1, the lower bound sequence {Brn}n≥0 given
by (7.9) is such that (a) for r ≤ 1/θ , it increases monotonically with n, i.e., r ≡
Br0 ≤ Br1 ≤ Br2 ≤ . . ., when r ≤ 1/θ , and (b) limn→∞Brn = 1/θ , irrespective of
Rr0 = r ≥ 0. Hence, when A < 1/θ , the GSR statistic, {Rrn}n≥0, is guaranteed to
either hit or exceed the level A> 0 within at most m steps, where m≡m(r,A, θ) is
found from the inequality Brm ≥A, i.e.,

m≡m(r,A, θ)�
{⌈(

log 1−θr
1−θA

)
/ log(1+ θ)⌉, for r < A(< 1/θ);

1, for r ≥A,
with �x� denoting the usual “ceiling” function. Therefore, the general solution
to (7.8) is dependent upon whether A < 1/θ or A ≥ 1/θ . In the latter case, the
(exact) solution is given by the following theorem, which is the main result of this
paper.

Theorem 7.1 For the E (1)-to-E (1 + θ) model (7.5), if the detection threshold,
A> 0, is set so that A≥ 1/θ , then the ARL to false alarm of the GSR procedure is
given by the formula:

(x,A)= 1+ (1+ θ)
(
A− 1+ x

1+ θ
)

1{(1+x)/(1+θ)≤A}, (7.10)

and it is understood that x ≥ 0.

Proof It is sufficient to insert (7.10) into Eq. (7.8) and directly verify that the lat-
ter does, in fact, “check out”. The condition that A ≥ 1/θ “protects” against the
situation described in Lemma 7.2 and in the discussion following it. �

The special case of Theorem 7.1 when Rr=x0 = r = x ≥ 0 (i.e., when there is no
headstart) was previously established in [4, Proposition 1] using the memorylessness
of the exponential distribution. It is also noteworthy that formula (7.10) as well as
Eq. (7.8) are actually valid for x ≥−1; the same can also be said about the general
equation (7.4).

We conclude this section with a brief analysis of the case when A< 1/θ . Recall
that the integral in the right-hand side of (7.8) plays no role, unless (1+ x)/(1 +
θ) < A. For this condition to hold when A < 1/θ , it must be the case that (1 +
x)/(1 + θ) < 1/θ , i.e., that x < 1/θ . Hence, if A < 1/θ , then (x,A) ≡ 1 for all
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x ≥ 1/θ . To obtain (x,A) explicitly for x < 1/θ , note that if x < 1/θ , the function
h(x) � (1 + x)/(1 + θ), i.e., the lower limit of integration in the integral in the
right-hand side of (7.8), is such that h(x)≥ x. As a result, the nature of the integral
equation becomes such that the unknown function, (x,A), is dependent solely upon
the values it assumes for higher x’s, and since (x,A) ≡ 1 for x ≥ 1/θ , one can
iteratively work out backwards the solution for any x ≥ 0. However, this process
involves formidable integrals, and only the first few steps seem to be feasible to
actually carry out.

While an explicit formula for the ARL to false alarm of the GSR procedure when
A< 1/θ turned out to be problematic to get, from a practical standpoint it might not
be worthwhile altogether, for the formula for A ≥ 1/θ alone, i.e., Theorem 7.1,
is sufficient. Specifically, since ARL(S r

A) ≥ A − r , the formula for the ARL to
false alarm when A > 1/θ , i.e., formula (7.10), will never yield ARL’s lower than
(1/θ)− r . However, the size of this “blind spot” is not necessarily large, unless θ
is very small, which is to say that the change in the mean in the E (1)-to-E (1+ θ)
model (7.5) is faint and not worthy of detection to begin with. As an illustration of
this point, consider the original SR procedure (r = 0) and suppose that θ is 0.01,
which, from a practical standpoint, can hardly be considered a “change” in the first
place. Yet, since 1/θ in this case is 100, the linear formula for the ARL to false
alarm will never yield a value of 100 or less. However, this is unlikely to be of
inconvenience to a practitioner, as in most applications the ARL to false alarm is set
to be at least in the hundreds, and, when θ = 0.01, these levels of the ARL to false
alarms would be obtainable through formula (7.10).

7.4 Concluding Remarks

This contribution is part of the authors’ ongoing effort (manifested, e.g., in [19, 20],
and, with other collaborators, e.g., in [11, 22, 34, 35]) to “pave the way” for fur-
ther research on the theory and application of the GSR procedure. To that end, case
studies involving “stress-testing” the GSR procedure on real data are still an “un-
charted territory” and would be of particular interest. Hopefully, the result obtained
in this work, the data-analytic advantages pointed out in [5], and the strong optimal-
ity properties established, e.g., in [17, 22, 30, 34, 35], will help the GSR procedure
rightly stand out as the top tool for change-point detection.
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Chapter 8
Adaptive Density Estimation from Data
Containing Bounded Measurement Errors

Tina Felber, Michael Kohler, and Adam Krzyżak

Abstract We consider the problem of density estimation using noisy data contain-
ing small measurement errors. The only assumption on these errors is that the max-
imal measurement error is bounded by some real number converging to zero for
sample size tending to infinity. We estimate the density by a standard kernel density
estimate applied to the noisy data and propose data-dependent method for choosing
its bandwidth. We derive an adaptation result for this estimate and analyze the ex-
pected L1 error of our density estimate depending on the smoothness of the density
and the size of the maximal measurement error.

8.1 Introduction

Let X be a real-valued random variable with distribution μ and let B be the sigma
field of all Borel sets on the real line. We are interested in estimating μ from a
sample X1, . . . ,Xn of X, i.e., from data

Dn = {X1, . . . ,Xn},
where X, X1, X2, . . . are independent and identically distributed random variables.

It was shown in Devroye and Györfi [9], that no estimate μ̂n = μ̂n(·,Dn) exists
which can estimate μ consistently for all distributions, i.e., no estimate satisfies

sup
B∈B

∣∣μ̂n(B)−μ(B)
∣∣→ 0 a.s. (n→∞) (8.1)
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for all distributions. However, it is possible to construct a consistent density estimate
if a density f of X exists, i.e., if μ is given by

μ(B)=
∫

B

f (x)dx (B ∈B),

then we can construct a density estimate which satisfies (8.1) for all distributions or
we can estimate f by fn(·)= fn(·,Dn) which is a density satisfying

∫ ∣∣fn(x)− f (x)
∣∣dx→ 0 a.s. (n→∞) (8.2)

for all densities f .
In particular one can estimate f from Dn by a kernel density estimate

fn(x)= 1

n · hn
n∑

i=1

K

(
x −Xi
hn

)
(8.3)

(cf., Rosenblatt [18] and Parzen [15]) with a kernelK K :R→R which is a density
itself (e.g., the naive kernel K = 1

2 · I[−1,1]) and a bandwidth hn > 0. If hn satisfies

hn→ 0 (n→∞) and n · hn→∞ (n→∞) (8.4)

then the estimate fn is universally consistent, i.e.,
∫

R

∣∣fn(x)− f (x)
∣∣dx→ 0 a.s. (n→∞)

for all densities f see, e.g., Mnatsakanov and Khmaladze [14], Devroye [5] and the
books on density estimation by Devroye and Györfi [8], Devroye [7] and Devroye
and Lugosi [10].

Regarding the rate of convergence it is well-known, that without imposing
smoothness conditions on f the rate of convergence of the L1 error of any esti-
mate may be arbitrarily slow (cf., e.g., Devroye [6] or Theorem 2, p. 256 in Devroye
and Györfi [8]).

One can show the optimal minimax rate of convergence

E
∫

R

∣∣fn(x)− f (x)
∣∣dx ≤ c2 · n− r

2·r+1 , (8.5)

for kernel density estimate fn with naive kernel and bandwidth hn = c1 · n− 1
2·r+1

under the conditions that the distribution of X has compact support and f is Hölder
continuous with exponent r ∈ (0,1] and Hölder constant C, i.e.,

∣∣f (x)− f (z)∣∣≤ C · |x − z|r for all x, z ∈R

(cf., e.g., Devroye and Lugosi [10], Ex. 15.14).
The optimal bandwidth depends on the smoothness of the density measured

above by exponent r , which in practice is typically unknown. One solution is to
construct adaptive kernel estimates with a bandwidth ĥ= ĥ(Dn) satisfying
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E
∫

R

∣∣f
n,ĥ
(x)− f (x)∣∣dx ≤ c3 ·min

h
E
∫

R

∣∣fn,h(x)− f (x)
∣∣dx + εn (8.6)

for some constant c3 > 0 and some εn converging to zero faster than the expected
L1 error of the kernel density estimate with the optimal bandwidth. Devroye and
Lugosi [10] suggested an adaptive choice of the bandwidths by so-called Yatracos
combinatorial method, see Yatracos [20]. For this choice they proved that inequality
(8.6) holds with c3 arbitrarily close to 3 and εn = log(n)/

√
n (cf., Theorem 11.1 in

Devroye and Lugosi [10]).
In this paper we assume that instead of accurate data Dn we have data

D̄n = {X̄1,n, . . . , X̄n,n},
containing measurement errors. We assume that the measurement errors X̄i,n −Xi
are small in some sense (see Eq. (8.9) below). Such problems were studied by sev-
eral authors. In Rafajłowicz [17] the errors are due to grouping of observations and
in Pawlak and Stadtmüller [16] are due to grouping and jitter. The cases of round-off
errors in data were investigated by Delattre and Jacod [4] and micro-structure noise
which was attenuated by partial means was investigated in Ait-Sahalia, Mykland and
Zhang [1], Schmisser [19] and Comte, Genon-Catalot and Samson [3]. In general,
very little is assumed about these errors. The errors do not need to be independent or
identically distributed, they do not need to have expectation zero, the noise density
does not need to be known, or it may not be possible to estimate such a density, so
estimates for convolution problems (see, e.g., Meister [13] and the literature cited
therein) are not applicable in the context of this paper. Note also that our set-up is
triangular, i.e., for sample size n we do not observe the first n observations of one
given sequence of observations with measurement errors, instead for each sample
size the complete sequence is allowed to be changed.

Suppose that there exists an upper bound on the average measurement error

1

n

n∑

i=1

|X̄i,n −Xi |.

Then we can ignore the errors completely and we can estimate f by the standard
kernel density estimate

gn(x)= gn,hn(x)=
1

n · hn
n∑

i=1

K

(
x − X̄i,n
hn

)
. (8.7)

Since for the naive kernel K we have
∫

R

∣∣∣
∣K

(
x − u
h

)
−K

(
x − v
h

)∣∣∣
∣dx ≤min

{
2h, |u− v|} (u, v ∈R, h > 0)

it follows that for naive kernel K we have
∫

R

∣∣gn(x)− fn(x)
∣∣dx ≤ 1

n · hn
n∑

i=1

|X̄i,n −Xi |. (8.8)
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Consequently it is straightforward to derive consistency and rate of convergence
results for gn from the corresponding results for fn (cf., e.g., Theorem 2 in Bott,
Devroye and Kohler [2] and Theorem 1 in Felber, Kohler and Krzyżak [11]). How-
ever, it is not clear how to estimate the bandwidth in a data-driven way given only
data with measurement errors.

In Felber, Kohler and Krzyżak [11] it was assumed that an additional sample from
X was available and it was used to estimate the distribution of X by its empirical
distribution. Then the combinatorial method of Devroye and Lugosi [10] was used to
choose the bandwidth of a kernel density estimate adaptively using real and artificial
data. For this estimate it was possible to show an adaptation result with error term
of order

√
log(n)/n, where n was the size of the sample of X, however due to this

error term it was not possible to achieve the rates of convergence for the L1 error of
the density estimate faster than 1/

√
n. In this paper we assume that we have a huge

sample of data with additional small measurement errors available (and we will see
that in this case (8.5) is no longer the optimal rate of convergence), and we show
that if these additional measurement errors are small enough, we can achieve faster
L1 rates of convergence than 1/

√
n.

We achieve that by the combinatorial method of Devroye and Lugosi [10] as-
suming that the data contains additional small measurement errors, i.e., we estimate
the distribution of X by the empirical measure of the sample with additional mea-
surement errors and analyze how this effects the error bound of the method. The
main result states that for data satisfying the deterministic upper bound δn on the
measurement errors, i.e.,

max
i=1,...,n

|X̄i,n −Xi | ≤ δn, (8.9)

the error of the density estimate with the corresponding adaptive bandwidth ĥ =
ĥ(D̄n) ∈Pn satisfies

E
∫

R

∣
∣g
nl,ĥ
(x)− f (x)∣∣dx

≤ 3 · min
h∈Pn

E
∫

R

∣∣gnl,h(x)− f (x)
∣∣dx + c4 · log(n)/

√
nt + c5 · nl · δn (8.10)

whenever the density f is bounded, where nl + nt = n.
Throughout the paper we use the following notation: The sets of natural numbers,

non-negative real numbers and real numbers are denoted by N, R+ and R, respec-
tively. Let D ⊆R

d and let h :Rd→R be a real-valued function defined on R
d . We

write x = arg maxz∈D h(z) if maxz∈D h(z) exists and if x satisfies

x ∈D and h(x)=max
z∈D

h(z).

For h :Rd→R

‖h‖∞ = sup
x∈Rd

∣∣h(x)
∣∣
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is its supremum norm, and the supremum norm of h on a set A⊆R
d is denoted by

‖h‖∞,A = sup
x∈A

∣∣h(x)
∣∣

The support of a probability measure μ defined on the Borel sets in R
d is abbrevi-

ated by

supp(μ)= {
x ∈R

d : μ
(
Sr(x)

)
> 0 for all r > 0

}
,

where Sr(x) is the ball of radius r around x. The indicator function of a set A is
denoted by IA.

In the next section we will present the main result.

8.2 Main Result

The combinatorial approach to adaptive choice of bandwidth is based on Scheffé’s
Lemma (cf., e.g., Devroye and Györfi [8]) stating that L1 error of an arbitrary den-
sity estimate fn,h is given by

∫

R

∣
∣fn,h(x)− f (x)

∣
∣dx = 2 ·

(∫

[fn,h>f ]
fn,h(x) dx −

∫

[fn,h>f ]
f (x)dx

)

= 2 · sup
B∈B

∣∣∣∣

∫

B

fn,h(x) dx −
∫

B

f (x)dx

∣∣∣∣,

where

[fn,h > f ] =
{
x ∈R: fn,h(x) > f (x)

}
.

Since
∫

B

f (x)dx = PX(B)

is unknown the main idea of the combinatorial method of Devroye and Lugosi [10]
is to estimate PX(B) by an empirical measure μn based on a sample of X, to con-
sider the sets of the form

A = {[fn,h1 > fn,h2]: h1, h2 > 0
}

and to choose the bandwidth by minimizing the following expression

sup
A∈A

∣∣∣∣

∫

A

fn,h(x) dx −μn(A)
∣∣∣∣

with respect to h. Due to technical reasons a sample splitting is used, i.e., the density
estimate is computed with the first part of a sample of X and the empirical measure
is based only on the second part of this sample.

In our problem we cannot compute the empirical measure μn, since a sample of
X is not available. The idea is to use instead our sample with small measurement er-
rors to compute a corresponding empirical measure and to analyze the influence of
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these additional small measurement errors on the above bandwidth selection prob-
lem.

We start by splitting our sample with additional small measurement errors in two
parts of size nl and nt , resp., where nl+nt = n. We use the first part to define kernel
density estimates via

gnl,h(x)=
1

nl · h
nl∑

i=1

K

(
x − X̄i,n
h

)
,

and use the second part to define a corresponding empirical measure by

μ̂nt (A)=
1

nt

n∑

i=nl+1

IA(X̄i,n).

Next we choose a finite set of bandwidths Pn ⊆ (0,∞) from which we want to
select the best one, and set

An =
{[gnl,h1 > gnl,h2 ]: h1, h2 ∈Pn,h1 �= h2

}
.

Then we define our data-driven choice of the bandwidth by minimizing

Δn(h)= sup
A∈An

∣
∣∣∣

∫

A

gnl,h(x) dx − μ̂nt (A)
∣
∣∣∣

with respect to h ∈Pn, i.e., we set

ĥn = ĥn(D̄n)= arg min
h∈Pn

Δn(h).

Here the minimum above indeed exists since the set Pn is finite. Our main result is
the following bound on the L1 error of g

nl,ĥn
.

Theorem 8.1 Let X,X1,X2, . . . be independent and identically distributed ran-
dom variables with density f . For n ∈ N let X̄1,n, . . . , X̄n,n be arbitrary random
variables satisfying

max
i=1,...,n

|X̄i,n −Xi | ≤ δn

for some δn ∈R+. Let nl = nl(n), nt = nt (n) ∈N be such that nl+nt = n. LetK be
the naive kernel, let Pn ⊆ (δn,∞) be a finite set, and define gnl,h and ĥn as above.
Then the following bounds on the expected L1 error of g

nl,ĥn
hold:

(a) If the density f of X is bounded, then bound (8.10) holds.
(b) If the density f of X satisfies

∫

R

f (x)2dx <∞,
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then

E
∫ ∣∣g

nl,ĥn
(x)− f (x)∣∣dx

≤ 3 · min
h∈Pn

E
∫ ∣∣gnl,h(x)− f (x)

∣∣dx + c8 ·
√

logn

nt
+ c9 ·

√
nl · δn.

By using (8.8) we can relate the L1 error of our density estimate to the best
L1 error of a kernel density estimate based on a sample from X without additional
measurement errors. The proof of Theorem 8.1 and further details concerning ap-
plications of the proposed approach to the simulation model can be found in Felber,
Kohler and Krzyżak [12].
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Chapter 9
Poisson Model with Three Binary Predictors:
When are Saturated Designs Optimal?

Ulrike Graßhoff, Heinz Holling, and Rainer Schwabe

Abstract In this paper, Poisson regression models with three binary predictors are
considered. These models are applied to rule-based tasks in educational and psy-
chological testing. To efficiently estimate the parameters of these models locally
D-optimal designs will be derived. Eight out of all 70 possible saturated designs are
proved to be locally D-optimal in the case of active effects. Two further saturated
designs which are the classical fractional factorial designs turn out to be locally
D-optimal for vanishing effects.

9.1 Introduction

Many educational and psychological tests, e.g. measuring human abilites, yield
count data. Usually, such tests contain items with different difficulties. The diffi-
culties are often determined by certain binary characteristics or rules of the items.
In many cases the data of such tests are distributed according to a Poisson distri-
bution. Thus, a Poisson regression model with binary explanatory variables is the
adequate statistical model to describe the data of such tests.

Such a Poisson regression model can be considered as a particular case of a gen-
eralized linear model with canonical exponential link. This facilitates the calculation
of the likelihood and of the information matrix. The latter may serve as a charac-
teristic of the quality of a design, i.e. for the choice of the explanatory variables in
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experimental settings, because the asymptotic covariance matrix of the maximum
likelihood estimator is proportional to the inverse of the information matrix.

For continuous predictors optimal designs have been derived by Rodríguez-
Torreblanca and Rodríguez-Díaz [5] for one explanatory variable and by Russell
et al. [6] in the case of additive linear effects of the explanatory variables in the lin-
ear predictor. Wang et al. [8] derived numerical results, when there is an additional
interaction term which describes a synergetic or antagonistic effect. As in all un-
derlying models which are non-linear in their parameters the optimal designs may
depend on the true parameter values, which results in the determination of locally
optimal designs.

In the case of two binary explanatory variables Graßhoff et al. [2] characterize
optimal designs, when there are additive effects. A similar result has been obtained
by Yang et al. [9] for binary response. For count data this result is extended in
Graßhoff et al. [3] to an arbitrary number K of explanatory variables. In particular
they established that certain saturated designs are optimal, when the effect sizes are
sufficiently large.

Since saturated designs result in experiments which can be performed quite eas-
ily, the natural question arises, which saturated designs may be optimal and under
which parameter constellations. In the present note we will show that in the case of
K = 3 binary predictors only that particular class of saturated designs described in
Graßhoff et al. [3] may be optimal—with the only exceptional situation of vanishing
effect sizes, where a 23−1 fractional factorial design is optimal. All other saturated
designs cannot be locally optimal under any parameter settings.

9.2 Model Description, Information and Design

For each observation of counts the response variable Y is assumed to follow a Pois-
son distribution Po(λ) with intensity λ = λ(x;β), which depends on the experi-
mental settings x of the explanatory variables and a parameter vector β of interest
describing the effects of these explanatory variables. Under the exponential link this
dependence is specified by λ(x;β) = exp(f(x)�β), where f is a vector of known
regression functions.

In the present setting of binary explanatory variables we code these by a base
level xk = 0 and an active level xk = 1 for each variable xk . Here we focus onK = 3
predictors with additive effects, hence x = (x1, x2, x3) ∈ {0,1}3 and the regres-
sion function is f(x)= (1, x1, x2, x3)

�. Then the intensity decomposes according to
λ(x;β)= exp(β0 + β1x1 + β2x2 + β3x3). The parameter vector β = (β0, . . . , β3)

�
has p = 4 components, where β0 is a baseline parameter and βk is the effect of the
kth explanatory variable which results in a relative change of intensity by the factor
exp(βk), when the kth variable is active.

In the present situation of a generalized linear model with canonical link the
Fisher information of a single observation equals M(x;β) = λ(x;β)f(x)f(x)�,
which depends on the setting x and additionally on β through the intensity. Un-
der the assumption of independent observations the normalized information matrix
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is defined by M(ξ ;β) = 1
N

∑N
i=1M(xi;β) for an exact design ξ consisting of N

design points x1, . . . ,xN .
For analytical purposes we will make use of the concept of approximate de-

signs ξ with mutually different design points x1, . . . ,xn, say, and corresponding
(real valued) weights wi = ξ(xi ) ≥ 0 with

∑n
i=1wi = 1 in the spirit of Kiefer [4].

For such an approximate design the information matrix is more generally defined as
M(ξ ;β)=∑n

i=1wiλ(xi;β)f(xi )f(xi )�.
As common in generalized linear models the information matrix and, hence, op-

timal designs will depend on the parameter vector β . For measuring the quality of
a design we will use the popular D-criterion. More precisely, a design ξ will be
called locally D-optimal at β if it maximizes the determinant of the information
matrix M(ξ ;β).

For the present Poisson model the intensity and, hence, the information is pro-
portional to the baseline intensity exp(β0), i.e. M(ξ ;β)= exp(β0)M0(ξ ;β), where
M0(ξ ;β) is the information matrix in the standardized situation when β0 = 0. Thus
design optimization does not depend on β0, and det(M0(ξ ;β)) has to be maximized
only in dependence on β1, β2 and β3, which means that we can assume the stan-
dardized case (β0 = 0) in the following.

9.3 Saturated Designs

A design is called saturated, if the number n of distinct design points is equal to
the number of parameters (n = p). For saturated designs it is well-known that the
D-optimal weights are uniform (wi = 1/p). Hence, optimization in the class of
saturated designs has only to be done with respect to the choice of the settings
x1, . . . ,xp .

In the present situation the dimension is p = 4, and we want to characterize
which of the saturated designs can be optimal, i.e. which choice xi1, . . . ,xi4 of four
out of the eight possible settings x0, . . . ,x7 ∈ {0,1}3 results in a locally D-optimal
design for any parameter constellation β . For notational reasons we enumerate the
possible settings xi = (xi1, xi2, xi3) according to the reversed binary number rep-
resentation i =∑3

k=1 xik2
k−1 for the index i by their components xik . This means

for example x0 = (0,0,0), x4 = (0,0,1) and x7 = (1,1,1). We can visualize these
eight design points as the vertices of a three dimensional cube with edge length
1 placed in the first octant (see Fig. 9.1). Further we denote by λi = λ(xi;β) the
intensities of the eight possible settings.

In total, there are
(8

4

)= 70 different saturated designs with uniform weights. De-
note by I = {i1, . . . , i4} the index set of settings in such a saturated design and by
ξI the design itself.

First of all we can exclude 12 of the 70 saturated designs, for which the de-
sign points are located on a plane, i.e. a two-dimensional affine subspace, and
which, hence, result in a singular information matrix with determinant equal to
zero. These excluded designs consist of the six faces of the cube, for example
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Fig. 9.1 The four relevant
types of saturated designs on
X = {0,1}3

I = {0,1,4,5}, and the six diagonal planes connecting two opposite edges, for
example I = {0,1,6,7}.

The remaining 58 designs can be assigned to four different equivalence classes
with respect to permutations of the levels {0,1} for each explanatory variable xk and
among the explanatory variables k = 1,2,3 themselves. For each of these equiva-
lence classes a representative is exhibited in Fig. 9.1.

The eight saturated designs in the first class (represented in the upper left panel of
Fig. 9.1) can be characterized by a vertex x= (x1, x2, x3) as follows: These “tripod-
type” designs contain x as a central vertex (“head”) and additionally all three adja-
cent vertices (“legs”) (1− x1, x2, x3), (x1,1− x2, x3) and (x1, x2,1− x3), respec-
tively, as settings and will be denoted by ξx. For example, the design ξ0 is exhibited
in the upper left panel of Fig. 9.1 and is described by the index set I = {0,1,2,4}.
In Graßhoff et al. [3] it is shown that the saturated design ξ0 is optimal when all
effect sizes are negative and their modulus is sufficiently large. Using symmetry
considerations the latter condition can be extended to all “tripod-type” designs ξx,
when the appropriate “head” x= (x1, x2, x3) is chosen for which xk = 0, when βk
is negative, and xk = 1, when βk is positive. In particular, this means that x is the
setting with the highest intensity (λ(x;β)=maxi=0,...,7 λi ).

The second class are “snake-type” designs represented in the upper right panel
of Fig. 9.1, where the four settings are located on a linear graph not contained in a
plane. By symmetry there are 24 saturated designs of that type, and a representative
is shown in Fig. 9.1 for I = {0,1,2,5}. In the third class the saturated designs
consist of three settings on one of the faces of the cube and the isolated opposite
vertex as the fourth setting. Also in this class there are 24 different designs, which
are equivalent with respect to symmetries. One representative is exhibited in the
lower left panel of Fig. 9.1 with I = {0,1,2,7}. Saturated designs of these two
types can never be locally D-optimal, as will be proved in the subsequent section.

The last two saturated designs are the classical fractional factorial designs. One
of these is reported in the lower right panel of Fig. 9.1, where I = {1,2,4,7}.
The other fractional factorial design is supported by the complementary four design
points (I = {0,3,5,6}). These fractional factorial designs are well-known to be
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D-optimal in the corresponding linear model (E(Y (x))= β0+β1x1+β2x2+β3x3)
with three binary predictors and no interaction. In the case of no active effects,
β1 = β2 = β3 = 0, the information matrix of the present Poisson count model turns
out to be proportional to that in the linear model for any design ξ . Hence, the frac-
tional factorial designs can be seen to be locallyD-optimal in the Poisson model for
vanishing effects (βk = 0) of the predictors. For all other parameter constellations
the fractional factorial cannot be locally D-optimal, as will be indicated in the next
section.

9.4 Proofs of Non-optimality

Due to symmetry considerations it suffices to show that the representatives given in
the previous section cannot be locally D-optimal for any parameter value β . To do
so we will make use of the celebrated Kiefer–Wolfowitz equivalence theorem (see
Silvey [7]) in the version of Fedorov [1] which incorporates explicitly an intensity
function λ.

Denote by ψβ(x; ξ)= λ(x;β)f(x)�M(ξ ;β)−1f(x) the sensitivity function for a
design ξ given β . Then the equivalence theorem states that the design ξ is locally
D-optimal at β if and only if ψβ(x; ξ) ≤ p for all possible settings x. Note that,
in general, for a saturated design equality is attained, ψβ(x; ξ)= p, on its support
points xi1, . . . ,xip . Hence, the inequality has only to be checked for the remaining
settings x �= xi1, . . . ,xip . In the following we will suppress the dependence on the
parameter vector β to facilitate the notation.

For a saturated design ξI the information matrix M(ξI )= 1
p

F�I �I FI can be

decomposed into a product of the essential design matrix FI = (f(xi1), . . . , f(xip ))�
and the diagonal matrix �I = diag(λ(xi1), . . . , λ(xip )) of corresponding intensi-
ties. Note that these matrices are p × p square matrices and can be individually
inverted. Because of M(ξI )−1 = pF−1

I �−1
I F−�I the sensitivity function simplifies,

and the condition of the equivalence theorem reduces to

1

p
ψ(xi; ξI )= λ(xi )

(
F−�I f(xi )

)�
�−1

I

(
F−�I f(xi )

)≤ 1

for all i �∈I , where F−� denotes the inverse of the transpose of F.
For the present situation we recall that p = 4 and λ(xi ) = λi , where λ0 = 1,

λ3 = λ1λ2, λ5 = λ1λ4, λ6 = λ2λ4 and λ7 = λ1λ2λ4.
Now for the “snake-type” design we consider the representative ξI of Fig. 9.1

specified by I = {0,1,2,5}. For this design the essential design matrix and its
inverse are given by

FI =

⎛

⎜⎜
⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1

⎞

⎟⎟
⎠ and F−1

I =

⎛

⎜⎜
⎝

1 0 0 0
−1 1 0 0
−1 0 1 0

0 −1 0 1

⎞

⎟⎟
⎠ .
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Then F−�I f(x)= (1− x1 − x2, x1 − x3, x2, x3)
�, and the conditions of the equiva-

lence theorem become

λ(x)
(
(1− x1 − x2)

2 + (x1 − x3)
2/λ1 + x2

2/λ2 + x2
3/λ5

)≤ 1.

In the case x3 = (1,1,0) this condition reduces to λ1λ2 + λ1 + λ2 ≤ 1, and in the
case x4 = (0,0,1) the condition is equivalent to λ1λ4 + λ4 + 1≤ λ1. This leads to
a contradiction, because these conditions require λ1 < 1 for x3 and λ1 > 1 for x4,
respectively. Consequently there exists no β for which the “snake-type” saturated
design ξI can be locally D-optimal.

Similarly, for the designs with an isolated setting we consider the representative
ξI of Fig. 9.1 specified by I = {0,1,2,7}. The essential design matrix and its
inverse are

FI =

⎛

⎜⎜
⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

⎞

⎟⎟
⎠ and F−1

I =

⎛

⎜⎜
⎝

1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

⎞

⎟⎟
⎠ .

Then F−�I f(x)= (1−x1−x2+x3, x1−x3, x2−x3, x3)
�, and the conditions of the

equivalence theorem become

λ(x)
(
(1− x1 − x2 + x3)

2 + (x1 − x3)
2/λ1 + (x2 − x3)

2/λ2 + x2
3/λ7

)≤ 1.

In the case x3 = (1,1,0) this condition reduces again to λ1λ2+ λ1+ λ2 ≤ 1, and in
the case x5 = (1,0,1) the condition is equivalent to λ1λ2λ4 + λ1λ4 + 1≤ λ2. This
leads to a contradiction, because these conditions require λ2 < 1 for x3 and λ2 > 1
for x5, respectively. Consequently there exists no β for which the saturated design
ξI with an isolated setting can be locally D-optimal.

Finally, the fractional factorial design ξI of Fig. 9.1 is specified by I =
{1,2,4,7}, and the essential design matrix and its inverse are

FI =

⎛

⎜⎜
⎝

1 1 0 0
1 0 1 0
1 0 0 1
1 1 1 1

⎞

⎟⎟
⎠ and F−1

I = 1

2

⎛

⎜⎜
⎝

1 1 1 −1
1 −1 −1 1

−1 1 −1 1
−1 −1 1 1

⎞

⎟⎟
⎠ .

For i = 0,3,5, and 6 the conditions of the equivalence theorem are equivalent to

λi(λ2λ4 + λ1λ4 + λ1λ2 + 1)≤ 4λ1λ2λ4.

For i = 3 this condition reduces to λ2λ4 + λ1λ4 + λ1λ2 + 1≤ 4λ4, which requires
λ4 > 1/4. If we rearrange this inequality to λ2(λ4+λ1)≤ 4λ4−λ1λ4−1. The right
hand side provides an upper bound λ1 < (4λ4 − 1)/λ4 for λ1. Similarly, if we rear-
range the condition for i = 0, then λ1λ4+1≤ λ2(4λ1λ4−λ1−λ4) provides a lower
bound λ1 > λ4/(4λ4 − 1). These two bounds can only be satisfied simultaneously
if λ4 > 1/3.
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Moreover, the above conditions yield the following inequalities

λ1λ4 + 1

4λ1λ4 − λ1 − λ4
≤ λ2 ≤ 4λ4 − λ1λ4 − 1

λ1 + λ4
,

which cannot be satisfied simultaneously if 1/3< λ4 < 1.
Analogously, from the conditions for i = 5 and 6, respectively, we obtain the

inequality 1/(4− λ4) < 4− λ4, which requires λ4 < 3, and

λ1λ4 + 1

4− λ1 − λ4
≤ 4λ1 − λ1λ4 − 1

λ1 + λ4
.

This inequality cannot be satisfied for 1 < λ4 < 3. Hence, local D-optimality can
only be achieved, when λ4 = 1, i.e. β3 = 0.

Symmetry considerations lead to the same result for λ1 and λ2. As a consequence
fractional factorial designs are locally D-optimal only if β1 = β2 = β3 = 0.
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Chapter 10
Computing D-Optimal Experimental Designs
for Estimating Treatment Contrasts Under
the Presence of a Nuisance Time Trend

Radoslav Harman and Guillaume Sagnol

Abstract We prove a mathematical programming characterization of approximate
partial D-optimality under general linear constraints. We use this characterization
with a branch-and-bound method to compute a list of all exact D-optimal designs
for estimating a pair of treatment contrasts in the presence of a nuisance time trend
up to the size of 24 consecutive trials.

10.1 Introduction

Consider the linear regression model Y = Fβ + ε, where Y = (Y1, . . . , Yn)
T is a

vector of observations, β ∈R
m is an unknown parameter, F= (f(x1), . . . , f(xn))T is

an n × m design matrix, and ε = (ε1, . . . , εn)
T is a vector of random errors with

E(ε) = 0n, Var(ε) = σ 2In, σ 2 ∈ (0,∞). Suppose that the function f :X→ R
m,

where X is a finite design space, is known and fixed, but the design points x1, . . . , xn
can be chosen in X according to the objective of the experiment, see, e.g., [2, 6, 8].

A typical objective is to estimate a linear parameter subsystem AT β , where A
is a full-rank m× s matrix, s ≤ m. It is a well-known fact that an unbiased linear
estimator of AT β exists if and only if the estimability condition C (A) ⊆ C (M)
is satisfied, where M= FT F is the moment matrix and C denotes the linear space
generated by the columns of a matrix. In this case, the best linear unbiased estimator
of AT β is β̂A =ATM−FT Y , and the estimator does not depend on the choice of the
generalized inverse M−. Moreover, Var(β̂A)= σ 2ATM−A is non-singular.

Let NA(M)=minL LMLT , where the minimum is taken on the set of all s ×m
matrices L such that LA = Is , with respect to the Loewner ordering  (for sym-
metric s × s matrices N1,N2 we define N1  N2 iff N2 − N1 is non-negative def-
inite). The matrix NA(M) can be interpreted as the amount of information that the
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experiment conveys about AT β , see [8, Chapter 3]. Hence, NA(M) is called the
information matrix for AT β . The information matrix is non-singular if and only if
the estimability condition is satisfied, in which case NA(M) = (ATM−A)−1. For
estimating the entire parameter β , we have NIm(M)=M.

To measure the quality of estimation of AT β , we will use the criterion of D-
optimality defined by Φ(N) = (det(N))1/s for N ∈ S s+, where S s+ is the set of
all non-negative definite s × s matrices. Note that Φ is concave, continuous, posi-
tive homogeneous and Loewner-isotonic on S s+, i.e., it is an information function
[8, Chapter 5]. The composition Φ(NA(·)) :S m+ → [0,∞) is again an information
function, and it is called the criterion of partialD-optimality, orDA-optimality (e.g.,
[6, Section IV.3] and [2, Section 10.2]). Explicitly, the criterion of DA-optimality is
ΦA(M)= (det(ATM−A))−1/s if C (A)⊆ C (M) and ΦA(M)= 0 otherwise.

Since the moment matrix M =∑
i f(xi)f

T (xi) does not depend on the order of
x1, . . . , xn, we can represent an exact experimental design by a function ξ :X→
{0,1,2, . . .} such that ξ(x) means the number of trials to be performed in x ∈ X.
We will denote the set of all exact designs by ΞE . Note that the moment matrix
corresponding to ξ ∈ΞE can be written as M=M(ξ)=∑

x∈X ξ(x)f(x)fT (x).
An approximate experimental design is any function ξ :X→ [0,∞), which we

understand as a relaxation of an exact design. The set of all approximate designs
will be denoted by ΞA. The moment matrix M(ξ) of any ξ ∈ΞA is defined by the
same formula as for the exact designs. For all ξ ∈ΞA, let NA(ξ) :=NA(M(ξ)).

The usual constraint on an experimental design is that we are given a required
size n of the experiment, i.e., we restrict the search to the designs ξ satisfying∑
x∈X ξ(x)= n. Such designs will be called size-n-constrained. However, in prac-

tice the designs must often satisfy additional constraints, which can represent re-
strictions on the experimental budget and the availability of material, see, e.g., [3].
Moreover, the ability to compute approximate optimal designs under more general
constraints may be used as a key component of algorithms for computing optimal
exact designs, such as the branch-and-bound (BNB) method that we propose in
Sect. 10.3.1.

In this paper, we will consider general linear constraints of the form
∑

x∈X
c(j, x)ξ(x)≤ b(j) for all j = 1, . . . , k, (10.1)

where c : {1, . . . , k}×X→R and b : {1, . . . , k}→R. Given any fixed ordering on X,
the coefficient c(j, x) can be arranged to a matrix C of type k × |X| and b(j) can
be arranged to a vector b of length k. Note that each design can be represented by
an |X|-dimensional vector with non-negative components. Accordingly, ΞE corre-
sponds to {0,1,2, . . .}|X| and ΞA corresponds to [0,∞)|X|.

The designs satisfying (10.1) will be called (C,b)-designs. We will assume that
there exists at least one exact (C,b)-design ξ , such that AT β is estimable under ξ ,
and the set of all approximate (C,b)-designs is bounded. The sets of all exact and
approximate (C,b)-designs will be denoted by ΞEC,b and ΞAC,b respectively. Evi-

dently, ΞEC,b =ΞAC,b ∩Z
|X| is a finite subset of the compact and convex set ΞAC,b.
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Let ξ∗E be an exact (C,b)-design, AT β be estimable under ξ∗E and Φ(NA(ξ
∗
E))=

sup{Φ(NA(ξE)): ξE ∈ Ξ̃EC,b}, where Ξ̃EC,b := {ξE ∈ ΞEC,b: C (A) ⊆ C (M(ξE))}.
We will call ξ∗E a DA-optimal exact (C,b)-design. Analogously, we define a DA-
optimal approximate (C,b)-design and the symbol Ξ̃AC,b. Compactness ofΞAC,b �= ∅
and the continuity of ΦA imply the existence of a DA-optimal approximate (C,b)-
design ξ∗A. The value Φ(NA(ξ

∗
A)) will be called the DA-optimal value of ΞAC,b.

Computing DA-optimal approximate designs is a problem of convex optimiza-
tion. The size-n-constrained DA-optimal approximate designs can be computed, to
any given precision, by a Fedorov–Wynn vertex direction algorithm or by a multi-
plicative algorithm (e.g., [15]). However, it is difficult to use the classical algorithms
to compute DA-optimal approximate designs under multiple linear constraints (cf.
[3]). In this paper, we show that the problem of DA-optimal approximate designs
under (10.1) can be cast as a max-det programming problem [13], which can be
efficiently solved by readily available software.

ComputingDA-optimal exact designs with constraints is in general a challenging
problem of discrete optimization. To find the provably DA-optimal exact designs in
small to medium-size problems, it is possible to use the complete enumeration of all
permissible designs, or more efficient enumeration methods. For instance, in [14] a
BNB method is used for computing DIm -optimal exact size-n-constrained designs
and in [11] a BNB method is used to compute DIm -optimal exact directly con-
strained designs. In this paper, we propose a specific BNB algorithm for computing
DA-optimal exact designs for the estimation of a set of treatment contrasts.

For large problems it is unrealistic to expect a rapid algorithm that always pro-
vides perfectly DA-optimal exact designs. To find an efficient size-n-constrained
exact design, it is possible to use an exchange heuristic, cf. [2, Chapter 12].

10.2 A Mathematical Programming Characterization of
DA-Optimal Constrained Approximate Designs

The following lemma is a simple consequence of the Schur complement characteri-
zation of positive semidefinite matrices (e.g. [8, Section 3.12]). Recently, this lemma
has also been used to compute the support points of optimal designs [7, Section 6].
The symbol S s++ denotes the set of all positive definite s × s matrices.

Lemma 10.1 Let A be an m× s matrix of full rank, m ≥ s, let M ∈S m+ , and let
N ∈S s++. Then the following two statements are equivalent: (i) C (A)⊆ C (M) and
N (ATM−A)−1 for any1 generalized inverse M− of M; (ii) ANAT  M.

Let I = {N ∈ S s++: N = (ATM(ξ)−A)−1 for some ξ ∈ Ξ̃AC,b} and let Ĩ =
{Ñ ∈S s++: AÑAT  M(ξ) for some ξ ∈ΞAC,b}.

1If C (A)⊆ C (M), then ATM−A does not depend on the choice of the generalized inverse of M.
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Lemma 10.2 I ⊆ Ĩ and for each Ñ ∈ Ĩ there is some N ∈I such that Ñ N.

Proof If N ∈ I then, trivially, condition (i) of Lemma 10.1 is satisfied for some
M = M(ξ) such that ξ ∈ ΞAC,b. Hence, the part (ii) of Lemma 10.1 holds, i.e.,

ANAT  M, which implies N ∈ Ĩ . Thus I ⊆ Ĩ . Let Ñ ∈ Ĩ and let M=M(ξ),
ξ ∈ ΞAC,b, be such that AÑAT  M. Note that by Lemma 10.1 we have C (A) ⊆
C (M), i.e., we can set N= (ATM−A)−1 ∈S s++. Hence, also by Lemma 10.1, we
have Ñ (ATM−A)−1 =N, which was to be proved. �

Theorem 10.1 (i) The set of information matrices of all DA-optimal approximate
(C,b)-designs is identical to the set of all solutions N∗ of the problem

maxΦ(N) s.t. N ∈S s++, ANAT  M(ξ), ξ ∈ΞAC,b. (10.2)

(ii) If N∗ is any solution of (10.2), and ξ∗ ∈ΞAC,b is any design satisfying AN∗AT  
M(ξ∗), then ξ∗ is a DA-optimal approximate (C,b)-design.

Proof (i) As Φ :S s+ → [0,∞) vanishes on S s+ \S s++ and is positive on S s++,
the set of information matrices of all DA-optimal approximate (C,b)-designs is the
set of all solutions of the problem maxΦ(N) s.t. N ∈I . Moreover, note that Φ is
strictly Loewner isotonic in the sense that if Ñ,N ∈S s++ satisfy Ñ N and Ñ �=N,
then Φ(Ñ) < Φ(N). Therefore, we see from Lemma 10.2 that the set of information
matrices of all DA-optimal approximate (C,b)-designs is equal to the set of all
solutions of the problem maxΦ(Ñ) s.t. Ñ ∈ Ĩ .

(ii) Let N∗ be any solution of (10.2), and let ξ∗ ∈ΞAC,b satisfy AN∗AT  M(ξ∗).
By Lemma 10.1 we have C (A) ⊆ C (M(ξ∗)) and N∗  (ATM−(ξ∗)A)−1 =
NA(ξ

∗). Since NA(ξ
∗) satisfies the constraints in (10.2) (cf. Sect. 3.14 in [8]),

and since Φ is Loewner isotonic, we conclude that Φ(NA(ξ
∗)) ≤ Φ(N∗) ≤

Φ(NA(ξ
∗)). �

By Theorem 10.1, computing DA-optimal approximate (C,b)-designs can be
cast as a problem of max-det programming, see [13]. A similar result appeared
in [5, Section V.E] (with a different max-det formulation), for the case of a Bayesian
framework with a prior density β ∼N (0,Σ). Max-det programs can be automati-
cally reformulated as semidefinite programs (SDPs) by user-friendly interfaces such
as PICOS [10]. SDPs is a class of optimization problems that are efficiently solvable
by algorithms implemented in freely available software, for instance CVXOPT [12].

It is also worth mentioning that in the proof of Theorem 10.1 we did not use
specific properties of D-optimality, except for the fact that Φ is a strictly Loewner
isotonic information function vanishing on singular information matrices. Hence,
we can use Theorem 10.1 also with many other criteria.
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10.3 DA-Optimal Designs for Estimating a Set of Contrasts of
Treatment Effects Under the Presence of a Time Trend

Suppose that we intend to perform n trials in a time sequence. For each trial t ∈
{1, . . . , n} we select a treatment u(t) ∈ {1, . . . , v}, v ≥ 2, with its effect τu(t) ∈ R.
In addition to the treatment effects, the mean value of the response may depend on
a nuisance time trend, which can be approximated by a polynomial of degree d .
Hence, a natural model for the responses is

Yt = τu(t) + θ1p0(t)+ · · · + θd+1pd(t)+ εt ; t = 1, . . . , n, (10.3)

where θ1, . . . , θd+1 are the parameters of the trend, p0, . . . , pd are polynomi-
als of degrees 0, . . . , d , and ε1, . . . , εn are i.i.d. errors with zero mean and
variance σ 2 ∈ (0,∞). In this model, we have X = {1, . . . , v} × {1, . . . , n} and
f(u, t) = (eTu ,pT (t))T , where eu ∈ R

v is the standard u-th unit vector and p(t) =
(p0(t), . . . , pd(t))

T . The vector of model parameters is β = (τ1, . . . , τv, θ1, . . . ,
θd+1)

T , but we suppose that only s = v − 1 contrasts τ2 − τ1, . . . , τv − τ1 are of
interest. Hence, we will focus on AT β , where AT = (−1s , Is ,0s×(d+1)), s = v− 1.

The moment matrix of any design ξ can be expressed in the form

M(ξ)=
(

M11(ξ) M12(ξ)

MT
12(ξ) M22(ξ)

)
,

where M11(ξ) is diagonal with
∑
t ξ(1, t), . . . ,

∑
t ξ(v, t) on the diagonal, M12(ξ)=

(
∑
t ξ(1, t)p(t), . . . ,

∑
t ξ(v, t)p(t))

T and M22(ξ) =∑
t (
∑
u ξ(u, t))p(t)p

T (t). If
ξ is exact, then the diagonal elements of the matrix M11(ξ) can be interpreted as
replication numbers of individual treatments.

A usual assumption of an experiment modeled by (10.3) is that exactly one treat-
ment is assigned to each time, therefore any permissible design ξ must satisfy

v∑

u=1

ξ(u, t)= 1; t = 1, . . . , n. (10.4)

If ξ satisfies (10.4), then M22(ξ) does not depend on ξ . Moreover, it is simple to
show that NA(ξ) does not depend on the choice of p0, . . . , pd (provided that pi has
degree i), but a suitable choice of the polynomials can lead to simpler computations.
We used discrete orthogonal polynomials which makes M22(ξ) diagonal.

For any system of v − 1 independent contrasts of treatments, the DA-optimal
designs are the same; the system τ2 − τ1, . . . , τv − τ1 is chosen only for technical
convenience. Also, note that for ξ1, ξ2 ∈ ΞE we have Φ(NA(ξ1)) = Φ(NA(ξ2)) if
the designs differ only in the labeling of treatments or if ξ1 is only the time-reversed
version of ξ2. Hence, we can call such designs isomorphic.

The study of “trend-resistant” or “systematic” designs dates back to Cox [4], who
studied sequences involving two or three treatments under the presence of quadratic
and cubic time trends. The extensive combinatorial theoretical results that followed
are usually restricted to the so-called trend-free orthogonal designs, with a focus on
selecting a suitable permutation of treatments, or combinations of factor levels, see,



88 R. Harman and G. Sagnol

e.g., [9] for a survey. In [1] the authors propose a more universal approach based
on optimality criteria. Compared to the combinatorial design results, the optimal
design approach covers many more practical situations, e.g., it can be applied if the
orthogonality is not attainable, the time points are not evenly spaced, or the time
trend is non-polynomial.

In contrast to [1], we will use a BNB algorithm. This algorithm always results in
a catalogue of perfectly DA-optimal exact designs, although the time requirements
are higher compared to the heuristic used in [1], especially for large n.

10.3.1 The BNB Algorithm

Let a1, . . . , an ∈ {0,1, . . . , v}. We define the template [a1, . . . , an] to be the set {ξ ∈
ΞA: Eq. (10.4) holds and (at �= 0⇒ ξ(at , t)= 1) for all t}. In particular, [0, . . . ,0]
corresponds to the set of all approximate designs satisfying (10.4). We call a tem-
plate [a1, . . . , an] exact if at > 0 for all t , and composite if at = 0 for some t .
Note that exact templates are singletons, whose only element is the design using
treatments a1, . . . , an for the times 1, . . . , n. Clearly, for any selection a1, . . . , an ∈
{0,1, . . . , v} the template [a1, . . . , an] is equal to ΞAC,b for some C and b. Thus,
the DA-optimal approximate design on any template can be computed using Theo-
rem 10.1.

By a complete enumeration tree we will call any directed v-ary tree, with ver-
tices corresponding to templates, satisfying: (1) The root template is [0, . . . ,0];
(2) Any non-terminal template [a1, . . . , an] is composite, and its v child nodes
are [a1, . . . , at∗−1, u, at∗+1, . . . , an], u = 1, . . . , v, where t∗ is selected such that
at∗ = 0. Therefore, the set of all permissible exact designs of a parent template is a
disjunctive union of the sets of all permissible exact designs of its child templates;
(3) The vn terminal templates are the exact templates [a1, . . . , an], a1, . . . , an ∈
{1, . . . , v}.

Suppose that we have constructed a sub-tree of a complete enumeration tree.
Let Ξ correspond to a terminal template of the sub-tree. If the DA-optimal value
of Ξ is smaller than the value of the DA-optimality criterion of the best available
exact design then Ξ does not contain any DA-optimal exact design. Hence, we can
“prune” the branch of the tree, i.e., skip constructing the descendants ofΞ . This idea
allows us to circumvent the construction of most of the complete enumeration tree,
yet the terminal exact nodes of the final tree contain all DA-optimal exact designs.

To fully specify the BNB method, we need to define the branching rule, that
is, how to select the next composite template to be “refined” by constructing its
child nodes, and which child nodes should be created. At each step, we choose the
composite template Ξ∗ = [a∗1 , . . . , a∗n] with the highest DA-optimal value. Then
we form its v child templates [a∗1 , . . . , a∗t∗−1, u, a

∗
t∗+1, . . . , a

∗
n], u = 1, . . . , v, such

that t∗ is selected to maximize the entropy of the distribution given by the pmf
ξ∗(·, t), where ξ∗ is an optimal approximate design onΞ∗. The rationale behind this
selection is that if the marginal design ξ∗(·, t∗) has a high “uncertainty”, fixing the
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treatments for the time t∗ often makes the DA-optimal values of the child templates
smaller than the threshold given by theDA-optimal value of the best available exact
design.

In the actual implementation of our algorithm, all templates are stored in one
of the lists closed, open, and exact (that is, the BNB tree itself is constructed
only implicitly). The list closed is continually updated to include the templates
that cannot contain any DA-optimal exact design, since their DA-optimal values
are smaller than the DA-optimal value Φ∗max of the best available exact design. The
list open comprises the composite templates that still can contain an optimal ex-
act design. Finally, the list exact contains the exact templates with the criterial
value exactly Φ∗max. The algorithm terminates once the list open is empty, which
corresponds to the moment when the list exact contains all DA-optimal designs.

10.4 Example

In this section, we will show the results of the BNB algorithm when applied to
the problem of computing DA-optimal exact designs from Section 10.3 for v = 3
treatments, the cubic (d = 3) time trend, and n= 6, . . . ,24 trials.

For some n, there may exist DA-optimal exact designs that differ with respect to
a secondary criterion. From the set of allDA-optimal exact designs computed by the
BNB algorithm, we generated the complete list of allDA-optimal exact designs, and
from each classΞ∗ of mutually isomorphicDA-optimal exact designs we selected:

1. A design ξA that is A-optimal in Ξ∗ (see [2, Section 10.1]).
2. A design ξ† that is symmetric in the sense Var(β̂c2(ξ

†)) = Var(β̂c3(ξ
†)), pro-

vided that Ξ∗ contains a design with this property. For j ∈ {2,3}, the symbol
β̂cj (ξ

†) denotes the BLUE of τj − τ1 under the design ξ†.
3. A design ξ↔ that is symmetric with respect to the reversal of time, i.e., satisfying
ξ↔(u, t)= ξ↔(u,n+1− t) for all u ∈ {1,2,3} and t ∈ {1, . . . , n}, provided that
Ξ∗ contains a design with this property.

The selected DA-optimal exact designs ξA, ξ†, ξ↔ are not necessarily distinct. The
results are summarized in the following list.

(6) 212313A,†; (7) 1231231A,†; (8) 12311231A,†; (9) 123121321A,↔;
(10) 1232113231A,†; (11) 23113221312A; (12) 312213312213A,↔;
(13) 1233211123321A,↔; (14) 31212331312213A; (15) 123322111332231A,†;
(16) 1233212113132231A,†; (17a) 31221133233112213A,↔;
(17b) 12332121312123321A,↔; (18a) 132232131131232231A,↔;
(18b) 231131232232131132†,↔; (18c) 231132132231231132A,↔;
(18d) 123321321123123321†,↔; (19a) 3121223131313221213A,↔;
(19b) 1233211321231123321A,↔; (20) 12323132112213132321A;
(21a) 123233112132122331312A; (21b) 231311223213233112123†;
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(22) 1233122311231123312231A,†; (23a) 12331222311311322213321A,↔;
(23b) 23112333122122133321132†,↔; (23c) 31221313231213231312213A,↔;
(23d) 23113232123132123231132†,↔; (24a) 231132132321123231231132A,↔;
(24b) 123321321213312123123321†,↔; (24c) 123321321123321123123321A,↔;
(24d) 312213213312213312312213†,↔.

Note that the DA-optimal designs for the model with the cubic time trend are
model-robust in the sense that they are either perfectly optimal, or very efficient for
the models with polynomial trends of degrees 0 (i.e., if there is no trend), 1 as well
as 2. For n≥ 7 (n≥ 13, n≥ 17), these efficiencies are higher than 0.9 (0.99, 0.999).

10.5 Conclusions

We described a mathematical programming characterization of DA-optimal ap-
proximate designs under linear constraints and a BNB method for computing DA-
optimal exact designs for estimating a set of treatment contrasts in the presence
of a nuisance trend. In the illustrative example the nuisance parameters specify an
unknown cubic time trend, but the algorithm can be analogously used for a large
variety of other models, where the nuisance parameters represent any time trend,
any spatial trend or the effects of blocks.

The main advantage of the BNB algorithm, compared to heuristic local-search
methods is that it provides a complete list of perfectly optimal exact designs. The list
can be used to select the best design according to a secondary criterion. Moreover,
the list can motivate (or disprove) theoretical conjectures, or support the intuition
about the desirable properties of designs. Note also that the mathematical program-
ming approach permits adding linear constraints on the design that can represent,
for example, constraints on the total cost of the experiment.
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Chapter 11
Variable Inspection Plans for Continuous
Populations with Unknown Short Tail
Distributions

Wolfgang Kössler

Abstract The ordinary variable inspection plans are sensitive to deviations from
the normality assumption. A new variable inspection plan is constructed that can
be used for arbitrary continuous populations with short tail distributions. The peaks
over threshold method is used, the tails are approximated by a generalized Pareto
distribution, their parameters and the fraction defective are estimated by a moment
method proposed in a similar form by Smith and Weissman in J. R. Stat. Soc. B
47:285–298, 1985. The estimates of the fraction defective are asymptotically nor-
mal. It turns out that their asymptotic variances do not differ very much for the var-
ious distributions. Therefore we may fix the variance and use the known asymptotic
distribution for the construction of the inspection plans. The sample sizes needed to
satisfy the two-point conditions are much less than that for attribute plans.

11.1 Introduction

We consider a lot of units having a quality characteristic X with a (unknown) con-
tinuous cumulative distribution function (cdf) F . Given a sample X1, . . . ,Xn a de-
cision is to be made whether the lot is to be accepted or not. For simplicity we
assume only lower specification limits L, but the procedure can be extended to the
two-sided case of lower and upper specification limits. The fraction defective pL of
the lot is defined by

pL = P(X<L)= F(L).
We intend to construct reasonable estimates p̂ of p based on the sample. Our vari-
able inspection plan is then defined by: If p̂ ≤ c the lot will be accepted else it will
be rejected. Denote by

Ln,c(p) := Pp(p̂ ≤ c), 0<p < 0.5
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the operating characteristic (OC). Variable inspection plans (n, c) are computed by
minimizing the sample size n while meeting the so-called two-point conditions (0<
p1 <p2 < 1, 0< β < 1− α)

Ln,c(p1)≥ 1− α and Ln,c(p2)≤ β, (11.1)

where p1 and p2 are the accepted and rejected quality level, respectively. The or-
dinary variable inspection plan (ML plan, cf. e.g. Uhlmann [13], for the two-sided
case see Bruhn-Suhr and Krumbholz [2]) is very sensitive with respect to deviations
from the normal distribution assumption (cf. Kössler and Lenz [5, 6]).

In this paper we construct variable inspection plans which do not rely on the nor-
mality assumption and which require less sample sizes than the attribute plan. The
main idea is that nonconforming items Xi occur in the lower tail of the underly-
ing cdf, namely Xi < L= F−1(pL) with the (unknown) fraction defective p = pL.
Additionally, items Xi with Xi ≈ L, Xi > L can be considered suspicious. They
also should be considered in inspection plans. Whereas in Kössler [4] we assumed
that the underlying density has not too short tails to obtain Maximum Likelihood
estimates we consider the short tail case here and use a (moment) estimate proposed
by Smith [10] and Smith and Weissman [11].

In Sect. 11.2 we apply the peak over threshold method, approximate the tails of
the density by a generalized Pareto distribution (GPD) and estimate their parameters
and the fraction defective in Sect. 11.3. Using the asymptotic normality of all these
estimators we compute inspection plans meeting the conditions (11.1) at least ap-
proximately in Sect. 11.4. Comparisons of the various sampling plans in Sect. 11.5
show that the necessary sample sizes for the new plan are much less than that for the
attribute sampling plan. Simulation studies performed in Sect. 11.6 show that this
method works quite well even for relatively small sample sizes.

11.2 Approximation of the Tails by a GPD

We assume that we have a short tail density with a lower endpoint x0 which may
be set to zero without restriction to the generality, more precisely, we assume that
the underlying density is in the domain of attraction of the Weibull (cdf Gγ (x) =
1− exp(−xγ ), tail index γ > 0, x > 0). Let t = tL be a lower threshold value and
0< y < t . The conditional cdf Ft(y) of t −X conditioned under X < t ,

Ft(y)= F(t)− F(t − y)
F (t)

, (11.2)

can be approximated by a generalized Pareto cdf,

GPD(y;σ, k) := 1−
(

1− ky
σ

) 1
k

k, σ > 0, 0< y <
σ

k

as was shown by Pickands [8, Theorem 7]. The parameters k = 1
γ
> 0 and σ(t)=

k(t − x0)= kt are given by the extreme value distribution theory, cf. e.g. Falk [3].
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To approximate the fraction defective pL let t = tL be fixed, t > L= F−1(pL)

and y = yL = t −L. We obtain from (11.2):

pL = F(L)= F(t)− Ft(y) · F(t)≈ F(t)
(

1− ky
σ

) 1
k

.

11.3 Estimation of the Fraction Defective

Define the threshold by tL = F−1(q) for given q , 0 < q < 0.5 and estimate it by
t̂L =X(m+1), where m := nq� and X(i) is the ith order statistics of the sample. Let
ŷL = t̂L − L and (k̂L, σ̂L) be a consistent estimate of (kL,σL) in the GPD-model.
Then

p̂L = q ·
⎧
⎨

⎩
(1− k̂LŷL

σ̂L
)

1
k̂L if k̂L �= 0

e
− ŷL
σ̂L if k̂L = 0

(11.3)

is a consistent estimate of pL.
Note that ŷL is random, and the estimate (11.3) is well defined if ŷL ≥ 0 and if

k̂LŷL < σ̂L. (11.4)

In the few cases that ŷL < 0 we may reject the lot without further computations
because these cases indicate low quality.

For the estimation of the parameters we might use Maximum Likelihood esti-
mates. This procedure was pursued in Kössler [4]. However, if k > 0.5 the ML
estimates are not asymptotically normal (k ≤ 1) or they do not exist (k > 1). For the
short tail densities here we use an estimate (SW estimate) proposed by Smith and
Weissman [11, Eq. (4.3)], and Smith [10, Sect. 7],

k̂L = 1

m

m∑

i=2

log
X(m+1) −X(1)
X(i) −X(1) (11.5)

σ̂L = k̂L(X(m+1) −X(1)). (11.6)

The estimate for kL may be motivated by the moment equation E(− log(1− kY
σ
))=

k if Y is a random variable, Y ∼ GPD(σ, k), cf. Smith [10]. The estimate for σL is
motivated by σL = kL(tL−x0) if kL > 0, and the in praxis unknown lower endpoint
x0 is estimated by the smallest observation X(1).

If X(1) < L then condition (11.4) is satisfied and consistent estimates p̂L of the
fraction defective pL are obtained by inserting k̂L and σ̂L in (11.3). In the case of
X(1) ≥ L we may set p̂L := 0 as it indicates good quality. However, a slight negative
bias may be introduced.

Note that we also investigated various other estimates of (k, σ ), moment esti-
mates (MOM), probability weighted moment estimates (PWM) and elemental per-
centile moment estimates (EPM) (see e.g. Beirlant [1] and references therein). The
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asymptotic variances of the MOM and PWM estimates are much larger than that of
estimates (11.5) and (11.6), a result that is confirmed by finite sample simulation
studies. Simulations with the EPM method show that their bias is slightly less than
that for the SW estimate but the variances are much higher for the EPM estimates.

Under certain conditions on the convergence of t→ xo, L→ xo if n→∞ the
SW-estimate p̂L is asymptotically normally distributed with expectation zero and
variance V (pL),

√
m
p̂L − pL
pL

→N
(
0,V (pL)

)
(11.7)

(cf. Smith [10, Ch. 8]). To obtain a closed relation for the variance V (pL) dependent
on the cdf F we follow the arguments of Smith [10, Ch. 8].

Let z, z > 0, be fixed and define the sequences pm, qm, pm→ 0, qm→ 0, 0 <
pm < qm in the same way as in Smith [10] by

z= 1− kym
σm

= 1− k(tL,m −Lm)
σm

= 1− k(F
−1(qm)− F−1(pm))

σm
, (11.8)

where ym := tL,m − Lm = F−1(qm)− F−1(pm), and k and σm are the parameters
given by the GPD approximation of the conditional probability (11.2) which depend
on the sequence of the threshold values tL,m = F−1(qm).

The asymptotic variance V = VF for pm,qm→ 0 is then given by

VF = 1− qm + cT Sc, (11.9)

where

cT =
(
−1

k

(
1

z
− 1

)
,

log z

k2
+ 1

k2

(
1

z
− 1

))
and S=

(
1 k

k k2

)
. (11.10)

The term cT Sc in (11.9) becomes cT Sc = 1
k2 log2 z, where z is defined by (11.8)

with σm = ktL,m. Interestingly, if the cdf F is GPD or Weibull the term cT Sc is
independent of k.

For further investigation of the variance term we considered the following short
tail densities, the GPD, the Weibull, the Beta, the Gamma and the Burr, all with
various values of the parameter k. From the matrices S in the ML and SW cases (cf.
Smith [10]) it may be seen that for k = 0.5 the asymptotic variances of the ML and
SW estimates are the same. Moreover, it turns out that the asymptotic variances of
the SW estimates of p̂L in the case of short tails are often similar to that of the ML
estimate in the (long tail) Pareto (k =−1) case where we had an upper specification
limit (Kössler [4, Eq. (14), Table 3]). Exceptions are the Gamma with k = 0.25, and
the Burr with k = 0.25 or k = 0.5. An explanation of the latter facts may be that
the speed of convergence of qm→ 0 must be faster in that cases, cf. convergence
conditions SR1 or SR2 of Smith [10].

However, if the ratios of the fraction defective pL and the used tail fraction q are
not too small then the dissimilarities are not so large.

The similarities of the asymptotic variances will allow us to use the variance
V (p) obtained for the ML estimate in the (reverse) Pareto (k = −1) case for the
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determination of the sampling plan later on. This variance is given by (11.9) but
with S= (1− k)( 2 1

1 1−k
)= 2

( 2 1
1 2

)
(cf. e.g. Smith [10]).

11.4 The New Sampling Plan

Since we have established asymptotic normality with similar variances for the vari-
ous underlying cdfs we may proceed in the same way as in Kössler [4] to determine
a new sampling plan. Given q > 0 define m = nq�, i.e. for the estimation of the
fraction defective only the m+ 1 smallest observations are used.

For a discussion of the choice of the threshold values tL we refer to Kössler [4].
Here we apply a slightly modified version

q = q(n0)= p2 + 1√
n0
,

where n0 is an initial estimate of the sample size, n0 = nV+nA
2 , nV and nA are the

sample sizes for the ordinary variable sampling and for the attribute sampling plan,
respectively. This definition reflects the conditions q→ 0, q > p and also the fact
that the resulting sample size is expected to lie between nV and nA.

Since the number m is essential, the sampling plan is denoted by (n,m, c). An
approximate OC of this sampling plan is given by the asymptotic distribution of p̂.

To determine the numbers m and c meeting the two-point conditions (11.1) ap-
proximately we solve the system of equations

Ln,c(p1)≈Φ
(√
m

c− p1

p1
√
V (p1)

)
= 1− α,

Ln,c(p2)≈Φ
(√
m

c− p2

p2
√
V (p2)

)
= β.

An to integer values for m adjusted solution (m, c) of this system of equations is
given by

m=
⌈

1

(p1 − p2)2

(
p2

√
V (p2)Φ

−1(β)− p1
√
V (p1)Φ

−1(1− α))2
⌉

(11.11)

c= p1 +Φ−1(1− α)p1
√
V (p1)√
m

. (11.12)

Given the numbers m and q the sample size n is determined by m= nq�. In such
a way a new sampling plan (n,m, c) is obtained. It is given by

n=
⌈
m

q

⌉
, where q = p2 + 1√

n0

and m and c are given by (11.11) and (11.12).
Note that V (p) is also dependent on q , and since the definition of q is slightly

modified, these variances and also the sample sizes are slightly different from that
in Kössler [4].
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Table 11.1 The new sampling plan (n,m, cSW ) together with the sample sizes nV and nA of the
ordinary variable sampling plan and the attribute sampling plan, respectively

No. Two-point condition New sampling plan

p1 1− α p2 β n m cSW nV nA

1 0.0521 0.9500 0.1975 0.10 31 11 0.1053 27 45

2 0.0634 0.9000 0.1975 0.10 31 11 0.1072 27 45

3 0.0100 0.9000 0.0600 0.10 59 11 0.0237 36 88

4 0.0100 0.9743 0.0592 0.10 80 13 0.0280 54 133

5 0.0152 0.9000 0.0592 0.10 83 14 0.0292 54 111

6 0.0100 0.9900 0.0600 0.10 90 14 0.0303 64 153

7 0.0360 0.9500 0.0866 0.10 143 24 0.0576 106 189

8 0.0406 0.9000 0.0866 0.10 149 25 0.0581 107 189

9 0.0100 0.9900 0.0600 0.01 203 27 0.0237 111 263

10 0.0200 0.9500 0.0500 0.05 316 34 0.0309 186 410

11 0.0100 0.9900 0.0300 0.10 390 33 0.0198 217 590

12 0.0200 0.9900 0.0300 0.01 4609 213 0.0244 2241 5362

First simulations show that the OC estimates are slightly shifted to the right.
Therefore, the acceptance number is empirically modified to cSW := c · (1− 1/n).

11.5 Comparison with Other Sampling Plans

In Table 11.1 the sampling plans (n,m, cSW) for twelve different two-point con-
ditions are presented. For comparison the corresponding sample sizes nV and nA
of the ML-variable sampling plan and the attribute sampling plan, respectively, are
given in the last two columns of Table 11.1. The sample sizes for the ordinary ML
variable sampling plan are computed by the R program ExLiebeRes of Krumbholz
and Steuer [7]. Since our new sampling plan can be used also in the case of two-
sided specification limits the sample size nV is computed for that case.

The Examples 1, 2, 4, 5, 7 and 8 are from Resnikoff [9], Example 10 is from
Steland and Zähle [12]. From Table 11.1 it can be seen that the sample sizes for the
new plan are considerably less than that for the attribute sampling plan.

11.6 Simulation Study

The method described to obtain variable sampling plans is based on the asymptotic
normality of the estimates p̂ with the variance V (p). The reference cdf for comput-
ing V (p) is the (reverse) Pareto with k =−1 (where ML estimates are used).

To investigate whether the sampling plans constructed can be applied for short
tail densities as well as for moderate sample sizes simulation studies are carried out.
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The OC is estimated for the same examples as in the previous section. Note that the
examples 1–9, 11 are the same as in Kössler [4] but the necessary sample sizes may
differ slightly since the definition of the used fraction of the sample is altered. To
see whether the asymptotic theory works in practice we have included an example
with very large sample sizes (Example 12).

The simulation size is M = 2000. The following cdf’s are included in the simu-
lation study: GPD, Weibull, Gamma, and Burr, all with k = 0.25,0.5,0.75,1.

We obtain that for k ≥ 0.5 and for most densities the OC is well estimated. To
give an impression on the goodness of the estimated OC values we present only
the worst cases. For β they are β̂ = 0.13 (instead of β = 0.10). For 1− α they are
1 − α̂ = 0.97 (instead of 1 − α = 0.99), 1 − α̂ = 0.93 (instead of 1 − α = 0.95),
1− α̂ = 0.86 (instead of 1− α = 0.90). For k = 0.25 the estimates are only slightly
worse. Perhaps somewhat surprisingly, the latter happens also in Example 12 where
we have very large sample sizes. Note that, for k = 0.25 a ML estimate is to be
preferred.

11.7 Adaptive Procedure and Summary

In the short tail case the estimates of the fraction defective are different from that in
the medium or long tail case. Since it is generally not known which case occurs, we
suggest to apply an adaptive procedure. First the sample size is determined in the
way described. Then, after the sample is drawn from the lot, the parameter kL is es-
timated by the SW method. If k̂L = k̂L,SW ≤ 0.5 we assume that we have a medium
or long tail, estimate kL, σL and the fraction defective pL by the ML method and
use the modified acceptance number cML from the ML plan (cf. Kössler [4]). If
k̂L,SW > 0.5 we assume that we have a short tail, estimate kL, σL and the fraction
defective pL by the SW method and use the modified acceptance number cSW .

For normally distributed populations, of course, the ML-sampling plans are to
be preferred. But usually, there is no exact information about the distribution of the
underlying population in practice. Therefore, if the underlying c.d.f. is continuous
the new variable sampling plan instead of an attribute plan should be applied. If it is
known that we have short tails the sampling plan proposed here should be applied.
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Chapter 12
Goodness-of-Approximation of Copulas
by a Parametric Family

Eckhard Liebscher

Abstract In the paper we introduce a measure for goodness of approximation based
on the Cramér von Mises-statistic. In place of the unknown parameter of interest, a
minimum-distance estimator of the parameter is plugged in. We prove asymptotic
normality of this statistic and establish a test on goodness-of-approximation.

12.1 Introduction

Let X = (X(1), . . . ,X(d))T be a d-dimensional random vector. We denote the
marginal density and the marginal distribution function of X(m) by fm and Fm, re-
spectively (m= 1, . . . , d). H denote the joint distribution function of X. According
to Sklar’s theorem (see Sklar [16]), we have

H(x1, . . . , xd)= C
(
F1(x1), . . . ,Fd(xd)

)
for xi ∈R,

where C : [0,1]d → [0,1] is the d-dimensional copula. The reader can find the de-
tailed theory of copulas in the popular monographs by Joe [8] and by Nelsen [13].
In this paper we consider the parametric family F = (Cθ )θ∈Θ of copulas on [0,1]d
where Θ ⊂ R

q is the parameter space. Let D(C,F ) be a measure of discrepancy
between the copula C of the sample and the family F . The aim of this paper is to
establish a test of the hypothesis

H0: D(C,F )≤M, H1: D(C,F ) >M

and to show asymptotic normality of the test statistic. Here M is an appropriately
given value. In this paper we focus on the Cramér-von-Mises divergence as measure
of discrepancy. It describes how good the approximation of C by F is. A similar
measure is considered in Tsukahara [17].

In a large variety of practical situations, it is hard to find an appropriate family of
copulas which fits to a high precision the underlying copula of the sample. The rea-
son is the complexity of the multivariate distribution especially in the situation of
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higher dimensions. Thus we cannot expect that C belongs to the family F , and we
will assume C /∈F . The reader finds an extensive discussion about goodness-of-
approximation in the one-dimensional case in Liebscher [12]. The consideration of
approximate estimators is another aspect of this paper. Since as a rule there is no ex-
plicit formula for the estimators, we have to evaluate the estimator for the parameter
θ by a numerical algorithm and receive the estimator as solution of an optimisation
problem only at a certain (small) error.

In this paper the test statistic (the Cramér-von-Mises statistic) is actually an es-
timator for the measure D(C,F ) of discrepancy. It is shown that the test statistic
is asymptotically equivalent to an U -statistic. One advantage of our approach is
that the asymptotic distribution of the test statistic is a normal one whose quantiles
can be computed in the usual way. Observe that in the case C ∈ F , the asymp-
totic distribution of the Cramér-von-Mises test statistic is not of standard type since
it is asymptotically equivalent to a degenerate U -statistic, see Serfling [15, Theo-
rem 5.5.2]. In this situation it is not an easy task to calculate (asymptotic) quantiles.

Concerning the estimation of the parameters of the copula, two types of estima-
tors are studied in most of the literature: maximum pseudo-likelihood estimators
and minimum distance estimators. In our approach minimum distance estimators
on the basis of Cramér-von-Mises divergence are the appropriate choice. Minimum
distance estimators for the parameters of copulas were examined in the papers by
Tsukahara [17] and by the author [11]. The asymptotic behaviour of likelihood es-
timators were studied in papers by Genest and Rivest [4], Oakes [14], and Chen
and Fan [2], among others. Joe [9] published results on the asymptotic behaviour of
two-stage estimation procedures.

Goodness-of-fit tests correspond to the case C ∈F and were studied in a lot of
papers including those by Fermanian [3] and Genest et al. [5], see also the survey
by Genest et al. [7]. In the paper by Genest and Rémillard [6] it is shown that the
bootstrap works in the context of goodness-of-fit. Bücher and Dette consider in their
paper [1] goodness-of-fit tests based on a kernel estimator for the L2-distance of the
densities.

The paper is organised as follows: In Sect. 12.2 we discuss the problem of good-
ness of approximation. Section 12.3 is devoted to minimum distance estimators. In
Sect. 12.4 we provide the main results of the paper. The reader finds the proofs of
the results in Sect. 12.5.

12.2 Goodness of Approximation

In this section we consider measures for the discrepancy between the copula C
and the family F = (Cθ )θ∈Θ be a family of copulas where θ � Cθ(u) is as-
sumed to be continuous for all u ∈ [0,1]d . Let F(x) = (F1(x1), . . . ,Fd(xd))

T for
x = (x1, . . . , xd)

T ∈ R
d . In this paper we focus on the Cramér-von-Mises diver-

gence:
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D(C,F )= inf
θ∈ΘD(C,Cθ ), where

D(C,Cθ )=
∫

[0,1]d
(
C(u)−Cθ(u)

)2 dC(u)=
∫

Rd

(
H(x)−Cθ

(
F(x)

))2 dH(x).

Alternatively, one can consider Lp-distance

Lp(C,Cθ )=
∫

[0,1]d
∣∣C(u)−Cθ(u)

∣∣p du

or the Kolmogorov–Smirnov distance

K (C,Cθ )= sup
u∈[0,1]d

∣∣C(u)−Cθ(u)
∣∣.

The Kolmogorov–Smirnov distance has the disadvantage that its estimator responds
sensitively to outliers. The smaller the value of the divergence the better is the ap-
proximation.

As the next step we discuss the estimation of D(C,Cθ ). Let X1, . . . ,Xn be the
sample of random vectors with distribution functionH and copula C. We denote the
empirical joint distribution function by Ĥn. Let F̄n(x) = (F1n(x1), . . . ,Fdn(xd))

T

be the vector of the marginal empirical distribution functions. We can construct the
following estimator:

D̂n(Cθ )= 1

n

n∑

i=1

(
Ĥn(Xi)−Cθ

(
F̄n(Xi)

))2 (12.1)

for θ ∈ Θ . The advantage of this estimator is that it is just a sum and no integral
has to be computed. On the other hand, in case of estimators for the Lp-distance,
an integral has to be evaluated. Moreover, Genest et al. [7] have found out that the
use of Cramér-von-Mises statistic leads to more powerful goodness-of-fit tests in
comparison to other test statistics like Kolmogorov–Smirnov one. The next section
is devoted to the estimation of the parameter θ .

12.3 Parameter Estimation by the Minimum Distance Method

Let X1, . . . ,Xn be the sample as in the previous section. Throughout the paper we
assume that C /∈F . In this section we are interested in estimating the parameter θ0
which gives the best approximation for the copula:

θ0 = argminθ∈ΘD(C,Cθ ).

It should be highlighted that in general, θ0 depends on the choice of the discrepancy
measure. There is no true parameter. The approximate minimum distance estimator
θ̂n as introduced in Liebscher [11] is the object of our considerations in this section.
This estimator is defined as an approximate minimiser of θ � D̂n(Cθ ):

D̂n(Cθ̂n)≤min
θ∈Θ D̂n(Cθ )+ εn,
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where {εn} is a sequence of random variables with εn→ 0 a.s. Concerning consis-
tency and asymptotic normality of θ̂n, we quote the main results of the paper by the
author [11] which were obtained by utilising results from Lachout et al. [10]. The
partial derivative ∂

∂um
Cθ (u1, . . . , ud) is denoted by C(m)θ (u).

Theorem 12.1 (Theorem 3.1 of Liebscher [11].) LetΘ be compact, and θ �Cθ(u)

be continuous on Θ for all u ∈ [0,1]d . Assume that D(C,Cθ ) >D(C,Cθ0) for all
θ ∈Θ,θ �= θ0. Then

lim
n→∞ θ̂n = θ0 a.s.

Theorem 12.2 (Theorem 3.2 of Liebscher [11].) Under certain regularity condi-
tions,

√
n(θ̂n − θ0) D−→N (0,Σ).

Here Σ =Σ−1
2 Σ1Σ

−1
2 , Σ1 = cov(Zi), Zi = (Zij )j=1,...,q ,

γkj (x | θ0)=
(
H(x)−Cθ

(
F(x)

)) ∂2

∂θj ∂uk
Cθ

(
F(x)

)

−C(j)θ
(
F(x)

)
C
(k)
θ

(
F(x)

)
∣∣∣∣
θ=θ0

,

Zij =
d∑

j=1

∫

Rd

(
I
(
X
(j)

1 ≤ xj
)
γkj (x | θ0)

+ I (X1 ≤ x) ∂
∂θk
Cθ

(
F(x)

)
∣∣∣∣
θ=θ0

)
dH(x)

+ (
H(X1)−Cθ0

(
F(X1)

)) ∂
∂θk
Cθ

(
F(X1)

)
∣∣∣∣
θ=θ0

,

Σ2 = (Hij )i,j=1,...,q is a regular matrix with

Hij =
∫

Rd

((
H(x)−C(F(x) | θ0

)) ∂2

∂θi∂θj
Cθ

(
F(x)

)
∣∣∣∣
θ=θ0

+ ∂

∂θi
Cθ

(
F(x)

) ∂
∂θj
Cθ

(
F(x)

)
∣∣
∣∣
θ=θ0

)
dH(x).

12.4 The Test

The approximate minimum value of D̂n(Cθ ) defined in (12.1) can be used as the
test statistic in the context of this section:

Tn = D̂n(Cθ̂n)=
1

n

n∑

i=1

(
Ĥn(Xi)−Cθ̂n

(
F̄n(Xi)

))2
.
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In the main result we need the following assumption:

Assumption A Let Θ be compact, and θ � Cθ(u) be continuous on Θ for all
u ∈ [0,1]d . Assume that D(C,Cθ ) >D(C,Cθ0) for all θ ∈Θ,θ �= θ0. Let U(θ0) be

a neighbourhood of θ0. Suppose that ∂2

∂ui∂uj
Cθ (u), ∂

∂θp
Cθ and ∂2

∂θp∂θq
Cθ exist and

are bounded on U(θ0)× [0,1]d . �

Let

ρ1(x)=
∫

Rd

(
I (x ≤ y)−Cθ0

(
F(y)

))(
H(y)−Cθ0

(
F(y)

))
dH(y),

ρ2(x)=
d∑

m=1

∫

Rd

C
(m)
θ0

(
F(y)

)(
I (xm ≤ ym)− Fm(ym)

)

× (
H(y)−Cθ0

(
F(y)

))
dH(y),

and θ̌n := arg minθ∈Θ D̂n(Cθ ). Now we provide the main result of the paper on
asymptotic normality of Tn:

Theorem 12.3 Assume that ‖θ̌n − θ0‖ =OP(n
−1/2), and εn = oP(n−1/2). Let As-

sumption A be satisfied. Then we have

√
n
(
Tn −D(C,Cθ0)

) D−→N
(
0, σ 2),

where σ 2 :=Var(λ(X1)) and λ(x) := (H(x)−Cθ0(F (x)))2 + 2ρ1(x)− 2ρ2(x).

The validity of the condition ‖θ̌n− θ0‖ =OP(n
−1/2) can be obtained by utilising

Theorem 12.2, for example. It is easy to construct an estimator for the variance:

σ̂ 2 = 1

n− 1

n∑

i=1

((
Ĥn(Xi)−Cθ̂n

(
F̄n(Xi)

))2 + 2ρ̂1(Xi)

− 2ρ̂2(Xi)− 3D(C,C
θ̂n
)
)2
,

ρ̂1(x)= 1

n

n∑

j=1

(
I (x ≤Xj)−Cθ̂n

(
F̄n(Xj )

))

× (
Ĥn(Xj )−Cθ̂n

(
F̄n(Xj )

))
,

ρ̂2(x)= 1

n

n∑

j=1

d∑

m=1

C
(m)

θ̂n

(
F̄n(Xj )

)(
I (xm ≤Xjm)− Fm(Xjm)

)

× (
Ĥn(Xj )−Cθ̂n

(
F̄n(Xj )

))
,

x = (x1, . . . , xd)
T . Let M > 0 be a given real number. Now we consider the test

of the hypothesis H0: D(C,F ) ≤ M , H1: D(C,F ) > M . The null hypothesis



106 E. Liebscher

describes the situation where the approximation achieves the required quality. In
this test the null hypothesis is rejected if

Tn >M + 2z(1− α)n−1/2σ̂ .

z(1− α) denotes the quantile of order 1− α of the N (0,1)-distribution. In appli-
cations, constant M has to be chosen appropriately. The values of Tn for a variety
of models could be used as guideline for the choice ofM .

Let F0 = {C̃ξ , ξ ∈Ξ} be a comparative family of copulas. We propose the fol-
lowing approximation coefficient:

ρ = 1− D(C,F )

D(C,F0)
.

Obviously, ρ ≤ 1 holds, and ρ ∈ [0,1] in the case F0 ⊂F . The interpretation is
similar to correlation coefficients. Values of ρ close to 1 indicate that the approxi-
mation by F is good (see also Liebscher [12]). The coefficient ρ can be estimated
by plugging in estimators for D(C,F ) and D(C,F0) as introduced above.

12.5 Proofs

First we prove a central limit theorem for U -statistics of order 3:

Proposition 12.1 Assume that the measurable function Λ : R3 → R satisfies
EΛ2(X1,X2,X3) <+∞. Let

Wn = 1

n3

n∑

i=1

n∑

j=1

n∑

k=1

Λ(Xi,Xj ,Xk), Ψ = EΛ(X1,X2,X3),

λ̄(u)= 1

3

(
EΛ(u,X1,X2)+EΛ(X1, u,X2)+EΛ(X1,X2, u)

)
.

Then
√
n(Wn −Ψ ) D−→N

(
0, σ 2

1

)
with σ 2

1 = 9 Var
(
λ̄(X1)

)
.

Proof Let K(u,v,w) = (Λ(u, v,w) + Λ(u,w,v) + Λ(v,u,w) + Λ(v,w,u) +
Λ(w,u, v)+Λ(w,v,u))/6. By the law of large numbers for U -statistics (see for
example Serfling [15, Theorem 5.4.A]), we can deduce

Wn = 1

n3

n∑

i=1

n∑

j=i+1

n∑

k=j+1

(
Λ(Xi,Xj ,Xk)+Λ(Xi,Xk,Xj )+Λ(Xj ,Xi,Xk)

)

+Λ(Xk,Xi,Xj )+Λ(Xj ,Xk,Xi)+Λ(Xk,Xj ,Xi))+OP

(
n−1)

= 6

n3

n∑

i=1

n∑

j=i+1

n∑

k=j+1

K(Xi,Xj ,Xk)+OP

(
n−1).
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Note that λ̄(u) = E(K(u,X1,X2)), and Eλ̄(X1) = Ψ . An application of Theo-
rem 5.5.1A in Serfling [15] leads to the assertion of the proposition. �

Proof of Theorem 12.3 Let Hn = (Hnpq)p,q=1...k with Hnpq(θ) = ∂2

∂θp∂θq
D̂n(Cθ )

be the Hessian of D̂n. Since ∇θ D̂n(Cθ̌n)= 0, we have

D̂n(Cθ̌n)= D̂n(Cθ0)−
1

2
(θ̌n − θ0)THn(θ̃n)(θ̌n − θ0)

where θ̃np = θ0 + η̄p(θ̌n − θ0). Obviously, Hn(θ̃n) = OP(1). Hence D̂n(Cθ̌n) −
D̂n(Cθ0)= oP(n−1/2) and

√
n
(
D̂n(Cθ̌n)−D(C,Cθ0)

)=√n(D̂n(Cθ0)−D(C,Cθ0)
)+ oP(1).

We deduce
√
n
(
D̂n(Cθ0)−D(C,Cθ0)

)

= n−1/2
n∑

i=1

((
Ĥn(Xi)−Cθ0

(
F(Xi)

))2 −D(C,Cθ0)
)

+ n−1/2
n∑

i=1

(
Cθ0

(
F(Xi)

)−Cθ0
(
F̄n(Xi)

))

× (
2Ĥn(Xi)−Cθ0

(
F̄n(Xi)

)−Cθ0
(
F(Xi)

))

=An +Bn1 +Bn2

where

An = n−1/2
n∑

i=1

(
(
Ĥn(Xi)−Cθ0

(
F(Xi)

))2 −D(C,Cθ0)

− 2
d∑

m=1

C
(m)
θ0

(
F(Xi)

)(
Fnm(Xim)− Fm(Xim)

)(
H(Xi)−Cθ0

(
F(Xi)

))
)

Bn1 = n−1/2
n∑

i=1

(

Cθ0
(
F(Xi)

)−Cθ0
(
F̄n(Xi)

)

+
d∑

m=1

C
(m)
θ0

(
F(Xi)

)(
Fnm(Xim)− Fm(Xim)

)
)

× (
2Ĥn(Xi)−Cθ0

(
F(Xi)

)−Cθ0
(
F̄n(Xi)

))

Bn2 = n−1/2
n∑

i=1

d∑

m=1

C
(m)
θ0

(
F(Xi)

)(
Fnm(Xim)− Fm(Xim)

)

× (
2
(
H(Xi)− Ĥn(Xi)

)−Cθ0
(
F(Xi)

)+Cθ0
(
F̄n(Xi)

))
.
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Further we obtain

Bn1 = o(1), Bn2 = o(1) a.s.

Observe that

An = n−5/2
n∑

i=1

(
n∑

j=1

n∑

l=1

(
I (Xj ≤Xi)−Cθ0

(
F(Xi)

))(
I (Xl ≤Xi)−Cθ0

(
F(Xi)

))

− n2D(C,Cθ0)− 2n
n∑

j=1

d∑

m=1

C
(m)
θ0

(
F(Xi)

)(
I (Xjm ≤Xim)− Fm(Xim)

)

× (
H(Xi)−Cθ0

(
F(Xi)

))
)

=√n
(

n−3
n∑

i=1

n∑

j=1

n∑

l=1

Λ(Xi,Xj ,Xl)−D(C,Cθ0)

)

where Xi = (Xi1, . . . ,Xid),
Λ(Xi,Xj ,Xl)=

(
I (Xj ≤Xi)−Cθ0

(
F(Xi)

))(
I (Xl ≤Xi)−Cθ0

(
F(Xi)

))

− 2
d∑

m=1

C
(m)
θ0

(
F(Xi)

)(
I (Xjm ≤Xim)− Fm(Xim)

)

× (
H(Xi)−Cθ0

(
F(Xi)

))
.

We have

λ(x)= EΛ(x,X1,X2)+EΛ(X1, x,X2)+EΛ(X1,X2, x)

= (
H(x)−Cθ0

(
F(x)

))2 + 2ρ1(x)− 2ρ2(x).

An application of Proposition 12.1 (λ= 3λ̄) leads to the theorem. �
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Chapter 13
Selection Consistency of Generalized
Information Criterion for Sparse Logistic Model

Jan Mielniczuk and Hubert Szymanowski

Abstract We consider selection rule for small-n-large-P logistic regression which
consists in choosing a subset of predictors minimizing Generalized Information Cri-
terion over all subsets of variables of size not exceeding k. We establish consistency
of such rule under weak conditions and thus generalize results of Chen and Chen
in Biometrika, 95:759-771, 2008 to much broader regression scenario which also
allows for a more general criterion function than considered there and k depending
on a sample size. The results are valid for number of predictors of exponential order
of sample size.

13.1 Introduction

Let X be n × (P + 1) design matrix with rows x′i,·, columns x·,j and Y =
(y1, . . . , yn)

′ a response vector. All elements of x·,0 are equal to 1. We consider
a standard logistic regression model in which response y ∈ {0,1} is related to ex-
planatory variable x ∈R

P+1 by the equation

P(y = 1|x)= exp
(
x′β0

)
/
[
1+ exp

(
x′β0

)]
, (13.1)

where vector β0 = (β0,0, . . . , β0,P )
′ is a vector of parameters. The first coordinate

β0,0 corresponds to the column of ones in design matrix. Remaining coordinates
pertain to P explanatory variables. We assume that observations are either deter-
ministic vectors in R

P+1 or random variables distributed according to Px . Data
consists of independent observations (x′i,·, yi), i = 1, . . . , n and we assume that xi,·
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are either deterministic or xi,· ∼Px and conditional distribution of yi given xi,· = x
is specified by (13.1). In the paper we consider the problem of selecting unknown
subset of relevant predictors with nonzero coefficients. Thus we want to estimate
s0 = {i ∈ {1,2, . . . ,P }: β0,i �= 0} ∪ {0}, where augmentation by 0 means that the
fitted model always contains intercept. We assume that s0 is fixed. From now on
β0(s0)= β0 will stand for the vector of true parameters in the model s0 augmented
by zeros to (P + 1)-dimensional vector if necessary.

We consider the following Generalized Information Criterion GIC (cf. [8])

GIC(s)=−2l(β̂s , Y |Xs)+ an|s|, (13.2)

where s is a given submodel containing |s| explanatory variables and an intercept,
l is defined in (13.4), β̂s is a maximum likelihood estimator for model s (augmented
by zeros to (P + 1)-dimensional vector if necessary) and an is a chosen penalty.
Observe that an = log(n) corresponds to BIC and an = 2 to AIC. Consideration
of different penalties gained momentum after realization (cf. [2]) that BIC penalty,
although significantly larger than AIC, can also lead to choice of too many variables
e.g. in case of linear model with many predictors. Solutions to this problem such
as modified BIC (MBIC) [1] and Extended BIC (EBIC) [3] were proposed. EBIC
criterion stems from putting a certain non-uniform prior on family of models and
corresponds to an in (13.2) equal logn+2γ logP for some γ > 0. We also mention
extension to generalized linear models (GLMs) of three-stage procedure developed
in [7]. For analysis of variable selection under sparsity in a general regression model
we refer to [4]. Here, we consider the following selection method which looks for
the minimum of GIC over a family of models with number of regressors bounded
by a predetermined threshold. Namely, let M = {s: |s| ≤ kn} where kn is certain
nondecreasing sequence of integers and

ŝ0 = arg min
s∈M

GIC(s). (13.3)

This selection method in the case of kn = k was introduced in [3] for the linear
models and extended in [5] to the case of the generalized GLMs. Here, specializing
GLM to the case of logistic regression we study behavior of general criterion func-
tion (13.2) under much weaker conditions on design and more general sequence kn
allowing in particular that it diverges to infinity.

In order to heuristically justify ŝ0 we need to know that kn ≥ |s0|. As such knowl-
edge is usually unavailable when kn is fixed, therefore it is natural to assume that
kn is a sequence tending slowly to infinity. This is a principal motivation to extend
results in [5] in this direction. We study consistency of ŝ0 defined in (13.3) under
fairly general assumptions on design and sequences kn and an. In particular we al-
low for random as well as deterministic predictors. As a byproduct we obtain a rate
of consistency of maximum likelihood estimator which is uniform over supermodels
of s0.

The main technical improvement in comparison to [5] relies on application of
exponential inequality for subgaussian random variables derived in [10]. This al-
lows to circumvent Lemma 1 in [5] which seems unjustified under presented set
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of assumptions (see line 7 on p. 586 of [5] in which condition that (
∑n
i=1 a

2
ni)n is

bounded is tacitly used) and there is no obvious way to verify amended assumptions
in the proof of their crucial Theorem 2. In particular, the condition on EBIC constant
γ in their result is still a conjecture, see Remark 3 for a result in this direction.

13.2 Main Results

Under the logistic regression model (13.1) and letting p(s)= 1/(1+ e−s) the con-
ditional log-likelihood function for the parameter β ∈R

P+1 is

l(β,Y |X)=
n∑

i=1

{
yi log

[
p
(
x′i,·β

)]+ (1− yi) log
[
1− p(x′i,·β

)]}
(13.4)

Maximum likelihood estimator (ML) of β0 is denoted by β̂0. Note that the
score function Sn(β), derivative of l(β,Y |X), equals X′(Y − p(β)), where
p(β)= (p(x′1,·β), . . . ,p(x′n,·β))′. Negative Hessian Hn(β) of loglikelihood, equals
X′Π(β)X, whereΠ(β)= diag{p(x′1,·β)(1−p(x′1,·β)),. . . ,p(x′n,·β)(1−p(x′n,·β))}.

All the results of the section are proved for the case of random observations xi,·,
however (see Remark 13.1) they remain true under slightly modified assumptions
for the case of deterministic xi,· which is the scenario considered in [5] for constant
k. The proof for the random case requires more care. The conditions we impose on
P = Pn, kn and penalty an are k2

n logPn = o(n) and kn logPn = o(an). They reduce
for constant k to logPn = o(n) and logPn = o(an). EBIC criterion corresponds to
an = logn + 2γ logPn thus for n ≤ Pn this is a boundary case of the condition
logPn = o(an). We indicate in Remark 13.3 that our results extend to the case of
EBIC for large values of coefficient γ . Thus for constant k our results are exten-
sions of the results in [5] for EBIC for large penalty constants proved under less
demanding conditions. In their paper the case of Pn = O(exp(nκ)) is considered
and κ < 1/3 is assumed whereas our conditions stipulate only that κ < 1. Then the
condition corresponding the first condition on kn is kn = o(n(1−κ)/2).

The lemma below is the main technical tool in proving GIC selection consistency.
It follows from Zhang [10] after noting that binary random variable satisfies

Eet(ξ−Eξ) ≤ et2/8 and taking σ = 1/2, ε = η1/2 − σ in his Proposition 10.2.

Lemma 13.1 Let Y = (y1, . . . , yn)
′ be a vector consisting of independent binary

variables and Z = Z(n× n) be a fixed matrix. For any η > 1/4

P
(∥∥Z(Y −EY)∥∥2 ≥ tr

(
Z′Z

)
η
)≤ e−η/20. (13.5)

We apply the inequality to the case of logistic model when predictors are ran-
dom. Let Z = Z(X) be a random matrix. It is easily seen by conditioning that the
following modification of the above inequality also holds. Namely

P
(∥∥Z

(
Y −E(Y |X))∥∥2 ≥ tr

(
Z′Z

)
η
)=EXP

(∥∥Z
(
Y −E(Y |X))∥∥2 ≥ tr

(
Z′Z

)
η|X)

≤ e−η/20.
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In the following we will always assume that |s0| ≤ kn which is automatically sat-
isfied for large n if kn→∞. We define two families of models: A0 = {s: s0 ⊆
s ∧ |s| ≤ kn}, i.e. family of true models consisting of at most kn predictors and
A1 = {s: s0 � s ∧ 0 ∈ s ∧ |s| ≤ kn}. Let β0(s) for s0 ⊆ s denote β0(s0) augmented
by zeros for coordinates belonging to s \ s0. The following conditions will be im-
posed.
C1: For every η > 0 there exist constants 0<C1,C2 <+∞ such that for all n

P

{
C1 ≤ min

s∈A1
λmin

(
1

n
Hn

(
β0(s ∪ s0)

)
)
≤max
s∈A1

λmax

(
1

n
X′s∪s0Xs∪s0

)
≤ C2

}

≥ 1− η.
C2: For every ε > 0 there exists δ > 0 such that for every η > 0 and every n ≥
n0(ε, δ, η), with ≤L denoting Loewner ordering

P
{∀s: |s|≤kn∀‖β(s∪s0)−β0(s∪s0)‖≤δ(1− ε)Hn

(
β0(s ∪ s0)

)≤L Hn
(
β(s ∪ s0)

)

≤L (1+ ε)Hn
(
β0(s ∪ s0)

)}≥ 1− η.

Remark 13.1 Results of this section are valid for deterministic X with slightly
modified but simpler proofs with the following changes of assumptions. Condition
C1 is replaced by:
C1′: There exist constants 0<C1,C2 <+∞ such that for all n

C1 ≤ min
s∈A1

λmin

(
1

n
Hn

(
β0(s ∪ s0)

))≤max
s∈A1

λmax

(
1

n
X′s∪s0Xs∪s0

)
≤ C2 (13.6)

and C2 by:
C2′: For any ε > 0 there exists δ > 0 such that for sufficiently large n

∀s: |s|≤kn∀‖β(s∪s0)−β0(s∪s0)‖≤δ(1− ε)Hn
(
β0(s ∪ s0)

)≤L Hn
(
β(s ∪ s0)

)

≤L (1+ ε)Hn
(
β0(s ∪ s0)

)
.

The first of this assumptions is a slight strengthening of Assumption A4 in [5]
whereas the second one is the same as their A5. Note that since X′ΠX ≤L X′X
condition C1′ implies that all subsets of columns of X of size at most kn are lin-
early independent. It is shown in [9] that condition C1 (with Hessian Hn replaced
by moment matrix X′X) is satisfied for normal predictors under appropriate as-
sumptions on their covariance matrices, p and kn. Condition C′2 is analogous to
condition (N) in [6] (cf. (3.4), p. 348 there). Moreover, note that the assumption
maxs∈A1 tr(X′s∪s0Xs∪s0)=OP (knn) used in Theorem 13.1 below follows from C1.
Further on it is replaced by C1.

Theorem 13.1 Let X = (xij ) i = 1, . . . , n; j = 1, . . . , kn be a random matrix such
that maxs∈A1 tr(X′s∪s0Xs∪s0)=OP (knn). Then

max
s∈A1

∥∥Sn
(
β0(s ∪ s0)

)∥∥=OP (kn
√
n logPn). (13.7)
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Proof Intersecting set {maxs∈A1 ‖Sn(β0(s ∪ s0))‖ ≥M1kn
√
n logPn} with an event

{maxs∈A1 tr(X′s∪s0Xs∪s0) ≤M2knn} and its complement we see that probability of
the second set can be made arbitrarily small by a choice ofM2 whereas the first can
be bounded using (13.1) by

P

(
max
s∈A1

∥∥X′s∪s0
(
Y − p(β(s ∪ s0)

))∥∥≥ M1√
M2

√
kn logPn tr

(
X′s∪s0Xs∪s0

))

≤ P knn exp

(
− M2

1

20M2
kn logPn

)
.

For sufficiently large constantM1 the last expression is arbitrarily small. �

Lemma 13.2 Let k2
n logPn = o(n). Then, under assumptions C1 and C2 we have

max
s∈A0

∥∥β̂0(s)− β0(s)
∥∥=OP

(
kn

√
logPn
n

)
. (13.8)

Proof Let βu(s) = β0(s) + γnu for a vector u such that ‖u‖ = 1 and γn =
C0kn

√
logPn/n. For any δ > 0 and sufficiently large n in view of the condition

on kn we have ‖βu(s) − β0(s)‖ ≤ δ and assumption C2 becomes applicable. We
show that

P
{
∃u: ‖u‖ = 1, max

s∈A0,s �=s0
{
ln
(
βu(s)

)− ln
(
β0(s)

)}
> 0

}
= o(1). (13.9)

Let us fix ε0 > 0 and let δ0 be the value of δ corresponding to ε0 in assumption C2.
Denote by An the following event

{
C1 ≤ min

s∈A0
λmin

(
1

n
Hn

(
β0(s)

))≤max
s∈A0

λmax

(
1

n
X′sXs

)
≤ C2

}

∩{∀s: |s|≤kn∀‖β(s∪s0)−β0(s∪s0)‖≤δ(1− ε)Hn
(
β0(s ∪ s0)

)≤L Hn
(
β(s ∪ s0)

)

≤L (1+ ε)Hn
(
β0(s ∪ s0)

)}
.

Moreover, β∗ will stand for generic vector belonging to the line segment with
endpoints βu(s) and β0(s) i.e. having the form λβu(s) + (1 − λ)β0(s) for some
λ ∈ [0,1]. It follows from assumptions C1 and C2 that P(An) is arbitrarily close
to 1 for large n and sufficiently small C1 and C−1

2 .
We have on An with some β∗

P
{
∃u: ‖u‖ = 1, max

s∈A0

{
ln
(
βu(s)

)− ln
(
β0(s)

)}
> 0

}

≤ P knn max
s∈A0

P

{
∃u: ‖u‖ = 1, u′Sn(β0) >

1

2
γnu

′Hn
(
β∗

)
u

}

≤ P knn max
s∈A0

P

{
∃u: ‖u‖ = 1, u′Sn(β0) >

1

2
(1− ε0)γnu

′Hn(β0)u

}

≤ P knn max
s∈A0

P

{∥∥Sn(β0)
∥∥>

C1

2
(1− ε0)γnn

}
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where the last inequality follows by taking u = Sn(β0)/‖Sn(β0)‖. Since An ⊂
{maxs∈A1∪s0 tr(X′sXs)≤ C2knn}, we have from (13.1) that the last expression tends
to zero when constant C1 is sufficiently large. As ln(β(s)) is a concave function
for any s, it follows that, with probability tending to 1, estimator β̂0(s) exists and
belongs to γn-neighborhood of β0(s) uniformly for all s ∈A0. �

Remark 13.2 Note that for kn = k and Pn = O(exp(nκ)) it follows from (13.8)
that the uniform rate of convergence of β̂ over supersets of s0 is kn(logPn/n)1/2 =
O(n

κ−1
2 ), thus assuming κ ∈ (0,1/3) as in [5] we obtain better rate of convergence

than OP (n−1/3) determined in their Theorem 1.

Theorem 13.2 Let assumptions C1 and C2 hold. Moreover, assume an = o(n) and
k2
n logPn = o(n). Then

P
(

min
s∈A1

GIC(s)≤GIC(s0)
)
→ 0. (13.10)

Proof Let ε0 > 0 and δ0 corresponds to ε0 in assumption C2. Moreover, s̃ = s ∪ s0.
Let us denote by β̆(s̃) ML estimator β̂(s) augmented with zeros corresponding to
the elements in s0 \ s. Note that

∥∥β̆(s̃)− β0(s̃)
∥∥≥ ∥∥β0(s0 \ s)

∥∥≥ βmin > 0 (13.11)

for all s ∈A1 where βmin =mini∈s0\s |β0,i |.
Let us fix s ∈ A1 and denote B = {β: ‖β(s̃) − β0(s̃)‖ = r}, where r =

min{βmin/2, δ0/2}. We have from Schwarz inequality and assumptions C1 and C2
on event An defined in the proof of Lemma 13.2 that for all β ∈ B and some β∗
between β(s̃) and β0(s̃) the difference ln(β(s̃))− ln(β0(s̃)) equals

[
β(s̃)− β0(s̃)

]′
Sn
(
β0(s̃)

)− 1

2

[
β(s̃)− β0(s̃)

]′
Hn

(
β∗

)[
β(s̃)− β0(s̃)

]

≤ ∥∥β(s̃)− β0(s̃)
∥∥ · ∥∥Sn

(
β0(s̃)

)∥∥

− 1

2
(1− ε0)

[
β(s̃)− β0(s̃)

]′
Hn

(
β0(s̃)

)[
β(s̃)− β0(s̃)

]

≤ ∥∥β(s̃)− β0(s̃)
∥∥ · ∥∥Sn

(
β0(s̃)

)∥∥− C1

2
(1− ε0) · n

∥∥β0(s̃)− β(s̃)
∥∥2
.

It follows from Theorem 13.1 and the definition of sphere B that the last expression
is bounded from above on a set of arbitrarily large positive measure by −M2n for
some positive constantM2. By a concavity of function ln and a fact β̆ /∈ B on An

ln
(
β̂(s)

)− ln
(
β̂(s0)

)= ln
(
β̆(s̃)

)− ln
(
β̂(s0)

)≤ ln
(
β̆(s̃)

)− ln
(
β0(s̃)

)

≤ ln
(
β∗(s̃)

)− ln
(
β0(s̃)

)≤−M2 · n,
where β∗(s̃) is any element of B . This and an assumption an = o(n) yields that
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P
(

min
s∈A1

GIC(s)≤GIC(s0)
)

=P
({

max
s∈A1

(
ln
(
β̂(s)

)− ln
(
β̂(s0)

)+ an
(|s0| − |s|

))≥ 0
}
∩An

)
+P

(
A c
n

)

≤P
(−M2n+ an|s0| ≥ 0

)+P
(
A c
n

)→ 0. �

The next result states that with probability tending to 1 GIC choses the smallest
true model among all true models. Note that for Pn =O(nκ) the second condition
on kn is implied by kn =O(n1/2−ε) for any ε > 0.

Theorem 13.3 Under assumptions C1 and C2 for kn logPn = o(an) and
k2
n logPn = o(n)

P
(

min
s∈A0,s �=s0

GIC(s)≤GIC(s0)
)
→ 0. (13.12)

Proof Let s ∈A0 and s �= s0. We have on event An and for some β∗, β∗∗ that

ln
(
β̂(s)

)− ln
(
β̂(s0)

)≤ ln
(
β̂(s)

)− ln
(
β0(s)

)

= [
β̂(s)− β0(s)

]′
Sn
(
β0(s)

)− 1

2

[
β̂(s)− β0(s)

]′
Hn

(
β∗∗

)[
β̂(s)− β0(s)

]
.

Note that

Sn
(
β̂(s)

)− Sn
(
β0(s)

)=−Hn
(
β∗

)[
β̂(s)− β0(s)

]
, (13.13)

and in view of C1, C2 and Lemma 13.2 Hn(β∗) is invertible. Thus

β̂(s)− β0(s)=Hn
(
β∗

)−1
Sn
(
β0(s)

)
. (13.14)

Therefore, the right side of inequality (13.13) can be rewritten as
[
Sn
(
β0(s)

)]′
Hn

(
β∗

)−1
Sn
(
β0(s)

)

− 1

2

[
Sn
(
β0(s)

)]′
Hn

(
β∗

)−1
Hn

(
β∗∗

)
Hn

(
β∗

)−1
Sn
(
β0(s)

)
.

Assumption C2 and a fact that A≤L B⇒A−1 ≤L A−1BA−1 yields

ln
(
β̂(s)

)− ln
(
β̂(s0)

)≤ c[Sn
(
β0(s)

)]′
Hn

(
β0(s)

)−1
Sn
(
β0(s)

)
(13.15)

for some constant c independent of s ∈A0. Hence, on event An we have

P
(

max
s∈A0,s �=s0

(
ln
(
β̂(s)

)− ln
(
β̂(s0)

)− (|s| − |s0|
)
an
)≥ 0

)
(13.16)

≤ max
s∈A0,s �=s0

P knn P
(
cSn

(
β0(s)

)′
Hn

(
β0(s)

)−1
Sn
(
β0(s)

)≥ an
(|s| − |s0|

))

(13.17)

= max
s∈A0,s �=s0

P knn P
(
c
∥∥Zs

(
Y − p(β0(s)

))∥∥2 ≥ an
(|s| − |s0|

))
(13.18)
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where Zs = (X′sΠsXs)−
1
2X′s . It is seen that on An tr(Z′sZs)≤M1|s|. It follows now

from Zhang’s inequality that for fixed s ∈A0 on An withM2 = (20cM1)
−1

P knn P
(
c
∥∥Zs(Y −EY)

∥∥2 ≥ an
(|s| − |s0|

))≤ P knn E
[

exp

(
− an(|s| − |s0|)

20c · tr(Z′sZs)
)]

≤ P knn exp

(
−M2

(|s| − |s0|)an
|s|

)
≤ P knn exp

(
−C (|s| − |s0|)kn logPn

|s|
)
,

where C may be chosen arbitrarily large and independent of s. Finally, we have as
mins∈A0(|s| − |s0|)/|s| = 1/(|s0| + 1)

P
(

min
s∈A0

GIC(s)≤GIC(s0)
)

(13.19)

≤P
({

max
s∈A0

(
ln
(
β̂(s)

)− ln
(
β̂(s0)

)+ an
(|s0| − |s|

))≥ 0
}
∩An

)
+P

(
A c
n

)

(13.20)

≤ P knn exp

(
−C kn logPn

|s0| + 1

)
+P

(
A c
n

)→ 0 (13.21)

for sufficiently large constant C independent of s. �

Remark 13.3 Theorem 13.2 is applicable to EBIC as the sole condition on an there
is an = o(n). Moreover, Theorem 13.3 remains true for EBIC in the case when
n = o(Pn) and constant kn = k if penalty coefficient γ is large enough. Indeed,
substitution an = logn+ 2γ logPn in (13.19) leads to the inequality

P knP
(
c
∥∥Zs(Y −EY)

∥∥2 ≥ an
(|s| − |s0|

))≤ P kn exp

(
−M2

2γ logPn
|s0| + 1

)
. (13.22)

Thus if γ > 0.5k(|s0| + 1)M−1
2 (13.12) holds.
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Chapter 14
Kernel Estimation of Wiener–Hammerstein
System Nonlinearity

Grzegorz Mzyk

Abstract The paper addresses the problem of non-parametric estimation of the
static characteristic in Wiener–Hammerstein (sandwich) system excited and dis-
turbed by random processes. Two kernel-based methods are presented and com-
pared. The proposed estimates are consistent under small amount of a priori in-
formation. An IIR dynamics, non-invertible static non-linearity, and non-Gaussian
excitations are admitted. The convergence of the estimates is proved for each con-
tinuity point of the static characteristic and the asymptotic rate of convergence is
analysed. The results of computer simulation example are included to illustrate the
behaviour of the estimates for moderate number of observations.

14.1 Introduction

In the paper we address the problem of nonlinearity recovering in the system of
Wiener–Hammerstein structure (see Fig. 14.1). It consists of one static nonlinear
block with the characteristic μ(), surrounded by two linear dynamic components
with the impulse responses {λj }∞j=0 and {γj }∞j=0, respectively. Such a structure, and
its particular cases (Wiener systems and Hammerstein systems), are widely consid-
ered in the literature because of numerous potential applications in various domains
of science and technology (see e.g. [2]). The Wiener and Wiener–Hammerstein
models allow for a good approximation of many real processes [1, 6, 11–14]. It was
noticed that the nonparametric algorithms proposed in [7–9] and [3] for a Wiener
system, can be adopted, after slight modification, for a broad class of Wiener–
Hammerstein (sandwich) systems. All the assumptions taken therein remain the
same. The algorithms work under poor prior knowledge of subsystems and exci-
tations and in contrast to earlier literature items concerning sandwich and Wiener
system identification:

• the input sequence need not to be a Gaussian white noise,
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Fig. 14.1
Wiener–Hammerstein
(sandwich) system

Fig. 14.2 Hammerstein
system

• the nonlinear characteristic is not assumed to be invertible,
• the IIR linear dynamic blocks are admitted,
• the algorithms are of nonparametric nature (see e.g. [4]), i.e. it is not assumed

that the subsystems can be described with the use of finite and known number of
parameters. In consequence, the estimates are free of the possible approximation
error, or this error can be made arbitrarily small by proper selection of tuning
parameters.

Firstly, in Sect. 14.2, we show intuitively, why the censored algorithm (see [7])
proposed for Wiener system can be successfully applied for Hammerstein systems
and Wiener–Hammerstein (sandwich) systems. Then, in Sect. 14.3, the problem is
formulated in detail and the assumptions imposed on signals and system compo-
nents are discussed. Finally, in Sect. 14.4 we present two nonparametric kernel-
based estimates of the nonlinearity in Wiener–Hammerstein system, and analyse
their properties.

14.2 Preliminaries

14.2.1 Hammerstein System

For the Hammerstein system (Fig. 14.2) described by

yk =
∞∑

j=0

γjμ(xk−j )+ zk , (14.1)

we assume that the unknown impulse response {γj }∞j=0 fulfils conditions |γj | ≤
c1λ

j , and G=∑∞
j=0 γj = 1. For Lipschitz function μ() we simply get

∣∣yk −μ(x)
∣∣

=
∣∣∣∣∣

∞∑

j=0

γjμ(xk−j )−
∞∑

j=0

γjμ(x)

∣∣∣∣∣
=
∣∣∣∣∣

∞∑

j=0

γj
(
μ(xk−j )−μ(x)

)
∣∣∣∣∣

=
∣∣∣∣∣

k−1∑

j=0

γj
(
μ(xk−j )−μ(x)

)+
∞∑

j=k
γj
(
μ(xk−j )−μ(x)

)
∣∣∣∣∣
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≤
k−1∑

j=0

|γj |
∣∣μ(xk−j )−μ(x)

∣∣+ 2umaxl

∞∑

j=k
|λj | ≤ lδk(x)+ lλk

1− λ = lΔk(x),

which means that for a given x, the noise-free output yk is located close to μ(x).

14.2.2 Wiener–Hammerstein System

Now, let us consider a tandem three-element connection shown in Fig. 14.1, where
uk and yk is a measurable system input and output at time k respectively, zk is a ran-
dom noise, μ() is the unknown characteristic of the static nonlinearity and {λj }∞j=0,
{γj }∞j=0 – the unknown impulse responses of the two linear dynamic components.
By assumption, the interaction signals xk and vk are not available for measurements.
The system is described as follows

yk =
∞∑

j=0

γjvk−j + zk, vk = μ
( ∞∑

j=0

λjuk−j

)

. (14.2)

Similarly as for Hammerstein system, we get
∣∣yk −μ(x)

∣∣

=
∣∣∣∣∣

∞∑

i=0

γiμ(xk−i )−
∞∑

i=0

γiμ(x)

∣∣∣∣∣

=
∣∣
∣∣∣

∞∑

i=0

γiμ

( ∞∑

j=0

λjuk−i−j

)

−
∞∑

i=0

γiμ

( ∞∑

j=0

λjx

)∣∣
∣∣∣

=
∣∣∣∣∣

∞∑

i=0

γi

[

μ

( ∞∑

j=0

λjuk−i−j

)

−μ
( ∞∑

j=0

λjx

)]∣∣∣∣∣

≤ l
∞∑

i=0

|γi |
∣∣
∣∣∣

∞∑

j=0

λj (uk−i−j − x)
∣∣
∣∣∣

≤ l
∞∑

i=0

|γi |
∞∑

j=0

|λj ||uk−i−j − x| = l
∞∑

i=0

κi |uk−i − x|,

where the sequence {κi}∞i=0 is the convolution of {|γi |}∞i=0 with {|λj |}∞i=0, which
obviously fulfils the condition |κi | ≤ λi .

14.3 Assumptions

For a Wiener–Hammerstein system we assume that:
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A1. The input {uk} is an i.i.d., bounded (|uk|< umax; unknown umax <∞) random
process, and there exists a probability density of the input, say ϑu(uk), which
is a continuous and strictly positive function around the estimation point x, i.e.,
ϑu(x)≥ ε > 0.

A2. The unknown impulse responses {λj }∞j=0 and {γj }∞j=0 of the linear IIR filters
are both exponentially upper bounded, that is

|λj | ≤ c1λ
j , |γj | ≤ c1λ

j (14.3)

some unknown 0< c1 <∞, where 0< λ< 1 is an a priori known constant.
A3. The nonlinear characteristicμ(x) is a Lipschitz function, i.e., it exists a positive

constant l <∞, such that for each xa, xb ∈R it holds that
∣∣μ(xa)−μ(xb)

∣∣≤ l|xa − xb|.
A4. The output noise {zk} is a zero-mean stationary and ergodic process, which is

independent of the input {uk}.
A5. For simplicity of presentation we also letL=∑∞

j=0 λj = 1,G=∑∞
j=0 γj = 1,

and umax = 1
2 .

The goal is to estimate the unknown characteristic of the nonlinearity μ(x)
on the interval x ∈ (−umax, umax) on the basis of N input–output measurements
{(uk, yk)}Nk=1 of the whole Wiener–Hammerstein system. Similarly as for Wiener
system from Assumptions A1 and A2 it holds that |xk|< xmax <∞, where xmax =
umax

∑∞
j=0 |λj |. The condition (14.3), with unknown c1, is rather not restrictive,

and characterises the class of stable objects. In particular case of FIR linear dy-
namic blocks, Assumption A2 is fulfilled for arbitrarily small λ > 0. As regards the
Assumption A5, we note, that the class of Wiener–Hammerstein systems composed
by series connection of linear filters with the impulse responses {λj } = {λjβ }∞j=0,

{γ j } = { γjα }∞j=0 and the nonlinearities μ(x) = αμ(βx) are, for α,β �= 0, indistin-
guishable from the input–output point of view.

Remark 14.1 If the technical Assumption A5 is not fulfilled, i.e., the gains L =∑∞
j=0 λj or G =∑∞

j=0 γj are not unit, then only the scaled and dilated version
Gμ(Lx) of the true system characteristic μ(x) can be identified. The constants G
and L are not identifiable, since the internal signals xk and vk cannot be measured.

14.4 The Algorithms

For a Wiener–Hammerstein system we apply and compare the following two non-
parametric kernel-based estimates of the nonlinear characteristic μ(), proposed be-
fore for a Wiener system in [7] and [3], respectively,

μ̂
(1)
N (x)=

∑N
k=1 yk ·K(

∑k
j=0 |uk−j−x|λj

h(N)
)

∑N
k=1K(

∑k
j=0 |uk−j−x|λj

h(N)
)

, (14.4)
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μ̂
(2)
N (x)=

∑N
k=1 yk

∏p

i=0K(
x−uk−i
h(N)

)
∑N
k=1

∏p

i=0K(
x−uk−i
h(N)

)
. (14.5)

In (14.4) and (14.5) K() is a bounded kernel function with compact support, i.e.,
it fulfils the following conditions

∫ ∞

−∞
K(x)dx = 1, (14.6)

sup
x

∣∣K(x)
∣∣<∞, (14.7)

K(x)= 0 for |x|> x0 (14.8)

some x0 <∞. The sequence h(N) (bandwidth parameter) is such that h(N)→ 0,
as N→∞. The following theorem holds.

Theorem 14.1 If h(N) = d(N) logλ d(N), where d(N) = N−γ (N), and γ (N) =
(log1/λ N)

−w , then for each w ∈ ( 1
2 ,1) the estimate (14.4) is consistent in the mean

square sense, i.e., it holds that

lim
N→∞E

(
μ̂
(1)
N (x)−μ(x)

)2 = 0. (14.9)

Proof For the proof see [10]. �

In contrast to μ̂(1)N (x), the estimate μ̂(2)N (x) uses the FIR(p) approximation of the
linear subsystems. We will show that since the linear blocks are asymptotically sta-
ble, the approximation of μ() can be made with arbitrary accuracy, i.e., by selecting
p large enough. Let us introduce the following regression-based approximation of
the true characteristic μ()

mp(x)=E{yk | uk = uk−1 = · · · = uk−2p+1 = x} (14.10)

and the constants gp =∑p−1
i=0 γi , lp =

∑p−1
j=0 λj . The following theorem holds.

Theorem 14.2 If K() satisfy (14.7) then it holds that

μ̂
(2)
N (x)→mp(lpx) (14.11)

in probability, as N →∞, at every point x, for which ϑu(x) > 0 provided that
Nh2p(N)→∞, as N→∞.

Proof The proof is a consequence of Theorem 1 in [3]. �

We obtain that mp(x) = E{∑p−1
i=0 γiμ(xk−i ) + ς |uk = · · · = uk−2p+1 = x},

where ς = ∑∞
i=p γiμ(xk−i ). Moreover, since xk = ∑p−1

j=0 λjuk−j + ξ , where

ξ =∑∞
j=p λjuk−j it holds that |mp(lpx) − μ(lpx)| = |E{gpμ(lpx + ξ) + ς} −

μ(lpx)| ≤E|{gpμ(lpx+ ξ)+ς}−μ(lpx)| ≤ |gp−1|(lEuk+Eμ(xk)), and under
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Table 14.1 The errors of the
estimates (3) and (4)
versus N

N 102 103 104 105 106

ERR(μ̂1
N(x)) 16.4 12.4 8.1 6.0 4.8

ERR(μ̂2
N(x)) 14.0 10.1 3.6 1.5 0.9

stability of linear components (see Assumptions A2 and A5) we have |gp−1| ≤ cp0 ,
some |c0|< 1. Consequently,

μ̂
(2)
N (x)→ μ(lpx)+ εp

in probability, asN→∞, where εp = cp0 (lumax+vmax)φ(x), and |φ(x)| ≤ 1. Since
limp→∞ lp = 1, and limp→∞ εp = 0 we conclude that (14.11) is constructive in the
sense that the approximation model of μ() can have arbitrary accuracy by proper
selection of p.

14.5 Numerical Example

To compare the proposed algorithms in practise we simulated Wiener–Hammerstein
system with discontinuous nonlinearity μ(x) = x� surrounded by two first-order
IIR filters of the form

xk = 0.5xk−1 + 0.5uk, and yk = 0.5yk−1 + 0.5vk,

i.e. λj = γj = 0.5j+1, j = 0,1, . . . ,∞. The system was excited by uniformly dis-
tributed i.i.d. input sequence uk ∼U [−10,10] and the output noise zk ∼U [−1,1].
We assumed λ = 0.8 in (14.4), and we took p = 3 in (14.5). Both estimates were
computed on the same simulated data {(uk, yk)}Nk=1 and compared with respect to
the following estimation error

ERR
(
μ̂N (x)

)= 1

N0

N0∑

i=1

(
μ̂N

(
x(i)

)−μ(x(i)))2
, (14.12)

where {x(i)}N0
i=1 is the grid of equidistant estimation points. The routine was repeated

for various values of the tuning parameter h. As can be seen in Figs. 14.3 and 14.4,
according to intuition, improper selection of h increases the variance or bias of the
estimate. Table 14.1 shows the errors (14.12) of μ̂1

N(x) and μ̂2
N(x) versus number

of measurements N . Since the linear component in the Wiener system has infinite
impulse response (IIR), it illustrates advantages of μ̂1

N(x) over μ̂2
N(x), especially

when the number of measurements tends to infinity. The bandwidth parameters was
set (experimentally) according to h(N) = N−(log1/λ N)

−w
logλ N

−(log1/λ N)
−w

, with
w = 0.75 in (14.4), and h(N)= cN−1/(2p+1) with p = 5 and c= 1.4 in (14.5).
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Fig. 14.3 Relationship between the estimation error ERR(μ̂(1)N (x)) and the bandwidth parameter h

Fig. 14.4 Relationship between the estimation error ERR(μ̂(2)N (x)) and the bandwidth parameter h

14.6 Final Remarks

The nonlinear characteristic of Wiener–Hammerstein system is successfully recov-
ered from the input-output data under small amount of a priori information. The es-
timates work under IIR dynamic blocks, non-Gaussian input and for non-invertible
characteristics. Since the Hammerstein systems and the Wiener systems are special
cases of the sandwich system, the proposed approach is universal in the sense that
it can be applied without the prior knowledge of the cascade system structure.

As regards the limit properties, the estimates μ̂(1)N (x) and μ̂(2)N (x) are not equiva-
lent. First of them has slower rate of convergence (logarithmic), but it converges to



128 G. Mzyk

the true system characteristic, since the model becomes more complex as the num-
ber of observations tends to infinity. The main limitation is assumed knowledge of λ,
i.e., the upper bound of the impulse response. On the other hand, the rate of con-
vergence of the estimate μ̂(2)N (x) is faster (exponential), but the estimate is biased,
even asymptotically. However, its bias can be made arbitrarily small by selecting the
cut-off parameter p large enough.

As it was shown in [5], the nonparametric methods allow for decomposition of
the identification task of block-oriented system and can support estimation of its
parameters. Computing of both estimates μ̂(1)N (x), μ̂

(2)
N (x) and the distance δk(x)

has the numerical complexity O(N), and can be performed in recursive or semi-
recursive version (see [4]).
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Chapter 15
Monitoring Changes in RCA Models

Zuzana Prášková

Abstract In the paper a sequential monitoring scheme is proposed to detect insta-
bility of parameters in a random coefficient autoregressive (RCA) time series model
of general order p. A given set of historical stable observations is available that
serves as a training sample. The proposed monitoring procedure is based on the
quasi-likelihood scores and the quasi-maximum likelihood estimators of the respec-
tive parameters computed from the training sample, and it is designed so that the
sequential test has a small probability of a false alarm and asymptotic power one as
the size of the training sample is sufficiently large. The asymptotic distribution of
the detector statistic is established under both the null hypothesis of no change as
well as under the alternative that a change occurs.

15.1 Introduction

Random coefficient autoregressive models belong to a broad class of conditional
heteroscedastic time series models because of their varying conditional variance
and as such may be used in various applications.

Let us consider a random coefficient autoregressive model of order p, RCA(p),

Xt =
p∑

i=1

(βit +Bit )Xt−i + Yt = (β t +Bt )TXt−1 + Yt , t ∈ Z (15.1)

where β t = (β1t , . . . , βpt )
T are vectors of constants, Bt = (B1t , . . . ,Bpt )

T are ran-
dom vectors with zero mean and the variance matrices Σ t , Xt−1 = (Xt−1, . . . ,

Xt−p)T , and Yt are random variables with zero mean and the variances σ 2
t . The

superscript T denotes the transpose of a vector or a matrix. In the next we will as-
sume that {Bt }, {Yt } are mutually independent sequences. We assume that β t ,Σ t

and σ 2
t are unknown; let θ t = (βTt ,ωTt , σ 2

t )
T be the (p+ 1)(p/2+ 1)-dimensional

column vectors of unknown parameters, where ωt = vechΣ t . (Recall here that for
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any p×p symmetric matrix A, vech A denotes the p(p+1)/2-dimensional column
vector stacking parts of the columns of A on and below the main diagonal, one on
top of the other in order from the left to the right.)

In this paper we are interested in sequential testing stability of parameters θ t . For
this we assume that a training sample of stable observationsX1, . . . ,Xm is available
that serves to the calibration of the model such that

θ1 = · · · = θm = θ0.

New observations are arriving one after another; after each new observations ar-
rives, we make a decision whether the condition of stability is violated (i.e., change
occurs) or not.

The problem of the instability of parameters θ t is formulated as a sequential
testing problem, that is, we test the null hypothesis of no change

H0: θ i = θ0, i = 1,2, . . . , (15.2)

against the alternative that a change occurs at a break point K , i.e.,

HA: there exists K ≥ 1,

θ i = θ0, 1≤ i < m+K,
θ i = θ0 + δm, m+K ≤ i <∞, δm �= 0, (15.3)

θ0, δm,K = Km are unknown. The decision is based on a detector statistic con-
structed from all observations up to m + k, k = 1,2, . . . , and when it exceeds a
critical level for the first time, we stop the monitoring.

Following the ideas of the seminal paper by Chu et al. [7], Horváth et al. [10]
developed CUSUM monitoring procedures for testing stability in regression pa-
rameters in linear regression models. In a similar vein, Berkes et al. [4] proposed
monitoring procedure for testing structural breaks in parameters of GARCH(p,q)
models and Hušková and Koubková [12] monitoring procedures in autoregressive
models. Other monitoring procedure in autoregression models was considered by
Gombay and Serban [9]. A procedure for monitoring general time series can be
found in Na et al. [15]. The list of references is not in any case complete, for other
references concerning monitoring changes as well as other change point problems,
see, e.g., the discussion paper [11].

Concerning RCA models, Aue [2] investigated monitoring breaks in the mean
value of an RCA(1) process, Na et al. [14] proposed a monitoring procedure for de-
tection of structural parameter changes in RCA(1) models. Li et al. [13] generalize
results of [14] to monitoring changes in autoregressive parameters in RCA(p) mod-
els with diagonal matrices Σ t . All the mentioned papers work with the least squares
estimators (LSE) of the respective parameters.

In this paper we deal with a general RCA(p) model and with quasi-maximum
likelihood (QMLE) estimators.

The rest of the paper is organized as follows. In Sect. 15.2 we formulate the
conditions of stationarity and summarize some asymptotic properties of QMLE. In
Sect. 15.3 we formulate and prove the main results concerning monitoring proce-
dure.
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15.2 Preliminary Results

In this section we review basic properties of the RCA(p) models such as stationarity,
and consistency and asymptotic normality of quasi-maximum likelihood estimators
that we will use in our next considerations. For these purposes we assume here that
β t = β , Σ t = Σ , σ 2

t = σ 2 are constant for all t ∈ Z, and Bt = Σ1/2bt , Yt = σyt ,
i.e., we consider model

Xt = (β +Bt )TXt−1 + Yt =
(
β +Σ1/2bt

)TXt−1 + σyt , t ∈ Z (15.4)

where bt are zero mean random vectors with identity variance matrix and yt are
random variables with zero mean and unit variance.

Conditions of stationarity in this model were studied, e.g., by Anděl [1] and
Nicholls and Quinn [16]; Aue et al. [3] stated minimal moment conditions for sta-
tionarity in RCA(1) models. Results of Aue et al. [3] can be generalized to any
RCA(p) model as we will show below.

First, let us introduce some notation: let ‖ · ‖ be any norm in R
p , and ‖ · ‖M

be an operator norm defined on the set Mp of real p × p matrices A by ‖A‖M =
sup{‖Ax‖/‖x‖,x ∈ R

p,x �= 0}. Further, for any real x, let x+ = max(x,0). In the
sequel, ‖ · ‖ will be the Euclidean norm.

Assumption A1 (bt , yt ), t ∈ Z are iid pairs and {bt } and {yt } are mutually inde-
pendent sequences.

We see that under Assumption A1, {(bt , yt ), t ∈ Z} is strictly stationary end er-
godic process. Further put for any t ∈ Z

At =
(
β1 +Bt1,. . . , βp +Btp
Ip−1 0p−1

)
, Yt =

(
Yt

0p−1

)
(15.5)

with Ip−1 and 0p−1 denoting the (p− 1)-dimensional identity matrix and the (p−
1)-dimensional column zero vector, respectively. Then (15.4) can be written in a
vector form Xt =AtXt−1+Yt . Further, consider the top Lyapunov exponent of the
sequence {At }

λ= inf
t>0

1

t
E log‖At · · ·A1‖M . (15.6)

Assumption A2 E log+ ‖Y0‖<∞, E log+ ‖A0‖M <∞.

Lemma 15.1 Under Assumptions A1–A2, and for λ < 0, {Xt, t ∈ Z} is strictly
stationary process and

Xt =
∞∑

k=0

k∏

j=1

At−jYt−k. (15.7)
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Proof Since (15.4) has a vector representation Xt =AtXt−1+Yt , the proof follows,
e.g., from [6] or [5]. �

Nicholls and Quinn [16] studied both the LSE and QMLE of the parameters in
model (15.4) under Assumption A1, and under some additional assumptions on the
moments and the structure of random matrices proved their strong consistency and
asymptotic normality. Aue et al. [3] proved the strong consistency and asymptotic
normality of the QMLE in an RCA(1) model allowing a correlation between bt and
yt under minimal moment conditions. Strong consistency and asymptotic normal-
ity of QMLE in an RCA(p) model assuming general correlation structure between
random autoregression coefficients and the noise were established in [18].

Here we adapt the assumptions from [18] to model (15.4) satisfying assumptions
of Lemma 15.1. We have

EBt = 0, E
(
BtBTt

)=Σ; EYt = 0, EYt = σ 2; E(Bt Yt )= 0

and with the σ -field Ft = σ {(bs , ys), s ≤ t}
EXt |Ft−1 = βTXt−1; VarXt |Ft−1 =XTt−1ΣXt−1 + σ 2 = ωT zt−1 + σ 2

(15.8)

where we denoted ω = vechΣ and zt−1 = K vec(Xt−1XTt−1), vec is the operator
that is stacking the columns of any matrix one on top of the other in order from left
to right and K is so-called duplication matrix (see, e.g., [16], Chap. 1 for details).

In the next, we will assume that σ 2 > 0. If σij are elements of Σ , we put

η= (
β1, . . . , βp,σ11, σ22, . . . , σpp,σ21, . . . , σp1, . . . , σp,p−1, σ

2)T (15.9)

and define the compact set

Γ (a, b, c, d)= [−a, a]p × [1/b, b]p × [−c, c]p(p−1)/2

× [1/d, d] ⊂R
(p+1)(1+p/2) (15.10)

for some a, b, c, d > 0.
Obviously, θ = (βT ,ωT , σ 2)T is a continuous function of η and we define

the parametric space Θ = f (Γ ) where f is a continuous function f : Γ →
R
(p+1)(1+p/2) such that θ = (βT ,ωT , σ 2)T = f (η). We can see that Θ is a compact

subspace of R(p+1)(1+p/2).
GivenX0,X−1, . . . ,X−p+1, the conditional log-likelihood function ofX1, . . . ,Xn

under joint normality of (bt , yt ) is

Ln(θ)=−1

2

n∑

t=1

[
(Xt − βTXt−1)

2

ωT zt−1 + σ 2
+ log

(
ωT zt−1 + σ 2)

]
(15.11)

and without the normality assumption, the quasi-maximum likelihood estimator θ̂n
of the parameter θ , if we use the transformed log-likelihood ln(θ)=−2Ln(θ)/n, is
defined by

ln(̂θn)= inf
θ∈Θ

ln(θ). (15.12)
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Assumption A3 E‖(b0, y0)‖2 <∞.

Assumption A4 For any real numbers a1, . . . , ap,φ,ψ with aj �= 0 for j =
1, . . . , p,

P

(
p∑

j=1

ajb0j + y0 ∈ {φ,ψ}
)

< 1.

Assumption A5 E‖(b0, y0)‖4 <∞.

Assumption A6 True value θ0 is an inner point of Θ .
Note that

ln(θ) = 1

n

n∑

t=1

gt (θ),

gt (θ) = (Xt − βTXt−1)
2

ωT zt−1 + σ 2
+ log

(
ωT zt−1 + σ 2)

:= (Xt −mt(θ))
2

Vt(θ)
+ log

(
Vt (θ)

)
. (15.13)

Assumption σ 2 > 0 and the compactness of Θ ensure that infθ∈Θ Vt(θ)≥ δ > 0
for some δ > 0.

Let g′t (θ) and g′′t (θ) denote the gradient vector and the Hessian matrix of
gt (θ), respectively. It follows from the stationarity and ergodicity of {Xt } that
{g′t (θ)}, {g′′t (θ)} are strictly stationary and ergodic sequences, that are continuous
and bounded on Θ . Further, it can be shown that

E
∥∥g′1(θ0)

∥∥2
<∞, E sup

θ∈Θ

∥∥g′′1 (θ)
∥∥<∞ (15.14)

and according to [18], {g′′t (θ)} satisfies conditions of the uniform strong law of
large numbers. Moreover, {g′t (θ0)} is an Ft -ergodic strictly stationary martingale
difference sequence with finite variance.

Lemma 15.2 Let Assumptions A1–A4 hold and λ < 0, σ 2 > 0. Then, for θ0 ∈Θ ,
as n→∞,

θ̂n→ θ0 almost surely. (15.15)

Proof It is shown in [18] that Assumption A4 implies Assumption H3 there. Then
the proof follows from Theorem 1 in [18]. �

Lemma 15.3 Let Assumptions A1–A2, A4–A6 be satisfied, let λ < 0, σ 2 > 0.
Then, as n→∞,
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√
n(̂θn − θ0)→N

(
0,H−1DH−1) (15.16)

where D= Eg′1(θ0)g
′
1(θ0)

T , H= Eg′′1 (θ0) and D, H are non-singular matrices.

Proof See, e.g., [18], Theorem 2. �

15.3 Main Results

Now, let us consider model (15.1) and sequential testing of hypothesis (15.2) of no
change in parameters against alternative (15.3) that a change occurs at time K after
the monitoring was started. For this we introduce a stopping time

τ(m)= inf
{
k ≥ 1,

∣∣Q(m,k)
∣∣≥ c g(m,k)}

(with inf(∅) := +∞), where Q(m,k) is a detector statistic and q(m,k) is a bound-
ary function, c = c(α) > 0 is a constant such that limm→∞P(τ(m) <∞|H0) = α
(α ∈ (0,1) is the prescribed probability of a false alarm), and limm→∞P(τ(m) <
∞|H1)= 1 (the test procedure is consistent).

As a detector statistic we propose

Q(m,k)= D̂−1/2
m

1√
m

m+k∑

i=m+1

g′i (̂θm) (15.17)

where g′i (θ) is the gradient vector, θ̂m is the QMLE of θ based on the training
sample of size m and D̂m is a consistent estimator of D as given in Lemma 15.3,
based on the training sample. We can use, e.g., the estimator

D̂m = 1

m

m∑

i=1

g′i (̂θm)g′i (̂θm)T . (15.18)

As a boundary function we choose, similarly as in [10]

q(t)= (1+ t)(t/1+ t)γ , γ ∈ [0,1/2). (15.19)

The tunning constant γ can affect the ability of the test procedure to detect change
early (γ close to 1/2) or later (γ = 0).

Theorem 15.1 Let Assumptions A1–A2, A4–A6 be satisfied, and λ < 0, σ 2 > 0.
Let Q(m,k) be statistic (15.17) and D̂m −D= op(1). Then under H0, as m→∞,

P
(

max
1≤k<∞

∣
∣Q(m,k)

∣
∣/q(k/m)≤ x

)
→ P

(
sup

0<t<1

∣
∣W (t)

∣
∣/tγ ≤ x

)
(15.20)

where W is d-dimensional standard Wiener process with independent components,
d = (p+ 1)(1+ p/2) and | · | denotes the maximum norm.
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Proof The proof consists from a few quite standard steps. First, we will show that

sup
1≤k<∞

1

m1/2q(k/m)

∣∣∣∣∣

m+k∑

i=m+1

g′i (̂θm)−
(
m+k∑

i=m+1

g′i (θ0)− k

m

m∑

i=1

g′i (θ0)

)∣∣∣∣∣
= op(1).

(15.21)

But it follows quite easily if we recall that {g′i (θ0)} is a martingale difference se-
quence with the variance matrix D, use the Taylor expansion for g′i (̂θm) and apply
the uniform strong law of large numbers to {g′′i (θ)}, and the fact that |̂θm − θ | =
Op(m

−1/2), which follows from Lemma 15.3.
Next, according to Theorem 27.17 in [8], for any T > 0, as m→∞,

m−1/2
mt�∑

i=1

g′i (θ0)
D[0,T ]−→ WD(t) (15.22)

in the Skorokhod space Dd [0, T ], where {WD(t), t ∈ [0, T ]} is a zero mean Gaus-
sian process with EWD(t)WD(s)

T =min(t, s)D, and

m−1/2D−1/2

(
m+mt�∑

i=m+1

g′i (θ0)− t
m∑

i=1

g′i (θ0)

)
D[0,T ]−→ WI(1+ t)− (1+ t)WI(1).

(15.23)

It follows from the properties of the Wiener process thatWI(1+ t)− (1+ t)WI(1)
D=

(1+ t)W(t/1+ t) with {W(t), t > 0} denoting the standard Brownian motion.
In the next step we use the Hájek–Rényi inequality as in Lemma 6.6 of [4] (with

b(t)= ( t1+t )
γ ) and in combination with (15.21) and replacing D by D̂m we conclude

the proof after some careful computations. �

The critical values of the limiting process are known only for γ = 0 and are
tabulated for some values of p, e.g., in [15] or in [13]; otherwise they should be
approximated by simulations from the limiting process.

Now, let us consider the alternative hypothesis. We study the model

Xt =
(
β0 +Σ

1/2
0 bt

)TXt−1 + σ0yt , t ≤m+K
= (

β1 +Σ
1/2
1 bt

)TXt−1 + σ1yt , t > m+K (15.24)

and parameters θ0 = (βT ,ωT , σ 2)T , and θ1 = (βT1 ,ωT1 , σ 2
1 )
T before and after the

change, respectively, with ω = vechΣ as above and ω1 = vechΣ1. Define matrix
A1
t in the same way as in (15.5) with the components of β being replaced by those

of β1. The top Lyapunov coefficient λ1 is defined analogously. Assuming λ1 <

0 together with A1 and A2 we have assured that the process after the change is
stationary and can be written in the form

Xt =A1
t Xt−1 +Yt , t > m+K. (15.25)
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Let ht (θ) be the scores (15.13) defined with the parameters of the process (15.25),
Eht (θ) := h̄(θ) and h̄′(θ0) �= 0. Let there is a neighborhood U of θ0 such that
h̄(θ) and h̄′(θ), h̄(′′θ) exist and are continuous for each θ ∈ U . Let K = Km and
lim supK/m<∞ as m→∞.

Theorem 15.2 Let us consider model (15.24) and suppose that Assumptions A1–
A2, A4–A6 hold and λ < 0, λ1 < 0, σ 2 > 0, σ 2

1 > 0 and the above regularity condi-
tions for h̄(θ) are satisfied. Then

max
1≤k<∞

Q(m,k)/q(k/m)→∞ in probability. (15.26)

Proof It follows in the same way as the proof of Theorem 3.2 in [4], utilizing rep-
resentation (15.7), (15.25) and results from Lemma 2.4 in [17] applied to ‖At‖ and
‖A1
t ‖, respectively. �
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Chapter 16
Detecting Changes in Spatial-Temporal Image
Data Based on Quadratic Forms

Annabel Prause and Ansgar Steland

Abstract We consider the problem to monitor a sequence of images that may be
affected by spatial as well as temporal dependencies. In order to detect a change,
we consider a detector based on linear combinations of quadratic forms, thus allow-
ing to consider linear contrasts of subimages in terms of their average grey value.
We derive the asymptotic distribution of the proposed detector and the underlying
empirical processes under the no-change null hypothesis and general alternatives.

16.1 Introduction

Suppose that we observe sequentially a sequence of images represented by two-
dimensional matrices of grey values. In many areas of applications that use imaging
technologies, those images represent both information about physical objects and
information about the spatial distribution of a characteristic of interest.

The approach is motivated by the analysis of electroluminescence (EL) images of
solar panels, which allow to investigate the physical properties of the photovoltaic
effect on a microscopic scale, as they show the irradiance emitted by the solar cells
when exposed to a voltage. In such an EL image, the boundaries of the cells and
the grid fingers, which collect the electrons when the cell operates under sun light
and cover a part of the cell, are usually visible. Only the cell areas between those
grid fingers define the areas of interest, e.g. in order to detect change-points where
suspicious areas or local defects and damages such as shunts, cell breaks, which lead
to inactive cell areas, or micro cracks, which are visible but do not lead to inactive
areas, grow or have to be classified as confirmed defects.

Motivated by a postfiltering smooth correction of the Shannon–Whittaker in-
terpolation series, we propose a detection procedure based on quadratic forms of
reconstructed images. It turns out that for image data with fixed spatial sampling
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rates the asymptotics can be derived on the grounds of the results obtained by [3],
provided that the spatial-temporal noise is ϕ-mixing. For monitoring schemes ad-
dressing general high-dimensional data, increasing sampling rates, more general
pixel-wise weighting schemes and asymptotic results going beyond those discussed
here, we refer to [6, 7] and [8].

16.2 Model and Assumptions

Let us consider a sequentially observed time series of images represented by Ny ×
Nx -dimensional matrices

Yi = (Yi,ν,μ)1≤ν≤Ny,1≤μ≤Nx , i = 1, . . . , n,

obtained by discretely sampling a true image (signal) f : [0, τ̄ ]→R
Ny×Nx ,

f(t)= (
f (ν,μ)(t)

)
1≤ν≤Ny,1≤μ≤Nx , t ∈ [0, τ̄ ],

at an equidistant grid iτ , 1 ≤ i ≤ n, where τ = τ̄ /n is the sampling period. We
assume that the image pixels at time iτ satisfy the model equation

Yi = f(iτ )+ εi, i = 1, . . . , n, n≥ 1,

where

εi = (εi,ν,μ)1≤ν≤Ny,1≤μ≤Nx , i ≥ 1,

are matrices of mean zero error terms modeling the spatial-temporal noise.
We are interested in detecting a change in the sequence of images and thus con-

sider the change-point model

f (ν,μ)(t)= f (ν,μ)0 (t)+ g(ν,μ)(t)1(t ≥ qτ), t ∈ [0, τ̄ ],
for ν = 1, . . . ,Ny and μ= 1, . . . ,Nx . Here f0 = (f (ν,μ)0 )ν,μ is the reference image
when no change is present and (g(ν,μ))ν,μ models the departure from the reference
model in case that g(ν,μ) �= 0. There is a change if g �= 0, i.e. for at least one pair
(ν,μ), g(ν,μ) �= 0 on [0, τ̄ ], and that change occurs, by definition, at the time instant
q = inf{n0 ≤ i: g(iτ ) �= 0}<∞. Clearly, if there is no change, then q =∞, since
inf∅ =∞. Notice that our change-point model covers jump alternatives as well as
smooth transitions as special cases.

16.3 Image Estimation and Detection

Fixing a pixel location (ν,μ), we sequentially observe an equidistantly sampled dis-
cretized signal f (ν,μ)(t), t ∈ [0, τ̄ ], as in [3]. Motivated by the Shannon/Whittaker
cardinal series

∑
k∈Z f (kτ)sinc(Ω(t − kτ)) for a bandlimited real-valued signal f
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with bandwidthΩ (i.e. its Fourier transform is supported on [−Ω,Ω]), we consider
the post-filtering reconstruction,

f̂ (ν,μ)n = τ
n∑

i=1

Yi,ν,μϕ(t − iτ ),

where ϕ(x)= sin(xΩ)/πx, obtained by applying an ideal low pass filter with band-
width Ω to the truncated series. This estimator is known to be consistent under cer-
tain assumptions, see [4] and [5]. In [3] it has been proposed to base change-point
detectors on the empirical process

F (ν,μ)
n (s, t)=√τ

ns�∑

i=1

[
Yi,ν,μ − f (ν,μ)0 (iτ )

]
ϕ(t − iτ ), s ∈ [0,1], t ∈ [0, τ̄ ],

by applying an appropriate norm ‖ • ‖ with respect to t and providing a signal at
time instant k ≥ n0 if ‖F (ν,μ)

n (k/n,•)‖ exceeds a control limit c for the first time.
Here n0 = s0n�, 0< s0 < 1, is the start of monitoring and Y1, . . . , YL, is a learning
sample of size L= n0 − 1 assumed to satisfy the non-contamination hypothesis of
no change.

To obtain a univariate detector from an image matrix I= (Iν,μ)ν,μ, we consider
the quadratic form Q(I)= v′Iw for given weighting vectors v ∈R

Ny and w ∈R
Nx .

When using normalized binary vectors corresponding to the x- and y-coordinates
of the pixels defining a rectangular subimage,Q(I) is the average grey value of this
focus area. More generally, we also study linear combinations of quadratic forms,

T (I)=
J∑

j=1

v(j)′Iw(j), v(j) ∈R
Ny , w(j) ∈R

Nx ,

which allows to consider linear contrasts of average grey values of J rectangular
subimages.

Thus we are led to the associated process

Gn(s, t)= v′Fn(s, t)w, s ∈ [0,1], t ∈ [0, τ̄ ].
The proposed detector is now defined by the stopping time

Mn =min
{
n0 ≤ k ≤ n: max

t∈[0,τ̄ k/n]
∣∣Gn(k/n, t)

∣∣> cM
}
,

where the control limit cM is selected such that the type I error rate is controlled
in the limit, i.e. P0(Mn < n)→ α, n→∞, for some preassigned α ∈ (0,1). The
asymptotic limit theory below shows that the control limit cM still depends on a
constant σ summarizing the dependencies. Given some consistent estimate σ̂ 2

L, one
may use the estimated control limit ĉM = σ̂LcM(1), where cM(1) is obtained by
simulation using the constraint σ = 1, as discussed in [3].
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16.4 Main Results

Let us recall the following facts about random fields indexed by Z
3. A random field

{ξ(i,j,k): (i, j, k) ∈ Z
3} is stationary if its distribution is shift-invariant. Suppose that

E(ξ2
0,0,0) <∞ and put μξ =E(ξ0,0,0). Then the covariance function

c(i, j)=E(ξi −μξ )(ξj −μξ ),
where i = (i1, i2, i3), j = (j1, j2, j3) ∈ Z

3, is a function of i− j. If it is a function
of ‖i− j‖, it is called isotropic, but our results also hold true for anisotropic fields.
To quantify the degree of dependence present in such a stationary random field
{ξ(i,j,k): (i, j, k) ∈ Z

3}, it is convenient to work with the ϕ-mixing coefficient as
defined in [2]. For 1 ≤ j ≤ 3 the lag-k ϕ-mixing coefficient with respect to a split
of coordinate j is defined as

ϕ(j, k)= sup
{∣∣P(B|A)− P(B)∣∣: A ∈A −(j, k), P (A) > 0, B ∈A +(j, k)

}
,

where A −(j, k) = σ({ξ(i1,i2,i3): (i1, i2, i3) ∈ Z
3, ij ≤ k}) and A +(j, k) is defined

as A −(j, k) with ≤ replaced by ≥. The stationary random field is called ϕ-mixing,
if the sequence of ϕ-mixing coefficients

ϕ(k)= max
1≤≤3

ϕ(, k), k ∈N,

satisfies ϕ(k)→ 0, as k→∞. Our assumption on the random field is as follows.

Assumption (A) {εi,ν,μ: i ≥ 1, 1≤ ν ≤Ny, 1≤ μ≤Nx} is the subarray corre-
sponding to the index set N× {1, . . . ,Ny} × {1, . . . ,Nx} of a mean zero stationary
second order ϕ-mixing random field {ε(i,ν,μ): (i, ν,μ) ∈ Z

3} with covariance func-
tion γi(h, )=E(ε0,0,0εi,h,), i, h,  ∈ Z, ϕ-mixing coefficients satisfying

∞∑

k=1

ϕ1/2(k) <∞ (16.1)

and 0< σ 2 =∑
(i,h,)∈Z3 γi(h, ) <∞.

Proposition 16.1 Under Assumption (A) the time series ξn(v,w)= v′εnw, n≥ 1,
is strictly stationary with mean zero, E|ξ1(v,w)|2 <∞ and autocovariance func-
tion

γh =E
(
ξ1(v,w)ξ1+|h|(v,w)

)=
Ny∑

k=1

Nx∑

l=1

Ny∑

s=1

Nx∑

t=1

vkwlvswtE(ε0,0,0εh,s−k,t−l )

for h ∈ Z satisfying σ 2
ξ =

∑
h∈Z γh <∞. Further, ξn(v,w), n≥ 1, is ϕ-mixing with

mixing coefficients ϕk , k ≥ 1, satisfying
∑∞
k=1 ϕ

1/2
k <∞.

Proof The elementary inequality |v′Aw| ≤ ‖v‖2‖w‖2‖A‖F , where ‖A‖F denotes
the Frobenius norm of a matrix A with entries aij given by ‖A‖2

F =
∑
i,j a

2
ij , shows

that the second moments are finite, since E|v′εiw|2 ≤ ‖v‖2
2‖w‖2

2E‖εi‖2
F leads to
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E
∣∣v′εiw

∣∣2 ≤ ‖v‖2
2‖w‖2

2

Ny∑

ν=1

Nx∑

μ=1

E
(
ε2
i,ν,μ

)= ‖v‖2
2‖w‖2

2NxNyγ1,0,0 <∞,

for all i ≥ 1. The formula for the covariance function follows by a straightfor-
ward calculation and one easily verifies that

∑
h∈Z |γh| <∞. Notice that A +

k =
σ({v′εiw: i ≥ k}) ⊂ σ({εi: i ∈ Z

3, i1 ≥ k}) = A +(1, k), and analogously A −
k =

σ({v′εiw: i ≤ k})⊂A −(1, k), for all k ≥ 1. Thus the sequence ξn(v,w), n≥ 1, is
ϕ-mixing with coefficients ϕk satisfying

ϕk = sup
A∈A −

0 ,P (A)>0,B∈A +
k

∣∣P(B|A)− P(B)∣∣≤ max
1≤j≤3

ϕ(j, k)= ϕ(k), k ≥ 1,

such that
∑∞
k=1 ϕ

1/2
k ≤∑∞

k=1 ϕ(k)
1/2 <∞. �

In what follows, {B(t): t ∈ [0,1]} denotes a standard Brownian motion. Our first
result is as follows.

Theorem 16.1 Suppose that Assumption (A) holds and σ 2
ξ > 0. Under the no

change null hypothesis, we have

Gn(s, t)⇒F (s, t), with F (s, t)=√τ̄ σξ
∫ s

0
ϕ(t − τ̄ u) dB(u),

as n→∞, where σ 2
ξ is defined in Proposition 16.1, and

Mn
d→ inf

{
s0 ≤ s ≤ 1 : sup

t∈[0,sτ̄ ]
∣∣F (s, t)

∣∣
}
, n→∞.

Proof For s ∈ [0,1] and t ∈ [0, τ̄ ],Gn(s, t)= v′Fn(s, t)w attains the representation

Gn(s, t)=√τ
ns�∑

i=1

v′
[
Yi − f0(iτ )

]
wϕ(t − iτ )=√τ

ns�∑

i=1

v′εiwϕ(t − iτ ).

By Proposition 16.1 the sequence ξi(v,w)= v′εiw, i ≥ 1, is a stationary ϕ-mixing
second order time series with mixing coefficients ϕk , k ≥ 1, satisfying

∑∞
k=1 ϕ

1/2
k <

∞. Hence, by virtue of [1, Th. 20.1], the univariate version of [2], it satisfies the
invariance principle 1√

n

∑nu�
i=1 v′εiw⇒ σξB(u), as n→∞. Now one may argue as

in [3]. �

The unknown long run variance parameter σ 2
ξ can be estimated from the learning

sample using an estimator similar to those proposed in [3] and [6]. For that, take a
weighting function wm(h) with tuning parameter m=mn. Define the estimator

σ̂ 2
ξ :=

∑

|h|≤m
wm(h)

Ny∑

k=1

Nx∑

l=1

Ny∑

s=1

Nx∑

t=1

vkwlvswt γ̂ (h, s − k, t − l),
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where γ̂ (h, s− k, t − l) is the (consistent) estimator from [6] for the autocovariance
E(ε0,0,0εh,s−k,t−l ). With similar techniques as those in [6] we can show that σ̂ 2

ξ is a

consistent estimator for σ 2
ξ under certain regularity conditions, including uniformly

bounded weights with wm(j)→ 1 as m→∞ as well as m3/n→ 0.
Next, we also want to derive the limit distribution of Gn under local alternatives.

To be more precise, we now assume that the image pixels at time iτ satisfy the
model equation

Yi = fn(iτ )+ εi, i = 1, . . . , n, n≥ 1,

where

f (ν,μ)n (t)= f (ν,μ)0 (t)+ δ
(ν,μ)(t)

nβ
, t ∈ [0, τ̄ ].

for ν = 1, . . . ,Ny and μ = 1, . . . ,Nx and some β > 0. Here, fn is the true signal
tending to f0 for n→∞. We impose the following assumption on δ.

Assumption (B) Suppose that each entry of δ = (δ(ν,μ))ν,μ is either

(a) continuous or
(b) of bounded variation.

Theorem 16.2 Suppose that Assumptions (A) and (B) hold. Under the local alter-
native with β = 1/2, we have

Gn(s, t)⇒F δ(s, t), with F δ(s, t)=F (s, t)+ 1√
τ

∫ sτ

0
ϕ(t − u)δv,w(u) du,

as n→∞, for δv,w(u)= v′δ(u)w.

Proof We have for s ∈ [0,1] and t ∈ [0, τ̄ ],

Gn(s, t) = √τ
ns�∑

i=1

v′εiwϕ(t − iτ )+√τ
ns�∑

i=1

v′δ(iτ )wϕ(t − iτ )

=: T (1)n (s, t)+ T (2)n (s, t).

Since an arbitrary linear combination of continuous functions (resp. functions of
bounded variation) is also continuous (resp. of bounded variation), we have that
δv,w(u)= v′δ(u)w is continuous (resp. of bounded variation) as well. Thus, we can
argue as in [3] and the assertion follows. �

Remark 16.1 Similar as in [3] we have T (2)n (s, t) → 0 (and thus Gn(s, t) ⇒
F (s, t)) for β > 1/2 and T (2)n (s, t)→∞ for β < 1/2 as n→∞. This means
that for β > 1/2 it is impossible to detect a change whereas it is rather simple for
β < 1/2.
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The above results help in identifying when the procedure works. First notice
that it is clear that a time-constant alternative δ(u) = δ that lies in a subspace
span{bic′i : 1 ≤ i ≤ m} cannot be detected if v ⊥ span{bi} or wi ⊥ span{ci}. More
subtle is the question whether there are situations where the change cancels out, i.e.
where

δv,w(u)= v′δ(u)w=
Ny∑

k=1

Nx∑

l=1

vkwlδ
(k,l) ≡ 0.

This can happen, for example, if the components of δ are linearly dependent func-
tions. If, on the contrary, they are independent, we know that δv,w �= 0 for all choices
of v,w �= 0. A simple criterion to check if a given set of (sufficiently smooth) func-
tions g1, . . . , gn on the interval I is linearly independent is to consider the Wronski
determinant which is defined as

W(g1, . . . , gn)(t)= det

⎛

⎜⎜⎜
⎝

g1(t) g2(t) . . . gn(t)

g
(1)
1 (t) g

(1)
2 (t) . . . g

(1)
n (t)

...
. . .

...

g
(n−1)
1 (t) g

(n−1)
2 (t) . . . g

(n−1)
n (t)

⎞

⎟⎟⎟
⎠

for t ∈ I . Here, g(n)i denotes the n-th derivative of the function gi . If

W(g1, . . . , gn)(t0) �= 0

for some t0 ∈ I , the functions g1, . . . , gn are linearly independent on I . Note, how-
ever, that linearly independent functions can be linearly dependent on subintervals
of I . For example, if g1(t) = sin(t)1[0,π](t) and g2(t) = sin(t)1(π,2π](t), the two
functions are linearly independent on [0,2π], but linearly dependent on both [0,π]
and (π,2π].

Furthermore, the diagonal elements of δ cancel out in δv,w if v and w are orthog-
onal, i.e. if v′w= 0.

Generalizing the process Gn let us now study the process GJn defined by

GJn (s, t)=
J∑

j=1

v(j)
′
Fn(s, t)w(j), s ∈ [0,1], t ∈ [0, τ̄ ].

The question arises, whether this process still fulfills a functional limit theorem as
in Theorem 16.1. Hence, we first establish a result similar to Proposition 16.1.

Proposition 16.2 The time series ξJn (v,w) =
∑J
j=1 v(j)

′
εnw(j), n ≥ 1, is strictly

stationary with mean zero,

E
∣∣ξJ1 (v,w)

∣∣2 <∞
and autocovariance function γ Jh =E(ξ1(v,w)ξ1+|h|(v,w)) given by

γ Jh =
Ny∑

k=1

Nx∑

l=1

Ny∑

s=1

Nx∑

t=1

J∑

j=1

J∑

m=1

v
(j)
k w

(j)
l v

(m)
s w

(m)
t E(ε0,0,0εh,s−k,t−l )
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for h ∈ Z satisfying (σ Jξ )
2 =∑

h∈Z γ Jh <∞. Further, ξJn (v,w), n≥ 1, is ϕ-mixing

with mixing coefficients ϕk , k ≥ 1, satisfying
∑∞
k=1 ϕ

1/2
k <∞.

Proof Using an estimate as in the proof of Proposition 16.1 we obtain

E
∣∣ξJ1 (v,w)

∣∣2 ≤E
(
J∑

j=1

∣∣v(j)
′
ε1w(j)

∣∣
)2

≤
(
J∑

j=1

‖vj‖2‖wj‖2

)2

E
(‖ε1‖2

F

)

with E(‖ε1‖2
F ) = NxNyγ0,0,0 such that the second moments are finite. The

covariance function follows again by a straightforward calculation. Set C =
max{v(j)k ,w(j)l , j ∈ {1, . . . , J }, k ∈ {1, . . . ,Ny}, l ∈ {1, . . . ,Nx}}. Then, σ 2

ξ <∞
follows, since

∑

h∈Z

∣
∣γ Jh

∣
∣≤ CJ 2

∑

h∈Z

Ny−1∑

k=−(Ny−1)

Nx−1∑

l=−(Nx−1)

∣
∣E(ε0,0,0εh,k,l)

∣
∣

≤ CJ 2
∑

(h,k,l)∈Z3

∣∣γh(k, l)
∣∣<∞.

The rest of the proof follows now along the lines of the proof of Proposition 16.1. �

Now, we directly obtain the following theorem.

Theorem 16.3 Suppose that Assumption (A) holds. Under the no change null hy-
pothesis, we have

GJn (s, t)⇒F (s, t), n→∞, with F (s, t)=√τ̄ σ Jξ
∫ s

0
ϕ(t − τ̄ u) dB(u).
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Chapter 17
Optimal Designs for Steady-State Kalman
Filters

Guillaume Sagnol and Radoslav Harman

Abstract We consider a stationary discrete-time linear process that can be observed
by a finite number of sensors. The experimental design for the observations consists
of an allocation of available resources to these sensors. We formalize the problem
of selecting a design that maximizes the information matrix of the steady-state of
the Kalman filter, with respect to a standard optimality criterion, such as D- or
A-optimality. This problem generalizes the optimal experimental design problem
for a linear regression model with a finite design space and uncorrelated errors.
Finally, we show that under natural assumptions, a steady-state optimal design can
be computed by semidefinite programming.

17.1 Introduction

We consider a stationary discrete-time linear process with a state vector xt ∈R
n:

xt = Fxt−1 +Lνt (t = 1,2, . . .) (17.1)

where F is an n×n transition matrix, L is an n×  noise selection matrix, and νt ∼
N (0, I) is a process noise. In addition, we assume x0 ∼N (x̂0,Σ0). Uncorrelated
observations y(1)t , . . . ,y

(s)
t of the process are available at each time step:

∀i = 1, . . . , s, y(i)t =Hixt + v(i)t
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where the ith observation matrix Hi is ri × n and the measurements errors satisfy
v(i)t ∼N (0, σ 2

i Iri ). We can group the measurements at time t , which gives a multi-
dimensional observation

yt =Hxt + vt (17.2)

of size r =∑s
i=1 ri , with H = [HT1 , . . . ,HTs ]T , and vt ∼N (0,R) where R is the

r × r block diagonal matrix whose ith diagonal block is σ 2
i Iri . The random vectors

{x0, ν1, . . . , νt , . . . ,v1, . . . ,vt , . . .} are assumed to be mutually independent.
In this article, we are concerned with the case where the variance σ 2

i depends
on the quantity wi of resources dedicated to the ith observation. More precisely,
we assume that σ 2

i = 1
μi(wi)

, where μi is a nondecreasing, concave and continuous
function mapping R+ onto itself, and such that μi(0) = 0. The interpretation for
wi = 0 is that σ 2

i =+∞, meaning that y(i)t is unobserved if no resource is allocated
to the ith observation point. The vector w = [w1, . . . ,ws] ∈ R

s+ will be called a
measurement design, or simply a design for the dynamic process (17.1)–(17.2).

The problem studied in this paper is the optimal allocation of resources to the s
observation points, when the resources are limited and the design w must be selected
within a compact set W ⊂R

s+ prior to the beginning of the dynamic process.
The process described by Eqs. (17.1)–(17.2) contains the natural ingredients to

run a Kalman filter, cf. Eqs. (17.4)–(17.8), which yields at each time t an unbiased
estimator x̂t of xt that is linear with respect to the observations y1, . . . ,yt , and with
Loewner-minimum covariance matrix in the class of all linear unbiased estimators
of xt ; see, e.g., [15, Sect. 5.2]. Under standard assumptions (see Sect. 17.2), the
information matrix Mt , which is defined as the inverse of the variance-covariance
matrix Σt of the error (x̂t − xt ), converges to a constant matrix M∞. This limit
depends only on the design w (and not on the initial state x0 or the measurements
y1,y2, . . .), and is the unique positive definite solution X of the discrete algebraic
Riccati equation (written here in information form):

X = (
FX−1FT +LLT )−1 +M(w), (17.3)

where M(w) := ∑s
i=1μi(wi)H

T
i Hi . To stress this dependency, we denote by

M∞(w) the unique positive definite solution X of (17.3). A natural approach
hence consists in choosing w ∈ W so as to maximize an appropriate scalarization
Φ(M∞(w)) of the steady-state information matrix. The main result of this paper
(Theorem 17.1) shows that under natural conditions on Φ(),μi() and W , this prob-
lem can be solved using semidefinite programming (SDP).

The problem of maximizing Φ(M∞(w)) over W is in fact a generalization of a
classical problem which has been extensively studied by statisticians: in the stan-
dard optimal experimental design problem, the quality of a design w is measured by
a function of the form w→Φ(M(w)), whereM(w)=∑s

i=1wiH
T
i Hi . This corre-

sponds to the expression of M∞(w) when no information can be gained from the
observation of a dynamic process (so “LLT →+∞”), and μi(wi) = wi for all i.
The approach presented in this paper thus extends the standard optimal design the-
ory to deal with the situation where information can be gained from the knowledge
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of the system dynamics. We refer the reader to Pukelsheim [11] for a comprehensive
monograph on the theory of optimal experimental designs.

Related Work The results presented in this paper answer a question raised in [16]
by Singhal and Michailidis, who have considered a problem applicable in telecom-
munications, where F = In and each Hi has a single nonzero entry per row. The
authors propose to use Second-Order Cone Programming to maximize the smallest
element of the diagonal steady-state information matrix, i.e., they use the criterion
of E-optimality. In contrast, the semidefinite programming approach of the present
paper allows one to handle non-diagonal covariance matrices.

Steady-state sensor optimization problems have been considered since the 70’s,
but almost all authors consider a continuous time model dxt

dt
= Fxt +Lvt , and op-

timize the location of sensors over a continuous space, see e.g. [1, 5, 12]. A recent
reference is [10], where the design weights wi are interpreted as probabilities to ac-
tivate the ith sensor at time t , and are optimized by semidefinite programming with
respect to a specific criterion, which is in fact weighted A-optimality. One of the
rare papers that considers a discrete time model is [7], where a gradient descent is
used to minimize a bound of the steady-state covariance matrix.

Notation Throughout this article, we denote by Sn (S+n , S++n ) the set of n × n
symmetric (positive semidefinite, positive definite) matrices. The symbol  denotes
the Löwner ordering (A  B ⇐⇒ B − A ∈ S

+
n ), and A ≺ B means that B − A ∈

S
++
n .

17.2 The Optimal Design Problem in a Filtering Context

Assume (temporarily) that wi > 0 for all i ∈ {1, . . . , s}, so that R < +∞ and the
Kalman filter equations read (see e.g. [15]):

x̂t+1|t = F x̂t , (17.4)

Σ̂t+1|t = FΣtFT +LLT , (17.5)

Kt = Σ̂t+1|tHT
(
HΣ̂t+1|tHT +R

)−1
, (17.6)

x̂t+1 = x̂t+1|t +Kt(yt+1 −H x̂t+1|t ), (17.7)

Σt+1 = (In −KtH)Σ̂t+1|t , (17.8)

where x̂t+1|t is the a-priori estimator of xt+1 based on the observations up to the
time t , Σ̂t+1|t is the covariance matrix of x̂t+1|t , the matrix Kt is the so-called
optimal Kalman gain, x̂t+1 is the a-posteriori estimator of xt+1 based on the obser-
vations up to the time t + 1, and Σt+1 is the covariance matrix of x̂t+1.

Provided that (i) R is positive definite; (ii) the pair (F,L) is controllable [9,
Sect. C3], i.e. rank[L,FL, . . . ,F n−1L] = n; and (iii) the pair (F,H) is de-
tectable [9, Sect. C4], that is, rank[FT − λIn,HT ] = n for all λ ∈ C such that
|λ| ≥ 1, it is well known that the sequence of covariance matrices of the a-priori
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estimator of the state (Σ̂t+1|t )t∈N converges to a constant matrix Σ−∞, that is the
unique positive definite solution of the discrete algebraic Riccati equation (DARE),
see [15, Sect. 7.3]. In this article, we work with information matrices rather than
with covariance matrices, and so we shall consider an alternative Riccati equa-
tion in information form (17.3), which we call I-DARE. To derive it, note that
the correction equation (17.8) of the Kalman filter is sometimes given under an
alternative form, which can be obtained by using the Woodbury matrix identity:
Σt+1 = (Σ̂−1

t+1|t +HTR−1H)−1. This gives a simple update formula for the infor-

mation matrixMt :=Σ−1
t of the filter, which implies the I-DARE, see Eq. (17.3):

Mt+1 = Σ̂−1
t+1|t +HT R−1H = (

FM−1
t F

T +LLT )−1 +
s∑

i=1

μi(wi)H
T
i Hi

︸ ︷︷ ︸
M(w)

.

Now, let us remove the assumption that wi > 0 for all i ∈ {1, . . . , s}: Re-
call that wi = 0 means that the sequence (y(i)t ) is unobserved. Hence we define
the reduced observation matrix Hw = [HTi1 , . . . ,HTiq ]T , where {i1, . . . , iq} := {i ∈
{1, . . . , s}: wi > 0}. Similarly, Rw is the block diagonal matrix whose kth diagonal
block is 1

μik (wik )
Irik . The equations of the Kalman filter are now obtained by substi-

tuting Hw for H and Rw for R in Eqs. (17.4)–(17.8). This leaves the I-DARE (17.3)
unchanged, since HTwR

−1
w Hw = ∑

i: wi>0μi(wi)H
T
i Hi =

∑s
i=1μi(wi)H

T
i Hi =

M(w).
Now, for the rest of this article we assume that

A1. The pair (F,L) is controllable.
A2. The subset of detectable designs, W + := {w ∈ W : (F,Hw) is detectable} is

nonempty.
A3. The criterion Φ :Sn+ *→ R+ is isotonic (i.e., A , B -⇒ Φ(A) ≥ Φ(B)), con-

tinuous, concave, and Φ(M)= 0 if and only ifM is singular.

Assumption A3 is satisfied by most common criteria used in optimal design, such

asΦD :M→ detM
1
n ,ΦE :M→ λmin(M) orΦA :M→ n/ traceM−1, see [11]. An

isotonic criterion Φ is said to be strictly isotonic if in addition it satisfies A �= B ,
A, B -⇒Φ(A) >Φ(B). For example, ΦE is isotonic but not strictly isotonic.

Assumptions A1 and A2 ensure that Eq. (17.3) has a unique positive definite
solution, which we denote byM∞(w), for all w ∈W +:

Lemma 17.1 Equation (17.3) has a positive definite solution if and only if the
design w is detectable, i.e. w ∈W +. Moreover, this solution is unique.

We omit the proof of this result for the sake of length.1 The idea is to show that
there is a one-to-one correspondence between the positive definite solutions of the

1The proof is given in an Appendix of this article, available at http://dx.doi.org/10.1007/978-3-319-
13881-7_17.

http://dx.doi.org/10.1007/978-3-319-13881-7_17
http://dx.doi.org/10.1007/978-3-319-13881-7_17
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standard DARE and its counterpart in information form I-DARE; then we can use
known results on the DARE (see e.g. [15, Theorems 23 and 25]).

So the problem of maximizing Φ(M∞(w)) over W + is well defined, and can be
rewritten as follows:

sup
w∈Rs , X∈Sn

Φ(X)

s.t. X = (
FX−1FT +LLT )−1 +

s∑

i=1

μi(wi)H
T
i Hi

X . 0, w ∈W +.

(17.9)

17.3 Semidefinite Programming Formulation

We next give a series of propositions that basically show that the Riccati equation
in (17.9) may be replaced by a linear matrix inequality (LMI). In fact, Proposi-
tions 17.2 and 17.3 are similar to existing results concerning the inequality version
of the standard DARE,2 see e.g. Appendix E in [9]. However, our LMI represen-
tation of the closure of the set {X . 0 : X  (FX−1FT + LLT )−1 +M(w)}, cf.
Proposition 17.1, is completely new. Its proof is inspired by the LMI representation
of the harmonic mean of two matrices, cf. § 4.1 in [3], and is presented at the end of
this section.

Let us first introduce the sets

X (w) :=
{

X , 0 : ∃U ∈ Sn : (i): X =U +M(w)

(ii):
(
X− FT UF FT UL

LT UF I −LT UL
)
, 0

}

,

(17.10)

and

X +(w) := {
X . 0: f (X,w), 0

}
,

where f (X,w) := (FX−1FT +LLT )−1 +M(w)−X.
The first proposition of this series shows the relation between these two sets:

Proposition 17.1 For all designs w ∈W , we have X (w)∩ S
++
n =X +(w).

Then, we shall see that X (w) is bounded, and hence X +(w) is bounded as well:

2Proofs are given in an Appendix of this article, available at http://dx.doi.org/10.1007/978-3-319-
13881-7_17.

http://dx.doi.org/10.1007/978-3-319-13881-7_17
http://dx.doi.org/10.1007/978-3-319-13881-7_17
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Proposition 17.2 For all designs w ∈ W , the set X (w) is bounded. More-
over, there exists a constant α ≥ 0 such that X ∈ X (w) -⇒ ‖X‖2 ≤ α(1 +∑
i μi(wi)‖Hi‖2

2), where ‖M‖2 denotes the spectral norm ofM .

This proposition will be useful to show that X +(w) has a maximal element:

Proposition 17.3 Assume that X +(w) is nonempty. Then, there is a matrix X∗w ∈
X +(w) such that

X ∈X +(w)-⇒X  X∗w.
Moreover, this maximal element necessarily satisfies f (X∗w,w) = 0, so that w is
detectable and X∗w =M∞(w).

In consequence, we can deduce equivalent statements for a design w to be de-
tectable:

Corollary 17.1 The following statements are equivalent:

(i) The design w is detectable, i.e. w ∈W +;
(ii) The I-DARE equation f (X,w)= 0 has a positive definite solution X . 0;

(iii) The LMI f (X,w), 0 has a positive definite solution X . 0;
(iv) The set X +(w) is nonempty;
(v) There is a pair (X,U) ∈ S

++
n × Sn satisfying the conditions (i) and (ii) of the

definition (17.10).

Proof The equivalence (i) ⇐⇒ (ii) follows from Lemma 17.1 and (iii) ⇐⇒
(iv) ⇐⇒ (v) is clear from the definitions of X +(w) and X (w) and Proposi-
tion 17.1. The implication (ii)-⇒ (iii) is trivial, and by Proposition 17.3 we have
(iv)-⇒ (i). Hence the corollary is proved. �

The main result of this article follows. It shows that Problem (17.9) can be re-
formulated by using linear matrix inequalities. As a consequence, a solution w of
the steady-state optimal design problem (17.9) can be computed by semidefinite
programming (under natural assumptions on Φ,W and the functions μi , see Re-
mark 17.1):

Theorem 17.1 Consider the following optimization problem:

max
w∈Rs
X,U∈Sn

Φ(X) (17.11a)

s.t.

(
X− FT UF FT UL

LT UF I −LT UL
)
, 0 (17.11b)

X =U +
s∑

i=1

μi(wi)H
T
i Hi (17.11c)
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X , 0 (17.11d)

w ∈W . (17.11e)

This problem has a solution, i.e. the problem is bounded and the maximum is
reached for a triple (w∗,X∗,U∗). Moreover, w∗ is a solution of the steady-state op-
timal design problem, max{Φ(M∞(w)) : w ∈W +}. If in addition Φ is strictly iso-
tonic, thenX∗ coincides with the optimal steady-state information matrixM∞(w+).

Proof We will prove this theorem in three steps:

1. We observe that the feasibility set of Problem (17.11a)–(17.11e) is compact,
which guarantees the existence of an optimal solution (w∗,X∗,U∗) by conti-
nuity of Φ . This is a direct consequence of the bound in Proposition 2, together
with the compactness of W and the continuity of the μi .

2. We show that this solution necessarily satisfies X∗ . 0. Indeed, by Assump-
tion A2 there exists a detectable design w, so that M∞(w) . 0 and we know
from Assumption A3 that Φ(M∞(w)) > 0. Hence the optimal value of Prob-
lem (17.11a)–(17.11e) must be positive, which implies that the optimal X∗ can-
not be singular (Assumption A3).

3. To conclude, observe that Problem (17.11a)–(17.11e) can be rewritten as

max
w∈W

max
X∈X (w)

Φ(X),

and by point 2, we can replaceX ∈X (w) byX ∈X +(w), see Proposition 17.1.
Moreover by Corollary 17.1 the optimal design w∗ is necessarily detectable (oth-
erwise the maximization over X goes over the empty set and so it takes the value
−∞). Let X∗(w) denote an optimal variable X of the inner problem, for a fixed
w ∈W +. Since Φ preserves the Löwner ordering, the value Φ(X∗(w)) is neces-
sarily equal to Φ(M∞(w)), becauseM∞(w) is the maximal element of X +(w),
see Proposition 17.3. If moreover Φ is strictly isotonic, then the optimizer must
be the maximal element: X∗(w)=M∞(w). This proves the theorem. �

Remark 17.1 Assume that W ,Φ and the μi (i ∈ {1, . . . , s}) are semidefinite-
representable: a precise definition can be found in [2], but basically it means that
the constraint w ∈W can be replaced by an LMI, as well as constraints of the form
Φ(M) ≥ t and μi(wi) ≥ ui . (For example, it is known that the most common cri-
teria ΦA,ΦD , and ΦE are semidefinite representable [4], as well as all Kiefer’s
Φp-criteria for a value of p ∈ Q [14]; Concerning the scalar functions μi , every
concave rational function is semidefinite representable [8].) Then, it is straightfor-
ward to reformulate Problem (17.11a)–(17.11e) as a semidefinite program (SDP).
Note that interfaces such as CVX [6] or PICOS [13] allows one to easily pass Prob-
lem (17.11a)–(17.11e) to modern interior-point solvers, without further reformula-
tions.

Proof of Proposition 17.1 Let X . 0. Let [V T1 ,V T2 ]T be a base of Ker([F,L]), i.e.,
FV1 + LV2 = 0. The matrix [V T1 ,V T2 ]T has full rank by rank-nullity theorem and
controllability of (F,L). So the matrix (V T1 V1 + V T2 V2) is invertible.
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The matrix Δ := ( FX−1 −L
V T1 −V T2

)
is invertible. Indeed we can check by direct calcu-

lation that its inverse is
( FT T A1

−LT T −A2

)
, where

T = (
FX−1FT +LLT )−1

,

A1 =
(
V1 − FT T

(
FX−1V1 +LV2

))(
V T1 V1 + V T2 V2

)−1
,

A2 =
(
V2 −LT T

(
FX−1V1 +LV2

))(
V T1 V1 + V T2 V2

)−1
.

So,
(
X−FT UF FT UL

LT UF I−LT UL
), 0 if and only if

Δ

(
X− FT UF FT UL

LT UF I −LT UL
)
ΔT , 0

⇐⇒ Δ

(
X 0
0 I

)
ΔT ,Δ(F,−L)T U(F,−L)ΔT .

We can simplify the last expression by using the relation FV1+LV2 = 0. This yields
a block diagonal LMI with following expressions on the two diagonal blocks:

FX−1FT +LLT , (
FX−1FT +LLT )U(FX−1FT +LLT ); (17.12)

V T1 XV1 + V T2 V2 , 0. (17.13)

The LMI (17.13) is always satisfied, and LMI (17.12) reduces to U  (FX−1FT +
LLT )−1 (after pre- and post-multiplication by (FX−1FT +LLT )−1).

So, we have shown that (X,U) ∈ S
++
n × Sn satisfies the condition (ii) of Def-

inition (17.10) if and only if U  (FX−1FT + LLT )−1. The rest of the proof
is easy. Let (X,U) ∈ S

++
n × Sn satisfy conditions (i) and (ii) of the definition

of X (w). We have X  (FX−1FT + LLT )−1 + M(w), that is, f (X,w) , 0,
and hence X ∈ X +(w). Conversely, assume that X . 0, f (X,w) , 0 and set
U ′ := (FX−1FT +LLT )−1, U :=X−M(w). We know that (X,U ′) satisfies con-
dition (ii) of (17.10), and since we have f (X,w), 0⇐⇒U ′ , U , the pair (X,U)
satisfies both conditions (i) and (ii), that is, X ∈X (w)∩ S

++
n . �
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Chapter 18
On the Impact of Correlation on the Optimality
of Product-Type Designs in SUR Models

Moudar Soumaya and Rainer Schwabe

Abstract For multivariate observations with seemingly unrelated variables product-
type designs often turn out to be optimal which are generated by their univariate
optimal counterparts. This is, in particular, the case when all variables contain an
intercept term. If these intercepts are missing, the product-type designs may lose
their optimality when the correlation between the components becomes stronger.

18.1 Introduction

In many applications two or more variables are observed at the same observational
units. These observations will be typically correlated, even if the variables are ob-
served at different time points and under different experimental conditions. When
additionally each observational variable is influenced by a separate set of explana-
tory variables one might be tempted to perform univariate analyses for each variable
separately. Such models of a seemingly unrelated regression (SUR) type have been
introduced by Zellner [8] in the context of economic data, who showed that a joint
analysis, which accounts for the correlation of the variables, will improve the preci-
sion of estimates and tests.

Such models also occur in many scientific fields when problems or phenomena
are investigated in pharmacology, toxicology, process engineering etc. at different
time points or input variables. For example, when we are interested in the pharma-
cokinetic measurement of the concentration of two or more drugs or the toxicity
with different dissolution times, then the problem can be adequately described by a
SUR model.
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To be more specific consider the univariate regression model of concentration of
a substance, hormone, drug or of the toxicity with response function η(t)=Ae−tθ ,
whereA and θ are the initial concentration and reaction rate (see Atkinson et al. [1]).
When we observe two such relations at the same observational units but potentially
at different time points, we obtain multivariate data with correlated components
and marginal response functions η1(t1) = A1e

−t1θ1 and η2(t2) = A2e
−t2θ2 , respec-

tively. We will distinguish between two cases, where either the initial concentrations
A1 and A2 are known or not depending on the experimental situation. Moreover,
we assume that the data are appropriately modeled on a logarithmic scale which
leads to a linear model formulation for the components Yij = βj1 + βj2xij + εij
with βj1 = lnAj , βj2 = θj and xij = tij . If the initial concentrations A1 and A2

are known, the marginal models can be reduced to Yij = βj2xij + εij . In any case
the SUR structure comes in when we admit that the observations are correlated
(Cov(Yi1, Yi2)= Cov(εi1, εi2) �= 0) within the observational units.

While the data analysis has been widely investigated in such models, hardly any-
thing has been done in the design of such experiments. This is partly due to the fact
that these models are mainly considered in economic applications, where there are
only data available from observational studies, but this is also caused by a wide-
spread opinion that everything is clear about optimal design for multivariate ob-
servations. In particular, it seems to be obvious that designs, which are optimal in
the univariate settings, will also be optimal in the multivariate case. This is defi-
nitely true for MANOVA or multivariate regression settings, where the univariate
models depend on the same (values of the) explanatory variables and all univariate
models coincide (see e.g. Kurotschka and Schwabe [4]). For various design cri-
teria the corresponding proofs are based on multivariate equivalence theorems by
Fedorov [2].

In the situation of SUR models techniques concerning product-type designs have
to be employed, which were developed in Schwabe [5]. Soumaya and Schwabe [7]
established that in the presence of intercept terms the D-optimal design can be gen-
erated as a product of the D-optimal counterparts in the corresponding univariate
models for the single components irrespectively of the underlying covariance struc-
ture. These results were widely extended to other design criteria by Soumaya [6]. In
the absence of intercept terms the product-type design may lose its optimality when
the correlation becomes large.

It should be mentioned that against common believe even in the case of identical
models for all components the MANOVA-type design, in which the settings of the
explanatory variables are the same for all components, turns out to be not optimal,
in general, when the observations are correlated.

The paper is organized as follows: In Sect. 18.2 we specify the model, and we
characterize optimal designs in Sect. 18.3. In Sect. 18.4 the results are illustrated
by means of an example in the bivariate case and some conclusions are drawn in
Sect. 18.5.
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18.2 Model Specification

In general for the m components the m-dimensional observations are described by
m model equations. The components of the multivariate observations can be het-
erogeneous, which means that the response can be specified by different regression
functions and different experimental settings, which may be chosen from different
experimental regions.

The observation of the j th component of individual i can be described by

Yij = fj (xij )�βj + εij = fj1(xij )βj1 + · · · + fjpj (xij )βjpj + εij , (18.1)

where fj = (fj1, . . . , fjpj )
� are known regression functions, βj = (βj1, . . . , βjpj )

�
are the unknown parameter vectors and the experimental settings xij may be chosen
from experimental regions Xj .

Denote by Yi = (Yi1, . . . , Yim)� and εi = (εi1, . . . , εim)� the multivariate vec-
tors of observations and error terms for individual i. The multivariate regression
function is block diagonal f(x) = diag(fj (xj ))j=1,...,m for the multivariate experi-
mental setting x = (x1, . . . , xm) ∈X =×mj=1 Xj . For the introductory examples
the regression functions are

f(x)=
(

1 x1 0 0
0 0 1 x2

)�
resp. f(x)=

(
x1 0
0 x2

)
.

The individual observation vector can be written as Yi = f(xi )�β + εi , where
β = (β�1 , . . . ,β�m)� is the stacked parameter vector of dimension p =∑m

j=1 pj for
all components. For the error vectors εi it is assumed that they have zero mean
and have a common positive definite covariance matrix Cov(εi ) = Σ within the
observational units, while they are uncorrelated across the observational units.

Finally, denote by Y= (Y�1 , . . . ,Y�n )� and ε = (ε�1 , . . . ,ε�n )� the stacked vec-
tors of all observations and all error terms, respectively. Then we can write the over-
all observation vector as

Y= Fβ + ε, (18.2)

where F = (f(x1), . . . , f(xn))� is the overall design matrix. The full observational
error vector ε then has the covariance matrix V= Cov(ε)= In⊗Σ , where In is the
n× n identity matrix and “⊗” denotes the Kronecker product.

If we assume that the covariance matrix Σ and, hence, V is known, we can esti-
mate the parameter β by the Gauss–Markov estimator β̂GM = (F�V−1F)−1F�V−1Y,
Its covariance matrix is equal to the inverse of the corresponding information matrix

M= F�V−1F=
n∑

i=1

f(xi )Σ−1f(xi )�, (18.3)

which is the sum of the individual informations, M(xi )= f(xi )Σ−1f(xi )�.
Note that the univariate marginal models of the components are of the form

Y(j) = F(j)βj + ε(j), (18.4)
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where Y(j) = (Y1j , . . . , Ynj )
� and ε(j) = (ε1j , . . . , εnj )

� are the vectors of obser-
vations and errors for the j th component, respectively, and F(j) = (fj (x1j ), . . . ,

fj (xnj ))� is the design matrix for the j th marginal model. The corresponding error
terms are uncorrelated and homoscedastic, Cov(ε(j))= σ 2

j In, where σ 2
j = σjj is the

j th diagonal entry of Σ .

18.3 Optimal Designs

We can define an experimental design in the multivariate case

ξ =
(

x1 . . . xk
w1 . . . wk

)
(18.5)

by the set of all different experimental settings xi = (xi1, . . . , xim), i = 1, . . . , k,
which belong to the design region X =×mj=1 Xj , with the corresponding relative
frequencieswi = ni

n
, where ni is the number of replications at xi . Then the standard-

ized information matrix for the GM-estimator is M(ξ)=∑k
i=1wif(xi )Σ

−1f(xi )�.
For analytical purposes we consider approximate designs, see for example Kiefer
[3], for which the weights wi ≥ 0 need not be multiples of 1

n
, but only have to

satisfy
∑k
i=1wi = 1. As information matrices are not necessarily comparable, we

have to consider some real-valued criterion function of the information matrix. In
this paper we will adopt the most popular criterion − ln det(M(ξ)) of D-optimality
and some linear criteria trace(LM(ξ)−1) like A- and IMSE-optimality, where L is
a positive definite weight matrix.

An approximate design ξ∗D is called D-optimal if it minimizes the determinant
of the variance covariance matrix, i.e. it minimizes the volume of the confidence
ellipsoid under the assumption of Gaussian errors. An approximate design ξ∗A is
called A-optimal if it minimizes the trace trace(M(ξ)−1) of the variance covariance
matrix, i.e. it minimizes the average of the variances of the parameter estimates.
Hence, the A-criterion is linear with L equal to the identity matrix Ip .

The integrated mean squared error is the integrated predictive covariance with
respect to the uniform measure μ(dx) on the design region X and is defined as

IMSE=
∫

X
E
(∥∥f(x)�(β̂ − β)

∥∥2)
μ(dx)=

∫

X
trace

(
Cov

(
f(x)�β̂

))
μ(dx),

where ‖.‖ denotes the Euclidean norm. Then an approximate design ξ∗IMSE is called
IMSE-optimal in the multivariate case, if it minimizes the averaged predictive vari-
ance E(‖f(x)�(β̂ − β)‖2). After rearranging terms the IMSE-criterion is equivalent
to a linear criterion with L= ∫

X f(x)f(x)�μ(dx).
Useful tools for checking the optimality of given candidate designs are the fol-

lowing multivariate versions of the equivalence theorems for the above mentioned
criteria (see Fedorov [2, Theorems 5.2.1 and 5.3.1]).

Theorem 18.1 The approximate design ξ∗D is D-optimal in the multivariate linear
model if and only if
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ϕD
(
x; ξ∗D

) := trace
(
Σ−1f(x)�M

(
ξ∗D

)−1f(x)
)≤ p, (18.6)

for all x ∈X , where p =∑m
j=1 pj is the number of parameters in the model.

Theorem 18.2 The approximate design ξ∗L is linear optimal in the multivariate
linear model if and only if

ϕL
(
x; ξ∗L

) := trace(Σ−1f(x)�M(ξ∗L)−1LM(ξ∗L)−1f(x))

trace(LM(ξ∗L)−1)
≤ 1, (18.7)

for all x ∈X .

Note that the linear optimality criteria considered here (A and IMSE) result in
a block-diagonal weight matrix L = diag(Lj )j=1,...,m, where the diagonal blocks
Lj are the weight matrices for the corresponding linear criteria in the marginal
components: Ip = diag(Ipj )j=1,...,m for the A-criterion and

∫
X f(x)f(x)�μ(dx) =

diag(
∫
Xj

f(xj )f(xj )�μj (dxj ))j=1,...,m for the IMSE-criterion, where μj is the uni-
form distribution on Xj .

In the case that all marginal models contain an intercept term the following result
has been established by Soumaya [6].

Theorem 18.3 Let ξ∗j be Φ-optimal for the j th marginal component (18.4) with
an intercept on the marginal design region Xj , then the product-type design ξ∗ =⊗m
j=1 ξ

∗
j is Φ-optimal for the multivariate SUR model (18.2) on the design region

X =×mj=1 Xj .
Φ can be either the D-criterion or a linear criterion with block-diagonal L.
For the D-criterion ϕD does not depend on the covariance matrix Σ .

This theorem states that the D-, A- or IMSE-optimal designs can be obtained as
the product of their corresponding counterparts in the marginal models.

To retain the optimality of product-type designs also in the case that all or some
of the marginal models are lacking an intercept term additional orthogonality con-
ditions have to be imposed similarly to results for additive models (see Schwabe [5,
Sect. 5.2]).

Theorem 18.4 Let ξ∗j be Φ-optimal for the j th marginal component (18.4) with-
out intercept on the marginal design region Xj . If the marginal components are
uncorrelated (Σ = diag(σ 2

j )j=1,...,m) or the regression functions are orthogonal to

a constant with respect to the Φ-optimal designs ξ∗j , i.e.
∫
Xj

fj (xj )ξ∗j (dxj ) = 0,

then the product-type design ξ∗ =⊗m
j=1 ξ

∗
j is Φ-optimal for the multivariate SUR

model (18.2) on the design region X =×mj=1 Xj .
Φ can be either the D-criterion or a linear criterion with block-diagonal L.
For the D-criterion ϕD does not depend on the covariance matrix Σ .
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The conditions of the above theorem guarantee that the information matrix of the
product-type design ξ∗ is block-diagonal such that the considered criteria as well as
the associated sensitivity functions decompose.

If these conditions are violated, the overall optimality of the product-type designs
can fail. The sensitivity function may depend crucially on the correlation. While for
small correlations the product-type designs may be still optimal, they will lose their
optimality for stronger correlations. In particular, we will exhibit by an example
that the product-type designs are D-optimal for SUR models without intercepts for
a restricted range of correlations around 0. For large correlations the D-optimal
designs have weights related to the size of the correlation. In the present example the
optimal weights tend to those for an additive model without intercept as considered
in Schwabe [5, Sect. 5.2].

For linear criteria the situation is even worse, as the optimal weights also de-
pend on the ratio of the variances for the single components. If the variances differ
by a large factor, the product-type design may not be optimal even for very small
correlation.

18.4 Example

To illustrate the behavior for SUR models without intercepts in the marginal models
we consider the introductory example Yij = βj2xij + εij of linear regression on the
unit intervals Xj = [0,1] as experimental regions. Then a setting xij = 0 results in
a measurement at baseline for the j th component.

It is well-known that in the marginal models the optimal designs are all con-
centrated on the setting x∗j = 1 with maximal response. The resulting product-type
design ξ⊗ = ξ∗1 ⊗ ξ∗2 is also a one-point design concentrated on x∗ = (1,1). The in-
formation matrix for a one-point design ξx, i.e. a single observation at x= (x1, x2),
equals

M(ξx)=M(x1, x2)= 1

1− ρ2

(
x1/σ

2
1 −ρx1x2/σ1σ2

−ρx1x2/σ1σ2 x2/σ
2
2

)
,

where ρ is the correlation. In particular, M(ξ⊗)=Σ−1 for the product-type design
ξ⊗ with optimal marginals. In this model the weight matrix L for the IMSE-criterion
equals 1

3 I2. Hence, A- and IMSE-optimality coincide. For the uncorrelated case
(ρ = 0) the product-type design ξ⊗ is D-, A- and IMSE-optimal by Theorem 18.4.

In general, for the D-criterion the sensitivity function ϕD of the product-type
design ξ⊗ equals

ϕD(x; ξ⊗)= 1

1− ρ2

(
x2

1 + x2
2 − 2ρ2x1x2

)
, (18.8)

which is bounded by p = 2 as long as |ρ| ≤ 1/
√

2≈ 0.7071. This sensitivity func-
tion is plotted in Figs. 18.1 and 18.2 for the values ρ = 0 and ρ = 1/

√
2, respec-

tively. Note that in the last case the sensitivity function equals p = 2 at the support
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Fig. 18.1 ϕD(ξ⊗), ρ = 0

Fig. 18.2 ϕD(ξ
∗
D),

ρ ≥ 1/
√

2

point x∗ = (1,1) and additionally at the settings (0,1) and (1,0), where one of the
components is observed at baseline.

For larger values of the correlation, |ρ| > 1/
√

2, the D-optimal design ξ∗ also
contains these additional points with weights increasing in |ρ|,

ξ∗D =
(
(1,1) (1,0) (0,1)

1− 2w∗ w∗ w∗
)

with w∗ = 2ρ2 − 1

4ρ2 − 1

The sensitivity function ϕD(x; ξ∗D)= 2(x2
1 + x2

2 − x1x2) is bounded by p = 2. This
sensitivity function coincides with ϕD for ξ⊗ in the boundary case ρ = 1/

√
2.
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Fig. 18.3 ϕA(ξ⊗), τ = 3,
ρ = 0.3

For the linear criteria the standardized sensitivity function ϕA = ϕIMSE for the
product-type design ξ⊗ is

ϕA(x; ξ⊗)= (1+ ρ
2)x2

1 + τ 2(1+ ρ2)x2
2 − 2(1+ τ 2)ρ2x1x2

(1+ τ 2)(1− ρ2)
, (18.9)

where τ 2 = σ 2
2 /σ

2
1 is the variance ratio.

For ρ = 0.3 and τ = 3 the sensitivity function ϕA is plotted in Fig. 18.3. In this
case the product-type design ξ⊗ appear to be optimal.

For σ1 = 0.1, σ2 = 10 and τ 2 = 10000 the maximum of the sensitivity function
ϕA is attained at x= (0,1) and exceeds 1 even for ρ close to 0. Therefor the product-
type designs cannot be A-optimal for extremely different variances.

Numerical calculations indicate that for every variance ratio τ 2 there is an in-
terval for the correlations ρ centered at 0, for which the product-type design ξ⊗ is
A-optimal, while it loses its optimality for larger values of |ρ|. If τ 2 increases, these
intervals may become arbitrarily small. Note that for symmetry reasons the same
intervals are valid for τ 2 replaced by 1/τ 2.

For equal variances (τ 2 = 1) the product-type design ξ⊗ is A-optimal as long as
|ρ| ≤ 1/

√
3, while for stronger correlations, |ρ|> 1/

√
3, the A-optimal design is

ξ∗A =
(
(1,1) (1,0) (0,1)

1− 2w∗ w∗ w∗
)

with w∗ = 1−
√
ρ2/

(
4ρ2 − 1

)
.

For ρ = 1/
√

3 the standardized sensitivity function ϕA(x; ξ∗A)= x2
1 + x2

2 − x1x2 is
plotted in Fig. 18.4.
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Fig. 18.4 ϕA(ξ
∗
A), τ = 1

18.5 Conclusions

In the presence of intercept terms the variance covariance structure does not affect
the optimality of product-type designs, which are generated by the corresponding
optimal counterparts. But their optimality reaches its limits for SUR models with-
out intercepts, when the information matrix is not block-diagonal. Then product-
type designs are optimal only for weak to moderate correlation. For stronger cor-
relation the optimal designs depend on the size of the correlation and eventually
on the variance ratio. These results may be extended to higher dimensions, when a
homogeneous correlation structure is assumed.
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Chapter 19
On the Time-Reversibility of Integer-Valued
Autoregressive Processes of General Order

Sebastian Schweer

Abstract Integer-valued autoregressive processes of a general order p ≥ 1
(INAR(p) processes) are considered, and the focus is put on the time-reversibility
of these processes. It is shown that for the case p = 1 the time-reversibility of such
a process already implies that the innovations are Poisson distributed. For the case
of a general p ≥ 2, two competing formulations for the INAR(p) process of Alzaid
and Al-Osh (in J. Appl. Prob. 27(2):314–324, 1990) and Du and Li (in J. Time Ser.
Anal. 12(2):129–142, 1991) are considered. While the INAR(p) process as defined
by Alzaid and Al-Osh behaves analogously to the INAR(1) process, the INAR(p)
process of Du and Li is shown to be time-irreversible in general.

19.1 Introduction

In recent years, the study of count data time series has gained a significant amount
of attention. One of the most popular models for such time series is the integer-
valued autoregressive model (or INAR model), introduced in [1] and [5]. Especially
the INAR(1) model has been studied intensively in the literature, and it has been
applied in a wide range of varying applications. For instance, the model was used
to analyze the monthly number of workers in the heavy manufacturing industry
collecting benefits due to a burn related injury (see [7]).

The INAR(1) model can be seen as an integer-valued analogy to the continu-
ous AR(1) model, and it is therefore not surprising that the modeling of higher
order autoregressive structures has been considered in the literature. However, the
two most prominent attempts defining an INAR(p) process, given by [2] and [4],
differ substantially so that there exists no canonical extension of the INAR(1) pro-
cess. Both definitions have their advantages and disadvantages, yet the autocorre-
lation function of the INAR(p) process as defined in [2] behaves like that of an
ARMA(p,p − 1) process, which is an obvious drawback for modeling purposes.
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The INAR(p) process as defined in [4] on the other hand has the same correlation
structure as that of the continuous AR(p) model.

A notable characteristic of the continuous AR(p) process is that it is time-
reversible if and only if the error distribution is Gaussian, cf. [12], Theorem 2.
For INAR(1) processes, the Poisson distribution takes on a similar role as that of
the Gaussian distribution in the continuous AR(1) process, i.e. if the innovation
distribution is Poisson, then the stationary distribution is Poisson; it is the only in-
finitely divisible distribution to have this property, cf. Theorem 3.2.1 in [7]. Further,
in [10] it was shown that if the innovations are Poisson distributed, then the pro-
cess is time-reversible. For a detailed discussion concerning the time-reversibility
of integer-valued ARMA processes the reader is referred to [6] and [8], the latter
of which considered time-reversibility for the special case of Compound Poisson
INAR(1) processes.

This paper is organized as follows. In Sect. 19.2, the INAR(1) model is intro-
duced and it is shown that these processes are time-reversible if and only if the
innovations’ distribution is Poisson. An analogous result is shown in the next sec-
tion for the INAR(p) processes as defined in [2], whereas in Sect. 19.4 the proof is
provided that the INAR(p) processes in the formulation of Du and Li in [4] are only
time-reversible in trivial cases.

Concerning notation, denote N = {1,2,3, . . .} and N0 = {0,1,2,3, . . .}, the lat-
ter coincides with the state space of all processes considered in this article. For
a parameter p ∈ [0,1], define p := 1 − p. Often, sequences of states for a given
stationary stochastic process (Yt )t∈Z will be considered and will be written in a
shorthand notation; the event {Yt = a0, Yt+1 = a1, Yt+2 = a2 . . . Yt+r = ar} is writ-
ten a0, a1, a2, . . . , ar for any r ∈ N. For any stationary process (Yt )t∈Z, denote
the transition probabilities of the process for sequences by pY (ar |ar−1, . . . , a1) :=
P(a0, a1, a2, . . . , ar )/P(a0, a1, a2, . . . , ar−1). Consequently, the stationary distribu-
tion of the process (Yt )t∈Z is given by pY (·), i.e. pY (a) = P(Yt = a) for a ∈ N0.
Notice the suppressed time index t as the processes considered in this article are
generally stationary.

19.2 Time-Reversibility for the INAR(1) Model

In order to introduce the INAR(1) model it is necessary to first define binomial thin-
ning: If X is a discrete random variable with range N0 = {0,1, . . .} and if α ∈ (0;1),
then the random variable α ◦X :=∑X

i=1Zi is said to arise fromX by binomial thin-
ning, and the Zi ’s are referred to as the counting series. They are independent and
identically distributed (i.i.d.) binary random variables with P(Zi = 1) = α, which
are also independent of X. The operator “◦” was first introduced in [9] and allows
for the following definition of the INAR(1) model:

Definition 19.1 Let (εt )t∈Z be an i.i.d. process with range N0 = {0,1, . . .}, denote
E[ε0] = με , Var[ε0] = σ 2

ε . Let α ∈ (0;1). A process (Yt )t∈Z following the recursion
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Yt = α ◦ Yt−1 + εt
for all t ∈ Z is said to be an INAR(1) process if all thinning operations are performed
independently of each other and of (εt )t∈Z, and if the thinning operations at each
time t as well as εt are independent of (Ys)s<t .

For an INAR(1) process (Yt )t∈Z the transition probabilities are given by

pY (a|b)=
min(a,b)∑

l=0

P(ε0 = a − l)
(
b

l

)
αb−lαl for a, b ∈N0. (19.1)

The following result has been shown to hold in the special case of Compound
Poisson INAR(1) processes in [8]. Here, a different proof is presented which holds
for general INAR(1) processes.

Theorem 19.1 Let (Yt )t∈Z be a stationary INAR(1) process and let P(ε0 = 0) ∈
(0,1). Then (Yt )t∈Z is time-reversible if and only if ε0 ∼ Poi(λ) for some λ > 0.

Proof For the necessity of the statement see [10], who showed this result by verify-
ing the detailed balance equations pY (i)pY (j |i)= pY (j)pY (i|j).

Now, let (Yt )t∈Z be time reversible. Then P(0,1, i,0) = P(0, i,1,0) holds for
all i ∈ N0. By the Markov property this yields pY (1|0)pY (i|1)pY (0|i)pY (0) =
pY (i|0)pY (1|i)pY (0|1)pY (0). Now, pY (0) > 0 follows by elementary properties
of stationary Markov chains and α > 0 by definition, thus, with (19.1), this is equiv-
alent to

P(ε0 = 1)P(ε0 = i − 1)= iP(ε0 = i)P(ε0 = 0) for i > 0. (19.2)

Summation over i on both sides leads to P(ε0 = 1) = μεP(ε0 = 0). Since 0 <
P(ε0 = 0) < 1 it holds that με > 0 and therefore that P(ε0 = 1) > 0. Applying
(19.2) recursively,

P(ε0 = i)= 1

i
μεP(ε0 = i − 1)= · · · = 1

i!μ
i
εP(ε0 = 0).

Normalization yields P(ε0 = 0)−1 =∑∞
l=0

1
l!μ

l
ε , concluding the proof. �

19.3 Time-Reversibility for the INAR(p) Model of Al-Osh and
Alzaid

In this section and the following one, higher order autoregressive structures are con-
sidered, starting with the INAR(p) process formulation given by [2].

Definition 19.2 Let (εt )t∈Z be an i.i.d. process with range N0 = {0,1 . . .}, denote
E[ε0] = με , Var(ε0)= σ 2

ε . Let p ∈N, α1, . . . , αp ∈ [0,1) with
∑p

i=1 αi < 1. A pro-
cess (Yt )t∈Z, which follows the recursion
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Yt =
p∑

i=1

αi ◦ Yt−i + εt (19.3)

for all t ∈ Z is said to be an INAR(p) process in Al-Osh’s and Alzaid’s formulation,
or AAINAR(p) process, if the conditional distribution of the vector (α1 ◦ Yt ,α2 ◦
Yt , . . . , αp ◦ Yt ) given Yt = yt is multinomial with parameters (α1, α2, . . . , αp, yt )

and if, given Yt = yt , the random variables ai ◦ Yt and εt are independent of Yt−k
and its survivals (and the thinning operations) aj ◦ Yt−k for i, j = 1,2, . . . , p and
k > 0.

In Sect. 5.2 of [2], the time-reversibility of the AAINAR(2) process with Poisson
innovations is shown and it is indicated how this result may be established in higher-
order autoregressive structures. In the next Theorem it is shown that the approach of
Theorem 19.1 can be extended to AAINAR(p) process of a general order.

Theorem 19.2 Let (Yt )t∈Z be a time-reversible AAINAR(p) process with p > 1
and let P(ε0 = 0) ∈ (0,1). Then (Yt )t∈Z is time-reversible if and only if ε0 ∼ Poi(λ)
for some λ > 0.

Proof Sufficiency of the assertion remains to be shown. First, let p = 2, and define
the vector-valued process Yt := (Yt , α2 ◦ Yt−1). As shown in Section 4 of [2], this
process is Markovian. Denote the transition probabilities of this process by P(Yt =
(a1, a2)|Yt−1 = (b1, b2)) := pY((a1, a2)|(b1, b2)) for a1, a2, b1, b2 ∈ N0. Now, the
event {Yt = 0} implies that {αj ◦Yt = 0} for j = 1,2 and any t ∈ Z by the definition
of the thinning operation. Further, {Yt = 0} implies that {α2 ◦ Yt−2 = 0} for any
t ∈ Z, since by Definition 19.2, Yt = α1 ◦ Yt−1 + α2 ◦ Yt−2 + εt and all random
variables are assumed to be nonnegative. Therefore, for any i ∈N0,

P
({Y−1 = 0, Y0 = 0, Y1 = 1, Y2 = i, Y3 = 0, Y4 = 0,

α2 ◦ Yt = 0|t =−2,−1, . . . ,3})

= P(Y−1 = 0, Y0 = 0, Y1 = 1, Y2 = i, Y3 = 0, Y4 = 0)

Using the time-reversibility of (Yt )t∈Z and the Markovian structure of (Yt )t∈Z, the
argumentation above implies for every i ∈N0 that

P
(
Y−1 = (0,0),Y0 = (0,0),Y1 = (1,0),Y2 = (i,0),Y3 = (0,0),Y4 = (0,0)

)

= P
(
Y−1 = (0,0),Y0 = (0,0),Y1 = (i,0),Y2 = (1,0),Y3 = (0,0),
Y4 = (0,0)

)
. (19.4)

Further, by Definition 19.2, it holds that

pY
(
(a,0)|(b,0))=

min(a,b)∑

l=0

P(ε0 = a − l) b!
l!(b− l)!α1 + α2

b−l
αl1 for a, b ∈N0,
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implying pY((0,0)|(0,0)) > 0. Following the argumentation of [2], the process
(Yt )t∈Z is a stationary Markov process on the state space N

2
0, under the assump-

tion P(ε0 = 0) > 0 it follows that it is both irreducible and aperiodic. Hence, each
state (a, b) ∈N0 is positive recurrent and, in particular, pY((0,0)) > 0.

This argumentation shows that (19.4) is equivalent to

P(ε0 = 1)
[
P(ε0 = i)α1 + α2 + P(ε0 = i − 1)α1

]
P(ε0 = 0)α1 + α2

i

= P(ε0 = i)
[
P(ε0 = 1)α1 + α2

i + P(ε0 = 0)iα1 + α2
i−1
α1
]
α1 + α2P(ε0 = 0).

This last expression is easily seen to be equivalent to (19.2), as α1 + α2 > 0. Thus,
the argumentation of Theorem 19.1 holds again, proving the assertion for p = 2.

Now, let p > 2. Replace the process (Yt )t∈Z with the process (see Sect. 4 in [2])

Y∗t =
(

Yt ,

p∑

i=2

αiYt+1−i ,
p∑

i=3

Yt+2−i , . . . , αp ◦ Yt−1

)

.

For the sequence of events Y∗−p+1 = (0,0, . . . ,0) = Y∗−p+2 = · · · = Y∗0, Y∗3 =
(0,0, . . . ,0)=Y∗4 = · · · =Y∗p+2 and Y∗1 = (1,0, . . . ,0) as well as Y∗2 = (i,0, . . . ,0),
a short moment of reflection should convince the reader that an extension of (19.4)
holds. Similar to the argumentation above, this relation can be shown to be equiva-
lent to (19.2), concluding the proof. �

19.4 Time-Irreversibility for the INAR(p) Model of Du and Li

In this section a competing formulation for an INAR(p) process given in [4] is
considered.

Definition 19.3 Let (εt )t∈Z be an i.i.d. process with range N0 = {0,1 . . .}, de-
note E[ε0] = με , Var(ε0) = σ 2

ε . Let p ∈ N, α1, . . . , αp ∈ [0,1) with
∑p

i=1 αi < 1.
A process (Yt )t∈Z, which follows the recursion (19.3) for all t ∈ Z is said to be an
INAR(p) process as defined by Du and Li, or DLINAR(p) process, if all thinning
operations are mutually independent and if the (εt )t∈Z are independent of all thin-
ning operations and the random variable εt is independent of Yt−k and its survivals
(and the thinning operations) aj ◦ Yt−k for j = 1,2, . . . , p and k > 0.

For the transition probabilities, this definition implies (cf. [3], (2))

pY (a|b1, . . . , bp)=
∑

P

(
ε0 = a −

∑
li

)(b1

l1

)
α
l1
1 α1

b1−l1 · · ·
(
bp

lp

)
α
lp
p αp

bp−lp

(19.5)

for a, bi ∈ N0, where sum extends over all li ’s satisfying the restrictions lk ≤ bk
for all k = 1, . . . , p and

∑
lk ≤ a. Thus, in contrast to the AAINAR(p) process of

Definition 19.2, the DLINAR(p) process is a pth order Markov chain. This allows
us to show the following analogue of Theorem 19.2.
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Lemma 19.1 Let (Yt )t∈Z be a time-reversible DLINAR(p) process with p > 1 and
let P(ε0 = 0) ∈ (0,1). Then there exists a λ > 0 such that ε0 ∼ Poi(λ).

Proof First, let p = 2. By the time-reversibility of the process (Yt )t∈Z, it follows
that for any i ∈ N0, P(0,0,1, i,0,0) = P(0,0, i,1,0,0). Due to the Markovian
structure of (Yt )t∈Z and the fact that pY (0) > 0 as well as pY (0|0) > 0 (which is
deduced analogously to the argumentation in Theorem 19.2), this is equivalent to

pY (0|0, i)pY (0|i,1)pY (i|1,0)pY (1|0,0)
= pY (0|0,1)pY (0|1, i)pY (1|i,0)pY (i|0,0).

Using (19.5) and simple manipulations, this is equivalent to (19.2) as α2 > 0 by
Definition 19.3. For a general p > 2, consideration of the sequence
0,0, . . . ,0,1, i,0, . . . ,0 and its inverse where the dots represent p zeroes, yields
an equivalent relation as above, as αk > 0 holds for all k = 3, . . . , p. The assertion
follows analogously to Theorem 19.1. �

At first glance, since the result of Lemma 19.1 is exactly analogous to that of The-
orem 19.2 there doesn’t seem to be a difference in the characteristics of DLINAR(p)
processes and AAINAR(p) processes with respect to time-reversibility. However,
the following result shows that a DLINAR(p) process is time-reversible only if the
parameters take on degenerate values, i.e. if it is in fact an INAR(1) process.

Theorem 19.3 Let (Yt )t∈Z be a time-reversible DLINAR(p) process with p > 1
and α1 > 0 and let 0< P(ε = 0) < 1. Then αj = 0 for j = 2, . . . , p.

Proof Let p = 2. Since (Yt )t∈Z is time-reversible, the transition probabilities neces-
sarily satisfy P(0,0,1,3,2,0,0)= P(0,0,2,3,1,0,0). By (19.5) and the fact that
pY (0|0),pY (0) > 0, this is equivalent to

α2
5α1

2λ

[ ∑

l1≤3,l2≤1
l1+l2≤2

λ2−l1−l2
(2− l1 − l2)!

(
3

l1

)
α
l1
1 α1

3−l1αl22 α1
1−l2

](
λ3

6
α1 + λ

2

2
α1

)

= α2
4α1
λ2

2

[
λα1

3α2
2 + 2α1

3α2α2 + 3α1
2α1α2

2]
(
λ3

6
α1

2 + λ2α1α1 + λα2
1

)
.

(19.6)

This, in turn (recall that λ > 0 and α1, α2 > 0 by Definition 19.3), is equivalent
to 1

2α1α
2
1α2 = 0. Since α1 > 0, this implies the assertion for p = 2.

Now, let p > 2 be arbitrary but fixed. It remains to be seen that αj = 0 for j =
2, . . . , p which is done by first showing that α2 = 0 and then proceeding inductively.
An appeal to (19.5) reveals that the relations considered in the first part of this proof
hold similarly for the sequence 0,0, . . . ,0,1,3,2,0, . . . ,0 and its inverse, here the
first and last p entries are 0. Since there are at most three consecutive non-null states
in these sequences, the relation of the transition probabilities is equivalent to that of
(19.6) save for the factors of the form e−kλ for some k, pY (0|0,0),pY (0|0,0,0)
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and so forth and
∏p

i=3 αi
6. By (19.5), pY (0|0,0),pY (0|0,0,0) etc. are all larger

than zero, and αi, e−λ > 0 by definition. Thus, time-reversibility of the process and
α1 > 0 implies α2 = 0.

Now, let 2 < k ≤ p, and let αi = 0 for 1 < i < k, it is shown that this implies
αk = 0. Consider the sequence of states

0,0, . . . ,0︸ ︷︷ ︸
p times

,1,3, 0, . . . ,0︸ ︷︷ ︸
k−2 times

,2,0, . . . ,0,0︸ ︷︷ ︸
p times

and its inverse. For a time-reversible process, the transition probabilities for this se-
quence has to equal the transition probability of its inverse. With (19.5) and recall-
ing that αi, e−λ,pY (0|0,0),pY (0|0,0,0) etc. are all larger than zero, this relation is
equivalent to

α1
3αk

4(λα1
3αk

2 + 3α1α1
2αk

2 + 2α1
3αkαk

)λ5

12

= α1
5αk

5
(
λ2

2
αk + λαk

)(
λ3

6
α1 + λ

2

2
α1

)
λ.

This relation can be simplified to yield 0 = 1
2α1αk . The assertion thus follows by

induction over k. �

It may be pointed out that the result of Theorem 19.3 is only partial in the sense
that α1 > 0 was assumed. In the author’s opinion, this is a quite natural assumption
for DLINAR(p) processes, and the investigation is stopped at this point. However,
given the previous result, the author conjectures the following assertion to be true:

Conjecture 19.1 Let (Yt )t∈Z be a DLINAR(p) process with p > 1 and αj > 0 for
some j ∈ {1, . . . , p} and let 0< P(ε = 0) < 1. Then (Yt )t∈Z is time-reversible if and
only if αl = 0 for l ∈ {1, . . . , p}, l �= j .

To illustrate why the conjecture contains the reverse implication as well, consider
the result of Lemma 19.1 for the case p = 2. It shows that for time-reversibility of
the process, either α1 = 0 or α2 = 0 has to hold. The case α1 = 0 is clearly a degen-
erate case, and it can indeed be shown quite easily that it has the same stationary
distribution as that of the corresponding INAR(1) process (i.e. with α = α2) and
that it is time-reversible. Similar argumentation applies to higher order autoregres-
sive structures.

19.5 Discussion and Conclusion

At first sight, the results presented in this article might seem surprising, as on the one
hand, the AAINAR(p) process behaves in complete analogy to the INAR(1) process
when considering time-reversibility, on the other hand, the DLINAR(p) process is
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only time-reversible in trivial cases. However, the author would like to point out
that there seems to be a connection between the time-reversibility behaviour of au-
toregressive processes and an invariance principle between the marginal distribution
and the innovations’ distribution of the process which also extends to the continuous
AR(p) case. To be more precise, for an INAR(1) process or an AAINAR(p) process
with Poisson innovations it can be shown that the marginal distribution of these pro-
cesses is Poisson distributed again (cf. [1] and [2, Sect. 5.1]), corresponding to the
Gaussian distribution in the continuous AR(p) model. In all of these instances, time-
reversibility of the process implies the error distribution to be Poisson or Gaussian,
respectively (for the latter result, see Theorem 2 in [12]).

For the DLINAR(p) process however, the assumption of Poisson innovations
does not imply a Poisson marginal distribution. This can be seen (for the case
p = 2) in the discussion following (30) in [11], which shows that a DLINAR(2)
process with α2 > 0 always exhibits overdispersion and can thus never be Poisson
distributed.

The results presented in this article warrant further research concerning the ques-
tion whether there exists an integer-valued autoregressive model of order p which
has the same autocorrelation structure as the continuous AR(p) model and which is
time-reversible given a certain type of innovation (or error) distribution.
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Chapter 20
Change-Point Detection of the Mean Vector
with Fewer Observations than the Dimension
Using Instantaneous Normal Random
Projections

Ewa Skubalska-Rafajłowicz

Abstract Our aim in this paper is to propose a simple method of a change-point
detection of mean vector when the number of samples (historical data set) is smaller
than the dimension. We restrict here our attention to the problem of monitoring in-
dependent individual observations under normality assumption. The presented ap-
proach is based on the Hotelling statistic. This statistic is applied to the data set
projected onto a randomly chosen subspace of a sufficiently smaller dimension. We
propose the procedure of normal random projection of data (historical data set and
a new observation) instantaneously, just after a new observation appears. Next, we
provide a model of the changes in the mean vector and derive the distribution of
noncentrality parameter values. Further, a non-local power of the Hotelling test per-
formed on projected samples is defined, which is the criterion for selecting the di-
mensionality of a projection subspace. Finally, simulation results are provided.

20.1 Introduction

It often happens that the dimension of observed data vectors is larger than the sample
size and this case is referred to as small sample size, high dimensional data. Microar-
rays, medical imaging, text recognition, finance and chemometrics data analysis
leads to such problems [4, 9, 21]. Statistical decision problems with fewer obser-
vations than the dimension of the data have been studied by many authors and in
different contexts (see [1, 5, 9, 11, 12, 17–21] among many others). Control charts
based on the Hotelling statistic [6, 7, 16] are the most popular methods for handling
changes of multivariate process data [10, 13, 22, 24].

We restrict here our attention to the problem of monitoring independent individ-
ual observations under normality assumption [13, 22, 24]. Although control charts
based on the Hotelling statistic are very popular method for identifying a change
in a multivariate normal process, their use is restricted to low dimensional prob-
lems and sufficiently large number of historical data samples. We propose a new
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approach for change-point detection of a mean vector when the number of obser-
vations is smaller than the dimension. A dimension of the problem is diminished
by a linear singular projection onto a randomly chosen subspace of a sufficiently
smaller dimension. Random projections [3, 8, 15, 23] are considered to be one of
the most potential methods of dimensionality reduction. Random projection based
approaches have been widly used in computer science and machine learning appli-
cations. The use of random projection was also considered to two-sample testing
[11] and to identify probability distributions belonging to parametric families [2]. It
is important to stress that this approach is different than the method proposed previ-
ously by the author in [17] and [18], where the projection matrix was generated only
once as a starting point of the dimensionality reduction procedure. Here we propose
to perform the procedure of random projection of data (historical data set and a new
observation) instantaneously, just after a new observation appears. This means that
Phase I and Phase II of the control chart design [13] is repeated consecutively. This
approach, though more time-consuming, is also more efficient, because there is no
direction in the observation space where changes cannot be detected. The paper is
organized as follows. In the next section we describe the new version of a Hotelling
control chart based on instantaneous normal random projections. Next, in Sect. 20.3
we provide a model of the changes in the mean vector and the distribution of noncen-
trality parameter values. Under assumption of this model we then define non-local
power of the Hotelling test performed on projected samples. As a consequence we
propose a method of optimal selecting the dimensionality of projection subspace
which minimizes the non-local power of the test. An illustrative example is given in
Sect. 20.5.

20.2 The Algorithm of Mean Change Detection with Fewer
Observations than the Dimension

We start by defining a historical dataset (HDS) consisting of N independent vectors
of dimension d observed over time, where d is the dimension of these vectors. We
consider the case where the in-control observation vectors, Xi , i = 1, . . . ,N , are
iid random vectors with common mean vector μ and covariance matrix Σ , having
Gaussian distribution Xi ∼Nd(μ0,Σ). Both, μ0 and Σ are not known and should
be estimated on the bases of the HDS.

If the distribution mean changes from μ0 to μ1 we should be able to detect this
event with possibly the highest probability. We assume that the sample size N < d ,
so the sample covariance matrix, based on iid HDS,

S =
N∑

i=1

(Xi − X̄)(Xi − X̄)T /(N − 1), (20.1)

is singular, so S−1 does not exists and |S| = 0.
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We propose to use the Hotelling control chart based on individual observations
and to apply it to multidimensional Gaussian data projected onto random k dimen-
sional subspace of Rd , where k1 d .

Let R ∈ Rk×d be a matrix of projection with iid normal entries, i.e., rij ∼
N (0,1). For a new observation matrix R is generated and applied to it as well
as to HDS.

Conditioning on R the projected HDS are iid normal:

Vi =RXi, Vi |R ∼Nk

(
Rμ0,RΣR

T
)
, i = 1, . . . ,N. (20.2)

If k < N , the projected sample covariance matrix

SR = 1

N − 1

N∑

i=1

(Vi − V̄ )(Vi − V̄ )T , (20.3)

where V̄ =∑N
i=1 Vi/N , is non-singular with probability 1.

LetX denote a current observation in the monitoring sequence. For change-point
detection of the mean vector we shall use the following statistic:

T 2
R = (RX− V̄ )T S−1

R (RX− V̄ )
∣∣R ∼ k(N + 1)(N − 1)

(N − k)N F(k,N − k), (20.4)

where F is the F -Snedecor distribution with k andN−k degrees of freedom. Notice
that T 2

R depends on k and N ; it does not depend on d .
When change in the mean occurred and μ1 = μ0 + m, m �= 0. V = RX|R ∼

Nk(Rμ1,RΣR
T ).

T 2
R ∼

k(N + 1)(N − 1)

(N − k)N F
(
k,N − k,λ2), (20.5)

where F(k,N − k,λ2) is a noncentral F -Snedecor distribution with non-centrality
parameter λ2 = (Rm)T (RΣRT )−1Rm and with the degrees of freedom k and
N − k, respectively. The general idea is to test (based on individual observations):
H0: μ= μ0 versus H1: μ= μ1 �= μ0.

If T 2
R < hα(k)= k(N+1)(N−1)

(N−k)N F−1
α (k,N − k), where α is a significance level, we

decide that the process is in-control (no change in the mean is supposed). In other
words, hα(k) is the upper control limit.

We propose here to use the following algorithm:
For given HDS X1, . . . ,XN and α choose k and compute hα(k). For a given new

observation X

1. Generate R. Compute RX SR and T 2
R .

2. If T 2
R > hα(k) decide that the process is not in control. Otherwise, wait for the

next observation.

Notice that for every new observation we should generate randomly a new pro-
jection matrix. This is very important, because there are no directions in Rd where
changes cannot be detected. More precisely, for any orthogonal matrix Q ∈O(d) it
can be shown that RQ is also a normal random projection matrix.



182 E. Skubalska-Rafajłowicz

Thus, although the test statistics T 2
R value depends on R and is not rotation in-

variant, its expected value with respect to R is invariant under the rotation group
O(d).

20.3 Model of the Changes in the Mean Vector and the
Distribution of Noncentrality Parameter Values

Let

δ =mTΣm, m ∈Rd , (20.6)

where m is a change in the mean vector.
Define a vector random variable Z ∼ Nd(0, I ) and let Y = Σ1/2Z. Recall

that we have assumed that Σ is a nonsingular positive definite symmetric matrix.
E{ZT Z} = d since ZT Z ∼ χ2

d . Similarly, YT Σ−1Y ∼ χ2
d and E{YT Σ−1Y } = d .

Random vector M =
√
δ
d
Y is a random model of the changes in the mean vector

with Mahalanobis distance which is close to δ. It is easy to show that

(RM)T
(
RΣRT

)−1
MY = δ

d
ZT RT

(
RRT

)−1
RZ. (20.7)

Although RRT follows the Wishart distribution Wk(d, I ) and U = RZ|Z = z ∼
Nk(0,‖x‖2I ), the Gaussian random vector U = RZ|Z = z and the random matrix
RRT are dependent.

Let u be an eigenvector of RT (RRT )−1R, and let ν denote the eigenvalue cor-
responding to that eigenvector. Rank of the matrix R is k (with probability 1). Fur-
thermore,

RT
(
RRT

)−1
Ru= νu, RRT

(
RRT

)−1
Ru= νRu, Ru= νRu. (20.8)

Thus, eigenvalues of matrix RT (RRT )−1R are 1 or 0, with only k eigenvalues equal
to 1 (with probability 1). Further,

RT
(
RRT

)−1
R =QTAQ, (20.9)

where Q ∈O(d) is an appropriately chosen orthogonal matrix, and

A=
[
Ik 0
0 0

]
. (20.10)

It can be shown that the diagonal elements ofRT (RRT )−1R follow beta distribution
β(k/2, (d − k)/2) and expected values of out-of diagonal elements of this matrix
are zero. So,

ER
[
RT

(
RRT

)−1
R
]=EQ

{
QTAQ

}= k
d
I

and
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EZER

{
δ

d
ZT RT

(
RRT

)−1
RZ|Z = z

}
= δk
d2
EZ

(‖Z‖2)= δk
d
. (20.11)

Furthermore, we can easily obtain that the random variable defined in (20.7) follows
δ
d
χ2
k distribution. Notice that for any Q ∈ O(d) vector AQZ is a k-dimensional

orthogonal projection of normal random vector Z ∼ Nd(0, I ) and using normal
random projections we obtain a k-dimensional orthogonal vector basis accord-
ing to a unique rotation-invariant probability measure (Haar measure) on com-
pact Stiefel manifold (see for example [14]). Power of the test T 2

R for individual
observation X and given mean shift vector m, denoted as Pl(m) depends on di-
mension k of the normal random projection, noncentrality parameter δ(k,R,m)=
mT RT (RΣRT )−1Rm value obtained after projection and Type I error α (recall that
in our case ARL0 = 1/α). Thus, conditionally on R, we obtain the following for-
mula

Pl(m)=
∫ ∞

h(k)

f
(
k,N − k, δ(k,R,m), x)dx, (20.12)

where f (k,N−k, δ(k,R,m), x) is the probability density of noncentral distribution
F(k,N − k, δ(k,R,m)) and h(k) is the critical value of the test for a given α. The
new noncentrality parameter δ(k,R,m) depends strongly on Σ which is unknown
and in fact non-estimable due to small N . Thus, assuming model (20.7) we shall
concentrate on non-local power defined as:

Pnl(δ, k,N)=EM,R
{∫ ∞

h(k)

f
(
k,N − k, δ(k,R,M),x)dx

}
(20.13)

=EZ,R
{∫ ∞

h(k)

f

(
k,N − k, δ

d
ZT RT

(
RRT

)−1
RZ,x

)
dx

}
(20.14)

=
∫ ∞

0
fχ2(k)(y)

[∫ ∞

h(k)

f

(
k,N − k, δ

d
y, x

)
dx

]
dy. (20.15)

20.4 Choosing Dimension of Random Projection k

It is well known that Hotelling type control charts perform better in low dimension
[24]. On the other hand the noncentrality parameter of the appropriate F -Snedecor
distribution is larger in higher dimensions. Thus, the optimal choice of k is a com-
promise between both opposite tendencies.

Under assumption of model (20.7) we have to solve the following optimization
problem:

maximise Pnl(δ, k,N) with respect to k ≤N − 2. (20.16)

For moderate N values the problem can be solved numerically. Figure 20.1 shows
Pnl(δ, k,N) for k = 1, . . . ,18 and false alarm rate 0.005, i.e. α = 0.005, N = 20,
d = 100 and δ = 1000, 300, 200, 100 respectively. It is important to indicate, that
function (20.15) is very flat with respect to k and the proposed method of selecting
k is robust to small and moderate changes of α and δ.
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Fig. 20.1 Non-local power values of the test obtained numerically according to the formula
(20.15) for α = 0.005 (d = 100, N = 20, δ = 1000, 300, 200, 100 and k = 1, . . . ,18)

20.5 Numerical Experiments

We perform some experiments for multivariate normal distributions with popula-
tion covariance matrix with compound symmetry structure [4, 9]: Σ = (1− ρ)Id +
ρ11T , where 1d is the column vector with all entries one, ρ ∈ (0,1) is a com-
mon correlation factor. The trace of Σ is d , independently of ρ value. Notice that
the eigenvalues of the compound symmetry structure are λ1 = 1 + (d − 1)ρ and
λ2 = · · · = λd = 1− ρ. Without loss of generality we can assume that the true co-
variance matrix is diagonal since the proposed approach is rotation invariant in the
mean (see Sect. 20.2 for explanations).

In our study N = 20, d = 100 and ρ = 0.6, 0.4 and 0.1 are selected. We fix
the nominal significance level α = 0.005. This significance level is equivalent to the
average run length ARL in an in-control state, i.e., nominal ARL0 = 1/α = 200. Nu-
merical experiments are performed for 10 different HDS. Each experiment consists
of 10 000 replications. We select dimension of the projection according to (20.16)
(see also Fig. 20.1).

In Table 20.1 the averages over 10 HDS of ARL to detection are shown for 6
different m and the corresponding δ = mTΣ−1m. As one can observe, ARL’s to
detection strongly depend on a direction of the change vector m, e.g., changes in
the direction of the largest eigenvalue of Σ are the easiest to detect. In contrary, the
most difficult to disclose is vector m6, where the change is in the direction of the
smallest eigenvalue.

The above simulations were repeated for non-optimal k and in every case ARL’s
to detection were larger than those reported in Table 20.1. However, the results
are not too sensitive to small inaccuracies in selecting optimal k. Furthermore, k
selected according to (20.16), i.e., averaged with respect to (20.7), performed very
well in each particular case listed in Table 20.1.
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Table 20.1 ARL’s for d = 100,N = 20, k = 7 andm0 = (0, . . . ,0),m1 = (10.99,0, . . . ,0),m2 =
(5.495,0, . . . ,0), m3 = (0.0899, . . . ,0.0899), m4 = (0,0.6324,0.6324,0.6324,0, . . . ,0), m5 =
(0,0.6324,0.6324,0, . . . ,0), m6 = (0,0.6324,0, . . . ,0)

m ρ = 0.6 ρ = 0.4 ρ = 0.1

δ ARL δ ARL δ ARL

m0 0 208.3 0 217.4 0 217.4

m1 200.0 1.00 297.5 1.00 1108.0 1.00

m2 50.0 1.30 74.4 1.11 277.0 1.02

m3 200.03 6.78 133.34 12.35 88.9 20.81

m4 300.0 3.97 200.0 6.99 133.3 12.27

m5 200 7.23 133.3 13.14 88.9 22.52

m6 100.0 21.87 66.7 37.11 44.4 56.95

20.6 Concluding Remarks

In this paper a new method of using the Hotelling control chart is proposed for
change-point detection of a mean vector with fewer observations than the dimen-
sion. We concentrate on finite sample problems. The method performs well, when
a population covariance matrix has a compound symmetry structure. Due to the
known distribution of the test statistic the control level of the chart is data indepen-
dent, what is important in a small sample case. The proposed method of selecting
the dimension of the normal projection provides accurate values when the number
of samples is moderate. If the average change of the mean vector is it assumed to be
proportional to the dimension, the power of the test for a given projection dimension
depends only on the number of samples and a significance level.
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Chapter 21
On Some Distributed Disorder Detection

Krzysztof Szajowski

Abstract Multivariate data sources with components of different information value
seem to appear frequently in practice. Models in which the components change their
homogeneity at different times are of significant importance. The fact whether any
changes are influential for the whole process is determined not only by the moments
of the change, but also depends on which coordinates. This is particularly important
in issues such as reliability analysis of complex systems and the location of an in-
truder in surveillance systems. In this paper we developed a mathematical model
for such sources of signals with discrete time having the Markov property given
the times of change. The research also comprises a multivariate detection of the
transition probabilities changes at certain sensitivity level in the multidimensional
process. Additionally, the observation of the random vector is depicted. Each chosen
coordinate forms the Markov process with different transition probabilities before
and after some unknown moment. The aim of statisticians is to estimate the mo-
ments based on the observation of the process. The Bayesian approach is used with
the risk function depending on measure of chance of a false alarm and some cost of
overestimation. The moment of the system’s disorder is determined by the detection
of transition probabilities changes at some coordinates. The overall modeling of the
critical coordinates is based on the simple game.

21.1 Introduction

The aim of the study is to investigate the mathematical model of a multivariate
surveillance system introduced in [17]. In the model there is net N of p nodes. At
each node the state is the signal at moment n ∈N which is at least one coordinate of
the vector 2xn ∈ E⊂ 3m. The distribution of the signal at each node has two forms
that depends on the state of surrounding. The state of the system changes dynami-
cally. We consider the discrete time signal observed as m≥ p dimensional process
on the probability space (Ω,F ,P). The Markov processes, which are observed at
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each node, are non homogeneous with two homogeneous segments as they have dif-
ferent transition probabilities (see [12] for details). The visual consequence of the
transition distribution changes at moment θi , i ∈N is a change of its character. In
order to avoid false alarm the confirmation from other nodes is needed. The fam-
ily of subsets (coalitions) of nodes is defined in such a way that the decision of all
members of a given coalition is equivalent to the claim that the disorder appeared
in the net. It is not certain, however that the disorder has taken place. The aim is to
define the rules of nodes and a construction of the net decision based on individual
nodes claims. Various approaches can be found in the recent research that refer to
the description of such systems (see e.g. [11, 19]). The problem is quite similar to a
pattern recognition with multiple algorithm when the results of fusions of individ-
ual algorithms are unified to a final decision. In the study two different approaches
are proposed. Both are based on the simple game defined on the nodes. The naïve
methods determine the system disordering by fusion individual node strategies. This
construction of the individual decisions is based on the observation at each node
separately.

The advanced solution of Bayesian version of the multivariate detection with
a common fusion center is based on a stopping game defined by a simple game
related to the observed signals. The individual decisions are based on the analysis of
the processes observed at all nodes and knowledge of nodes’ interaction (the simple
game). The sensors’ strategies are constructed as an equilibrium strategy in a non-
cooperative stopping game with a logical function defined by a simple game (which
aggregates their decision).

The general description of such multivariate stopping games has been formu-
lated by Kurano, Yasuda and Nakagami in the case when the aggregation function
is defined by the voting majority rule [5] and the observed sequences of the random
variables are independent, identically distributed. It was Ferguson [3] who substi-
tuted the voting aggregation rules by a simple game. The Markov sequences have
been investigated by the author and Yasuda [16].

The model of detection of the disorders at each sensor is presented in the next
section. It allows to define the individual payoffs of the players (sensors). The final
decision based on the state of the sensors is given by the fusion center and it is
described in Sect. 21.5. The natural direction of further research is formulated in the
same section.

21.2 Detection of Disorder at Sensors

Following the consideration presented in Sect. 21.1, let us suppose that the process
{ 2Xn,n ∈N}, N= {0,1,2, . . .}, is observed sequentially in such a way that each sen-
sor, e.g. r th one gets its coordinates in the vector 2Xn at moment n. By assumption,
it is a stochastic sequence that has the Markovian structure which is given random
moment θr in such a way that the process after θr starts from state 2Xθr−1. The
objective is to detect these moments based on the observation of 2Xn at each sen-
sor separately. There are some results on the discrete time case of such disorder
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detection which generalize the basic problem stated by Shiryaev in [13] (see e.g.
Brodsky and Darkhovsky [2], Bojdecki [1]) in various directions. In the early pa-
pers the observed sequence has independent elements given disorder moment. The
sequences with dependent observations are subject of investigation by Yoshida [21],
Szajowski [15], Yakir [20], Moustakides [7] and Mei [6].

The application of the model for the detection of traffic anomalies in networks
was discussed by Tartakovsky et al. [18]. The version of the problem when the
moment of disorder is detected with given precision will be used here (see [12]).

21.2.1 Formulation of the Problem

The observable random variables { 2Xn}n∈N are consistent with the filtration Fn (or
Fn = σ( 2X0, 2X1, . . . , 2Xn)). The random vectors 2Xn take values in (E,B), where
E⊂ 3m. On the same probability space there are defined unobservable (hence not
measurable with respect to Fn) random variables {θr}mr=1 which have the following
geometric distributions:

P(θr = j)= πrI{j=0}(j)+
(
1− I{j=0}(j)

)
(1− πr)pj−1

r qr ,

where πr, qr = 1− pr ∈ (0,1), j = 0,1,2, . . . .
The sensor r follows the process which is based on switching between two, time

homogeneous and independent the Markov processes {Xirn}n∈N, i = 0,1, r ∈ N

with the state space (E,B). These are both independent of {θr}mr=1. Moreover, the
processes {Xirn}n∈N have transition densities

Pix
(
Xir1 ∈ B

)= P
(
Xir1 ∈ B|Xir0 = x

)=
∫

B

f rix (y)μ(dy).

The random processes {Xrn}, {X0
rn}, {X1

rn} and the random variables θr are con-
nected via the rule: Xrn =X0

rnI{n: n<k}(n)+X1
r n+1−kI{n: n≤k}(n) on θr = k, where

{X1
rn} starts from X0

r k−1 (but is otherwise independent of X0
r ·).

For any x ∈ E, πr ∈ [0,1], c ∈ 3+ and τr ∈SX , where SX denotes the set of
all stopping times with respect to the filtration {Fn}n∈N, the risk associated with τr
is defined as follows ρr(x,πr , τr )= Px πr (τr < θr)+ cEx πr max{τr − θr ,0}, where
Px πr (τr < θr) is the probability of false alarm and Ex πr max{τr − θr ,0} is the av-
erage delay of detecting correctly the occurrence of disruption.

Every sensor is looking for the stopping time τ ∗r ∈ SX such that for every
(x;πr) ∈ E× [0,1]

ρ�(x,πr)= ρr
(
x,πr , τ

�
r

)= inf
τr∈SX

ρr(x,πr , τr ). (21.1)
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21.2.2 The Optimal Detection Problem as an Optimal Stopping
Problem

In case of the independent sequence given the disorder moment the construction of
τ ∗ through the transformation of the problem to the optimal stopping problem for
the Markov process (Xn,Π

πr
r n) can be made, whereΠπrr n is the posterior process (see

e.g. [14]). It is stated that Ππrr0 = πr , Ππrrn = Pπr (θr ≤ n |Fn), for n= 1,2, . . . , is
designed as information about the distribution of the disorder instant θr . Moreover,

ρr(x,πr , τr )= Ex,πr
{
(
1−Ππrrτr

)+ c
τr−1∑

k=0

Π
πr
r k

}

. (21.2)

The family of the Markov random functions {Ππr ,πr ∈ [0,1]} can be associated
with a Markov process with discrete time Π = (πn,Fn,Pπr ), for n≥ 0, having the
same transition probabilities as each Markov random function is presented as Ππr ,
πr ∈ [0,1].

21.2.3 The Optimal Stopping Problem with Observation Costs

The problem of minimization of the risk (21.2) can be solved as the special opti-
mal stopping problem. As it is shown in [10], pp. 22–23, the problem can be trans-
formed to the optimal stopping problem for the time-homogeneous two dimensional
Markov chain without observation costs. The Wald–Bellman equation which solves
(21.1) takes the form:

ρ�(x,πr)=min
{
1− πr, cπr +Ex,πr ρ

�(x1,π1)
}
. (21.3)

21.3 The Aggregated Decision via the Cooperative Game

There are various methods combining the decisions of several classifiers or sensors.
The methods based on winning coalitions in the simple game presented in [17] will
be used. The obvious changes are the consequence that in the model considered
now the aim is to minimize the risk. We apply two methods of decision aggregation.
In the first one, based on the optimal disorder detection strategies, we apply the
aggregation method. This approach does not guarantee that the obtained system
disorder detection will have certain stability or equilibrium properties.

In the second approach each ensemble member contributes to some degree to the
decision at any point of the sequentially delivered states. The fusion algorithm takes
into account all the decision outputs from each ensemble member and comes up
with an ensemble decision in such a way that the solution is an equilibrium point in
an antagonistic, no-zero sum game.
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21.3.1 A Simple Game

Let us assume that there are many nodes which absorb information and make de-
cisions if the disorder has appeared or not. The final decision is made in the fusion
center which aggregates the information from all sensors.

The voting decision is made according to the rules of a simple game. Let us recall
that a coalition is a subset of the players. Let C = {C: C ⊂N} denote the class of all
coalitions. A simple game (see [3, 9]) is a coalition game having the characteristic
function of φ(·) :C →{0,1}.

Let us denote W = {C ⊂ N: φ(C) = 1} and L = {C ⊂ N: φ(C) = 0}. The
coalitions in W are called the winning coalitions, and those from L are called the
losing coalitions. By assumption, the characteristic function satisfies the properties:
N ∈W ; ∅ ∈L ; (the monotonicity): T ⊂ S ∈L implies T ∈L .

21.3.2 The Aggregated Decision Rule

When the simple game is defined and the players can vote presence or absence,
xi = 1 or xi = 0, i ∈N of the local disorder then the aggregated decision is given
by the logical function

δ(x1, x2, . . . , xp)=
∑

C∈W

∏

i∈C
xi
∏

i /∈C
(1− xi). (21.4)

For the logical function δ we have (cf. [5])

δ
(
x1, . . . , xp

)= xi · δ(x1, . . . ,

i

1̆, . . . , xp
)+ xi · δ(x1, . . . ,

i

0̆, . . . , xp
)
,

where xi = 1− xi.

21.3.3 Aggregated Sensors Strategies

For any stopping times {τi}pi=1 with respect of the filtration {Fn}n∈N we have the
representation by the individual stopping strategies σ in(τ ) = I{ω: τi≥n}. The aggre-
gate function applied to the individual stopping times will construct the detection
strategy σn of the system disorder. The stopping time from the individual stopping
strategy is constructed as τ = inf{0≤ n≤N : σn

∏n−1
k=1(1− σk)= 1}.

This aggregation method is the basement of both constructions. In the naive al-
gorithm it is applied to the optimal individual strategies of the sensors constructed
as the solution of the optimal stopping problem (21.1).

In the multivariate stopping game approach the aggregation of the individual
decision is used to construct the set of admissible strategies. The details are the
subject of the next section.
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21.4 A Non-cooperative Detection Problem

Following the results of the author and Yasuda [16] the multilateral stopping of a
Markov chain problem can be described in the terms of the notation used in the non-
cooperative game theory (see [8, 9]). This approach can be applied to the distributed
disorder detection by reformulation of the problem to the multilateral stopping prob-
lem. The important issue is the representation of the expected risk in the disorder
detection problem for one sensor given in (21.2).

Let us denote σ i = (σ i1, . . . , σ iN ) and let Si be the set of ISSs of player i, i =
1,2, . . . , p (see [5]). Define S=S1×· · ·×Sp the set of the stopping strategy (SS).
The factual stopping of the observation process (the estimate of the system disorder
moment), and the players realization of the payoffs are defined by the stopping
strategy exploiting p-variate logical function δ : {0,1}p → {0,1}. Since δ is fixed
during the analysis we write t(σ )= tδ(σ ).

We have {ω ∈ Ω: tδ(σ ) = n} =⋂n−1
k=1{ω ∈ Ω: δ(σ 1

k , σ
2
k , . . . , σ

p
k ) = 0} ∩ {ω ∈

Ω: δ(σ 1
n , σ

2
n , . . . , σ

p
n ) = 1} ∈ Fn, then the random variable tδ(σ ) is the stopping

time with respect to {Fn}Nn=1. For any stopping time tδ(σ ) and i ∈ {1,2, . . . , p},
let ρi(Xtδ(σ ),Πtδ(σ ), δ(σ )) = ρi(Xn,Πn,n)I{tδ(σ )=n} + lim supn→∞ ρi(Xn,Πn,
n)I{tδ(σ )=∞}. (cf. [14, 16]). If players use SS σ ∈S and the individual preferences
are converted to the effective stopping time by the aggregate rule δ, then player i
gets ρi(Xtδ(σ ),Πtδ(σ )).

Let ∗σ = (∗σ 1, . . . , ∗σp)T ∈ S and ∗σ(i) = (∗σ 1, . . . , ∗σ i−1, σ i, ∗σ i+1,

. . . , ∗σp)T .

Definition 21.1 (Cf. [16].) For the fixed aggregate rule δ the strategy ∗σ ∈S is an
equilibrium strategy if for each i ∈ {1,2, . . . , p} and any σ i ∈Si we have

ρi
(
x,πi, tδ

(∗σ
))≤ ρi

(
x,πi, tδ

(∗σ(i)
))
. (21.5)

The set S, the vector of the utility functions f = (f1, f2, . . . , fp) and the mono-
tone rule δ define the non-cooperative game G = (S,f ,δ). The construction of the
equilibrium strategy ∗σ ∈S in G is provided in [16]. In the case of the considered
distributed disorder detection problem we have fi(x,π)= 1− π .

With each ISS of player i the sequence of stopping events Din = {ω: σ in = 1}
is associated. For each aggregate rule δ there exists the corresponding set value
function Δ :F→ F such that δ(σ 1

n , . . . , σ
p
n ) = δ{ID1

n
, . . . , IDpn } = IΔ(D1

n,...,D
p
n )

. For
the solution of the considered game the important class of ISS and the stopping
events can be defined by subsets Ci ∈B of the state space E. A given set Ci ∈B
will be called the stopping set for player i at moment n if Din = {ω: Xn ∈ Ci} is the
stopping event.

Let gi be the real, integrable functions defined on E × [0,1] and Ci ∈B. Let
iD1(A)=Δ(D1

1, . . . ,D
i−1
1 ,A,Di+1

1 , . . . ,D
p

1 ). For fixed Djn = {ω: Xn ∈ Ci}, j =
1, . . . , p, j �= i define ψ(Ci)= Ex[(1−Πi1)IiD1(D

i
1)
+ gi(X1,Π1)IiD1(D

i
1)
].



21 On Some Distributed Disorder Detection 193

Lemma 21.1 Let Cj ∈B, j = 1,2, . . . , p, j �= i, be fixed. Then the set ∗Ci = {x ∈
E: ρi(x)− gi(x)≤ 0} ∈B is such that ψ(∗Ci)= infCi∈B ψ(C

i) and

ψ
(∗Ci

)= Ex,π
(
1−Πi1 − gi(X1,Π1)

)+
IiD1(∅)

−Ex,π
(
1−Πi1 − gi(X1,Π1)

)−
IiD1(Ω)

+Ex,πgi(X1,Π1). (21.6)

Based on Lemma 21.1 we derive the recursive formulae defining the equilibrium
point and the equilibrium payoff for the finite horizon detection problem.

21.4.1 The Finite Horizon Detection Problem

Let horizonN be finite and the equilibrium strategy ∗σ exist. We denote ρi,N (x,π)=
Ex,πρi(Xt(∗σ),Πt(∗σ)) the equilibrium payoff of ith player when X0 = x. Let
Sin = {{σ ik}, k = n, . . . ,N} and Sn =S1

n ×S2
n × · · · ×S

p
n .

Denote tn = tn(σ ) = t (nσ ) = inf{n ≤ k ≤ N : δ(σ 1
k , σ

2
k , . . . , σ

p
k ) = 1} to be the

stopping time not earlier than n. Let ρi,N−n+1(Xn−1,Πn−1) = ρi(Xtn(∗σ),Πtn(∗σ),
tn(
∗σ)). At n=N we have ρi,0(x,π)= ρi(x,π,N). Let us assume that the process

is not stopped up to moment n and the players are using the equilibrium strategies
∗σ ik , i = 1,2, . . . , p, at k = n + 1, . . . ,N . Choose player i and assume that other

players are using the equilibrium strategies ∗σ jn , j �= i, and player i is using strategy
σ in defined by the stopping set Ci . Then the expected payoff ϕN−n(Xn−1,C

i) of
player i in the game starting at n, when the state of a Markov chain at n − 1 is
Xn−1, is equal to

ϕN−n
(
Xn−1,Πn−1,C

i
)

= EXn−1,Πn−1

[(
1−Πin

)
Ii∗Dn(Din) + ρi,N−n(Xn,Πn)Ii∗Dn(Din)

]
,

where i∗Dn(A)=Δ(∗D1
n, . . . ,

∗Di−1
n ,A, ∗Di+1

n , . . . , ∗Dpn ).
By Lemma 21.1 the conditional expected gain ϕN−n(XN−n,Ci) attains the max-

imum on the stopping set ∗Cin = {x ∈ E: fi(x)− vi,N−n(x)≤ 0} and

vi,N−n+1(Xn−1,Πn−1)− ciΠin−1

= Ex
[(

1−Πin − vi,N−n(Xn,Πn)
)+

Ii∗Dn(∅)|Fn−1
]

−Ex
[(

1−Πin − vi,N−n(Xn)
)−

Ii∗Dn(Ω)|Fn−1
]+Ex

[
vi,N−n(Xn,Πn)|Fn−1

]

Px−a.e. This reasoning allows to formulate the following construction of the equi-
librium strategy and the equilibrium value for the game G .

Theorem 21.1 In the game G with finite horizonN we have the following solution.

(i) The equilibrium value vi(x,π), i = 1,2, . . . , p, of the game G can be cal-
culated recursively as follows: vi,0(x,π) = 1 − πi and for n = 1,2, . . . ,N ,
i = 1,2, . . . , p we have Px−a.e.
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vi,n(XN−n,ΠN−n)− ciΠiN−n
= Ex,π

[
vi,n−1(XN−n+1,ΠN−n+1)|FN−n

]

+Ex,π
[(

1−ΠiN−n+1

)− vi,n−1(XN−n+1,ΠN−n+1)
+

× Ii∗DN−n+1(Ω)
|FN−n

]

−Ex,π
[((

1−ΠiN−n+1

)− vi,n−1(XN−n+1,ΠN−n+1)
)−

× Ii∗DN−n+1(∅)|FN−n
]
.

(ii) The equilibrium strategy ∗σ ∈ S is defined by the SS of the players ∗σ in,
where ∗σ in = 1 if Xn ∈ ∗Cin, and ∗Cin = {x ∈ E: fi(x) − vi,N−n(x) ≤ 0}, n =
0,1, . . . ,N .

We have vi(x,π)= vi,N (x,π), and Ex,π (1−Πit(∗σ))= vi,N (x), i = 1,2, . . . , p.

21.5 Determining the Strategies of Sensors

Based on the model constructed in Sects. 21.2–21.4 for the net of sensors with the
fusion center determined by a simple game, one can determine the rational deci-
sions of each nodes. The rationality of such a construction refers to the individual
aspiration for the highest sensitivity to detect the disorder without a false alarm. The
Nash equilibrium fulfills the requirement that nobody deviates from the equilibrium
strategy, otherwise its expected risk will be higher.

The proposed model disregards the correlation of the signals. It is also assumed
that the fusion center has complete information about the signals and that the in-
formation is available at each node. The method of a cooperative game was used
in [4] to find the best coalition of sensors in the problem of the target localization.
The approach which is proposed in the study shows the possibility of modeling the
detection problem by multiple agents at a general level.
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Chapter 22
Changepoint Inference for Erdős–Rényi
Random Graphs

Elena Yudovina, Moulinath Banerjee, and George Michailidis

Abstract We formulate a model for the off-line estimation of a changepoint in a
network setting. The framework naturally allows the parameter space (network size)
to grow with the number of observations. We compute the signal-to-noise ratio de-
tectability threshold, and establish the dependence of the rate of convergence and
asymptotic distribution on the network size and parameters. In addition, we show
that inference can be adaptive, i.e. asymptotically correct confidence intervals can
be computed based on the data. We apply the method to the question of whether US
Congress has abruptly become more polarized at some point in recent history.

22.1 Introduction

The problem of estimating the location of a jump discontinuity (changepoint) has
been extensively studied in the statistics literature. There are two versions of the
problem. The on-line version is concerned with the quickest detection of a change-
point in the parameters of a dynamic stochastic system, and is closely related to
classical problems in sequential analysis; for a comprehensive treatment, together
with a discussion of important applications, see the books by Siegmund [18], Bas-
seville and Nikiforov [1], and the review article by Lai [12] and references therein.
In the off-line version, data are available for n covariate-response pairs, and one is
interested in estimating the location of the changepoint as accurately as possible
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(see Ritov [17], Müller [15], Loader [13], Gijbels, Hall and Kneip [6], Hall and
Molchanov [7], Kosorok and Song [11], and the book by Csörgő and Horváth [4]).
The on-line version is also closely related to many developments in statistical pro-
cess control (Hawkins et al. [8]) and associated control charts (e.g. Cumulative Sums
(CUSUM), Exponential Weighted Moving Average (EWMA), etc.). However, both
versions of the problem have dealt primarily with low- (usually one-) dimensional
problems. Although there have been some extensions to multivariate data, they are
usually obtained under an assumption of multivariate normality that gives rise to
Hotelling’s T 2 test.

In this paper, we consider the off-line version in a high-dimensional network set-
ting. Data are indexed by the edges of a graph; in the simplest case, binary data in-
dicate whether the edge is present. We consider edges which evolve independently,
so that at each point in time the network looks like an Erdős–Rényi random graph.
This is a fundamental problem in changepoint analysis on networks, and already
presents technical challenges. As graph size grows, we acquire more data about the
changepoint, but have to deal with a higher-dimensional nuisance parameter space;
this interaction is the main technical focus of the paper. We obtain the limiting dis-
tributions of the maximum likelihood estimates of both the changepoint and the re-
maining model parameters; although the asymptotic distribution for the changepoint
estimate depends on the (unknown) signal-to-noise ratio, we develop an adaptive in-
ference framework that does not require prior information about the limiting regime.
Many of our results generalize those known for finite-dimensional models, although
to our knowledge the focus on adaptive inference is new.

As a motivating application, we consider the question of whether the US
Congress has abruptly become more polarized at some point in recent history. This
question has raised a lot of interest in the political science literature; see for exam-
ple [14, 16]. These works were primarily exploratory in nature, and no attempt was
made to make inferences regarding the polarization process. Within the framework
of our network-based approach, we use roll call vote data to generate a sequence
of graphs, with vertices corresponding to congressmen and edges corresponding to
whether they voted in the same way on a particular issue. We are then able to make
inference about any changepoints in voting pattern.

Due to space constraints, we skip most of the details. A more extensive version
of the paper is in preparation.

22.2 Network Changepoint Model and Estimators

Consider a sequence of random graphs indexed by n. Each graph has m = m(n)
potential edges; we allow m(n) to grow with n. Each edge has a state α ∈S ; for
simplicity, in this note we take S = {0,1}, but the model readily extends to arbitrary
common finite state space. We assume that the underlying graphs are embedded into
each other, so that it makes sense to speak of “edge 1 of system n”. The edges evolve
in discrete time; each edge evolves as a Markov chain with its own transition kernel,
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independently of all the other edges. Consequently, at each time point the state of the
system is an Erdős–Rényi random graph (with different, time-varying, probabilities
for each edge). We assume that edges transition according to one set of transition
kernels {P ∗k , 1 ≤ k ≤ m(n)} before a time t∗, the changepoint, and according to
another set of transition kernels {Q∗k, 1 ≤ k ≤m(n)} after t∗. The changepoint t∗,
as well as the matrices P ∗k and Q∗k , may depend on n; but note that t∗ is the same
for all the edges. We may also have P ∗k =Q∗k for some edges, i.e. the changepoint
may only affect a subset of the edges in the graph. For convenience, we will rescale
time so that t∗ ∈ [0,1].

We make n observations of the graph indexed by n, at times { i
n
, i = 1, . . . , n}.

This means that in the nth experiment, t∗ = t∗(n) ∈ { i
n
}, i = 1, . . . , n. We will

assume t∗(n)→ t0 as n→∞, as well as P ∗k → P 0
k and Q∗k → Q0

k for each k.
Below, we will frequently omit the dependence on n.

Let 1k,α→β(s) be the indicator of the event that edge k was in state α at time s
and in state β at time s + 1. The log-likelihood function for this model is

lMn (P,Q, t)= n−1

(
m∑

k=1

∑

α,β∈S

(
nt−1∑

s=0

(
1k,α→β(s) log(Pk)αβ

)

+
n−1∑

s=nt

(
1k,α→β(s) log(Qk)αβ

)
))

. (22.1)

If the changepoint were at t , we could write down the MLEs P̂ = P̂ (t) and Q̂ =
Q̂(t):

(
P̂k(t)

)
αβ
=

∑nt−1
s=0 1k,α→β(s)

∑nt−1
s=0

∑
γ∈S 1k,α→γ (s)

,

(
Q̂k(t)

)
αβ
=

∑n−1
s=nt 1k,α→β(s)

∑n−1
s=nt

∑
γ∈S 1k,α→γ (s)

. (22.2)

The MLE t̂ can be obtained by iterating over t ∈ [0,1] (on the grid of discrete
observation times), using the above form for P̂ and Q̂; in case of ties, we take the
smallest maximizer.

Our main results will concern the asymptotic behavior of P̂ , Q̂, and t̂ as n→∞.
Below, we describe the necessary assumptions on the behavior of the dimension
m(n), the “signal”

∑
k ‖P ∗ − Q∗‖F , and the values of true parameters. Here,

‖A‖F = (∑i,j A
2
ij )

1/2 is the Frobenius, or Hilbert–Schmidt, norm of the matrix

A; and we write ‖P ∗ −Q∗‖2
F =

∑
k ‖P ∗k −Q∗k‖2

F .

Assumption 22.1

1. The underlying parameters converge as follows.

a. m(n) is either constant m(n)=m0 or else monotonically increasing to infin-
ity.



200 E. Yudovina et al.

b. t∗(n)→ t0 as n→∞. (For example, we could have t∗(n)= n−1nt0�.)
c. P ∗k (n)→ P 0

k and Q∗k(n)→Q0
k uniformly in k.

2. There exists a constant ε > 0 (which we need not know) such that, for each k,
one of the following holds: either ‖Q0

k − P 0
k ‖F > ε, or else Q0

k = P 0
k .

3. For each n and k, the transition matrices P ∗k (n) and Q∗k(n) correspond to irre-
ducible, aperiodic Markov chains with state space S . There exists some known
constant c > 0 such that t∗ ∈ (c,1 − c), and all entries of P ∗k and Q∗k belong
to (c,1− c). (The same is then true of t0, P 0

k , and Q0
k .) We will only consider

estimates of the changepoint that fall within (c,1− c).
4. The number of edges m satisfies n−1/2 logm(n)→ 0.
5. The signal-to-noise ratio satisfies n

m

∑m
k=1 ‖P ∗k −Q∗k‖2

F →∞.

Remark 22.1 Assumption 22.1.3 implies that the Markov chains with transition
kernels P ∗k and Q∗k have uniformly bounded mixing times; in particular, observa-
tions 1k,α→β(·) form a mixing sequence, with mixing coefficients bounded uni-
formly in k. For discussion of variants of the changepoint problem where the
changepoint is very close to the edge of the interval, see for example [4, Theo-
rem 1.5.3].

Assumption 22.1.4 implies that with high probability, all estimates P̂k(t) and
Q̂k(t) will satisfy Assumption 22.1.3; and together with Assumption 22.1.2, it
means that we will correctly identify which of the edges experienced a change at
t∗. The requirement n−1/2 logm(n)→ 0 still allows quite large graphs, e.g. we may
have m(n)= exp(n1/4).

Assumption 22.1.5 asserts that the “average” per-edge signal ‖P ∗k −Q∗k‖2
F 4

n−1. With finitely many edges (m(n)=m0), this is necessary for detectability; when
m(n)→∞, the necessary condition is very slightly weaker.

22.3 Results

We now present our main results. Theorem 22.1 addresses the rates of convergence
of the estimators and their asymptotic distributions. Finally, Theorem 22.2 addresses
the question of adaptive inference, that is, inferring the parameters of the asymptotic
distribution from the data.

Because the exact formulae below get somewhat involved, we state only the qual-
itative form of the limiting processes and distributions. Full expressions for the pa-
rameters will be found in our forthcoming longer paper on the subject. The form
of the result is qualitatively similar to finite-dimensional models, cf. [4, Chap. 1],
although our model is considerably more general.

Theorem 22.1 (Rates of convergence and asymptotic distribution.) Under Assump-
tions 22.1.1 through 22.1.5, n‖Q∗ − P ∗‖2

F |t̂ − t∗| =OP (1).
For any finite set of edges K and simultaneously for all k ∈K , n‖P̂k − P ∗k ‖2

F =
OP (1) and n‖Q̂k −Q∗k‖2

F =OP (1).
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Define the local parameters hPk =
√
n(Pk −P ∗k ), hQk =

√
n(Qk −Q∗k). For each

k, hPk and hQk are asymptotically normal:

(
hPk

)-⇒N
(
0,
(
t0
)−1
V Pk

)
, h

Q
k -⇒N

(
0,
(
t0
)−1
V
Q
k

)
,

where the S2×S2 covariance matrices V Pk , VQk depend on P 0
k , respectivelyQ0

k . For

any fixed finite set K of edges, the estimates {ĥPk , ĥQk , t̂ : k ∈K} are asymptotically
independent.

For the limiting distribution of (t̂ − t∗), we distinguish three cases, one of which
is further subdivided:

1. If ‖P ∗ −Q∗‖2
F →∞, then n(t̂ − t∗)→ 0 in probability. That is, asymptotically

we precisely identify the index of the transition where the transition probability
matrix changed.

2. If ‖P ∗ −Q∗‖2
F → 0, then

n

m∑

k=1

∑

α,β∈S

(π0
k )α

(P 0
k )αβ

((
P ∗k −Q∗k

)
αβ

)2(
t̂ − t∗)→ σ−1 arg max

h∈R

(
B(h)− 1

2
|h|

)
,

whereB(h) is a standard Brownian motion, and σ 2 comes from the Markov chain
central limit theorem (cf. [10, Case 1 of Theorem 5]).

3. If ‖P ∗ −Q∗‖2 → C ∈ (0,∞), then n(t̂ − t∗) converges to the (smallest) maxi-
mizer of a limiting jump process supported on Z: n(t̂− t∗)→ arg maxh∈Z[M(h)+
G(h)−D(h)]. Here, D is a deterministic triangular drift, G is a random walk
with correlated Gaussian step sizes, and M is a functional of the Markov chain
trajectories of some of the edges. Let I+ = {k: P 0

k �=Q0
k} (necessarily finite);

M(·) depends only on the edges in I+, and D(·) and G(·) depend only on the
remaining edges.

Interestingly, the network sizem does not appear in the scaling of t̂− t∗; however,
Assumption 22.1.5 places a lower bound on ‖Q∗ − P ∗‖2

F that scales with m.
The proofs follow the approach of [20, Theorem 3.4.1], making extensive use of

Doob’s martingale maximal inequality (the use for Markov chains is somewhat un-
usual). The continuity of the argmax functional in Case 22.1.3 is non-standard. The
high-dimensional nuisance parameter space makes it hard to apply many classical
changepoint techniques, such as those in [4].

Lastly, we present a result which allows adaptive inference of the limiting distri-
bution from the data, irrespective of the limiting regime that applies. This means that
we can provide asymptotically correct quantile estimation of the distribution based
only on the data, without knowledge of the true parameters. The adaptive process is
essentially the one that appears in case 3 of Theorem 22.1 when |I+| =m.

Theorem 22.2 (Adaptive inference.) Define the process M̃(h) as follows. Let
X̃k(h),h ≥ 0 be the reversed Markov chain with initial distribution π̂k and tran-

sition kernel P̂k , (P̂k)αβ = (π̂k)β
(π̂k)α

(P̂k)βα . Here, (π̂k)α :=∑nt̂−1
s=0

∑
β∈S 1k,α→β(s)
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is the empirical proportion of time that edge k spends in state α up to time t̂ . Let
Ỹk(h),h ≥ 0 be the (ordinary) Markov chain with initial distribution π̂k and tran-
sition kernel Q̂k . For different values of k, let the Markov chains be independent;
moreover, let Xk(0)= Yk(0) and let their transitions be independent otherwise. De-
fine

M̃(h+ 1)− M̃(h)=

⎧
⎪⎨

⎪⎩

∑m
k=1

∑
α,β∈S 1

Ỹk,α→β(h) log (P̂k)αβ

(Q̂k)αβ
, h≥ 0,

∑m
k=1

∑
α,β∈S 1

X̃k,β→α(|h| − 1) log (P̂k)αβ
(Q̂k)αβ

, h < 0.

Let h̃ be the smallest maximizer of M̃(·). Then h̃ has the same asymptotic distri-
bution as n(t̂ − t∗), in the following sense:

1. If ‖Q∗ − P ∗‖2
F →∞, then both h̃→ 0 and n(t̂ − t∗) in probability.

2. If ‖Q∗ −P ∗‖2
F → 0, then we have convergence in distribution for the renormal-

ized estimate:
m∑

k=1

∑

α,β∈S

(π0
k )α

(P 0
k )αβ

((
P ∗k −Q∗k

)
αβ

)2
h̃→ σ−1 arg max

h∈R
B(h)− 1

2
|h|,

where B(h) is a standard Brownian motion, and σ 2 is as in Theorem 22.1.
3. If ‖Q∗ − P ∗‖2

F → C ∈ (0,∞), then h̃→ arg maxh∈Z[M(h)+G(h)− 1
2D(h)],

whereM(·), G(·), and D(·) are as in Theorem 22.1.

22.4 Application: Polarization in US Congress

We consider the question of whether the dynamics of discussion in the US Senate
have experienced a changepoint in recent past. To construct the sequence of graphs
as above, we identify the senators with senate seats (two per state, e.g. Michigan 1
and Michigan 2). We then consider 7949 roll call votes on bills during the years
1979–2012. The state of the edges of the (complete) graph on 100 vertices is then
1 if the corresponding senators voted in the same way on the issue, and 0 if they
voted differently. The Markovian structure is, of course, an approximation of this
data, but represents the fact that a particular pair of senators will tend to either agree
or disagree on most issues. We note that while the occupants of a particular seat
can change, this does not occur very often in practice, so the assumption that the
parameters of the model are time-independent aside from the changepoint is not
unreasonable.

In Fig. 22.1, we present the (profile) log-likelihood function for the location of
the changepoint. We see broadly that the log-likelihood function reaches its maxi-
mum somewhere between the 104th and 107th Congresses, i.e. 1995–2003. (2003
corresponds to the Iraq war.) Within this interval, there are several local maxima; as
the table to the right of Fig. 22.1 shows, which changepoint is dominant depends in
particular on when data analysis starts. We can also examine the nature of the change
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Year Estimate CI
1995 4025 (3995, 4152)
1999 5100 (5000, 5225)
2001 5850 (5775, 5875)

Fig. 22.1 Log-likelihood function for the senate roll call data. The horizontal axis is labelled with
the index of the roll call vote; vertical bands identify the Congress, i.e. the two-year inter-election
period. The table to the right presents the dominant changepoint as a function of the year when
data collection begins

by examining the estimated transition parameters before and after the changepoint
(in this case, before the 104th and after the 107th Congress). We do not show the
graphs due to space constraints, but the average probability of changing the status of
an edge decreases by almost a factor of 2, from approximately 0.2 to approximately
0.1, leading to longer negotiation times until a compromise is reached.

22.5 Discussion and Simulation Issues

We have presented a model which can address questions of changepoint inference
in a networked setting. We begin by discussing several extensions of the model
assumptions, and then discuss the computational complexity of the estimation.

Vertex Labels and Dependent Edges A natural extension to community struc-
tures is to add labels to the vertices (e.g. political party affiliation for the US
Congress), and allow dependence among the edges. There are many possibilities
for such extensions; some are the subject of future work.

Multiple Changepoints Although our research is only directly applicable under
the assumption of exactly one changepoint, we may use techniques similar to the
binary segmentation method of [3, 21] to find multiple changepoints. The basic idea
is to locate the dominant changepoint, and keep looking in the two smaller subin-
tervals around it; an extra elimination step may reduce the probability of finding too
many changepoints. In general, estimating multiple changepoints is a challenging
issue; we refer to the survey article [9] for a discussion of current approaches.
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Computational Complexity When the signal-to-noise ratio is either quite large
or quite small (Cases 22.1 and 22.2 of Theorem 22.1), computing t̂ is the main
computational challenge; the distribution of the maximizer of a Brownian motion
with triangular drift, which appears in Case 22.2, can be computed precisely [2, 19].
In Case 22.3, which corresponds to the adaptive regime, the limiting process is easily
simulated if P 0 =Q0; see also Fotopoulos et al. [5] for computing the maximizer.
However, even in the case of Gaussian jumps, there is not a universal scaling that
can relate different examples to each other, in part due to the non-stationarity of the
process. For the generalized binomial component of the limiting random process,
it seems necessary to simulate the trajectories of all m Markov chains in order to
estimate the maximizer; the computation is, however, parallelizable, and can scale
up to fairly large networks.
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Chapter 23
Quasi-maximum Likelihood Estimation
of Periodic Autoregressive, Conditionally
Heteroscedastic Time Series

Florian Ziel

Abstract We consider a general multivariate periodically stationary and ergodic
causal time series model. We prove consistency and asymptotic normality of the
quasi-maximum likelihood (QML) estimator of it. Applications to the multivariate
nonlinear periodic AR(∞)–ARCH(∞) process are shown.

23.1 Introduction

We introduce a very general multivariate causal periodic time series model that
is based on the model from [1]. It is completely nested into their model and can
be seen as a periodic generalisation. Moreover, it provides a lot of relevant spe-
cial cases, such as the multivariate periodic nonlinear-AR(∞)–ARCH(∞) process,
which includes a lot of important special cases such as the periodic versions the
ARMA-GARCH model. As [1] or [4] we consider the conditional Gaussian qausi-
likelihood estimation, as it provides a powerful technique even if the underlying
residuals are non-normally distributed.

The main result of this paper is the consistency and asymptotic normality of
the QML estimator. We even relax the conditions for the asymptotic normality in
comparison to the non-periodic case of [1]. Then we discuss applications to the
multivariate, periodic non-linear AR(∞)–ARCH(∞) process.

23.2 Considered Time Series Model and Likelihood

Let a multivariate time series Y := (Yt )t∈Z taking values in (Rm)Z be given and
denote by Yt := (Yt , Yt−1, . . .) the full past of the time series Y at t . Moreover, we
introduce an S ∈ N, that refers to the periodicity of Y , and define s̃(t) = t mod S
with mod as modulo operation. Note that for each t the function s̃(t) provides the
corresponding season at time t . We denote the set of all seasons {0, . . . , S−1} by S.

F. Ziel (B)
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Now assume that Y is a causal S-periodically stationary solution of

Yt = f s̃(t)θ (Yt−1)+Ms̃(t)
θ (Yt−1)Zt , (23.1)

where f sθ (Yt−1) ∈ R
m is a mean vector and Ms

θ (Yt−1) ∈ R
m×p a variance matrix

with almost surely full rank m for all s ∈ S. Note that in the functions f sθ and Ms
θ

we use the θ and s as index. Further we assume that the parameter vector θ is d-
dimensional and the innovations sequence (Zt )t∈Z ∈ (Rp)Z is i.i.d. with EZt = 0
and EZtZ

�
t = cov(Zt ,Zt )= Ip .

We can simplify our notation, as for all t ∈ Z there only s̃(t) = s ∈ S influ-
ences Yt depending on Yt−1. Thus we can define fθ and Mθ dependent on Yt−1

by fθ (Yt−1) := f sθ (Yt−1) if s̃(t)= s andMθ(Yt−1) :=Ms
θ (Yt−1) if s̃(t)= s.

Note that in this notation fθ andMθ are functions of t as well. Now model (23.1)
turns to

Yt = fθ (Yt−1)+Mθ(Yt−1)Zt , (23.2)

without explicit denoting of the periodic dependency structure. This matches ex-
actly the notation as used in [1]. We use the definition of periodic stationary and
ergodicity in the strict sense, for more details see e.g. [2] for a recent summary.
For us it is important that a process (Xt )t∈Z is periodically stationary with period-
icity S if all its subsequences (Xk+sS)k∈Z with s ∈ S are stationary. Additionally
periodic stationarity and periodic ergodicity is preserved under measurable periodic
mappings.

Now we consider the conditional quasi-maximum likelihood (QML) estimation
for the unknown parameter vector θ . Henceforth denote Θ the parameter space of θ
and define Hθ :=MθM�

θ . Then under normality assumption to (Zt )t∈Z the condi-
tional Gaussian QML is given by

Ln(θ,Yn−1) := −1

2

n−1∑

t=0

(θ;Yt ) with

(θ,Yt ) := log
(
det

(
Hθ(Yt−1)

))+ (
Yt − fθ (Yt−1)

)�

×Hθ(Yt−1)
−1(Yt − fθ (Yt−1)

)
(23.3)

for θ ∈Θ up to an additional constant. Note that Ln depends on Yn−1, not on Yn.
Anyway Ln in (23.3) is a sum over n summands as we start indexing by 0. Thus Y0

is in the first season 0, which will be our first observable random variable.
Now let a sequence y = (yt )t∈N ∈ (Rm)N be given such that yt = 0 for all

sufficiently large t . Then we denote Ỹt := (Yt , . . . , Y0, y) by the sequence Yt =
(Yt , Yt−1, . . .) where we replace the unobservable past (Y−1, Y−2, . . .) by the given
initial sequence y. Using the plug-in principle we define the (conditional) QML
estimator of θ by θ̂n := θ̂n(Ỹn−1) := argmaxθ∈ΘLn(θ, Ỹn−1). Note that θ̂n(Yn−1)

would provide the exact conditional maximum likelihood. In the next section we
analyse the asymptotic behaviour of the QML estimator θ̂n.
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23.2.1 Consistency and Asymptotic Normality of the QML
Estimator

From [1] we know the conditions of a general class of causal processes for receiving
consistency and asymptotic normality of the QML estimator. We can adjust their
results so that we can apply them to the given seasonal model. Therefore letΘ ⊆R

d

be a compact and denote ‖ · ‖Θ denotes the Euclidean uniform norm restricted to
Θ . We require the following conditions for the strong consistency and asymptotic
normality:

(C1(Θ)) For all s ∈ S, x, y ∈ (Rm)N0 we assume a Lipschitz condition in fθ
andMθ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∥∥f sθ (x)− f sθ (y)
∥∥
Θ
≤

∞∑

j=1

αsj (f,Θ)‖xj − yj‖,

∥∥Ms
θ (x)−Ms

θ (y)
∥∥
Θ
≤

∞∑

j=1

αsj (M,Θ)‖xj − yj‖,

with
∑∞
j=1 α

s
j (f,Θ) <∞ and

∑∞
j=1 α

s
j (M,Θ) <∞ for all s ∈ S.

(C2) Additionally define the set of parameters Θ(r) :=⋂
s∈SΘs(r) with

Θs(r) :=
{

θ ∈R
d
∣∣C1

({θ}) holds,

∞∑

j=1

αsj
(
f, {θ})+ (

E‖Z0‖r
) 1
r

∞∑

j=1

αsj
(
M, {θ})< 1

}

.

(C3(Θ)) There exists H > 0 such that infθ∈Θ det(Hsθ (x)) > H for all s ∈ S and
x ∈ (Rm)N0 .

(C4(Θ)) We need an identification condition for the true parameter θ0. So for all
θ ∈Θ we have:

(∀s ∈ S: f sθ (Yt )= f sθ0(Yt ) and Hsθ (Yt )=Hsθ0(Yt )
) ⇒ θ = θ0.

(AN1(Θ)) The functions θ ∈Θ *→ fθ (x) and θ ∈Θ *→Mθ(x) are twice continu-
ously differentiable for all x ∈ (Rm)N0 with

∥∥∥∥
∂f sθ

∂θ
(0)

∥∥∥∥
Θ

+
∥∥∥∥
∂2f sθ

∂θ∂θ
(0)

∥∥∥∥
Θ

+
∥∥∥∥
∂Ms

θ

∂θ
(0)

∥∥∥∥
Θ

+
∥∥∥∥
∂2Ms

θ

∂θ∂θ
(0)

∥∥∥∥
Θ

<∞
for all s ∈ S. Moreover we have Lipschitz conditions to the derivatives of
f sθ and Ms

θ . So for s ∈ S, gθ ∈ {f sθ ,Ms
θ } and i ∈ {1,2} there are sequences

{α(i)j (gθ ,Θ)}j∈N0 such that for all x, y ∈ (Rm)N0

∥∥∥∥
∂igθ

∂iθ
(x)− ∂

igθ

∂iθ
(y)

∥∥∥∥
Θ

≤
∞∑

j=1

α
(i)
j (gθ ,Θ)‖xj − yj‖.
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(AN2) Either
( ∂fθ0 (Yt )

∂θi

)
i∈{1,...,d} or

( ∂Hθ0 (Yt )
∂θi

)
i∈{1,...,d} is almost everywhere lin-

early independent.

Note that (C2) defines directly the set Θ(r) for a given r if (C1(Θ)) is satisfied for
some Θ . Now similarly to [1] we get with these conditions the unique existence of
a solution to Y of (23.1), such as consistency and asymptotic normality of the QML
estimator θ̂n:

Theorem 23.1 Let (C1(Θ)) to (C4(Θ)) be satisfied for r ≥ 2 and let Θ ⊆ R
d be

compact. Further let θ0 ∈Θ(r)∩Θ . If
∑

s∈S
αsj (f,Θ)+ αsj (M,Θ)=O

(
j−l

)
for some l > γr where γr :=max

{
3r−1,1

}

(23.4)

holds then we have that there is a unique S-periodically stationary and periodically
ergodic solution Y = (Yt )t∈Z of model (23.1) with E‖Y0‖r <∞ and θ̂n is strongly
consistent, so θ̂n→ θ0 a.s.

If additionally r ≥ 4, θ0 ∈ interior(Θ)∩Θ(r), (AN1(Θ)) and (AN2) hold with

α
(1)
j (f,Θ)+ α(1)j (M,Θ)=O

(
j−l1

)
for some l1 > 1 (23.5)

then
√
n(θ̂n − θ0)→N(0,A(θ0)−1B(θ0)A(θ0)

−1) holds in distribution. The matri-
ces A(θ0) and B(θ0) are defined in Eqs. (23.9) and (23.10), respectively.

Note that for r = 2 and S = 1 (which implies l > 3
2 ) Theorem 23.1 is exactly the

same as in [1] regarding the consistency. For r > 2 we relaxed the condition (23.4).
So for example for all r ≥ 3 we need only l > 1 for the consistency. This holds as
well for the corresponding condition for the asymptotic normality. Here [1] required
l1 >

3
2 , too.

Proof We may follow [1] and [3]. The proof consists of three steps. First we show
the existence of a periodically stationary and ergodically stationary solution in the
sense of [2]. Then we establish the consistency. Lastly, a proof of the asymptotic
normality is given.

Similarly to [1] we represent the model (23.1) by

Yt = F s̃(t)(Yt−1,Zt )= f s̃(t)θ (Yt−1)+Ms̃(t)
θ (Yt−1)Zt

for all t ∈ Z. Similarly as for fθ andMθ we can define F dependent on Yt−1 by

F(Yt−1) :=
{
F s(Yt−1), s̃(t)= s

We want to apply a modification of Theorem 3.1 in [3]:

Lemma 23.1 Assume that the following statements hold for r ≥ 2:

1. E‖F s(0,Z0)‖r <∞ for all s ∈ S
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2. (E‖F s(x,Z0)− F s(y,Z0)‖r ) 1
r <

∑∞
j=1 a

s
j‖xj − yj‖ with

∑∞
j=1 a

s
j < 1 for all

s ∈ S, x, y ∈ (Rm)N0 .

Then there exist a periodically stationary and ergodic solution (Yt )t∈Z of (23.1).

The proof of this lemma is skiped here, but uses similar methods as [3]. Further-
more it is clear that E‖F s(0,Z0)‖<∞ as E‖Z0‖r <∞.

The main problem for showing the consistency of the QLME estimator is to
show that 1

n
‖Ln(·, Ỹn−1)−Ln(·,Yn−1)‖Θ converges almost surely to 0 as n→∞.

Hence denote L̂n := Ln(·, Ỹn−1) and Ln := Ln(·,Yn−1).
Given the existence of a periodically stationary and periodically ergodic solution

Y = (Yt )t∈Z to model (23.1) we know that ((θ,Yt ))t∈Z is periodically station-
ary and periodically ergodic as well. Further note that s(θ) := ((θ,YkS+s))k∈Z
is stationary ergodic for s ∈ S. Now we want to apply the uniform strong law of
large numbers as in [5] to  respectively their subsequences. From (C3(Θ)) and
log(x)≤ x − 1 for x > 0 we get immediately that for s ∈ S

∣
∣(θ,Yt−1)

∣
∣≤ ∣

∣log
(∥∥Hs̃(t)θ (Yt−1)

∥
∥m)

∣
∣+H −1

m

∥
∥Yt − f s̃(t)θ (Yt−1)

∥
∥2

≤m
∣∣∣max
s∈S

∥∥Hsθ (Yt−1)
∥∥− 1

∣∣∣+H −1
m max
s∈S

∥∥Yt − f sθ (Yt−1)
∥∥2

holds for all θ ∈Θ . So we can deduce that
∥∥(θ,Yt−1)

∥∥
Θ
≤mmax

s∈S
∥∥Hsθ (Yt−1)

∥∥
Θ
+m+H −1

m max
s∈S

∥∥Yt − f sθ (Yt−1)
∥∥2
Θ
<∞

as with (C1(Θ)) and Lemma 1 from [1] we have that E‖f sθ ‖2
Θ < ∞ and

E‖Hsθ ‖Θ <∞ for all s ∈ S. Hence we have E‖(θ,Yt−1)‖Θ <∞. Consequently
the we can apply the uniform strong law of large numbers on the subsequences s

of .

LnS(·,YnS−1)= 1

nS

nS−1∑

t=0

(·,Yt−1)= 1

S

∑

s∈S

1

n

n−1∑

k=0

(·,YkS+s−1)

→ 1

S

∑

s∈S
Ls a.s. as n→∞

with respect to ‖·‖Θ where Ls(θ) := −1
2 E(θ,Ys). If we denote L(θ) := 1

S
×∑

s∈SLs(θ), we have ‖Ln(θ,Yn−1)−L(θ)‖Θ→ 0 almost surely as n→∞. Now
we want to show that 1

n
‖L̂n −Ln‖Θ → 0 almost surely. The beginning of this part

to prove you can copy almost one to one from the corresponding part of the proof
of Theorem 1 in [1] until we receive

∥∥(θ, Ỹt−1)− (θ,Yt−1)
∥∥
Θ
≤ CAθ(Yt−1, Ỹt )Bθ (Yt−1, Ỹt )

where Aθ(Yt−1, Ỹt ) := ‖Xt‖ + ‖fθ (Ỹt )‖Θ + ‖fθ (Yt )‖Θ and Bθ(Yt−1, Ỹt ) :=
‖Hθ(Ỹt )−Hθ(Yt )‖Θ + ‖fθ (Ỹt )− fθ (Yt )‖Θ . Now let δ ∈ (0, 1

3 ) and define now
λr(δ) :=min{ r3 ,1− δ}. With Hölder inequality applied to p = 3 and q = 3

2 and the
previous inequality we get
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E
∥
∥(θ, Ỹt−1)− (θ,Yt−1)

∥
∥λr (δ)
Θ

≤ C(E∣∣Aθ(Yt−1, Ỹt )
∣∣3λr (δ))

1
3
(
E
∣∣Bθ(Yt−1, Ỹt )

∣∣
3λr (δ)

2
) 2

3

Now note that because of the definition of λr(δ) we have 3λr(δ)≤ r resp. 3λr (δ)
2 ≤

r
2 . Thus with Minkowski inequality, assumption (C1(Θ)), and Lemma 1 from [1]
we obtain directly that

E
∥∥(θ, Ỹt−1)− (θ,Yt−1)

∥∥λr (δ)
Θ

≤ C̃
( ∞∑

t=j

∑

s∈S
αsj (f,Θ)+ αsj (M,Θ)

)λr (δ)
(23.6)

for some C̃ > 0. Now we choose δ ∈ (0, 1
3 ) small enough such that l > λr(δ)−1

holds. Then with inequality (23.6) and condition (23.4) there exists a C0 > 0 such
that

t−λr (δ)E
∥
∥(θ, Ỹt−1)− (θ,Yt−1)

∥
∥λr (δ)
Θ

≤ C0t
−lλr (δ). (23.7)

Now similarly to [1] we want to apply Kronecker’s lemma on the sum Sn :=∑n
t=1

1
t
‖(θ, Ỹt−1)− (θ,Yt−1)‖Θ to deduce 1

n
‖L̂n−Ln‖Θ→ 0 almost surely as

n→∞. Therefore we have to show that limn→∞ Sn <∞. Hence it is sufficient to
show that for all ε > 0 P(A)= 0 holds where A :=⋂

n∈N
⋃
m≥n Am,n with Am,n :=

{|Sm − Sn|> ε}. As (Am,n)m>n is increasing and (
⋃
m≥n Am,n)n∈N is decreasing it

follows that limn→∞ limm→∞P(Am,n) = limn→∞ P(
⋃
m≥n Am,n) = P(A). With

the Markov inequality we receive

P(Am,n)= P
(

m∑

t=n+1

1

t

∥∥(θ, Ỹt−1)− (θ,Yt−1)
∥∥
Θ
> ε

)

≤ 1

ελr (δ)

m∑

t=n+1

t−λr (δ)E
∥∥(θ, Ỹt−1)− (θ,Yt−1)

∥∥λr (δ)
Θ

Hence with inequality (23.7) and the fact that lλr (δ) > 1 we can deduce that

1

ελr (δ)

∞∑

t=1

t−λr (δ)E
∥∥(θ, Ỹt−1)− (θ,Yt−1)

∥∥λr (δ)
Θ

<
C0

ελr (δ)

m∑

t=n+1

t−λr (δ)l <∞.

So we get that limn→∞ limm→∞P(Am,n) = 0, thus by Kronecker 1
n
‖L̂n −

Ln‖Θ→ 0 almost surely as n→∞. To show the consistency of θ̂n it remains
to show that L defined by L(θ)= −1

2S

∑
s∈SE(θ,Ys) has a unique maximum in θ0.

We can state that

L(θ)−L(θ0)= −1

2S

∑

s∈S
E(θ,Ys)−E(θ0,Ys) (23.8)

From Proposition 2.1 in [6] and (C4(Θ)) we can deduce that for all s ∈ S the func-
tion E(·,Ys), as limit of the stationary ergodic process (LkS+s(θ,YkS+s−1))k∈Z,
has a unique maximum in θ0. Thus it follows immediately from Eq. (23.8) that L
has its maximum in θ0. So finally the strong consistency of θ̂n is proved.
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The proof of the asymptotic normality of θ̂n is very similar to the case with S = 1
as in [1]. The main difference is that the martingale central limit theorem that has
to be applied to the processes ( ∂(·,YkS+s )

∂θj
(θ0))k∈Z for all s ∈ S with respect to the

S-difference to receive that (kS + s)− 1
2
∂LkS+s (·,YkS+s )

∂θ
(θ0)

d→ N(0,Bs) with Bs =
(E
∂(·,Ys )
∂θi

(θ0)
∂(·,Ys )
∂θj

(θ0))(i,j)∈{1,...,d}2 as k→∞. Moreover the relaxed conditions
to the Lipschitz-conditions (see (23.5)) in comparison to [1] work with similar ar-
guments as in the proof for the consistency as well for this proof. The parameters
for the matrices A(θ)= (A(θ)i,j )(i,j)∈{1,...,d}2 and B(θ)= (B(θ)i,j )(i,j)∈{1,...,d}2 are
given by

A(θ)i,j = 1

S

∑

s∈S
E

(
2

(
∂f
s,s
θ0

∂θj

)�(
H
s,s
θ0

)−1 ∂f
s,s
θ0

∂θj

+ trace

((
H
s,s
θ0

)−2 ∂H
s,s
θ0

∂θi

∂H
s,s
θ0

∂θj

))
(23.9)

B(θ)i,j = 1

S

∑

s∈S
E
∂(·,Ys)
∂θi

(θ)
∂(·,Ys)
∂θj

(θ) (23.10)

with

(·,Ys)
∂θk

(θ)=−2

(
∂f
s,s
θ0

∂θk

)�(
H
s,s
θ0

)−1(
Yt − f s,sθ

)

+ (
Yt − f s,sθ

)� ∂(H
s,s
θ0
)−1

∂θk

(
Yt − f s,sθ

)+ trace

(
(
H
s,s
θ0

)−1 ∂H
s,s
θ0

∂θk

)

where f s,tθ := f sθ (Yt ),Ms,t
θ :=Ms

θ (Yt ) and Hs,tθ :=Hsθ (Yt ).
�

23.3 Applications

Various time series models are of the form as given in Eq. (23.1). We can use the
non-periodic results from [1] to apply the theory to their S-periodic equivalent.
Therefore we have to remark that for all s ∈ S a non-periodic time series model
is given by

Yt = f sθ (Yt−1)+Ms
θ (Yt−1)Zt (23.11)

with a periodicity of 1. The corresponding set of parameters from (C2) is Θs(r).
If we show that the models (23.11) satisfy all conditions of Theorem 23.1 for

Θs(r) for all s ∈ S, then we can deduce that the corresponding (pure) periodic model
as in Eq. (23.1) satisfies all conditions of Theorem 23.1 for Θ(r). In [1] there are
some examples of models given that satisfy the conditions of model (23.11), such
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as the TARCH(∞), multivariate NLARCH(∞), multivariate GARCH or the multi-
variate non-linear AR(∞) model. So the corresponding periodic models satisfy the
conditions of Theorem 23.1 as well.

There is an important general class of models that can be expressed as in
Eq. (23.1), the periodic non-linear AR(∞)–ARCH(∞) processes. They are given
by

Yt = f s̃(t)θ (Yt−1)+ εt where εt = M̃s̃(t)
θ (εt−1, εt−2, . . .)Zt (23.12)

for M̃s
θ (εt−1, εt−2, . . .) ∈ R

m×p for s ∈ S. Many models can be represented by
(23.12), such as the periodic ARMA-GARCH models. They can be rewritten as
in (23.1) by

Yt = f s̃(t)θ (Yt−1)+ M̃s̃(t)
θ

(
Yt−1 − f s̃(t)θ (Yt−2)

)
Zt .

Assuming that the Lipschitz condition from (C2) holds for f sθ and M̃s
θ for all

s ∈ S, then we can conclude with the inverse triangle inequality that

∥∥Ms
θ (x)−Ms

θ (y)
∥∥
Θ
≤

∞∑

j=1

(

αsj (M̃,Θ)+
∞∑

k=1

αsj−k(M̃,Θ)α
s
k(f,Θ)

)

‖xj − yj‖

holds for x, y ∈ (Rm)N0 . So Θ(r) can be estimated by

Θ(r)⊇
⋂

s∈S

{

θ ∈R
d
∣∣∣
∞∑

j=1

αsj
(
f, {θ})+ (

E|Z0|r
) 1
r

×
∞∑

j=1

(

αsj
(
M̃, {θ})+

∞∑

k=1

αsj−k
(
M̃, {θ})αsk

(
f, {θ})

)

< 1

}

,

where we use only the Lipschitz constants of f sθ and M̃s
θ . The theorem also gener-

alises QML estimation results of [4] for the univariate ARMA-GARCH model, as
they require r ≥ 2 for consistency and r ≥ 4 for asymptotic normality, as we do.
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Chapter 24
Mixture and Non-mixture Cure Rate Model
Considering the Burr XII Distribution

Emílio Augusto Coelho-Barros, Jorge Alberto Achcar, and Josmar Mazucheli

Abstract This paper presents estimates for the parameters included in long-term
mixture and non-mixture lifetime models, applied to analyze survival data when
some individuals may never experience the event of interest. We consider the case
where the lifetime data have a three-parameter Burr XII distribution, which includes
the popular Weibull mixture model as a special case.

24.1 Introduction

A long-term survivor mixture model, also known as standard cure rate model, as-
sumes that the studied population is a mixture of susceptible individuals, who expe-
rience the event of interest and non susceptible individuals that will never experience
it. These individuals are not at risk with respect to the event of interest and are con-
sidered immune, non susceptible or cured [9]. Following Maller and Zhou [9], the
standard cure rate model assumes that a certain fraction p in the population is cured
or never fail with respect to the specific cause of death or failure, while the remain-
ing (1− p) fraction of the individuals is not cured, leading to the survival function
for the entire population written as:

S(t)= p+ (1− p)S0(t), (24.1)

where p ∈ (0,1) is the mixing parameter and S0(t) denotes a proper survival func-
tion for the non cured group in the population. Considering a random sample of
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lifetimes (ti , δi , i = 1, . . . , n), under the assumption of right censored lifetime, the
contribution of the ith individual for the likelihood function is:

Li =
[
f (ti)

]δi [S(ti)
]1−δi , (24.2)

where δi is a censoring indicator variable, that is, δi = 1 for an observed lifetime
and δi = 0 for a censored lifetime.

From the mixture survival function, (24.1), the probability density function is
obtained from f (ti)=− d

dt
S(ti) and given by:

f (ti)= (1− p)f0(ti), (24.3)

where f0(ti) is the probability density function for the susceptible individuals.
An alternative to a long-term survivor mixture model is the long-term survivor

non-mixture model suggested by [7, 12, 13] which defines an asymptote for the
cumulative hazard and hence for the cure fraction. The survival function for a non-
mixture cure rate model is defined as:

S(t)= p1−S0(t), (24.4)

where, like in (24.1), p ∈ (0,1) is the mixing parameter and S0(t) denotes a proper
survival function for the non cured group. Observe that if the probability of cure is
large, then the intrinsic survival function S(t) is large – S0(t) will be large which
implies in F0(t) = 1− S0(t) small. Larger values of F0(t) at a fixed time t imply
lower values of S(t). This model was derived under the threshold model for tumor
resistance (cancer research) where, F0(t) refers to the distribution of division time
for each cell in a homogeneous clone of cells. The non-mixture model (24.4) or the
promotion time cure fraction has been used by Lambert et al. [7, 8] to estimate the
probability of cure fraction in cancer lifetime data.

From (24.4), the survival and hazard function for the non-mixture cure rate model
can be written, respectively, as:

S(ti)= exp
[
log(p)F0(ti)

]
(24.5)

and

h(ti)=− log(p)f0(ti). (24.6)

Since f (t) = h(t)S(t), the contribution of the ith individual for the likelihood
function is given by:

Li = h(ti)δi S(ti) (24.7)

that is:

Li =
[− log(p)f0(ti)

]δi exp
[
log(p)F0(ti)

]
. (24.8)

A Bayesian formulation of the non-mixture cure rate model is given in Chen et al.
[2]. A model which includes a standard mixture model for cure rate was considered
in Yin and Ibrahim [14]. Rodrigues et al. [10] extended the long-term survival model
proposed by Chen et al. [2].



24 Mixture and Non-mixture Cure Rate Model Considering the Burr XII Distribution 219

In this paper, considering the Burr XII distribution, we compare the performance
of the mixture and non-mixture cure fraction formulation when the scale and shape
parameters are dependent of covariates. The Burr XII distribution provides more
flexibility than the Weibull distribution which could be a special case of the Burr
XII distribution if its parameters are extended to a limiting case. It is also important
to point out that the Burr XII distribution is mathematically tractable with a closed
form for its cumulative distribution function.

24.2 The Burr XII Distribution Cure Model

Burr [1] suggested a number of cumulative distributions, where the most popular
one is the so-called Burr XII distribution, whose three-parameter probability density
function is given by:

f0(t | μ,α,λ)= α

μα
tα−1

[
1+ λ

(
t

μ

)α]−(1+ 1
λ
)

, (24.9)

where μ > 0 is the scale parameter; α > 0 and λ > 0 are shape parameters. For
λ→+0 we have the Weibull distribution as a particular case. The hazard function
of a Burr XII distribution is decreasing if α ≤ 1 and is unimodal with the mode at

t = (α−1)1/α

μ−1λ1/α when α > 1. The three-parameter Burr XII distribution is much more
flexible than the standard two-parameter Weibull distribution.

From (24.9), the survival function is written by:

S0(t | μ,α,λ)=
[

1+ λ
(
t

μ

)α]− 1
λ

. (24.10)

From (24.10), the Burr XII model in the presence of long-term survivors or im-
munes has a probability density function and a survival function given, respectively,
as follows:

f (t | θ)= (1− p) α
μα
tα−1

[
1+ λ

(
t

μ

)α]−(1+ 1
λ
)

, (24.11)

S(t | θ)= p+ (1− p)
[

1+ λ
(
t

μ

)α]− 1
λ

, (24.12)

where θ = (μ,α,λ,p), μ is the scale parameter, α and λ are shape parameters and
p is the proportion of immunes or non susceptible.

Under the non-mixture formulation and using (24.10), the probability density
function and the survival function are given respectively by:

f (t | θ)=− log(p)
α

μα
tα−1

[
1+ λ

(
t

μ

)α]−(1+ 1
λ
)

p
{
1−[

1+λ( t
μ

)α]− 1
λ
}

(24.13)

S(t | θ)= p
{
1−[

1+λ( t
μ

)α]− 1
λ
}

. (24.14)
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In the presence of one covariate xi , i = 1, . . . , n, we can assume a link function
for μ, α, λ and p, that is, log(μi) = β0 + β1xi , log(αi) = α0 + α1xi , log(λi) =
γ0 + γ1xi and log( pi1−pi )= η0 + η1xi , where xi , for example, taking the value 0 if
individual i is in the treatment group 1 or the value 1 if individual i is in the treat-
ment group 2. In this way, we can have interest in test the following hypothesis:
H0: β1 = 0 (no treatment effect in the susceptible patients), H0: α1 = 0 (no treat-
ment effect in the shape of the lifetime distribution),H0: γ1 = 0 (no treatment effect
in the shape of the lifetime distribution) or H0: η1 = 0 (no treatment effect in the
proportion of cured individuals).

24.3 A Bayesian Analysis

For a Bayesian analysis of the mixture and non-mixture models introduced in
Sect. 24.1, we assume an prior uniform distribution defined in the interval (0,1),
U(0,1), for the probability of cure p and Gamma(0.001,0.001) prior distributions
for the scale parameter μ and shape parameters α and λ, where Gamma(a, b) de-
notes a gamma distribution with mean a/b and variance a/b2. We further assume
prior independence among p, μ, α and λ. Observe that we are using approximately
non-informative priors for the parameters of the models.

Assuming the mixture and non-mixture models introduced in Sect. 24.1, let us
consider a gamma prior distribution Gamma(0.001,0.001) for the regression pa-
rameters β0 and α0 and a normal prior distribution N(0,100) for the regression
parameters βl and αl , l = 1, . . . , k, where N(μ,σ 2) denotes a normal distribution
with mean μ and variance σ 2. We also assume prior independence among the pa-
rameters.

Posterior summaries of interest are obtained from simulated samples for the joint
posterior distribution using standard Markov Chain Monte Carlo (MCMC) methods
as the Gibbs sampling algorithm [4] or the Metropolis–Hastings algorithm [3].

24.4 An Application

In this section we analyze a leukaemia data set consisting of 90 observations in-
troduced by Kersey et al. [6] and reproduced by Maller and Zhou [9]. In this data
46 patients were treated by allogeneic transplant (Group I) and the other 44 by au-
tologous transplant (Group II). The survival time refers to the number of days to
recurrence of leukaemia for patients after one of the two treatments. The medical
problems of interest include: the existence of “cured” patients (who will never suf-
fer a recurrence of leukaemia) and the estimation of their proportion; the failure
distributions of susceptible patients; and comparison between the effects of the two
treatments.

In Tables 24.1 and 24.2, we have the inference results considering the Bayesian
approach for mixture and non-mixture models, respectively. We also have the Monte



24 Mixture and Non-mixture Cure Rate Model Considering the Burr XII Distribution 221

Table 24.1 Posterior means (standard deviation) for μ, α, λ and p in each group—mixture model

Group μ̂ α̂ λ̂ p̂ DIC

I 170.2 1.3224 1.5235 0.2046 495.3

(15.5727) (0.3386) (1.2280) (0.0984)

II 114.4 3.2585 1.8328 0.2073 457.3

(22.5142) (1.1278) (1.3489) (0.0622)

Table 24.2 Posterior means (standard deviation) for μ, α, λ and p in each group — non-mixture
model

Group μ̂ α̂ λ̂ p̂ DIC

I 302.0 1.3200 1.1538 0.2497 494.0

(60.1777) (0.2091) (0.5350) (0.0673)

II 158.4 2.7506 1.3057 0.2141 455.8

(25.4148) (0.5098) (0.4480) (0.0603)

Fig. 24.1 Fitted models for
the data
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Table 24.3 Posterior Means (PM) and Standard Deviation (SD) for regression models — mixture
model

Model Parameter PM SD Credible Interval

Model 1 μ̂ 122.6 28.7453 (77.2546;194.9)

α̂ 2.1934 0.5451 (1.2602;3.4459)

λ̂ 2.2280 1.3879 (0.3819;5.9824)

p̂ 0.2009 0.0632 (0.0646;0.3176)

Model 2 α̂ 1.8272 0.4815 (1.0778;2.9824)

λ̂ 1.3434 1.1575 (0.0332;4.5494)

p̂ 0.2173 0.0593 (0.0851;0.3261)

β̂0 174.9 52.0182 (81.5222;277.9)

β̂1 −0.3018 0.2916 (−0.8292;0.3199)

Model 3 λ̂ 1.7100 1.0094 (0.3734;4.1672)

p̂ 0.2005 0.0528 (0.0997;0.3093)

β̂0 175.8 52.2661 (88.4162;298.2)

β̂1 −0.4070 0.2806 (−0.9384;0.1674)

α̂0 1.4214 0.3461 (0.8879;2.2550)

α̂1 0.8004 0.2449 (0.3295;1.2986)

Carlo estimates of DIC (Deviance Information Criterion) used as a discrimination
criterion for different models. Smaller values of DIC indicates better models.

To obtain the Bayesian estimates we have used MCMC (Markov Chain Monte
Carlo) methods available in SAS software 9.2, SAS/MCMC [11]. A single chain has
been used in the simulation of samples for each parameter of both models consider-
ing a “burn-in-sample” of size 15,000 to eliminate the possible effect of the initial
values. After this “burn-in” period, we simulated other 200,000 Gibbs samples tak-
ing every 100th sample, to get approximated uncorrelated values which result in a
final chain of size 2,000. Usual existing convergence diagnostics available in the
literature for a single chain using the SAS/MCMC procedure indicated convergence
for all parameters.

In Fig. 24.1, we have the plots of the estimated survival functions considering
mixture and non-mixture models in presence of cure fraction and the plot of the
non-parametric Kaplan–Meier estimate for the survival function [5]. We also have
in Fig. 24.1, the plot of the estimated survival function based on the Weibull and
Burr XII distributions not considering the cure fraction modeling.

From the fitted survival models (see Fig. 24.1), we conclude that the survival
times are very well fitted by the mixture and non mixture cure fraction models.
From the results of Tables 24.1 and 24.2, the obtained DIC discrimination values
from both models also give similar results.

We can also consider a binary variable related to the different groups where
x1i = 1 for Group II and 0 for the Group I. Then we consider three cases: model
without covariates (Model 1), regression model for μ (Model 2) and regression
model for μ and α (Model 3).



24 Mixture and Non-mixture Cure Rate Model Considering the Burr XII Distribution 223

Table 24.4 Posterior Means (PM) and Standard Deviation (SD) for regression models — non-
mixture model

Model Parameter PM SD Credible Interval

Model 1 μ̂ 191.3 47.1324 (118.4;309.2)

α̂ 2.0741 0.4720 (1.2757;3.0983)

λ̂ 3.4496 3.0633 (0.2589;12.2087)

p̂ 0.1879 0.0668 (0.0432;0.3062)

Model 2 α̂ 1.6350 0.2545 (1.1474;2.1417)

λ̂ 1.3797 1.8359 (0.00255;7.8565)

p̂ 0.2170 0.0674 (0.0482;0.3320)

β̂0 295.4 9.5409 (276.6;313.4)

β̂1 −0.3886 0.1929 (−0.7404;0.0111)

Model 3 λ̂ 1.6695 1.1204 (0.1919;4.6356)

p̂ 0.2044 0.0499 (0.1049;0.3055)

β̂0 338.9 15.2548 (308.1;356.9)

β̂1 −0.7833 0.1830 (−1.1088;−0.4185)

α̂0 1.2762 0.2040 (0.9006;1.7011)

α̂1 0.7752 0.2432 (0.2887;1.2575)

Table 24.5 Deviance
Information Criterion (DIC)

Model Mixture model Non-mixture model

Model 1 959.5 958.2

Model 2 959.8 958.7

Model 3 949.5 948.7

In Tables 24.3 and 24.4, we have the inference results considering the Bayesian
approach for regression models considering mixture and non-mixture models, re-
spectively.

In Bayesian context using MCMC methods, we have used the DIC given auto-
matically by the SAS software (see, Table 24.5).

From the results of Table 24.5, we conclude that Model 3 (regression model for
μ and α) is better fitted by the data. Since DIC is a little bit smaller considering the
non-mixture Model 3 when compared to the other models, we use this model to get
our final inferences of interest. From Table 24.4 and using the non-mixture Model 3,
we conclude that the parameters β1 and α1 have significative treatment effect in the
ratio of susceptible patients.
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Chapter 25
Obtaining Superior Wind Power Predictions
from a Periodic and Heteroscedastic Wind
Power Prediction Tool

Daniel Ambach and Carsten Croonenbroeck

Abstract The Wind Power Prediction Tool (WPPT) has successfully been used for
accurate wind power forecasts in the short to medium term scenario (up to 12 hours
ahead). Since its development about a decade ago, a lot of additional stochastic mod-
eling has been applied to the interdependency of wind power and wind speed. We
improve the model in three ways: First, we replace the rather simple Fourier series of
the basic model by more general and flexible periodic Basis splines (B-splines). Sec-
ond, we model conditional heteroscedasticity by a threshold-GARCH (TGARCH)
model, one aspect that is entirely left out by the underlying model. Third, we evalu-
ate several distributional forms of the model’s error term. While the original WPPT
assumes gaussian errors only, we also investigate whether the errors may follow a
Student’s t-distribution as well as a skew t-distribution. In this article we show that
our periodic WPPT-CH model is able to improve forecasts’ accuracy significantly,
when compared to the plain WPPT model.

25.1 Introduction

Compensation systems for renewable energy like wind energy are pluralistic
through several countries. Many differences aside, accurate wind power forecasts
are essential to the energy producer.

Research on wind power forecasting has been manifold. Lei et al. [5] and, more
recently, Giebel et al. [3] provide an overview. There are models based on the
physics of wind speed and power, models based on machine learning, wavelet mod-
els and others. Simple, yet accurate stochastic models like the Wind Power Predic-
tion Tool (WPPT), as introduced by Nielsen et al. [6], are quite successful. WPPT is
put to wide usage, especially in Denmark, the world leader in wind energy harvest-
ing, as Giebel et al. [3] point out. However, WPPT disregards several characteristics
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of the wind speed against wind power relationship. First, WPPT uses a Fourier se-
ries to capture diurnal periodicity. This is a straightforward way to model periodic
effects, but replacing the Fourier terms by periodic B-spline functions introduces
more flexibility. The idea to use periodic B-splines is inspired by Harvey and Koop-
man [4], who use these functions to forecast the hourly electricity demand. These
functions enable the model to follow the diurnal periodic structure independently
from seasonal or yearly periodicity that may be present. Second, the residuals of
the WPPT show a strongly heteroscedastic behavior, which also seems to be askew.
We capture the skew (or: leveraged) heteroscedastic variance by modeling the er-
ror term as a TGARCH process, as introduced by Rabemananjara and Zakoïan [7].
Finally, the WPPT model’s assumption of gaussian errors may be violated.1 As the
residual’s density exhibits fat tails (particularly on its left-hand side), we investigate
alternative distributional assumptions. After all, we show that our periodic WPPT-
CH model generates forecasts that perform significantly more accurate than those
obtained by the plain WPPT model.

This article is organized as follows. In Sect. 25.2, we describe the analyzed data.
Section 25.3 introduces the underlying WPPT model and our new periodic wind
power prediction model with TGARCH effects. The results of the in-sample fit and
out-of-sample predictions are presented in Sect. 25.4 and Sect. 25.5 provides a short
conclusion.

25.2 Description of the Wind Power Data

The data used in this study are collected from a Fuhrländer FL MD 77 Turbine
in Germany. Due to a non-disclosure agreement, the specific location cannot be
revealed. Wind speed, wind direction and wind power is recorded at a frequency
of 10 minutes. This Turbine exhibits a power range of [0;1500] kW. The observed
time frame for the training data set spans from October 31, 2010 to August 19, 2011
(40 000 observations).

25.3 A New Wind Power Forecasting Method

WPPT, as given by Nielsen et al. [6], models wind power Pt as a dynamic regres-
sion approach. It includes lagged wind speed and diurnal periodicity as regressors.
The periodic behavior is captured by a Fourier series. Clearly, the important wind
speed forecasts are not deterministic. They may stem from numerical weather pre-
dictions (NWP) or could be predicted from statistical model approaches. In this arti-
cle, we use the recently developed predictions from a periodic ARFIMA–APARCH
model with time varying regressors, as discussed by Ambach and Schmid [1]. As

1Shapiro–Wilk-Tests generally reject the hypothesis of gaussian WPPT errors.



25 Periodic and Heteroscedastic Wind Power Prediction Tool 227

Fig. 25.1 Time series of wind power Pt (first panel), histogram of wind power (second panel),
ACF and PACF for wind power (third and fourth panels), time frame October 31, 2010 to August
19, 2011

Fig. 25.2 WPPT residuals ε̂t (first panel), histogram of ε̂t (second panel), ACF of ε̂t (third panel)
and ACF of |̂εt | (fourth panel), time frame October 31, 2010 to August 19, 2011

WPPT includes only two lags of wind speed in addition to periodicity as explana-
tory variables, it is not flexible enough to capture important features of wind power.
The high-frequency data investigated here clearly show a strong presence of auto-
correlation, see Fig. 25.1. The autoregressive model order should be extended and
include multiple lags. Furthermore, the variance structure shows heteroscedastic dis-
turbance, see Fig. 25.2. Therefore, we model the conditional standard deviation by
a TGARCH model.

Furthermore, we include wind direction as an additional explanatory variable, as
due to the Turbine’s uneven surroundings, local wind speed may depend on wind di-
rection. Wind power shows a correlation structure that suggests that it may very well
be dependent on wind direction. Figure 25.3 provides evidence on that assumption.

Our new wind power prediction model uses B-splines to model the periodic struc-
ture, instead of the Fourier series used in WPPT. The considered periodic basis func-
tions are inspired by Harvey and Koopman [4]. The B-spline approach uses local ba-
sis functions to provide more flexibility, especially when modeling time series with
nonstationary impacts such as wind power. After all, our new model suggestion is

Pt = ϑ0 +
m∑

j=1

θjPt−j + θ144Pt−144 + b1Wt + b2(Wt)
2

+ sin(At )+ cos(At )+
K−1∑

k=2

δkB̃k(t)+
o∑

r=1

φrεt−r , (25.1)



228 D. Ambach and C. Croonenbroeck

Fig. 25.3 Absolute number
of wind power observations
and the perceived wind
directions

where m ∈ Z \ {144}, Wt is the wind speed (in m/s) and At is the wind di-
rection (Azimuth). Wind direction is measured in degrees. To avoid numeri-
cal problems resulting from that, we split the wind direction information into
two components cos(At ) and sin(At ). The autoregressive coefficients θ provide
a stationary solution if and only if P(z) = 1 − (∑m

j θj z
j + θ144z

144) �= 0 for
|z| ≤ 1. φ represents the moving average components. We include MA coeffi-
cients to reduce the parameters of the model and to capture the strongly per-
sistent behavior of the dependent variable. The essential model enhancements
are the periodic B-splines B̃k(t). For our definition of these splines, we follow
Ziel and Steinert [8]. The basis functions of the wind power series are given
by

B̃k(t)=
∑

l∈Z
BlS,dκ (t)=

∑

l∈Z
BlS,dκ

(
t;κ(dκ, T ,D),D

)
, (25.2)

where κ is a set of equidistant knots which we choose directly, T depicts the cen-
tral point of this set of knots, S represents the periodicity and D is the degree of
the spline. The distance of the equidistant knots is given by dκ . As the data fre-
quency is 10 minutes, the diurnal periodicity for the wind power is S = 144. It
is reasonable to choose the number of included basis functions to be a common
denominator of S. Thus, we decide to use λ = 6 basis functions. Hence, we ob-
tain a distance dκ of S/λ = 24. Finally, we are able to iteratively define the com-
plete set of basis functions B̃k(t) = B̃k−1(t − 24), where k ∈ {2, . . . ,6}. Besides,
we choose D = 3, to get the popular cubic splines, which are twice continuously
differentiable. Furthermore, we have to remark that the sum of all basis functions
is constant. Hence, the first component is omitted to avoid singularities. Finally,
all parameters for the B-spline function are exogenously determined. Henceforth,
we have to introduce the TGARCH model described by Rabemananjara and Za-
koïan [7]

εt = σtηt , (25.3)
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σt = α0 +
q∑

l=1

αl
(|εt−l | − γlεt−l

)+
p∑

i=1

βiσt−i

= α0 +
q∑

l=1

αl(1− γl)ε+t −
q∑

l=1

αl(1+ γl)ε−t +
p∑

i=1

βiσt−i , (25.4)

where {ηt }t∈Z ∼ F is i.i.d. with E[ηt ] = 0 and Var[ηt ] = 1. Specifically, the er-
ror term {ηt } is assumed to be either standard normally distributed, standardized
t-distributed or skewed t-distributed. The TGARCH parameter γl are the asymme-
try parameters with |γl | ≤ 1 for l = 1, . . . , q . This parameter depicts the asym-
metry within the conditional variance. Furthermore, α0 > 0, αl ≥ 0 ∀l = 1, . . . , q
and βi ≥ 0 ∀i = 1, . . . , p are the classical GARCH parameters. Rabemananjara
and Zakoïan [7] discuss the existence of a stationary solution of the TGARCH
process. One definition of the skewed t-distribution is given by Fernandez and
Steel [2]. This approach combines two halves of a symmetric base distribution,
which are differently scaled. The subsequential equation provides the density func-
tion

fx(x)= 2ξ

(ξ2 + 1)

Γ (ν+1
2 )

Γ (ν2 )
√
π
√
νσ

×
[

1+ (
x−μ
σ
)2

ν

(
1

ξ2
I (x ≥ μ)+ ξ2I (x < μ)

)]− ν+1
2

(25.5)

with ν degrees of freedom, I (·) the indicator function, expectation μ and variance
σ 2 = ν/(ν − 2). Moreover, ξ is the skewness parameter with ξ > 0. It reduces f to
the noncentral t-distribution if ξ = 1.

25.4 Comparison of the Forecasting Performance

We want to produce wind power forecasts that are significantly better than those
computed by previous models. In contrast to WPPT, which is estimated by a least-
squares approach, we use the maximum likelihood method for our periodic WPPT-
CH model. We apply our method to three different distributional assumptions. Fig-
ure 25.2 provides the histogram of the WPPT residual process, {ε̂t }. This histogram
and the Shapiro–Wilk-Test reject the assumption of normally distributed residuals.
Implying normality, the ACF of {ε̂t } and the ACF of {|̂εt |} suggest the presence of
strong autocorrelation.

We use Akaike/Bayesian information criteria to select the best model for the
residuals {ε̂t }. Hence, for the autoregressive order, we choose m= 5 and o = 4 for
the moving average part. Moreover, for the TGARCH model, we choose q = 2 and
p = 4. For a comparison of the underlying distribution, we choose the same model
order for each model. Figure 25.4 provides ACF of ε̂t and |̂εt |. This figure depicts
a clear model improvement over normality. A huge amount of autocorrelation van-
ishes. The Ljung–Box-Test supports the assumption of no remaining autocorrelation
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Fig. 25.4 Histogram of η̂t (first column), ACF of ε̂t (second column) and ACF of |̂εt | (third
column), time frame October 31, 2010 to August 19, 2011 for the pWPPT-CH and all distributions

for each distribution. Furthermore, we use the Kolmogorow–Smirnow-Test to test
for the underlying distribution. Only the assumption of the skew t-distribution is not
rejected.

Regarding the in-sample fit, we conclude that the periodic WPPT-CH with skew
t-distributed residuals provides the best fit. Therefore, we expect that this model
outperforms the other models concerning the out-of-sample forecasts. We use the
first 40 000 observations as a training data set. The following week from August
19, 2011 to August 26, 2011 is used for out-of-sample forecasts. Here, we consider
forecasts up to a maximum of half a day. Using a rolling window technique, we
re-estimate each model for each forecast with a part of the information set avail-
able at the period t , namely Pt−10 000+1, . . . ,Pt . Subsequently, we derive P̂t+τ |t ,
where τ ∈ {1, . . . ,72}. This procedure is repeated 1.000 times. We evaluate the out-
of-sample forecasts for the classical WPPT and the periodic WPPT-CH model with
normally, t-distributed and skew t-distributed errors. Besides, we take the persis-
tence predictor P̂t+τ = Pt and an AR(p) model as benchmark. Table 25.1 presents
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Table 25.1 RMSE for all models, time frame August 19, 2011 to August 26, 2011, 10 minutes, 3
hours, 6 hours and 12 hours ahead

1 step 18 steps 36 steps 72 steps

Persistence 110.77 258.04 281.11 282.45

AR 112.08 207.38 213.11 204.18

WPPT 101.97 208.48 211.41 205.93

pWPPT-CH-n 102.53 202.89 206.85 204.60

pWPPT-CH-t 102.85 204.10 208.05 204.58

pWPPT-CH-st 102.04 203.60 207.61 205.06

Fig. 25.5 RMSE for all
models and all forecasting
horizons, time frame August
19, 2011 to August 26, 2011

aggregated root mean square errors (RMSE)2 for all models and forecasting hori-
zons of τ ∈ {1,18,36,72}. The best (smallest) values are bolded.

In almost all cases, the periodic WPPT-CH model provides the lowest forecasting
errors. Figure 25.5 visualizes the RMSE inflation paths of the models by forecasting
horizons. The figure emphasizes the findings presented in Table 25.1.3 Thus, we
conclude that the best in-sample model also provides the best predictions.

2We also calculate MAE. Results are quite similar and omitted here to conserve space. Tables and
figures are available upon request.
3For lucidity, the figure depicts only the worst (persistence), best (pWPPT-CH) and the WPPT
benchmark model. All other curves lie inside the spanned range. According to Diebold–Mariano-
Tests, the pWPPT-CH family models are not significantly different from each other.
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25.5 Conclusion

We provide a new class of models that replace the Fourier series utilized by WPPT
by more appropriate and more flexible periodic B-splines. Beyond, we capture con-
ditional heteroscedasticity by modeling the error term as a TGARCH process. Fi-
nally, different error distributions are used. The skew t-distribution seems to capture
the residuals’ empirical properties quite better than the normal distribution. Our
models improve the in-sample features quite well, when compared to the classi-
cal WPPT model. Clearly, there are further improvements possible, for example,
using a multivariate model. Here, Ziel and Steinert [8] propose a multivariate peri-
odic AR-TARCH model. This approach might be extended and applied to the wind
power data set. Nevertheless, the new wind power prediction model derived here
does improve forecasts over WPPT already.
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Chapter 26
Stochastic Dynamics of G-Protein-Coupled
Cell-Surface Receptors

Michał Balcerek and Aleksander Weron

Abstract The field of bio-medicine has seen immense increase in single particle
tracking techniques and experimental results. We analyze here the data obtained
from experiment described by D. Calebiro et al. in Proc. Natl. Acad. Sci. 110: 743–
748, 2013 describing the motion of fluorescently labeled G-protein-coupled cell-
surface receptors. Our study revealed that some proteins’ trajectories do not have
Gaussian increments. We tried to determine distribution of such increments. Also,
by using various techniques like: p-variation analysis (Burnecki and Weron in Phys.
Rev. E 82:021130, 2010; Magdziarz et al. in Phys. Rev. Lett. 103:180602, 2009),
dynamical functional analysis (Burnecki et al. in Biophys. J. 103:1839–1847, 2012;
Magdziarz and Weron in Ann. Phys. 326:2431–2443, 2011; Magdziarz and Weron
in Phys. Rev. E 84:051138, 2011), MSD analysis (Burnecki and Weron in Phys.
Rev. E 82:021130, 2010; Burnecki et al. in Biophys. J. 103:1839–1847, 2012; Bur-
necki et al. in Phys. Rev. E 86:041912, 2012), we attempt to narrow down possible
models of particles in biological system. For more methods used in analysis (and
their description), yet not included in this paper, see Burnecki and Weron in J. Stat.
Mech., 2014, to appear.

26.1 Introduction

Activation of G protein-coupled receptors (GPCRs) is presumably the most impor-
tant and also most diverse mode of regulating cell and organ functions. Activation
means that receptors become capable of coupling to their downstream effector path-
ways [2], such as G proteins. In this paper we try to analyze the movement of afore-
mentioned GPCRs, during their activation time, on the surface of a cell.
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26.2 General Information

In this paper we discuss results for two data sets containing single molecule coordi-
nates of fluorescently labeled G-protein-coupled receptors.

While the first data set consisted of 4111 trajectories measured in 400 time
frames, the second data set consists of 6345 trajectories, also measured in 400 time
frames (we will mostly focus on the first data set, though the second data set is
quite similar). Both data sets are highly irregular, due to fluorescence blinking and
fading out the measured trajectories have gaps, they are of uneven length and usu-
ally they are very short (more information about the experiment itself can be found
in [1]).

Our study revealed that some of scrutinized trajectories’ one-dimensional incre-
ments (i.e. dXt =Xt −Xt−1 and dYt = Yt − Yt−1, t = 1, . . . ,400) did not present
Gaussian behavior. This is typical for anomalous subdiffusion in biological cells,
see for example [3, 5]. In [1] authors claimed that the trajectories have Gaussian
distributions. We focused mostly on those trajectories, and due to statistical pur-
poses we analyzed only those trajectories which were measured in over 70 contin-
uous (without gaps) time frames; those are referred to as the “longer trajectories”.
Unfortunately there are only 102 such trajectories in the first data set and 99 in
the second data set. All trajectories’ increments show stationary behavior (e.g. by
plotting quantile lines), a property which is essential for further presented analy-
sis.

Behavior of all trajectories and those trajectories that increments do not follow
Gaussian law can be seen in the left and the right part of Fig. 26.1 respectively.

Fig. 26.1 Behavior of all trajectories in the first data set (left panel) compared to behavior of
trajectories without Gaussian increments (right panel)
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Table 26.1 Table presenting the percentage of trajectories for which the null hypothesis that the
increments have Gaussian distribution is rejected. Both tests: Jarque–Bera (JB) and Anderson–
Darling (AD) respectively, were used at 0.05 significance level

Test First data set Second data set

dX dY dX dY

JB 0.1313 0.2020 0.1176 0.1471

AD 0.0808 0.1414 0.0980 0.1078

Table 26.2 Table presenting the estimated α parameters (using regression method) of longer tra-
jectories which increments do not follow Gaussian law. Such trajectories were found using tests
presented in Table 26.1

Statistic First data set Second data set

dX dY dX dY

Min 1.3704 1.5551 1.5074 1.4590

Mean 1.8637 1.8607 1.8734 1.8223

Median 1.8856 1.8901 1.9105 1.8464

Max 2.0000 2.0000 2.0000 2.0000

26.3 Data Testing

To determine which trajectories (of those longer ones) had non-Gaussian increments
we used some statistical tests such as: Jarque–Bera (JB) and Anderson–Darling
(AD) applied to one-dimensional increments of the data. Results are presented in
Table 26.1. Jarque–Bera test being more strict one for both data sets. Each of those
tests reject about 0.05 of trajectories in case where all of them were tested, which
is close to the significance level. Those trajectories that were rejected by either of
those tests (for either coordinate) can be seen on the right panel of Fig. 26.1.

In order to find proper distribution of those increments (specifically, for incre-
ments that the null hypothesis of normality was rejected in either test, see Table 26.1)
we tested whether they follow stable law, as it is fairly common in inter-cellular bi-
ological data. Anderson–Darling test (detailed description in [7]) results suggested
then we can assume that increments of each of the examined trajectories can be con-
sidered as realizations from stable distribution. By stable distribution (symmetric
case) we have in mind a random variable X having distribution with characteristic
function as follows:

ϕX(t)= exp
{−|ct |α}, c > 0, α ∈ (0,2]. (26.1)

For more general case see [12]. The stable distributions, in contrast to Gaussian
case (α = 2), have heavy tails. This property is responsible for subdiffusion effects.
Moreover, the trajectories of α-stable processes have jumps.

Furthermore we used regression method to determine α parameters of those sta-
ble distributions for each trajectory. Results are presented in Table 26.2. Note that
despite maximum estimated parameter α is 2 (as in normal distribution) it did not
occur simultaneously in both coordinates for single trajectory.
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Fig. 26.2 Verification of mixing property of increments in longer trajectories which increments do
not have Gaussian distribution (in the first data set). Right panel presents X coordinate, left panel
presents Y coordinate, on top – real part of examined functional, on bottom – its imaginary part

We also would like to present test of some fundamental properties of the data.
Both mixing and ergodicity are such fundamental and desired properties. Specifi-
cally, ergodicity of the stationary process Z(n) (in case of this work – process of
increments) means that the phase space cannot be divided into two nontrivial sets
such that a point starting in one set will never get to the second set [4]. Another
fundamental property is mixing, i.e., the asymptotic independence of the random
variables Z(n) and Z(0) as n→∞. It is well known that mixing is a stronger prop-
erty than ergodicity [11]. Thus, to show ergodicity it is enough to prove mixing,
which is easier in many cases.

To test whether our data has those properties we use dynamical functional test
developed in [10]. It is based on dynamical functional [12]:

D(n)= 〈
exp

{
i
(
Z(n)−Z(0))}〉. (26.2)

By denoting E(n)=D(n)− |〈exp{iZ(0)}〉|2, it turns out that:

Stationary process Z(n) is mixing⇐⇒ lim
n→∞E(n)= 0, (26.3)

Stationary process Z(n) is ergodic⇐⇒ lim
n→∞

1

n

n∑

k=1

E(k)= 0. (26.4)

Figures 26.2 and 26.3 visualize calculated E(n) and 1
n

∑n
k=1E(k) with regard to

their real and imaginary parts.
Figures 26.2 and 26.3 show that even trajectories with non-Gaussian increments

in that experiment have desired characteristics. Same results also occur in the second
data set. The real and imaginary part of E(n) functional converge to zero, thus
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Fig. 26.3 Verification of ergodicity property of increments in longer trajectories (which incre-
ments do not have Gaussian distribution) of the first data set. Left panel presents X coordinate,
right panel presents Y coordinate, on top – real part of examined functional, on bottom – its imag-
inary part

condition needed for mixing property (see Eq. (26.3)) is satisfied; it is also that
limn→∞ 1

n

∑n
k=0E(k)= 0 which suggests ergodic property (see Eq. (26.4)).

Another way of approaching the data is using sample mean square displacement
analysis. In particular: let {Xk, k = 1, . . . ,N} be a sample of length N . The sample
MSD was introduced in [3] as:

MSDN(τ)= 1

N − τ
N−τ∑

k=1

(Xk+τ −Xk)2. (26.5)

Notice that the sample MSD is a time average MSD on a finite sample regarded as
a function of difference τ between observations.

If the sample comes from an H -self-similar process with stationary increments
belonging to the domain of attraction of the Lévy α-stable law, then for large N we
have [3]:

MSDN(τ)∼ τ 2d+1Sα/2, (26.6)

where∼means similarity in distribution, d =H −1/α, and Sα/2 is a totally skewed
α/2-stable random variable. In particular, if α = 2, i.e. the data follows Gaussian law
or has second moment, then for large N and small τ we have [3]:

MSDN(τ)∼ τ 2H 〈X2
1

〉
. (26.7)

Most of estimated α parameters (see Table 26.2) are quite close to α = 2. Since
we focused on case with stable increments, we analyze sample MSD by using
Eq. (26.6).
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Table 26.3 Summary of MSD exponent parameter: mean, standard deviation and confidence
bounds (of levels 0.025 and 0.975)

First data set Second data set

X Y X Y

MSD exponent a

mean 0.7667 0.8075 0.6231 0.6337

std 0.4654 0.4818 0.5130 0.5249

CB0.025 0.0075 0.0065 0.0018 0.0028

CB0.975 1.4062 1.4921 1.4457 1.6133

Fig. 26.4 Log–log plot of mean square displacement for 26th trajectory (blue dots), which has
non-Gaussian increments, of the first data set with fitted slope line (red line), so that MSD(τ )∼ τa
for small τ , where a = 2H − 2

α
+ 1 (as in Eq. (26.6)). Left panel presents MSD of X coordinate

with a = 0.84, while right panel presents MSD of Y coordinate with fitted a = 1.01

The discrepancy of the MSD exponent in Table 26.3 might be caused by biolog-
ical effects. Observed particles can occur as monomers (they tend to move fastest)
but also they can join in bigger polymers. In such cases they move slower and thus
the smaller MSD exponents. Furthermore, as the cell membrane is rather irregular,
some “traps” might exist on it. This also can limit the particles from moving freely.

To validate our results on the self-similarity index H we can use sample p-
variation. The idea was presented e.g. in [3] and [8]. Having {Xk, k = 1, . . . ,N},
we calculate sample p-variation by using Formula (26.8):

V
(p)
m =

N/m−1∑

k=0

|X(k+1)m −Xkm|p. (26.8)
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Fig. 26.5 Plot of p-variation for 26th trajectory (which has non-Gaussian increments). Notice the
change of V (p)m behavior: for p = 1

0.1 ,
1

0.2 ,
1

0.3 it tends to increase, while for p = 1
0.5 , . . . ,

1
0.9 it

tends to decrease

The value where p = 1
2H where the change of V (p)m regime appears (from increasing

to decreasing or vice versa) might indicate the value of self-similarity parameter H .
In Fig. 26.5 we plotted sample p-variation with respect to m for p = 1

H
, H =

0.1,0.2, . . . ,0.9 for the X coordinate 26th trajectory. In Fig. 26.5 we can see that
the behavior of the p-variation changes depending on parameter p (equivalently
parameter H ). Namely, the functions show an increasing trend for p < 1

0.4 (that is,
for small H ), become flat around the value p ≈ 1

0.4 , and for p > 1
0.4 they result

in increasing functions. This also indicates that the self-similarity index H ≈ 0.4,
which coincides with result in Fig. 26.4, where the slope of MSDX function was
equal approximately 0.84, which would equal 2H − 2

α
+ 1 (by Eq. (26.6)).

26.4 Conclusion

The fluorescently labeled G-protein-coupled cell-surface receptors turned out to rep-
resent a very complex system. As we focused only on trajectories that increments
do not follow Gaussian law, we wanted to present a survey of few techniques ap-
plied to those trajectories, and also to one specific trajectory. The data proved to
have both, so much desired, ergodic and mixing properties. The complexity of this
system appeared in mean square displacement analysis, specifically some biological
effects, such as grouping of particles or falling into “traps”, probably underlies the
discrepancy of MSD exponent. Even on the stage of data preparation it is quite dif-
ficult to distinguish separate particles which also might cause some problems. We
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found that increments of some G-protein-coupled cell-surface receptors movements
follow strictly stable law, and also that the motion itself appears to be subdiffusive.
Lastly, we presented another manner to obtain self-similarity index H and then we
compared it to results obtained from MSD analysis.
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Chapter 27
Novel Methodology of Change-Points Detection
for Time Series with Arbitrary Generating
Mechanisms

Boris Darkhovsky and Alexandra Piryatinska

Abstract A novel approach to the change-point detection problem is proposed.
This approach is based on the concept of the ε-complexity of continuous func-
tions introduced recently by the authors, and the non-parametric change-point de-
tection methodology. We show that, for a function satisfying Hölder condition, the
ε-complexity can be characterized by a pair of real numbers called here the ε-
complexity coefficients. These coefficients are used as diagnostic sequences to de-
tect changes in the generating mechanism. The proposed methodology is model-free
and does not depend on the data generating mechanisms. The results of simulations,
and application to stock market data, demonstrate the efficiency of the proposed
methodology.

27.1 Introduction

In this paper we propose a novel methodology for segmentation of time series of an
arbitrary nature into homogeneous increments. We call a segment homogeneous if it
is generated by a single mechanism. This mechanism can be stochastic, determinis-
tic (in particular, chaotic) or mixed. Once the series is separated into homogeneous
increments it is possible to model them and make inferences about parameters of
the models.

If the time series is generated by a stochastic mechanism the segmentation prob-
lem is known as the change-point detection problem. For the review on recent de-
velopments on change-points detection in time series, see, e.g. [1, 10]. Models with
change-points are used in econometrics [8], climatology [9] and etc.

To the best of our knowledge, the only segmentation procedures we are aware
of in the literature are performed in the case of stochastic data generating mecha-
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nisms. This assumption allows the researcher to use different change-point detection
methodologies. In practice, time series are not always generated by probabilistic
mechanisms. If data are generated by unknown deterministic or mixed mechanism
there are no methodologies which are applicable to the segmentation procedures. In
this paper we propose to use the ε-complexity of a continuous function as an “in-
trinsic” characteristic of a time series, which on the one hand allows us to perform
segmentation into homogeneous increments and on the other hand doesn’t depend
on the type of data generating mechanism. Our definition of the ε-complexity is in
line with the Kolmogorov complexity [7].

The idea of a quantitative estimation of the complexity of a continuous function
was first proposed in [3]. In [4] an effective characterization of the ε-complexity for
class of functions satisfying Hölder condition was given. This concept was success-
fully applied in analysis of human EEG data [5] and for the sequential detection of
changes in time series [4]. In this paper we present a result about characterization
of the ε-complexity for an individual function satisfying Hölder condition. This re-
sult was published first in [6]. Then we apply the concept of the ε-complexity of
continuous functions for the detection of changes in data generating mechanisms.

The paper is organized as follows. In Sect. 27.2.1 the definition and character-
ization of the ε-complexity of an individual continuous function satisfying Hölder
condition are given. In Sect. 27.2.2 an algorithm for the time series segmentation of
an arbitrary nature is presented. In Sect. 27.3.1 we present results of the simulations
to show the efficiency of our new methodology for the “off-line” detection of multi-
ple changes in generating mechanism for different types of processes. In Sect. 27.3.2
results on segmentation of high frequency stock market data are presented.

27.2 Methodology

27.2.1 On the ε-Complexity of a Continuous Function

Let x(·) be a real-valued continuous function, defined on a unit cube I ⊂ R
k . Let

Zh be a uniform grid of size 0< h< 1 and Ih = I ∩ Zh. Suppose that values of the
function x(·) are known only on the grid Ih and let F be a set of approximation
methods for the function reconstruction from its values on the grid.

Suppose that ‖x(·)‖ = R > 0 (where ‖x(·)‖ = supt∈I |x(t)|). Let x̂(·) be an ap-
proximation of the function x(·) using its values on the grid Ih by some method
from the set F . Denote

δFx (h)
def= inf
x̂(·)∈F

∥∥x(·)− x̂(·)∥∥ (27.1)

The function δFx (h) will be called absolute error of the reconstruction of x(·) by
methods from the set F .

A continuous function x(·) is called F -trivial if infh0≤h<1 δ
F
x (h)= 0 for some

h0 > 0. Otherwise it is called F -nontrivial.
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For any ε ≥ 0 let

h∗x(ε,F )=
{

inf{h≤ 1 : δFx (h) > εR}, if x(·) is F -nontrivial function
1, otherwise

(27.2)

Definition 27.1 The value Sx(ε,F )
def= log 1

h∗x(ε,F )
is called the (ε,F )-complexity

of the function x(·).

In other words, the (ε,F )-complexity of an individual continuous function is a
logarithm of the minimal number of function values which should be retained to
reconstruct the function x(·) from its values on the grid using set of approximation
methods F with an error not larger then ε.

Similarly to (27.1), we define δx(h)
def= infx̂(·) ‖x(·)− x̂(·)‖, where x̂(·) is an ar-

bitrary (computable) estimate of the function x(·) by its values on a uniform grid of
size h.

A continuous function x(·) is called totally trivial if infh0≤h<1 δx(h)= 0 for some
h0 > 0. Otherwise it is called totally nontrivial.

In majority of applications, we deal with functions given by their values at a
discrete set of points (i.e., by a finite sample). Here, we will assume that our time
series is the projection of a continuous function on a uniform grid of the unit cube.
Let us consider how the definition of the ε-complexity has to be adjusted to this
situation.

Let N be the number of function values of a continuous function x(·) on some
uniform grid of the unit cube. We choose 0< S < 1 and discard [(1− S)N ] func-
tion values from the sample (where [·] is an integer part of a number). Using the
remaining values of the function we approximate its values at the discarded points
by the set of approximation methods F (due to the finite dimension the choice of
the norm for measurement of an approximation error is inessential).

Consider value h∗x(ε,F ) which was introduced in (27.1) and assume that
[h∗x(ε,F )N ] 4 1.

In that case the number of function values which should be retained to recon-
struct the function with an error less of equal εR on the cube with side h∗x(ε,F ) is
equal n∗ = [N/[h∗x(ε,F )N ]]. Therefore, the definition of the ε-complexity for the
discrete set of points is as follows.

Definition 27.2 The value

SN

(
x(·), ε,F )= log

N

[h∗x(ε,F )N ]
(27.3)

is called the (ε,F )-complexity of an individual function x(·) given by its values on
a uniform grid.

It is easy to see that the following relation follows from (27.3)
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Proposition 27.1

SN

(
x(·), ε,F )→ Sx(ε,F ) (27.4)

as N→∞.

Now let us formulate the main theorem (see [6]) which gives us a characterization
of the ε-complexity of an individual function satisfying Hölder condition.

Theorem 27.1 For any x(·) from some dense subset of the set of totally nontrivial
Hölder functions, for any sufficiently small κ > 0, δ > 0, and N ≥ n0(x(·)) there
exist set of approximation methods F ∗, numbers 0< α(N,x(·)) < β(N,x(·)) < 1,
functions ρ(S), ξ(S) and setM ⊂Q= [α(·), β(·)],μ(M) > μ(Q)− δ (where μ(·)
is Lebesgue measure) such that under F ⊇F ∗ for S ∈M the following relations
hold:

log ε =A+B logS + ρ(S) logS + ξ(S),
sup
S∈M

max
(∣∣ρ(S)

∣∣,
∣∣ξ(S)

∣∣)≤ κ. (27.5)

Therefore the ε-complexity of a time series which is a projection of an individual
Hölder function is completely characterized by pair of real numbers (A,B). This
pair of numbers will be called the ε-complexity coefficients.

27.2.2 Algorithm for Segmentation of Time Series

LetX = {x(t)}Nt=1 be a time series with unknown moments of changes in generating
mechanism (MCGM) ti , i = 2, . . . , k (it is unknown if there are changes or not). The
type of generating mechanism is also unknown and can be stochastic, deterministic
or mixed.

Any segment [ti , ti+1], t1 = 1, . . . , tk+1 = N , which is generated by the same
mechanisms is called homogeneous. We assume that homogeneous segments are
sufficiently long. Due to our Theorem 27.1 the ε-complexity is uniquely charac-
terized by a pair of parameters R = (A,B). For a given time series let us choose
a window of size n (we assume that n1 mini (ti+1 − ti )). We can separate time
series into disjoint intervals of length n or consider a sliding window of size n.
In case of disjoint intervals we calculate the ε-complexity coefficients R(j) for
{x(t)}jnt=1+(j−1)n, j = 1,2 . . . , p (for a simplicity we suppose that N/n= p and p

is an integer). As a result we obtain a new diagnostic vector sequence {R(j)}[N/n]j=1 .
Similar vector sequence of the ε-complexity coefficients can be also calculated for
sliding window.

The keystone of the proposed methodology for segmentation of time series into
homogeneous increments is a following Conjecture:
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Conjecture 27.1 At i-st segment of homogeneity [ti , ti+1] of the time series X for
ti ≤ t , (t + n) < ti+1 the corresponding ε-complexity coefficients R(j) satisfy the
relation

R(j)=Ri + ξi(j), (27.6)

where ξi(j) is a random process with zero expectation.

In other words, Conjecture 27.1 implies that the expected values of the ε-
complexity coefficients of a time series are constant within segments of homogene-
ity. For the justification of the conjecture see [6].

Notice that in case of a sliding window, several windows will cover MCGM.
Then (assuming Conjecture 27.1 is true) the mathematical expectation of the se-
quence R will change according to some transitional process from one constant to
another. However, we assume that the size of the window is small compared to the
length of homogeneous segments therefore such transitional process will not signif-
icantly affect the estimation of MCGM.

Thus, assuming the Conjecture 27.1 is true, the problem of a time series seg-
mentation is reduced to the detection of changes in mathematical expectation of the
vector diagnostic sequence R.

To solve this problem we propose to use the following family of the statistics,
which was introduced by Brodsky and Darkhovsky, see [2].

Y(n, δ)= (
(N− r)r/N2)δ

(

r−1
r∑

k=1

z(k)− (N− r)−1
N∑

k=r+1

z(k)

)

, (27.7)

where 0 ≤ δ ≤ 1, 1 ≤ r ≤ N − 1, N = [N/n], Z = {z(s)}Ns=1 is a diagnostic se-
quence. It can be shown (for details, see [2]) that the estimates of the change-points
parameter ϑ = (ϑ2, . . . , ϑk), ti = [ϑiN ], i = 2, . . . , k, 0 < θ1 < θ2 < · · · < θk < 1
by using the family of statistics (27.7) under mild conditions are asymptotically
minimax as N→∞ (here we apply the change-point detection procedure for each
component of vector diagnostic sequence R separately).

27.3 Results of Simulation and Applications to the Stock Market
Data

27.3.1 Results of Simulations

To estimate the ε-complexity coefficients, as a family F of approximation methods
we choose piecewise polynomial functions up to 5th degree. For each simulated time
series we choose Si (in %): 50, 33, 29, 25, 22.5, 20. For each Si we estimate recon-
struction error εi . Then the least square method is used for pairs (log(Si), log(εi)) to
estimate the ε-complexity coefficients. For the detailed algorithm for the practical
estimation of the ε-complexity see [4].
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Simulations to Demonstrate Efficiency of Our Segmentation Methodology

Example 27.1 In this example we generate four ARIMA(2, d,1) processes

(

1−
2∑

i=1

φirL
i

)

(1−L)drXt =
(

1−
2∑

i=1

θirL
i

)

εt , r = 1, . . . ,4, LkXt =Xt−k

(27.8)

of length 18 000 with the following coefficients: φ1 = (−0.1,0.002), d1 = 0, θ1 =
(0.1,0.01); φ2 = (0.2,0.4), d2 = 0, θ2 = (−0.1,0.02); φ3 = φ2, d3 = 1, θ3 = θ2;
φ4 = φ1, d4 = 1, θ4 = θ1. Here the first two process are just ARMA (d = 0), sta-
tionary processes, and the third and fourth processes are non-stationary ARIMA
processes. Then we concatenate them. After concatenation, we separate each time
series into non-overlapping intervals of length 100, and estimate the ε-complexity
coefficients for each interval. That creates our vector diagnostic sequence. For each
component of diagnostic sequence the non-parametric change-point detection pro-
cedure is applied. The example of such simulation is presented in Fig. 27.1 (upper).
To insure the stability of the results, 1000 replications were performed. In 84 % of
the cases all three MCGM points by both coefficients A and B were detected. Us-
ing coefficient A we never missed MCGM points in this example. Using coefficient
B in 1 % of the simulations we missed one MCGM point. In 16 % (15 %) of the
cases one or two extra MCGM points were detected by coefficientsA(B) (Fig. 27.1)
(middle and lower).

Example 27.2 Change from the stochastic process to the deterministic one and
change in deterministic process We generate ARMA(2,1) process with uniformly
distributed noise

(

1−
2∑

i=1

φiLi

)

Xt = (1− θL)εt , LkXt =Xt−k (27.9)

where φ = (0.0001,0.1), θ = 0.001 and ε ∼Uniform(−1,1).
Then we generate three Logistic Maps processes x(t)= αix(t −1)(1−x(t −1))

with α2 = 3.97, α3 = 3.92 α3 = 3.87. To have Logistic Map process on the same
scale as uniform ARMA process the liner transformation 2(x(t)−0.5) is performed.
After that we concatenate these four processes and repeat procedure from the pre-
vious example. The example of such simulation is presented in Fig. 27.2 (upper).
After performing 1000 replications we found that 83 % (84 %) of the cases we de-
tected three change points using coefficients A (B). We didn’t miss MCGM points
in this example. In 17 % (16 %) of the cases one, two or three extra MCGM points
were detected (Fig. 27.2 (middle and lower)).
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Fig. 27.1 Segmentation of
ARIMA processes:
(A) Simulated process,
(B) Coefficient A(t),
(C) Coefficient B(t). The red
vertical lines correspond to
the true MCGM, the blue
dash lines correspond to the
local means inside of the
homogeneous increments
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Fig. 27.2 Detection of
MCGM, change from
stochastic process to
deterministic one.
(A) Simulated process,
(B) Coefficient A(t),
(C) Coefficient B(t). The red
vertical lines correspond to
the true MCGM, the blue
dash lines correspond to the
local means between the
detected MCGM
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Fig. 27.3 Upper: Log return
of GOOGLE stock price,
Middle: Coefficient A(t),
Lower: Coefficient B(t). Red
vertical line separate days,
horizontal blue lines
correspond to the local means
between detected MCGM



250 B. Darkhovsky and A. Piryatinska

27.3.2 Applications to the Stock Market Data

Application to Stock Market Data We tested our approach on the high frequency
GOOGLE stock price data during the Flash crash. Data were provided by nanex.net.
The data were recorded every five seconds. In this analysis median between bid,
ask, last trade price values at each time point was used. Figure 27.3 (upper) presents
the log-returns data (difference of the log of the original data). We considered the
overlapping window of size 100 with the step 20. For each such interval we found
the ε-complexity coefficients and used them as diagnostic sequences for the non-
parametric change-point detection procedure discussed in Sect. 27.2.2.

The results are presented in Fig. 27.3 (middle and lower). We observe that pa-
rameter A is useful for the detection of the flash crash. We also observe different
dynamics before the flash crash. It seems that there are many change points on a
typical morning, but we do not observe as many changes the day of the flash crash.
This observation needs further studying.

27.4 Conclusions

In this paper we proposed a new methodology for the detection of moments of
changes in a data generating mechanism. This methodology is based on the novel
concept of the ε-complexity of a continuous function recently proposed by the au-
thors [6] and the non-parametric change-point detection procedure [2]. Our novel
methodology is designed to detect MCGM using only the “intrinsic” characteristics
of a function (i.e., the ε-complexity coefficients) and does not require any knowl-
edge about the model or type of the process.

We demonstrated the efficiency of our methodology on simulated data as well as
on example of high frequency stock market data. Our simulations and application to
real data suggest that the proposed methodology can be widely used.
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Chapter 28
Self-concordant Profile Empirical Likelihood
Ratio Tests for the Population Correlation
Coefficient: A Simulation Study

Thorsten Dickhaus

Abstract We present results of a simulation study regarding the finite-sample type
I error behavior of the self-concordant profile empirical likelihood ratio (ELR) test
for the population correlation coefficient. Three different families of bivariate el-
liptical distributions are taken into account. Uniformly over all considered models
and parameter configurations, the self-concordant profile ELR test does not keep the
significance level for finite sample sizes, albeit the level exceedance monotonously
decreases to zero as the sample size increases. We discuss some potential modifica-
tions to address this problem.

28.1 Introduction

Empirical likelihood ratio (ELR) tests for multivariate means were introduced in
[11]. Although ELR tests are nonparametric tests for statistical functionals, they
share an important property with parametric likelihood ratio tests. Namely, under
regularity assumptions, the asymptotic distribution of twice the negative logarithmic
(empirical) likelihood ratio statistic is chi-squared under the null, with degrees of
freedom determined by the dimensionality of the parameter (functional) of interest.
This result is commonly referred to as the “Wilks phenomenon”, see [18].

ELR tests for the population correlation coefficient ρ of a bivariate distribution
constitute a particularly challenging application example, because the evaluation of
the ELR in this case requires a nested optimization. In the inner level, optimization
has to be performed with respect to a five-dimensional Lagrange multiplier, and in
the outer level four nuisance parameters have to be profiled out. We will provide
more details in Sect. 28.2.

As reported for instance in Table 1 of [9], the original ELR test for ρ often does
not keep the significance level accurately for finite sample sizes. Recently, several
novel strategies have been proposed to address this problem. In particular, in [15–
17, 19] it has been proposed to extend the parameter space over which the ELR is
maximized beyond the convex hull of the observations. Another recent development
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is [13] which is centered on an alternative algorithm for the empirical likelihood cal-
culation in order to avoid known issues of earlier approaches. Although not derived
from this perspective, the algorithm proposed in [13] also leads to a relaxation of the
convex hull constraint; cf. the discussion around Fig. 2 in [13]. While the authors of
[16] assess the accuracy of their “extended empirical likelihood” method for multi-
variate means rather systematically in their Sect. 4, [13] does not contain numerical
results.

In this work, we assess the type I error accuracy of the self-concordant profile
ELR test for ρ according to [13] by means of computer simulations. We consider
three families of multivariate elliptical distributions (see [8] for a comprehensive
overview of such distributions). The choice of elliptical models is motivated by the
fact that ρ is a meaningful measure of dependency only in such models. Elliptical
models play an important role in many applications from the life sciences (cf., e.g.,
Part II of [5]) and in portfolio theory in finance (see Part IV of [8]). ELR methods
are particularly attractive in such a context, because the type of elliptical distribution
can often not be specified exactly. For example, there may be lacking information
about the degrees of freedom of a multivariate Student’s t distribution, see Sect. 28.3
for a definition.

The rest of the paper is structured as follows. In Sect. 28.2.1, we briefly sum-
marize the statistical methodology of ELR tests for ρ. Section 28.2.2 contains
some remarks on the computational strategies employed. Our main contribution is
Sect. 28.3, where simulation results under three different elliptical models are pre-
sented. We conclude with a discussion in Sect. 28.4.

28.2 Statistical Methodology and Implementation

28.2.1 Statistical Methodology

Let (X1, Y1), . . . , (Xn,Yn) denote an independent and identically distributed (i.i.d.)
sample from a bivariate distribution, where (X1, Y1) is in distribution equal to
(X,Y ). Assume that the second moment of the joint distribution of (X,Y ) (de-
noted by L (X,Y )) exists. Let Z = (X,Y,X2, Y 2,XY )� denote a random vector
with values in R

5. For the expectation of Z, it holds that

E[Z] = (
μX,μY ,μ

2
X + σ 2

X,μ
2
Y + σ 2

Y , ρσXσY +μXμY
)�
. (28.1)

In (28.1) and throughout the remainder, μW (σ 2
W ) denotes the mean (variance) of

the random variable W , and ρ = ρ(X,Y ) is Pearson’s product-moment correlation
coefficient of X and Y . We denote by θ = (μX,μY ,σ 2

X,σ
2
Y , ρ)

� ∈Θ ⊂R
5 the five-

dimensional vector of the first two population moments of interest and define h :
Θ→ R

5 as the function which maps θ onto E[Z]. Obviously, h possesses (partial)
derivatives of any order.
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The ELR for a given parameter value θ∗ is given by

R
(
θ∗
)=max

{
n∏

i=1

npi | 0≤ pi ≤ 1,
n∑

i=1

pi = 1,
n∑

i=1

piZi = h
(
θ∗
)
}

, (28.2)

where Zi is calculated from (Xi, Yi) as Z from (X,Y ), for 1≤ i ≤ n. The (asymp-
totic) ELR test for the null hypothesis H ′0 : θ = θ∗ rejects H ′0 at significance level
α ∈ (0,1), if (θ∗) = −2 log(R(θ∗)) exceeds χ2

5;1−α , where χ2
ν;1−α denotes the

(1− α)-quantile of the central chi-square distribution with ν degrees of freedom.
In this work, we are concerned with the more general hypothesis H0: {ρ = ρ∗}

for a given value ρ∗ ∈ [−1,1]. For testing H0, we profile out the nuisance parame-
ters μX , μY , σ 2

X , and σ 2
Y . More specifically, let Θ(ρ∗)= {θ ∈Θ: ρ = ρ∗}. The test

for H0 can then be described by the following algorithm.

Algorithm 28.1

1. Maximize R over θ∗ ∈Θ(ρ∗). Denote the maximizer by θ(ρ∗).
2. Reject H0 at significance level α, if (ρ∗)=−2 log(R(θ(ρ∗))) > χ2

1;1−α .

Remark 28.1 The testing method based on Z has been outlined in Sect. 3.4 of
[12]. It appears more convenient than the method originally proposed in Sect. 6.2
of [11], because it avoids iterated re-centering of the observations when step 1 of
Algorithm 28.1 is performed.

28.2.2 Implementation

Notice that Algorithm 28.1 involves a nested double optimization. Namely, the inner
optimization is given by the maximization in (28.2) for given θ∗, and the outer
optimization is given by the maximization over the nuisance parameters μX , μY ,
σ 2
X , σ 2

Y as described in the first step of Algorithm 28.1.
For the outer optimization, a general-purpose (constrained) optimizer can be em-

ployed. For the simulations in Sect. 28.3, we utilized the optim function in R with
method "L-BFGS-B". This routine implements the box-constrained optimization
algorithm from [3]. Constraints are required in our context, because σ 2

X and σ 2
Y are

necessarily non-negative.
More crucial is the inner optimization problem (28.2). To this end, in [13] an al-

gorithm based on self-concordance has been introduced. In a nutshell, the negative
empirical log-likelihood ratio is approximated by a quartic polynomial, leading to a
convex constrained optimization problem which can be solved by the method of La-
grange multipliers. Art B. Owen, the author of [13], also contributed the R program
scel.R on which our simulations in Sect. 28.3 rely.
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28.3 Simulation Results

In this section, we present simulation results under three different elliptical models
for L (X,Y ). In general, the probability density function (pdf) of an elliptically
contoured distribution on R

d is of the form

f (t)= Cd |detΣ |−1/2g
(
t�Σ−1t

)
, t ∈R

d,

whereCd is a normalizing constant which depends on d . The positive definite matrix
Σ ∈ R

d×d is called the dispersion matrix. It captures the (elliptical) dependencies
among the components of a random vector with pdf f . The scalar function g is
called the density generator of the elliptical distribution. Three well-known families
of elliptical distributions are

(a) normal distributions on R
d with g(u)= exp(−u/2),

(b) Student’s t distributions on R
d with g(u)= (1+ u/ν)−(d+ν)/2, ν ∈N,

(c) double-exponential (Laplace) distributions on R
d with g(u)= exp(−|u|).

We will consider these three distributional families in the remainder of this section.

28.3.1 Bivariate Normal Distribution

We assume that L (X,Y ) =N2(0,Σ), where σ 2
X = σ 2

Y = 1 without loss of gen-
erality. The off-diagonal element of Σ ∈ [−1,1]2×2 is the parameter ρ of interest.
Pseudo-random samples were generated by utilizing the routine rmvnorm from the
R package mvtnorm, cf. [7]. Table 28.1 summarizes our simulation results under
this Gaussian model for L (X,Y ).

28.3.2 Bivariate Student’s t Distribution

In this section, we assume that L (X,Y ) is a centered bivariate Student’s t distri-
bution with ν > 2 degrees of freedom and dispersion matrix Σ ∈ R

2×2, denoted as
t2(ν,Σ). In analogy to Sect. 28.3.1, we may without loss of generality assume that
Σ11 =Σ22 = 1. In this case, Σ is the correlation matrix of (X,Y ) (see Sect. 1.7 of
[10]); hence, its off-diagonal element equals again the parameter ρ. Pseudo-random
samples were generated by utilizing the routine rmvt from the R package mvt-
norm. Since it is well-known that t2(ν,Σ) converges weakly to N2(0,Σ) with in-
creasing degrees of freedom ν, we restrict our attention to small values ν ∈ {5,10}
in Table 28.2.
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Table 28.1 Relative rejection frequencies of the self-concordant profile empirical likelihood ra-
tio test for the population correlation coefficient in case of bivariate Gaussian data. The nominal
significance level was set to α = 5 % in all simulations. Results are based on 10,000 Monte Carlo
repetitions for each parameter configuration (ρ: true underlying correlation coefficient, n: sample
size).

ρ n Relative rejection frequency

−0.9 10 0.1669

−0.9 20 0.1030

−0.9 50 0.0681

−0.9 100 0.0593

−0.75 10 0.1668

−0.75 20 0.1069

−0.75 50 0.0758

−0.75 100 0.0588

−0.5 10 0.1645

−0.5 20 0.1089

−0.5 50 0.0688

−0.5 100 0.0624

−0.25 10 0.1655

−0.25 20 0.1102

−0.25 50 0.0737

−0.25 100 0.0593

0 10 0.1669

0 20 0.1106

0 50 0.0697

0 100 0.0623

ρ n Relative rejection frequency

0.25 10 0.1612

0.25 20 0.1085

0.25 50 0.0716

0.25 100 0.0558

0.5 10 0.1705

0.5 20 0.1066

0.5 50 0.0743

0.5 100 0.0586

0.75 10 0.1649

0.75 20 0.1077

0.75 50 0.0737

0.75 100 0.0605

0.9 10 0.1662

0.9 20 0.1015

0.9 50 0.0716

0.9 100 0.0625

28.3.3 Bivariate Double-Exponential Distribution

Here, we consider centered bivariate double-exponential (Laplace) distributions for
L (X,Y ). To this end, it is convenient to notice that in this case (X,Y ) possesses
the stochastic representation

(
X

Y

)
d=√EG, (28.3)

where E follows a univariate exponential distribution with intensity parameter
λ > 0, and G denotes a centered bivariate Gaussian random vector which is in-
dependent of E and has covariance matrix Σ ; see, e.g., Eq. (6) in [6]. Letting
Σ11 =Σ22 = 1, we again obtain that ρ(X,Y )=Σ12. Since the latter property holds
regardless of the value of λ, we can restrict our attention to λ= 1. Based on (28.3),
pseudo-random samples were generated by generating independent realizations of
E with the R function rexp and independent realizations of G with the rmvnorm
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Table 28.2 Relative rejection frequencies of the self-concordant profile empirical likelihood ratio
test for the population correlation coefficient in case of bivariate Student’s t data. The nominal
significance level was set to α = 5 % in all simulations. Results are based on 10,000 Monte Carlo
repetitions for each parameter configuration (ρ: true underlying correlation coefficient, ν: degrees
of freedom, n: sample size)

ρ ν n Relative rejection freq.

−0.9 5 10 0.2069

−0.9 5 20 0.1481

−0.9 5 50 0.1091

−0.9 5 100 0.0974

−0.9 10 10 0.1762

−0.9 10 20 0.1157

−0.9 10 50 0.0869

−0.9 10 100 0.0763

−0.75 5 10 0.2088

−0.75 5 20 0.1459

−0.75 5 50 0.1080

−0.75 5 100 0.0919

−0.75 10 10 0.1741

−0.75 10 20 0.1271

−0.75 10 50 0.0838

−0.75 10 100 0.0722

−0.5 5 10 0.2083

−0.5 5 20 0.1482

−0.5 5 50 0.1068

−0.5 5 100 0.0871

−0.5 10 10 0.1856

−0.5 10 20 0.1307

−0.5 10 50 0.0853

−0.5 10 100 0.0690

−0.25 5 10 0.2094

−0.25 5 20 0.1530

−0.25 5 50 0.1053

−0.25 5 100 0.0904

−0.25 10 10 0.1888

−0.25 10 20 0.1282

−0.25 10 50 0.0835

−0.25 10 100 0.0707

0 5 10 0.2089

0 5 20 0.1468

0 5 50 0.1065

0 5 100 0.0887

ρ ν n Relative rejection freq.

0 10 10 0.1835

0 10 20 0.1327

0 10 50 0.0844

0 10 100 0.0738

0.25 5 10 0.2163

0.25 5 20 0.1561

0.25 5 50 0.1112

0.25 5 100 0.0888

0.25 10 10 0.1803

0.25 10 20 0.1215

0.25 10 50 0.0867

0.25 10 100 0.0699

0.5 5 10 0.2131

0.5 5 20 0.1492

0.5 5 50 0.1092

0.5 5 100 0.0916

0.5 10 10 0.1955

0.5 10 20 0.1248

0.5 10 50 0.0851

0.5 10 100 0.0692

0.75 5 10 0.2106

0.75 5 20 0.1425

0.75 5 50 0.1110

0.75 5 100 0.0884

0.75 10 10 0.1844

0.75 10 20 0.1224

0.75 10 50 0.0865

0.75 10 100 0.0639

0.9 5 10 0.2022

0.9 5 20 0.1478

0.9 5 50 0.1039

0.9 5 100 0.0942

0.9 10 10 0.1830

0.9 10 20 0.1220

0.9 10 50 0.0825

0.9 10 100 0.0679
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Table 28.3 Relative rejection frequencies of the self-concordant profile empirical likelihood ra-
tio test for the population correlation coefficient in case of bivariate double-exponential data. The
nominal significance level was set to α = 5 % in all simulations. Results are based on 10,000
Monte Carlo repetitions for each parameter configuration (ρ: true underlying correlation coeffi-
cient, n: sample size)

ρ n Relative rejection frequency

−0.9 10 0.2262

−0.9 20 0.1585

−0.9 50 0.1017

−0.9 100 0.0823

−0.75 10 0.2273

−0.75 20 0.1575

−0.75 50 0.1004

−0.75 100 0.0840

−0.5 10 0.2417

−0.5 20 0.1603

−0.5 50 0.1059

−0.5 100 0.0812

−0.25 10 0.2362

−0.25 20 0.1632

−0.25 50 0.1021

−0.25 100 0.0846

0 10 0.2351

0 20 0.1644

0 50 0.1022

0 100 0.0848

ρ n Relative rejection frequency

0.25 10 0.2363

0.25 20 0.1570

0.25 50 0.1045

0.25 100 0.0833

0.5 10 0.2281

0.5 20 0.1565

0.5 50 0.1067

0.5 100 0.0856

0.75 10 0.2293

0.75 20 0.1578

0.75 50 0.1005

0.75 100 0.0824

0.9 10 0.2279

0.9 20 0.1494

0.9 50 0.1023

0.9 100 0.0822

function as described in Sect. 28.3.1. Simulation results for this model are presented
in Table 28.3.

28.4 Concluding Remarks

Summarizing our findings we observe that the relative rejection frequencies ob-
tained under joint normality of (X,Y ) are very close to those reported in Table 1
of [9]. The ELR test does not keep the significance level accurately for finite sam-
ple sizes, but the level exceedance monotonously decreases to zero as the sample
size increases. Qualitatively, this behavior of the ELR test is also reflected in our
Tables 28.2 and 28.3 which correspond to two other elliptical models for L (X,Y ).

Thus, if Gaussianity of (X,Y ) can be assumed, it seems recommendable to carry
out a parametric test as explained, e.g., in Sect. 4.2 of [2]. In the nonparametric
setting, future research will consider Bartlett-corrected critical values (see [4]) in
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order to overcome the reported anti-conservativity of the considered ELR tests. On
a more fundamental level, an interesting and challenging research direction would
be to analyze the finite-sample properties of ELR-based inference by providing con-
centration inequalities in the spirit of [14].

Finally, let us mention that our restriction to point hypotheses of the form
Hρ∗ : {ρ = ρ∗} is not a severe limitation. Namely, by duality of tests and con-
fidence regions, a composite null hypothesis Hcomp. (associated with a subset of
[−1,1] 8 ρ) can be tested on the basis of a family of point hypothesis tests. Fol-
lowing [1], a (1−α)-confidence region Cα is constituted by the set of all parameter
values ρ∗ for which Hρ∗ is not rejected. Then, Hcomp. can be rejected at level α
if Hcomp. ∩ Cα = ∅. It is clear that the type I error accuracy of this test for Hcomp.
depends on that of the tests for the Hρ∗ .
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Chapter 29
Risk-Averse Equilibrium Modeling and Social
Optimality of Cap-and-Trade Mechanisms

Paolo Falbo, Juri Hinz, and Cristian Pelizzari

Abstract We present and explore a link between social optimality and risk-neutral
dynamics satisfied in the equilibrium of emission markets. Our contribution ad-
dresses market modeling in the setting of risk-averse market players and goes be-
yond all existing models in this field, which neglect risk-aversion aspects at the cost
of having a wide range of singularities.

29.1 Introduction

According to theoretical arguments, a properly designed emission trading system
should help pollution reduction with low social costs. Originated from this idea, and
based on the theoretical work of environmental economists, cap-and-trade systems
have been put into operations all over the world. However, the practice from emis-
sion trading yields a real stress test for the underlying theory and reveals a number
of its weak points. This paper aims to fill this gap. For proofs, additional insides,
and an extensive literature overview, we refer the reader to Falbo et al. [7].

Before we start, let us mention the contributions which are related to our anal-
ysis. The efficiency properties of environmental markets have been first addressed
in Dales [6] and Montgomery [10], which first advanced the principle that the “en-
vironment” is a good that cannot be “consumed” for free. Subsequent research has
also considered stochastic and multi-period modeling. We refer the interested reader
to Taschini [13], which provides an extensive literature review, though it is far from
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being complete. A majority of relatively recent papers (see, in particular, Stevens
and Rose [12]; Chesney and Taschini [5]; Seifert et al. [11]; Carmona et al. [3, 4];
Hinz and Novikov [8]; Kijima et al. [9]; Barrieu and Fehr [1]; Carmona and Fehr,
[2]) are related to equilibrium models, where risk-neutral individuals optimize the
expected value of their profits.

29.2 Model

To explain the emission trading mechanism, we present a market model where a
finite number of agents, indexed by the set I , are confronted with abatement of their
pollution. The key assumptions are:

• We consider a trading scheme in isolation, within a time horizon [0, T ], with-
out credit transfer from and to other markets. That is, unused allowances expire
worthless.

• There is no production strategy adjustment within the compliance period [0, T ].
This means that the agents schedule their production plans for the entire period
[0, T ] at the beginning. Allowances can be traded twice: at time t = 0 at the
beginning and at time t = T immediately before emission reports are surrendered
to the regulator.

• For the sake of simplicity, we set the interest rate to zero.
• Each agent decides how much of a polluting good to produce and how many

allowances to trade (we focus on electricity, which will also be called energy).

This one-period model is best suited for our needs of explaining the core mechanism
of market operation and to discuss its properties.
Allowance allocation: We assume that the administrator allocates a pre-determined
number γ i0 ∈R+ of allowances to each agent i.
Production costs and volume: The ith agent is specified by the set Ξi of feasible
production plans for the generation of energy within one time period from t = 0
to t = T . At time t = 0, each agent i ∈ I faces the energy demand D0 ∈ R+ of
the entire market, the realized electricity price P0 ∈ R+, and the allowance price
A0 ∈R+. Based on this information, each agent decides on its production plan
ξ i0 ∈Ξi . Given ξ i0 ∈ Ξi , the agent realizes at the decision time t = 0 the produc-
tion volume V i0 (ξ

i
0) ∈ R and the production costs Ci0(ξ

i
0) ∈ R, which are described

by functions

ξ i0 :Ξi→R, ξ i0 *→ V i0
(
ξ i0
)
, ξ i0 *→ Ci0

(
ξ i0
)
, i ∈ I.

That is, the revenue of the production plan is known at time t = 0 and is given by
P0V

i
0 (ξ

i
0). Let us now turn to the uncertainties, which will be modeled by random

variables defined on an appropriate probability space (Ω,F ,P).
Emission from production: Following the production plan ξ i0, the total pollution of
agent i is expressed as EiT (ξ

i
0). It is natural to assume that, although the produc-

tion plan ξ i0 is deterministically scheduled at time t = 0, the total emissions asso-
ciated with this production cannot be predicted with certainty at t = 0, when the
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production and trading decisions are made. In fact, in practice the producers have to
manage diverse sources of randomness while following production (demand fluc-
tuation, outages of generators), which usually yield small but unpredictable devi-
ations Ni from the nominal emission Ei0(ξ

i
0) associated with production plan ξ i0.

Thus, let us agree that EiT (ξ
i
0) is modeled as a random variable expressed as a sum

EiT (ξ
i
0)=Ei0(ξ i0)+Ni , ξ i0 ∈Ξi , i ∈ I , with the deterministic functionEi0 :Ξi→R,

i ∈ I , describing the dependence of nominal emissions Ei0(ξ
i
0) on production plan

ξ i0 and with the random variable Ni standing for the deviation from nominal emis-
sions. Note that the random emissions EiT (ξ

i
0), i ∈ I , will be the only source of

uncertainty in our model.
Assumption: To ease our analysis, let us agree that for the production plans ξ i0 ∈Ξi ,
i ∈ I , the total market emissions

∑
i∈I EiT (ξ

i
0) possess no point masses, which is

ensured by P(
∑
i∈I Ni = z)= 0 for all z ∈R.

Allowance trading: At times t = 0, T , the allowances can be exchanged between
agents by trading at the pricesA0 andAT , respectively. Denote by ϑi0, ϑ

i
T the change

at times t = 0, T of the allowance number held by agent i ∈ I . Such trading yields a
revenue, which is −ϑi0A0 − ϑiT AT . Note that ϑi0 and A0 are deterministic, whereas
ϑiT and AT are modeled as random variables. Observe that sales are described by
negative values of ϑi0 and ϑiT , therefore the result is a non-negative random variable
if allowances are sold.
Penalty payment: A penalty π ∈ R+ must be paid at maturity T for each unit of
pollutant not covered by allowances. Given the changes at times t = 0, T due to
allowance trading, i.e. ϑi0 and ϑiT , the production plan ξ i0, and the total number γ i0
of allowances allocated to agent i ∈ I , the loss of agent i due to a potential penalty
payment is given by π(EiT (ξ

i
T )− ϑi0 − ϑiT − γ i0)+.

Individual profit: The profit of agent i ∈ I following trading and production strat-
egy (ϑi, ξ i)= (ϑi0, ϑiT , ξ i0) depends on the market prices (A,P )= (A0,AT ,P0) of
allowances and energy and is given by

LA,P,i
(
ϑi, ξ i

)=−ϑi0A0 − ϑiT AT −Ci0
(
ξ i0
)+ P0V

i
0

(
ξ i0
)

−π(EiT
(
ξ i0
)− ϑi0 − ϑiT − γ i0

)+
.

Risk-aversion and rational behavior: Suppose that the risk attitudes of each agent
i ∈ I are described by a pre-specified strictly increasing utility function Ui : R→
R. With this, the rational behavior of agent i is targeted on the maximization of
the functional (ϑi, ξ i) *→ E(Ui(LA,P,i(ϑi, ξ i))) over all the possible trading and
production strategies (ϑi, ξ i)= (ϑi0, ϑiT , ξ i0).
Energy demand: Suppose that at time t = 0 the agents observe the total energy
demand, which is described by D0 ∈ R+. Let us agree that the demand must be
covered.
Market equilibrium: Following standard apprehension, a realistic market state is de-
scribed by the so-called equilibrium—a situation where allowance prices, allowance
positions, and production decisions are such that each agent is satisfied by the own
policy and, at the same time, natural restrictions are fulfilled.



264 P. Falbo et al.

Definition 29.1 Given energy demand D0 ∈ R+, the prices (A∗,P ∗) = (A∗0,A∗T ,
P ∗0 ) are called equilibrium prices if for each agent i ∈ I there exists a strategy
(ϑi∗, ξ i∗)= (ϑi∗0 , ϑi∗T , ξ i∗0 ) such that:

(i) The energy demand is covered:
∑
i∈I V i0 (ξ

i∗
0 )=D0,

(ii) The emission certificates are in zero net supply:
∑

i∈I
ϑi∗t = 0 almost surely for t = 0 and t = T ,

(iii) Each agent i ∈ I is satisfied by the own policy, in the sense that

E
(
Ui

(
LA

∗,P ∗,i(ϑi∗, ξ i∗
)))≥ E

(
Ui

(
LA

∗,P ∗,i(ϑi, ξ i
)))

holds for any alternative strategy (ϑi, ξ i).

Given production plans ξ i0 ∈Ξi , i ∈ I , we denote the market production sched-
ule by ξ0 = (ξ i0)i∈I ∈×i∈I Ξi and introduce the total production costs C0, the total
production volume V0, the total carbon dioxide emission ET , the total nominal car-
bon dioxide emission E0, and the overall unpredictable emission fluctuations N as
defined by

C0(ξ0)=
∑

i∈I
Ci0

(
ξ i0
)
, V (ξ0)=

∑

i∈I
V i0

(
ξ i0
)
, ET (ξ0)=

∑

i∈I
EiT

(
ξ i0
)
,

E0(ξ0)=
∑

i∈I
Ei0

(
ξ i0
)
, N =

∑

i∈I
Ni.

It turns out that there is no arbitrage allowance trading and that the terminal al-
lowance price is digital.

Proposition 29.1 Given energy demandD0 ∈R+, let (A∗,P ∗)= (A∗0,A∗T ,P ∗0 ) be
the equilibrium prices with the corresponding strategies (ϑi∗, ξ i∗), i ∈ I . It holds:

(i) There exists a risk-neutral measure Q∗ ∼ P such that A∗ = (A∗0,A∗T ) follows a
martingale with respect to Q

∗.
(ii) The terminal allowance price in equilibrium is digital:

A∗T = π1{ET (ξ∗0 )−γ0≥0}, (29.1)

where ξ∗0 = (ξ i∗0 )i∈I ∈×i∈IΞi is the equilibrium market production schedule.
(iii) For each market production schedule ξ0 = (ξ i0)i∈I ∈×i∈I Ξi which covers the

demand, i.e. V0(ξ0)≥ V0(ξ
∗
0 )=D0, it holds that

C0
(
ξ∗0
)+A∗0E0

(
ξ∗0
)≤ C0(ξ0)+A∗0E0(ξ0). (29.2)

To formulate social optimality, we require additional notations. Having in mind
that C0(ξ0) stands for the social costs of the market production schedule and in-
terpreting π(ET (ξ0)− γ0)

+ as a proxy of the environmental impact of the market
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production schedule ξ0, let us agree that B(ξ0) = C0(ξ0) + π(ET (ξ0) − γ0)
+ ex-

presses the social burden caused by the market production schedule ξ0. It turns out
that the equilibrium market production schedule minimizes the social burden among
all the market production schedules which cover a given demand.

Proposition 29.2 Given energy demandD0 ∈R+, let (A∗,P ∗)= (A∗0,A∗T ,P ∗0 ) be
the equilibrium prices with the corresponding strategies (ϑi∗, ξ i∗), i ∈ I . Let Q∗ be
a risk-neutral measure whose existence is shown in Proposition 29.1. Then

E
Q
∗(
B
(
ξ∗0
))≤ E

Q
∗(
B(ξ0)

)

holds for each market production schedule ξ0 = (ξ i0)i∈I ∈×i∈I Ξi which yields at
least the same production volume of the equilibrium market production schedule
ξ∗0 = (ξ i∗0 )i∈I ∈×i∈I Ξi , i.e. V0(ξ0)≥ V0(ξ

∗
0 )=D0.

In Proposition 29.2, the equilibrium market production schedule ξ∗0 (which coin-
cides with that resulting in Proposition 29.1) was characterized as a solution of the
minimization problem

minimize E
Q
∗(
B(ξ0)

)
over ξ0 ∈×

i∈I
Ξi, subject to V0(ξ0)≥D0. (29.3)

Although this fact is about minimization of social burden, it should not be inter-
preted as one of the classical welfare results, which typically follow from equilib-
rium considerations. A critical point here is that this type of cost-optimality needs
to be taken with great care: due to the opportunity cost-pass-through, even though
society overall reduces emissions at the lowest cost, an (inappropriately designed)
cap-and-trade could end up with distributing that cost all (or the largest part of it) to
consumers.

An interesting observation from Proposition 29.2 is that the expectation
E
Q
∗
(B(ξ0)) of the social burden B(ξ0) is minimized with respect to a risk-neutral

measure Q
∗, which in general differs from the objective measure P. The measure

Q
∗ is an outcome of the equilibrium, and, as such, it depends heavily on the many

model components, such as risk-aversions, allowance endowments, and produc-
tion technologies of the agents. However, it is surprising that, once the measure
Q
∗ is known, other important equilibrium outcomes can be obtained from aggre-

gated quantities only. In particular, given Q
∗, the equilibrium market production

schedule ξ∗0 can be obtained as the solution of optimization problem (29.3). Such
solution is determined by aggregated quantities, since the social burden is by defini-
tion B(ξ0)= C0(ξ0)+ π(ET (ξ0)− γ0)

+ and, apart the quantities γ0 and π decided
by the authority, it depends only on technologies present in the market. Having ob-
tained the equilibrium market production schedule ξ∗0 as the solution of optimization
problem (29.3), the equilibrium allowance price A∗0 is calculated by applying mar-
tingale pricing: A∗0 = πEQ

∗
(1{ET (ξ∗0 )−γ0≥0}). Finally, given the market production

schedule ξ∗0 and the allowance price A∗0, the electricity price P ∗0 can be obtained
as the marginal price of the most expensive technology, active in the schedule ξ∗0 .
Bottom line, given Q

∗, merely aggregated market parameters are needed to obtain
ξ∗0 , A∗0, and P ∗0 . This observation can be used to establish and analyze realistic
equilibrium-like emission market models.
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29.3 Market Equilibrium in Terms of Risk-Neutral Measure

In view of this, we suggest an alternative way to quantitatively assess the equilib-
rium state of an emission market, starting from aggregated quantities and using an
exogenously specified proxy for a risk-neutral measure Q

∗. This general approach
follows the standard methodology of financial mathematics, which describes the
stochastic evolution of equilibrium prices in financial markets under a risk-neutral
measure:

(0) Determine a risk-neutral measure Q, which corresponds to an equilibrium situ-
ation of the emission market in the sense of (ii) of Proposition 29.1.

(1) Observe that, because of (29.2), the equilibrium market production schedule ξ∗0
must be a solution of the following deterministic optimization problem

minimize C0(ξ0)+A0E0(ξ0) over ξ0 ∈×i∈IΞi, subject to V0(ξ0)≥D0,

(29.4)

where the parameter A0 equals the equilibrium allowance price A∗0, which will be
determined in the next steps.

(2) To proceed, assume that

for each A0 ∈ [0,π] there exists a unique solution ξ∗0 (A0) of (29.4), (29.5)

to define the following function of A0:

E∗0 (A0)=E0
(
ξ∗0 (A0)

)
, A0 ∈ [0,π].

(3) Having assumed (29.5), because of (29.1), the equilibrium emission price must
be a solution of the following fixed point problem:

A0 = πEQ(1{E∗0 (A0)+N−γ0≥0}), subject to A0 ∈ [0,π]. (29.6)

Further, suppose that problem (29.6) admits a unique solution A∗0.

(4) Determine the solution A∗0 of (29.6) and calculate ξ∗0 = ξ∗0 (A∗0) from (29.5).

(5) Having calculated the equilibrium market production schedule ξ∗0 = ξ0(A∗0),
determine the equilibrium production costs C0(ξ

∗
0 ), the equilibrium nominal emis-

sions E0(ξ
∗
0 ), and the equilibrium energy price P ∗0 to assess the performance in the

emission reduction of the proposed market architecture.

Such risk-neutral equilibrium-like modeling requires specification of few ag-
gregated quantities. Furthermore, a risk-neutral measure Q

∗ must be determined.
One only needs to specify N =∑

i∈I Ni , i.e. the overall unpredictable emission
fluctuations, under a risk-neutral measure. This distribution can be described in a
parameter-dependent way, which adds a desirable flexibility to the model. As one
of the central questions in quantitative finance, the connection between risk-neutral
and objective measures has been successfully addressed over the recent decades.
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29.4 Energy Mix Model

Let us show how a realization of the above program can be carried out within a
realistic situation, where an energy market is given in terms of production capaci-
ties allocated along diverse technologies with their specific cost structure, usually
referred to as the energy mix model.

Let us agree that the space of energy production technologies is described by
the set [0,∞[2 such that each point (c, e) ∈ [0,∞[2 represents a production tech-
nology with production costs c (euros per megawatt hour) and emission rate e
(tonnes of carbon dioxide per megawatt hour). We describe the energy mix as pro-
duction capacity distribution, modeled in terms of a measure q on [0,∞[2. The
set R ⊂ [0,∞[2 describes a range of technologies (c, e), which are chosen for
consideration. Having specified the technology range R ⊂ [0,∞[2, the produc-
tion capacity, the production costs and the emissions of R can be obtained by in-
tegration, and are, respectively,

∫
R
q(dc,de),

∫
R
c · q(dc,de), and

∫
R
e · q(dc,de).

Now, we introduce the equilibrium production which is always scheduled in the
merit order, according to the production costs. Thereby, the production costs ac-
count for the actual emission rate, because of opportunity cost arguments (see
Falbo et al. [7]). Given the energy demand D0 ∈ R+, it is shown in Falbo et
al. [7] that the range R(P0,A0) of technologies, active in energy production, is
given in terms on the energy price P0 ∈ R+ and the emission price A0 ∈ [0,π] by
R(P0,A0)= {(c, e) ∈ [0,∞[2: c +A0e ≤ P0}. In other words, given the emission
price A0, the relevant costs of production technology (c, e) consist of the true pro-
duction costs c in addition to the opportunity costs e ·A0, which describe the forgone
profit of using emission rights to cover production instead of selling them to the mar-
ket. Given prices (P0,A0), each technology (c, e) with c + A0e ≤ P0 participates
in the production. Thus, let us define the volume V (P0,A0), the costs C(P0,A0),
and the emissions E(P0,A0) at the prices (P0,A0) as the corresponding quanti-
ties from the production schedule R(P0,A0) by V (P0,A0) =

∫
R(P0,A0)

q(dc,de),
C(P0,A0)=

∫
R(P0,A0)

c ·q(dc,de), and E(P0,A0)=
∫
R(P0,A0)

e ·q(dc,de). By def-
inition, the equilibrium production must satisfy the energy demand D0, thus we de-
fine the energy price P ∗(D0,A0), the emissions E∗(D0,A0), and the production
costs C∗(D0,A0), at demand D0 and emission price A0, as

P ∗(D0,A0)= inf
{
P0 ≥ 0 : V (P0,A0)≥D0 ≥ 0

}
,

E∗(D0,A0)=E
(
P ∗(D0,A0),A0

)
,

C∗(D0,A0)= C
(
P ∗(D0,A0),A0

)
.

For the penalty size π ∈ R+, we introduce the expected penalty payment
Π∗(D0,A0) at demand D0 and emission price A0 as

Π∗(D0,A0)= πEQ
((
E∗(D0,A0)+N − γ0

)+)

= π
∫

R

(
E∗(D0,A0)+ n− γ0

)+
ν(n)dn,
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where we assume that,

with respect to the risk-neutral measure Q,

the overall unpredictable emission fluctuations N
follow a distribution with pre-specified density ν :R→R+.

⎫
⎬

⎭

In the next step, the equilibrium allowance price A∗0(D0) at demand D0 will be
determined as the solution of the fixed point problem (29.6) as A0 = Π(D0,A0),
A0 ∈ [0,π]. Having obtained the equilibrium allowance price at demand D0, the
market performance can be assessed in terms of the consumer’s burden B∗c(D0),
the producer’s burden B∗p(D0), and the environmental burden B∗e(D0), calculated
at demand D0, which we define by

B∗c(D0)=D0P
∗(D0,A

∗
0(D0)

)
,

B∗p(D0)=−D0P
∗(D0,A

∗
0(D0)

)+C∗(D0,A
∗
0(D0)

)+Π∗(D0,A
∗
0(D0)

)
,

B∗e(D0)=E∗
(
D0,A

∗
0(D0)

)
.

Summarizing, we shall emphasize that the energy mix model provides a simple
framework, which merely requires a specification of few parameters (capacity al-
location q and emission uncertainty ν) to overcome the ambiguity originated from
unobserved model variables, to obtain a full quantitative and qualitative picture of
the energy market response to a proposed emission regulation.
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Chapter 30
Simultaneous Surveillance of Means and
Covariances of Spatial Models

Robert Garthoff and Philipp Otto

Abstract This paper deals with the problem of statistical process control applied
to multivariate spatial models. After introducing the target process that coincides
with the spatial white noise, we concentrate on the out-of-control behavior taking
into account both changes in means and covariances. Moreover, we propose conven-
tional multivariate control charts either based on exponential smoothing or cumula-
tive sums to monitor means and covariances simultaneously. Via Monte Carlo sim-
ulation the proposed control schemes are calibrated. Moreover, their out-of-control
behavior is studied for specific mean shifts and scale transformation.

30.1 Introduction

Modeling spatial dependence is of potential interest in diverse statistical fields like
econometrics and environmetrics. In statistical process control (SPC), we sequen-
tially check whether there is any deviation of the observed process, available data,
from the predefined target process. Basically, we extend conventional control charts
consisting of the control statistic and the control limit. The run length of the process
is the point of time when the control statistic exceeds the control limit. As a conse-
quence, the surveillance of the process is stopped. At this certain point of time we
expect the change point. Eventually, the process is called in control for those points
of time before the change point occurs. Afterwards, the process is said to be out of
control. Initially, control limits are calibrated for the previously specified expected
run length. After the calibration the control procedures are applied to the observed
process. In contrast to the conventional approach, we focus on changes occurring at
a certain point in the multidimensional space. Hence, the run length is not anymore
a point of time but a distance in space.

In [7] the conventional methods of (SPC) are transferred to conditional autore-
gressive models (cf. [16]) or simultaneous autoregressive models (cf. [2]) that are

R. Garthoff · P. Otto (B)
European University Viadrina, Große Scharrnstraße 59, Frankfurt (Oder), Germany
e-mail: potto@europa-uni.de

R. Garthoff
e-mail: garthoff@europa-uni.de

© Springer International Publishing Switzerland 2015
A. Steland et al. (eds.), Stochastic Models, Statistics and Their Applications,
Springer Proceedings in Mathematics & Statistics 122,
DOI 10.1007/978-3-319-13881-7_30

271

mailto:potto@europa-uni.de
mailto:garthoff@europa-uni.de
http://dx.doi.org/10.1007/978-3-319-13881-7_30


272 R. Garthoff and P. Otto

defined as target process. Assuming that the change point may occur at a certain
point in the multidimensional space, the common approach of SPC is extended. In
particular, the focus is on changes at points with equal distance from some prede-
fined center.

The aim of this paper is the simultaneous surveillance of both means and covari-
ances based on the residuals of spatial processes. The procedures are constructed for
spatial models. The considered process has a previously specified center square of
the whole grid of squares, the origin of the target process. Accordingly, the spatial
process spreads from this initial point. Since we take into account the monitoring of
both means and covariances, the procedures we propose are multivariate. They are
based on either cumulative sums (cf. [6, 8, 11] and [13]) or exponential smoothing
(cf. [10]). The sample mean vector of each ring of squares is the respective charac-
teristic quantity. Contrary to [7], the in-control process is assumed to be indepen-
dent. We implement a Monte Carlo simulation to study the out-of-control behavior
using the average run length (ARL) as performance measure.

We choose the following structure. In Sect. 30.2 the multivariate spatial model,
the target process, and the respective relation to the observed process are introduced.
Moreover, we propose a suitable characteristic quantity for the simultaneous surveil-
lance. In Sect. 30.3 we focus on multivariate CUSUM and EWMA type charts. Sec-
tion 30.4 includes the Monte Carlo simulation. Finally, Sect. 30.5 concludes.

30.2 Simultaneous Monitoring of Spatial Models

Subsequently, we define the target process that is a specific spatial model. After-
wards, we concentrate on the relation to the observed process. Finally, we propose
a suitable characteristic quantity for the spatial surveillance.

30.2.1 Target and Observed Process

The target process is the p-dimensional stochastic process {Y(s): s ∈ Z
q}. More

precisely, s denotes the location in the q-dimensional spatial unit grid. Every
component of Y(s) denoted by Yi(s) is defined as spatial white noise. Below,
(Yi(sj ))j=1,...,n represents the vector of all observations. Thus, the process equals

Yi = μi1n + εi, i = 1, . . . , p. (30.1)

In (30.1) μi denotes the individual mean referring to the observation Yi(s) mul-
tiplied by the n-dimensional vector of ones 1n. Furthermore, the number of lo-
cations n(d) is a function of distance. Let In be the identity matrix of dimen-
sion n. Moreover, the variance of homoscedastic errors is denoted by σ 2

εi
. Since

εi ∼ Nn(0, σ 2
εi

In), it holds that Yi ∼ Nn(μi1n, σ 2
εi

In). The elements of the vec-
tor Y(s) following the identical spatial process are independent, i.e. Y(s) ∼
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Np(μ,diag((σ 2
εi
)i=1,...,p)), where μ= (μ1, . . . ,μp). Basically, Y(s) has γ (q, d) ∈

N observations at each d . We define ς=(d)= {s ∈ Z
q : D(s)= d} and ς<(d)= {s ∈

Z
q : D(s) < d} as the sets of locations.

Generally, spatial models that are monitored depend only on the distance d from
the q-dimensional initial location s0 = 0. We differ between the queen setting where
the distance equals the maximum norm D(s) = ‖s‖∞ = maxi=1,...,q |si | and the
rook setting where the distance D(s) is given by D(s)= ‖s‖1 =∑q

i=1 |si | (cf. [7]).
For the surveillance of the spatial process we use the mean {Ȳ (d): d ∈ N} of all
observations with equal distance from the origin, i.e.

Ȳ (d)= 1

γ (q, d)

∑

s∈ς=(d)
Y (s), q ∈N. (30.2)

Since we assume normal distribution, it holds that Ȳ (d)∼Np(μ,%(d)), where

%(d)= 1

γ (q, d)
diag

((
σ 2
εi

)
i=1,...,p

)
. (30.3)

Eventually, we choose the constant γ (q, d) ≡ γ̃ to avoid that the respective vari-
ances decrease with increasing d .

As mentioned previously, the aim is simultaneous monitoring, i.e. we check for
changes in both means or covariances. Therefore, the following sequential testing
problem is considered for each d .

H0,d : E
[
X̄(d)

]= μ ∧ Cov
[
X̄(d)

]=%(d)
versus (30.4)

H1,d : E
[
X̄(d)

] �= μ ∨ Cov
[
X̄(d)

] �=%(d)
The relation between the target process {Y(s) : s ∈ Z

q} and the observed process
{X(s) : s ∈ Z

q} has to be formulated. Let δ ∈ N ∪ {∞} denote the change point.
Further, the vector of mean changes a ∈R

p \ {0} and the scale transformation ϒ =
diag(υ1, υ2, . . . , υp) �= Ip with υi ∈ R for i ∈ {1, . . . , p} are unknown parameters.
Eventually, simultaneous changes of both means and covariances are modeled in the
following way.

X(s)=
{
Y(s) for s ∈ ς<(δ)
μ+ a +ϒ(Y(s)−μ) for s ∈ Z

p \ ς<(δ) (30.5)

The process is said to be in control for any s whereD(s) < δ. Otherwise, the process
is called out of control. The focus is on the ring of squares with the distance d from
the predefined initial location s0 = 0. The respective mean of γ (q, d) observations
is given by

X̄(d)= 1

γ (q, d)

∑

s∈ς=(d)
X(s). (30.6)
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30.2.2 Characteristic Quantity for Spatial Surveillance

Initially, the effectively observed process is transformed, and we monitor means
and covariances of the respective transformed process. The characteristic quantity
is based on these residuals. Therefore, we propose the quantity

T (q)(d)=
(

%(d)−1/2(X̄(d)−μ)
vech(%(d)−1/2(X̄(d)−μ)(X̄(d)−μ)′%(d)−1/2)

)
. (30.7)

We use the vech-operator to transfer the symmetric p × p-dimensional matrix
%(d)−1/2(X̄(d)− μ)(X̄(d)− μ)′%(d)−1/2 to a vector of dimension p(p + 1)/2.
The elements above the diagonal are excluded. Let Ok×l be the zero matrix of di-
mension k× l, and ιij = 1 for i = j and 0, otherwise. Regarding the in-control state
it holds that X̄(d)∼Np(μ,%(d)). Therefore, the in-control mean vector as well as
the in-control covariance matrix are given by

Eδ=∞
(
T (q)(d)

)=
(

0
vech(Ip)

)
(30.8)

and

Covδ=∞
(
T (q)(d)

)=
(

Ip Op×p(p+1)/2
Op(p+1)/2×p +

)
, (30.9)

where += (ωrs)r,s=1,...,p(p+1)/2 with ωrs = ιil ιjk + ιikιj l .

30.3 Multivariate CUSUM and EWMA Charts

The following procedures are defined for d ∈ N. Subsequently, both multivariate
CUSUM type charts proposed by [13] are modified, so that the schemes can be
applied to spatial processes. The cumulative sum of the first multivariate CUSUM
(MC1) scheme is given by

Sd−nd ,d =
d∑

i=d−nd+1

(
T (q)(i)−Eδ=∞

(
T (q)(i)

))
. (30.10)

The control statistic equals the difference of the norm of (30.10) and a quantity said
to be the reference value including the reference parameter k ≥ 0, i.e.

MC1d =max
{

0,
√
S′d−nd ,dCovδ=∞

(
T (q)(d)

)−1
Sd−nd ,d − knd

}
. (30.11)

Further, nd = nd−1 + 1 if MC1d−1 > 0, and nd = 1, otherwise.
The second multivariate CUSUM (MC2) procedure is based on the following

Mahalanobis distance

Td =
(
T (q)(d)−Eδ=∞

(
T (q)(d)

))′
Covδ=∞

(
T (q)(d)

)−1

× (
T (q)(d)−Eδ=∞

(
T (q)(d)

))
. (30.12)
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Therefore, the control statistic of MC2 equals

MC2d =max
{
0,MC2d−1 + Td − p− 2k2}. (30.13)

For both multivariate CUSUM procedures the starting value is equal to MC10 =
MC20 = 0.

In [14] and [15] EWMA schemes for multivariate time series are introduced.
We propose modifications to apply them to spatial models. Let λ ∈ (0,1] denote
the weighting parameter. The first multivariate EWMA (ME1) chart is based on the
linear combination

Z(q)(d)= (1− λ)Z(q)(d − 1)+ λT (q)(d). (30.14)

The starting value is equal to the target value such that Z(q)(0)= Eδ=∞(T (q)(d)).
Consequently, we can easily derive Eδ=∞(Z(q)(d)) = Eδ=∞(T (q)(d)). As men-
tioned previously, we assume independent random variables. Thus, for h �= 0 it holds
that Covδ=∞(T (q)(d), T (q)(d + h))= Op×p . Eventually, the in-control covariance
matrix of Z(q)(d) equals

Covδ=∞
(
Z(q)(d)

)= λ(1− (1− λ)
2d)

(2− λ)γ (q, d)
(

Ip Op×p(p+1)/2
Op(p+1)/2×p +

)
.

(30.15)

The control statistic of ME1 is given by the distance

ME1d =
(
Z(q)(d)−Eδ=∞

(
Z(q)(d)

))′(
Covδ=∞

(
Z(q)(d)

))−1

× (
Z(q)(d)−Eδ=∞

(
Z(q)(d)

))
. (30.16)

The second procedure proposed in [14] and [15] is called Mahalanobis EWMA
(ME2) chart. The control statistic equals the recursion

ME2d = (1− λ)ME2d−1 + λTd, (30.17)

where Td is already defined in (30.12). Moreover, ME20 = Eδ=∞(Td) = p is the
starting value. For λ= 1.0 both ME1 and ME2 coincide with the control chart pro-
posed in [9].

30.4 Comparative Study

First, we present several examples of spatial white noise with implemented shifts in
mean. Second, the focus is on the calibration of the introduced multivariate CUSUM
and multivariate EWMA type charts. Finally, the out-of-control behavior of the in-
troduced procedures is studied using the out-of-control ARL as suitable measure of
performance.
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Fig. 30.1 Graphical representation of changes in mean (b), autocorrelation (c) and variance (d)
for p = 1 and q = 2 (overhead view) and a simulated process without any changes (a)

30.4.1 Simulation of Spatial Models

Possible mean or covariance changes of the spatial white noise introduced in
Sect. 30.2.1 are now simulated. The aim is to visualize possible structural changes.
In Fig. 30.1 graphical representations of changes in mean or covariance as well as
autocorrelation for p = 1 and q = 2 are shown. Further, a simulated process without
any changes is presented as benchmark. The simulated process is a two-dimensional
spatial white noise for d < 25. After the change point has occurred at d = δ = 25,
one of the following processes is implemented. First, we consider an uncorrelated
process with the covariance matrix In and the mean μ= 2. Second, a spatial autore-
gressive process with the starting point (0,0) is implemented, where μ= 0 and the
autocorrelation equals 0.8. Hence, the off-diagonal elements differ from 0. Third,
we implement an uncorrelated process with μ = 0 and the covariance matrix 2In.
The higher the simulated value, the brighter the location is drawn and vice versa.
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Table 30.1 UCLs of the introduced multivariate control charts referring to simultaneous changes
in means and covariances; in-control ARL is equal to A = 200 (m= 106, p = 2, q = 2)

k MC1 MC2 λ ME1 ME2

0.0 30.8533 587.176

0.1 16.9886 583.344 0.1 20.3113 10.5626

0.2 12.1077 571.253 0.2 28.1363 15.7509

0.3 9.89577 551.301 0.3 34.7905 20.8785

0.4 8.7788 523.531 0.4 40.5414 26.0134

0.5 8.11572 487.768 0.5 45.4506 31.1596

0.6 7.67371 444.281 0.6 49.5895 36.3049

0.7 7.36178 393.421 0.7 52.8311 41.4990

0.8 7.15216 335.399 0.8 55.2046 46.7018

0.9 6.96663 271.449 0.9 56.6490 51.9240

1.0 6.79988 204.342 1.0 57.1513 57.1473

1.1 6.73338 144.642

1.2 6.59684 107.582

1.3 6.45955 88.1625

1.4 6.32323 77.0334

1.5 6.19376 69.8739

1.6 6.06575 64.8183

1.7 5.9437 61.0405

1.8 5.82528 58.0577

1.9 5.70803 55.5682

2.0 5.59463 53.4515

To sum up, changes in the process cause either changes in the gray scale or in the
pattern.

30.4.2 Calibration of Control Charts and Implementation of
Changes

The introduced control procedures referring to the queen setting with q = 2 are cal-
ibrated, such that the in-control ARL equals the predefined value A . To put it an-
other way, we expect deviations from spatial white noise after A = 200 steps from
the center. For the proposed control procedures we have to compute upper control
limits (UCL). The UCLs depend on the respective parameters of the multivariate
EWMA or CUSUM charts. Hence, we have to calibrate for different values of λ and
k. More precisely, λ ∈ {0.1,0.2, . . . ,1.0} and k ∈ {0.0,0.1, . . . ,2.0}. In Table 30.1
the UCLs of the Monte Carlo simulation with m= 106 repetitions are shown. Obvi-
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ously, for multivariate CUSUM charts the UCLs decline with growing k. However,
for multivariate EWMA procedures the UCLs increase with growing λ.

Subsequently, we concentrate on the out-of-control behavior to identify dom-
inating as well as dominated control procedures. Assuming a1 = a2 = a and
υ1 = υ2 = υ , the mean shifts and the scale transformation taken into account are
equal to a ∈ {−1.0,−0.75, . . . ,1.0} and υ ∈ {1.0,1.1,1.2,1.3,1.5,1.75, . . . ,2.5}.
The out-of-control ARLs are presented in Table 30.2. The ARLs are minimized by
the respective smoothing parameter λ or the reference parameter k given in brack-
ets. The lowest ARLs for a specific mean shift or scale transformation are bold.
Apparently, ME1 is the best control procedure for both small and large changes us-
ing the out-of-control ARL as measure of performance. It is worth noting that for
ME1 the optimal λ is constantly 0.1. Therefore, smaller values may provide even
better performance.

30.5 Conclusions

The simultaneous surveillance of means and covariances of spatial models is the
main purpose of this paper. The target process is assumed to be spatial white noise.
Accordingly, the proposed CUSUM and EWMA type charts are calibrated. The out-
of-control behavior is studied for possible shifts in means and covariance changes.
ME1 seems to have the best performance using the ARL as measure of detection
speed. However, since we focus on the ARL as performance measure, the explicit
dominance of ME1 should be checked again using different measures, e.g. the ex-
pected delay.

Moreover, the focus of future research should be on the out-of-control behavior
of spatial autoregressive models introduced in [1, 4], and [5]. The main problem
is the implementation of the matrix of weights and the respective row-standardized
matrix. The choice of these matrices is discussed in [1, 3, 4] and [5]. [1, 3] and [12]
propose the maximum-likelihood method to estimate the correlation coefficient, the
parameter of interest. Eventually, the dimension of these matrices extensively in-
creases with the distance from the origin of the process. Consequently, the curse
of dimensionality complicates the simulation with m = 106 repetitions. Neverthe-
less, the implementation of a comparative study focusing on spatial autoregressive
models will be an interesting question in future.
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Chapter 31
Risk Modelling of Energy Futures:
A Comparison of RiskMetrics, Historical
Simulation, Filtered Historical Simulation, and
Quantile Regression

Kai Erik Dahlen, Ronald Huisman, and Sjur Westgaard

Abstract Prices of energy commodity futures often display high volatility and
changes in return distribution over time, making accurate risk modelling both im-
portant and challenging. Non-complex risk measuring methods that work quite well
for financial assets perform worse when applied to energy commodities. More ad-
vanced approaches have been developed to deal with these issues, but either are too
complex for practitioners or do not perform consistently as they work for one com-
modity but not for another. The goal of this paper is to examine, from the viewpoint
of a European energy practitioner, whether some non-estimation complex methods
for calculating Value-at-Risk can be found to provide consistent results for differ-
ent energy commodity futures. We compare RiskMetrics™, historical simulation,
filtered historical simulation and quantile regression applied to crude oil, gas oil,
natural gas, coal, carbon and electricity futures.

We find that historical simulation filtered with an exponential weighted moving
average (EWMA) for recent trends and volatility performs best and most consistent
among the commodities in this paper.

31.1 Introduction

Energy commodity prices have different risk characteristics than those from finan-
cial assets such as stocks, bonds and currencies. The physical aspect of energy com-
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modities make prices vulnerable to short and long term demand and supply fric-
tions and limited storage capacity.1 This manifests into complex stochastic price
dynamics such as time-varying volatility and (expected) return distributions that are
skewed, exhibit kurtosis and with empirical quantiles that vary over time. These
characteristics of price dynamics differ over energy commodities as well as electric-
ity which is not (yet) storable in an economic sense while other energy commodities
such as gas and oil are. Some energy commodity distributions are highly volatile,
while others are not. Some distributions are skewed to the left and some to the right,
in both cases generating an asymmetrical tail risk. Others have low/high kurtosis and
hence, low/high tail risk. Energy commodity return distributions also change over
time because of changing market regimes, changes in commodity-specific business
cycles, weather conditions, etc. For those reasons, it is not obvious that standard
risk models from financial markets, such as RiskMetrics™ and historical simula-
tion, can be applied to energy commodities. One problem with existing standard
risk models such as RiskMetrics™ and historical simulation is that the former does
not necessarily capture the correct (conditional) return distribution. The latter has
the opposite problem by capturing the empirical return distribution but not making
it conditional upon volatility.

Although few, there are some attempts to model the risk in energy markets. Giot
and Laurent [7] investigate market risk in various commodity markets, including
Brent Crude Oil and WTI Crude Oil, assessing the performance of various GARCH
type models. They find that an asymmetric GARCH model with skewed-t error dis-
tribution performs best regarding out of sample Value at Risk forecast. A more ex-
tended research of energy commodities is found in Hung et al. [13] including heat-
ing oil, propane, and gasoline in addition to Crude Oil. Again, the results indicate
that heavy tailed GARCH models are suitable regarding Value at Risk calculation.
Similar results are also found in Aloui [2] investigating Crude Oil and gasoline. In
addition, Aloui [2] also argue for GARCH models capturing long-run dependencies
in volatility. Füss et al. [10] extend the analysis of energy and other commodities,
also looking at risk assessment using CAViaR2 type of models. They look at Gold-
man Sachs indices for agricultural, industry metals, precious metals, livestock, and
energy. The semi-parametric CAViaR methodology is recommended for all com-
modities, including energy. In a recent study, Mabrouk [17] investigates both Value
at Risk and Expected Shortfall (Conditional Value at Risk) forecasts using a rich
set of GARCH models for WTI, Brent, New York Harbour conventional gasoline
regular, and Los Angeles gas. In accordance to other studies, he finds long-memory
features and heavy tail distribution performs best. The new result is also that Ex-
pected Shortfall can be predicted using these models. Veka et al. [27] is one of the
few attempts to model energy markets using multivariate GARCH. They investigate
the extent to which the price of Nordic electricity derivatives correlates with elec-
tricity futures at EEX and ICE. They also look at the correlation of the electricity

1We refer to [22] and [12] for an overview of energy price and market characteristics.
2As GARCH models are ways of modelling conditional volatility as an auto regressive process,
CaViaR models model the conditional quantiles as an autoregressive processes.
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contract with Crude Oil, Natural Gas, coal, and carbon emission contracts. They
find significant time-varying relationships between all of the energy commodities
included in the analysis, with the exception of oil. This suggests that pricing models
based on constant correlation may be misleading. Another reference investigating
multivariate volatility and correlations is Pen and Sevi [21]. They analyse volatility
transmission between European electricity markets. More insights are also found in
Marzo and Zagaglia [19] and Solibakke [23, 24]. A weakness of these studies is
that the authors do not test their models for VaR and CVaR assessment of energy
commodity portfolios.

In a recent study, Hanly [8] compares the hedging effectiveness of decisions
based on various risk models for different energy commodities and finds that hedg-
ing effectiveness differs over energy commodities. An approach that works well
for one commodity does not necessarily deliver the same performance for another.
Chang et al. [5] examine the effectiveness of various GARCH [3] type methods ap-
plied to crude oil contracts and find that the performance of methods differ over
types of crude oil. Brinkmann and Rabinovitch [4] focus on natural gas futures and
find that hedging effectiveness differs over geographical regions. These studies are
among several that find that hedging effectiveness and the performance of risk mea-
sures varies over different energy commodities and markets. This heterogeneity in
performance is a nightmare for practitioners as they prefer one model to be applied
to all commodities for reasons of understanding, acceptance and credibility. More
advanced risk models such as GARCH with different error distributions and Con-
ditional Autoregressive Value at Risk (CAViaR) [11] that models quantiles as an
autoregressive process typically improve the fit but are not widely adopted by mar-
ket participants because of estimation complexity.3 For that reason, we examine to
what extent several non-estimation complex risk methods make proper risk assess-
ments. We focus on the viewpoint of a European practitioner (which determines the
choice of contracts to be examined) and use value-at-risk as a risk measure as it
is widely adopted. We then examine to what extent filtered historical volatility and
quantile estimates provide good risk assessments consistently over different energy
commodities.

The rest of the paper is organized as follows. Section 31.2 describes the various
Value-at-Risk models, backtesting procedures for VaR models and gives an intro-
duction to the data used in the empirical study in this paper. Section 31.3 presents the
empirical findings with backtesting of the different VaR models used in this paper
before we conclude and discuss our results.

31.2 Data and VaR Models

We use data from the most important energy exchanges for European contracts. The
Inter-Continental Exchange (ICE) covers a wide range of commodity and financial

3This argument is based on many discussions with market participants.
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futures and options. Energy products includes North sea crude oil and refined oil
products, UK and Dutch natural gas and electricity, coal delivered in Amsterdam–
Rotterdam–Antwerp, and European emission contracts. In our analysis we will in-
vestigate the nearest front month future contracts of crude oil, gas oil, natural gas,
and coal. From ICE we also collect front month and quarter base load electricity
contracts for UK and the Netherlands. Finally we cover Phase II Carbon emission
contracts. The European Energy Exchange (EEX) is located in Leipzig, Germany
and is the leading exchange for electricity in Central Europe. Financial contracts for
power futures and options, gas futures, coal futures and EU emission allowances
are traded (similar to coal and emission contracts at ICE). In the paper we will in-
vestigate the nearest front month and quarter future baseload contracts based on the
EEX system electricity price. Nasdaq OMX covers a wide range of financial prod-
uct including electricity futures in the Nordpool area (Norway, Sweden, Denmark,
Finland, and the Baltic states). In our analysis we will investigate the nearest front
month and quarter future baseload contracts of Nord Pool system electricity price.
The data covers the period 10.13.2008 to 09.30.2013 covering 1171 observations,
after the returns associated with contract rollovers are removed. We also include a
equally weighted portfolio of all 13 future contracts considered. For more details of
the delivery conditions, roll-overs of contracts, trading hours etc., see [9, 26] and
[20]. Summary statistics for all the time series are presented in Table 31.1. From the
table of summary statistics we observe that the daily returns are close to zero, which
is expected. The daily standard deviations, on the other hand, differ. We observe that
it is the monthly electricity contract in the Nordic market which display the largest
volatility with a daily volatility of 3.06 %. The least volatile contracts are quarterly
German electricity future (1.28 %) and coal (1.45 %). Further we can summarize
up the summary statistics as follows:

• Distributional properties vary across different energy commodities.
• Distribution properties vary over time.

RiskMetrics™ and historical simulation are the most common models used for
VaR estimation in financial institutions [1]. We apply and analyze the performance
of 4 different VaR models. These are the RiskMetrics™ VaR model [18], historical
simulation, filtered historical simulation and quantile regression [14, 15].

Note that all of these measures do not require complicated estimation procedures
and all (except historical distribution) use RiskMetrics™ like measures for mean
and variances. We choose for these as the RiskMetrics™ measures are well-known
among practitioners and are easy to calculate.

To evaluate our out-of-sample forecasts we will be using the unconditional cov-
erage test of [16] and the conditional coverage test of [6].4

4We are aware that these are two simple methods and that more advanced one exist such the ones
discussed in [25].
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Table 31.1 Summary statistics on percentage daily price changes

Contract Mean Std Skew Kurt Max Min 0.05VaR 0.95VaR

Crude oil 0.02 % 2.15 % 0.00 3.28 11.13 % −8.96 % −3.47 % 3.17 %

Gas oil 0.01 % 1.87 % 0.17 3.56 11.26 % −9.44 % −3.16 % 2.77 %

Natural gas −0.06 % 2.57 % 0.54 6.24 19.97 % −10.88 % −4.11 % 4.02 %

Coal −0.05 % 1.45 % 0.50 15.68 14.72 % −9.60 % −1.99 % 1.77%

Carbon −0.10 % 3.13 % 0.31 4.66 20.16 % −15.87 % −5.21 % 4.64 %

El-UK-M −0.05 % 1.77 % 0.47 10.79 14.42 % −11.93 % −2.48 % 2.52 %

El-UK-Q −0.03 % 1.53 % 1.49 11.10 12.02 % −7.40 % −2.07 % 2.22 %

El-Ned-M −0.02 % 2.04 % 1.07 14.49 15.07 % −15.65 % −2.68 % 2.61 %

El-Ned-Q −0.06 % 1.52 % 1.86 20.72 13.71 % −10.13 % −1.95 % 1.71 %

El-Ger-M −0.08 % 1.81 % 0.53 8.42 11.61 % −9.04 % −2.72 % 2.33 %

El-Ger-Q −0.09 % 1.28 % 0.38 6.63 8.11 % −8.50 % −1.87 % 1.94 %

El-Nor-M −0.07 % 3.06 % −0.16 2.44 12.22 % −16.71 % −4.88 % 5.09 %

El-Nor-Q −0.04 % 2.30 % −0.06 0.99 8.48 % −9.92 % −3.93 % 3.68 %

Portfolio −0.04 % 2.57 % 0.54 0.96 8.50 % −9.90 % −3.90 % 3.71 %

31.3 Empirical Results

For the empirical test, we use the methods described in Sect. 31.2 to make out of
sample estimates of one-day ahead Value-at-Risk measures for each of the futures
contracts in our sample. Considering the changing distributions of the energy com-
modity returns the out of sample is done with a rolling window approach. For the
rolling window the 600 previous observations are used in order to estimate the mod-
els and predict the VaR for the next day. An EWMA process is also estimated for
several of the methods presented, leading to the first 30 observations of each time
series being discarded as a burn-in period. Hence we have 541 out of sample ob-
servations for each of the time series, with the VaR estimated at six different levels
(α = 0.01,0.025,0.05,0.95,0.975,0.99) each day.

Comparing the performance of the methods are done with the use of the Kupiec
and Christoffersen tests. The p-values for the Kupiec test for all commodity futures
are presented in Table 31.2, and H0 (correct unconditional coverage) should be re-
jected if the value is below 0.05 (5 % significance). The p-values for the Christof-
fersen test for all commodity futures are presented in Table 31.3, and H0 (correct
conditional coverage) should be rejected if the value is below 0.05. The total num-
ber of rejections of H0 for both the Kupiec and Christoffersen test can be found in
Table 31.4. From these results we observe that VaR predictions from RiskMetrics™
seem to perform relatively well for the 5 % and 95 % quantile, at least when we con-
sider the results from the Kupiec test. For the more extreme quantiles, however, the
RiskMetrics™ does not seem to be an adequate model for describing the dynamics
of the left and right tails of the distribution. Considering that RiskMetrics™ is based
on the normal distribution this is no surprise. Considering the Christoffersen test the
RiskMetrics™ seem to perform even worse. This is consistent with the findings of
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Table 31.2 p-values for the Kupiec test for all commodities and methods

Commodity RM HS FHS QR RM HS FHS QR RM HS FHS QR

Q0.01 Q0.025 Q0.05

Crude oil 0.005 0.001 0.802 0.858 0.002 0.309 0.057 0.690 0.010 0.146 0.187 0.256

Gas oil 0.076 0.019 0.802 0.523 0.096 0.020 0.690 0.185 0.187 0.019 0.256 0.852

Natural gas 0.523 0.001 0.802 0.255 0.309 0.000 0.240 0.669 0.094 0.000 0.704 0.146

Coal 0.076 0.019 0.858 0.523 0.357 0.000 0.508 0.884 0.256 0.000 0.992 0.146

Carbon 0.076 0.000 0.296 0.076 0.096 0.000 0.357 0.240 0.342 0.000 0.852 0.133

el.UK M 0.858 0.802 0.157 0.014 0.185 0.100 0.897 0.240 0.010 0.058 0.540 0.682

el. UK Q 0.091 0.523 0.296 0.802 0.309 0.100 0.096 0.357 0.034 0.034 0.852 0.852

el. NL M 0.157 0.858 0.802 0.858 0.669 0.897 0.057 0.240 0.094 0.304 0.852 0.852

el. NL Q 0.005 0.511 0.076 0.014 0.240 0.669 0.155 0.155 0.682 0.058 0.852 0.540

el. Ger M 0.014 0.802 0.296 0.858 0.690 0.669 0.690 0.669 0.094 0.992 0.992 0.852

el. Ger Q 0.802 0.523 0.802 0.296 0.897 0.185 0.897 0.690 0.215 0.094 0.133 0.567

el. Nor M 0.014 0.511 0.802 0.296 0.240 0.897 0.897 0.508 0.682 0.567 0.992 0.540

el. Nor M 0.157 0.091 0.858 0.858 0.690 0.020 0.897 0.884 0.446 0.010 0.704 0.540

Port. 0.511 0.523 0.523 0.802 0.897 0.0201 0.884 0.309 0.413 0.010 0.835 0.215

Q0.95 Q0.975 Q0.99

Crude oil 0.002 0.000 0.540 0.019 0.020 0.000 0.100 0.185 0.523 0.091 0.523 0.523

Gas oil 0.835 0.002 0.446 0.540 0.508 0.020 0.357 0.884 0.296 0.019 0.157 0.802

Natural gas 0.835 0.000 0.992 0.215 0.057 0.002 0.884 0.309 0.014 0.019 0.802 0.858

Coal 0.005 0.000 0.215 0.010 0.007 0.000 0.473 0.002 0.091 0.019 0.802 0.255

Carbon 0.413 0.000 0.342 0.187 0.690 0.000 0.897 0.357 0.157 0.000 0.157 0.296

el. UK M 0.852 0.146 0.852 0.215 0.032 0.669 0.897 0.309 0.002 0.858 0.802 0.523

el. UK Q 0.215 0.005 0.215 0.058 0.508 0.100 0.884 0.100 0.076 0.858 0.802 0.802

el. NL M 0.094 0.146 0.704 0.682 0.897 0.669 0.897 0.884 0.034 0.523 0.511 0.255

el. NL Q 0.215 0.058 0.682 0.058 0.897 0.020 0.897 0.669 0.511 0.255 0.523 0.255

el. Ger M 0.540 0.256 0.187 0.187 0.155 0.669 0.690 0.669 0.005 0.523 0.858 0.255

el. Ger Q 0.215 0.019 0.446 0.304 0.690 0.048 0.508 0.048 0.076 0.255 0.802 0.255

el. Nor N 0.540 0.146 0.413 0.304 0.357 0.669 0.884 0.897 0.157 0.296 0.511 0.296

el. Nor Q 0.413 0.005 0.342 0.682 0.669 0.020 0.690 0.669 0.511 0.523 0.296 0.802

Portfolio 0.567 0.010 0.852 0.992 0.690 0.020 0.669 0.884 0.296 0.019 0.256 0.858

[7]. The historical simulation perform even worse than RiskMetrics™. The filtered
historical simulation perform considerably better than both the previous models, and
slightly better than the quantile regression approach. We have no rejects of uncondi-
tional coverage for the filtered historical simulation and only 2 (of 84 tests) rejects
of conditional coverage from the Christoffersen test. This means that the filtered
historical simulation gives an almost perfect fit when it comes to the number of ex-
ceedances over the predicted VaR levels, and satisfies the condition of independent
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Table 31.3 p-values for the Christoffersen test for all commodities and methods

Commodity RM HS FHS QR RM HS FHS QR RM HS FHS QR

Q0.01 Q0.025 Q0.05

Crude oil 0.015 0.004 0.906 0.939 0.003 0.494 0.069 0.601 0.004 0.332 0.196 0.215

Gas oil 0.172 0.064 0.906 0.791 0.027 0.063 0.673 0.357 0.196 0.039 0.215 0.477

Natural gas 0.791 0.004 0.906 0.515 0.494 0.000 0.270 0.695 0.123 0.000 0.179 0.332

Coal 0.172 0.064 0.939 0.791 0.550 0.000 0.632 0.718 0.200 0.000 0.395 0.154

Carbon 0.081 0.000 0.150 0.081 0.024 0.000 0.025 0.031 0.015 0.000 0.005 0.019

el. UK M 0.939 0.906 0.315 0.038 0.357 0.229 0.683 0.445 0.023 0.089 0.827 0.693

el. UK Q 0.237 0.791 0.514 0.906 0.494 0.229 0.239 0.377 0.061 0.061 0.901 0.901

el. NL M 0.315 0.939 0.906 0.939 0.695 0.683 0.069 0.270 0.123 0.231 0.901 0.901

el. NL Q 0.015 0.735 0.172 0.038 0.270 0.695 0.189 0.189 0.287 0.089 0.225 0.285

el. Ger M 0.038 0.906 0.514 0.939 0.619 0.695 0.619 0.695 0.087 0.027 0.122 0.151

el. Ger Q 0.906 0.791 0.906 0.514 0.660 0.357 0.627 0.673 0.065 0.223 0.152 0.795

el. Nor M 0.038 0.160 0.906 0.514 0.445 0.136 0.683 0.493 0.908 0.064 0.424 0.827

el. Nor Q 0.315 0.237 0.939 0.939 0.601 0.063 0.683 0.718 0.597 0.023 0.820 0.271

Port. 0.726 0.786 0.786 0.890 0.665 0.062 0.701 0.485 0.148 0.022 0.753 0.436

Q0.95 Q0.975 Q0.99

Crude oil 0.005 0.000 0.827 0.050 0.063 0.002 0.229 0.134 0.791 0.237 0.791 0.791

Gas oil 0.263 0.007 0.113 0.271 0.493 0.063 0.377 0.718 0.514 0.064 0.315 0.906

Natural gas 0.093 0.000 0.395 0.220 0.077 0.009 0.736 0.503 0.038 0.064 0.916 0.948

Coal 0.013 0.000 0.198 0.023 0.026 0.000 0.615 0.009 0.237 0.064 0.906 0.515

Carbon 0.453 0.000 0.465 0.416 0.673 0.000 0.683 0.550 0.315 0.000 0.315 0.514

el. UK M 0.886 0.332 0.901 0.454 0.040 0.695 0.683 0.494 0.006 0.939 0.906 0.791

el. UK Q 0.454 0.013 0.454 0.089 0.493 0.229 0.718 0.229 0.172 0.939 0.906 0.906

el. NL M 0.020 0.154 0.509 0.287 0.660 0.483 0.660 0.592 0.049 0.791 0.735 0.515

el. NL Q 0.454 0.147 0.908 0.147 0.660 0.063 0.660 0.483 0.735 0.515 0.791 0.515

el. Ger M 0.217 0.023 0.080 0.006 0.337 0.483 0.673 0.483 0.013 0.791 0.939 0.515

el. Ger Q 0.454 0.014 0.502 0.336 0.601 0.129 0.493 0.129 0.172 0.515 0.906 0.515

el. Nor M 0.827 0.332 0.715 0.586 0.377 0.483 0.718 0.683 0.315 0.514 0.735 0.514

el. Nor Q 0.154 0.013 0.465 0.287 0.695 0.063 0.673 0.695 0.735 0.791 0.514 0.906

Portfolio 0.675 0.022 0.840 0.229 0.585 0.062 0.679 0.701 0.506 0.064 0.512 0.930

exceedances for most of the energy commodity futures considered. This does not
necessarily mean, however, that the FHS-implied VaR levels are optimal. Kupiec
[16] and Christoffersen [6] tests are not measures of fit, since they do not rank the
distance from the expected number of exceedances. The Winkler (or interval) score
or the Lopez score would be more appropriate in this context, see e.g. Weron [28]
and Žiković and Aktan [29].
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Table 31.4 Rejections of H0 by method and test.

RiskMetrics Historical simulation Filtered HS Quantile regression

Kupiec test

Total Tests 84 84 84 84

Total Rejections 17 41 0 6

Percentage Rejected 20.2 % 48.8 % 0.0 % 7.1 %

Christoffersen test

Total Tests 84 84 84 84

Total Rejections 19 28 2 8

Percentage Rejected 22.6 % 33.3 % 2.4 % 9.5 %

31.4 Conclusion

Correct modeling and forecasting of risk is obviously of great importance to energy
commodity traders, investors and hedgers. We have shown with our empirical study
that standard risk models such as RiskMetrics™ and historical simulation have im-
portant weaknesses when they are used to measure the risk faced from changes in
prices of energy futures contracts. Where does methods work quite well in financial
markets, they perform worse when apply to energy contracts as energy commodity
prices behave differently due to physical demand, supply and storage constraints in
energy markets. The RiskMetrics™ assumes normal distributed returns, a simplifi-
cation that does not work well with the heavy-tailed and skewed returns observed
in these energy commodity futures data, while the historical simulation is unable to
capture the changing volatility.

Focusing on European energy futures contracts, we have backtested the perfor-
mance of four different models to measure Value-at-Risk and we show that filtered
historical simulation is an accurate and easy model that provides consistent results
over both the energy futures contracts in our sample and a portfolio of energy fu-
tures. From this we conclude that a European energy company, that searches for
non-estimation complex method, is best off using the filtered historical simulation
method for measuring the VaR of individual energy commodity positions.
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Chapter 32
Periodic Models for Hydrological Storage
Reservoir Levels. Case Study of New Zealand

Matylda Jabłońska-Sabuka and Agnieszka Wyłomańska

Abstract Many electricity markets across the world are strongly hydro-generation-
dependent, and ability to predict hydrological storage levels is of key importance
in generation planning and risk management. The purpose of this work is to in-
troduce models reproducing periodic and irregular behavior of reservoir levels in
New Zealand. The case study covers the period from January 2002 until July 2008.
Two approaches are proposed here, namely, continuous time random walk with pe-
riodic probability of jumps and periodic autoregressive model. Results show that
both models are capable of reproducing statistical features of the original data and
provide a supporting tool for market analysts and generation planners.

32.1 Introduction

Ever since the electricity market deregulation, which has by now been carried out in
many countries across the world, electricity prices became very volatile and heavily
dependent on some deterministic and stochastic factors. A lot of studies have been
carried out to model the price behavior, either based just on the price history, or
including some explanatory variables having influence price dynamics.

For instance, an important factor which contributes to the high volatility in most
markets is the large variations in the demand and supply of electricity, which are
very uncertain in deregulated markets [4]. In particular, temperature strongly affects
the demand; in total, the demand varies between 50–100 %. Thus, as some say,
forecasting demand is almost equivalent to forecasting weather [18]. Next to any
climatic factors, hydrological balance, demand and base load supply [22] can be
considered with equal importance as the key spot price drivers.
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We argue, that along with proper skills of modelling the price itself, it is equally
important to be able to understand and predict the dynamics of the explanatory
variables. One of these, having a long-term and sometimes more prominent than
any other factor influence on the prices, is hydrological storage reservoir level. Hy-
dro power is the cheapest source of energy, and can provide significant safety and
sustainable development of country’s energy sector. Some of the example regions
blessed with good proportion of hydro power production are, for instance, Scandi-
navia and New Zealand. However, inability to predict the reservoir levels and their
deviations from the mean annual levels can have disastrous influence on electricity
spot prices [11].

In this work we present two mathematical approaches for predicting hydro stor-
age dynamics. One of the models is a continuous time random walk with periodic
probability of jumps and the second one is a periodic autoregressive time series
model. Both approaches consider the daily historical data from the New Zealand
Electricity Market (NZEM) covering the period from 1st of January 2002 until 31st
of July 2008, as the New Zealand electricity market is heavily hydro-dependent and
the information on country’s hydrological information is of key importance to price
modeling. The models are trained on part of the data set and perform out-of-sample
simulations for the remaining period of over 9 months. The results show high good-
ness of fit between the original and simulated data.

32.2 Data and Methodology

32.2.1 Data

The data used in this study comes from the New Zealand electricity market. It has
been retrieved from the Centralized Dataset CD provided by the New Zealand Elec-
tricity Commission free of charge. The data consists of daily centralized (aggregated
for the entire country) values of hydrological storage reservoir levels covering the
period from 1st of January, 2002 up to 31st of July, 2008. The data has been graph-
ically introduced in Fig. 32.1 (red line) together with the daily mean electricity
prices.

32.2.2 Model 1 – Continuous Time Random Walk with Periodic
Probability of Jumps

The first proposed model that can be useful to describe data with seasonal behavior
is based on the continuous time random walk (CTRW) methodology [15]. In the
classical approach, the CTRW process is defined as:

Yt =
Tt∑

i=1

Xi, (32.1)
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Fig. 32.1 New Zealand daily mean electricity prices from North and South Island versus the daily
hydrological storage levels

where the process {Tt }t≥0 is given by

Tt =max

{

n ∈N :
n∑

i=1

Si ≤ t
}

(32.2)

with the sequence {Sn}∞n=1 of nonnegative independent identically distributed (i.i.d.)
random variables representing the waiting times. The sequence {Xn}∞n=1 represents
the jumps. The process {Tt } is often referred to as the renewal process or, alter-
natively, as the counting process [14]. Moreover the sequences {Sn} and {Xn} are
assumed to be independent.

One of the most popular distributions of sequence {Sn} is the non-negative α-
stable. Let us recall, the random variable S has α-stable distribution if there exist
parameters α ∈ (0,2], σ > 0, −1 ≤ β ≤ 1 and μ ∈ R such that the characteristic
function of S takes the form [19]:

EeixS =
{
e−σα |x|α(1−iβ sign(x) tan(πα/2))+iμx, for α �= 1
e−σ |x|(1+iβ(2/π) sign(x) log(|x|))+iμx, for α = 1.

(32.3)

The stability index α, scale parameter σ , skewness parameter β and shift parameter
μ in a unique way define the distribution of a random variable S.

Since the analyzed data set exhibits seasonal behavior which corresponds to year
changing of hydro storage, in this paper we propose using a modification of the
classical CTRW scenario, in which the distribution of the jump sizes depends on the
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actual time of the jump. The similar model was proposed in [13], where the extended
CTRW system was used to describe indoor air quality data. From the theoretical
point of view, the model was studied in [20].

Let us emphasize the second property of the data set, namely, the jumps of the
process take only two values a and −a. Therefore, we consider a binomial model
with a particle jumping between two sites, where a jump length is equal to a. The
probability of the jump is governed by a periodic function that depends on the actual
time t and, therefore, the jumps Xt for each t have the following form:

Xt =
{
a with probability pt ,
−a with probability 1− pt . (32.4)

Such specification is an analogy to the field induced CTRW, analyzed in [20], with
pt = 1

2 (1+ f (t)) for f being a periodic function.
In the last decade the CTRW models have become very popular especially be-

cause of their simple form. They are also connected with the so-called subordinated
processes, that are treated as limiting processes of CTRW systems. Some interesting
applications of CTRW models can be found, for instance, in [5, 6, 9, 12]. According
to our knowledge the CTRW system was never used in the hydrological context but
there are papers where it is considered as a proper model to environmental data,
see for instance [13, 23]. The procedure of estimating the parameters of CTRW and
subordinated processes is presented, for instance, in [23].

32.2.3 Model 2 – Periodic Autoregressive Model

The second proposed model is based on an extended classical autoregressive model
(AR) presented in [2]. The model is called periodic autoregressive time series and
for order p it is defined as follows:

Xi −
p∑

j=1

aj (i)Xi−j = b(i)εi , (32.5)

where {εi} is a white noise time series and the coefficients a1(i), . . . , ap(i) and b(i)
are periodic in i with the same period T . Usually, it is assumed that the time series
{εi} is Gaussian white noise.

The periodic autoregressive time series (PAR) is a special case of PARMA se-
quence (periodic autoregressive moving average), i.e. a time series which is defined
as [8]:

Xi −
p∑

j=1

aj (i)Xi−j = b(i)εi +
q∑

j=1

bj (i)εi−j . (32.6)

In the above definition the sequence coefficients are also periodic with the same
period T and the series {εi} is white noise.
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Fig. 32.2 Quantile lines of level 10 %, 20 %, . . . , 90 % for Model 1 and the measured hydro
storage jumps (red thick line)

The PARMA sequence is one of the main time series which can be used as a
model for periodically correlated (or cyclostationary) processes. Generally, peri-
odically correlated (PC) random processes of second order are random systems in
which there exists a periodic rhythm in the structure that is generally more compli-
cated than periodicity in the mean function [10].

Due to their interesting properties, periodically correlated time series have re-
ceived much attention in the literature because they provide an alternative to the
conventional stationary time series for periodically nonstationary phenomena. Ex-
amples occur in hydrology [21], meteorology [1], economics [3, 17] and electrical
engineering [7]. The PARMA system was also considered in case of infinite vari-
ance, see [16].

There are many methods that can be used to estimate PAR coefficients. One of the
methods is called Yule–Walker method [2], which is a consequence of the method
of moments. This method is very often used in practice because of the simple form
of estimators. More details according to estimation procedure one can find in [24].

32.3 Results of Real Data Analysis

32.3.1 Model 1

In order to prove the proposed model based on CTRW scenario is appropriate, in
Fig. 32.2 we show the vector of observations and the constructed quartile lines by
using the model and parameters estimated from the real data. Moreover, in Fig. 32.3
we present the analyzed data set and forecast for the next 293 days by using the
continuous time random walk model described above. Here, we use the Monte Carlo
method to construct the confidence intervals for the forecast. The number of Monte
Carlo simulations is 1000.
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Fig. 32.3 Measured values of hydro storage together with the forecast for the next 293 days
(Model 1). Additionally, the 10 % and 90 % confidence bounds are given

Fig. 32.4 Quantile lines of level 10 %, 20 %, . . . , 90 % for Model 2 and the measured hydro
storage (red thick line)

32.3.2 Model 2

The second proposed model for hydro storage data is a periodic autoregressive one
described in Sect. 32.2.3. Since in the hydro storage data we observe the period
equal to 360, we propose to use model PAR with period corresponding to year
changes in the data.

In order to show the proposed model is appropriate to examined dataset on the
basis of Monte Carlo simulations with 1000 repetitions, we simulate the samples of
obtained PAR(1) model with period 360 with the assumption that the residuals come
from Gaussian distribution. In Fig. 32.4 we present the constructed quantile lines on
levels 10 %, . . . , 90 %. As we observe, the measured hydro storage corresponds to
the simulated model.

In order to show how beneficial the model may be, we construct the one-day
prediction of the hydro storage data by using Model 2. In each step we update the
observed data to the model. In Fig. 32.5 we present the obtained result. Let us men-
tion, in the first approach where we use the CTRW model we presented the forecast
which means, on the basis of simulated model we constructed the values of pro-
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Fig. 32.5 Measured values of hydro storage together with the forecast for the next 293 days
(Model 2)

cess by using Monte Carlo simulations. Actually the forecast was equal to the mean
of simulated trajectories. In the second approach we present the prediction, which
means, on the basis of the estimated model we show the predicted values. Here the
Monte Carlo simulations are not needed.

32.4 Conclusion

In this work we have studied the behavior of historical measurements of New
Zealand’s hydrological storage reservoir levels. We have identified some charac-
teristic features in the original time series and proposed two alternative models for
reconstructing the behavior of the data. One of them is continuous time random
walk with periodic probability of jumps. The model is an extension of the classical
continuous time random walk by an additional skill of capturing seasonal behavior.
The second approach is the periodic autoregressive model which uses the time series
historical values and periodic patterns to model future values.

The results of the study give an important feedback in two aspects. Firstly,
the mathematical approaches used here confirm their applicability to environment-
related time series. Secondly, we can see that the models can produce high confi-
dence forecasts which combined with other tools and information can support mar-
ket analysts in planning. The model is replicable for any hydro-dominated electricity
market, especially because it provided good-accuracy forecast on relatively difficult
hydro data from the New Zealand market.

In future line of research, the hydrological storage data could be studied in mul-
tidimensional analysis together with other storage-related information like rainfall,
lake inflows and snowpack data, to improve forecast accuracy. Moreover, a model
forecasting seasonal trends of electricity prices related to changes in hydro storage
levels should be built.
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Chapter 33
Dynamic Price Linkage and Volatility Structure
Model Between Carbon Markets

Takashi Kanamura

Abstract This paper investigates the dynamic price linkage and volatility structure
between two leading carbon markets of EU allowance (EUA) and secondary certi-
fied emission reduction (sCER). We propose a correlation model between EUA and
sCER price returns using the marginal abatement cost (MAC) curve and the emis-
sion reduction volume. The model reflects twohold market observations: financial
players’ EUA-sCER swap transaction in carbon price boom periods and stronger en-
ergy price impacts on EUA prices than sCER prices. The model demonstrates that
the volatilities are affected by the MAC curve shape and the emission reduction vol-
ume while the correlations are indifferent from the MAC curve shape and affected
by the emission reduction behavior. The model also suggests that the EUA-sCER
price correlations increase when the swap transaction increases or energy prices
fall, translated into the opposite EUA price movements of EUA price rise or fall,
respectively.

33.1 Introduction

Carbon markets are interrelated with one another due to the political linkage be-
tween the two or more markets. For example, the EU emission trading scheme (EU-
ETS) which allocates and exchanges EU allowances (EUAs)1 enables the scheme
participants to import the certified emission reductions (CERs) generated as carbon
credits from clean development mechanism (CDM) projects to maintain the trad-
ing scheme in health. By using the linkage between EUAs and secondary CERs,2

the market players may conduct arbitrage trading of sell-high and buy-low strat-
egy between the two carbon markets, referred to as EUA-sCER swap. To this end,
the political linkage between the two markets will affect the correlation structure
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of carbon prices. It is well-known that EUA and secondary CER (sCER) futures
prices delivered in December 2009 seem to move together with one another as an
empirical evidence of the linkage. Energy prices affect carbon prices in a differ-
ent way depending on the carbon market structure of energy related and unrelated
emission reduction technologies. The compositions of the emission reduction, i.e.,
carbon dioxide or other equivalent greenhouse gas emission reduction, technologies
regarding energy in the carbon markets determine the shapes of the marginal abate-
ment cost curves, affecting the price comovements and changes. Energy prices will
also characterize the correlation structure accompanied by the volatility structure.

The recent evolution of carbon markets draws the strong attentions from aca-
demic researchers. Fehr and Hinz [1] propose an equilibrium price model for EUA
prices taking into account the fuel switching between natural gas and coal fired
power plants. Benz and Trück [2] employ AR-GARCH Markov switching price re-
turn model to capture the regime shifts between different phases of EU-ETS and
the heteroskedasticity. Daskalakis et al. [3] compare existing popular diffusion and
jump diffusion models, resulting in the favor of the Geometric Brownian motion
with jumps to fit historical EUA spot price data other than mean-reverting processes
often used for commodity price modeling. Moreover Seifert et al. [4] propose a
stochastic price model where CO2 prices do not have any seasonal pattern often
observed in commodity markets. Paolella and Taschini [5] also propose the mixed
normal and mixed stable GARCH models to capture the heavy tail and volatility
clustering in the U.S. SO2 permits and EUA price returns where the price returns
are not represented using any mean-reversion and seasonality. Uhrig-Homburg and
Wagner [6] examine the relationship between the carbon spot and futures prices
traded on the Powernext and the European Climate Exchange. Borak et al. [7] con-
duct the empirical analyses of EUA convenience yields using the spot and futures
prices traded on the EEX and offer a convenience yield model based on the spot
price and the volatility. Kanamura [8] also investigated the characteristics of carbon
asset prices, resulting in the possibility of the classification of carbon assets into
non commodity asset class. While these empirical studies are keen on carbon price
models and their empirical analyses for a single carbon market, they seem to pay no
attention to the characteristics of the correlations between carbon markets. Grüell
and Taschini [9] assessed the linkage between emission trading schemes by focus-
ing on the price convergence, but unfortunately not using the carbon price model.
Chevallier [10] provides evidence of time-varying correlations between EUAs and
CERs; Mansanet-Bataller et al. [11] and Medina et al. [12] show that the spread be-
tween the two markets is driven by EUA prices; finally, Mizrach [13] notes the lack
of convergence between EUA and CER prices. The studies are quite important to
understand EUA-sCER price spreads empirically. But they employ existing econo-
metric models, not supply-demand based models for carbon credits. To this end,
the investigation of the two carbon markets linkage may not be conducted so far
using the supply-demand based carbon price model. Since sCERs are allowed for
the offset to meet their emission reduction target inside the EU-ETS, the two carbon
markets may have strong relationship each other regarding the prices. In addition,
carbon price correlation and volatility structures are strongly affected by the mar-
ket marginal abatement cost curve with various energy price related and unrelated
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emission reduction technologies. But these carbon market structures do not seem to
be employed so far to examine the carbon price correlations and volatilities.

We propose a correlation model between EUA and sCER price returns using the
supply-demand relationship between two carbon markets, i.e., marginal abatement
cost curve and emission reduction volume. In particular, the role of financial players
in carbon markets is built in the model by representing EUA and sCER swap in car-
bon price boom. The influence of energy prices on the EUA market contrary to the
sCER market is also incorporated into the model by reflecting the different emission
reduction measures between more energy-related EU-ETS and less energy-related
CDM projects. The model demonstrates that the volatilities are affected by both
of the MAC curve shape and the emission reduction volume while the correlations
are indifferent from the MAC curve shape and affected by the emission reduction
behavior. The model also suggests that the EUA-sCER price correlations increase
when the swap transaction increases or energy prices fall, translated into the oppo-
site EUA price movements of EUA price rise or fall, respectively.

33.2 The Correlation Model for EUA and sCER Prices

Carbon prices are strongly affected by the supply-demand relationship based on
the marginal abatement cost and emission reduction in carbon markets. In addition,
a certain amount of the credits or allowances in one carbon market can be used
in the other carbon market, resulting in the volumetric linkage between the carbon
markets due to the carbon products swap transactions. Furthermore, it is observed
that energy prices affect the carbon prices via the MAC curve in particular EUA
markets. It is well known that EUA and sCER are frequently traded in the carbon
markets and considered as two leading carbon prices. The paper tries to model the
EUA-sCER price correlation and volatility using the supply-demand relationship
based on the volumetric linkage including EUA-sCER swap transaction and both
carbon markets’ characteristics including energy price impacts.

For baseline and credit type assets such as sCERs, the credits are generated along
with the upward sloping marginal abatement cost (MAC) curve in the order of the
low cost emission reduction technologies until the credit volume meets the emission
reduction volume needed by the emission reduction entities for their compliance
fulfillment. The price is determined by the intersection between the MAC curve and
the emission reduction volume. For cap and trade system such as the EU-ETS, the
pricing structure is taken in the same way. The market participants with emission
reduction obligation possess the upward sloping MAC curve. Then, the emission
reductions are represented by the differences between the emissions and capped
allowances for the companies. The equilibrium prices for EUAs are also obtained
from the intersection between the MAC curve and the emission reduction volume.3

3Thus in our model, the oversupply of EUAs occurred in year 2006 is expressed by low emission
reduction volume taking into account the amount of allocated EUAs.
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We start with the modeling of the emission reduction volume needed in whole
EUA and sCER markets, respectively. It is assumed that the emission reduction
amounts are stochastically fluctuated due to CO2 or GHG emissions. We define by
Vt and Dt the emission reduction volume for EUA and sCER, respectively4

dVt = μV dt + σV dwt , (33.1)

dDt = μDdt + σDdvt , (33.2)

where μV , σV , μD , and σD are constant for simplicity.
As the market observation of the carbon market linkage, we focus on the role of

financial players in carbon markets regarding EUA-sCER swap transaction. sCER
can be used for EUA in the EU-ETS due to the EU-ETS linking directive. sCER will
be attractive in the EU-ETS and the sCER swap volume, i.e., the CER volume used
for EUA-sCER swap, will increase if the EUA-sCER price spread becomes wide. It
is generally observed as in Fig. 33.1 that the price spread becomes wide when EUA
price rises, i.e., the emission reduction in the EU-ETS becomes large.5 sCER swap
volume will be positively correlated with the EU-ETS emission reduction volume.
The swap transaction volume for the sCER is defined by Bt 6

dBt = μBdt + σBdzt , (33.3)

where μB and σB are constant for simplicity.

E[dztdwt ] = ρBV (V )dt, (33.4)

where 0≤ ρBV (V )≤ 1. (33.5)

More importantly when EUA price, i.e., EUA demand, is high, it is also consid-
ered that the market participants may try to obtain the EUA-sCER swap arbitrage
opportunity more, resulting in the high correlation between the EUA and sCER
volume. That is why the correlation is characterized by ∂ρBV

∂V
> 0. We assume

E[dvtdzt ] = φdt with a constant value φ and E[dwtdvt ] = ϕdt with a constant
ϕ for simplicity.

We assume that the sCER trading volume for arbitragers does not affect the
EUA pricing. That is, as the leading carbon market, EUA prices are robustly and
independently determined by the emission reductions in the EU-ETS and marginal
abatement cost in that area, especially for the EU-ETS covered entities, in order to
fulfill their reduction obligation. This is because the EU-ETS market is more inde-
pendently developed than sCER markets and sCER imports do not affect the EUA
pricing. Hence the total demand for EUA Xt is set to be Vt irrelevant to Bt .

4We basically suppose that Vt and Dt are positive value. But emission reduction volume is calcu-
lated as emission minus emission reduction target. Thus it allows for negative emission reduction
volume as in overallocation of EUAs.
5This may suggest that the model of sCER swap volume be affected by EUA prices, not EUA-
sCER price spreads.
6Bt takes both of positive and negative value when sCER is purchased from and sold to the Kyoto
market, respectively.
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Fig. 33.1 Scatter plots between EUA spot prices and EUA-sCER spot price spreads

sCER prices are determined by the sCER volume other than the EU-ETS (Dt )
plus the additional swap transaction volume from the arbitragers (Bt ). Hence the
total volume for sCERs Yt is represented by Dt + Bt . This is consistent with the
market participation of financial players, aggressively entering into sCER markets.
Total emission reductions for EUA and sCER denoted by Xt and Yt are assumed by

Xt = Vt , (33.6)

Yt =Dt +Bt . (33.7)

We model the MAC curves for EUA and sCER to obtain the equilibrium prices of
EUA and sCER, respectively. The emission reductions are conducted in the order of
the technologies with cheaper emission reduction costs. In carbon markets, the MAC
curves are modeled by increasing functions. Then we are interested in the ingredient
of the MAC curve. When we consider the relationship between carbon prices and
energy prices, it is assumed that EUA prices seem to comove with energy prices
more than sCER prices. This is because EUA prices are strongly affected by the
fuel switching costs, via the MAC curve, which generally increases in energy prices
although sCER prices are determined by the other risk factors such as emission re-
duction project type and the certificate delivery, which are not relevant to energy
prices. That is, since the internal emissions reductions for the EU-ETS covered enti-
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ties are mainly conducted by fossil fuel-related activities such as fuel switching, the
MAC curve for EUA is relevant to energy prices. In contrast, the emission reductions
using the CDM are made by a variety of activities such as renewable energies and
methane recovery which have different certificate delivery schedule. The impact of
energy prices on sCER MAC curve will be restrictive contrary to EUA MAC curve.

We define by f (·) the second order differentiable, monotone, and increasing
MAC curve for EUA which is positively affected by energy prices Et . Here we
consider how energy prices affect the MAC curve. When energy prices are up, the
order of the emission reduction measure changes in the direction of the horizontal
axis because the impact of energy prices on each technology marginal abatement
cost is different. The influence of energy prices on the MAC curve is observed as
the horizontal shift of the MAC curve.

Pt = f (xt + kEt ), (33.8)

where Pt represents EUA prices for the supply xt ,
∂f
∂E
> 0, and k is a constant. If k is

positive, the MAC curve horizontal shift due to energy prices results in the increase
of the marginal costs, i.e., carbon prices. Here we set energy prices as follows:

dEt = μEdt + σEdηt , (33.9)

where ∂σE
∂E

≥ 07 and dηt only possesses a positive correlation with dwt , i.e.,
E[dηtdwt ] = ωdt with ω ≥ 0 and E[dηtdvt ] = E[dηtdzt ] = 0 for simplicity be-
cause the energy price influence on emission reduction volume may be highlighted
only in the fuel switching in the EU-ETS.8 Then we define by g(·) the second order
differentiable, monotone, and increasing MAC curve of sCER.

St = g(yt ), (33.10)

where St represents sCER prices for supply yt . The sCER MAC curve is different
in the characteristics from EUA in the sense that the other risk factors than energy
determine sCER prices. Taking xt =Xt and yt = Yt on the assumption of emission
reduction inelasticity to prices in a short period of time, we have the equilibrium
prices of EUA and sCER. Employing Ito’s Lemma and taking into account that EUA
prices are the increasing MAC curve function for EUAs, we recover the correlation
model between EUA and sCER price returns

dPt

Pt
= μP dt + σP dξt , (33.11)

dSt

St
= μSdt + σSdut , (33.12)

ρPS = (ϕσD + ρBV (V )σB)σV√
σ 2
D + σ 2

B + 2σBσDφ
√
k2σ 2

E + σ 2
V + 2kσEσV ω

, (33.13)

7The volatility-price dependence can be related to the inverse leverage effect, e.g., Knittel and
Roberts [14].
8To secure the positive energy prices, we can take e.g., μE = κ̂E(μ̂E − logEt )Et , σE = σ̂EEt
where κ̂E , μ̂E and σ̂E ≥ 0 are constants.
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μP = f
′

f
(kμE +μV )+ 1

2

f ′′

f

(
k2σ 2

E + σ 2
V + 2kσEσV ω

)
, (33.14)

σP = f
′

f

√
k2σ 2

E + σ 2
V + 2kσEσV ω, (33.15)

dξt = 1
√
k2σ 2

E + σ 2
V + 2kσEσV ω

(kσEdηt + σV dwt), (33.16)

μS = g
′

g
(μD +μB)+ 1

2

g′′

g

(
σ 2
D + σ 2

B + 2σBσDφ
)
, (33.17)

σS = g
′

g

√
σ 2
D + σ 2

B + 2σBσDφ, (33.18)

dut = 1
√
σ 2
D + σ 2

B + 2σBσDφ
(σDdvt + σBdzt ). (33.19)

Note that f ′ = ∂f
∂X

, f ′′ = ∂2f

∂X2 , g′ = ∂g
∂Y

, and g′′ = ∂2g

∂Y 2 , respectively. It is found
that EUA and sCER price return volatilities are affected by both of the MAC curve
shapes and emission reduction behavior as in Eqs. (33.15) and (33.18), respectively.
In contrast from Eq. (33.13), we found that the correlations between EUA and sCER
price returns are not dependent of the MAC curve shapes f and g but dependent of
both the correlation and volatility structures regarding carbon reduction behavior
(ρBV , φ, and ϕ and σV , σD , and σB , resp.) in addition to the associated energy price
model parameters (k, σE , and ω). Note that ρPS is assumed to be positive because
of the market observation, implying that ϕσD + ρBV (V )σB > 0.

We try to investigate the influence of EUA-sCER swap transaction and energy
prices on the correlation between EUA and sCER prices. It is notable to say that the
model characterizes the EUA-sCER swap transaction using the EUA-sCER swap
volume correlation ρBV which is represented by a function of V . To this end, the
impact of the EUA-sCER swap transaction on the EUA-sCER price correlations can
be measured by the sensitivity of ρPS with respect to V . We examine the sign of the
derivative of ρPS with respect to V and E for the investigations. Regarding V ,

∂ρPS

∂V
= σBσV√

σ 2
D + σ 2

B + 2σBσDφ
√
k2σ 2

E + σ 2
V + 2kσEσV ω

∂ρBV

∂V
. (33.20)

Taking into account ∂ρBV
∂V

> 0 due to the characteristics of EUA-sCER swap transac-

tion, ∂ρPS
∂V

has a positive value. It suggests that when EUA prices are high because of
EUA emission reduction volume increase, the market participants may try to obtain
the EUA-sCER swap arbitrage opportunity more, resulting in the high correlation
between EUA and sCER volume from Eq. (33.20). Then we think of the impact of
energy prices on the EUA-sCER price correlations. Regarding E,

∂ρPS

∂E
=− (kσE + σV ω)(ϕσD + ρBV (V )σB)kσV√

σ 2
D + σ 2

B + 2σBσDφ(
√
k2σ 2

E + σ 2
V + 2kσEσV ω)3

∂σE

∂E
. (33.21)
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Note ϕσD + ρBV (V )σB > 0 from ρPS positive and ∂σE
∂E
≥ 0 by definition. When k

is positive implying that the MAC curve horizontal shift due to energy prices causes
the increase of the marginal costs, i.e., carbon prices, Eq. (33.21) demonstrates a
negative value, implying that EUA-sCER price correlations decrease in line with
energy prices. The model in Eq. (33.20) suggests that high EUA-sCER price cor-
relations under high EUA prices come from the large EUA-sCER swap transaction
volume during high EUA price periods. In contrast from Eq. (33.21), the high cor-
relations between EUA and sCER price returns under low EUA prices stem from
energy price plunge, which is translated into a description of contagion between the
two carbon markets.
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Chapter 34
Combining Time Series Forecasting Methods
for Internet Traffic

C. Katris and S. Daskalaki

Abstract The aim of this work is to explore whether forecasts from individual fore-
casting models can be improved with the use of combination rules. Working with
Internet traffic data, first we use FARIMA, FARIMA with student-t innovations
and Artificial Neural Networks as individual forecasting models, since each one of
them explains some statistical characteristic of our data, and next we combine the
forecasts using three different combination rules. Based on our experimental work
simple combination rules may improve individual models. Finally, we consider a
scheme where the selection of the model is based on the White’s Neural Network
test for non-linearity and compare with the results from the combination of fore-
casts.

34.1 Introduction

It is widely accepted that Internet traffic carries properties such as Self-Similarity
and Long Range Dependence (LRD) [2, 15], while it sometimes displays non-linear
structures [13]. Recent measurements have shown that Short Range Dependence
(SRD) also appears in Internet traffic. A class of forecasting models which can de-
scribe both LRD and SRD are the FARIMA models [9, 11], which have become very
popular for Internet traffic modeling [18]. While constructing a FARIMA model,
the estimation of the fractional parameter d is an important issue and many meth-
ods have been developed for it. In this paper, we use the Geweke and Porter-Hudak
method [7]. Lastly, since Internet traffic almost always exhibits heavy tails and is
leptokurtic, it seems reasonable using FARIMA with heavy-tailed, instead of Nor-
mal, innovations [12]. In this paper we experiment with both FARIMA models, i.e.
with Normal and student-t innovations, as traffic forecasting models.

Another issue addressed here is non-linearity in time series. FARIMA are linear
models and their ability for prediction is limited when the traffic data require non-
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linear structures. The approach mostly used for modeling non-linear time series
involves Artificial Neural Networks (ANN), such as in Cortez et al. [4]. For our
work we used the Multilayer Perceptron (MLP) feed-forward neural network as
model but in order to optimally design its architecture for our experiments we also
used certain concepts from dynamical systems.

The three forecasting approaches mentioned previously are quite promising but
none of them may capture all characteristics of the Internet traffic at once, therefore
in order to further improve forecasting accuracy we create combination schemes
of different models. There are many methods of combining forecasts and a good
description of several of them can be found in Menezes et al. [17]. We adopt three
static combinations; the simple average, which is fair, robust and gives promising re-
sults; a weighted average, where the weights depend on the RMSE of the individual
methods achieved during training; and an unconstrained linear regression approach.
Finally, we compare the performance of the combination schemes with an approach
where at first we apply a hypothesis test, the White neural network test, in order to
detect non-linearity. If the test is significant we select an ANN model, otherwise we
use the classical FARIMA model with normal innovations. This approach aims to
assign the most appropriate individual forecasting model for each trace.

The rest of the paper is organized as follows. Section 34.2 reviews the individ-
ual models and their building procedures. Section 34.3 describes the combining
schemes and the alternative approach of model selection according to the White
test. Section 34.4 presents the application of all described methods to several In-
ternet traffic data sets, while Sect. 34.5 concludes with a brief discussion on the
experimental results.

34.2 Forecasting Models of Internet Traffic

In this section we present forecasting models which are quite suitable for Internet
traffic. FARIMA models with normal or student-t innovations capture the LRD and
SRD characteristics, while ANN models capture non-linearity. For each model type
the fitting procedure is discussed briefly.

34.2.1 FARIMA Model Building

FARIMA models, as opposed to ARIMA, are suitable when SRD and LRD co-exist
in a time series. LRD is detected when there is a very slow decrease of the autocor-
relation function, in practice with a power-law rate. This implies that observations
from the far past can affect future observations. On the other hand SRD is present
when the decay of the autocorrelation function is exponential, and this means that
only recent observations affect future observations.
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A FARIMA model is an extension of the ARIMA (p, d , q) model, when the
parameter d is allowed to take real (not only integer) values, and describes a time
series using Eq. (34.1).

Φp(L)(1−L)d(Xt )=Θq(L)εt (34.1)

where Φp(L) = 1 − φ1L − · · · − φpLP and Θq(L) = 1 + θ1L + · · · + θqLq .

L is the lag operator, (1−L)d =∑∞
j=0

( d
j

)
(−1)jLj , and ( d

j
)(−1)= Γ (−d+j)

Γ (−d)Γ (j+1) .

The error terms εt follow normal distribution with mean zero and variance σ 2.
Alternatively, we consider a model where the error terms εt follow a student-t

distribution t (0, σ, v), where v > 2. The pdf in its location-scale version is:

f (x;α,β, v)= Γ (v+1
2 )√

βvπΓ (v2 )

[
1+ (x − α)

2

βv

](− v+1
2 )

(34.2)

with location parameter α, scale parameter β and shape parameter v. The mean
equals to α and here is 0, while the variance is βv

(v−2) .
In order to fit a FARIMA model to traffic traces, a procedure similar to the one

described in Liu et al. [16] is used. The first step is to convert the data to a zero mean
series by subtracting the sample mean from the trace. The next step is to specify the
order of the model. We restrict the auto-regressive and moving average order to be
less than or equal to 5 (i.e. 0 ≤ p,q ≤ 5). Then we consider all possible ARIMA
models and choose the one with the lowest Bayesian Information Criterion (BIC).
The final step is to estimate the remaining parameters of the model. The fractional
parameter d is estimated via the Geweke and Porter-Hudak (GPH) estimator [7],
while the parameters φi , θi are specified using Maximum Likelihood (ML) method-
ology. Note that if GPH fails to estimate d ∈ (0,0.5) then the fractional parameter is
also estimated using the ML methodology. All computations for this procedure are
performed using the R software [8].

34.2.2 ANN Model Building

FARIMA models, described previously, assume linearity in mean and this assump-
tion can be a serious limitation in cases where the time series indicate non-linear
structures. It is very important to detect whether a time series trace follows some
non-linear structure. Fortunately there are some statistical procedures which can
provide this information. In this work we use the White neural network test [14].
The test is based on an ANN structure and its null hypothesis is that the time se-
ries model that creates the dataset is linear. The alternative hypothesis is arbitrary
non-linearity. The statistic of the test is assumed to follow Chi-square distribution.

Appropriate models for describing non-linearity in time series and for gaining
additional accuracy in forecasting are the ANNs. An overview about them can be
found in [19]. The most widely used architecture is that of the Multilayer Perceptron
(MLP), which is a feed-forward NN comprising an input layer, one or more hidden
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Fig. 34.1 Multilayer
perceptron ANN with 1
hidden layer

layers and an output layer. An application of ANN on Internet traffic forecasting
can be found in [4]. In this paper, we use a monotone multilayer perceptron network
with one hidden layer (Fig. 34.1).

For the determination of the ANN architecture we have to specify the input vari-
ables, i.e. the lagged variables, the number of hidden layers and the number of nodes
to each layer. For the input variables we borrow concepts from dynamical systems,
the relation between inputs and outputs is determined by the activation function with
the most popular selection to be the logistic function, while for the output, a linear
function is a popular choice. For the training of the ANN, the algorithm that was
used is the adaptive gradient descent.

We now briefly discuss some concepts from dynamical systems which are neces-
sary for the construction of the ANN. Each time series is considered to be a dynami-
cal system for which the next state is expressed as a function of its current state. Es-
pecially for a discrete time series, this is expressed as: x(t + 1)= F(x(t)). The goal
is to identify a simpler system from which the data could have come from. The em-
bedding theorem states that the space of time lagged vectors with sufficiently large
dimension will capture the original time series. This dimension is called embedding
dimension and gives the number of lagged variables that are needed to reconstruct
satisfactorily the original time series. In order to determine the embedding dimen-
sion the False Nearest Neighbors (FNN) method is used. Another important issue
is the determination of the time lag k. When k > 1 the time series is considered as
over-sampled, and a sampling with rate k must take place. The time lag has to be
chosen in a way that keeps a balance between small value and great independence.
Mutual information can help us decide whether resampling is needed [5].

In order to construct an ANN, at first we decide whether resampling is needed,
using mutual information. In our case all time series we examined did not require
any resampling. Next we select input variables (i.e. lagged variables) according
to the FNN method and finally we decide about the hidden layer nodes and the
training epochs. Specifically, we consider one hidden layer and decide for 1, 2, 10,
20, or 50 nodes based on a minimum RMSE for the 1000 most recent observations
of the training sample. The training is performed using back-propagation with the
adaptive gradient descent algorithm and for 500 epochs of training. The activation
function is sigmoid for the hidden layer and linear for the output.
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34.3 Combination Methods of Forecasting Models

Combining forecasts is a known procedure for improving forecasting accuracy and
is supported by many researchers and practitioners [3]. The initial proposal for com-
bining forecasts came from Bates and Granger [1] and after this work, a large num-
ber of articles referred to combinations of forecasts. Some well established methods
are discussed and analyzed in Menezes et al. [17]. In this paper, we consider 3 meth-
ods of forecast combinations:

• Simple Average: This method has the advantages of impartiality and robustness,
while provide good results generally [17]. The formula for this method is given
as:

f̂ =
∑n
i=1 fi

n
(34.3)

• Weighted Average: Instead of the simple average, we may weight the forecasts ac-
cording to their performance in the training set. Here as criterion for each model’s
performance we consider the RMSE, which in general is more popular as an in-
dex. The formula used for this method is:

f̂ =
n∑

i=1

wifi, where wi =
( 1

RMSEi
)

∑n
i=1(

1
RMSEi

)
and

n∑

i=1

wi = 1 (34.4)

• Regression: In this method the individual forecasts are used as regressors in an or-
dinary least squares regression with the inclusion of a constant term. An unbiased
combined forecast is produced regardless of whether the constituent forecasts are
biased [10].

Model Selection According to White Neural Network Test Except from the
individual forecasting methods and the combination methods, we also consider a
model selection according to the White neural network test. The procedure performs
the test and if non-linearity is detected ANN is the indicated model for forecasting,
otherwise, the FARIMA model with Normal innovations is the choice. This proce-
dure identifies the best individual model for each trace. Basically if the White test is
successful, then the procedure can lead to a successful individual model.

34.4 Data Analysis

We apply the aforementioned procedure to traces from Ethernet and video traffic at
different levels of aggregation. All traces are publicly available, either from the In-
ternet Traffic archive (http://ita.ee.lbl.gov/) or from TU-Berlin [6]. Table 34.1 gives
overview information for each trace and specifically its source, type, level of aggre-
gation (unit of measure and time scale) and volumes of data for the training and test
set, respectively. The analysis that was described previously was performed on each
dataset using separate packages from the R environment and specifically AMORE,

http://ita.ee.lbl.gov/
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Table 34.1 Overview of traces

Trace Source Type Unit Aggregation time Training (test) set

August89 Bellcore LAN Mbytes 10 seconds 264 (50)

Oct89 Bellcore LAN Mbytes second 1260 (500)

LBL PK4 Bellcore WAN Mbytes 10 seconds 300 (60)

Dusk till Down TU-Berlin MPEG4 Kbytes frame 4000 (1000)

Die Hard III TU-Berlin MPEG4 Kbytes frame 4000 (1000)

Jurassic Park TU-Berlin MPEG4 Mbytes second 3000 (600)

Star Wars IV TU-Berlin MPEG4 Mbytes second 3000 (600)

The Firm TU-Berlin VBR Kbytes frame 4000 (1000)

Mr. Bean TU-Berlin VBR Kbytes frame 4000 (1000)

Table 34.2 Details on the forecasting models and approaches

Trace FARIMA order d ANN model White test Model selection

August89 (1,1) 0.3961873 (4,20,1) Linearity (FARIMA)

Oct89 (1,1) 0.440625 (9,50,1) Non-linearity (ANN)

LBL PK4 (0,4) 0.3955 (7,50,1) Non-linearity (ANN)

Dusk till Down (4,2) 0.00000001 (6,10,1) Non-linearity (ANN)

Die Hard III (5,2) 0.00000001 (10,20,1) Non-linearity (ANN)

Jurassic Park (1,2) 0.2732444 (10,20,1) Linearity (FARIMA)

Star Wars IV (2,3) 0.1785253 (10,50,1) Linearity (FARIMA)

The Firm (0,1) 0.5 (6,10,1) Linearity (FARIMA)

Mr. Bean (2,2) 0.3777264 (10,10,1) Non-linearity (ANN)

rugarch, tseries, forecast, fNonLinear. Table 34.2 displays information regarding the
selected FARIMA models and ANN architectures, as well as the model suggested
by the White NN test. Table 34.3 presents the performance of each individual model
and that of the combination procedures using RMSE and MAE as metrics. More-
over, for each forecasting procedure we consider its ranking according to RMSE
and MAE on each dataset and then report its average ranking over all datasets.

From Table 34.3 we can observe that from individual models the ANN is the most
successful approach according to RMSE average position but worse than FARIMA
with student t innovations according to MAE average ranking. From the combi-
nation methods, both the simple and weighted mean gave better results than the
individual models according to average rankings. On the contrary, the regression
combination scheme gave the worst average results. It is worth pointing out how-
ever that this method was found to be more efficient only for the Video data with
higher levels of aggregation (i.e. seconds). Finally, the selection of a model accord-
ing to the White criterion displayed the best results compared to all methods with
the RMSE criterion and slightly worse only than the weighted mean combination
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approach according to MAE. In our study, the White test was found to be efficient
in detecting non-linearity and led to a successful model selection.

34.5 Conclusions

In this work we considered FARIMA models with normal and student-t innovations
along with ANN models to be used for Internet traffic forecasting. For each model
we discussed its construction and fitting procedure and applied them to nine differ-
ent datasets. In order to improve forecasting performance we applied combination
methods based on a simple and a weighted mean of the individual forecasts and
also regression of them. Finally, we proposed the selection of an individual model
according to the White neural network test. From the experimental analysis that was
performed it is shown that selection of a model according to White test led to better
results on the average, while from the combinations both the simple and weighted
means of forecasts reach to better forecasting performance compared to individual
models.
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Chapter 35
Stochastic Model of Cognitive Agents Learning
to Cross a Highway

Anna T. Lawniczak, Bruno N. Di Stefano, and Jason B. Ernst

Abstract We describe a stochastic model of simple cognitive agents (“creatures”)
learning to cross a highway. The creatures are capable of experiencing fear and/or
desire to cross and they use an observational learning mechanism. Our simulation
results are consistent with real life observations and are affected by the creatures’
fears and desires, and the conditions of the environment. The transfer of the knowl-
edge base acquired by creatures in one environment to the creatures operating in
another one improves creatures’ success of crossing a highway.

35.1 Introduction

Unmanned vehicles used in space and underwater exploration should be au-
tonomous because remote operation is impractical & unreliable and the outcome
cannot be guaranteed, [1]. The functional complexity of these robots results in re-
liability problems and increased development & operational costs, which may be
improved by replacing complex robots with swarms of micro-bots, but still collec-
tively exhibiting some learning & decision making ability. An advantage of micro-
bots is that their behaviour can easily be verified because they can be modelled
with cognitive agents, [2–6], which in turn can be implemented with object oriented
design methodologies. We study what is a minimal requirement of micro-bots intel-
ligence. We adopt “biomimicry” as modelling philosophy and experiment with very
primitive creatures. Our agents make their crossing decision by adopting “observa-
tional learning”, a type of “social learning” (“imitate what works and don’t do what
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doesn’t work”), [5]. Using the simulator of the stochastic model that we developed,
we conducted various experiments to evaluate the impact of the learning algorithm
for the population of cognitive agents learning to cross the highway, [7]. This paper
is structured as follows. In Sect. 35.2 we briefly describe the model and in Sect. 35.3
we report selected simulation results. In Sect. 35.4 we provide our conclusions and
outline future work.

35.2 Stochastic Model of Creature Learning to Cross a Highway

Our model of cognitive agent is described in [8]. Here we provide its brief descrip-
tion and focus on the effects of knowledge base transfer on the creatures learning
outcomes. Our model consists of an environment, creatures and their learning al-
gorithms. We summarise our model as follows. The creatures’ environment is a
vehicular traffic highway, either single lane or multi-lane, either unidirectional or
bidirectional, without any intersection. The highway traffic is modelled by means
of the Nagel–Schreckenberg model, [9]. For our investigation its implementation
requires to modify the Cellular Automata (CA) paradigm and to make the evolution
of the CA not only dependent on the state of the neighbourhood but also on the cur-
rent velocity of each vehicle. This implies that each cell is characterised not only by
presence or absence of a vehicle but also by a pointer to a data structure containing
the current velocity of the vehicle. As customary in discrete traffic modelling, we
model each lane of unidirectional traffic of a highway as a large number of adjacent
cells, with each cell representing a segment of highway of 7.5 m in length, [9, 10].
At each time step in the simulation, for each lane, a new car may be generated with
a probability specified in the configuration file as car creation probability p. If there
is already a car in the first cell because it has not sped up enough, or traffic is con-
gested, the generated car is added to a queue of cars waiting to enter the highway.
The entrance point is always cell zero of each lane. Cars accelerate by one until they
reach their maximum speed, which is specified in the configuration file.

The creatures are born on one side of the highway. They are generated similarly
to the cars and as cars they also use queues. The creatures want to cross the highway
to get to its opposite side. If a creature at a top of the queue has not yet crossed the
highway then the newly created creatures will line up behind it. The creatures are
generated randomly (with a creation probability and fear and/or desire probabilities
specified in the configuration file) at each time step at a crossing point selected
at the initialisation step. The motion of the creature is modelled similarly to the
motion of the vehicle; i.e. with a CA-like approach. The creatures have a strong
instinct to survive when crossing a highway, which may or may not be successful. If
the crossing is successful the creature remains on opposite side of the highway and
never crosses it again. If it was not, it means the creature was struck by a vehicle and
died. The creatures have ability to see what happened to other creatures that have
previously crossed and if under similar conditions the crossing was not successful
they will avoid crossing and wait. If a creature cannot cross the highway at its current
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location, due to unsafe conditions, it may move to a different potential crossing point
to cross at, either up stream or down stream traffic. This feature of the model may
be enabled at the software initialisation.

We assume that the creatures are not capable of evaluating precisely distance and
velocity, similarly as most humans who are not capable of evaluating precisely dis-
tance and velocity of moving vehicles. Each creature is able to rank the position of
the vehicle with respect to its crossing locations according to a discrete number of
categories (e.g., {far, mid range, close} or, alternatively, {very far, far, mid range,
close, very close}, etc.). In the presented simulations we are using these categories.
However, the simulation software allows selecting other numbers of categories. By
increasing the number of categories we increase the precision of the estimates but
also the computational cost increases, unfortunately, and the cost of potential hard-
ware implementation. Information whether a creature crossed the highway success-
fully or not is recorded into the knowledge base of all the creatures. The columns of
the knowledge base table store information about verbal descriptions of velocity and
the rows of the table store information about verbal descriptions of the distance. The
knowledge base table is initialised as “tabula rasa”; i.e. a “blank slate”, represented
with “0” at each location in the assumption that all possible (distance, velocity)
combinations allow crossing. If a creature successfully crosses the highway the per-
ceived (distance, velocity) score in the knowledge base table is increased by one
point. If the creature was killed, it is decreased by one point. When a new creature
arrives at the top of the queue, the creature consults the knowledge base table to
decide if it is safe or not to cross. The decision is based on the naïve creature with
fear and/or desire implemented intelligence/learning algorithm.

We impose a special initial condition for each (distance, velocity) pair to encour-
age creatures crossing the highway: (1) creatures pay no attention to their knowl-
edge base table or to their fear and/or desire at the start of the simulation; (2) this
lasts until the first successful crossing of a creature, or five consecutive unsuccess-
ful crossing of the creatures, whichever comes first. After this initialisation, each
randomly generated creature makes its decision to cross or not to cross the highway
for a given (distance, velocity) pair by combining the “success ratio” of crossing
the highway for this (distance, velocity) pair with the creature’s fear and/or desire
probabilities, as follows: (1) if a creature has both fear and desire, then it will base
its decision on the following formula: “success ratio+ probability of desire− prob-
ability of fear”; (2) if a creature has only fear then it will base its decision on the
formula: “success ratio − probability of fear”; (3) if a creature has only desire then
it will base its decision on the formula: “success ratio+ probability of desire”. If for
a creature and a given (distance, velocity) combination the value of the respective
formula is: (1) non-negative, then the creature will attempt to cross the highway;
(2) less than zero, then the creature will not attempt to cross the highway under this
condition and it will wait for a configuration for which the value of the formula is
non-negative. For each (distance, velocity) pair at each time step the numerator in
the “success ratio” is the number of “successful crossings” minus the number of
“unsuccessful crossings” for this (distance, velocity) pair up to this time; i.e. it is
the value from the knowledge base table corresponding to this (distance, velocity)
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pair at this time. The denominator is the total number of creatures who have crossed
successfully the highway regardless of the (distance, velocity) combination up to
this time; i.e. it is the number describing the creatures’ entire population success up
to this time. If for some (distance, velocity) configuration at the start, all creatures
are killed then the ratio becomes “−5/0”. In this case, we set the “success ratio” to
zero.

After the initialisation of the simulator the main loop of the simulator is executed
once for every time step in the simulation and it consists of the following tasks: (1)
generate cars at each lane of the highway using the car creation probability p; (2)
generate creatures at each predefined cross point, as specified in the configuration
file, using the creature creation probability; (3) update the car speeds. This accel-
erates the cars according the Nagel–Schreckenberg model; (4) move the creatures
from the cross point queues into the highway (if the decision algorithm indicates
this should occur); (5) move the cars on the highway including passing other cars
and the logic to check if any creature has been hit; (6) advance the current time step.
After the simulation has completed, the results are written to output files.

35.3 Selected Simulation Results

The selected simulation results show learning performance of a population of naïve
creatures using naïve learning algorithm with fear and/or desire for various values
of fear and desire probabilities pf and pd (listed in the first columns of the figures)
when the creatures are learning to cross a one lane unidirectional highway under
various traffic conditions characterised by car creation probability p and without
“erratic drivers”. The creatures’ learning performance is measured by “throughput
of creatures crossing successfully the highway”.

The considered throughput is a time dependent function defined for every time t
as follows: it is “the average over the number of simulation runs of the number of
creatures that crossed successfully the highway up to time t divided by time t”. For
each considered experimental set up we performed 5 simulation runs with different
random seed values. The experimental set up is defined by highway type, value
of car creation probability, values of fear and desire probabilities, knowledge base
transfer or not, selection of a crossing point, creatures ability to leave or not to
leave the initial crossing point, the number and range of distances each creature can
observe and the number and ranges of speeds each creature can perceive. In the
presented simulation results the distances are classified as {close, midrange, far}
and the speeds are classified a {slow, medium, fast}.

The graphs of the throughput functions (solid graphs) and theirs’ one standard
deviations (dotted graphs) are displayed in the plots of Figs. 35.1 and 35.2. On each
plot they correspond, respectively, to various levels of car traffic density as measured
by car creation probability p. We consider p = 0.1, 0.3, 0.5, 0.7, 0.9, and the corre-
sponding colour coding of the graphs is consistent through all the plots of Figs. 35.1
and 35.2, and their explanation is provided in the legend box of each plot. In the
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Fig. 35.1 Plots of throughput
(solid graphs) and one
standard deviations (dotted
graphs) of number of
creatures successfully
crossing a one lane
unidirectional traffic highway,
respectively with car creation
probability p = 0.1, 0.3, 0.5,
0.7, 0.9. The cars are not
allowed to drive erratically.
The creatures are not allowed
to change the initial crossing
point set at cell number 90 to
another crossing point to
cross from. The results in
rows correspond to creatures’
fear and desire probabilities
(pf and pd) listed in the first
column. The second column
represents the results when
knowledge base is not
transferred from one
environment to another one

discussed experiments we consider only one crossing point at each initialisation of
the simulator that is the same for all simulation runs. This crossing point is at cell
number 90 and creatures are not allowed to leave this crossing point.

In Fig. 35.1 the second column displays results when the knowledge base is not
transferred from creatures learning to cross a highway from one experiment to the
next one, indexed by car creation probability p; i.e. in each of these experiments
the creatures are born “tabula rasa” and they have to build their knowledge base as
the simulation progresses. In Fig. 35.2 the second and third columns display results
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Fig. 35.2 Plots of throughput (solid graphs) and one standard deviations (dotted graphs) of num-
ber of creatures successfully crossing a one lane unidirectional traffic highway, respectively with
car creation probability p = 0.1, 0.3, 0.5, 0.7, 0.9. The cars are not allowed to drive erratically. The
creatures are not allowed to change the initial crossing point set at cell number 90 to another cross-
ing point to cross from. The results in rows correspond to creatures’ fear and desire probabilities
(pf and pd) listed in the first column. The second column represents the results when knowledge
base is transferred from an environment with lower to higher car creation probability, while the
third one when it is transferred in opposite direction
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when at the beginning of a simulation the knowledge base is transferred from the
end of the preceding experiment, index by car creation probability p, to the next
one, except of the first experiment. The plots of the second column of Fig. 35.2 cor-
respond to the simulations when the first experiment was conducted for car creation
probability p = 0.1. In this case creatures are born “tabula rasa” and they have to
build their knowledge base as the simulation progresses. At the end of this simu-
lation the knowledge base is transferred to the creatures created at the beginning
of the next experiment; i.e. with car creation probability p = 0.3. This process is
repeated for the subsequent experiments; i.e. the ones with car creation probabil-
ity p = 0.5, 0.7, and 0.9. The plots of the third column of Fig. 35.2 correspond to
the simulations when first experiment was conducted for car creation probability
p = 0.9. Again, in this case creatures are born “tabula rasa” and they have to build
their knowledge base as the simulation progresses. At the end of this simulation the
knowledge base is transferred to the creatures created at the beginning of the next
experiment, this time with car creation probability p = 0.7. This process is repeated
for the subsequent experiments; i.e. the ones with car creation probability p = 0.5,
0.3, and 0.1. Thus, the second column of Fig. 35.2 displays results of experiments
when the knowledge base is transferred from creatures learning to cross a highway
in environment with lower car creation probability to the creatures learning to cross
the highway in the environment with higher car creation probability. While the third
column of Fig. 35.2 displays the results of experiments when this transfer of knowl-
edge base is in opposite direction, i.e. from the learning environment with more
dense traffic to the one with less dense traffic.

The presented simulation results show that with the increase of fear probability
the fluctuations decrease and that with the increase of desire probability the through-
put values increase, see Fig. 35.1. By comparing the corresponding results for fear
and desire probabilities of Fig. 35.1 with those of Fig. 35.2 we observe that transfer
of knowledge base built by creatures in one learning environment to creatures in
another environment has significant effect of the creatures throughput, the through-
put fluctuations and the creatures’ learning outcomes. Regardless, of the direction in
which the knowledge transfer took place. We observe that almost always the transfer
of knowledge base improves creatures’ throughput and reduces the throughput fluc-
tuations. Furthermore, we notice that this improvement is better when the knowl-
edge base is transferred from creatures in environment with more dense traffic to
creatures in environment with less dense traffic.

35.4 Conclusions and Future Work

In this paper we described a model of simple cognitive agent, a “creature’, capable
of: (1) examining its environment; (2) learning from it; (3) adapting to it. The crea-
ture is capable on deciding on an action based on the evaluation of the outcomes of
previous crossings of a highway by other creatures and the examination of the cur-
rent environmental conditions. The creatures try to imitate the successful crossings.
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The creatures (“imitate what works and don’t do what doesn’t work”), [5], i.e. they
try to avoid crossing in the situations when they were not successful. The results
of the simulations show that the creatures learning success improves when knowl-
edge base built by the creatures in one learning environment is transferred to the
creatures in another learning environment. We reported selected simulation results,
while more extensive results will their detailed statistical analysis will be reported
elsewhere.
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Chapter 36
Threshold Models for Integer-Valued Time
Series with Infinite or Finite Range

Tobias Möller and Christian H. Weiß

Abstract Threshold models are very popular in research and application. We sur-
vey threshold models for integer-valued time series with an infinite range and com-
pare two of them in a real data example. In particular, we propose and briefly discuss
two new models for count data time series with a finite range.

36.1 Introduction

Threshold models as proposed by [11] have become very popular in research and
application. Due to their attractive interpretability and ability to handle the non-
linearity found in real world data, these models arouse great interest especially in
economics and finance, see [4] and [1], but also in other contexts like epidemiology,
see [13]. For a long time, only threshold models for time series with a continuous
state space have been in the focus of researchers, but recent developments also con-
sider models for time series with a discrete state space. This article presents a brief
survey of threshold models for integer-valued time series with an infinite range, and
it introduces two new models for the case of a finite range.

The article is organized as follows. Section 36.2 gives a short presentation of
the most famous threshold autoregressive models for time series with a continu-
ous state space. Section 36.3 deals with models for time series with an infinite range
and demonstrates their usefulness with a real data example of annual counts of heavy
earthquakes. Section 36.4 introduces new models for integer-valued time series with
a finite range. A short discussion of integer-valued threshold models as well as per-
spectives for future research conclude the article in Sect. 36.5.
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36.2 Threshold Autoregressive Models with Continuous State
Space

A threshold autoregressive (TAR) model of order p is defined as follows:

Xt = a(Jt )0 +
p∑

i=1

a
(Jt )
i Xt−i + b(Jt )εt , (36.1)

where the εt are i.i.d. with mean 0 and variance σ 2
ε and (Jt ) is an (indicator) time

series taking values in {1,2, . . . , J }, see [10]. This basic model can be extended in
many different ways for example with a moving average component to get TARMA
models or with a smooth transition between regimes to get the class of STAR mod-
els, see also [10] for these and other extensions. The most famous subclass of TAR
models is the class of self-exciting threshold autoregressive (SETAR) models. In
this class of TAR models, the indicators Jt depend on (Xs)s<t . Often a SETAR
model of order one with two regimes is used. Let R be the threshold value and d the
so-called delay parameter in this model. Then the model is defined as:

Xt =
{
α1 + β1Xt−1 + εt if Xt−d ≤R
α2 + β2Xt−1 + φεt if Xt−d > R,

(36.2)

where α1, α2, β1, β2 and φ are real constants [10]. Possible modifications to integer-
valued threshold models are presented in the next sections.

36.3 Threshold Models with a Discrete State Space and Infinite
Range

In this and the following section, some threshold models for integer-valued time
series are discussed. The present section concentrates on three models for count
data time series with an infinite range, while new models for time series with a finite
range are proposed in Sect. 36.4.

36.3.1 SETINAR(2, 1) Model

The first model to mention is the self-exciting threshold integer-valued autoregres-
sive model with 2 regimes of order 1, abbreviated as SETINAR(2,1) model. First
introduced by [9] and later for the consideration of statistical properties taken up by
[6], the SETINAR(2,1) process can be defined as

Xt =
{
α1 ◦Xt−1 + εt if Xt−1 ≤R
α2 ◦Xt−1 + εt if Xt−1 >R,

(36.3)
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where α ◦X is the binomial thinning operation for α ∈ (0,1) andX ∈N0 introduced
by [8], α1/2 ∈ (0,1) and (εt )t∈Z is an i.i.d. sequence of Poisson(λ)-distributed ran-
dom variables. In terms of the definition of the threshold, the version of [6] is used
with a delay of d = 1 and a dependence on Xt−1, while [9] have used a sum of two
previous values of the sequence (Xt ). For statistical properties, we refer the reader
to [6].

Remark 36.1 A simple modification of model (36.3) is used in Example 36.1 by
allowing different means λ1 and λ2 for the innovations in each regime. This ap-
proach has been used in [9], and it is also related to the branching process model
by [7], where immigration is possible at time t only if Xt−1 = 0. Adapted to model
(36.3), this corresponds to R = 0 and λ2 = 0.

The SETINAR model can also be extended by considering orders p ≥ 2, more
than two regimes and the introduction of a delay d ≥ 2 and other ways, which are
taken into consideration for future research.

36.3.2 SETPAR Model

The self-exciting1 threshold integer-valued Poisson autoregression (SETPAR)
model with two regimes as proposed by [12] is defined as follows: A sequence
of random observations (Xt )t∈Z is said to follow the SETPAR model, if

Xt |Ft−1 ∼ Poisson(λt ), (36.4)

where Ft = σ {Xs, s ≤ t} is the information at the time t , and

λt =
{
d1 + a1λt−1 + b1Xt−1 if Xt−1 ≤R
d2 + a2λt−1 + b2Xt−1 if Xt−1 >R,

(36.5)

with di > 0, ai > 0 and bi > 0 for i ∈ {1,2} and R ∈ N. For further details, like
conditions for a unique stationary marginal distribution, we refer the reader to [12].

The authors of [12] state that the process is also known in the literature as Poisson
threshold model, see [15] and [2]. The model without consideration of a threshold
can also be found under the name INGARCH model, see [3].

Example 36.1 We consider the annual number of earthquakes with a magnitude of
7 or higher for the period 1900–2010, and compute estimates for the SETPAR and
versions of the SETINAR model. This time series has already been considered by
[12], where also an estimation for the SETPAR model has been made. As in [12],
the data are arranged as follows: the years 1900 to 2006 are taken from [17], and
the years 2007 to 2010 are added with data of the US Geological Survey website
(namely: 18, 12, 17, 24 at Sept. 1st 2014). A plot of the data is given in Fig. 36.1. The

1The authors call their model self-excited, but to have a consistent notation the name is changed.
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Fig. 36.1 Plot of the annual number of earthquakes with a magnitude of 7.0 or higher. The dotted
line shows the possible threshold with value 25

Table 36.1 Estimates (standard errors) for the SETPAR model compared to the results of [12]

Model R d1 a1 b1 d2 a2 b2 −max AIC BIC

SETPARW 25 3.27
(1.36)

0.49
(0.12)

0.33
(0.10)

14.30
(7.45)

0.52
(0.20)

0.001
(0.26)

– – –

SETPAR 25 3.16
(1.39)

0.51
(0.14)

0.32
(0.11)

14.65
(8.13)

0.50
(0.22)

0.001
(0.30)

343.23 698.46 714.72

b2 = 0:

SETPARW 25 3.27
(1.36)

0.49
(0.12)

0.33
(0.10)

14.33
(7.45)

0.52
(0.20)

– – – –

SETPAR 25 3.14
(1.34)

0.51
(0.13)

0.32
(0.11)

14.65
(4.78)

0.50
(0.19)

– 343.22 696.44 709.99

W Results of [12]

empirical mean of the earthquakes time series is 19.31 and the empirical variance is
50.45. Both values slightly differ from [12] which seems to be due to the value of
the last year (23 vs. 24, see Fig. 2 in [12]): we achieve the same mean and variance,
when we change the last value to 23. Since the classification of the magnitude on
the Richter scale can sometimes change during the review process, we will continue
with using the latest data. This already explains a part of the differences in the
estimates compared to [12].

The estimation procedure is executed as follows: We set a range of possible
threshold values in N0. For each of these values, the parameters are estimated via
maximum likelihood estimation. Then we choose the threshold value which shows
the maximum value in the log-likelihood function. To initialize the SETPAR model,
we choose the first data point as the value for λ1. Starting with the SETPAR model
as proposed by [12], we get the values in Table 36.1. The threshold value is 25
for both considered modifications of the model. The estimates slightly differ from
those in [12], which is partially explained by the different data basis as stated above.
But the most conspicuous difference is the standard error of the parameter d2 in the
second model. A possible explanation could be that [12] still have considered a 6-
parameter-model while this estimation considers a 5-parameter-model. The values
of the log-likelihood and the AIC, BIC of [12] are not given here due to missing
comparability caused by different calculation methods.

For the case of the SETINAR model some modifications are considered. The re-
sults can be found in Table 36.2. First an estimation for the SETINAR(2,1) model
(36.3) is made. The results show a different threshold value compared to the SET-
PAR model, namely 20. The parameter α1 has a high standard error compared to
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Table 36.2 Estimates and standard errors in brackets for modifications of the SETINAR model

Model R α1 α2 λ1 λ2 −max AIC BIC

SETINAR(2,1) 20 0.17
(0.08)

0.36
(0.05)

14.12
(1.27)

– 360.52 727.03 735.16

SETINARλ2 (2,1) 26 0.36
(0.06)

0.001
(0.17)

11.71
(1.14)

28.09
(5.67)

354.63 717.26 728.10

SETINAR(α2=0) 26 0.36
(0.06)

– 11.71
(1.14)

28.12
(1.33)

354.63 715.25 723.38

its own value, which indicates possible insignificance. Therefore, modifications of
the model are introduced. First, the sequence (εt )t∈Z is split into two Poisson-
distributed sequences with means λ1 and λ2 depending on the regime, see Re-
mark 36.1. The estimation for this model shows that the threshold value changes to
26 and that α2 becomes insignificant. Consequently, α2 is deleted from this model
and a new estimation is made. This version of the SETINAR(2,1) model shows a
decline in the standard error of the parameter λ2 compared to the second estimation.

For both models, the two regimes show significantly different parameter values,
which supports the choice of a threshold model. Note that there is no autoregressive
part in the upper regime, which indicates that there is no significant ‘survival’ of
high counts of earthquakes. When we compare the results regarding the AIC and
BIC, the SETPAR model fits the data better than the SETINAR(2,1) model.

36.3.3 INMASC(1) Model

Another model is the integer-valued moving average model with structural changes
(INMASC) by [16]. Let αi ∈ (0,1) for i = 1, . . . ,m and τi ∈N for i = 1, . . . ,m−1.
A process (Xt ) is called an INMASC(1) process if Xt satisfies the equation

Xt =

⎧
⎪⎪⎨

⎪⎪⎩

α1 ◦ εt−1 + εt if 0≤ εt−1 ≤ τ1
α2 ◦ εt−1 + εt if τ1 < εt−1 ≤ τ2

...

αm ◦ εt−1 + εt if τm−1 < εt−1 <∞,
(36.6)

where (εt ) is a sequence of i.i.d. Poisson(λ)-distributed random variables. For sta-
tistical properties of the model, we refer the interested reader to the article [16].

36.4 Integer-Valued Threshold Model with Finite Range

SET autoregressive models for counts with the finite range {0, . . . ,N} have not been
considered in the literature so far. Motivated by the above models, two approaches
for a threshold version of known binomial models are presented.
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36.4.1 SET Binomial AR(1) Model

The newly proposed SET binomial AR(1) model is an extension of the bino-
mial AR(1) model by [5]. It is defined as follows: Let N ∈ N, πi ∈ (0,1) and
ri ∈ (max {− πi

1−πi ,−
1−πi
πi
};1), define βi := πi · (1 − ri) and αi := βi + ri for

i ∈ {1,2}. A process (Xt )t∈Z is called a SET binomial AR(1) process if it follows
the recursion

Xt =
{
α1 ◦Xt−1 + β1 ◦ (N −Xt−1) if Xt−1 ≤R
α2 ◦Xt−1 + β2 ◦ (N −Xt−1) if Xt−1 >R.

(36.7)

The SET binomial AR(1) model is a special case of a density-dependent bino-
mial AR(1) model as proposed by [14]. Hence, we can use their results to derive
some properties of the SET binomial AR(1) model. The process is a homogeneous
Markov chain. The transition probabilities pk|l := P(Xt = k|Xt−1 = l) are

pk|l =
min {k,l}∑

m=max {0,k+l−N}

(
l

m

)(
N − l
k−m

)
φmt (1− φt )l−mηk−mt (1− ηt )N−l+m−k > 0,

where φt := It−1α1 + (1− It−1)α2 and ηt := It−1β1 + (1− It−1)β2 with It−1 :=
1{Xt−1≤R} as the indicator variable. Conditional moments of the process are

E[Xt |Xt−1] = It−1
(
r1Xt−1 + (1− r1)π1N

)+ (1− It−1)
(
r2Xt−1 + (1− r2)π2N

)
,

V [Xt |Xt−1] = It−1
(
r1(1− r1)(1− 2π1)Xt−1 +N(1− r1)π1

(
1− (1− r1)π1

))

+ (1− It−1)
(
r2(1− r2)(1− 2π2)Xt−1

+N(1− r2)π2
(
1− (1− r2)π2

))
.

Unconditional moments, modifications and parameter estimations for the SET bi-
nomial AR(1) model are part of current research.

36.4.2 SET Binomial INARCH(1) Model

For the boundary case r→ 0 in the density-dependent binomial AR(1) model, [14]
propose the binomial INARCH(1) model. We consider integrating a threshold into
the model and call a process (Xt )t∈Z a SET binomial INARCH(1) process if

Xt
d=
{

Bin(N,a1 + b1
Xt−1
N
) if Xt−1 ≤R

Bin(N,a2 + b2
Xt−1
N
) if Xt−1 >R,

(36.8)

where ai , ai + bi ∈ (0;1) for i ∈ {1,2} and N ∈N.
Obviously, the process is a homogeneous Markov chain. From the conditional

binomial distribution in (36.8), the transition probabilities pk|l := P(Xt = k|Xt−1 =
l) follow as
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pk|l =
(
N

k

)
πkt,l(1− πt,l)N−k > 0,

where πt,l := It−1(a1+b1
l
N
)+ (1− It−1)(a2+b2

l
N
) with It−1 := 1{Xt−1≤R} as the

indicator variable. Conditional moments of the process are

E[Xt |Xt−1] = It−1(b1Xt−1 +Na1)+ (1− It−1)(b2Xt−1 +Na2),

V [Xt |Xt−1] = It−1

(
Na1(1− a1)− b

2
1

N
X2
t−1 + (1− 2a1)b1Xt−1

)

+ (1− It−1)

(
Na2(1− a2)− b

2
2

N
X2
t−1 + (1− 2a2)b2Xt−1

)
.

Unconditional moments, modifications and parameter estimations for the SET bi-
nomial INARCH(1) model will be considered in a future research.

36.5 Conclusive Remarks

We gave an overview over recent developments concerning integer-valued threshold
models. In particular, we introduced the new models SET binomial AR(1) and SET
binomial INARCH(1), which will be examined in more details in a future research.

Integer-valued threshold models are able to describe time series of counts with
nonlinear structures. For example, they can explain bimodality and level jumps in
real data time series. Other types of state-dependent models might be able to give a
comparable fit of the nonlinearity, but perhaps at the cost of using more parameters.
Tests will be needed whether to use, e.g., a linear or a threshold state-dependent
model.
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Chapter 37
A Study on Robustness in the Optimal Design
of Experiments for Copula Models

Elisa Perrone

Abstract Copulas are a very flexible tool to highlight structural properties of the
design for a wide range of dependence structures. In this work we introduce a pro-
cedure for checking the robustness of the D-optimal design with respect to slight
changes of the marginal distributions in the case of copula models. To this end, we
first provide a clear insight for the concept of “robustness” in our domain. Then, we
define a stepwise method for the investigation of the design robustness. Finally, by
reporting an example focused on comparison between the use of logistic margins
and Gaussian margins, we put the usefulness of the analysis up.

37.1 Introduction

In many areas of applied statistics, copula functions are largely employed as a flex-
ible tool to describe the behavior of the dependence between random variables.
Roughly speaking, a d-dimensional copula is the restriction of a joint distribution
with Uniform margins to the unit d-hypercube.

The use of such functions is well known in insurance [19], econometrics [18],
medicine [11], spatial extreme events [20], time series analysis [12] and [5], finance
[1] as well as in environmental applications [14]. However, the study of the design
of the related experiment is still a neglected aspect.

A first step in this direction was made in the work of Denman et al. [4], where
a brute-force simulated annealing optimization was employed for the solution of a
specific problem. A more complete and formal framework for copula models was
described in our previous work [13], where a Kiefer–Wolfowitz type equivalence
theorem was also provided. Despite the tools reported in [13] allow one to find the
D-optimal design for any copula models, the computational complexity of the Fisher
Information Matrix could represent a practical limitation. More precisely, the com-
putational complexity could rapidly become an issue because of the presence in the
copula model of particular marginal distributions for the random variables involved
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in the problem. Conversely, fixing a family of copula functions means assuming a
class of model dependence structures. As a matter of fact, the interesting part of de-
signing experiments by employing copula models is the investigation of the design
behavior for different dependence structures and for different values of the copula
parameter in the same dependence class. Therefore, a natural question is whether
the assumptions on the margins can be relaxed to gain in computational power with
a consequently better understanding of the role of the dependence structure itself in
the design.

This question motivates this paper: we suggest a procedure for comparing two
models with the same assumptions on the copula but slightly different margins. The
aim of the work is to provide a way to check whether a candidate auxiliary model
with the same dependence structure could be used to avoid some computational
problems and to enlarge some evidences in the design robustness comparing to dif-
ferent copula functions.

This paper is organized as follows. In Sect. 37.2 we provide a theoretical frame-
work based on Copula Theory and Optimal Design Theory where to embed the
issue. In Sect. 37.3 we introduce a motivating example for this work. In Sect. 37.4
we present the procedure and point out to the usefulness of the study through a
classical example. Finally, in Sect. 37.5, we draw some conclusions.

37.2 The General Framework

First, we need to define the abstract framework. We shall consider a vector xT =
(x1, . . . , xr ) ∈ X of control variables, where X ⊂ 3r is a compact set. We focus
directly on the bivariate case, while a general framework in arbitrary dimension
can be found in [13]. The results of the observations and of the expectations in a
regression experiment are the vectors:

y(x)= (
y1(x), y2(x)

)
,

E
[
Y(x)

]= E
[
(Y1, Y2)

]= η(x,β)= (
η1(x,β), η2(x,β)

)
,

where β = (β1, . . . , βk) is a certain unknown (trend) parameter vector to be esti-
mated and ηi (i = 1,2) are known functions. Let us call FYi (yi(x,β)) the margins
of each Yi for all i = 1,2 and cY(y(x,β),α) the joint probability density function
of the random vector Y, where α is an unknown (copula) parameter.

According to Sklar’s theorem (see [17] and [10]), let us assume that the depen-
dence between Y1 and Y2 is modeled by a copula function

Cα
(
FY1

(
y1(x,β)

)
,FY2

(
y2(x,β)

))
.

The Fisher Information Matrix for a single observation is a (k + 1) × (k + 1)
matrix whose elements are

E
(
− ∂2

∂γi∂γj
log

[
∂2

∂y1∂y2
Cα

(
FY1

(
y1(x,β)

)
,FY2

(
y2(x,β)

))])
(37.1)
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where γ = {γ 1, . . . ,γ k+1} = {β1, . . . ,βk,α}. The aim of design theory is to quan-
tify the amount of information on both sets of parameters α and β , respectively,
from the regression experiment embodied in the Fisher Information Matrix.

For r independent observations at x1, . . . , xr , the corresponding Information ma-
trix is

M(ξ, γ )=
r∑

i=1

wim(xi, γ ),

r∑

i=1

wi = 1 and ξ =
{
x1 . . . xn
w1 . . . wn

}
.

The approximate design theory is concerned with finding ξ∗(γ ) such that it max-
imizes some scalar function φ(M(ξ, γ )), i.e., the so-called design criterion. Here-
inafter, we consider only D-optimality, i.e., the criterion φ(M)= log detM , ifM is
nonsingular.

The formulation of a Kiefer–Wolfowitz type equivalence relation (see [8]) is the
cornerstone of a theoretical investigation into optimal design. The following theo-
rem of such type is a generalized version of a theorem given without proof in [7] and
follows from a multivariate version of the basic theorem given in [16]. A complete
proof can be found in [13].

Theorem 37.1 For a local parameter vector (γ̄ ), the following properties are
equivalent:

• ξ∗ is D-optimal;
• tr[M(ξ∗, γ̄ )−1m(x, γ̄ )] ≤ (k + 1), ∀x ∈X ;
• ξ∗ minimize maxx∈X tr[M(ξ∗, γ̄ )−1m(x, γ̄ )], over all ξ ∈Ξ .

Theorem 37.1 allows one to implement standard design algorithms such as of the
Fedorov–Wynn type (see [6, 21]). It also provides simple checks for D-optimality
through the maxima of d(x, ξ∗)= tr[M(ξ∗, γ̄ )−1m(x, γ̄ )], which is usually called
sensitivity function.

The next definition is important for the comparison of two different designs.

Definition 37.1 Let (k + 1) be the number of the model parameters. The ratio

D
(
ξ, ξ ′

)=
( |M(ξ,γ )|
|M(ξ ′, γ )|

)1/(k+1)

(37.2)

is called D-efficiency of the design ξ with respect to the design ξ ′.

Evidently, the resulting optimal designs depend upon the chosen copula, not only
upon the trend model structure. Additionally, such designs might also be influenced
by the unknown parameter values for γ through the induced nonlinearities. Thence,
we are resorting to localized designs around the values γ̄ .
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37.3 A Motivating Example

In this section, we clarify the paper motivations by displaying an example taken
from [6] and reported in [13]. For each design point x, we may observe an indepen-
dent pair of random variables Y1 and Y2, such that

E
[
Y1(x)

]= β0 + β1x + β2x
2

E
[
Y2(x)

]= β3x + β4x
3 + β5x

4,

with 0 ≤ x ≤ 1. This case is covered by Theorem 37.1, by employing the product
copula with Gaussian margins.

In [13], several dependence structures with the use of other copulas were as-
sumed and the corresponding optimal designs were found. Remarkably, the designs
found relate to the following joint distribution function:

FY(y1, y2)= Cα
(
Φ
(
y1 − η1(x,β)

)
,Φ

(
y2 − η2(x,β)

))
. (37.3)

Mathematica (version 9.0.1.0) was used to compute the integrals. The computa-
tions were carried out by using some local adaptive strategies that seemed to perform
better for our problem.

Even so, numerically unstable results were displayed by several warnings regard-
ing the nonconvergence of the prescribed numerical method. Hence, some elements
of the Fisher Information Matrix could not be computed for several instances cor-
responding to the interesting cases with large association measures. Such problems
might be due to the error functions in the Gaussian margins and motivated this pa-
per. The idea of this work is the following: avoiding such problems by finding a
misspecified model, which might reduce the problematic instances; enlarging the
range of the association measure for the dependence structures.

The contribution of this work is a stepwise procedure composed of two parts:
first, check the goodness (in the sense of D-efficiency) of the D-optimal designs
found for a misspecified model with respect to the initial one; second, use the mis-
specified model to conduct a robustness study on the designs for a wider range of
the association measure.

The robustness study presented in this work differs from other approaches that
can be found in the literature. In particular, in [2] and [9], robust designs with respect
to misspecifications of the model assumptions were provided. To the contrary, we
rather fix a model and find the corresponding D-optimal design with the standard
criterion of D-optimality. Then, we analyze the goodness of the design in the sense
of D-efficiency by considering different copulas.

Essentially, the robustness study in this paper concerns the impact of the depen-
dence structure on the designs, whereas in [2] and [9] new robustness optimality
criteria were introduced. To evidence the impact of the margins on the design, the
analysis is carried out by slightly modifying the initial model. The new misspecified
model has the same fixed dependence structure of the initial model, with different
distributions of the random variables.
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37.4 Robustness Issues

In this section, we explain the details of the stepwise method. To underline the ad-
vantages of the procedure, an example is given.

37.4.1 The Procedure

Let Y1 and Y2 be two random variables whose dependence is described by the copula
Cα . We assume the “Model 1” being the true design model with margins F1(Y1(x)),
F2(Y2(x)). We define for the vector (Y1, Y2) a second model, named “Model 2”,
whose margins areG1(Y1(x)) andG2(Y2(x)). With the goal of evaluating the good-
ness of D-optimal designs of the Model 2 with respect to the Model 1, we can intro-
duce the following stepwise procedure:

1. Find the pure impact of the marginals on the design by considering the product
copula for the two models.

2. Find the optimal design by using the Fedorov–Wynn algorithm for both models.
Calculate the D-efficiency by assuming that the Model 1 is the correct one.

3. Fix a copula C̃α . Select a set of parameters where the optimal designs for the
Model 1 can be computed.

4. Find the optimal design for both models for the selected parameter set. Calculate
the D-efficiencies of the designs found by assuming the Model 1 as true model.

5. If the losses in the D-efficiencies in percent are lower than a given threshold
(0.5, in our case) fix another set of the parameters where the optimals could not
be reached for the Model 1. Then, investigate the robustness of the design (in the
sense of the copula) for the new parameter space by using the Model 2.

Practically, in the first four steps we check how far the two models are. If the
two models are almost alike (in the sense of designs produced), we carry out fur-
ther investigations. Particularly, the behavior of the design for different dependence
structures as well as for different copula parameter is analyzed by using the mis-
specified model.

37.4.2 The Example

To discuss some practical issues of the method described in the previous paragraph,
we focus on the example introduced in Sect. 37.3.

The margins of the true model (Model 1) are

F1
(
Y1(x)

)=Φ(y1 − η1(x,β)
)

and F2
(
Y2(x)

)=Φ(y2 − η2(x,β)
)
.

In order to define a misspecified model, a computationally more treatable approxi-
mation of the margins is needed. With the presence of the Gaussian margins, using
the logistic margins as approximation is a very natural choice.
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Table 37.1 Losses in D-efficiency in percent

τ FGM Clayton Frank

α D-eff. α D-eff. α D-eff.

−0.10 −0.45 0.16 n.d. – −0.9 0.63∗

+0.10 +0.45 0.28 0.22 0.28 0.9 0.69∗

+0.35 n.d. – 1.08 0.01 3.51 0.56∗

+0.75 n.d. – 6 0.01 14.13 0.01

The issue of finding the appropriate scale parameter in such a way that the curve
of the logistic distribution better approximates the Gaussian bell, has been treated
largely in literature (see e.g. [3] and [15]). However, in our case, the little differences
between the various scale parameters proposed have no impact on the model. Thus,
according to [3], we chose the following distributions as marginals of Y1 and Y2 for
the Model 2:

G1
(
Y1(x)

)= 1

1+ e−1.8138(y1−η1(x,β))

G2
(
Y2(x)

)= 1

1+ e−1.8138(y2−η2(x,β))

To implement the procedure proposed in the previous part of the section, we first
consider the product copula. We find ξ1 and ξ2 respectively the optimal designs for
the Model 1 and the Model 2. The loss in the D-efficiency of ξ2 with respect to ξ1
is in percent 0.001: for both models, the design found in the independence case is
almost the same. Evidently, the changes to the model of the margins have no impact
on the design obtained.

To check whether for other dependence structures the Model 2 provides “good”
designs (in terms of D-efficiency) for the Model 1, we go to the next step. The copula
functions chosen as well as the initial values of α are the ones reported in [13]. The
results in comparison deserve attention.

Let ξ1s and ξ2s be, respectively, the optimal designs for the models Model 1 and
Model 2. The values of the determinant for the Fisher Information Matrix for the
designs ξ2s are, for some instances, slightly higher than the values of the determi-
nant for ξ1s. Surprisingly, the Model 2 provides designs which are slightly “more
optimal” than the ones obtained directly from the Model 1.

The losses in D-efficiencies D(ξ1, ξ2) in percent are reported in Table 37.1. The
results marked by asterisks are the losses for 1/D.

In the approximate theory, with discrete designs, we are not able in general to
find the continuous optimal design, but only an approximation of it. Nevertheless,
by evaluating the maximum of the sensitivity function, the distance between the
approximate optimal design and the continuous optimal design can always be mea-
sured. For instance, by looking at the losses reported in Table 37.1, the models yield
the same optimal designs. As a matter of fact, the maxima of the corresponding
sensitivity function lie under a fixed threshold value (7.001), that is, the stopping
rule for the Fedorov–Wynn algorithm. This means that all the designs belong to the
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Table 37.2 Losses in D-efficiency in percent

τ Clayton Frank

α D-eff. α D-eff.

+0.80 8 0.18 18.19 0.50

+0.85 11.33 0.23 24.9 0.15

+0.89 16.18 0.24 34.64 0.09

approximate optimal design class. However, it has to be emphasized that a different
but well chosen model might become a good support in finding optimal designs for
another supposed true model.

The Model 2 is a good candidate in describing the phenomena drawn by the
Model 1 as well as the optima found for the Model 2 are also reliable for the
Model 1. We enlarge the interval of the association measure, in the case of Frank and
Clayton. The new parameter space includes associations τ until the level of 0.89.
A comparison, in terms of losses of D-Efficiencies, between the design reported
in [6] and the optima computed by using the Model 2, is reported in Table 37.2.
As clearly depicted in the table, the design found in the case of independence is a
good design also when a dependence structure with a high association measure is
assumed.

37.5 Conclusion

In this work we presented a new procedure based on the usage of misspecified
models to address all the cases in which an initial (true) model has inacceptable
computational cost. To avoid some numerical problems due to particular complex
dependence structures or marginal distributions, a misspecified model might be pre-
ferred over a true one. By using the steps illustrated in this work, the goodness of
the misspecified model is checked. We gain an increase in the robustness investi-
gations related to the design. Apparently, in the particular example reported there
is no impact on the design by changing the dependence structure. In spite of that,
the procedure proposed in this work can be applied to different design models. By
expanding the classical concept of robustness, the strength of copulas models for
designing is highlighted. Different behaviors of the phenomenon are analyzed in
a very flexible and complete way. Moreover, the new approach not only helps in
reducing the computational complexity for some problems, but might also provide
increased flexibility for certain classes of applications by enabling a more precise
control over the model assumptions. In the future, we will try to apply our approach
to other case studies.
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Chapter 38
Use of a Generalized Multivariate Gamma
Distribution Based on Copula Functions
in the Average Bioequivalence

Roberto Molina de Souza, Jorge Alberto Achcar,
Edson Zangiacomi Martinez, and Josmar Mazucheli

Abstract Bioequivalence studies have been generally used to compare a test for-
mulation with a reference, in order to validate the interchangeability between them.
Some pharmacokinetic (PK) parameters are compared in this type of study, typi-
cally using a model which assumes independence among PK parameters, the same
variance for the different formulations, logarithmic transformation for the data and
normal distribution for the residuals. We propose an alternative model based on a
generalized gamma distribution, which permits the presence of positive asymmetry
for the data and possible differences in the variances for the different formulations
which could have more flexibility in this case. For the multivariate structure, we
use a Gaussian copula function to capture the possible dependence between the PK
parameters. We use Bayesian inference methods to obtain the results of interest. We
also introduce a real data example from where we observe a good fit of the proposed
model for the dataset. From this study, we conclude that the proposed model could
be a good alternative in some applications where the distribution of the bioequiva-
lence data presents a positive asymmetric distribution.
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38.1 Introduction

To evaluate the exchangeability of two or more drug formulations it is recommended
the use of bioequivalence trials. Following a FDA (Food and Drug Administration)
published guideline [2], bioequivalence is defined as “absence of a significant differ-
ence in the rate and extent to which the active ingredient in pharmaceutical equiva-
lents or pharmaceutical alternatives become available at the site of drug action when
administered at the same molar dose under similar conditions in an appropriately de-
signed study”. Bioavailability is defined by the FDA as the speed and extend of the
absorption of an active principle in the form of a dosage, measured from the con-
centration/systemic circulation time curve. Usually, a generic drug can be marketed
when it presents relative bioequivalence to the reference drug.

In a bioequivalence test, generally three pharmacokinetic parameters are ob-
tained for each individual under each formulation in study: Maximum concentra-
tion (Cmax), Time when the Cmax occurs (Tmax) and Area under the curve from
blood concentration from time 0 to the last observed time point (AUC0−t ).

For most of the formulations, the pharmacokinetic parameters AUC0−t and Cmax
are used for the bioequivalence decision where 90 % confidence intervals are ob-
tained for each pharmacokinetic parameter considering the difference between a
reference formulation and a test formulation. These intervals should be totally in-
cluded in prespecified intervals (bioequivalence limits). This procedure is known
as average bioequivalence [11]. If μR is the mean of a pharmacokinetic parame-
ter to formulation reference and μT to formulation in test, the usual FDA criterion
is 0.80 < {μT }/{μR} < 1.25 which may be stated in terms of fractions of μR as
−0.25μR < μT −μR < 0.20μR .

Although the pharmacokinetic parameters are obtained for the same individu-
als, usually the statistical analysis assume independence among them. Alternatively,
multivariate statistical models also has been considered to analyse the pharmacoki-
netic parameters but they are limited to the assumption of normality for the data
or residuals, as well as constant variance for the groups. Another existing limita-
tion of this standard modeling approach is the need of a transformation of the data
(generally logarithmic), since these parameters are positive.

As an alternative, we consider a new modeling approach. We assume an asym-
metrical distribution defined for positive real numbers given by the generalized
gamma distribution [9] from where some existing known probability distributions
are given as special cases of this supermodel which could contemplate the specifici-
ties of the pharmacokinetic parameters Cmax and AUC0−t with positive asymmetry
in their original scale. To capture a possible existing dependence between the phar-
macokinetic parameters, we propose the use of copula function (see for example,
[6]).

In this way, maximum likelihood estimators for the parameters of the models
could present numerical difficulties and standard inferences based on asymptotical
results could be not accurate, especially for small sample sizes. As a good alternative
for this situation, we could use Bayesian methods, especially using MCMC (Markov
Chain Monte Carlo) methods and available existing free softwares like the BUGS
or JAGS to simulate samples of the joint posterior distribution of interest.
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38.2 Methods

Let Y be a random variable with a generalized gamma distribution denoted by
GG(β,η, r) with probability density function

f (Y = y)= β

Γ (r)
ηβryβr−1 exp

[−(ηy)β] (38.1)

where y ≥ 0, β , η and r are positive parameters and Γ (r) = ∫∞
0 exp(−t)t r−1dt

(gamma function). The expected mean of Y is given by E(Y)= Γ ( 1
β
+ r)/ηΓ (r).

The crossover design is more appropriate in a bioequivalence study since we have
the same individual receiving both formulations in different periods. In this way, the
individuals are randomized by the sequences and this effect should be introduced in
the model. The period effect also is introduced.

Considering k = 1,2 pharmacokinetic parameters (generally Cmax and AUC0−t );
J formulations (j = 1, . . . , J ) (generally J = 2, reference (R) and test (T)) and n
individuals (i = 1, . . . , n), let us assume

Ykji ∼GG(βkj , ηkji , rkj ) (38.2)

where ykji is the value of the response variable provided by the ith individual, re-
lated to the kth pharmacokinetic parameter and j th formulation following a gen-
eralized gamma distribution with density (38.1). In a usual situation (j = 1,2), we
have a crossover model given by:

ηkji = exp
(
γ
(0)
k + γ (1)k X1i + γ (2)k X2i + γ (3)k X3i +ωki

)
(38.3)

where γ (0)k is the intercept of this model; γ (1)k is the effect of formulation; γ (2)k is

the effect of period and γ (3)k is the effect of sequence for the kth pharmacokinetic
parameter. In this way, X3i denotes the sequence where the subject was randomized
(X3 = 0 if sequence RT and X3 = 1 if sequence TR); X2i denotes the period where
the subject received a formulation (X2i = 0 if period 1 and X2i = 1 if period 2)
and X1i denotes the formulation received by the subject in each period (X1i = 0
if formulation R and X1i = 1 if formulation T); ωki is a random effect introduced
to capture the dependence among the repeated measures. This effect is assumed to
have a multivariate normal distribution with a mean vector of values equal to zero
and a covariance matrix S.

In the following, we consider a Gaussian copula function [5] that is a robust
copula function since it is defined to model any degree of positive or negative de-
pendence. For two random variables, its bivariate density function is given by [10]:

f (y1, y2; θ)= f1(y1)f2(y2)
1

√
(1− θ2)

× exp

{[
− 1

2(1− θ2)

(
u2 + z2 − 2θuz

)]+ 1

2

(
u2 + z2)

}
(38.4)

where u=Φ−1[F1(y1)]; z=Φ−1[F2(y2)] and −1< θ < 1.
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The likelihood function forψ = (βkj , rkj , γ (l)k ,ωki, τ 2
1 , τ

2
2 , ρ, θ), for l = 0,1,2,3

is given by:

p(y |ψ)=
2∏

k=1

2∏

j=1

n∏

i=1

βkj

Γ (rkj )
η
βkj rkj
kj i y

βkj rkj−1
kji exp

[−(ηkjiykji)βkj
]

× 1
√
(1− θ2)

2∏

j=1

n∏

i=1

exp

{
−1

2

(
1− θ2)(u2

ji + z2
ji − 2θujizji

)

+ 1

2

(
u2
ji + z2

ji

)}
(38.5)

where ηkji is given by (38.3) and uji =Φ−1[F1ji(yji)]; zji =Φ−1[F2ji(yji)].
For the first stage of the Bayesian analysis, assuming the likelihood func-

tion defined in (38.5), we consider γ (l) ∼ MN(a(l);Σ(l)γ ), βkj ∼ G(ckj ;dkj ) and

rkj ∼G(ekj ;fkj ) for j = 1,2; k = 1,2 and l = 0,1,2,3; MN(a(l);Σ(l)γ ) denotes a

multivariate normal distribution with mean vector a(l) and covariance matrix Σ(l)γ ,
G(c, d) denotes a gamma distribution with mean c/d and variance c/d2. In our case,

we have a(l) = (a(l)1 , a
(l)
2 ) and Σ(l)γ = ( (b(l)1 )

2 0

0 (b
(l)
2 )

2

)
. Also assume θ ∼ U(−1;1)

where U(−1;1) denotes a uniform distribution in the interval [−1;1].
For the second stage of the hierarchical Bayesian analysis, we assume that ωki

has a multivariate normal distribution with mean vector 0 and covariance matrix

S = ( τ 2
1 ρτ1τ2

ρτ1τ2 τ 2
2

)
. In this way, we assume τ−2

1 ∼ G(s1; s2), τ−2
2 ∼ G(t1; t2) and

ρ ∼U(−1;1).
Observe that the effects of the covariates are evaluated by observing (1−α) HPD

intervals for the associated regression parameters. If zero is included in the credible
interval the associated covariate is not significative on the response of interest.

In the construction of HPD intervals for the differences (or ratios) of the phar-
macokinetic parameters of the formulations, which are decisive in the evaluation
of the bioequivalence, we should obtain Monte Carlo estimates based on the sim-
ulated Gibbs samples for the posterior means E(ykji) = Γ ( 1

βkj
+ rkj )/ηkjiΓ (rkj ),

for k = 1,2 and j = 1,2. Following, for each fixed kth pharmacokinetic parameter
of interest, we construct (1 − α) HPD intervals for the differences (or ratios) be-
tween the means of the formulations. If these intervals are entirely included in the
bioequivalence limits, there is evidence of the exchangeability of the formulations.

Note that in addition to η, E(ykji) depends of r and β . In this way, we consider
different values of r and β for each pharmacokinetic parameter in each formulation
(see (38.2)).

38.3 Results and Discussion

To apply the proposed methodology, we consider a data set introduced by [1]. This
data set represents a bioequivalence study of a 2× 2 crossover design with 23 in-
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Fig. 38.1 Histograms by formulations and pharmacokinetic parameters

dividuals. The main goal of this study is to compare the relative biodisponibility of
8 mg ondansetron, one in the conventional release tablet, and another one in oral dis-
integration tablet produced by different laboratories. The reference formulation (R)
was made by Zofran® and the test formulations (T) by Vonau® flash. A summary of
the data set considered for the example is given in Fig. 38.1.

For the prior distributions related to (38.5) we choose hyperparameters values to
have approximately non-informative prior distributions. In this case, a(l)= 0;Σ(l)γ =
(

1002 0
0 1002

)
; for l = 0,1,2,3 and ckj = dkj = ekj = fkj = 1 for k = 1,2; j = 1,2;

Also, we have s1 = s2 = t1 = t2 = 0.1.
We simulated 150,000 Gibbs samples for each parameter using the JAGS soft-

ware under the R software (library R2JAGS). In the simulation procedure, we
choosed every 50th generated value to have approximately uncorrelated samples
after deleting the first 50,000 generated Gibbs samples (“burn-in-sample”) to elimi-
nate the possible effect of the initial values for the Markov Chain. The convergence
of the algorithm was verified from temporal traceplots, histograms of the simulated
samples and from autocorrelation graphs.

In Table 38.1, we have the HPD intervals of the estimated correlation, values
of DIC [8] and LPML [3] for the proposed model and assuming independence be-
tween the pharmacokinetic parameters. We observe that the correlation coefficients
are relevant (the value 0 is not included in the 90 % HPD interval). In this way, we
observe that this model captures the existing correlation between the pharmacoki-
netic parameters. The values of DIC and LPML also help us to reject the univariate
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Table 38.1 Comparison between copula function and independence

Copula
function

Correlation parameters
90 % HPD

DIC LPML

Gaussian θ̂ = [0.86;0.93] 733.7 −316.9

Independent – 859.9 −362.5

Table 38.2 HPD intervals for the pharmacokinetic parameters

Pharmacokinetic
parameters

Copula
function

E(yk2.)−E(yk1.)
Mean (sd) HPD (90 %) Range

Cmax Independent −1.49(1.92) −4.82;1.38 6.20

Gaussian −1.78(1.74) −4.50;1.01 5.51

AUC0−t Independent −5.06(14.14) −27.17;17.28 44.45

Gaussian −5.96(13.45) −28.16;14.22 42.38

sd: standard deviation

(or no dependence) models. In this way, we observe in Table 38.2, that the HPD in-
tervals for the difference between the formulations assuming dependence between
the pharmacokinetic parameters are shorter when compared to the HPD intervals
assuming independence between the pharmacokinetic parameters.

For the bioequivalence decision, the bioequivalence limits for Cmax and AUC0−t
are given, respectively, by [−0.25 × 31.87;0.20 × 31.87] = [−7.97;6.37] and
[−0.25×227.66;0.20×227.66] = [−56.92;45.53]. In Table 38.2, we observe that
for this example, we do not have problems to accept bioequivalence between the
two formulations in study. The HPD intervals are fully included in the bioequiv-
alence limits. We observe in Fig. 38.2, a good fit of the proposed model for the
bioequivalence data.

38.4 Conclusion and Remarks

It is well known that bioequivalence tests are regulated by regulatory agencies
around the world and the statistical steps to analyse the data are standardized by
these agencies. This procedure is important to guide the bioequivalence studies but
in many situations we could have datasets where the standard model is not the best
choice to analyze the bioequivalence data. In the introduced example, we have ob-
served that the usual standard model assumption given by regulatory agencies could
be not appropriate as observed in the preliminary data analysis using the popular
Shapiro non-parametric test for normality [7]; in our case, we reject the normality
assumption for the residuals considering the pharmacokinetic parameter AUC0−t
(p < 0.02).

In this sense, we believe that it is important to search for the best model in each
application, since this is justified and guided by common sense and ethics of the
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Fig. 38.2 Posterior means
against observed values by
pharmacokinetic parameters

involved statisticians. The literature also presents some other studies with different
methodologies for bioequivalence studies (see for example, [4]). Other models also
could be fitted by the dataset introduced in the example presented in this paper
leading to better results, but we credit our work to be a good alternative in the
context of bioequivalence studies. Observe that we did not need to transform the
data as commonly used in bioequivalence studies to get a good fit of the proposed
model for the data set.

Observe that using the Bayesian approach, our final BE decision (Table 38.2)
is based on separately computing HPDs for each pharmacokinetic parameter. It is
interesting to observe that in this context we could alternatively to obtain a bivariate
joint HPD region (whose projections on each axis not necessarily would coincide
with the univariate HPDs) and base the final decision (in a single step) on this joint
posterior probability region, coping with the possible dependency and avoiding the
multitesting problem of separately deciding with respect to each pharmacokinetic
parameter (goal of a future work).

Alternatively for the use of a Bayesian inference approach, we also could use a
standard classical inference approach based on MLE (Maximum Likelihood Esti-
mation) methods, but these methods usually depends on good initial values in the
iterative numerical algorithm to be used to find the point estimates, a difficulty in
many applications.

In summary, in situations where the researcher is not sure with the standard dis-
tribution assumption used in bioequivalence studies, especially with positive asym-
metric data sets (see Fig. 38.1), we suggest the use of the proposed model introduced
in this paper. These results could be of great interest in bioequivalence studies.
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Chapter 39
The Marginal Distribution of Compound
Poisson INAR(1) Processes

Christian H. Weiß and Pedro Puig

Abstract A compound Poisson distribution is a natural choice for the innovations
of an INAR(1) model. If the support of the compounding distribution is finite
(Hermite-type distributions), the observations’ marginal distribution belongs to the
same family and it can be computed exactly. In the infinite case, however, which
includes the popular choice of negative binomial innovations, this is not so simple.
We propose two types of Hermite approximations for this case and investigate their
quality in a numerical study.

39.1 Introduction: Compound Poisson Distribution

Definition 39.1 (Compound Poisson distribution.) Let Z1,Z2, . . . be independent
and identically distributed (i.i.d.) count random variables defined over {1,2, . . . , ν},
where the case ν =∞ is allowed. The common distribution of the random variables
Zi ∼ Z is called the compounding distribution, and let H(z) denote its probability
generating function (pgf).

Let N ∼ Poi(λ) be Poisson-distributed with mean λ > 0, independently of
Z1,Z2, . . .

Then ε := Z1 + · · · + ZN is said to be compound Poisson distributed, and we
denote ε ∼ CPν(λ,H). [4, Chapter XII]

The distribution of Definition 39.1 has also been referred to as Poisson-stopped
sum distribution, stuttering Poisson distribution or multiple Poisson distribution [5,
Sects. 4.11 and 9.3]. In the particular case ν <∞, also the names extended Poisson
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distribution of order ν [1] or Hermite distribution of order ν [10] are common, and
the pgf of the compounding distribution then becomes a polynomial of degree ν,
that is H(z)= h1z+ · · · + hνzν .

The pgf of ε is given by [4, 7]

pgfε(z)= exp
(
λ
(
H(z)− 1

))
. (39.1)

So the factorial cumulant generating function (fcgf) of ε follows as

fcgfε(z) := ln
(
pgfε(1+ z)

)= λ(H(1+ z)− 1
)=:

ν∑

r=1

κ(r),ε

r! · zr , (39.2)

where the coefficients κ(r),ε of the series expansion of fcgfε(z) are referred to as
the factorial cumulants of ε [3, p. 449]. Since H(1+ z) is just the factorial moment
generating function (fmgf) of the compounding distribution, it follows that

κ(r),ε = λ ·μ(r),Z, where μ(r),Z :=E
[
Z · · · (Z − r + 1)

]
(39.3)

are the factorial moments of the compounding distribution. Note that in the case
ν <∞, we have μ(r),Z = 0 for r > ν, and hence κ(r),ε = 0 for r > ν. Relations for
transforming factorial cumulants into usual cumulants or (factorial) moments are
provided in the book by [3], also see Appendix 1 in [14]. In particular,

σ 2
ε −με = κ(2),ε = λ ·μ(2),Z = λ ·

(
E
[
Z2]−E[Z]).

If ν <∞, then E[Z2] ≤ ν ·E[Z]. But we also have E[Z2] ≥E[Z], so

σ 2
ε

με

{= 1 iff ν = 1,
∈ (1;ν] iff ν > 1.

(39.4)

So the CPν -distributions are overdispersed with a maximal index of dispersion equal
to ν.

Example 39.1 (Special cases.) The CPν -family includes several well-known dis-
tributions as a special case [5, Chapter 9]. ν = 1 corresponds to the Poisson dis-
tribution, i.e., CP1(λ,H) = Poi(λ). For ν = 2, this is just the Hermite distribution
introduced in [7]. For ν <∞ and the compounding distribution being uniform on
{1, . . . , ν}, we have the Poisson distribution of order ν.

The case ν =∞ includes, among others, Consul’s generalized Poisson distribu-
tion, the Neyman type A distribution and the Polya-Aeppli distribution. In particular,
if

λ=−n lnπ, H(z)=
∞∑

k=1

(1− π)k
−k lnπ

zk (logarithmic series distribution),

(39.5)

then we obtain the negative binomial distribution NB(n,π) with n > 0 and π ∈
(0;1) [5, Chapter 5]. Its fcgf is given by fcgfε(z)=−n · ln(1− 1−π

π
z).

So the factorial cumulants follow as κ(r),ε = n(r − 1)!( 1−π
π
)r . In particular, the

mean equals με = n (1− π)/π and the dispersion index σ 2
ε /με = 1/π .
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In Sect. 39.2, we shall argue that the CPν -family is a natural choice for the
integer-valued autoregressive model of order 1 (INAR(1) model) as introduced by
[2, 8]. Marginal moments or cumulants are easily calculated for the resulting CPν -
INAR(1) process, and if ν <∞, also the exact computation of the corresponding
probability mass function (pmf) is easily possible. If ν =∞, however, no simple
solution seems to be available to evaluate the pmf. Therefore, in Sect. 39.3, we de-
velop ways of approximating the marginal distribution of a CP∞-INAR(1) process.

39.2 The Compound Poisson INAR(1) Model

The INAR(1) model, a counterpart to the Gaussian AR(1) model but for counts, is
based on the random operator called binomial thinning (sometimes also “binomial
subsampling” [10]) as introduced by [12] and denoted by the symbol “◦”: If X has
range N0 and if α ∈ (0;1), then the random variable α ◦X :=∑X

i=1 Yi arises fromX
by binomial thinning. The counting series Yi are i.i.d. Bernoulli random variables
with P(Yi = 1)= α, which are also independent of X. So α ◦X|X = x ∼ B(x,α),
where B(n,π) abbreviates the binomial distribution with parameters n ∈N and π ∈
(0;1). Refs. [2, 8] now defined the INAR(1) process in the following way:

Definition 39.2 (INAR(1) Model.) The innovations (εt )Z are an i.i.d. process with
range N0. Let α ∈ (0;1), a process (Xt )Z, which follows the recursion

Xt = α ◦Xt−1 + εt , (39.6)

is said to be an INAR(1) process if all thinning operations are performed indepen-
dently of each other and of (εt )Z, and if the thinning operations at each time t as
well as εt are independent of (Xs)s<t .

The INAR(1) process is a homogeneous Markov chain, which has a unique sta-
tionary solution under weak conditions [11]. If the INAR(1) process is stationary,
and if we have given the innovations’ distribution (in terms of the pgf, pgfε(z)),
then the pgf of the stationary marginal distribution of Xt , say pgfX(z), has to satisfy
the equation pgfX(z)= pgfX(1− α + αz) · pgfε(z), see [2]. This leads to a simple
relation for the factorial cumulants [14]:

fcgfX(z)= fcgfX(αz)+ fcgfε(z), κ(n),X = κ(n),ε

1− αn . (39.7)

In particular, if με,σε <∞, mean and variance are given by

μX = με

1− α ,
σ 2
X

μX
=
σ 2
ε

με
+ α

1+ α , (39.8)

i.e., the observations Xt are overdispersed iff the innovations εt are overdispersed.
The autocorrelation function is of AR(1)-type, given as ρ(k)= αk . For further prop-
erties and references, see [2, 11].
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For the innovations’ distribution, one may select, e.g., a particular underdispersed
count data model [14] such that the resulting INAR(1) process produces underdis-
persed counts, see (39.8). However, the most natural approach is to assume the in-
novations to be CPν -distributed: As it was shown in Theorem 1 of [10], a count data
model being parametrized by its ν first factorial cumulants κ(1), . . . , κ(ν) is closed
under addition and under binomial thinning iff it has a CPν -distribution according to
Definitions (39.1) and (39.2). In view of the INAR(1) recursion (39.6), this implies
that observations and innovations stem from the same ν-th order family iff these are
CPν -distributed. We refer to an INAR(1) process (Xt )Z with CPν(λ,H)-distributed
innovations (εt )Z as a compound Poisson INAR(1) process. Because of the cited
Theorem 1 by [10], such a CPν -INAR(1) process also has marginal CPν -distributed
observations. In particular, the case ν = 1 leads to the well-known Poisson INAR(1)
model, where both the innovations and observations are Poisson-distributed.

In Theorem 3.2.1 in [11], the unique stationary marginal distribution of a CPν -
INAR(1) process was shown to be the CPν(η,G)-distribution with

η
(
G(z)− 1

)= λ
∞∑

i=0

(
H
(
1− αi + αiz)− 1

)
for all z ∈ [0;1]; (39.9)

the coefficients of G(z) are denoted as g1, g2, . . . Unfortunately, formula (39.9) al-
lows to evaluate the pmf of the observations Xt only in special cases. Besides the
trivial case ν = 1, the pmf of Xt can always be computed numerically exactly if
ν <∞:

Scheme 39.1 (pmf of CPν -INAR(1) process.)

1. Given the pgf of the innovations’ CPν -distribution, compute the pgf (39.9) of the
marginal distribution by extracting the parameters η and g1, . . . , gν .

a. If the parameters λ and h1, . . . , hν are readily available, solve the linear equa-
tions presented in Example 3.2.2 of [11] to compute η and g1, . . . , gν :

g1 + · · · + gν = 1,
λ

η
− (1− α) · g1 − · · · − (1− α)ν · gν = 0,

hk · λ
η
− (1− αk) · gk + αk

ν∑

i=k+1

(
i

k

)
(1− α)i−k · gi = 0 for k = ν, . . . ,2.

b. If the innovations’ CPν -distribution is specified in terms of its factorial cu-
mulants κ(1),ε, . . . , κ(ν),ε , then first compute κ(1),X, . . . , κ(ν),X according to
(39.7), afterwards compute η and g1, . . . , gν by expanding

η
(
G(z)− 1

) :=
ν∑

r=1

κ(r),X

r! · (z− 1)r , see (39.2).

2. Apply the recursive scheme by [6] for the computation of the pmf of the marginal
distribution P(X = k):
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P(X = 0)= e−η, P (X = k)= η
k
·

min {k,ν}∑

j=1

jgj · P(X = k − j) for k ≥ 1.

Note that the recursive scheme in step 2, which is an instance of the Panjer re-
cursion [9], also holds if ν =∞. But to be able to apply this, it would be necessary
to know the observations’ compounding probabilities g1, g2, . . . , which is usually
not the case if ν = ∞. So step 1 of Scheme 39.1 is the crucial point in view of
a numerically exact computation of the observations’ pmf. Since the case ν =∞
is very important for practice, including the popular INAR(1) model with negative
binomial innovations (see Example 39.1), approximate solutions are developed in
Sect. 39.3.

39.3 Approximating the Marginal Distribution

Let (Xt )Z be a stationary CP∞-INAR(1) process. In general, a closed-form expres-
sion for the observations’ pmf is not available, so numerical approaches are required.
In the sequel, we propose and investigate two approximations for the observations’
pmf, which replace the original infinite compounding structure by a finite one (also
see the discussion in [7]) and then continue with Scheme 39.1. To simplify writ-
ing, let us refer to these approximations as Hermite-ν approximations, also see the
discussion before Example 39.1. As the benchmark for the performance compar-
isons, we use a (computationally demanding) Markov approximation (see [13] for
the details).

We consider two types of Hermite approximations of order ν; note that the ap-
proximations with ν = 1 are just Poisson approximations.

Scheme 39.2 (Hermite-ν approximation, type 1.) For the CP∞-INAR(1) process
(Xt )Z, let the innovations εt be CP∞(λ,H)-distributed.

Define the νth order approximation CPν(λ̃, H̃ ) by

λ̃ := λ, h̃1 := h1, . . . , h̃ν−1 := hν−1, h̃ν := 1−
ν−1∑

k=1

hk.

Then proceed according to steps 1(a) and 2 of Scheme 39.1.

From the recursive scheme by [6], see step 2 of Scheme 39.1, it becomes clear that
Scheme 39.2 preserves the first ν innovations’ probabilities, P(ε = 0), . . . ,P (ε =
ν − 1), and only approximates the remaining ones. This feature, however, does in
general not carry over to the observations’ probabilities. Furthermore, the innova-
tions’ mean and, hence, the observations’ mean are usually not preserved exactly.
For the latter reason, we consider an alternative type of Hermite approximation,
where the mean μX is always met exactly.



356 C.H. Weiß and P. Puig

Table 39.1 Model parameterizations with corresponding mean, dispersion index and skewness of
the marginal distribution of the observations Xt

π α n= 1 n= 2

mean disp. skew. mean disp. skew.

0.75 0.25 0.444 1.267 2.072 0.889 1.267 1.465

0.50 0.667 1.222 1.626 1.333 1.222 1.150

0.75 1.333 1.190 1.112 2.667 1.190 0.786

0.50 0.25 1.333 1.800 1.766 2.667 1.800 1.249

0.50 2.000 1.667 1.361 4.000 1.667 0.963

0.75 4.000 1.571 0.908 8.000 1.571 0.642

0.25 0.25 4.000 3.400 1.748 8.000 3.400 1.236

0.50 6.000 3.000 1.358 12.000 3.000 0.960

0.75 12.000 2.714 0.899 24.000 2.714 0.636

Scheme 39.3 (Hermite-ν approximation, type 2.) For the CP∞-INAR(1) process
(Xt )Z, let the innovations εt be CP∞(λ,H)-distributed with mean με .

Define the νth order approximation CPν(λ̃, H̃ ) by

h̃1 := h1∑ν
k=1 hk

, . . . , h̃ν := hν∑ν
k=1 hk

, λ̃ := με
∑ν
k=1 k h̃k

.

Then proceed according to steps 1(a) and 2 of Scheme 39.1.

To evaluate the performance of approximations 39.2 and 39.3, we consider the
NB-INAR(1) model with NB(n,π)-distributed innovations, see (39.5) in Exam-
ple 39.1 for the true compounding distribution of εt . For different levels of the mean
parameter n, the dispersion parameter π and the autocorrelation parameter α (see
the overview in Table 39.1), we compute the marginal distribution approximately via
Schemes 39.2 and 39.3. We compare the result with the numerically exact Markov
chain approach (“MC”) [13] in terms of the Kullback–Leibler divergence,

dKL(PMC,Papprox) :=
∑

k

PMC(k) ln

(
PMC(k)

Papprox(k)

)
, (39.10)

and by comparing the respective values for the mean, dispersion index and skew-
ness. While the computing time for the approximations was always < 0.1 s, the MC
approach was much more demanding and required 70–100 s.

Consider first the obtained results based on the Kullback–Leibler divergence,
which measures the overall quality of approximation. Some illustrative graphs are
plotted in Fig. 39.1. With increasing approximation order ν, the divergence de-
creases nearly exponentially (note the log scale of the Y axis). Without exception
(see (a) for illustration), the Hermite approximation of type 1 (“HA1”) becomes
superior when ν increases (although the difference is small). Therefore, plots (b)–
(d) only refer to “HA1”. It can be seen that the mean parameter n (see (b)) and
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Fig. 39.1 Plot of Kullback–Leibler divergences against approximation order ν

Fig. 39.2 Plot of relative
errors against approximation
order ν. Relative errors
approx−true

true computed for
mean, dispersion index and
skewness (also see
Table 39.1), and for
approximations of both
types 1 and 2

autocorrelation parameter α (see (d)) have only little effect on the quality of ap-
proximation, while a decreasing π (= increasing overdispersion, see (c)) leads to a
severe degradation. So the approximation order has to be increased with increasing
overdispersion.

Overally, HA1 performs best, but if it is important to reproduce the mean exactly,
then HA2 is the method of choice. Looking at Fig. 39.2, we see that at least for
ν ≥ 10, also HA1 represents the mean nearly exactly. In particular, HA1 is always
the better choice when considering the dispersion index or the skewness. If one
chooses ν ≥ 15, the difference between the exact distribution and HA1 appears to
be practically negligible.
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39.4 Discussion

To approximate the marginal distribution of a CP∞-INAR(1) process, the Hermite-
ν approximation of type 1 appears as the method of choice. It gives the best overall
approximation of the marginal pmf of Xt , and it also better reflects skewness and
dispersion index. Only if it is essential to exactly reproduce the mean, then the type 2
approximation should be used. The order ν of (any) approximation has to be care-
fully adapted in order to be compatible with the actual dispersion index (increas-
ing overdispersion requires increasing ν), while mean and autocorrelation level are
nearly without effect on the approximation’s quality, at least in the explored ranges.

The present work is focused on the case of a given CPν -INAR(1) model, which
is important, e.g., for simulations and theoretical analyses. Future research should
develop also an empirical version of the Hermite approximation approach, where a
marginal approximation could be computed based on appropriate empirical charac-
teristics (e.g., based on the first ν empirical factorial cumulants in view of step 1(b)
in Scheme 39.1). In a sense, this would lead to some kind of semi-parametric esti-
mation of the INAR(1)’s marginal distribution.
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Chapter 40
Monitoring Euro Area Real Exchange Rates

Philipp Aschersleben, Martin Wagner, and Dominik Wied

Abstract We apply the stationarity and cointegration monitoring procedure of
Wagner and Wied in (Monitoring stationarity and cointegration. SFB823 Discus-
sion Paper 23/14. http://hdl.handle.net/2003/33430, 2014) to monthly real exchange
rate indices, vis-à-vis Germany, of the first round Euro area member states. For all
countries except Portugal structural breaks are detected prior to the onset of the Euro
area crisis triggered in turn by the global financial crisis. The results indicate that
a more detailed investigation of RER behavior in the Euro area may be useful for
understanding the unfolding of the deep crisis currently plaguing many countries in
the Euro area.

40.1 Introduction

An issue that has received a lot of attention in particular since the onset of the
Euro crisis, or to be more precise, the deep economic crisis in many – often pe-
ripheral – Euro area countries, is the question whether persistent real exchange rate
(RER) misalignment is one of the factors responsible for Euro area disequilibria.
Clearly, given that nominal exchange rates across Euro area member states are by
construction fixed at one, the nominal exchange rate is not available anymore as an
instrument for readjusting RERs. Sizeable nominal exchange rate adjustments, of-
ten devaluations with respect to the “hard currencies” like the DM, have occurred
almost regularly for some European countries in the decades before monetary uni-
fication. Shutting down the currency devaluation channel may have contributed to
persistent RER misalignments when institutional and price rigidities prevent smooth
re-establishment of external equilibrium.
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A simple, empirical cornerstone in the analysis of international equilibrium is the
concept of purchasing power parity (PPP). Loosely speaking PPP states that when
expressed in common currency similar baskets of goods should have similar prices
across countries. To fix concepts, denote with Et the nominal exchange rate of the
country considered vis-à-vis Germany at time t in DM per unit of local currency,
with Pt the consumer price index (CPI) of the considered country at time t and with
P ∗t the CPI of Germany at time t , i.e., we consider Germany as the base country
in our empirical analysis. The real exchange rate index Qt with respect to the base
country Germany is then defined as

Qt := EtPt
P ∗t

. (40.1)

Taking logarithms, indicated by lower cases letters, leads to

qt = et + pt − p∗t . (40.2)

Given that (logarithms of) price indices and (flexible) nominal exchange rates are
often modeled as integrated processes, the empirical analysis of weak PPP is often
phrased as a unit root or cointegration testing problem, see, e.g., Wagner [9]. In this
setting PPP is said to hold in its weak form, if qt is stationary. Clearly, the value
of a RER index that corresponds to strong purchasing power parity is undetermined
when price indices rather than actual price data are used.1

When considering countries with different levels of development, often in addi-
tion a linear trend is included to proxy for trend RER appreciation in catching-up
economies, via, e.g., the Balassa–Samuelson effect. The Balassa–Samuelson effect
has been shown to be sizeably present also in Europe, see, e.g., Wagner [8]. Typi-
cally, trend stationary log RERs are interpreted as being consistent with structural
(“catching-up” or convergence) processes towards PPP.

The definition (40.2) of the log RER is often used as a basis for a cointegrating
relationship between the prices indices and the nominal exchange rate of the form

pt = c+ δt + β1et + β2p
∗
t + ut , (40.3)

where {ut } is a stationary process and where – obviously – a trend stationary log
RER corresponds to the restrictions β1 =−1, β2 = 1.2

Given that RER misalignments are, as mentioned at the beginning, seen by many
observers as a contributing factor to the crisis in some Euro area economies it is a
natural question to ask whether a monitoring procedure detects structural changes in

1Strong PPP is typically defined as a RER equal to one and thus its logarithm equal to zero. Typi-
cally, however, due to the lack of actual price data empirical analysis is confined to work with RER
indices where the “level information” is lost.
2It is natural to normalize the potential cointegrating relationship on the price index pt – or p∗t –
rather than on the nominal exchange rate, which may have been fixed or almost fixed even before
monetary unification (e.g., the exchange rate between the Austrian Schilling and the DM) and
which is in that case almost by construction not an integrated process.
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RERs away from trend stationarity respectively cointegration in the looser formula-
tion (40.3). This is the question we analyze for the “first round” Euro area member
states.3 In the present situation there is, of course, some extra information concern-
ing important dates available, most notably the fixing of the final nominal exchange
rates between the 12 first round member states on December 31, 1998 and the in-
troduction of the Euro as a virtual currency on January 1, 1999.4 Consequently, we
consider as the so-called calibration period for the monitoring procedure (see the
description in the following section) a period until December 1998 for which trend
stationarity of the log RER prevails. For all countries except Austria, where the cal-
ibration period is set to begin in January 1991 this means that the calibration period
is set to begin in either February 1994 or February 1996. Subsequently, we monitor
the behavior of the log RER from the beginning of the Euro area in January 1999
until July 2014 with the procedure described in the following section. The result-
ing detection times, if a break is detected, are the estimated break points at which a
structural break in the considered RER indices has occurred.

40.2 A Brief Description of the Monitoring Procedure

The monitoring procedure used in this contribution has been developed in Wagner
and Wied [10], where detailed descriptions as well as a detailed analysis of the
asymptotic and finite sample properties of the procedure and tables with critical
values are contained.

We consider, under the null hypothesis, a cointegrated system in triangular form:

yt =D′t θ +X′t β + ut (40.4)

Xt =Xt−1 + vt , (40.5)

with observations available for t = 1, . . . , T . Here Dt is a deterministic trend func-
tion, in our application given by constant and linear trend. The joint vector process
{[ut , v′t ]′} is, under the null hypothesis of a cointegrating relationship, an I(0) vector
process, i.e.,

1√
T

sT �∑

t=1

(
ut
vt

)
⇒d Ω

1/2W(s), 0≤ s ≤ 1, (40.6)

3These are Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,
Netherlands, Portugal and Spain. Here it has to be noted that Luxembourg used the Belgian Franc
prior to using the Euro and Greece was scheduled to join the Euro area in 2001 only. Thus, ef-
fectively we use the data for 11 countries as Luxembourg has to be excluded. As indicated in the
main text we consider RERs with base country Germany. This is a natural choice given that Ger-
many is the largest Euro area economy and the DM was the European anchor currency at the time.
Alternatively, it is possible to calculate for each country its RER index with respect to the Euro
area.
4The first quotation of the Euro was on January 4, 1999 and the physical introduction occurred at
the beginning of 2002.
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where W(s) is a vector of standard Wiener processes, Ω is the so-called long-run
variance matrix of {[ut , v′t ]′} and z� denotes the integer part of a real number z.
Throughout we assume that the long-run variance matrix of {vt } is positive defi-
nite, to exclude cointegration amongst the components of {Xt }. This implies that
the relationship (40.4) is the only cointegrating relationship for the vector process
{[yt ,X′t ]′}. Under the alternative, the cointegrating relationship between {yt } and
{Xt } breaks down from some break fraction rT � onwards, for some 0<m≤ r < 1.
Thus, the cointegrating relationship (40.4) turns into a spurious relationship at time
point rT �. For reasons discussed below, an initial period up to mT �, in which the
cointegrating relationship can safely be assumed to be present, is required. Clearly,
in the absence of integrated regressors, with consequently dim(Xt )= 0, the frame-
work simplifies to monitoring trend stationarity of {yt }.

To explain the idea of the monitoring procedure, assume for the moment that {ut }
is observed and its long-run variance ω2 known. Then the detector is given by

Hm(s) := 1

ω2

(
1

T

sT �∑

i=mT �+1

(
1√
T
Si

)2

− 1

T

mT �∑

i=1

(
1√
T
Si

)2
)

(40.7)

for m≤ s ≤ 1 and with Si =∑i
t=1 ut denoting the partial sums of ut . The detector

is given by combining the well-known KPSS-statistic of Kwiatkowski et al. [3] for
the null hypothesis of stationarity with the monitoring approach of Chu et al. [1].
Under the null hypothesis, it holds that

Hm(s)⇒d H m(s) :=
(∫ s

m

W(z)2dz−
∫ m

0
W(z)2dz

)
. (40.8)

Since under the alternative, the partial sum process as scaled in (40.7) diverges for
s > r , the null hypothesis is rejected if an appropriately scaled version of the detec-
tor exceeds a critical value, i.e., when

T m(s) :=
∣∣∣∣
Hm(s)

w(s)

∣∣∣∣> c(m,w,α), (40.9)

for some weighting function w(s) and appropriate critical values c(m,w,α). The
critical values are chosen such that with probability α, under the null hypothesis
T m(s) is larger than c(m,w,a) for some s ∈ [m,1]. The first time T m(s) exceeds
the critical value is called detection time. We use the same weighting function as
Wagner and Wied [10], i.e., w(s)= s5 in our specification with intercept and linear
trend.

In practice, rather than the errors {ut } one only observes residuals, ût,m say (in-
dicating the dependence upon the calibration fraction m), and also the long-run
variances are unknown and have to be estimated. It is well-known in the cointe-
gration literature that due to the endogeneity of the regressors, as {ut } and {vt } are
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allowed to be dynamically correlated, the OLS parameter estimators are consistent
with their limiting distribution depending upon nuisance parameters relating to re-
gressor endogeneity and error serial correlation. This, of course, implies that the
limiting distribution of the properly scaled partial sum process of the OLS residu-
als also depends upon nuisance parameters. For this reason, residuals based on an
estimator that corrects for endogeneity and that takes into account serial correlation
have to be used. The literature offers several possibilities in this respect, with the
most prominent being Fully Modified OLS (FM-OLS) of Phillips and Hansen [5],
Dynamic OLS (D-OLS) of Saikkonen [6] and Integrated Modified OLS (IM-OLS)
of Vogelsang and Wagner [7]. In our empirical analysis we use all three estimators.

Obtaining a nuisance parameter free limiting distribution of the properly scaled
partial sum residual process rests upon appropriate estimation under the null hy-
pothesis. This can be done in several ways, e.g., by using a moving window or by
using a calibration period 1, . . . , mT � at the beginning of the sample. Wagner and
Wied [10] opt, following Chu et al. [1], for the second route.

The null limiting distribution of Hm(s), when calculated using residuals ût,m
as input, depends upon the deterministic components included, the number of inte-
grated regressors, the calibration sample fraction m and the estimator chosen. Thus,
critical values, for some chosen weighting function, can be obtained by simulation.

Looking at Eq. (40.4) it is clear that the monitoring procedure based on the partial
sum residual process using parameter estimates based on the calibration period is not
only consistent against the spurious regression alternative, but also against breaks in
the parameters θ or β that occur at some time point rT � ≥ mT �. In case of such
a structural break the scaled partial sum residual process contains for observations
later than rT � a divergent component, as θ̂m and β̂m, indicating in the notation
here the dependence of the estimates on the calibration sample fraction, converge by
construction to the pre-break values. Thus, detection of a structural change need not
necessarily indicate a spurious relationship but can also indicate a structural change
towards a cointegrating relationship with different slope and/or trend parameters.

40.3 Empirical Analysis

In Fig. 40.1 we display the monthly log RER indices over the period January 1991
to July 2014.5 The red boxes included in the figure for each of the countries dis-
play the calibration period required for the monitoring procedure. The calibration
period is set to end in December 1998 for all countries, i.e., it ends just before the
Euro introduction at the beginning of 1999. For Austria the calibration period starts
in January 1991, for Belgium, Finland, the Netherlands and Portugal in February
1994 and for France, Greece, Ireland, Italy and Spain in February 1996. This choice
of the calibration period has been made to avoid the period of high exchange rate

5The price indices have been downloaded from the OECD webpage [4] and the exchange rates are
taken from Eurostat [2].



368 P. Aschersleben et al.

Fig. 40.1 Log RER indices, periods of calibration, and detected break points (intercept and linear
trend)

volatility and instability in the aftermath of the 1992 UK currency crisis (“Black
Wednesday”). Clearly, such a trimming is necessary as we need a period of sta-
tionarity, respectively cointegration, for calibration. The trimming also means that
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Table 40.1 Detected break points

Country Calibration
period

Trend
stationarity

Cointegration
FM-OLS

Cointegration
D-OLS

Cointegration
IM-OLS

Austria 91(1)–98(12) 2005–10

Belgium 94(2)–98(12) 2001–12 2003–04 2003–12 2009–01

Finland 94(2)–98(12) 2003–04 2003–04 2013–07

France 96(2)–98(12) 2001–08 2001–09 2002–12

Greece 96(2)–98(12) 2004–08 2003–03 2014–06

Ireland 96(2)–98(12) 2001–10 2001–11 2002–10

Italy 96(2)–98(12) 2007–11 2004–12 2004–06

Netherlands 94(2)–98(12) 2000–10 2002–03 2001–06 2002–10

Portugal 94(2)–98(12)

Spain 96(2)–98(12) 2000–08 2001–05 2001–07 2002–01

the calibration period is very short, which implies that parameter estimation can be
expected to be imprecise.

Graphical inspection of the series shows that for most countries the RER appre-
ciates with respect to Germany over the largest part of the period.6 Also note that
Finland’s RER is the most stable one with respect to Germany after the period of
Finland’s severe crisis following the collapse of the Soviet Union.

In Table 40.1 we display the detected break points when trend stationarity of
qt as given in (40.2) or a cointegrating relationship of the form given in (40.3) is
monitored. The main findings are: First, for all countries except Portugal a break
point is detected. Second, all detected breaks occur well before the Euro area cri-
sis, triggered in turn by the global financial crisis, has spread. Third, to a certain
extent surprising, for four countries (Finland, France, Greece and Ireland) the more
restrictive hypothesis of trend stationarity of the real exchange rate is not rejected,
but the looser cointegration null hypothesis is. Fourth, by and large and as expected,
the cointegration break dates are later than the stationarity break dates.

The detected break points are also indicated by vertical lines in Fig. 40.1. For
some countries, e.g., Austria and France, the detected break points correspond to
the first clearly “visible” changes in the behavior of the log RER indices. For other
countries no such clear mapping between visual inspection and statistical analysis
is present. A detailed investigation of the detected break points as well as an inter-
pretation of the findings is beyond the scope of this paper that is merely meant to
illustrate the cointegration monitoring procedure.

6Only at the end of the period one observes RER depreciation relative to Germany in the periph-
eral crisis countries like Greece, Ireland, Portugal and Spain in line with the deep recession and
structural transformation process ongoing in these countries.
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40.4 Summary and Conclusions

We have applied the stationarity and cointegration monitoring procedure of Wagner
and Wied [10] to the RER indices, vis-à-vis Germany, of the first round Euro area
member states. Clearly, our results are merely meant as an illustration and can only
serve as one of many inputs into a thorough economic analysis of Euro area RER
behavior. Nevertheless, the findings do indicate that methods for investigating the
structural stability of stationary respectively cointegrating series may provide useful
input for economic analysis. This in turn implies that several questions need to be
addressed from an econometric theory perspective to provide potentially more use-
ful tools: First, it may be relevant to flip null and alternative hypothesis, i.e., to mon-
itor changes from I(1) or spurious to I(0) or cointegrating behavior to monitor entry
into a period of “equilibrium”. Second, multivariate monitoring procedures may be
important for applied research in order to exploit the fact that often multiple series
are affected at or at least around the same time. Exploiting also the cross-sectional
dimension in such cases may lead to more powerful monitoring procedures. Third,
especially important for monitoring data collected at higher frequencies, the effects
of non-constant variances need to be investigated in detail. Robust, or correspond-
ingly modified, procedures need to be developed for such situations.
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Chapter 41
Approximating Markov Chains
for Bootstrapping and Simulation

Roy Cerqueti, Paolo Falbo, Gianfranco Guastaroba, and Cristian Pelizzari

Abstract In this work we develop a bootstrap method based on the theory of
Markov chains. The method moves from the two competing objectives that a re-
searcher pursues when performing a bootstrap procedure: (i) to preserve the struc-
tural similarity – in statistical sense – between the original and the bootstrapped
sample; (ii) to assure a diversification of the latter with respect to the former. The
original sample is assumed to be driven by a Markov chain. The approach we follow
is to implement an optimization problem to estimate the memory of a Markov chain
(i.e. its order) and to identify its relevant states. The basic ingredients of the model
are the transition probabilities, whose distance is measured through a suitably de-
fined functional. We apply the method to the series of electricity prices in Spain.
A comparison with the Variable Length Markov Chain bootstrap, which is a well
established bootstrap method, shows the superiority of our proposal in reproducing
the dependence among data.

41.1 Introduction

The heart of the bootstrap – introduced by Efron [10] – consists of resampling some
given observations with the purpose of obtaining a good estimation of the statisti-
cal properties of the original population. Among the different bootstrap methods, a
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prominent role is played by those based on Markov chains (see e.g. Athreya and Fuh
[2]; Bühlmann [4]; Horowitz [11]; Paroditis and Politis [13, 14]; Anatolyev and Vas-
nev [1]; Bertail and Clémençon [3]). The major advantage of this approach is that it
is entirely data driven, so that it can smoothly capture the dependence structure of
an observed time series, releasing a researcher from the risk of wrongly specifying
the model, and from the difficulties of estimating its parameters.

In this paper we develop an original general approach to determine the relevant
states and the memory (i.e. the order) of a Markov chain. The bootstrap procedure
advanced here works similarly to that of Anatolyev and Vasnev [1], who propose
a Markov chain bootstrap where states correspond to the intervals resulting from a
partition of the state space (of an observed time series) into a fixed number of quan-
tiles. However, differently from that work, our proposal places much greater care in
identifying the states of the Markov chain. In particular, the approach we propose is
based on the joint estimation of the relevant states and of the order of a Markov chain
through an optimization problem. The solution identifies the partition which groups
the states with the most similar transition probabilities. In this way the resulting
groups emerge as the relevant states, that is the states which significantly influence
the conditional distribution of the process. In this work we also extend theoretically
the analysis in Cerqueti et al. [6–8] by introducing Lp norm based distance mea-
sures. We also show that the minimization of the objective function represented by
the distance measure of the partitions, which is based on the transition probabilities
of the states, corresponds to the minimization of the information loss function in the
sense of Kolmogorov [12]. The optimization problem includes also a “multiplicity”
constraint, which controls for a sufficient diversification of the resampled trajecto-
ries. Our proposal exploits the powerful conditioning tool provided by the transition
probability matrix of Markov chains to model correctly and efficiently random pro-
cesses with arbitrary dependence structure. The results shown in the application to
the electricity prices of the Spanish market confirm the better performances of the
method proposed here with respect to a well established bootstrap approach, such as
the Variable Length Markov Chain (VLMC) bootstrap of Bühlmann and Wyner [5].

The paper is organized as follows. Section 41.2 introduces the settings of the
model. Section 41.3 clarifies the theoretical foundation of the optimization problem
we deal with. Section 41.4 formalizes the optimization problem. Section 41.5 pro-
vides a validation of the theoretical results through numerical experiments based on
real data. Section 41.6 offers some conclusive remarks.

41.2 Model

We suppose that we observe N realizations homogeneously spaced in time of a data
generating process and we introduce the set of such time-ordered observations as
E = {y1, . . . , yN }. There exist JN ≥ 1 distinct states a1, . . . , aJN ∈ E. The corre-
sponding subsets of E, denoted as E1, . . . ,EJN and defined as

Ez = {yi ∈E |yi = az}, z= 1, . . . , JN , i = 1, . . . ,N,
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constitute a partition of E. Moreover, fixing z = 1, . . . , JN , then the frequency of
state az in the observed time series E is the cardinality of Ez. Let A= {a1, . . . , aJN }
be the range of the observed time series.

We now consider a time-homogeneous Markov chain of order k ≥ 1, denoted as
X = {X(t), t ≥ 0}, with state space A. To ease the notation, in the following we will
simply write Markov chain instead of time-homogeneous Markov chain. The k-lag
memory of the Markov chain implies that the transition probability matrix should
account for conditioning to trajectories of length k. Therefore, we refer hereafter to
a k-path transition probability matrix.

Let us consider az ∈ A and ah = (ah,k, . . . , ah,1) ∈ Ak . The row vector ah is the
ordered set of k states ah,w ∈ A, w = 1, . . . , k, listed, in a natural way, from the
furthest to the closest realization of the chain. The row vector ah will be called
k-path. This ordering of the realizations will be maintained throughout the paper.
The Markov chain has transition probability from k-path ah to state az given by

P(az|ah)= P
(
X(t)= az|X(t − 1)= ah,1, . . . ,X(t − k)= ah,k

)
. (41.1)

According to Ching et al. [9], we estimate P(az|ah) with the empirical frequencies
f (az|ah) related to N realizations of the phenomenon. For the sake of simplicity,
we avoid introducing throughout the paper a specific notation for the estimates of
the probabilities, therefore we estimate P(az|ah) by

P(az|ah)=
{

f (az|ah)∑
j :aj ∈A f (aj |ah)

, if
∑
j :aj∈A f (aj |ah) �= 0,

0, otherwise.

Let us now introduce the set Λ of the partitions of A. A generic element λ ∈Λ
can be written as λ = {A1, . . . ,A|λ|}, where |λ| is the cardinality of λ, with 1 ≤
|λ| ≤ JN , and {Aq}q=1,...,|λ| is a partition of nonempty subsets of A. The cardinality
of Λ is B(JN), i.e. the Bell number of the JN elements in set A.

Extending our notation to a multidimensional context, we consider the set Λk of
k-dimensional partitions. The set Λk contains the partitions we will focus on in the
present paper. A k-dimensional partition of Λk is denoted as λ and is defined as

λ= {
Aqk,k × · · · ×Aqw,w × · · · ×Aq1,1|qw ∈

{
1, . . . , |λw|

}
, w = 1, . . . , k

}
,

where Aqw,w is a class of the partition λw and λw is a partition of A at time lag w.
A k-dimensional partition of Λk can also be (more easily) represented by the k-
tuple of the partitions λw , w = 1, . . . , k, which the classes Aqw,w belong to. So
the partition λ can also be identified with the notation λ = (λk, . . . , λw, . . . , λ1).
Such notation describes the fact that λ is a time-dependent partition of A, i.e. A is
partitioned in different ways for each time lag w, w = 1, . . . , k. The cardinality of
Λk is [B(JN)]k , the cardinality of the partition λ is |λ| =∏k

w=1 |λw|.
We refer to the probability law P introduced in (41.1) and define

P(az|Aq)= P
(
X(t)= az|X(t − 1) ∈Aq1,1, . . . ,X(t − k) ∈Aqk,k

)
, (41.2)

where Aq = Aqk,k × · · · ×Aqw,w × . . .×Aq1,1 ⊆ Ak, and az ∈ A. The quantity in
(41.2) is the transition probability to reach state az at time t after the process has
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been in the classes Aqk,k, . . . ,Aq1,1 in the previous k times. The transition probabil-
ities P(az|Aq) in (41.2) are estimated, as usual, through the empirical frequencies:

P(az|Aq)=
⎧
⎨

⎩

∑
i:ai∈Aq

f (az|ai )
∑
i:ai∈Aq

∑
j :aj ∈A f (aj |ai )

, if
∑
i:ai∈Aq

∑
j :aj∈A f (aj |ai ) �= 0,

0, otherwise.

The quantities P(az|Aq) estimate a new transition probability matrix. To keep the
notation as simple as possible, we continue to refer to this matrix as to the k-path
transition probability matrix.

We deal in our paper with a couple of questions related to finding the Markov
chain which best describes the observed time series E:

• Which is the optimal k?
• Which is the optimal clustering of A for each time lag w, with w = 1, . . . , k?

41.3 Theoretical Foundation of the Optimization Problem

In the context of bootstrapping, the conflicting scopes of a resampling procedure
are two: on the one side, to maintain the statistical properties of the original sam-
ple (similarity); on the other side, to allow for a sufficient level of diversification
between the original and the bootstrapped sample (multiplicity). In our model an
optimal clustering procedure of the state space of a Markov chain – based on the
fulfillment of similarity and multiplicity requirements – is implemented, to gain
mathematical tractability when resampling.

The theoretical framework closer to our proposal is the field of information the-
ory, with specific reference to information loss. We can, in general, define a func-
tional space G whose elements g act on the Markov chain X by defining a new
Markov chain X̃. The states of X̃ are the elements of a partition of Ak . There is
a clear bijection between the g of G and the partitions λg of Ak , and they are as-
sociated to a specific amount of information. Let us write X̃ = X|λg to formalize
that the new Markov chain is X conditioned to the information generated by the
partition λg .

Since merging two k-paths cancels part of the information on the transition prob-
abilities available letting them distinct, we can say that the partitions λg imply in
general information loss. This argument is in line with Kolmogorov [12].

In order to measure such an information loss, a nonnegative functional ηX ∈
[0, η̄] can be introduced, such that ηX(X̃) represents a distance measure between X
and X̃, which increases as the loss of information does. If η(X̃)= 0, no information
is lost, while ηX(X̃) = η̄ means that X̃ is generated by a partition providing the
maximum level of information loss (no information left in passing from X to X̃).
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The consistency requirements in the boundary situations of 0 and η̄ lead to specific
situations in our setting. We list them below, along with a brief explanation.

1. ηX(X)= 0. This is the case of full information and occurs when X̃ =X. In this
case the partition λg of the state space is the finest one: λg is the partition keeping
separate all the states of the Markov chain (singleton partition).

2. If λg = {∅,Ω}, where Ω represents the sample space of the probability space
where the Markov chain is defined, then ηX(X̃) attains its maximum. In this case
the maximum level of information is lost. In fact, the corresponding partition λg
collects all the elements of the state space in a unique set (all-comprehensive
partition).

In the following section we will introduce a distance indicator, dλ, and a mul-
tiplicity measure, mλ, which will be used to measure similarity and multiplicity,
respectively. They are two specific (information loss) distance measures η, which
indeed satisfy conditions 1. and 2.

It can be expected that a partition of states of a Markov chain minimizing, in a
controlled way, an information loss distance measure will condition the evolution of
the bootstrapped samples more consistently than it would occur if that partition had
been organized otherwise.

41.4 Optimization Problem: A Formalization

The concept of optimality must be intended as satisfying the requirements of the
bootstrap procedures of statistical closeness between the original and the boot-
strapped sample – minimization of a distance indicator – and a certain degree of
diversification – constraint on the level of a multiplicity measure. A constrained
minimization problem can be defined following this line. We enter into its details.

41.4.1 Lp-Type Distance Indicator

We define an Lp-type measure of the multidimensional class Aq as follows:

dAq = max
i,j :ai ,aj∈Aq

di,j , (41.3)

where

di,j =
JN∑

z=1

∣∣P(az|ai )− P(az|aj )
∣∣p, p > 0.

In this case, we preserve the similarity by imposing that the classes of a suitable par-
tition have a low value of the indicator defined in (41.3). We can finally characterize
the distance dλ of partition λ with the average value of its classes distances:
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dλ = 1

C
·
|λ|∑

q=1

dAq · |Aq |,

where |Aq | is the cardinality of partition class Aq and C =∑|λ|
q=1 |Aq |.

41.4.2 Lr -Type Multiplicity Measure

The multiplicity measures we propose are based on the size of the partition classes.
Let us define lλ an absolute multiplicity measure of the partition λ:

lλ =
|λ|∑

q=1

|Aq |r , r > 0.

We define the relative multiplicity measure mλ, related to the partition λ, by
normalizing lλ as follows:

mλ =
r
√
lλ − r

√
C

C − r
√
C
.

41.4.3 Optimization Problem

We now present the optimization problem based on the similarity and multiplicity
criteria developed so far.

Definition 41.1 Consider γ ∈ [0,1], k∗ ∈ {1, . . . ,N}, and λ∗ = (λ∗k∗ , . . . , λ∗1) ∈
Λk∗ . The couple (k∗,λ∗) is said to be d-γ -optimal when it is the solution of the
following minimization problem:

min
(k,λ)∈{1,...,N}×Λk

dλ s.t. mλ ≥ γ. (41.4)

In Definition 41.1 we have that k∗ is the optimal order of a Markov chain describ-
ing the evaluative phenomenon. Moreover, λ∗ provides the optimal time-dependent
clustering of the state space A, in order to have an approximation of the k∗-path
transition probability matrix.

According to the definitions of dλ andmλ, we can briefly discuss the optimization
problem. Letting the multiplicity measure reach its minimum (γ = 0) is equivalent
to allow for the singleton partition, which ensures the minimum distance (dλ =
0). Letting γ = 1 corresponds to forcing the maximum level of multiplicity. This
boundary in our case is satisfied only by the all-comprehensive partition, when the
distance indicator takes its maximum value.
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Table 41.1 Percentiles and percentile ranks of the original daily Spanish electricity prices. Com-
parison between the VLMC bootstrap and the bootstrap method proposed here (case p = 1 and
r = 2)

Statistics Valuea VLMC bootstrap Our bootstrap

5th pctlb 95th pctlb Pctl rankc 5th pctlb 95th pctlb Pctl rankc

Average 29.692 28.707 30.704 53 26.574 32.074 57

Standard dev. 9.570 8.157 10.581 72 7.113 10.979 68

Skewness 1.381 0.414 1.953 68 0.114 2.033 66

Kurtosis 5.081 0.293 9.352 59 −0.571 9.327 63

Minimum 5.469 5.726 9.311 0 4.546 11.754 58

Maximum 103.758 66.604 110.968 73 50.971 111.382 71

Aut. at lag 1 0.818 0.737 0.817 95 0.737 0.859 62

Aut. at lag 2 0.706 0.579 0.702 95 0.579 0.772 61

Aut. at lag 3 0.706 0.463 0.615 99 0.547 0.745 63

Aut. at lag 4 0.667 0.371 0.540 99 0.529 0.733 63

Aut. at lag 5 0.661 0.297 0.476 99 0.520 0.730 62

Aut. at lag 6 0.721 0.236 0.423 99 0.614 0.764 65

Aut. at lag 7 0.802 0.187 0.378 99 0.728 0.829 68

Aut. at lag 8 0.683 0.148 0.338 99 0.581 0.727 64

aValue is the actual value of the statistic observed in the original sample
bpctl stands for percentile
cpctl rank stands for percentile rank of the original sample value

41.5 Empirical Validation of the Model

This section aims at comparing the proposed method with another well established
bootstrap procedure, namely the Variable Length Markov Chain (VLMC) bootstrap
(Bühlmann and Wyner [5]). Only the case of p = 1 and r = 2 is discussed, to fur-
ther support the strength of the method. Moreover, our method is bounded to order
k = 7, while VLMC self-calibrates k. The original sample is the daily Mibel Span-
ish Electric System Arithmetic Average Price (euros per MWh) from January 2nd,
1998 to December 31st, 2003.

To assess the quality of the method, we analyze the statistical properties of
the bootstrapped samples and compare them with the ones of the original sam-
ple. To this goal, we calculate the following statistics: average, standard devia-
tion, skewness, kurtosis, minimum, maximum, and autocorrelations at lag k (where
k = 1, . . . ,8).

The comparison focuses on the percentile rank that the original sample takes with
respect to the bootstrap distribution. A package written in R named “VLMC” (avail-
able at the web page http://cran.r-project.org/) was used to generate the bootstrapped
samples for VLMC. For what concerns our method, the optimization problem (41.4)
was solved heuristically by means of a Tabu Search algorithm in order to control for

http://cran.r-project.org/
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its computational complexity (see Cerqueti et al. [6]). The number of bootstrapped
samples is 5000.

The results of the comparison in Table 41.1 show that VLMC regularly generates
narrower ranges between the 5th and the 95th percentiles than our method. However,
they are only seldom consistent. In particular, autocorrelations at all lags are severely
under-replicated in the VLMC bootstrapped samples. Such results confirm the ex-
pectation that the method proposed here, thanks to the minimum information loss
pursued in our optimization problem, generates bootstrapped samples reproducing
more carefully the original dependence among the data of an original sample.

41.6 Conclusive Remarks

This paper proposes an optimization problem to the goal of estimating the dimen-
sions of the transition probability matrix of a Markov chain for simulation and boot-
strap purposes. The optimization problem here formalized extends that presented
in Cerqueti et al. [7], in that it introduces distance measures of Lp (Lr ) type. The
satisfactorily results obtained in the above-mentioned paper are theoretically further
improved. The model is grounded on information theory, and it has been numeri-
cally validated through an experiment based on real data.
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Chapter 42
Statistical Method to Estimate
a Regime-Switching Lévy Model

Julien Chevallier and Stéphane Goutte

Abstract A regime-switching Lévy model combines jump-diffusion under the form
of a Lévy process, and Markov regime-switching where all parameters depend on
the value of a continuous time Markov chain. We start by giving general stochastic
results. Estimation is performed following a two-step procedure. The EM-algorithm
is extended to this new class of jump-diffusion regime-switching models. An em-
pirical application is dedicated to the study of Asian equity markets.

42.1 Introduction

This paper proposes new statistical methods to estimate regime-switching Lévy
models that are both efficient and practical. Our goal lies in estimating a Markov-
switching model augmented by jumps, under the form of a Lévy process. This par-
ticular class of stochastic processes is entirely determined by a drift, a scaled Brow-
nian motion and an independent pure-jump process. The estimation strategy relies
on a two-step procedure: by estimating first the diffusion parameters in presence
of switching, and second the Lévy jump component by means of separate Normal
Inverse Gaussian distributions fitted to each regime. Computationally, the EM algo-
rithm is extended to this new class of jump-diffusion regime-switching model. An
empirical application is proposed for Asian equity markets.
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The remainder of the paper is structured as follows. Section 42.2 introduces the
rationale behind Lévy and Markov-switching modeling. Section 42.3 develops the
stochastic model. Section 42.4 details the estimation method. Section 42.5 provides
an empirical application. Section 42.6 concludes.

42.2 Background

In this preliminary section, we review the basic intuitions behind our modeling strat-
egy. Lévy processes have many appealing properties in financial economics, and
constitute the first building block of our model. Second, we recall the very intuitive
interpretation of the aperiodic, irreducible and ergodic Markov chain.

Jumps are discontinuous variations in assets’ prices. By nature, jumps consist of
rare and dramatic events that dominate the trading days during which they occur. In
financial economics, jumps are expected to appear due to dividend payments, micro-
crashes due to short-term liquidity challenges or news, such as macroeconomic an-
nouncements. Such events have been made partly accountable for the non-Gaussian
feature of financial returns, as they can only be captured by fat-tailed distributions.
Hence, by definition, jumps generate returns that lie outside their usual scale of
value. Jumps matter both to investors, and to countries that produce and consume
commodities. In the case of investors, jumps can be either significant investing op-
portunities or massive threats to profits and losses, depending on each investor’s
positioning. In each case, jumps modify expected returns in an unexpected way.
The same logic applies to producers and consumers: sudden and large variation in
asset prices endanger the forecasting of sales profit or the hedging strategies put in
place to smooth costs. Hence, the higher the jump activity, the higher the uncertainty
for market participants. This is why measuring jumps matters. Given that jumps are
dramatic events from a financial history perspective, building statistical evidence
around them seems of primary importance. Lévy processes can be thought of as
a combination of a diffusion process and a jump process. Both Brownian motion
(i.e. a pure diffusion process) and Poisson processes (i.e. pure jump processes) are
Lévy processes. As such, Lévy processes represent a tractable extension of Brown-
ian motion to infinitely divisible distributions. In addition, Lévy processes allow the
modeling of discontinuous sample paths, whose properties match those of empirical
phenomena such as financial time series.

The normal behavior of economies is occasionally disrupted by dramatic events
that seem to produce quite different dynamics for the variables that economists
study. Chief among these is the business cycle, in which economies depart from
their normal growth behavior and a variety of indicators go into decline. The regime
at any given date is presumed to be the outcome of a Markov chain whose realiza-
tions are unobserved to the econometrician. The task facing the econometrician is
to characterize the regimes and the law that governs the transitions between them.
These parameters estimates can then be used to infer which regime the process was
in at any historical date. Although the state of the business cycle is not observed
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directly by the econometrician, the statistical model implies an optimal way to form
an inference about the unobserved variable and to evaluate the likelihood function
of the observed data.

In this paper, we illustrate the statistical methods that allow to combine Markov-
switching models with Lévy jump modeling.

42.3 The Stochastic Model

Let (ω,F ,P ) be a filtered probability space and T be a fixed terminal time horizon.
We propose in this paper to model the dynamic of a sequence of historical values
of price using a regime-switching stochastic jump-diffusion. This model is defined
using the class of Lévy processes.

Definition 42.1 A Lévy process Lt is a stochastic process such that

1. L0 = 0.
2. For all s > 0 and t > 0, we have that the property of stationary increments is

satisfied. i.e. Lt+s −Lt as the same distribution as Ls .
3. The property of independent increments is satisfied. i.e. for all 0 ≤ t0 < t1 <
· · ·< tn, we have that Lti −Lti−1 are independent for all i = 1, . . . , n.

4. L has a Cadlag paths. This means that the sample paths of a Lévy process are
right continuous and admit a left limits.

Remark 42.1 In a Lévy process, the discontinuities occur at random times.

Definition 42.2 Let (Zt )t∈[0,T ] be a continuous time Markov chain on finite space
S := {1,2, . . . ,K}. Denote FZ

t := {σ(Zs);0≤ s ≤ t}, the natural filtration gener-
ated by the continuous time Markov chain Z. The generator matrix of Z, denoted by
ΠZ , is given byΠZij ≥ 0, if i �= j for all i, j ∈S andΠZii =−

∑
j �=i ΠZij otherwise.

Remark 42.2 The quantity ΠZij represents the switch from state i to state j .

Let us define the regime-switching Lévy Model:

Definition 42.3 For all t ∈ [0, T ], let Zt be a continuous time Markov chain on fi-
nite space S := {1, . . . ,K} defined as in Definition 42.2. A regime-switching model
is a stochastic process (Xt ) which is solution of the stochastic differential equation
given by

dXt = κ(Zt )
(
θ(Zt )−Xt

)
dt + σ(Zt )dYt (42.1)

where κ(Zt ), θ(Zt ) and σ(Zt ) are functions of the Markov chain Z. Hence,
they are constants which take values in κ(S ), θ(S ) and σ(S ). Thus, κ(S ) :=
{κ(1), . . . , κ(K)} ∈ R

K∗ , θ(S ) := {θ(1), . . . , θ(K)} and σ(S ) := {σ(1), . . . ,
σ (K)} ∈ R

K+ . And finally, Y is a stochastic process which could be a Brownian
motion or a Lévy process.
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Remark 42.3 The following classic notations apply: κ denotes the mean-reverting
rate; θ denotes the long-run mean; σ. denotes the volatility of X.

Remark 42.4 In this model, there are two sources of randomness: the stochastic
process Y appearing in the dynamics of X, and the Markov chain Z. There exists
one randomness due to the market information which is the initial continuous filtra-
tion F generated by the stochastic process Y ; and another randomness due to the
Markov chain Z, FZ . Moreover, the Markov chain Z infers the unobservable state
of the economy, i.e. expansion or recession. The processes Y i estimated in each
state, where i ∈S , capture: a different level of volatility in the case of Brownian
motion (i.e. Y i ≡Wi ), or a different jump intensity level of the distribution (and a
possible skewness) in the case of Lévy process (i.e. Y i ≡ Li ).

Barndorff–Nielsen [1] recalls the main properties of the Normal Inverse Gaussian
(NIG) distribution, which is used as the Lévy distribution in this paper. The NIG
density belongs to the family of normal variance-mean mixtures, i.e. one of the
most commonly used parametric densities in financial economics. The NIG is a
good alternative to the normal distribution since: (i) its distribution can model the
heavy tails, kurtosis, and jumps, and (ii) the parameters of NIG distribution can be
solved in a closed form.

42.4 Estimation

This section covers the methodology pertaining to the estimation task. In the first
sub-section, we extend the EM algorithm to the class of Lévy regime-switching and
explain how the likelihood can be evaluated. In the following sub-sections, the two-
step estimation strategy as well as the initialization choice for the parameters are
detailed.

The Expectation–Maximization algorithm used to estimate the regime-switching
Lévy model in this paper is a generalization and extension of the EM-algorithm
developed in Hamilton [3] and [4].

Our aim is to fit a regime-switching Lévy model such as (42.1) where the
stochastic process Y is a Lévy process that follows a Normal Inverse Gaus-
sian (NIG) distribution. Thus the optimal set of parameters to estimate is Θ̂ :=
(κ̂i , θ̂i , σ̂i , α̂i , β̂i , δ̂i , μ̂i , Π̂), for i ∈S .

We have the three parameters of the dynamics of X, the four parameters of the
density of the Lévy process L, and the transition matrix of the Markov chain Z.
Because the number of parameters grows rapidly in this class of jump-diffusion
regime-switching models, direct maximization of the total log-likelihood is not prac-
ticable. To bypass this problem, we propose a method in two successive steps to
estimate the global set of parameters.

Step 1: Estimation of the regime-switching model (42.1) in the Brownian case
Following the methodology of Janczura and Weron [6], we first take for the
stochastic process Y a Brownian motion W . Moreover, suppose that the size of
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historical data is M + 1. Let Γ denote the corresponding increasing sequence of
time from which the data values are taken:

Γ = {tj ;0= t0 ≤ t1 ≤ . . . tM−1 ≤ tM = T }, with Δt = tj − tj−1 = 1.

The discretized version of model (42.1) writes

Xt+1 = κ(Zt )θ(Zt )+
(
1− κ(Zt )

)
Xt + σ(Zt )εt+1, (42.2)

where εt ∼N (0,1) (since the process Y is a Brownian motion). We denote by
FX
tk

the vector of historical values of the process X until time tk ∈ Γ . Thus, FX
tk

is the vector of the k+ 1 last values of the discretized model and therefore, FX
tk
=

(Xt0,Xt1, . . . ,Xtk ). The filtration generated by the Markov chain Z (i.e. FZ) is the
one generated by the history values of Z in the time sequence Γ . For simplicity of
notation, we will write in the sequel the model (42.2) as

Xt+1 = κiθi + (1− κi)Xt + σiεt+1.

This means that at time t ∈ [0, T ], the Markov chain Z is in state i ∈ S (i.e.
Zt = i) and Z jumps at time tj ∈ Γ , j ∈ {0,1, . . . ,M − 1}.
In the first step based on the EM-algorithm, the complete parameter space estimate
Θ̂ is split into: Θ̂1 := (κ̂i , θ̂i , σ̂i , Π̂), for i ∈ S , which corresponds to the first
subset of diffusion parameters. The transition probabilities are estimated according
to the following formula

Πij =
∑M
k=2[P(Ztk = j |FX

tM
; Θ̂1)

ΠijP (Ztk−1=i|FX
tk−1

;Θ̂1)

P (Ztk=j |FX
tk−1

;Θ̂1)
]

∑M
k=2[P(Ztk−1 = i|FX

tM
; Θ̂1)]

. (42.3)

The quantities P(Ztk = j |FX
tM
; Θ̂1), P(Ztk−1 = i|FX

tk−1
; Θ̂1) refer to the smoothed

inferences for the process being in state j at time tk , based on starting values for the
parameter vector Θ of the underlying process X (see Kim, C.-J. [7] or Janczura, J.
and Weron, R. [5]).

Step 2: Estimation of the parameters of the Lévy process fitted to each regime
Using the regime classification obtained in the previous step, we estimate the sec-
ond subset of parameters Θ̂2 := (α̂i , β̂i , δ̂i , μ̂i), for i ∈S , which corresponds to
the NIG distribution parameters of the Lévy jump process fitted for each regime.
We assume the Lévy process L follows a Normal Inverse Gaussian (NIG) distribu-
tion. This family of distribution was introduced by Barndorff-Nielsen and Halgreen
[2] and Barndorff-Nielsen [1]. Taking δ > 0, α ≥ 0, then the density function of a
NIG variable NIG(α,β, δ,μ) is given by

fNIG(x;α,β, δ,μ)= α
π

exp
(
δ

√
α2 − β2 + β(x −μ))

× K1(αδ
√

1+ (x −μ)2/δ2)
√

1+ (x −μ)2/δ2
, (42.4)
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Table 42.1 Description of
the Equity markets

Ticker Description

TOPIX JAPAN TOPIX Index

FBMKLCI MALAYSIA FTSE Bursa Malaysia

CNXNIFTY INDIA S&P CNX Nifty Index

DWJP Dow Jones Japan Total Stock Market Index

Table 42.2 Estimated parameters of the regime-switching Lévy model for Asian equities

Parameters Japan Topix Malaysia FTSE India S&P CNX Dow Jones Japan

State 1 State 2 State 1 State 2 State 1 State 2 State 1 State 2

κ 0.0025 0.0174 0.0027 0.0027 0.0002 0.0064 0.0035 0.0280

θ 664.67 1079.30 1141,72 2061.37 4778.60 6652.69 417.7719 609.98

σ 85.06 480.50 173.36 35.33 4788.62 1894.17 25.06 246.93

PZii 0.99 0.96 0.88 0.95 0.99 0.99 0.98 0.89

α 1.22 0.05 1.20 0.02 0.01 0.02 0.81 0.12

β −0.12 0.01 −0.30 0.00 0.00 −0.02 −0.03 0.06

δ 0.94 7.65 1.00 13.24 27.16 8.10 0.62 4.49

μ 0.09 −1.77 0.26 −2.54 −16.26 14.01 0.03 −2.47

where Kν is the third Bessel kind function with index ν. It can be represented with
the following integral Kν(z)= 1

2

∫∞
0 yν−1 exp(− 1

2z(y+ y−1))dy. For a given real
ν, the function Kν satisfies the differential equation given by x2y′′ + xy′ − (x2 +
ν2)y = 0. The estimation of the distribution parameters is achieved by constrained
maximum likelihood: Φi := {αi,βi, δi ,μi}, with i ∈ {1,2}.

Proposition 42.1 The log-likelihood function of the sequence of log-returns with
distribution NIG (α,β, δ,μ) is given by

L(α,β, δ,μ)= n log

(
α

π

)
+ nδγ +

n−1∑

t=0

[
βδτt − log ct + logK1(αδct )

]
,

where γ =√
α2 − β2. For any t = 0,1, . . . n− 1, τt = rt−μ

δ
and ct =

√
1+ τ 2

t .

The initialization of the estimation is performed by the method of moments.

42.5 Application to Asian Equities

We apply these statistical methods to estimate regime-switching Lévy models in the
context of Asian equities. The data is retrieved from Thomson Financial Datastream
over the period going from July 20, 2010 to July 11, 2014 with a daily frequency,
totaling 1281 observations. The names for each time series are given in Table 42.1.
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Fig. 42.1 Smoothed and filtered probabilities for the INDIA S&P CNX Nifty Index on top;
Regime-switching classification in the middle and Log-returns classification at the bottom
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We have recovered equity data in order to study the jump properties of stock markets
under changing market conditions in the Pacific region.

Table 42.2 reports the results of: (i) the set of diffusion parameters, and (ii) the
NIG density parameters of the Lévy jump process fitted to each regime. The remain-
ing problem in this work is to specify the number of regimes in the Markov chain.
For simplicity, we proceed with two regimes that relate to the ‘boom’ and ‘bust’
phases of the business cycle. We give now all estimated parameters for each time
series in Table 42.2.

Regarding the estimated parameters in Table 42.2, we focus on the intensity jump
parameters (i.e. α). For the NIG distribution, the smaller the value of α, the higher
the intensity of jumps. For instance, for the Japan Topix, α in state 2 is equal to
0.05 which implies a high intensity of jumps. On the contrary, the value of α in
state 1 is equal to 1.22 which indicates a Gaussian distribution in the NIG context
(see Barndorff-Nielsen [1]). This result applies for all Asian equities. We can also
discuss the asymmetry parameters β: changing signs between states 1 and 2 show
the change in the distribution asymmetries.

We also report an illustrative plot (Fig. 42.1) where the regime switches are
reported for the INDIA S&P CNX Nifty Index. To provide the reader with a
clearer picture, we have chosen to plug the regimes identified back into the raw
(non-stationary) data. Of course, all the estimates were performed on log-returns
rt := log(Xt )− log(Xt−1), e.g. stationary data. Below this first plot, the filtered and
smoothed probabilities are displayed. They reflect the regime switches at stake.

42.6 Summary

Several conclusions are in order for the regime-switching Lévy model applied to
Asian equities. First, we show the presence of two contrasted regimes in each time
series. Second, we identify one jumpy regime and a rather quiet second regime.
Therefore, it seems appropriate to model each regime separately, either with a pure
Lévy-jump, or with a Brownian motion process. The two-step estimation strategy
turns out as a straightforward approach. Taken together, the results gathered in
the paper can encourage market practitioners or future researchers to use regime-
switching Lévy models as a resourceful statistical procedure.
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Chapter 43
Wavelet Algorithm for Hierarchical Pattern
Recognition

Urszula Libal and Zygmunt Hasiewicz

Abstract The idea, presented in this article, is based on a combination of hierar-
chical classifier with multiresolution representation of signals in the Daubechies
wavelet bases. The paper concerns a multi-class recognition of random signals. It
presents a multistage classifier with a hierarchical tree structure, based on a multi-
scale representation of signals in wavelet bases. Classes are hierarchically grouped
in macro-classes and the established aggregation defines a decision tree. In each
macro-class, the existence of deterministic pattern of signals is assumed. A global
loss function with reject option is proposed for the multistage classifier and two
strategies for the choice of loss function parameters are discussed. An analysis of
risk is performed for a local (binary) attraction-limited minimum distance classi-
fier for wavelet approximation of signals. This leads to proposals, relating to the
upper estimate of the risk, called the guaranteed risk. Its value depends on the sev-
eral parameters as the wavelet scale of signal representation, the support length of
wavelet function, or the variance of the random noise in the macro-class. Finally,
the guaranteed risk of the multistage classifier is derived.

43.1 Introduction

The paper is focused on automatic multistage classification of signals to one of the
K classes. The multistage schema of signal recognition algorithm selects at each
stage a smaller macro-class, being a child of the macro-class chosen in previous
stage, by a binary classifier. There is introduced an additional option of stopping the
hierarchical algorithm before terminal class is achieved and is called reject option
in case of lack of decision at some stage. The tree structure of the algorithm allows
the decomposition of the classification task to a number of local binary classifica-
tions. Therefore, binary classification problem is considered for signals given by a
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Fig. 43.1 A recursive
method of determining
wavelet approximation
coefficients αjn and detail
coefficients βjn for
decreasing wavelet
scale j =M ,M − 1, . . . ,m

model (43.1). In each macro-class, a deterministic prototype (pattern) is a source of
signals which are obtained as noisy versions of patterns. The signals are sampled at
time instants t1, t2, . . . , tpM .

Assumption 43.1 In macro-class k = 1, 2, the signals have a form

sk(t,ω)= fk(t)+ ξ(t,ω),
t ∈ {t1, t2, . . . , tpM } ⊂ [0,1], ω ∈Ω, (43.1)

where fk is a deterministic pattern, ξ ∼ i.i.d.(0, σ 2
k ) is a stationary white noise

with variance σ 2
k , and t1, t2, . . . , tpM are sampling times and pM = 2M .

43.2 Signal Approximation in Wavelet Bases

In this section, the main idea of this article – i.e. a combination of hierarchical
classifier with multiresolution representation of signals in the Daubechies wavelet
bases [1] – is introduced. The hierarchical decomposition of signal in orthonormal
bases of Daubechies wavelet functions can be performed by fast and easy to com-
pute Mallat’s algorithm [4]. The major inspiration for the fusion of a multistage
classifier with the hierarchical procedure of wavelet decomposition of signals is the
possibility of usage of wavelet representation of signals for various resolutions at
every stage of this complex classifier.

The orthonormal basis property, partitioning the approximation space Vj+1 into
the approximation space Vj for a lower resolution, and detail spaceWj , was applied
by Stéphane Mallat to construct the recursive algorithm for wavelet coefficients
computing (starting for the highest wavelet scale). The schema of this procedure
is presented in Fig. 43.1.

In a basis of Daubechies wavelet family functions of order q , every signal s is
represented by a vector of proper wavelet coefficients w= αjn (for details see [1]).
The coefficient (feature) vector is

w= αjn =

⎡

⎢⎢⎢
⎣

αjn1

αjn2
...

αjnp

⎤

⎥⎥⎥
⎦
=

⎡

⎢⎢⎢
⎣

〈s,φjn1〉〈s,φjn2〉
...

〈s,φjnp 〉

⎤

⎥⎥⎥
⎦
, (43.2)
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where the components in (43.2) are random variables of the form

αjni = αjni (ω)=
〈
s(.,ω),φjni

〉=
∫

supp(φjni )
s(t,ω)φjni (t) dt. (43.3)

The choice of wavelet scale j affects the width of the wavelet function support and
hence the amount of detail in the signal representation. The length of Daubechies
wavelet function support of order q is in particular

d(j)= ∣∣supp(φjni )
∣∣= 2q − 1

2j
. (43.4)

The number of coefficients (features) for scale j is p(j)= 2j and decreases approx-
imately twice ( i.e. p(j − 1)≈ 2j−1) with the transition to a lower scale j − 1, for
every wavelet scale j =M ,M − 1, . . . , m.

43.3 Hierarchical Pattern Recognition

A natural and obvious consequence of the use of a hierarchical representation of
signal is multistage classification algorithm. The classification is performed sequen-
tially in L steps by the use of local binary classifiers Ψi , i = 1,2, . . . ,L. The vectors
αj(i)n of wavelet coefficients are computed for a fixed scale j (i), as it was explained
in previous section.

At each stage we consider a binary recognition task, with pre-defined two macro-
classes. The macro-classes at ith stage are characterized by the following parameters
and denotations:

• at ith stage there are 2 macro-classes of signals: C1(i), C2(i)

• probabilities of macro-class appearance: p1(i), p2(i)

• patterns of signals in macro-classes: f1(i), f2(i)

• variances of noise in macro-classes: σ 2
1 (i), σ

2
2 (i)

In the next point is defined a local attraction-limited minimum-distance classifier,
used at each stage of the hierarchical classifier, but for a different pair of macro-
classes and for a changed wavelet scale of signal approximation in wavelet bases.

The multistage recognition algorithm runs in L steps:

stage 1: Ψ1(αj(1)n)= C(1),
stage 2: Ψ2(αj(2)n)= C(2),

...

stage L: ΨL(αj(L)n)= C(L).
Once again, it should be stressed that wavelet scales j (i) and pointed by the local
classifiers Ψi macro-classes C(i) depends from the algorithm stage i = 1,2, . . . ,L
(Fig. 43.2).
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Fig. 43.2 Multistage hierarchical classification by a sequence of local binary classifiers

43.4 Attraction-Limited Minimum-Distance Classifier

We conduct a risk analysis for a particular form of the classifier, i.e. attraction-
limited minimum-distance classifier [3], which is defined in Algorithm 43.1.

There are three decision areas determined by so called clusters, i.e. p-dimensional
balls of centers in c1 and c2 and radii R1 and R2. In order to the radii R1 and R2 ac-
tually performed the function of limiting (i.e. guarantee of probabilistic separation)
at the design of decision areas, it is assumed that R1 and R2 satisfy the following
dependencies:

P
(‖c1 −w‖ ≤R1|w ∈ 2

)= α, (43.5)

P
(‖c2 −w‖ ≤R2|w ∈ 1

)= α, (43.6)

where parameter α ∈ [0,1] reflects the probability that a cluster will include feature
vectors from opposite macro-class, thus the value of this parameter should be set
rather at a low level, e.g. 0.05.

The local classifier Ψi is defined for the following two cases:

Algorithm 43.1 For disjoint clusters, i.e. when ‖c1 − c2‖>R1 +R2,

Ψi(w)=
{1, if ‖c1 −w‖ ≤R1,

2, if ‖c2 −w‖ ≤R2,

0, if (‖c1 −w‖>R1 ∧ ‖c2 −w‖>R2).

(43.7)

For overlapping clusters, i.e. when ‖c1 − c2‖ ≤R1 +R2,

Ψi(w)=

⎧
⎪⎨

⎪⎩

1, if ‖c1 −w‖ ≤R1 ∧ ‖c2 −w‖>R2,

2, if ‖c1 −w‖>R1 ∧ ‖c2 −w‖ ≤R2,

0, if (‖c1 −w‖ ≤R1 ∧ ‖c2 −w‖ ≤R2)

∨(‖c1 −w‖>R1 ∧ ‖c2 −w‖>R2),

(43.8)

where “0” means lack of decision.
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Fig. 43.3 Schema of decision areas for disjoint clusters (left) and overlapping clusters (right)

Vector w is given by the formula (43.2). The decision areas for disjoint and over-
lapping clusters are marked in Fig. 43.3 with colors: blue (classification to macro-
class 1), green (classification to macro-class 2) and white (lack of decision or rejec-
tion).

43.5 Loss Function with Reject Option for Hierarchical
Classifier

In pattern recognition tasks, the use of zero-one loss function [5] is the most often,
because then the risk gains the interpretation as a probability of incorrect classifica-
tion. The zero-one loss function is modified by introducing additional reject option
[2] (i.e. lack of decision). This procedure requires the introduction of an additional
parameter r ∈ [0,1], meaning a loss arising from a lack of decision. In addition,
a loss forced by an incorrect decision is determined by a parameter ρ ∈ [0,1]. The
following definition of a local loss function Li , with values depending on the stage i
of incorrect decision, is introduced in Definition 43.1.

Definition 43.1 Modified loss function Li at ith stage has a form

Li

(
C(i), J (i)

)=
⎧
⎨

⎩

0, if C(i) = J (i),
rγ (i), if C(i) = 0,
ργ (i), if C(i) �= J (i),

(43.9)

where:

1. γ (i) is a non-increasing function for growing stage index i = 1,2, . . . ,L,
2. γ (i) ∈ [0,1],
3.

∑L
i=1 γ (i)= 1,

4. r ∈ [0,1],
5. ρ ∈ [0,1],
6. ρ � r .

The expression rγ (i) is a loss resulting from the lack of classifier decision, and
ργ (i) – a loss resulting from incorrect decision, on the ith stage. It is assumed that
the loss, established as a result of the multistage classification procedure with reject
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option, is the sum of the losses incurred on subsequent stages. The design of loss
function LW for hierarchical multistage algorithm ΨW is therefore as follows.

LW
((
C(1),C(2), . . . ,C(L)

)
,
(
J (1), J (2), . . . , J (L)

))

=
L∑

i=1

Li

(
C(i), J (i)

)

= ρ
L∑

i=1

γ (i)1
{
C(i) �= J (i)}+ r

L∑

i=1

γ (i)1
{
C(i) = 0

}
. (43.10)

It should be noted that the random event consisting of incorrect classification at
ith stage involves another wrong classifications at all subsequent steps, it is i+1, i+
2, . . . ,L. On the other hand, the lack of decision at a certain ith stage, results that
the classified signal is unallocated to any class or macro-class also at all subsequent
steps i + 1, i + 2, . . . ,L.

According to the above, the loss from incorrect classification at ith stage, C(i) �=
J (i), is

ρ.

L∑

k=i
γ (k), (43.11)

and the loss as a result of the rejecting decision at ith stage of classification,
C(i) = 0, is

r

L∑

k=i
γ (k). (43.12)

The correct classification to the terminal class C(L) = J (L) is not assigned to any
loss.

43.6 Selection Strategies of Loss Function Parameters

For the loss function LW given by (43.10) the risk of multistage recognition algo-
rithm ΨW = (Ψ1,Ψ2, . . . ,ΨL) is

R
[
ΨW

]=
L∑

i=1

R[Ψi], (43.13)

that is equal to the sum of risk values for binary classifiers Ψi at various stages
i = 1,2, . . . ,L.

The value of the global risk depends on the strategy chosen when determining
penalties for incorrect decisions or lack of decisions, by appropriate rescaling loss r
and ρ on the stage by the factor γ (i) (see Definition 43.1).
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The prescale value at ith stage for exponential strategy is

γ (i)= cL−i 1− c
1− cL , (43.14)

and for linear strategy

γ (i)= (L− i + 1)
2

L(L+ 1)
. (43.15)

Strategy of the exponential decrease of losses puts the strongest emphasis on the
correctness of decisions during the initial stages of recognition. Losses at the final
stages are less significant. This approach is designed to protect against committing
thick error in the initial phase, because choosing of incorrect macro-class at the first,
results in wrong decisions on subsequent steps – without capability of repair. The
strategy of the linear decrease of losses with the stage assigns the highest value of
the loss to the first step. However, the decrease of the function value γ (i) is slower,
linear.

43.7 Guaranteed Risk of Hierarchical Classifier

The upper bound of classifier risk R is called guaranteed risk and denoted by Rmax.

Theorem 43.1 Guaranteed risk for local classifier Ψi (Algorithm 43.1) at stage
i = 1,2, . . . ,L, with known centers of clusters c1, c2 and with radii fulfilling the
conditions (43.5)–(43.6), is

Rmax[Ψi] = γ (i)
[
(ρ − r)α

+ rd(j (i))p(j (i))
(
p1(i)

(
σ1(i)

R1(i)

)2

+ p2(i)

(
σ2(i)

R2(i)

)2)]
,

(43.16)

where j (i) ∈ {m,m+ 1, . . . ,M} is a scale of signal approximation in wavelet bases,
fixed for the stage i = 1,2, . . . ,L.

Proof The first steps of proof are Chebyshev inequalities applied to the expressions,
in macro-class k = 1,2,

P
(‖ck −w‖>Rk |w ∈ k

)
� E(‖w−Ew‖2 |w ∈ k)

R2
k

.

(43.17)

The properties of Daubechies wavelet of order q give us the upper bound of variance
in macro-class k = 1,2,

Var(αj(i)nl )� σ
2
k

∣∣supp{φj(i)nl }
∣∣= σ 2

k

2q − 1

2j
, (43.18)
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for wavelet coefficient

αj(i)nl (ω)=
〈
sk(.,ω),φj(i)nl (.)

〉
. (43.19)

�

Direct application of Theorem 43.1 and formula (43.16) leads to designation of
the guaranteed risk for the multistage algorithm ΨW .

Corollary 43.1 If the assumptions of Theorem 43.1 are fulfilled at each stage i =
1,2, . . . ,L, of the hierarchical (multistage) classifier ΨW , then its guaranteed risk
is

Rmax
[
ΨW

]= (ρ − r)α + r
L∑

i=1

γ (i)d
(
j (i)

)
p
(
j (i)

)

×
(
p1(i)

(
σ1(i)

R1(i)

)2

+ p2(i)

(
σ2(i)

R2(i)

)2)
. (43.20)

The product of the length d(j (i)) of Daubechies wavelet function support and the
length p(j(i)) of feature vector in scale j (i) can be estimated by value

d
(
j (i)

)
p
(
j (i)

)≈ (2q − 1), (43.21)

what is a consequence of the properties explained in Sect. 43.2 and where q is the
order of Daubechies wavelets.
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Chapter 44
Risk of Selection of Irrelevant Features
from High-Dimensional Data with Small Sample
Size

Henryk Maciejewski

Abstract In this work we demonstrate the effect of small sample size on the risk
that feature selection algorithms will select irrelevant features when dealing with
high-dimensional data. We develop a simple analytical model to quantify this risk;
we verify this model by the means of simulation. These results (i) explain the in-
herent instability of feature selection from high-dimensional, small sample size data
and (ii) can be used to estimate the minimum required sample size which leads
to good stability of features. Such results are useful when dealing with data from
high-throughput studies.

44.1 Problem formulation

High-throughput studies common in life sciences often yield data with small number
of samples n given as vectors of d features, with n1 d . An example might be gene
expression studies, with the number of samples (n ∼ 102–103) typically ranges of
magnitude smaller than the number of gene expressions (d ∼ 104). It is commonly
observed that feature selection algorithms applied to such data yield unstable sets of
features, i.e., small variation of the data leads to selection of feature sets with little
overlapping with the previous sets [1, 2, 5, 6].

In this work we develop a simple model which can be used to quantify this effect
in terms of the probability of selecting irrelevant (i.e. actually unassociated with
the target) features rather than relevant features. This model can also be used to
estimate the required sample size to guarantee acceptable stability of features. This
work builds on and extends results shown in Chapter 3 of the Monograph [5].

We introduce the following notation. We denote the matrix with results of a mas-
sive throughput study as X = (xij ), i = 1, . . . , d , j = 1, . . . , n, with the rows, de-
noted Xi , i = 1, . . . , d , representing features measured for the n samples tested.
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Let Y = (yi), i = 1, . . . , n denote the target vector. Although Y can contain either
qualitative or quantitative measurements, here we assume that Y is quantitative, i.e.
yi ∈R, i = 1, . . . , n.

We assume that the rows X1, . . . ,Xd and Y are samples of size n from the un-
derlying random variables X1, . . . ,Xd , and Y . We assume that the variable Xi

is not associated with the target (Xi and Y independent), and the variable Xj is
associated with the target, with correlation cor= cor(Xj ,Y ) > 0. We expect that a
feature selection procedure which estimates association of variables with the target
would select feature j rather than i. We now estimate this probability as a function
of the sample size n and correlation cor.

44.2 Probability of Selecting a Relevant Feature

Association of the feature i with the target can be estimated as the sample correlation

coefficient ri =
∑n
k=1(xik−X̄i )(yk−Ȳ )√∑n

k=1(xik−X̄i )2
√∑n

k=1(yk−Ȳ )2
where X̄i , Ȳ are means of Xi and Y .

Similarly we calculate rj as the sample correlation coefficient between Xj and Y .
The probability that the feature selection procedure selects the relevant feature j

given features i and j equals

p = Pr
(|rj |> |ri |

)
. (44.1)

We provide approximate analytical formula for p as a function of n and cor and
we quantify the quality of this approximation by the means of simulation. To sim-
plify analytical approximation of p, we assume that Xi , Xj , and Y are normally
distributed.

We start with the simulation study in which we observe p over a grid of sample
sizes n= 10,20,50,100,200,500 and correlations cor= 0,0.15,0.2,0.3,0.4,0.6,
0.8. Technically, we generate 10 000 vectors of size n from each of Xi ,Xj ,Y fol-
lowing N(0,1), such that Xi ,Y are independent and Xj ,Y realize multivariate
normal distribution with correlation cor. We calculate sample correlation coeffi-
cients ri and rj ; variability of ri and rj over 10 000 realizations of the experiment
is illustrated in Fig. 44.1.

We observe substantial overlapping of the observed sample correlation coeffi-
cients, with this effect clearly diminishing with increasing sample size n and in-
creasing correlation cor.

The probability p can be estimated as the fraction of experiments out of 10 000
in which |rj |> |ri |. Results of this are shown in Fig. 44.2.

We observe in Fig. 44.2 that for small sample size (10–50) the probability 1− p
of selecting an irrelevant feature instead of the relevant feature remains not negligi-
ble even for high correlations (∼0.6) between the relevant feature and the target.

Analytical approximate formula for p as a function of sample size and signal
strength (i.e. correlation cor) can be obtained using the Fisher transformation [3, 4].
The sample correlation r calculated for normally distributed random variables can



44 Risk of Selection of Irrelevant Features 401

Fig. 44.1 Comparison of sample correlation coefficients for an irrelevant feature, ri , and for a
relevant feature, rj . Results for sample size n= 20 and cor= 0.2. Whiskers of the boxplots extend
over the whole range of observed data; the arrows overlaying the boxplots extend over mean ±
standard deviation

Fig. 44.2 Simulated
probability
p = Pr(|Zj |> |Zi |) of
selecting the relevant feature
Xj as a function of the
sample size and correlation
between Xj and Y

be transformed into Z = atanh(r)= 1
2 ln 1+r

1−r which is approximately normally dis-

tributed N(μ,σ), with μ= 1
2 ln 1+ρ

1−ρ and σ = 1√
n−3

, where ρ is the true correlation
coefficient between the underlying variables and n is the sample size.

Since the Fisher transformation is an increasing function, the probability p equals

p = Pr
(|Zj |> |Zi |

)
. (44.2)

Approximate formula for p can be obtained if we assume that Zi and Zj are nor-
mally distributed, Zi ∼ N(μi, σi), Zj ∼ N(μj ,σj ), with μi = 0, μj = 1

2 ln 1+ρ
1−ρ ,

and σi = σj = 1√
n−3

. Estimation of p as in Eq. (44.2) is then simple providing Zi
and Zj are independent. [Discussion of this condition: if we take two independent
samples each of size n from (Xi ,Y ) and from (Xj ,Y ) to estimate the sample
correlation coefficients ri and rj , then these coefficients can be considered as real-
izations of two independent random variables. Now observing the property that for
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Fig. 44.3 Analytical
approximation of the
probability
p = Pr(|Zj |> |Zi |) of
selecting the relevant feature
Xj rather than the irrelevant
Xi , as a function of the
sample size and correlation
between Xj and Y

independent random variables U , V , the random variables f (U), g(V ) are also in-
dependent for any (measurable) functions f and g, we obtain independence of Zi ,
Zj .]

Since distribution of two independent normally distributed random variables is
bivariate normal, estimation of p becomes simple. We observe that (Zi,Zj ) ∼
N(μ,Σ) with the mean μ = [0 μj ] =

[
0 1

2 ln 1+ρ
1−ρ

]
and the covariance matrix

[
σ 2
i 0

0 σj
2

]
=
[ 1
n−3 0

0 1
n−3

]
.

Then p can be calculated as p = ∫ ∫
|zj |>|zi | f (zi, zj )dzidzj , where f (zi, zj ) is

the density of (Zi,Zj ). It can be shown (using transformation of variables) that p
can be calculated as

p = 1− 2
∫ ∫

ui>0,uj>0

g(ui, uj )duiduj (44.3)

where g is the density of the bivariate normal distribution with the mean μ =
[− 1

2
√

2
ln 1+ρ

1−ρ
1

2
√

2
ln 1+ρ

1−ρ
]

and the covariance matrix Σ =
[ 1
n−3 0

0 1
n−3

]
.

In Fig. 44.3 we demonstrate p as a function of the sample size n and sig-
nal strength cor = ρ. We obtain this by numerically calculating the integral in
Eq. (44.3).

Note that Eq. (44.3) is only an approximate formula for p, based on the assump-
tion that Zi and Zj are normally distributed. We evaluated accuracy of this approxi-
mation by comparing p obtained from Eq. (44.3) (Fig. 44.3) with p observed in the
simulation study (Fig. 44.2). Absolute difference between these two probabilities
(denoted pFig44.3 and pFig44.2, respectively), calculated over the grid of n and cor
values we used in the simulation study is shown in Fig. 44.4.

We conclude that the error of our approximation taken relative to the observed p
does not exceed 4 %.
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Fig. 44.4 Difference
between simulated and
analytical value of
probability, i.e.
|pFig44.2 − pFig44.3| as a
function of the samples size n
and correlation cor(Xj ,Y )

44.3 Feature Selection from High-Dimensional Data

The approximate formula (Eq. (44.3)) can be used to analyze the quality/stability of
feature selection attempted for high-dimensional data with d4 n. We now consider
the case where nV variables out of d are actually associated with the target, and
nW = d − nV are not associated with the target, with the condition nV 1 nW , as
commonly encountered in practice.

We now analyze performance of a simple univariate feature selection procedure,
similar to the one discussed in the previous section, which is used in order to find
NTOP variables most strongly associated with the target. To quantify performance
of this feature selection procedure, we define the following measure

pL = Pr(in the list of NTOP features at least L are relevant) (44.4)

To estimate this probability we observe that the probability that a relevant fea-
ture i is selected by the algorithm rather than any of the nW irrelevant features
equals Pr(vi > w(nW )), where vi denotes the Z-transformed sample correlation of
the feature i with the target, and wj , j = 1, . . . , nw denote the Z-transformed sam-
ple correlation of irrelevant features with the target, and w(nW ) denotes the last order
statistic of wj , j = 1, . . . , nw . We further notice that pL is equivalent to:

pL = Pr(v(nV−(L−1)) > w(nW−(NTOP−L))) (44.5)

Applying the same approximation as in the previous section, i.e. taking vi andwj
as normally distributed, their order statistics can be also obtained analytically (i.e.
the pdf of the kth order statistic is fk,n(x)= n

(
n−1
k−1

)
(F (x))k−1(1− F(x))n−kf (x),

where F and f are the population cdf and pdf). This allows to derive pL from
Eq. (44.5) (details of this are given in [5], pp. 34–39). Here we only provide conclu-
sions from these approximate formulae derived in [5] in the form of pL estimated
for some selected values of the sample size n, signal strength in the relevant fea-
tures cor and the number of relevant and irrelevant features nV , nW . These results
are shown in Fig. 44.5. We observe that even for high signal strength and sample
size around 100, it is virtually impossible to avoid irrelevant features among the
selected features.
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Fig. 44.5 Probability that at least L relevant features are selected among NTOP = 90 features
returned by a feature selection algorithm, as a function of the samples size n and correlation cor.
Results for nV = 100 relevant features and nw = 5000 irrelevant features in data

44.4 Conclusions

Results presented in this work explain the inherent problem with feature selection
from high-dimensional data. Instability of feature selection commonly observed
when dealing with such data arises from the fact that small sample size leads to high
variance of the observed measure of association of features with the target. This
results in non-negligible probability of selection of irrelevant features and omitting
the relevant ones, which translates into low quality of features selected from high-
dimensional data, as illustrated in Fig. 44.5.

In the paper we derived approximate formulae, based on the simple probabilistic
model, which allow us to quantify this effect in terms of the probability of selec-
tion of relevant features as a function of the sample size and signal strength. These
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approximations can be useful for estimation of the required sample size which can
bring desired quality of features under some expected signal strength.
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Chapter 45
Fundamental and Speculative Shocks –
Structural Analysis of Electricity Market

Katarzyna Maciejowska

Abstract In the paper, Structural Vector Autoregressive models (SVAR) are used
to analyze effects of structural shocks on the electricity prices in UK. The shocks
are identified via short run restrictions, which are imposed on the matrix of instanta-
neous effects. Two main types of shocks are considered: fundamental shocks, iden-
tified as demand and wind generation shocks and speculative shocks, which are
associated solely with electricity prices. The results indicate that speculative shocks
play an important role in the price setting process and account for more than 90 % of
the unexpected electricity price variability. Moreover, wind generation shocks have
larger input to the electricity price variance than demand shocks, particularly when
peak hours are considered.

45.1 Introduction

Electricity market is very complex and difficult to model. The electricity demand
depends strongly on the weather conditions and the business cycle. At the same
time, it is price inelastic, which means that it responds weakly to price changes.
Moreover, electricity cannot be economically stored but the power system stability
requires that there is a constant balance between production and consumption [7].
As the result, electricity prices are very volatile and difficult to forecast (see [16] for
a comprehensive review of forecasting methods).

The main objective of this paper is to investigate economic mechanisms, which
make the forecasting process so difficult. In the research, a Structural VAR (SVAR)
modeling approach is adopted. It allows to decompose forecast errors of electricity
prices into structural innovations, which can be further related to particular eco-
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nomic activities. This approach may help to answer questions on the sources of
unexpected price changes.

A few papers have addressed the issue of structural modeling of electricity prices.
Fezzi and Bunn [4, 5] and [12] applied structural VECM models to energy markets.
The prime interest of [5] was the evaluation of a hypothesis of inelastic demand.
Therefore, in the article, a two equation model of electricity prices and demand was
used. The parameters were calibrated to the PJM market. Fezzi and Bunn [4] focused
on the UK electricity market and the interactions between carbon and electricity
prices. In [12], the US market was modeled and relations between electricity prices
and fuel costs were analyzed. None of these articles have accounted for generation
shocks, in particular, renewable generation shocks.

On the other hand, there is a growing literature on effects of renewable energy
sources (RES) generation on electricity prices. Its impact on the average price be-
havior in various electricity market has been analyzed by [8, 9] and [6]. Refs. [6, 10]
showed that an increasing wind generation lead to lower electricity prices. More-
over, it was proved that wind generation affects not only the price level but also the
price volatility [10].

The aim of this paper is to identify and analyze the sources of unexpected vari-
ation of electricity price in UK. In 2013, RES accounted for around 8.7 % of total
generation in UK. In the same year, according to [13], UK was one of the countries
with the highest investment level in RES, in particular wind generation. Therefore
it is plausible to include the wind generation in the analysis. The data describing
the UK electricity market is used to estimate the SVAR model. It is applied to
decompose the electricity price forecast errors into two groups of structural inno-
vations: generation shocks (demand, wind generation and speculative shocks) and
cost shocks (associated with gas, coal and CO2 allowances prices). The results in-
dicate that only the first group has a contemporaneous effect on electricity prices. It
is shown that a positive wind generation shock reduces significantly the price level.
Next, the input of generation innovations to the price volatility is investigated. It
is proved that the majority of the price variance can be associated with speculative
shocks. When fundamental shocks are considered, the wind generation shocks have
a larger input to the price variance than the demand shocks.

Finally, the differences of the price setting mechanisms between the peak and
off-peak hours are analyzed. It is well known, that the behavior of electricity prices
changes over the day. During the morning and late evening hours, the prices are
much lower and less volatile than during the peak hours. The paper attempts to
verify, if these differences result from behavior of fundamental variables or rather
reflect different attitudes of market agents.

The article is structured as follows. In Sect. 45.2 the data is described. Sec-
tion 45.3 introduces an econometric model and discusses identification schemes
used to estimate structural parameters. Section 45.4 presents the results of SVAR
models applied separately to peak and off-peak hours. Finally, in Sect. 45.5 I con-
clude.
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Table 45.1 Price data

Commodity Description Currency

Electricity APX index, UK GBP

UK natural gas National balance point, UK GBP

Thermal coal ARA, Netherlands USD

CO2 emission rights ECX CFI phase 3 futures 1-Pos EUR

Note: In next sections, all prices are transformed into GBP

45.2 Data

In this research, I focus on the British electricity market. In this market, agents
can trade electricity through power exchanges. The most popular exchange in the
UK is APX. It publishes electricity price index, which is often considered as the
reference prices. The daily price is computed as an average of 48 half-hourly prices
(for details see www.apxende.com). On the basis of intra-day prices, two other price
measures are constructed: peak (from 07:00 to 19:00) and off-peak (from 00:00 to
7:00 and from 19:00 to 00:00) price indexes. Additionally, National Grid provides
information about the forecasted demand, the forecasted production from wind and
realized production of electricity, with division into different fuel types. The data
is published for half-hourly periods and allows computation of average values over
peak and off-peak hours. In order to control for the generation costs, three cost
variables: gas prices, coal prices and CO2 allowance prices are included. The price
data with short descriptions are presented in Table 45.1. All the data is transformed
into natural logarithms to reduce variability.

The data spans the period from 01.01.2012 to 31.12.2012. Although, the longer
sample is also available, I decide to estimate models with the data describing only
one year (365 days) to ensure model stability. If the longer sample was used, I would
have to cope with changes of the market structure, which result mainly from the
increase of popularity of renewable energy sources (such as wind).

45.3 The Model

In this research, a structural vector autoregression model (SVAR) is used, in or-
der to estimate and evaluate effects of structural shocks on electricity spot prices.
This methodology was introduced by [14] and [1] and applied by many authors in
macroeconomic analysis. It allows to give economic interpretation to shocks, which
influence endogenous variables of interest. In a classical VAR model the endoge-
nous variables are modeled as follows

yt =Axt +
p∑

i=1

Θiyt−i + εt (45.1)

www.apxende.com
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where yt is a (K × 1) vector of endogenous variables and xt is (M × 1) vector of
exogenous variables. The parameter A is a (K ×M) matrix and Θi ’s are (K ×K)
matrices. Residuals, εt , are described by a (K × 1) vector. Although, the residuals
are assumed not to be autocorrelated, they can be contemporaneously correlated.
Therefore, they are often called forecast errors and don’t have any direct economic
interpretation.

A VAR model could be, in principle, viewed as a reduced form of a struc-
tural model. In the literature, a few types of structural models have been discussed
(see [11] for detailed discussion). Here, I use so-called B-model, which assumes
that forecast errors are a linear combination of independent, structural shocks. The
model may be written as follows

yt =Axt +
p∑

i=1

Θiyt−i +But (45.2)

where ut ’s are (K × 1) vectors of independent structural shocks with a diagonal
variance-covariance matrix,Σu =Λ. The B matrix is called an instantaneous effect
matrix and describes the contemporaneous relationship between structural shocks
and endogenous variables. Due to linear relation between the forecast and structural
errors, the following identity holds

Σε = BΛB ′ (45.3)

It is often assumed that Λ is an identity matrix IK . Here, I allow the variances
of structural innovations to vary. In the same time, I restrict the diagonal elements
of the B matrix to be equal to 1. I prefer this definition of the matrices B and Λ
because it is more convenient for model comparison. It normalizes the responses of
endogenous variables and enables a direct comparison of shock variances.

The reduced form VAR model can be easily estimated with a ML method. In the
same time, the structural VAR cannot be directly applied because it is not identi-
fiable. This means that the reduced form does not provide sufficient information
to estimate all of parameters of the structural form. In particular, the structural
model has KM + pK2 + K(K − 1) + K parameters and the reduced form only
KM + pK2 +K(K + 1)/2 parameters. Hence, in order to identify the model, at
least K(K − 1)/2 restrictions need to be imposed.

Different possible restrictions have been proposed in the literature. It is common
to identify structural innovations, ut , directly from the reduced form residuals, by
imposing zero restriction on the B matrix. If the economic theory provides sufficient
justification, a lower/upper triangular form of theB matrix can be assumed (e.g. [3]).
It should be underlined that other zero restrictions on the B matrix are also possible.

45.3.1 Initial Analysis

The initial model uses two groups of endogenous variables: generation variables
(wind generationWt , total electricity demand Dt and electricity prices Pt ) and cost
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variables (gas pricesGt , coal prices Ct and CO2 allowance prices CO2t ). Addition-
ally, six exogenous variables are included in the model (xt ): a constant, a dummy
for a day type, time trend, the length of the day (which is a proxy of yearly season-
ality), forecasted demand and forecasted wind generation. The temperature is not
included, as information about the forecasted temperature is already contained in
the forecasted demand and forecasted wind production.

Lets define y′t = [Wt,Dt ,Pt ,Gt ,Ct ,CO2t ]. First, I analyzed the estimates of the
variance–covariance matrix of residuals based on (45.1). The block-diagonallity of
the matrix Σe was tested with the Likelihood Ratio tests (LR= 3.90, p − value=
0.082), which indicated (at the significance level 10 %) that the forecast errors of
variables describing electricity market (Wt , Dt and Pt ) and describing generation
costs (Gt , Ct and CO2t ) are uncorrelated. This outcome is in line with earlier results
of [5] and [17], which indicate that changes in gas prices affect the electricity prices,
on PJM and German markets, with some delay.

Because the main interest of this research is identification of shocks affecting
contemporaneously electricity prices, the model could be simplified and expressed
as follows

yt =Axt +
p∑

i=1

Θiyt−i +
p∑

i=1

Φizt−i +But (45.4)

with y′t = [Wt,Dt ,Pt ] and z′t = [Gt,Ct ,CO2t ].

45.3.2 Identification of Structural Parameters

In the model (45.4), there are three structural innovations, which are later called
wind generation shock, demand shock and speculative shock. The first two inno-
vations arise from a vast literature on electricity prices [5, 10, 15]. The speculative
shock reflect the impact of bidding strategies of market participants on the final
price [2]. Here, the following instantaneous relationships between innovations and
endogenous variables (Wt , Dt and Pt ) are assumed:

• The wind generation shock, u1t , can affect all of the endogenous variables.
• The demand shock, u2t , may influence all variables apart from wind generation.
• The speculative shock, u3t , is the one, which influences only electricity prices.

This identifying assumption reflects the fact that both the wind generation and
demand (see [5]) are contemporaneously inelastic.

Hence, I restrict the B matrix to be lower triangular (45.5). There are three zero
restrictions, which is sufficient to identify the structural form of the model (45.4).
The diagonal elements of B are equal to one, which implies that responses of se-
lected variables to particular innovations are unity. The variables are: Wt for the
wind generation shock u1t , Dt for the demand shock u2t and Pt for the speculative
shock u4t
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B =
⎡

⎣
1 0 0
∗ 1 0
∗ ∗ 1

⎤

⎦ (45.5)

45.4 Results

In order to compare the effects of structural shocks between the peak and off-peak
hours, two separate models are estimated. The first one includes the peak prices
and uses information about production and demand in these hours. The second one
describes relations between variables during the off-peak hours. The lag structure in
both models is selected with the AIC information criterion and consists of two lags:
p ∈ {1,7}.

45.4.1 Model Results

The estimates of the contemporaneous effect matrices, B , and estimates of standard
deviations of structural shocks, diag(

√
Λ), are presented in Table 45.2. Recall that

due to the variable ordering, it is the last raw of the B matrix, which describes the
relation between a particular shock and the electricity price.

The results lead to the following conclusions. First, as expected, a positive wind
generation shock, u1t , has a negative impact on electricity prices. The marginal cost
of production from renewable resources is much lower than the marginal cost of pro-
duction in conventional power plants. Hence, an unexpected rise of production from
wind should decrease the final electricity price. The strength of the influence varies
between period of a day. The responses of electricity prices to the supply shock are
−0.088 and −0.051 for peak and off-peak hours, respectively. Both parameters are
significant at α = 1 %.

On the contrary, a positive demand shock, u2t , leads to an increase of electricity
prices. It is a natural consequence of a demand-supply price setting mechanism. The

Table 45.2 The estimates of the contemporaneous effects matrix, B , for Model 1 and Model 2

Model 1
(Peak hours)

Model 2
(Off-peak hours)

B 1 0 0 1 0 0

−0.006∗∗ 1 0 −0.006∗ 1 0

−0.088∗∗∗ 0.753∗∗ 1 −0.051∗∗∗ 0.220 1

diag(
√
Λ) 0.272 0.015 0.095 0.198 0.014 0.050

(0.010) (0.0006) (0.0035) (0.0074) (0.0005) (0.0019)

Note: The ML estimates of the unrestricted elements of the B matrices: ∗, ∗∗ and ∗ ∗ ∗ indicate
parameters, which are significantly different from 0 at the significance levels 10 %, 5 % and 10 %,
respectively; standard deviations of the parameters diag(

√
Λ) are presented in parenthesis
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Table 45.3 The input of structural shocks to the variance of electricity prices

u1t u2t u3t

Peak hours Input 0.00057 0.00013 0.00902

Share 5.89 % 1.36 % 92.75 %

Base hours Input 0.00010 0.00001 0.00250

Share 3.85 % 0.03 % 95.81 %

responses to the demand shock are 0.753 and 0.220 and are significantly different
from zero for peak hours.

Next, the standard deviations, diag(
√
Λ), of structural disturbances are analyzed.

It can be noticed that the wind generation shock varies more during the peak hours
than off-peak hours. Its standard deviations are 0.272 and 0.198 in peak and base
hours, respectively. The difference between variances in the two day periods is sig-
nificant (when estimation errors of these parameters are taken into account). In the
same time, the standard deviation of demand shocks is almost the same for both day
periods, and equal to 0.015 and 0.014, respectively.

Moreover, similar to generation shocks, speculative shocks vary more during the
peak hours than base hours. This outcome may reflect the complex bidding strategies
of market players and nonlinear marginal costs curve of electricity producers.

Based on the estimated models, the input of structural shocks to the variance of
electricity prices can be estimated. The results are presented in Table 45.3. It can
be noticed that the speculative shocks account for more than 90 % of the variance
of the electricity price, both in the peak and off-peak hours. This result indicates
that unexpected deviations of bidding strategies are more important than shocks to
fundamental variables. Second, wind generation shocks have a larger input to the
price variance than demand shocks. This shows that the wind generation introduced
an additional risk to the market, which should be taken into account by market
participants.

45.5 Conclusions

In this research, structural (fundamental and speculative) shocks influencing elec-
tricity prices are identified via a Structural VAR (SVAR) model. The results indicate
that not all of the fundamental shocks have contemporaneous effect on electricity
prices. There is no evidence that electricity prices respond instantaneously to unex-
pected changes of gas, coal and CO2 allowances prices. This result is in line with
earlier finding of [5]. In the same time, the outcomes indicate that wind generation
shocks and demand shocks play an important role in the price setting process.

The findings confirm that there are significant differences in price setting mech-
anisms between the peak and off-peak hours. This article underlines the importance
of speculative shocks, which remains the most important source of electricity price
forecast error volatility. When the wind supply shock is considered, the outcomes
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indicate that it affects the price variability more than the demand shock. Although,
its input to the variance of electricity prices is still small (varies between 4–6 %), it
can be expected that it will rise in the following years.
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Chapter 46
Decentralized Time-Constrained Scheduling
for Sensor Network in Identification
of Distributed Parameter Systems

Maciej Patan and Adam Romanek

Abstract An efficient approach to determine an activation policy for scanning sen-
sor network monitoring a distributed process over some spatial domain is proposed.
The scheduling problem is defined so as to maximize a criterion defined on the
Fisher information matrix associated with the estimated parameters. Then, adopt-
ing pairwise communication schemes, the multi-exchange procedure is developed,
which distributes the configuration process between the network nodes and take
account to power consumption constraints. The approach is illustrated through an
example on a sensor network scheduling problem for a convective diffusion process.

46.1 Introduction

Experimental design for spatio-temporal physical systems also called distributed pa-
rameter systems (DPSs) is often related to an optimal choice of measurement con-
ditions in order to obtain the best information for estimating unknown parameters
which can then be used, e.g., in optimal control. The impossibility to observe the
system states over the entire spatial domain implies the question of where to locate
discrete sensors and how to schedule the observations so as to accurately estimate
the unknown system parameters. This question acquires especially vital importance
in the context of recent advances in distributed sensor networks (SNs) which consti-
tute a natural tools of monitoring distributed systems [3, 11, 18]. On one hand, SNs
have recently come into prominence because they hold the potential to revolution-
ize observation systems. On the other hand, however, completely new challenges
related to design problems are encountered.

Although laborious research on the development of strategies for efficient sensor
placement has been conducted over the past years, the number of sensor placement
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techniques developed to manage the problems of practical scale is very limited (cf.
[6, 11, 18]), however some effective approaches have been proposed to cover various
experimental settings, including stationary [7, 12, 14, 19], scanning [8–10, 13, 21]
or moving observations [4, 5, 11, 15, 17, 20, 22].

The main aim of this work is to substantially extend the decentralized approach
to scanning sensor configuration reported in [10] to the setting of sensor networks,
where the observation system comprises multiple subnetworks and it is desired to
activate only a subset of their nodes during a given time interval while the other
sensors remain dormant. Additionally, the investigations include limitations on the
power consumption of individual sensor nodes. Motivations come from technical
limitations imposed on the time span of the measurements. These are inherent to
sensor nodes, which are supplied with power from batteries, and therefore their total
time of active work is limited.

46.2 Optimal Experimental Design Problem in Context

Let y = y(x, t; θ) denote the scalar state of a given DPS at a spatial point x ∈Ω ⊂
R
d and time instant t ∈ T = [0, tf ], tf <∞. Here θ represents an unknown constant
m-dimensional parameter vector which must be estimated using observations of the
system. Further, let assume that the state y is observed directly by N pointwise sen-
sors, from among only n are activated at time instants 0< t0 < t1 < · · ·< tK = tf
and will gather the continuous measurements for the duration of each subinterval
Tk = (tk−1, tk], k = 1, . . . ,K . Forming such an arbitrary partition on the time inter-
val T , the considered ‘scanning’ observation strategy can be formally represented
as

zm(t)= y
(
xk , t; θ

)+ ε(xk , t
)
, t ∈ Tk, = 1, . . . , n, k = 1, . . .K (46.1)

where zm(t) is the scalar output and xk ∈X stands for the location of the th sensor
at time subinterval Tk , X signifies the part of the spatial domain Ω where the mea-
surements can be made and ε(xk , t) denotes the measurement noise, which is cus-
tomarily assumed to be zero-mean, Gaussian, spatial uncorrelated and white [18].

Given the model response y(xk , t; θ) and the outcomes of the measurements
zm( · ),  = 1, . . . , n on time intervals Tk , estimate θ by θ̂ , a global minimizer of
the output least-squares criterion [10, 18]. Since the covariance matrix cov(θ̂ ) of the
least-squares estimator depends on the active sensor locations xk , therefore some
measure Ψ quantifying the ‘goodness’ of different sensor configurations is required.
Such criterion is customarily based on the concept of the Fisher Information Ma-
trix (FIM) which is widely used in optimum experimental design theory for lumped
systems [1, 18] as its inverse constitutes a good approximation of cov(θ̂ ).

The optimal sensor scheduling problem consists in seeking for each time subin-
terval Tk the best subset of n locations from among the N given potential ones.
More precisely, the problem is to divide for each time subinterval the N available
sensor nodes into n active ones and the remaining N − n dormant ones so as to
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maximize the criterion associated with the parameters to be estimated. However,
since the available battery power for each node is limited, we impose the crucial
constraints on total activation time for each individual sensor node in the form of
the upper limit L denoting the maximal number of time subintervals the sensor is
allowed to be active.

Introducing for each possible location xi (i = 1, . . . ,N ) a set of variables viks,
each of them taking the value 1 or 0 depending on whether or not a sensor residing
at xi is activated during Tk . Therefore, in our setting, the FIM is given by [10]

M =
N∑

i=1

K∑

k=1

vikMk
(
xi
)
, (46.2)

whereMk(xi)= 1
tf

∫
Tk
g(xi, t)gT(xi, t)dt and g(x, t)= [ ∂y(x,t;ϑ)

∂ϑ1
,. . . ,

∂y(x,t;ϑ)
∂ϑm

]T
ϑ=θ0

stands for the so-called sensitivity vector (θ0 is some preliminary estimate re-
quired for its calculation). As for a specific form of Ψ , various options exist [1],
but the most popular criterion to be maximized, called the D-optimality criterion,
is the log-determinant of the FIM, i.e. Ψ (M) = log det(M). Hence, denoting as
v = [vik]i=1,...,N

k=1,...,K , our design problem takes the following form:

Problem 46.1 Find v maximizing P(v) = Ψ (M), subject to vik ∈ {0,1},∑N
i=1 v

i
k = n, k = 1, . . . ,K and

∑K
k=1 v

i
k ≤ L, i = 1, . . . ,N .

This constitutes a 0–1 integer programming problem which necessitates an orig-
inal and efficient solution. Suppose that the matrix M(v�) is nonsingular. It can be
shown [11, Prop. 6.1, p. 162] that the matrix v� constitutes a global solution to
Problem 1 if, and only if, there exist numbers λ�k , k = 1, . . . ,K such that

φ
(
i, k, v�

)= tr
[
M−1(v�

)
Mk

(
xi
)]
{
≥ λ�k if vik

� = 1,
≤ λ�k if vik

� = 0.
(46.3)

46.3 Decentralized Multi-exchange Algorithm

To make the outlined idea useful in applications, a numerical algorithm has to be
employed. In [21] an effective computational scheme was developed and further
improved in [11, 16] to effectively solve a similar problem based on the notion
of so-called directly constrained design measures. Nevertheless, its fully central-
ized character makes it vulnerable with respect to the failures of individual network
nodes. Therefore, the key property of the resulting procedure should be an efficient
distribution of computations between the sensor nodes in a decentralized way. On
the other hand, the fully distributed algorithm proposed in [10] may lead to signif-
icant rate of communications between individual sensors in the network, slowing
down the convergence. Hence, the main aim of this work is to derive the algorith-
mic procedure which combines the advantages of those two approaches, providing
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a compromise between reasonable rate of communications and distributed structure
of computations.

The general idea is to construct a two-level structure of the network. First, we
introduce the partitioning of network into G disjointed groups of sensors (subnet-
works) with Np sensors in the pth group, in such a way that

∑G
p=1Np = N . As

the issue of optimal partitioning is far beyond the scope of this paper, here we as-
sume that this is done arbitrarily. The resulting subnetworks are forming the lower
level of our structure. Further, we assume that for each group we have the same
superior entity, further called as master node, responsible for observation schedule
optimization within the scope of individual group. These master nodes form the
higher level of network which serves as the routing layer for exchanging the data
between subnetworks, stores the local activation schedules and finally performs all
the computations. The network nodes at lower level within each group communicate
only with their master node to upload sensor readings during the actual experiment.
In such a way, we obtain the mixed structure: centralized at level of subnetworks
and decentralized on the level of master nodes which are responsible for distribut-
ing computations.

In the following we assume the asynchronous time model for the configuration
process. Let r = 0,1,2, . . . be the discrete time index, which partition the continu-
ous configuration time axis into time slots Zr = (zr−1, zr ].

Owing to (46.3), v�k should be nonzero in the areas where φk( · , · , v�) takes on
a larger value. Thus the central idea when constructing a computational algorithm
for sensor density optimization is to move at configuration iteration r some obser-
vational activity from areas with smaller values of φ( · , · , v(r)) to those with larger
values, as we expect that such a procedure will improve current solution v(r). The
only component of φ( · , · , v(r)) which cannot be calculated independently of other
nodes is the global information matrix (46.2) being a weighted average of the lo-
cal information matrices Mk(xi). In such a way, our task is closely related to the
problem of distributed averaging on a sensor network [2]. One of the simplest tech-
niques dedicated for distributed averaging is a pairwise communication flooding,
also known as a gossip scheme, which in its classic version assumes that at the r th
time slot the pth sensor contacts some neighboring node q with probability Pij , i.e.,
a pair (p− q) is randomly and independently selected. At this time, both nodes set
their values equal to the average of their current values.

In our setting the problem is slightly different as not all of the nodes contribute
to the global estimate of FIM at the r th configuration slot. Therefore, apart from
updating local estimates of the FIM the sensor nodes should be equipped with a
mechanism to store and change the global activation schedule v(r). This can be
achieved by the exchange of tokens representing the activation of the sensors at
given subintervals Tk . Such tokens are transferred between nodes in the situation
where a neighbor node at particular observation subinterval Tk is more informa-
tive in the sense of the function φ calculated on the current estimates of FIM (and,
obviously, it is not activated yet). Furthermore, the total number of tokens at local
node can be easy controlled with respect to the maximal number L of active time
subintervals for individual sensor.
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Algorithm 46.1 Distributed data exchange model. Indexes p and q denote, respec-
tively, data from local repository and obtained from neighbor

1: procedure EXCHANGE_PROTCOL
2: EXCHANGE(Mp ,Mq )
3: EXCHANGE(v(p), v(q))
4: Mp← RECENT(Mp ,Mq )
5: Mavg ← AVG-NOT-NULL(Mp)
6: for k← 1,K do
7: for ← 1,Np do
8: φk← tr[M−1

avgMk(x
)]

9: end for
10: EXCHANGE((φk)

Np
=1, (φ


k)
Nq
=1)

11: PASS-TOKEN((φk)
Np
=1, (φ


k)
Nq
=1)

12: end for
13: Mnew(p)=∑Np

i=1

∑K
k=1 v

i
k(p)Mk(xi(p))

14: M
p
p = (Mnew(p), r)

15: EXCHANGE(Mnew(p),Mnew(q))
16: M

p
q = (Mnew(q), r)

17: end procedure

Let Mm
j denote the local estimate of the FIM from the j th subnetwork stored at

mth master node and the rmj be the configuration time when Mm
j has been updated

for the last time. At r = 0 a sensor network starts with arbitrarily given token alloca-
tion and the following initial values of FIM estimatesMm

j =
∑Nm
i=1

∑K
k=1 v

i
kMk(x

i)

if j =m andMm
j = NULL if j �=m, where NULL means that FIM estimate is un-

known. In that way, at mth master node the collection of pairsMm = (Mm
j , r

m
j )
G
j=1

is stored. Then, at each subsequent time slot Zr a random pair (p, q) of master
nodes performs communication. The scheme of calculations form the point of view
of pth node is embodied in Algorithm 46.1. The crucial operators of this procedure
are:

• EXCHANGE operator stands for pairwise duplex exchange of data between two
master nodes

• RECENT operator is responsible for building a list of the most recent values from
pairs generated by iterating element-wise along both operands and updating the
older value of FIM (i.e.Mp

j ←M
q
j if rpj < r

q
j andMq

j ←M
p
j otherwise)

• AVG-NOT-NULL operator computes the average of input collection of informa-
tion matrices rejecting those the NULL ones (NULL values are simply treated to
be missing)

• PASS-TOKEN operator determines for each time subinterval Tk , the worst ac-
tive sensor within the subnetworks p and q (in terms of lowest current value of
φ( · , k, v(r))) and the best inactive sensor (in terms of greatest current value of
φ( · , k, v(r))), which is currently active in less than L time subintervals (so that it
could become active). If no such sensors exist then the operator does nothing. If
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φ(worst, k, v(r)) < φ(best, k, v(r)) then vworst
k ← 0 (deactivation of worst active)

and vbest
k ← 1 (activation of best inactive). In particular, for this purpose, some

existing efficient exchange algorithms can be applied [10, 18, 21].

46.4 Simulation Example

Consider the problem of sensor configuration for parameter estimation in the pro-
cess of air pollutant transport-chemistry over a given urban area Ω , being a square
with a side of length 1 km. In this domain, two active sources of pollution are
present, which yield the pollutant spatial concentration y = y(x, t). The evolution
of y over the observation interval T = (0,1000] (in seconds) is described by the
following initial–boundary problem:

∂y(x, t)

∂t
+∇ · (v(x, t)y(x, t))=∇ · (κ∇y(x, t))+ f1(x)+ f2(x), x ∈Ω

∂y(x, t)

∂n
= 0, on ∂Ω × T , y(x,0)= y0, in Ω, (46.4)

where terms f(x) = μ exp(−100‖x − χ‖2),  = 1,2 represent the pollutant
sources with emission intensities μ located at the points χ = (χ1 , χ2 ),  = 1,2,
and ∂y/∂n stands for the partial derivative of y with respect to the outward nor-
mal to the boundary ∂Ω . The average spatio-temporal changes of the wind ve-
locity field over Ω were approximated according to the model (scaled in [km/h])
v(x, t)= 7.2 ·(x1+x2− t ·10−3; (2x1−1)t ·10−3+x2−1). Furthermore, κ denotes
an unknown turbulent diffusion coefficient.

The goal of this simulation is to determine the locations of the pollutant sources,
their emission intensities and the unknown diffusion coefficient. In order to esti-
mate the parameter vector θ = (μ1, χ

1
1 , χ

1
2 ,μ2, χ

2
1 , χ

2
2 , κ) a sensor network with

scanning nodes has been applied. The observation horizon was split into 5 evenly
partitioned subintervals Tk = (200(k − 1),200k], k = 1, . . . ,5.

The initial values of the parameters to be identified were assumed to be θ0 =
(12 kg/s,0.4 km,0.7 km,15 kg/s,0.8 km,0.3 km,50 m2/s). The possible sensor
locations were chosen from the mesh of N = 460 points uniformly distributed
over the area Ω (depicted in Fig. 46.1). The problem was to design a D-optimal
schedule to activate at each subinterval Tk a subset of n = 100 out of N = 460
sensors that would take the measurements, simultaneously providing that a sin-
gle node would be active for no more than L time subintervals. It was assumed
that all master nodes form a fully connected communication graph with uni-
form probability distribution of a single communication between a given pair
of them. The number of groups G was set to 21. Such two-level structure al-
lowed to reduce the number of sensor pairwise communications by the factor of
103 in comparison to fully distributed communication scheme [10]. For the pur-
pose of this experiment we assumed that the resulting groups should be of sim-
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Fig. 46.1 Final allocation of active sensors at selected time subintervals subject to various time
activation constraints (a)–(b) and without time constraints (c)

ilar cardinality. The initial sensor configuration was chosen randomly for each
time subinterval Tk . The activation schedules obtained for various upper limits
L are shown in Fig. 46.1. The network activation patterns follow the complex
changes in the concentration of the pollutant proliferating from two sources. It
becomes clear that the restrictive constraints on activation time lead to slight de-
crease in solution efficiency, but provides better distribution of measurement ef-
fort between the network nodes as the activated clusters are more spatially scat-
tered.
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46.5 Conclusion

The sensor scheduling problem in view of accurate parameter estimation for dis-
tributed parameter systems subject to limitations both on the total number of acti-
vated sensor nodes and activation time has been addressed. As a result, an exchange
algorithm is developed which operates efficiently in a decentralized manner.

Further research will be directed toward the open issue of the sensor partitioning
scheme which is of great importance from the point of view of convergence rate.
Finally, the current solution allows two master nodes to exchange only one token for
each time interval during a single communication. Therefore, some more efficient
token exchange schemes will be investigated as well.
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21. Uciński D, Patan M (2002) Optimal location of discrete scanning sensors for parameter esti-
mation of distributed systems. In: Proc 15th IFAC World Congress, Barcelona, Spain, 22–26
July 2002, pp 22–26. Published on CD-ROM
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Chapter 47
Least Squares Estimators of Peptide Species
Concentrations Based on Gaussian Mixture
Decompositions of Protein Mass Spectra

Andrzej Polanski, Michal Marczyk, Monika Pietrowska, Piotr Widlak,
and Joanna Polanska

Abstract In this paper we propose to use Gaussian mixture decompositions of pro-
tein mass spectral signals to construct least squares estimators of peptide species
concentrations in proteomic samples and further to use these estimators as spectral
features in cancer versus normal spectral classifiers. For a real dataset we compare
variances of least squares estimators to variances of analogous estimators based on
spectral peaks. We also evaluate performance of spectral classifiers with features
defined by either least squares estimators or by spectral peaks by their power to
differentiate between patterns specific for case and control samples of head and
neck cancer patients. Cancer/normal classifiers based on spectral features defined
by Gaussian components achieved lower average error rates than classifiers based
on spectral peaks.

47.1 Introduction

Majority of procedures for processing of proteomic mass spectral profiles involve
direct detection and alignment of individual peaks in the spectra, with the underlying
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hypotheses that each spectral peak corresponds to a specific protein/peptide ion reg-
istered, and positions and heights of peaks carry information on compositions of the
analyzed samples. Consequently, the largest portion of the published mass spectral
classifiers for distinguishing between case and control samples in proteomic data
include procedures for direct extraction of spectral peaks and using their parameters
for classification, e.g., [1–4, 8, 10, 17].

Obviously, reducing the MS signal to a list of spectral peaks leads, at least in
principle, to the loss of information. Some of structural elements of the MS signal
can be lost and peaks heights data can be corrupted by noise of excessive level.
These concerns can be addressed by representing the MS signals with the use of
more developed mathematical model. An obvious choice is a mixture model with
Gaussian distribution functions as a natural option for the component functions. Ap-
plication of mixtures of Gaussian probability distribution functions to dissolve mass
spectra of protein mix has been already studied. Several aspects of using Gaussian
mixture modeling for protein MS spectra were highlighted in [6, 11, 14, 15, 20].
In particular, in the cases where there are overlaps between components (peaks),
mixture models enable detecting components “hidden” behind others. Components
of mixture models of MS spectra are characterized by both positions and shapes
(widths), while in peak detection methods the information on shapes is missing.

However, none of the mentioned papers analyzed mixture models in the context
of developing proteomic mass spectral features and their practical validation in clas-
sification experiments. In this paper we point out that, on the basis of Gaussian mix-
ture decomposition of the MS signal [11, 13] it is possible to define least-squares
estimators of peptide species concentrations in the protein mix and to propose a
method for classification of proteomic MALDI-ToF mass spectra, based on defin-
ing the spectral features by these least-square estimators.

The proposed methodology has been applied to the MALDI-ToF mass spectra
dataset, comprising spectra of plasma samples of head and neck cancer patients and
healthy donors [16]. In computational experiments we demonstrated improvements
achieved by the use of the proposed method. We verified the proposed spectral fea-
tures by comparing variances of estimators of features defined by least-squares to
those defined by peak heights and by comparing spectral classifiers based on either
least-squares estimates or peak heights.

47.2 Estimators of Peptide Concentrations

A MALDI-ToF mass spectrum contains information about exact mass-to-charge
(m/z) values of registered peptide ions and their abundance (i.e., numbers of counts
from ion detector). We denote measurement points along the m/z axis by xn. The
numbers of ion counts corresponding to times of flights xn are denoted by yn,
n = 1,2, . . .N . N is the number of data points in the spectrum. Real experimen-
tal data always consist of more than one spectrum. To each point xn along the m/z
axis correspond counts ymn, m = 1,2, . . . ,M , where m denotes the index of the
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spectrum and M is the number of the spectra. The assumption that the sets of val-
ues at the m/z axis, xn, n = 1,2, . . .N , are identical for all spectra in the dataset
is frequently not true; mass spectrometers often generate different sets and differ-
ent numbers of measurement points xn along the m/z axis for different spectra. In
order to unify values of xn among all spectra, methods of linear interpolation and
trimming are typically applied. Unifying the m/z scale among different spectra by
interpolation and trimming is often combined with the operation of binning, which
reduces the size of the data and also rejects some of the noise.

The protein mix in the analyzed sample contains a set of peptide species, whose
presence in the sample is manifested by maxima (peaks) of the MS signals. We
think on one peptide species in the analyzed protein mix sample and we denote its
concentration by θ . Below we describe two methods of estimating the value of θ .

47.2.1 Peak Estimator

When we use a spectral peak to estimate θ then the formula for estimator, denoted
by θ̂P can be written, with some simplification, as follows

θ̂P =Kmax
n
yn (47.1)

where K is a constant. The above estimator is called a spectral peak estimator of θ .
The simplification follows from the fact, that peak detection algorithms [21] often
include additional smoothing operators for reducing the influence of noise on the
estimation, which can change the exact position of the maximum. The value of the
constantK scales units of peptide concentration to numbers of ion counts registered
in the spectra. For the purpose of analyses performed in this paper, we assume that
K = 1.

47.2.2 Least Squares Estimator

By contemplating the plots of fragments of the spectra in Fig. 47.1 (left panel) we
come to the conclusion that the spectral signal yn provides repeated measurements
of the concentration θ . Due to finite resolution of protein mass spectrometers and
due to the presence of isotopic forms of atoms in molecules the concentration θ is
reflected in all values of the spectral signal yn at m/z coordinates in the vicinity of
max(yn). We assume that the values of the spectral signal are related to θ by the
following linear model

yn = bnθ + en (47.2)

In the above bn and en describe, respectively, the gain coefficient between spectral
signal and the concentration θ , and a random error. After writing Eq. (47.2) in the
vector form
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y = bθ + e (47.3)

where y and b are column vectors composed of elements yn and bn, respectively,
(with the appropriate range of indices n) one can compute the least-squares estimate
of θ as follows (e.g., [5])

θ̂ = aT y, (47.4)

where

a = b

bT b
. (47.5)

In order to apply the least squares estimator (47.4) to a dataset we additionally
need to know (estimate) values of the gain coefficients bn. With an abundance of
data provided by proteomic spectra, we can reliably estimate b by the following
procedure. We average over all spectra in the analyzed dataset, which strongly re-
duces the influence of the random error. We assume that fragment of the average
spectrum modeled by a Gaussian component corresponds to the error-free version
of the relation (47.2). The Gaussian component function corresponding to θ can be
written as follows

fθ (xn)= αθ 1√
πσθ

exp

[
− (xn −μθ)

2

2σ 2
θ

]
. (47.6)

In the above formula αθ denotes the Gaussian component scaling factor and μθ and
σθ are, respectively, its expectation and dispersion. Using the notation in (47.6) we
obtain the formula for bn

bn = fθ (xn), (47.7)

which allows for efficient use of the least squares estimator (47.4).
We want to compare peak and least squares estimators, which requires that they

are scaled equally. Assuming noise free environment and comparing (47.1) with
K = 1 to (47.4) we derive appropriately scaled least squares estimator of θ , denoted
by θ̂LS, defined as follows

θ̂LS = aT y
∑
an
. (47.8)

47.3 Gaussian Mixture Decomposition of the MS Dataset

The analyzed dataset [16] includes 52 MALDI-ToF mass spectra of plasma pro-
teome. Blood samples were collected in a group of 22 head and neck squamous-cell
cancer male patients and in a group of 30 sex- and age-matched healthy donors.
The theoretical resolution of the spectrometer used for our experiments was 0.01 %.
Spectral fragments ranging from 2,000 to 10,000 Da have been selected for analy-
ses. For each of the 52 samples, mass spectra were registered 4 times and the mean
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Fig. 47.1 Left panel, upper plot: Fragments of all 52 protein spectra from the head and neck
dataset, from the range defined by the fourth component μ4 − 3σ4 < x < μ4 − 3σ4. Additionally,
the m/z position of the peak mz = 9205.5 Da detected in the range of the fragments is shown by
a vertical line. Left panel, lower plot: Again fragments of all 52 protein spectra, the same as in the
upper plot, are shown. Additionally, the (scaled) probability density function corresponding to μ4,
σ4 is drawn. Right panel: Histograms of values of the peptide concentrations (with m/z coordinate
close to 9205.9 Da) concentrations, estimated with the use of peak estimator (upper plot), and
estimated with the use of least squares estimator (lower plot)

over 4 experimental repetitions was taken for further analyses. Spectral signals were
binned with the resolution 1 Da and, after removing baselines and normalizing [18]
average spectrum yAn was computed.

Gaussian mixture decomposition of the average spectrum was estimated with the
use of an appropriate version of the EM algorithm iterations [6, 11, 13, 19]. EM
iterations were started by using the “inverse CDF” method and augmented by some
modifications that prevented divergence [19].

47.4 Comparison of Estimators by Variances of Estimated
Concentrations

Lest squares estimator (47.8) should, in principle, provide better (lower variance) es-
timates of the concentration θ than “isolated point” peak estimator (47.1). However,
due to simplifying assumption in our derivations, the hypothesis on the advantage
of least squares over peak estimators can get support by additional verification on
the real dataset.

In order to compute peak estimators we used the algorithm and the computer pro-
gram CWT described in [7] publicly available in the Internet, for detection of peaks
of the proteomic spectra. This algorithm is considered as one of the best among
algorithms for spectral peak extraction [21]. We used the program CWT with the
settings reported as optimal in [21] which led to the detection of K = 60 peaks
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and to obtaining values of heights of these peaks for the spectra. Since the obtained
number of peaks was rather low (in view of visual inspection for the average spec-
trum) we additionally modified the parameter ampTh from the default 0.01 to 0.005,
which led to obtaining the second, larger set of K = 84 peaks. (Parameter ampTh is
the lowest threshold value, expressed relatively to the value of the highest detected
peak, for the peak to be considered above the noise).

In order to compute least squares estimators two Gaussian decomposition models
were found on the basis of EM iterations, where numbers of components were as-
sumed K = 80 and K = 100. In the next step we have identified five Gaussian com-
ponents, μ1 = 2013,3 Da, σ1 = 3.39 Da, μ2 = 6698.1 Da, σ2 = 33.55 Da, μ3 =
8995.4 Da, σ3 = 26.79 Da, μ4 = 9205.9 Da, σ4 = 33.87 Da, μ5 = 9479.3 Da,
σ5 = 46.93 Da. These Gaussian components appear in both decompositionsK = 80
andK = 100 and they are quite well separated from other components. For all these
five components we can also easily assign spectral peaks computed by using CWT,
present both in K = 60 peaks and K = 84 peaks decompositions. We have chosen
“clear” components separated from others due to simple assignment between Gaus-
sian components and peaks, and because the fact that for overlapping components
the assumption of equal scaling of peptide in (47.1) and (47.8) estimates can be
violated.

We have computed sample variances of estimates (47.1) and (47.8) for all five
locations. Variances of least squares estimators were always lower than variances
of peak estimators. Distributions of estimates of concentrations are strongly skewed
(see plots in the right panel of Fig. 47.1). Therefore we have used Levene’s test
[12] for comparing samples variances and we have obtained the following p-values,
corresponding to successive locations: 0.1156, 0.0463, 0.2092, 0.0360, 0.0074. P-
values are “low” and in three out of five locations the hypothesis on equal variances
can be rejected at the significance level less than 0.05.

In the left panel of Fig. 47.1 we show fragments of all 52 protein spectra in the
range defined by the fourth component μ4 − 3σ4 < x <μ4 − 3σ4. In the upper plot
in the left panel we illustrate the idea of computing peak estimators by drawing a
vertical bold line at the position of the detected spectral peak. In the lower plot of the
left panel we illustrate the idea of the least squares estimator by drawing (bold line)
the (scaled) probability density function corresponding to μ4, σ4. In the right panel
we present histograms of values of the peptide concentrations (with m/z coordinate
close to 9205.9 Da) concentrations, estimated with the use of peak estimator (47.1)
– upper plot, and estimated with the use of least squares estimator (47.8) – lower
plot.

47.5 Comparison of Spectral Features by Accuracy of
Classification

In addition to comparison of variances of selected estimators we have also compared
precisions of classifiers based on spectral features defined by estimators of peptide
concentrations, peak estimator (47.1) and least squares estimator (47.8).
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Table 47.1 Prediction powers of SVM classifiers based on four systems of spectral features.
Abbreviations: LS K = 80 – least squares features, 80 Gaussian components, LS K = 100 –
least squares features 100 Gaussian components, Peaks K = 60 – peak features, 60 peaks, Peaks
K = 84 – peak features, 84 peaks

Classifier LS KS= 80 LS K = 100 Peaks K = 60 Peaks K = 84

Lowest error rate 0.17 0.19 0.24 0.23

Then we have carried out standard training – validation experiments for classi-
fiers based on biomarkers chosen from sets of spectral features. Construction of the
classifier involved using the training set to recruit a number (2–50) of top differenti-
ating spectral features based on the values of the t statistics. We were using Matlab
implementations of the SVM [9] training – classification algorithms. The procedure
of 10 – fold validation was repeated 500 times to estimate the average error rate and
its standard deviation. We have tried SVM classification algorithms with different
kernels and we report predictive powers of the SVM classifier, optimized with re-
spect to the choice of the kernel type (linear, quadratic, Gaussian). For both types of
spectral features, best classification results were obtained by using the SVM clas-
sifier with the Gaussian kernel (option named rbf in the Matlab procedure). For all
classifiers lowest error rates were achieved for numbers of differentiating spectral
features from the same range 10–15.

The prediction powers of the SVM classifiers represented as best (lowest) per-
centage of errors in the 10-fold cross validation experiments are shown in Table 47.1
below. As one can see for spectral classifier based on features defined by least
squares estimators the error rates are lower than those obtained in classification
based on spectral peaks.

47.6 Conclusion

Computational experiments for a real proteomic MS signals dataset prove that the
idea of using Gaussian mixture decompositions of spectral signals to construct least
squares estimators of peptide species concentrations in the protein mix and further to
construct spectral classifiers can lead to useful results. In the real dataset variances
of least squares estimators were statistically significantly lower than variances of
peak estimators and classifiers based on features defined by least squares estimators
achieved lower average error rates than classifiers based on spectral peaks.
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Chapter 48
Detection of Essential Changes
in Spatio-Temporal Processes with Applications
to Camera Based Quality Control

Ewaryst Rafajłowicz

Abstract Our aim in this paper is to propose a simple detector of changes in time
that is well suited for parallel use at a large number of spatial sites, since our main
motivation is change detection in a sequence of images that are dedicated for quality
control of continuously running industrial processes.

48.1 Introduction

Our aim is to propose a new look at change detection tasks that arise when we
observe a large number of parallel processes that may change in time. To motivate
our approach, consider a sequence of images provided by a camera that follows
the quality of a certain production process. Each image contains millions of pixels.
Fixing our attention at a particular pixel we can observe fluctuations of its grey levels
in time as one time series. Applying a change detector (e.g., EWMA, CUSUM etc.)
to all time series arising from observing each pixel, for each instant of time we
obtain a set of YES/NO decisions concerning the presence or absence of a change.
It is clear that the change at one pixel only is rather unimportant from the view point
of the production quality control. We should rather concentrate on more massive
changes that arise in a spatially concentrated area at the same (or approximately the
same) time.

From the statistical point of view quite similar change detection tasks arise when
a bank observes the amount of money collected on accounts of its clients. Even a
sharp change of deposits of one or several clients is usually not important. However,
when we detect essential deposit changes of a larger group of clients approximately
at the same time (and possibly in the same city or region), then it should be an
indicator that something important may happened in the banking market.

One more example of a need for detecting massive changes of parallel processes
comes from following intensity of the traffic in the Internet. The growth of the traffic
intensity approximately at the same time to a group of web pages is well known
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indicator of hackers attack. In this case a geographical closeness may not appear,
but attacked web pages may have similarities of other kind, e.g., the same owner.

In the same vain one can consider:

– a health care system, when the growing number of patients in a certain area should
be detected as a possible indicator of an epidemia,

– a stock market – prices of shears of enterprises can fluctuate, but a rapid reduction
of them at a certain area can be a symptom of certain economic changes.

All the above examples have the following common features:

1. observed processes run in parallel, but not necessarily independently, in time at
different sites (spatial locations),

2. change detection along time axis at one or even a few site(s) (pixels) can be
neglected, unless they have very high or very low values in comparison to typical
(in-control) state,

3. moderate in size changes of observed variables, arising in time and at moderate
area in space are typical cases to be detected,

4. smaller changes of observed variables, but arising at larger areas in the spatial
domain should (or at least could) be considered as an alarm,

5. changes along time axis may arise not necessarily at the same time instant, but
can be spread in a certain time interval.

Additionally, one should distinguish between up and down changes, because at a
certain area the number of up changes may dominate largely the number of down
changes and the former can be neglected.

Clearly, the terms used above like: “high” and “low” changes as well as “close”
time instants and “larger area” are problem dependent and require to be defined
precisely at scales relevant to an application at hand.

The above list of possible changes of interest can be named spatio-temporal
change detection problems. One can try to solve some of them using the classic
control charts and aggregating observations over the spatial domain. However, such
approaches may lead to overlooking changes along time axis when the aggregation
covers larger spatial regions. Furthermore, not all the above sketched problems can
be solved using a spatial aggregation.

For these reasons it seems justified to consider new kinds of spatio-temporal
change detectors. Apparently, it is not possible to propose change detectors for all
the above mentioned problems in one paper.

We propose a simple change detector of changes in time that is well suited for
parallel use at a large number of spatial sites. The idea is based on exponentially
weighted moving average smoothing (EWMAS), but the detector itself is different
than the one that is used in the classic EWMA chart. In particular, it allows to distin-
guish between jumps of a moderate size and those that are large. It keeps the main
advantage of the classic EWMA chart, namely, there is no need to store historical
data, i.e., for the current decision it suffices to have the present smoothed state and
the current observation, which is crucial importance when we have to monitor mil-
lions of sites or pixels. The EWMAS is based on the idea of vertical weighting that
was used for detecting changes in space (edges) in [14].
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Detection of spatio-temporal changes may also include

1. changes along curves at the spatial domain that are observed at the same (or
close) time instant(s) can also be of interest (e.g., as in edge detection tasks in
image sequence processing),

2. changes of the observed variable that “travels” in time along curves at the spatial
domain.

These tasks are much more difficult than those listed above and they are outside the
scope of this paper.

Quality control of continuously running industrial production processes is the
subject of research for many years (see [10] and the bibliography cited therein and
[16, 18] for recently proposed nonparametric control charts). These charts as well
as classic control charts like the Shewhart one, CUSUM, EWMA are well suited for
detecting changes in time. In the stream of research called spatial statistics (see [3]
and the bibliography cited therein) the topic of detecting changes in space domain
is present. Somewhat unexpectedly, detecting changes simultaneously in time and
space has not so rich bibliography as one might expect. The main contributions
in this direction come from applications of image sequences processing and their
applications in geoscience (see [1, 5, 6, 11, 17]). Quickest detection of significant
changes in a sensor net that is based on a non-cooperative stopping game which
is a model of the multivariate disorder detection has been proposed in [19]. The
approach proposed in [12] also covers spatio-temporal changes as a special case of
detecting jumps of time series with values in a Banach space.

In recent years one can observe a rapid development of relatively cheap, high res-
olution and high speed industrial cameras that are well suited for quality monitoring
of such processes (see [7]). Simultaneously, a high speed, running in parallel com-
puters and graphical processing units (GPU) made it possible to process sequences
of high resolution images on-line. As a result, the stream of research on control
charting with image data, which is closely related to this paper, is rapidly growing
(see [9] for a stimulating review and [8, 13] for more recent contributions).

The paper is organized as follows. In the next section we describe our version
of EWMAS temporal change detector and present its elementary properties. Then,
we shall describe how a bank of such change detectors can be used to detect spatio-
temporal changes. Finally, we present an example of application to quality control
of a copper slab using images from a camera.

48.2 EWMA Smoothed Jump Detector

For simplicity, we shall describe our jump detector in 2D spatial case, but the exten-
sion to larger dimensions is immediate. Let x = (x(1), x(2)) ∈Ω denotes a spatial
position (e.g., of a pixel or site) in a rectangular domain1 (image)Ω . By t = 1,2, . . .

1It is convenient to work with a rectangular domain, but all the considerations convey easily to
other domains, integer lattices or finite sets.



436 E. Rafajłowicz

we denote time instants when observations are made (e.g., images from a camera are
sampled). Observed real-valued random field (e.g., grey-level image) Y(x, t) results
from observing an unknown function m(x, t) with zero mean, finite variance addi-
tive errors ε(x, t), i.e.,

Y(x, t)=m(x, t)+ ε(x, t), x ∈Ω, t = 1,2, . . . . (48.1)

The probability distribution of ε(x, t) is unknown, but – for simplicity of the expo-
sition – we assume that there exists its p.d.f., denoted by fε , which does not depend
on x and t and it is symmetric. We also assume that Y(x, t) and Y(x′, t ′) are un-
correlated for t �= t ′, t, t ′ = 1,2, . . ., x, x′ ∈Ω , even if x = x′. However, for each t
a spatial correlation is allowed. This assumption will be used only when theoretical
properties of our jump detector are investigated.

Consider a symmetric and unimodal kernel K :R→R+ such that K(0)= 1 and
K(z)→ 0 as |z| →∞. In particular, the gaussian KG(z)= exp(−z2/2) kernel and
the uniform one: KU(z) = 1 for |z| ≤ 1 and KU(z) = 0 for |z| > 1 are of special
interest.

Then, for m(x, t) we have the following nonlinear equation (see [15] for the
proof that can be adopted to the case considered here):

m(x, t)= κ−1E
[
Y(x, t)K

((
Y(x, t)−m(x, t))/H )]

,

x ∈Ω, t = 1,2, . . . (48.2)

where κ
def= ∫∞

−∞K(z/H)fε(z)dz. Equation (48.2) can be the source of many em-
pirical versions for estimating m(x, t). We select one of the simplest that can be run
in parallel w.r.t. time for each site (pixel) x ∈Ω . Namely,

m̂(x, t + 1)= (1− α)m̂(x, t)+ α
κ̂
Y (x, t)K

((
Y(x, t)− m̂(x, t))/H )

, (48.3)

where t = 1,2, . . ., x ∈Ω , while 0< α < 1 is a smoothing parameter. Also K and
H > 0 are selected by the statistician. κ̂ can be estimated from residuals, because
κ =E[K(ε(x, t)/H)]. If the variance of ε(x, t) is small in comparison to H 2, then
κ is close to 1 and later on we take κ̂ = 1.

A really fast version of (48.3) one obtains for the uniform kernel:

m̂(x, t + 1)= (1− α)m̂(x, t)+
{

0, if |Y(x, t)− m̂(x, t)|>H
αY(x, t) if |Y(x, t)− m̂(x, t)| ≤H

(48.4)

From (48.4) it is clear that m̂(x, t +1) is essentially updated only if there is no jump
larger than H > 0.

Spatio-Temporal Change Detector – Basic Version

Step 1 – Detection of changes in time. For current time instant t and for every x ∈
Ω calculate matrix B(x, t) of the same size as Ω in the following way:

B(x, t)=
{

1, if |Y(x, t)− m̂(x, t)|>H
0, if |Y(x, t)− m̂(x, t)| ≤H (48.5)
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Step 2 – First decision. If
∑
x∈Ω B(x, t)≤ θ0, set t = t + 1, calculate (48.4) and go

to Step 1, otherwise, go to Step 3. Here θ0 ≥ 0 is a threshold preselected in
such a way that if we met only a few number of sites with time changes, we
can decide that there were no essential changes in the space–time domain.

Step 3 – Removing small clusters in the space domain. For fixed t one can interpret
B(x, t) as a binary image and apply image processing tools like morphologi-
cal erosion or blob analysis (see [2]) in order to remove single sites or small
clusters of them by setting the corresponding B(x, t)= 0.

Step 4 – Final decision. Select θ1 > θ0 as a threshold for declaring essential spatio-
temporal change. If

∑
x∈Ω B(x, t)≥ θ1, then declare essential change, set t =

t + 1 and go to Step 1. Otherwise, calculate (48.4) and also set t = t + 1 and
go to Step 1.

Remark Only (48.4) and Step 1 can be run in parallel, but these are the most time
consuming operations, because they are repeated for all x ∈Ω and all t .

If we skip Step 2 and Step 3 and fix a particular x ∈ Ω , then we can compare
the above algorithm for change detection in time with other control charts. As one
can notice, (48.4) runs as the EWMA chart with two exceptions. Namely, m̂(x, t)
is updated only when new observation is close to it. Thus, m̂(x, t) estimates the
process mean, but only in-control states. In contrary, in EWMA chart m̂(x, t) also
jumps are incorporated into m̂(x, t), if they were not detected. The second difference
is in that in the classic EWMA chart m̂(x, t) is compared to the threshold in order to
detect jumps. Here, the decision is based on the difference Y(x, t)− m̂(x, t), which
resembles the Shewhart control chart, however with important difference that the
smoothed in-control behavior m̂(x, t) is the base for comparisons. One may hope
that the proposed combination of the EWMA smoothing idea and the Shewhart chart
gives a detector that will be useful for spatio-temporal change detection.

By simple modifications one can easily tune the above basic algorithm to a vari-
ety of particular applications.

1. When only jumps above the mean are of interest, i.e., the conditions in (48.4)
and in (48.5) are replaced by Y(x, t) − m̂(x, t) > H (resp. ≤ H ), then in
Step 4 the final decision can take also jump heights into account as follows:∑
x∈Ω(Y (x, t)− m̂(x, t))B(x, t)≥ θ1.

2. In Step 4 the final decision takes into account changes detected at the same time
instant. When sampling rate in time is high, one can consider also changes that
occurred at several earlier time instants J ≥ 1, i.e.,

∑J
j=0

∑
x∈Ω B(x, t−j)≥ θ1

at all spatial points. This require to store (J +1)th previous B(x, t− j)matrices.
3. One can replace the conditions in (48.5) by the following:

∣∣∣∣∣
Y(x, t)− z−1

∑

x∈Z(x)
m̂(x, t)

∣∣∣∣∣
>H (≤H, resp.),

where Z(x) is a neighborhood of x, while z is its cardinality. This version is less
sensitive to false alarms, but not so easy to run on parallel processors as (48.5).
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48.3 Some Properties of the Spatio-Temporal Change Detector

In this section we announce simple properties of the basic version of our spatio-
temporal change detector. By the lack of space, we omit most of the proofs that will
be published elsewhere. For simplicity, we assume that in the basic algorithm Step 3
and Step 4 is omitted.

For simplicity we assume that random errors are commonly bounded, i.e., there
exists E such that with probability 1, |ε(x, t)| ≤ E .H is selected such thatH ≥ 2E ,
which means that there are no guarantees of detecting jumps smaller than 2E .

In Control Behavior Let us assume for a while that there are no spatio-temporal
jumps, i.e., Y(x, t)=M(x)+ ε(x, t), x ∈Ω , t = 1,2, . . ., whereM(x) is a station-
ary proper background process. If our algorithm starts from m̂(x,0)= Y(x,0), then
the following properties can be proved.

InC1 E[m̂(x, t)] =M(x), x ∈Ω , t = 1,2, . . . .

InC2 The false alarm probability is zero for all x ∈Ω and t > 1. Notice that this is
the consequence of the assumptions: |ε(x, t)| ≤ E and H ≥ 2E .

InC3 For x ∈Ω and t = 1,2, . . . , define ε̂(x, t)=M(x)− m̂(x, t). Then, for ε̂ the
following recurrent relationships hold:

ε̂(x, t)= (1− α)ε̂(x, t − 1)+ αε(x, t), t = 1,2, . . . (48.6)

with the initial condition ε̂(x,0) = ε(x,0). Furthermore, (48.6) implies
|ε̂(x, t)| ≤ E .

InC4 For x ∈Ω and t = 1,2, . . . we have |Y(x, t)− m̂(x, t)| ≤ 2E .

Change Detection We firstly consider change detection in time for arbitrary but
fixed spatial site x ∈Ω . To this end we assume that at a certain time instant t0 > 1
for the first time

Y(x, t0)=M(x)+ r(x, t0)+ ε(x, t0), x ∈Ω (48.7)

where r(x, t0) is a jump to be detected, which is assumed to be persistent ((48.7)
holds also for t > t0) and bounded away from 0, i.e., there exists R > 0 such that
r(x, t0) > R, x ∈Ω .

We shall assume that R is known and R > 3E , because it defines the smallest
jump that we are able to detect immediately, as we shall see below. Select H > 0
such that

E ≤H <R − 2E . (48.8)

Let us note that m̂(x, t0) =M(x)+ ε̂(x, t0), according to (48.6), which can be in-
voked here, because there was no jump before t0. Hence, using this equality and
(48.7) we obtain

∣∣Y(x, t0)− m̂(x, t0)
∣∣= ∣∣r(x, t0)+ ε(x, t0)− ε̂(x, t0)

∣∣≥R − 2E . (48.9)
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Fig. 48.1 Defects detected on the copper slab – two subsequent frames (the left image was taken
first)

The last inequality follows from the following facts: r(x, t0) > R, |ε(x, t0)| ≤ E ,
which also implies |ε̂(x, t0)| ≤ E with probability one. In the worst case r(x, t0)+
ε(x, t0)− ε̂(x, t0) = R − E − E , which finishes the proof of (48.9). According to
(48.8) this implies |Y(x, t0)− m̂(x, t0)|>H .

Corollary 48.1 Under the above assumptions the jump is detected immediately
after its occurrence at each site x ∈Ω where it appears.

The above corollary was obtained under idealized assumptions. In practice, E is
not known and should be estimated from previous runs. If the errors have a distri-
bution with infinite support, then one can select E so as with probability 0< β < 1
errors are contained in the interval [−E ,E ]. Then, repeating the above reasoning,
we can say that with probability at least β jumps will be detected at time t0 at all
sites where they happened. Hence, if jumps appeared at K > θ1 sites, then the prob-
ability that less than θ1 of them will be detected at t0 can easily be calculated from
the binomial distribution, since the events of detecting or not detecting a jump at
each site at t0 are independent. If a jump in a certain site is not detected at t0 it will
be detected later with a high probability, but evaluating it is not so easy, because
heights of the undetected jumps enter into m̂(x, t0 + j), j = 1,2, . . . .

Example The above approach to spatio-temporal change detection can be used for
quality control of continuously running processes like production of plain fabrics,
paper, steel sheets, wires, slabs, uniformly painted surfaces etc. The idea is based on
a simple constatation that it is very difficult to detect a motion of a uniformly painted
or produced surface. In contrary, any defects, having different grey levels than the
proper surface, are easier to detect as moving objects, because they are frequently
visible at several subsequent images. Additional feature of our approach is its ability
to follow slow changes of a background, caused, e.g., by changes of its temperature
(see also [4]).

Exactly such circumstances appear when we want to detect defects (darker
places) on a proper (bright) surface of a hot copper slab continuously moving be-
fore a camera. Slow changes of the proper surface temperature make the task more
difficult. Applying the proposed approach with the uniform kernel K , α = 0.5 and
H = 6 grey levels (scale [0,255]) provides the results shown in Fig. 48.1, where
matrices B(x, t) and B(x, t + 1) are displayed as images. As one can notice, the
results are quite satisfactory – the same configuration of two cluster of defects was
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detected in two subsequent images (enclosed by ellipse) and in the next two, which
are not displayed.
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Chapter 49
The Impact of Renewables on Electricity Prices
and Congestion in a Regime Switching Model:
Evidence from the Italian Grid

Alessandro Sapio

Abstract In this paper, the cross-zonal impact of renewable energy (RE) on elec-
tricity prices is assessed by means of a time-varying regime switching model, fo-
cusing on the highly congested line connecting Sicily with the Italian peninsula.

In the base regime, there is no congestion and the price in Sicily (which equals
the system marginal price) depends on national electricity demand and RE supply. In
the congested regime, the Sicilian price depends on the local electricity demand and
RE supply, as well as on market power by local generators. The transition between
regimes is modeled through a dynamic probit, including, as explanatory variables,
the RE supply on both sides of the potentially congested line.

The regime switching model is estimated using hourly data from the Italian day-
ahead electricity market for the year 2012. As shown by results, congestion is de-
termined by the total amount of renewables in mainland Italy, but when the RE sup-
ply is disaggregated into different sources, one finds that congestion is mainly due
to photovoltaics (from the peninsula) and hydropower (wherever located), whereas
wind power has a negative effect on congestion regardless of localization.

49.1 Introduction

The regime switching model is now a staple in econometric research on liberalized
electricity markets. Indeed, it allows to account for the spikes that characterize the
time series of electricity prices, as in Huisman and Mahieu [5], Weron et al. [11],
Karakatsani and Bunn [8], and Janczura and Weron [6] among others. Typically,
regimes are assumed unknown, and transitions are modeled by means of a Markov
process. However, one key reason why spikes occur is congestion in the transmis-
sion grid, causing the emergence of local market power. This has led Haldrup and
Nielsen [3, 4] to build a regime switching model with known regimes delimited by
observable congestion episodes. This model is much easier to estimate, and lends
itself to a more straightforward economic interpretation. There was, however, one
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important limitation in Haldrup and Nielsen: constant transition probabilities. The-
oretical reasons [7] as well as goodness of fit [6] call for time-varying transitions.
Exploring what lies behind regime switches can also be a source of interesting pol-
icy insights.

This paper uses a time-varying regime switching model of electricity prices to
study a key issue in energy policy, namely, how grid congestion and the supply of
renewable energy sources interact to determine electricity prices. The downward
pressure on electricity prices that renewables exert in the short run, due to their
relatively low marginal cost, can be offset if they cause congestion and the ensuing
emergence of local market power. The impact of renewables can moreover depend
on the location of the generating plants.

The model comprises a base regime, with no congestion, and a congested regime.
Transitions depend on power demand and on the supply of renewable energy (RE) at
both ends of the potentially congested line. The model is estimated using hourly data
from the Italian day-ahead electricity market, observed in the year 2012, focusing
on the highly congested line linking two regions that are rich in renewables, such as
Sicily and the southern part of the Italian peninsula.

The next two sections illustrate the dataset, the methods and the results, before a
last section of concluding remarks.

49.2 Data and Methods

In order to assess the impact of RE supply on zonal electricity prices, it is useful
to conceive the Sicilian wholesale electricity price as going through two regimes.
In a base regime, there is no congestion and the price in Sicily equals the system
marginal price at the national level. Hence, it depends on the demand and supply
forces that determine the electricity market equilibrium at the national level. In the
congested regime, the Sicilian price differs from the other zonal prices, as it only
reflects the demand from local users and the supply from generators located on the
island.

Formally, let pzt , d
z
t , rzt , mzt be, respectively, the power price, power demand, RE

supply, and a market power index in zone z in period (hour) t , all in natural loga-
rithms, where z ∈ {Sicily,RoI, Italy} (RoI stands for Rest of Italy, i.e. the aggregate
of all zones different from Sicily).1 Let πt = Prob(ct = 1) ∈ [0,1] denote the prob-
ability that the line connecting Sicily with the neighboring South zone is congested
(ct stands for congestion at time t). In the base regime, pSicily

t = pItaly
t , hence we

assume the following model:

p
Sicily
t = ηbpSicily

t−k + αbd Italy
t + βbr Italy

t + εb,t (49.1)

where ηb , αb and βb are constant coefficients, k is a time lag, εb,t is an i.i.d. error
term with μb mean and standard deviation σb , and b refers to the base regime.

1In order to avoid missing values, 1 was added to the variables before taking logs.
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In the congested regime, pSicily
t �= pItaly

t , motivating the following model for the
Sicilian price:

p
Sicily
t = ηcpSicily

t−k + αcdSicily
t + βcrSicily

t + γcmSicily
t + εc,t (49.2)

where the coefficients are defined as in the base regime, with the addition of γc
(c stands for congested).2

By assumption, the probability that the Sicily-South line is congested at time t ,
πt , is driven by a dynamic probit:

πt =Φ
(
α1d

Sicily
t + α2d

RoI
t + β1r

Sicily
t + β2r

RoI
t +ψct−k

)
(49.3)

where Φ(.) denotes the Gaussian probability distribution function, and ct is a
dummy equal to 1 if congestion occurred in period t , ψ tunes the dependency of
the congestion probability on congestion observed in previous period t − k.3 Along
with demand and renewables from Sicily, the set of regressors includes demand and
renewables from the rest of Italy. The error term of the selection equation is allowed
to correlate with both εb,t and εc,t . The correlation coefficients, to be estimated, are
respectively θb and θc.

In line with the evidence on the short-term impact of renewables on electricity
prices (as reviewed e.g. by Guerci and Sapio [2]), we expect βb < 0 and βc < 0,
while basic microeconomic intuition suggests αb > 0 and αc > 0. The downward
pressure of renewables on electricity prices can however be (at least partly) offset
for Sicilian consumers if β2 > 0, because in that case, RE produced in the rest of
Italy causes congestion and leads to higher Sicilian prices.

The estimated impact of renewables, as from the outlined model, may hide dif-
ferences across sources, such as hydropower, wind, and photovoltaics, that are char-
acterized by rather different dynamics. Hence, in an alternative specification of the
model, rzt is replaced by the vector [hzt ,wzt ,pvzt ] (respectively: hydropower, wind,
photovoltaics, in natural logs). Specifications using the aggregate and disaggregated
RE penetration rates are also considered.4

Data and Variables Data on the wholesale day-ahead electricity market for the
year 2012 have been collected from the Italian Power Exchange (IPEX) website
(www.mercatoelettrico.it).5 These hourly-frequency data include, for each zone:
prices in Euros/MWh, sold and purchased quantities in MWh, and Residual Supply

2Thermal power supply is not included among regressors, as its setting is supposedly strategic. Yet,

we control for it indirectly by means of the RSI market power indicator mSicily
t in the congested

regime. This was not included in the base regime, as our data source does not provide market power
indices at the national level.
3This is known as a dynamic probit, not to be confused with the autocorrelated probit, where the
lagged probability appears as a regressor. See Kim et al. [9].
4The RE penetration rate for a zone is defined as the ratio between the RE supply and the demand
in that zone.
5The wholesale market is run 24/7 with a hourly frequency. Year 2012 was an interesting one for
these purposes, as the Sicily-South line was congested for about 84 % of the hours. When the

www.mercatoelettrico.it
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Indexes (RSI).6 Zonal sold quantities for individual RE technologies (wind, photo-
voltaics, hydropower), measured from individual bid data (source: Terna, the Italian
transmission system operator), and their sums across sources and zones are the main
explanatory variables. Congestion is measured as a dummy variable taking value
equal to 1 when prices in Sicily and in the South zone differ, 0 otherwise. For each
variable, 8784 data points are available.7

Summary statistics for the sample are given in Table 49.1.8 As clear from the
table, congestion is almost always from the Italian peninsula to Sicily, resulting
in higher prices in Sicily (on average, about 102 Eur/MWh under congestion vs.
61 Eur/MWh). Hence, renewables produced in the peninsula may be key drivers of
congestion.

It is worth noting that correlations across sources are weak and negative: −0.067
between wind and solar in Sicily, and −0.086 in the rest of Italy. Such mild cor-
relations are confirmed when we consider the penetration rates. Hence, different
RE sources may be responsible for congestion to different degrees. Also, if we plot
the congestion frequencies against the RE supply quantiles for each RE source, we
find a negative relationship between wind supply in the rest of Italy and conges-
tion to Sicily, in contrast with the apparently positive impact of photovoltaics (see
Table 49.2).9

49.3 Results

Maximum Likelihood estimates of the model outlined in Eqs. (49.1) to (49.3) (fol-
lowing Maddala [10]) are presented in Table 49.3. Four specifications are presented:
in the first, power demand and RE supply (aggregated across sources) enter as de-
terminants of prices and switching probabilities. In the second, RE supply is disag-
gregated into hydro, wind, and photovoltaics. The third and fourth specifications are
similar to the first and second, respectively, except that in the congestion equation,
RE penetration rates appear instead of supply volumes. Daily dummies, accounting

transmission lines are used below capacity, the same price is received by all generating companies
across Italy. Whenever congestion arises, the market is split in up to 6 zones (North, Center-North,
Center-South, South, Sicily, and Sardinia), 5 limited production poles, and 6 virtual foreign zones;
hence, zonal prices dispersion arises. Sicily is only connected with the South zone.
6The RSI is defined as the sum of the overall quantities offered for sale, minus the number of
operators multiplied by the difference between the sum of the overall quantities offered for sale
and the sum of the overall quantities sold. This is equal to minus the sum (over companies) of the
RSI index presented by Gianfreda and Grossi [1], hence it is increasing in market power.
7Year 2012 had 366 days.
8Unit root tests (Augmented Dickey-Fuller, Phillips-Perron) performed on the time series of elec-
tricity prices, demand, and supply variables cannot reject the null of mean stationarity. Hence, no
first differencing is needed before performing the econometric analysis.
9In Table 49.2, values for the 2nd to 5th deciles for photovoltaics are not reported, as its supply
was null for about half of the hours in 2012.
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for deterministic weekly patterns, are included in all specifications. We consider a
24-hour lag for prices in both regimes and for congestion, a natural choice in view
of the daily patterns of electricity consumption.

Here is a description of the findings. Generally speaking, renewables exercise a
downward pressure on electricity prices in both regimes. This can be grasped by
noting the negative sign of the overall amount of renewables in the price equa-
tions for the base and congested regimes. Such evidence confirms the price re-
duction effect found in the previous empirical literature (Guerci and Sapio [2] and
references therein). However, when renewable energy technologies are considered
separately, results show that this effect is due to wind and photovoltaic power,
whereas hydropower supply drives the price upwards, although only in the con-
gested regime. Inspecting market data, it turns out that prices in Sicily averaged
about 154 Euros/MWh when hydro pumped storage was the marginal technol-
ogy (totaling 513 hours), suggesting its use to offset the price drops and variability
caused by other renewables.

These estimates account for the direct effect of renewables on electricity prices.
As to the indirect effects working through the transmission grid, total renewables
produced in Sicily decrease congestion, whereas those generated in the rest of Italy
increase it (specification 1). This holds also when the penetration rates are consid-
ered instead of the sheer generated volumes (specification 3). Again, different RE
technologies do not behave alike. In specifications 2 and 4, hydropower increases
congestion and wind decreases it regardless of their localization. Photovoltaic en-
ergy determines congestion if produced in the rest of Italy, and relieves it when
flowing from Sicily, but this is true only in specification 2, although the coefficient
of photovoltaics produced in the rest of Italy retains its positive sign also in specifi-
cation 4. If hydropower is used strategically, its systematically positive association
with congestion causes no wonder. What is really surprising is that wind from the
rest of Italy seemed to relieve congestion, perhaps reflecting the curtailment of wind
plants by the grid operator in the South zone for reliability reasons (0.5 % of power
demand in 2012; source: Terna).

Concerning the other explanatory variables, one finds that, in the congested
regime, the electricity price in Sicily is less autocorrelated and less sensitive to RE
supply. Market power, measured by means of the RSI, leads to higher prices in all
specifications.

49.4 Conclusion

One of the main drawbacks of supporting RE sources involves its difficult integra-
tion with transmission and distribution grids conceived under the centralized power
generation paradigm. The expected downward pressure on electricity prices may be
offset by the emergence of congestion rents and by the sheer under-utilization of
(subsidized) RE plants. The preliminary results presented here show that whether
renewables aggravate congestion depends on the localization of the RE plants, and
that some sources (hydro, photovoltaics) are more likely to determine congestion.
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While this is not enough to cancel source-specific subsidies, some conditionality
in awarding the subsidies, based on economic impacts, will be probably needed, as
well as a careful allocation of the administrative responsibilities in the authorization
process. This is a key issue in power markets, such as the Italian one, that break
down into zonal markets as congestion arises.

Further empirical exercises will be needed to develop these implications. On the
one hand, it may be useful to apply principal component analysis in order to take
care of the positive correlation between RE supply at both sides of the transmission
line. On the other hand, the impact of renewables on directional congestion may be
assessed by means of a 3-stage regime switching model.
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Chapter 50
On Hammerstein System Nonlinearity
Identification Algorithms Based on Order
Statistics and Compactly Supported Functions

Przemysław Śliwiński, Paweł Wachel, and Zygmunt Hasiewicz

Abstract Nonparametric algorithms recovering the nonlinearity in Hammerstein
systems are examined. The algorithms are based on ordered measurements and on
compactly supported functions. The contribution of the note consists in that the
probability density function of the input signal does not need to be strictly bounded
from zero but can vanish in a finite number of points. In this setting, the convergence
is established for nonlinearities being piecewise-Lipschitz functions. It is also ver-
ified that for p times locally differentiable nonlinearities, the algorithms attain the
convergence rateO(n−2p/(2p+1)), the best possible nonparametric one. Noteworthy,
the rate is not worsened by irregularities of the input probability density function.

50.1 Introduction

In system identification we deal with two kind of knowledge: a priori information,
possessed before experiment in a form of the laws governing the behavior of the
investigated system or object, and the empirical one, i.e., the measurement data
obtained in the experiment. If the former is rich enough, the parametric algorithms
are usually employed. Otherwise, one should apply the nonparametric technique (in
case when the prior knowledge is not fully validated, one could also consider the
semiparametric approach).

Considered in this note Hammerstein system identification problem has been a
subject of a thorough investigation for many years; see e.g. [6, 12], or e.g. [15] for
various parametric, nonparametric or semi-parametric algorithms. The system has
been applied in various fields, e.g. in biocybernetics [10], chemistry [9], control
[16], power delivery [11], economy [1], and in signal processing [3].
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We focus on the system nonlinearity recovery. The nonparametric identifica-
tion algorithms are of the Gasser–Müller type and use compactly supported ker-
nel or wavelet functions. We examine their convergence conditions for piecewise-
Lipschitz nonlinearities and convergence rates for the smoother ones. It is verified
that the rates are the best possible and, contrary to the Nadaraya–Watson-type al-
gorithms, are not worsened by irregularity of the input signal probability density
function. Application of the Gasser–Müller estimate to the Hammerstein system
nonlinearity recovery problem was proposed and thoroughly examined in [5].

50.2 Identification Problem

The Hammerstein system is a cascade of a nonlinear static element followed by a
linear dynamics; see Fig. 50.1. By m and {ki}, i = 0, . . . ,∞, we denote the non-
linear characteristic and the impulse response of the dynamic part, respectively.
Our goal is to recover the nonlinearity from random input–output measurements
(U1, Y1), (U2, Y2), . . . , (Un,Yn) of the whole system (as the internal signal Wn is,
by assumption, not available for measurements). The following assumptions hold:

A. The input signal {Un;n= · · · − 1,0,1,2, . . .} is a stationary white random pro-
cess with an unknown probability density function f . We assume that −1 ≤
Un ≤ 1 and that

f (u) > 0, (50.1)

for all u ∈ [−1,1], except, maybe, of a finite number of points.
B. The nonlinearity m satisfies locally a Lipschitz inequality

∣∣m(u)−m(u± ε)∣∣≤ cε, (50.2)

for some unknown c, ε > 0.
C. The dynamic subsystem is asymptotically stable, i.e.,

∑∞
i=0 |ki |<∞.

D. Noise {Zn;n = · · · − 1,0,1,2, . . .} is a stationary white random process inde-
pendent of the input signal and has zero mean and finite variance.

The class of locally Lipschitz characteristics (which consists of e.g. discontinu-
ous, piecewise polynomial functions) cannot be parameterized and hence Assump-
tion B makes our problem nonparametric. According to Assumption C, the dynamic
part can be any stable ARMA system. The novelty of the paper is that – contrary to
e.g. [6, Chap. 8] and [14, Chaps. V and VI] – Assumption A admits densities which
are not bounded from zero, e.g. triangle and parabolic ones.

The input–output equation describing the Hammerstein system can be rearranged
in the following way

Yn =
∞∑

i=0

kim(Un−i )+Zn = μ(Un)︸ ︷︷ ︸
a static system

+ ξn +Zn︸ ︷︷ ︸
a correlated noise

,
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Fig. 50.1 Hammerstein
system and its static
equivalence

where

μ(u)= αm(u)+ β, with α = k0 and β =Em(U0)

∞∑

i=1

ki,

and where

ξn =
∞∑

i=1

ki
[
m(Un−i )−Em(U0)

]
.

Thanks to that, the Hammerstein system can be reduced to its static nonlinear coun-
terpart, represented by μ(u), with the new artificial signal ξn+Zn playing a role of
an additive correlated and zero-mean output noise. The idea of the nonparametric
approach is based on the fact that

E
{
Yn|Un = u

}= μ(u) (50.3)

which means that the nonlinearity μ(u) is a regression function. Hence, estimating
the regression in (50.3), we recover the system nonlinearitym, albeit up to unknown
constants α and β .

Remark 50.1 The fact that the nonlinearity can be recovered up to that constants is
a consequence of the cascade structure of the system and the inaccessibility of the
interconnecting signal Wn.

Remark 50.2 While Assumption A extends a class of admissible input probability
density functions, it nevertheless still excludes non compactly-supported ones; e.g.
the Gauss or Cauchy densities.

50.3 Algorithms

We examine two nonparametric algorithms recovering μ, i.e., the kernel and the
multiscale wavelet one. Rather than on the original sequence of measurement
pairs (U1, Y1), (U2, Y2), . . . , (Un,Yn), they both operate on its ordered version,
(U(1), Y[1]), (U(2), Y[2]), . . . , (U(n), Y[n]), arranged w.r.t. the increasing input values.

The kernel identification algorithm has a form of the Gasser–Müller estimate:

μ̂(u)= 1

h(n)

n∑

j=1

Y[j ]
∫ U(j)

U(j−1)

K

(
u− v
h(n)

)
dv, (50.4)
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with K being a bounded, compactly supported kernel function (see Table 50.1 in
Appendix B for exemplary kernels), and where {h(n)} is some positive number se-
quence.

The multiscale wavelet algorithm is of the form (cf. [14]):

μ̄(u)=
lmax(u)∑

l=lmin(u)

c̄q(n),lϕq(n),l(u), (50.5)

with

c̄q(n),l =
n∑

j=1

Y[j ]
∫ U(j)

U(j−1)

ϕq(n),l(v)dv, (50.6)

where ϕkl(u) = 2k/2ϕ(2ku − l) are scaled and translated copies of the compactly
supported wavelet scaling functions ϕ(u), {q(n)} is a positive integer sequence and
lmin(u), lmax(u) are appropriate summation limits; see Table 50.2 in Appendix B.
Both presented algorithms are based on compactly supported functions and this fact
plays an important role in proving algorithms’ properties. The following theorems
establish convergence of the algorithms.

Theorem 50.1 If

h(n)→ 0 and nh(n)→∞, (50.7)

then

E
[
μ(u)− μ̂(u)]2 → 0,

as n→∞, at every point u ∈ (−1,1), at which (50.1) holds.

Theorem 50.2 If

2q(n)→∞ and n−12q(n)→ 0, (50.8)

then

E
[
μ(u)− μ̄(u)]2 → 0,

as n→∞, at every point u ∈ (−1,1), at which (50.1) holds.

As number sequences one can choose, e.g., h(n) = n−α and 2q(n) = nα with
α ∈ (0,1). Our next two theorems deal with convergence rate of the algorithms.

Theorem 50.3 Let m have p derivatives and let pth derivative be bounded in the
ε-neighborhood of u. Let K in (50.4) be compactly supported and have p vanishing
moments (see Appendix B). If

h(n)∼ n−1/(2p+1),

then, for any 0< ε < 1,

E
[
μ(u)− μ̂(u)]2 =O(

n−2p/(2p+1)). (50.9)
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Theorem 50.4 Let m have p derivatives and let pth derivative be bounded in the
ε-neighborhood of u. Let {ϕkl} in (50.5)–(50.6) be the pth compactly supported
wavelet scaling functions. If

2q(n) ∼ n1/(2p+1),

then, for any 0< ε < 1,

E
[
μ(u)− μ̄(u)]2 =O(

n−2p/(2p+1)). (50.10)

The theorems show that convergence rate is related to p (which describes the
smoothness of m and the number of vanishing moments of the function used in the
estimates): the smoother m (the larger p), the better convergence rate. For instance,
for p = 1 the rate is O(n−2/3) and grows to O(n−6/7) for p = 3. For large p, the
rate is close to O(n−1), the order typical for parametric inference.

Moreover, the rate is indeed independent of the regularity of the input probability
density f . This property is an important advantage of the algorithms derived from
ordered observations over other types known in the literature (cf. e.g. [6]), which
convergence rate is worsened by irregularity of f . Recall that the obtained rate is
the best possible for algorithms based on nonparametric a priori information; cf.
[13].

50.4 Final Remarks

The following conclusions about the algorithms can be drawn:

• The novelty of the paper is that both convergence and convergence rate of the al-
gorithms are independent of the shape of f for densities not necessarily bounded
from zero. It means that irregularities of f don’t worsen the speed at which the es-
timates converge. Owing to that, the rate holds for, e.g., the triangle and parabolic
densities.

• The class of admissible nonlinearities includes all functions satisfying (locally)
the Lipschitz inequality (50.2).

• In spite of the poor a priori information, convergence rate is not so far from
O(n−1), i.e., the rate typical for the parametric inference.

It should also be eventually remarked that the proposed algorithms are compu-
tationally simple (as integration of functions in (50.4) and (50.6) can readily be re-
placed by subtraction of their indefinite integrals; cf. [14]). This property, together
with those already established in the paper, make the algorithms a valuable alter-
native in all situations in which the a priori knowledge does not allow to apply a
parametric model.

Acknowledgements The idea of the paper has been derived from the private correspondence
with W. Greblicki, in which he demonstrates that, under the assumption in (50.1), the global con-
vergence of the algorithm (50.4) can be shown even for non compactly supported kernels (provided
that the input density f grows in the vicinities of its roots sufficiently fast). The convergence rate,
however, becomes dependent on the rate of this growth.
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Appendix A: Theorems’ Proofs

We start with proofs of Theorems 50.1 and 50.9 concerning the kernel algorithm
(50.4).

Proof Recall that

μ̂(u)=
n∑

j=1

[
Z[j ] + ξ[j ] +μ(U(j))

] 1

h(n)

∫ U(j)

U(j−1)

K

(
u− v
h(n)

)
dv

and define

μh(n)(u)= 1

h(n)

∫ 1

−1
μ(v)K

(
(u− v)/h(n))dv.

Clearly

μh(n)(u)=
n∑

j=1

1

h(n)

∫ U(j)

U(j−1)

μ(v)K

(
u− v
h(n)

)
dv

+ 1

h(n)

∫ U(n+1)

U(n)

μ(v)K

(
u− v
h(n)

)
dv.

Denote now by Sh(n) = suppK(u/h(n)) the support of the kernel function K .
Noting that the Sh(n) can be arbitrary small with growing h(n), we simply infer that
for any u ∈ Sh(n), such that the restriction (50.1) holds, it exists a constant δ > 0 for
which f (u)≥ δ. Thus, the theorem is verified by applying the following inequality
proven in [4, Lemma 5.1, Theorem 5.1]:

E
[
μ̂(u)−μh(n)(u)

]2 ≤ c{W1 +W2 +W3 +W4 +
[
μ(u)−μh(n)(u)

]2}

where

W1 = varZ1

n∑

j=1

E

[
1

h(n)

∫ U(j)

U(j−1)

K

(
u− v
h(n)

)
dv

]2

≤ c 1

nh(n)

W2 =E
[
n∑

j=1

ξ[j ]
1

h(n)

∫ U(j)

U(j−1)

K

(
u− v
h(n)

)
dv

]2

≤ c 1

nh(n)

W3 =E
[
n∑

j=1

1

h(n)

∫ U(j)

U(j−1)

[
μ(U(j))−μ(v)

]
K

(
u− v
h(n)

)
dv

]2

≤ c 1

n2h(n)

W4 =E
[

1

h(n)

∫ U(n+1)

U(n)

K

(
u− v
h(n)

)
dv

]2

≤ c 1

n2h(n)

for some generic c > 0, and by using the following lemma; cf. [4, Lemma C2]:
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Lemma 50.1 For a bounded and compactly supported K and μ satisfying (50.2) it
holds that

[
μ(u)−μh(n)(u)

]2 → 0 as h(n)→ 0.

To prove Theorem 50.3 we need another lemma [4, Lemma 6.1]:

Lemma 50.2 For a bounded and compactly supported K with p vanishing mo-
ments and μ having p bounded derivatives it holds that

[
μ(u)−μh(n)(u)

]2 =O(
h2p(n)

)
.

Selecting h(n)∼ n−1/(2p+1) results in the convergence rate (50.9).
To prove Theorems 50.2 and 50.4 dealing with the wavelet version, it suffices to

recall that the algorithm (50.5)–(50.6) can be rewritten in a kernel-like form

μ̄(u)=
n∑

j=1

Y[j ]
∫ U(j)

U(j−1)

φq(n),l(u, v)dv,

with the summation kernel

φkl(u, v)=
lmax(u)∑

l=lmin(u)

ϕkl (u)ϕkl (v),

of the corresponding scaling function ϕkl (u); see e.g. [7].

Appendix B: Kernel and Wavelet Functions

The following kernel functions, with compact supports in [−1,1], can be used
in algorithms (see Table 50.1, e.g. [8]),where I is the indicator function. As the
compactly supported wavelet scaling functions one can apply both the classic
Daubechies functions, or symmlets, or the Cohen–Daubechies–Vial wavelets (or-
thogonal on an interval) (Table 50.2); see e.g. [2].

Table 50.1 Exemplary
kernels with compact support
and vanishing moments

Kernel function Vanishing moments

I[|u|≤1](u) · 1
2 0

I[|u|≤1](u) · 3
4 (1− u2) 1

I[|u|≤1](u) · 1
8 (9− 15u2) 2

I[|u|≤1](u) · 3
8 (3− 5u2) 3

Table 50.2 Basic properties
of exemplary wavelet scaling
functions (p – wavelet
number)

pth Daubechies function/symmlet

lmin(u) 2kx� − 2p+ 2

lmax(u) �2kx� − 1

Supports of ϕ and φ [0,2p− 1]
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Chapter 51
An Algorithm for Construction of Constrained
D-Optimum Designs

Dariusz Uciński

Abstract A computational algorithm is proposed for determinant maximization
over the set of all convex combinations of a finite number of nonnegative definite
matrices subject to additional box constraints on the weights of those combinations.
The underlying idea is to apply a simplicial decomposition algorithm in which the
restricted master problem reduces to an uncomplicated multiplicative weight opti-
mization algorithm.

51.1 Introduction

Optimum experimental design seeks to allocate measurement resources in regres-
sion problems so to maximize the relevant design criterion. Feasible allocations
are identified with probability measures on the design region called continuous de-
signs [1, 7]. To determine optimal measures, a numerical procedure is most often
required. A straightforward strategy is to cover the design region with a suitable
network, N , of points which should be rich enough to contain close approxima-
tions to the points likely to have positive mass in the optimal design, and to focus
solely on optimizing the masses associated with elements in N . For the D-optimal
design criterion, a simple multiplicative computational procedure was devised and
analyzed in [3, 7, 9, 10].

Some studies have been undertaken in order to extend the appealing framework
of the multiplicative algorithm to more complex settings which are encountered in
applications [4, 5, 13]. They are limited, however, to equality constraints on the
design weights [10]. In practice, various inequality constraints must be sometimes
considered which are due to cost limitations, required design measure space restric-
tions for achieving certain robustness properties, or restrictions on the experimental
space. Although much work has been done in this respect [2], the number of publi-
cations on the algorithmic aspects of constrained design is still very limited.
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The aim of this paper is to propose an extension of the multiplicative algorithm
to maximization of the D-optimality criterion subject to additional box constraints
on the design weights. The underlying idea is to apply simplicial decomposition [6]
which iterates by alternately solving a linear programming subproblem within the
set of all feasible points and a nonlinear master problem within the convex hull of
a subset previously generated points. The former problem is solved here using an
algorithm being almost as simple as a closed form solution and the latter problem
reduces to employing the original multiplicative algorithm mentioned above.

Throughout the paper, R+ and R++ stand for the sets of nonnegative and positive
real numbers, respectively. The set of real m × n matrices is denoted by R

m×n.
We use S

m to denote the set of symmetric m × m matrices, Sm+ to denote the set
of symmetric nonnegative definite m × m matrices, and S

m++ to denote the set of
symmetric positive definitem×mmatrices. The curled inequality symbols, and.
between vectors represents componentwise inequalities, while between symmetric
matrices, they represents the Löwner ordering. The symbols 1 and 0 denote vectors
whose all components are one and zero, respectively. Given a set of points A, co(A)
stands for its convex hull. The probability (or canonical) simplex in R

n is defined
as Sn = {p ∈ R

n+ | 1Tp= 1}. Given two vectors x and y of dimension n, x · y is an
n-vector whose ith component is xiyi (the componentwise multiplication operator).

51.2 Optimum Experimental Design for Multiresponse Models

Consider d-dimensional observations yij of a vector y of response variables, per-
formed at fixed values xi of the l-dimensional vector x of explanatory variables,

yij = F(xi )Tθ + εij , j = 1, . . . , ri , i = 1, . . . , n, (51.1)

where F(xi ) ∈ R
m×d , i = 1, . . . , n are known, xi �= xk if i �= k, and θ ∈ R

m is a
vector of unknown parameters. The observations are replicated ri ≥ 0 times for
the setting xi , so that the total number of experimental runs is N =∑n

i=1 ri . The
d-dimensional vectors of additive random errors εij are sampled from a distribu-
tion satisfying E(εij )= 0, E(εijεT

k)= δij δkV(xi ), where the dispersion matrices
V(xi ) ∈ S

d++, i = 1, . . . , n are known and δij signifies the Kronecker delta.
Set Mi = F(xi )V(xi )−1F(xi )T ∈ S

m+, i = 1, . . . , n. If the matrix M̃=∑n
i=1 riMi ,

called the Fisher information matrix (FIM), has full rank, then its inverse is the
covariance matrix of the weighted LS estimator of θ . The values of xi , i = 1, . . . , n
are fixed and may not be altered, but we have full control over the corresponding
numbers of replications ri , i = 1, . . . , n. To construct a D-optimum design means to
pick the ri ’s which maximize the D-optimality criterion Φ[M̃] = log det(M̃) [1, 7].

In order to circumvent the combinatorial nature of this optimization problem,
it is customary to extend the definition of the solution. In the relaxed formulation,
instead of the ri ’s, we operate on the weights pi = ri/N , i = 1, . . . , n, unequivocally
representing the allocation of experimental runs to the support points. Note that
p= (p1, . . . , pn) satisfies 1Tp= 1, p , 0. It is also more convenient to operate on
the so-called normalized FIM
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M(p)=
n∑

i=1

piMi (51.2)

in lieu of M̃. Clearly, a p which maximizes Φ[M(p)] yields multiplicities r1, . . . , rn
which maximize Φ[M̃]. For large N the feasible pi ’s can be considered as any non-
negative reals which sum up to unity, and not necessarily integer multiples of 1/N .
As a result, the mathematical formulation becomes more tractable and is extensively
used in optimum experimental theory [1, 7].

One of the criticisms of this relaxed approach is that the resulting designs concen-
trate at a relatively small number of support points, rather than spreading the mea-
surement effort around appropriately [2]. This gave rise to investigations aiming at
imposing the appropriate limitations on the form of the optimal designs. Following
this line of research, we are interested in solving the following problem:

Problem 51.1 Given a vector b ∈R
n++ satisfying 1Tb≥ 1, find a vector of weights

p ∈R
n to maximize

Φ
[
M(p)

]= log det
(
M(p)

)
(51.3)

over the convex set P = {p | 0 p b, 1Tp= 1}.

Note that the performance index Φ is concave over the canonical simplex Sn ={
p ∈R

n+ | 1Tp= 1
}

and differentiable at points in Sn yielding nonsingular FIMs,

φ(p) := ∇Φ(p)= [
trace

{
M(p)−1M1

}
, . . . , trace

{
M(p)−1Mn

}]T
. (51.4)

51.3 Simplicial Decomposition for Problem 51.1

51.3.1 Algorithm Model

Simplicial decomposition (SD) proved extremely useful for large-scale pseudocon-
vex programming problems [6]. It proceeds by alternately solving linear and non-
linear programming subproblems, called the column generation problem (CGP) and
the restricted master problem (RMP), respectively. In the RMP, the original prob-
lem is relaxed by replacing the original constraint set P with its inner approxima-
tion being the convex hull of a finite set of feasible solutions. In the CGP, this inner
approximation is improved by incorporating a point in the original constraint set
that lies furthest along the gradient direction computed at the solution of the RMP.
A marked characteristic of the SD method is that the sequence of solutions to the
RMP tends to a solution to the original problem in such a way that the objective
function strictly monotonically approaches its optimal value.

Tailoring the SD scheme to our needs, we obtain Algorithm 51.1. In the sequel,
its consecutive steps will be discussed in turn.
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Algorithm 51.1 Algorithm model for solving Problem 51.1 via simplicial decom-
position
Step 0: (Initialization)

Guess an initial solution p(0) ∈ P such that M(p(0)) is nonsingular. Set I ={
1, . . . , n

}
, Q(0) = {

p(0)
}

and k = 0.
Step 1: (Termination check)

Set I (k)ub = {
i ∈ I ∣∣ p(k)i = bi

}
, I

(k)
im = {

i ∈ I ∣∣ 0 < p(k)i < bi
}
, I

(k)
lb = {

i ∈ I ∣∣
p
(k)
i = 0

}
. If

φi
(
p(k)

)

⎧
⎪⎪⎨

⎪⎪⎩

≥ λ if i ∈ I (k)ub ,

= λ if i ∈ I (k)im ,

≤ λ if i ∈ I (k)lb

(51.5)

for some λ ∈R+, then STOP and p(k) is optimal.
Step 2: (Solution of the column generation subproblem)

Compute

q(k+1) = arg max
p∈P φ

(
p(k)

)Tp (51.6)

and set

Q(k+1) =Q(k) ∪ {
q(k+1)}. (51.7)

Step 3: (Solution of the restricted master subproblem)
Find

p(k+1) = arg max
p∈co(Q(k+1))

Φ
[
M(p)

]
(51.8)

and purge Q(k+1) of all extreme points with zero weights in the resulting expres-
sion of p(k+1) as a convex combination of elements inQ(k+1). Increment k by one
and go back to Step 1.

51.3.2 Termination of Algorithm 51.1

The computation is stopped if the current point p(k) satisfies the condition of non-
increase, to first order, in performance measure value in the whole constraint set,
maxp∈P φ(p(k))T(p − p(k)) ≤ 0. The condition (51.5) is less costly in terms of
the number of floating-point operations. It results from the following equivalence
theorem which follows from direct application of Lemma 1 in [12] after setting
f (p)=Φ(M(p)), see also [8].

Proposition 51.1 Suppose that M(p�) is nonsingular for some p� ∈ P . The vector
p� is a global maximum of Φ over P if, and only if, there is a number λ� such that
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φi
(
p�

)
⎧
⎨

⎩

≥ λ� if p�i = bi,= λ� if 0<p�i < bi,≤ λ� if p�i = 0
(51.9)

for i = 1, . . . , n.

Implementation of (51.5) requires some alterations to guarantee termination in a
finite number of iterations, but their description is beyond the scope of this paper.

51.3.3 Solution of the Column Generation Subproblem

In Step 2 of Algorithm 51.1 we deal with the linear programming problem

maximize cTp subject to p ∈ P, (51.10)

where c = φ(p(k)). We can develop an algorithm to solve this problem, which is
almost as simple as a closed-form solution. The key idea is to make use of the
following assertion being a direct consequence of Lemma 1 in [12].

Proposition 51.2 A vector q ∈ P constitutes a global solution to the problem
(51.10) if, and only if, there exists a scalar ρ such that

ci

{≥ ρ if qi = bi,
= ρ if 0< qi < bi,
≤ ρ if qi = 0

(51.11)

for i = 1, . . . , n.

Thus, in order to solve (51.10), it is sufficient to pick the consecutive largest
components ci of c and set the corresponding weights qi as their maximal allowable
values bi . The process is repeated until the sum of the assigned weights exceeds one.
Then the value of the last weight which was set in this manner should be corrected
so as to satisfy the constraint 1Tp= 1 and the remaining (i.e., unassigned) weights
are set as zeros. This scheme is implemented as Algorithm 51.2.

51.3.4 Solution of the Restricted Master Subproblem

Suppose that in the (k + 1)-th iteration of Algorithm 51.1, we have Q(k+1) ={
q1, . . . ,qr

}
, possibly with r < k + 1 owing to the built-in deletion mechanism

of points in Q(j), 1 ≤ j ≤ k, which did not contribute to the convex combinations
yielding the corresponding iterates p(j). Step 3 of Algorithm 51.1 involves maxi-
mization of (51.3) over co(Q(k+1))= {∑r

j=1wjqj |w, 0, 1Tw= 1}.
From the representation of p ∈ co(Q(k+1)) as p =∑r

j=1wjqj , or, component-
wise, pi =∑r

j=1wjqj,i , i = 1, . . . , n, qj,i being the ith component of qj , we get
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Algorithm 51.2 Algorithm model for solving the column generation subproblem
Step 0: (Initialization)

Set j = 0 and v(0) = 0.
Step 1: (Sorting)

Sort the elements of c in nonincreasing order, i.e., find a permutation π on the
index set I = {

1, . . . , n
}

such that

cπ(i) ≥ cπ(i+1), i = 1, . . . , n− 1. (51.12)

Step 2: (Identification of nonzero weights)

Step 2.1: If v(j) + bπ(j+1) < 1 (b has been defined in Problem 51.1) then set

v(j+1) = v(j) + bπ(j+1). (51.13)

Otherwise, go to Step 3.
Step 2.2: Increment j by one and go to Step 2.1.

Step 3: (Form the ultimate solution)
Set

qπ(i) =
{
bπ(i) for i = 1, . . . , j,
1− v(j) for i = j + 1,
0 for i = j + 2, . . . , n.

(51.14)

M(p)=
n∑

i=1

piMi =
r∑

j=1

wj

(
n∑

i=1

qj,iMi

)

=
r∑

j=1

wjM(qj ). (51.15)

From this, we see that the RMP can equivalently be formulated as

Problem 51.2 Find the sequence of weights w ∈R
r to maximize

Ψ (w)= log det
(
H(w)

)
(51.16)

subject to the constraints

1Tw= 1, w, 0, (51.17)

where

H(w)=
r∑

j=1

wjHj , Hj =M(qj ), j = 1, . . . , r. (51.18)

Its solution can be determined numerically using the multiplicative algorithm
analyzed in [3, 7, 9, 10] or [11, p. 62]. Its RMP version proceeds as summarized in
Algorithm 51.3.
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Algorithm 51.3 Algorithm model for the restricted master problem
Step 0: (Initialization)

Select a weight vector w(0) ∈ Sr ∩R
r++, e.g., set w(0) = (1/r)1. Set = 0.

Step 1: (Termination check)
If

1

m
ψ
(
w()

) 1 (51.19)

then STOP.
Step 2: (Multiplicative update)

Evaluate

w(+1) = 1

m
ψ
(
w()

) ·w(). (51.20)

Increment  by one and go to Step 1.

51.4 Numerical Example

The reactant concentrations [A], [B] and [C] in a batch reactor are governed by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d[A]
dt

=−k1[A]γ1 , [A]t=0 = 1,

d[B]
dt

= k1[A]γ1 − k2[B]γ2 , [B]t=0 = 0,

d[C]
dt

= k2[B]γ2 , [C]t=0 = 0,

(51.21)

where k1 and k2 are the rates and γ1 and γ2 are the orders of the reactions. The
vector of coefficients θ = (k1, k2, γ1, γ2) is to be estimated from measurements of
all concentrations at feasible time points ti = 0.2i, i = 1, . . . , n= 100. We wish to
design the observation process so that the experiment is maximally informative.

We fit this situation into the framework of Sect. 51.3 by setting xi = ti for
i = 1, . . . , n. We assume that the measurements of individual responses are indepen-
dent of one another, i.e., V(ti)= I3, the 3× 3 identity matrix, i = 1, . . . , n. We set
F(ti)T= ∂η/∂θ(ti , θ0), i = 1, . . . , n, where η(t, θ)= ([A](t; θ), [B](t; θ), [C](t; θ)),
[A]( · ; θ), [B]( · ; θ) and [C]( · ; θ) denote the solution to (51.21) for a given value
of the parameter vector θ , ∂η/∂θ is the Jacobian matrix and θ0 = (0.7,0.2,1.1,1.5)
is a prior estimate to θ . This constitutes a usual procedure in optimum design for
nonlinear regression, cf. [1, 11].

A computer program was written in MATLAB to implement Algorithms 51.1–
51.3. The computations were started from the ‘uniform’ design p(0) = (1/n)1 =
0.01 1. The results are displayed in Fig. 51.1.
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Fig. 51.1 Simulation results for the ‘uniform’ upper bound b = 0.05 · 1: (a) Time evolution of
the reactant concentrations and optimum designs pictorially represented by vertical stems starting
at points whose abscissas coincide with the design support points and terminating with circles
whose ordinates reflect the corresponding weights. (b) Variance function φi(p�) for the computed
D-optimum designs. Vertical stems constitute a pictorial representation of the design weights and
the dashed horizontal line is drawn at a level of λ underlying the optimality conditions (51.9)

References

1. Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS. Ox-
ford University Press, New York

2. Cook D, Fedorov V (1995) Constrained optimization of experimental design. Statistics
26:129–178

3. Fellman J (1974) On the allocation of linear observations (Thesis). Comment Phys Math
44(2):27–78

4. Harman R, Trnovská M (2009) Approximate D-optimal designs of experiments on the convex
hull of a finite set of information matrices. Math Slovaca 59:693–704

5. Patan M (2012) Distributed scheduling of sensor networks for identification of spatio-temporal
processes. Int J Appl Math Comput Sci 22(2):299–311

6. Patriksson M (2001) Simplicial decomposition algorithms. In: Floudas CA, Pardalos PM (eds)
Encyclopedia of optimization, vol 5. Kluwer, Dordrecht, pp 205–212

7. Pázman A (1986) Foundations of optimum experimental design. Reidel, Dordrecht
8. Sahm M, Schwabe R (2001) A note on optimal bounded designs. In: Atkinson A, Bogacka B,

Zhigljavsky A (eds) Optimum design 2000. Kluwer, Dordrecht, pp 131–140
9. Torsney B (1981) Algorithms for a constrained optimisation problem with applications in

statistics and optimum design. Unpublished Ph.D. Thesis, University of Glasgow. Available at
http://theses.gla.ac.uk/1088/1/1981torsneyphd.pdf

10. Torsney B, Mandal S (2004) Multiplicative algorithms for constructing optimizing distribu-
tions: further developments. In: Di Bucchianico A, Läuter H, Wynn HP (eds) mODa 7. Proc
7th int workshop on model-oriented data analysis. Physica-Verlag, Heidelberg, pp 163–171
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Chapter 52
The Analysis of Stochastic Signal from LHD
Mining Machine

Agnieszka Wyłomańska and Radosław Zimroz

Abstract In this paper a novel procedure for LHD (Load-Haul-Dump) machine
temperature signal analysis is proposed. In this procedure the signal segmentation
and its decomposition into trend and residuals is made. Moreover in the next step
the novel technique for further decomposition of residuals is proposed and stochas-
tic analysis procedure is applied. The stochastic analysis is based on the ARMA
(autoregressive moving average) models with Gaussian and strictly stable distribu-
tion. Different nature of extracted sub-signals offers specific opportunity to use them
for condition monitoring as well as process monitoring purposes. Appropriate pro-
cessing techniques give a chance to observe specific character in the acquired data.
In this paper we present basic theory related to the applied methodology as well as
practical example obtained by application of proposed techniques.

52.1 Introduction

Recent trends in mining industry are focused on monitoring of processes and ma-
chines monitoring. The reasons of that are, among others, improvement of produc-
tion efficiency, optimisation of processes, cost reduction, increasing of safety, etc.
A very special case is monitoring of underground machines. Due to unusually harsh
conditions, efficient operation of machines and safe working conditions for mining
staff are the highest priority. In this paper a novel procedure for machine temper-
ature signals analysis is proposed. Investigated data come from underground LHD
machine, namely loader, that is used for copper ore transport. Basically, the proce-
dure is based on signal segmentation, [19], decomposition into trend and residuals,
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further decomposition and, finally, the stochastic analysis of decomposed parts of
the signal [10, 11, 15, 20]. Different nature of extracted sub-signals offers specific
opportunity to use them for condition monitoring as well as process monitoring
purposes. Appropriate processing techniques give a chance to observe specific char-
acter in the acquired data. It should be also highlighted, that due to harsh conditions,
many collected signals should be validated first. Again, there is a strong link to phe-
nomena reported in the literature related to vibration analysis [8]. In the paper all
mentioned issues are addressed. Both basic theory related to the method as well as
practical example obtained by application of proposed techniques to real data will
be discussed.

52.2 Methodology

In this section we describe in details the whole procedure of temperature signal
analysis. Basic assumption for signal analysis here is that due to complexity of the
signal there is a need to “decompose” it into much simpler sub-signals. It is related
to extraction of part of the signal called “segment” that corresponds to continuous
operation of machine (machine on – machine off) in one of the regimes. The pri-
mary decomposition is made on the basis of the increments of the examined signal
X1,X2, . . . ,XN . Those points for which the absolute value of increments exceed the
given threshold ε, might mean beginning of a new segment. The alternative methods
of segmentation one can find for instance in [4]. As it will be mentioned in next sec-
tion, it was found that each segment is constituted from two very different processes.
The first one, commonly used in diagnostic is a trend-like signal. It stands for low
frequency variation of the machine temperature that depends on time of operation,
condition of the machine, temperature in the given mining corridor underground,
etc. Second process is very different. It is related to relatively high frequency fluc-
tuation of temperature and it corresponds to time varying machine operation. To
identify and understand both processes, it is proposed to decompose the signal into
deterministic trend and residual signal related to the mentioned fluctuations. So, in
the next step for each specified sub-signal we fit a polynomial which represents the
deterministic trend. In order to fit the polynomial corresponding to each sub-signal
we use the least squares method. Denoting the sub-signal as Y1, Y2, . . . , Ym, the co-
efficients a1, a2, . . . , ap of the polynomial of order p are calculated by solving the
following equation:

(a0, a1, . . . , ap)= argmin
m∑

i=1

r2
i , (52.1)

where ri is a residuum corresponding to the observation i, ri = Yi −∑p

j=0 aj i
j ,

i = 1,2, . . . ,m and f (i)=∑p

j=0 aj i
j is a fitted polynomial of order p.

After fitting the polynomials to appropriate sub-signals in the next step of our
procedure we examine the residual sub-signals. In each segment we observe that
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there are parts with similar statistical behaviour. The decomposition of residuum
corresponding to each segment we perform on the basis of the time-frequency rep-
resentation of examined sub-signal. We decompose the residuum sub-signals into
a set of narrowband sub-signals using a time-frequency representation. Here we
propose to use the discrete short-time Fourier transform (STFT) that for residuum
r1, r2, . . . , rm, frequency f ∈ F and time t ∈ T is defined as follows: STFT(t, f )=∑m−1
k=0 rk+1w(t − k)e2iπf k/m, where w(t − k) is a shifted window. Note that sig-

nal segmentation might be performed in different manners [3, 5, 7, 12, 13, 16].
Our hypothesis is that switching between regimes might cause different spectral
contents of the signal (due to different nature of operation for that regime) and,
moreover, might cause a kind of singularity in the signal. This procedure can be
described mathematically in the following way: for each residuum sub-signal we
first calculate the STFT and next, for each time point t we sum the absolute val-
ues of the STFT according to frequencies, that means we calculate the following
value: d(t)=∑

f∈F |STFT(t, f )|. Finally, on the basis of d(t) function we can find
such point t for which the function reaches local minima. The local minima we can
find by setting a threshold and then by finding such time point for which the d(t)
function exceeds it. The STFT-based segmentation is just an approximation due to
poor time-frequency resolution. It gives preliminary knowledge if and when change
might appear. Within the validation part, one might also refer to other variables, that
are probably more clear to interpret – as engine torque or engine rotational speed.
In our analysis we improve the STFT-based segmentation by using engine torque
variable. The final step of our methodology is to fit appropriate model to each seg-
ment – short part of the signal with homogeneous nature. Here we use methods of
time series analysis, namely to description of the residual sub-signals we use the
general class of autoregressive moving average (ARMA) models [1]. The ARMA
time series {Xt } with orders p and q is defined as follows:

Xt −
p∑

i=1

apXt−1 = Zi +
q∑

i=1

biZt−i , (52.2)

where {ai}pi=1 and {bi}qi=1 are coefficients and {Zi} is the residual series of the
model. First, for each residual sub-signal we chose the proper ARMA order on the
basis of Bayesian information criterion (BIC) [1]. Then, for the chosen ARMA order
we estimate the parameters of the time series by using maximum likelihood method
[1]. Then we analyse the residuals of fitted ARMA models. More precisely, we ex-
amine if the ARMA residuals exhibit behaviour adequate to independent identically
distributed random variables, i.e. their autocorrelation and partial autocorrelation
functions (ACF and PACF) are close to zero for all lags different than zero and the
data are homogeneous. In this analysis we also concentrate on the distribution of the
ARMA residuals. By using Jacque–Bera (JB) test [6] we check Gaussianity. If the
ARMA residuals are not Gaussian, then we check if they can be modelled by us-
ing more general class of distributions, namely stable one [14, 17]. Let us mention,
the stable distribution is defined via its characteristic function. Namely, the random
variable X has stable distribution with parameters 0 < α ≤ 2, −1 ≤ β ≤ 1, σ > 0
and μ ∈R if its characteristic function is given by [17]:
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Fig. 52.1 The segmented analysed signal groilt

E exp{iθX} =
{

exp{−σα|θ |α(1− iβ(sign θ) tan(πα/2))+ iμθ} for α �= 1
exp{−σ |θ |(1− iβπ/2(sign θ) log |θ |)+ iμθ} for α = 1.

To test the stable distribution we use the Anderson–Darling (AD) test [2, 15, 18].
After recognition the proper distribution of ARMA residuals we can estimate the
chosen distributions’ parameters. To estimate the Gaussian distribution parameters
(μ and σ ) we use the maximum likelihood method, while for stable distribution
(α,σ,β,μ) we propose to use the regression method [9]. In order the prove the fitted
ARMA model is appropriate to examined sub-signals, we simulate the trajectory of
fitted model with estimated parameters and fitted ARMA residuals’ distributions.
The first goodness-of-fit criterion is the similar behaviour of simulated series and
examined signal. This similarity can be manifested in the behaviour of time series
itself but also in the measures of dependence, such as ACF and PACF. Here we
compare those measures calculated for examined residual sub-signals and ACFs
and PACFs for fitted models.

52.3 Application

As it was mentioned earlier raw temperature data are very difficult to interpret and
model. The data represent nearly 3h of machine operation. During that time one
might notice short breaks in operation. We have selected groilt data (GeaR OIL
Temperature) because it reveals interesting properties: it is clearly seen that there
are some parts of the signal that seem to be artifacts, see Fig. 52.1. It is physically
impossible that machine with temperature c.a. 70 °C will be cooled in few second to
0 °C. It is probably related to switching off the machine. As reported in [8, 21] data
validation in industrial conditions is a key step in signal processing. According to
the presented in previous section methodology, the primary segmentation is made
on the basis of increments of the signals. Results of the first step of segmentation
are presented in Fig. 52.1 where considered signal (groilt) is segmented and plotted
in different colours. Deep analysis of the shape of each segment provide an interest-
ing conclusion that there is a mixture of trend-like component and high frequency
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Fig. 52.2 Decomposition results for segment 1: left – trend signals in red plotted on raw data,
right – residuals

Fig. 52.3 Time-frequency representations of residuum from groilt signal from segment 1

fluctuation. A procedure for trend and residuals estimation has been applied to seg-
ment 1 (S1) and 3 (S3) of examined groilt data and results of its application for
segment 1 are shown in Fig. 52.2. We decided to avoid analysis for segment 2 due
to its relatively short duration.

As it was mentioned, trend analysis might be used for condition monitoring pur-
poses (alarm providing due to overheating of the system or short time prognosis
when such level will be achieved). Residual part of the signal reveals (at least at
some parts of the signal) cyclic nature. These cycles were barely visible in raw data
due to dynamics of the signal (tens of C). The key questions are: Is it possible to
extract information about machine operation regimes from residual signal? If yes -
how to do it? and if it really corresponds to cyclic behaviour of machine? To an-
swer for that questions further signal segmentation based on time-frequency signal
representation has been done. In Fig. 52.3 we present the STFT for segment 1 of
residuum corresponding to groilt signal. As we observe there are time points for
which the energy distribution is smaller. On the basis of this we can conclude on the
further decomposition of residual series.
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Fig. 52.4 Final result of segmentation of residuals from segments 1 (STFT segmentation with
manual selection of segments)

According to presented methodology in order to make additional segmentation
we analyse the d(t) function that corresponds to groilt residuum series for segment
1 and 3. On the basis of the d(t) we can find the time points which split the exam-
ined residual series into sub-signals with similar behaviour. Local minimum of d(t)
indicate change of regime. The final result of the segmentation for segment 1 (after
validation with engine torque signal) is presented in Fig. 52.4.

According to the described statistical modelling procedure, the best ARMA or-
ders were chosen on the basis of BIC criterion. Result of this step is presented in
Table 52.1. In the next step we estimated the ARMA parameters of selected parts
from segment 1 (P1–P7) and segment 3 (P1–P5) and on the basis of fitted models
we calculate the ARMA residuals. In Table 52.2 we present the result of testing dis-
tributions for ARMA residuals corresponding to segment 1 and segment 3 together
with the estimated parameters of appropriate distributions. In Fig. 52.5 we show the
validation of our stochastic modelling procedure and show the simulated trajectory
of P4 corresponding to segment 1 and ACFs and PACFs of P4 and those measures
for fitted ARMA models. As we observe the simulated trajectory have similar be-
haviour as analysed data set. Moreover the analysed measures of dependence are
similar.

52.4 Conclusions

In this paper a novel procedure for temperature signals analysis is proposed. In this
procedure the signal segmentation and its decomposition into trend and residuals
is made. Moreover in the next step the novel technique for further decomposition
of residuals is proposed and modelling procedure is applied. Because of the differ-
ent nature of extracted sub-signals on the basis of them we can monitor both the
machine condition and processes that are associated with its operation. In the real
data analysis it has been shown that a slowly varying trend is much important than
high frequency oscillation with small amplitudes and the local variation of tem-
perature is related to machine operation regime (loading, unloading, moving with
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Fig. 52.5 Left figure: Real residual sub-signal corresponding to P4 from segment 1 (top panel)
and simulated residual sub-signal on the basis of fitted ARMA model and right figure: ACFs (top
panel) and PACFs (bottom panel) for real residual sub-signal corresponding to P4 from segment 1
(red line) and those measures for fitted ARMA models (blue line)

approx. stable speed, acceleration, deceleration etc.). From theoretical point of view
operation of loader should reveal cyclic nature. Unfortunately, in practise these data
might be very different for some segments which may be related to different state
of the machine. Therefore no cyclic behaviour will appear in any available data.
This causes that more advanced techniques and methods should be used to examine
real data. Additional channel (Engine Torque, ET) used for validation allowed us to
confirm/validated discovered information. It should be highlight, that using ET data
only, these conclusion would be difficult to achieve.

References

1. Brockwell PJ, Davis RA (1996) Introduction to time series and forecasting. Springer, New-
York

2. Burnecki K, Wylomanska A, Beletskii A, Gonchar V, Chechkin A (2012) Recognition of
stable distribution with Levy index alpha close to 2. Phys Rev E 85:056711

3. Crossman JA, Guo H, Murphey YL, Cardillo J (2003) Automotive signal fault diagnostics –
part I: Signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature
selection. IEEE Trans Veh Technol 52(4):1063

4. Gajda J, Sikora G, Wylomanska A (2013) Regime variance testing – a quantile approach. Acta
Phys Pol B 44(5):1015

5. Hory C, Martin N, Chehikian A (2002) Spectrogram segmentation by means of statistical
features for non-stationary signal interpretation. IEEE Trans Signal Process 50(12):2915

6. Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int
Stat Rev 55:163

7. Karlsen HA, Tjostheim D (1990) Autoregressive segmentation of signal traces with applica-
tions to geological dipmeter measurements. IEEE Trans Geosci Remote Sens 28(2):171

8. Kepski P, Barszcz T (2012) Validation of vibration signals for diagnostics of mining machin-
ery. Diagnostyka 64(4):25

9. Koutrouvelis IA (1980) Regression-type estimation of the parameters of stable laws. J Am
Stat Assoc 75:18
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Chapter 53
Evaluating the Performance of VaR Models
in Energy Markets

Saša Žiković, Rafał Weron, and Ivana Tomas Žiković

Abstract We analyze the relative performance of 13 VaR models using daily re-
turns of WTI, Brent, natural gas and heating oil one-month futures contracts. After
obtaining VaR estimates we evaluate the statistical significance of the differences in
performance of the analyzed VaR models. We employ the simulation-based method-
ology proposed by Žiković and Filer in Czech J Econ Finan 63(4):327–359, 2013,
which allows us to rank competing VaR models. Somewhat surprisingly, the ob-
tained results indicate that for a large number of different VaR models there is no
statistical difference in their performance, as measured by the Lopez size adjusted
score. However, filtered historical simulation (FHS) and the BRW model stand out
as robust and consistent approaches that – in most cases – significantly outperform
the remaining VaR models.

53.1 Introduction

Fossil fuels are commodities that are the primary source of energy for electricity
production, transportation and industrial production. Their importance and multi-
plicative effect on almost all branches of the economy dictates the necessity for
deeper insight into the ways of measuring and protecting against risks stemming
from changes in their prices. Energy markets differ from traditional financial mar-
kets for several reasons, but two of the most important ones are the nature of produc-
tion and consumption and geopolitical fragility. Their return distributions exhibit a
higher variance and are more leptokurtic and skewed compared to those of classical
financial assets. These characteristics make risk modeling a challenging task. More-
over, energy risk management is not only relevant for financial investors but even
more so for energy producers and consumers who need to hedge from both the ris-

S. Žiković (B) · I. Tomas Žiković
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ing and falling energy prices. In order to be able to hedge against such risks the first
step is to correctly evaluate the market risk of a particular energy commodity. Value
at Risk (VaR) is an essential tool for this purpose. Within energy markets, VaR can
be used to quantify the price risk of energy commodities associated with the de-
sired probability level. The use of the VaR risk models in order to forecast market
risk is widely used in the financial industry, where profits and losses are calculated
daily, a process known as marking-to-market. VaR methodology is not yet widely
used in non-financial companies, one of the reasons being the lack of regulatory
requirement to daily mark-to-market their holdings. Although energy companies do
not report their daily changes in value, VaR methodology is appropriate for these
non-financial companies since their revenues and expenditures often fluctuate daily
due to significant volatility in prices of their inputs and outputs.

The volatility of energy commodities has been widely studied in the energy eco-
nomics literature. In particular, Mohammadi and Su [16] consider weekly oil spot
prices in 11 markets and compare the forecasting accuracy of four GARCH-class
models under two loss functions using the DM test. Wei et al. [17] conclude that no
single model is superior for WTI and Brent across different loss functions. Ag-
nolucci [1] studies the market volatility of WTI futures and finds extensions of
GARCH models with asymmetric effects and different error distributions to outper-
form implied volatility models in terms of predictive accuracy. Studying electricity
spot prices, Weron [18] finds that deseasonalized (with respect to the weekly pat-
terns and long-term trends) returns exhibit heavy or semi-heavy tails, that can be
captured well by generalized hyperbolic or Levy-stable laws.

In the risk management context, Hung et al. [10] show that in general the as-
sumption of a Gaussian distribution leads to an underestimation of risk and high-
light the importance of selecting the appropriate distribution in a GARCH context.
They further find that the Value-at-Risk (VaR) of crude oil and oil products is bet-
ter captured by fat-tailed distributions. Marimoutou et al. [14] find that extreme
value based models perform well in the oil markets and that they offer a major im-
provement over the traditional (non-parametric and parametric) methods. Žiković
and Vlahinić-Dizdarević [22] analyze WTI, natural gas and coal prices at the 95,
99 and 99.5 % confidence levels and conclude that the best performance across all
of the tested confidence levels is achieved for the EVT-GARCH model. Bunn et
al. [3] show that a structural linear quantile regression model outperforms skewed
GARCH-t and CAViaR models regarding the accuracy of out-of-sample forecasts of
VaR. Finally, a number of authors find long range memory in energy returns and re-
port as their top VaR performers models based on this characteristic, i.e. APARCH,
FIGARCH and FIAPARCH [2, 7, 13]. Overall the findings reported in the literature
on the subject of VaR estimation for energy commodities are mixed. A situation that
is similar to the one found in the electricity price forecasting literature [19].

Apart from known VaR problems that refer to sub-additivity and tail events, there
is also an often overlooked systemic problem with risk model comparison and rank-
ing. Backtesting VaR or expected shortfall (ES) figures yields only a comparison
for a single realization of the underlying data generating process. The VaR litera-
ture is vast but it rarely addresses the issue of statistical significance in performance
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of different models. Sometimes it may be only a matter of chance that for some
commodity over a particular time horizon a certain model performs better than the
competing ones.

The goal of this paper is to evaluate the performance of a wide array of VaR
models for WTI, Brent, natural gas (NG) and heating oil (HO) one-month futures
contracts during the ongoing global economic crisis, which includes periods of both
backwardation and contango. After obtaining the VaR estimates we proceed to eval-
uate the statistical significance of the differences in performance of the analyzed
VaR models. We employ the methodology for comparing VaR model performance
presented in [21], allowing us to consistently rank competing VaR models. The ob-
tained information is equally important for the risk management purposes, policy
making as well as for the pricing of structured commodity derivatives.

The rest of the paper is organized as follows. In Sect. 53.2 we present the VaR
ranking procedure that we use in our analysis. In Sect. 53.3 we outline the data and
the methodology. VaR backtesting and rankings are presented in Sect. 53.4. Finally,
in Sect. 53.5 we wrap up the results and conclude.

53.2 Comparing and Ranking VaR Models

In the risk literature there are a number of methods that test the hypothesis whether a
certain model is better than some other model, such as the superior predictive ability
(SPA) of Hansen [8], the equal predictive ability (EPA) of Diebold and Mariano [6]
and the reality check (RC) of White [20]. The question of interest in all of these tests
is whether any alternative forecast is better than the benchmark forecast, or equiva-
lently, whether the best alternative forecasting model is better than the benchmark.
This question can be addressed by testing the null hypothesis that the benchmark
is not inferior to any alternative forecast. Using such tests is useful for a forecaster
who wants to explore whether a better forecasting model than the model currently
being used is available. After a search over several alternative models, the relevant
question is whether the observed excess performance by an alternative model is
significant or not.

To implement forecast evaluation, it is necessary to specify a loss function, and a
number of different loss functions have been proposed in the literature. Lopez [12]
suggested a size-adjusted loss function that is simple, symmetrical and intuitive:

Ct =
{

1+ (Lt − VaRt )2 if Lt > VaRt ,
0 if Lt ≤ VaRt .

Unlike the usually employed VaR tests where large VaR exceedances are treated in
the same way as the smaller ones, this loss function allows for the sizes of tail losses
to influence the final rating of a VaR model. A VaR model that generates higher tail
losses would generate higher values under this size adjusted loss function than a VaR
model that generates lower tail losses, ceteris paribus. No asymptotic distribution
theory or critical values have been derived for this statistic but it is very suitable for
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ranking the performance of competing models. The ranking procedure proposed in
[21] consists of five steps:

1. Fitting an ARMA-GARCH model to the time series in order to obtain indepen-
dent and identically distributed (IID) errors. Then estimating the empirical CDF
of each time series (applying it to the non-tail regions of the distribution) with a
Gaussian kernel. This allows to smooth the CDF, eliminating the stepwise pattern
of the sample CDF.

2. Finding the upper and lower thresholds such that a percentage of the residuals are
reserved for each tail and fitting the amount by which those extreme residuals in
each tail fall beyond the associated threshold to a parametric GPD.

3. Generating N simulated paths for the residuals from the obtained semi-
parametric distribution (each path is T observations long) and adding the
ARMA-GARCH model to the residuals to obtain N × T simulated time series
returns.

4. Calculating VaR for each of the N × T simulated returns for each VaR model
and Lopez scores for each of the N VaR-simulated return pairs, for each VaR
model.

5. Comparing if the mean values of the Lopez scores for different VaR models are
significantly different from each other. For this purpose the Kruskal–Wallis test
is employed.

The Kruskal–Wallis test is a nonparametric version of the classical one-way analy-
sis of variance (ANOVA), and tests the null hypothesis that all samples are drawn
from the same population, or equivalently, from different populations with the same
distribution [9]. Kruskal–Wallis test is used since it makes only mild assumptions
about the data, and is appropriate when the distribution of the data is non-normal.

53.3 Data and Methodology

We analyze the performance of 13 VaR models: a simple moving average (VCV),
the RiskMetrics approach, historical simulation (HS 250 and HS 500; the number
indicates the number of past observations used to compute VaR), mirrored historical
simulation (MHS 250 and MHS 500), BRW simulation with decay factors λ= 0.97
and 0.99, a GARCH model, filtered historical simulation (FHS), the unconditional
EVT approach using the generalized Pareto distribution (GPD) and the conditional
EVT approach (EVT GARCH). In the analysis we employ the log-daily returns of
WTI, Brent, natural gas (NG – Henry Hub and New York Harbour) and heating
oil (HO – NYMEX) one-month futures contracts. Returns were collected from the
Bloomberg website for the period January 1, 1995 through July 1st, 2014, which
includes a period of the latest surge and fall in prices of energy commodities. The
roll-over of contracts is performed at time T − 2 days. The transitions are smooth
and there is no change in the price between the two contracts since any difference
would provide an arbitrage opportunity and, hence, would be quickly exploited.
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The VaR figures are calculated for a one-day ahead long position and the 99 %
confidence level.

The analyzed VaR models are tested by using: the Kupiec [11] test, the Christof-
fersen [4] test of independence (IND) and the Lopez [12] size adjusted test. As
pointed out in [21], the Christoffersen unconditional coverage (UC) test is problem-
atic since it gives a distorted image of the performance of VaR models. Because it
is chi-square distributed with one degree of freedom, deviations from the test’s ex-
pected value that occur on the conservative side (i.e. with number of exceedances
lower than their expected value) are penalized more severely. This characteristic is
not compatible with risk-averse or risk-neutral assumptions. Thus, from the regula-
tory standpoint, the Kupiec [11] binomial test is preferable to the Christoffersen [4]
UC test, because it is more desirable to have positive than negative deviations. The
same logic extends to the Christoffersen conditional coverage (CC) test since it is
the sum of the UC and IND tests. In our two-stage backtesting procedure, the best
performing VaR model must first satisfy both the Kupiec [11] and Christoffersen [4]
independence (IND) tests and then provide the minimal deviation from the expected
value of losses by minimizing the Lopez [12] error statistics.

53.4 Backtesting Results

To secure the same out-of-the-sample backtesting period for all of the examined
energy commodities, the out-of-the-sample data sets are formed by removing the
1000 most recent observations from each commodity price series. The remaining
observations are used to calculate GPD tail parameters, VaR starting values and cal-
ibrate volatility. The length of the tail-loss data set used for backtesting depends on
the number of errors generated by each VaR model. Data from all the commodities
shows leptokurtosis, asymmetry and significant heteroskedasticity, with pronounced
autoregression that shows periodicity.

Based on the Akaike and Bayesian information criterion the best GARCH rep-
resentation of volatility with GED and Student t distribution was used to capture
the dynamics of data-generating processes of each commodity. The asymmetry pa-
rameter in the GARCH model was significantly different from zero only for WTI.
The asymmetry parameter, which controls the asymmetric impact of positive and
negative shocks on conditional variance, indicates significantly higher conditional
volatility after positive shocks, i.e. price increases. Estimation of the tail index is
crucial in applying EVT models which are directly linked to threshold value u that
defines the level above which returns are considered extreme. The threshold value
for each index was determined by comparing the Hill estimator with the mean ex-
cess plot and the quantile–quantile (QQ) plot [5]. The same procedure of estimating
the threshold value was also performed on IID innovations required for the imple-
mentation of the EVT-GARCH model [15]. The mean excess and QQ plots, Hill
estimator and maximum likelihood estimates (MLE) all show that tail indexes for
all commodities are equal to or greater than zero, implying fat tails and that the
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Table 53.1 Lopez [12] size adjusted scores for 13 VaR models and four commodities (WTI, Brent,
natural gas – NG, and heating oil – HO) at the 99 % confidence level are reported in columns 2–5.
The observation period covers 1000 days from July 2010 to July 1st, 2014. Scores for models
not satisfying the Kupiec [11] test and/or the Christoffersen [4] independence test at the 10 %
significance level are underlined. The lowest Lopez scores, i.e. the smallest deviations from the
expected values, are emphasized in bold. Rankings of VaR models based on the Lopez [12] size
adjusted scores are reported in columns 6–10. They were obtained for 2000 simulated trajectories
and a forecasting horizon of 1000 days. Lower values indicate better VaR models. If multiple
models have the same score there is no statistically significant difference between them.

VaR model WTI Brent NG HO WTI Brent NG HO Total

Lopez scores Rankings

HS 250 3.13 1.10 7.27 2.16 3 2 4 2 3

HS 500 −1.88 −4.92 2.21 −2.87 2 2 2 2 2

MHS 250 −1.93 −5.93 −1.90 −3.87 2 3 1 2 2

MHS 500 −3.92 −6.94 −4.92 −4.89 3 3 4 3 4

BRW λ= 0.97 8.15 7.15 9.26 10.18 4 3 4 4 5

BRW λ= 0.99 −0.92 −1.92 3.20 0.13 1 1 3 1 1

Normal VCV 4.17 6.16 5.26 1.17 5 5 4 4 7

Risk metrics 10.22 13.20 2.12 11.18 5 5 2 4 6

GARCH 7.17 9.18 0.09 6.17 5 5 1 4 5

HW 8.15 10.16 9.17 16.20 5 5 4 5 8

FHS −0.92 −0.90 −6.98 −2.88 1 1 3 1 1

EVT GARCH −5.95 −3.93 −3.96 −0.87 3 2 2 1 2

GPD −10.00 −10.00 −10.00 −10.00 5 5 4 4 7

GPD belongs to the Gumbel domain of attraction. This suggests that the normal
distribution is not appropriate for describing tail events.

Columns 2–5 in Table 53.1 present our out-of-sample VaR model ranking ac-
cording to minimal Lopez size adjusted scores for WTI, Brent, natural gas (NG)
and heating oil (HO) at the 99 % confidence level. We conduct a two stage rank-
ing since we allow a model to be ranked only after it satisfies both the Kupiec [11]
and the Christoffersen [4] independence test. Satisfactory performance with regards
to coverage and independence criteria is recorded for nonparametric models (HS,
MHS), as well as FHS and extreme value based approaches. Very weak performance
is recoded for GARCH, VCV, RiskMetrics and Hull–White models. Regarding the
closeness of fit performance – which we measure by the Lopez [12] score – FHS,
EVT GARCH and HS/MHS models provide the best fit.

In the next step, we apply the methodology discussed in Sect. 53.2 to test whether
there is any statistically significant difference in the performance of the tested VaR
models. The data is simulated based on the distribution of returns in the period
July 2010–July 2014. For each commodity 2000 simulated trajectories of 1000 days
are considered. The Lopez size adjusted score yields the best performing model as
the one that is the closest to zero. After obtaining 2000 Lopez size adjusted scores
for each VaR model and for each commodity, we apply the Kruskal–Wallis test to
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compare the differences among the tested VaR models. The results are reported in
columns 6–10 in Table 53.1.

When the simulated mean value of a given VaR model lies outside the 95 %
confidence bands of all the other tested VaR models, it is ranked according to its
relative performance. If a model is not significantly different from the other models
it shares the same ranking as the VaR models not significantly different from it.
Looking at the ranking results presented in columns 6–10 in Table 53.1, we see that
for a large number of different models there is no statistically significant difference
in their performance measured by our loss function.

When considering the overall performance for the tested commodities, the best
performing VaR models that are statistically different from other tested models are
the filtered historical simulation (FHS) and the BRW (λ= 0.99) model. These mod-
els are followed by the conditional EVT GARCH model and two simple nonpara-
metric models (HS and MHS). The worst performance, measured by the distance
from expected losses, be it positive or negative is recorded for Hull–White, VCV
and unconditional GPD models. Although we tested 13 VaR models, we see that
for all the tested commodities the number of statistically different models never sur-
passes five, and in the case of natural gas all the VaR models are concentrated in just
four groups. To some extent our results confirm the findings in [10] and [14], but
at the same time they pose a serious question of whether there are any significant
differences among the tested VaR models in the mentioned papers. It is impossi-
ble to fully compare the results since we have no knowledge about the statistical
significance of their VaR rankings.

53.5 Conclusions

Our empirical study shows that for a large number of different VaR models there
is no statistical difference measured by the Lopez [12] size adjusted score as the
loss function. Overall, statistically significant top performers are the filtered histor-
ical simulation (FHS) and the BRW (λ= 0.99) model. An additional benefit to risk
management practitioners lies in the fact that these two models are very simple to
compute and implement in everyday operations. As our loss function is the size ad-
justed Lopez score, these VaR models provide the closest fit to the actual level of risk
encountered in the analyzed energy commodities. Simpler parametric models, such
as the VCV, Hull–White and RiskMetrics, were the worst performers in our VaR
comparison. Poor performance with regard to our loss function is also recorded for
a very conservative unconditional GPD model. Unlike the aforementioned paramet-
ric models this is due to the fact that it constantly overestimated the level of risk
that was recorded in the four commodities during the 2010–2014 period, i.e. it was
overly conservative.

It is also interesting to note that although historical simulation based models are
clearly theoretically inferior to EVT models in VaR estimation, their empirical track
record is impressive. This finding may suggest that during the analyzed period there
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were a large number of extreme events that allowed the simpler nonparametric mod-
els to correctly asses the true level of VaR. Advanced models based on conditional
EVT and FHS as well as the very simple nonparametric models, such as mirrored
historical simulation, yield very robust and consistent results. Models that span be-
tween these two extremes are not successful in energy markets and yield inconsistent
risk estimates.
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