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PREFACE

This book is about the behaviour of engineering soils and simple geotechnical structures such
as foundations and slopes and it covers most of the theoretical geotechnical engineering content
of a degree course in civil engineering. The book is aimed primarily at students taking first degree
courses in civil engineering but it should also appeal to engineers, engineering geologists and
postgraduate students wishing for a simple and straightforward introduction to the current
theories of soil mechanics and geotechnical engineering. Although it deals specifically with soils
and soil mechanics many of the theories and methods described apply also to rocks and rock
mechanics.

The teaching and practice of geotechnical engineering has undergone significant changes in
the past 25 years or so, both in the development of new theories and practices and in the standing
of the subject within the civil engineering curriculum. Geotechnical engineering is now regarded
as one of the major disciplines in civil engineering analysis (the others being hydraulics and
structures). The most important development, however, has been the unification of shearing and
volumetric effects in soil mechanics in the theories known generally as critical state soil mechanics
and application of these theories in geotechnical analysis. In this book, unlike most of the other
contemporary books on soil mechanics, the subject is developed using the unified theories right
from the start, and theories for stability of foundations and slopes are developed through the
upper and lower bound plasticity methods as well as the more commonly used limit equilibrium
method. This is an up-to-date approach to soil mechanics and geotechnical engineering and it
provides a simple and logical framework for teaching the basic principles of the subject,

The term “critical state soil mechanics’ means different things to different people. Some take
critical state soil mechanics to include the complete mathematical model known as Cam Clay
and they would say that this is too advanced for an undergraduate course. My view is much
simpler, and by critical state soil mechanics I mean the combination of shear stress, normal
stress and volume into a single unifying framework. In this way a much clearer idea emerges of
the behaviour of normally consolidated and overconsolidated soils during drained and undrained
loading up to, and including, the ultimate or critical states. It is the relationship between the
initial states and the critical states that largely determines soil behaviour. This simple framework

_is extremely useful for teaching and learning about soil mechanics and it leads to a number of
simple analyses for stability of slopes, walls and foundations.

This book is based on courses of lectures given to undergraduate students in civil engineering
at City University. In the first year students take a course in geology and they also take a course
in mechanics of materials within which there are six to eight lectures on soil mechanics and
geotechnical engineering. These lectures cover the whole of the conventional syllabus (classifica-
tion, seepage, strength, consolidation, bearing capacity and settlement, slope stability and earth
pressure) but at lightning speed. The object is to introduce the students to the concepts and
vocabulary of geotechnical engineering within the context of conventional mechanics of materials
and structures and with reference to their everyday, childhood experiences of playing with
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sand, flour, plasticine and other soil-like materials so that, as the course develops in later years,
they can relate particular topics into the whole scheme of civil engineering.

In the second year the students take a major course of lectures (with several laboratory

sessions) in theoretical soil mechanics and geotechnical engineering. This is based on my earlier
books—The Mechanics of Soils (with Peter Bransby) and Foundations and Slopes. This course
depends entirely on the unification of shearing and volumetric effects which is introduced right
from the start (and had been in the first year), although the phrase ‘critical state soil mechanics’
is rarely used. Theoretical soil mechanics is taken up to the development of a complete state
- boundary surface but stops short of the mathematical treatment of Cam clay. Stability problems
are solved using upper and lower bound methods and these are then used to introduce limit
cquilibrium methods and standard tables and charts for bearing capacity, slope stability and
earth pressure. In the third year the course covers practical aspects of geotechnical engineering
through a series of lectures and projects on topics such as ground investigation, foundations,
slopes, retaining walls and embankment designs.
4 This book covers the material in the second-year course (and also that summarized in the
first year). It does not deal specifically with the practical aspects of geotechnical engineering
which are introduced in the third year and are, in any case, generally better learned through
working in practice with experienced engineers. This book should provide the basic text for an
undergraduate course, but students will have to consult other books and publications to find
more detailed coverage of particular topics such as laboratory testing, seepage, slope stability
and foundation design.

The treatment of soil mechanics and geotechnical engineering in this book is simple,
straightforward and largely idealized. I have tried to relate the behaviour of soils and geotechnical
structures to everyday experiences, encouraging students to perform simple experiments
themselves at home, on holiday and in a basic soil mechanics laboratory. I have described some
simple tests which are designed to demonstrate the basic principles rather than generate highiy
accurate results. Only a few details are given of the apparatus and procedures since engineers
should be trained to design and build simple equipment and work out how to make observations
and analyse results themselves.

To illustrate the basic nature of soil strength and stiffness 1 have described the behaviour
of soils in oedometer tests and in ideal shear tests in order to separate the effects of normal
stress and compression from the effects of shearing and distortion. I have also described the
behaviour of soils in triaxial tests, as these are the best tests to evaluate soil parameters. Readers
will notice that I have not included data from tests on real soils or case histories of construction
performance. This is quite deliberate and is-common practice in undergraduate texts on
structures, hydraulics, concrete and so on. As the book is intended primarily as an undergraduate
teaching text it is kept simple and straightforward. The basic soil mechanics theories have been
clearly demonstrated in earlier books from Critical State Soil Mechanics by Schofield and Wroth
in 1968 to Soil Behaviour and Critical State Soil Mechanics by Muir Wood in 1991, and almost
everything in this book follows from these well-established theories.

Throughout I have dealt with simple theories and idealizations for soil behaviour. I am very
well aware that many natural soils behave in ways that differ from these idealizations and that
there are a number of additional factors that may influence the design and analysis of geotechical
structures. Nevertheless, I am convinced that for the purposes of teaching the fundamental
principles to students it is better to maintain the simplicity of the idealized treatment, provided
always that they appreciate that it is idealized. At many points in the text I have indicated where
the behaviour of various natural soils may depart significantly from: the idealized behaviour. I
expect that individual lecturers will bring in other examples of the behaviour of natural soils
drawn from their own experiences, but I hope that they would discuss these within the simple
framework described in this book.
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At the end of most chapters there is a short summary of the main points covered in the
chapter and, in most cases, simple worked examples and exercises that iilustrate the theories
developed in the text. There is also a short selection of books and articles for further reading
and a list of specific references quoted in the text.

The courses at City University which form the basis of this book were developed jointly
with my colleagues Neil Taylor, Matthew Coop and John Evans and I am grateful to them for
their contributions and for their comments and criticisms. I am grateful also for the very detailed
comments that I received from many friends and colleagues, including Mark Allman, Eddie
Bromhead, Peter Fookes, Charles Hird, Marcus Matthews, Sarah Stallebrass and Giulia
Viggiani. The typing was shared between Anne-Christine Delalande and Robert Atkinson.

John Atkinson
City University
London




A NOTE ON UNITS

.

The SI system of units has been used: the basic units of measurement are:

Length m
Time s
Force N multiples kiloNewton 1kN =103N

megaNewton 1 MN = 10 N

Some useful derived units are:

Velocity m/s

Acceleration m/s*

Stress (pressure) kN/m? = kiloPascal = kPa
Unit weight kN/m3

Unit force (1 N) gives unit mass (1 kg) unit acceleration (1 m:s?). The acceleration due to the
Earth's gravity is g = 9.81 m/s?; hence the force due to a mass of 1 kg at rest on Earth is 9.81 N.
(Note: there are about 10 apples in 1 kg: hence a stationary apple gives rise to a force of about
1 N acting vertically downwards.)



GREEK ALPHABET

As in most branches of science and engineering, geotechnical engineering uses mathematics and
symbols to develop general theories. Because the English alphabet has a limited number of
characters use is made of the Greek alphabet:

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
jota
kappa
lambda
mu
nu
xi
omicron
pi
tho
sigma
tau
upsilon
phi -
~chi
psi
omega A ’ y
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GLOSSARY OF SYMBOLS

Stress and strain parameters

One-dimensional compression and shear tests:
7’ shear stress

¢’ normal stress

v shear strain

g, volumetric strain = normal strain

Triaxial tests:

q =(c,—0,) deviatoric stress

p' = Xo, + 20;) mean normal stress
g =%He, — &) shear strain

£, = + ¢, volumetric strain
Superscripts for strains

e elastic

p plastic

Subscripts for states

0 initialstate  (i.e. gg. Po- Uo)
f critical state (ie. gy, pr. Up)
p peakstate  (ie. gp, Py, Up)
Subscripts for axes

z, h vertical and horizontal
a,r axial and radial

Normalizing parameters
Inp. = (I —v)/
v,=v+4ilnp
log o= (e — €)/C,
e;=e+C.logd’

area

activity

breadth or width

slope of the normal compression line

slope of a swelling and recompression line

depth

relative density o

Young’s modulus (E’ for effective stress; E, for undrained loading)
factor of safety

specific gravity of soil grains
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shear modulus (G’ for effective stress; G, for undrained loading)

height or thickness

maximum drainage path

influence coefficient for stress
influence coefficient for settlement
bulk modulus

coefficient of earth pressure at rest
coefficient of active earth pressure
coefficient of passive earth pressure
length

liquid limit

liquidity index

normal force

potential = ~

force on retaining wall

_force due to active pressure -
force due to passive pressure
force due to {ree water

flow (volume)

pile load

pile base resistance

pile shaft resistance

radius

stress state parameter = p,,/p’
volume state parameter = v, — v
shear force

time factor for one-dimensional consolidation
time factor for radial consolidation

force due to pore pressures

average degree of consolidation

volume

volume of water

volume of soil grains

velocity (of sespage)

work

weight

weight of water

weight of soil grains

thickness or width

cohesion intercept in Mohr—Coulomb failure criterion

coefficient of consolidation
voids ratio

voids ratio of normally consolidated soil at p’ = 1.0kPa
voids ratio of overconsolidated soil at p’ = 1.0 kPa

voids ratio of soil on the critical state line at p’ = 1.0kPa
shear modulus for states inside the state boundary surface
height of water in standpipe

slope angle
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critical slope angle
hydraulic gradient

critical hydraulic gradient
coefficient of permeability
coefficient of compressibility for one-dimensional compression
rate of seepage

bearing pressure

bearing capacity

net bearing pressure
allowable bearing pressure
radius

pore pressure coefficient
length along a flowline
undrained strength

time

pore pressure _

o steady state pressure

excess pore pressure
specific volume

specific volume of overconsolidated soil at p' = 1.0 kPa
water content
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specific volume of soil on the critical state line at p’ = 1.0 kPa
large increment of

slope of CSL projected to g':p’ plane

specific volume of normally consolidated soil at p’ = 1.0 kPa
sum of

MzZZb~

adhesion factor for pile friction

unit weight

drv unit weight

unit weight of water (=9.81 kN/m?) -

small increment of

angle of friction between structure and soil
q/p

slope of swelling and recompression line
slope of normal consolidation line and CSL
v Poisson’s ratio (v’ for drained loading, v, = 1 for undrained loading)
p settlement -

Pe consolidation settlement

oi initial settlement

o settlement at time ¢

P final consolidation settlement

¢’ angle of friction

. allowable friction angle

&b, critical state friction angle

peak friction angle

v angle of dilation
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CHAPTER

_ ONE
INTRODUCTION TO GEOTECHNICAL ENGINEERING

1.1 WHAT IS GEOTECHNICAL ENGINEERING?

The use of engineering soils and rocks in construction is older than history and no other
materials. except timber. were used until about 200 years ago when an iron bridge was built by
Abraham Darby in Coalbrookdale. Soils and rocks are still one of the most important
construction materials used either in their natural state in foundations or excavations or
recompacted in dams and embankments.

Most people have some direct personal experience of soil mechanics and geotechnical
engineering. Children at the beach digging holes in the sand, making sand-castles and building
dams across streams or, in the kitchen playing with sugar, salt or flour. or in the playroom using
plasticine, or in the country losing their boots in the mud are learning about soil mechanics
and geotechnical engineering. Soils behave in a variety of different ways. Dry sand will pour
like water but it will form a cone, and you can make a sand-castle and measure its compressive
strength as you would a concrete cylinder. (The easiest way to measure the strength of a
~ sand-castle is to put it on a balance and press down on it with your hand.) Clay behaves more
like plasticine or butter. If the clay has a high water content it squashes like warm butter, but
if it has a low water content it is brittle like cold butter and it will fracture and crack if it is
compressed. The mechanics that govern the stability of a small excavation or a small slope and
the bearing capacity of boots in soft mud are exactly the same as for large excavations and
foundations.

Engineering soils are mostly just broken up rock, which is sometimes decomposed into clay,
so they are simply collections of particles. In the ground they are usually saturated so the void
spaces between the grains are filled with water. Rocks are really strongly cemented soils but
they are often cracked and jointed so they are like soil in which the grains fit very closely
together. Natural soils and rocks appear in other disciplines such as agriculture and mineral
exploitation but in these cases their biological and chemical properties are more important than
their mechanical properties. Soils are granular materials and principles of soil mechanics are
relevant to storage and transportation of other granular materials such as mineral ores and grain.

Figure 1.1 illustrates a range of geotechnical structures. Except for the foundations, the
retaining walls and the tunnel lining all are made from natural geological materials. In slopes
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INTRODUCTION TO GEOTECHNICAL ENGINEERING 3

and retaining walls the soils apply the loads as well as provide strength and stiffness. Geotechnical
engineering is simply the branch of engineering that deals with structures built of, or in, natural
soils and rocks. The subject requires knowledge of strength and stiffness of soils and rocks,
methods of analyses of structures and hydraulics of groundwater flow.

Use of natural soil and rock makes geotechnical engineering different from many other
branches of engineering and more interesting. The distinction is that most engineers can select
and specify the materials they use, but geotechnical engineers must use the materials that exist
in the ground and they have only very limited possibilities for improving their properties.
This means that an essential part of geotechnical engineering is a ground investigation to
determine what materials are present and what their properties are. Since soils and rocks were
formed by natural geological processes, knowledge of geology is essential for geotechnical
engineering.

- -1.2 PRINCIPLES OFE-ENGINEERING

Engineers design a very wide variety of systems, machines and structures from car engines to
very large bridges. A car engine has many moving parts and a number of mechanisms, such as
the pistons, connecting rods and crankshaft or the camshaft and valves, while a bridge should
not move very much and it certainly should not form a mechanism. Other branches of
engineering are concerned with the production and supply of energy, the manufacture of washing
machines and personal computers, the supply, removal and cleaning of water, moving vehicles
and goods and so. '

Within civil engineering the major divisions are structural (bridges and buildings), hydraulic
(moving water) and geotechnical (foundations and excavations). These are all broadly similar in
the sense that a material, such as steel, water or soil, in a structure, such as a bridge, river or
foundation, is loaded and moves about. The fundamental principles of structural, hydraulic and
geotechnical engineering are also broadly similar and follow the same fundamental laws of
mechanics. It is a pity that these subjects are often taught separately so that the essential links
between them are lost. .

In each case materials are used to make systems or structures or machines and engineers
use theories and do calculations that demonstrate that these will work properly; bridges must
not fall down, slopes or foundations must not fail and nor must they move very much. These
theories must say something about the strength, stiffness and flow of the materials and the way
the whole structure works. They will deal with ultimate states to demonstrate that the structure
does not fall down and they will deal also with working states to show that the movements are
acceptable.

Notice that engineers do not built.or repair things; they design them and supervise their
construction by workers. There is a common popular misconception about the role of engineers.
The general public often believes that engineers build things. They do not; engineers design
things and workmen build them under the direction of engineers. Engineers are really applied
scientists, and very skilled and inventive ones at that.

1.3 FUNDAMENTALS OF MECHANICS

In any body, framework or mechanism changes of loads cause movements; for example a
rubber band stretches if you pull it, a tall building sways in the wind and pedalling a bicycle
turns the wheels. The basic feature of any system of forces and displacements and stresses and
strains are illustrated in Fig. 1.2. Forces give rise to stresses and these must be in equilibrium
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Figure 1.2 Principles of mechanics.

or the body will accelerate. Displacements give rise to strains which must be compatible so the
material does not tear or overlap. (Relationships between forces and stresses and between
displacements and strains are given in Chapter 2.) These two separate requirements (of
equilibrium and compatibility) are quite simple and they apply universally to everything. The
relationships between stresses and strains (or between forces and displacements) are governed
by the characteristics of the material.

There are a number of branches or subdivisions of mechanics which depend on the material,
the type of problem and any assumptions made. Obviously soil mechanics is the mechanics of
structures made of soils and there are also rock mechanics for rocks and fluid mechanics for
fluids. Some important branches of mechanics are illustrated in Fig. 1.3; all of these are used in
soil mechanics and appear later in this book.

Rigid body mechanics deals with mechanisms, such as car engines. in which all the moving
parts are assumed to be rigid and do not deform. Structural mechanics is for framed structures
where deformations arise largely from bending of beams and columns. Fluid mechanics is
concerned with the flow of fluids through pipes and channels or past wings, and there are various
branches depending on whether the fiuid is compressible or not. Continuum mechanics deals
with stresses and strains throughout a deforming body made up of material that is continuous
(i-e. it does not have any cracks or joints or identifiable features), while particulate mechanics
synthesizes the overall behaviour of a particulate material from the response of the individual
grains. You might think that particulate mechanics would be relevant to soils but most of
current soil mechanics and geotechmcal engineering is continuum mcchamcs or rigid body
mechanics.

1.4 MATERIAL BEHAVIOUR

The link between stresses and strains is governed by the properties of the material. If the material
is rigid then strains are zero and movements can only occur if there is 2 mechanism. Otherwise
materials may compress (or swell) or distort, as shown in Fig. 1.4. Figure 1.4(a) shows a block
of material subjected to a confining pressure o and Fig. 1.4(c) shows a relationship between the
pressure and the change of volume; the gradient is the bulk modulus K. The stress can be raised
more or less indefinitely and the material continues to compress in a stable manner and does
not fail; K continues to increase with stress and strain.
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Figure 1.4 Compression and distortion.
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Figure 1.4(b) shows a block of material subjected to shearing stresses 1 so that it distorts
in shear. Notice that compression in Fig. 1.4(a) involves a change of size while shear distortion
involves a change of shape; in a general loading, compression and distortion occur simultaneously,
Figure 1.4(d) shows a simple relationship between shear stress and shear strain; the gradient is
the shear modulus G and this reduces with stress and strain. The material fails when no more
shear stress can be added and then it continues to strain at constant shear stress 7; this is the
shear strength of the material. -

Figure 14 illustrates the two most important aspects of material behaviour: stifiness and
strength. Stiffness relates changes of stress and changes of strain by

k=3 & : (1.1)
de, dy

where ¢, = AV/V, is the volumetric strain and y is the shear strain. The simplest theory for
stiffness is the theory of elasticity in which K and G are constants and apply equally to loading

and hn]oading. ,
Strength is the limiting shear stress that the material can sustain as it suffers large shear

strains. The two most common theories for strength are to say that the material is cohesive and
the limiting shear stress is a constant for the material given by

=5 (1.2)

or to say that the material is frictional so that the strength is proportional to the confining
pressure given by

T =0u=ctan ¢ (1.3)

where p is a coefficient of friction and ¢ is a friction angle. Later we will find that both of these
theories apply to soils, but in different circumstances. <

" Values for the stiffness parameters X and G and the strength parameters s and y (or ¢) will
obviously depend on the material, but they may also depend on other things such as temperature
and rate of loading. For example, if the strength depends on the rate of sirain the material is
said to be viscous. The first part of this book, up to Chapter 14, deals largely with the basic
theories for the strength and stiffness of soils and other granular materials.

1.5 BASIC CHARACTERISTICS OF SOILS

At first sight soils appear to behave rather strangely. For example, you can pour dry sand like
water and you can pour saturated sand under water in the same way, vet you can make
sand-castles from partly saturated sand that will support loads like a concrete cylinder. Clays
can be squeezed and moulded like plasticine and appear to behave very differently from sands,
but very old slopes in clay have angles comparable to those in sands.

The essential features of soil behaviour which we will examine later in this book are as
follows:

1. External loads and water pressures interact with each other to produce a stress that is
effective in controlling soil behaviour.

2. Soil is compressible; volume changes occur as the grains rearrange themselves and the void
space changes.
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3. Soil shearing is basically frictional so that strength increases with normal stress, and with
depth in the ground. We will find that soil stiffness also increases with normal stress and
depth. ) )

4. Combining these basic features of soil behaviour leads to the observation that soil strength
and stiffness decrease with increasing water pressure and with increasing water content.

5. Soil compression and distortion are generally not fully recoverable on unloading, so soil is
essentially inelastic. This is a consequence of the mechanism of compression by rearrange-
ment of the grains; they do not un-rearrange on unloading.

We will see later that there is no real distinction between sands and clays and that the
apparent differences arise from the influence of pore pressures and seepage of water in the void
spaces between the grains.

1.6 BASIC FORMS OF GEOTECHNICAL STRUCTURE

The four basic types of geotechnical structure are illustrated in Fig. 1.5; most other cases are

variations or combinations of these. Foundations (Fig. 1.5a) transmit loads to the ground and
the basic criterion for design is that the settlements should be relatively small. The variables of
a foundation are the load F, the size of the base B and the depth D. Foundations may support
loads that are relatively small, such as car wheels, or relatively large, such as a power station.
Slopes (Fig. 1.5b) may be formed naturally by erosion or built by excavation or filling. The
basic variables are the slope angle i and the depth H, and the design requirement is that the
slope should not fail by landsliding.

Slopes that are too deep and too steep to stand unsupported can be supported by a retaining
wall (Fig. 1.5¢). The basic variables are the height of the wall H and its depth of burial D, together
with the strength and stiffness of the wall and the forces in any anchors or props. The basic
requirements for design are complex and involve overall stability, restriction of ground

Wl [ D R I}

i ]

R N4
(a) Foundation (b) Slope stability
NS 'y
. |H
y
1 7
D
Y
(¢) Retaining wall (d) Earth-{ill dam

Figure 1.5 Geotechnical structures.
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movements and the bending and shearing resistance of the wall. In any structure where there
are different levels of water, such as in a dam (Fig. 1.5d) or around a pumped well, there will be
seepage of water. The seepage causes leakage through a dam and governs the yield of a well
and it also governs the variation of pressure in the groundwater.

The structures in Fig. 1.5 clearly should not fail. There are, however, situations where the
material must fail; these include ploughing and flow of mineral ore or grain from a storage silo.
Solution to problems of this kind can be found using the theories of soil mechanics. Other
problems in geotechnical engineering include movement of contaminants from waste repositories
and techniques for ground improvement.

1.7 FACTORS OF SAFETY AND LOAD FACTORS

All structural and geotechnical analyses contain uncertainties of one kind or another. These may
involve uncertainties in prediction of maximum loads (particularly live loads due to wind, waves
and earthquakes) approximations in the theories adopted for material behaviour and structural
analysis, and uncertainties in the determination of strength and stiffness parameters. To take
account of these approximations and uncertainties it is usual to apply a factor of safety in the
design. These factors may be applied as partial factors to reflect the various uncertainties or as
a single lumped value,

All applied sciences that analyse and predict natural events involve assumptions, approxima-
tions and simplifications because the real world is very complicated. Many people believe that
the uncertainties in geotechnical engineering are very large because of the variability of natural
soils in the ground and the apparent complexity of theoretical soil mechanics. It is true that
geotechnical engineering is less exact than many applications of physics and chemistry, but it is
probably less approximate than, say, sociology and econcmics. You can usually. but not always,
improve a theory by making it more complicated and by adding more variables. For example,
if material strength and stifiness parameters are allowed to vary with ambient temperature the
theories will become more complex but possibly more realistic. In this book I shall be dealing
with fairly simple theories of soil mechanics and geotechnical engineering which are suitable for
most routine design problems.

Although it is always essential to consider the ultimate collapse states of structures to
demonstrate that they will not collapse, the principal design criterion for many structures,
particularly foundations, is the need to limit ground movements and settlements. In practice this
is often done by applying a factor of safety to the design. In my first job as a young engineer 1
was involved in the design of a very large earthfill dam where the consequences of collapse
would have been catastrophic and would certainly have meant major loss of life: the chief
engineer required a factor of safety of about 1.25 against slope failure. In my second job I was
asked to design the foundations for a small store shed which was part of a water treatment
works: the chief engineer required a factor of safety of 2.5 to 3.

I was puzzled by this inconsistency until I discovered that the large factor required for the
foundations of the store shed was not really a factor of safety but was a load factor to limit the
settlement. The chief engineer knew that if the collapse load of a foundation was reduced by a
factor of 2.5 to 3 the resulting settlements would be small. The point is illustrated in Fig. 1.6
which shows the settiement p of a foundation with loading F. In Fig. 1.6(b) there is a collapse
load F, and a load F, that is about 80 per cent of F,, corresponding to a factor of safety of about
1.25. There is also an allowable load F, corresponding to a load factor of about 3, and for this
load the settlements are small. In geotechnical engineering it is essential to distinguish between
a factor of safety which is intended to account for uncertainties and a load factor which is
intended to limit settlements and ground movements.
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Figure 1.6 Factor of safety and load factor for a foundation.

1.8 SUMMARY

1. Geotechnical engineering is a branch of engineering and deals with the analysis and design
of foundations, slopes and structures made from soils and rocks.

2. The basic theories of mechanics (equilibrium and compatibility) and of material behaviour
(stiffness and strength) apply equally in geotechnical engineering.

3. The basic behaviour of soil is influenced both by the loads on the soil grains and the pressures
in the water in the void spaces.

4. Soil mechanics describes the relationships between stresses and strains in soils. These will

be dealt with in Chapters 8 to 14. We will find that soil behaviour is essentially frictional,

compressible and largely inelastic.

Methods and theories for analysis and design of geotechnical structures, such as foundations,

slopes and retaining walls, and for seepage of groundwater will be covered in Chapters 17

to 23.

6. In geotechnical design safe loads are found by applying factors of safety while ground
movements are often restricted by applying a load factor.

L
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CHAPTER

TWO
BASIC MECHANICS

This chapter, and the following one, cover the basic methods for the analysis of stress and strain
using the Mohr circle constructions and the general features of material behaviour. These
techniques are essential for understanding soil behaviour and for analysing soil structures and
will be used extensively throughout the book. The topics should be covered in other courses on
_strength of materials, but here they are put into the context of soil mechanics. Readers are
advised to skim through these two chapters and come back to them to work through the details
as necessary. -

2.1 INTRODUCTION

Mechanics is the study of forces and displacements, or stresses and strains, and there are a
number of branches of mechanics associated with particular materials or with particular
applications. The fundamental principles of mechanics are simply the application of equilibrium
and compatibility. For any body that is not accelerating the forces and moments must be in
equilibrium: this is simply Newton’s first law. For any body, or system of bodies, that is distorting
or moving about the strains and displacements must be compatible. This means that material
does not vanish and gaps do not appear; this is simply common sense. What we can do is
to analyse states of stress (or strain) so that we can calculate the stresses (or strains) on any
plane at a point from the stresses (or strains) on any other pair of planes.

2.2 STRESSES AND STRAINS

I shall assume that readers have been introduced to the basic ideas of stress and strain in other
courses. A stress is basically an intensity of loading given by a force acting on a unit area while
a strain is basically an intensity of deformation given by a displacement over a unit gauge
length. In geotechnical engineering there are two minor differences from the definitions of stress
and strain usually adopted for metals and concrete, and these account for the particulate nature
of soils. Firstly, the unit area or gauge length must be large enough to include a representative

10
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Figure 2.1 Stress and strain.

number of soil grains and. secondly, because uncemented soils cannot sustain tensile stresses

compressive stresses are positive.
Figure 2.1 shows stresses and strains in a cube of soil subjected to normal and shear forces.

The changes of normal stress 5o and normal strain d¢ due to a change of normal load éF, are
given by

oF,
o = —— 2.1
o=-3 e
58=—-6—I 22)
oz

(Notice that negative signs have been added so that compressive stresses and strains are positive
quantities.) The changes of shear stress &t and shear strain 6y duc to a change of load OF; are

given by

dr=—— (2-35

'\)ﬂg = =-3 @9

(Notice that negative signs have been added so that positive shear stresses and shear strains are
associated with increases in the angles in the positive quadrants of the element as shown.)
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23 PLANE STRAIN AND AXIAL SYMMETRY

In general we should consider stresses and strains, or forces and displacements, in three
dimensions, but then the algebra becomes quite complicated and it is difficult to represent general
states on flat paper. There are, however, two cases for which only two axes are required and
these are illustrated in Fig. 2.2.

61 &

~—t——0,. &, G- &

/ &. G’.'

Zero strain

(a) Plane strain ) {b) Axial symmetry

Figure 2.2 Common states of stress.

Figure 2.2(a) shows plane strain where the strains in one direction are zero and the stresses
and strains are vertical (g,, ¢,) or horizontal (o,, &,). (It would be best 10 use v as the subscript
for vertical stress and strain but we will need to keep the subscript v for velumes and volumetric
strains.) This corresponds to conditions in the ground below a long structure, such as ‘an
embankment or wall or a strip foundation. Figure 2.2(b) shows axial symmetry where the radial
stresses and strains (o,, ¢,) are equal and the other stresses and strains (q,, £,) are axial. This
corresponds to conditions in the ground below a circular foundation or a circular excavation.
Throughout this book I will consider only plane strain and axial symmetry and I will use the
axes z, h (vertical and horizontal) for plane strain and the axes a, r (axial and radial) for axial
symmetry. ‘ :

2.4 RIGID BODY MECHANICS

When soils fail they often develop distinct slip surfaces; on a geological scale these appear as
faults. Slip surfaces divide soil into blocks and the strains within each block may be neglected
compared with the relative movements between blocks, so the principles of rigid body mechanics
are applicable for failure of slopes and foundations. To demonstrate this take a block of butter
from the fridge (remove the paper first), put it on end and press down hard on it (ie. do a
compression test). The block will almost certainly develop a slip plane at about 45° to the
horizontal. (Does the temperature of the butter make any difference?)

Equilibrium is examined by resolution of forces in two directions (together with moments
about one axis) and this is done most simply by construction of a polygon of forces: if the polygon
of forces closes then the system of forces is in equilibrium. Figure 2.3(a) shows a set of forces
acting on a triangular block. We will see later than this represents the conditions in soil behind'
a retaining wall at the point of failure. Figure 2.3(b) shows the corresponding polygon of forces
where each line is in the same direction as the corresponding force and the length is proportional
to the magnitude of the force. The forces are in equilibrium because the polygon.of forces is
closed. You will study conditions for equilibrium of forces in other courses on mechanics or
strength of materials and this is just the same.
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Compatibility of displacement is examined most conveniently by construction of a displace-
ment diagram (also known as a hodograph). Figure 2.4(a) illustrates two triangular blocks
moving as illustrated by the arrows; we will see later that this could represent the displacement
of soil below a foundation at the point of failure. Each block is given an identifying letter and
O represents stationary material. In Fig. 2.4(b) each arrow represents the direction and
magnitude of the displacement of one of the rigid blocks and the displacement diagram closes.
(Note that the displacement diagram in Fig. 2.4b is different from the force polygon in Fig. 2.3b
in that the arrows are not all in the same direction.) The letters on the arrows represent the
relative displacements, thus oa is the displacement of A with respect to O and ab is the
displacement of B with respect to A.

The relative movements of rigid bodies in mechanisms like that shown in Fig. 24
can be examined by making simple models from stiff card. (From a flat sheet of card
cut a triangular recess, cut two triangular shapes like A and B and demonstrate that you
have a compatible mechanism. To get them to move it is necessary to drill small holes at the
corners.) . -
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2.5 ANALYSIS OF STRESS

Within a loaded body the stresses generally vary from point to point so, for example, the stresses
below the edge and centre of a foundation are different. At any point the stresses are different
on different planes and it is necessary to relate the stresses on the different planes.

The simplest form of analysis is through the Mohr circle construction which is covered
in courses on strength of materials. The only difference for soil mechanics is that the sign
convention is changed so that compressive stresses and counter-clockwise shear stresses are
positive.

Figure 2.5(a) shows principal stresses ¢, and o, on the faces of an element of soil and Fig.
2.5(b) shows the corresponding Mohr circles of stress. The pole P of the Mohr circle is defined
so that a line from P to o, gives the direction of the plane on which o, acts. In Fig. 2.5(a) there
is an element rotated to an angle 6 as shown and the stresses (z,, ¢, and 7., 6,,) on the faces of
this element are at N and M in Fig. 2.5(b). From the geometry of the Mohr circle the angle 20
subtended at the centre by the point representing the major principle plane and the point N is
twice the angle between the planes on which these stresses act. From the geometry of the figure,
T, = T. Using Fig. 2.5(b) it is possible to calculate 1,, 0, and 1, 0, from ¢, and @, or vice versa,
and in order to construct the Mohr circle it is necessary to know the stresses on two (preferably
orthogonal) planes. -

Ca /am

&
% § /d\ On

L
T

(a) Stresses in an element - -

(b) Mohr circle of stress

Figure 2.5 Analysis of stress.
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Figure 2.6 Shear strains in an clement.

2.6 ANALYSIS OF STRAIN -

Analysis of strains at a point using the Mohr circle of strain is similar to that for stress,
but there are a few points to note about strains. Firstly, while it is possible to talk about a
state of stress with respect to zero stress (taken as atmospheric pressure), there is no absolute
zero for strain so we have to talk about changes, or increments, of strain. These may be small
increments (denoted by d¢) or large increments (denoted by A¢) and generally they occur
as a result of corresponding large or small increments of stress. Secondly, while stresses in soils are
almost always positive (particulate materials cannot usually sustain tensile stresses unless
the grains are attached to one another), strains may be positive (compressive) or negative
(tensile) and in an increment of strain there will usually be compressive and tensile strains in
different directions. Thirdly, we must be careful to distinguish between pure shear strains
and engineers’ shear strains dy and take account of any displacements of the centre of area of
distorted elements.

Figure 2.6(a) shows an element OABC strained by 87, to a new shape OA,B,C. It can be
seen that the diagonal OB has rotated to OB, through 15y,,. Figure 2.6(b) shows the strained

element rotated and translated to O,A,B,C, so that the centre and the diagonals coincide and .

the edges have now all strained through the same angle de,, = O6n, = $0Y:m-
Figure 2.7(a) shows a plane element with principal strains d¢, and de, (which is negative)
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(a) Strains in an element {b) Mohr circle of strain

Figure 2.7 Analysis of strain.



16 MECHANICS OF SOILS AND FOUNDATIONS

while Fig. 2.7¢b) is the corresponding Mohr circle of strain. The pole is at P so the line from P
to the point ¢, gives the plane across which the strain is d¢,. (Notice that the line from the pole
to a point on the circle does not give the direction of the strain but the direction of the plane
perpendicular to the normal strain.) In Fig. 2.7(a) there is an element rotated at an angle 6 and
the strains associated with this element (16y,, ¢, and $6y,,, d¢y,) are given by the points N and
M as shown.

2.7 STRESS RATIO AND DILATION

We will see later that soils are frictional materials, which means that their strength (i.e. the.
maximum shear stress they can sustain) increases with normal stress and so the stress ratio t/o
is more important than the shear stress alone. Figure 2.8(a) shows a stressed element and Fig.
" 2.8(b) is the corresponding Mohr circle of stress with the pole at P. There are two lines ON
which are tangents to the Mohr circle and these define the points on which the stress ratio is

given by

= tan Gpey (2:5)
o

where ¢, is the mobilized angle of shearing resistance. From the geometry of Fig. 2.8(b)
t =1%o, —0,) and s = ¥, + 6,) and

(2.6)

1 . | -
or Ze o 2 X0 P 1302(45° + 4er) @7
6y 1 —sindgg,

The planes, shown by double lines, on which this stress ratio occurs are at angles « and § as
shown and, from the geometry of the figure, y

@ =B =45+ 3¢ M (28)

For frictional materials these correspond to the planes on which the most critical conditions
occur and they should be the planes on which failure will occur.

When the major and minor principal strains have opposite signs the origin of the axes is
inside the Mobhr circle, as shown in Fig. 2.9(b). There are two planes, shown by broken lines in
Fig. 2.9(b), across which the normal strains are zero, and so there are two directions, shown by
double lines, at angles « and f along which the strains are zero as shown in Fig. 2.9(a). These
planes are defined by an angle of dilation . From Fig. 2.9(b), the lengths v = 4(J¢, + d¢,) and
g = Xd¢, — J¢,), and if the volumetric strain is ¢, = d¢, + d¢, then the angle of dilation is given
by

de,

tanyy = —— 29
oy
or de, + o¢
: £z h
S = -———— 2.
ln ¢ 682 h 68h ( 10)

where Jy is the increment of shear strain across the plane. (The negative signs are required in
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Figure 29 Angle of dilation and zero extension lines.

Eqgs (2.9) and (2.10) so positive angles § are associated with dilation or negative volumetric
strains.) From the geometry of the figure,

a=f=45+% (211)

Comparing Figs 2.8 and 2.9, the angle of dilation ¥ describing the strain ratio de,/dy has similar
properties to the angle of shearing resistance ¢, which describes the stress ratio t/o. '

You can visualize how materials strain by drawing a circle with a felt-tipped pen on a sheet
of thin rubber and stretching it. The circle will distort into an ellipse and its area may increase.
You can probably see that there are two diameters of the original circle that remain the same
length and these correspond to the directions of zero strain.
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2.8 SLIP SURFACES

Figure 2.9 represents homogeneous straining where there are no discontinuities, or slip surfaces,
Iike those that appeared during rigid body deformation of cold butter and the double lines show
the directions of zero strain. Figure 2.10(a) shows material that is deforming by intense shearing
in a very thin zone AB and Fig. 2.10(b) shows a detail of the slip zone. This thin zone of shearing

material has a small but finite thickness which is usually too small to see; in soils it is probably

of thc’Qrdcr of ten grains thick. Shear zones usually appear to have no thickness and so they
are called slip planes or slip surfaces.

Since the length of AB in Fig. 2.10(a) remains constant, because the material on either side
is rigid, it is a zero extension line and its direction is given by a = 45° + 4, as in Fig. 2.9. From
Fig. 2.10(b),

Sh ov ’
&Y = —— S, = — 2.12
y i € i, (2.12)
éc, Ov
oy oh 213)

so that the movement across the slip surface A — A, and B — B, is at angle y to the direction
of the slip surface as shown.

(a) (b)
Figure 2.10 Discontinuous slipping and slip surfaces.

2.9 SUMMARY

1. Forces and stresses in any body of material must be in equilibrium: this means that the
polygon of forces acting on the body, or on an element inside the body closes.
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2. Strains and displacements in any distorting body must be compatible: this means that the
material does not tear or overlap and the displacement dlagram (or hodograph) closes.

3. States of stress or strain at a point can be analysed using the Mohr circle construction SO
that the stresses or strains on any plane can be calculated from the geometry of the circle.

4. If slip surfaces develop, their directions correspond to the directions of zero extension lines
and the relative movement across a slip surface is at an angle y to its direction.

WORKED EXAMPLES

Example 2.1: Equilibrium of forces using a force polygon Figure 2.11(a) shows forces acting .

on a rigid triangular block of soil with a slip surface; two of the forces are known to be
= 160 kN and T = 60 kN. Figure 2.11(b) shows the correspondmg polygon of forces. Scaling

from the diagram, or by calculation, P = 75 kN... - :

T=60 \yW=160 -

Figure 2.11

Example 2.2: Compatible displacements using a displacement diagram Figure 2.12(a)
shows two rigid blocks separated by slip surfaces where all the angles are 45° or 90° the
left-hand block moves with a vertical component of displacement 1 mm as shown. Figure 2.12(b)
shows the corresponding displacement diagram. Scaling from the diagram, or by calculation,
oh = 2 mm.

{mm
(o] 8h =2mm b

(a (b)

Figure 2.12
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Example 2.3: Stress analysis using a Mohr circle of stress Figure 2.13(a) shows an element
of soil behind a retaining wall; the effective vertical and horizontal stresses are g, = 300 kPa
and g, = 100 kPa and these are principal stresses. Figure 2.13(b) shows the Mohr circle of stress.
Scaling from the diagram, ¢, = 30°, the angles of the critical planes are « = § = 60° and the
stresses on these planes are ¢ = 150 kPa and 7 = 187 kPa.

r kPa
R 100} r=87kPa
?
e e 0 X " - -1
O 1001\, - 200 300 200
T o= ISOV o kPa
ENZ N4 1= -87kPa
(a) . (™
Figure 2.13

Example 2.4: Analysis of strain using a Mohr circle of strain Figure 2.14(a) illustrates an
increment of displacement of a retaining wall. The strains in an element of soil behind the wall
are 8¢, = 0.10 per cent and d¢, = —0.20 per cent and these are principal strains. Figure 2.14(b)
shows the Mohr circle for the increment of strain. Scaling from the diagram, the angle of dilation
is Y = 20°. The zero extension lines are at angles & = f = 55° and the shear strains across zero
extension lines are given by 46y = +0.14 per cent.

.y

(.]AH%

-0.2% 0.1% ¢

(2]

Ed
[ o o o o e e e
SRR R

_______ —_ 20°
VR
;’ s5°

-0.14%

(@) . (b)
Figure 2.14
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CHAPTER

THREE
ESSENTIALS OF MATERIAL BEHAVIOUR

Before reading this chapter, read the note at the beginning of Chapter 2.

3.1 STRESS-STRAIN BEHAVIOUR, STIFFNESS AND STRENGTH

Chapter 2 considered the states of stress and strain at a point in loaded and deforming material.
The analyses that were developed for stresses and strains, using Mohr circles, are not dependent
on the material in question and they are equally applicable for steel, concrete or soil. In order
to analyse any kind of structure, or any kind of solid or fluid continuum, it is necessary to have
relationships between stresses and strains. These are called constitutive relationships and they
take a number of different forms depending on the nature of the material and on the loading.

Figure 3.1 shows an idealized relationship between stress and strain and it is similar to the
stress—strain curves for common engineering materials like metals, plastics, ceramics and
engineering soils. For soils and other granular materials, it is necessary to deal with something
called effective stress to take account of pore pressures in the fluid in the voids between the
grains. (In simple terms effective stresses can be thought of as the stresses effective in the soil
grains.) Effective stress will be covered in Chapter 6 where it will be shown that all soil

Ultimate stress = strength

Yield

Gradient = stiffness

Effective stress, o’

e
———

Strain. ¢

Figure 3.1 A typical stress-strain curve for soil.
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"¢ Figure 32 Tangent and secant stiffness moduli.

behaviour including stiffness and strength, is governed by an effective stress which is denoted
by a prime (as in ¢’). For correctness I will use effective stresses from now on.

Stiffness is the gradient of the stress-strain line. If this is linear the gradient is easy to
determine but. if it is curved, the stiffness at a point such as A may be quoted as a tangent or
as a secant, as shown in Fig. 3.2 and given by

’

: ) e
tangent stiffness = N 3.1
£

’

. g
secant stiffness = — (3.2)
: Ac

It is the stiffness of a material that largely determines the strains and displacements in
structures, or in the ground, as they are loaded or unloaded. Another term often used in soil
mechanics to describe the relationship between stress and strain is- ‘compressibility’, but this is
~ basically the reciprocal of stiffness. Often there is a marked change in the gradient of a
stress—strain curve at a yield point, as shown in Fig. 3.1. This is associated with a fundamental
change in behaviour often from elastic and recoverable straining to inelastic and irrecoverable
straining. '

In simple terms the strength of a material is the largest stress that the material can sustain
and it is this which governs the stability or collapse of structures. .

Stiffness and strength are quite different things: one governs displacements at working
load and the other governs the maximum loads that a structure can sustain. Materials may be
stiff (i.e. have high stiffness) or soft and they may be strong or weak and they may have any
reasonable combination of stiffness and strength. Steel is stiff and strong while margarine is soft
and weak; blackboard chalk is relatively stiff and weak while rubber is relatively soft and strong.

3.2 CHOICE OF PARAMETERS FOR STRESS AND STRAIN:

Figure 3.1 shows the characteristics of material behaviour, but axes of stress and strain are not
carefully defined. The choice of axes will depend on the tests carried out to examine the material
behaviour and the parameters required. For metals that are essentially elastic and then plastic
the parameters required are Young’s modulus E, Poisson’s ratio v-and the yield and ultimate
stresses, which can be obtained from a simple uniaxial extension test. For concrete, the required
parameters can be obtained from a uniaxial compression test. For soils, volume changes that
occur during compression and shearing are very important and to describe soil behaviour we
must examine separately shearing and volumetric strains and responses to shearing and normal
loading and unloading.
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(@) Triaxial test (b) Shear test
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Figure 3.3 Common soil tests.

Figure 3.4 States of stress in triaxjal and shear
tests.

The two tests commonly used in soil mechanics are the triaxial test and the shear test
illustrated in Fig. 3.3. These will be considered in more detail in Chapter 7. The relationships
between the stresses in the two tests can be obtained from the Mohr circle construction, as
shown in Fig. 3.4. This illustrates that, within the triaxial specimen with stresses (o, ;) there
are elements with stresses (t;, ¢,) like those in a shear specimen and vice versa.

In the shear test the sample could be loaded or unloaded with zero shear stress and it would
compress or swell with normal strains ¢,. Alternatively, it could be sheared to the left or to the
right and there would be shear strains. We can define a shear modulus G’ and a compression
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modulus M’ as

dz’ -

G =—
& (3.3)
do;

MI = n :
de, 34

(These are written as tangent moduli but they could equally well be secants.) For triaxial tests
we need to define parameters for shear and normal stress and strain which give equivalent
" stiffness moduli. The most convenient parameters are

g =0,-0 : - (3.5

p' = o, + 207) (3.6)
-— - - g = %(83 - £r) .. - . (3'7)
g, = ¢ + 2¢ (3.8)
and then the shear modulus G’ and the bulk modulus K’ are
d !’
36 =4 (3.9)
de,
d ’
k=2 (3.10)
de,

The parameter ¢’ is the diameter of the Mohr circle and it is a measure of the maximum shear
stress. The parameter p’ is the average stress and it is approximately equal to the distance of
the centre of the circle from the origin, as shown in Fig. 3.4. The parameter &, is simply the
volumetric strain and ¢, is equivalent to the shear strain. Comparing Egs (3.3) and (3.9), both
give the same shear modulus G’ and, comparing Eqs (3.4) and (3.10), the compression modulus
M’ (which corresponds to one-dimensional straining) is approximately equal to the bulk
modulus K’.

A very helpful distinction to notice is that the volumetric strain ¢, describes the change in
size of an element while the shear strain e, describes the change in its shape. The value % in Eq.
(3.7) is required for consistency. During an increment of straining the work done per unit yolume
of soil W must be invariant (i.e. independent of the choice of parameters). In terms of axial
and radial stresses and strains we have

W = oe, + 20,08, (3.11)
and we also have
oW = q'd¢, + p'de, (3.12)

You should substitute Eqs (3.5) to (3.9) into Eq. (3.12) and demonstrate that this reduces to
Eq. (3.11). When considering the behaviour of soils in triaxial tests I will generally use the
parameters ¢’, p', & and &, and for shear tests I will generally use the parameters t;, ,, 7 and &,.

3.3 CONSTITUTIVE EQUATIONS

During a general loading in the ground both shear and normal stresses are likely to change
simultaneously so there will be shearing and volumetric straining together. For soils it turns out
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that shearing and volumetric effects are coupled so that shearing stresses cause volumetric strains
and normal stresses cause shear strains. This is quite surprising and we will see later how the
particulate nature of soils gives rise to shear and volumetric coupling. .

~ A simple constitutive equation relating shearing and volumetric stress—strain behaviour can

22] éav

where [S] is a stiffness matrix containing stifiness moduli. The components of [S] are

de, .

S, =2 -k , (3.15)
oc, _

.. gy (3.16)
de,
5 ’

Syu=m=Jy (3.17)
o, .

For materials that are isotropic and elastic and perfectly plastic (see Sec. 3.6). J| = J5 and the
stifiness matrix is symmetric, while for materials that are isotropic and elastic. J; = J, = 0 (see
Sec. 3.5) so that shearing and volumetric effects are decoupled. Alternatively, a constitutive

equation can be written as
-[e &)
de, Gy Cool lop

where [C] is a compliance matrix containing compliance parameters. Comparing Egs (3.13)
and (3.18), [C] is the inverse of [S] and, in general, there are no simple relationships between
the stiffiness parameters in [S] and the compliance parameters in [C]. However, for materials
that are isotropic and elastic, shear and volumetric effects are decoupled so that Cia=Cy, =
and in this case C,; = 1/S,, = 1/3G’ and C,, = 1/S,, = 1/K".

Since the stress—strain behaviour of soil is largely non-linear the stiffness and compliance
- parameters in Eqs (3.13) and (3.18) will not be constants, but will vary with strain. They also
depend on the current stresses and on the history of loading and unloading..

3.4 STRENGTH

The strength of a material describes the ultimate state of stress that it can sustain before it fails.
(For soils that can suffer very large strains we will have to define failure very carefully, but this
will be considered in detail later.) People talk about tensile strength, compressive strength, shear
strength, and so on, as though they were all different, but these should really all be related to
some fundamental characteristic strength.

The link between these different strengths is the maximum shear stress, or the size of the
largest Mohr circle that the material can sustain. Figure 3.5(a) and:(b) shows uniaxial tensile
and compression tests and the corresponding Mohr circle of stress; the test samples fail when
the Mohr circle reaches the limiting size given by the radius ;. Figure 3.5(c) shows a vertical
cut and the shear and normal effect stresses on some inclined plane are 7, and o,; failure will
occur when the Mohr circle reaches its limiting size.
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(d) Water has no strength A Figure 3.5 Strength of materials.

Thus we can say that materials that have strength can sustain shear stresses and the strength
is the maximum shear stress that can be sustained. Only materials with strength can have slopes
because shear stresses are required to maintain a slope. A material that cannot sustain a slope, '
like stationary water, has no strength and the Mohr circle reduces to a point as shown in Fig.
3.5(d). ‘ ,

For soils there are two principal criteria of failure. The first, illustrated in Fig. 3.6(a), is
called the Tresca criterion and it says that the material will fail when the Mohr circle of stress
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A

=5 R
m >

{b} Mohr—Coulomb criterion ’ Figure 3.6 Failure criteria for structural materials.

touches an envelope given by
L=5 (3.19)

where s is known as the shear strength of the material. (Notice that Eq. (3.19) is written in total,
not effective stresses; the reasons for this will be discussed in Chapter 9.) The second, illustrated
in Fig. 3.6(b), is called the Mohr-Coulomb criterion and it says that the strength increases
linearly with increasing normal effective stress and the material will fail when the Mohr circle

touches an envelope given by
y=c +¢'tan ¢’ (3.20)

where ¢ is the angle of friction and ¢’ is called the cohesion intercept. We will find that ¢’ = 0
for the majority of soils so they have no strength when ¢’ is zero, which is why we can pour
dry sand from a jug like water. The poured sand will, however, form a cone, unlike water,
showing that it has shear stresses because, inside the cone, the normal stresses are not zero. It
turns out that the slope angle i is equal to the friction angle ¢, so pouring dry soil into a cone
is a good way to measure ¢'. - :

Dry sugar is a frictional material and its strength is given by Eq. (3.20), while the strength
of butter is given by Eq. (3.19) (although the value of s will depend on the temperature of the
butter). What about dry flour however?

3.5 ELASTICITY

Materials that are elastic are conservative so that all of the work done by the external stresses
during an increment of deformation is stored and is recovered on unloading: this means that
all of the strains that occur during an increment of loading are recovered if the increment is
removed. An important feature of isotropic and elastic materials is that shear and volumetric
effects are decoupled so that the stiffness parameters J/ and J 2 are both zero and Eq. (3.13)
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Figure 3.7 Behaviour of ideal linear elastic
(a) Shearing (b) Compression and swelling material.

becomes

(P 23
op 0 K'J (o€

(where the superscripts e denote elastic strains) and the complete behaviour is as shown in Fig.
3.7. For materials that are elastic but anisotropic the coupling moduli J} and J are equal, so
that the matrix in Eq. (3.13) is symmetric about the leading diagonal. Elastic materials can be
non-linear, in which case all of the elastic moduli vary with changing stress or strain. (Stretching
and relaxing a rubber band is an example of non-linear and recoverable elastic behaviour.)

The more usual elastic parameters are Young's modulus E’ and Poisson’s ratio v. These
are obtained directly from the results of uniaxial compression (or extension) tests with the radial
stress held constant (or zero), and are given by

do,
E=— 3.22
= (3.22)
def
= — 323
v des (3.23)

Most texts on the strength of materials give the basic relationships among the various elastic
parameters and, for isotropic materials, these are

E’ '
' = ———— 3.24
21+ V) (329
El
K=-+—-—-— 32
3(1-2v) (3.29)

In soil mechanics the shear and bulk moduli, G’ and K, are preferable to Young's modulus E’
and Poisson’s ratio v’ because it is important to consider shearing or change of shape separately,
or decoupled, from compression or change of size.

3.6 PERFECT PLASTICITY

When the loading has passed the yield point in Fig. 3.1 simultaneous elastic and plastic strains
occur and the stiffness decreases. During an increment of plastic deformation the work done is
dissipated and so plastic strains are not recovered on unloading. (Bending a paper clip so it
remains permanently out of shape is an example of plastic deformation.)

At the ultimate state there are no further changes of stress (because the stress—strain curve
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(d) Figure 3.8 Behaviour of ideal perfectly plastic materials.

is horizontal) and so all the strains at failure are irrecoverable. The plastic strains at failure in
Fig. 3.1 are indeterminate; they can go on more or less for ever and so we can talk about plastic
flow. Although it is impossible to determine the magnitudes of the plastic strains at failure, it
is possible to say something about the relative rates of different strains such as shear and
volumetric strains.

Figure 3.8(a) illustrates an element of material loaded to failure with different combinations
of some arbitrary stresses, ¢ and g,. The combinations of stress that cause failure and plastic
flow are illustrated in Fig. 3.8(b) and are represented by a failure envelope. At any point on the
envelope the vector of the failure stress is oy and Fig. 3.8(c) shows the corresponding plastic
strains. Since the stresses remain constant the strains accumulate with time and so the origin is
arbitrary. The direction of the vector of an increment of the plastic straining is given by d&? /66l
The relationship between the failure envelope and the direction of the vector of plastic strain is
called a flow rule.

Figure 3.8(d) contains the same information as Fig. 3.8(b) and (c) with the axes superimposed
and the origin for plastic strains placed at the end of the appropriate vector of failure stress.
For a perfectly plastic material the vector of plastic strain is normal to the failure envelope, and
this is known as the normality condition of perfect plasticity. .

Another common way of describing the flow rule for plastic straining is to define a plastic
potential envelope that is orthogonal to all the vectors of plastic straining, as shown in Fig. 3.9.
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Then the material is perfectly plastic if the plastic potential is the same as the failure envelope.
This is called an associated flow rule as the plastic potential is associated with the failure
envelope. Of course the normality condition and an asscciated flow rule aie diffezent ways of
saying the same thing.

An important feature of plastic straining is that the strains depend cn the state of stress
and do not depend on the small change of stress that causes the failure. This is in contrast to
elastic straining where the strains depend on the increments of stress as given by Eq. (3.21).
Figure 3.10 shows two different loadings B — A and C — A, both of which cause failure at A.
The plastic strains are the same for both loading paths; they are governed by the gradient of
the failure envelope at A and not by the loading path. - o

The behaviour of an ideal elastic—perfectly plastic material can be represented by the
behaviour of the simple model illustrated in Fig. 3.11(a). This consists of a soft rubber block
with a frictional sandpaper base and a rigid platen bonded to the top. A constant normal force
F, and variable horizontal forces F; and F, are applied to the platen. If the horizontal forces are
less than required to cause frictional sliding of the sandpaper over the table all deformations of
the platen are due to elastic deformation of the rubber block. Thus increments of force +0F,
cause displacements +0x° in the direction of the force as shown in Fig. 3:11(b). If, however,
there is frictional sliding then the direction of plastic (irrecoverable) displacement d? is in the
direction of the resultant force F and is independent of the increment of load &F; or 6F,, as
shown in Fig. 3.11(c).

3.7 COMBINED ELASTO-PLASTIC BEHAVIOUR

With reference to Fig. 3.1, the stress—strain behaviour is elastic up to the yield point and is
perfectly plastic at the ultimate state. Between the first yield and failure there are simultaneous

elastic and plastic components of strain. : e
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Figure 3.11 A physical model for elastic and plastic behaviour.
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Figure 3.12 Material behaviour during load cycling.

In Fig. 3.12 material is loaded from O, and is elastic until yielding occurs at Y;, where the
yield stress is o7,. It is then strained further and unloaded to O, where there are irrecoverable
plastic strains de2,. When the material is reloaded from O, it is elastic until yielding occurs at
Y,, where the yield stress is a},. If the material is then strained further and unloaded to O,, on
reloading it will have a new yield stress o3 and so on. Thus the principal consequences of
straining from Y; to Y, (or from Y, to Y,) are to cause irrecoverable plastic strains and to raise
the yield point from ¢, to %, (or from o}, to o;5). This increase of the yield point due to
plastic straining is called hardening and the relationship between the increase in the yield stress
do. and the plastic straining d¢? is known as a hardening law. In Fig. 3.12 there is a broken
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line to the left of the first yield point which suggests that there could be even lower yield points
for previous loadings; this simply demonstrates that the origin of strains O, was arbitrary chosen.

Yielding and plastic straining may cause hardening (i.e. an increase in the yield stress), as
shown in Fig. 3.13(a), or softening (i.e. a decrease in the yield stress), as shown in Fig. 3.13(b).
In the latter case the state has reached, and passed, a peak in the stress—strain curve, and this
is a feature commonly found in the behaviour of soils. In each case the total strains are the sum
of the elastic and plastic components and the plastic strains are related to the change of the
yield stress by a hardening law.

Yielding under combined stresses may be represented by a set of yield curves which are
similar to the failure envelope, as illustrated in Fig. 3.14. This shows a yield curve for the first
yield, two yield curves for subsequent yielding and a failure envelope. For states inside the first
yield curve the behaviour is elastic. The state cannot reach the region outside the failure envelope.
If the plastic strains are perfect then the vectors of plastic strain are normal to the yield curves.
Thus, for the loading path A — B in Fig. 3.15 which crosses successive yield surfaces the vectors
of plastic strain are normal to the yield surface. L

Since each yield curve in Fig. 3.15 is associated with a particular plastic strain we can use
the plastic strain as a third axis to develop a yield surface as shown in Fig. 3.16. For any state
on the yield surface there are plastic strains that are normal to the appropriate yield curve and
are given by the movement of the stress point across the surface. For any state inside the surface,
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during first loading or due to unloading, the behaviour is elastic. Thus, for the loading and
unloading O — A — B — Cin Fig. 3.16 the behaviour is elastic for the paths O — A and B — C.
For the path A — B there are simultaneous elastic and plastic strains.- -

It is now possible to assemble the fiow rule, the hardening law and the elastic stress—strain
equations into an explicit constitutive equation for the complete range of loading up to failure.
We will develop such a constitutive equation for soil in Chapter 12 when we have obtained
equations for the yield surface and for the successive yield curves for soil.

3.8 TIME AND RATE EFFECTS

In developing constitutive equations for materials we have, so far, considered only relationships
between changes of effective stress and changes of strain. This means that no strains occur at
constant load (except at failure). In addition it was assumed that the relationships between stress
and strains were independent of the rate of loading or the rate of straining. In soils there are a
number of time and rate effects mainly due to drainage of water and, to a limited extent, due
to creep and viscosity in the soil skeleton. . .

Time-dependent straining due to drainage of water is known as consolidation and it is a
coupling of deformations due to effective stress with seepage. Theories for consolidation will be

- considered in Chapter 14. o
The theory of viscosity relates stresses in moving materials (usually fluids) to the velocity
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of flow, so that the shear stresses in water flowing in a pipe are related to the velocity of the

" flow. In solid materials such as steel, concrete or soil, the strength or stiffness may be governed

by the rate of loading or by the rate of straining. It turns out that the important mechanical
properties of most soils, except peats and organic soils, are not significantly influenced by the
rate of loading, and usually we will not have to worry about viscous effects in soil mechanics.

Materials under constant stress generally continue to strain, but at a rate that diminishes
with time; this is known as creep. The basic relationship for creep is

865 = C, In(t/to) (3.26)

where C, is a creep parameter that depends on a number of factors, including the magnitudes
of the (constant) stresses, and t, is time from which the creep strains are measured. Equation
(3.26) can be differentiated to give the creep strain rate as

de* _C,

== , _ 62D

T ’ de ¢ oo T

showing that the creep strain rate decreases with time. Many soils, particularly soft clays and
peats, show significant creep strains. These can also influence the subsequent behaviour, as we
will discuss later.

3.9 SUMMARY

1. The basic mechanical properties of structural materials are stiffness and strength. Stiffness
relates changes of stress to changes of strain and this governs deformations and ground
movements. Strength is the largest shear stress that a material can sustain before it fails and
this governs the ultimate states of collapse of structures.

2. Strength can be described either by the Tresca criterion % = s 0f by the Mohr-Coulomb
criterion 1; = ¢’ + ¢’ tan ¢".

3. Purely elastic strains are recovered on unloading. In metals the elastic stress—strain line is
approximately linear so the elastic parameters G’ and K’ are approximately constants.

4. A perfectly plastic material continues to strain with constant stresses and the vector of plastic
strain, which relates the rates of plastic shear and volumetric strains, is normal to the current
yield curve. ; ) -

5. Theories for elasto-plastic straining can be obtained by adding the elastic and plastic
components of strain. ' :

6. Most time and rate effects in soils are due to coupling of stiffness with seepage of pore water.
Creep and viscous effects are usually neglected except in peats and other organic soils.

WORKED EXAMPLES

Example 3.1: Stress and strain in a triaxial test Ina triaxial compression test on a sample
of soil the pore pressure is zero so total and effective stresses are equal. The radial stress is held
constant at ¢/ = 200 kPa and the axial stress is changed from ¢, = 350 kPa to 360 kPa. The
strains for this increment were dg, = 0.05 per cent and J¢, = —0.01 per cent.

~ At the start of the increment, :

q =0, — o, =350 — 200 = 150 kPa
' = ¥o, + 20}) = $(350 + 400) = 250 kPa
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During the increment 5o = 10kPa, é5; = 0 and, from Egs (3.5) to (3.8),
- 8¢ =(5,— 60))=10kPa. S
T = Y60l + 200 = 10 = 3.3kPa
de, = %(0e, — 0¢,) = §(0.05 + 0.01) = 0.04 per cent
de, = O¢, + 28¢, = 0.05 — 0.02 = 0.03 per cent

Example 3.2: Calculation of shear and bulk modulus The soil in Example 3.1 is isotropic
and elastic (i.e. sheanng and volumctnc effects are decoupled) For the mcrcmcnt,

shear modulus G’ = 64’ = 10 = 8.3 MPa '
38, 3 x 0.04/100 x 1000
S bulkmodulusK'=éI-’-———ii—;——lllMPa
. o © T8, 003/100 x 1000
o 6. . 10

Young's modulus E=z=—r"m=—-o——————20MPa
d¢, 0.05/100 x 1000

Poxssons ratlo vV = —-6—8 = 9-91 = 0.2
oc, 005

From Egs (3.24) and (3.25), substituting for E’ and v/,

G = E = 20 = 83 MPa
20 +v) 21 +0.2)

ke E 2 _iiMPa
30 —2v) 31 —04)
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CHAPTER

FOUR
THE STRUCTURE OF THE EARTH

4.1 INTRODUCTION

Soils occur very near the surface of the Earth and are essentially the products of the action of
the weather and the climate on rocks. Weathering of rock in situ leads to the formation of
residual soils. These may be eroded, transported and laid down as deposited soils. The
engineering properties of soils and how they occur in the ground depend to a great extent on
their geological origins and so geotechnical engineers will need to know .something about
geology. ‘ ) '

In this one chapter I cannot possibly cover the whole of geology, or even all the parts related
to engineering. You will find a number of simple and easy-to-read books on geology for engineers
and on engineering geology and you will probably attend lectures on the subject. What I want
to do here is set down what I consider to be the most interesting and important aspects of
geology related to geotechnical engineering in soils. This is my personal list and* other
geotechnical enginesrs and geologists will probably want you to know about other things. This
does not really matter because if you want to be a good geotechnical engineer you will need to
study geology in some detail.

42 THE EARTH’S CRUST

The Earth has a radius of about 8000 km and a crust of soils and rocks about 25 to 50 km thick
(see Fig. 4.1a). The ratio of the thickness of the crust to its radius of curvature is about the same
as that of an eggshell. Below the crust is a mantle of hot plastic material and plates of crust
move about on the mantle. This drift of the continental crust accounts for mountain building,
earthquakes and volcanic activity at boundaries between the plates. It also accounts for evidence
of glacial deposits in Australia and tropical soils in Antarctica. In a single core of rock taken

almost anywhere on Earth, there will be rocks deposited in conditions that were like all the
known present-day environments. . . .
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IR e (d} . Figure 4.1 The structure of the Earth.

The surface of the crust (i.e. the land surface and the sea bed) has altitudes and depths
above and below mean sea level of the order of 8 km (see Fig. 4.1b). Materials near the
surface are soils and rocks although there is not a very clear distinction between the two; at
low stresses soils fracture like rocks while at high stresses rocks will deform plastically
like soils. For engineering purposes soils rarely occur below a depth of about 300 m (see
Fig. 4.1¢). Geologically old soils (older than about 2 millions years) are usually relatively stiff
and strong while young soils (Glacial and Post-Glacial) are usually relatively soft and weak, but
these are rarely deeper than about 30 m (see Fig. 4.1d). Notice that the slope of the land
reflects the strength of the underlying material; in rocks mountain slopes can be steep and
high while in soils the slope angles are much more gentle and the heights are much less. Spread
out over most of the land surface is a layer of soil of variable thickness, but usually less than
1 m, that supports plant life. This is called topsoil; it is of great interest to farmers and gardeners
but not to engineers, except to save and replace as landscaping after construction is
complete.
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_ Figure 4.2 Simplified representation_of the cycling of rocks and soils.

4.3 GEOLOGICAL PROCESSES -

Soils and rocks close to the surface of the Earth are exposed to the atmosphere and are weathered,
eroded, transported and deposited, while deep burial converts soils back to rocks. The general
cycle of soils and rocks is illustrated in Fig. 4.2.

Collisions between drifting continental plates raise mountain chains like the Andes, the
Rockies and the Himalayas. Rain, snow and sunshine weather rocks and soils; this may consist
simply of mechanical breakdown of a rock mass into chunks of material that have the same
composition as the parent rock or chemical alteration to new clay minerals. Water, ice and
wind transport these weathered rock fragments and, at the same time, degrade, polish and sort
them into different sizes. When these transporting agents slow down, the soil particles are
deposited and as further material is deposited above they become compressed.

The cycle illustrated in Fig. 4.2 is, of course, highly simplified and there are many additional
influences and processes. For example, rocks weathered in situ form residual soils while tectonic
activity recycles molten material from below the crust to the surface, sometimes causing rocks
and soils to metamorphose in the process. _ '

4.4 STRATIGRAPHY AND THE AGE OF SOILS AND ROCKS

A borehole drilled down into the crust will pass through strata, or layers, of soils and rocks
which generally become older with depth. Stratigraphy is the study of the sequence of strata
that represent geological history. At a particular location there will have been periods of volcanic
activity, mountain building and erosion and so a single borehole will not reveal the complete
sequence of Earth’s history. A break in the stratigraphic column in a borehole record is known
as an unconformity; often the materials at an unconformity have been eroded before deposition
of new material.

A highly simplified version of the stratigraphic column is shown in Table 4.1; this gives the
name and approximate age of the major divisions, the general nature of the deposits and typical
examples from the United Kingdom. In other parts of the World, the major divisions and their
ages are the same but the nature of the deposits may well be different: for example, the Cretaceous
Chalk in South East England is the same age as the Deccan Lavas in India.

In order to describe the chronological history of the Earth geologists classify major strata
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according to their age, not what they are. Notice that the initial letters of geological names are
capitals (e.g. Old Red Sandstone, London Clay, etc.) whereas the engineering descriptions (e.g.
overconsolidated clay) have lower-case initial letters. For example, the deposit called London
Clay is of Eocene age and was deposited 40 to 60 million years ago. The deposit is found in
South East England and is also found in Belgium, where it is called Boom Clay. In the London
region it is largely a marine clay but to the west of London, in the Hampshire Basin, it is mostly
silt and fine sand with very little clay. Old Red Sandstone is of Devonian age and was deposited
350 to 400 million years ago. It is generally red in colour, unlike the Carboniferous rocks above
and the Silurian rocks below, which are both grey, but it is not all sandstone and it contains
great thicknesses of mudstones and siltstones.

Generally soils and rocks become stiffer and stronger with age: London Clay is obviously
stronger than the soils found in the English Fens and the slates in North Wales are stronger
still. As a very rough guide, materials of Cenozoic age are generally regarded as soils for
engineering purposes; materials of Mesozoic age are generally regarded as soft rocks and
materials of Palacozoic age are regarded-as hard rocks. The soils and rocks in the stratigraphic -
column contain fossils which are the most important indicators of their age and provide a record
of evolution on Earth. Cambrian and Ordovician rocks contain mollusc shells and corals; land
plants occur in the Devonian, reptiles in the Carboniferous, amphibians in the Permian,
dinosaurs in the Triassic and birds in the Jurassic; the dinosaurs became extinct in the Cretaceous.
Mammals, fishes, insects and birds had evolved by the Eocene, but modern man did not evolve
until the middle of the Pleistocene, about 1 million years ago.

Since the engineering properties of sands, silts and clays and of sandstones, siltstones and
mudstones are likely to be different, the standard geological age-based classifications will only
be of limited use in geotechnical engineering. Much better schemes for engineering classifications
of soils and rocks are based on the nature of the grains and on the state of stress and water
content. These are described in Chapter 5.

45 DEPOSITIONAL ENVIRONMENTS

The nature of the weathering and the mode of transport largely determine the nature of a soil
(i.e. the size and shape of the grains, the distribution of grain sizes and their mineralogy). The
environment into which it is deposited and the subsequent geological events largely determine the
state of the soil (i.c. the denseness or looseness of the packing of the grains) and its fabric (i.e.
the presence of structural features such as layering, fissuring, bedding and so on).

As you move about the world you can see weathering, erosion, transportation and
deposition taking place. In the present day in the United Kingdom most of the transportation
is by water (rivers look dirty because they are carrying soil particles) and most of the deposition
is in lakes, estuaries and in the near-shore region of the sea bed. In the past there have been
many different climates and environments, because what is now the United Kingdom moved
about the Earth on a drifting continental plate. Today in cold regions and at high altitudes you
can seen transportation by glaciers and in deserts by wind, while in the tropical regions there
~ are deep deposits of residual soils formed in situ. The study of depositional environments is a

fascinating subject and is the key to the understanding and interpretation of engineering ground

investigations. The basic principles are that all soils and rocks were deposited in one of a

relatively small number of depositional environments, all of which can be found somewhere in

the world today; if you know what the depositional environment was then you can infer much
_about the likely nature and structure of a deposit. .

Figure 4.3 illustrates three typical depositional environments. Figure 4.3(a) shows the end

of a moving glacier transporting eroded soil and rock. It deposits a basal till and a terminal
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Figure 4.3 Characteristic depostional environments.

moraine; the soils in both these deposits are well graded (i.e. they contain a wide variety of
particle sizes from clays to boulders and they are often called boulder clay). Water from the
melting glacier transports material away from the glacier but sorts the sizes, depositing first
gravels, then sands and moving clays considerable distances. Figure 4.3(b) shows deposition into
lakes or estuaries or into the oceans. Slow flowing rivers can only carry fine-grained soils, so
the deposits will be largely silts and clays. Still water deposits tend to be lavered horizontally
while delta and moving water deposits are built in steps. Figure 4.3(c) shows a desert
environment. Hot-days and cold- nights cause thermal weathering of rock mountains which
produces scree slopes. Rare flash fioods transport material across the desert floor (or pediment),
depositing coarse material first and fine material later, probably in fans and layers. Winds cause
migration of sand dunes. Large daily temperature variations with occasional rainfall cause
physical and chemical alteration of the soils in the pediment.

These are only three typical depositional environments. They are discussed in more detail,
together with other examples, by Fookes and Vaughan (1986). Much of the United Kingdom
north of a line from the Thames to the Severn estuaries is covered with a veneer of glacial
deposits. Most natural and man-made lakes are currently collecting layered silt and clay
deposits. Large rivers (e.g. Nile, Ganges, Mississippi) are currently building delta deposits.
Modern deserts occur widely throughout Asia, Australia, Africa, North and South America and
the Middie East. Glacial environments occur in high latitudes (e.g. Grecnland, Antarctica) and
at high altitudes.

These typical depositional environments can be recognized in anment rocks. For cxamplc
the London Clay was deposited in a shallow sea; the Chalk is calcium carbonate deposited in
a warm sea; the New Red Sandstone in the Triassic and the Old Red Sandstone in the Devonian
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are ancient desert deposits. The important point to make here is that you should study
present-day depositional environments as an aid to interpretation of ground investigations; if a
geologist can tell you the environment into which a soil or rock was deposited you have a very
good idea of what to expect.

4.6 RECENT GEOLOGICAL EVENTS

Although the depositional environment has a major influence on the formation of soils and
rocks, they are altered by later geological events such as further deposition or erosion, folding
and faulting and volcanic activity. For soils and soil mechanics the most significant recent
geological events are rising or falling land and sea levels which lead to continuing deposition
or erosion.

Land and sea levels rise and fall relative to-one another-for a variety-of reasons, including
plate movements and mountain building. One of the most important causes of changes of sea
level is temperature change. During an ice age the sea cools and contracts and ice remains on
the land as glaciers; the weight of ice depresses the land which rebounds as the ice meits. At the”
end of the last ice age, about 20000 years ago, the sea level was about 100 m lower than it is
now, so the UK coastline was west of Ireland and you could have walked to France (if you
could cross the large river flowing through the Straits of Dover).

=
I N N
Normally consolidated soil
(London Clay)
AO
%-_@f Chalk

(a)

Overconsolidated soil
(London Clay)

% Chalk
) Figure 4.4 Stages of erosion and deposition during

(c) _ changing seas levels.
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During the period of rising sea levels (¢.g. at the end of an ice age) soils are deposited around
the coasts. If the sea level remains stationary for some time vegetation grows, which is submerged
and decays to peat as the sea level rises again. In the United Kingdom extensive deposits of this
kind are found in the Wash and in the Somerset Levels. Continuing sea level rise and deposition
leads to deposits of normally consolidated soils (see Chapter 15) which are soft and weak near
the surface but become stronger with depth. During a period of falling sea level (e.g. at the
beginning of an ice age) the land becomes exposed and subject to weathering, erosion and
transportation. As the ground is eroded the soils become overconsolidated (see Chapter 15) due -

to unloading, but they do not recover their original state. Overconsolidated soils have stiffnesses
and strengths which are more or less uniform with depth and which are larger than those of
normally consolidated deposits at the same depth. = - '

Figure 4.4 illustrates a sequence of falling and rising sea levels; this is a hlghly simplified
model of the recent geology of the Thames estuary north east of London. In Fig. 4.4(a) London
Clay is deposited in a shallow sea; notice an element at A just above the Chalk. Figure 4.4(b)
shows a glaciation with a very low sea Jevel and a nearby glacier. Much of the London Clay
has by now been eroded so the element A is nearer the surface. Meltwater from the glacier has
eroded a river channel which has been partly filled with outwash gravels. Figure 4.4(c) shows
the present day; rising sea levels have led to deposition of soft soils in the valley. The soil at B
is about the same depth as that at A, but it is normally consolidated and so is relatively soft
and weak.

4.7 IMPORTANCE OF GEOLOGY IN GEOTECHNICAL ENGINEERING

It is obvious that an understanding of the geology of a location will aid the interpretation of
ground investigations. All soils were deposited or formed in situ in one of only a few characteristic
environments. These environments, together with later geological events, determine the nature
and state of soils and rocks. Very nearly all the environments that have occurred on Earth can
be found somewhere in the world today. What you have to do is find a geologist who can
identify the geological environment of a deposit for you. Do not ask the geologist what the soil
or rock is as you can usually see what it is vourself; mstcad ask how dxd it get there (i.e. how
was it deposited) and what has happened to it since.
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CHAPTER

| FIVE
CLASSIFICATION OF SOILS

5.1 DESCRIPTION AND CLASSIFICATION

Soils consists of grains, usually rock fragments or clay particles, with water and gas, usually air
or water vapour, in the void spaces between the grains. If there is no gas present the soil is
saturated and if there is no water it is dry, while if there is both water and gas in the voids the
soi! is unsaturated. The mechanics of unsaturated soils is very complicated and in this book I
will consider only saturated or dry soils. Fortunately, in civil engineering applications soils are
mostly saturated, except in hot dry environments or when compacted.

The mechanical properties of a soil (i.e. its strength and stiffness) depend principally on the
nature of the grains (i.e. what they are) and the state of the soil (i.e. how the grains are arranged).
You can dig up a sample of soil from your garden or from the beach and describe what you
see. You can describe its colour, the size and shape of the grains (if you can see them) and some
aspects of the behaviour, such as its response to moulding in your fingers. To be useful, however,
you will need a scheme of classification that separates groups of soils with markedly different
behaviour. Any useful scheme of soil classification should be based on relatively simple tests
and observations. ‘ '

It is important to distinguish between soil description and soil classification. Description is
simply what you see and how the soil responds to simple tests; you may want to describe only
a single soil sample or a soil profile exposed in a cliff face, in an excavation or from a number
of samples from a borehole. A classification is a scheme for separating soils into broad groups,
each with broadly similar behaviour. There are various classification schemes for different
purposes: there are agricultural classifications based on how soils support crops and geological
classifications based on the age of the deposit or the nature of the grains. For civil engineering
purposes soil classifications should be based mainly on mechanical behaviour.

5.2 DESCRIPTION OF SOILS

Soil description is essentially a catalogue of what the soil is and it is helpful to have a si;np_le
scheme to describe the essential features. There are several such schemes published in National
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Standards and to some extent these reflect the characteristics of the most common soils in the
region; you should look up the relevant standard for the region you will work in. In the United
Kingdom these are the British Standards for site investigations (BS 5930:1981) and for soil
testing (BS 1377:1991) but slightly different schemes are used in the United States (Wagner,
1957). A simple and universal scheme for soil description is as follows:

1. The nature of the grains. The most important features of soil grains are their size and the
grading (i.e. the proportions of different sizes), together with the shape and surface texture
of the grains and their mineralogy.

2. The current state of the soil. The important indicators of the state of a soil are the current
stresses, the current water content and the history of loading and unloading: these are
reflected by the relative strengths and stiffnesses of samples of the soil.

3. The structure or fabric. Natural soils are rarely uniform. They contain features that may be
on a scale of a few millimetres and observable in small samples or on a large scale and
observable only in relative large exposures. Fabric or structure includes layering or bedding,
ﬁssunng or jointing and cementing. ,

4. The formation of the soil. Soils are formed in dlﬂ'erent ways. They may be dcposned naturally
from water, ice or wind; they may be the residual products of rock weathering; they may
be compacted by machines into embankments and filis.

A more detailed scheme for description of soils is given in Table 5.1 which is taken from
BS 5930:1981. This is similar to the scheme described above but is more detailed and gives
helpful quantitative values for a number of visual observations. Notice the descriptions of
compactness and strength and of structure, including guidance for descriptions of the spacing
of bedding and discontinuities.

The nature of a il does not usually change during normal civil engineering works;
occasionally weak and orittle soil grains may fracture during loading so the grading changes.
On the other hand, the state of a soil does change as soils near foundations and excavations
are loaded or unioaded and compress or swell.

The manner of formation of a soil will influence both its nature, its initial state and its
structure and fabric. Structure and fabric (i.e. layering, fissuring and jointing) can have an
important influence on soil stiffness and drainage. In this book I will be examining the basic
behaviour of soils observed in remoulded and reconstituted samples where any structure and
fabric has been removed by the preparation of the sample. Since most natural soils have some
structure and fabric it is important always to test some intact “samples, but their behaviour
should be examined within the basic framework established for reconstituted, destructured
samples.

5.3 SOIL PARTICLE SIZES, SHAPES AND GRADINGS

The range of particle sizes in soils is very large and ranges from clay grains that are smaller
than 2 pm (0.002 mm) to boulders that are larger than 200 mm. A partxcular range of particle
sizes is given a name, as in Fig. 5.1 and Table 5.1, so that, for example, in UK practice medium
sand is 0.2 to 0.6 mm. As a general guide, individual sand-sized and coarser particles are visible
to the naked eye while individual silt-sized pamcles are visible using a x 10 hand lens. If you
can wash fine grained soil off your boots it is probably silt, but if you have to scrapé it off it is
probably clay; similarly, if silt dries on your hands it will dust off while dry clay will leave your
bands dirty and will have to be washed off. Further guidance for identification of sizes is given
in Table 5.1.
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Soil particle shapes also differ considerably. Clay grains are usually very thin plates while
silt, sand and gravel grains are more rotund.

Words such as sand, silt and clay are used both to classify a particular grain size and to
describe a soil which may contain lesser quantities of other sizes. The distribution of particle
sizes in a soil is represented by a grading curve on a particle sizé chart, as shown in Fig. 5.2. If
the grading curve is flat the soil contains a wide variety of different particle sizes and is known
to engineers as well graded; if the curve is steep and one size predominates the soil is poorly
graded. The grading of a soil often reflects its origin. Soils deposited by rivers or wind tend
to be poorly graded while boulder clays and tills deposited from ice tend to be well graded
with a wide distribution of sizes. Tests to determine the grading of soils are described in Sec. 7.3.

5.4 PROPERTIES OF FINE-GRAINED SOILS

The behaviour of a coarse-grained soil (i.e. silt-sized and coarser), is very like that of an assembly
of different sized marbles, but clays differ in two respect. Firstly, some clay grains themselves
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Table 5.1 Description of soils. (From BS5930:1981)

brown or black in cotour, often with distinctive
smell; low bulk density,

Basic Pacticle Visual identification Particle Composite soil types
soil type size, mm nature and {mixtures of basic soil types)
plasticity
PN Scale of secondary constituents
nl es. . "
3 BOULDERS Only seen in pits or Particle with coarse soils
; . 200 shape: o
= g Torm % of clay
$73 |coBsLES Often difficult 10 recover 4rom boreholes. Angular or silt
“ Suh ™ " -
coarse Easily visible to naked sye; particle shape can :“""’“""" slightly clayey :RAVEL nder 5
be described; grading can be descri ounded
grading ibed. Fiat sightly sity | SAND
20 | went graded: wide range of grain si Elongate -
2 grein sizes, well -
3 GRAVELS distrib Poorly graded: not well praded clavey :,RAVEL St 15
= medim (May be uniform: size of most particies lies - silty SAND
- between narrow limits; or gap graded: an
g 6 lintermediste size of particie is markedty very clayey GRAVEL
s fine under-represented.) or 1510 35
€ Texture: very silty SAND
i 2
= 2 coarse Visible 10 naked eye; very little or no by T Sandy GRAVEL §.nd or grevel and
SR nesion when dry: orading can be Smooth ) important second
; 4 dmcribed Kkl Polished Gravelly SAND | constituent of the
s g 0.6 e coarse fraction
3 - Well graded: wide range of grain sizes, well
SANDS medium distributed. Poorly graded: not well graded. (Fs" 41.32.2) ibed as:
{May be uniform: size of most particies lies or composite types described as:
0.2 b narrow limits; or gap graded: an clavey: ‘f"“ are pl”"?' cohesive:
intermediate size of particle is markediy silty:  fines non-plastic or of low
fine under-representad.) Plasticity
0.06 Scaie of d; i
cosrse Only coarse silt barely visible 10 naked eye; Non-plastic wi!h"‘i’nl’::iol: a1y, constituents
0.02 exhibits little plasticity snd marked dilstancy; or low
SILTS i slightly granular or silky to the touch, plasticity Term % of sand
mediven Disintegrates in weter; lumps dry quickly;
. . or gravel
- possess cohesion but can be powdered easily
H . - 0.006 |between fingers. sandy CLAY
3 _| tine or 35 10 65
b 0.002 oravellty SILT
% ]
- H »
= Dry lumps can be broken but not powdered l?(e@edun - CLAY:SILT under 35
- between the fingers; they siso disintegrate - .
»
% ™ under water but more siowly than silt; smooth {Lean clav} Examples of composite types
20 10 the touch; exhibits plasticity but no
2§ {cLavs . dilatancy; sticks to the fingers and dries slowly: g:::;:;::)""""d order for
() shrinks sppreciable on drying ususlly showing
cracks. | diate and high ity clays | High
show these properties 10 8 moderate and high | plasticity Loome, ”m'G’;TC’E“"' rery sandy.
e¢, respectively, (Fat clay) ine 1o coarse L with smal
degree, iy : - pockets of soft grey clay - -
ORGANIC R . . Medium dense, light brown, ciayey,
CLAY. SILT | Varies C of organic fine and medium SAND
- or SAI\'ID vepetabie matter,
3 Stiff, orange brown, fissured sandy
-3 CLAY
2
E PEATS Varies Pr i v plant ususliy dark Firm, brown, thinly lsminated SILT
-]

and CLAY
Ptastic, brown, smorphous PEAT




CLASSIFICATION OF SOILS 49

- Table 5.1 (cont.)

Compactness/strength R Structure Colour
Term Field test Term Field identification Interval scales
Looss X Homo- Deposit consists essentially Scale of bedding spacing Red
8y inspection of voids geneous of one type. Pink
and particie packing, Term Mean ¥
Oense inter- Alternating layers of vary- . spacing, Yellow
stratified |ing types or with bands mm Brown
or lenses of other materials, )
Interval scale for bedding Very thickly over 2000 Otive
spacing may be used. bedded Green
. Blue
. Thickly bedded - 2000 to 600
Can be excavated with a Hetero- A mixture of types. White
8 geneous
Loose spade; S0 mm_wooc!cn Medium bedded 600 to0 200 Grey
Peg can be easily driven. Weathered | Particles may be d -
Requires pick for excava- and may show cancentric Thinly bedded 01060 Slack
! ing.
DOenss tion; 50 mm wooden avering Very thinly sre.
peg hard to drive. bedded 60 t0 20
. Visual examination; pick Thickly ! -
f::::: ed removes soil in lumps {dminated w06 f:'pplemm“d
which can be abraded, ith: M
__ | Thinly laminated | under 6 with: B .
- o ’ T T o i Light
Dark
Mottled
(1
. and
Soft or E asily ?nouldcd or crushed Fissured |Break into polyhedral —_ R . -
loose in the fingers. fragments along fissures. o :
- Can be moulded or Interval scale for spacing Pinkish
::r::‘or crushed bv strong of discontinuities may be Reddish
pressure in the fingers, used. Yellowish
Exudes between fingers Intact No fissures. Brownish
Very soft when squeezed in hand. " o 5 X ete.
omo- epasit consists r -
. Scaie of spacing of other
Soft Mouided by light geneous  Jessentially of one type. di:e;ntinui(i;l'
finger pressure. . A ' .
= nter- iternating tavers ol
Firm Can be moulded by stratified |varying types. Intervat Term ::::"ng,
strong finger pressure. scale for thickness of gy
! be used.
Cannot bs mouided by avers may beu -
Stift fingers. Can be indented Weathered | Usuaily has crumb or ::Z.d ty over 2000
by thumb. columnar structure. o
_ vore vt | Can be indented by . Widely aced | 2000 t0 600 .
i thumb nail. -
Medium spaced 600 t0 200 ,
Firm Fibres aiready
compressed together, Closaly spaced 200 to 60
- Very closely
Spongy Very compressibie and Fibrous |Plantr gnizabh v e 60 t0 20
open structure, and retain some strength,
. Extremel
Plastic Canbemouldedinhand, | Amor-  |Recognizable plant remai Closaly paced | under 20
and smears fingers. phous absent. : -




50 MECHANICS OF SOILS AND FOUNDATIONS

Table 5.2 Apprbxim‘ate values for the specific
surface of some common soil grains

Specific surface :
Soil grain m3/g) - Activity -
Clay minerals
Montmorillonite Up to 840 >5
1llite - 65-200 =09
Kaolinite 10-20 =04

Clean sand 2x 1074 —_

may show significant volume changes as the loading and water content changes; this accounts
for clays tending to crack as they dry. Secondly, particle surface effects become significant.

The surface of a soil grain carries a small electrical charge which depends on the soil mineral
and may be modified by an electrolyte in the pore water. These charges give rise to forces
between soil grains in addition to their self-weight. The magnitudes of the interparticle forces
are proportional to the surface areas of the grains, while self-weight forces are proportional to
the volumes of the grains. As particle sizes decrease the surface forces diminish with the square
of the effective diameter, whereas the self-weight forces diminish with the cube; consequently the
effects of surface forces are relatively more important in fine-grained than in coarse-grained soils.

The relative importance of the surface and self-weight forces may be described by the specific
surface. This is defined as the total surface area of all grains in unit mass. Table 5.2 lists typical
values for the specific surface of the three common clay minerals and of clean sand; the differences
in the values of specific surface for sand and clay are very large.

In coarse-grained soils such as silt, sand and gravel, particle surface forces are negligible
compared to their self-weight forces, so that dry sand will run through an hour-glass and form
a cone at the base. Dry fine-grained materials, such as kitchen flour, behave differently and if
you squash a handful of flour in your hand it will form a coherent lump. This is because as
the grains become densely packed and the number of contacts in unit volume increases, the
slight surface forces give rise to a small cohesive strength; the lump is easily broken because the
cohesive strength is very small. We will see later that true cohesive strength in soils is usually
negligible unless they are cemented by other materials.

55 SPECIFIC VOLUME, WATER CONTENT AND UNIT WEIGHT

Many important mechanical properties of soil depend on the closeness of the packing of the
grains, so that loose soils (i.c. where there is a high proportion of voids) will be weaker and
more compressible than dense soils. The state of a soil can be described by the specific volume
v given by

v= (5.1)

S

where V is the volume of a sample containing a volume ¥, of soil grains. Sometimes the voids
ratio e is used instead of specific volume, where | )

(5.2)

©
I
=S
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and ¥, is the volume of the voids which, in saturated soil, are filled with water. Since
V= I/w + I/"

p=1+e . (53)

For coarse-grained soils, where surface forces are negligible, the grains pack together like spheres.
The maximum specific volume of a loose assembly of uniform spheres is 1.92 and the minimum
specific volume of a dense assembly is 1.35; common sands and gravels have specific volumes
in the range v = 1.3 to 2.0. For fine-grained clay soils surface effects may be significant, especially
at low stresses, and the maximum specific volume of a recently sedimented clay will depend
on the clay mineral and any electrolyte in the pore water. Montmorillonite clays with large
specific surfaces may exist with specific volumes in excess of 10, while kaolinite clays which have
smaller specific surfaces have a maximum specific volume around 3. Under large loads the
specific volumes of clay soils may be reduced to as little as v = 1.2 as the flat clay plates become
nearly parallel. - . o o
" “Specific volume cannot be measured directly but it can be calculated from other easily
measured parameters. The most convenient is water content w, defined as

s (54

= 7 !
and unit weight v defined as
(5.5)

where W, is the dry weight of water evaporated by heating soil to 105°C, W, is the weight of
dry soil, W = W, + W, is the weight of a sample with volume V. Standard tests to measure water
content and unit weight are described in Sec. 7.3. For a typical clay soil the water content might
be in the range 0.20 to 0.70 (i.e. 20 to 70 per cent) and the unit weight might be 18 to 22 kN/m?
(i.e. about twice that of water: 7, = approximately 10 kN/m?3).
Relationships between these and specific volume can be obtained from Fig. 5.3 together with
~Eqgs (5.1) to (5.5) as oo T '

=v—1=wG, (5.6)

v

where G, is the specific gravity of the soil grains which, for many soils, is approximately G, = 2.65.

Volumes Weights
Water v, Wo =71V
Grains v, W, =7,GV,

Totals v w . Figure 53 Grains and water in saturated soils.
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5.6 LIMITS OF CONSISTENCY

As the water content and specific volume of a soil are increased it will soften and weaken; this
is well known to farmers and football players. If the water content is very large we just get muddy
water and if it is very small we get a material that is very hard and brittle like rock. Obviously
there are limits to the water content within which a soil has the consistency of soil rather than
the consistency of a liquid or a brittle rock. Tests to determine the precise water contents at which
soil behaviour becomes liquid or brittle are the Atterberg limits tests described in Sec. 7.3; these
determine the liquid limit (LL) where the soil starts to flow like a liquid and the plastic limit
(PL) where it ceases to be plastic and becomes brittle.

The Atterberg limits apply to fine-grained soils. (Soils for which it is possible to determine
the Atterberg limits are often called plastic, but this term must not be confused with the strict
meaning of plastic as a type of constitutive relationship, discussed in Sec. 3.5.) For coarse-grained
sands and gravels the appropriate limits are the minimum density of a very loosely poured sample
and the maximum density of a vibrated and heavily loaded sample (Kolbuszewski, 1948). Thus
the minimum density of a sand is equivalent to the liquid limit of a clay, while the maximum
density is equivalent to the plastic limit. The relationships between the Atterberg limits and the
maximum and minimum densities are illustrated in Fig. 5.4.

An important parameter for clay soils is the plasticity index (PI), defined as

PI=LL —-PL (5.8)

This defines the range of water content for a soil and is related to the maximum volume change
(or compressibility) of the soil. Similarly, the difference between the maximum and minimum
densities is related to the relative compressibility. These limits depend on the grading and on
the mineralogy, shape and surface texture of the grains, so they describe the nature of the soil.
The Atterberg limits are measured on soil passing a 425 um sieve and this fraction contains both

I
Brittle and Soil-ike behaviour | Flowslike
crumbly : - »; aliquid
|
1
150 Swength(kPa) 15— -
i 1
L 0  Liquidity index (LI) 1.0
i —_ =
I pi=LL-PL
I
L 1
0 PL LL Water content -
(a) Fine-grained soils
Densest Loosest
state Y state
L Possible range 1
! i
1 |
1.0 Relative density (D,) 0
i 1
_____ 1 E P,
Fwmin Cmax Specific volume

(b) Coarse-grained soils Figure 5.4 Limits of consistency of soils.
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clay and silt particles. The activity 4 is defined as
4 PI
9% by weight of clay -

This is closely related to the specific surface and to the mineralogy of the clay. Typical values
for the common clay minerals are given in Table 5.2.

(5.9)

5.7 CURRENT STATE

Because soil is both frictional and relatively highly compressible its stiffness, strength and specific
volume all depend on the current stresses and history of loading and unloading during deposition
and erosion. In Fig. 5.5(a) the soil at a shallow depth z is lightly loaded by the small vertical
stress o, due to the weight of soil above and it is loose. After deposition of a substantial depth
of soil z, as in Fig. 5.5(b), the same soil is heavily loaded and has become dense. After erosion
back to the original ground level, as in Fig. 5.5(c), the same soil is again lightly loaded but
remains relatively dense. Thus the current water content or density of a soil will depend on the
current stress and on the history of loading and unloading.

The current state of a soil can be related to the relative position with respect to the limiting
states. For fine-grained clay soils the liquidity index (LI) is defined as

LI= w—-PL
LL —-PL

where w is the current water content and for coarse-grained soils the relative density (D,) is
efined as

(5.10)

D =—mu— (5.11)

Umax — Umin

where v is the current specific volume. These relationships are illustrated in Fig. 5.4. Notice that
a liquidity index of 1.0 (corresponding to the loosest or wettest state) corresponds to a relative
density of zero. :

-+

4}
2z O 7 V"‘ ZI o
—_ *;l_.— —
Loose Depse V Dense
(a) (®) G

Figure 55 Changes of state during deposition and erosion. o
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Table 5.3 Strength of clay soils estimated from observations in hand

samples

Consistency Identification , Undrained strength s, kPa
Very soft Extrudes between fingers <20

Soft Easily moulded in fingers 20-40

Firm Moulded by strong finger pressure 40-75

Stiff Cannot be moulded in fingers 75-100

Very stiff Brittle and very tough >150

[

Another measure of the consistency of a clay soil is its immediate strength. We will see later
that the (undrained) strength of a clay is related to the liquidity index, as illustrated in Fig.
5.4(a). When the water content of a clay soil is at its liquid limit the strength is close to 1.5 kPa
and when the water content is at the plastic limit the strength is close to 150 kPa. Rapid estimates
of the strength of clays can be made in hand samples using the criteria in Table 5.3.-

5.8 ORIGINS OF SOILS

The mechanical behaviour of a soil is determined principally by its nature and its current state,
but these are governed, to some extent, by the manner of formation of the soil which may be
deposited, residual or compacted by machines. Detailed discussions of the influence of the
manner of formation of soils on their nature and state are beyond the scope of this book and
are contained in books on engineering geology, but there are a few simple observations to be
made:

1. Deposited soils. Soils may be deposited from water, ice or wind and the grading and particle
shape and texture are governed largely by the transporting agent. Soils deposited from water
or air are poorly graded because the ability of rivers or wind to move different sizes depends
on the velocity, while soils deposited from ice (i.e. boulder clays) are well graded because
ice can move all particle sizes equally. Abrasion in moving water or air produces rounded
and polished grains while soil grains transported by ice generally retain their original shape
and texture. The mineralogy of transported soils is simply that of the parent material, which
may be rock fragments or weathered and eroded clay. The fabric and structure of deposited
soil is usually bedding and layering, reflecting changes in the depositional environment.

2. Residual soils. These are the products of weathering of rocks, or soils, in situ. Their grading
and mineralogy depend in part on thé parent material but principally on the depth and type
of weathering and on details of the drainage conditions. Residual soils usually have low
water contents and liquidity indices (or high relative density) and may be unsaturated. The
fabric of immature residual soils often reflects the fabric of the parent rock.

3. Compacted soils. Soils may be compacted into fills by rolling, vibration or impact. They
are usually unsaturated initially but may later become saturated. Often soils are compacted
in layers and may show horizontal structure.

5.9 SIMPLE PRACTICAL EXERCISES

A description of soils in laboratory samples and in situ is a very important part of ground
investigations and you should try this for yourself. As part of an undergraduate course you will
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robably carry out grading analyses and Atterberg limit tests. To aid visual assessment of grain
size it is helpful to prepare a set of jars, each.containing a particular grain size from fine sand
to coarse gravel. You should also try a rapid grain size analysis using sedimentation in a bottle,
as described in Sec. 7.3. °

An important description of the state of a fine-grained soil is the consistency given in Tables
51 and 5.3. You should handle samples of the same soil with different water contents and
different consistencies.

As a practical laboratory exercise you should describe a bulk sample of a coarse-grained
or a well-graded soil and an intact sample of a fine-grained soil; for the latter the sample should
be split to expose the structure and fabric of the soil. As a field exercise you should find a section
in a quarry, in a cliff or in an excavation and prepare a detailed log for an imaginary borehole
(see Sec. 16.7); before you start work be sure that the face is stable.

5.10 SUMMARY

Classification of soils requires a careful and detailed description of ‘the soil in situ and in samples
together with some simple classification tests. The important characteristics required for
description of soils are:

1. The nature of the grains including the grading (i.e. the distribution of particle sizes) and the
mineralogy, particularly of clay soils. The Atterberg limits give indications of clay mineralogy.

2. The state of the soil given by the stresses, the history of deposition and erosion and the

water content. Important indicators of soil state are the liquidity index of fine-grained soils

or the relative density of coarse-grained soils. :

Stzucture and fabric features including bedding, layering, fissuring and jointing.

4. The method of formation of the soil, which may be deposited from water, wind or ice,
residual formed by weathering or compacted by rolling, vibration or impact.

(U8

WORKED EXAMPLES

Example 5.1: Grading of soils Table 5.4 gives the results of particle size tests on thrse

different soils. The grading curves are shown in Fig. 5.6. .
Table 5.4
Size from % smaller -
sedimentation '
BS sieve (mm) Soil A Soil B Soil C
63 mm ' 100
20 mm . 5
6.3 mm 100 66
2mm : 96 60
600 pm ’ : 86 : 55
212 pm 10 45 100
63 pm 2 34 95
0.020 22 84
0.006 15 68

0.002 : o 8 42




56 MECHANICS OF SOILS AND FOUNDATIONS

100

Percentage finer than a given size

0 ] | 2 1 | 1 |. 1 |
0.002 0.006 002 006 02 06 . 2 6 €0 60 200
2 | Fine {Medium|Coarse| Fine |Medium|Coarse| Fine |Medium |Coarse 33
3 1 %
Silt Sand Gravel ©
Figure 56 B )

Soil A is predominantly sand; it is poorly (i.e. uniformly) graded with a relatively small
range of sizes. It was probably deposited from a relatively fast flowing river. The permeability
will be relatively large. The stifiness and strength will depend on the relative density and the
current effective stresses.

Soil B is well graded with a very wide range of particle sizes from coarse gravel to fine silt
with a little clay. It was probably deposited from a glacier and has not been sorted by wind or
water. The permeability will be relatively low. In situ it is likely to have a low water content
and, as a result, it will probably be relatively stiff and strong.

Soil C is a silty clay. It could be deposited either in a shallow sea, in a lake or in an estuary.
Its stiffness and strength will depend on the mineralogy of the clay fraction as well as on the
current water content and effective stress.

- Example 5.2: Calculations of the state of a soil sample A sample of saturated soil is 38 mm
in diameter and 76 mm long and its mass is 142 g. After oven drying at 105°C its mass is 86 g.

W - W, -
o 18288 o6s1=651percent
W, 86

Weight of saturated soil W = 142 x 9.81 x 1079 kN

L —.  Water content w =

Volume of cylinder V=§ x 382 x 76 x 10~° m?

w
Unit weight y = 7= 15.75 kN/m3

From Egs (5.6) and (5.7)
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From Eq. (5.6),

Example 53: Atterberg limits and soil mineralogy The Atterberg limits of a soil are
LL = 70 and PL = 35 and it contains 80 per cent by weight of clay. The water content of a
sample is 45 per cent.

Plasticity index PI=LL — PL =70 — 35 =35
w—PL 45-35

Liquidity index LI = =0.29
' PI 35
.. PI
Activity A = ——— = 35 = 0.44
- - - T - Y%clay 80 -- - -

The clay is likely to be predominantly kaolinite.

Example 5.4: Calculation of the state of a soil A 1.5 kg sample of dry sand is poured into a
Eureka can (see Fig. 5.7) and displaces 560 cm?® of water. The volume of the soil grains is equal

£ 1.5kg ' ' ’ -

L
=\ e\

. ?‘W o

(a) ’ (b) Figure 5.7 Eureka can experiment.

560cm’

to the volume of the water displaced from the can and so

weight of soil grains _ 1.5 x 10°
volume of soil grains = - 560

2.68

specific gravity G, =

A second 1.5 kg sample of the same dry sand is poured into an empty measuring cylinder 55 mm
in diameter and occupies 950 cm? (see Fig. 5.8(a)). Therefore,

. volume of soil 950
specific volume v = ————=—=1.70
volume of grains 560

weight of drysoil 1.5 x 9.81 x 1073
volume 950 x 10~

volume 950 x 10-¢
area  m/4 x 55% x 107¢

= 15.5 kN/m?

unit weight of dry soil yq =

= 0.40 m . ’

depth of dry sand =
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— z L
g £ e B
< e g |- £
(-] @ [~ g
(a) (b) : (c) Figure 53

thn the cylinder is carefully filled with'\ water up to the top level of the sand (see Fig. 5.8b),

- 68+ 1.70 — 1
unit weight y = (9-1“’——1> 7, = (ZE’?_'*IT_) 9.81 = 19.5 KN/m?
v R .

The side of the measuring cylinder is tapped several times, causing the level of the sand to settle
to a volume of 870 cm®. At the new denser state (see Fig. 5.8¢),

volume of soil @ = 1.55

volume of grains - 560

unit weight y = (G_“C_"_:l) b = (268”“1—15;5‘1> 9.81.= 20.4 kN/m?
") .

specific volume v =

volume 870 x 10™¢

= =037m
area  m/4 x 55> x 1076

“depth of soil z =

REFERENCES

BS 5930 (1981) Code of Practice for Site Investigations, British Standards Institution, London.

BS 1377 (#991) Methods of Test for Soils for Civil Engineering Purposes, British Standards Institution. London.

Kolbuszewski, J. J. (1948) ‘An experimental study of the maximum and minimum porosities of sands’, Proceedings of

- .- 2nd International SMFE Conference, Rotterdam, Vol. 1. . .

Wagner, A. A. (1957) “The use of the unified soils classification system by the Bureau of Reclamation’, Proceedings of
4th International SMFE Conference, London, Vol. 1.

FURTHER READING

Atkinson, J. H. and P. L. Bransby (1978) The Mechanics of Soils, McGraw-Hill, London.”

Clayton, C. R. L, N. E. Simons and M. C. Matthews (1982) Site Investigation, Granada, London.

Grimm, R. E. (1962) Applied Clay Mineralogy, McGraw-Hill, New York. .

Head, K. H. (1980) Manual of Soil Laboratory Testing, Vol. 1, Soil Classification and Compaction Tests, Pentech Press,
London.

Mitchell, J. K. (1976) Fundamentals of Soil Behaviour, Wiley, New York.



CHAPTER
SIX
PORE PRESSURE, EFFECTIVE STRESS AND DRAINAGE

6.1 INTRODUCTION

Soils consist of solid grains and water, and loads on foundations or on walls will arise from
combinations cf the stresses in the skeleton of soil grains and in the pore water. If there is no
soil the normal stress on the hull of a ship is equal to the water pressure. If there is no water the
stress on the bottom of a sugar basin arises from the weight of the dry sugar. The question then
arises as to what combinations of the stresses in the skeleton of the grains and in the pore water
determine the overall soil behaviour. To examine this we will look at the stresses and water
pressures in the ground.

6.2 STRESS IN THE GROUND

In the ground the vertical sf_tres-s.,‘ at a particular depth is due to the weight of everything
above—soil grains, water, foundations—and so stresses generally increase with depth. In Fig.
6.1(a) the vertical stress o, is :

g, =7z - 6.1)

»

\ NN

z -5 4 ‘a,

G r —-»D«—cr,,

(@) ® ©

Figure 6.1 Total stresses in the ground.
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where 7 is the unit wclght of the soil (see Sec. 5.5). If the ground is below water lcvcl, in the bed
of a lakc ora sea, as in Fig. 6.1(b),

o=y 4w . me

and if there is a surcharge load g at the surface from a foundation or an embankment, as in
Fig. 6.1(c),

g, =%2+4g ‘ - (63) .

Remember that y is the weight of everything (soil grains and water) in unit volume. Because o,
arises from the total weight of the soil it is known as a total stress. Notice that the water in the
lake in Fig. 6.1(b)-applies a total stress at the ground surface in the same way that water in a
glass applies total stresses to the bottom of the glass. The specific gravity of soil grains does not
vary very much and, typlcally, y =~ 20 kN/m? for saturated soil, y ~ 16 kN/m? for dry soil and
for water y, ~ 10 kN/m3.

There are also total horizontal stresses O, but there are no sxmple relationships between o,
and o,. We will examine horizontal stresses in later chapters. _

6.3 GROUNDWATER AND PORE PRESSURE

The water in the pores of saturated soil has a pressure known as the pore pressure u. This is
conveniently represented by the height of water h,, in 2 standpipe, as shown in Fig. 6.2. When
everything is in equilibrium the pressures of water just inside and just outside the pipe are equal
and so

u=yuhy (64

When the level of water in the pipe is below ground, as in Fig. 6.2(a), it is known as the water-
table or the phreatic surface. If the water in the soil is stationary the water table is horizontal
like the surface of a lake. However, as we will see later, if the phreatic surface is not Ievel there
will be seepage as the groundwater moves through the pores of the soil. From Fig. 6.2(a) pore
pressures at the water table are zero (this is a definition of the phreatic surface) and positive
below and a question is: what is the pore pressure above the phreatic surface?

Figure 6.3 illustrates the variation of pore pressure in the region between the ground level
and the water table. There-may be a layer of dry soil at the surface where pore pressures are
zero. This is actually relatively rare but can be found on beaches above the high-tide mark.
Immediately above the water table the soil remains saturated because of capillary rise in the

v Water table

']
Y7277 77

—y 77
—
=

vy

—
L
—

Figure 6.2 Pore water pressures in the ground.
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j ) Dry | Zero pore pressure
T / A A
¢ |
N Unsaturated
\
) K Y .
——————— A y S Negative pore pressures
—u
—h,
Y 7 y Y
Water table -4 A
Saturated
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Figure 6.3 Pore pressures and suctions in the ground.

pore spaces. In this zone the pore pressures are negative and are given by
= —7uh, (6.5)

An important point to notice is that saturated soils may very well have negative pore
pressures. This implies that the water is in tension and the rise of water in soil above the phreatic
surface is like the rise of water in a capillary tube. The height of the saturated region above the
water table depends essentially on the size of the grains, or more particularly on the size of the
pore spaces: the smaller the grains and pores the greater the height of saturated soil with negative
pore pressures and the greater the magnitude of the greatest negative pore pressure at the top
of the saturated zones.

Between the dry and saturated zones is a zone of unsaturated soil which contains soil grains,
water and gas, usually air or water vapour. In this soil the pore water and the gas exist at
different pressures and the pore water suctions may increase or decrease as indicated in Fig. 6.3.
At present there is no simple and satisfactory theory for unsaturated soil and in this book I will
only deal with dry or saturated soils. For practical purposes soils controlling the behaviour-of
slopes, foundations, retaining walls and other major civil engineering structures are® usually
saturated, at least in temperate or wet climates. Unsaturated soils occur in soils very near the
surface, in compacted soils and in hot dry climates. '

6.4 EFFECTIVE STRESS

It is obvious that ground movements and instabilities can be caused by changes of total stress
due to loading of foundations or excavation of slopes. What is perhaps not so obvious is that
ground movements and instabilities can be caused by changes of pore pressure. For example,
stable slopes can fail after rainstorms because the pore pressures rise due to infiltration of
rainwater into the slope while lowering of groundwater due to water extraction causes ground
settlements. (Some people will tell you that landslides occur after rainfall because water lubricates
soil; if they do, ask them to explain why damp sand ina sand-castle is stronger than dry sand.)

If soil compression and strength can be changed by changes of total stress or by changes
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of pore pressure there is a possibility that soil behaviour is governed by some combination of
& and u. This combination should be called the effective stress because it is effective in determining
soil behaviour. 7 )
THe relationship between total stress, effective stress and pore pressure was first discovered
" by Terzaghi (1936). He defined the effective stress in this way

All measurable effects of a change of stress, such as compression, distortion and a change of shearing resistance,
are due exclusively to changes of effective stress. The eflective stress ¢’ is related to the total stress and pore pressure
byo =0—u

Figure 6.4 shows Mohr circles of total stress and effective stress plotted on the same axes. Since
¢}, = 0, —u and ¢4 = 6, — u the diameters of the circles are the same. The points T and E
represent the total and effective stresses on the same plane and clearly total and effective shear
stresses are equal. Therefore, effective stresses are

'=¢—u _ (6.6)
=1 6.7)

From the definitions of the shear stress parameter g and the mean stress parameter p given in
Chapter 2 and substituting ¢} = g, — u, €tc, it is easy to show that

p'=p—u (6'8)
. I . g=q (6.9) -

From Egs (6.7) and (6.9) total and effective shear stresses are identical and most authors use
shear stresses without primes all the time. In my work and teaching, and in this book, I use 7’
and ¢’ when I am considering analyses in terms of effective stress and 7 and q for total stresses.
I'know that this is strictly unnecessary but I find that the distinction between total and effective
shear stresses is helpful, particularly for teaching.

6.5 IMPORTANCE OF EFFECTIVE STRESS
The principle of effective stress is absolutely fundamental to soil mechanics and its importance
cannot be overstated. This is the way in which soil behaviour due to loading is related to
behaviour due to changes of groundwater pressure.

Although most texts on soil mechanics examine the validity of the principle and the meaning
of effective stress by considering the interparticle forces and the intergranular contact areas,
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there really is no need to do this and the necessary assumptions are not always supported by
experimental evidence. Nevertheless, no conclusive evidence has yet been found that invalidates
Terzaghi’s original postulate, at least for saturated soils at normal levels of engineering stress,
and the principle of effective stress is accepted as a basic axiom of soil mechanics.

Because total and effective normal stresses are different (except when pore pressures are
zero) it is absolutely essential to distinguish between the two. The effective stresses o’ and t’ are
always denoted by primes while the total stresses o and t do not have primes. Any equation
should have all total stresses, or all effective stresses, or total and effective stresses should be
related correctly by the pore pressure. Engineers doing design calculations (or students doing
examination questions) should always be able to say whether they are dealing with total or
effective stresses.

From Figs 6.1 and 6.2, anid making use of Egs (6.1) to (6.6), we can calculate the vertical
effective stress o, at any depth in the ground for any position of the groundwater. If you try
some examples you will discover that if the water table is below the ground level the effective

stress depends on the position of the water table. If, on the other hand, the-ground level-is -

submerged, as in the bed of a river, lake or sea, the effective stress is independent of the depth
of water; this means that the effective stresses in soil in the bed of a duck pond will be the same
as those in the bed of the deep ocean where the water depth may exceed 5 km. In doing these
calculations remember that free water which can slosh around (i.e. in a river, lake or sea) will
apply a total stress to the soil (and to dams and submarines), but water in the pores of the soil
has a pore pressure; these water pressures need not always be equal.

Submarines and fish illustrate effective stresses. Sea water applies total stresses to the skin
of both. In a submarine the internal (pore) pressure is zero (atmospheric) so the skin of the
submarine must be very strong, but in a fish the pressures in the blood and in the soft tissues
are very nearly equal to the external water pressure so the skin and skeleton of the fish can be
very weak and soft. In both cases the stresses on the skins are equivalent to effective stresses in
soils.

6.6 DEMONSTRATIONS OF EFFECTIVE STRESS

The effective stress equation (6.6) can be written in terms of changes A so that
A =Ac—Mx (6.10)

This shows that effective stresses may be changed—causing measurable effects—by changing
either the total stress with the pore pressure constant or by changing the pore pressure with the
total stress constant. Note also that if the total stress and the pore pressure are changed equally
the effective stress remains constant and the soil state does not change. .

Figure 6.5(a) illustrates settlements Ap caused by loading a foundation by A¢ while the pore
pressures in the ground remain constant so that A¢’ = Ac. Figure 6.5(b) illustrates settlements
Ap caused by extraction of groundwater. Pumping lowers the water table by Ah, so that pore
pressures reduce by Au = y,Ah,. From Eq. (6.10), with Ag = 0, the reduction of pore pressure
causes an increase of effective stress Ac’. The principle of effective stress states that if the change
of foundation loading As is the same as the change of pore pressure Au due to lowering of
groundwater the settlements will be the same. In other words, it is simply the change of effective
stress that affects the soil behaviour. : S . .

A simple experiment which demonstrates the action of effective stresses is illustrated in Fig.
6.6. This shows the influence of pore pressure on the capacity of deep and shallow foundations.
The soil should be fine to medium sand; if it is too coarse it will become unsaturated when the
water table is lowered and if it is too fine pore pressures may not equalize in a reasonable time.
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Place the gravel and sand in water to ensure they are saturated and then open the valve to
lower the water table to the gravel. Place a heavy foundation (a steel cylinder about 40 mm in
diameter and 80 mm long works very well) and an eccentrically loaded pile as illustrated. Close
the valve and raise the water table by pouring water into the standpipe; if the sand and gravel
“remained saturated it will only be necessary to fill the staiidpipe. As the water table and the
pore pressures rise, effective stresses will fall and both foundations will fail.

Another simple demonstration of effective stresses is the stiffness and strength of a vacuum
packed bag of coffec beans. As long as the vacuum is intact the bag is relatively stiff and strong
because the negative pore pressures result in positive effective stresses. However, if you puncture
the bag with a small pin prick it will become much less stiff and strong because the pore pressures
rise so the effective stresses reduce. You can do the same experiment more cheaply using coarse
sand or gravel in a self-sealing plastic bag.

6.7 YOLUME CHANGE AND DRAINAGE

As soil is loaded or unloaded due to changes of effective stress it will generally change in volume.
However, because the soil grains themselves are very stiff the volume change of the grains is
negligible and so the volume change of the soil must be due to rearrangement of the grains and
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—_ Figure 6.8 Drainage of clay beneath an embankment.

changes in volume of the voids. At small effective stress the spacing of the grains may be loose
and at high stresses it will be dense, as shown in Fig. 6.7. If the pore pressure u, remains constant
then the changes of total and effective stresses are the same (A¢’ = Ac; see Eq. 6.10). If the
volume of the soil grains remains constant then, in Fig. 6.7, the change of volume of the soil
AV is the same as the volume of water expelled AV, 4

In saturated soil changes in volume must be due to seepage of water through the soil and
so soil compression is rather like squeezing water from a sponge. In a laboratory, test water will
seep to the boundaries of the sample while, in the ground, water will seep to the surface or to
natural drainage layers in the soil. For example, Fig. 6.8 illustrates an embankment built on a
bed of clay sandwiched between layers of sand which act as drains. As the embankment is
constructed water will seep from the clay to the sand layers as indicated.

There must, of course, be sufficient time for the water to seep through the soil to permit
the volume change to occur; otherwise the pore pressure will change. As a result there rhust be
some relationship between the rate at which the loads are applied, the rate of drainage and the
behaviour of the soil and pore pressure. ) ‘

6.8 DRAINED LOADING, UNDRAINED LOADING AND CONSOLIDATION

The relative rates at which total stresses are applied and at which the seepage takes place are
of critical importance in determining soil behaviour. The limiting conditions are illustrated in
Figs 6.9 and 6.10.

Figure 6.9(a) illustrates an increment of total stress Ag applied slowly, over a long period
of time. This could represent loading in a laboratory test or in the ground. If the loading is
applied very slowly water will be able to seep from the soil as the total stresses increase. There
will be no change of pore pressure, as shown in Fig. 6.9(c), and the volume changes will follow
the change of loading, as shown in Fig. 6.9(b). Because the pore pressures remain constant at
" ug, the changes of effective stress follow the change of total stress, as shown in Fig. 6.9(d). When
the stresses remain constant at 6 + Ad’, the volume remains constant at ¥, — AV. This kind of
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(d) Figure 6.9 Characteristics of drained loading.

relatively slow loading is called drained because all the drainage of water takes place during the
loading. The most important feature of drained loading is that the pore pressures remain-
constant at u,, which is known as the steady state pore pressure.

_Figure 6.10(a) illustrates the same increment of total stress Ao as in Fig. 6.9, but now applied
so quickly that there was no time for any drainage at all and so the volume remains constant,
as shown in Fig. 6.10(b). If the loading was isotropic with no shear distortion and undrained
with no volume change then nothing has happened to the soil. From the principle of effective
stress this means that the effective stress must remain constant, as shown in Fig. 6.10(d), and,
from Egq. (6.10), the change in pore pressure is given by

Ad =Ac — Au=0 (6.11)
Au = Ag (6.12)

This increase in pore pressure gives rises to an initial excess pore pressure i7;, as shown in Fig.
6.10(c). Notice that the pore pressure u consists of the sum of the steady state pore pressure u,
and the excess pore pressure &; if the pore pressures are in equilibrium u = uy and 7 = 0. Relatively
quick loading is known as ‘undrained loading’ because there is no drainage of water during the
loading. The most important feature of undrained loading is that there is no change of volume.

At the end of the undrained loading the pore pressure is u = u, + &;, where u,, is the steady
state, or equilibrium, pore pressure and & is an initial excess pore pressure. This excess pore
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(d) Figure 6.10 Characteristics of undrained loading and consolidation.

pressure will cause seepage to occur and, as time passes, there will be volume changes as shown

in Fig. 6.10(b). The volume changes must be associated with changes of effective stress, as shown

in Fig. 6.10(d), and these occur as a result of decreasing pore pressures, as shown in Fig. 6.10(c); .
at some time ¢ the excess pore pressure is #,. The drainage of water is driven by the excess pore

pressure and so, as the excess pore pressure decreases, the rate of volume change, given by the

gradient dV/dt, also decreases, as shown in Fig. 6.10(b). Notice that while there are excess pore

pressures in the soil, water pressures outside the surface of the soil will not be the same as the

pore pressures; this means that the pore pressure in soil behind 2 new quay wall need not be

the same as the pressure in the water in the dock. »

This dissipation of excess pore pressure accompanied by drainage and volume changes is
known as consolidation. The essential feature of consolidation is that there are excess pore
pressures i that change with time. Usually, but not always, the total stresses remain constant.
Consolidation is simply compression (i.e. change of volume due to change of effective stress)
coupled with seepage. At the endfpf consolidation, when i, = O after a long time, the total and
effective stresses and the volume are all the same as those at the end of the drained loading
shown in Fig. 6.9. Thus, the changes of effective stress for undrained loading plus consolidation
are the same as those for drained loading.

In the simple examples of drained and undrained loading illustrated in Figs 6.9 and 6.10,
the increment of loading was positive so that the soil compressed as water was squeezed out.
Exactly the same principles apply to unloading where the increment is negative and the soil
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_swells as water is sucked in by the negative excess pore pressure. Readers should sketch dxagrams
like Figs 6.9 and 6.10 for an increment of unloading. .

69 RATES OF LOADING AND DRAINAGE

When distinguishing between drained and undrained loading it is relative rates of loading and
seepage that are important, not the absolute rate of loading. Seepage of water through soil,
which will be covered in more detail in Chapter 17, is governed by the coefficient of permeability
k. Figure 6.11 illustrates seepage with velocity ¥ through an element of soil 55 long. At one end
there is a drain where the pore pressure is ug = y,.h,o and at the other end there is an excess
pore pressure given by i = 4 B The difference in the levels of water in the standpxpes is 8h,, = h,,
and the hydraulic gradient is given by

éh
T s

(Hydraulic gradient should really be defined in terms of the hydraulic potential P instead of the
head h,., but if the fiow is horizontal these are the same; potential is introduced in Sec. 17.3.)
The basic rule for seepage is Darcy’s law, given by

V=ki (6-14)

where the coefficient of permeability k has the units of velocity. The value of k is the seepage
velocity of water through soil with unit hydraulic gradient.

Values for the coefficient of permeability for soils depend largely on the grain size (or
more particularly on the size of void spaces through which the seepage takes place). Typical
values for k for different grain sizes are given in Table 6.1. (For some natural clay soils the
value of k may be considerably less than 1078 m/s.) Notice the very large range (more than
x 10%) of permeability for typical soils. Under a unit hydraulic gradient, water will travel 1 m
through gravel in less than 102 = 100 s and 1 m through clay in more than 10 s, which is about
3 years.

In civil engineering and related activities loads are applied to the ground at different rates
and some typical examples are given in Table 6.2. Again, notice the very large range (more than
x 10°) in the durations, or rates, of loading or unloading in these examples.

In any geotechnical calculation or analysis it is absolutely essentially to state whether the
~ calculation is for drained or undrained loading, and we will discover that-different analyses are
required for each in later chapters. What is important is the relative rates of loading and
drainage—is there enough time during the loading to allow drainage to occur or is the loading
so fast that there will be no drainage? Of course, in reality, neither condition will be satisfied
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Figure 6.11 Seepage of water through soil.
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Table 6.1 Values of coefficient
of permeability of soils

Grain size k (m/s)
Gravel >10"2
Sand 10-2-10-3
Silt 10731078
Clay <1078

Table 6.2 Durations of typical engineering

constructions

Event ) Duration i o B

Shock (earthquake, pile driving) <ls

Ocean wave 10s

Excavate trench - T10*s=x=3h ‘ -
Load small foundation 108 s =~ 10 days

Large excavatiog. 107 s ~ 3 months

Embankment dam 10%s ~ 3 years

Natural erosion 10% s > 30 years

absolutely and decisions must be made as to whether the construction.is more nearly drained
or undrained.

Many engineers will assume that loading or unloading of a coarse-grained soil will be
drained and of a fine-grained soil will be undrained. These assumptions are adequate for loading
rates which are not at the extremes of those in Table 6.2. Very rapid loading of coarse-grained
soil is likely to be undrained. Thus earthquakes, pile driving and ocean waves may generate
excess pore pressures in sands which can cause liquefaction failures and which explain the change
of pile capacity after a delay in driving. Very slow loading of clay slopes due to natural erosion is
likely to be drained and pore pressures and siope angles of many natural clay slopes correspond
closely to the fully drained, steady state conditions. '

6.10 SUMMARY

1. In soils total stresscs arise from the weight of the soil (including the soil grains and the pore
water) and any other external loads from foundations, walls and free water. There are also
pore pressures in the water in the voids.

2. The stresses that govern soil behaviour are effective stresses given by =tand o’ =0 —u
As a result soils are affected equally by changes in total stress and pore pressure..’

3. Volume changes in soil can only occur as water seeps through the pores and the rate of
seepage is governed by the coefficient of permeability k. If soil is loaded slowly, compared
with the rate of drainage, the pore pressures remain constant and volume changes occur
during the loading which is called drained. o o )

4. If soil is loaded quickly, compared with the rate of drainage, the volume remains constant,

" excess pore pressures aris¢ and the loading is called undrained. Subsequently, consolidation
occurs as the excess pore pressures dissipate and water seeps from the soil, causing volume
changes. '
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WORKED EXAMPLES

Example 6.1: Calculation of vertical stress For the measuring cylinder of sand described in
Example 5.4 (see Fig. 5.8), the total vertical stress, the pore pressure and the effective vertical
stress at the base of the cylinder are:

(a) When the sand is loose and dry:

z=040m

¢ = 15.5 kN/m?

u=0

0, = 74z = 155 x 040 = 6.2 kPa

(b) When the sand is loose and saturated:

z=040m -

y=195kN/m?® -
0,=7yz=19.5x 04 =78 kPa
u=y,.h, =981 x 04 - 3.9kPa
0,=0,—u=78~-39=39kPa

(c) When the sand is dense and saturated:

z=037Tm
y = 20.4 kN/m?
Ze =0.03m

o, =yz+ 7,2, = (204 x 0.37) + (9.81 x 0.03) = 7.8 kPa
“u=7y.h, =9.81 x 040 = 3.9 kPa o ‘
g,=0—-u=78—-39=39kPa

Notice that densification of the soil by tapping the side of the cylinder did not change the total
or cffective stresses at the base of the cylinder. This is simply because the total weights of soil
and water in the cylinder did not change.

Example 6.2: Calculation of stress in the ground The deep clay deposit in Fig. 6.12 has unit
weight y = 20 kN/m3 and the soil remains saturated even if the pore pressures become negative.
For the groundwater conditions, (a) water table 6 m below ground level and (b) with water to
a depth of 3 m above ground level, the vertical effective stresses at a depth of 3 m are:

(a) Water table at 6 m below ground level:
0, =79z=20 x 3 = 60kPa
u=19y,h,=10x —3 = —30kPa
0, =0,—u=060+30=90kPa
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(b) Water surface, 3 m above ground level:

G, = 72 + YuZw = (20 x 3) + (10 x 3) = 90 kPa
u=7y.h,=10x6=260 kPa
¢, =0, —u=90—60=30kPa

Example 6.3: Calculation of stress in the ground below a foundation The concrete bridge pier
in Fig. 6.13 is 4 m tall, it has an area of 10 m? and carries a load of 1 MN. (The unit weight of
concrete is y. = 20 kN/m?>.) The pier is founded on the bed of a tidal river where there is at least
5m of sand with a unit weight of 20 kN/m?3. The river bed is at low tide level and at high tide
there is 3 m depth of water. )

The total contact stress g between the soil and the base of the pier (i.e. the bearing pressure)
arises from the weight of the concrete and the applied load and is

3
Lx 107 _ 150kpa

F
¢1=7=Hc+‘z=(4><20)+

(a) At low tide:

0, =vz +q=(20 x 2) + 180 = 220 kPa : *
u=y,h, =2x10=20kPa
! =0, —u =220 — 20 = 200 kPa

IMN : ~ IMN

Y Y
A 10m* —
4m 3m
q‘ﬁ?\ W N ~ R
2m o ZmI o
(IO

(a) S ) Figure 6.13
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(b) At high tide (note that g is reduced by uphft from the water pressure below the
foundation):
0= ¥Z + YwZw + (= Vw2Zu)
= (20 x 2) + (10 x 3) + (180 — (10 x 3)) = 220 kPa
u=7y,h,=10x5=>50kPa
o, =0, —u=220—- 50 =170 kPa

Notice that in this case the increase of the water depth has reduced the effective stress in the
ground; this is because of a reduction of the bearing pressure due to uplift. )

Example 6.4: Calculation of stress below an embankment The soil proﬁle in Fig. 6.14 consists
of 4 m clay over 2 m sand over rock: the unit weights of all the natural materials are 20 kN/m?
and the steady state water table is at ground level. A wide embankment 4 m high is constructed
from fill with a unit weight of 15 kN/m3. The total and effective vertical stresses at the centre
of the clay and at the centre of the sand (a) before the embankment is constructed, (b)
immediately after it is completed and (c) after a very long time are:

(a) Before qonstruction of the embankment:
e in the clay:

vz =20 x2=40kPa
=10x2=20kPa
o, =0, —u=40 — 20 = 20kPa

2
]

=
i
[

e In the sand:

-2
N

20 x 5 =100 kPa
u =10 x 5= 50kPa
o, =0, —u= 100 — 50 = 50 kPa

0,

(b) Immediately after construction of the embankment the sand is drained so the pore pressure
remains constant. The embankment is wide so there are no horizontal strains, the clay is
undrained and the effective stresses remain unchanged:

R
4m Fill
Y Y
ST ; s
\ r A 2m i_ o e
4m Sm . Clay

\ ¥ Oz -

my —0 ~ sand
g ] E Rock

(a) (b) Figure 6.14
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e in the clay:
co, = yz=(4 x 15) + (2 x 20) = 100 kPa
o, = 20kPa, as in (a)
u=o0,—o,=100—20=280kPa
e in the sand:
o, =Y yz=(4 x 15) + (20 x 5) = 160 kPa
u = 50kPa
6,=0,—u=160 - 50 = 110kPa
© After a very long time the excess pore pressures in the clay will have dissipated to the steady
state conditions corresponding to the water table at original ground level:

e in the clay:
o, = 100 kPa, as in (b)
u=20kPa, as in (a) N
o, =0, —u=100—-20=_80kPa

e in the sand there has been no change of total stress or pore pressure and the stresses are
the same as those in (b).
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CHAPTER

: | | o SEVEN
LABORATORY TESTING OF SOILS

7.1 PURPOSES OF LABORATORY TESTS

Testing soil samples in the laboratory plays an important role in soil mechanics research and civil
engineering practice. Almost all we know about soil behaviour has been learned from laboratory
tests. Tests may be carried out on small samples of soil to examine the characteristics of the soil
" or on models of soil structures to examine how slopes, walls and foundations deform and collapse.
In this chapter we will consider tests on soil samples. Laboratory tests are carried out for a
number of purposes, the most important being:

1. For description and classification of a particular soil (see Chapter 5).
2. To investigate the basic mechanical behaviour of soils and to develop theories for soil
behaviour (see Chapters & to 12).

3. To determine design parameters (i.e. numerical values for strength, stiffness and permeability)

for geotechnical analyses (see Chapters 17 to 23).

Laboratory tests may be carried out on samples that are intact or have been completely
reconstituted. In reconstituted samples the soil has been mixed at a relatively large water content
and then recompressed (see Chapter 8). In this way any structure developed in the soil in the
ground due to deposition or ageing is removed and the tests measure the fundamental behaviour
and intrinsic properties of the soil. Intact samples are recovered from the ground with minimum
disturbance (see Chapter 16); thus they contain the in situ structure and retain the properties
of the soil in the ground. :

Most of the analyses of geotechnical structures described in Chapters 18 to 23 and used for
routine design were developed for simple soils which behave more or less like the theories
described in Chapters 8 to 12. These analyses may not be applicable to soils whose behaviour
differs significantly from these simple theories, in which case special methods will be required
which are outside the scope of this book. An important and often neglected purpose of soil
testing is to examine soil for unexpected or strange behaviour. This is best done by comparing
the behaviour of intact samples with the basic theories and with the behaviour of the same soil
reconstituted and recompressed to the same state.

74
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7.2 STANDARD TESTS AND SPECIFICATIONS

Many of the routine soil tests are very carefully and precisely specified in 2 number of national
standards and codes of practice. In the United Kingdom the standard is BS 1377:1991, Methods
of Test for Soils for Civil Engineering Purposes, and similar standards exist in other countries
and regions. You should certainly look at a copy of the standards for soil testing relevant to
your region to see exactly what they cover. Most of these standards follow what might be called
a cookery book method: you do this, you do that and you serve up the result in this or in that
way. There are, however, difficulties with the cookery book approach for soil testing which arise
from the characteristics of soil strength and stiffness described in Chapters 8 to 13.

The values obtained from a particular test will obviously depend to a greater or lesser extent
on details of the equipment and procedures used and for some tests, particularly those that
measure the nature and state of a soil, it is essential that the tests follow standard procedures.
This is because the parameters being measured (e.g. grading and Atterberg limits) are intrinsic
properties of the material and different laboratories and different workers should obtain identical
results for the same soil. ~ - ’ - T )

While it is possible and desirable to set standards for construction of equipment and for
calibration of instruments to ensure that the accuracy of the observations is acceptable (or at
least known), it is not so easy to specify tests that measure soil strength and stiffness because
of the many important factors that affect these parameters. Instead, engineers should determine
what parameters are required for a particular analysis, determine what factors will influence
these within the theories described in Chapters 8 to'13 and then devise tests that take account
of these. The engineer will need to specify not only the loading path applied in the test but also,
equally importantly, the loads applied to the sample before the test starts.

I am not going to describe the standard equipment and soil tests in detail. Most of the
standard apparatus and routine tests are described at length in a three-volume book by Head
(1980, 1982 and 1986) and in various standards and codes of practice. All engineers concerned
with groundworks should carry out simple classification, consolidation, shear and triaxial tests
for themselves at least once in their career; they should also carry out simple foundation, slope
stability and retaining wall experiments. The emphasis of this work should be on handling
equipment and soil samples, good scientific practice and analysis and interpretation of test results
within simple theories. They should also play around with soils and soil-like materials at home,
in their garden and at the beach. :

7.3 BASIC CLASSIFICATION TESTS

As discussed in Chapter 5, the nature of a soil is described principally by the grading (i.c. the
distribution of particle sizes) and the mineralogy, while the state is described by the current
water content and unit weight (together with the current stresses).

(a) Measurement of Grading

The distribution of particle sizes in a soil is found by sieving and sedimentation. Soil is first
passed through a set of sieves with decreasing aperture size and the weight retained on each
sieve recorded. The smallest practical sieve has an aperture size of about 0.07 mm, corresponding
roughly to the division between silt and sand. Silt-sized particles can be separated by sedimenta-
tion making use of Stoke’s law, which relates the settling velocity of a sphere to its diameter.
A rapid estimate of grading can be made by sedimentation in a jam jar or milk bottle. Take
a sample about one-third of the height of the container, fill the container with water and shake
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it up. Quickly stand the jar or bottle upright and leave it for several hours. You can see and
estimate the grading of gravel, sand and silt; clay will remain in suspension for a long time and
any material floating on the surface is likely to be organic (i.. peat). This is a test frequently
used by gardeners, , '

(b) Measurement of Water Content and Unit Weight

The water content of a soil is defined as

w= L& 7.1)
, W,
and the unit weight y is defined as -
w
[ Je— 7.2
=7 (7.2)

where W, is the weight of water evaporated by heating soil to 105°C until the weight is constant,
W, is the weight of dry soil and W = W, + W, is the weight of a sample with volume V. These
weights can be measured by simple weighing and the volume of 2 cylindrical or cubic sample
determined by direct measurement.

(c) Measurement of Atterberg Limits

For coarse-grained soils the engineering properties are governed largely by the grading and, to
a lesser extent, by the shape, texture and mineralogy of the grains, but the properties of
fine-grained clay soils depend largely on the type of clay. The basic behaviour of plastic clay soils
can be assessed from the Atterberg limits (i.e. liquid limit, plastic limit and plasticity index)
described in Sec. 5.6. The liquid limit determines the water content at which the soil has weakened
so much that it starts to flow like a liquid. The plastic limit determines the water content at
which the soil has become so brittle that it crumbles.

Liquid Iimit tests The two alternative liquid limit tests are illustrated in Fig. 7.1. In the
Casagrande test in Fig. 7.1(a) a small slope is failed by bumping a dish on to a rubber block.

,gog

{ W&% / K
Smm A - 20mm |
61° |

(a) Casagrande liquid limit test (b) Fall cone liquid limit test

| o

(c) Plastic limit test - Figure 7.1 The Atterberg limits tests.
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In the fall cone test a small cone-shaped foundation penetrates the soil. The precise details of
the geometries, weights and so on are arranged so that the soil has a strength of approximately
1.5 kPa when it is at the liquid limit. In each case the sample has a high water content and is
soft enough to be moulded into the container using a knife or spatula. The tests are repeated
with slightly different water contents until the precise requirements of the tests are met.

Plastic limit test The test consists of rolling a 3 mm diameter thread of soil while the water
evaporates and the water content decreases until the thread splits and crumbles. The failure of
the thread corresponds to a strength of approximately 150 kPa. Notice that a strength of 150 kPa
corresponds to the division between stiff and very stiff clay in Table 5.2. Remember the plasticity
index PI given by

PI=LL-PL (7.3)

This is an important intrinsic soil parameter. Because the Atterberg limits determine the
conditions of soil at certain well-specified strengths, the results can be used to estimate a number
of other important intrinsic soil properties, as discussed in Chapter 9. Further discussion of the
Atterberg limits is given in Sec. 5.6.

74 MEASUREMENT OF COEFFICIENT OF PERMEABILITY
Seepage of water through soil, discussed in Chapter 17, is governed by Darcy’s law:
V =ki (7.4)

where k, the coefficient of permeability, is a soil parameter. The value of k depends principally
on the grain size and specific volume (or more properly on the void size, which is related to the
grain size and specific volume). Permeability can be measured in laboratory tests in a constant
head permeameter, for soil with relatively large permeability, or in a falling head permeameter,
for soils with relatively low permeability; these are illustrated in Fig. 7.2. In both cases water
flows through a soil sample and the rates of flow and the hydraulic gradients are mea§ure¢

(a) Constant Head Permeability Tests

In the constant head test illustrated in Fig. 7.2(a) water from a constant head tank flows through
the sample in a cylinder and is collected in a measuring jar. Two standpipes measure the pore
pressure and potential (see Sec. 17.3) at two points as shown. The flow is steady state and, from
the observations,

AQ | :
ve-—b )
i= % o ' (7.6)

"and hence a value for k can be determined. In practice it is best to vary the rate of flow in stagcs
and plot ¥ agamst I; in this way you can verify Darcy’s law and evaluate k.
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(b) Falling head test

Figure 7.2 Permeameter tests.

(b) Falling Head Permeability Tests

In the falling head test illustrated in Fig. 7.2(b) water flows through the sample as the level of
water in the standpipe drops. Over a time interval &z the rate of flow is

6P P
= —g-—= Ak = : 7.7
a=-a ot L @7
7 and -txgncé, in t_he; liniit,
-- 4P _ 4k - - (1.8
P al

Integrating with the limits P = P, at t = 0 we have

P alL

and you can determine a value for k by plotting In(P,/P) against ¢t and finding the gradient.
Notice that in a falling head test the effective stresses change because the pore pressures change as
the level of water in the standpipe falls. Any volume changes that occur as a result of these
changes of effective stress have to be neglected.

Values of the coefficient of permeability measured in laboratory permeametcr tests are often
highly inaccurate, for a variety of reasons such as anisotropy (i.e. values of k different for
horizontal and vertical flow) and small samples being unrepresentative of large volumes of soil
in the ground, and in practice values of k measured from in situ tests are much better.

In (f‘l> =4k, 19
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75 PRINCIPAL FEATURES OF SOIL LOADING TESTS

Soil strength and stiffness are investigated and measured in tests in which soil samples are loaded
and unloaded and the resulting stresses and strains are measured. The requirements for testing
soils are rather like those for testing metals, concrete and plastics, but the special feature of soil
strength and stiffness impose special requirements. The most important of these are:

1. Total stresses and pore pressures must be controlled and measured separately so effective
stresses, which govern soil behaviour (see Secs 6.4 to 6.6) can be determined.

2. Drainage of water into, or out of, the sample must be controlled so that tests may be either
drained (i.c. constant pore pressure) or undrained (i.e. constant volume) (see Secs 6.7 to 6.9).

3. To investigate soil stiffness, measurements must be made of small strains (see Chapter 13),
but to investigate soil strength it is necessary to apply large strains, sometimes greater than
20 per cent.

4. Because soils are essentially frictional it is necessary to apply both normal and shear stresses:
This can be done either by applying confining pressures to cylindrical or cubic samples or
by applying normal stresses in direct shear tests (see Fig. 3.3); the relationships between the
principal stresses on cylindrical samples and the normal and shear stresses on shear samples
were discussed in Sec. 3.2

During a test the total stresses could be changed, or held constant, and the resulting strains
measured; such a test is called stress controlled. Alternatively, the strains could be changed, or
held constant, ard the resulting stresses measured; such a test is called strain controlled. In a
particular test one set of stresses (i.e. axial or vertical) could be stress controlled and another
set (i.e. radial or horizontal) could be strain controlled or vice versa.

Loads may be applied to soil samples by rigid plates or by fluid pressures acting on flexible
membranes. In the first case the displacements and strains are uniform but the stresses may vary
across the plate; in the second case the stresses will be uniform but the strains may vary. Rigid
plates may be smooth, in which case shear stresses should be zero and so the faces of the sample
are principle planes or they may be rough, in which case there will be both shear and normal
stresses to be measured.

To control drainage and measure pore pressures the sample must be isolated within an
impermeable membrane and the pore water connected through drainage leads to a pressure
transducer and volume gauge, as shown in Fig. 7.3. (This shows details of drainage connections
in a typical triaxial test apparatus but the general principles apply also to other soil testing
apparatus.) There is a second drainage lead to the sample with a flushing valve. This is to
allow water to be flushed through the draingage leads and the bottom drain for de-airing; this

| o Volume gauge
Rubber
. /sleeve AV
Sealing )
rings Soil
Bottom .
=T drain  Porepressure
l l_ — transducer . '
i Figure 7.3 Control of drainage and
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is an important requirement of soil testing. If both valves are closed the sample is undrained
and if the drainage valve is open the sample is drained; the flushing valve is normally closed -
and it is only opened when the drainage leads are being flushed. The back pressure u,
. may be atmospheric or at some elevated pressure. Sometimes special tests are carried out in
which the pore pressures are changed independently of the total stresses.

The general requirements of soil tests described above are often conflicting and a number
of different soil tests have been developed for different specific purposes. The principal tests in
routine use in practice are the oedometer test, the direct shear test and the triaxial test, which
will now be described. If you read the literature of soil mechanics and become sufficiently
interested to specialize in this area you will come across many other special tests; all you have
to do is work out what are the boundary conditions and the abilities and limitation of the tests.

7.6 ONE-DIMENSIONAL COMPRESSION AND CONSOLIDATION
(OEDOMETER) TESTS

One of the simplest forms of soil loading test is the one-dimensional ocdometer test illustrated
in Fig. 7.4. The soil sample is a dis¢ contained in a stiff metal cylinder o that radial strains are
zero. Porous discs at the top and bottom act as drains and so seepage of pore water is vertical
and one-dimensional.

In the conventional apparatus illustrated in Fig. 7.4(a) the axial stress o, is applied by adding

(or removing) weights so the loading is stress controlled and applied in stages. The axial strain
¢, is measured using a displacement transducer or a dial gauge. The pore pressures in the top
drain u, are zero. The pore pressures in the bottom drain u, are usually zerc but in some special

oedometers the bottom drain may be closed and values of u, measured.

In the Rowe cell illustrated in Fig. 7.4(b) the axial stress o, is applied by fluid pressure in

a rubber diaphragm so the loading is stress controlled and may be either applied in stages or
"varied smoothly in continuous loading tests. The axial strain ¢, is measured using a displacement
transducer mounted on the stiff top drainage lead. The top and bottom drains are connected
to drainage apparatus like that illustrated in Fig. 7.3 so that either or both top and bottom
faces of the sample may be drained (i.e. constant pore pressure) or undrained (i.. the drainage

valve is closed). : B V

Oedometer tests may be used to investigate compression and swelling of soil (ie. the
relationship between effective stress and volumetric strain) or consolidation (ie. the relationship
between compression and seepage). Remember the distinctions between drained loading;
undrained loading and consolidation discussed in Secs 6.8 and 6.9. One-dimensional compression

ie;

Ca. 0‘1____,_u
i, i ——

DT R QX0 HT) u = 0

g =0

l“b l Up
Figure 7.4 One-dimensional consoli-
(a) Conventional oedometer (b) Rowe cell dation (oedometer)tests.
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and swelling of soil is discussed in Sec. 8.4 and one-dimensional consolidation is discussed in
Chapter 14.

7.7 SHEAR TESTS

The two forms of shear test used for soil testing are illustrated in Fig. 7.5. In the direct shear
box test illustrated in Fig. 7.5(a) the sample is in a split box and is obliged to shear along the
horizontal plane defined by the halves of the box. The normal stress g, is applied by weights
and the shear stress t, is usually applied at a constant rate of displacement. The vertical and
horizontal displacements dn and oh are measured using dislacement transducers or dial gauges.
Drains are provided at the top and bottom and the pore pressures u, and u, are zero. Tests
on clays could be undrained if they were carried out quickly, so there was negligible drainage
during the test, but-as the pore pressures in the sample are not measured effective stresses are
unknown. It is fairly obvious looking at Fig. 7.5(a) that the states of stress and strain within
the sample are likely to be non-uniform, particularly near the ends of the box and at relatively
large strains. o ' ’

The design of the simple shear apparatus avoids non-uniform strains by allowing the sides to
rotate. The most common type, known as the NGI (Norwegian Geotechnical Institute) simple
shear apparatus, is illustrated in Fig. 7.5(b). The sample is cylindrical and is sealed inside a rubber
sleeve like a triaxial sample (see Sec. 7.8). The rubber sieeve has a spiral wire reinforcement
which prevents radial strains but permits shear strains as shown. Applications of the normal
and shear stresses and measurements of strains are generally similar to those used for direct
shear tests. The drain at the bottom is connected to drainage apparatus like that shown in Fig.
7.3, so that tests may be drained or undrained with measurements of pore pressure.

Notice that if the shear stresses and horizontal displacements in the shear tests in Fig. 7.5
are zero, the conditions are just the same as those in the one-dimensional compression tests in
Fig. 7.4. :

A major problem with direct and simple shear tests arises with interpretation of the test
results. In the apparatus illustrated in Fig. 7.5 only the shear stresses 7, and o, on horizontal
planes are measured and the stresses on the vertical planes 1, and o, in Fig. 7.6(a) are unknown.
This means that we can only plot one point T on the Mohr diagram shown in Fig. 7.6(b). There
are many Mohr circles that pass through the point T; two possibilities are shown. It some
special simple shear test apparatus the stresses 7, and g, on the vertical planes are measured,
and in this case the Mohr circle is properly defined, but for the conventional tests in Fig. 7.5 it
is not certain that the stresses measured, t, and g,, are those on the most critical planes.

‘o;,ﬁn

T0h

iy =0

' (a) Direct shear (b) Simple shear

Figure 7.5 Shear tests.
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7.8 CONVENTIONAL TRIAXIAL COMPRESSION TESTS

The trixial test is by far the most common and versatile test for soils. The conventional apparatus
and the standard test procedures were described in detail by Bishop and Henkel (1962) in their
standard text. Most of these are still widely used today, although many of the instruments have
been Superseded by modern electronic devices.

The basic features of the conventional triaxial tests are shown in Fig. 7.7. The soil sample
is a cylinder with height about twice the diameter; sizes commonly used in the United Kingdom
are 38 and 100 mm diameters (originally 14 and 4 in). The sample is enclosed in a thin rubber
sleeve sealed to the top platen and to the base pedestal by rubber O-rings. This is contained in

- a water-filled cell with a cell pressure o,. A frictionless ram passes through the top of the cell
and applies a force F, to the top platen; this is measured by a proving ring or by a load cell
either inside or outside the cell, as shown. Axial displacements are measured by a displacement
transducer attached to the loading ram. The cell and sample assembly are placed inside a loading
frame and a motor drive applies a constant rate of strain loading. There is a drain at the base
of the sample connected to flushing and drainage apparatus like that shown in Fig. 7.3; if the
drainage valve is open the sample is drained and if it is closed the sample is undrained. Radial
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Figure 7.7 Conventional triaxial apparatus.
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(a) (b) (c) Figure 7.8 Stresses on a triaxial sample.

strains are not generally measured directly but are calculated from measurements of the axial
and volumetric strains.
The axial and radial total stresses on the sample, o, and g,, are shown in Fig. 7.8(a). The
radial stress is
o, =0, (7 10)

where o. is the cell pressure as shown in Fig. 7.8(b) but g, acts also on thc top of the sample.
From Fig. 7.8 the axial stress o, is given by

g, =0, +— 7.11
, Y (7.11)
or
Z=9¢,—-0=0,—0, 7.12
4 7 (7.12)

If you go back to Sec. 3.2 you will see that F,/4 is the same as the deviator stress ¢. A simple
way to think of the stresses in a triaxial sample is to decompose o, and o, into an isotropic state
6, = 06, = 0. as in Fig. 7.8(b) plus a deviatoric state g = F,/A as in Fig. 7.8(c); thus the force in
the ram F, (divided by the area of the sample) applies a stress that deviates from an isotropic
state. Note that 4 is the current area of the sample allowing for changes of axial and volumetric
strain. If the loading ram is raised away from the top platen so that F, = O the state of stress is
isotropic, with g, = g,. Isotropic compression and swelling of soil is discussed in Secs 8.2 and 8.3.

In a conventional triaxial test the sample would be isotropically compressed, either drained
or undrained to the required initial state. The loading ram would then be lowered to touch the
top platen, the axial strain set to zero and the sample sheared by increasing the deviator stress
g, either drained or undrained, at a constant rate of strain. If the cell pressure o, is zero (in this
case you need not fill the cell with water) the test is known as unconfined compression. There
are a number of other special tests that can be carried out in the triaxial apparatus. These require
special modifications to be made to the conventional apparatus, which are discusszd in Sec. 7.9.

79 HYDRAULIC TRIAXIAL CELLS—STRESS PATH TESTS

Later we w1l] discover that many features of soil strength and stiffiness are governed by the
initial state of the soil, its history of loading and unloading and the changes of axial and radial
stress during loading or unloading. Consequently, in order to examine soil behaviour properly
we will need to be able to control the axial and radial stresses, and perhaps the pore pressures,
independently. In the conventional triaxial apparatus shown in Fig. 7.7 the axial stress is applied
by strain-controlled loading and it is difficult to vary the axial stress in a controlled way.
Tests in which the paths of the effective stresses (i.e. the graph of ¢ against g, or the graph
of ¢’ against p’) are varied, are called stress path tests and are carried out in hydraulic triaxial
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Figure 79 Hydraulic triaxial apparatus.

cells, iHustrated in Fig. 7.9. Details of the sample, platens and drainage arrangements are the .
same as those for the conventional triaxial cell shown in Fig. 7.7, the principal difference being
in the application of the axial stress. Another difference to notice is that the loading ram should
be connected to the top platen so that extension tests can be carried out where o, < g, and the
force in the ram F, is negative. (Note that ¢, and o, are always positive because uncemented
soils cannot sustain tensile stresses and, in any case, the platens are not generally attached to
the sample.) : ,

A simple hydraulic triaxial cell can be made by adding a hydraulic cylinder to the loading
ram, as illustrated in Fig. 7.9(a). Alternatively, special hydraulic triaxial cells are widely used in
which a frictionless hydraulic ram is incorporated into the base of the cell, as illustrated in Fig.
7.9(b). In both cases the axial forces F, should be measured independently using a load cell
because it is inaccurate to calculate the value from measurements of the pressures in the hydraulic
rams. Conventional strain-controlied triaxial tests can be carried out in both cells, in the first
case by locking the hydraulic cylinder and using the motor drive in the loading frame as in a
conventional test or, in the second case, by pumping fluid into the hydraulic ram at a constant
rate from a screw ram. .

In many modern hydraulic triaxial cells all the instruments are electronic and readings are.
made on a logger controlled by a microcomputer and the pressures in the axial ram, in the cell
and in the pore pressure leads are applied through electronic pressure converters. In this case
the microcomputer-can be used to-control the test and to record the results. Details of this
equipment are beyond the scope of this book. v

With a hydraulic triaxial cell like those shown in Fig. 7.9 the axial and radial stresses or
strains and the pore pressure or volumetric strains can be changed independently. You can
illustrate the test path by plotting total and effective stress paths using the axes g, vs ¢, and o,
vs o;. However, because we are interested in shear and volumetric effects in soil behaviour it is
more illustrative to plot stress paths using the axes ¢ and p (or ¢’ and p’). From Egs (3.5) and
(3.6), changes of total stress are given by

éq = da, — do, (7.13)
_ op = 4(d0, + 280,) (7.14)

and,'from Eqgs (6.8) and (6.9), ;
8¢ =dq (7.15)

op = op — du (7.16)
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Unloading Loading

Figure 7.10 Typical stress paths available in hydraulic
triaxial tests. -

Hence, if you know da,, do, and du, you can easily plot stress paths using the axes ¢ vs p and
q vsp.

Figure 7.10 illustrates four simple total stress paths and also defines terms like compression,
extension, loading and unloading. Note that in a triaxial apparatus o, and ¢, must always be
positive; however, we can have o, < g, (provided that the loading ram is attached to the top
platen) and so ¢ and ¢’ can be positive or negative. ’ )

In Fig. 7.10 the four total stress paths correspond to increasing or decreasing either g, or o,
while the other is held constant. Using Eqs (7.13) and (7.14) with either do, = 0 or dag, = 0, you
should show that the gradients dg/dp are 3 or —3%. In Fig. 7.10 a distinction is made between
loading or unloading (corresponding to increasing or decreasing p) and compression or extension -
(corresponding to positive or negative values of g). Notice that for compression the sample
becomes shorter and fatter and for extension it becomes longer and thinner; the path OA
corresponds to a conventional triaxial test with constant cell pressure, while path OD is like
squeezing a toothpaste tube. During drained tests where the pore pressure u remains constant
the total and effective stress paths are parallel, but during undrained tests in which the pore
pressure generally changes, the total and effective stress paths are different. R

7.10 COMMENTS ON SOIL TESTING

Although the routine soil tests described in thls chapter are relatively simple there is a lot that
can, and often does, go wrong with soil tests. Probably the most significant sources of error in
measurements of soil parameters and behaviour in laboratory tests are:

1. Malfunctions and errors in the apparatus and in the instruments.

- 2. Incorrect detailed procedures in performing the tests.

3. Doing the wrong test or measuring the wrong parameter for a particular application.

The last of these is simply a matter of sound understanding of-the basic theories involved,
rather than blindly following a cookery book approach. The purpose of this book is to develop
this sound understanding. The first two are largely a matter of care and attention and experience.
In assessing the quality of a set of test results it is essential to distinguish very carefully and
clearly between the accuracy and the resolution of the instruments. The resolution (or precision)
of an observation is the smallest increment that can be discerned, while the accuracy is the limit
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within which you can be absolutely confident of the data. For a typical dial gauge measuring
small displacements, the resolution and accuracy are both about 0.001 mm, but the resolution
and accuracy of electronic instruments are often very different.

For a typical -electronic load cell, pressure transducer or displacement transducer the
resolution is linked to the electronics which converts an analogue signal (usually a small voltage)
to a digital signal. For a 16-bit converter, using 1 bit for the sign, the resolution is 1 in 2'3
(=~30000) of the full-scale reading, so for a pore pressure transducer with a range of 0 to 1000 kPa
the resolution is about 0.03 kPa. The accuracy depends on the linearity (or non-linearity) of the
calibration constant between pressure and voltage and on the stability of the electronic signals.
With most instruments commonly used in soil testing you will be doing well to achieve an
accuracy better than +1 kPa, which is very different from the resolution.

‘Another factor is in detection of malfunctions in instruments. It is usually fairly easy to
see whether a dial gauge or proving ring is not working properly, but it is much less easy to detect
malfunctions in electronic instruments provided that they continue to produce reasonable output
signals. The consequence of this is that use of electronic instrumentation in soil testing does not
necessarily improve the accuracy of the results compared with old-fashioned instruments and
may even reduce the accuracy considerably unless the instruments are frequently checked and
recalibrated. The moral of all this is that you should always be suspicious of the accuracy of
all laboratory tests.

7.11 SUMMARY

-1. Laboratory tests are carried out for description and classification of soils, to investigate their
basic mechanical properties and to determine values for the stiffness and strength parameters.

2. The principal tests for description and classification are grading by sieving or sedimentation
and the Atterberg limit tests which determine the liquid and plastic limits.

3. The principal loading tests are one-dimensional compression (oedometer) tests, shear tests
and triaxial tests. These may be drained or undrained and they may be stress controlled or

~ strain controlled. '

4. Special loading or unloading stress path tests are carried out in hydraulic triaxial cells. In
these tests the axial and radial stresses or strains and the pore pressure can be varied
independently to follow the desired stress path.

WORKED EXAMPLES

Example 7.1: Interpretation of a constant head permeameter test A constant head perme-
ameter has a diameter of 100 mm and the standpipe tapping points are 150 mm part. Results of
a test on a relatively coarse-grained soil are given in Table 7.1.

Table 7.1

Volume of water collected in ! min (cm®)  Difference in standpipe levels (mm)

270 75
220 60
160 45

110 30
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The seepage velocity V is given by Eq. (7.5) and the hydraulic gradient i is giw)en by Eq.
(7.6). For the first observation,

: -3
AQ _ 210X OOD> _ o oia
AAt  (m/4) x 0.12 x 60

Figure 7.11 shows values of ¥ plotted against i. These fall close to a straight line through the -
origin, which demonstrates that the basic form of Darcy’s law (Eq. 7.4) is correct. The coefficient
of permeability given by the gradient of the line is '

k~1x107>m/s

8 x 107~

4x 107

V(ml/s)

i Figure 7.11

Example 7.2: Interpretation of a falling head permeameter test A falling head permeameter
has a diameter of 100 mm, the sample is 100 mm long and the area of the standpipe is 70 mm?.
Results of a test on a relatively fine-grained soil are given in Table 7.2.

At any instant the potential P is the height of water in the standpipe (above the overflow)
and P, = 1.60 mm at ¢ = t,. Figure 7.12 shows the values of In(P,/P) plotted against time. The
data points fall close to a straight line. Hence, from Eq. (7.9) the coefficient of permeability is
given by ' ‘

_aLlnP/P) 70 x (0001)" x 0.1 01 .\ 1 o-6 m/s
4 ¢ (m/4) x Q.1 100

Table 7.2
Height of water in standpipe
Time (s) above overflow (m) In(P,/P)
0 1.60 0
60 1.5t 0.06
120 142 0.12
240 1.26 0.24

480 099" 048
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0 200 400 600 -
1s) Figure 7.12

Eiample 7.3: Interpretation of a drained triaxial test The first three columns of Table 7.3
give data from a drained triaxial compression test in which the cell pressure was held constant
at o, = 300 kPa and the pore pressure was held constant at u = 100 kPa. At the start of the test
the sample was 38 mm in diameter and 76 mm long and its specific volume was v = 2.19.

The initial dimensions of the sample were

Ao = gbg =1.134 x 10~3 m?

’o = AoLo = 88.46 X 10-6 m3

At any stage of the test

AL
£, = ——
L,
AV
g = ——
Voo .
v=1vo(l —¢,)
and - : - - - S e -
K
o, = o, = 300 kPa a,=o,+:
Table 7.3
Change of Change of
Axial force length volume g 4
F(N) AL (mm) AV (cm?) &, & v (kPa) (kPa)
0 0 . 0 0 0 219 0 200
115 —1.95 —0.88 0.022 0.010 2217 100 233
235. —5.85 -3.72 0.063 0.042 © 210 200 267
325 -11.70 -1.07 0.127 0.080 20t 264 288
394 —19.11 —8.40 0.220 0.095 1.98 287 296
458 -27.30 —8.40 0.328 0.095 1.98 286 296
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where the current area is 4 = Ay(1 — ¢&,)/(1 — ¢,). From Egs (3.5) to (3.8),

8:=81—'%ev
and
g=(.-0)=q p=%o1+20)=p—u
’ Fi ’
or q=z P=po+3d—u

where p, = 300 kPa. The test results are given in the right-hand side of Table 7.3 and are plotted
in Fig. 7.13 as O — A. '

¢’ (kPa)

@
o

0.4

(=3
o ”

0.4

£

2.3

2.1

<

p’ (kPa)

Figure 7.13

Example 7.4: Interpretation of an undrained triaxial test The first three columns in Table
7.4 give data from an undrained triaxial compression test in which the cell pressure was held

Table 7.4

Axial force Change of length Pore pressure q 4

FEN) AL (mm) (kPa) & (Pa) (kPa)

0 0 100 0 -0 200 .

58 —195 165 0.026 50 152
96 —4.29 200 * 0,056 80 127

124 ~9.36 224 0.123 96 108

136 —14.04 232 0.185 98 101

148 ~19.50 232 0.257 97 100
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constant at o, = 300 kPa. At the start of the test the sample was 38 mm diameter and 76 mm
long, the pore pressure was u, = 100 kPa and the specific volume was v = 2.19. .

For an undrained test ¢, = 0 (by definition), but otherwise the calculations are the same as
those given in Example 7.3. The test results are given in the right-hand side of Table 7.4 and
are plotted in Fig. 7.13 as O = B. - , )

Example 7.5: Stress paths The left-hand side of Table 7.5 gives the initial states and
increments of axial and radial total stresses for a set of drained and undrained triaxial stress
path tests. In the drained tests the pore pressure was u = 0. The soil can be assumed to be
isotropic and elastic so that shearing and volumetric effects are decoupled.

Table 7.5

o, o, do,/dt  do,/dt e Ore 90 Po q. Pe
Sample (kPa) (kPa) (Pa/h) (kPa/h) Drainage (kPa) (kPa) (kPa) &Pa) (kPa) (kPa)
A * 200 200 10 0 Drained 300 200 0 200 100 233
B 200 200 -10 "> 0" - Undrained 100 - 200 0 200 —-100 - 200
C 250 175 -10 -10 Drained 150 75 75 200 75 100
D 250 175 0 -10 Drained 250 75 75 200 175 133

The stress paths corresponding to tests lasting for 10 hours are shown in Fig. 7.14. The
right-hand side of Table 7.5 gives the states at the start and at the end of each path. For the
undrained test 6p’ = 0 (because ¢, = 0 and shear and volumetric effects are decoupled). For
the drained tests the changes of ¢’ and p’ are found from Eqs (7.13) and (7.14).

200
D
100
= A
= c .
- - _
o) | 1] J
100 200 300 400
) p' (kPa) . _ e .
v B
100~ Figure 7.14
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CHAPTER

EIGH
COMPRESSION AND SWELLING

8.1 INTRODUCTION

As soils are loaded or unloaded isotropically (i.e. with equal all-round stresses) or anisotropically
they will compress and swell. As we saw in Chapter 6, volume changes in soils involve
rearrangement of the soil grains and seepage of water as shown in Fig. 8.1.

To account for seepage flow it is necessary to consider the relative rates of loading and
drainage as discussed in Sec. 6.9; this is equally true for laboratory tests and for loadings of
structures in the ground. In laboratory tests the sample may be loaded undrained and then
allowed to consolidate under constant total stress; this is the basis of the conventional
incremental loading oedometer test described in Chapter 7. In this case measurements of effective -
stress can only be made at the end of consolidation when all the excess pore pressures have
dissipated (unless the excess pore pressures are measured separately). Alternatively, the loading
could be applied at a continuous rate and the excess pore pressures measured. Analysis of
continuous loading compression and consolidation tests are discussed in Chapter 14. It is
simplest, however, to load samples fully drained at a rate that is slow enough to ensure that
any excess pore pressures are negligible so that effective stresses can be determined. I will consider

_the behaviour of soil during incremental and continuous loading consolidation tests later; for
the present I will consider only fully drained states where excess pore pressures are zero.- The
idealized behaviour described in this chapter is based on experimental data given by Atkinson
and Bransby (1978) and by Muir Wood (1991).

‘d" oy + Ao
1 .
L Water AV,
—_— f— gy + Ao

| U

|
Yo L A 3
1 AV

(a) Loose soil (b) Dense soil Figure 8.1 Volume changes in soil.

ar
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Figure 8.2 Isotropic Compression and swelling.

8.2 ISOTROPIC COMPRESSION AND SWELLING
The general behaviour of soil during isotropic compression and swelling is illustrated in Fig.
8.2. This shows soil in which the grains are loosely packed, initially at p; at O compressed to
A, unloaded to B and reloaded through C to D where the grams are more densely packed. Thxs
behaviour is similar to that illustrated in Fig. 3.12 and C is a yield pomt

Soil compression is primarily caused by rearrangement of the grains and so the stlﬂ'ness
will increase from loose states (where there are plenty of voids for grains to move into) to dense
states (where there is much less opportunity for grains to rearrange). As shown in Fig. 8.2, the
stress—strain line is curved. Thus the mechanisms of volume change in soils due to rearrangement
of the grains accounts for the non-linear bulk stiffiness behaviour. For the unloading-reloading
loop ABC the soil is very much stiffer (i.e. the volume changes are less) than for first loading
because the grains will obviously not ‘un-rearrange’ themselves on unloading. Behaviour similar
to that shown in Fig. 8.2 is also found for soils which have weak grains (such as carbonate or
shelly sands) that fracture on loading. In this case most of the compression during first loading
is associated with grain fracture but obviously the grains do not ‘unfracture’ on unloading. From
Eq. (3.10). the instantaneous bulk modulus at any point is_the gradient of the curve for first
loading or for unloading or reloading, given by

K' = 8.1

and the value of K’ is not a soil constant.

The behaviour shown in Fig. 8.2 is repeated in Fig. 8.3(a) but plotted as specific volume
instead of volumetric strain and with p’ plotted horizontally; this is the conventional representa-
tion of soil compression and swelling. Figure 8.3(b) shows the same behaviour but now with
the stress on a logarithmic scale. In Fig. 8.3(b) the compression and swelling curves from Fig.
8.3(a) are now linear which is a very good approximation for the behaviour of many soils over
a wide range of loadings. This idealization is good for most clays and for sands. For
coarse-grained soils volume changes during the first loading are often accompanied by fracture
of the soil grains and it is usually necessary to apply large stresses (greater than 1000 kPa) to
identify the full range of behaviour.

The line OACD corresponding to first loading is known as the normal compression line
(NCL) and is given by

v=N-—21lnp | (8.2)
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(a)

Figure 8.3 Isotropic compression and swelling.

where 4 is the gradient and N is the value of v at p’ = 1.0 kPa. The line ABC is known as a
swelling line and is given by : - . o

v=ov,—klnp (8.3)

where x is the gradient and v, is the value of v at p’ = 1.0 kPa. The swelling line ABC meets
the normal compression line at C which is a yield point and the yield stress is p;. The parameters
4, x and N are regarded as constants for a particular soil and values for some typical soil types
are given in Chapter 9. Soil could be unloaded from any point on the normal compression line
and there are any number of swelling lines. For each line there is a particular value of v, and
a particular value for the yield stress p,. Using Eqs (8.2) and (8.3) it is possible to calculate the
current specific volume of any isotropically compressed sample given the history of loading and
unloading and to calculate the recoverable and irrecoverable volume changes.
From Eq. (8.2), differentiating with respect to p’ and dividing by v we have

: —@ = i, dp’ = de, B4
v up
and, comparing with Eq. (8.1), . -—
vpl .
K =X ) © (8.5
7 (8.5

which is appropriate for first loading. Similarly, for unloading and reloading, we have K’ = vp'/«k.
_ Notice that the bulk modulus K’ contains 4 or k which are taken to be constants for a particular
soil and vp’ which changes during loading and unloading. As a result K* is not a constant and
so isotropic compression and swelling lines are non-linear, as shown in Figs 8.2 and 8.3.

8.3 OVERCONSOLIDATION

In Fig. 8.4 the state of a soil during first loading, after deposition, travels down the normal
compression line OACD and soil that has been unloaded or reloaded travels on a swelling and
recompression line such as ABC characterized by v, or p;. The state of the soil can reach any
- point below and to the left of the normal compression line by unloading, but the state cannot
reach the region above and to the right. Hence the normal compression line is a boundary to
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N *Impossible’

Normal
compression
line (NCL)
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. | ) N
p'=10 pa py Inp’ Figure 8.4 Overconsolidation.

all possible states for isotropic compression: later we will see that this state boundary line forms
part of a state boundary surface.

At any state such as B inside the boundary surface the soil is known as overconsolidated
and the overconsolidation ratio R, is given by . o

=B (8.6)
Po

where p;, is the current stress and p, is a yield point which lies at the intersection of the swelling
line through B with the normal compression line. It is very important to notice that I have
defined p; as the stress at the intersection of the swelling line and the normal compression line
and not as the stress where the soil was first unloaded; usually, but not always, these will be the
same. Notice also that any isotropic state can be described by only two of the parameters ¢, p’
and R,.

For a normally consolidated soil the state lies on the normal compression line and R, = 1.0.
Figure 8.5 shows two states, R, and R,, that have the same overconsolidation ratio. From the
geometry of the figure, or from Eq. (8.5),

P

InR, = (In p;; — In pg,) = (in p;, — In pg,) (8.7)

so that the line through R, and R,, where the overconsolidation ratio is the same, is parallel -
to the normal compression line.

Soils at points N, and R, have the same current stress, and so would be at the same depth
in the ground, but they have very different stiffnesses related to 2 'and k respectively. Similarly,”
soils at points R, and N, have nearly the same specific volume and water content but, again,
they have very different stifinesses. This means that soil stiffness is not directly related either to
the water content or to the current stress (or depth in the ground) and the overconsolidation
ratio is an important factor in determining soil behaviour.
vA

v, R N,

L4

NNCL

e — e e e

P P=pu P2 Inp’ Figure 8.5 Overconsolidation ratio.
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NCL

Inp” Figure 8.6 Changes of state due to creep or vibration.

In Fig. 8.6 there are two states at R and R, that have the same current stress p;, but different
overconsolidation ratios because their values of p; are different. Normally, for isotropic loading,
- ‘the state could move from R, to R, only via the normal compression line through N, and N,:
this is equivalent to the yielding and hardening shown in Fig. 3.13 and results in an irrecoverable
plastic volume change, dv®. There are, however, ways in which soils may move from R, and R2
~ directly. The most important of these are creep in clay soils and vibration or compaction in
sands and gravels. Notice that as the state moves from R, to R, the overconsolidation ratio R,
increases because the value of the yield stress (which is defined as the stress at the intersection
of a swelling line with the normal compression line) increases from pj, to p;,.

8.4 STATES OF SOILS ON THE WET SIDE AND ON THE DRY SIDE
OF CRITICAL

Clays may be normally consolidated or, depending on how far the state is from the normal
consolidation line, lightly or heavily overconsolidated, and there is a critical overconsolidation
ratio, shown in Fig. 8.7(a), which separates lightly and heavily overconsolidated soils. (We will
see later that this critical line corresponds to states at which soil fails during shearing.) The
precise value for the critical overconsolidation ratio depends principally on the nature of the
soil; most soils will be lightly overco_'nsolidated at R, < 2 and heavily overconsolidatedat R, > 3.

Sands and gravels may be loose or dense depending on the position of the state with respect
to the critical overconsolidation line, as shown in Fig. 8.7(b). Notice that the state is defined by
a combination of specific volume and pressure. In Fig. 8.7(b) the state at A is dense while the
state at B is loose although the specific volume at B is smaller than at A: this is because the
stress at B is considerably greater than at A. Similarly, in Fig. 8.7(a) the state at A is heavily
overconsolidated while the state at B.is only lightly overconsolidated although the specific -
volume at B is smaller than that at A. The regions in which clays are normally consolidated or
lightly overconsolidated and sands are loose are said to be on the wet side of the critical line,
as shown in Fig. 8.7(c), and the regions where clays are heavily overconsolidated and sands are
dense are said to be on the dry side. We will find later that there are fundamental differences
in the behaviour of soils when they are sheared from states initially on the wet side or initially on
the dry side of the critical line.

Do not misunderstand the terms wet side and dry side. The soil is always either saturated
or dry and it is simply that at a given stress, such as p in Fig. 8.7(c), the specific volume (or
water content) on the wet side is higher than v, (i.e. the soil is wetter than at the critical state)

- while the specific volume (or water content) on the dry sxde is lower than o (i.c. the soxl is dner
than at the critical state) A '
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Figure 8.7 States of soils on the wet side and on the dry side of critical.

The distance of the initial state from the critical line is a measure of the state of a soil that
includes both the current stress and the current volume. This distance may be described either
in terms of a stress state parameter S, or by a volume state parameter S,. For the state
at A in Fig. 8.7(d) these are given by

R - - S,=p.p. or InS,=lnp.—Inp. - ' (8.8)
Sv = v. -_— vc (8‘9)

Since the critical line and the normal compression line have the same gradient, the state
parameters are related by S, = £ 1n S,, and so either may be used to describe the initial state of
a soil. If the state is on the critical line, S, = In S, = 0; if the state is on the dry side, S, and In S,
are negative and if the state is on the wet side, S, and In S, are positive. Notice that the stress
state parameter S, is similar to the reciprocal of the overconsolidation ratio R,, but it relates
the current state to the critical line rather than to the normal compression line. The volume
state parameter S, is similar to the state parameter defined by Been and Jefferies (1985).

8.5 ONE-DIMENSIONAL COMPRESSION AND SWELLING

In the ground the stresses are not generally isotropic as the horizontal and vertical stresses are
different. A common case where a relative wide load from an embankment or spread foundation
is on a relatively thin layer of clay sandwiched between stiff sand is illustrated in Fig. 8.8. In
this case the horizontal strains below most of the embankment are approximately zero, as shown,
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Sand
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Figure 8.8 One-dimensional states beneath a

wide embankment.

N ‘Eh_=0 - A

- Figure 8.9 One-dimensional compres-
& sion and swelling.

and the loading is one-dimensional. In the laboratory one-dimensional conditions occur in
oedometer tests and in shear box tests before the shear stresses are applied. Although here we
are concerned with one-dimensional loading, the conditions below the foundation illustrated in
Fig. 8.8 and in the one-dimensional laboratory tests correspond to one-dimensional drainage
as well.

The general behaviour of soil during one-dimensional compression and swelling is illustrated
in Fig. 8.9. This corresponds to the same sequence of loading, unloading and reloading illustrated
in Fig. 8.2, except that the results are shown as vertical stress o, rather than mean stress p’ and
vertical strain ¢, rather than volumetric strain &,; note, however, that for one-dimensional
straining where ¢, = 0 we have ¢, = ¢,. The one-dimensional compression modulus M’ is given
by - o ) - S

-

M= | ' (3.10)

and, as before, C is a yield point. A parameter.often quoted in pracnce is the one-dxmcnswnal
coefficient of compressibility m, given by
1 de

m, = Mo, (8.11)
Fi 1gure 8. 10(a) shows the same behaviour as that in Fig. 8. 9 and is equwalent to Fxg. 8.3(a) for
isotropic compression. Figure 8.10(b) shows the same behaviour with o; plotted to a log,, scale
and specific volume replaced by voids ratio. (The axes e and log o, are commonly used in practice
for plotting the results of one-dimensional tests and, in Eq. (8.11). d¢, = de/(1 + e). All the
essential features for isotropic compression and swelling described in Sec. 8.2 are repeated for
_one-dimensional compression and swelling. The principal differences are that the parameter N
for 1sotroplc compressxon is replaced by e, and the parametcrs Aand x are replaced by C, and
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Figure 8.10 One-dimensional compression and swelling.
C,. The normal compression line OACD is given by
’ ‘ e=e,—C,loga, : (8.12)
and the swelling and recompression line ABC s given by
e=¢e, —Clogo, (8.13)

Since év = de and log,ox = 0.43 In x we have C, = 2.3/ and C, =23k
For overconsolidated soil at a point such as B in Fig. 8.10(a) the overconsolidation ratio
R, is given by

’

Ry=Z \ ‘ (8.14)

- alo
where o is the current stress and o) is the yield point which lies at the intersection of the
swelling line through B with the normal compression line. Compare the definition of R, for
one-dimensional overconsolidation with the definition of R, in Eq. (8.6) for isotropic over-
consolidation.

During the increasé and decrease of ¢, in one-dimensional loading and unloading the

horizontal stresses o}, change since ¢, is held constant and the variations of ¢, and o}, are
illustrated in Fig. 11(a). The ratio

Kp=2t - (8.19)

is known as the coeffcient of earth pressure at rest (i.e. corresponding to zero horizontal strain)
and the variation of K, with overconsolidation ratio R, is illustrated in Fig. 8.11(b). For states
OACD on the normal compression line Ry = 1 and the value of K, is K,,. for normally
consolidated soil: for many soils this can be approximated by

Ko, =1 —sin ¢, : . (8.16)

where ¢; is the critical friction angle (see Chapter 9). For overconsolidation states ABC the
value of K, increases with overconsolidation and K, may well exceed 1.0 as the horizontal stress
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exceeds the vertical stress at large values of R,. Figures 8.11(a) and (b) illustrate substantial
hysteresis in K, during unloading and reloading, but if this is neglected then K, is found to vary
with R, and an approximate empirical relationship is

KO = KOch RO (817)

During one-dimensional loading and unloading o} and o}, are generally unequal and so there
are shear stresses in the soil and any comparison between isotropic and one-dimensional
compression and swelling will have to take account of the shear stresses. The link between these
can be developed by going back to Sec. 3.2, noting also that one-dimensional loading is a special
case of plane strain. From Egs (3.5) and (3.6) with ¢, = ¢, and ¢, = 0}, and making use of Eq.
(8.14), we have

g =1 — Ko) (8.18)
p = 1ol + 2Ko) (8.19)

Figure 8.12 shows the behaviour of soil in isotropic and one-dimensional compression and

swelling together; the subscripts 1 refer to one-dimensional behaviour. These show normal ..

compression lines OACD and O,A,C,D, with the same gradients —1 and values of v at
p'=1kPa of N and N, The swelling and recompression lines ABC and A;B;C,; have
approximately the same gradients, —x, and the same yield stresses, p,, but different values of
v.. (The gradients x are actually slightly different because the value of K, changes during
one-dimensional swelling and recompression.)

8.6 LABORATORY DEMONSTRATIONS OF COMPRESSION AND
SWELLING OF SOILS ' ,

The most convenient apparatus to demonstrate compression and swelling is the simple
oedometer using weights to apply normal stresses and a dial gauge to measure strains. It is not
so easy, however, to find a suitable soil as sands do not compress very much, while clays have
low permeability and take a long time to compress. A convenient material is a dry sand with
-weak and friable grains, such as carbonate (shelly) sand. Alternatively, kaolin clay consolidates
reasonably quickly (in a standard oedometer consolidation of kaolin takes about 15 min for
each stage) and it is reasonably compressible. ' C
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8.7 SUMMARY

1. The basic mechanism of compression in soils is by rearrangement of the grains. In
coarse-grained soils this may be accompanied by fracturing of the soil grains and in
fine-grained soils by compression or swelling of clay particles.

2. The behaviour of soil during isotropic compression and swelling is given by

S v=N—-Ailnp - (8.2)
s=p,—Klinp (3.3)

The parameters 4, x and N are constants for a particular soil. Equation (8.2) is for normally
consolidated soil and Eq. (8.3) is for overconsolidated soil.

3. Equations (8.2) and (8.3) demonstrate that the stiffness of soil is non-linear (i.e. the bulk
modulus is not a constant) when it is both normally consolidated and overconsolidated.

4. Equation (8.2) represents the normal compression line. The state of a soil cannot usually lie
outside this line and moves below the line on unloading when the soil becomes overconsoli-
dated. The overconsolidation ratio R, is given by

R,=2 \ (8.6)
Po :
where p} is the current yield stress.

5. Normally the state of soil is changed only by loading and unloading and the states moves
on the current swelling and recompression line or on the normal compression line. The
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state of a clay may also change due to creep and the state of a sand may change due to
vibration or compaction.

6. There is a critical overconsolidation ratio line which separates the wet side from the dry side.
Lightly overconsolidated clays and loose sands are on the wet side of the critical line while
heavily overconsolidated clays and dense sands are on the dry side.

7. The initial state can be described by a stress state parameter S, or a volume state parameter
S, which give the distance of the initial state from the critical overconsolidation line.

8. The behaviour of soil during one-dimensional compression and swelling is similar to that for
isotropic loading and is given by

e=¢,—C.logo, (8.12)
e=¢e,—Cloga, . (8.13)
The parameters eq, C. and C, are constants for a particular soil.

WORKED EXAMPLES ) o T

Example 8.1: Analysis of an isotropic compression test Table 8.1 gives results obtained from
an isotropic test. The data are shown plotted in Fig. 8.13. Scaling from the diagram, 4 = 0.20 -
and x = 0.05. Projecting the lines back to p’ = 1.0kPa (ie. In p’ = 0), Np = 3.25 and v, = 2.22.
The bulk modulus K’ is not a constant: from Eg. (8.1), for the second and last increments
between p’ = 60 kPa and p’ = 200 kPa,

B 20-60 45 Mpa o
Ae,  —(2.19 — 2.43)/2.43
4 -1
P2 ar 0-200  _ _455MPa

= As,  —(201 —195)/1.95

Table 8.1
Mean effective stress p’ (kPa) In p’ (kPa) Specific volume v
20 3.00 2.65
60 4.09 243
200 5.30 219
1000 6.91 - 1.87 *
200 530 1.95
60 4.09 201
40
14 Nn = 3‘3
\
3.0} \\\
-~ Slope 4 = 0.20
v, =2.22
20 T
Slope x = 0.05
0 | 1 i |
! 0 2 4 6 8

In p’ (kPa) _ .. . Figure 813
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_ Example 8.2: Determination of soil behaviour during isotropic compression A soil has the
parameters 4 = 0.20, x = 0.05 and N = 3.25. A sample is subjected to the sequence of isotropic
loading and unloading given in the second column in Table 8.2. At each stage the overconsolida-
tion ratio R, is given by Eq. (8.6). For the normally consolidated state (R, = 1) the specific
volume is given by Eq. (8.2). At the point C, the specific volume is given by both Egs (8.2) and
(8.3) and hence '

vy=N—(A~-x)Inp' =3.25— (020 — 0.05) In 600 = 2.29
For the overconsolidated states the specific volume is given by Eq. (8.3).

Table 8.2

Point Mean effective stress p’ (kPa) Overconsolidation ratio R,  Specific volume v
A . 60 1 243

B - ... 200 1 o219

C 600 1 1.97

D 300 2 2.01

E 150 4 2.04
REFERENCE

. Been, K. and M. G. Jefferies (1985) ‘A state parameter for sands’, Georechnique, 35, 2, 99-112.

FURTHER READING ’ y

Atkinson, J. H. and P. L. Bransby (1978) The Mechanics of Soils, McGraw-Hill, London.
Muir Wood, D. M. (1991) Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge.



CHAPTER

NINE
CRITICAL STATE STRENGTH OF SOIL

9.1 BEHAVIOUR OF SOIL IN SHEAR TESTS

In simple terms the strength of a material is the maximum shear stress that it can sustain;
materials loaded just beyond the maximum stress will fail. Failure may be sudden and
catastrophic leading to a complete loss of strength (which is what happens when you break a
piece of blackboard chalk) or it may lead to a very large plastic straining (which is what happens
if you mould plasticine). For most soils failure of slopes and foundations involves large plastic
straining without complete loss of strength and failing soil structures can usually be stabilized
by unloading them.

The essential features of soil strength can most easily be seen in ideal shearing tests, as
illustrated in Fig. 9.1. The shear and normal effective stresses are t’ and ¢’ and, at a particular
stage of the test, there are increments of strain dy and Jde,. These are similar to the conditions
in the direct shear box test and the simple shear test described in Chapter 7 and in soil in thin
slip surfaces that occur during failure of slopes and foundations, as described in Chapters 18
and 19. The conventional direct and simple shear tests are, however, not ideal because the stresses
and deformations are likely to be non-uniform and the states of stress and strain are not
completely defined by the measurements on only one plane. Although a shear test is not ideal
for measuring soil properties it is, however, convenient for demonstrating the basic characteristics
of soil strength.

Typical stress~strain curves for’soils gn the wet side of critical (i.e. normally consolidated or
lightly overconsolidated clays or loose sands marked W) and for soils on the dry side (i.e. heavily
overconsolidated clays or dense sands marked D), tested drained with constant ¢’, are shown in
Fig. 9.1(b) and the corresponding volumetric strains are shown in Fig. 9.1(c). (Remember the
distinctions between the wet side of the critical overconsolidation line and the dry side, discussed
in Sec. 8.4.) The behaviour shown in Fig. 9.1 is typical for normally consolidated or
overconsolidated clays as well as for loose or dense sands. Soils on the wet side compress as
the shear stresses increase while soils on the dry side dilate (expand) after a small compression.
Both- ultimately-reach.states_at.which -the shear stress-is constant:and .there :are mo more,
volumetric strains. Soils on the dry side reach peak shear stresses before reaching the ultimate
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(d) Figure 9.1 Typical behaviour of soils in drained shear tests.

state. At any stage of shearing the angle of dilation ¢ (see Sec. 2.6) is defined by

tan y = — 3 ©.1)

dy

This is the gradient of the volume change curve as shown in Fig. 9.1(c) and it also gives the
direction of movement of the top of the sample as shown in Fig. 9.1(a). The negative sign is
introduced into Eq. (9.1) so that dilation (negative volumetnc strammg) is associated with
positive angles of dilation.

Figure 9.1(d) shows the change of voids ratlo e rather than the volumetric strains shown in
Fig. 9.1(c), although, of course, they are related. Both samples have the same effective normal
stresses but the initial voids ratio of the sample on the wet side is higher than that of the sample
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on the dry side. Notice, however, that both samples reach their ultimate states at the same voids
-ratio e;. - - : - -

As volume changes in soils are principally due to rearrangement of particles it is easy to
see why soils on the wet side compress while soils on the dry side dilate. In Fig. 9.2 the grains
of the loose or normally consolidated soil at W are spaced well apart and, on shearing, they
can move into the neighbouring void spaces, while the grains of the dense or overconsolidated
soil at D must move apart during shear. This is an example of the coupling between shear and
volumetric effects in soils.

9.2 PEAK, ULTIMATE AND RESIDUAL STATES

As shown in Fig. 9.1, soils initially on the dry side of the critical line reach peak shear stress
states before the ultimate state. The peak state will normally be reached at strains of the order
of 1 per cent while the ultimate state will be reached after strains greater than 10 per cent (in
some soils the ultimate states are not reached until the strains have exceeded 50 per cent or so).
Notice that the peak state coincides with the point of maximum rate of dilation (i.e. at maximum
). Soils on the wet side compress throughout, shearing up to the ultimate state, and there is
no peak.

For soils that have a peak shear stress it is not easy to decide whether the strength of the
soil—the maximum shear stress it can sustain—should be the peak stress that can be sustained
only for relatively small strains or the ultimate state. 1 will leave this question for the time being
and, for the present, I will discuss the conditions at the peak state and the conditions at the
ultimate state separately. ,

There is another aspect of soil shearing that must be considered here and that is the
development of residual strength at very large displacements on slip planes (Skempton, 1964).
Figure 9.3 illustrates the behaviour of a sand and a plastic clay soil over large displacements;
note the logarithmic scale, which allows the diagram to represent displacements exceeding 1 m.
(Tests of this kind can be carried out in a direct shear box by moving the box backwards and
forwards or in a special ring shear apparaius in which an annulus of soil can be sheared
continuously.) The behaviour illustrated is for tests in which the effective stresses and the initial
states were chosen so that the peak and ultimate states of the clay and the sand soil happened
to be the same. At the ultimate state, at displacements of about 10 mm corresponding to shear
strains of about 10 per cent as shown in Fig. 9.1, the movements of grains are essentially
turbulent, involving relative movements and rotations of both clay and sand grains. At larger
displacements, however, the strains become localized into distinct zones of intense shearing and

- the shear stresses applied to the clay soil decrease.
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The lowest shear stress reached after very large displacements is called the residual state. It
is associated with laminar flow of flat clay grains which have become orientated parallel to the
rupture zone, as illustrated in Fig. 9.3. In sands and other soils with rotund (i.e. not flat) grains,
there is no opportunity for laminar flow and the residual state is the same as the ultimate state.
In clays, the residual state may-be as little as 50 per cent of the ultimate state and it is important
for the design of works on old landslides and for determining side friction on driven piles.

9.3 CRITICAL STATES

We now come to the essence of soil mechanics, which is the ultimate or critical state. The
idealized behaviour described in this chapter is based on experimental data given by Atkinson
and Bransby (1978) and by Muir Wood (1991). From Figs 9.1 and 9.3 the critical state is the
state reached after strains of at least 10 per cent and is associated with turbulent fiow. The
relationships between the shear stress, the normal stress and the voids ratio of soils at the critical
states are illustrated in Fig. 9.4. i

Figure 9.4(a) and (b) shows the critical state line (CSL). This shows that, at the critical
state, there is a unique relationship between the shear stress, the normal stress and the voids
ratio. Figure 9.4(c) is the same as Fig. 9.4(b) but with the normal stress on a logarithmic scale.
Also shown on Fig. 9.4(c) is the one-dimensional normal compression line from Fig. 8.10(b).
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(b) (c) Figure 9.4 Critical states of soils.
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The critical state line is given by
' T; = of tan @ “.2)
e, =er— C.logog 9.3)

where the subscripts f denote that the stresses and the voids ratio are those at ultimate failure
at the critical state. In Fig. 9.4(c) the normal compression and critical state lines are parallel and
both have the same gradient, C,. The parameter e defines the position of the critical state line
in the same way that e, defines the position of the normal compression line. Equation (9.2) is
the Mohr—Coulomb failure criterion discussed in Sec. 3.3 with zero cohesion (¢’ = 0) and ¢ is
the critical friction angle. The critical state line shown in_Fig. 9.4(c) is directly above the critical
overconsolidation line shown in Fig. 8.7. (The height of the critical state line above the critical
overconsolidation line is 7; given by Eq. (9.2).) Later, in Chapter 11, we will see how the state
of a soil initially on the wet side or the dry side moves towards the critical state line during
shearing. ’ h T )

It is essential to emphasize that at the critical state soil continues to distort (i.e. suffer shear
strains) without any change of shear stress or normal stress or voids ratio (ie. it is distorting
at constant state) and the strains are associated with turbulent flow. The essential features of
the critical states are that, during shearing, all soils will ultimately reach their critical states
(provided that the flow remains turbulent) and the ultimate or critical states are independent
of the initial states. Thus, in Fig. 9.1, the ultimate or critical shear stresses t; are the same for
the soils initially on either the wet or the dry sides of critical, because they have the same normal
effective stress o; and the voids ratios e; at the critical states will also be the same. Later we will
see how we can explain fully the behaviour of soils from knowledge of their initial and ultimate
states.

The existence of unique critical states for soils is, at first sight, surprising, but it is quite
logical. Firstly, during continuous shear straining any soil must ultimately reach a constant state
because, if it did not, it would continue to dilate or compress and strengthen or weaken
indefinitely, which is, of course, nonsense. During shearing from the initial to the critical states
there will be relatively large strains and the soil will be essentially reworked or reconstituted by
the shear straining. Thus the soil will forget its initial state and it is reasonable to suppose that
the new, reconstituted, soil will achieve unique states independent of the initial states.

The general critical state lines illustrated in Fig. 9.4 are a very good idealization for the
ultimate or critical states of most clays and sands. For coarse-grained soils volume changes
during first loading and during shearing are often accompanied by fracture of the soil grains,
and it is often necessary to apply large stresses (greater than 1000 kPa) to identify the full range of
behaviour. -

9.4 UNDRAINED STRENGTH

The ultimate or critical state strength of soil given by Eq. (9.2) relates the ultimate shearing
resistance to the corresponding normal effective stress. This can be used to determine soil strength
provided that the pore pressure is known so that ¢’ (=¢ — u) can be calculated. Pore pressures
in the ground will generally only be determinable for cases of drained loading and the strength
for undrained loading—the undrained strength—must be calculated differently. -
Figure 9.5(a) and (b) shows the critical state line for soil and is the same as Fig. 9.4(a) and
(b). Figure 9.5(c) combines these and shows the corresponding relationship between the critical
state shear stress and the voids.ratio: this shows the strength decreasing with increasing voids
ratio. Since the voids ratio is simply related to water content in saturated soil (see Eq. 5.6) Fig.
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9.5(d) shows that soil strength decreases with increasing water content and it is common
knowledge that soils become softer and weaker as they become wetter. Notice that the soil is
either saturated, or dry, so the change of strength with changing water content (i.e. with wetting
or drying) is nothing to do with lubrication: it is a result of the change in effective stress which
is related to the change of voids ratio.

Figure 9.5(c) shows that there is a unique relationship between the critical shear stress (i.e.
the ultimate strength) and the voids ratio or water content. This means that for any undrained
loading—loading at constant voids ratio—the strength is independent of any changes in the
total normal stress: this is called the undrained shear strength s,. For undrained loading the
undrained strength is

T =5, 9.4)
which is the Tresca failure criterion discussed in Sec. 3.3. From Egs (9.2) and (9.3) and noting
that 1 = ¢ = 5, we have - : e e - :

f s er—e
Io = 9.5
I (S B . es.

and the relationship between undrained strength s, and voids ratio is illustrated in Fig.
9.5(d).

In dealing with the undrained shear strength s, the important thing to remember is that it
applies only for loading or unloading at constant volume (i.. undrained). As a result, s, depends
only on the voids ratio or water content and is independent of the total normal stress. This
means that we can measure s, in any field or laboratory test, with any total stresses, provided
that the soil remains undrained.

For undrained loading the pore pressures are not easily determined and so routine design
calculations are done using total, not effective, stresses. This does not matter because once the
undrained strength s, has been determined it does not change so long as the voids ratio does
not change. For this reason, analyses for undrained loading using: the undrained strength are
called total stress analyses. For drained loading, however, the pore pressures and the effective
stresses are determinable and calculations that are carried out using the critical friction angle
¢. are called effective stress analyses. ' : -
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logo’ i igure 9.6 Parameters for normalizing shear test results.

9.5 NORMALIZING

‘Representation of the critical state line, as in Figs 9.4 and 9.5, is relatively straightforward
because, at the critical state t¢, g and ¢, are uniquely related and there is only one critical state
line. When we come to deal with peak states and other states before the critical, the situation
is a little more complex and it will be convenient to have a method of normalizing stresses and
voids ratios or specific volumes to simplify the presentation.

In Fig. 9.6 there is a point A where the state is ¢, and e, and there may also be some shear
stresses (not necessarily at the critical-state) t,. In Sec. 8.3 we found that the overconsolidation
ratio or the current state was an important factor in determining soil behaviour and so all the
states with the same overconsolidation ratio or the same state parameters should ideally have
the same equivalent state after normalization. This can be achieved in a variety of ways and the
two most common are illustrated in Fig. 9.6. :

We have already seen that the positions of the normal compression and critical state lines
are defined by the parameters g and e, and so the line of constant overconsolidation ratio
containing A and A’ is glven by

e, =¢,+ C,loga, A 9.6)

Notice that e, contains both e, and ¢/, and e, decreases with increasing overconsolidation ratio.

Figure 9.7(b) shows the one-dimensional normal compression and critical state lines plotted
with axes e; and v’ normalized with respect to the current stress ¢’. Both lines appear as single
points; at the normal compression point t’/¢’ = 0 and e, = ¢, while at the critical state point
7'/¢’ = tan ¢, and e, = e, It seems fairly obvious that there will be important states between
these, represented by the broken line, and we will explore these later. :

A second method of normalizing is to make use of an equivalent stress. In Fig. 9.6 the stress
o, is on the critical state line at the same voids ratio as A and we havc

— e.

log O’e = )

[ .
(There is another eqmvalent pressure a" on the normal compressxon lmc which is often used as
a normahzmg parameter. In this book I want to use o/, because the critical state line is unique
for a given soil, while there are different normal compression lines for isotropic and: one-
dimensional compression and the position of the normal compression Tines of natural soils can
be influenced by cementing, structure and other effects) Figure 9.7(a) shows the normal
compression and critical state lines plotted with normalized stresses 7'/o’; and o’/o;. Again both
lines appear as single points and the broken line corresponds to the broken line in Fig. 9.7(b).
* The position of the critical state line is determined by 7'/¢’ = tan ¢; and ¢’/o; = 1.0. From the
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geometry of Fig. 9.6 the position of the normal compression line is given by

log ("_) = e_";—-e’ (9.8)

9.6 CRITICAL STATE STRENGTH OF SOILS MEASURED IN
TRIAXIAL TESTS ’ '

So far we have considered strength of soils in ideal shear tests. As it is impossible to control and
measure pore pressures in the conventional shear box-apparatus the tests were drained so the pore
pressure was zero and total and effective stresses were equal. We also considered undrained tests in
which pore pressures were not measured and the undrained strength was related to the constant
voids ratio. A more common and more useful test to examine soil behaviour is the triaxial test
described in Chapter 7. In the triaxial test a cylindrical sample is subjected to total axial and radial
stresses while the pore pressures and the sample volume can be controlled and measured
independently so that it is possible to determine the effective stresses and the strains.

Relationships between stresses and strains in shear and triaxial tests were discussed in
Chapter 3. For shear tests the shear and normal stresses and strains are 7, &', ¥ and ¢, and for
triaxial tests the equivalent parameters are ¢, p', & and &,; these can be related through Mohr
circle constructions, as described in Chapter 3.

All the features of soil behaviour in shear tests shown in Fig. 9.1 are seen in the results of
triaxial tests plotted as ¢’ against ¢, and ¢, against ¢,. In triaxial tests soils reach ultimate or
critical states where they continue to distort at a constant state (ie. with constant effective
stresses and constant volume) and soils initially on the dry side of the critical state line have
peak states before the critical state is reached.
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Figure 9.8 Critical state line for triaxial tests.

The critical state lines obtained from drained and undrained triaxial tests are shown in Fig.

9.8, which may be compared with Fig. 9.4 showing the critical state lines for shear tests. The
critical lines in Fig. 9.8 are given by

qr = Mp; 99)

o=T—2ilnp; ~ (9.10)

where, as before, the subscripts { denote ultimate failure at the critical states. Comparing Eq.
(9.9) with Eq. (9-2), the critical stress ratio M is equivalent to the critical friction angle ¢;. In
Fig. 9.8(b) the gradients of the critical state line and the isotropic normal compression line are
J and the lines are parallel and the gradient of the critical state line is the same for triaxial
compression and extension. For the parameters M and I', however, it is necessary to use

Table 9.1
Typical soil parameters
Soil LL PL P r N M ¢ x/d
Fine-grained clay soils ;
London clay 75 30 0.16 245 268 0.89 23° 0.39
Kaolin clay 65 35 0.19 3.14 326 1.00 25° 0.26
Glacial till 35 17 0.09 1.81 1.98 1.18 29° 016
Coarse-grained soils . -
River sand - 0.16 299 317 1.28 K7 0.09 '
Decomposed granite 0.09 204 217 1.59 39° 0.06

" Carbonate sand 0.34 435 4.80 1.65 40° 0.01




112 MECHANICS OF SOILS AND FOUNDATIONS

vA

i
p’ = 1.0kPa p; p: pe inp’ Figure 9.9 Parameters for normalizing triaxial test results.

subscripts c and e to distinguish between critical states in compression and extension, and for
‘most Soils the values of both I'; and I, and M, and M, differ. The parameters J, I'and M (or
¢') for triaxial compression are regarded as constants for a particular soil and values for some
typical soils are given in Table 9.1.

Results of triaxial tests may be normalized like the results of shear tests. The normalizing
parameters, shown in Fig. 9.9, are the critical pressure p. and the equivalent specific volume v;;
these are comparable to o and e, in Fig. 9.6. (The equivalent pressure on the isotropic normal
compression line p; is often used as a normalizing parameter for triaxial tests but, again, 1 want
to use p. because the critical state line is unique.) From the geometry of Fig. 9.9,

v,=10,+2ilnp, (9.11)
r—ov
ln p; = 2 (9.12)
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(®) Figure 9.10 Normalized critical state and normal consolidation lines.
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Figure 9.11 Undrained strength in compression tests

Figure 9.10 shows critical state and normal compression lines normalized with respect to
p. and v;: these correspond to Fig. 9.7 for shear tests. Again a broken line has been drawn
representing important states between the normal compression and critical state lines; we will
consider these states in later chapters. Note that, for triaxial tests, there will be two critical state
lines, one for compression and one for extension.

The undrained strength s, is uniquely related to the voids ratio, and hence to the specific
volume. From Egs (9.9) and (9.10), noting that s, = ¥, — 0})f = 3g¢ we have

m(zﬁ) _L-» ©.13)

M A

which is comparable to Eq. (9.5). Undrained strength may be measured in unconfined
compression tests (i.e. tests with o, = 0) or in triaxial tests with any confining pressure provided
that the voids ratio does not change. Figure 9.11 shows Mohr circles of total and effective stress
“for confined and unconfined compression tests on samples with the same voids ratio. The Mohr
circles of effective stress are identical; they both touch the lines given by % = s, and 17 = o tan .
The Mohr circles of total stress have the same diameter (because the voids ratios of the samples
are the same) but they are in different positions, so the pore pressure in the unconfined
compression test sample is negative. It is this negative pore pressure that produces positive

effective stresses and gives rise to the unconfined compressive strength; this accounts for the
strength of a sandcastle and the stability of a trench with steep sides.

9.7 RELATIONSHIPS BETWEEN STRENGTH MEASURED IN SHEAR
AND TRIAXIAL TESTS | | o

' The relationships between stress ratios in shear and triaxial tests using the Mohr circle
constructions were introduced in Chapter 2 and these can be used to relate the results of triaxial
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and shear tests. From Fig. 9.12 with t' = (0}, — ¢7) and s’ = ¥(o, + o;) we have

v @~ )
Y sin gy = 22 00) (9.14)
7 =S e = G )
oy _ (L +5sinna) _ 025 4 160,) L E15)

o, (1 —sin @rop)
and, at the critical state @, = Pc. Relationships between ¢ and M can be obtained from Egs
(9.9) and (9.15) with ¢’ = 0, — 0; and p’ = }(o,, + 20}), noting that for compression ¢, > d; while
for extension ¢, < g, so that in Eq. (9.15) o,/o; for compression must be replaced with o7/a,
for extension. Readers are invited to work through the algebra and demonstrate that

6 sin ¢,

= 9.16
¢ 3 -sing; ©.16)
- 6 sin ¢, ©.17)
¢ 3+sing;

The critical friction angle ¢, is approximately the same for triaxial compression and extension,
so Eqs (9.16) and (9.17) demonstrate that M, and M, are not equal and M, > M..

9.8 SIMPLE EXPERIMENTAL INVESTIGATIONS OF CRITICAL STATES

In any theoretical or experimental study of soil, and in many design studies, it is essential to-

determine the position of the critical state line as accurately as possible. This is needed to
~ determine the ultimate strength for many of the design analyses described in Chapters 18 to 23
and it is also required to determine the ultimate states of soil samples. It is important to be able
to distinguish between states on the wet side of critical from states on the dry side of critical,
and the critical state parameters A and I'" (or C. and ¢,) are required for normalizing soil test data.

However, if you try to measure critical states of soils in the conventional shear or triaxial
tests described in Chapter 7 or if you use test results obtained by other people, you must be
very careful to ensure that the samples really have reached their critical states, as defined in Sec.
9 3. Remember that for soils to reach their critical states they must be straining with no change
of state (i.e. at constant shear stress, constant effective normai stress and constant volume) and
with turbulent flow. This means that, if the stresses or pore pressures change at all or if there
are any volume changes, the states measured in the tests will not be the critical states. Very
often soil tests are terminated when the apparatus runs out of travel, usually at strains of 20
per cent or so. In'many cases these strains are not large enough to reach the critical states in
soils initially on the wet side of critical and are sufficient to cause slip planes to form in soils
initially on the dry side. As discussed later, if there are any distinct slip surfaces in a test sample
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Figure 9.13 Rotating cylinder tests for ¢..
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stresses and strains become non-uniform and cannot be measured reliably. We will discover
later (in Chapter 11) that it is possible to find the critical states of soils from tests on normally
consolidated and overconsolidated samples by considering the stresses and volume changes at
strains before the critical state is reached.

Possibly the best tests to determine the critical states of soils should be carried out on lightly
overconsolidated samples for which the initial specific volume or voids ratio is close to the
critical state value. Some people will tell you that soils do not reach unique critical states or
that the critical state lines are curved, but usually their test data are suspect because the samples
were not at their rigorously defined critical states.

There are some simple experiments that can be done to illustrate the critical states of soils
and to obtain reasonable values of soil parameters. Because these simple experiments do not
control pore pressures or drainage, tests on sands will be drained and will examine the critical
friction angle ¢,, while tests on clays will be undrained and will examine the undrained
strength s,,. S ‘

We will see later that if there is no seepage the critical angle i of a failing slope is equal to
the critical friction angle ¢, and so observation of slopes is a convenient method of determining
the friction angle of soil. One test is to put dry sand in a horizontal rotating cylinder; as the
cylinder rotates the angle of the continuously failing slope is the critical angle, as shown in Fig.
9.13. Another test is to pour dry sand into a cone and measure the cone angle. A better test is
to do this under water, as shown in Fig. 9.14 (you must pour saturated sand through water in
this test), and the slope angle is the same as for dry sand. (If you open the valve and drain water
from the container the slope will slump to a shallower angle as water drains from the sand cone.)

The undrained strength of normally consolidated or lightly overconsolidated clays can
be measured in unconfined compression tests, but it is time consuming to prepare saturated

.

samples at different water contents. Try to obtain samples of the same clay at different water

contents and relate the undrained strength to the water content and the voids ratio. While
doing these tests examine the strength by squeezing the soil between your fingers and pressing
in your fingernail. It is very difficult to measure the undrained critical state strength of
heavily overconsolidated clays because they usually fail in a brittle manner with distinct slip
‘planes. - o L mrnme el o S
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Figure 9.15 Assessment of true cohesion
in soils.

9.9 TRUE COHESION IN SOILS

In Figs 9.4(a) and 9.8(a) the critical state lines were drawn passing through the origin, so
that the cohesion ¢ is zero and, at the critical state, soil has no strength when the effective
normal stress is zero. If soils are cemented so the grains are glued together they will have a
cohesion, but the strains required to reach the critical state are enough to break these cemented
bonds.” » '

Critical state lines obtained from the results of laboratory tests on soils always pass through -
‘the origin, at least within the accuracy of the results, which is typically about +2 to 3kPa It
is very difficult to measure directly soil strength at zero effective stress. Some materials, such as
dry sand, sugar and grain, are obviously cohesionless and you can pour them like water (although
they will form cones), but it is not so obvious that fine-grained materials, such as clays, dry
cement and flour, are cohesionless. The problem is that any moisture present will give rise to
pore suctions which will raise the effective stresses, and hence the strength.

You can only really examine true cohesion in soils if the pore pressures are zero, which is
clearly the case in dry materials. Dry flour has no cohesion if it is loose, because you can blow
it away, but if you compact it by squeezing it in your hand it has 2 small strength. This is a
result of the relatively large specific surface of finely ground flour.

The pore pressures in saturated fine-grained soils become zero if a sample is submerged in
water. Figure 9.15 illustrates the behaviour of initially cylindrical samples of soil with different
cohesions after they have been submerged in water. (The samples should be completely
reconstituted so that any cementing is destroyed.) If the cohesion is zero as in Fig. 9.15(b) the
sample forms a cone. If the cohesion is positive as a result of small interparticle attractions the
sample will remain as a cylinder, as shown in Fig. 9.15(a). If, however, the water becomes dirty,
this must mean that there were small interparticle repulsive forces and the true cohesion was
negative. Each of the three characteristic types ‘of Behaviour shown in Fig.'9:15 are observed in
tests on soils (Atkinson, Charles and Mhach, 1990). Even though the true cohesion in soils may be
positive or negative the values are usually very small, only a few kiloPascals, which is too small
to measure reliably in conventional laboratory tests.

9.10 ESTIMATION OF THE CRITICAL STATE STRENGTH PARAMETERS
FROM CLASSIFICATION TESTS

" At the critical state, after large strains, soil is essentially reconstituted and any structure that
may exist in intact samples of natural soil will have been removed. The critical state strength
parameters are therefore intrinsic to the particular soil and must depend only on the nature of
* the soil (i.c. on the grading and on the mineralogy, shape and texture of the grains). The tests
used to describe the nature of soil are the grading tests and the Atterberg limits tests described
in Chapters 5 and 7, and it is reasonable to suppose that the intrinsic properties will be related
to these classification parameters.
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(a) Atterberg Limits, Undrained Strength and Water Content

The Atterberg limits described in Sec. 7.3 are for plastic clays. They measure the liquid Limit
(LL) and the plastic limit (PL), which are the water contents at which the undrained strength
s, is about 1.5 and 150 kPa respectively. As shown in Sec. 9.4; the voids ratio or the water -
content is linearly related to log s, (see Fig. 9.5d) and the critical state line for a particular soil
is shown in Fig. 9.16(a). The water content of soil can be expressed as the liquidity index (LI)
" ‘given by R ' ' o ’ o '
_w—=PL

PI

where PI (=LL — PL) is the plasticity index. (At the liquid limit LI = 1 and at the plastic limit
LI = 0.) Figure 9.16(b) shows the relationship between the liquidity index and undrained
strength, and this holds for all plastic soils for which the Atterberg limits and undrained strengths
can be measured. Thus, approximate estimates for the critical state undrained strength of soil
can be obtained from measurements of the water content and Atterberg limits.

LI (9.18)

(b) Compressibility (C.or 2)

From Fig. 9.4(c) the gradient of the critical state line is C,, and this is also the gradient of the
normal compression line. Total and effective shear stresses are the same and so the undrained
strength s, is given by

s, =1, =0}tan @, ‘ 9.19)

From Eq. 9.3), S T L
' e, =er—C. log( 1.3 ) " (9.20)

tan ¢;
150 :
=eq—C,l _ 921

| épL = €r og(tan ¢;) ‘ ._( ‘)
and : er — ep = C. log 100 = 2C, 922)

where e, and ep, are the voids ratios at the liquid and plastic limits respectively. Since e = wG;
we have ’ - ‘ :

PIx G
- = 2 o (9.23
¢u.’ pL " 100 - ‘ (9.23)
and ) .
PIxG .
= 2 9.24
¢ 200 024)

(Note that w is given as a decimal while liquid and plastic limits are given as percentages.)
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Al;ematively, from Eq. (9.10), and proceeding as above, we have
. P PIxG, PIxG,
" 100ln100 460

Thus, estimates for the intrinsic compressibility of soils can be obtained from measurements of
the Atterberg limits.

(9.25)

(¢) Position of the Critical State Line (I" or ¢/)

It turns out that the critical state lines for many different soils pass through the same point,
called the £-(omega) point, shown in Fig. 9.17. The approximate coordinates of the Q point,
given by Schofield and Wroth (1968), are vy = 1.25 and pp = 1500 Ib/in? = 10 MPa; taking
K, = 0.5, these correspond to e, = 0.25 and 65 = 15 MPa. From Eq. (5.3),

er= 025+ C.log 15000 (9.26)
I'=125+ 2In 10000 9.27)

Notice that C, (or ) describes the compressibility of soil while PI is the range of water content
over which a plastic clay behaves as a soil (ie. between the liquid and brittle states). It is not
surprising that compressibility and plasticity index should be linearly related as in Eqgs (9.24)
and (9.25). Values for the parameters A and I' measured in isotropic compression tests on
reconstituted samples of some typical plastic clays are given in Table 9.1.

and, from Eq. (9.1(5_),

(d) Critical Friction Angle

The critical friction angle for soil depends on the nature of the soil; some typical values are given
in Table 9.1. (These relate to triaxial compression tests; values for triaxial extension and plane
strain are usually only slightly larger.) For fine-grained soils ¢; increases with decreasing
plasticity. For coarse-grained soils ¢ seems to depend mostly on the shape and roughness of the
grains and on whether the soil is poorly graded or well graded. Be careful with these correlations
as there are a number of cases where they do not apply. Notice that the Atterberg limits are
measured on only the fine fraction of a soil so if the whole soil contains only a small percentage
of fines the friction angle is likely to be higher than that given by the PL A soil that has a high
organic content may have a high PI but a relatively large friction angle (e.g. Bothkennar soil from
the Firth of Forth in Scotland has PI =~ 40 and ¢_ = 34°). . :

(e) Swelling and Recompression

In the simple theories for soils described in Chapter 8 elastic compression and swelling for states
inside the state boundary surface are given by Eqs (8.3) or (8.11) and the gradients of the swelling

2
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and recompression lines are x or C, for isotropic or one-dimensional loading respectively. (In
Chapter 13 we will see, however, that soil is highly non-linear over a very wide range of loading
so these parameters may not be so important.) Values of x (or C,) for soils turn out to be highly
varied and seem to depend on what is happening to soil grains as they are loaded and unloaded.
An important parameter describing soil behaviour is the elastic volumetric strain ratio 5v¢/dv.
From Fig. 9.18, this is given by  ~

- - : : o : - - -
F ] (9.28)

For plastic clays values of x/i are generally in the range 0.2 to 0.5 depending on the PI; the
larger values of /4 are associated with clays with a higher PI. This suggests that in clays there
is some elastic distortion of the clay grains which is recovered on unloading. For coarse-grained
soils the values of x/4i are smaller, principally because the mechanism of compression includes
fracturing of the grains which is not recovered on unloading.

Values for intrinsic parameters M, A and I (or ¢, C, and e) describing the critical state
and normal compression lines for plastic clays are given in Table 9.1. These have been assembled
from tests carried out at City University. They represent typical values, but these may vary due
to differences in grading and mineralogy from sample to sample. The river sand, the carbonate
sand and the decomposed granite have relatively large values of i (i.e. they are relatively
compressible), but it may be necessary to apply very large stresses to investigate the complete
range of behaviour. Compressibility in coarse-grained soils is associated with particle fracturing
and changes of grading, which has been demonstrated by observing the changes of grading after
compression and sheanng of carbonate sand and decomposed granite, both of which cons1st
of weak and fnable grains.

9.11 SUMMARY

1. During shearing soils ultimately reach a critical state where they continue to distort with no
change of state (i.c. at constant shear stress, constant effective normal stress and constant
water content).

2. Before the critical state there may be a peak state and after large strains clay soils reach a
residual state. The peak state is assocxated with dilation and the residual state is associated

with laminar flow. -
3. The critical states of soils measured in triaxial tests are given by

= Mp; T - (99)
=I—-Alnp; (9.10)
where M, I' and 1 are constants for a particular soil. The undrained strength ls is uniquely

related to the water content, so for undrained loading (i.e. at constant water content) the
undrained strength remains constant.
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To take account of different effective normal stresses and water contents when interpreting
soil test data the test results should be normalized with respect to p; or v,, given by

' vy,=v+ilmp" - - - , - (9.11)
I'-vo ' ‘

)ln’=
Pe )

(9.;2)

 The critical states observed in triaxial tests are also found in shear tests, where the critical

state lines are given by
y=ortand, ' (92)
&= er—C,log o} 03
At the critical state soils are esécntially perfectly frictional and the cohesion ¢’ can be neglected.
The intrinsic critical state parameters M, / and I' (or ¢., C, and ey) depend principally on

the nature of the soil and can often be estimated from the classification test parameters,
particularly the Atterberg limits. :

WORKED EXAMPLES

Example 9.1: Determination of critical state soil parameters A number of drained and

undrained triaxial tests were carried out on normally consolidated and overconsolidated samples
of the same soil. Table 9.2 gives values for the stress parameters gy and p; and the specific volume
v, when the samples had reached failure at their critical states.

Table 9.2
o qt
Test (kPa) - (kPa) o
600 588 1.82.
285 280 197
400 390 1.90 _
- 256 250 199 : - -
150 146 210

200 195 204

The data are shown plotted in Fig. 9.19. Scaling from the diagram, M = 0.98, 2 = 0.20.

Substituting (say) v = 1.82 and p’ = 600 kPa with 2 = 0.20 into Eq. (9.10) we have I' = 3.10.

600 —
4001~ p
Slope M = 0.98
zm -
Jd ! ! J
0 200 400 600 800
p' (kPa) - . Inp' (kPa)

Figure 9.19
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Example 9.2: Determination of critical states of soils A soil has the parameters M = 0.98,
1 =020 and I'" = 3.10. Four samples were isotropically compressed and swelled to the initial
states shown in the first: four columns of Table 9.3. In each case the pore pressure was '
uo = 100 kPa. Each sample was tested by increasing q with the total mean stress p held constant:
samples A and C were tested drained and samples B and D were tested undrained.

Table 9.3

3 Pt . g Uy
Sample (kPa) R, v (kPa) v (kPa) (kPa)
AD) 600 1 1.97 600 182 . 58 100
Bv 600 1 1.97 284 1.97 278 416
c?o 150 4 204 150 2.09 147 100
Dv - 150 - - 4 — -204 - |-—200 - 204 - 196 - 50

For the drained tests p; = p, and for the undrained tests v, = vo. From Eq. (9.10) the values
of v, in drained tests and p; in undrained tests are given by

-
ve=T—21n p; or p}:exp( A”‘)

Notice that the tests were carried out with p constant so that p, = p,, the pore pressures at failure
u; in the undrained tests are given by

’-‘f=Pr."Pf=Po-P§=P6+ ug — Py
From Eq. (99), - » ,
qe = Mp;

"The points corresponding to isotropic compression and to failure at the critical state are shown
in Fig. 9.20; these are linked by lines that represent approximately the state paths for the tests.

220~ .
— v
3 2.00f
- .
1.80}- ,
! 1] 1 1 _ ]
0 “300 300 600 800 0 200 400 600 800
' kPR . - p'(kPa)

Figure 9.20 ) a -



state and normal compression lines are given in Fig. 9.21.
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Example 9.3: Normalized critical states The initial states and the critical states given in
Table 9.2 can be normalized with respect to the critical pressure p, given by Eg. (9.12) or
with respect to the equivalent specific volume v, given by Eq. (9.11). The values for the normally
consolidated samples A and C are given in Table 9.4 and the points representing the critical -

Table 9.4
Initial state ) Critical state -

% P Rl w4 P P ale. B @il n
Sample (kPa) (kPa) . (kPa) .(kPa) (kPa)
A 600 284 211 325 |'s88 600 600 098 100 . 098 310
C ' 600 284 211 325 | 278 284 - 284 0.98 - 1.00 098 3.10

20~

= 0 oL
.? ’. - \\

! __MNCL
0 1.0 2.0 3.0
P'ipc
(a) _
20~
° CSL
= 10b \ ‘
! ] EECL J
- 0 T30 "3.2 3.4 -
v;
(b) Figure 921

The initial and final state points may be joined together as shown by 2 line that represents
approximately the state paths followed by the drained and undrained tests. Notice that in both
tests the value of p'/p. decreases from 2.11 to 1.00. In the drained test this is because p; increases
from 284 to 600 kPa as the specific volume decreases while p’ = 600 kPa remains constant, but
in the undrained test p’ decreases from 600 to 284 kPa as the pore pressure increases while
p. = 284 kPa remains constant because the specific volume does not change.

Example 9.4: Critical state Mohr circles and friction angle For the four tests given in Table
9.3 the principal stresses at the critical state can be calculated from Egs (3.5) and (3.6).
Rearranging:

)

o.=p'+% o=p-1iq
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Table 9.5

¢ Pt L oy

Sample (kPa) (kPa) (kPa) (kPa)
A 588 600 992 404
B 278 284 469 191
C 147 150 248 101
D 196 200 330 134

100 —

2004 A i B

r (!d’a)

-400 L Figure 9.22

Values for &, and o, are given in Table 9.5 and the Mohr circles are given in Fig. 9.22. Scaling
from the diagram, the critical friction angle is oL = 25°
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CHAPTER

TEN
PEAK STATES -

~

10.1 INTRODUCTION

Figure 10.1 shows the states of soil samples at the same effective stress ¢’ but at different voids
ratios and overconsolidation ratios: at N the soil is normally consolidated, at W it is lightly
overconsolidated or loose and the state is on the wet side of the critical state, and D, and D,
are two states on the dry side where the soil is heavily overconsolidated or dense. For samples
W and N on the wet side of critical the state parameters In S, and S, (see Sec. 8.4) are positive
and for samples D, and D, the state parameters are negative. Figure 10.2 shows the behaviour
of these samples during drained shear tests and is similar to Fig. 9.1. At the critical states at C
the samples have the same shear stress 77, the same normal stress o¢ and the same voids ratio
e,. but at the peak states the shear stresses and voids ratios are different. The idealized behaviour
described in this chapter is based on experimental data given by Atkinson and Bransby (1978)
and by Muir Wood (1991).. - ) o

Peak states from shear tests on samples with different values of normal effective stress,
overconsolidation ratio and voids ratio generally fall within the region OAB in Fig. 10.3 which is
above the critical state line, and at first sight there is no clear relationship for the peak states
as there was for the critical states. There are three ways of examining the peak states: the first
is to make use of the Mohr~Coulomb equation with an apparent cohesion intercept, the second
is to fit a curved line to the peak state points and the third is to include a contribution to
strength from/di,&tion.

-1

&

- Figure 10.1 Initial states of samples at the same stress but different voids
Inc' ratios.

124
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102 MOHR-COULOMB LINE IN SHEAR TESTS

Figure 10.4 shows peak states of two sets of samples which reached their peak states at voids
* ratios e, and e,. These can be represented by the Mohr—Coulomb equation

T, = Cp, + 0p tan o . . (10.1)
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(b) Figure 10.4 Peak states—cohesion.

where the subscripts p are there to make clear that Eq. (10.1) relates to the peak state and the
subscript ¢ in ¢}, is there because the cohesion intercept depends on the voids ratio.

There are a number of important things to notice about the peak states shown in Fig.
10.4. The peak friction angle ¢, is less than the critical friction angle ¢, and the peak state
lines meet the critical state line at points such as A, and A,. For any states to the right of the
critical stateline in Fig. 10.4(b) the soil is on the wet side of critical and, on shearing, it
compresses and reaches its critical state without a peak, as in Fig. 10.2. As a consequence peak
states are associated with dense or overconsolidated soils on ‘the dry side which dilate on
shearing.

_ In-Fig. 10.4 the peak state lines have been terminated at low stresses at points such as B,
and B, and peak states at low stresses are not given by Eq. (10.1) (see Sec. 10.4). This means™ -
that the cohesion intercept ¢}, is not the shear stress which the soil can sustain at zero stress
and it is merely a parameter required to define the Mohr—Coulomb equation. Since, in this case,
these peak states apply equally for clean sand and reconstituted clays this cohesion-should not
be associated with cementing or interparticle attraction in clays.

In order to take account of the different voids ratios e, and e, in Fig. 10.4, we can make
use of the normalizing parameter ¢/, described in Chapter 9. Figure 10.5 shows the peak state
lines from Fig. 10.4 normalized with respect to o;. Now all the peak state lines for different
voids ratios reduce to the single line BA and A is the critical state point. The gradient of the
peak state line is ¢}, and the dimensionless cohesion intercept is cp, which is given by

= . (10.2)
o ~ :

From the geometry of Fig. 10.5, ¢, = tan ¢; — tan ¢, so that the Mohr—Coulomb peak state

parameters are not independent. From Egs (9.7) and (10.2) the peak cohesion intereept ¢y, is

given by
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and so c;, increases with decreasing voids ratio.

10.3 MOHR-COULOMB LINE IN TRIAXIAL TESTS

In triaxial tests the peak states depend on the specific volume in the same way as for shear tests.
Figure 10.6(a) shows the peak state line for the particular specific volume v in Fig. 10.6(b). In
the region AB this is given by

q, = G,, + H,p, (10.4)

where H, is the gradient and G,,, is the intercept on the ¢’ axis. The broken line OT at a gradient
dq’/dp’ = 3 represents the condition o, =0. Since uncemented soils cannot sustain tensile
(negative) effective stresses, this represents a limit to possible states; the line OT is known as
the tension cut-off and it is equivalent tc the ' axis for shear tests in Fig. 10.4. The parameter
G,. is simply a parameter that defines the position of the peak state line and is not necessarily
the peak state at low effective stress.

~Y 8

®) _ Figure 10.6 Peak states in triaxial tests. -
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After normalization with respect to p. the results of triaxial tests appear as shown in Fig.
10.7, which is similar to Fig. 10.5 for shear tests. The critical state and normal compression lines
reduce to single points and the peak states fall on a single line given by -

>
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Figure 10.7 Normalized peak and critical states for triaxial tests.

. | %G+ H,,(Bj-’) (10.5)

o T c ) Pc
where the gradient is H, and the cohesion intercept is G,. The relationships between H, and ¢,
- are similar to those between M and ¢ given by Egs (9.16) and (9.17), and it is necessary to
distinguish between values of H, for compression and extension. From Figs 10.5 and 10.7, at
very small effective stresses as ¢'/o; and p'/p. approach zero, and noting that ¢'/p, = 2t'/o;, we
have G, = 2.

10.4 CURVED PEAK STATE LINES

At effective stresses lower than those normally applied in routine soil tests (i.e. at high
overconsolidation ratios) the peak state line is markedly curved towards the origin. as illustrated
in Fig. 10.8(a). For many soils it is only slightly curved at higher stresses in the region BA,
where the line is close to the linear Mohr—-Coulomb line shown in Fig. 10.5. The line for peak

r'lo! ‘L

In1'/o;

Figure 10.8 Curved peak state line for shear tests.
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(b) Figure 10.9 Curved peak state line for triaxiai tests.

states normalized with respect to the critical stress o, in Fig. 10.8(a) is similar to the broken
line sketched in Fig. 9.7(a). The curved line in Fig. 10.8(a) is given by

% &)
ol JPEY e J ; 10.6
v, (o*) (194
where A4 and b are material properties (like ¢, and ¢},). Equation (10.6) may be written as
T, o, 7
In|[-2)=In4d+bln|{-2 10.
(5)-nason(2) @

This is shown in Fig. 10.8(b) and Eq. (10.7) provides a convenient method for determining values |
“for the parameters A and b. Figure 10.9(a) shows peak states from triaxial tests normalized with
respect to p., and represented as a curved line and Fig. 10.9(b) is the same behaviour plotted
with logarithmic scales. The peak states in Fig. 10.9 are given by

1n(q—f) =lna+ ﬁln(?i,z) (108)
P
where « and B are soil parameters. The curved peak state lines in Figs 10.8 and 10.9 both end

at the critical state point where the peak and critical states are the same. Hence 4 = tan ¢, and
@ = M, so that only the parameters b or § are required to define the curved peak state envelope.

10.5 PEAK STATES AND DILATION

An alternative approach to understanding the peak states of soils is to recognize that during
shearing of a dilating soil the shear stresses must both overcome friction between the grains and
‘lift the normal loads. For a given normal stress the peak shear stresses will increase with
increasing rate of dilation.
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-Figure 10.10(a) shows the stresses and displacements-for an increment of displacement.ofa. . ... ..

shear test and Fig. 10.10(b) shows horizontal and vertical forces on a frictional block on an
inclined plane. The mechanics of both are similar and so the relationships between 7’ and ¢’ in
the shear test will be analogous to the relationships between T and N and the slope angle i is
analogous to ¢. If i = 0 the block slides when

=tany - N ’ (10.9)

so the friction angle ,u is analogous to the critical friction angle .. From Fig. 10.10(b), resolving
horizontally and vertically and after some algebra, we have

§= tan(u + i) - (10.10)

(Readers should do the simple mechanics and algebra themselves.) Following the analogy
between the shear test and the sliding block, the behaviour of soil can be represented by

;,: tan(@, + ¥) (10.11)

Figure 10.11 shows the behaviour of overconsolidated or dense soil on the dry side of critical

r'/O"A
P
tan ¢, |
A . _€- — -_
tan ¢,
0 sh
()
o
vp!P y=0
o} 4 S
. A Sh
v=0

(b) Figure 10.11 Shearing and dilation in shear tests.
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Figure 10.12 Peak state of a dilating soil.

in a drained shear test and it is essentially the same as Fig. 9.1. There are two points, A and C,
where ¥ = 0 and so, from Eq. (10.11), /¢’ = tan ¢_ and at the peak state at P the value of ¥,
is the maximum. .

Figure 10.12 shows a point P representing the peak state of a soil at a particular stress oy
and voids ratio e,, and it lies on the appropriate Mohr—-Coulomb line given by ¢, and ¢;,. It

- also lies on the line given by Eq. (10.11) with a critical friction angle ¢; and a peak dilation angle

y,. Figure 10.13 shows four peak state points: B, and C, have the same voids ratio e, and they
lie on the same Mohr-Coulomb line given by ¢}, and ¢;,. (B, and C, are similar points at the
same voids ratio e, and they lie on the Mohr-Coulomb line given by c;, and ¢,.) Points B,
and B, have the same normal stress oy, but B, is more heavily overconsolidated than B, and
has a lower voids ratio. Since B, and B, will reach the same critical states at B, sample B,
must dilate more (i.e. have a larger value of y,) than sample B,. (C; and C, are similar points.)
Points B, and C, have the same overconsolidation ratio R, but different voids ratios and normal
stresses; their peak states are given by Eq. (10.11) with the same value of ¥,,.
For triaxial tests the equation that is analogous to Eq. (10.11) is

' d
g-, =M ﬁ (10.12)
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(The negative sign-is required because de, is negative for dilation.) Equation (10.12) shows that-
the stress ratio ¢’/p’ is the sum of the critical stress ratio M and the rate of dilation —de,/de,.
Figure 10.14 shows a peak point P at a particular stress. The peak deviator stress given by

. o  e=Mp-7, (d.f:) (10.13)
. , de,/,. )

is made up of contributions from the friction parameter M and the rate of dilation.

10.6 VARIATION OF PEAK STATE WITH INITIAL STATE

Equations (10.11) and (10.12) demonstrate that the peak stress ratio increases with the peak
rate of dilation ¢, or (de,/de,),, and we would expect to find that the peak rate of dilation
depends on the initial state or overconsolidation ratio. (In Chapter 11 we will see that these
equations apply for states other than the peak but, for the present, I will restrict the discussion
to the peak states.) Figure 10.15 shows two samples of the same soil, 1 and 2, at the same stress
p, but with different specific volumes, v, and v,. The two soils have different values of v; and
different overconsolidation ratios; soil 2 is the more heavily overconsolidated. During drained
shearing at constant p’ the soils dilate and both ultimately reach the same critical state at C.
Figure 10.15(b) and (d) shows the corresponding changes of specific volume and the volumetric
strains. The points P, and P, are the maximum gradients and ¥, and ¢, are the maximum
rates of dilation; it is obvious that i, is greater than ¥, and so the peak angle of dilation
increases with increasing overconsolidation ratio (i.e. with decreasing v,). Figure 10.16(a) shows
how the peak state{g'/p’), varies With v, (arid hence with overconsolidation); at the critical state
line v, = I"and the rate of dilation is zero. Figure 10.16(b) illustrates the corresponding variation
of the peak stress ratio (1'/¢"), with e,. The relationships in Fig. 10.16 correspond to the broken
lines sketched in Figs 9.7(b) and 9.10(b).

Peak states may also be interpreted in terms of the state parameters S, or S,. (Note that
these are related by S, = 41n S,.) Figure 10.17(a) shows two states 1 and 2 similar to those in
Fig. 10.16(a) and the state parameters are S,, and S,,. Figure 10.17(b) illustrates the variation
of peak stress ratio with state parameter; notice that §, is negative for states on the dry side of
critical and at the critical state S, = 0 and ¢'/p' = M.

In Fig. 10.16 the values of v, and e, depend on both the nature and the state of the soil.
For fine-grained soils it is possible to normalize these further by relating them to the Atterberg
limits. Figure 9.16 showed the relationships between undrained strength and liquidity index LI
given by Eq. (5.10) and, noting that s,/p; is constant for a given soil, this can be redrawn as
Fig. 10.18(a). (For a typical clay soil s,/p; = 0.5 and so the reference strength s, = 1.5kPain Fig.
9.16 corresponding to the liquid limit should be replaced by p’ = 3 kPa in Fig. 10.18.) The current
state at A can be represented by an equivalent liquidity index, LI;, as shown (Schofield, 1980).
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The relationship between the peak stress ratio and LI in Fig. 10.18(b) would then apply for all
plastic soils for which it was possible to determine the Atterberg limits. (Notice that for a state

on the wet side of critical, LI; > 1.)

10.7 SUMMARY

1. Overconsolidated soils on the dry side of critical generally reach peak states where the shear
stress and the stress ratio are larger than those at the critical state.
2. Ata particular normal stress the peak state depends on the voids ratio but, after normalization
with respect to o, or p;, the peak states are the same.

3. The peak states can be represented by either of the following:

(a) a linear Mohr—Coulomb line,
(b) a curved envelope, or

(c) a peak stress ratio and angle of dilation.

4. The peak state is governed particularly by the initial overconsolidation ratio or by the state

parameter.
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WORKED EXAMPLES

« Example 10.1: Determination of peak state parameters Table 10.1 shows data obtained at
the peak state from a series of shear tests on the same soil as that in the examples in Chapter
9. (Note that the samples reached their peak state at one of only two different voids ratios.) The

ak states are plotted in Fig. 10.19. The points fall close to two straight lines given by
c,. = 60 kPa and ¢!, = 130 kPa with ¢, = 15° in both cases. -

Table 10.1
7 ay LA
Sample (kPa) (kPa) e, (kPa) T,/0% AL
A 138 300 103} 300 0.46 1.00
C 123 240 1.03 300 0.41 0.80
E 108 180 1.03 300 0.36 0.60
G 93 120 1.03 300 0.31 0.40 o
B 264 540 0.89 606 0.44 0.90
D 228 420 0.89 606 0.38 0.70
F 198 300 0.89 606 0.33 0.50
m —
P GsL
E '/”;/
= 200 15° e
4= 5,11,
=2125° | I 1
0 200 400 600 800
o (kPa) : Figure 10.19 -

-

The test results can be normalized with respect to the equivalent stress o’ given by Eq. (9.7).
The soil parameters are C, = 0.46 and er = 2.17. The normalized stresses are given in Table

10.1 and these are plotted in Fig. 10.20. The data now all fall close to a single straight line given
by ¢, = 0.2 and ¢;, = 15°. '
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+ Example 10.2: Curved peak state envelope A further set of four shear tests was carried out
in addition to those described in Example 10.1 and the results are given in Table 10.2. The peak
states are plotted in Fig. 10.21 together with the data from Table 10.1. The points fall close to

Table 10.2
7, % o
Sample (kPa) (kPa) . (kPa) A o, /c.
3 63 60 1.03 300 021 0.20
L 30 15 1.03 300 0.10 0.05
H 156 180 0.89 606 0.26 030
K "84 60 0.89 606 0.14 0.10
400 —

= 200

0

Figure 10.21

two curved lines, although at large stresses, for which the data are those given in Table 10.1,
the lines are very nearly straight. As before, the data can be normalized with respect to the
equivalent stress ¢/.. The normalized stresses are given in Table 10.2 and plotted in Fig. 10.22(a).
The data now all fall close to a single curved line. The data are plotied to logarithmic scales in
Fig. 10.22(b). The gradient of the line is b in Eq. (10.7) and, scaling from the diagram, b = 0.5.

Ing'io;
-4.0 -3.0 -2.0 ~1.0 0
0.6 ) F T T 7

-10 _,
= =

=20

Slope b = 0.5
-1-3.0
o'lo;
(a) (b)

Figure 10.22
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. Example 10.3: Dilation and equivalent state Table 10.3 shows the data for the peak states
for the set of shear tests given in Tables 10.1 and 10.2. The critical friction angle is ¢ and hence
the angle of dilation ¥ is glven by Eq. (10.11). Values for ¢, are calculated from Egq. (9.6) and
Fig. 10.23 shows the variation of ¢’ + ¥ with e, (see Fig. 10.16).

Table 10.3
% %
Sample (kPa) (kPa) e, d.+y ' e
A 138 300 1.03 24.7 -0.3 2.17
B 264 540 0.89 26.1 1.1 2.15
C 123 240 1.03 - 271 21 2.12
D 228 420 0.89 28.5 3.5 2.10
E 108 180 1.03 310 6.0 207
F__ 198 300 0.89 334 8.4 - =203~ T T
G 93 120 1.03 378 12.8 1.99
H 156 180 0.89 40.9 15.9 1.93
J 63 60 1.03 .. 464 214 1.85 -
K 84 60 0.89 54.5 29.5 1.71
L 30 15 1.03 63.4 384 1.57

ty)

‘
©

204

an' (r'lo’) = ($

& -~ Figure 1023~
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CHAPTER

ELEVEN
BEHAVIOUR OF SOIL BEFORE FAILURE

11.1 INTRODUCTION

In laboratory triaxial and shear tests, and in the ground, soil is loaded from some initial state
and will ultimately reach some critical state. Initial states for isotropic and one-dimensional
compression and swelling were discussed in Chapter 8; knowing the history of loading and
unloading, the initial specific volume and overconsolidation ratio are fixed. Critical states were
discussed in Chapter 9; knowing either the mean normal stress or the specific volume at the
critical state, the critical state strength is fixed. This means that we can generally calculate initial
and critical states for any drained or undrained loading and it is now necessary to consider how
the states change from the initial to the critical.

We already have some information about these intermediate states. In Chapter 10 we
considered states corresponding to the peak stress ratio of samples with specific volumes or
voids ratios initially lower than the critical state and which dilated during drained shearing. Also,
in Chapter 9, I suggested that there might be unique states between the normal compression
and critical state lines as shown in Figs 9.7 and 9.10.

11.2 WET SIDE AND DRY SIDE OF CRITICAL

During drained shearing soil may either compress or dilate, as illustrated in Figs 9.1 and 10.2,
and during undrained shearing pore pressures may either increase or decrease. What actually
happens depends on the position of the initial state with respect to the critical state line. We
can now see the significance of the distinction made in Sec. 8.4 between states on the wet side
of the critical state (i.c. normally consolidated or lightly overconsolidated clays or loose sands)
and states on the dry side (i.e. heavily overconsolidated clays or dense sands).

Figures 11.1 and 11.2 illustrate the idealized behaviour of soils initially on the wet side or on
the dry side during undrained or drained triaxial tests. In Fig. 11.1 the state at W is normally
consolidated (i.c. on the wet side) and the state at D is heavily overconsolidated (i.e. on the dry
side), both having the same initial specific volume. During any shearing test the states must
move towards, and ultimately reach, the critical state line. For undrained loading the states must

190
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Figure 11.1 Behaviour of soil during undrained shearing.
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(b) P Figure 112 Behaviour of soil during drained constant p’ shearing.

remain at constant volume and both samples reach the critical state line at F,, where they have
the same undrained strength because they have the same specific volume. The total stress path
I — F, corresponds to a constant mean total stress p and the horizontal distances between the
total and effective stress paths are equal to the pore pressure. (A test with constant p can be
carried out in a hydraulic triaxial cell (see Chapter 7) by simultaneously réducing the cell
pressure and increasing the axial stress in the ratio do, = <250,.) You can see from Fig. 11.1



140 MECHANICS OF SOILS AND FOUNDATIONS

ok

-t

m’ Figure 11.3 States on the wet side and the dry side of critical.

that for the soil initially on the wet side the pore pressure increases on shearing, while for the
soil initially on the dry side the pore pressure reduces. Notice that the overconsolidated soil
reached a peak stress ratio at P but the deviator stress at F, is greater than that at P. Notice
also that the loading path D — P for the overconsolidated soil before the peak state is linear
and vertical (i.e. 6p’ = 0). ,

Figure 11.2 shows the same two initial states but with the paths for drained shearing with
constant p’. Again both paths must move towards, and ultimately reach, the critical state line.
The soil initially on the wet side compresses on shearing and ultimately fails at F,. The soil
initially on the dry side first shears at constant volume to the peak state at P but then it dilates
and the shear stress reduces as the specific volume increases. The shear stresses at the failure
points, F,, and F,, are different because the effective stresses and specific volumes are different.

The principal distinction between soils that compress on drained shearing or where pore .
pressures increase on undrained shearing and soils that dilate or where pore pressures decrease is
in whether the initial state lies to the right (i.e. on the wet side) or to the left (i.e. on the dry
side) of the critical state line as illustrated in Fig. 11.3. Soils initially on the wet side compress
during drained shearing or the pore pressures increase during undrained shearing, while soils
initially on the dry side dilate or pore pressures decrease.

The distinction between the dry side and the wet side of critical is very important in
determining the basic characteristics of soil behaviour. Soils must be heavily overconsolidated
(Ryabout 3) to be on the dry side while soils that are normally or lightly overconsolidated
(R, < about 2) will be on the wet side. Remember that the initial state could also be described
by the state parameters S, or S;: for states on the wet side S, and In S, are positive and on the
dry side they are negative.

11.3 STATE BOUNDARY SURFACE FOR SOIL
We have already found cases where the possible states of soils were limited; these are shown in
Fig. 11.4. As discussed in Sec. 8.3 and illustrated in Fig. 8.4, the isotropic normal compression
line represents a boundary to all possible states of isotropic compression; the state can move
below (ie. inside) the boundary by unloading, but it cannot move outside the normal
compression line. Similarly, the peak envelope must represent a boundary to all possible states
since, by definition, this represents the limiting or peak states. Remember that the peak state
line in Fig. 11.4(a) corresponds to one specific volume. There will be other peak state lines
corresponding to other specific volumes and together these will form a peak state surface. The
surface can be reduced to a line by normalization as described ‘in Sec. 9.5. The peak state
boundary surface, normalized with respect to the critical pressure P., is shown in Fig. 10.9.
The peak state surface is a boundary on the dry side of critical and it is now necessary to
examine whether there is a well-defined state boundary on the wet side. If there is it will join
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(® Figure 11.4 Part of a state boundary surface on the dry side.

the isotropic normal compression and critical state lines and it might look like the broken line
in Fig. 11.4. ‘

Figure 11.5 shows paths for three different initial states all on the wet side of critical. P and v
are on the isotropic normal compression line; P is sheared drained with p’ constant and V is sheared
undrained and the paths cross at S. R is initially anisotropically compressed and it is compressed
further at a constant stress ratio ¢'/p’ = #’ so that the state passes through the point S. (Notice that
the normal compression line is like this path but with 7/ = 0 and so is the critical state line but with
#' = M.) We can easily arrange for all the stress paths in Fig. 11.5(a) to pass through the same point
S, but the question is whether they all have the same specific volume at S in Fig. 11.5(b).

7\ ' csL

NCL(¢'lp’ = 0)

CSL(g'lp' = M)

”' T ? T, A::
® . Figare 115 State paths for normally consoldated soil-
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The best way to examine this is to normalize the states with respect to the critical pressure
p. or with respect to the equivalent volume v;. The resulting normalized state boundary surface
is shown in Fig. 11.6. As before, the critical state and isotropic normal compression lines reduce
to single points and the anisotropic compression line RS reduces to a single point S. Also shown
in Fig. 11.6 are the parts of the state boundary surface on the dry side of critical, corresponding
to the peak states, from Figs. 10.9 and 10.16.

The state boundary surface in Fig. 11.6 has been drawn as a smooth curve linking the wet
side and the dry side. Later, in Chapter 12, this will be represented by a simple mathematical
expression. Do not forget that the line shown in Fig. 11.6, which has normalized axes, is really
a three-dimensional surface in the set of axes ¢':p’:v. This surface is rather difficult to draw,
‘which is why it is easier to normalize the results first. Figure 11.7 illustrates the three-dimensional

Figure 11.7 A state boundary surface for soil.
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surface; this shows constant specific volume sections as full lines and constant stress ratio (ie. -
constant ) sections as broken lines: Data from soil tests that demonstrate the existence of
unique state boundary surfaces were given by Atkinson and Bransby (1978) and by Muir Wood
-(1991). The part of the state boundary surface on the wet side of critical (i.e. between the normal
compression line and the critical state line) is sometimes known as the Roscoe surface and the
part on the dry side corresponding to peak states is sometimes known as the Hvorslev surface
(Atkinson and Bransby, 1978).

11.4 ELASTIC BEHAVIOUR AT STATES INSIDE THE STATE BOUNDARY
SURFACE ;

The state boundary surface is a boundary to all possible states of a reconstituted soil. The state
cannot exist outside the surface—by definition—although later we will find cases of cemented
soils where unstable states outside the boundary surface for reconstituted soil can occur. If soil
with a state on the surface is unloaded the state moves inside the surface and, on reloading the
state, will move back to, but not outside, the surface, Thus, the state boundary surface can also
be a yield surface like that shown in Fig, 3.16. If the boundary surface is a yield surface then

while the state is on the surface there are simuitaneous elastic and plastic strains, but if the state . -
is brought inside the boundary surface, by unloading, the strains are assumed to be purely elastic. o
This is a highly idealized model for soil behaviour and weé now know that there are inelastic "

strains when the state is inside the boundary surface. These aspects of soil stress—strain behaviour
- will be considered briefly in Chapter 13.

The idealized behaviour of soil during isotropic compression and swelling was considered
in Secs 8.2 and 8.3 (see Figs 8.2 to 8.6) and is illustrated in Fig. 11.8. This shows a sequence of
loading and unloading from A to D where the overconsolidation ratios are the same but the
specific volumes are different. Between B and C the state was on the normal compression line
(i.e. on the state boundary surface) and the soil yielded and hardened as the yield stress increased -
by dp; with an irrecoverable plastic volume change 6v®. Along AB and CD the state was inside
the boundary surfaces and the behaviour is taken to be elastic.

The stress—strain behaviour of an isotropic elastic material is decoupled (i.e. the shearing
and volumetric effects are separated) and from Eq. (3.21), L B

e = — &, (11.1
és 3G q , )
e =L 5y 412

’ a' K, p ;. | ~ . T V )
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Ty ¥ Figue 118 Elastic and plastic compression. -
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Isotropic swelling
and recompression
line

7 Elastic wall

v Figure 119 Elastic wall and yicld curve.

Another expression for the elastic volumetric strains can be obtained from the equatxon for the
swelling and recompression lines (see Sec. 8.2) as

b, = —op . (11.3)
vp :

where x is the slope of the lines AB and CD in Fig. 11.8. A similar expression for shearing can
be written as

be, =2 sq' {11.4)
3vp’
where g is a soil parametér which describes shear stiffness in the same way that x describes
volumetric stiffness. (The basic assumption made here is that G’/K’ = k/g = constant, which
implies that Poisson’s ratio is a constant.)

With the simple idealization that soil is isotropic and elastic, shear and volumetric efiects
are decoupled and volume changes are related only to changes of p’ and are independent of any
change of 4. This means that, inside the state boundary surface, the state must remain on a
vertical plane above a particular swelling and recompression line. This vertical plane is sometimes
known as an elastic wall (see Fig. 11.9). Notice that an elastic wall is different from a constant
volume section (except for the case of a soil with k = 0). Since the soil yields when the state
reaches the boundary surface a'yield curve is the intersection of an elastic wall with the state
boundary surface, as shown in Fig. 11.9. Remember that there will be an infinite number of
elastic walls, each above a particular swelling and recompression line, and an infinite number
of yield curves.

For any undrained loading path on an elastic wall ¢, = 0 and, from Eq. (11.3), ép' = 0.
Figure 11.10 shows the state paths for undrained shearing of lightly overconsolidated soil from
W on the wet side of critical and of heavily overconsolidated soil from D on the dry side of
critical, both with the same specific volume. For the initial loading the paths are linear and
vertical (6p" = 0) and the soils yield at Yy, and Y, when the states reach the boundary surface.

115 UNDRAINED LOADING ON THE STATE BOUNDARY SURFACE

Beyond the yield point where the state reaches the state boundary surface the state path in
undrained loading must follow the intersection of an undrained, or constant volume section, with



BEHAVIOUR OF SOIL BEFORE FAILURE 145

(b)

© Figure 11.10 State paths for undrained loading.

the state boundary surface as shown in Fig. 11.9. Thus, in Fig. 11.10(a), the state paths are
Y, — F, and Yy — F, and the stress—strain curves will be like those shown in Fig. 11.10(b).
Notice that neither of the soils has any peak deviator stress ¢’ but the soil on the dry side has
a peak stress ratio 7; at Yp.

In Fig. 11.10 the undrained section of the state boundary surface has been drawn
approximately symmetric about the critical state point F,, but this is not usually the case and
undrained sections will commonly be asymmetric with a peak on the dry side, as shown in Fig.
11.11(a). The undrained behaviour shown in Fig. 11.11(a) arises from the geometry of the state
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boundary surface and the elastic wall (see Fig. 11.9). In this case undrained stress paths and
stress—strain curves will have peak deviator stress states at P, but they will still reach an ultimate
or critical state at F, which depends only on the specific volume or water content. Notice that
for soil on the dry side there is a peak stress ratio state at P,, a peak deviator stress state at P, -
and an ultimate or critical state at F,; in general, these will all be different. For some soils,
particularly natural lightly overconsolidated plastic clays, undrained stress paths may have
peaks on the wet side of the critical state as shown in Fig. 11.11(c) and stress—strain curves like
those shown in Fig. 11.11(d). : . :

11.6 STRESS RATIO AND DILATION

Figure 11.12(a) and (b) shows the variations of stress ratio and volumetric strain with shear
strain for an ideal soil sheared from states initially either on the wet side or on the dry side and
are similar to Figs 9.1 and 10.2. In Fig. 11.12 the loading was terminated before the soils had
reached their critical states at C. The relationship between stress ratio and dilation is given by
Eq. (10.12) as T R ) .
g _y-9 (11.5)
4 de,
and in Sec. 10.5 and 10.6 I showed that this described the states of soils at their peak
state.

Providing that elastic strains are relatively small compared to the plastic strains, Eq. (11.5)
also applies to states before and after the peak and to soils on the wet side and on the dry side
(except at states close to the start of the shearing where the behaviour is essentially elastic).
Figure 11.12(c) shows Eq. (11.5) as ¢'/p’ against de,/dg, for the normally consclidated soil and
for the overconsolidated soil at states beyond A in Fig. 11.12(a). There are two points, A and
C, where the rate of volume change is zero and ¢'/p’ = M. Consequently, by plotting soil test
data as ¢’/p’ against de,/de, the position of the critical state point C can be found even if the
loading is terminated before the samples have reached their critical states. It is best to conduct
tests on both normally consolidated and overconsolidated samples of clay or on loose and dense
samples of sand to obtain data on both sides of the critical state. ‘

ark o L\
P P
A/ T~ c
M -—==C N
- ~
/ / A
o - Dilation Compression
@ & © de.jde,
(©)
&y
A c
——
p -
o - —

Figure 11.12 Stress ratio and dilation
(b) of soil.
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11.7 SOFTENING OF SOIL BEYOND THE PEAK STATE AND
DEVELOPMENT OF SLIP SURF ACES

An important feature of straining of soils on the dry side- of critical at relative large strains is
the development of strong discontinuities, or slip surfaces. (Strains in slip surfaces were
considered in Sec. 2.7.) You can see these if you squash cold butter, stiff clay or a sand-castle
in unconfined compression, but you will not see slip surfaces if you squash soft butter, soft clay
or loose dry sand.

What you see are not really slip surfaces but thin regions of intense shearing through material
that is essentially rigid on either side. In soils these thin regions may be only a few grains thick,
but as they have finite thickness the soil inside them can change in volume. This means that
once slip surfaces have developed soil is no longer homogeneous and the shear and volumetric
strains are highly non-uniform, so that measurements of strain made at the boundary of a test
sample will not properly measure the strains and specific volume in the soil, which is straining
= inthe slip surfaces. Consequently, once a-stip surface has developed in soil samples you cannot
rely on the conventional measurements of strain and specific volume.

Slip surfaces develop in materials that soften (i.c. the available shear stress reduces) on
straining. This is because as soon as a slip surface starts to form the strains become non-uniform
and there is additional straining in the thin region. The material then becomes weaker in the
region of the larger strains so that more strain will accumulate and the slip surface will grow.
Thus, in soils we would normally expect to find slip surfaces occurring mostly during shearing
on the dry side of critical. Notice that the shear straining will be associated with dilation so soil
within a slip surface will have a specific volume which is larger than that of the surrounding
material. ‘

On the other hand, a clay that is normally consolidated or lightly overconsolidated and
on the wet side will compress on straining and so the water content will decrease as it strengthens
and hardens. In this case, if there is any non-uniform straining the material in the region of the
larger strains becomes stronger than the neighbouring material so a well-defined slip surface
never develops. If you carefully examine samples of soft clay or loose sand after failure in triaxial
tests you can often find many faint slip surfaces, but no strong discontinuities (it helps if you
let clay samples dry). Similar faint lines can be found on the surface of metal specimens after
straining; they are called Luders lines.

Slip surfaces, or strong strain discontinuities, do occur in soils as they suffer large strains
- and we will come across these later as we develop solutions for stability of foundations and
slopes. For the present you must remember that if slip surfaces occur in laboratory specimens
you can no longer trust the measurements of specific volume. Another reason why some people
do not believe that soils have unique critical states is that they plot the average specific volume
of the whole specimen without making any allowance for the local increase in specific volume
in slip surfaces. This applies equally to drained and to undrained tests. In tests that are nominally
undrained in the sense that the overall volume does not change, there can still be local drainage
of water into slip surfaces from the surrounding soil.

11.8 SUMMARY

1. The initial state of soil, before shearing, is fixed by the appropriate normal compression and
swelling lines and the final state is fixed by the critical state line. The path between the initial
and final states is governed by the loading (ie. drained or undrained) and by the state
boundary surface. O -
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2. There is an important distinction to be made between the behaviour of soils on the wet side
of ¢ritical (which compress on drained loading, or where the pore pressures rise on undrained
loading) and soils on the dry side of crmcal (which dilate on shearing, or where the pore

_ pressures fall). - -

3. In the simple idealization the behaviour is taken to bc elastic when the state is inside the
state boundary surface. Yielding and plastic strammg occur as the state moves on the state
boundary surface.

4. There are relationships between stress ratio and dilation for states on the state boundary
surface on the wet side and on the dry side of the critical state. These relationships provide
a means of determining the critical state of soil from tests in which the sample did not reach
the critical state.

5. Overconsolidated soils, on the dry side of critical, which soften on shearing beyond the peak
often develop strong slip surfaces where intense sheanng and volume changes are concentrated.
in a very thin region of material. In this case measurements made-at the boundaries of a test
sample become unreliable.

WORKED EXAMPLES

Example 11.1: Determination of state path and yielding A soii has the parameters M = 0.98,
7 =0.20, k = 0.05 and N = 3.25. A constant volume section of the state boundary surface is a
semi-circle passing through the origin. Samples were isotropicaliy compressed and swelled in a
stress path triaxial cell to different stresses but the same initial specific volume ©, = 1.97; the
initia] stresses were: sample A, po = 600 kPa, sample B, p, = 400 kPa, sample C, p, = 150 kPa
(sample A was normally consolidated). The samples were tesied undrained by increasing g with p
held constant.

The state paths are shown in Fig. 11.13. When the state is inside the state boundary
surface the behaviour is elastic and shearing and volumetric effects are decoupied; hence
6p’ = 0 for undrained loading. The states of the samples after compression and swelling, at
their yield points and at failure at their critical states, shown in Table 11.1, were found by
scaling from the diagram.

600 —
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= T cs
I
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= Yo 5= \Q r 2.00
o ’
200 —-//
!
/ ‘ 1.80
Cl , B A \ . . F
0 200 400 600 800 0 200 400 600 800
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Table 11.1
Initial state Yield point Critical state
Po g9 Py g pt
Sample (kPa) Vo (kPa) (kPa) v, (kPa) (kPa) vy
A 600 1.97 0 600 1.97 294 300 1.97
B 400 137 280 400 1.97 294 300 1.97
C 150 1.97 260 150 1.97 294 300 1.97

Example 11.2: Determination of state path and yielding Three further samples D, E and
F of the soil described in Example 11.1 were prepared at the same initial state as samples A,
B and C. Each sample was tested ‘drained following a stress path with increasing ¢’ with p’
held constant.
 The state paths are shown in Fig. 11.14. When the state is inside the state boundary surface
the behaviour is elastic and shearing and volumetric effects are decoupled; hence dv = 0 for
constant p’ stress path tests. The states of the samples after compression and swelling, at their
yield points and at failure at their critical states, shown in Table 11.2, were found by scaling
from the diagram.

¢’ (kPa)

800
p' (kPa) p’ (kPa)

Figure 11.14
Table 11.2

Initial state _ Yield point Critical state

Po % Py a Pt R

Sample (kPa) vo (kPa) (kPa) v, (kPa) (kPa) R
D 600 1;97 0 600 197 588 600 1.83
E 400 197 280 © 400 197 392 400 1.90

F 150 1.97 260 150 1.97 147 150 210
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Example 11.3: Calculation of undrained stress path A soil has the parameters M = 0.98,
2=0.20, x = 0.05 and N = 3.25, but the shapc of the state boundary surface is unknown. A
sample is 1sotrop1cally normally compressed in a triaxial apparatus to po = 600 kPa and tested
undrained by increasing the axial stress with the total mean strcs eld constant. It is observed
that the change of pore pressure can be approximated by Au =(44%/300. Aeg ‘/ [ op )

The test results are given in Table 11.3 for equal increments of g. An undramed stress path
deﬁmng a constant volume section of the state boundary surface or the wet side of critical is

_ shown in Fig. 11.15.

Table 11.3 - - -
q p u r
(kPa) (kPa) (kPa) (kPa)
0 . 600 0 600
50 600 8 592
100 600 33 567 - -
150 600 75 525
200 600 133 467
250 600 208 392
300 600 300 300
00 -
g
< -
1 ) J
0 200 400 600 800
p' (kPa) Figure 11.15
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CHAPTER

TWELVE
CAM CLAY

12.1 INTRODUCTION

Figure 11.7 shows a simple state boundary surface for soil; to develop a simple theoretical model
for the stress—strain behaviour of soil this could be taken to be a yield surface. Yield curves are
the lines of intersection of elastic walls with the yield surface as shown in Fig. 11.9 and these
could be taken to be plastic potentials. We could then use the ideas of yielding, hardening and
normality set out in Chapter 3 to derive a set of constitutive equations for soil. All that is
required is a mathematical expression for the shape of the boundary surface.

Suitable equations for the state boundary surface could be obtained by fitting expressions
to laboratory test data, by purely theoretical consideration of the mechanics of granular materials
or by a combination of these. A very simple and neat theoretical equation was obtained by
research workers in the University of Cambridge during the 1960s and this will be described
here. Over the years many others have tried to improve on the original Cambridge equation
and while some have succeeded in obtaining better agreement with experimental observations
the simplicity and elegance of the original is inevitably lost. What I am going to do in this
chapter is to describe the original simple theoretical model to get across the basic techniques
involved in constructing constitutive equations for soil. Anyone seriously interested in applying
these techniques in practice will need to study the more complex, and more realistic, soil models.

12.2 BASIC FEATURES OF THE CAM CLAY MODELS

The Cambridge theories are known under the umbrella term of Cam clay. The first model
described by Schofield and Wroth (1968) is known as original Cam clay and a second model
described by Roscoe and Burland (1968) is known as modified Cam clay. All the theories within
the Cam clay family are basically similar. Soil is taken to be frictional® with logarithmic
compression. The state boundary surface is taken as a yield surface and as a plastic potential
surface, and hardemng is related to the plastic volumetric strains. The principle differences
‘between the various members of the Cam clay family are in the precise equations used to describe
the vield curves. For example, in original Cam clay they are loganthmlc spirals while in modified
Cam clay they are ellipses. ,
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The term Cam clay was coined by the Cambridge research workers because the river in
Cambridge is called the Cam. Do not misunderstand this. You cannot go to Cambridge and
dig up any Cam clay; it is simply the name of a theoretical model or a set of equations. The
status of Cam clay is like the status of elasticity. You cannot find any elasticity anywhere; what
you can find is steel or copper which behave in a way very like the theory of elasticity, at least
over small strains. In the same way you cannot find any Cam clay; what you can find are
reconstituted (and some intact) soils that behave in a way very like the theoretical model called
Cam clay.

12.3 STATE BOUNDARY SURFACE FOR ORDINARY CAM CLAY

The basic equation for the state boundary surface for ordinary Cam clay is

q 2 r- v)
—_— Inp — =1 12.1
* » » Mp' (). - x) P (). —-K ) B ( )

This defines the state boundary sﬁrface shown in Fig. 12.1. The surface meets the v:p’ plane
along the isotropic normal compression line where ¢'=0 and v=N — Zlnp’ and hence,
substituting into Eq. (12.1),

N-TI'=i-x (12.2)

The curves shown in Fig. 12.1 are constant volume sections and undrained stress paths. The
equation for an undrained stress path can be obtained from Eq. (12.1) with v = I — A 1n p, where
p. is the stress at the intersection of the constant volume section and the cnitical state iine and is

L+(E)w(E)- (123)
Mp L—K .

A yield curve is the intersection of an elastic wall given by v = v, — x In p’ with the state boundary
surface. At the critical state line the specific volume is v, and the mean stress is p;, as shown
in Fig. 12.2(b) where v, = v, — k In p, = I — Z In p.. Eliminating v and v,, the equation for the

yicld curve shown in Fig. 12.2(a) is o
g P
—+hh{=}]=1 12.4
_Mp' (v’> . : (29

Figure 12.1 State boundary surface for ordinary Cam clay.
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CSL \ NCL o

p: Py 4
(b) Figure 12.2 Yield curve for ordinary Cam clay.

Note that the equations of the constant volume section, or undrained stress path, and the yield
curve are different except for the special case of a soil with x = 0. From Egq. (12.4), withq' =0,
the yield stress p} is related to the critical state stress p; on the same vield curve by

P = exp(1) = 2.72 (12.5)
Differentiating Eq. (12.4) we get
N (126)
dp p

which is simply another way of writing an equation for a yield curve. Equation (12.6) shows
that the logarithmic spiral curve has the very simple property that the gradient dg’/dp’ is related
to the gradient ¢'/p’ of the radius from the origin.

124 CALCULATION OF PLASTIC STRAINS

The yield curve is taken to be a plastic potential so that the vector of plastic strain increment
5&P is normal to the curve, as shown in Fig. 12.3. If two lines are orthogonal the product of their

q' 3!

p' 8¢ -Figure 123 Plastic potential and plastic strains for Cam clay.
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and, from Eq. (12.6), the plastic strain increments are given by
P ’
o M-% (12.8)
oe? P

At the critical state when ¢'/p’ = M we have d¢® = 0. On the wet side ¢'/p' < M and 5o d¢eP is
positive (i.e. compressive), while on the dry side ¢'/p’ > M and so &¢? is negative (i.e. dilative),

as shown in Fig. 12.4.

Notice that Eq. (12.8) is almost the same as Eq. (10.12); the only difference is that Eq. (10.12)
gives total strains while Eq. (12.8) gives the plastic strains. Equation (10.12) was obtained by
analogy with the work done by friction and dilation and the derivation was for peak states on
the dry side. The similarity between Eqs (10.12) and (12.8) demonstrates that the basis of ordinary
Cam clay is an equivalent work equation, but now extended to the wet side as well as the dry
side. A more rigorous derivation of ordinary Cam clay from work pnnmplcs was glvcn by

Schofield and Wroth (1968).

125 YIELDING AND HARDENING

As the state moves on the state boundary surface from one yield curve to another there will be
yielding and hardening (or softening if the state is on the dry side) and, in Cam clay, the change
of the yield stress is related to the plastic volume change. Figure 12.5 shows an increment of
loading A — B on the wet side of critical, and the state moves from one yield curve to a larger
one with an increase in yield stress and a reduction in volume. The increment of loading C — D
on the dry side is associated with a decrease in yield stress and an increase in volume. Equation

12.1) can be rewritten as

v=I'+/1—x—).lnp'-(—Jl:—£)-q— (12.9)
Mp'
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(b) ’ Figure 12.5 Hardening and softening for Cam clay.
Differentiating, dividing by v and noting that de, = —dvfv, we have
A— A A—xm
de, = ( K) 6 + [— B ko) ]5p’ (12.10)
vp'M vp’ vp’'M '
If we now subtract the elastic volumetric strains given by Eq. (11.3), the plastic volumetric strains
are : s
A—K
ol = (——;—) [(6q + (M —n')op’] (12.11)
" - o . : vp M - . . .
and, from Eq. (12.8), the plastic shear strains are ' .
- o
Sef = (’1 ")( 7 + 5p’) (12.12)
wp'M/\M -1

12.6 COMPLETE CONSTITUTIVE EQUATIONS FOR ORDINARY
CAM CLAY

The complete constitutive equations for Cam clays are obtained simply by adding the elastic
strains given by Egs (11.3) and (11.4) to the plastic strains given by Eqs (12.11) and (12.12) to

obtain .
1 A—x - g] [A - x] ,} .
e = —<| —————— + =164 + 8 (12.13)
5w {[M(M e LY L vl i

_1 f[i-x A—K f—w , 12.14)
Nt M P R




156 MECHANICS OF SOILS AND FOUNDATIONS

These apply for states that are on the state boundary surface; for states inside the boundary
surface the elastic strains given by Eqgs (11.3) and (11.4) can be recovered by putting 4 = x into
Eqs (12.13) and (12.14).

Equations (12.13) and (12.14) are constitutive equations like Eq. (3.18) and components of
the compliance matrix are

1 A—K 'g]
Cy=-o|—o—o +Z 12.15
H vp’[M(M—n') 3 ey
1]12-~«x , -\ \
C22=—' (M—'])‘l'x (12.16)
M .
12—«
Cia=0Cy = — 12.17
R o

These demonstrate that in Cam clay the basic compliances contain the intrinsic soil parameters
M, 2, x and g and the current state given by v, p’ and ' = ¢'/p’. Thus, in Cam clay, the behaviour
is non-linear since, in general, v, p’ and ¢’ change during a loading path. Notice that towards
failure at the critical state when ' —= M we have C,; = o and C,; — 0. Thus, near ultimate
failure, shear strains become very large while volumetric strains become very small.

12.7 APPLICATIONS OF CAM CLAY IN DESIGN

Although Egs (12.13) and (12.14) are a complete set of constitutive equations for soil there is
still quite a lot of further analysis required before they can be used for detailed design calculations.
For example, they are written in terms of shearing and volumetric effects, but for calculations
they need to be rewritten in terms of the normal and shear stresses and strains on horizontal
and vertical planes in the ground and possibly in three dimensions.

Ordinary Cam clay has the advantage that with yield curves as logarithmic spirals the
algebra is relatively simple. Although it describes the main features of soil behaviour qualitat-
ively there are a number of detailed aspects where it is not so good. Another model, modified
Cam clay, is based on yield curves that are ellipses; this is described in detail by Muir Wood
(1991).

The Cam clay equations can be implemented in finite element and similar numerical analyses
as described by Britto and Gunn (1987). Be warned though: these analyses are quite complex
and difficult to do properly. If you are interested in making use of these advanced techniques
you are advised to start by working with people who have previous experience.

12.8 SUMMARY

1. Cam clay is a theoretical model for soil behaviour: it includes strength and stress—strain
behaviour within a single, relatively simple model.
2. Cam clay combines the theories of critical state soil mechanics and the idea of a state
goundary surface with the theories of plasticity, including yielding, hardening and plastic
ow.
3. There are different versions of Cam clay depending on the precise equation for the state
boundary surface. ”
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WORKED EXAMPLES

£ Example 12.1: Calculation of strains for overconsolidated Cam clay A soil has the
parameters M =098, 2 =0.20 and x = g = 0.05 and its behaviour can be represented by the
Cam clay model. A sample is isotropically compressed in a stress path triaxial cell to p’ = 300 kPa
and swelled to py = 200 kPa where the specific volume is v, = 2.13. It is then subjected to a
drained test in which é¢’ = dp’ = 10 kPa. ’ _
The strains are given by Egs (12.13) and (12.14) with A =x, since the state of the
overconsolidated sample is inside the state boundary surface. Hence,

0.05 x 10 x 100

g
se, = 9 sq =22 X X _ 04
5= 3, T T2 x3 o
x 0.05 x 10 x 100
se, = gy = o X O X O _ 511y
S AP T T aBx 20 17

Example 12.2: Calculation of strains for normally consolidated Cam clay A second sample
of the soil in Example 12.1 was isotropically compressed to p, = 200 kPa where the specific
volume was v, = 2.19. It was then subjected to a drained test in which éq =op’ = 10kPa.

The strains are given by Eqs (12.13) and (12.14), with the initial state p’ = 200 kPa, v = 2.19
and n’ = 0 corresponding to isotropic compression. The compliances given by Egs (12.15) to
(12.17) are )

Cu

1 0.15 0.05 ‘
= + 995 _ 639 x 1072 m¥kN
300 % 2.19 (0.982 3 ) x 107 m/k

1

= (0.15+005) =046 x 10~} m?
2300 % 215 O +009) x 107" m*/AN

Czz

Cia= —-—1——(9—12) = 0.35 x 1073 m?/kN
200 x 2.19\0.98

and, hence,
5, = (Cpy 8¢ — Cyz 8p) x 100 =0.74% .
de, = (Cyz 8¢ + C32 8p’) x 100 = 0.81%
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CHAPTER

o - THIRTEEN
STIFFNESS OF SOIL

13.1 INTRODUCTION

Stiffness relates increments of stress and increments of strain. A knowledge of soil stiffness is
required to calculate ground movements and to obtain solutions to problems of soil-structure
interaction, such as loads on retaining walls. Often simple analyses are carried out assuming
that soil is linear and elastic and solutions for foundations will be considered in Chapter 22.
However, it is recognized that soil strains are often significantly inelastic and more complicated
elasto-plastic models such as Cam clay (see Chapter 12) have been developed to model the
stress—strain behaviour of soil. -

The stress—sirain behaviour of soil is actually more complex than that given by the simple
Cam clay model, particularly at small strains and for states inside the state boundary surface
where, in the simple theory, the strains are elastic. A detailed treatment of soil stifiness is beyond
the scope of this book. What I am going to do in this chapter is simply describe the essential
features of the stress—strain behaviour of soil as an introduction to further studies. -

13.2 CAM CLAY AND SOIL STIFFNESS

In Chapter 12 the basic ideas of the classical theories of elasticity and plasticity were combined
with the basic soil mechanics theories of friction and logarithmic compression into a general
model known as Cam clay. A set of non-linear constitutive equations was obtained in terms of the
intrinsic soil parameters 4, M, I, x and g, together with parameters describing the current state
and the loading history.

The basic equations for Cam clay for states on the state boundary surface (Egs 12.13 and
12.14) contain elastic and plastic components of straining, while for states inside the state
boundary surface the basic equations (Eqs 11.3 and 11.4) contain only elastic strains. It turns
out that the ordinary Cam clay equations are reasonably good for states on the state boundary
surface (the modified Cam clay equations are a little better), but the basic Cam clay theories
are rather poor for states inside the state boundary surface where the behaviour is taken to be
elastic and recoverable.

180
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The consequences of this for geotechnical design are illustrated in Fig. 13.1. This shows two
soils subjected to exactly the same loading paths A — B and C — D. The soil which starts from
A is lightly overconsolidated; it yields at Y when the state reaches the state boundary surface
and then it moves along Y — B on the state boundary surface with elastic and plastic strains.
The soil which starts from C is heavily overconsolidated, the state does not reach the state
boundary surface and the strains are taken to be elastic throughout the loading path C — D.
The stress—strain curves are shown in Fig. 13.1(b) and these correspond to the volume changes
shown in Fig. 13.1(c). , -

For lightly overconsolidated soils following the path A — B in Fig. 13.1, the greater
proportion of the strains occur along Y — B as the state moves on the state boundary surface
and only a small proportion occurs along A — Y, where the soil is inside the boundary surface.
For these soils we can use the Cam clay theories to calculate ground movements since the
significant errors which occur in the calculations of the elastic strains along A — Y will be
relatively small compared with the total strains for the whole path A — B. For heavily
overconsolidated soils, on the other hand, the state remains inside the state boundary surface
for the whole path C — D and the errors in the strains calculated using the Cam clay theories
will be relatively large. ° '

13.3 STIFFNESS-STRAIN RELATIONSHIPS FOR SOIL

From Egs (3.13) to (3.17) a general set of constitutive equations can be written as

s [3G° T (o, A ' -
br=lr ot s
spS Lu k1l |

where G’ is the shear modulus, K’ is the bulk modulus and J’ are moduli that couple shear and
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volumetric effects. For undrained loading for which ¢, = 0, we have

d—q = 3G’ ) - (13.2)
dp’ B '

—=J 13.3
de, ( )

and, for isotropic compression for which J¢, = 0, we have

dp’

— =K' 134
a. (13.4)
dq’'

—=J 13.5
dc. (13.5)

Notice that for undrained loading Eq. (13.2) also defines the undrained shear modulus G, and
hence

G,=G' (13.6)

Figure 13.2 shows the general characteristics of shearing and compression stress—strain curves
for undrained shearing and isotropic compression tests with stages of loading, unloading and
reloading. In Fig. 13.2(a) the gradient of the curve is the shear modulus 3G’ and in Fig. 13.2(b)
the gradient is the bulk modulus K'; we could obtain similar curves and evaluate J; and J; by
plotting 64’ against 8¢, and dp’ against J¢,. In Fig. 13.2 the soil had been unloaded from B and
from Q and so the initial states C and R are inside the state boundary surface and the soil yields
at D and S.

In Fig. 13.2 the stress—strain lines CDE and RST look non-linear, but it is difficult to see
exactly how the soil is behaving, especially for small increments at the start of the reloading.
The principal features of the stress—strain curves can be seen more clearly if the stiffness is plotted
against the strain. Figure 13.3(a) shows a typical shear modulus-shear strain curve for

" overconsolidated soil and Fig. 13.3(b) is a typical bulk modulus-volumetric strain curve: note
that the strains are plotted to a logarithmic scale in each case.

The stiffness—strain curves for shear and bulk moduli shown in Fig. 13.3 are typical for soil.
(Surprisingly, the general shape applies for normally consolidated soils as well as for lightly and
heavily overconsolidated soil and the consequences of this will be considered later.) The curves
for shear and bulk modulus are basically similar, except at strains in excess of 1 per cent or so.
At large strains the shear modulus continues to decrease and becomes zero at ultimate failure,
while the bulk modulus starts to increase, as shown in Fig. 13.2.
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Figure 13.4 Characteristic stress-strain behaviour for soil observed in laboratory tests and given by the Cam clay
theories.

This stress—strain behaviour is significantly different from that given by the simple Cam clay
theory described in Chapter 12. Figure 13.4 illustrates characteristic stress—strain behaviour
observed in laboratory tests and given by Cam clay. For the drained constant p’ loading path
O — Y — A in Fig. 13.4(a), the state reaches the state boundary surface at Y and travels on the
boundary surface along Y — A. For Cam clay the behaviour is taken to be elastic along O = Y
and, since p’ and v remain constant for the particular loading path considered, the shear modulus
G’ = vp'/g remains constant, as shown in Fig. 13.4(b). When the state reaches the state boundary”
surface at Y, yield occurs and the stiffness drops sharply to the value given by the full Cam clay
expression in Eq. (12.13). Figure 13.4(b) indicates that after yield the behaviour observed in
laboratory tests will be very like that given by the Cam clay theories (with suitable values for
the soil parameters), but before yield the observed stiffness—strain behaviour is very different in
character from that given by Cam clay.

The principal features of soil stiffness are dlustrated in Fig. 13.5. There are three regions,

G'orK' A _
. Very
sma]l
Gyor K| Stram

!
i
i
Sma}ll |
|
{
i
|

First Yieldat the “in gorine,

ield state bounda ‘ . .
d surface v - Figure 13.5 Characteristic ranges of soil stiffness.



162 MECHANICS OF SOILS AND FOUNDATIONS

—/—/"—T Rock

(a) Deformations of a retaining wall (b) Settlement of a foundation

Figure 13.6 Strains in the ground near typical geotechnical structures.

as indicated, where the behaviour is different. For very small strains, smaller than some value
corresponding to the first yield (usually of the order of 0.001 per cent), the stiffness is
approximately constant and the stress—strain behaviour is linear. For large strains, where the
state has reached the state boundary surface (usually greater than about 1 per cent), the
behaviour is elasto-plastic and the Cam clay theories are quite good. In the intermediate, small
strain, range the stifiness changes rapidly with strain and the behaviour is highly non-linear.

13.4 STRAINS IN THE GROUND

In most geotechnical structures that are designed to restrict ground movements, such as
foundations and retaining walls, the strains in the ground are usually quite small. Figure 13.6
illustrates a stiff retaining wall and a foundation. The outward movement of the top of the wall
and the settlement of the foundation are both 10 mm and these would be acceptable
displacements in many designs. The mean shear strains in the ground near the wall and the
volumetric strains below the foundation are 0.1 per cent. In practice there will be local strains
greater than these, especially near the edge of the foundation, and the strains will decay to zero
far from the structures. This means that in the ground soil stiffness will vary continuously with
position and with loading throughout most of the range illustrated in Fig. 13.5.

13.5 MEASUREMENT OF SOIL STIFFNESS IN LABORATORY TESTS

The best method for investigating soil stiffness and evaluating stiffness parameters is to conduct
stress path triaxial tests in the laboratory using-one of the hydraulic triaxial cells described in
Sec. 7.9. This apparatus permits tests to be carried out in which the initial state and the loading
path can be controlied. The principal problem arises in the measurement of the small and very
small strains required to investigate the whole of the characteristic stiffness strain curves shown
in Fig. 13.5. To examine the whole of the stiffness—strain curve it is necessary to measure strains
less than 0.001 per cent; if the length of the sample is about 100 mm you will need to measure
displacements smaller than 0.001 mm or 1 pm.

The problem is not so much with the resolution and accuracy of the dial gauges, displacement
transducers and volume gauges used to measure axial and volumetric strains in triaxial tests as
with the errors that occur due to compliance, or movement, in the apparatus. (Do not forget
the distinction between accuracy and resolution discussed in Chapter 7.) Figure 13.7 illustrates
a conventional triaxial test; the axial displacement AL is measured using a displacement
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(a) Externally (b) Local gauges Figure 13.7 Methods of strains in triaxial tests.

transducer or dial gauge mounted on the loading ram and the volume change is measured from
the volume of pore water entering or leaving the sample through the drainage leads. Errors arise
due to (1) axial displacements at the ends of the sample, (2) displacements where the loading
ram joins the top platen, (3) movements in the load cell and (4) movements in the cell.

The errors that can arise due to the compliances illustrated in Fig. 13.7(a) can be very
significant and can easily swamp the required measurements of small strains. In conventional
triaxial tests the measured axial strains are unreliable at strains smaller than about 0.1 per cent
irrespective of the resolution and accuracy of the transducer or dial gauge. If a hydraulic triaxial
cell is used and if very careful measurements are made of the displacements in the apparatus,
it is possible to obtain reliable measurements of axial and volumetric strains smaller than 0.01
per cent. One way to improve the accuracy of measurements of strain in triaxial tests is to use
a gauge inside the cell mounted directly on the sample, as shown in Fig. 13.7(b). Using these
kinds of instruments strains smaller than 0.001 per cent can be measured reliably.

It is very difficult to measure the stiffness of soil at very small strains (i.e. less than about
0.001 per cent) in triaxial tests by direct observations of strains. The simplest method is to
calculate the shear modulus from the velocity of dynamic waves. The very small strain shear
modulus G, is given by ' .

VZ .
G, =12 , (13.7)
g B

where V; is the velocity of shear waves through the sample, y is the unit weight of the soil and
g = 9.81 m/s?. Shear waves can be generated and their velocity measured directly using shear
elements set into the top and bottom platens or from resonant frequencies in torsional shearing.
The equipment and techniques for making these measurements are rather specialized and if you
need to determine G} you will need help; it is enough now to know that the techniques are
available.

Note that in these dynamic tests the rates of loading are very large and saturated soil will
be undrained. This does not matter for measurement of shear modulus since, for shearing alone,
G’ = G,. The undrained bulk modulus, of saturated soil is theoretically infinite (since de, =0
for undrained loading) and so we cannot determine the small strain bulk modulus Ko of
saturated soil from the velocity of compression waves. (The velocity of compression waves
through saturated soil is approximately theesame as the velocity of sound in water, 1500 m/s).

Figure 13.8 summarizes the principal features of the application and measurement of soil
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stiffiness over a wide range of strain. In the field, strains in the ground near retaining walls and
below foundations are relatively small and are usually less than 1 per cent, except in small
regions near the edges of foundations. Stifiness cannot be measured reliably in ordinary triaxial
tests at strains less than about 0.1 per cent unless special procedures are followed, so the ordinary
triaxial test is not much good for measuring soil stiffness in the range of practical interest. Stiffness
at small strains can be measured reliably using local gauges attached to the sample and the
shear modulus at very small strain G} can be obtained from measurements of shear wave velecity.

13.6 STIFFNESS OF SOIL AT SMALL AND VERY SMALL STRAINS

At large strains (i.e. greater than about 1 per cent) the state of lightly or heavily overconsolidated
soil will have reached the state boundary surface and the stifiness parameters in Eq. (13.1) depend
on the current state (v, p’ and n’) as given by Eqs (12.15) to (12.17). For states inside the state
boundary surface, at small and very small strains, soil stiffness is highly non-linear, but we might
expect that the stiffness at a particular strain will also depend on the current state and on the
history.

(a) Stiffness at Very Small Strain

In dynamic tests used to measure Gg, samples are vibrated at a constant state at strains less
than about 0.001 per cent. The damping is negligible and at very small strains soil is linear and
elastic. (If a typical value for G} is 100 MPa then a strain de, = 0.001 per cent corresponds to
an increment of stress 6’ of only 3 kPa.) .

The general relationship between G and the current state is of the form

G_f= (5.) Ry (13.8)
pr T

where p! is a reference pressure included to make Eq. (13.8) dimensionless and A4, m and n depend
on the nature of the soil (Viggiani, 1992). Notice that in Eq. (13.8) the value of Gy is related to
p’ and R, without the specific volume or voids ratid. This is possible because v, p’ and R, are
not independent as discussed in Sec. 8.3 and so v is included in the parameters p’ and R,.
Alternatively, G, could be related to v and R,. The value of the exponent n is generally in the
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range 0.5 to 1.0 and typical values for m are in the range 0.2 to 0.3. Equation (13.8) can be

rewritten as
. (Go - - - 4 :
In|— |=InA+mhh R, +nln{ = (13.9)

1 4 r

" Plotting data from a set of tests carried out at different values of p’ and R,, as shown in Fig.

13.9, provides a convenient method for evaluating the parameters A, m and n.

(b) Stiffness at Small Strain

The general relationships between shear modulus G” and strain, state a;xd history for small
strains in the range 0.001 to 1 per cent are illustrated in Fig. 13.10 and the same general
relationships hold for the other stiffness parameters. The value of G'/p’ depends on strain (because

G’Ip'}
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of the xion-lineafity) and on In R, and, at a particular strain,
—67 = AR} (13.10)

where A = G/ ./p’ is the stifiness of normally consolidated soil at the same strain. (Notice that
Eq. (13.8) reduces to Eq..(13.10) when n =1 When soil is normally consolidated its state is on
the state boundary surface so values for G, are given by Eq. (12.15). Values for m depend on
the nature of the soil and on the strain. A number of other factors, such as a rest period at
constant stress and a change in the direction of the stress path between successive loading stages,
also effect soil stiffness, but the rate of loading has virtually no effect provided that the soil is
cither fully drained or fully undrained. .

13.7 NUMERICAL MODELLING OF SOIL STIFFNI‘iSS

Equations (13.8) and (13.10) are convenient expressions relating the shear modulus to the current
stafe and to the stress history and there will be similar expressions for the bulk modulus K.
However, to be of practical use for design, soil behaviour must be represented by mathematical
expressions similar to those developed for Cam clay in Chapter 12, although these are likely to
be more complex to take account of the non-linear behaviour for states inside the boundary
surface. One possibility is to regard soil behaviour inside the state boundary surface as essentially
elastic, but non-linear, and to use curve-fitting techniques to obtain an empirical expression
relating shear modulus G’ and bulk moduius K’ to strain. This is the approach followed by
Duncan and Chang (1970) and by Jardine et al. (1991). This method requires complex laboratory
tests in which the stress paths mimic the in situ paths and numerical analyses that should stop
and restart at each change in the direction of a stress path. An alternative approach is to regard
soil behaviour in the small strain region as inelastic, with yielding and hardening with moving
vield surfaces inside the state boundary surface. One approach is to adapt the Cam clay models
by including additional yield surfaces (e.g. Mroz, Norris and Zienkiewicz, 1979; Atkinson and
Stallebrass, 1991). In these models the parameters remain the fundamegital parameters required
by Cam clay together with additional parameters that describe the relative sizes of the additional -
yield surfaces. .
~ At small strains in the region 0.001 to 1-per cent the general relationships- between shear
modulus, strain and stress shown in Fig. 13.10 are similar for normally consolidated and
overconsolidated soils. Furthermore, unloading and reloading loops, like those illustrated in
Fig. 13.2, result in substantial irrecoverable strains. These observations indicate that the basic
rules governing stiffness of overconsolidated soils at small strains are similar to those for normally
consolidated soil which, as we have seen, are essentially elasto-plastic and not purely elastic as
assumed in the Cam clay theories.
All this is really quite advanced and any further discussion of developments in theories for
soil stiffness at small strain is clearly beyond the scope of this book.

13.8 SUMMARY

1. The stress—strain behaviour of soil is highly non-linear over the whole range of loading
except at very small strains less than about 0.001 per cent. There are three ranges: of
behaviour:
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(a) very small strain (usually less than 0.001 per cent),
(b) small strain, : :
(c) large strains (for states on the state boundary surface).

2. For states on the state boundary surface the strains are relatively large and can be modelled

reasonably using Cam clay or a similar clasto-plastic model.

3. For very small strains the stress—strain behaviour is approximately linear and the shear

modulus is given by
Gr '\ n
Zo - (‘l) R™ (13.8)
P: 23 )

where 4, m and n depend on the nature of the soil.

4. For small strains the soil is highly non-linear: at a particular strain the shear modulus is

given by. - . -

G'
— = ART (13.10)
P S A

where 4 and m depend both on the nature of the soil and on the strain.
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CHAPTER

FOURTEEN
CONSOLIDATION

14.1 BASIC MECHANISM Of' CONSOLIDATION

In Sec. 6.8 we saw that, in general, any undrained loading or unloading will create excess pore
pressures & in the region of the loading. These excess pore pressures may be positive or negative
with respect to the steady state pore pressures u, and give rise to hydraulic gradients that cause
seecpage flow. These seepage flows lead to volume changes that, in turn, are associated with the
- changes of effective stress as the excess pore pressures dissipate. As the excess pore pressures
diminish the hydraulic gradients and rates of flow also diminish, so that the volume changes
continue at a reducing rate. After a long time the seepage and volume changes will stop when
the excess pore pressures and hydraulic gradients become zero and the pore pressures reach
their steady state values.

The coupling of seepage due to hydraulic gradlents with cornpressxon or swelling due to
the resulting seepage flow and changes of effective stress is known as consolidation, and this
process accounts for settlement of foundations with time, progressive softening of soil in- -
excavations and other similar effects. In order to calculate the rate at which excess pore pressures
reduce it is necessary to develop a simple theory for consolidation.

A general theory for three-dimensional consolidation is quite complicated and here I will
consider a simpler theory for one-dimensional consolidation in which all seepage fiow and soil
strains are vertical and there is no radial seepage or strain. This is relevant to conditions in an
oedometer test (see Sec. 7.6), as shown in Fig. 14.1(a), and in the ground below a wide foundation
on a relatively thin layer of soil, as shown in Fig. 14.1(b). In both cases the seepage of water from
within the body of the soil is vertical and upwards towards a surface drainage layer where the
steady state pore pressure is always u, and the excess pore pressure is always zero.

142 THEORY FOR ONE-DIMENSIONAL CONSOLIDATION

Figure 14.2 shows an element in a consolidating soil. (Here all dimensions increase positively
downwards to avoid difficulties with signs.) In a time interval ¢ the thickness changes by dh.

168
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The flow of water through the element is one-dimensional and the rates of flow in through the
top and out through the bottom are g and g + dq respectively. From the definition of the
coefficient of compressibility m, given by Eq. (8.9), ' ' Co-

oh=—-m,0z00 (14.1)
The theory requires that m, remains constant and so it is valid only for relatively small increments

of stress. Since the soil grains are incompressible an equation of continuity relates the change
of volume of the element to the change of flow through it: '

ASh=—08q6t C(142)

Combining Eqgs (14.1) and (14.2) and in the limit no@ing that g and &’ are both functions of z and ¢,
‘ : dq .. oo ‘
_ — = Am,— 14.3
- S oz ™ o (143)

The rate of seepage flow is given by Darcy’s law as

q , ,
=9 144
A0 - S (144)
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where V is the seepage velocity and the hydraulic gradient i is
jm 152 (14.5)
Tw 02

From Eqgs (14.4) and (14.5) and in the limit,

- - - . 2 -
99 _ _A_"_q"_(i‘i)\__- _Akda (14.6)
oz e 62 \0z 7o 022
and, from Eqgs (14.3) and (14.6), '
2.~ '}
kG X 14.7)
m.¥s 62 ot
The effective stress is given by' ¢ = ¢ — (u, + i) and, noting that u, remains constant,
. bc %o 0t | (14.8)

The simple and common case is where consolidation takes place after an increment of
undrained loading or unloading so that the total stress remains constant during the consolida-
tion. Then, from Egs (14.7) and (14.8) with d6/0t = 0,

&a  ou
¢, =— 14.9
é2 ot (14.9)
whcrc p
¢, = k (14.10)
my¥w

The parameter c, is known as the coefficient of consolidation and has the urits of square metres
per year. Values of ¢, dcpend on both the permeability k and on the compressibility m,, both
of which vary greatly for different soils.

Equation (14.9) is the basic equation for one-dimensional consolidation. Solutions will give
the variations of excess pore pressure i with depth z and with time . Note that consolidation
theory deals with excess pore pressure @ and not with absolute pore pressures. '

14.3 ISOCHRONES

Solutions to Eq. (14.9) can be represented graphically by plotting the variation of & with depth
at given times. The resulting family of curves are called isochrones (from the Greek and meaning
equal time). A simple way to visualize isochrones is to imagine a set of standpipes inserted into
the consolidating soil below a rapidly constructed embankment as shown in Fig. 14.3(a).

Before construction water rises in the standpipes to the steady state water table in the drain
at the surface where the pore pressures are u,. Undrained construction of the embankment adds a
total stress Ao at the surface, which gives rise to initial excess pore pressures #; = Ag throughout
the soil. The initial excess pore pressures registered by the standpipes are uniform with depth and
water rises to the same height in all the pipes, as shown by the broken (initial) line in Fig.
14.3(a). The corresponding isochrone for ¢ = 0 is shown in Fig. 14.3(b). (Notice that because
y = 2y,, the standpoints must project well above the maximum height of the embankment.)

At a time shortly after construction excess pore pressure at the top of the soil near the drain
will have reduced to zero and excess pore pressures will have reduced elsewhere, so the variation
of the levels of water in the standpipes is similar to that shown by the curved broken line. This
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Figure 143 Isochrones for one-dimensional consolidation.

broken line gives the shape of the isochrone at a particular time. After a very long time all the
‘excess pore pressures have dissipated and the levels of water in the standpipes are again at the
steady state groundwater table; the isochrone for ¢ = co is the final broken line.
Figure 14.3(b) shows a set of isochrones for the one-dimensional consolidation illustrated
in Fig. 14.3(a) plotted as @ against depth z. Each isochrone corresponds to a particular time:
- for t =0, @, = Ac at all depths and at ¢t = o0, i, = 0.

144 PROPERTIES OF ISOCHRONES

Isochrones must satisfy the one-dimensional consolidation equation together with the drainage
boundary conditions, and these requirements impose conditions on the geometry and properties
of isochrones. Consolidation, with dissipation to a drain at the surface, as shown in Fig. 14.3,
starts near the surface and progresses down through the soil. At relatively small times, such as
t, in Fig. 14.4, consolidation is limited to the upper levels only and below a depth n the excess
pore pressures have not fallen. At large times, such as t,, consolidation is occurring throughout
the layer. There is a critical time ¢, when excess pore pressures at the base first start
to dissipate; the isochrone for ¢, is shown in Fig. 14.4(a). Figure 14.4(b) illustrates the dissipation
of excess pore pressure at the different depths indicated in Fig. 14.4(a). Near the surface, at a
depth z,, the excess pore pressures dissipate very rapidly but near the base, at a depth z,, the
excess pore pressures remain at & until the critical time ¢.. T
The gradient of an isochrone is related to the hydraulic gradient by

G i : ‘ (14.11)
oz _ .
and ‘from Darcy’s law the seepage velocity is
= .._k_é_‘ ' _ - (14.12)
Vo 02 . -

By inspection of the isochrones in Fig. 14.4(a) the gradients of the isochrones, and hence the
seepage velocities, increase towards the surface. At the base of an isochrone there is no seepage
flow, either because it represents the limit of consolidation for t, or because of the impermeable
boundary for t,, and so the isochrones must be vertical at the base, as shown in Fig. 14.4(a).
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(a)

Figure 14.4 Dissipation of excess pore pressure during consolidation.
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Since soil grains and water are incompressible the velocity of the upward seepage at any level
must equal the rate of settlement at that level and

% ko (14.13)

The movement of isochrones represents changes of excess pore pressure and changes of
effective stress. Figure 14.5 shows isochrones for t, and t,. From Eq. (14.1) the change of
thickness 6h of the thin slice 8z is given by 6h = —m, 6z 6¢’. If the total stress remains constant,
o0’ = —dit and ’ .

6h =m, b6z éi (14.14)

where 6z o4 is the shaded area in Fig. 14.5. Summing the changes of thickness for all thin slices
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in the depth z, the change of surface settlement between the times ¢, and t, is given by
dp = m, x area OAB ‘ © (14.15)

Hence the settlement of a consolidating layer in a given time is given by m, times the area swept
by the isochrone during the time interval. ’

14.5 SOLUTION FOR ONE-DIMENSIONAL CONSOLIDATION BY
PARABOLIC ISOCHRONES

Simple and reasonably accurate solutions for the rate of settlement for one-dimensional
consolidation can be obtained by assuming that the general shapes of the isochrones in Fig.
14.4(a) can be approximated by parabolas. It is necessary to treat the cases t < t.and t > 1,
separately; the ideas behind each analysis are the same but the algebra differs slightly.

@t=t<t1

Figure 14.6(a) shows an isochrone for time t,; the slope is vertical at N and no consolidation
has occurred below a depth n. From Eq. (14.15) (noting that the area below a parabola is
1 x base x height), the surface settlement is given by

Ap, = m, x area AEN = imn Ac (14.16)

Differentiating Eq. (14.16) and noting that m, and A¢ are assumed to be constants during
consolidation, the rate of settlement is given by

4o, Ly pgd

1
z 14.1
ad 3% (14.17)

The rate of surface settlement is also related to the gradient of the isochrone at A. From Eq.
(14.13) and noting that from the geometry of a parabola the gradient at A is 2Ag/n, we have

dp, _ k280 (14.18)
de 9y, n- - )
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Figure 14.6 Geometry of parabolic isochrones.
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Hence, equating the rates of surface settlerhcnt from Eqs (14.17) and (14.18),
‘ dn_¢ k _6, | (14.19)

' n—=6
e my,

and, integrating with the boundary condition n =0 at ¢ = 0,

| - Vi | - 0420

Equation (14.20) gives the rate at which the effects of consolidation progress into the soil from
the drainage boundary; no dissipation of excess pore pressure will occur at depths greater than
n. Using Eq. (14.20) and the geometry of a parabola it is possible to calculate the excess pore
pressure at any depth and at any time ¢ < .. ~ :
In practice, the most important thing to calculate is the surface settiement Ap, after a time
't < t.; and this is found by substituting for n into Eq. (14.16), giving

Ap, =im, Ao /12c,t (14.21)

The final surface settlement Ap,, will occur after 2 long time when all excess pore pressures have
dissipated and A¢’ = Aoc. Hence, from Eq. (14.1), : - :

Ap, =m,H Ac ' (1422)
"Combining Eqs (14.21) and (14.22),
Ap, 2 ¢t
Pl B i 14.23
bp, J3IVH? (1423).

Equation (14.23) may be written in terms of a dimensionless degree of consolidation U, and a
dimensionless time factor T, given by

U= Zp_,c (14.24)
T = i.i | | (14.25)

and the general solution becomes _ ) , .
U = ._2; JT . (14.26)

This solution is valid until the point N in Fig. 14.6(a) reaches D when t =1.; at this instant

n=H=./12cts0 T, =75 and U, = 0.33. For t > ¢ the isochrone no longer touches ED and
a new analysis is required. :

b)) t=1t,>1,

Figure 14.6(b) shows an isochrone for t,; it intersects the base orthogonally at M where
i = m Ac. Making use of the geometry of a parabola and proceeding as before,

Ap, = m, Ac H(1 — %m) (14.27)
dp, 2 dm k 2mAc
—=—-mAcH —=— : .
a3 e TR (14.28)
dm 3c, 1

m—dt =—mgi= 3 3T, (14.29)
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1.0%- from parabolic isochrones.

Integrating Eq. (14 29) between the hmlts m=1and T, = 12 at t =1t and m= 0 at t=
we have - - - - e e

m= exp(% —3T) (14.30)

Equation (14.30), together with the geometry of a parabola, may be used to calculate the excess
pore pressure at any depth and at any time t > ¢.. Proceeding as before, the surface settlement
and the degree of consolidation are given by

Ap, = m,H Ao[1 -} exp(} — 37,)] (14.31)
U =1-%exp( —37) (14.32)

The complete solution for one-dimensional consolidation with parabolic isochrones consists
of Eq. (14.26) for T, <15 and Eq. (14.32) for T,> {5, as shown in Fig. 14.7. For most
practical purposes consolxdauon can be taken to be completed at T, = 1. Excess pore pressures
can be found from the geometry of the parabolic isochrones shown in Fig. 14.6 with values for
n and m calculated from Eqs (14.20) and (14.30) respectively.

Notice that in all the examples discussed so far drainage has been one-way to the upper
surface and the base was impermeable, as illustrated in Fig. 14.8(a). Often in practice and in
* laboratory tests the drainage is two-way to drains at the top and bottom, as illustrated in Fig.
14.8(b). In this case the soil consolidates as two symmetric halves, each with one-way drainage,
and the rate of consolidation is governed by H2. We can avoid ambiguity by redefining H as
the maximum drainage path; thus H in Eq. (14.25) is the longest direct path taken by a drop
of water as it is squeezed from the soil.

TV Lower drain @ = 03y’

Impermeable

: ) . . Figure 148 Boundary drainage conditions for
(a) One-way drainage (b) Two-way drainage one-dimensional consolidation.
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14.6 OTHER CONSOLIDATION SOLUTIONS

The solutions obtained using parabolic isochrones are simple and illustrative but are restricted
to the case of one-dimensional consolidation where the initial excess s pore pressure &; is the same
everywhere. Other solutions are available for other cases.

The one-dimensional consolidation equation can be solved analytically and thc solution is
in the form of a Fourier series (Taylor, 1948). The degree of consolidation is given by

© 9 ) S
U=1- Y —5exp(—M?>T) (14.33)
m=0 M .

where M = 4n(2m + 1). For values of U, not greater thzn about 0.6, Egq. (14.33) can be
approximated to

/T, (14.34)

U ==

LS
"

which is close to Eq. (14.26) which is the solution using parabolic isochrones for small times.
The solutions will be slightly different if the initial excess pore pressures are not everywhere
the same. The two common cases are where the initial excess pore pressures increase or decrease

linearly with depth. Relationships between U, and \/ T, for three cases of initial excess pore
pressure are shown-in Fig. 14.9.

14.7 DETERMINATION OF ¢, FROM OEDOMETER TESTS

The results of a single stage of consolidation of a sample in an oedometer test may be used to
estimate a value for the coefficient of consolidation of a soil. Since the time factor 7, is a function
of ¢,, we cannot immediately plot experimental results of U, against 7,. However, if the test is
continued until consolidation is complete, we may find the final settlement p, and, hence, the
degree of consolidation at any time, and thus plot U, against time ¢. If the experimental U, against
t curve can be fitted to a theoretical U, against 7, curve, a relationship between t and 7, may
be obtained and c, found from Eq. (14.25). Two alternative curve-fitting approximations are
available.

(a) A ./(Time) Method

This method makes use of the observation that settlement against ,/(time) curves have an initial ‘
portion that may be approximated by a straight line, and this straight line can be fitted to Eq.
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‘ Figure 14.10 Determination of ¢, from
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(14.34). Figure 14.10(a) shows the results of a single stage of consolidation of a sample of clay
in an oedometer test plotted as U, against \ﬂ The slope of the initially linear part of the curve

is given by \/t—,, as shown in Fig. 14.10(a). The experimental curve and the curve in Fig. 14.10(a)
fit when U, = 1 and ¢ = ¢, in Eq. (14.25). Hence, '

JT. = 2‘; - \/Tg (1439
. 2
¢, = %’_ | (14.36)
1 ‘ . .

(b) A Log,, (Time) Method

As an alternative, it is sometimes more convenient to fit the experimental and theoretical
consolidation curves at U, = 0.5, i.e. when half of the consolidation is complete. The value of T,
for U, = 0.5 may be found from Eq. (14.33) and is T, = 0.196. To estimate a value for tsg, the
time for U, = 0.5 during a single stage of consolidation in an oedometer test, it is convenient to
plot U, against log ¢ as shown in Fig. 14.10(b). The value for tso may be read directly from the
experimental consolidation curve. Theoretical and experimental curves fit when

: ct ‘
| T, = H’z° = 0.196 | (14.37)
. -
¢, = 0.196 (—) (14.38)
Iso

Note that U, cannot be calculated until the final settlement Ap, has been found. Ideally,
settlement—time curves would approach horizontal asymptotes as illustrated in Fig. 14.10 and
it would not bé difficult to estimate a value for Ap_,. For most experimental settlement-time
curves, however, these horizontal asymptotes are not clearly defined and, moreover, there is
often an initial settlement which is observed immediately after the loading increment has been
applied. For most practical cases it is necessary to estimate a value for Ap, by means of special ‘

constructions. A construction for estimating Ap,, from a plot of Ap, against JE was proposed
by Taylor and a construction for estimating Ap,, from a plot of Ap, against log,o t was proposed
by Casagrande; both constructions are described by Taylor (1948). '

i
'
!
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14.8 CONTINUOUS LOADING AND CONSOLIDATION

If the loading in a test which is supposed to be drained is applied too quickly excess pore
pressures will occur but there will also be some drainage, so the loading is neither fuily drained
nor fully undrained. This is, of course, what happens in the ground, but solutions of general
problems of coupled loading and drainage are very difficult. There are, however, relatively simple
solutions for coupled one-dimensional loading and these form the basis of continuous loading
consolidation tests (Atkinson and Davison, 1990).

Figure 14.11(a) shows a continuous loading one-dimensional compression test with a drain
at the top and an impermeable boundary at the bottom. At a particular instant in the test the
total stress is o, the settiement is p and the pore pressures at the top and bottom of the sampie
are u, and u,, so the excess pore pressure at the base is @, = u, — u,. The shaded area in Fig.
14.11(b) is ¢'H, where o’ is the mean vertical effective stress and the isochrone is taken to be
parabolic. Figure 14.11(c) shows the variations of total stress g, settiement p and pore pressures
u, and.uy, all of which must be measured during the test. '

From Eqs (14.7) and (14.8) the basic equation for coupled loading and consolidation is

2= s= '
(B i b0 o (14.39)
6z2 ot ot ot :

If the rate of loading is sufficiently slow so that &, is relatively small compared with ¢ — u,,
then the mean effective stress can be approximated by ¢’ = ¢ — u,. From the definition of the

Ho

r

]

Figure 14.11 Behaviour of soil during con-
(c) - tinuous loading consolidation tests.
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coefficient of compressibility m, given by Eq. (8.9),

m —--—ld—H | (14.40
™ THdo . 40)

If the isochrone is a parabola then the excess pore pressure at any depth z is given by

I z?
i, =1, 15/ (14.41)
Differentiating twice,
du 2i,
= -2 14.42
_ _ : =" . - L 44
and, substituting into Eq. (14.39), _
H*do'
¢, = i — (14.43)
24, dt

Then, from Egs (14.40) and (14.43) together with Eq. (14.10),

= w98 (14.44)

The compression consolidation and permeability parameters, m,, ¢, and k, can be evaluated
from any one-dimensional continuous loading test in terms of the current values of simple
thickness H and the excess pore pressure at the undrained face &, and the gradients do’/dH,
do’/dt and dH/dt. In a test in which the sample dimensions and pore pressures are recorded at
frequent intervals, values for the gradients may be determined by a numerical procedure and
the values for the soil parameters calculated at equally frequent intervals.

.

14.9 SUMMARY

1. Consolidation occurs when excess pore pressures dissipate, usually at constant total stress.
This results in compression or swelling as the effective stresses change.
2. The basic equation of one-dimensional consolidation is

i o : (14.9)

where the coefficient of consolidation is ¢, = k/m,y,,, which has the units of square metres
per year. Values of ¢, can be determined from results of oedometer tests.

3. Solutions to Eq. (14.9) are represented by isochrones, which show the variation of excess
pore pressure with time throughout the consolidating layer. Simple solutions for one-
dimensional consolidation can be found, assuming that the isochrones are-parabolas.

4. Standard solutions for consolidation settlements are given in terms of the degree of
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consolidation and the time factor:

U =8P 1424

' AP (1424
et :

r= (14.25)

Relationships between U, and 7, depend on the distribution of the initial excess pore pressures
and the drainage geometry.

WORKED EXAMPLES

Example 14.1: Interpretation of oedometer test results The first two columns of Table 14.1

contain data from a single increment of an oedometer test in which the total vertical stress was

raised from ¢ = 90 kPa to ¢ = 300 kPa. At ¢ = 0 the sample was 20 mm thick and it was allowed
to drain from the top and from the bottom.

Table 14.1
Time Settlement \/E
(min) Ap(mm) |+ [ (min'?) logt
0 0 0 0 -
0.25 0.206 0.107 0.5 —0.602
1 0414 0.216 1 ]
225 0.624 0.325 1.5 0.352
4 0.829 0432 2 0.602
9 1.233 0.642 3 0.954
16 1.497 0.780 4 1204
25 1.685 0.878 5 1.398
36 . 1.807 0.941 6 1.556
49 1.872 0.975 7 1.690 B
24h 1.920 1.000 — -

For two-way drainage the drainage path is H = 10 mm. The degree of consolidation U, is
given by Eq. (14.24), taking the final settlement as Ap,, = 1.920 mm corresponding to t = 24 h.

(a) \,/; method. Figure 14.12(a) shows U, plotted 'againﬁt \ﬁ Scaling from the diagram,
/11 = 4.6 and hence t, = 21.2 min. From Eq. (14.36),

_3H* 3 x(10 x 1073)?

4t, 4 x212
(b) Log ¢t method. Figure 14.12(b) shows U, plotted against log t. From the figure, log ¢5, = 0.70

and 159 = 5.01 min. From Eq. (14.38),
c. _0.196H? _ 0.196 x (10 x 1072)?
Y tso 5.01

¢y x 60 x 24 x 365 = 1.9 m?/year

x 60 x 24 x 365 = 2.1 m?/year

The mean value for the coefficient of consolidation from the two methods is ¢, = 2 m?/year.
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During the increment the vertical effective stress changes from ¢’ = 90 kPa at the start to
o’ = 300 kPa at the end. The vertical strain is As, = 1.920/20 = 0.096 and from Eq. (8.9) the
coefficient of compressibility is

Ae 0.096
=—Z=——""__ =46 x 10"*m?/kN
™ Ae, 30099 ox 10T mUk
From Eq. (14.10) the coefficient of permeability is given by .
' 2.0 x 4.6 x 10™* x 9.81
k=cmz,= =29 x 10710
datl 607 x 24 x 365 x m/s

. Example 14.2: Settlement of an oedometer sample In a stage of an oedometer test the total
stress was raised by 100 kPa. The sample was initially 20 mm thick and it was drained from
both ends. The properties of the soil were ¢, = 2 m?/year and m, = § x 10~* m?/kN.

From Eq. (14.1) the final settlement, after consolidation is complete, was

p=mzAd,=5x10"* x 20 x 100 = 1.0 mm

(a) The time factor at which the settlement will be 0.25 mm (i.e. when U, = 0.25) is given by Eq.
(14.26): -
‘ r o3V _3x025

d =005
4 4

From Eq. (14.25), taking H = 10 mm for two-way drainage, the time when the settlement
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is 10 mm is
t e T,H? _ 0.05 x (10 x 1073)?
c,

x 60 x 24 x 365 = 1.3 min

(b) After 3 min the time factor and degree of consolidation are

- 2x3 ~ o011
T (10 x 10727 x 60 x 24 x 365

U, 2 1;=3_"__ YOI _ 439

NG 3

O
~

v

=73

and the settlement is \ ‘
P, = Po U, = 1.0 x 0.39 = 0.39 mm

REFERENCES
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CHAPTER
FIFTEEN
AGEING AND STRUCTURE IN NATURAL SOILS

15.1 CHARACTERISTICS OF NATURAL SOILS

In Chapters 8 to 14 I described the basic mechanics of soils and in Chapters 17 to 22 these
simple theories for soil behaviour will be used to investigate the performance of soil structures
such as slopes, retaining walls and foundations. The behaviour described and the theories
developed were largely idealizations for the behaviour of reconstituted soils, but natural soils
differ from reconstituted soils in a number of important aspects.

Most natural soils are naturally deposited (from wind, water or ice) in changing depositional
environments and so they are likely to have layers and lenses of different material. (Go and
' look carefully at freshly excavated slopes in soils and you will almost always be able to see
layering; occasionally you can find deep beds of nearly uniform clay deposited in an unchanging
environment, but these are rare.) Natural soils are then compressed and swelled one-dimension-
ally (i.e. with zero horizontal strain) by deposition and erosion, by weight of ice or by changing
groundwater. They remain in the ground for very long periods of time (soil 10 000 years old is
relatively very young) and they may experience physical and chemical changes. These changes
are known collectively as ageing and include phenomena like cementing and weathering. Natural
soils that contain one or more of these features are often called structured while reconstituted
samples which have been completely disturbed and reconsolidated are sometimes called
destructured.

It is very difficult to discover the true behaviour of natural soils. The obvious way is to
recover undisturbed samples from the ground and test them in the laboratory but, unfortunately,
the process of recovering the sample from the ground and installing it in the test apparatus will
alter its state and its behaviour. There is no possibility of recovering and testing a truly
undisturbed sample; the best we can do is to take and test an intact sample with the very
minimum of disturbance. It is always understood that if the correct procedures for sampling
and testing are followed the behaviour of an intact sample will be very close to the behaviour
of the soil in the ground, but it is essential to follow the correct procedures.

This book deals with the basic, simple theories of soil mechanics relevant to reconstituted
soils and a detailed discussion of all the effects and consequences of ageing and structure in
natural soils is beyond its scope. It is, however, important to note these effects, which is the
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purpose of this chapter. The important thing is to consider the behaviour of intact samples of
natural soils within the basic simple framework developed for reconstituted soils.

152 FORMATION OF NATURAL SOILS: ONE-DIMENSIONAL
COMPRESSION AND SWELLING

. The behaviour of soils during one-dimensional compression and swelling in laboratory tests was
discussed in Sec. 8.4 and similar behaviour will occur during deposition and erosion of soil in
the ground. Figure 15.1(a) illustrates a soil element below a ground level which rises and falls due
to deposition and erosion and Fig. 15.1(b) shows the resulting changes of effective stress and
water content. So far I have considered volume and volume changes in terms of the specific
volume v or the voids ratio e, but in this chapter I shall consider water content w, as this is a
commonly measured and often quoted parameter. Water content, specific volume and voids
ratio are simply related (see Sec. 5.6) and e = wG,. At points A and B the soil is normally
consolidated and at C it is overconsolidated. Notice that although the vertical stresses at A and
€ are similar the water contents are very different. Figure 15.1(c) illustrates the changes of vertical
and horizontal effective stresses during deposition and erosion. These can be related by a
coefficient of earth pressure at rest, K,, given as

Ko=22 (15.1)
O,
K7z u}\
A
w,
Zp
C
R W, B
R §
o v e
ol ‘ : Y Y ¥ o % logo;
& - oo by —° - T

U;A 0y =0, ’
s7Ko=1
/
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/
//‘
s/ ¢C
A//
/
"ol

(c)

Figure 15.1 Onc-dimensional consolidation and swelling of soil in the ground due to deposition and erosion.



AGEING AND STRUCTURE IN NATURAL SOILS 185

*A >
A AL
B
i
i
C 1
Dj S G A
[ B ..
: Figure 15.2 Variations of water
P content in the ground in normally
3 b consolidated and overconsolidated
(c) (d) soils.

For normally consolidated and lightly overconsolidated soils o} < 0, and K, < 1, while for
heavily overconsolidated soils o3 > ¢}, and K, > 1. An approximation often used to estimate K,
is : ’ T ) o ‘

Ko = Koner/Ro o - - (15.2)

where R, is the overconsolidation ratio and Kq,, = 1 — sin ¢; is the value of K, for normally
consolidated soil. '

In previous chapters I showed that many aspects of soil behaviour (but not the
critical states) depend on the history of loading and unloading. This means that reconstituted
samples should be compressed and swelled one-dimensionally in the triaxial apparatus before
shearing and intact samples of natural soil should be reconsolidated to the estimated state in the
ground. ' s o

The state of an element of soil in the ground depends on the current stresses (i.c. on the
depth) and on the overconsolidation ratio (i.e. on the current depth and on the depth of erosion).
Figure 15.2 illustrates the variations of water content with depth for a deposit which is lightly
eroded (i.c. the depth of erosion z, is small) or heavily eroded (i.e. the depth of erosion is large).
For the lightly eroded soil the difference between the water contents at A and B is relatively
large, while for the heavily eroded soil the difference between the water contents at C and D is
much smaller and the water contents themselves are smaller. For the heavily eroded soil the
smaller variation of water content with depth is a result of the very large maximum past stress.
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(You should demonstrate this for yourself by calculating and plotting the variation of water
content with depth for soil with z, =1 and 100 m, taking reasonable values for ey, C; and C,
in Eqs (8.10) and (8.11).)

153 AGEING

In the simple theories of soil mechanics plastic volume changes can only occur during loading
on the state boundary surface. In Fig. 15.3 the state at A can move to B only by loading along
the normal compression line: the irrecoverable plastic water content change wP is associated
with a change of the yield stress o, to o, and a change in the apparent overconsolidation ratio
from R, to R,. - )

Natural soils were deposited long ago: London Clay is about 60 million years old and even
recent glacial soils are over 10000 years old. Occasionally you may come across soils like
Mississippi delta muds or the Fens in East Anglia which are only decades or centuries old, but
these are verv much the exception. As soils remain in the ground for very long periods, possibly
without any loading or unloading due to deposition, erosion or groundwater changes, all kinds
of things will happen to them. I will use the term ageing for all the processes, except loading,
unloading and seepage of water, that occur in soils with time.

The most important of these ageing processes are creep, cementing, weathering, compaction
and changes in the salinity of the pore water. These processes are equivalent to changes of the
overconsolidation ratio at constant effective stress.

\

15.4 VIBRATION AND COMPACTION

If sand or gravel is vibrated at constant effective stress or compacted by impact or rolling it will
compress and there will be irrecoverable plastic volume changes and changes in the overconsoli-
dation ratio. Figure 15.4(a) shows the state path A = B corresponding to compaction. The yield
point has increased from ¢y, to o, with a corresponding increase in the overconsolidation ratio
from R, to R,. (Notice that the overconsolidation ratio has increased because the yield stress
has increased and not because the soil has been unloaded.) Figure 15.4(b) shows the
corresponding state path normalized with respect to ¢/; this assumes that both ¢, and ¢}, remain
constant and so the change of state is due to the increase of o, as the volume decreases.
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Figure 154 Overconsolidation due
(a) ()] to compaction.

15.5 CREEP
The effects of volume changes due to creep illustrated in Fig. 15.5(a) are similar to those due
to compaction, except that volume changes due to compaction occur more or less instantaneously
whereas those due to creep occur slowly and at a rate that diminishes with time. The basic
constitutive equation for creep given in Sec. 3.7 is of the form

sw=C,In (i) (15.3)

Lo

and so the water content decreases with the logarithm of time, as illustrated in Fig. 15.5(b). This

influence of creep on the apparent overconsolidation ratio for soft clays was clearly demonstrated
by Bjerrum (1967).

WA R, \NCL
NN
R N\ A\
N\ A\
< \
A
B \ \\ \
% log a7 - X -
(a) (b Figure 155 Overconsolidation due to creep.

15.6 CEMENTING

During compaction or creep the current state of the soil changes, but during cementing and
weathering both the current state and the state boundary surface may change. A detailed
discussion of the effects of cementing and weathering is beyond the scope of this book and all
I can do here is outline the basic features; for more detailed discussion there are papers by
Leroueil and Vaughan (1990) and Coop and Atkinson (1993). . S
The principal mechanism of cementing in soils is by deposition of additional material,
often calcium carbonate, from the groundwater. This has the dual effect of reducing the specific
volume (because additional solid material appears) and shifting the state boundary surface.
However, remember that the critical state corresponds to relatively large straining when the
soil is essentially reconstituted and to reach these states the cementing material must fracture.
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- This means that the critical states of cemented and uncemented material will be about the
same and the principal influence of cementing will be on yielding and on the small strain
stiffness. '

The best way to examine cemented or structured soils is to carry out tests on both intact
and reconstituted samples. Figure 15.6(a) illustrates a unique critical state line and an intrinsic
normal compression line corresponding to reconstituted (i.e. destructured) soil. The path A — B
represents a reduction in water content due to deposition of cementitious material at constant
stress. The path B — Y — C represents compression of intact structured soil and part of this is
outside the intrinsic normal compression line. The yield point Y lies on a structured normal
compression line but, after vield, the state moves back towards the intrinsic line with increasing
strain. There are now two yield points, o, associated with structured soil and o}; associated
with reconstituted material. Notice the relatively large compression from Y to C as the brittie
cementing fractures. ’

There is, however, only one unique critical state line so values for the normalizing parameter
o. can be obtained unambiguously. (This is the principal reason for selecting ¢, as the
normalizing parameter rather than the equivalent pressure on the normal compression line o;
see Sec. 9.5.) Figure 15.6(b) illustrates the state path A — B — Y — C normalized with respect to
.. (The path is for loading with constant stress ratio.) Part of the loading path lies outside the
intrinsic state boundary surface and the yield point Y lies on the structured state boundary
surface. Notice that the states A and C lie at the same point and the state B is overconsolidated.
The distance that the structured boundary surface lies outside the intrinsic boundary surface
depends principally on the strength of the cementing.

15.7 WEATHERING

Weathering involves physical and chemical alteration of soils and rocks at essentially constant
effective stress. This may very well alter the position of the intrinsic state boundary surface and
the critical state line because the nature of the soil (i.e. its grading and mineralogy) changes.
Weathering may also change the current state, usually by an increase in water content. There
are no hard and fast rules for changes due to weathering and much depends on the nature of
the weathering and on the initial soil and rock. The net effects of weathering are likely to be
combinations of the other effects of ageing discussed above.
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15.8 CHANGES IN PORE WATER SALINITY

The intrinsic properties of a soil depend principally on the nature of the grains but also on the
chemistry of the pore water. Soil grains deposited through and compressed in saline water may
have different intrinsic properties from the same soil grains deposited in fresh water. Figure 15.7
illustrates a soil normally compressed to A in saline water. If the salinity of the groundwater
changes, perhaps because of changing sea level or uplift of the land, the intrinsic normal
compression line may shift from the normal compression line corresponding to saline pore water
NCL(S) to the normal consolidation line corresponding to fresh water NCL(F). On subsequent
loading from A the soil will show relatively large compression as the state moves to B on the
intrinsic normal compression line corresponding to fresh water NCL(F). Notice that the
behaviour illustrated in Fig. 15.7 is similar to the behaviour of structured soil shown in Fig. 15.6.

159 SUMMARY

1. The state of a soil in the ground is determined primarily by the history of deposition and
erosion, but it may be altered subsequently by the various processes of ageing.

2. The principal processes of ageing are compacting, creep, cementing, weathenng and changes
in the salinity of the pore water.

3. Ageing may change cither the current state or the position of the state boundary surface.
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CHAPTER

SIXTEEN
GROUND INVESTIGATIONS

16.1 INTRODUCTION

Engineers designing structures and machines normally choose materials and specify their
strength and stiffness and they often combine materials to make composites (e.g. steel and
concrete in reinforced concrete). Similarly, highway engineers can specify the soils and rocks to
be used in the construction of roads. Geotechnical engineers, on the other hand, cannot choose
and must work with the materials in the ground. They must therefore determine what there is
in the ground and the engineering properties of the ground, and this is the purpose of ground
investigations.

The basic techniques of ground investigation are drilling, sampling and testing, in situ and
in the laboratory, but these must be complemented by geological information and a sound
appreciation of the relevant soil mechanics principles. Consequently, it is in the area of ground
investigation that geology and engineering combine and where engineering geologists and
geotechnical engineers cooperate. A . _

Ground investigation is, of course, far too big a topic to be covered in one short chapter
and all 1 will do here is outline the basic issues as a starting point for further study. The
detailed techniques vary from country to country, and from region to region, and depend both
on the local ground conditions, on historical precedents, on contractural procedures and on the
available equipment and expertise. As with laboratory testing, procedures for ground investiga-
tions are covered by national standards and codes of practice; in the United Kingdom this is
BS 5930:1981. You should look up the standards covering the region where you work in to see
what they contain. Detailed descriptions of the current practices in the United Kingdom are
given by Clayton, Simons and Matthews (1982).

Al

16.2 OBJECTIVES OF GROUND INVESTIGATIONS :

When you look at the face of a cliff or an excavation you see a section of the ground and when
you look at a site you have to imagine what an excavation would reveal. A major part of a
ground investigation is to construct a three-dimensional picture of the positions of all the

snn
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Figure 16.1 A simple geotechnical cross-section. - - S e

important soil and rock layers within the site that may be influenced by, or may influence, the
proposed construction. Of equal importance is the necessity to sort out and identify the
groundwater conditions. Note that in distinguishing the important soil and rock layers
engineering classifications based on the nature and state of the soils (see Chapter 5) should be
used rather than the geological classifications, which are based on age (see Chapter 4).

There is no simple answer to the problem of how many holes should be drilled and to what
depths and how many tests should be carried out. Most of the standards and codes of practice
make various recommendations, but really you should do enough investigation to satisfy
everybody that safe and economical works can be designed and constructed. ’

Figure 16.1 illustrates a very simplified section along the centre-line of a road. (Notice that
the horizontal and vertical scales are not the same.) The ground conditions revealed by drilling
and other methods have been greatly idealized so that a number of characteristic layers have
been identified and the boundaries between them drawn as smooth lines. The actual soils in the
ground within any one layer are likely to be variable, horizontally and vertically, and their
boundaries irregular. Something like Fig. 16.1 is about the best you can do with a reasonable
investigation. Notice that Fig. 16.1 is a section along the centre-line of the road and to complete
 the investigation you should be able to draw cross-sections and sections on cither side of the road.

The section shown in Fig. 16.1 is similar to that shown in Fig. 4.4(c) and I have already
discussed the sequence of geological events and processes that formed this sequence of deposits.
Certain features of the nature and state of the various layers can be estimated from consideration
of their depositional environment and subsequent geological history. The grading and mineralogy
of the soft clay and the stiff clay are the same (so they have the same nature), but their water
contents are different (so they have different states); the soft clay is normally consolidated or
lightly overconsolidated while the stiff clay is heavily overconsolidated. =~ =~ T

 For each of the principal strata in Fig. 16.1 you will need to determine representative
parameters for strength, stiffness and water seepage flow (i.e. permeability). These will be selected
from the results of laboratory and in situ tests. These parameters may be constant for a particular
. layer or they may vary with depth; generally we expect strength and stiffness to increase with
depth. The parameters to be determined will be those that influence the design of the various
structures in the works (i.c. the cutting in the stiff clay, the embankment on the soft clay and



192 MECHANICS OF SOILS AND FOUNDATIONS

the bridge foundations, which will probably be piled, either to the stiff clay or the rock).
After any ground investigation you should know the following for each of the principal

strata:

1. Its engineering description and classification in terms of the pature (grading and plasticity)
and state (stress and specific volume or overconsolidation). ,

2. The positions of the boundaries between the different strata (i.e. you should be able to draw
sections like that in Fig. 16.1 in any direction).

3. The geological environment when the soil was deposited and the history of subsequent
deposition, erosion, weathering and ageing. : ]

4. Descriptions of visible features of structure and fabric (e.g. layering, fissuring and jointing).

5. Representative values for the parameters for strength, stiffness and permeability relevant to the
design and construction of the works.

You should also be sure that you know all about the groundwater. A very experienced ground
engineer once said to me that he would not start an excavation until he knew exactly what he
was digging into and what the groundwater conditions were; this is very good advice.

163 PLANNING AND DOING INVESTIGATIONS

You cannot really plan an entire ground investigation because you do not know what is there
before you start and so you cannot select the best methods or decide how much to do. A ground
investigation must, therefore, be carried out in stages: each stage can be planned with existing
information and the knowledge gained from one stage will assist with planning the next.
Currently in the United Kingdom a ground investigation is often let as a single contract with
a specification and bill of quantities, which leads to major problems in planning the investigation
and can often cause later difficuities. )

There should be three principal stages in a ground investigation. (These are not rigid
demarcations. There is often overlap between the stages; they need not be strictly sequential
and one or other may have to be expanded later.) o

(a) Desk Studies
This consists of study of all the information that you can find existing on paper. The major. .
sources are topographical and geological maps and sections, geological reports and local
authority records. Other sources include air photographs, historical archives and reports on
carlier site investigations at the site or at nearby sites. Experienced geotechnical engineers and
engineering geologists can often decipher the principal ground conditions from the desk study,
so leading to well-planned later stages. ‘

(b) Preliminary Investigations

Preliminary investigations are carried out at the site, rather than in the office, but they do not
yet involve major expenditure on drilling, sampling and testing. The purposes are, firstly, to
confirm or revise the findings of the desk study and, secondly, to add further information. This
additional information will come from detailed engineering geological mapping, and this is best
done by engineers and geologists working together or by experienced engineering geologists.
Preliminary investigations may also involve some limited sub-surface exploration by trial pits,
probing or exploratory drilling and geophysical sensing using seismic, electrical resistivity and
other methods. .
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(c) Detailed Investigations

Detailed investigations coris_ist of drilling, sampling and laboratory and in situ testing. They may
also involve more detailed geological mapping, groundwater and chemical studies and other
appropriate investigations necessary for the works. This is where the bulk of the expenditure is
incurred and planning of the detailed investigations should set out to discover the required facts
in the most efficient way. This will require some foreknowledge which can be gained from the
desk study and preliminary investigations.

16.4 TEST PITTING, DRILLING AND SAMPLING

The standard method of ground investigation is excavation and sampling supplemented by in

situ and laboratory testing. The excavations are usually done by drilling but also by opening

test pits.

" (a) Test Pitting

A test pit is an excavation that a geotechnical engineer or engineering geologist can enter to
examine the soil profile in situ. Pits can be excavated by large drilling machines of the kind used
for boring piles, by an excavator or by hand digging. Remember that any excavation in soil
with vertical or steep sides is basically unstable and must be supported before anyone enters it.

(b) Drilling

Drill holes can be advanced into the ground using a number of different techniques; the principal
kinds are illustrated in Fig. 16.2. Augers may be drilled to shallow depths by hand and large
diameter augers can be drilled by machines used also for installation of bored piles (see Chapter
23). Wash boring is used in sands and gravels and rotary drilling is used mainly in rocks. Light
percussion drilling is widely used in the United Kingdom and you can very often see the typical
tripod rigs at work. . :

In some soils, particularly stiff clays and in rocks, boreholes will remain open unsupported,
but in soft clays and particularly in coarse-grained soils the hole will need to be cased to maintain
stability. Boreholes should normally be kept full of water, or bentonite mud, to prevent
disturbance below the bottom of the hole. ‘

(c) SQmpling

Samples obtained from test pits or borcholes may be disturbed or intact. (Samples are often
called disturbed or undisturbed but, as no soil sample is ever truly undisturbed, the word intact
can be used for samples taken with minimum disturbance.) Disturbed samples are used
principally for description and classification. Intact samples may be cut from the base or sides
of test pits using saws or knives or taken in tubes pushed into the bottom of a borehole. There
are many different tube samples; two designs used in the United Kingdom are shown in Fig.
16.3(a) and (b). . '
The tube sampler most often used in practice in the United Kingdom is the U100 illustrated

.in Fig. 16.3(a). The tube, nominally 100 mm in diameter, is screwed to a cutting shoe and a

sampler head. The thickness of the wall of the cutting head is 6 to 7 mm, which is relatively large.
A thin wall sample tube like that illustrated in Fig. 16.3(b) has a wall thickness of 1 to 2 mm
and a cutting edge formed by machining. Both samplers are capable of taking samples in many
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soft and stiff clays. Intact samples may be recovered by coring '(see Fig. 16.3c), where a rotary
drill cuts an annulus around the core sample. In the past this method was used exclusively for
rocks but is now also used in stiff clays. )

16.5 IN SITU TESTING

Laboratory tests to determine soil strength, stiffness and permeability are described in Chapter
7, but there are also a number of in situ tests. These can be grouped into probing tests, loading
tests and permeability tests.
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Figure 163 Methods of sampling in bore-
(a) Standard U100 tube (b) Thin-walitube. _ _  (c) Rotarycoring  holes (schematic).

(a) Probing Tests

In these tests a tool, usually cone-shaped, is hammered or pushed into the ground and the
resistance to penetration recorded. This gives some measure of the strength and stiffness of the
ground. In the standard penetration test (SPT) shown in Fig. 16.4(a) a solid cone or thick-wall
tube is hammered, with a standardized blow, into the bottom of a borehole. The result is given
as N, the number of blows to achieve a standard penetration; values increase from about 1 to
more than 50 with increasing relative density or overconsolidation ratio.

In the static cone, or Dutch cone, penetration test shown in Fig. 16.4(b) the instrument is
steadily pushed into the ground from the surface and the resistance recorded continuously. Most
static cone penetrometers have a sleeve behind the cone which measures a frictional or shearing
resistance. Some modern cones, known as piezocones, also measure pore pressures generated at
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(a) Standard penctration test (SPT) " (b) Static (Dutch) cone testing  Figure 164 Probing tests (schematic).
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the tip or shoulder of the cone. Methods for interpretation of static cone tests were given by
Meigh (1987). Many of these depend on empirical correlations between test observations and

soil characteristics.

(b) Loading Tests

In these tests an instrument loads the soil in a controlled manner and stresses and deformations
" are observed. The ultimate load, when the deformations are large, is related to the strength of
the soil and the load—deformation behaviour is related to soil stifiness. Plate loading tests
~_illustrated in_Fig. 16.5(a) may be carried out near the ground surface or at the bottom of a
borehole and measurements are made of the load on the plate F and its settlement p. Simple
analysis of plate tests are rather like the methods used for design of foundations, discussed in
Chapter 22.
The shear vane test, illustrated in Fig. 16.5(b), is used to measure the undrained strength
s,. A vane with four blades is pushed into the ground from the surface or from the bottom of
a borehole. The vane is rotated and the torque T measured. At the ultimate state the shear stress
on the cylinder of soil containing the vane is given by

1D
T=§1zD’H(l +§-§)s“ (16.1)

and a value for s, can be calculated from the measured torque. If the rotation is continued for
several revolutions the strength will drop to the residual (see Sec. 9.2).

Pressuremeter tests are illustrated in Fig. 16.5(c). A flexible cylinder is inflated and the
pressures and volume changes measured. The best pressuremeters measure radial displacements
directly (instead of volume changes) and some measure pore pressures as well. Pressuremeters
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may be installed in pre-drilled boreholes or self-boring devices drill themselves into the ground
with less disturbance. Results of pressuremeter tests are used to calculate both soil strength,
stiffness and the in situ horizontal stress o,. Methods for analysis of pressuremeter tests are
described by Mair and Wood (1987). '

16.6 STATES OF SOILS IN THE GROUND

As a soil is deposited in the ground, loaded by deposition of additional material and later
unloaded by erosion, the state will be governed by the history of the stress changes together
with any ageing effects, discussed in Chapter 15. If the history of deposition, erosion and
groundwater changes can be determined from the geological history than it is often possible to
make reasonable estimates of the likely engineering properties of soils in the ground.

Figure 16.6(b) illustrates compression from a water content near the liquid limit and
swelling from a water content close to the plastic limit. The position of the critical state line is
shown in Fig. 16.6(a), which is the same as Fig. 9.16(a). From Eq. (9.19), taking a typical value

for ¢. = 26°, we have o, = 300 kPa. The distance between the normal compression line and the -

critical state line in Fig. 16.6(b) depends on the nature of the soil, but typically for many clay
soils ¢, & 20’,. Hence, for normally consolidated soil we have o7 = 6 kPa at the liquid limit and
o, = 600 kPa at the plastic limit; these correspond to depths in the ground of about 0.6 and
60 m respectively. Figure 16.6(c) illustrates typical profiles of water content with depth in the
ground for a normally consolidated soil and a heavily overconsolidated soil. Notice that in a
deposit of heavily overconsolidated soil the water content is close to the plastic limit, except near
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Figure 16.6 Water contents and undrained strengths in the ground in noi'mallyqoonsolidated and overconsolidated soils.
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the surface where the influence of rainwater in shallow cracks causes the water content to
increase. In a deposit of normally consolidated or very lightly oveconsolidated soil the water -
content decreases with depth: near the surface the influence of vegetation and evaporation causes
the water content to decrease. .

The variations of critical state undrained strength with depth corresponding to the water
contents in Fig. 16.6(c) are illustrated in Fig. 16.6(d). In the deposit of heavily overconsolidated
soil the undrained strength s, is approximately 150 kPa, corresponding to the water content
close to the plastic limit, except near the surface where swelling causes the strength to decrease.
In the deposit of normally consolidated soil the undrained strength increases linearly with depth,
except near the surface where there is a higher strength in the crust due to the reduction in
water content. The rate of increase of strength with depth, or with vertical effective stress, in a
deposit of normally consolidated soil can be obtained from Eq. (9.19) as '

s, 0. : :
w_ ¢ ta ¢'e l 6.2
o, Oy n : (162)

and taking typical values of ¢, =26° and o¢;/o, =2 we have s./o. = 0.25. An empirical
relationship between s,/0;, and PI was given by Skempton (1957) as

35 = 0.11 + 0.0037PI (16.3)

0,

This is used widely to estimate the undrained strength of soft clays.

16.7 INVESTIGATING GROUNDWATER AND PERMEABILITY

Whatever else you do in a ground investigation you must be sure to define the groundwater
conditions. This will include determining the current steady state pore pressures and the final
steady state pore pressures after construction. If the works involve a seepage flow of water, either
steady state or during consolidation, you will need values of the coefficient of permeability.

Pore pressures can be measured by observing the level of water in a standpipe (see Sec.
17.1) in a borehole. Notice that if you drill a borehole into saturated clay with a groundwater
table, or phreatic surface, near the ground surface the hole will remain dry for a considerable
time. The reason for this is that if the clay has low permeability it will take a very long time
for sufficient water to flow from the ground to fill the borehole. This means you can only
determine pore pressures, and groundwater conditions, from observation in boreholes in soils
with relatively high permeability. For clays and soils with low permeability you will need to use
special piezometers (i.e. instruments to measure pore pressures). In the final analysis the
groundwater conditions must be reasonable and self-consistent and compatible with the soils
and the regional hydrogeology.

Values for the coefficient of permeability k can be found from the results of in situ pumping
tests. For coarse-grained soils steady state conditions will be reached quickly. Figure 16.7(a)
illustrates steady state flow towards a pumped well. The potential at a radius r is P and, from
Darcy’s law (see Chapter 17), the rate of flow g is

q = Aki = 2nrPk %}; . (16.4)

or dr 2k pap (16.5)

r q
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(Notice that the hydraulic gradicnt at the phreatic surface is strictly dP/ds, but dP/dr is a
sufficiently good approximation.) Integrating Eq. (16.5) between P, at r, and P, at r, we have

m(:_z) =™ Pi-pPy (16.6)
1

Hence k can be obtained from observations of the pumpmg rate g and water levels in standpipes
at a number of different radii.

For fine-grained soils steady state seepage will not be reached quickly and during a
reasonable test period there will be simultaneous steady state flow and consolidation or swelling.
Figure 16.7(b) illustrates a flow from a spherical cavny radius r with a constant excess pore
pressure @ = y,h,. The rate of flow at any time ¢ 1s given by .. :

AT 16.
= s

where ¢, is the coefficient of consolidation for spherical consolidation. (This is similar to ¢, for
one-dimensional flow, discussed in Chapter 14.) A condition of steady state flow would be
reached aftet_’ infinite time and, with t = o in Eq. (16.7),

9o = 4nrk};v : : A | (16.8)

q= 41trkl-1,,(1 +

- A value of ¢, can be found by plotting g against l/\/’ t,as shownin F; ig. 16.7(c), and extrépolating.
Hence a value for k can be obtained from Eq. (16.8). If the cavity is not spherical the term 4nr
must be replaced by an intake factor F which depends on the geometry. :
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168 GROUND INVESTIGATION REPORTS

The findings of ground investigations are recorded in two different kinds of reports.

(a) Factual Reports

These simply describe the procedures and findings without comment or interpretation. The
report will contain text describing what was done, how, where and by whom. It will summarize
the factual findings of the desk study, the field investigations and the in situ and laboratory tests.

The basic information from the drilling and sampling operations is contained in borehole
logs. (Similar logs contain information from test pits.) A typical borehole log is shown in Fig.
16.8; this is idealized and simplified to illustrate the principle features which should be recorded.
The top panel gives the date, time, place, method of drilling and other basic information. The
legend is a pictorial representation of the principal strata with a word description alongside. To
the left,are depths and levels. To the right are columns for sample recovery, groundwater
observations and in. situ tests. Borehole logs prepared by different ground investigation
companies differ in detail but should contain at least this basic information. The borehole log
in Fig. 16.8 is for a borehole drilled at chainage 2250 m on the section in Fig. 16.1. (How
many more boreholes would you need to drill before you could draw the section in Fig. 16.1,
given some idea of the basic geology of the site described in Sec. 4.67)

(b) Interpretive Reports

An interpretive report will contain all the information in a factual report or it may refer to a
separate factual report, but it will contain geological and engineering interpretations of the
results of the investigations. An interpretive report should contain detailed engineering geological
maps and sections giving a comprehensive three-dimensional picture of the engineering geology
and hydrogeology of the site. For each of the principal soil and rock strata identified the
interpretive report should give values for the parameters for strength, stiffiness and permeability
that will be used in the design. (These should relate to the requirements for the design of the
individual structures in the scheme and the methods of analysis proposed.)

16.9 SUMMARY o T

1. In any geotechnical engineering activity investigations are required to determine the ground
conditions. The objectives are to locate and identify all the principal soil and rock strata,
estimate design values for their strengths and stiflnesses and determine the groundwater
conditions.

2. Ground investigations should, ideally, be carried out in stages, involving desk studies,
preliminary investigations and detailed investigations. Detailed investigations consist of test
pitting, drilling and sampling, laboratory testing and in situ testing.

3. Often reasonable estimates can be made of the state and the undrained strength of soil in
the ground from the geological history of deposition, erosion and groundwater changes. These
estimates are, however, likely to be substantially modified by ageing (see Sec. 15.3).

4. The results of a ground investigation may be contained either in' a factual report or in an
interpretive report. The principal component of a factual report is the borehole logs which
record all the details of each borehole: it will also record the procedures and results of the
laboratory and in situ tests. An interpretive report should contain, in addition, cross-sections
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of the site showing all the principal soil and rock strata, recommended values for all the

required design parameters, and, possibly, outline designs. .

5. On completion of an investigation you should be able to provide, at least, the -following
information:

(a) Cross-sections and plans showing the location of each of the principal strata and the
groundwater conditions. )

(b) A list of the principal strata. This should include, for each stratum: descriptions of the
nature and state of the soil or rock based on classification tests; the geological name (with
capital letters); a description of the depositional environments and the subsequent
geological events. ' -

(c) A full description of the groundwater conditions. .

(d) Values for the soil parameters required for the design: these would include the strength,
stiffness and permeability (or consolidation) parameters appropriate to the ground
conditions and the works. - '

(¢) Statements about the uncertainties (because you can never know everything about the
ground from the results of a few boreholes and tests).

6. The variations of water content and undrained strength in the ground and their relationships
to the Atterberg limits of plastic clays are very different for normally consolidated and
overconsolidated clays.

4. The simple relationships linking the intrinsic parameters and soil profiles with soil classifica-
tion tests and geological history are useful, particularly for preliminary design studies.
However, we do not yet know enough about the fundamental mechanical properties of soils
to select final design parameters from classification tests alone, so engineers must always
conduct thorough ground investigations, including detailed laboratory and in situ testing.
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17.1 GROUNDWATER CONDITIONS

You know that water flows downhill and you have probably studied the flow of water in pipes
and open channels in courses on hydraulics. Water also flows through soils in much the same -
way but now the flow is retarded as it flows past the grains. Theories for groundwater flow are
covered in courses in hydraulics and all I will do here is consider the topics essential for
geotechnical engineering. There are essentially three separate conditions for groundwater in
geotechnical engineering and simple examples of these are illustrated in Fig. 17.1.

(a) Hydrostatic States

This condition, illustrated in Fig. 17.1(a), was discussed in Sec. 6.3. If the water table, or phreatic
surface, is level there is no flow. Pore pressures are hydrostatic and are given by u = y,h,,.

(b) Steady State Seepage N .

If the phreatic surface is not level, as in Fig. 17.1(b), water will flow along flowlines such as
ABC. At any point, such as at A, the pore pressures will be u = y,h,, where h, is the height of
water in a standpipe. Note that the level of water in the pipe does not necessarily define the
phreatic surface (see Sec. 17.5). Notice also that in Fig. 17.1(b) the flow is apparently uphill from
A to B and that the pore pressure at C is greater than that at B. . ' s
The basic rule for the flow of water through a single element of soil is Darcy’s law, which
was introduced in Sec. 6.9 in connection with relative rates of loading and drainage. In this
chapter we will extend Darcy’s law to cover seepage through a whole region of soil. The essential
feature of steady state seepage is that neither the pore pressures nor the rates of flow change
with time. Since effective stresses remain constant the soil grains can be taken to be stationary
as water flows through the pore channels. : o . L

(¢) Consolidating Soil

When pore pressures change with time effective stresses and soil volumes also change with time.
This process, which couples Darcy’s seepage theory with soil compression and swelling is known

ana
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as consolidation and was covered in Chapter 14. During consolidation, pore pressures are the
sum of the steady state pore pressures up = Ywhwo and the excess pore pressure i = y,.h,, as
shown in Fig. 17.1(c). Graphs of excess pore pressure & at given times are called isochrones.

17.2 PRACTICAL PROBLEMS OF GROUNDWATER FLOW

Any child who has dug a hole in the beach or constructed 2 small soil dam across a stream has
soon recognized the importance of groundwater in ground engineering. It is impossible to
excavate much below the groundwater table and dams soon fail by downstream erosion, even
if they are not overtopped first. The hole can only be continued if water is pumped from the
excavation, and possibly from the surrounding ground as well, and engineers will need to
determine the quantities of water to be pumped. They will also be interested in the quantities
of water leaking from water storage dams. :

It is common knowledge that landslides occur most frequently after periods of rainfall when
pore pressures in the ground are highest. (Remember that this has nothing to do with water
lubricating soil.) We have already seen that soil strength and stiffness are governed by the effective
stresses which depend on the pore pressures as well as on the total stresses, so that calculation
of pore pressures in soil with steady state seepage will be an essential component of geotechnical
design calculations.

Figure 17.2 illustrates two typical cases of steady state seepage in geotechnical problems.
In both cases water flows from regions of high water level to regions of low water level along
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flowlines such as ABC: notice that in Fig. 17.2(a) the water apparently flows uphill from B to
C. In Fig. 17.2(a) the flow is confined because the top flowline PQRS is confined by the
impermeable concrete dam. In Fig. 17.2(b) the flow is unconfined and there is a phreatic surface,
which is also the top flowline TU. In both cases we will be interested in calculating both the
rates of leakage below or through the dams and the distributions of pore pressures.

In Fig. 17.2(a) water flows upwards in the region of C, where the flowline emerges at the
downstream ground surface. If the seepage velocities are large, soil grains may be disturbed and
washed away. If this should happen the erosion would seriously jeopardize the stability of the
dam. The same thing might happen to the dam in Fig. 17.2(b) if the downstream drain is
inadequate so that the top flowline TU emerges from the downstream face of the dam. After
overtopping this is the most common cause of failure of seaside dams.

17.3 ESSENTIALS OF STEADY STATE SEEPAGE

Darcy’s law governing flow of water through soil is very like Ohm’s law for the flow of electricity
through a conducting material, and an electrical flow model can be used to solve problems in
groundwater seepage. In both cases a potential causes a current to flow against a resistance so
that electrical conductivity is analogous to permeabxhty We have aiready seen that hydraulic
potential is not the same as pore pressure and it is necessary to include a term to take account
of the elevation. '

To define potential it is necessary to have a datum as in Fig 17.3(a). Since it is only changes
of potential that matter the datum could be anywhere, but it is best to put it low down to avoid
negative values of potential. From Fig. '17.3(a), the potential at A is

P=h,+z="2+z (17.1)
Yw
(Note that this is simply Bernoulli’s expression for total head since, in groundwater seepage, the
velocity terms are small compared with the pressure and elevation terms.)
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(a) (b) Figure 17.3 Pore pressure and potential

In Fig. 17.3(b) the points A and B are Js apart on the same flowline and the hydraulic
gradient between A and B is

j= 2 17.2
i= - (17.2)

The negative sign is introduced into Eq. (17.2) so that the hydraulic gradient is positive in the
direction of fiow. (Note that in Fig. 6.11 and in Eq. (6.13) the hydraulic potential and the
hydraulic gradient were defined in terms of h, only. This was allowable in that case because
the flowlines in Fig. 6.11 were horizontal and so the z term in Eq. (17.1) remains constant. From
now on we will work with potentials and hydraulic gradients using Egs (17.1) and (17.2), taking
account of pore pressure and elevation terms.)

Figure 17.4 shows two flowlines AB and CD at an average distance &b apart. The points
A and C have the same potential and so do the points B and D. The lines AD and BD are called
equipotentials (because they are lines of equal potential) and the average distance between them
is &s. Flowlines and equipotentials intersect at 90° as shown. (The proof of this is given in
textbooks on hydraulics, which aiso show that flowlines and equipotentials are given by Laplace
equations.) ) o

Figure 17.4 represents two-dimensional seepage through isotropic soil in which the value
of k is the same in all directions and through a slice of unit thickness normal to the page; all

4 v
¥

A

N N
7 B
&
v
D .
\&z . .
\Y% Figure 17.4 Flowlines and equipotentials.
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Figure 17.5 Secpage and flow velocities.

the discussion in this chapter is for two-dimensional seepage. The rate of flow (in cubic
metres per second) between the two flowlines is d¢ and the mean seepage velocity (in metres
per second) is

9q
V=— 17.3
ob (17.3)
Darcy'’s law states that
V=ki (17.4)

where k is the coefficient of permeability which has the units of velocity (in metres per second).
Typical values of k for soils were given in Sec. 6.9. Remember that for coarse-grained soils
k > 10~% m/s while for fine-grained soils k < 10~8 m/s; these very large differences mean that
coarse-grained soils with high permeability can act as drains while fine-grained soils with very
low permeability can be used as nearly watertight barriers in dams.

Notice that the seepage velocity ¥ given by Eq. (17.4) is not the velocity of a drop of water
as it seeps through the pore spaces. From Fig. 17.5 the velocity of the drop of water is ¥,, = dq/ow,
where dw is the area occupied by the pore spaces in an area of soil 6b and '

(17.5)

where v is the specific volume. This means that if you use dye or a tracer to examine groundwater
flow you will measure ¥, which is not the same as the velocity given by Darcy’s law in Eq. (17.4).

17.4 FLOW THROUGH A SIMPLE FLOWNET

Figure 17.4 shows the conditions of steady state seepage through a single element bounded by
two flowlines and two equipotentials. The rate of flow through the element is given by Egs (17.3)
and (17.4) as

5q=08bki (17.6)

If we can assign a value of potential to an equipotential we could calculate the pore pressures
from Eq. (17.1), if necessary interpolating between the equipotentials. The flow through a whole
region and the pore pressures throughout the region can be found by considering an assembly
of elements called a flownet. - e
Figure 17.6 shows a simple flownet. The flowlines and equipotentials intersect orthogonally,
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Figure 17.6 Flow through a simple flownet.

and if s = b the flownet is square. There are four flowlines and so the number of fiow channels,
i» is three. The total rate of fiow through the region is Ag and, making use of Eq. (17.6),

Ag = N, g = N, ébki (17.7)

Because the flowlines are straight and parallel, the seepage velocity, and hence the hydraulic
gradient, is constant and so the equipotentials are equally spaced as shown. There are six
equipotentials and so the number of equipotential drops in the square flownet, N, is five;
therefore, from Eq. (17.2), ~

i= —5—P= _AP (17.8)
os N, és
Hence, from Eqs (17.7) and (17.8) the rate of flow through the whole flownet is
N
Ag= —k— AP 17.9
q I _ (17.9)

d

where AP is the change of potential across the whole fiownet.

Although Eq. (17.9) was derived for the simple flownet in Fig. 17.6 with straight flowlines
and equipotentials, it is applicable to any flownet with curved elements provided that the
elements are ‘square”’ in the sense that the flowlines and equipotentials intersect orthogonally
and the mean dimensions of each element are the same (i.e. &s = 5b). Notice that the ratio N;/N;
depends only on the geometry of the boundary of the flownet so that in Fig. 17.6 we could have
N; = 6 and N; = 10 by halving the size of each clement. If the values of potential, P, and P,, at
the inflow and outflow boundaries are known the values of potential can be found at any
equipotential (because the drop in potential is the same across any element) and the pore pressure
at any point within the flownet can be calculated from Eq. (17.1).
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Figure 17.7 Flownet for steady state flow into a trench excavation.

17.5 FLOWNET FOR TWO-DIMENSIONAL SEEPAGE

A solution to any problem in two-dimensional steady state seepage can be found by drawing a
square flownet. This must be a proper scale drawing with the correct boundary conditions and,
for a particular geometry, there is only one set of flowlines and equipotentials that satisfies the
boundary conditions. The solution gives the rate of flow from Eq. (17.9) and the distribution
of pore pressure from Eq. (17.1). Techniques for constructing flownets by sketching, by electrical
models and by numerical analysis are covered in textbooks on hydraulics. All I will do here is
to find solutions to two simple cases to illustrate the general principles.

In Fig. 17.7 water secps from a flooded ground surface into a trench supported by walls
and which is pumped dry. The geometry is symmetric about the centre-line. The flow is confined
so there is no phreatic surface. If a standpipe is placed with its tip just at the ground level, such
as at G or at C, water will rise to the ground surface; therefore AG is an equipotential with
value P, and similarly CF is an equipotential with value P,. Any impermeable boundary, such
as the wall and the rock surface, must be a flowline and so is the axis of symmetry; therefore,
ABC and DEF are flowlines because flowlines cannot cross. A roughly sketched flownet is shown
in Fig. 17.7(b). This satisfies the boundary conditions in Fig. 17.7(a); flowlines and equipotentials
are orthogonal and each element is more or less ‘square’ with approximately equal length and
breadth. For this flownet the total number of flow channels is N = 8 (i.e. four on each side of
the centre-line) and the number of equipotential drops is N, = 10.

In Fig. 17.8 water seeps through a soil embankment dam to a drain in the downstream toe.
The flow is unconfined and there is a phreatic surface in a position approximately as shown by
the broken line. If a standpipe is placed with its tip anywhere on the upstream face, water will
rise to the reservoir level so AB is an equipotential with value P,. Similarly, the drain CD is an
equipotential with value P;. The top of the impermeable rock AC is a flowline. The phreatic
surface BE is not precisely located by the geometry of the dam alone but its position will be
fixed by the geometry of the flownet. The phreatic surface is a flowline and, on the phreatic
‘surface, the pore pressure is zero. A roughly sketched flownet is shown in Fig. 17.8(b). Again
this satisfies the boundary conditions, flowlines and equipotential are orthogonal and each
clement is more or less *square’. Notice that the equipotentials intersect the phreatic surface at
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Figure 17.8 Flownet for steady state scepage through a dam.

equal vertical intervals (because u = 0 along the phreatic surface). For this flownet, N; = 2 and
Nd = 5.

The level of water in a standpipe does not necessarily rise to the phreatic surface. In Fig.
17.8(b) the tip of the standpipe is on the equipotential HJ. If the tip of a standpipe is on the
phreatic surface at J the water remains at J and so the level of water in any standpipe on HJ
must be at the level of J. For the standpipe at H the water rises not to K on the phreatic surface
but to the level of J as shown.

These fiownets can be used to calculate the rates of leakage into the trench excavation and
through the dam using Eg. (17.9). Note that this contains the coefficient of permeability k and
the accuracy of the solution will depend more on how well you can determine a value for k
- than on how well you can draw a flownet. The flownets can also be used to calculate pore
pressures. You will need these to calculate the loads on the walls and props in Fig. 17.7 and the
stability of the dam slopes in Fig. 17.8, but to calculate pore pressures the flownet must be
accurately drawn. Notice that the geometry of a flownet and the pore pressures are independent
of the value of coefficient of permeability k.

The fiownets shown in Figs 17.7 and 17.8 were sketched by me very quickly using a soft
pencil and a good rubber. They are a bit rough—not all the elements are properly ‘square’ and
sometimes the flownets and equipotential do not intersect exactly orthogonally—but they are
probably good enough for many design calculations. They could be improved by use of an
electrical model or a numerical analysis. The important thing about my flownets is that they
satisfy the boundary conditions and there are no fundamental inconsistencies. You should now
go to a book on hydraulics and study flownets for other cases, particularly for flow into drains,
wells and slots.

17.6 PIPING AND EROSION

As water flows through soil the potential drops and the drag on the soil grains results in an
increase in effective stress in the direct of flow. If the flow is upwards these seepage stresses act
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Figure 17.9 Seepage stresses and critical hydraulic gradient.

against the self-weight stresses and the resultant effective stresses reduce, This condition occurs ..

in the base of the excavation in Fig. 17.7. If the upward flow is large the condition could occur
where the effective stresses and the strength become zero, and this would clearly have very
serious consequences for the stability of an excavation. This condition is known as piping, or
boiling, and is the cause of quicksand: natural quicksands occur where there is an upward flow
of water under artesian pressure.

Figure 17.9(a) shows flow through a single element of a flownet. The seepage force JF, is
due to the potential drop 6P and, making use of Eq. (17.2),

OF, = —y, 6P b =17,ids db (17.10)

Dividing by &b, and for unit thickness normal to the page, the effective stress due to the seepage is
' 850, = y4i s (17.11)

which acts in the direction of the seepage flow.
'Figure 17.9(b) shows the last element in a flownet where vertical upward seepage emerges
at the ground surface. Note that since the flow is upward s is measured negatively downwards.

The stresses and pore pressures at a depth Js in the ground are .
o,= —y0s+ VP (17.12)
u = 7,(6P + h, — 55) - (17.13)

Hence, making use of Eq. (17.2),

7, =7y, 55[(1 - 1) - i] 114
Yo

and the vertical effective stress ¢, reduces with increasing i. If ¢}, = 0 the critical hydraulic gradient
i, is :

=t -1 (17.15)
For many soils y is approximately 20 kN/m? and i, is approximately unity. Piping or boiling
will generally only occur for upward seepage towards the ground surface, as shown in Fig.

17.9(b). You can create piping in the apparatus shown in Fig. 6.6 by extending the standpipe
and filling it to a height above ground level that is about twice the depth of the model. -
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(d)

Figure 17.10 Transformed flownet for anisotropic soil.

17.7 SEEPAGE THROUGH ANISOTROPIC SOILS

Many soils are layered either because they were naturally deposited in changing depositional
environments or because they were compacted in layers, with the result that the permeability
for horizontal flow k, is often considerably greater than the permeability for vertical flow k. In
this case the appropriate flownet is not square and flowlines and equipotentials do not intersect
orthogonally, as shown in Fig. 17.10(a).

The flownet can, however, be made square by transforming the horizontal axis to H' and
the mean coefficient of permeability to k', where

H = \/EH (17.16)
ky

K=_/kk (17.17)

as shown in Fig. 17.10(b). The theoretical derivations for these transformations are given in
textbooks on hydraulics and groundwater flow.

17.8 SUMMARY

- 1. For steady state seepage pore water pressures u at a point are given by the potential P:

P=h,+z=l+z (17.1)

Tw

where z is the elevation of the point above an arbitrary datum.
_ 2. Seepage of water through soil is governed by Darcy’s law

V=ki (17.4)
where V is the seepage velocity and i is the hydraulic gradient given by
. (17.2)
ds :

3. Steady state seepage through a region of soil is described by a square flownet consisting of
an orthogonal net of flowlines and equipotentials. Pore pressures can be calculated from
equipotentials. The total rate of flow through a flownet is given by

Ne
Ag=—k—LAP 17.9
q N, | 17.9)
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where AP is the change of potential across the whole flownet. Flownets can be obtained by
sketching orthogonal nets that satisfy the boundary conditions.

4. Seepage gives rise to seepage stresses which may cause instabilities due to piping or erosion.
Seepage stresses (which are effective stresses in addition to the effective stresses due to unit
weights) are given by

80, = y,ids = (17.11D)

For upward seepage towards the ground surface the critical hydraulic gradient when o, =0
is given by

=1 -1 (17.15)

w

5. For layered and anisotropic soils square flownets can be constructed that make use of a scale
transformation and an equivalent permeability. - : .

WORKED EXAMPLES

Example 17.1: Confined flow Figure 17.11 illustrates flow towards a long (out of the page)
land drain through a layer of soil with permeability k = 10~ ¢ m/s sandwiched between clay and
rock, both of which may be considered to be impermeable. The water level in the drainis I m
below the water table 9 m away.

9m
Depth (m) 'r‘ -
0 <orae EN7 N e 1
—_ 3 Clay u
A :
2 P,
P, A I
5 (o) Y Datum .
‘ Rock Figure 17.11

The phreatic surface is above the top of the soil and the flow is confined by the impermeable
clay. A simple square flownet is shown in Fig. 17.11 in which N; = 3 and N, = 9. Taking the
datum for potential at the rock level, P, =5m and P, = 4 m and, from Eq. (17.9) the rate of
flow into the drain (from one side) per unit length out of the page is

Ag= - ﬁAP= —10"¢ x x4 —5)=3x10"%m¥/s
Ny
At the point A the elevation is z, = 2 m and the potential is
P=P,—3AP=5—-35—-4)=46Tm

Hence, from Eq. (17.1), the pore pressure at Ais
u, = y(P, — 2z,) = 9.81 x (4.67 — 2) = 26 kPa
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Example 17.2: Unconfined flow Figure 17.12 illustrates leakage from a canal into a nearby
river. (Both the river bank and the canal bank are supported by sheet piles that leak.) The

coefficient of permeability of the soil is 107¢ m/s. : )
L 8m >
a2
. A
River o Canal
y .
yy b s 4m
2m Y
Y | ,
E=— , Datum  ore 17.12

, The phreatic surface joins the water levels in the river and canal and the flow is unconfined.
From the flownet sketched N; = 3 and N; = 7 and, taking the datum for potential at the bed

of the canal, P, = 4m and P, = 2 m. Hence, from Eq. (17.9) the rate of leakage per unit length

of the page is

' N,

Ag= -kt
=N

AP=—10x}x(2—-4)=5 x_lO"m/s
[ .
At the point A, scaling from the diagram, the elevation is 2z, = 1.73 m and the potential is
P=P,—~3AP=4—-34-2)=25Tm
Hence, from Eq. (17.1), the pore pressure at A is ‘
u, = 7,(P, —z,) =981 x (257 - 1.73) = 8.2kPa

‘Notice that water in a standpipe at A rises 1o the level where the equipotential through A meets
the phreatic surface.
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CHAPTER

EIGHTEEN

STABILITY OF SOIL STRUCTURES USING
BOUND METHODS

 18.1 INTRODUCTION

In Chapters 8 to 12 I considered the behaviour of single elements of soil, either in the ground
or in laboratory tests, and I developed simple theories for strength of soil and simple constitutive
equations relating increments of stress and strain. What we have to do now is to apply these
theories to the behaviour of geotechnical structures such as foundations, slopes and retaining
walls. As discussed earlier, solutions for problems in mechanics must satisfy the three conditions
of equilibrium, compatibility and material properties. It is fairly obvious that complete solutions,
satisfying these conditions with the material properties for soil, will be very dlfﬁcult to obtain,
even for very simple foundations and slopes.

First, I will consider the conditions of ultimate coliapse where the important material
property is the soil strength. Remember that, as always, it is necessary to distinguish between
cases of undrained and drained loading. For undrained loading the ultimate strength of soil is
given by

T=5, (18.1)

. where s, is the undrained strength. For drained loading where pore pressures can be determined
from hydrostatic groundwater conditions or from a steady state seepage flownet the strength is
given by

t = ¢’ tan ¢, (18.2)
where ¢ is the critical state friction angle. These strengths give the ultimate collapse states. To
design safe structures or to limit ground movements they can be reduced by a factor F,, as
described in later sections.

Even with these relatively simple expressions for soil strength it is still qulte difficult to
obtain complete solutions and the standard methods used in geotechnical engineering involve
simplications. There are two basic methods: the bound methods described in this chapter and
the limit equilibrium method described in the next chapter. Both methods require approxima-
tions and simplifications which will be discussed in due course. ‘
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18.2 THEOREMS OF PLASTIC COLLAPSE

In order to simplify stability calculations it is possible to ignore some of the conditions -of
equilibrium and compatibility and to make use of important theorems of plastic collapse. It
turns out that by ignoring the equilbrium condition you can calculate an upper bound to the
collapse load so that if the structure is loaded to this value it must collapse; similarly, by ignoring
the compatibility condition you can calculate a lower bound to the collapse load so that if the
structure is loaded to this value it cannot collapse. Obviously the true collapse load must lie
between these bounds. .

The essential feature of the upper and lower bound calculations is that rigorous proofs exist
which show that they will bracket the true collapse load. Thus, although the two methods of
calculation have been simplified by ignoring, for the first, equilibrium and, for the second,
compatibility, no major assumptions are needed (other than those required to prove the bound
theorems in the first place). What has been lost by making the calculations simple is certainty;
all you have are upper and lower bounds and you do not know the true collapse load (unless
you can obtain equal upper and lower bounds). Usually you can obtain upper and lower
bounds that are fairly close to one another so the degree of uncertainty is quite small.

I am not going to prove the plastic collapse theorems here and I will simply quote the resuits.
A condition required to prove the theorems is that the material must be perfectly plastic. This
means that, at failure, the soil must be straining at a constant state with an associated flow rule
so that the vector of plastic strain increment is normal to the failure envelope (see Chapter 3).
The first condition, straining at a constant state, is met by soils at their ultimate or critical states,
given by Eqs (18.1) and (18.2). The second condition is illustrated in Fig. 18.1(a) for undrained
loading and in Fig. 18.1(b) for drained loading.

In both cases elastic strains must be zero since the stresses remain constant; thus total and
plastic strains are the same. For undrained loading the failure envelope given by Eq. (18.1) is
horizontal and the volumetric strains are zero (because undrained means constant volume) and
so the vector of plastic strain d¢® is normal to the failure envelope as shown. For drained loading
the failure envelope is given by Eq. (18.2) and if the flow rule is associated the angle of dilation

| - . P G'R -
al ——— _ _l\r' '

- —_ T=Su$;g_o &:V» : -
5 5y
w87 ) . v p
5P TOky
T=s, 877 {ve
o, 50 0.5
(a) Undrained loading - (b) Drained loading -

Figure 18.1 Straining of perfectly plastic soil with an associated flow rule.
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at the critical state . is

1744 :
—_— = tan w: = tan ¢; (18.3)
oyP .

At the critical state, however, soil strains at a constant state (i.e. at a constant volume) and so
. = 0, which means that, at failure at the critical state, the flow rule is not associated and soil
in drained loading is not perfectly plastic. This does not actually matter very much as you can
prove that an upper bound for a material with . = ¢ is still an upper bound, even if Y. is less
than ¢, but you can not do the same for the lower bound. In practice upper and lower bounds
for soil structures calculated with . = ¢, give good agreement with experimental observations
and, although the lower bound solution is not absolutely rigorous, the errors seem to be small.
The statements of the bound theorems are simple and straightforward:
1. Upper bound. If you take any compatible mechanism of slip surfaces and consider an
increment of movement and if you show that the work done by the stresses in the soil equals
- the work done by the external loads, the structure must collapse (i.e. the external loads are -
an upper bound to the true collapse loads). ’
Lower bound. If you can determine a set of stresses in the ground that are in equilibrium
with the external loads and do not exceed the strength of the soil, the structure cannot collapse
(i.e. the external loads are a lower bound to the true collapse loads).

!\)

To calculate an upper bound you must satisfy the conditions of compatibility and the
material properties (which govern the work done by the stresses in the soil), but nothing is said
about equilibrium. To calculate a lower bound you must satisfy the conditions of equilibrium
and the material properties (which determine the strength), but nothing is said about displace-
ments or compatibility. Because a structure with an upper bound load must collapse this is often
known as the unsafe load and because a structure with a lower bound load cannot collapse this
is known as the safe load. The basic principles of these upper and lower bound methods are
also used to calculate stability of framed structures by using plastic hinges to create mechanisms
or by using elastic analysis to calculate yield stresses at critical sections. )

In the present context the terms upper and lower bounds have the very specific meanings
associated with the bound theorems. Engineers also investigate bounds to structural behaviour
by investigating the consequences of optimistic and pessimistic values for material properties,
but bounds calculated in this way are obviously quite different from the present meaning.

183 COMPATIBLE MECHANISMS OF SLIP SURFACES

To calculate an upper bound a mechanism of slip surfaces must meet the requirements of
compatibility. These requirements determine both the allowable shape of individual slip surfaces
and their general arrangement.

Figure 18.2(b) shows a segment of a curved slip surface represented by a doubleé line and
Fig. 18.2(a) shows an enlarged small element. On one side the material is stationary and on the
other side there is an increment of displacement dw at an angle . The length along the slip
surface is constant so it is a zero extension line (see Sec. 2.6). From Eq. (2.11) and from the
geometry of Fig. 2.9, slip surfaces makes angles « and B to the major principle planes where

a=p=45+1p | (184)
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(2) ®) Figure 182 Geometry of a slip plane.

From the géoﬁetw of Fig. 18.2(b),- -

dr
—_— 18.5
rdé tan ¥ (18.5)
and therefore
"B _ exp(Aftan ¥) (18.6)
Ta

where A@ is the angle between the radii r, and rg. This is the equation of a logarithmic spiral
for ¢ > 0 but, for undrained loading when y =0,

B exp0) =1 (18.7)
Ta
This is the equation of a circular arc. Also, asr, — oo, Egs (18.6) and (18.7) tend to the equation
for a straight line. Thus, for drained loading where ¥ = ¢, slip surfaces may be straight lines
or logarithmic spirals while, for undrained loading where = 0, slip surfaces may be straight
lines or circular arcs. In Fig. 18.2(b) the radii intersect the curved slip surface at a constant angle
(90° — ) and hence radii may also be slip surfaces. -
~ ~Slip surfaces can be assembled to form a compatibie mechanism of plastic collapse; a number
of simple mechanisms are illustrated in Fig. 18.3. These may consist of straight lines or curves
(circular arcs for undrained loading with . = 0 or logarithmic spirals for drained loading with
Y. = ¢.) or combinations of straight lines and curves. Notice that in Fig. 18.3(f) the curved
section is in fact a fan with a radial slip surface and these are required to make the mechanism
compatible by constructing a displacement diagram as described in Sec. 2.3.

184 WORK DONE BY INTERNAL STRESSES AND EXTERNAL LOADS

To determine an upper bound it is necessary to calculate the work done by the internal stresses
and by the external loads during an increment of movement of a compatible mechanism. The
work done by a force is simply the product of the force and the increment of displacement
resolved into the direction of the force. We can always determine the increments of displacements,
- resolved in any direction, from a displacement diagram.

External loads arise from concentrated forces from small foundations, from distributed
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Figure 18.4 Work done by external loads.
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Figure 18.5 Work done by intcrnal stresses on slip planes.

stresses below embankments and wide foundations and from the self-weight of the soil. External
loads from concentrated forces are easy to determine and are the same for drained and for
undrained loading, but for distributed stresses and self-weight drained and undrained loading
must be considered separately. Figure 18.4 shows an element of soil with unit weight y and with a
total stress p and a concentrated load F at the top surface where the pore pressure is u. There
is an increment of displacement dw in the direction of the surface stress, the concentrated load
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and self-weight forces. For undrained Joading the increment of work SE is
SE = F 6w + pA dw + yV 6w (18.8)

For drained loading the water remains stationary so the work is done by the effective stresses
only; hence :

SE=Foéw+(p—uwAdw+(y— Vo)V oW (18t9)

For dry soil simply put ¥ = y, = 0 in Eq. (18.9). [ : ;

The work done by the internal stresses is the work dissipated by plastic straining in the
material in the thin slip surfaces that make up the compatible mechanism and, again, undrained
" and drained loading must be considered separately. Figure 18.5 shows short lengths of slip
surfaces that have increments of displacement éw as shown. Since the soil is at the critical state
in each case the stresses are given by Eqgs (18.1) and (18.2) and, for drained loading, the shear
and normal strains are related by Eq. (18.3). ‘

In_Fig. 18.5(b) for drained loading the water remains stationary, the work is done by the
effective stresses and hence

SW=1Lél—0c,Lén (18.10)

Note that for dilation the work done by the normal stress is negative since ¢, and on are in
opposite directions. From Eq. (18.10), with the volume of the slip plane V=_Ly,

SW = V(¢ 8y + 0, 08,) = V7' 67(1 _fan '”‘) (18.11)
tan ¢;

However, for a perfectly plastic material ¥, = ¢ and so the work dissipated by the internal
stresses for drained loading is

sW=0 (18.12)

This is a very surprising result and presents difficulties which I will not explore here. The
implication is that a perfectly plastic frictional material is both dissipative and conservative,
which is nonsense. The conclusion must be that the fiow rule for a frictional material cannot

be associated. Nevertheless, the result given by Eq. (18.12) is very convenient and it may be __

used to calculate upper bounds for frictional materials like soil.
In Fig. 18.5(a) for undrained loading the increment of work done by the total stresses 7 and
o is oo —- R
SW =1L éw = s,L éw ' (18.13)

Note that for undrained or constant volume straining no work is done by the normal stress o,
because there is no displacement normal to the slip surface. For an upper bound calculation
you must evaluate Eq. (18.13) for all the slip planes in the compatible mechanism.

18.5 SIMPLE UPPER BOUNDS FOR A FOUNDATION

In order to illustrate the use of the bound theorems I shall obtain solutions for the bearing
capacity of a foundation subject to undrained loading. Figure 18.6 shows a foundation with unit
length out of the page so that the width B is equal to the area A. As the foundation load F and
bearing pressure q are raised the settlement p will increase until the foundation can be said to
have failed at the collapse load F, or the bearing capacity g.. The foundation is smooth so there
are no shear stresses between the soil and the foundation. I will obtain solutions using, firstly,
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Figure 18.6 Bearing capacity of a simple foundation.
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dw, ¢
o Swy, b
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T a Figure 18.7 Mechanism of collapse for a
)] foundation.

a simple mechanism and, secondly, two stress discontinuities, and later I will obtain more
complex solutions using a slip fan and a stress fan. The purpose here is to illustrate the principles
of the bound solutions; I will consider the bearing capacity of foundations in more detail in
Chapter 22. .
Figure 18.7(a) shows a simple mechanism consisting of three triangular wedges and Fig.
18.7(b) is the corresponding displacement diagram. The increments of work done by the
self-weight forces sum to zero since block B moves horizontally while the vertical components
- of the displacements of blocks A and C are equal and opposite. Hence, from Eq. (18.8), we have

OE = F, éw, (18.14)

In order to calculate the work done by the internal stresses on the slip planes, from Eq.
(18.13) it is easiest to tabulate s,, L and w for each slip plane. Hence, from Table 18.1,

. SW = 6s,Bdw, - (18.15)
and, equating 6E and oW, an upper bound for the collapse load is
’ F, = 6Bs, (18.16)
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Table 18.1

Slip plane Shear stress Length Displacement W =s,Léw

oa Se % B ﬁ dw, 5. B dw,
h .

ob Se B 28wy 2s,B owy

oc Se ;—;_— B ﬁ owe s, B éwp
2 \

ab Sy % B ﬁ dwy 5. B éw,
2

be Se 7‘_— B ﬁ Swy s, B ow,
2 .

fa 0 B Oowy ) 0

Total  6s,Bdw

18.6 DISCONTINUOUS EQUILIBRIUM STRESS STATES

To calculate a lower bound it is necessary to analyse an equilibrium state of stress and to show
that it does not exceed one of the failure criteria given by Eqs (18.1) and (18.2). The equilibrium
states of stress may vary smoothly from place to place or there can be sudden changes of stress
across stress discontinuities, provided, of course, that the conditions of equilibrium are met
across the discontinuities.

The variation of vertical total stress with depth in the ground was given in Sec. 6.2. From
Fig 18.8 the vertical stress on an element at a depth z is

6, =7+ 4§+ Tulw (18.17)

where g is a uniform surface stress and z,, is the depth of water above ground level. For drained
loading the effective vertical stress is given by

a ¢ =0, —u ‘ (18.18)

where u is the (steady state) pressure.

In Fig. 18.9(a) there are two regions A and B separated by a discontinuity represented by
a single bold line; the stresses in each region are uniform and are characterized by the magnitudes
and directions of the major principal stresses ¢, and 0, as shown. The rotation in the direction
of the major principle stress across the discontinuity is 66 = 6, — 8,. The Mohr circles of total
stress are shown in Fig. 18.9(b). The point C represents the normal and shear stresses on the
discontinuity and the poles of the circles are found by drawing P, — C — P, parallel to the

ot A
Y F

- -0 Figure 18.8 Vertical stress in the ground.
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Figure 18.9 Change of stress across a
1) ' discontinuity. -

~

discontinuity in Fig. 18.9(a). Hence the directions of the major principal planes are given by the
broken lines in Fig. 18.9(b) and, from the properties of the Mohr circle construction given in
Sec. 2.4, we can mark 20, and 20‘,, the angles subtended by o, and 4,,, and the normal.stress -
on the discontinuity.

As usual it is necessary to consider undrained and drained loading separately. Fxgure 18.10
shows the analysis for undrained loading. Both Mohr circles of total stress touch the failure line
given by Eq. (18.1). F rom the geometry of Fig. 18.10(b), noting that AC = s,,

ds = 25, sin 5. (18.19)

Hence the change of total stress across a discontinuity is simply rclated to the rotation 46 of the
direction of the major principal stress.

\ Figure 18.11 shows the analysis for drained loading. Both Mohr circles of effective stress

touch the failure line given by Eq. (18.2) and the angle p defines the ratio 1,/0, on the

discontinuity. It is convenient to define an angle P as shown in Fig. 18.12, where

P =90°— 56 ' : (18.20)
"From the geometry of Fig. 18.12, noting that A'C' =1,

AD np=AD (18.21)

sin P =
e ) a



224 MECHANICS OF SOILS AND FOUNDATIONS

\

A xh

@)

Ly

S

al

O
o 280
C
P, Py
'\ _/
s, ds
Sw
Figure 18.10 Change of stress across
(b) a discontinuity for undrained loading.
Hence, making use of Eq. (18.20), i

sin p' = sin P sin ¢, = cos 60 sin ¢ (18.22)

With the aid of the constructions in Fig. 18.12 and noting that O'E’ = O'F,

sin(P + p') = -O—,E- sin(P — p') = 9{? (18.23)
S.

and hence, making use of Eq. (18.20),

s _ cos(d6 — p) (18.24)
s, cos(66 + p) ’

where p’ is given by Eq. (18.22).
From Eqs (18.24) and (18.22) the change of effective stress across a discontinuity is simply
related to the rotation 88 of the direction of the major principal stress.
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18.7 SIMPLE LOWER BOUNDS FOR A FOUNDATION

We can now obtain a simple lower bound solution for the foundation shown in Fig. 18.5. Figure
18.13(a) shows a state of stress with two vertical stress discontinuities where the state of stress
is symmetric about the centre-line. Shear stresses on horizontal and vertical planes are zero and
‘hence, from Eq. (18.17), the vertical stresses in elements A and C in regions I and 1II are

g, =¥z (18.25)
and the vertical stresses in ciements B and D in regions II and IV are V
| o, =q,+72 : (18.26)

Figure 18.13(b) shows the Mohr circles of total stress for the elements A and B and Fig.
18.13(c) shows the circles for the elements C and D; the points a and b represent the stresses
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on the discontinuities marked a and B in Fig. 18.7(a). From the geor-netry of Figs‘718.l.3(b) and (c),

| a4y + vz =45, + vz (1827)
and hence a lower bound for the collapse load is
F, =4s,B (18.28)

Alternatively, we could consider the rotations of the directions of the major principle stresses
across the discontinuities, making use of Eq. (18.19). For each discontinuity 46 = 90° and
s = 2s,; hence, from the geometry of Fig. 18.13(b) and (c) we obtain Eqs (18.27) and (18.28).

" The mean of the upper and lower bound solutions gives F, = 5s, and the bounds differ by
about + 20 per cent from this mean. Bearing in mind the problems in determining true values of .
s, for natural soils, which may not be either isotropic or homogeneous, these simple bounds
may be adequate for simple routine designs. However, in order to illustrate the use of slip fans
and stress fans we will examine some alternative solutions. _ _.

18.8 UPPER AND LOWER BOUND SOLUTIONS USING FANS

In Fig. 18.3(f) there is a combination of straight and curved slip surfaces and in order to have
a compatible mechanism it is necessary to have a fan a slip surfaces as illustrated. F igure 18.14
shows mechanisms and displacement diagrams for slip fans: Fig. 18.14(a) is for undrained
loading and Fig. 18.14(b) is for drained loading. You should work your way through these
together with the description of the construction of displacement diagrams given in Sec. 2.3. From
the geometry of Fig. 18.14(a),

r,=r, and &w, =0w, : (18.29)

and so the radius of the fan and the increment of displacement remain constant through a slip
fan for undrained loading. From the geometry of Fig. 18.14(b),

" n, =r, exp(f; tan ¥) ' (18.30)
w, = ow, exp(6, tan ) ‘ (18.31)
where 8, is the fan angle; thus the outer arcs of the slip fan and the displacement diagram are both

logarithmic spirals. X

For a slip fan like that shown in Fig. 18.14(a), it is necessary,to evaluate the work done on
the circular slip surface and on all the radial slip surfaces. From Fig. 18.15, summing for the
elements of the circular arc and for the radial slip surfaces, the increment of work done by the
internal stresses through the fan is

SW =Y s,R(Gw00) + L s (R3O ow (18.32)

Hence, in the limit, ‘
‘ " . .
oW = 2s,R éw I de - (18.33)
o .
and W =2s,Row =2s,RwA0 . - . (18.34)

where 6, is the fan angle which is equal to the change A8 in the direction of the vector of

- displacement dw across slip fan.

We can also consider the change of stress from one region to another across a t:an of
discontinuities, as shown in Fig. 18.16. (The fan of stress discontinuities in Fig. 18.16 is not
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{a) Undrained loading

(b) Drained loading

Figure 18.14 Slips fans and correspoBding displacement diagrams. o

Figure 18.15 Work done in a slip fan.
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Figure 18.16 Rotation of the direction of the major principal stress across
a stress fan.

necessarily the same as the fan of slip surfaces in Fig. 18.14.) The fan angle 6; is equal to the
rotation Af of the direction of the major principal stress across the fan. Figure 18.17(a) shows
a stress fan for undrained loading and Fig. 18.17(b) shows the Mohr circles of total stress for
the outermost discontinuities; within the fan there are a great many radial discontinuities and
there are equally a great many Mobhr circles between those shown. Note that the outermost
limits of the fan are defined by 6, = 6, = 45°. From Eq. (18.19), as 66 — 0,

ds
B —_= 18.35
| == (1839)
T ﬁ\
Se b
N Ota N P
l'/ c
- e
(o
S, _ As R .
L Figure 18.17 Change of stress
across a stress fan for undrained

(b) » loading.
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ry

Figure 18.18 Change of stress
across a stress fan for drained
(b) ) loading.

and integrating through the fan from region A to region B,

As = 25, A6 = 25,6, (18.36)
Figure 18.18 shows a stress fan and the corresponding Mohr circles for drained loading. As
before there will be a great number of additional radial discontinuities and Mohr circles between

the outermost ones. Note that the limits of the fan zone are defined by 6, = 6, = 45° + ¢:.
From Eq. (18.24), the change of stress across a discontinuity can be written as

ds 2sindf@sinp’

as’ _ (18.37)
s cos(d6 + p')
As 60 — 0, from Eq. (18.22) we have p’ = ¢, and from Eq. (18.37),
4 25 tan ¢ (18.38)

dé
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Hence, integrating through the fan from region A to region B,

? exp(2 tan ¢, A8) = exp(2 tan ¢’ 8,) (18.39)

Equations (18.36) and (18.39) give the changes of stress across stress fans in terms of the soil
strength s, or ¢, and the fan angle §; or the rotation A@ of the direction of the major principal
stress.

18.9 BOUND SOLUTIONS FOR THE BEARING CAPACITY OF A
FOUNDATION USING FANS )

The simple upper and lower bound solutlons obtamed earlier can now be modified by adding
slip fans or stress fans. - -

(a) Upper Bound with a Slip Fan

Figure 18.19(a) shows a mechanism consisting of two triangular wedges and a slip fan and Fig.
18.19(b) is the corresponding displacement diagram. As before the work done by the self-weight
forces sums to zero and, from Eq. (18.8),

SE = F, 5w, ’ : (18.40)

The radius of the fan is R = B/\/—Z_, the fan angle is 8; = r and éw, = ﬁ dw,. Hence, from Eq.
(18.34) the work done by the internal stresses in the slip fan is

§W = 25,R 6w 0, = 7s,B dw, (1841)
and, from Table 18.2, for the whole mcchamsm
oW = (2 + n)s,B 5w, (1842)
Equating SE and 6 W, the upper bound for the collapse load is ’
| =2+ m)Bs, (843

(b) Lower Bound with Stress Fans

Figure 18.20(a) shows a state of stress with two stress fans in regions II and IV. As before, the
state of stress is symmetric about the centre-line and Eqs (18.25) and (18.26) apply in regions I

B8
F. ' : b
- : o Sy,
‘ Sy
. o)
0 f |

Radius R = BN

Figure 18.19 Mechanisﬁ of collapse for
@) (b) a foundation.
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Table 18.2
Slip plane Shear stress Length Displacement SW =s,Ldw
oa Sy % B ﬁ owg 5,B éw,
3 g
ob s, . -}— B ﬁéw, 2s,B Sw,
2
Fan Y 9 ) — - =s, B dw,
fa B owg 0
‘ Total (2 + m)s, B dw;
I
tidadtdy
TN IR A ALY
or 7o ”
v v i 1l 1

L]
B I Vi a

i)

74
t <
LW -
A C
- - .. , . — g+ .- —
vz o
As = 1y, -
(b)

Figure 1820 Equilibrium stress ficld for a foundation.

and III respectively. Figure 18.20(b) shows Mohr circles of total stress for elements at A and C
and the points a and ¢ represent the stresses on the outermost discontinuities in the fan in region
IL From the geometry of Fig. 18.20, the fan angle is 8; = 90° = n/2 and from Eq. (18.36) the
change of stress through the fan is

As = s, Ab; = 7s, (18.44)
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From the geometry of Fig. 18.20(b),

’ g, +yz2=Q2 + n)s, + 7z (18.45)
and hence a lower bound for the collapse load is
F, = (2 + ®)Bs, (18.46)

Strictly, we should examine the state of stress in region VI where the stress fans overlap, but
the analysis is lengthy and beyond the scope of the present book. It is intuitively fairly clear
that the stresses in region VI will be less critical than those near the edges of the foundation
and that the conditions in the overlapping stress fans will tend to cancel each other out.

Notice that the upper and lower bounds given by Eqs (18.43) and (18.46) are equal and
so they must be an exact solution. We have been very fortunate to obtain an exact solution -
with such simple upper and lower bound solutions; normally you would only be able to obtain
unequal bounds.

18.10 SUMMARY

1. Estimates of the collapse of structures can be found from relatively simple upper and lower
bound calculations. An upper bound solution gives an unsafe load and if this load is applied
the structure must collapse; a lower bound gives a safe load and with this load the structure
cannot collapse.

2. To calculate an upper bound you have to choose a compatible mechanism of collapse and
equate the work done by the external loads with the work done by the internal stresses.
Mechanisms consists of slip surfaces that have circular arcs, logarithmic spirals or straight
lines and may be arranged as fan zones.

3. To calculate a lower bound you need to find a distribution of stress that is in equilibrium
with the external loads and does not exceed the appropriate failure criterion. An equilibrium
state of stress may have strong discontinuities or stress fans.

The cases discussed in this chapter have been relatively simple and were intended simply
to illustrate the basic principles of the upper and lower bound calculations. They concentrated
on undrained loading and only considered cases of smooth foundations with vertical loads so
that the shear stress between the soil and the foundation was zero. Other, more comphcated,
cases for drained loading and for rough walls and foundations are given by Atkinson 1981).

WORKED EXAMPLES

Example 18.1: Loads on trench struts for undrained soil The trench shown in Fig. 18.21 is
supported by smooth sheet piles held apart by struts, 1 m apart out of the page, placed so that
the plles do not rotate.

q= 80kPa

H=5m

Figure 1821
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&v ow

(b) - Figure 1822

(2) Upper bound. Figure 18.22(2) shows a collapse mechanism and Fig. 18.22(b) is the
corresponding displacement diagram. The forces acting on the moving block (for a slice 1 m
thick out of the page) are

. Q =gH =80 x 5=400kN

' We=4yH?>=14x 20 x 5* = 250kN

From the displacement diagram, for év = 1,
sv=6h=1 and Oow=.2
Hence, from Eq. (18.8), the work done by the external forces is
SE = Q 6v + Wby — P, 6h = 400 + 250 — P,
From Eq. (18.13), the work dissipated in the slip plane with length 5\/5 m is
SW=s,Low=40 x 5/2 x /2 =400
Hence, equation 6E = oW,
' P, = 400 + 250 — 400 = 250 kN

(b) Lower bound. Figure 18.23(a) shows a typical element in an equilibrium stress field and
Fig. 1 8:23_(b) is ;he corresponding Mohr circle of total stress. From these,

o, =g+ yz =80+ 20z
0, = 0, — 25, = (80 + 20z) — (2 x 40) = 20z

H Oh G o

VAR
N

(a) )]
Figure 1823
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Hence, integrating over the height of the trench,

: H
P1=J 20zdz = 4 x 20 x 52 = 250 kN

0o

Example 18.2: Drained bearing capacity of a foundation Figure 18.24(a) shows a long
foundation, 3 m wide and carrying a load F per metre out of the page, buried 1 m below the
ground surface in dry soil, which has a friction angle ¢’ = 20°. The bearing pressure (i.e. the
total stress on the underside of the foundation) is ¢ = F/B. For simplicity the soil is assumed
to be weightless (y = 0) except above foundation level, where y = 20 kN/m3, so that the I m
deep layer applied a uniform surcharge yD = 20 kPa at foundation level. The idealized loads
and stresses are shown in Fig. 18.24(b). ' :

3 | ¥ = 20kN/m’

(@)

+F
Y4t [YYYYYl Y ¥ 1 ¥ ¥ y P=rD=20kPa
7= FIB

(b) : Figure 18.24

.(a) Upper bound. Figure 18.25(a) shows a mechanism consisting of two wedges and Fig. 18.25(b)
is the corresponding displacement diagram. For ¢’ = 20° suitable angles for the slip surfaces
are 45° + 10° and all displacements are at angles ¥ = ¢’ = 20° to the slip surfaces. (Notice
that if ¢’ > 30° the directions ob and ab diverge and the mechanism is not compatible.)

From the geometry of Fig. 18.25(a),

L = Btan?(45° + 4¢’) =3 tan?55° = 6.1 m
and so the force applied by the stress p is '
| P=pL=20x61=122kN
From the geometry of Fig. 18.25(b), taking dw, = 1,
Sw, = tan(45° + 3¢") tan(45° + 3¢) = tan 55° tan 75° = 5.3

For drained loading, from Eq. (18.12), SW = 0. The work done by the external loads is given
by Eq. (18.9) with y = 7, = 0 for weightless and dry soil: L

SE = F, 6w — P dw, = (F, x 1) — (122 53)
Hence, équating OE = oW, o .
F, =122 x 53 = 64TkN
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(b) Figure 1825

_ (b) Lower bound. Figure 18.26(a) shows a simple equilibrium stress field, symmetric about the

centre-line, with two discontinuities. Figure 18.26(b) shows two Mohr circles of effective
stress for the two regions of uniform stress below and to the side of the foundation. From
the geometry of Fig. 18.26(b),

’

& _ 5 = tan?(45° + 4¢")
Oy P

Hence,
F, = Bp' tan*(45° + 4¢’) = 3 x 20 x tan* 55° = 250 kN

Example 18.3: Drained bearing capacity of a foundation Better bound solutions for the
foundation in Fig. 18.24 can be found using a mechanism which includes a slip fan and a
stress field which includes a stress fan.

(a) Upper bound. Figure 18.27(a) shows a mechanism consisting of two wedges and a
logarithmic spiral slip fan and Fig. 18.27(b) is the corresponding displacement diagram.
For ¢’ =20° the angles in the mechanism and in the displacement diagram are
45 + ¢’ = 55° or 35°
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a=FB

F Yty v vy Y Y ¥ ¥ Yp=y

qi, 1,7
a{.»& 5-4—0‘{.
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(b) Figure 18.26

(@)

Figure 1827
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From the geometry of Fig. 18.27(a), and making use of Eq. (18.6) with y = ¢',
L = B tan(45° + 4¢") exp(A0 tan ¢")
L = 3 tan 55° exp(n/2 tan 20°) = 7.6 m
and P=pL=20x76=152kN
From the geometry-of Fig. 18.27(b), taking éw, = 1,
5w, = tan(45° + 1¢") exp(A0 tan ¢")
ow, ="tan 55° exp(n/2 tan 20°) =2.53

For drained loading, from Eq. (18.12), W = 0. The work done by the external loads is
given by Eq. (18.9) with y =y, = 0 for weightless and dry soik '

) SE = F, dw; — P 6W,’
Equating 6E = oW,

F, =152 x 2.53 = 385kN

(b) Lower bound. Figure 18.28(a) shows an equilibrium stress field consisting of a region B

where ¢ (=g,) is vertical and a region A where ¢3 (=p = 20 kPa) is vertical. These are
separated by a fan zone with a fan angle of 90°. There could be a similar stress field at the
left-hand edge of the foundation. Figure 18.28(b) shows the two Mohr circles of effective
stress for the two regions of uniform stress. ’

From Eq. (18.39),

sy = s, exp(26; tan @') = s, exp(n tan 20°) = 3.14s,

P’E"/ ,' qi o

(b) Figure 18.28
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| From the géométry of the Mohr circlés,

o, ( 1 ) ( 1 ) 20
S=Pp\T————F T 0| ———m—= ===
1 —sin ¢’ 1 — sin 20° 0.66

r ’ 1 ¥ l ’ 1
si=gqj|l ———— )= =q —
b= (1 + sin ¢') 4 (1 T sin 20°) 13

g4, = 1.34 x 3.145, = 134 x 3.14 x .03:—6 = 128kPa

Hence,

and F,=qjA =128 x 3 = 384 kN

Notice that these last upper and lower bound solutions are the same; this is because the
mechanism in Fig. 18.27 corresponds to the stress field in Fig. 18.28.-— - Ce e
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CHAPTER

NINETEEN
LIMIT EQUILIBRIUM METHOD

19.1 THEORY OF THE LIMIT EQUILIBRIUM METHOD

The limit equilibrium method is by far the most commonly used analysis for the stability of
geotechnical structures. The steps in calculating a limit equilibrium solution are as follows:

1. Draw an arbitrary collapse mechanism of slip surfaces; this may consist of any combination
of straight lines or curves arranged to give a mechanism.

2. Calculate the statical equilibrium of the components of the mechanism by resolving forces
or moments and hence calculate the strength mobilized in the soil or the external forces
(whichever is unknown).

3. Examine the statical equilibrium of other mechanisms and so find the critical mechanism for
which the loading is the limit equilibrium load.

Remember that, as always, we must distinguish between cases of undrained and drained
_ loading. For undrained loading the ultimate strength‘of the soil is given by

T=s5, (19.1)

where s, is the undrained shear strength. For drained loading where pore pressures can be
determined from hydrostatic groundwater conditions or from a steady state scepage flownet,
the strength is given by

7 = ¢’ tan ¢, = (¢ — u) tan ¢; (19.2)

where ¢ is the critical state friction angle. These strengths give the ultimate collapse states and
in order to design safe structures or to limit ground movements, they can be reduced by a factor
F, as described in later sections. _

The limit equilibrium method combines features of the upper and lower bound methods.
The geometry of the slip surfaces must form a mechanism that will allow collapse to occur, but
they may be any shape so they need not meet all the requirements of compatibility (see Sec.
18.3). The overall conditions of equilibrium of forces on blocks within the mechanism must be
satisfied, but the local states of stress within the blocks are not investigated. Although there is
no formal proof that the limit equilibrium method leads to correct solutions, experience has
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shown that the method usually gives solutions that agree quite well with observations of the
collapse of real structures and the method is firmly established among the techniques of
geotechnical engineering. -

19.2 SIMPLE LIMIT EQUILIBRIUM SOLUTIONS

Two simple problems, one for drained loading and one for undrained loading, are shown in
Figs 19.1 and 19.2. These illustrate the general principles of the limit equilibrium method. Figure
19.1(a) shows part of a very long slope in-soil where the pore pressures are zero. The problem
is to determine the critical slope angle i, when the slope fails. A mechanism could be a straight
slip surface at a depth z as shown, and the forces on the block with length L down the surface
are marked on the diagram. If the slope is very long, F; and F, are equal and opposite. The
normal and shear forces on the slip surface are T' = 7'L and N’ =¢’L and the weight is
W = yLz cos i. Figure 19.1(b) is a polygon of these forces which closes (i.e. the forces are in
equilibrium) when
: 1 = -t— =tani, : (19.3)
N ¢

Hence, from Eq. (19.2), the limit equilibrium solution is

i. = ¢ ' (19.4)

-

Figure 19.1 Limit equilibrium
solution for stability of an infinite
(b) slope for drained loading.

Z'%, Silys,
/ -~ Figure 19.2 Limit equilibrium solution for the bearing
. \ capacity of a foundation for undrained loading.
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/ Figure 19.3 Limit equilibrium solution for the bearing
c capacity of a foundation for undrained loading.

Strictly we should consider other possible mechanisms with combinations of curved and straight
slip surfaces, but it is fairly obvious that the mechanism illustrated in Fig. 19.1 is one of the
most critical. The solution i, = ¢ can also be obtained as an upper bound and as a lower bound
50 it is an exact solution. , ,

Figure 19.2(a) shows a section of a foundation with width B and unit length out of the page
so that the width B is equal to the foundation area A. The foundation is loaded undrained and
the undrained strength of the soil is s,. The problem is to determine the collapse load F, or the
ultimate bearing capacity ¢g. = F./A. A mechanism could be a circular slip surface with centre
O at the edge of the foundation. The rotating block of soil is in equilibrium when the moments
about O balance and

F, x 4B =s,BST (19.5)

where ST = nB is the length of the arc ST. Notice that the lines of action of the weight W of
the soil block and the normal stresses on the circular slip surfaces act through O and so their
moments about O are zero. From Eq. (19.5) we have

F, = 2zBs, (19.6)

As before we should now consider other possible mechanisms with combinations of straight and
curved slip surfaces to seek the minimum value of F,, which will be the limit equilibrium solution.
Figure 19.3 shows a circular slip surface with its centre at a height h above the ground surface.
Readers should show that the minimum value for this mechanism is F, = 5.5Bs, when h/B = 0.58;
one way to do this is-to take trial values of h and plot F, against h to determine the minimum
value of F_.

Remember that in Chapter 18 we obtained equal upper and lower bound solutions (i.e. an
exact solution) for a foundation on undrained soil as F, = (2 + n)Bs, (see Eq. 18.46) and so,
in this case, the best limit equilibrium solution with a circular arc slip surface overestimates the
true solution by less than 10 per cent.

19.3 COULOMB WEDGE ANALYSIS

Calculation of the loads required to maintain the stability of a retaining wall provides a
convenient example to illustrate both the basic features of the limit equilibrium method and a
number of special features of the method. Solutions are particularly simple as a mechanism can
be constructed from a single straight slip surface. This calculation was first developed by
Coulomb in about 1770 and is one of the earliest engineering calculation still in current use,
although with a number of modifications.
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(a)

. . (9

Figure 19.4 Coulomb wedge analysis for a smooth wall for undrained loading.

Figure 19.4(a) shows a section of a smooth wall with unit length out of the page supporting
soil that is undrained. The horizontal force on the wall necessary to prevent the soil collapsing
into the excavation is P, and this is called the active force (see Sec. 21.1). (In practice, vertical
cracks may form in the ground near the top of the wall; I will consider the influence of tension
cracks later, but for the present I will assume that they do not occur.) A mechanism can be
constructed from a single straight slip surface at an angle x and there must be slip surfaces
between the soil and the wall as shown.

The forces acting on the triangular wedge are shown in Fig. 19.4(b). There is no shear force
between the soil and the smooth wall. The directions of all the forces are known and the
magnitudes of P, and N are unknown; the magnitude of the shear force T is given by

T=s,L , , _.(18.7)

where s, is the undrained strength and L is the length of the slip surface; T acts up the surface
as the wedge moves down into the excavation. With two unknowns the problem is statically
determinate and a solution can be found by resolution of the forces; notice that if you resolve
in the direction of the slip surface N does not appear and P, can be found directly. Alternatively,
the solution can be found graphically by constructing the closed polygon of forces in Fig. 19.4(c).
To obtain the limit equilibrium solution you must vary the angle « to find the maximum,
or critical, value for P,. If you do this you will find that the critical angle is « = 45° and the
limit equilibrium solution is

P, =4yH? - 2s,H . (19.8)

Notice that if we put P, = 0 we obtain
H, = ds ‘ : (19.9)

N ? B

which is a limit equilibrium solution for the undrained stability of an unsupported trench.
This analysis can be extended quite simply to include the effects of foundation loads, water
in the excavation and shear stresses between the soil and a rough wall. The additional forces are
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L — P,
N ¢ P,

: Figure 19.5 Coulomb wedge anaiysis for
(2) (b) a rough wall for undrained loading.

\
shown in Fig. 19.5(a) and the corresponding polygon of forces is shown in Fig. 19.5(b). The
shear force on the wall S, is given by

S, =s,H ‘ (19.10)
where s,, is the ultimate shear stress between the soil and the wall; obviously s, must be in the
range 0 < s, < s, depending on the roughness of the wall. Free water in the excavation applies
a total force P, to the wall, given by

P,=4 H: (19.11)

where H, is the depth of water in the excavation. For the undrained case the pore pressures ig
the soil do not come into the calculation and will not be in equilibrium with the water pressure
in the excavation. Again the only unknowns are the magnitudes of the forces N and F,, s0 the
problem is statically determinate. The limit equilibrium solution is the maximum value of P,
and coincides with the critical slip surface.

The case shown in Fig. 19.6 is similar to that in Fig. 19.4 except that the soil is drained and
dry so pore pressures are zero. The forces on the triangular wedge are shown in Fig. 19.6(a).
There are now three unknown forces, 7, N’ and P, but the forces T° and N” are related by
Eq. (19.2) so the resultant of T and N’, shown by the broken line, is at an angle ¢, to the
direction of N'. (The primes are added to these forces because they are associated with the
effective stresses in the dry soil.) This now provides sufficient information to construct the force
polygon shown in Fig. 19.6(b) to caiculate the magnitude of F,. To obtain the limit equilibrium
solution you must vary the angle a to find the critical value for P,. This occurs when
& = 45° + $¢., and the limit equilibrium solution is ) B

P, = {yH? tan*(45 — $¢7) (19.12)

P.

LA

Figure 19.6 Coulomb wedge analysis for 2
{2) () smooth wall for drained loading.
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(a) (b)

Figure 19.7 Coulomb wedge analysis for a rough wall for drained loading.

This solution was developed by Rankine in about 1850 (but in a different way) and is really a
case of the Coulomb wedge analysis. )

Again the analysis can be extended to include external loads, water in the excavation, pore
pressures and shear stresses between the soil and a rough wall. The additional forces are
shown in Fig. 19.7(a) and the corresponding polygon of forces is shown in Fig. 19.7(b). For
simplicity the water table is assumed to be the same in the soil and in the excavation, so there
is no seepage; later I will examine the case where the excavation is dewatered and there is a
steady state seepage flownet in the soil. The force U is the sum (or integral) of the pore pressures
over the slip surface and is found by summing Eq. (6.4) over the length L of the slip surface.
The shear force T” is given by

_ T' = N'tan ¢, = (N — U) tan ¢, (19.13)
Similarly, the shear force between the soil and the wall is given by
T, = P,tan &, (19.14)

where &, is the ultimate or critical friction angle between the soil and the wall; obviously &,
must be in the range 0 < &, < ¢, depending on the roughness of the wall. Notice that the total
normal force on the vertical face of the soil is. P, + P, (ie. the sum of the force from the support
prop and the force from the free water). . : :

In Figs 19.4 and 19.6 the major principal planes are horizontal because the shear stress on the
wall is zero and o, > 6. In Sec. 2.6 we found that zero extension lines (i.c. lines of zero strain)
were at angles a = 45° + 3y to the major principal plane and planes where the stress ratio was
T/d’ = tan p’ were at angles x = 45° + 4p’ to the major principal plane. For undrained loading
¥ = 0 and for drained loading, at the critical state p’ = ¢;. Hence the critical surfaces in these
limit equilibrium solutions coincide with the critical planes and zero extension lines obtained
from the Mobhr circle constructions discussed in Chapter 2. In Figs 19.5 and 19.7 there are shear
stresses between the wall and the soil, so horizontal and vertical planes are not principal planes
and the critical surfaces are not necessarily at angles & = 45° or 45° + 1¢. to the horizontal.

19.4 SIMPLE SLIP CIRCLE ANALYSES FOR UNDRAINED LOADING

A mechanism in which the slip surface is a circular arc—or a slip circle—as shown in Fig. 19.2,
is very commonly used in routine limit equilibrium analyses in geotechnical engineering. The
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Xy

Xw

TSRS
1=3$, \
/'
4
H,.
7~
7 | Figure 19.8 Slip circle method for
i undrained loading.

methods of solution are different for drained and for undrained loading and we will consider
each separately. '

Figure 19.8 shows a section of a slope with a foundation at the top and water in a river or
lake at the toe. There is 2 mechanism consisting of a single circular arc with centre at O. The
forces on the mechanism are due to the foundation load F, the weight of the soil W, the free
water P, and the shear stresses in the soil 7 = s, AB where AB is the length of the arc AB; these
forces have lever arms x and R as shown. Taking moments about O, the foundation and slope
are just stable when

Wx, + Fx; — P.x, = s, ABR (19.15)

The limit equilibrium solution must be found by searching for the critical slip circle by varying
the radius and the position of the centre. Notice in Fig. 19.8 that the normal stresses on the slip
circle are radial and pass through the origin, so they have no moment about O. Calculation of
values for Wx, and s,ABR can be 51mp11ﬁcd by dividing the mechanism into a number of
vertical slices and tabulating the results as in Fig. 19.18 in Example 19.3.

19.5 SLIP CIRCLE METHOD FOR DRAINED LOADING—THE METHOD
OF SLICES

Figure 19.9(a) shows a slope with a steady state secpage flownet to a drain at the toe. Pore
pressures anywhere in the slope can be calculated from the flownet, as described in Chapter 17.
Figure 19.9(b) shows a slip circle mechanism and, taking moments about the centre O, the slope
is just stable when

Wx = RJ‘ v dl (19.16)
AB

where the shear stresses are given by -
= (¢ — u) tan ¢, (19.17)

Although we can calculate values for the pore pressure u around the slip circles we cannot, at
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(b

Figure 19.9 Slip circle method for drained loading.

present, calculate the normal stresses o. Thus the simple analysis which served for undrained
loading for which t = s, cannot be used for drained loading.

The approach adopted for the method of slices is to subdivide the mechanism into a number
of approximately equal vertical slices and examine the statical equilibrium of the slices and, by
summation, of the whole mechanism. Figure 19.10(a) shows the mechanism of Fig. 19.9 divided
into four slices, of which a typical slice FGHJ is shown in Fig. 19.10(b). The total forces on the
slice shown in Fig. 19.10(b) are its weight W, and total normal and shear forces N and T on
the base FJ, and forces F, and F, from adjacent slices. The interslice forces Fy and F, are not
necessarily equal and opposite, and their resultant F acts at a height a above the centre of the
base of the slice and at an angle 8 to the horizontal. The total normal and shear forces on the
base of the slice are related by

T=(N-U)tan ¢, | (19.18)

where the forces T = tl, N = ol and U = ul, where [ is the length of the base FJ. Summing for
all the slices gives: '

YT=Y(N-Utang, (19.19)

The interslice forces such as F may be decomposed into horizontal and vertical components
E and X. In the slip circle method the boundaries between adjacent slices are not slip surfaces
and so nothing can be said at present about the magnitude, direction or point of application of
the force F in Fig. 19.10. Considering the forces on the block FGHJ in Fig. 19.10(b), the
magnitudes, direction and points of application are known for W and U, the directions and
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Figure 19.10 Slip circle method for drained
loading—method of slices.

points of application are known for T and N, but nothing is known about the force F. Thus
there are five unknowns: T, N, F, a and 6. We can obtain three equations by resolution of forces
and by taking moments following the usual rules of statics. These, together with Eq. (19.18),
lead to a possible total of four equations and each slice is statically indeterminate. To obtain a
solution for the method of slices for drained loading we are obliged to make at least one
simplifying assumption in order to make the problem statically determinate. There are a number
of such solutions, each based on a different simplifying assumption. For the present I will
consider the two commonest of these solutions.

(8) The Swedish Method of Slices (Fellenius, 1927)

Here it is assumed that the resultant F of the interslice forces is zero for cach slice and thus F,
a and 0 vanish. Each slice is then statically determinate, and from Fig. 19.11 we have

T=Wsina N=Wcosu (19.20)

where a is the average inclination of the slip surface at the base of the slice. Here we may calculate
T and N for each slice and, for equilibrium, making use of Eq. (19.19),

Y Wsina=Y (Wcosa— ul)tan ¢ (19.21)

where u is the average pore pressure over the length I of the base of each slice. Instead of making
use of Egs (19.20) we may calculate T and N for each slice from force polygons like those shown
in Fig. 19.10(b). The calculations are assisted by the use of a table such as that shown in Fig.
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Figure 19.11 Slip circle method for drained
(b) o loading—Swedish method.

19.19(c) in Example 19.4. As before, it is necessary to examine a number of different mechanisms
to locate the critical slip circle; the slope is taken to be in a state of collapse if Eq. (19.21) is
satisfied for any mechanism. i

(b) The Bishop Routine Method (Bishop, 1955)

Here it is assumed that the resultant of the interslice forces is horizontal. Hence # =0 as shown
in Fig. 19.12 and each slice is statically determinate. After resolving, taking moments and
summing over the whole mechanism, the solution comes out in the form

- ZWsina;=z(W—ub)sccaztanqb’,

1 + tan a tan ¢, ‘
where b is the width of each slice. In practice, evaluation of Eq. (19.22) is simplified if use is
made of a table similar to that in Fig. 19.19(c). As before, it is necessary to examine a number
of different mechanisms to locate the critical slip circle; the slope is then taken to be in a state
of collapse if Eq. (19.22) is satisfied for any mechanism. : .

(19:22)

19.6 OTHER LIMIT EQUILIBRIUM METHODS

So far we have considered mechanisms consisting either of a single straight slip surface or a
circular arc. The limit equilibrium method is not restricted to these geometries and there are two
other commonly used arrangements of slip surfaces. ' '
Figure 19.13 shows a mechanism consisting of several straight slip surfaces forming two
triangular wedges and a block; this mechanism is appropriate where a layer of relatively weak
soil occurs within the slope as shown. The shear and normal forces across each slip surface are
marked. In this case, unlike the method of slices, the soil in the vertical slip surfaces is at failure
and so the shear stresses can be determined from either Eq. (19.1) or (19.2) and the lengths of
the slip surfaces. Working from the left-hand wedge towards the right, the forces on each block
are statically determinate. : , :
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Figure 19.12 Slip circle for drained loading—
{b) Bishop'’s m=thod.

Figure 19.14 shows a mechanism in which there is a single continuous slip surface of general
shape. The solution is found using the method of slices, as described above, for which at least
~ one simplifving assumption is required. Thus the Swedish method (X and E = 0) or the Bishop
routine method (X = 0) can be applied to general slip surfaces. Other solutions were developed
by Janbu (1973) and by Morgenstern and Price (1965). You can see that all these named methods
(Swedish, Bishop, Janbu, Morgenstern and Price, and others) are basically limit equilibrium
solutions using the method of slices with different assumptions to avoid the problem of statical
indeterminacy.

Weak soil

N Figure 19.13 Wedge method.
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Figure 19.14 General slip surface method.

19.7 LIMIT EQUILIBRIUM SOLUTIONS

Although the limit equilibrium method is approximate and requires a number of basic
assumptions it has advantages over other methods. It is quite general and can be applied to
walls, slopes or foundations, or to any combination of these. The method can be adapted for
cases where the soil has layers with different properties or irregularly shaped boundaries.

The calculations for determining the forces on slices and for varying the geometry of the
mechanism of slip surfaces are largely repetitive and there are a number of computer programs
for the stability of geotechnical structures that make use of the limit equilibrium method.

19.8 SUMMARY

1. The basic limit equilibrium method requires that blocks of soil inside a mechanism of slip
surfaces are in statical equilibrium. ) ‘

2. Mechanisms consist of slip surfaces which may be straight lines, arcs of circles (in the slip
circle method) or any general shape.

3. Coulomb and Rankine analyses apply for mechanisms consisting of a single straight slip
surface and the equilibrium calculations can be done using polygons of forces.

4. For undrained analyses with slip circles solutions can be found by taking moments about
the centre of the circle. )

S. For drained analyses with slip circles or with any general slip surface the problem is statically
indeterminate and solutions are found using the method of slices with one of a number of
alternative assumptions. ' o ' .

WORKED EXAMPLES
.” . Example-19.1: Coulomb wedge analysis for undrained loading The trench shown in Fig.

19.15 is supported by rough sheet piles held apart by struts, 1 m apart out of the page, placed
so that the piles do not rotate. The trench is part filled with water as shown.

‘ : q = 80kPa
R l ] IR
= 'y
s, = 40kPa ¢. =25°
su=20kPa &, =15° 4m Sm
y = 20kN/m’ , - -
Y Figure 19.15
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P,=70
P.=80
W=200"  UnitskN
(2) T=28
r Q = m
. (b) Figure 19.16

For undrained loading a suitable Coulomb wedge is formed by a single slip plane at 45° to
the horizontal and Fig. 19. 16(a) shows the forces on the wedge. The magnitudes of the known
forces are

Q =gH =80 x 5=400kN
W=4yH?=1x 20 x 52 = 250 kN
T=/2Hs, = /2 x 5 x 40 = 283kN
S, = s H =20 x 5 = 100kN
P,=%% ,Hi=1x10x4%=80kN
The force polygon is showp in Fig. 19.16(b). Scaling from the diagram, or by calculation,
L B =T0kN
Example 19.2: Coulomb wedge analysis for drained loading For drained loading a suitable

Coulomb wedge is formed by a slip plane at « = 45° + 1¢. = 574° to the horizontal and Fig.
19.17(a) shows the forces on the wedge. The magnitudes of the known forces are

Q = qH tan(90° — ) == 80 x 5 x tan 32.5° = 255kN
W = 4yH? tan(90° — ) =§ x 20 x 5% x tan 32.5° = 159 kN
P, =%, H —1x10x42 80 kN

=95kN

U=§7,H,2,x;=§x10x42x - 1
sin o sin 57.5°

and the other information is
= (N — U)tan 25°
T, = P'tan 15°
The force polygon is shown in Fig. 19.17(b). Scaling from the diagram or by calculation,
P, =245kN



LIMIT EQUILIBRIUM METHOD 253

Figure 19.17

Example 19.3: Undrained slope stability Figure 19.18(a) shows a slope and a slip circle
divided into slices. For the case where the soil is undrained, replacing s, with s,/F, and making
use of Eq. (19.15),

F, =

R=12m

s.RI
Wx

Soil s, = 40kPa

y = 20kN/m’
(@
Slice  Area w x Wx ! SRl
(m) (kN) (m) (kNm) (m) (kNm)
1 38 76 9.2 699 4.0 1920
2 14.4 288 6.8 1958 37 1776
3 15.3 306 38 1163 3.2 1536
4 13.8 276 0.8 221 3.0 1440
5 10.2 204 -2.2 -449 3.0 1440
6 38 75 -4.7 -353 3.2 1536
Totals 3239 9648

®)

Figure 19.18
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Soil ¢¢ = 30°

y = 20kN/m*

5m

(b)

Slice Area W a Wsing  Wcosa h w | ul Weose - ul
(m°) (kN) (kN) (m) (kN/m=) (m) (kN) (kN)
] 38 76 s 6l s 14 13.7 1.0 500 =10
2 14.4 288 36° 169 233 3.0 29.4 3.7 109 124
3 15.3 306 a° 105 288 4.0 39.2 32 126 162
4- - - 138 276 4 19 275 38 373 - -30 112 163
5 10.2 204 -10° =35 201 2.8 27.5 3.0 £ 119
6 3.8 76 -25° -32 69 14 139 3.2 4 25
Totals 287 583

©

Figure 19.19

The table in Fig. 19.18(b) gives the calculations for each slice and, summing over the whole
mechanism,

F=228_ 508
3238

You should now repeat the calculations with different values of the radius R and different
positions for the centre O to find the lowest value of F,.
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Example 19.4: Drained slope stability Figure 19.19(a) shows a slope and a slip circle
divided into slices and Fig. 19.19(b) shows a flownet sketched for steady state seepage towards
a drain at the toe of the slope. The pore pressure at any point on the slip circle can be estimated
from the height of the water in a standpipe on an equipotential as shown.

Replacing tan ¢ with tan ¢ /F, and making use of Eq. (19.21) for the Swedish method of
slices,

_ 2 (Wcosa—ul)
© Y Wsina

The table in Fig. 19.19(c) gives the calculations for each slice and, summing over the whole
mechanism,

F, tan ¢,

F = & tan 30° = 1.17
287

. _ You should now repeat the calculations with different circles to find the lowest value of F,. Notice
that near the toe of the slope the seepage becomes approximately parallel to the surface (see
Sec. 20.6) and there is the possibility of local instability, which should be investigated.
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CHAPTER

TWENTY
STABILITY OF SLOPES

20.1 INTRODUCTION

The surface of the earth is very rarely flat and so there are slopes nearly everywhere. Even
relatively flat ground often has rivers and drainage channels with side slopes. Slopes may be
natural, due to erosion by rivers or the sea, or man-made by excavation or fill. Man-made slopes
for roads and dams are permanent, but temporary slopes are required during construction of
foundations and underground structures.

The geometry of a slope may be characterized by its angle i and height H, as shown in Fig.
~ 20.1. The loads on the slope are due to the self-weight of the soil and to external loads, which

may come from foundations at the top or water in the excavation. A special case of a slope is
a vertical cut, such as the sides of a trench, where i = 90°. In the soil behind any slope there
* will be shear stresses and these are required to maintain the slope. Materials that cannot sustain
shear stresses cannot have slopes, so water in a glass has a level surface.

During excavation of a slope the mean normal total stresses will be decreased due to removal
of soil from the excavation, while during construction of an embankment the mean normal total
stresses will increase as more fill is placed. In both cases, however, the shear stresses increase
as the height and/or slope angle increase. I will call any kind of slope construction loading
because the shear stresses increase irrespective of what happens to the mean normal total stress.

If a slope is too steep or too high it will fail and there will be a slip or landslide, as illustrated
in Fig. 20.2. The slip will stop when the height and angle are critical (H, and i.) and the slope
has a factor of safety of unity. Rock slopes can be very steep and very high (look at a photograph
of Everest, for example), but soil slopes are much more modest, with angles from 10° to 30°

V7 [

Soil (7, s, or ¢') H
Water pressures u .

7% Figure 20.1 Geometry of a simple slope.

~mr
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H,

AN Figure 202 Simple slope failure.

and, for steeper angles, heights up to 20 m. The best laboratory to study slope stability is at the
seaside where you should dig a hole in the beach and construct a sandcastle.

20.2 TYPES OF INSTABILITY

--Slope instabilities involve large ground movements and usually require a mechanism of slip
surfaces. Mechanisms can have a number of different configurations and some typical ones are
illustrated in Fig. 20.3. In Fig. 20.3(a) and (b) the soil is homogeneous and the position of the
slip surface (deep or shallow) is governed largely by the pore pressures. In Fig. 20.3(c) and (d)
the geometry of the slip surface is controlled by strong or weak layers. Figure 20.3(¢) illustrates
a mud flow where there are very large homogeneous strains. Figure 20.3(f) illustrates a block

(@ (b}
Str& | — |
=

T N

T = Weak »= v- — S5
© @)
M =N
] J\—
N
© ®

Figure 20.3 Types of slope failure.
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failure of a fissured or jointed soil; this mechanism is not compatible because a vertical crack
has opened.

Figure 20.3 illustrates only a few characteristic slope instability mechanisms and there are
others. Many real landslides and slope failures involve combmanons of several different
mechanisms and can be quite complicated.

20.3 STRESS CHANGES IN SLOPES

Natural slopes are usually eroded very slowly and the soil is essentially drained so that pore
pressures are governed by steady state seepage from the .ground towards the excavation.
Man-made slopes are often constructed quite quickly and in clays the soil will be essentially.
undrained during the excavation.

The changes of total and effective stress during undrained slope excavation are illustrated
in Fig, 20.4. In Fig. 20.4(a) the total stresses on a typical element on a slip surface are 7 and o
and the pore pressure is illustrated by the rise of water in a standpipe. (For simplicity the

- excavation is kept full of water so that the phreatic surface is level and the initial and final pore
pressures are the same.)

In Fig. 20.4(b) the total stress path is A — B; this corresponds to a reduction in ¢ due to
the excavation and an increase in 1 because the slope height and/jor angle are increased. The
effective stress path is A’ — B’, which corresponds to undrained loading at constant water
content, as shown in Fig. 20.4(c). The exact effective stress path A’ — B’ in Fig. 20.4(b) will
depend on the characteristics of the soil and its initial state or overconsolidation ratio, as
discussed in Chapter 11.

As shown in Fig. 20.4(b), the pore pressure immediately after construction y; is less than
the steady pore pressure u, and so the initial excess pore pressure i; is negative (i.c. the level of
water in the standpipe is below the phreatic surface, as shown in Fig. 20.4(a). As time passes

¥ A

(e)

Figure 20.4 Stress and pore pressure changes in a stable slope.
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the total stresses remain unchanged at B (because the geometry of the slope remains the same)
but the negative excess pore pressures dissipate and rise. The effective stress pathis B = C’ and
this corresponds to swelling and a reduction in mean normal effective stress, as shown in Fig.
20.4(b) and (c). The final state at C’ corresponds to a steady statc porc pressure after
consolidation (swelling) u,; in the example shown u, = u, but the arguments would be the same
if u, was different from ug, which would be the case if the excavation was drained of water.

The slope will fail if the states of all elements along the slip surface reach the critical state
line: if B’ reaches the critical state line the slope fails during undrained excavation and if C’
reaches the critical state line the slope fails some time after construction. The distance of the
effective stress points B’ or C' from the critical state line is a measure of the factor of safety of
the slope and Fig. 20.4 demonstrates that the factor of safety of a slope decreases with time.

This means that the critical time in the life of a slope is in the long term when the pore
pressures have come into equilibrium with the steady state seepage flownet. Consequently, a
permanent slope should be designed for the long-term, fully drained, condition. Temporary
slopes that are required to stand for very short periods are often designed as undrained, but
remember that just because a slope or a trench is standing now does not mean that it will still
be stable in 10 minutes time. Slopes and excavations are very dangerous; many people are killed
by trench failures which occur as the effective stresses move from B’ towards C’ in Fig. 20.4. In
the design of temporary excavations the important question is not so much the undrained
stability but how quickly the pore pressures will increase.

If a slope fails the total stresses change as the angle and height reduce as shown in Fig.
20.5(a). Figure 20.5(b) shows stress paths for a steep slope failing during undrained excavation.
The effective stress path is A’ — B and this ends on the critical state line where the undrained

r,r’J

Figure 20.5 Stress and pore pressure changes in failing slopes.
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strength is s,. The total stress path would like to continue to X, corresponding to the initial
slope angle i,, but cannot; therefore the slope geometry changes and the mean slope angle i, and
height H, correspond to total stresses at B. Figure 20.5(c) shows stress paths for a slope that
fails some time after excavation. The state immediately after excavation is B and B’ and failure
occurs at C and C’ when the pore pressure is u,. Subsequently, as the pore pressures continue
to rise, the effective stresses move along C' — D’ down the critical state line and the total stresses
" 'move more or less along C — D due to unloading (i.e. reduction) of the shear stress as the slope
- angle decreases. The slope will reach a stable state when the pore pressure u, is the final steady
state pore pressure. )

These analyses and the stress paths shown in Figs 20.4 and 20.5 are simplified and idealized
but they illustrate the essential features of the behaviour of slopes during and after construction.
Notice the critical importance of changing pore pressures with time and their influence on
stability. The examples were for excavated slopes where pore pressures decreased during
undrained excavation. In man-made compacted soils the initial pore pressures are negative
because the fill is unsaturated and so the initial states at B and B’ are more or less the same for
cut and fill slopes. . . A -

20.4 INFLUENCE OF WATER OI;I STABILITY OF SLOPES

Water influences slope stability in several fundamentally different ways and these are illustrated
by commonly observed failures. Firstly, slopes may fail well after completion of excavation due
to dissipation of negative excess pore pressures and swelling and softening of the soil. as discussed
in Sec. 20.3. Secondly, slopes in river banks, lakes and trenches may fail if the external water
level is quickly lowered. Thirdly, slopes often fail after periods of heavy rainfall.

Free water in a river or lake, or in a water-filled trench, applies total stresses o, to a soil
surface, as shown in Fig. 20.6. These total stresses help to support the slope which may fail if
the support is removed. (In practice temporary excavations for piles and retaining walis are
supported by a slurry of bentonite clay, or some other natural or artificial mud, with unit weight
greater than that of water.) Notice that after undrained excavation the pore pressures in the
soil may not be in equilibrium with the free water in the excavation.

Slope failures after rainfall, or after changes in the groundwater conditions, are due to
increases in the pore pressures which lead to reductions in effective stress and the strength.

“(Notice that the soil remains saturated while pore pressures change and there is no question of
the rainwater lubricating the soil—this is an entirely false interpretation.) In order to calculate
the pore pressures in a slope under steady state conditions it is necessary to draw a flownet as
described in Chapter 17. Figure 20.7 shows typical flownets for steady state seepage towards a
drain in a road cutting and for flow parallel to a long slope. Pore pressures are given by the
heights of water in standpipes, and this will be to the same level for all standpipes inserted to
the same equipotential. In Fig. 20.7 the level of water in the standpipes inserted to the phreatic
surface is at the phreatic surface and this gives the level for all standpipes at a particular
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7S Figure 20.6 Loads on slopes from water in the excavation.
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. Figure 20.7 Flownets for steady state
b seepage in slopes.

equipotential. From the geometry of Fig. 20.7(b),
h, = mzcos?i (20.1)

while for the flownet in Fig. 20.7(a) pore pressures may be found by graphical rconstructions.
For dry soil m = 0 and if the phreatic surface is at ground level m = 1.

20.5 CHOICE OF STRENGTH PARAMETERS AND FACTOR OF SAFETY

There are a number of possible criteria for defining soil strength (see Chapter 9). The most
important of these are the distinction between the undrained strength s, and the drained or.
effective stress strength and the distinction between the peak strength, the ultimate or critical
state strength and the residual strength. : -

The choice between the undrained strength s, and the drained strength is relatively simple
and straightforward. For temporary slopes and cuts in fine-grained soils with low permeability
choose the undrained strength s, and carry out an analysis in total stresses. If you do this
remember that the analysis is valid only so long as the soil is undrained and the stability will
deteriorate with time as the pore pressures increase and the soil sweils and softens.

For any permanent slope the critical conditions are at the end of swelling when pore
pressures have reached equilibrium with a steady state seepage flownet or with hydrostatic
conditions. In this case choose an effective stress strength and calculate the pore pressures
separately. Analyses for slopes where the excess pore pressures due to excavation have only
‘partially dissipated are beyond the scope of this book.

Further choices must be made between the peak, critical state and the residual strength
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Displacement (mm) Figure 20.8 Variation of strength with displacement.

together with an appropriate factor of safety. The general variation of shearing resistance in soil
with deformation or strain is illustrated in Fig. 20.8 (this is essentially the same as that shown
in Fig, 9.3). The first thing to note is that if a major landslide or slope failure has occurred in
a clay slope in the past the soil may have already reached its residual state. In this case new
construction, either excavations or loading, may reactivate the old movements and the
appropriate strength is the residual friction angle ¢;. Detection of pre-existing landslides, some
of which may be geologically very old, requires very detailed and careful ground investigations.

In the absence of pre-existing failures the choice is between the peak or the ultimate strength.
In uncemented soils the peak strength is associated with dilation and occurs at relatively small
strains or displacements of the order of 1 per cent or 1 mm. The ultimate (or critical state)
strength is the shearing resistance for constant volume straining and occurs at strains or
displacements of the order of 10 per cent or 10 mm.

Engineers designing slopes will not generally be concerned with ground movements (unlike
designs for foundations and retaining walls) and they will simply want to ensure that the slope
does not fail. In many slopes ground movements and strains are relatively large and exceed the
small movements required to mobilize the peak state. If a steep slope fails it will come to rest
when the geometry of the slope is in equilibrium with the ultimate or critical state strength and
the pore pressures. There is ample evidence that the stability of cut and fill slopes is controlled
by the critical state strength, with a factor of safety close to unity.

For the stability analyses of slopes described in the next sections I will choose the critical
state strength parameters s, or ¢,. These strength parameters may be a little conservative in
some cases but their use will lead to safe designs. If there is evidence of pre-existing landsliding
you should consider using the residual strengths. The peak strength, which occurs at relatively
small strains, is unconservative for analyses of slope stability. If the soil is structured or cemented
(see Chapter 15) use of the critical state strength is likely to be overconservative: analyses of
the stability of slopes in cemented soils are difficult and are beyond the scope of this book.

For slope stability analyses the factor of safety-F; should be applied to the soil strength so
that the shear stresses mobilized in the soil, 7, or 7, are given by

L= =5, (20.2)

= ¢’ tan ¢, (20.3)

where s,, and ¢, are allowable strength parameters. The idea here is to reduce the soil strength

and then see that the slope is in equilibrium with the lower strengths. .
The factor of safety should take account of uncertainties in the determinations of the loads

(including th. 1nit weight ), the soil strengths and particularly the pore pressure or drainage
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conditions. The critical state strength of soils can be determined in laboratory tests on
reconstituted samples with little uncertainty, although in practice the value may vary with depth
through layered soils. The greatest uncertainty is in determination of steady state pore pressures
in drained analyses or in the assumption of constant volume (and hence constant strength) in
undrained analyses. There is no single value for F, that can be recommended for slope stability
calculations. Instead, you should investigate the consequences of changing the values of the loads,
strengths and pore pressures. If you take the worst credible values for these parameters, values
of F, only slightly greater than unity will be adequate.

20.6 STABILITY OF INFINITE SLOPES

From now on I will examine the limiting stability of slopes with the critical state strengths s,
or ¢.; to apply a factor of safety you can do the same calculations using s,, or ¢, obtained
from Egs (20.2) and (20.3). For slope stability calculations you can use the upper and lower ~
bound method described in Chapter 18 or the limit equilibrium method described in Chapter
19. A simple but very useful case is for shallow sliding on a slip surface parallel to the slope, as
illustrated in Fig. 20.3(b). The depth to the slip surface will be controiled by geological or
groundwater conditions; a common case is where there is a mantle of soil over rock in a hillside
and the slip surface is close to the interface between the soil and the rock.

(a) Undrained Loading

Figure 20.9(a) shows an infinite slope where the angle is an upper bound i, with a mechanism -
of plastic collapse consisting of a slip surface through the soil at the rock level; there is a block
of soil length | measured down the slope. The corresponding displacement diagram for an
increment of displacement §w is shown in Fig. 20.9(b). For an infinitely long slope, the forces
on any such block are the same as those on any other similar block and so the forces F,
and F, are equal and opposite. From the geometry of Fig. 20.9(a) the weight of the block (for
unit thickness normal to the page) is

- W=yHlcosi, ’ (204)
and from Fig. 20.9(b) the vertical coi'nponentpf displacement isr -
ov = dw ;in i - (20.5)

2

i : .
S H ' .
] . ) \ 6!" dw » . )
(o} . .
Soil (7. 5.) ~ Figure 209 Mechanism of plastic
. collapse for an infinitely long slope

(a) (b . _ for undrained loading.
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Figure 20.10 Equilibrium state of stress for an infinitely long
(b) slops for undrained loading.

Hence, noting that the increments of work done by the equal and opposite forces F; and F,
sum to zero, we have

OW = s, ow  (20.6)
8E = yHl cos i, éwsin i, (20.7)
and, equating §W = SE, an upper bound for the critical slope angle is given by
. .S, ’

sin i, cos i, = ;E (20.8)
- , . oy 25,

and iy=4sin"!— (20.9)
yH

Figure 20.10(a) shows forces and stresses on an element in an infinite slope where the angle
is a lower bound i,. The state of stress increases linearly with depth from zero at the surface
and the maximum shear stress t = s, occurs on a surface parallel with the slope. For an infinite
slope, as before, the forces F, and F, are equal and opposite and the weight of a block of soil
of length [ is W = yH! cos i,. Hence, resolving normal to and along the slope, we have

o,=yHcos?iy, 1t =yHsinicosi / (20.10)

where ¢, and v, are the normal and shear stresses in the soil on the surface parallel to the slope
at a depth H. The Mohr circle of total stress for an element of soil just above the rock is shown
in Fig. 20.10(b). The pole is at P and points a and b represent the states of stress on a horizontal
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plane and on a plane parallel with the slope respectively; the angle subtended at the centre of
the circle is 2i,. The Mohr circle just touches the undrained failure envelope and so the state of
stress in the slope does not exceed the undrained failure criterion. From the geometry of Fig.
20.10(b), making use of Eq. (20.10), a lower bound for the critical slope angle is given by

. T Sy

tan iy = — = ———— 20.11

'" 6, yH cos?i ( )
a2,

and hence j=3sin"" — - (20.12)
yH

Comparing Egs (20.9) and (20.12), the upper bound solution exactly equals the lower bound
solution and so both must equal the exact solution. Hence the critical slope angle i, for undrained
loading of an infinite slope is given by

sin~t e i B (20.13)

(b) Drained Loading—No Seepage

Figure 20.11(2) shows a mechanism of plastic collapse for an infinitely long slope whose angle
to the horizontal is an upper bound i,. The mechanism is a single slip surface at a depth z and
there is a block of soil length I measured down the slope; as before, the forces F, and F, that
act on the vertical sides are equal and opposite. The displacement diagram for an increment of
displacement éw is shown in Fig. 20.11(b), where the direction of the increment of displacement
" makes an angle ¥ = ¢, to the slip surface. ‘

For drained loading the increment of work done by the internal stresses for an increment
of plastic collapse is 6W = 0 and, noting that F; = F;, the increment of work done by the external
loads for dry soil is

SE = bvyV (20.14)

where V = zl cos i, is the volume of the block. Hence, equating JE = 6, an upper bound is
given by :

SoyV =0 : *(20.15)

o 14
N
~
o \l‘¥ = a

@ _ ‘
Figure 20.11 Mechanism of plastic collapse for an infinitely long slope in dry soil.
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Figure 20.12 Equilibrium states of stress for an infinitely
long slope in dry soil.

(b)

Since the volume V is non-zero, the upper bound is given by év = 0 and hence, from the geometry
of Fig. 20.11(b), an upper bound for the critical slope angle is given by

i, = &, | (20.16)

Figure 20.12 shows an infinite slope whose angle with the horizontal is a lower bound i,
and a block of soil of length | measured down the slope and depth z measured verticaily; the
forces on the faces of the block are shown and, as before, the forces F; and F, are equal and
opposite. Resolving normal to and parallel with the base AB the normal and shear forces N ..
and T are

N = Wcos i, = yzl cos? i, (20.17)
T = Wsin i, = yzl sin i, cos i ) (20.18)

For dry soil, where pore pressures are zero and total and effective stresses are equal, the effective
normal and shear stresses on the plane AB are given by

ol = yz cos? i (20.19)
T, = yz sin i, cos i, . (20.20)
and hence T, =0,tan i . (20.21)

which is valid for all planes such as AB at any depth. The limiting values of 7; and g, are given by

1, = o tan ¢, (20.22)
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and hence a lower bound for the limiting slope angle is given by
i = ¢ (20.23)

The Mohr circle of effective stress for the state of stress in an element on AB is shown in
Fig. 20.12(b); the circles shown with broken lines correspond to the states of stress in elements
above and below AB. All the Mohr circles just touch the drained failure envelope. The pole of
the Mohr circle is at P and hence we may calculate the stresses on any other plane in the slope;
in particular, the normal and shear stresses on vertical planes are equal in magnitude to those
on planes parallel to the slope.

From Eqs (20.16) and (20.23) the upper and lower bounds are equal and hence the critical
slope angle for dry soil is -

i.= ¢, (20.24)

(¢) Drained Loading—Steady State Seepage

Figure 20.7(a) shows the flownet for steady state seepage parallel to the slope where the phreatic
surface is a little below ground level. As water flows downhill there are additional seepage stresses
that make the slope less stable and so you would expect to find that the critical slope angle i, -
is less than ¢.. Solutions can be found using the upper and lower bound methods but I shall
show a limit equilibrium solution. ‘

Figure 20.13(a) shows a mechanism consisting of a slip surface parallel to the slope at a
depth z and the forces acting on a block length ! down the slope and Fig. 20.13(b) is the polygon
of forces. The forces on the slip surface are T° = t'l and N = o, which is made up of N’ = ¢'L
and U = ul, where u is the pore pressure. From the force polygon,

T"=Ntani,=(N — U)tan ¢, ' (20.25)
and the critical slope angle i, is given by
tan i, = tan ¢;(1 - }E\]r-) (20.26)

" The flownet for steady state seepage parallel to the slope is shown in Fig. 20.7(b) and, from Eq.
(20.1), the pore pressure at a depth zisu = y,mz cos? i. We have already calculated o, = yz cos? i
and hence, from Eq. (20.26), we have '

tan i, = (1 - ."1‘!) tan g, . *(2027)

Figure 20.13 Limit equilibrium solu-
tion for an infinitely long slope with
steady state seepage parallel with the
(2 slope.
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For dry soil m = 0 and Eq. (20.27) reduces to Eq. (20.24). If the phreatic' surface is at ground
level m = 1 and noting that y = 4y,,, Eq. (20.27) becomes

" tani, = §tan ¢ _ (20.28)

The solutions for the stability of infinite slopes given by Eqs (20.13), (20.23) and (20.28) are
relatively simple. Notice that for the undrained slope the critical angle i is governed by the
depth H of the slip surface; if this depth is relatively large the mechanism cannot be approximated
to sliding paraliel to the surface and the solution is no longer valid. For the drained case the
critical angles for dry and submerged slopes are the same, i, = ¢/, (because neither the unit weight
nor the pore pressure appear in the final solution), but if there is steady state seepage parallel to
the slope the critical slope angle is reduced. These results demonstrate, firstly, that water does
not lubricate soil and, secondly, the very significant influence of pore pressures on slope stability.

20.7 STABILITY OF VERTICAL CUTS

A simple experiment with dry sand or sugar demonstrates that you cannot make a vertical cut
in a drained soil. We can, however, make vertical cuts in soils that are undrained where the
negative pore pressures generate positive effective stresses.

A simple collapse mechanism consisting of a singie straight slip surface at an angle of 45°
to the vertical is shown in Fig. 20.14(a) and Fig. 20.14(b) is the corresponding displacement
diagram for an increment of displacement éw down the slip surface. From the geometry of Fig.
20.14(a), the length L of the slip surface and the volume ¥ of the wedge (for unit thickness
normal to the page) are given by

L= 2H, V=31H} (20.29)

where H, is an upper bound for the height of the slope at collapse. From the geometry of Fig.
20.14(b) we have

ov = L ow (20.30)

—

The only external forces are those due to the self-weight of the sliding soil and - - - -

SW = s,./2H, ow (20.31)
1
OE = ﬁ SwyiH? (20.32)
0 45°
Hu 5V 8W
v a

Figure 20.14 Mechanism of plastic collapse for a
() (b) vertical cut slope for undrained loading.

e}
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Figure 20.15 Equilibrium state of stress
for a vertical cut siope for undrained
(a) (b) loading.

Hence, equating 6/ = SE, an upper bound for the height of the cut slope at collapse is given by

4
H =2 (20.33)
7

For a lower bound Fig. 20.15(a) shows a state of stress in which shear stresses on vertical and
horizontal planes are zero. The vertical and horizontal stresses are g, = yz and o, =0, and
these are_principal stresses. Mohr circles of stress for the elements A and B in Fig. 20.15(a) are
shown in Fig. 20.15(b). The Mohr circle A does not cross the undrained failure envelope when

yH, = 2s, (20.34)

and hence a lower bound for the height of the cut is given by
H=— (20.35)

These upper and lower bound solutions are not really very close to one another and it is very
difficult to obtain better solutions. The best solution, and the one that is commonly used in
design, is '

- 3.8s,
7

H, *(20.36)

which is close to the upper bound given by Eq. (20.33). If the excavation is filled with water the
critical height is given by

_ 38,
Y= Iw ’

H, (20.37)
Comparing Eqs (20.36) and (20.37), the critical height of a dry excavation is only about one-half
that of an excavation filled with water. ‘

You have probably noticed that the ground surface is often cracked and fissured, particularly
near the top of a slope or excavation. Each vertical crack is like a small trench, as in Fig. 20.16,

and the maximum depth of the crack is given by Eq. (20.36) or (20.37), depending on whether
it is empty or filled with water. Notice that as pore pressures rise, the soil softens and weakens

" and the depth of the crack decreases; in the end, when the pore pressures are hydrostatic with

a phreatic surface at ground level the cracks will have closed.
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- - Figure 20.16 Stability of vertical cut slopes and verti-

(a) ) (b) cal cracks filled with water.

20.8 ROUTINE SLOPE STABILITY ANALYSES

The most common procedure for slope stability analysis is to use the limit equilibrium method
with a slip circle or a general curved slip surface. These methods were described in Chapter 19.
For undrained loading (Sec. 19.4) the problem is statically determinate and the solution is
relatively simple. For drained loading (Sec. 19.5) the problem is statically indeterminate and
solutions using the method of slices require assumptions; there are a number of different solutions
(e.g. Bishop, Janbu, Morgenstern and Price), each developed from different assumptions. In these
solutions the calculations are largely repetitive and a number of standard computer programs
are available for slope stability analysis.

For slopes with relatively simple geometries, standard solutions are available in the form
of non-dimensional tables and charts. These are very useful for preliminary design studies.

(a) Stability Numbers for Undrained Loading

The solution for an infinite slope for undrained loading was given by Eq. (20.13), which can be
rewritten as

2 s
= ——— (20.38)
sin 2i y
or H =N (20.39)
\ y

where N, is a stability number that depends principally on the geometry of the slope.

Figure 20.17(b) shows a more general case where strong rock occurs at a depth nyH below
the top ground level and Fig. 20.17(a) shows values of the stability number N, in terms of the
slope angle i and the depth factor n,. The data in Fig. 20.17 are taken from those given by

Taylor (1948, p. 459) and were obtained from the limit equilibrium slip circle method.

(b) Stability Numbers for Drained Loading

The safe slope angle for drained loading with steady state seepage is obtained from Eq. (20.27)
substituting the allowable friction angle ¢, for ¢; and is given by

i=tan g (12
tani = tan ¢,(1 N) (20.40)

where U = y,zcos?i and N =y, cos?i. From Eqgs (20.3) and (20.40), noting that o, = yz, we
have ' :

F= (1 — X sec? i) (20.41)
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Figure 20.17 Stability numbers for undrained loading. (After
(a) Taylor, 1948.)
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2:1 3:1 4:1 5:1 2:1 3:1 4:1 5:1  Figure 20.18 Stability numbers for drained
Slope _ Siope .. .. loading (After Bishop and Morgeastern, 1960.)

-

Equation (20.41) can be written as
FE=m-—nr, (20.42)

where m and n are stability numbers that depend on the geometry of the slope and on the friction
angle ¢’ and r, = u/o, is a pore pressure coefficient. Figure 20.18 shows values for the stability
numbers m and n for simple slopes calculated by Bishop and Morgenstern (1960) from slip circle
analysis using the method of slices. For a particular slope an average value of r, must be estimated
from a steady state seepage flownet and from the position of the critical slip circle: in many
practical cases r, is taken as about 1. : -

20.9 BEHAVIOUR OF SIMPLE EXCAVATIONS

" All the features of slope stability described in the previous section can be observed by digging
a hole in the beach. What you will see is illustrated in Fig. 20.19. In the dry sand at the surface



272 MECHANICS OF SOILS AND FOUNDATIONS

A
Dy eNB
A
Unsaturated
(negativeur) - ’ <H,
T A

Figure 20.19 Stability of a simple excavation.

the slope angle is ¢. In the unsaturated sand above the water table the pore pressures are
negative and it is possible to excavate a vertical cut BC. The cut will fail if the depth exceeds
the critical height H,; this is given by Eq. (20.13) where s, can be found from an unconfined
compression test carried out on a sand-castle at the same density and water content (see Sec.
9.6). The vertical cut cannot be continued below the water table C where the pore pressures are
zero. (The cut often fails just above the water tablc where the sand is saturated and the negative
pore pressures are small.) Notice that pore pressures behind thc cut BC are negative so the face
should look dry.

You know that it is very difficult to dig the hole below the water table. If you excavate
slowly there will be steady state seepage so the angle of the slope CD will be about i¢.. If you
can excavate below water so there is no seepage the angle of the slope DE will be about ¢..
In practice secpage into the excavation along CD usually causes erosion due to piping (Sec. 17.6)
and you cannot dig much below the water table.

When you do this experiment remember that the factor of safety of the vertical cut BC is
probably reducing with time and you must be very careful that it does not collapse on you. You
should also observe what happens to your hole as the tide comes in or-as the sun shines on to
the face BC.

20.10 SUMMARY

1. Slopes fail as soil moves on slip surfaces and there are several possible mechanisms depending
on the ground and groundwater conditions.

2. Immediately after excavation or filling pore pressures are reduced and, as time passes, pore
pressures rise, effective stresses reduce and the safety of a slope deteriorates.

3. For slope stability calculations the factor of safety accounts for uncertainties in the
determination of the soil parameters and the analyses. For routine analyses the critical state
strength will glvc safe designs with factors of safety accounting for uncertainties in the pore
pressures. If previous landsliding has occurred the strength may have reduced to the residual
before -construction starts.

4. Slope stability calculations can be done using the upper and lower bound methods or the
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limit equilibrium method; preliminary designs can be carried out making use of routine
stability numbers. ’ ’

WORKED EXAMPLES

Example 20.1: Undrained slope stability Figure 20.20 shows the geometry of a simple
slope. From Eq. (20.39) and replacing s, with s./F,,

F, =%
] ')’H

From Fig. 20.17, for i = 20° and n, = o0 we have N, = 5.5 and

F,=5'SX40=
20x 5

Notice that this is rather less than the result F, = 2.98 obtained for Example 19.3, indicating
that the slip circle in Fig. 19.18 was not the critical one.

N7

5, = 40kPa Sm
¢ =30 .
y = 20kN/m*

™" 7" Figure 20.20

Example 20.2: Drained slope stability For drained loading of the slope in Fig. 20.20,
from Eq. (20.42), :

! FE=m—nn

For i = 20° the gradient is 2.75:1 and, from Fig. 20.18, for ¢' = 30° wehavem ~ 1.6and n =~ 1.8.
Taking a characteristic value for r, = 0.3, ‘

F,=16— (0.3 x 1.8) = 1.06

Near the toe of the siope the flowlines will be approximately parallel to the slope and the phreatic
surface is close to ground level. From Eq. (20.27), replacing tan ¢, with tan ¢ /F,,

F,=(1_%)£an_¢«

Y tan i

If the phreat'ic surface is at ground level m = 1,

' 10\ tan 30°
F=(1-2 =0.80
' ( 20) tan 20° |

and local instability will occur near the toe. In order to stabilize the slope the drain in Fig. 19.19
should be lowered to reduce the value of m. '
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CHAPTER

TWENTY-ONE

EARTH PRESSURES AND STABILITY OF
" RETAINING WALLS

21.1 INTRODUCTION

Retaining walls are used to support slopes and vertical cuts that are too steep or too deep to
remain stable if unsupported. The principal characteristics of a retaining structure are illustrated
in Fig. 21.1. The wall is a structural member that acts as a beam with various loads on either
side. Slender walls are embedded into the ground below the excavation level and they may be
supported by props or anchors. Thick heavy gravity walls derive their resistance principally
from the shear stresses between the soil and the base of the wall. During excavation (or filling
on the high side) slender walls will tend to move and bend as indicated as the earth pressures
develop. Walls move towards the passive side and away from the active side.

The development of earth pressure with displacement is illustrated in Fig. 21.2. In Fig. 21.2(a)
a wall supported by a force P retains soil where the horizontal total stress is g,; obviously the
stresses and the force must be in equilibrium. If P is increased the wall moves towards the passive
side with displacements §, and the horizontal stresses increase, as shown in Fig. 21.2(b); if P is
decreased the wall moves towards the active side with displacements 3, and the horizontal
stresses decrease. If the movements are sufficient the horizontal stresses reach the limiting values
of the passive pressure o, and the active pressure a,. If there is no movement the horizontal
stress o, is the earth pressure at rest, corresponding to K, (see Sec. 8.5).

The design of retaining walls requires calculation of the active and passive earth pressures,
the depth of embedment to ensure overall stability and the loads in the wall and in any props
or anchors. Other things to be considered are ground movements and groundwater seepage.

NN Prop or anchor

Active side Passive side

Figure 21.1 Characteristics of a retaini;xg wall.
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~ Figure 212 Development of active and passive pressures with displacement.

21.2 TYPES OF RETAINING STRUCTURE

There are a number of different types of retaining wall and the principal ones are illustrated in
Fig 21.3. Figure 21.3(a) shows 2 simple cantilever wall where all the support comes from the
passive earth pressures. Figure 21.3(b) and (c) illustrates simple propped and anchored walls
respectively. Figure 21.3(d) shows a gravity wall where the resistance comes from shear stresses
between the ground and the base of the wall. In Fig. 21.3(¢) the wall supports the sides of an
excavation and in Fig. 21.3(f) the wall supports fill.

R
Active Passive
side side

(a)

— S

Base shear stress

() ) ()

Filled

Excavated

© ) 0

Figure 21.3 Principal types of retaining structure.



EARTH PRESSURES AND STABILITY OF RETAINING WALLS 277

Permanent walls are used to support highway cuttings, bridge abutments, basements, dock
and harbour walls and so on, while temporary retaining walls are used extensively during
construction to support excavations and to provide dry working conditions in coffer dams.
Gravity walls are usually of masonry or mass concrete but could also be made from gabions
(wire baskets about 0.5 to 1 m cube filled with soil or rock). Slender walls are steel or reinforced
concrete. Steel sheet piles are usually driven into the ground while slender concrete walls are
usually cast in situ as rectangular diaphragm panels or as interlocking or touching cylindrical
piles. :

21.3 FAILURE OF RETAINING WALLS

Retaining walls can fail in a number of different ways. Figure 21.4 illustrates typical failure in
the soil where the wall itself remains intact and.Fig. 21.5 illustrates typical failures of the
structural elements. The walls in Fig. 21.4(a) and (b) are failing because there are very large
distortions in the soil in front of and behind the wall. In Fig. 21.4(c) and (d) a gravity wall may
- fail by sliding, overturning or by exceeding the limiting bearing pressure at the toe. In Fig. 21.4(e)
any retaining wall may fail by slipping below the wall but this is reaily a problem in slope
stability (see Chapter 20). In Fig. 21.4(f) the base of an excavation may fail by piping and erosion

u
(a) (b)

o . Figure 214 Mechanisms of failure of
(e) N retaining walls.
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Figure 215 Structural failures of retaxmng
(c) walls. -

due to scepage or by movement of the soil. Figure 21.5 illustrates structural failures of the wall
or an anchor or buckling of props.

721.4 STRESS CHANGES IN SOIL NEAR RETAINING WALLS

It is helpful to consider the total and effective stress paths in soil near retaining walls during
and after construction to examine whether the undrained or long-term drained cases are most
critical. For retaining walls it is necessary to separate those loaded by excavation from those
. loaded by filling. (Note that I am continuing to use loading to mean an incrcase of shear stress
irrespective of what happens to the normal stresses.) - - o

Figure 21.6(a) shows a retaining wall loaded by excavation. For both the elements shown
on the critical slip surfaces, one on the active side and one on the passive side, the shear stresses
increase while the mean normal total stresses decrease. The total and effective stress paths are
shown in Fig. 21.6(b); these are like those for a slope, shown in Fig. 20.4. The effective stress
path A" — B’ corresponds to undrained loading: the exact path will depend on the characteristics
of the soil and on its initial overconsolidation ratio, as discussed in Chapter 11.

As shown in Fig. 21.6(b), the pore pressure immediately after construction u; is less than
the final steady state pore pressure u, and so there is an initial excess pore pressure which is
negative. As time passes the total stresses remain approximately unchanged at B (they will
change a little as the total stresses redistribute during consolidation, although there is no more
excavation) but the pore pressures rise. The effective stress path is B’ — C', which corresponds
to swelling and a reduction in the mean normal effective stress. The final state at C’ corresponds
to a steady state pore pressure after swelling u,.

The wall will fail in some way if the states of all elements along the slip surfaces in Fig.
21.6(a) reach the critical state line; if B’ reaches the critical state line the wall fails during
undrained excavation and if C' reaches the line the wall fails some time after construction. The
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L———J Figure 21.6 Changes of stress and pore pressure for a wall

retaining an excavation.

distance of the effective stress point B’ or C’ from the critical state line is a measure of the factor
of safety against collapse and Fig. 21.6(b) demonstrates that the factor of safety of a retaining
wall supporting an excavation will decrease with time. This is the same as for a slope, discussed
in Sec. 20.3. We could also trace the state paths for failing walls as we did for failing slopes, but
this is not really relevant as retaining walls should not be allowed to fail.

Figure 21.7(a) shows a wall embedded in soil and retaining coarse-grained fill. In this case
the shear and normal stresses on typical elements on a slip surface both increase. Total and
effective stress paths are shown in Fig. 21.7(b). The effective stress path for undrained loading
is A’ — B’ and this is the same as that in Fig. 21.6(b), but the total stress path A — B and the
initial pore pressures are different. In particular, the initial pore pressure y; is greater than.the
final steady state pore pressure, so the initial excess pore pressure is positive. As time passes the
pore pressures decrease as the soil consolidates and the effective stress path is B’ = C'. The
effective stress point is moving away from the critical state line so the factor of safety of a wall
retaining fill increases with time.

The analyses and the stress paths shown in Figs 21.6 and 21.7 are simplified and idealized
and ignore a number of important aspects such as the installation of the wall into the ground.
They do, however, illustrate the general features of the behaviour of retaining walls during and
after construction. Notice particularly the fundamental difference between the long-term
behaviour of walls supporting excavations and walls retaining fill: the one becomes less safe
with time as the soil softens and weakens and the other becomes safer with time as the soil
consolidates and strengthens.

215 INFLUENCE OF WATER ON RETAINING WALLS

Water influences the loading on retaining walls in a number of fundamentally different ways;
the most important of these are illustrated in Fig. 21.8. Figure 21.8(a) shows a coffer dam wall
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Figure 21.7 Changes of stress and pore pressure
(b) for a wall retaining granular fill

embedded in soil and retaining water. The free water applies a total stress P, to the wall where
P, =4%.H} - LY

Figure 21.8(b) shows a wall retaining soil. There is water in the excavation which applies
a total stress P, and the wall is supported by a single prop with a load P,. (It is assumed that
the prop is placed so that the wall does not rotate.) The total stress applied to the soil arises
from the sum of P, and P,: notice that this is the same whether the soil is drained or undrained
and whether the wall is impermeable or leaky.

Figure 21.8(c) shows a wall supporting a coarse-grained soil which is loaded drained. The
toe of the wall is embedded in relatively impermeable clay and the excavation is dry. If the wall
is impermeable it acts as a dam and the pore pressures are everywhere hydrostatic. The pore
pressures apply a force P, to the wall in addition to the horizontal effective stresses. The strength
of the soil on the slip surface shown is reduced by the influence of the pore pressures lowering
the effective stresses. Figure 21.8(d) shows the same wall but with a drain near the toe and a
sketched flownet for steady state seepage. It is obvious that the force P, required to support the
wall has been significantly reduced: there are no water pressures acting directly on the wall and
the effective stresses, and the strength, on the slip surfaces are greater because the pore pressures
are less. The example illustrates the importance of providing adequate drainage for retaining
walls.

Figure 21.8(e) shows steady state seepage into a pumped coffer dam. (The flownet is similar
to the one shown in Fig. 17.7.) At the bottom of the coffer dam, along AB, there is upward
seepage and the possibility of instability due to piping and erosion, discussed in Sec. 17.6. Piping
will occur when the hydraulic gradient i = §P/ds becomes close to unity. For the example
illustrated, 6P over the last element of the flownet is AP/7 (because there are seven equipotential
drops in the flownet) and the size of the last element s can be determined by measurement
from a scaled diagram.
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Figure 21.8 Effects of water on retaining walls.

21.6 CALCULATION OF EARTH PRESSURES—DRAINED LOADING

As a retaining wall moves the horizontal stresses change, as illustrated in Fig. 21.2, and when
they reach the limiting active or passive pressures the soil has reached its critical state. The
active and passive pressures can be calculated using upper and lower bound and limit equilibrium
methods and, as always, it is necessary to distinguish between drained and undrained loading.

A limit equilibrium solution for the active force on a wall retaining dry soil was found in
Sec. 19.3. The mechanism and the polygon of forces were shown in Fig. 19.6 and the solution is

P, = {yH? tan*(45° — 14.) (212)

Assuming that the effective active pressure o} increases linearly with depth the earth pressures
corresponding to this limit equilibrium solution are

o, = o} tan*(45° — 1¢.) = K, 0, (21.3)

where ¢/, is the vertical effective stress and K, is called the active earth pressure coefficient. It is
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Figure 21.9 Earth pressures on a rough wall with a sloping face and
with sloping ground. N

quite easy to show that the solution for the passive pressure is
0, = 0, tan’(45° + 4¢;) = K, 0, . (214)

where K, is called the passive earth pressure coefficient.

These solutions are for a smooth vertical wall with a level ground surface. A more general
case is shown in Fig. 21.9 where the ground surface and the back of the wall are both inclined
and the wall is rough. Shear stresses between the soil and the wall are given by

1, = ¢, tan &, ' (21.5)

where o, is the normal stress for the appropriate active or passive pressure and d; is the critical
angle of wall friction. Obviously 0 < &, < ¢. and a value commonly taken for design is J, = 4¢..
The general case was considered in Sec. 19.3 (see Fig. 19.7) in Chapter 19. Tables and charts
are available giving values for K, and K, for various combinations of ¢;, d;, 2 and .

21.7 CALCULATION OF EARTH PRESSURES—UNDRAINED LOADING

Active and passive pressures for undrained loading can be calculated using either the upper and
lower bound methods or the limit equilibrium method. The procedures are similar to those
described in the previous section for drained loading.

A limit equilibrium solution for the active pressures on a smooth wall was obtained in Sec.:
19.3 from the limit equilibrium method using the Coulomb wedge analysis (see Fig. 19.4). The
solution was : - - . :

P,=4yH?-25,H (21.6)

and, assuming that the stresses increase linearly with depth,

g, =7yz—2s, 21.7)
It is relatively simple to show that the passive pressure for undrained loading is given by

o, =7z +2s, (21.8)

These expressions for active and passive earth pressures for undrained loading can be written
as :
g, =0, — K,,s, . 21.9)

0, =0, + K5, ' ' (21.10)

where K,, and K, are earth pressure coefficients for undrained loading.
The solutions with K,, = K,,, = 2 are for a smooth vertical wall with a level ground surface.



.

EARTH PRESSURES AND STABILITY OF RETAINING WALLS 283

q> ZJII :
A122A1%
2NN = ﬂ‘ . .
H, )
N A
-cP N
f—P,
NS R
Figure 21.10 Active forces on walls—
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Tables and charts are available giving values for K,, and K, for other cases including rough
walls where the shear stress between the soil and the wall is s,.

From Eq. (21.7) the active eath pressure for undrained loading appears to become negative
(i.e. in tension) when

2
z <2 - L)
7
This is impossible as the soil is not glued to the wall and a tension crack opens up as shown
in Fig. 21.10(a). This is the same kind of tension crack as found near the top of slopes (see Sec.
20.7) and the critical depth H, of a water-filled crack is
2
H, = (21.12)
Y= 7w

If the crack is not filled with water put y,, = 0 into Eq. (21.12). Notice that the position of the
active force P, has been lowered and if the crack is filled with water it is free water (not pore
water) and applies a total stress to the wall. If there is a surface stress q as shown in Fig. 21.10(b),
the tension crack will close entirely when ¢ = 2s,. :

Compare Eqs (21.9) and (21.10) for undrained loading with Eqs (21.3) and (21.4) for drained
loading. For undrained loading the earth pressure coefficients are expressed as a difference
(o4 — 0,) while for drained loading they are a ratio (oy/07). This is a consequence of the
fundamental difference between the basic equations for drained and undrained strength.

21.8 OVERALL STABILITY

The forces on a retaining wall arise from the active and passive earth pressures, from free water
pressures and from loads in props and anchors. For overall stability. the forces and moments
arising from these pressures must be in equilibrium. For the simplified example shown in Fig.
21.11,

He H
P+j a,,dz=J. oy dz (21.13)

0 0 -

where the integrals are simply the areas under the pressure distribution diagrams. In order to
take moments it is necessary to determine the moment arm of each force; the line of action of

- a force is through the centre of area of each pressure distribution diagram.
The best way to avoid making mistakes is to set up a table and draw the distribution of
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carth pressure with depth, as shown in Table 21.1 in Example 21.1 below. This gives calculations
for the horizontal stresses on a wall bedded into sand over clay as shown in Fig. 21.16(a). The
calculations use Eqs (21.3) and (21.4) for the stresses in the sand and Egs (21.9) and (21.10) for
the stresses in the clay: in the free water the horizontal and vertical total stresses are equal.
Notice how the pore pressures come into the calculations in the drained sand but not in the
undrained clay. There is a step in the earth pressures at the sand—clay junction, so it is necessary
to calculate separately the stresses just in the sand and just in the clay.

Overall, a wall is considered to be stable if the forces and moments are in equilibrium and
this is examined by resolving horizontally and taking moments about a convenient point. In
most analyses the variable (or unknown) is the depth of embedment, which is increased until a
suitable margin of safety is achieved. Selection of factors of safety for a retaining wall design is
very difficult and will be considered in a later section: for the present I will simply consider the
overall stability of a retaining wall at the point of collapse, such that the horizontal stresses are
everywhere the full active and passive pressures. It is necessary to consider propped or anchored
walls, cantilever walls and gravity walls separately.

(a) Anchored or Propped Walls

Figure 21.12 shows a simple propped wall with depth of embedment d. The active and passive
pressures are as shown and from these the magnitudes P and depths : of the active and passive
forces are calculated as described in the previous section. Taking moments about P, the line of
action of the prop forces, the wall is stable if

. Rz =B - - S (L1
Resolving horizontally, the prop or anchor force P is given by

P=F—-PF : (21.15)
Notice that all the terms in Eq. (21.14). depend on the (unknbwn) depth of penetration d and

Y  Figure 21.12 Forces on a propped wall.
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““Figure 21.13 Forces on cantilever wails.

solutions are most easily found by trial and error, adjusting d until Eq. (21.14) is satisfied. In
Fig. 21.12 the toe of the wall rotates and translates and this is known as the free earth support
condition. If the depth d is very large the toe of the wall will not translate or rotate; this is
known as the fixed earth support condition.

(b) Cantilever Walls

If there is no prop or anchor it is impossible to satisfy moment and force equilibrium at the
same time with only the two forces P, and P,. Stiff cantilever walls fail by rotation about a
point some way above the toe, as shown in Fig. 21.13, and this system of forces can satisfy
moment and force equilibrium. It is convenient to replace the forces below the point of rotation
by a single force Q, as shown in Fig. 21.13(b). Taking moments about Q the wall is stable if

Ph,=Ph, - : (21.16)

which gives the unknown depth of penetration . In order to allow the wall below the point of
rotation to mobilize the pressures shown in Fig. 21.13(a), the depth d is usually increased by 20
per cent. _ :

The walls shown in Figs 21.12 and 21.13 can be considered as beams carrying concentrated
and distributed loads. The shear forces and bending moments in the wall can be calculated using
the standard analyses for beams. ,

(c) Gravity Walls , »
Graﬁty walls may fail by sliding, by overturning or by failure of the soil at the toe, as illustrated
in Figs 21.4 and 21.14. Figure 21.14(a) shows a wall failing by sliding along its base and F, = T.

For undrained loading, » .
T=s,B - (21.17)

where s,; is the undrained shear strength between the soil and the base of the concrete wall. For

drained loading,
' T=(W-U)tand, ' (21.18)

where &, is the angle of shearing resistance between the soil and the wall énd U is the force
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Figure 21.14 Equilibrium of gravity retaining walls.

due to pore pressures acting over the base area B. The wall cannot overturn provided that the
normal stress at the upstream edge remains positive (i.e. in compression) and it can be shown
by simple statics that this requires that the resultant R passes through the middle third of the
base, as shown in Fig. 21.14(b). The resulting triangular distribution of normal stress shown in
Fig. 21.14(c) implies that the maximum stress at the toe is given by
2w '
=2 21.19
B =5 - " (21.19)
The possibility of failure of the foundation due to excessive bearing pressure is really a problem
of bearing capacity and is discussed in Chapter 22.

21.9 CHOICES OF SOIL STRENGTH AND FACTOR OF SAFETY

So far I have described analyses for overall stability of retaining walls based on the ultimate
critical state strengths s, or ¢, with no factor of safety. These situations correspond to relatively
large ground movements and, in practice, a factor of safety is applied.

There is no clearly defined method for applying a factor of safety in retaining wall design
and factors are applied for different purposes:

1. To ensure an adequate margin of safety against failure in the soil (assuming that the wall
itself and the anchors and props do not fail).

2. To limit prop and anchor loads and shear force and bending moments in the wall to
permissible values.

3. To limit ground movements.

The issues are far too complicated for this book and you will have to consult other books for
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Figure 21.15 Approximate distribution of earth pressures on a retain-
Ky ing wall at working loads.

details. If you are concerned only with overall stability it is convenient to apply a safety factor
to the critical state soil strength, as described in Sec. 20.5 dealing with factors of safety for slopes..
This method may not, however, lead to satisfactory solutions for ground movements or structural
loads.

A major difficulty is that the distributions of active and passive earth pressures on safely
designed walls are often very different to those on a wall close to ultimate failure, which are the
basis of a design. Figure 21.15 shows the likely distribution of stress on a propped wall where
the depth of the toe is greater than that required for limiting stability. The broken lines
correspond to the zero movement earth pressure.at rest K, condition (see Sec. 8.5) and the final
stresses will tend to these lines at the bottom of the wall where the displacements are small. The
chain dotted lines for K, and K, correspond to full active and passive pressures reached after
significant ground movements. The full lines represent possible distributions of earth pressure;
these will depend significantly on the ability of the wall to bend (i.e. on its flexibility). These
different distributions of earth pressure are likely to have a major influence on the magnitudes
of the shear forces and bending moments in a wall.

21.10 SUMMARY

1. Retaining walls are used to support slopes that are too high or too steep to remain stable if
unsupported or to limit ground movements. There are a number of different kinds of retaining
wall. They can fail in different ways including slipping in the soil, failure of the wall itself and
failure of props or anchors.

2. As a wall moves away from the soil the horizontal stresses are active pressures and as it
moves towards the soil they are passive pressures. For drained loading on smooth walls these
are

d, = o} tan’(45° — 1¢,) = K, 7, (21.3)
o, = ¢, tan(45° + 1)) = K, 0, (1.4)

where K, is the active earth pressure coefficient and K is the passive earth pressure coefficient.

For undrained loading on smooth wall active and passive pressures are
Oy =0z~ KauSu ) ’ (219)

o, =0, + K5, (21.10)

where K,, and K,\,‘are earth pressure coefficients for undrained loading.
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3. For walls retaining excavated slopés porc pressures rise with time and the safety deteriorates,
but for walls retaining coarse grained fill the excess pore pressures dcvcloped in the
foundations during construction will generally decrease with time.

4. The depth of the toe of a wall below the base of the excavation must be sufficient to ensure

“overall stability (with an appropriate margin of safety). Overall stabxhty is examined by
considering the statical equilibrium of the forces due to the active and passive earth pressures
and the loads in props and anchors. Different calculatxons are required for cantilever and

* propped walls. i -

WORKED EXAMPLES

\

Example 21.1: Calculation of active and pacsive earth pressures Figure 21.16 shows a 10 m
high wall retaining layers of sand and clay. The active and passive total stresses in the drained

sand are

o,=0,+u=0,K,+u=(,—uwK, +u
o,=0,+u=0c.K, +u=(,—uK +u

N

where K, = tan*(45° — 4¢.) and K, = tan*(45° + 4¢.) and, for ¢' = 30°, K, = 1/K, = 3. The
total active and passive stresses in the undrained clay are

Oy =0; — Kausu
=6, + K5,
where, for a smooth wall, K,, = K,,, = 2. The variations of ¢, and g, with depth are given in

Table 21.1; to calculate active and passive pressures in layered soils and where there are pore
pressures it is convenient to tabulate the calculations in this way. Notice that the stresses at the

base of the sand are not the same as the stresses at the top of the clay. Figure 21.17 shows the

variations of active and passive total pressures with depth.

q = 80kPa
LS Ar J
2m
2 g |
- - \
Sand (drained) 1
¢| =30° 3m,
y=20kN/m* Y
S 4 : 10m
2m .
X Y
A A
Clay (undrained) 3m
|5, = 40kPa U Y Y
7 = 20kN/m’ Figure 21.16
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Table 21.1
(a) Active side
Depth Soil e, T u LA o o,
(m) (kPa) (kPa) (kPa) (kPa) (kPa)
0 Sand 80 0 80 27 27
2 Sand 120 0 120 40 40 -
7 Sand 220 50 170 57 107
7 Clay_ 220 140
10 Clay 280 200
(b) Passive side
o " Depth Soil o u e 7, o, )
(m) (kPa) (kPa) (kPa) (kPa) (kPa)
2 Water 0 0 0 o 0
5 Water 30 30 0 0 30
5 Sand 30 30 0 0 30
7 Sand 70 50 20 60 110
7 Clay 70 150 )
10 Clay 130 210
7
O
yr 9 -2 -
30
‘Sand
I 140 [107 110150
Clay
200 2210
Sl 1 1 ! 1 1
300 200 100 0 100 200 300 )
Figure 21.17
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Example 21.2: Depth of a propped wall Figufc 21.18(a) shows a wall propped at the top
retaining dry sand. The unknown depth of penetration is d. For a factor of safety F, = 1.6 the
allowable angle of friction, given by tan ¢, = tan ¢./F, is ¢, = 20°. Hence, from Egs (21.3) and
(21.4), o ; '

K, = tan®(45° — §¢) = tan? 35° = 0.5

K, = tan?(45° + 3¢,) = tan® 55° = 20
With the depth H measured from the ground level on either side of the wall and making use of -
Eq. (21.14), _ \ ,
P=bHK, =4 x20x (5 +d)* x}=55+d)® kN
P,=4yH*K, =} x 20 x d* x 2 = 20d*> kN

"The distributions of active and passive earth pressures and the active and passive forces are
shown in Fig. 21.18(b). Taking moments about the top of the wall and noting that the forces
P, and P, act at the centres of the triangular areas (i.c. $H above the base),

5(5 + d)? x (5 + d) = 20d* x (5 + %d)
and, solving by trial and error, or otherwise,
d=40m

With this value of d we have P, = 405 kN and P, = 320 kN. Hence, resolving horizontally, from
Eq. (21.15) the force in the prop is,

P =405 — 320 = 85kN

A7 o | el S T P
5m 2
¢ =3 G+ - N
7 = 20kN/m’ \ . - |F+3d)
)'-‘s =16 "7 i
d; Pi -f - . . .- . . — - -
:PP
A O’p

(@) - (b)

S
. 7
A
IV 2”_:*«
Q _;. © toad

(c) Figure 21.18
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" Example 21.3: Depth of a cantilever wall . If the wall in Fig. 21.18(a) is not propped it acts
as a cantilever and the forces on the wall are shown in Fig. 21.18(c). From Eq. (21.16), taking
moments about the toe where the force Q acts,

55 +d)?* x 5 +d)=20d* x 4d
and, solving that by trial and error, or otherwise,
d=85m

To provide sufficient length to mobilize the force Q, the wall depth should be increased by
20 per cent so the required depth of penetration is about 10 m.
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CHAPTER

TWENTY-TWO

BEARING CAPACITY AND SETTLEMENT OF
SHALLOW FOUNDATIONS

22.1 TYPES OF FOUNDATIONS

Any structure that is not flying or floating rests on or in the ground and the base of the structure
and the soil together make up the foundation. Buildings and embankments must have
foundations and so must vehicles and people. The criteria for the design of 2 foundation are that
the settlements should be limited so that the building does not become damaged, vehicles can
still move about and you do not lose your boots in mud. All foundations settle because nothing
(not even tarmac or rock) is absolutely rigid, but obviously some settle more than others; look
at the Tower of Pisa for instance. When you walk across the beach and leave a footprint it s
simply a mark of the settlement of a foundation and so too is a tyre track.

In civil engineering foundations are shallow, deep or piled, as illustrated in Fig. 22.1. (The
distinction D/B =1 to 3 for a deep foundation is made for convenience.) We know that, in
general, the strength and stiffness of homogeneous soil increases with depth (because mean
__ effective stresses increase with depth) and so one advantage of a deep foundation and a pile is

MTI:’ . “\W
2 ] N

(a) Shallow

B :

(b) Decp DIB=1103

| 1 Y
—b-l B l<—
(c) Piled Figure 22.1 Types of foundation.

"0
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V
1| W N
1b v 47 !

') 3 o

A=Bx1
<——J Figure 22.2 Loads and stresses on a foundation.

that they are founded in stronger and stiffer soil; often the tip of a pile rests on very stiff and
strong soil or rock. Another advantage is that shear stresses between the soil and the sides of a
deep foundation or a pile contribute to the load capacity; in a shallow foundation the
contribution of the side shear stresses is negligible.

The characteristics of a typical foundation are illustrated in Fig. 22.2. The weight of the
foundation is W and it supports a load F. The base width is B; for unit length out of the page
this is the base area, so the bearing pressure g is

(22.1)

(Note that g is the total contact stress between the soil and the foundation.) Many simple
foundations, including piles, are constructed from solid concrete which has unit weight 7. only
a little larger than that of soil, so W (=y.4D) depends on the size of the foundation. Some
foundations are hollow, particularly where they are used for parking cars, in which case the
weight W is relatively small.

Outside the foundation the total vertical stress at depth D is o, = p,, where

po=7D .(22.2)

The net bearing pressure g, is the change of total vertical stress at the base of the foundation
and is given by

4a =4~ Po - - (223)

Notice that g, could be either positive or negative depending on the magnitudes of F and W,
both of which would be very small for an underground car park or a submerged tank. If g, is
positive the foundation will settle, but if it is negative (i.e. the total stress at foundation level
reduces) the foundation will rise. By careful design of a compensated foundation it is possible
to have g, ~ 0 so that settlements are negligible.

22.2 FOUNDATION BEHAVIOUR

Figure 22.3(a) shows a simple shallow foundation with a bearing pressure ¢ and a settlement
p. If the foundation is rigid (e.g. concrete) the settlement p will be uniform and the bearing
pressure will vary across the foundation. If, on the other hand, the foundation is flexible (eg
an earth embankment) the bearing pressure will be uniform but the settlements will vary. Figure
22.3 illustrates mean values of ¢ and p for each case. Figure 22.3(b) shows the relationship
between q and p for either drained or undrained loading. As the bearing pressure increases the
settlements start to accelerate and at some load g, the foundation can be said to have failed
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'Y ) qc

-
‘ q
e R

@ (b)
Figure 223 Loading and settlement of a foundation.

~

~ because the settlements have become very large. (Notice that as the foundation settles the bearing

pressure continues to increase because the depth of the foundation increases.) The bearing
pressure at failure is the bearing capacity of the foundation and it is the gross, not the net,
bearing pressure. : =

Obviously you cannot load a building foundation close to its bearing capacity g, as the
settlements would then be too large and the building would probably be damaged (although it
may not fall down). To limit the settlements to some allowable limit p, it is necessary to reduce
the bearing pressure to some allowable bearing pressure g,, as shown in Fig. 22.3(b). In practice
this is usually achieved by applying a factor of safety (or a load factor) to the bearing capacity
(see Sec. 22.5).

Figure 22.4(a) shows the bearing pressure of a foundation increased to g, slowly so that the
loading is drained. The foundation settlements increase in parallel with the loading and terminate
as py as shown in Fig. 22.4(b). Figure 22.4(c) shows the same loading increased quickly so the
loading is undrained and there is an immediate, undrained settlement p;, as shown in Fig. 22.4(d).
The undrained loading raises the pore pressure in the soil below the foundation and dissipation
of the excess pore pressures causes consolidation settlements to occur. The settlement at some

95 q
' - %

(a) Drained loading (c) Undrained loading

i
|
!
i

J
i
i
I
i
I
I
I
1

b
T
i

Pe

(b) Settiements during drained (d) Settiements during undrained
loading - loading and consolidation

Figure 22.4 Loading and settiement of foundations.
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time ¢ after the start of consolidation is p, and the final consolidation settlement which occurs
after a relatively long time is p,. (Notice that the loadings and settlements shown in Fig. 22.4
are similar to those shown in Figs 6.9 and 6.10 which describe the fundamental differences
between drained and undrained loading and consolidation.) ‘

Generally, engineers designing foundations will need to calculate all, or some, of the
following:

1. The bearing capacity q. (to ensure that the foundation has an adequate margin of safety
against collapse).

2. The allowable bearing pressure g, and either the drained settlements p, or the (undrained)
immediate settlement p;.

3. For consolidation after loading, the final consolidation settlement p, and the variation of
settlement p, with time.

22.3 STRESS CHANGES IN FOUNDATIONS

The changes of stress and water content during undrained loading and subsequent consolidation
of a foundation are illustrated in Fig. 22.5. In Fig. 22.5(a) the total stresses on a typical element
below the foundation are r and ¢ and the pore pressure is illustrated by the rise of water in a
standpipe. In Fig. 22.5(b) the total stress path A — B corresponds to increases of ¢ and t due
to the loading of the foundation. The effective stress path is A’ — B’, which corresponds to
undrained loading with constant water content, as shown in Fig. 22.5(c). The exact effective
stress path A’ — B’ will depend on the characteristics of the soil and its initial overconsolidation
ratio, as discussed in Chapter 11.

As shown in Fig. 22.5(b), the pore pressure immediately after construction v, is greater than

ulYe

Y

" (0)

Figure 22.5 Changes of total and effective stress during léading and consolidation of a foundation.
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the steady pore pressure uo and so the initial excess pore pressure i is positive. As time passes
the total stresses remain essentially unchanged at B, since the foundation loading does not
change, but the pore pressures drop. The effective stress path is B" — C', which corresponds
to compression and an increase in the mean normal effective stress, as shown in Fig. 22.5(b)
and (c). ’

The foundation can be said to fail if all the elements along a critical slip surface reach the
critical state line. The distance of B’ from the critical state line is a measure of the factor of
safety of the foundation and Fig. 22.5 demonstrates that the factor of safety of a foundation
generally increases with time but there ill be continuing settlements due to consolidation.

224 BEARING CAPACITY OF SHALLOW FOUNDATIONS

The bearing capacity of a foundation can be calculated using the upper and lower bound methods
(Chapter 18) or the limit equilibrium method (Chapter 19).

(a) Undrained Bearing Capacity
The bearing capacity of the simple shallow foundation shown in Fig. 22.6(a) is given by

g. = syN; + po (224)
or . F.+ W=s,N.B+7yDB (22.5)

where N, is a bearing capacity factor. For 2 long rectangular foundation at the ground surface
identical upper and lower bounds obtained in Sec. 18.6 (see Eqs 18.43 and 18.46) are equivalent
to N, =2 + . The bearing capacity factor N, depends only on the shape and depth of the
foundation and values given by Skempton (1951) are shown in Fig. 22.6(b).

(b) Drained Bearing Capacity
The bearing capacity of the simple shallow foundation shown in Fig. 22.7(a) is given by

4. =3y — 7)BN, + (7 = 7.)(N, — DD + 3D (22.6)
or F.+ W=4y — v,)B?N, + (7 — yu)(N, — 1)BD + yBD 2.7

where N, and N, are bearing capacity factors. These could be obtained from upper and lower
bound or limit equilibrium calculations, but these are lengthy so I have not given them here.
The bearing capacity factors N, and N, depend principally on the friction angle ¢’ and values
given by Terzaghi (1943) are shown in Fig. 22.7(b). Notice that terms such as (y — y.)B or
(y — 74 )D represent effective stresses at depths B and D respectively in cases where the water
table is at ground level; these effective stresses largely govern the soil strength. Equations (22.6)
and (22.7) apply when the water table is at the ground surface; if the water table is at the base
of the foundation put y, = O into the term containing N, and if the water table is very deep
and below the influence of the foundation put ¥, = 0 throughout.

These bearing capacity equations (Eqs 22.4 to 22.7), together with the bearing capacity
factors N, N, and N, given by Skempton (1951) and by Terzaghi (1943), can be used to calculate
the ultimate bearing capacity of simple foundations. Other tables and charts for bearing capacity
factors for deep foundations and for foundations with eccentric or inclined loads have been
published, but these are beyond the scope of this book. Notice that if the soil becomes water
so that s, = 0 or ¢’ = 0 and y = 7,,, both Eqs (22.5) and (22.7) reduce to F, + W = y+BD, which
is a statement of Archimedes’ principle.
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Figure 22.6 Bearing capacity factors for undrained loading
(b) (Afrer Skempton. 1951) of foundations. :

22.5 CHOICE OF SOIL STRENGTH AND LOAD FACTOR FOR
FOUNDATIONS : ‘ S : )
For slope stability (see Chapter 20) and for overall stability of retaining walls (see Chapter 21)
the calculations may be carried out using the critical state strength with factors of safety that
reflect the uncertainties in the determinations of the soil parameters and pore pressures. This
technique is suitable for soil structures where the principal criterion for design is the ultimate
stability, but it is unsuitabie for foundations and other structures where the principal criterion
for design is the magnitude of the settlements or ground movements. The principal problem is
that the ratio of stiffness (which controls ground movements) to strength (which controls ultimate
failure) is not a constant, even for a particular soil, so there is no constant ratio between bearing
capacity and allowable bearing pressure. B e

Figure 22.8(a) shows typical stress—strain curves for samples of the same soil on the wet
side of critical (i.e. loose or lightly overconsolidated) or on the dry side of critical (ie. dense or
heavily overconsolidated). These have the same critical state strength ¢, but very different shear

- stiffnesses G’ (even allowing for non-linear behaviour) and the sample on the dry side of critical
has a peak. The corresponding load—settlement curves for the same foundation are shown in

Fig. 22.8(b). Since the soil has a unique value of ¢; we 'gvopld"ﬁ}cﬁlape the same value of .
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Figure 22.7 Bearing capacity
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Wet side

(a) , _ (b)
Figure 22.8 Settlement of foundations on soils on the wet side and on the dry side of critical.

from the critical state strength, even though the ultimate bearing capacities would probably be
different. However, because of the very different stiffnesses of the soil at states on the wet side
and on the dry side of critical the allowable bearing pressures g, and g,, would be very different
to achieve the same settiement p,; this means that a factor of safety to limit settlements based
on the critical state strength ¢, would also have to be very different. Alternatively, the same
factor of safety based on the peak strength ¢, would lead to large bearing pressures for
foundations on dense soil initially on the dry side of critical and smaller pressures for foundations
on loose soil initially on the wet side of critical.

The factor used to reduce the bearing pressure to limit settlements is not really a factor of
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safety as it is not intended to account for uncertainties; it is better to call it a load factor. For
a foundation the load factor should logically be applied to the net bearing pressure g, as it is
this that causes settlement or heave. Notice that with a compensated foundation for which q, = 0
there is no need to apply any load factor as the settlements and heave will be zero in any case.
There is no real hard and fast rule for selecting an appropriate load factor for foundation designs;
in practice the factors usually used are in the region 2 to 3. In any case the settlements of the
foundation should be calculated independently using the methods described in Secs 22.7 and 22.8.

22.6 FOUNDATIONS ON SAND

Foundations on sand will be drained and the settlements p4 will occur as the loads are applied,
as shown in Fig. 22.4(b). Figure 22.8 also illustrates the different behaviour of a foundation on
a dense sand initially on the dry side of critical and a loose sand initially on the wet side of
critical and shows that for a given allowable settlement P, the allowable bearing pressures g4
and g,, depend on the initial relative density. A simple and logical design procedure would be
to relate the allowable bearing pressure directly to the relative density (or the density of the
initial state from the critical state line) measured in some suitable in situ test.

The routine test to measure relative density is the standard penetration test (SPT) described
in Sec. 16.5. The result is given as a blowcount value N, which varies from small values (1 to
5) when the soil is at its loosest state to large values (over 50) when the soil is at its densest state.
A simple relationship between the SPT-N value and the allowable bearing pressure was given
by Terzaghi and Peck (1967) and a simple rule of thumb is

g, = 10N kPa (22.8)

This bearing pressure will give settlements of the order of 25 mm (1 inch). Because at relatively
small loads the load settlement curve in Fig. 22.8(b) is approximately linear, halving the bearing
pressure will give about half the settlement and so on.

22.7 FOUNDATIONS ON ELASTIC SOIL
An assumption commonly made in practice is that soil is linear and-elastic and theré are a
number of standard solutions for distributions of stresses and ground movements around
foundations subjected to a variety of loads. These solutions have generally been obtained by
integrating solutions for point loads and so they employ the principle of superposition which is
valid only for linear materials. We have seen earlier (Chapters 12 and 13) that soils are ixsually
neither elastic nor linear and so these solutions are not strictly valid, aithough the -errors in
calculation of stresses are likely to be considerably less than those in the calculation of ground
movement.

The changes of the vertical stress da, and the scttlcmcnts 6p ata pomt in an elastic soil due
‘to a change 8Q of a point load at the surfacc, shown in Fig, 22.9, are given by )

_36Q (2} A \ : '
so.= e (8) S @29
U+ [V L ] | -

‘where E and v are Youngs modulus and Pmssons ratio. Although these expressions lcad to
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bo,
+5p Figure 22.9 Stresses and settlements die to a point load.

infinite stresses and settiements immediately below the point load where z =R = 0, they can be
used to calculate stresses and settlements some way below small foundations.

For circular or rectangular foundations on clastic soil the changes of vertical stress 0, and
settiement Jp at a point below a foundation due to a change of bearing pressure 8q are given by

o0, = oql, ‘ . (22.11)

1 -2

ép = 8qB I, (22.12)
where I, and I, are dimensionless influence factors and B is the width or the diameter of the
foundation. The values for the influence factors depend principally on the geometry of the
foundation and, to a lesser extent, on the value of Poisson’s ratio. Notice Eqs (22.9) and (22.11)
do not contain either E or v and so the vertical stress in elastic soil depends only on the shape
and loading of the foundation. A comprehensive set of tables and charts for influence factors for
a wide variety of loading cases are given by Poulos and Davis (1974). Values for the most
common simple cases for circular and rectangular loaded areas are shown in Figs 22.10 and 22.11.

I, . I
0 0.5 1.0 0 0.5 10
2k
zla
4 -
(c)
6L ®) 6 L

Figure 22.10 Influcnce factors for stresses and settlements below the centre of a circular foundation.
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Figure 22.11 Influence factors for stresses and settiements below the corner of a re;:tangular foundation.

. ‘ .
G : H J Figure 22.12 Division of rectangular loaded areas.

To determine values inside or outside a rectangular or irregularly shaped area you can
simply divide the region into a number of rectangles, determine Jc, or §p at the corners of the -
various rectangles and, making use of the principle of superposition, add or subtract the
individual effects. For example, for the L-shaped building in Fig. 22.12 the stresses and
settlements at the corner E can be found by adding the effects of the rectangles DABE, BCFE
and HGDE; the stresses and settlements at the external point J can be found by subtracting the
effects of the rectangle HEFJ from those of the rectangle GACJ. '

In selecting values for Young’s modulus and Poisson’s ratio it is necessary to distinguish
_ between drained and undrained loading. For drained loading choose the parameters E’ and v/
corresponding to effective stresses and for undrained loading choose E, and v, = 0.5 correspond-
ing to undrained, constant volume loading. The basic relationship between the elastic shear
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modulus G and the elastic bulk modulus E (see Sec. 34) 1s

E

- 22.13
=3+ (@2.13)

For an elastic material for which shear and volumetric effects are decoupled we have G’ = G,
and hence - : :

E ___& (22.14)
20 +v) 214+ v,)
‘or, with v, = 0.5,
’ 3E’
E. = - 22.15
Y21+ V) ( )

The settlements of a foundation for drained loading p4 or for undrained loading p, are given
by Egs (22.10) or (22.12) with the appropriate values for E and v. Hence, making use of Eq.
(22.15),

pe  3E 1
ps 41 —v)E, 2(1—1)

(22.16)

and, taking a typical value of v = 0.25, we have p, = 0.67p,. Thus. for foundations on an
infinitely deep bed of elastic soil the settlements for undrained loading are of the order of
two-thirds those for drained loading of the same foundation: the difference is made up by the
additional settlements that occur due to consolidation after undrained loading. If the depth of
the soil is relatively small compared to the width of the foundation so that the conditions in
the soil are one-dimensional (see Sec. 22.8), p, = 0. -
These analyses, based on the theories of linear clasticity, are interesting and informative but
_we must not forget that soils are highly non-linear and inelastic over most of the range of loading
of practical importance and the results should be viewed accordingly. -

22.8 SETTLEMENTS FOR ONE-DIMENSIONAL LOADING

An assumption commonly made is that the thickness of a compressible soil layer is small
compared to the width of the loaded foundation; so that the horizontal strains can be neglected.
In this case the conditions of stress, strain and consolidation in the ground, shown in Fig.
22.13(a), are the same as those in the one-dimensional oedometer test described in Sec. 7.6 and
8.4 and shown in Fig. 22.13(b).

In the oedometer test the vertical strains ¢, are given by Eq. (8.9) as
é¢, = m, o0, (22.17)

where, for complete consolidation when & = 0, we have do, = bc,. At the ground the surface
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Figure 22.13 One-dimensional consolidation in foundations.

settlements due to consolidation dp, are given by

% = b6, = m, 5, (22.18)

where, for complete consolidation, we have dg7, = dg, where dq is the change of bearing pressure
at the surface (i.e. the net bearing pressure). Final consolidation settlements for wide foundations
can be calculated using Eq. (22.18). However, because the one-dimensional compression and
swelling behaviour of soil is non-linear m, is not a soil constant and it is necessary to measure
m, in an oedometer test in which the initial stress and the change of stress both correspond to
those in the ground. )

The rate at which consolidation settlements occur in one-dimensional oedometer tests was
considered in Chapter 14. General solutions for rates of consolidation emerge as relationships
between the degree of consolidation U, and the time factor T.. These are defined as

U = f:_' (22.19)
T = :—1; (22.20)

where Ap, and Ap,, are the settlements at times ¢ and ¢ = o, ¢, is the coefficient of consolidation
and H is the drainage path length. , . ' -
Relationships between U, and T, depend on the geometry of the consolidating layer and
its drainage conditions and on the distribution of initial excess pore pressure. The most
common drainage conditions are one-dimensional or radial, as shown in Fig. 22.14. For
one-dimensional drainage the seepage may be one-way towards a drainage layer at the surface,
two-way towards drainage layers at the base and at the surface or many-way towards silt or
sand layers distributed through the deposit. For radial drainage seepage is towards vertical
drains placed on a regular grid. In each case the drainage path length, H or R, is the maximum
distance travelled by a drop of water seeping towards a drain. )
For one-dimensional consolidation the relationships between U and T, for different initial
- excess pore pressure conditions are given in Fig. 14.10 in terms of T,. These could also be given
in terms of T, plotted to a logarithmic scale, as shown in Fig. 22.15(a), which corresponds to
consolidation with the initial excess pore pressure &; uniform with depth. Figure 22.15(b) is for
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(¢) Drainage to horizontal (d) Radial drainage to vertical Figure 22.14 Drainage conditions in
sand layers drains foundations.

radial consolidation where
I=— (22.21)
n=— (22.22)

As discussed in Chapter 14, these can be used to calculate either the settlement after a given
time or the time for a given settlement. Although, in theory, complete consolidation will require
__infinite time a reasonable approximation is that T, or T, = 1.0 at U, = 1.0.

229 SUMMARY

1. Foundations transmit loads to the ground. As the load increases the foundation settles and
it fails when the settlements become very large. Foundations may be shallow or they may be
deep to take advantage of the general increase of strength and stiffness of soils with depth.

2. The bearing pressure q is the contact stress between the foundation and the soil. The net
bearing pressure of a deep foundation is the change of bearing pressure; this may be positive
so the foundation settles or it may be negative so it heaves. The bearing pressure g and the
net bearing pressure g, are given by '

(22.1)

4%=9—Po (22.3)

3. Under a foundation pore pressures generally increase with undrained loading and, with time,
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these dissipate as the soil consolidates. As a result further settleménts oécur but effective

stresses and safety factors increase.
The bearing pressure when the foundation fails is the bearing capacity g, given by

g.= suNc + Po (22'4)

for undrained and drained loading respectively, where N, N, and N, are bearing capacity

factors. - ,
An important criterion for foundation design is the need to limit the settlements. This may

be done by applying a load factor to the net bearing pressure. Alternatively, settlements may
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be calculated assuming that the soil in the foundation is elastic. For foundations on sand
settlements are related to the relative density which may be estimated from the resuits of SPT
tests.

6. For wide foundations on relatively thin beds of soil the strains during consolidation are
one-dimensional. The magnitude of the settlement is given by - '

ép. = zm, do, (22.18)

The rate of settlement is given by the relationship between the degree of consolidation and the
time factor, which are given by

U= %L (22.19)
Po ,
T, = ;i (22.20)

(3

A reasonable approximation is T, = 1 when U, = 1.

WORKED EXAMPLES
Example 22.1: Undrained bearing capacity of a foundation For the foundation in Fig. 22.16
the ultimate load for undrained loading is given by Eq. (22.5):
F.+ W=s,N.B + yDB

If the unit weights of soil and concrete are the same, W = yDB. From Fig. 22.6(b), for a long
foundation with D/B ~ 1 we have N, = 6 and ’

F, =30 x 6 x 2.5 =450 kN/m
If the applied load is F, = 300 kN/m the load factor is 1.5.

300 kN/m

s, = 30kPa
¢I = 256

) ﬂ " y=20kN/m’
3 IZm

Figure 22.16

Example 22.2: Drained bearing capacity of a foundation For the foundation in Fig. 22.16
the ultimate load for drained loading is given by Eq. (22.7):

F,+ W =40 — 7,)B°N, + (# — 7 )(N, = 1)BD + yBD
As before, W = yBD. From Fig. 22.7(b), for ¢’ = 25, N, = 8 and N, = 11 and
F. = (20 — 10)2.52 x 8 + (20 — 10)(11 — 1)2.5 x 2 = 750 kN/m
If the applied load is F, = 300 kN/m the load factor is 2.5.
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Example 22.3: Settlements of an embankment The embankment in Fig. 22.17 is sufficiently
wide so that the strains and seepage in the soil can be assumed to be one-dimensional. From
Eq. (22.18) the magnitude of the final consolidation settlement is

p.=mzAc,=5x10"*x 8 x 100 = 040 m

(a) From Fig. 22.15(a) the time when the settlement is complete (i.e. when U, = 1.0) corresponds
to T, = 1.0. Hence, from Eq. (22.20),

t__I},H’_l.OxS’
cV

= 32 years

(b) After 5 years the time factor is

et 2xS
. - . ,7:'=}F= 82..=0'16 I

From Fig. 22.15(a) this corresponds to a degree of consolidation U, ~ 0.50 and the settlement
after -5 years is : . - -

p,= Upg =0.50 x 0.40 =020 m

_ ¢ N A

m, = 5x10™* m¥/xN 8
s m
¢, = ¢, = 2m/year

’ | ble rock
% mpermeale r Figure 22.17

Example 22.4: Settlements with drains In order to speed up the settlements of the
embankment in Example 22.3 sand drains are installed in the clay. The drains are 200 mm in
diameter (r = 100 mm) and they are spaced 2 m apart (R = 1.0 m). )

From Fig. 22.15(b), with n = R/r = 10, the time when scttlement is complete (i.e. when
U, = 1.0) corresponds to T, = 1.0. Hence, from Eq. (22.21), '

T,R* 10 x 1.0

= (.5 years
c, 2 y

Example 22.5: Calculation of stresses and settlements in elastic soil Figure 22.18 shows a
circular water tank at the surface of a deep bed of elastic soil. For g = 5 x 10 = 50kPa the
changes of vertical stress and the settlements for drained loading are given by Egs (22.11) and
(22.12):

dc), = 6ql, = 50I, kPa
1- (1 —025%) x 103
10 x 10°

/2
> I,=50x10

0p = 6qB — I,=47], mm

where I, and I, are given in Fig. 22.10.
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10m

T |

I«

¥+ = 10kN/m’ S5m
X A‘ ‘}
7N ’ A )
E' = 10MPa 5 Sm
v =0. Y
B 4 - Figure 22.18

(a) At point A, z/a=0so I, = 1.0 and I, = 1.0; hence
50, = 50kPa
. 6p = 47 mm

(b). At point B, z/a =150 I, = 0.65 and, for v’ = 0.25 (interpolating between the data for v =0
and v' = 0.5), I, = 0.65; hence .

éc, = 33 kPa
ép =31 mm
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CHAPTER

TWENTY-THRE
PILED FOUNDATIONS

23.1 TYPES OF PILED FOUNDATIONS

Piles are long slender columns installed into the ground, often in groups. The principal purpose
of piling is to transfer loads to stronger and stiffer soil or rock at depth, to increase the effective
size of a foundation and to resist horizontal loads. Typically piles are made from steel or
reinforced concrete and possibly timber. They may be driven or pushed into the ground or
concrete piles may be cast in situ by pouring concrete into a drilled hole.

Some typical pile types are illustrated in Fig. 23.1, Figure 23.1(a) shows an end bearing pile
where most of resistance is developed at the toe and Fig. 23.1(b) shows a friction pile where a
significant contribution to the pile capacity is developed by shear stresses along the sides. Figure
23.1(c) shows raking piles to resist horizontal loads and Fig. 23.1(d) is a pile group joined at
the top by a pile cap. Notice that the pile on the left in Fig. 23.1(c) is in tension and so all the
- resistance comes from shear stress on the sides of the pile. -

Figure 23.2 shows the loads on a single pile: the applied load @ is resisted by a forct at the
base Q, and a force Q, due to the shear stresses between the soil and the pile shaft; hence

Q=0,+0 ' (23.1)

In conventonal pile analysis the weight of the pile is taken to be the same as the weight of soil
displaced by the pile and both are neglected. Ir any case these forces are usually small compared
with the applied loads, which are typically in the range 500 to 5000 kN and may be considerably
larger. Figure 23.2(b) illustrates the increase in base resistance and shaft friction with displace-
ment. The shaft friction increases more quickly than the base resistance and reaches an ultimate
state at relatively small strains. : . '
Piles or pile groups may be loaded drained or undrained and the basi¢ total and effective
stress paths will be similar to those for shallow foundations, shown in Fig. 22.5. Generally, piles
installed in a clay soil will settle with time as the excess pore pressures generated by undrained
. loading dissipate and the effective stresses and strength of the soil increases. There may, however,
be stress changes caused by installation which would cause swelling and softening of the soil
around a bored and cast in situ pile or compression and consolidation around a driven pile.
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) Figure 23.1 Types of piled foundations.
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23.2 BASE RESISTANCE OF SINGLE PILES

The base resistance of a single pile is given by
Qv = g Ay (23.2)

where g, is the bearing capacity at the toe and A, is the area of the pile base. The general
principles for calculation of the bearing capacity of piles are similar to those for shallow
foundations described in Chapter 22. The mechanism of slip surfaces at the tip of a pile
appropriate for an upper bound or limit equilibrium calculation will be similar to that shown
in Fig. 23.3 and we would expect the bearing capacity factors for piles to be larger than those
for shallow foundations. For undrained loading the bearing capacity is given by

gy =s.N, @33
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Diameter D, - ¢
@ (From Berezantzev. Khristoforov and Golubkov, 1961)

- ) U]

Figure 23.3 Base resistance of piles.

and, for square or circular piles, N; = 9 (Skempton, 1951). For drained loading the bearing
capacity is given by

G = 0Ny (23.49)

where o7 is the vertical effective stress at the level of the toe of the pile. Values for the bearing
capacity factor N, depend principally on ¢’ and there are a number of published relationships
based on theory and experiment. The values shown in Fig. 23.3(b) are those given by Berezantzev,
Khristoforov and Golubkov (1961).

The choice of the appropriate value of ¢’ is problematical. Soil below the toe of a driven
pile will be highly strained during driving while there is the possibility of stress relief and softening
at the base of a bored and cast in situ pile during construction. Consequently, in both cases a
rational design method would take the critical friction angle ¢ to determine a value of N, for
pile design. However, experiments and in situ tests indicate that use of ¢; with the values of N,
in Fig. 23.3(b) leads to overconservative designs and often a peak friction anglc ¢, is used in
practice.

The base resistance of a single pile may also be estimated from the in situ probmg tésts
described in Chapter 16. The end bearing capacity of a pile is often equated with the cone
resistance measured during a static cone test (sometimes with a correction for the different sizes
of the pile and the cone) or derived from the standard penetration test N value.

233 SHAFT FRICTION ON PILES

From Fig. 23.4 resistance due to shaft friction on a circular pile, diameter D, is given by

Q.=anLt,dz : - y (23.5)

0

where <, is the shear stress mobilized between the pile and the soil. The value of 7, is very difficult
to determine; it depends on soil, on the pile material and partlcularly on the method of
installation. For undramed loading of piles in clay,

5 =as, L 236)
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| | Y Figure 23.4 Shaft resistance of piles.

where x must be in the range 0 < a < 1. Typically « is taken to be about 0.5 for both driven
and cast in situ piles. For drained loading,

7. =ojtand = Ko, tand’ =~ Ny (23.7)

where K is the ratio of the horizontal and vertical effective stresses o, /0, and must be in the
range K, < K < K, (where K, and K, are the active and passive earth pressure coefficients
discussed in Chapter 21); &' is the friction angle for shearing between the pile and the soil and
for a rough pile this will be in the range ¢. < & < ¢,,. For clays, Eq. (23.7) is often simplified to

1, = B, (23.8)

where B = K tan & is an empirical parameter that depends on the nature of the soil and on the
method of pile installation.

Pile installation influences both &' and K but differently. When a pile is driven into the
ground there will be very large shear displacements between the pile and the soil, and in clays
these displacements will probably be enough to reduce the soil strength to its residual value.
However, pile driving is likely to increase the horizontal effective stresses which will tend to
increase the shaft friction. On the other hand if a pile is driven into cemented soil, the horizontal
stress after driving and the available shaft {riction could be very small indeed. A cast in situ
concrete pile is likely to have very rough sides and so the available shearing resistance will lie
between the peak and the critical state strength of the soil. However, boring 2 hole in the ground
to construct a cast in situ pile will reduce the horizontal stresses which may be reduced still
further as the concrete shrinks during setting and curing. For both driven and cast in situ piles
there are compensating effects on ¢’ and on K. - - e . .

Notice that in a soil that is settling, perhaps due to the weight of fill placed at the surface
or due to groundwater lowering, the shait friction will act downwards on the pile as shown in
Fig. 23.5, causing negative shaft friction.

23.4 PILE TESTING AND DRIVING FORMULAE

Because of the considerable uncertainties in the analysis of pile load capacity, both in calculation
of base resistance and shaft friction, some of the piles on a job will often be subjected to load
tests to demonstrate that their capacity is adequate. In typical tests loads will be applied in
excess of the design working load and the defiections measured. The loads may be applied in
stages and maintained at each increment (like in-an oedometer ‘test) or applied at a constant
rate of penetration. The latter method is found to give more consistent results and better
definition of failure loads. ‘ '
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Figure 23.5 Negative shaft friction due to ground settlement. Figure 23.6 Pile driving formulae.

__ The capacity of a pile can be inferred from its resistance to driving. The basis of these .
so-called pile driving formulae is that the work done by the hammer (less any losses) is equal
to the work done as the pile penetrates the ground. For the simple drop hammer weight W
falling through h shown in Fig. 23.6 the pile capacity Q is related to the set s (i.e. the displacement)
for a single blow by

Q,= Wh (23.9)7

Equation (23.9) is a very simple driving formula, too approximate to be used in practice, but it
is the basis of other formulae which include terms to take account of energy losses in the hammer
and in the pile.

235 CAPACITY OF PILE GROUPS

Ina group of piles like that shown in Fig. 23.1(d), there will be interactions between neighbouring
piles so that the capacity of each pile in the group will be reduced. A group efficiency 7 is given by

F =m0 (23.10)

where F is the total load on the group, n is the number of piles in the group and Q is the capacity
of an individual pile on its own. Values for the efficiency n decreases with reduced spacing of
the piles, roughly as shown in Fig. 23.7(b).

If the pile spacing is relatively close, as shown in Fig. 23.7(c), it is more appropriate to
consider the group as an equivalent foundation of base area A and depth L,, where L, = §L.
The bearing capacity g, of the block is calculated using the methods for shallow foundations
described in Chapter 22 and the shear stresses on the sides of the block are calculated assuming
that the ultimate shear stresses developed correspond to the strength of the sqil. '

23.6 SUMMARY

1. Piled foundations are used to lower the foundation into soil which is stiffer and stronger.
The load capacity of a pile arises from base resistance and shaft friction.
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Figure 23.7 Capacity of pile groups.

2. Base resistance of a single pile is given by

gy = SuN; (23.3)
g, = o, N, (23.4)

for undrained and drained loading respectively. : o
3. The shaft friction of a single pile is given by

- e e, - (23.6)
o o = fo, (23.8)

where a is a shaft friction factor for undrained loading and, for drained loading, § = K tan ¢'.

4. In practice the capacity of piles is often determined from full-scale load tests or from pile
driving formulae. The capacity of groups of piles can be found from the capacity of a single
pile with an efficiency factor or from the geometry of an equivalent foundation.
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CHAPTER

TWENTY-FOUR
© GEOTECHNICAL CENTRIFUGE MODELLING

24.1 MODELLING IN ENGINEERING

Engineers frequently- use scale models in conjunction with theoretical analyses. For example,
wind tunnel modelling is used routinely by engineers to study the flow of air past vehicles,
aircraft and buildings. Hydraulic engineers frequently use models to study the flow of water in
river channels, tidal flow in estuaries and wave loading on structures. Scale modelling is used
most often when the theoretical solutions contain major simplifications and approximations or
when numerical solutions are very lengthy, as is often the case in geotechnical engineering.

A geotechnical model might be tested when it would be too difficult, expensive or dangerous
1o build and test a full-scale structure. For example, it would be very difficuit to test the response
of a large earth-fill dam to earthquake loading and it would be very dangerous to examine the
collapse of a tunnel heading during construction. Usually a model will be smaller than the
prototype (or full-scale) structure that it represents.

The principles for modelling fluid flows are well established and so too are the principles
for geotechnical modelling. To achieve correct scaling in geotechnical models the unit weight of
the soil is increased by accelerating the model in a geotechnical centrifuge.

At present modelling is used less frequently in geotechnical engineering than in other
branches of civil engineering but it is an important and valuable technique and one that you
should know about. Detailed discussion of geotechnical centrifuge modelling is obviously beyond
the scope of this book and what I want to do in this chapter is simply to set out the basic
principles and to describe the principal purposes of modelling.

242 SCALING LAWS AND DIMENSIONAL ANALYSIS

Normally a model and the prototype will be geometrically similar so that all the linear
dimensions in a model will be scaled equally but, for various reasons, it is impossible to construct
a model that behaves exactly like a large prototype in all respects. (You have probably noticed
that the waves made by a model sailing boat are different from the waves made by 2 full-sized
yacht.) Instead, the model should have similarity with the prototype in the aspect of behaviour

K[
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under examination. For example, in a wind tunnel model of an aircraft wing the relationships
between lift, drag and velocity should be similar while in a river model the relationships between
water depths and velocities ‘'should be similar, but neither model need look very much like the
prototype it represents. On the other hand, a model built by an architect or a railway enthusiast
should look like the real thing. ’

The rules that govern the conditions for similarity between models and prototypes are well
known and the simplest method for establishing scaling laws is by dimensional analysis. The
basic principle is that any particular phenomenon can be described by a dimensionless group
of the principal variables. Models are said to be similar when the dimensionless group has the
same value and then the particular phenomenon will be correctly scaled. Often these dimension-
less groups have names and the most familiar of these are for modelling fluid flow (e.g. the
Reynolds number).

"24.3 SCALING GEOTECHNICAL MODELS

In constructing a geotechnical model the objectives might be to study collapse, ground
movements, loads on buried structures, consolidation or some other phenomenon during a
construction or loading sequence. In earlier chapters of this book I showed that soil behaviour
is governed to a very major extent by the current effective stresses (this is a consequence of the
fundamental frictional nature of soil behaviour). Consequently, the stresses at a point in a model
should be the same as the stresses at the corresponding point in the prototype.

Figure 24.1(a) shows the vertical total stress at a depth z, in a prototype construction in
the ground and Fig. 24.1(b) shows a similar point at a depth z,, in a model with a scale factor
n (i.e. all the linear dimensions in the model have been reduced n times). In the prototype the
vertical stress is -

a0, = 9Pz, (24.1)

where p is the density of the soil and g = 9.81 m/s? is the accleration due to Earth’s gravity. If
the model is placed in a centrifuge and accelerated to n times g the stress at a depth in the model
Zn=12,/nis

G =ngpzy =202 42
n

and o, = g,. Since the stresses at equivalent depths are the same the soil properties will also
be the same (provided that the stress history in the model and prototype are the same) and the
" behaviour of the soil in the model will represent the behaviour of the soil in the prototype.
Notice that you cannot reproduce the correct prototype stresses by applying a uniform surcharge
to the surface of the model as, in this case, the stresses in the model will be approximately
constant with depth rather than increasing linearly with depth as in the ground.

¢

Z,

Figure 24.1 Stresses in the ground and in a
(a) et (b) - centrifuge model. . :
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Another way of looking at the requirements of geotechnical modelling is through dimensional

analysis. The stability of a slope for undrained loading was described in Sec. 20.8. For the

« prototype slope in Fig. 24.2(a) with beight H, and slope angle i (which is itself dimensionless),

the stability depends on the undrained strength s,, the height H; and the unit weight y = gp.
These, can be arranged into a dimensionless group-

N, =22 \ 24.3)
S, .
where N, is a stability number. Notice that this is exactly the same as the stability number in
Eq. (20.39). A model and a prototype are similar (i.c. they will both collapse in the same way)
if they both have the same value of N,. If the scale factor is n so that the model height H, and
the prototype height H, are related by H,, = H,/n the stability numbers can be made equal by
accelerating the model in a centrifuge to ng so that

N, = ggﬂ’ = % : (24.4)
sll Sll

Thus the stability of the model slope illustrated in Fig. 24.2(b) will be the same as the stability
of the prototype slope in Fig. 24.2(a) and if the slopes fail they will both fail in the same way.

The stresses, and the basic soil properties, in a prototype and in an nth scale model will be
the same if the model is accelerated in a centrifuge to ng, but time effects may require a different
scaling. There are several aspects of time in geotechnical engineering, the most important being
associated with consolidation.

Consolidation due to dissipation of excess pore pressures with constant total stresses was
discussed in Chapter 14. The rate at which excess pore -pressures dissipate during one-
dimensional consolidation is given by Eq. (14.34) and for similarity the time factor T, in the
model and in the prototype should be the same. From Egq. (14.25),

Gl _Clm
Y HY H}
In a model with the same soil and pore fluid as the prototype, c, is the same and if the scale is

n we have H, = H,/n. Hence, from Eq. (24.5), the times for consolidation in the model and
prototype are related by '

(24.5)

! (24.6)

=N|'°

l

so that consolidation will proceed much more rapidly in the model than in the prototype. For

~ a typical scale factor n = 100, we have t,, = 107%z, so that 1 hour of model time represents
approximately 1 year of prototype consolidation time.

The relationship between the rate at which excess pore pressures dissipate as drainage occurs
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and the rate of loading that generates additional excess pore pressures governs whether a
particular construction event is drained, undrained or partly drained, as discussed in Sec. 6.8.
Remember that for routine geotechnical calculations we have to assume either that the soil is
fully drained or that it is fully undrained, in which case there will be subsequent consolidation.
A model could, however, examine cases of partial drainage in which the rates of loading and
consolidation were coupled. .
If the accelerations in the prototype and in the model are related by the scale factor n an

are given by

d2
*® = aw? sin (w1,) (24.7)
de;
d?
J;’“ = naw? sin (nwt,) ) (24.8)
deg,
- . then the displacements are given by S e - - .
X, = asin (wt,) (24.9)
Xn = g sin (nwt,,) (24.10)
n .

and the times in the prototype and in the model are related by
t,=nt, (24.11)

P

Any motion can be represented by a Fourier series which is a summation of sine functions
and so the time scaling rule given by Eq. (24.11) applies to any displacement or loading. Notice
that the scaling requirement for the rate of loading is that the times should be related by n,
which is not the same as the requirement for modelling consolidation where the times should
be related by n2. Therefore it is not generally possible to model coupled loading and consolidation
in the same model. This problem can be avoided by using a pore fluid such as silicon oil with
a viscosity n times greater than that of water. In this case the coefficient of consolidation and
the rate of consolidation in the model are deduced by n times so that the scaling ¢, = nt,, is then
the same for both the rate of loading and the rate of consolidation. ,

24.4 PURPOSES OF MODELLING

It would be very convenient to be able to construct and test a scale model that reproduced all
the significant features of the behaviour of a proposed construction. Unfortunately, however,
this is not generally possible for a variety of reasons. The principal difficulties are rather like
those associated with ground investigations and laboratory testing (see Chapters 7 and 16) and
are due to test samples not being fully representative of the soil in the ground. It is also difficult
to model geological history and complex construction sequences. Instead, geotechnical models
are usually constructed and tested to meet specific objectives.

The principal purposes and categories of geotechical modelling were discussed by Taylor
(1987) and these are as follows. .
(a) Mechanistic Studies

The basic methodology of engineering design is that engineers imagine all the possible ways n
which a proposed construction may fail or distort and they then carry out analyses that
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demonstrate that it will perform satisfactorily in any of these ways. Sometimes major failures
occur when the construction finds some other way to fail or distort. For example, in the upper
bound and limit equilibrium methods described in Chapters 18 and 19 it is necessary to define
compatible mechanisms and the solutions depend on the mechanisms chosen. For relatively
simple cases it is usually possible to choose the critical mechanisms from previous experience,
but in novel and complex cases they may not be so obvious. In these cases relatively simple
model tests may be carried out simply to observe qualitatively the way in which the structure
distorts and fails, thus indicating the most appropriate analyses. :

(b) Validation of Numerical Analyses

Design of geotechnical structures often requires complex numerical analyses using finite
clement, or similar, methods with non-linear and inelastic soil behaviour (see Chapter 13). These
analyses are highly complex and before they are applied in design studies they should be tested
against exact analytical solutions or against observations of the real events. Observations from
relatively simple model tests can be used to test numerical analyses. The models should be similar
to the proposed construction but, since the models are used only to calibrate the analyses, they
need not reproduce all the details of the prototype.

(c) Parametric Studies

Another important procedure in design studies involves examining alternative construction
details ‘and investigating the consequences of different design assumptions. Furthermore,
standard design codes and charts rely on studies of many different alternatives. Normaily
parametric studies are carried out using analytical or numerical methods, but model studies
have a role to play in parametric studies, either on their own or together with other methods.

(d) Site-Specific Studies

In this case the model is intended to represent a particular construction so that the behaviour
of the model is used directly to assess the behaviour of the prototype. It is obviously not easy
to model all the details of the ground conditions and the construction and loading sequence;
these are the most difficult type of centrifuge models to construct and test satisfactorily.

Model studies may be carried out for more than one purpose, for example combining-
validation of analyses with parametric studies. In practice, designs are vary rarely completed on
the basis of model tests alone and model tests are almost always used in conjunction with
numerical analysis. -

245 GEOTECHNICAL CENTRIFUGES

In a geotechnical centrifuge, a model in a strong container is rotated in a horizontal plane about
a vertical axis as shown in Fig. 24.3. At the model the centrifugal acceleration a is

a=ng=w’r (24.12)

where r is the radius and w is the angular velocity (in radians per second). To maintain a
reasonably constant acceleration field through the model the radius r should be large compared
with the size of the model. : - -

The essential features of a geotechnical centrifuge are illustrated in Fig. 24.4. The motor
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Slip rings

Counterweight

Figure 244 Characteristic features of a typical
Figure 243 Centrifuge acceleration. geotechnical centrifuge.

drives a vertical shaft at constant speed. The arm has an adjustable counterweight for balance
and the model sits on a swing. At rest the swing hangs down, but as the arm rotates it swings
up to a nearly horizontal position as shown. The purpose of the swing is so that the self-weight
of the model always acts towards the base of the container; if you put a strong bucket containing
water on the swing and start the centrifuge the water will remain level in the bucket.

The selection of the dimensions and speed for design of a geotechnical centrifuge is a matter
of optimization between a number of conflicting requirements. A given prototype size could be
represented by a small model tested at high accelerations or by a larger model at smaller
accelerations; a given acceleration, or scale factor, can be achieved by a high-speed machine
with a relatively small radius or by a machine with a larger radius rotating more slowly.

From Eq. (24.12) the acceleration is given by w’r, so a small-radius, high-speed machine is
more efficient than one with a larger radius and lower speeds. If, however, the radius is not
large compared to the depth of the model there may be significant variations of acceleration
with depth in the model. A small model, requiring large accelerations, will be relatively easy to
manufacture and handle, but it will be possible to install only a limited number of instruments.
On the other hand, a larger model which can be more easily instrumented will be heavy and
more difficult to manufacture and handle on to the centrifuge.

The mass of the model, including the soil, the strong container and all the ancillary
equipment for loading and observing the model, is called the payload. The capacity of a centrifuge
is often quoted as the product (in g-tonnes) of the maximum acceleration (i.e. the scale factor)
and the maximum payload at that acceleration. : o

There is a very great variation in the dimensions and capacities of geotechnical centrifuges
and some examples to illustrate cases throughout the range are given in Table 24.1. The
optimization of size and capacity is determined largely by the resources of manpower available
to the group who will run the facility, so that university groups tend to acquire machines
requiring smaller and more easily managed models while commercial and government-run
facilities tend to have machines able to test larger models that can accommodate more
instrumentation. : o ' o

As a very rough guide, about 50 per cent of the payload could be soil, with the remainder
required for the strong container and other equipment. For the Acutronic 661 machine at City
University the maximum payload of 400 kg could have about 200 kg of soil and this could be in
a model (say) of 600 mm x 400 mm x 400 mm. At a scale factor of n = 100 (i.e. at an acceleration
of 100 g) this represents a prototype volume of soil of 60 m x 40 m x 40 m or a 20 m thick plane
strain slice 100 m wide and 50 m deep. A package up to 400 kg can be handled reasonably casily
without expensive cranes and the Acutronic 661 machine represents an optimum size for a
‘university facility. : s T
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Table 24.1
Centrifuge Location R (m) Payload Acceleration Capacity
manufacturer . ’ (kg) (g) (g tonnes)
MSE City University 0.2 0.75 1500 1
Mistral . 3
Acuironic City University 1.8 400 " 100 0
~ model 661 200 200
Acutronic LCPC, Nantes 55 2200 100 220
model 680 1100 © 200
500

Krupp Ruhr-University 4.1 2000 250
- Bochum

In the very small MSE Mistral centrifuge at City University the maximum size of the model
is only about 80 mm x 80 mm x 20 mm, but at a scale factor of n = 1000 this represents a

~ prototype volume of soil 80m x 80m x 20 m thick. In such a small model there is little

opportunity for instrumentation, but the deformations of the model can be photographed or
recorded on videotape using a stroboscopic flash. Very small machines are used principally for
teaching and for student projects.

24.6 CONTROL AND INSTRUMENTATION IN CENTRIFUGE MODELS

During a typical geotechnical centrifuge model test the machine will be run at constant speed
(i.e. at constant scale factor) while the model is loaded or unloaded and the behaviour observed.
The requirements for control of loading and measurement of load and displacement in a model
are broadly similar to those for laboratory tests described in Chapter 7.

Communication with the rotating model is through slip rings, as shown in Fig. 24.4. These

may transmit fluids (e.g. water, gas or hydraulic oil) or power to operate motors or valves, and -

they will transmit signals from force, pressure and displacement transducers and from closed
circuit television cameras set to observe critical points in the model.

Before conducting a test the model should be allowed to come into equilibrium under the
increased self-weight stresses at constant centrifuge acceleration; larger models of fine-grained

soils may require the centrifuge to be run continuously for several days to reach equilibrium. -

Often a small ground investigation will be carried out in flight using model cone penetration
or shear vane tests similar to those discussed in Sec. 16.5.

A very large number of different events and construction activities can be modelled. Design
and manufacture of model loading and construction devices taxes the ingenuity of the engineer
and a number of sophisticated and novel examples can be found in the literature of centrifuge
modelling. Some typical examples include: vertical and horizontal loading of foundations, piles
and anchors; modelling excavation and tunnel construction by draining heavy fluids or by
reducing pressures; embankment construction in stages by dropping sand from a hopper;
earthquakes simulated by vibrating the base of the model; formation of craters and blast loading
on buried structures simulated by detonating small explosive charges.
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247 SUMMARY

1. Modelling geotechnical structures can be used to examine mechanisms of deformation and
collapse, to validate numerical analyses and for parametric studies. Models can occasionally
be applied to site-specific cases, but this is usually very difficuit.

2. For correct scaling of stresses and soil properties geotechnical models should be tested while
under acceleration in a centrifuge. An n-scale model should be tested at an acceleration of
ng, where g is the acceleration due to Earth’s gravity.

3. At a scale factor of n, rates of loading should be raised by a factor of n and rates of
consolidation will be increased n? times.
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CHAPTER

S " TWENTY-FIVE
CONCLUDING REMARKS

My objective in writing this book was to set out the basic theories of soil mechanics and
geotechnical engineering in a simple and understandable way. In common with introductory
texts in other engineering subjects, I have dealt principally with simple idealization to construct
a theoretical framework for soil behaviour. You should be aware. however, that this is only a
part of the story and the behaviour of natural soils is often more complex.

I have tried to relate the basic principles of soil mechanics to the general theories of
mechanics and materials to demonstrate that soil mechanics does have a sound theoretical basis
linked to theories that will appear in other courses on structures and fluid mechanics. I have
also tried 1o describe soil behaviour in the context of evervday experiences of the behaviour of
soils and granular materials in the garden. on the beach and in the kitchen. I want readers to
relate the simple theories of soil mechanics to their own observations. Broadly, the predictions
of a theoretical calculation should be what you would reasonably expect to happen and the
stability of a large excavation or foundation will be governed by the same theories that govern
the behaviour of small holes in the beach.

If you have understood the simple theories in this book, you should be able to analyse a
simple retaining wall or foundation and assess the stability of a slope in idealized soil. You
should be able to say what soil parameters are required for a particular design, distinguishing
between the total stress parameters for undrained loading and effective stress parameters which
require knowledge of the pore pressures. You should also know how values of soil parameters
for design are determined from ground investigations and laboratory and in situ tests and you
should have some idea of what are reasonable values for different soils.

Of course, when you graduate you will not be a fully qualified and experienced engineer
able to design major groundworks, and the next step in your career may take one of several
directions. You might, for example, want to become an accountant, a manager or an inventor
and you can do all these in civil engineering. Any construction enterprise is really a business
and the engineers will need to manage their resources and account for income and expenditure.
Any civil engineering design is really an invention because it is a unique creation and inventors
must also be engineers because their inventions must be made to work.

The next step in your career as a civil engineer is to learn how to put theory into practice.
You should start by working with experienced engineers and you will be trained through
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experience. Among other things you will learn how to do routine designs using standard methods.
One of the most important things to learn is how to recognize when the problem has become
so complex and difficult that you need to consult a specialist.

I hope that some of you will be sufficiently excited by the challenges of soil mechanics and -
geotechnical engineering to want to become a specialist called on to solve the difficuit ground
engineering problems. In this case you will probably want to take a higher degree in soil
mechanics, geotechnical engineering, engineering geology or a related subject. You will need
to know very much more about soil mechanics than I have been able to cover in this book, but
it will provide an introduction to these more advanced studies.

The Mechanics of Soils and Foundations will have succeeded in its aims if it conveys to
students and engineers the idea that there are relatively simple theories underlying engineering
soil behaviour and that form the basis of engineering design. I hope that readers will be able to
apply these theories to geotechnical design and use them to assess critically the conventional,
routine design methods conventionally used in practice. '
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Acceleration (see Centrifuge modelling)
Accuracy of laboratory test results, 85, 147,
162-164
Active pressure, 276, 281-283
Activity, 50, 53
Ageing, 183-189
Age of soils and rocks (see Stratigraphic column)
Allowable (see Factor of safety; Design
parameters)
Analysis of strain (sec Strain analysis)
Analysis of stress (see Strain analysis)
Anchored retaining wall, 276, 284
Angle:
between slip surfaces, 18
of dilation, 17, 104, 129-134, 216-220
of friction, 6, 107, 125, 130

of shearing resistance, 16 - - — - ' --

of wall friction, 245, 282
(see also Cone angle; Critical friction angle;
Fan angle; Peak friction angle; Slope
angle)
Anisotropic compression, 96-99, 140-143
(see also One-dimensional compression)
Anisotropic soil:
seepage through, 212
(see also Layered strata)
Apparatus:
field test apparatus, 194-196
laboratory test apparatus, 76-84, 162-164
(see also Ground investigations; In situ tests;
Laboratory tests)
Associated flow, 31, 153, 216
(see also Flow rule)
Atterberg limits, 52, 76, 111, 116-119, 197
(see also Liquid limit; Plastic limit)
Auger drilling, 194
Axial:

kil 4
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load, 82
symmetry, 12
(see also Strain; Stress; Triaxial test)

Back pressure, 80
Base resistance (see Pile foundation)
Bearing capacity, 220, 231, 241, 292-299
(see also Bearing capacity factor; Bearing
pressure; Foundations; Pile foundations)
Bearing capacity factor, 296-298, 310
Bearing pressure, 293-295
Bedding (see Layered strata)
Behaviour (see Material behaviour; Stress-strain
behaviour) T
Bender element tests (see Measurement of
stiffiness; Triaxial test)
Bishop routine method, 249
Borehole, 193
borehole log, 201
Boulder clay (see Till)
Boundary conditions for laboratory tests, 80
Boundary surface (see State boundary surface)
Bound methods, 215-233, 263-267, 268
(see also Bearing capacity; Lower bound;
Plastic collapse; Slope stability; Upper
bound)
Bulk modulus, 6, 25, 92, 143, 159
(see also Stifiness)

Cam clay, 151-156, 158-161
(see also Compliance matrix; Flow rule;

Hardening; State boundary surface;
Stiffness; Theory of elasto—plasticity;
Yield)

Cantilever retaining wall, 285

Carbonate soil, 92, 111, 119

Cell pressure, 82



Cementing, 46, 109, 116, 143, 187

Centrifuge modelling, 316-323
(see also Instrumentanon, Model; Scaling

laws)

Change of stress across a stress fan or

discontinuity, 222-231
(see also Stress discontinuity; Stress fan)

Circular foundation, 301

Circular slip plane (see Slip circle method; Slip

surface)

Classification of soil, 45-55, 116-119, 190-192
laboratory classification tests, 74-77

Clay, 46-50
(see also Fine-grained soils)

Clay-sized particles, 46

Coarse-grained soils, 46-53

Coefficient:
of active_pressure (see Active pressure) __ . ..
of earth pressure at rest, 98, 184
-of passive pressure (see Passive pressure)

Coetficient of compressibility, 97, 169-176, 302
(see also Compression)

Coefficient of consolidation, 170, 303
measurement of oedometer tests, 176-178
(see aiso Consolidation)

Coefficient of permeability, 68, 169, 207
measurement in field tests, 198
measurement in laboratory tests, 77
(see also Permeability)

Cohesion, 107, 116

Cohesion intercept, 126

Cohesive strength, 50

Collapse (see Bound method; Limit equilibrium

method; Mechanism; Plastic coilapse)

Colour of soil, 45

Compacted soil, 46, 54, 95, 186

Compatibility, 4, 13, 217-230, 240
(see also Limit equilibrium method;

Mechanism; Upper bound)

Compliance matrix, 26, 156 - -

Compressibility, 23, 97, 117
(see also Coefflicient of compressnbxhty)

Compression, 5, 29, 65, 80-85, 91-101, 105, 140
(see also Isotropic compression;

One-dimensional compression; Triaxial
test; Unconfined compression test)

Compressive strength, 27

Concentrated load: )
stress and displacement below, 299
(see also Work done by external loads)

Cone angle, 115

Confined flow (see Seepage)

Consistency limits, 52-54

Consolidation (see Compression; Consolidation

settlements; Continuous loading;
Coupling; Isochrone; Oedometer;
One-dimensional consolidation; Time
factor)

Consolidation, 67, 80, 168-179, 203
coefficient of, 170, 176
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degree of, 174
settlements, 169, 303

Consolidation in centrifuge models, 318

Constant head permeability test, 77

Constant overconsolidation ratio line, 109, 112

(see also Normalization)

Constant p’ stress path (see Drained loading)

Constant volume section of state boundary
surface, 144

(see also Undrained loading)

Constitutive equations, 25, 156, 159

Continental drift, 37-39

Continuous loading, 178

(see also Compression; Consolidation)

Continuum mechanics, 5

Control of laboratory tests, 79, 83

Core of the earth, 38

Coulomb wedge analysis, 242

(see also Limit equilibrium method)

Coupling:

of compression and seepage (see
Consolidation)

of shear and volumetric effects, 26. 29, 143,
159

Creep, 34, 95, 187

Criteria of failure (see Failure criteria)

Critical friction angle, 98, 107, 114—-118

Critical hydraulic gradient (see Hydraulic
gradient)

Critical overconsolidation line, 95, 107

Critical slip surface (see Limit equilibrium
method; Upper bound)

Critical slope (see Slope stability)

Critical state (see Critical friction angle; Critical
state line; Critical state parameters;
Critical state strength; Slope stability;
Undrained strength)

Critical state, 106, 124, 138

in shear tests, 103-111
-in triaxial tests, 111-113
Critical state line, 106, 111 *
(see also State boundary surface)
Critical state parameters, 111, 113-119, 146
related to classification of soil, 116-119

Critical state point, 109, 112, 127-128, 142

Critical state strength, 103-119, 215, 240, 262

Crust of the Earth, 37

Current state, 46, 53, 156, 158, 185

- (see also State of soil; State parameter; State
path)

Curved fallure envelope (see Failure cnvelope)

Dam, 7, 205, 210 ‘

Darcy’s law, 68, 169, 207
Datum for potential, 205
Decoupling (see Coupling; Elastlc)
Deep foundation, 292
Deformations in elastic soil, 299-302
(see also Ground movements; Settlement;
Strain) A
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Degree of consolidation, 174-176
(see also Consolidation)
Dense (see Dry side of critical; Relative density)
Deposition, 39, 4143, 184
deposited soil, 39, 46, 54, 183
depositional environment, 41-43, 183
Depth of fouhdation, 292, 296
Description of soil, 45-55, 192
Desert environment, 39, 42
Design parameters, 74
for foundations, 297-299
for slopes, 261-263
for walls, 286
Desk study, 192
(see also Ground investigations)
Destructured soil (see Reconstituted soil)
Deviator stress, 83
(see ulso Parameters for stress)
Dilation, 15-19, 104, 129-134, 140, 146, 216
(see also Angle of dilation; Peak state)
Dimensional analysis, 316
(see also Centrifuge modelling) -
Direct shear test, 81, 103
Discontinuity (see Equilibrium stress state;
Lower bound; Slip surface; Stress
discontinuity)
Displacement diagram, 13, 221, 228, 231, 263,
265, 268
Dissipation of excess pore pressure (see
Consolidation)
~ Distortion, §

Drain, 65, 68, 79-82, 169-171, 175, 281, 302-304"

Drainage, 64-69
in laboratory tests, 79-83
rate of drainage, 68
(see also Consolidation)
 Drainage path, 175, 304
Drained loading, 65-69
bearing capacity factors for, 296
carth pressure for, 281
limit equilibrium calculations for, 244,
246-249
settlement of elastic soil for, 300
stability numbers for, 271
Drained loading behaviour of soil, 91, 103-107,
. 124, 138-146
Drained test, 79-81
Drilling, 193
{see also Ground investigations)
Driving formulae (see Pile foundation)
Dry side of critical, 95, 103, 124, 138-140, 154
Dry soil, 45, 60, 272
Dry unit weight (see Unit weight)

Earth, structure of the, 37-44

Earth pressure (see Active pressure; Coefficient
of carth pressure at rest; Passive pressure)

Effective stress, 23, 61-64

Mohr circle for, 62
(see also Principle of effective stress)

Effective stress path (see Stress path)

Elastic (see Elastic stifiness parameters; Elastic
stress—strain behaviour; Elastic wall;
Settlement in clastic soil; State inside state
boundary surface; Stress in the ground;
Stress in elastic soil; Theory of clasticity)

Elastic stifiness parameters, 28~29

(see also Bulk modulus; Poisson’s ratio; Shear
modulus; Young’s modulus)

Elastic stress—strain behaviour, 28-29, 143, 158

Elastic volume change, 119, 144

Elastic wall, 144, 152

(see also State boundary surface)

Elasto-plastic behaviour, 31-34

(see also Cam clay: Theory of
elasto—plasticity)

Embankment, 65, 97, 169

Engineering principles, 3

Engineer’s shear strain, 15

Environment (see Depositional environment;
Geological environment)

Equilibrium, 4, 12

(see also Equilibrium stress state: Limit
equilibrium method)

Equilibrium stress state, 222, 226

(see also Lower bound; Stress discontinuity;
Stress fan)
Equipotential, 206
(see also Seepage)
Equivalent liquidity index (see Liquidity index)

_Equivalent pressure, 109, 112

(see also Normalization)
Erosion, 3943, 184
(see also Seepage)
Errors (see Accuracy of laborator\ test results)
Excavation, 272
Excess pore pressure, 66, 168-176. 258-260, 295
(see also Consolidation)
Extension (see Triaxial test)
External water pressures (see Free water)

Fabric (see Structure of soil)
Factor of safety, 8, 215, 240, 261-263, 286, 297
(see also Load factor)

Failure (see Critical state strength; Failure
criteria; Peak state; Residual strength;
Strength; Undrained strength)

Failure criteria:

Mohr-Coulomb, 28, 107
Tresca, 28, 108
Failure envelope, 31
curved failure envelope, 128-129
Failure plane (see Slip surface)
Falling head test, 77
(see also Permeability)
Fan (see Slip fan; Stress fan)
Fan angle, 228-230



Field tests (see In situ tests)
Final settlement, 294 '
Fine-grained soils, 47-50
(see also Clay)
Finite element method, 156, 166
Fissures, 46, 192
Flight auger drilling (see Auger drilling)
Flowline, 205-212 :
Flownet, 207-212, 247, 261, 272, 281
(see also Seepage)
Flow rule, 30, 153
(see also Associated flow)
Force polygon, 13, 243-245
Formation (see Origin of soils)
Foundations (see Bearing capacity; Bound
methods; Deep foundation; Limit
equilibrium method: Pile foundation;
Settlement; Shallow foundation) '
Foundations, 7, 9, 64, 241-243, 292-305
bearing capacity of, 220-231. 296
- consolidation of, 302-304
on sand, 299
settlement of, 64, 293-295
Fracture of grains, 92
Free water, 38, 222, 243, 246. 260, 279-281, 284
Friction (see Angle of friction)
Friction block model for peak state, 130
Fundamentals (see Principles)

Geological cycle, 39
Geological environment, 41-+
(see also Depositional environment; Desert
environment; Glacial environment; Lake
environment; Marine environment)
Geological events, 43-44
(see also Deposition; Erosion: Sea-level
changes; Transportation of soil;
Weathering)
Geological processes, 43
(see also Deposition; Erosion: Transportation;
Weathering)
Geological section, 191
Geotechnical engineering, 1-9
Geotechnical structures, 2, 7
Glacial environment, 41-44
Grading of soil, 46-47
grading curve, 47
grading tests, 75
poorly graded, 47
well-graded, 47
Grain fracture (see Fracture of grains)
Grain size (see Grading)
Graphical methods (see Displacement diagram;
Force polygon)
Gravel, 46
(see also Coarse-grained soils)
Gravity retaining wall, 285
Ground investigations (see Drilling;
Groundwater; In situ tests)
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Ground investigations, 190-202
_ field explorations, 193
in situ tests, 194-197, 198
objectives, 190
reports, 200
stages, 192
Ground movements (see Foundation; Retaining
wall; Settlement; Slope stability)
Groundwater, 60, 64, 184-186
investigations, 198
(see also Seepage)
Group (see Pile groups)

Hardening, 32-34, 147, 154
(see also Softening)
Heavily overconsolidated soxl (see Dry side of
critical) -
History, 46, 53, 158, 164, 183-189
Horizontal stress in the ground, 58, 184—186
197, 276, 287
Hvorslev surface, 143
(see also Dry side of critical; Peak state; State
boundary surface)
Hydraulic gradient, 68, 206-209
critical hydraulic gradient, 211
(see also Seepage)
Hydraulic triaxial cell, 83, 139, 163 -
Hydrostatic groundwater states, 203

Illite, 50
Immediate settlement, 294

. Infinite slope, 241, 261, 263—-268

(see also Bound methods; Limit equilibrium
method; Slope stability)
Influence factor for stress and displacement,
300-302

In situ tests, 194-197
Instability of slopes (see Slope stability)
Instrumentation: -

in centrifuge tests, 322

in laboratory tests, 79-86, 162—164
Intact sample, 74, 193
Internal friction (see Angle of friction)
Interparticle force (see Cohesion; Surface forces)
Interslice force (see Method of slices)
Intrinsic properties, 74, 116-119, 158, 188
Isochrone, 170

parabolic isochrone, 173175

properties of, 171-173
Isotropic compression, 92-96, 160

laboratory test, 83 ‘
Isotropic swelling, 92-96

Joints (see Fissures)

Kaolin clay, 111
Kaolinite, 50
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Laboratory tests, 74-86, 162-164
(see also Apparatus; Loading tests;
Requirements for laboratory tests)

Lake environment, 42

Laminar flow in soil, 105

Landslides, 106, 262

(see also Slope stability)

Layered straté, 46, 191 -

seepage through, 212
(see also Seepage)

Lightly overconsolidated soil (see Wet side of
critical)

Limit equilibrium method (see Coulomb wedge
analysis; Method of slices; Slip circle
method; Slope stability)

Limit equilibrium method, 240-251

for foundations, 241
for slopes, 241, 245-251, 267
for walls, 242-245

Limits of consistency (see Consistency limits)

Linear elastic (see Elastic)

Liquidity index, 53, 117

equivalent liquidity index, 132-134
Liquid limit, 52, 111, 197
tests for, 76
(see also Atterberg hmxts)
Load cell, 82
Loaded arca:
stress and displacement below, 299-302
(see also Work done by external loads and
stresses)

Load factor, 8, 297-299

Loading (see Drained loading; Rate of loading:
Strain-controlled loading;
Stress-controlled loading; Undrained
loading)

Loading, 85, 256. 278, 294

Loading tests (see Apparatus; Drained test; In
situ tests; Requirements for laboratory
tests; Shear test; Strain-controlled loading;
Stress-controlled loading; Triaxial test;
Undrained test)

Local strain gauges (see Measurement of soil
stiffness)

Logarithmic spiral (see Slip surface)

London Clay, 4344, 111, 186

Loose (see Relative density; Wet side of critical)

Lower bound, 217, 222-227

for a foundation, 226, 231
for an infinite slope, 264, 266
for a vertical cut, 269

(see also Bound methods)

Mantle of the Earth, 38
Marine environment, 42 -
Material behaviour, 4, 74, 215-217
principles of, 22-35
(see also Intrinsic properties)
Maximum density (see Relative density)
Mean stress (see Stress)

Measurement of parameters:
in field tests, 194-199
in laboratory tests, 74-86, 113-115, 146,
162-164, 176-179
Measurement of soil stifiness:
in laboratory tests, 162-164
using dynamic methods, 163
Mechanics, principles of, 3, 10-19
(see also Continuum mechanics; Particulate
mechanics; Rigid body mechanics;
Structural mechanics)
Mechanism, 13, 217-220
(see also Compatibility; Limit equilibrium _
method; Plastic work dissipated in a shp
surface; Upper bound)
Mechanistic studies (see Centrifuge modelling)
Method (see Bound method; Limit equilibrium
method; Slip circle method)
Method of slices, 246-249
Mineralogy of soil grains, 46-50. 116
Minimum density (see Relative density)
Model (see Centrifuge modelling: Friction block
model for peak state; Numerical model)
Model for:
elastic and plastic behaviour, 32
shearing and dilation, 130
Modulus (see Bulk modulus; One-dimensional
compression modulus: Shear modulus;
Stiffness modulus; Young's modulus)
Mohr circle:
for shear test, 82
for 1otal and eflective stress, 62
of strain, 16
of stress, 14
pole of, 14, 16
(see also Strain analysis; Stress analysis)
Mohr circles of stress across a discontinuity,
223-232
(see also Lower bound)
Mohr-Coulomb criterion of failure, 28, 125-128
(see also Critical state strcnmh)
Montmorillonite, 50 — - -

Natural slope, 2, 256
Natural soils, 183-189
Nature of soil, 45-535, 75, 192
(see also Grading, Mineralogy of soil grains)
Nett bearing pressure (see Bearing pressure)
Non-linear stiffness, 156, 158-167
Normal compression line, 92-100, 109, 112,
117-119, 140-143
(see also State boundary surface)
Normal compression point, 109, 112, 127, 142
(see also State boundary surface)
Normality condition (see Associated flow)
Normalization, 109, 112, 126, 142
(see also Equivalent pressure)
Normally consolidated soil (see Wet side of
critical)
Normal strain (see Strain)



Normal stress (see Stress)
Numerical model, 166, 320

Oedometer, 80
(see also Apparatus; One-dimensional
compression; One-dxmensxonal
consolidation)
Omega point, 118
One-dimensional coefficient of compressibility,
97
One-dimensional compression, 96-99, 184—186
One-dimensional compression modulus, 97
One-dimensional compression test, 80
One-dimensional consolidation, 168—-179
exact solution, 176
solution by parabolic isochrones, 173175
test, 176179
(see also Consolidation; One-dimensional
compression)
One-dimensional settlement of foundations,
302-304
One-dimensional swelling, 96-99, 184-186
(see also One-dimensional consolidation)
Overconsolidated soil (see Dry side of critical;
Wet side of critical)
Overconsolidation, 44, 93-95, 185-189
Overconsolidation ratio, 94

Parabola (assumption for isochrone), 173-175
(see also Consolidation)
Parameters:
for strain, 23-25
for stress, 23-28, 62
(see also Compressibility; Critical state
parameters; Design parameters;

Measurement of parameters; Permeability;

Soil parameters; State parameters;
Stiffness; Strength)

Parametric studies, 320

Particle shape and texture, 46-50, 116

Particle size (see Grading)

Particulate mechanics, 5

Passive pressure, 276, 281-283

Path (see Stress path)

Peak friction angle and cohesion, 126

Peak state (see Dry side of critical; Hvorslev

surface; State boundary surface)

Peak state, 103-106, 124-135, 139, 145-147
and dilation, 129-134 . .
curved failure envelope, 128-129
Mohr-Coulomb line, 125-128

Percussion drilling, 194

Permeability (see Coefficient of permeability;

Groundwater; Permeability tests;

Seepage)
Permeability tests, 77, 199
Phroatic surface, 60, 204, 210
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Piezometer (see Standpipe)
Pile foundations, 309-314
base resistance, 310
pile groups, 313
pile testing and driving formulae, 312
shaft friction, 311
(see also Bearing capacity; Foundations;
Settlement)
Piping (see Critical hydraulic gradient)
Pit (see Test pit)
Plane:
principal, 14-18
strains normal to a plane, 15
stress on a plane, 14-16
(see also Plane strain; Principal plane; Slip
surface)
Plane strain, 12
Plastic (see Elasto—plastic behaviour; Plastic
collapse; Plastic flow; Plastic hardening;
Plastic potential; Plastic strain; Plastic
- stress—strain behaviour; Plastic volume
change; Theory of plasticity; Yield)
Plastic collapse, 216
Plastic stress—strain behaviour, 29-31, 216
Plastic flow, 30
Plastic hardening (see Hardening, Softening)
Plasticity index, 52, 117, 198
Plasticity theory (see Theory of plasticity)
Plastic limit, 52, 77, 111, 147
test for, 77
(see also Atterberg limits)
Plastic potential, 30, 153
(see also Associated flow)
Plastic strain, 12, 29-34, 153-155
vector of, 30
Plastic volume change, 119, 143
Plastic work dissipated in a slip plane, 219
Plate loading test, 196
Platens in loading apparatus, 79-82
Point load (see Concentrated load)
Poisson’s ratio, 29, 300
Pole of Mohr circle (see Mohr circle)
Polygon of forces (see Force polygon)
Poorly graded soil (see Grading)
Pore pressure (see Excess pore pressure; Pore
pressure for undrained loadmg; Study
state pore pressure)
Pore pressure, 58-71
coefficient r,, 271
negative pore pressure, 61
Pore pressure A
in laboratory tests, 79, 107, 110
in steady state seepage flow nets, 205-208
in the ground, 58-61
Pore pressure for undrained loading, 66-68, 107,
110
below foundations, 295
in slopes, 258-260
near retaining walls, 279
Pore water salinity (see Salinity of pore water)
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Potential, 205
(see also Equipotential; Plastic potential;
Seepage) ‘
Primary compression (see Consolidation)
Principal: )
plane, 14-18
, stress, 14 -
strain, 14
(see also Stress; Strain)
Principle of effective stress, 62
Probing tests, 195 i
(see also Ground investigation)
Processes (see Geological processes)
Properties (see Intrinsic properties; Material
behaviour)
Propped retaining wall, 276, 284
Pure shear strain, 15

Quiék loading (see Undrained loadihg)
Quicksand, 211

Radial consolidation, 304
Radial stress (see Stress) -
Rankine solution, 245
Rate of drainage (see Drainage)
Rate of loading, 68
Ratio (see Strain ratio)
Recompression (see Swelling)
Reconstituted soil, 46, 74, 107, 183
Recrangular foundation:
bearing capacity factor for, 296
elastic stress and settlement. 300-302
Relative density, 52
Remoulded soil (see Reconstituted soil)
Requirements for laboratory tests, 79
(see also Laboratory tests) -
Residual soil, 39, 46, 54
Residual strength, 105, 262
- Resolution in laboratory tests, 85.
Retaining wall, 7, 243245, 275-288
earth pressures on, 281-293
overall stability of, 283-286
shear stress on, 244, 245
water loads on, 279~281

(see also Active pressure; Design parameters;

Limit equilibrium method; Passive
pressure; Seepage)

Rigid body mechanics, 12-14

Ring shear test, 105 i

Roscoe surface, 143

(see also State boundary surface; Wet side of

critical) _
Rotary drilling, 194
Rotating cylinder test, 115

Rotation of the major principal stress (see Stress

discontinuity; Stress fan)
Rough wall (see Retaining wall)
Rowe cell, 80

Safe load (see Lower bound)
Safety factor (see Factor of safety)
Salinity of pore water, 189
Sampling, 193 .
(see also Ground investigations)
Sand (see Coarse-grained soils)
Sandcastle, 1, 113, 147
Sand drain, 304
Sand-sized particles, 46
Scaling laws, 316
(see also Centrifuge modelling)
Sea-level changes, 44
Secant modulus (see Stifiness)
Secondary compression (see Creep)
Section (see Geological section)
Sedimentation test for grading, 75
Seepage, 203-213
(see also Consolidation; Darcy’s law;
Drainage; Flownet; Permeability; Steady
state seepage)
Settiement, 8, 64, 162, 292-295, 297-304
consolidation settlement, 169, 294, 303
in elastic soil, 299-302
in one-dimensional consolidation, 168-179,
302-304
settlement-time relationship (see
Consolidation)
Shaft friction (see Pile foundation)
Shallow foundation, 292, 296
Shape (see Particle shape and texture)
Shear box test (see Direct shear test)
Shear modulus, 6. 25, 143, 160-167
(see also Elastic stifiness paramezers: Stifiness)
Shear strain (see Engineers’ shear strain: Pure
shear strain; Strain)
Shear strength, 27
(see also Failure: Strength; Undrained
strength)
Shear stress (see Stress)
Shear tests, 24, 81, 103, 124
(see alsa Direct shear-test; Ring shear test;
Vane shear test; Simple shear test)
Sieving test, 75
Silt (see Coarse-grained soils)
Silt-sized particles, 46
Simple shear test, 81
Site investigation (see Ground investigations)
Slices (see Method of slices)
Slip circle method, 245-249
(see also Bishop routine method; Method of
slices; Swedish method of slices)
Slip fan, 227, 231
Slip surface, 18, 114, 147
shape of, 217
work done on, 220
(see also Limit equilibrium method; Upper
bound)
Slope stability, 7, 256~273
bound solutions, 263-267
by the limit equilibrium method, 267



(see also Centrifuge modelling; Infinite slope;
Stability numbers for slopes; Vertical cut
slope)

Slow loading (see Drained loading)
Smooth wall (see Retaining wall)
Softening, 33, 147

(see also Hardening)

Soil parameters:

for design (see Design parameters)

typical values, 111

(see also Compressibility; Critical state
parameters; Ground investigations;
Laboratory tests; Measurement of
parameters; Permeability; Stlﬂ'nss
Strength)

Soils:

characteristics of, 6

grading of, 46~-47

grading tests, 75

origins of, 46, 54, 184-186

Soil testing apparatus (see Apparatus)
Specific gravity, 51
Specific surface, 50
Specific volume, 50

determination of, 51

typical values of, 51

(see also Compression; Critical state; Peak
state; State boundary surface)

Square flownet (see Flownet)

Square foundation (see Rectangular
foundation)

Stability numbers for slopes, 270, 318

(see also Slope stability)

Stability of soil structures, 215

(see aiso Bound methods; Limit equilibrium
method; Retaining wall)

Standard penetration test, 195
Standpipe, 60, 171, 204-211
State boundary surface, 140-143

for Cam clay, 151, 158

(see also Critical state line; Elastic wall;
Normal compression line; Yield surface)

State inside the state boundary surface, 143

(see also Elastic)

State of soil, 45-55

in the ground, 58-61, 192, 197, 222

(see also Current state; History, Water -
content) -

State parameters, 96, 132, 140
State path, 141, 145

Static cone test, 195

Steady state seepage, 68, 203-213

in anisotropic soil, 212

in slopes, 261, 267, 272

seepage stress, 211

seepage velocity, 207

Stiffness (see Bulk modulus; Compliance matrix;
Constitutive equations; Measurement of.
stiffness; Shear modulus; Soil parameters;
Stiffness modulus; Young’s modulus)
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Stiffness, 6, 22-34, 158-167
effect of history, 164-166
matrix, 26, 29, 159
variation with state, 164166
variation with strain, 161-166

Stiffness modulus:
secant, 23
tangent, 23

Stoke's law, 75

Straight slip surface (see Slip surface)

Strain (see Elastic; Mohr circle of strain;
Parameters for strain; Plane strain;
Plastic; Strain analysis; Strain-controiled
loadmg; Strain hardening; Softening;
Strain in the ground; Stress—stram
behaviour; Triaxial test)

Strain, 10-19, 23-25

(see also Engincers shear strain; Pure shear
strain)

Strain analysis, 15-18

Strain-controlled loading, 79, 83

Strain hardening (see Hardening) -

Strain in the ground, 162

Strain parameter (see Parameters for strain)

Strain ratio, 17

Strain softening (see Softening)

Stratigraphic column, 39-40

Strength, 6, 22, 26-28, 52, 103-119, 215

(see also Compressive strength; Design
parameters; Failure; Residual strength;
Shear strength; Tensile strength; Ultimate
strength; Undrained strength)

Stress (see Effective stress; Elastic; Equilibrium
stress state; Mohr circle of stress;
Parameters for stress; Plastic; Principle of
effective stress; Shear tests; Stress analysis;
Stress discontinuity; Stress fan; Stress
path; Stress—strain behaviour; Total
stress; Triaxial tests)

Stress, 10-19, 23-25 .

in centrifuge models, 317 .

- in elastic soil, 299302

_ in the ground, 58, 184, 222

Stress analysis, 14-18

Stress change (see Stress path)-

Stress-controlled loading, 79, 8385

-Stress discontinuity, 222-226

Stress fan, 227-231 . -
Stress parameter (see Parameters for stress)
Stress path, 83-85
cell (see Hydraulic triaxial cell)
for a foundation, 295
for a retaining wall, 278
for a slope, 258-260
tests, 83
Stress ratio, 16, 114, 146
Stress—strain behaviour of soil, 22-35, _10_3\-106,
110, 125, 138148, 158-161 S—
Stress—strain behaviour of:
Cam clay, 155

[
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Stress—strain behaviour of (cont.)

elastic material, 28

elasto-plastic material, 31

plastic material, 29
Structural mechanics, 5
Structure:

geotechnical, 7

of the Earth, 37-44
Structured soil (see Natural soils)

(see also Destructured soil) )
Structure of soil, 46, 109, 183-189, 192
Submerged cone test, 115
Surcharge load, 60, 222, 283
Surface (see Slip surface)

Surface forces, 50, 116

(see also Specific surface)

Swedish method of slices, 248
Swelling, 80, 91-101
Swelling line, 93-100

Tangent modulus (see Stiffness modulus)
Tensile strength, 27
Tension crack, 243, 269, 283 .
Testing (see In situ tests; Laboratory tests)
Test apparatus (see Apparatus)
Test pit, 193
Test results (see Laboratory test;
One-dimensional compression;
One-dimensional consolidation; Shear
test; Triaxial test)
Texture (see Particle shape and texture)
Theorems of plastic collapse (see Plastic
collapse)
Theory of:
consolidation, 168 (see also Consolidation)
elasticity, 28
clasto-plasticity, 31
limit equilibrium method, 240
plasticity, 29
viscosity, 34 (see also Creep)
Till, 41, 111
Time factor, 174
(see also Consolidation)
Topsoil, 38
Total stress, 58-62 -
Mohr circle of, 62
(see also Stress; Undrained loading)
Total stress path (see Stress path)
Transient seepage (see Consolidation)
Transportation of soil, 39
Trench (see Vertical cut slope)
Tresca failure criterion, 28
Triaxial tests, 24, 82-85, 110114, 127, 162-164
(see also Apparatus; Measurement of
parameters; Measurement of stiffness)
Tube sample, 193
Turbulent flow in soil, 105
Two-dimensional seepage (see Seepage)

Ultimate:
bearing capacity (see Bearing capacity)
failure (see Critical state)
state (see Critical state)
strength (see Critical state strength)
Unconfined compression test, 83
Unconfined flow (see Seepage)
Undisturbed sample (see Intact sample)
Undrained loading, 65-69
bearing capacity factors for, 296
bound calculations for, 220, 226, 231-233
carth pressures for, 282
limit equilibrium calculations for, 241-243,
245 -
of a slope, 263-165, 268-270
settlement of elastic soil for, 300
stability numbers for, 270
Undrained loading behaviour, 138-140, 144-146,
160
Undrained settlement, 294
Undrained strength, 107-113
variation with depth, 197
variation with liquidity index, 117
Undrained test, 80, 107, 139
Unit weight, 51, 60
measurement of, 76
Unloading, 24, 32-34, 85, 92-100, 143, 160
(see also Swelling)
Unsafe load (see Upper bound)
Unsaturated soil. 45, 61
Upper bound, 217, 227
for a foundation, 220, 231
for an infinite slope, 263, 265
for a vertical cut, 268
(see also Bound methods)

Vane shear test, 196
Velocity (see Seepage)
Vertical cut slope, 268-270, 272
(see also Bound methods; Stability numbers
for slopes)
Vibration, 95, 186 T -
Viscosity (see Theory of viscosity)
Voids ratio, 51
(see also Compression; Critical state; Peak state)
Volume (see Specific volume)
Volume change, 64, 92 )
control of, 79
(see also Elastic volume change; Plastic
volume change)
Volume gauge, 79
Volumetric strain (see Strain)

Wall (see Retaining wall)
Wash boring, 194
Water content, 46, 51, 107
measurement of, 76
of natural soils, 184-186
Water in excavations (see Free water)
Water table (see Phreatic surface)



Weathering, 39, 188
Well-graded (see Grading)
Well-pumping test, 199 :
(see also Groundwater)
Wet side of critical, 95, 103, 110, 124, 138-140,
145, 159
Work done:
by external loads and stresses, 25, 218-220
by internal stresses on a slip plane, 220
in a slip fan, 227
(see also Upper bound)
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Yield:
curve, 144, 152
envelope, 34
point, 31, 92-94
stress, 31-34
surface, 34, 143, 152
(see also State boundary surface; Theory of
plasticity)
Young's modulus, 29

Zero strain, 16-18





