
STATISTICS FROM A TO Z

www.ebook3000.com

http://www.ebook3000.org


STATISTICS FROM A
TO Z
Confusing Concepts Clarified

ANDREW A. JAWLIK

www.ebook3000.com

http://www.ebook3000.org


Copyright © 2016 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable for
your situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Names: Jawlik, Andrew.
Title: Statistics from A to Z : confusing concepts clarified / Andrew Jawlik.
Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2016].
Identifiers: LCCN 2016017318 | ISBN 9781119272038 (pbk.) | ISBN 9781119272007 (epub)
Subjects: LCSH: Mathematical statistics–Dictionaries. | Statistics–Dictionaries.
Classification: LCC QA276.14 .J39 2016 | DDC 519.503–dc23
LC record available at https://lccn.loc.gov/2016017318

Printed in United States of America

10 9 8 7 6 5 4 3 2 1

www.ebook3000.com

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
https://lccn.loc.gov/2016017318
http://www.ebook3000.org


To my wonderful wife, Jane, who is a 7 Sigma∗.

∗See the article, “Sigma”, in this book.

www.ebook3000.com

http://www.ebook3000.org


CONTENTS

OTHER CONCEPTS COVERED IN THE ARTICLES xi

WHY THIS BOOK IS NEEDED xix

WHAT MAKES THIS BOOK UNIQUE? xxiii

HOW TO USE THIS BOOK xxv

ALPHA, 𝜶 1

ALPHA AND BETA ERRORS 9

ALPHA, p, CRITICAL VALUE, AND TEST STATISTIC –
HOW THEY WORK TOGETHER 14

ALTERNATIVE HYPOTHESIS 22

ANALYSIS OF MEANS (ANOM) 27

ANOVA – PART 1: WHAT IT DOES 32

ANOVA – PART 2: HOW IT DOES IT 36

ANOVA – PART 3: 1-WAY (AKA SINGLE FACTOR) 42

ANOVA – PART 4: 2-WAY (AKA 2-FACTOR) 48

ANOVA vs. REGRESSION 55

vii

www.ebook3000.com

http://www.ebook3000.org


viii CONTENTS

BINOMIAL DISTRIBUTION 62

CHARTS/GRAPHS/PLOTS – WHICH TO USE WHEN 69

CHI-SQUARE – THE TEST STATISTIC AND ITS
DISTRIBUTIONS 76

CHI-SQUARE TEST FOR GOODNESS OF FIT 82

CHI-SQUARE TEST FOR INDEPENDENCE 89

CHI-SQUARE TEST FOR THE VARIANCE 98

CONFIDENCE INTERVALS – PART 1: GENERAL
CONCEPTS 101

CONFIDENCE INTERVALS – PART 2: SOME SPECIFICS 108

CONTROL CHARTS – PART 1: GENERAL CONCEPTS
AND PRINCIPLES 113

CONTROL CHARTS – PART 2: WHICH TO USE WHEN 119

CORRELATION – PART 1 124

CORRELATION – PART 2 129

CRITICAL VALUE 135

DEGREES OF FREEDOM 141

DESIGN OF EXPERIMENTS (DOE) – PART 1 146

DESIGN OF EXPERIMENTS (DOE) – PART 2 151

DESIGN OF EXPERIMENTS (DOE) – PART 3 158

DISTRIBUTIONS – PART 1: WHAT THEY ARE 165

DISTRIBUTIONS – PART 2: HOW THEY ARE USED 171

DISTRIBUTIONS – PART 3: WHICH TO USE WHEN 177

ERRORS – TYPES, USES, AND INTERRELATIONSHIPS 178

EXPONENTIAL DISTRIBUTION 184

F 189

FAIL TO REJECT THE NULL HYPOTHESIS 195

HYPERGEOMETRIC DISTRIBUTION 200

www.ebook3000.com

http://www.ebook3000.org


CONTENTS ix

HYPOTHESIS TESTING – PART 1: OVERVIEW 202

HYPOTHESIS TESTING – PART 2: HOW TO 208

INFERENTIAL STATISTICS 212

MARGIN OF ERROR 220

NONPARAMETRIC 223

NORMAL DISTRIBUTION 230

NULL HYPOTHESIS 235

p, p-VALUE 241

p, t, AND F: “>” OR “<”? 246

POISSON DISTRIBUTION 250

POWER 254

PROCESS CAPABILITY ANALYSIS (PCA) 259

PROPORTION 266

r, MULTIPLE R, r2, R2, R SQUARE, R2 ADJUSTED 274

REGRESSION – PART 1: SUMS OF SQUARES 277

REGRESSION – PART 2: SIMPLE LINEAR 285

REGRESSION – PART 3: ANALYSIS BASICS 292

REGRESSION – PART 4: MULTIPLE LINEAR 297

REGRESSION – PART 5: SIMPLE NONLINEAR 305

REJECT THE NULL HYPOTHESIS 311

RESIDUALS 315

SAMPLE, SAMPLING 320

SAMPLE SIZE – PART 1: PROPORTIONS FOR COUNT
DATA 326

SAMPLE SIZE – PART 2: FOR MEASUREMENT/
CONTINUOUS DATA 334

SAMPLING DISTRIBUTION 339

SIGMA 343

www.ebook3000.com

http://www.ebook3000.org


x CONTENTS

SKEW, SKEWNESS 344

STANDARD DEVIATION 348

STANDARD ERROR 352

STATISTICALLY SIGNIFICANT 357

SUMS OF SQUARES 363

t – THE TEST STATISTIC AND ITS DISTRIBUTIONS 364

t-TESTS – PART 1: OVERVIEW 370

t-TESTS – PART 2: CALCULATIONS AND ANALYSIS 376

TEST STATISTIC 385

VARIABLES 392

VARIANCE 397

VARIATION/VARIABILITY/DISPERSION/SPREAD 404

WHICH STATISTICAL TOOL TO USE TO SOLVE SOME
COMMON PROBLEMS 408

Z 412

www.ebook3000.com

http://www.ebook3000.org


OTHER CONCEPTS COVERED IN
THE ARTICLES

1-Sided or 1-Tailed: see the articles Alternative Hypothesis and Alpha, 𝛼.
1-Way: an analysis that has one Independent (x) Variable, e.g., 1-way

ANOVA.
2-Sided or 2-Tailed: see the articles Alternative Hypothesis and Alpha, 𝛼.
2-Way: an analysis that has two Independent (x) Variables, e.g., 2-way

ANOVA.
68-95-99.7 Rule: same as the Empirical Rule. See the article Normal Dis-

tribution.
Acceptance Region: see the article Alpha, 𝛼.
Adjusted R2: see the article r, Multiple R, r2, R2, R Square, R2 Adjusted.
aka: also known as.
Alias: see the article Design of Experiments (DOE) – Part 2.
Associated, Association: see the article Chi-Square Test for Independence.
Assumptions: requirements for being able to use a particular test or anal-

ysis. For example, ANOM and ANOVA require approximately Normal
data.

Attributes data, Attributes Variable: same as Categorical or Nominal data
or Variable. See the articles Variables and Chi-Square Test for Indepen-
dence.

Autocorrelation: see the article Residuals.
Average Absolute Deviation: see the article Variance.

xi
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xii OTHER CONCEPTS COVERED IN THE ARTICLES

Average: same as the Mean – the sum of a set of numerical values divided
by the Count of values in the set.

Bernoulli Trial: see the article Binomial Distribution.
Beta: the probability of a Beta Error. See the article Alpha and Beta Errors.
Beta Error: featured in the article Alpha and Beta Errors.
Bias: see the article Sample, Sampling.
Bin, Binning: see the articles Chi-Square Test for Goodness of Fit and

Charts/Graphs/Plots – Which to Use When.
Block, Blocking: see the article Design of Experiments (DOE) – Part 3.
Box Plot, Box and Whiskers Plot: see the article Charts/Graphs/Plots –

Which to Use When.
Cm, Cp, Cr, or CPK: see the article Process Capability Analysis (PCA).
Capability, Capability Index: see the article Process Capability Analysis

(PCA).
Categorical data, Categorical Variable: same as Attribute or Nominal

data/Variable. See the articles Variables and Chi-Square Test for Inde-
pendence.

CDF: see Cumulative Density Function.
Central Limit Theorem: see the article Normal Distribution.
Central Location: same as Central Tendency. See the article Distributions –

Part 1: What They Are.
Central Tendency: same as Central Location. See the article Distributions –

Part 1: What They Are.
Chebyshev’s Theorem: see the article Standard Deviation.
Confidence Coefficient: same as Confidence Level. See the article

Alpha, 𝛼.
Confidence Level: (aka Level of Confidence aka Confidence Coefficient)

equals 1 – Alpha. See the article Alpha, 𝛼.
Confounding: see the article Design of Experiments (DOE) – Part 3.
Contingency Table: see the article Chi-Square Test for Independence.
Continuous data or Variables: see the articles Variables and Distributions –

Part 3: Which to Use When.
Control, “in . . . ” or “out of . . . ”: see the article Control Charts – Part 1:

General Concepts and Principles.
Control Limits, Upper and Lower: see the article Control Charts – Part 1:

General Concepts and Principles.
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OTHER CONCEPTS COVERED IN THE ARTICLES xiii

Count data, Count Variables: aka Discrete data or Discrete Variables. See
the article Variables.

Covariance: see the article Correlation – Part 1.
Criterion Variable: see the article Variables.
Critical Region: same as Rejection Region. See the article Alpha, 𝛼.
Cumulative Density Function (CDF): the formula for calculating the

Cumulative Probability of a Range of values of a Continuous random
Variable, for example, the Cumulative Probability that x ≤ 0.5.

Cumulative Probability: see the article Distributions – Part 2: How They
Are Used.

Curve Fitting: see the article Regression – Part 5: Simple Nonlinear.
Dependent Variable: see the article Variables.
Descriptive Statistics: see the article Inferential Statistics.
Dot Plot: see the article Charts/Graphs/Plots – Which to Use When.
Deviation: the difference between a data value and a specified value (usu-

ally the Mean). See the article Regression – Part 1: Sums of Squares.
See also the article Standard Deviation.

Discrete data or Variables: see the articles Variables and Distributions –
Part 3: Which to Use When.

Dispersion: see the article Variation/Variability/Dispersion/Spread (they
all mean the same thing).

Effect Size: see the article Power.
Empirical Rule: same as the 68-95-99.7 Rule. See the article Normal

Distribution.
Expected Frequency: see the articles Chi-Square Test for Goodness of Fit

and Chi-Square Test for Independence.
Expected Value: see the articles Chi-Square Test for Goodness of Fit and

Chi-Square Test for Independence.
Exponential: see the article Exponential Distribution.
Exponential Curve: see the article Regression – Part 5: Simple Nonlinear.
Exponential Transformation: see the article Regression – Part 5: Simple

Nonlinear.
Extremes: see the article Variation/Variability/Dispersion/Spread.
F-test: see the article F.
Factor: see the articles ANOVA – Parts 3 and 4 and Design of Experiments

(DOE) – Part 1.



xiv OTHER CONCEPTS COVERED IN THE ARTICLES

False Positive: an Alpha or Type I Error; featured in the article Alpha and
Beta Errors.

False Negative: a Beta or Type II Error; featured in the article Alpha and
Beta Errors.

Frequency: a Count-like Statistic which can be non-integer. See the arti-
cles Chi-Square Test for Goodness of Fit and Chi-Square Test for
Independence.

Friedman Test: see the article Nonparametric.
Gaussian Distribution: same as Normal Distribution.
Generator: see the article Design of Experiments (DOE) – Part 3.
Goodness of Fit: see the articles Regression – Part 1: Sums of Squares and

Chi-Square Test for Goodness of Fit.
Histogram: see the article Charts/Graphs/Plots – Which to Use When.
Independence: see the article Chi-Square Test for Independence.
Independent Variable: see the article Variables.
Interaction: see the articles ANOM; ANOVA – Part 4: 2-Way; Design of

Experiments, Parts 1, 2, and 3; Regression – Part 4: Multiple Linear.
Intercept: see the article Regression – Part 2: Simple Linear.
InterQuartile Range (IQR): see the article Variation/Variability/

Dispersion/Spread.
Kruskal–Wallis Test: see the article Nonparametric.
Kurtosis: a measure of the Shape of a Distribution. See the article Distri-

butions – Part 1: What They Are.
Least Squares: (same as Least Sum of Squares or Ordinary Least Sum

of Squares) see the articles Regression – Part 1: Sums of Squares and
Regression – Part 2: Simple Linear.

Least Sum of Squares: same as Least Squares.
Level of Confidence: same as Confidence Level; equal to 1 – 𝛼. See the

article Alpha, 𝛼.
Level of Significance: same as Significance Level, Alpha (𝛼). See the

articles Alpha, 𝛼 and Statistically Significant.
Line Chart: see the article Charts/Graphs/Plots – Which to Use When.
Logarithmic Curve, Logarithmic Transformation: see the article

Regression – Part 5: Simple Nonlinear.
Main Effect: a Factor which is not an Interaction. See the articles ANOVA –

Part 4: 2-Way and Design of Experiments (DOE) – Part 2.
Mann–Whitney Test: see the article Nonparametric.



OTHER CONCEPTS COVERED IN THE ARTICLES xv

Mean: the average. Along with Mean and Median, it is a measure of Central
Tendency.

Mean Absolute Deviation (MAD): see the article Variation/Variability/
Dispersion/Spread.

Mean Sum of Squares: see the article ANOVA – Part 2 (MSB and MSW)
and the article F.

Measurement data: same as Continuous data.
Median: the middle of a range of values. Along with Mean and Mode,

it is a measure of Central Tendency. It is used instead of the Mean in
Nonparametric Analysis. See the article Nonparametric.

Memorylessness: see the article Exponential Distribution.
Mode: the most common value within a group (e.g., a Sample or Popula-

tion, or Process). There can be more than one Mode. Along with Mean
and Median, Mode is a measure of Central Tendency.

MOE: see the article Margin of Error.
MSB and MSW: see the article ANOVA – Part 2 (MSB and MSW) and the

article F.
Multiple R: see the article r, Multiple R, r2, R2, R Square, R2 Adjusted.
Multiplicative Law of Probability: see the article Chi-Square Test for Inde-

pendence.
Nominal data, Nominal Variable: same as Categorical or Attributes data or

Variable. See the article Variables.
One-Sided, One-Tailed: (same as 1-sided, 1-tailed) see the articles Alter-

native Hypothesis and Alpha, 𝛼.
One-Way: same as 1-Way; an analysis that has one Independent (x) Vari-

able. For example, 1-way ANOVA.
Outlier: see the article Variation/Variability/Dispersion/Spread.
Parameter: a measure of a property of a Population or Process, e.g., the

Mean or Standard Deviation. The counterpart for a Sample is called a
“Statistic.” Parameters are usually denoted by characters in the Greek
Alphabet, such as 𝜇 or 𝜎.

Parametric: see the article Nonparametric.
Pareto Chart: see the article Charts/Graphs/Plots – Which to Use When.
PCA: see the article Process Capability Analysis (PCA).
PDF: see Probability Density Function.
Pearson’s Coefficient, Pearson’s r: the correlation Coefficient, r. See the

article Correlation – Part 2.



xvi OTHER CONCEPTS COVERED IN THE ARTICLES

Performance Index: see the article Process Capability Analysis (PCA).
PMF: see Probability Mass Function.
Polynomial Curve: see the article Regression – Part 5: Simple Nonlinear.
“Population or Process”: where most texts say “Population,” this book adds

“or Process.” Ongoing Processes are handled the same as Populations,
because new data values continue to be created. Thus, like Populations,
we don’t have complete data for ongoing Processes.

Power Transformation: see the article Regression – Part 5: Simple
Nonlinear.

Probability Density Function (PDF): the formula for calculating the Proba-
bility of a single value of a Continuous random Variable of, for example,
the Probability that x = 5. (For Discrete random Variables, the corre-
sponding term is Probability Mass Function, PMF.) See also Cumulative
Density Function.

Probability Distribution: see the article Distributions – Part 1: What They
Are.

Probability Mass Function (PMF): the formula for calculating the Proba-
bility of a single value of a Discrete random Variable of, for example,
the Probability that x = 5.

Qualitative Variable/Qualitative data: same as Categorical Variable and
Categorical data. See the articles Variables and Chi-Square Test for
Independence.

Outlier: see the article Variation/Variability/Dispersion/Spread.
Random Sample: see the article Sample, Sampling.
Random Variable: see the article Variables.
Range: see the article Variation/Variability/Dispersion/Spread.
Rational Subgroup: see the article Control Charts – Part 1.
Rejection Region: same as Critical Region. See the article Alpha, 𝛼.
Replacement, Sampling With or Without: see the article Binomial Distri-

bution.
Resolution: see the article Design of Experiments (DOE) – Part 3.
Response Variable: see the articles Variables and Design of Experiments

(DOE) – Part 2.
Run Rules: see the article Control Charts – Part 1.
Scatterplot: see the article Charts/Graphs/Plots – Which to Use When.
Shape: see the article Distributions – Part 1: What They Are.
Significance Level: see the article Alpha, 𝛼.



OTHER CONCEPTS COVERED IN THE ARTICLES xvii

Significant: see the article Statistically Significant.
Slope: see the article Regression – Part 2: Simple Linear.
Spread: see the article Variation/Variability/Dispersion/Spread.
Standard Normal Distribution: see the articles Normal Distribution and z.
Statistic: a measure of a property of a Sample, e.g., the Mean or Stan-

dard Deviation. The counterpart for a Population or Process is called a
“Parameter.” Statistics are usually denoted by characters based on the
Roman Alphabet, such as x̄ or s.

Statistical Inference: same as Inferential Statistics; see the article by that
name.

Statistical Process Control: see the article Control Charts – Part 1: General
Concepts and Principles.

Student’s t: see the article t, The Test Statistic and Its Distributions.
Tail: see the articles Alpha, 𝛼 and Alternative Hypothesis.
Three Sigma Rule: same as Empirical Rule and the 68-95-99.7 Rule. See

the article Normal Distribution.
Transformation: see the article Regression – Part 5: Simple Nonlinear.
Two-Sided, Two-Tailed: same as 2-Sided, 2-Tailed. See the articles Alpha,

𝛼 and Alternative Hypothesis.
Two-way: same as 2-Way; an analysis that has two Independent (x) Vari-

ables, e.g., 2-way ANOVA.
Type I and Type II Errors: same as Alpha and Beta Errors, respectively.

See the article by that name.
Variables data: same as Continuous data. See the articles Variables and

Distributions – Part 3: Which to Use When.
Variability: see the article Variation/Variability/Dispersion/Spread.
Wilcoxon Test: see the article Nonparametric.



WHY THIS BOOK IS NEEDED

A statistician responds to a marriage proposal.

Will you
marry me?

I Fail to Reject the
Null Hypothesis.

Huh? What does
that mean?

Statistics can be confusing – even for smart people, and even for smart
technical people.

As an illustration, how quickly can we figure out whether the woman
pictured above agreed to get married? (For the answer, see the article in
this book, “Fail to Reject the Null Hypothesis.”)

This is understandable, not only because some of the concepts are
inherently complicated and difficult to understand, but also because:

xix



xx WHY THIS BOOK IS NEEDED

� Different terms are used to mean the same thing

For example, the Dependent Variable, the Outcome, the Effect, the
Response, and the Criterion are all the same thing. And – believe it or not –
there are at least seven different names and 18 different acronyms used for
just the three Statistics: Sum of Squares Between, Sum of Squares Within,
and Sum of Squares Total.

Synonyms may be wonderful for poets and fiction writers, but they
confuse things unnecessarily for students and practitioners of a technical
discipline.

� Conversely, a single term can have very different meanings

For example, “SST” is variously used for “Sum of Squares Total” or
“Sum of Squares Treatment.” (The latter is actually a component part of
the former.)

� Sometimes, there is no single “truth”

The acknowledged experts sometimes disagree on fundamental con-
cepts. For example, some experts specify the use of the Alternative Hypoth-
esis in their methods of Hypothesis Testing. Others are “violently opposed”
to its use. Other experts recommend avoiding Hypothesis Testing com-
pletely, because of the confusing language.

� Words can have different meanings from their usage in everyday
language

The meaning of words in statistics can sometimes be very different from,
or even the opposite of, the meaning of the same words in normal, everyday
language.

For example, in a Bernoulli experiment on process quality, a quality
failure is called a “success.” Also, for Skew or Skewness, in statistics, “left”
means right.

Everyday language:
“Skewed to the left.”

Statistics:
Skewed to the right,
positive skew

� A confusing array of choices

Which Distribution do I use when? Which Test Statistic? Which test?
Which Control Chart? Which type of graph?

There are several choices for each – some of which are good in a given
situation, some not.



WHY THIS BOOK IS NEEDED xxi

� And the existing books don’t seem to make things clear enough

Even those with titles targeting the supposedly clueless reader do not
provide sufficient explanation to clear up a lot of this confusion. Students
and professionals continue to look for a book which would give them a true
intuitive understanding of statistical concepts.

Also, if you look up a concept in the index of other books, you will find
something like this:

“Degrees of freedom, 60, 75, 86, 91–93, 210, 241”

So, you have to go to six different places, pick up the bits and pieces from
each, and try to assemble for yourself some type of coherent concept. In
this book, each concept is completely covered in one or more contiguous
short articles (usually three to seven pages each). And we don’t need an
index, because you find the concepts alphabetically – as in a dictionary or
encyclopedia.



WHAT MAKES THIS BOOK UNIQUE?

It is much easier to understand than other books on the subject, because
of the following:

� Alphabetically arranged, like a mini-encyclopedia, for immediate
access to the specific knowledge you need at the time.

� Individual articles which completely treat one concept per article (or
series of contiguous articles). No paging through the book for bits and
pieces here and there.

Almost all the articles start with a one-page summary of five or
so Keys to Understanding, which gives you the whole picture on
a single page. The remaining pages in the article provide a more in-
depth explanation of each of the individual keys.

� Unique graphics that teach:
– Concept Flow Diagrams: visually depict how one concept leads to

another and then another in the step-by-step thought process leading
to understanding.

– Compare-and-Contrast Tables: for reinforcing understanding via
differences, similarities, and any interrelationships between related
concepts – e.g., p vs. Alpha, z vs. t, ANOVA vs. Regression, Stan-
dard Deviation vs. Standard Error.

– Cartoons to enhance “rememberability.”

xxiii



xxiv WHAT MAKES THIS BOOK UNIQUE?

� Highest ratio of visuals to text – plenty of pictures and diagrams and
tables. This provides more concrete reinforcement of understanding
than words alone.

� Visual enhancing of text to increase focus and to improve “remem-
berability.” All statistical terms are capitalized. Extensive use of short
paragraphs, numbered items, bullets, bordered text boxes, arrows,
underlines, and bold font.

� Repetition: An individual concept is often explained in several ways,
coming at it from different aspects. If an article needs to refer to some
content covered in a different article, that content is usually repeated
within the first article, if it’s not too lengthy.

� A Which Statistical Tool to Use article: Given a type of problem or
question, which test, tool, or analysis to use. In addition, there are indi-
vidual Which to Use When articles for Distributions, Control Charts,
and Charts/Graphs/Plots.

Wider Scope – Statistics I and Statistics II and Six Sigma Black Belt.
Most books are focused on statistics in the social sciences, and – to a lesser
extent – physical sciences or management. They don’t cover statistical con-
cepts important in process and quality improvement (Six Sigma or indus-
trial engineering).

Authored by a recent student, who is freshly aware of the statistical
concepts that confused him – and why. (The author recently completed a
course of study for professional certification as a Lean Six Sigma black
belt – a process and quality improvement discipline which uses statistics
extensively. He had, years earlier, earned an MS in Mathematics in a con-
centration which did not include much statistics content.)
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HOW TO USE THIS BOOK

Use this book when:

– you’re confused about a specific statistical concept or which statistical
tool to use

– you need a refresher on a statistical concept or method, just to be sure
– you want help in making things easier to understand when communi-

cating with others

It can be useful:

– while studying or while taking an open-book exam
– on the job
– as a reference, when developing presentations or writing e-mails

To find a subject, you can flip through the book like an old dictionary or
encyclopedia volume. If the subject you are looking for does not have an
article devoted to it, there is likely a glossary description for it. And/or
it may be covered in an article on another subject. In an alphabetically-
organized book like this, the Contents and the Other Concepts pages make
an Index unnecessary.

See the Contents at the beginning of this book for a list of the articles
covering the major concepts. Following the Contents is a section called
“Other Concepts Covered in the Articles.” Here, you can find concepts
which do not headline their own articles, for example:

Acceptance Region: see the article Alpha, 𝛼.

xxv



xxvi HOW TO USE THIS BOOK

If you have a statistical problem to solve or question to answer and don’t
know how to go about it, see the article Which Statistical Tool to Use
to Solve Some Common Problems. There are also Which to Use When
articles for Distributions, Control Charts, and Charts/Graphs/Plots.

This book is designed for use as a reference for looking up specific top-
ics, not as a textbook to be read front-to-back. However, if you do want to
use this book as a single source for learning statistics, not just a reference,
you could read the following articles in the order shown:

� Inferential Statistics
� Alpha, p, Critical Value, and Test Statistic – How They Work Together
� Hypothesis Testing, Parts 1 and 2
� Confidence Intervals, Parts 1 and 2
� Distributions, Parts 1 – 3
� Which Statistical Tool to Use to Solve Some Common Problems
� Articles on individual tests and analyses, such as t-Tests, F, ANOVA,

and Regression

At the end of these and all other articles in the book is a list of Related
Articles which you can read for more detail on related subjects.



ALPHA, 𝛼

Summary of Keys to Understanding

1. In Inferential Statistics, p is the Probability of an Alpha
(“False Positive”) Error.

2. Alpha is the highest value of p that we are willing to
tolerate and still say that a difference, change, or effect
observed in the Sample is “Statistically Significant.”

So, I’ll select α = 5%.
I want to be 95% confident

of avoiding an Alpha Error.

3. Alpha is a Cumulative Probability, represented as an area
under the curve, at one or both tails of a Probability Dis-
tribution. p is also a Cumulative Probability.

Areas under the curve (right tail)
α: p:

Rejection

Region (α)

Acceptance

Region

p extends into the

Acceptance Region

p > α
p is inside the

Rejection Region

p ≤ α 

4. In Hypothesis Testing, if p ≤ 𝜶, Reject the Null Hypothesis.
If p > 𝜶, Accept (Fail to Reject) the Null Hypothesis.

5. Alpha defines the Critical Value(s) of Test Statistics, such
as z, t, F, or Chi-Square. The Critical Value or Values, in
turn, define the Confidence Interval.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. In Inferential Statistics, p is the Probability of an Alpha
(“False Positive”) Error.

In Inferential Statistics, we use data from a Sample to estimate a property
(say, the Mean) of the Population or Process from which the Sample was
taken. Being an estimate, there is a risk of error.

One type of error is the Alpha Error (also known as “Type I Error”
or “False Positive”).

I saw a unicorn. 

Alpha Error

(False Positive) 

An Alpha Error is the error of seeing something which is not there,
that is, concluding that there is a Statistically Significant difference,
change, or effect, when in fact there is not. For example,

� Erroneously concluding that there is a difference in the Means of two
Populations, when there is not, or

� Erroneously concluding that there has been a change in the Standard
Deviation of a Process, when there has not, or

� Erroneously concluding that a medical treatment has an effect, when
it does not.

In Hypothesis Testing, the Null Hypothesis states that there is no dif-
ference, change, or effect. All these are examples of Rejecting the Null
Hypothesis when the Null Hypothesis is true.

p is the Probability of an Alpha Error, a “False Positive.”

It is calculated as part of the Inferential Statistical analysis, for example,
in a t-test or ANOVA.

How does an Alpha Error happen? An Alpha Error occurs when data
in our Sample are not representative of the overall Population or Pro-
cess from which the Sample was taken.

If the Sample Size is large enough, the great majority of Samples of that
size will do a good job of representing the Population or Process. How-
ever, some won’t. p tells us how probable it is that our Sample is un-
representative enough to produce an Alpha Error.
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2. Alpha is the highest value of p that we are willing to
tolerate and still say that a difference, change, or effect
observed in the Sample is “Statistically Significant.”

In this article, we use Alpha both as an adjective and as a noun. This
might cause some confusion, so let’s explain.

“Alpha,” as an adjective, describes a type of error, the Alpha Error. Alpha
as a noun is something related, but different.

First of all, what it is not: Alpha, as a noun, is not

– a Statistic or a Parameter, which describes a property (e.g., the Mean)
of a Sample or Population

– a Constant, like those shown in some statistical tables.

Second, what it is: Alpha, as a noun, is

– a value of p which defines the boundary of the values of p which
we are willing to tolerate from those which we are not.

For example, if we are willing to tolerate a 5% risk of a False Positive,
then we would select 𝛼 = 5%. That would mean that we are willing to
tolerate p ≤ 5%, but not p > 5%.

Alpha must be selected prior to collecting the Sample data. This is
to help ensure the integrity of the test or experiment. If we have a look at
the data first, that might influence our selection of a value for Alpha.

Rather than starting with Alpha, it’s probably more natural to think in
terms of a Level of Confidence first. Then we subtract it from 1 (100%) to
get Alpha.

If we want to be 95% sure, then we want a 95% Level of Confidence
(aka “Confidence Level”).

By definition, 𝜶 = 100% – Confidence Level. (And, so Confidence
Level = 100% – 𝛼.)

So, I’ll select α = 5%.
I want to be 95% confident

of avoiding an Alpha Error.

Alpha is called the “Level or Significance” or “Significance Level.”

� If p is calculated to be less than or equal to the Significance Level,
𝜶, then any observed difference, change, or effect calculated from
our Sample data is said to be “Statistically Significant.”
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� If p > 𝜶, then it is not Statistically Significant.

Popular choices for Alpha are 10% (0.1), 5% (0.05), 1% (0.01), 0.5%
(0.005), and 0.1% (0.001). But, why wouldn’t we always select as low a
level of Alpha as possible? Because, the choice of Alpha is a tradeoff
between Alpha (Type I) Error and Beta (Type 2) Error – or put another
way – between a False Positive and a False Negative. If you reduce the
chance (Probability) of one, you increase the chance of the other.

α Error

β Error α Error

β Error

Choosing 𝜶 = 0.05 (5%) is generally accepted as a good balance for
most uses. The pros and cons of various choices for Alpha (and Beta) in
different situations are covered in the article, Alpha and Beta Errors.

3. Alpha is a Cumulative Probability, represented by an area
under the curve, at one or both tails of a Probability Dis-
tribution. p is also a Cumulative Probability.

Below are diagrams of the Standard Normal Distribution. The Variable
on its horizontal axis is the Test Statistic, z. Any point on the curve is the
Probability of the value of z directly below that point.

Probabilities of individual points are usually less useful in statistics than
Probabilities of ranges of values. The latter are called Cumulative Proba-
bilities. The Cumulative Probability of a range of values is calculated
as the area under the curve above that range of values. The Cumulative
Probability of all values under the curve is 100%.

We start by selecting a value for Alpha, most commonly 5%, which tells
us how big the shaded area under the curve will be. Depending on the type
of problem we’re trying to solve, we position the shaded area (𝜶) under
the left tail, the right tail, or both tails.

α = 5%

left-tailed: our

orders ship in less

than 4 days

right-tailed: our light

bulbs last longer than

1300 hours 

α = 5%

2-tailed: our estimate

of the Mean is

accurate

α/2 = 2.5% α/2 = 2.5%
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If it’s one tail only, the analysis is called “1-tailed” or “1-sided” (or “left-
tailed or “right-tailed”), and Alpha is entirely under one side of the curve.
If it’s both tails, it’s called a “2-tailed” or “2-sided” analysis. In that case,
we divide Alpha by two, and put half under each tail. For more on tails,
see the article Alternative Hypothesis.

There are two main methods in Inferential Statistics – Hypothesis
Testing and Confidence Intervals. Alpha plays a key role in both. First,
let’s take a look at Hypothesis Testing:

4. In Hypothesis Testing, if p ≤ 𝜶, Reject the Null Hypothesis.
If p > 𝜶, Accept (Fail to Reject) the Null Hypothesis.

In Hypothesis testing, p is compared to Alpha, in order to determine
what we can conclude from the test.

Hypothesis Testing starts with a Null Hypothesis – a statement that
there is no (Statistically Significant) difference, change, or effect.

We select a value for Alpha (say 5%) and then collect a Sample of data.
Next, a statistical test (like a t-test or F-test) is performed. The test output
includes a value for p.

p is the Probability of an Alpha Error, a False Positive, that is, the Prob-
ability that any difference, effect, or change shown by the Sample data
is not Statistically Significant.

If p is small enough, then we can be confident that there really is a
difference, change, or effect. How small is small enough? Less than or
equal to Alpha. Remember, we picked Alpha as the upper boundary for
the values of p which indicate a tolerable Probability of an Alpha Error.
So, p > 𝛼 is an unacceptably high Probability of an Alpha Error.

How confident can we be? As confident as the Level of Confidence. For
example, with a 5% Alpha (Significance Level), we have a 100% – 5% =
95% Confidence Level. So, . . .

If p ≤ 𝜶, then we conclude that:

– the Probability of an Alpha Error is within the range we said we would
tolerate, so the observed difference, change, or effect we are testing
is Statistically Significant.

– in a Hypothesis test, we would Reject the Null Hypothesis.
– the smaller the p-value, the stronger the evidence for this conclu-

sion.

How does this look graphically? Below are three close-ups of the right
tail of a Distribution. This is for a 1-tailed test, in which the shaded area
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represents Alpha and the hatched areas represent p. (In a 2-tailed test, the
left and right tails would each have 𝛼/2 as the shaded areas.)

� Left graph below: in Hypothesis Testing, some use the term “Accep-
tance Region” or “Non-critical Region” for the unshaded white area
under the Distribution curve, and “Rejection Region” or “Critical
Region” for the shaded area representing Alpha.

Areas under the curve (right tail)

α: p:

Rejection

Region (α)

Acceptance

Region

p extends into the

Acceptance Region

p > α
p is inside the

Rejection Region

p ≤ α

� Center graph: if the hatched area representing p is entirely in the
shaded Rejection Region (because p ≤ 𝜶) we Reject the Null
Hypothesis.

� Right graph: If p extends into the white Acceptance Region (because
p > 𝜶), we Accept (or “Fail to Reject”) the Null Hypothesis.

For example, here is a portion of the output from an analysis which
includes an F-test. 𝛼 = 0.05.

Factors F Effect Size p

A: Detergent 729 6.75 0.02

B: Water Temp. 225 3.74 0.04

C: Washing Machine 49 1.75 0.09

� We see that p < 𝛼 for both Factor A and Factor B. So, we can say that
A and B do have a Statistically Significant effect. (We Reject the Null
Hypothesis.)

� The p-value for A is considerably smaller than that for B, so the evi-
dence is stronger that A has an effect.

� p > 𝛼 for Factor C, so we conclude that C does not have a Statistically
Significant effect. (We Accept/Fail to Reject the Null Hypothesis.)

5. Alpha defines the Critical Value(s) of Test Statistics, such
as z, t, F, or Chi-Square. The Critical Value or Values, in
turn, define the Confidence Interval.
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We explained how Alpha plays a key role in the Hypothesis Testing
method of Inferential Statistics. It is also an integral part of the other main
method – Confidence Intervals. This is explained in detail in the article,
Confidence Intervals – Part 1. It is also illustrated in the following concept
flow diagram (follow the arrows):

Here’s how it works. Let’s say we want a Confidence Interval around
the Mean height of males.

Critical Value
z = −1.960

Critical Value
z = +1.960

z
0

95%

x in cm

Confidence
Interval

Confidence Limit
170 cm

Confidence Limit
180 cm

α/2 = 2.5% α/2 = 2.5%

x = σz + x̄

x̄ = 175 cm

I select
α = 5%

Top part of the diagram:
� The person performing the analysis selects a value for Alpha.
� Alpha – split into two halves – is shown as the shaded areas under the

two tails of the curve of a Test Statistic, like z.
� Tables or calculations provide the values of the Test Statistic which

form the boundaries of these shaded 𝛼/2 areas. In this example, z =
−1.960 and z = +1.960.

� These values are the Critical Values of the Test Statistic for 𝛼 = 5%.
They are in the units of the Test Statistic (z is in units of Standard
Deviations).

Bottom part of the diagram:
� A Sample of data is collected and a Statistic (e.g., the Sample Mean,

x) is calculated (175 cm in this example).
� To make use of the Critical Values in the real world, we need to convert

the Test Statistic Values into real-world values – like centimeters in the
example above.

There are different conversion formulas for different Test Statistics and
different tests. In this illustration, z is the Test Statistic and it is defined
as z = (x − x)/𝜎. So x = 𝜎z + x. We multiply 𝜎 (the Population Standard
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Deviation), by each critical value of z (−1.960 and +1.960), and we add
those to the Sample Mean (175 cm).

� That converts the Critical Values −1.960 and +1.960 into the Confi-
dence Limits of 170 and 180 cm.

� These Confidence Limits define the lower and upper boundaries of the
Confidence Interval.

To further your understanding of how Alpha is used, it would be a good
idea to next read the article Alpha, p, Critical Value, and Test Statistic –
How they Work Together.

Related Articles in This Book: Alpha and Beta Errors; p, p-Value; Sta-
tistically Significant; Alpha, p, Critical Value, and Test Statistic – How
They Work Together; Test Statistic; p, t, and F: “>” or “<”?; Hypothesis
Testing – Part 1: Overview; Critical Value; Confidence Intervals – Parts 1
and 2; z



ALPHA AND BETA ERRORS

Summary of Keys to Understanding

1. There is a risk of an Alpha (aka Type I) Error or a Beta
(aka Type II) Error in any Inferential Statistical analysis.

2. Alpha Error,
“False Positive”

Beta Error,
“False Negative”

I saw a unicorn. Smoking doesn’t cause cancer.

What it is

The error of
concluding that there

is something – a
difference, or a change,
or an effect – when, in
reality, there is not.

The error of concluding
that there is nothing – no
difference, or no change,

or no effect, when, in
reality, there is.

In Hypothesis
Testing

The error of Rejecting
the Null Hypothesis

when it is true.

The error of Failing to
Reject the Null

Hypothesis when it is
false.

Found in:
Hypothesis Testing and Confidence Levels, t-tests,

ANOVA, ANOM, etc.

3. There is a tradeoff between Alpha and Beta Errors.

α Error

β Error α Error

β Error

The subject being analyzed determines which type is more troublesome.

4. To reduce both Alpha and Beta Errors, increase the Sam-
ple Size.

9
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Explanation

1. There is a risk of an Alpha (aka Type I) Error or a Beta
(aka Type II) Error in any Inferential Statistical analysis.

2. Alpha Error
(False Positive)

Beta Error
(False Negative)

I saw a unicorn. Smoking doesn’t cause cancer.

What it is

The error of
concluding that there

is something – a
difference, or a change,
or an effect – when, in
reality, there is not.

The error of concluding
that there is nothing – no
difference, or no change,
or no effect – when, in

reality, there is.

In Hypothesis
Testing

The error of Rejecting
the Null Hypothesis

when it is true.

The error of Failing to
Reject the Null

Hypothesis when it is
false.

Also known
as

Type I Error,
Error of the First Kind

Colloquially: False
Positive, False Alarm,

Crying Wolf

Type II Error,
Error of the Second Kind,

False Negative

Found in:
Hypothesis Testing and Confidence Levels, t-tests,

ANOVA, ANOM, etc.

Example: in
blood tests

Indicate a disease in a
healthy person.

Fail to find a disease that
exists.

Probability of
the error

p 𝛽 (Beta)

In Descriptive Statistics, we have complete data on the entire universe
we wish to observe. So we can just directly calculate various properties
like the Mean or Standard Deviation.

On the other hand, in Inferential Statistics methods like Hypothesis
Testing and Confidence Intervals, we don’t have the complete data. The
Population or Process is too big or it is always changing, so we can never
be 100% sure about it. We can collect a Sample of data and make an
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estimate from that. As a result, there will always be a chance for error.
There are two types of this kind of Sampling Error; they are like mirror
images of each other.

It may be easiest to think in terms of “False Positive” and “False Nega-
tive.”

False Positive (Alpha Error) – is the error of concluding that there is
a difference, change, or effect, when, in reality there is no difference,
change, or effect.

“False Negative” is the opposite – the error of concluding there is
nothing happening, when, in fact, something is. For example, the sta-
tistical analysis of a Process Mean concluded that it has not changed over
time, when, in reality the Process Mean has “drifted.”

In this context “positive” does not mean “beneficial,” and “negative”
does not mean “undesirable.” In fact, for medical diagnostic tests, a “pos-
itive” result indicates that a disease was found. And a “negative” result is
no disease found.

Alpha, 𝜶 (see the article by that name) is selected by the tester as
the maximum Probability of an Alpha (aka Type 1 aka False Positive)
Error they will accept and still be able to call the results “Statistically
Significant.” That’s why Alpha is called the “Significance Level” or “Level
of Significance.”

Beta, 𝜷, is the Probability of a Beta Error. Unlike Alpha, which
is selected by us, Beta is calculated by the analysis. 1 − 𝛽 is the Prob-
ability of there not being a Beta Error. So, if we call Beta the Prob-
ability of a False Negative, we might think of 1 − 𝛽 as the Probabil-
ity of a “true negative.” 1 − 𝛽 is called the “Power” of the test, and
it is used in Design of Experiments to determine the required Sample
Size.

You may have noticed a lack of symmetry in the terminology. This can
be confusing; hopefully the following table will help:

p is the Probability of an Alpha Error 𝛽 is the Probability of a Beta Error

𝛼 is the maximum acceptable
Probability for an Alpha Error

1 – 𝛼 is called the Confidence Level 1 − 𝛽 is called the Power of the test

In Hypothesis Testing
Let’s say we’re testing the effect of a new medicine compared to a

placebo. The Null Hypothesis (H0) says that there is no difference
between the new medicine and the placebo.
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� If the reality is that there is no difference (H0 is true), and if . . .
– our testing concludes that there is no difference, then there is no

error.
– our testing concludes that there is a difference, then there is an

Alpha Error.
� If the reality is that there is a difference (H0 is false), and if . . .

– our testing concludes that there is no difference, then there is a
Beta Error

– our testing concludes that there is a difference, then there is no
error.

Conclusion from our testing
Reality:

No difference,
H0 is True

Reality: There is
a difference,
H0 is False

Accept (Fail to Reject) H0 No error Beta Error

Reject H0 Alpha Error No error

3. There is a tradeoff between Alpha and Beta Errors.

α Error

β Error α Error

β Error

This makes sense. Consider the situation of airport security scanning.
We want to detect metal weapons. We don’t adjust the scanner to detect
only metallic objects which are the size of an average gun or knife or larger.
That would reduce the risk of Alpha Errors (e.g., identifying coins as
possible weapons), but it would increase the risk of Beta Errors (not
detecting small guns and knives).

This is the reason why we don’t select an Alpha (maximum tolerable
Probability of an Alpha Error) which is much smaller than the usual 0.05.
There is a price to pay for making 𝛼 extremely small. And the price is
making the Probability of a Beta Error larger.

So, we need to select a value for Alpha which balances the need to avoid
both types of error. The consensus seems to be that 0.05 is good for most
uses.

How to make the tradeoff between Alpha and Beta depends on the
situation being analyzed. In some cases, the effect of an Alpha Error is
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relatively benign and you don’t want to risk a False Negative. In other
cases, the opposite is true. Some examples:

Situation
Consequence of
an Alpha Error
(False Positive)

Consequence of
a Beta Error

(False Negative)

Wise choice for level of risk

Alpha Error
(risk of False

Positive)

Beta Error
(risk of False

Negative)

Airport
Security

Detain an
innocent person

as a terrorist

Let a terrorist on
board

higher lower

Inspect
critical

components
for jet engine

Reject a good
component

Engine failure higher lower

Inspect
painting on

the underside
of a

wheelbarrow

Cost of a reject
Customer will
probably not
notice or care

lower higher

4. To reduce both Alpha and Beta Errors, increase the Sam-
ple Size.

There are other factors involved, but increasing the Sample Size will
reduce both Alpha and Beta Errors. If the Sample Size is relatively large,
increasing it further will yield diminishing returns in error reduction. (See
the articles on Sample Size.)

Related Articles in This Book: Alpha, 𝛼; Alpha, p-Value, Critical Value,
and Test Statistic – How They Work Together; p, p-Value; Inferential Statis-
tics; Power; Sample Size – Parts 1 and 2



ALPHA, p, CRITICAL VALUE, AND
TEST STATISTIC – HOW THEY WORK
TOGETHER

Summary of Keys to Understanding

1. Alpha and p are Cumulative Probabilities. They are repre-
sented as areas under the curve of the Test Statistic Distri-
bution.

2. The Critical Value (e.g., z-critical) and the value of the Test
Statistic (e.g., z) are point values on the horizontal axis of the
Test Statistic Distribution. They mark the inner boundaries
of the areas representing Alpha and p, respectively.

3. The person performing the analysis selects the value of
Alpha, 𝜶.

Alpha and the Distribution are then used to calculate the
Critical Value of the Test Statistic (e.g., z-critical). It is the
value which forms the inner boundary of Alpha.

4. Sample data are used to calculate the value of the Test
Statistic (e.g., z).

The value of the Test Statistic and the Distribution are
then used to calculate the value of p. p is the area under the
curve outward from this calculated value of the Test Statistic.

z < z-critical so p > αz ≥ z-critical, so p ≤ α

Statistically

Significant:

Reject H0

Not Statistically

Significant:

Fail to Reject H0

z-critical  z z z-critical 

α: p:

Areas under the curve (right tail)

5. To determine Statistical Significance, compare p to Alpha, or
(equivalently) compare the value of the Test Statistic to its
Critical value.

If p ≤ 𝜶 or (same thing) z ≥ z-critical,

then there is a Statistically Significant difference, change,
or effect. Reject the Null Hypothesis, H0.

14
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Explanation

Much of statistics involves taking a Sample of data and using it to infer
something about the Population or Process from which the Sample was
collected. This is called Inferential Statistics.

There are 4 key concepts at the heart of Inferential Statistics:

� Alpha, the Level of Significance
� p, the Probability of an Alpha (False Positive) Error
� a Test Statistic, such as z, t, F, or 𝜒2 (and its associated Distribution)
� Critical Value, the value of the Test Statistic corresponding to

Alpha

This article describes how these 4 concepts work together in Inferential
Statistics. It assumes you are familiar with the individual concepts. If you
are not, it’s easy enough to get familiar with them by reading the individual
articles for each of them.

Alpha, 𝜶 p
Critical

Value of Test
Statistic

Test Statistic
Value

What is it?
How is it
pictured?

a Cumulative Probability a value of the Test Statistic

an area under the curve
of the Distribution of the

Test Statistic

a point on the horizontal axis
of the Distribution of the Test

Statistic

Boundary

Critical
Value

marks its
boundary

Test Statistic
Value marks
its boundary

Forms the
boundary for

Alpha

Forms the
boundary

for p

How is its
value
determined?

Selected
by the
tester

area
bounded by

the Test
Statistic

value

boundary of
the Alpha

area

calculated
from Sample

Data

Compared
with

p 𝛼
Test Statistic

Value

Critical
Value of Test

Statistic

Statistically
Significant/
Reject the
Null
Hypothesis if

p ≤ 𝛼
Test Statistic ≥ Critical Value

e.g., z ≥ z-critical
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The preceding compare-and-contrast table is a visual summary of the 5
Keys to Understanding from the previous page and the interrelationships
among the 4 concepts. This article will cover its content in detail. At the
end of the article is a concept flow visual which explains the same things
as this table, but using a different format. Use whichever one works better
for you.

1. Alpha and p are Cumulative Probabilities. They are repre-
sented as areas under the curve of the Test Statistic Distri-
bution.

A Test Statistic is calculated using Sample data. But, unlike other Statis-
tics (e.g., the Mean or Standard Deviation), Test Statistics have an associ-
ated Probability Distribution (or family of such Distributions). Common
Test Statistics are z, t, F, and 𝜒2 (Chi-Square).

The Distribution is plotted as a curve over a horizontal axis. The Test
Statistic values are along the horizontal axis. The Point Probability of any
value of a Test Statistic is the height of the curve above that Test Statistic
value. But, we’re really interested in Cumulative Probabilities.

A Cumulative Probability is the total Probability of all values in a
range. Pictorially, it is shown as the area under the part of curve of the
Distribution which is above the range.

In the diagram below, the curve of the Probability Distribution is divided
by x into two ranges: negative infinity to x and x to infinity. Above these two
ranges are two areas (unshaded and shaded) representing two Cumulative
Probabilities. The total area of the two is 100%.

Cumulative Probability
Cumulative Probability

x

In calculus-speak, the area under a curve is calculated as the integral
of the curve over the range. Fortunately, when we use Test Statistics, we
don’t have to worry about calculus and integrals. The areas for specific
values of the Test Statistic are shown in tables in books and websites,
or they can be calculated with software, spreadsheets, or calculators on
websites.

For example, if we select Alpha to be 5% (0.05), and we are using the
Test Statistic z, then the value of z which corresponds to that value of
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Alpha is z = 1.645

5%

z
z = 1.645

95%

2. The Critical Value (e.g., z-critical) and the value of the Test
Statistic (e.g., z) are point values on the horizontal axis of the
Test Statistic Distribution. They mark the inner boundaries
of the areas representing Alpha and p, respectively.

� The Critical Value is determined from the Distribution of the
Test Statistic and the selected value of Alpha. For example, as we
showed earlier, if we select 𝛼 = 5% and we use z as our Test Statistic,
then z-critical = 1.645.

� The Sample data are used to calculate a value of the test Statistic.
For example, the following formula is used to calculate the value of z
from Sample data:

z = (𝝁 − x)∕s

where x is the Sample Mean, s is the Sample Standard Variation, and
𝝁 is a specified value, for example, a target or historical value for the
Mean.

The following tables illustrate some values for a 1-tailed/right-tailed sit-
uation (only shading under the right tail. See the article “Alpha, 𝛼” for more
on 1-tailed and 2-tailed analyses.) Notice that the larger the value of the
boundary, the farther out it is in the direction of the tail, and so the smaller
the area under the curve.

As the boundary point value grows larger —————————>

Boundary: z or z-critical 0 0.675 1.282 1.645 2.327

Area: p or 𝛼 0.50 0.25 0.1 0.05 0.01
<——————— the Cumulative Probability area grows smaller

The graphs below are close-ups of the right tail of the z Distribution.
The shaded area represents the Cumulative Probability, Alpha. The hatched
area represents the Cumulative Probability, p. As explained in the tables
above, the larger the point value (z or z-critical), the smaller the value
for its corresponding Cumulative Probability (p or 𝜶, respectively).
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z < z-critical so p > αz ≥ z-critical, so p ≤ α
z z-critical zz-critical 

Areas under the curve (right tail)

α: p:

The left diagram above shows a value of z which is greater (farther from
the Mean) than the Critical Value. So, p, the area under the curve bounded
by z, is smaller than the area for Alpha, which is bounded by the Critical
Value. The right diagram shows the opposite.

3. The person performing the analysis selects the value of
Alpha.

Alpha and the Distribution are then used to calculate the
Critical Value of the Test Statistic (e.g., z-critical). It is the
value which forms the inner boundary of Alpha.

Alpha is called the Level of Significance. Alpha is the upper limit for
the Probability of an Alpha/“False-Positive” Error below which any
observed difference, change, or effect is deemed Statistically Signif-
icant. This is the only one of the four concepts featured in this article
which is not calculated. It is selected by the person doing the analysis. Most
commonly, 𝛼 = 5% (0.05) is selected. This gives a Level of Confidence of
1 − 𝛼 = 95%.

If we then plot this as a shaded area under the curve, the boundary can
be calculated from it.

right-
tailed

z-Distribution

α = 5%

z

Critical Value
z = 1.645

z

and and 

I select
α = 5%

Note: for a 2-tailed analysis, half of Alpha (2.5%) would be placed under
each tail. (left and right. The Critical Value would be 1.96 on the right and –
1.96 on the left).
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α/2 = 2.5% α/2 = 2.5%

−1.960 1.960

z
1 − α =

95%

4. Sample data are used to calculate the value of the Test
Statistic (e.g., z).

The value of the Test Statistic and the Distribution are
then used to calculate the value of p. p is the area under the
curve outward from this calculated value of the Test Statistic.

We saw how we use a Cumulative Probability (𝛼) to get a point value
(the Critical Value). We’ll now go in the opposite direction. We use a point
value for the Test Statistic, z, to get a Cumulative Probability (p).

p is the actual Probability of an Alpha Error for a particular Sample
of data.

z
1.2

Sample Data
163, 182, 177,  ...

z = 1.2

z
1.2

p = 11.5%

Let’s say that z is calculated from the Sample data to be 1.2. This gives
us a value of p = 0.115 (11.5%).

5. To determine Statistical Significance, compare p to Alpha,
or (equivalently) compare the value of the Test Statistic to
its Critical value.

If p ≤ 𝜶 or (same thing) z ≥ z-critical,

then there is a Statistically Significant difference, change,
or effect. Reject the Null Hypothesis (H0).

� We selected Alpha as the Level of Significance – the maximum Prob-
ability of an Alpha/“False-Positive” Error) which we are willing to
tolerate.

� We calculated p as the actual Probability of an Alpha Error for our
Sample.
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� So if p ≤ 𝜶, then any difference, change, or effect observed in the
Sample data is Statistically Significant.

Note that:

� The Critical Value is determined from Alpha. The two contain
the same information. Given a value for one, we could determine
the other from the Distribution.

� Similarly, the value of the Test Statistic (z in our example) contains
the same information as p.

� So, comparing the Test Statistic to the Critical Value of the Test
Statistic is statistically identical to comparing p to Alpha.

Therefore:

If p ≤ 𝜶 or z ≥ z-critical,

then there is a Statistically Significant difference, change, or effect.

(Reject the Null Hypothesis).

Depicted graphically:

z < z-critical so p > αz ≥ z-critical, so p ≤ α

Statistically

Significant:

Reject H0

Not Statistically

Significant:

Fail to Reject H0

z-critical  z z z-critical 

α: p:

Areas under the curve (right tail)

The table at the beginning of this article summarized the whole article in
one visual. On the next page is the same information presented in another
way. Use whichever one works best for you.



ALPHA, p, CRITICAL VALUE, AND TEST STATISTIC – HOW THEY WORK TOGETHER 21

t is the Test Statistic in this illustration.

Alpha, α

(selected by us)

Critical 
Value

p-value, p

Test Statistic 
value

(calculated from 
Sample data)

marks the boundary
of 

and the t-Distribution
determine the value of

marks the
boundary of 

is the area under the
curve bounded by the

• are Cumulative 
Probabilities

• are pictured as 
areas under the 
curve

• are compared with 
each other

• are numerical 
values

• are pictured as 
points on the 
horizontal (t) axis

• are compared with 
each other

t-critical

α
α

p

t t

Related Articles in This Book: Alpha, 𝛼; p-Value, p; Critical Value; Test
Statistic; Distributions – Part 1: What They Are; Inferential Statistics;
Hypothesis Testing – Parts 1–3; Confidence Intervals – Parts 1 and 2; p, t,
and F: “<” or “>”?



ALTERNATIVE HYPOTHESIS
Recommendation: read the article “Null Hypothesis” before reading this
article.

Symbols for the Alternative Hypothesis: HA, H1, or Ha

Summary of Keys to Understanding

1. Stating a Null Hypothesis (H0) and an Alternative Hypothe-
sis (HA) is the first step in our 5-step method for Hypothesis
Testing.

2. The Alternative Hypothesis is the opposite of the Null
Hypothesis – and vice versa.

3. Stating the Alternative Hypothesis as a comparison for-
mula, rather than in words, can make things easier to under-
stand. The formula must include an inequivalence in the
comparison operator, using one of these: “≠”, “>”, or “<”.

Comparison Operator

HA H0
Tails of the Test

≠ = 2-tailed
α/2 α/2

> ≤ Right-tailed
α = 5%

< ≥ Left-tailed
α = 5%

4. In a 1-tailed test, the Alternative Hypothesis (aka the
“Research Hypothesis” or Maintained Hypothesis”) tells you
in which direction (right or left) the tail points.

22
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Explanation

1. Stating a Null Hypothesis (H0) and an Alternative Hypothe-
sis (HA) is the first step in our 5-step method for Hypothesis
Testing.

Hypothesis Testing is one of two common methods for Inferential Statis-
tics. Confidence Intervals is the other. In Inferential Statistics, we estimate
a statistical property (e.g., the Mean or Standard Deviation) of a Population
or Process by taking a Sample of data and calculating the property in the
Sample.

In the article, “Hypothesis Testing – Part 2: How To” we describe a
5-step method of Hypothesis Testing:

1. State the problem or question in the form of a Null Hypothesis (H0)
and Alternative Hypothesis (HA).

2. Select a Level of Significance (𝛼).
3. Collect a Sample of data for analysis.
4. Perform a statistical analysis on the Sample data.
5. Come to a conclusion about the Null Hypothesis (Reject or Fail to

Reject).

Hypothesis Testing can be very confusing, mainly because the language
in steps 1 and 5 can be confusing. This article and the Null Hypothesis
article are written to clear up the confusion in step 1.

Experts disagree on whether an Alternative Hypothesis should be used.
It is included here, because, as we’ll explain later, it is useful in 1-tailed
tests.

2. The Alternative Hypothesis is the opposite of the Null
Hypothesis – and vice versa.

What exactly does that mean? It means that:
� If the Null Hypothesis is true, then the Alternative Hypothesis is

false.
� If the Null Hypothesis is false, then the Alternative Hypothesis is

true.

These two statements imply that:
H0 and HA are
� mutually exclusive and
� collectively exhaustive.
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This means that either H0 or HA must be true; you can’t have neither
being true. And you can’t have both being true.

Here are some examples:

Example 1
H0: There is no difference between the Standard Deviations of Popula-

tion A and Population B.
HA: There is a difference between the Standard Deviations of Population

A and Population B.

Example 2
HA: Our school’s average test scores are better than the national average.
H0: Our school’s average test scores are less than or equal to the national

average.

Example 3
HA: Our orders ship in less than 4 days.
H0: Our orders ship in 4 days or more

In addition to being mutually exclusive and collectively exhaustive,
these three examples include a couple of other concepts:

� Statistically Significant: In Example 1, our two Samples of data will
no doubt show some difference in the two Standard Deviations. The
Inferential Statistical test will determine whether that difference is
Statistically Significant. Likewise, the “better than” and “less than”
in Examples 2 and 3 are implicitly modified by “to a Statistically Sig-
nificant extent.”

� 2-tailed or 1-tailed: As we’ll explain later, Example 1 will use a
2-tailed analysis. Example 2 (right-tailed) and Example 3 (left-tailed)
are 1-tailed.

Note also that for Examples 2 and 3, we list HA first and H0 second. The
reason for this is explained below, under Keys to Understanding #4.

3. Stating the Alternative Hypothesis as a comparison for-
mula, rather than in words, can make things easier to under-
stand. The formula must include an inequivalence in the
comparison operator, using one of these: “≠”, “>”, or “<”.

Null and Alternative Hypotheses involve comparisons (equations or
inequalities) between values of Parameters (properties) of Populations or
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Processes. A Parameter could be a Mean (𝜇), a Standard Deviation (𝜎), or
other descriptive statistical property.

In a Hypothesis, a Parameter from one Population or Process could be
compared with that of another, for example,

𝜎A = 𝜎B

Or it could be compared with a numerical value, like a target or historical
value:

𝜎 < 1.5

There are 3 basic comparison symbols: equal “=”, greater than “>”, and
less than “<”.

There are also compound symbols: not equal ≠, greater than or equal to
“≥”, and less than or equal to “≤”.

Comparison Operator

HA H0
Tails of the Test

≠ = 2-tailed α/2 α/2

> ≤ Right-tailed α = 5%

< ≥ Left-tailed
α = 5%

4. In a 1-tailed test, the Alternative Hypothesis (aka the
“Research Hypothesis” or Maintained Hypothesis”) tells you
in which direction (right or left) the tail points.

If H0 can be stated with an equal sign, “=”, the situation is relatively
straightforward. We are only interested in whether there is a Statistically
Significant difference, change, or effect. There is no direction involved.
When we tell our statistical tool what type of test it is, we say “2-tailed.”
The common wisdom is to state a Null Hypothesis, and then the Alternative
Hypothesis is the opposite.

But, for 1-tailed tests, when “<” or “>” is involved, it gets more com-
plicated. Once we determine which is the Null and which is the Alternative
Hypothesis, it’s easy to assign a comparison operator to each comparison
formula. But how do we decide which is which?
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It may help to know that the Alternative Hypothesis is also known as
the Research Hypothesis or the Maintained Hypothesis. And that the
Alternative Hypothesis is the one that the researcher maintains and
aims to prove.

In Example 2 above, our school’s average test scores are somewhat bet-
ter than the national average, and we would like to prove that this is a Statis-
tically Significant difference. So we select as our Alternative (Maintained)
Hypothesis:

HA: 𝜇school > 𝜇national

The Null Hypothesis then becomes:

H0: 𝜇school ≤ 𝜇national

Note that, for 1-tailed tests, it is better to start with a statement of
the Alternative Hypothesis and then derive the Null Hypothesis as the
opposite. This is because we know what we maintain and would like to
prove.

Furthermore, the “<” or “>” in the Alternative Hypothesis points in
the direction of the tail. “<” in the Alternative Hypothesis means that the
test is Left-Tailed. “>” tells us that it is Right-Tailed.

Related Articles in This Book: Null Hypothesis; Hypothesis Testing –
Part 1: Overview; Hypothesis Testing – Part 2: How To; Reject the Null
Hypothesis; Fail to Reject the Null Hypothesis



ANALYSIS OF MEANS (ANOM)

Summary of Keys to Understanding

1. Analysis of Means (ANOM) tells us whether the Means
from several Samples are statistically the same as the
Overall Mean.

2. ANOM has some similarities to, and some differences
from, ANOVA

ANOM ANOVA

Assumptions Approximately Normal data

Analyzes Variation of
several Means

Yes

1-Way or 2-Way Yes

Variation around the overall Mean among each other

Identifies which Means
are not statistically the
same

Yes No

Output Graphical
Statistical: ANOVA

Table

3. The graphical ANOM output is similar to a Control Chart.

Defect rates by plant
8.0

7.5

UDL: 6.93

6.47

LDL: 6.02

7.0

6.5

6.0
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5.0
Chicago Eastpointe Detroit Ft. Wayne Riverside Saginaw Warren

Plants
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0
0
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Explanation

1. Analysis of Means (ANOM) tells us whether the Means
from Samples from several different Populations or Pro-
cesses are statistically the same as the Overall Mean.

The different Populations or Processes are represented by different values
of a Categorical/Nominal Variable. As such, they are names, for example,

Call center reps: John, Jane, Robert, Melissa, Judith, Mike
Vendors: Company A, Company B, Company C, Company D
Plants: Chicago, Eastpointe, Detroit, Fort Wayne, Riverside, Toledo,

Warren

The Means here are the Means of an Independent Variable, y. y is numer-
ical, such as the number of calls successfully handled, delivery times, and
defect rates.

For each name, there will be a Sample of data – for example, for each
call center rep, the number of calls handled each day for a number of days.

The Overall Mean, sometimes called the Grand Mean, is the average of
all the y-Variable values from all the Samples.

ANOM has been most frequently used in industrial and process-
improvement analyses, but it is applicable generally.

The underlying calculations for ANOM are more complicated than
those for ANOVA, and explaining them is beyond the scope of this book.

2. ANOM has some similarities to, and some differences
from, ANOVA

ANOM ANOVA

Assumptions Approximately Normal data

Analyzes Variation of several Means Yes

1-Way or 2-Way Yes

First, the similarities: In order to produce valid results, both ANOM
and ANOVA require that the data be approximately Normal. “Approx-
imately” Normal is not strictly defined, but the data should not be
obviously non-Normal. That is, it should have one discernable peak and
not be strongly skewed.

Second, they both analyze Variation in Means. ANOVA is “Analysis of
Variation,” but it analyzes Variation among Means. Both are usually used
with 3 or more Means. For 2 Means, there is the 2-Sample t-test.

www.ebook3000.com

http://www.ebook3000.org
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And both can perform 1-Way (aka Single Factor, i.e., one x Variable) or
2-Way (Two Factor, two x Variables) analyses.

ANOM ANOVA

Variation around the overall Mean among each other

Identifies which Means are
not statistically the same

Yes No

ANOM calculates the Overall Mean, and then it measures the Vari-
ation of each Mean from that. In the conceptual diagram below, each
Sample is depicted by a Normal curve. The distance between each Sample
Mean and the Overall Mean is identified as a “Variation.”

ANOM retains the identity of the source of each of these Variations
(#1, #2, and #3), and it displays this graphically in the ANOM chart (shown
later in this article).

ANOM

Overall 
Mean

Variation #1

Variation #2
Variation #3

ANOVA

Overall 
Mean

Within
Within

Between

BetweenWithin

Between

ANOVA takes a more holistic approach, in which the identity of the
individual Sample Variations is lost. This is explained in detail in the
articles, ANOVA, Parts 1, 2, and 3. But briefly, . . .
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ANOVA starts out like ANOM, calculating the Variation between each
Sample Mean and the Overall Mean. But it then consolidates this infor-
mation into one Statistic for all the Samples, the Mean Sum of Squares
Between, MSB.

Next it calculates Variation within each Sample and then consolidates
that into one Statistic, the Mean Sum of Squares Within, MSW∗. So any
information about individual Sample Means and Variances is lost. That
is why ANOVA can only tell us if there is a Statistically Significant
difference somewhere among the Means, not which one(s) are Signifi-
cantly different. However, ANOM can.
∗(ANOVA goes on to divide MSB by MSW, yielding the F-statistic, which
is then compared to F-critical to determine Statistical Significance.)

3. The graphical ANOM output is similar to a Control Chart.

The output from ANOVA is a table of Statistics. The output from
ANOM is graphical.

Example: Let’s say we have 7 plants mass-producing the same product,
and we want to determine whether any have a defect rate per thousand
which is (Statistically) Significantly better or worse than the others. We
collect data for 5 days.

Chicago Eastpointe Detroit
Ft.

Wayne
Riverside Saginaw Warren

6.0 5.2 6.8 7.1 6.8 7.4 6.2

6.5 4.3 7.0 6.7 6.0 7.9 6.9

6.1 5.1 6.7 6.5 6.4 8.2 5.9

6.2 5.3 6.4 6.9 7.3 7.7 5.7

5.8 5.9 6.6 6.8 6.6 7.6 6.1

Means: 6.1 5.2 6.7 6.8 6.6 7.8 6.2

In the ANOM chart below, the dotted horizontal lines, the Upper Deci-
sion Line (UDL) and Lower Decision Line (LDL) define a Confidence
Interval, in this case, for 𝛼 = 0.05. Our conclusion is that only Eastpointe
(on the low side) and Saginaw (on the high side) exhibit a Statistically
Significant difference in their Mean defect rates. So ANOM tells us not
only whether any plants are Significantly different, but also which
ones are.

ANOM Output The dots show the Means of the 5 days of data for each
plant.
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The Overall Mean for all plants is 6.47.

Defect rates by plant
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Related Articles in This Book: ANOVA, Parts 1–4; Variation/Variability/
Dispersion/Spread; Confidence Intervals – Parts 1 and 2; Alpha, a; Control
Charts – Part 1: General Concepts and Principles



ANOVA – PART 1 (OF 4): WHAT IT
DOES

Summary of Keys to Understanding

1. “ANOVA” is an acronym for ANalysis Of VAriance. How-
ever, its objective is to determine if one or more of the
Means of several Groups is different from the others.

2. Assumptions (test requirements) are
� The groups being compared have a roughly Normal Distri-

bution
� The groups have similar Variances

3. There are 3 types of ANOVA
� 1-Way aka Single Factor
� 2-Way without Replication
� 2-Way with Replication

4. ANOVA is often used in Designed Experiments. An
ANOVA Table is often an output in Multiple Linear
Regression analysis.

5. ANOVA Does ANOVA Does Not Do this instead

compare several
Means with each

other

compare several
Means with the
overall Mean

ANOM

say whether or not
there is a difference

among Means

say which Means
differ

ANOM or
Confidence

Intervals

require Continuous
data

handle Discrete data
Chi-square Test of

Variance

require roughly
Normal

Distributions

handle very
Non-Normal
Distributions

Kruskal–Wallis

require somewhat
equal Sample

Variances

handle very unequal
Sample Sizes and

Variances

Ensure equal
Sample Sizes when
Sample Variances

are unequal
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Explanation
There are 4 articles in this series about ANOVA

Part 1: What it Does
Part 2: How it Does It

The underlying 7-step method which involves Sums of Squares and
an F-test. Students may need to understand this for their exams. But
if you just want the answer to the ANOVA analysis, spreadsheets or
software can give it to you if you just provide the data.

Part 3: 1-Way
The method used when there is a single Factor affecting the outcome
we are measuring. For example, the single Factor would be the drug
used in a test. ANOVA would be used to determine whether any stood
out from the rest.

Part 4: 2-Way
Used when 2 Factors affect the outcome. For example, in a laun-
dry process, measuring the effect on cleanliness of the Factors, water
temperature, and detergent type. Interactions between Factors are an
important component of 2-Way ANOVA.

1. “ANOVA” is an acronym for ANalysis Of VAriance. How-
ever, its objective is to determine if one or more of the
Means of several Groups are different from the others.

ANOVA is an acronym for “Analysis of Variance.” But analyzing Vari-
ances is not its objective. Its objective is to determine whether one or
more of several Means are different from the others by a Statistically
Significant amount. It does this by analyzing Variances.

“Group” here is a generic term which can refer to:

– a Population or Process for which we have complete data.
– a Sample taken from a Population or Process, for example, the annual

incomes of 30 people who live in particular neighborhood. In the case
of a Sample, the Sum of the Squares of the Sample is an estimate of
the Sum of the Squares for the Population.

2. Assumptions (test requirements) are
� Groups being compared have a roughly Normal Distribution
� Groups have similar Variances
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As we will see in the Part 2 article, the Variances which are analyzed are
not the Variances of the individual groups whose Means we are comparing.
The Variances are the Mean Sum of Squares Between groups (MSB) and
Mean Sum of Squares Within groups (MSW). These are two numbers, each
of which summarizes different information about all the groups.

For ANOVA, the groups should be roughly Normal in their Distri-
butions and their Variances should be roughly similar. ANOVA is fairly
tolerant in terms of what is considered Normal enough or having simi-
lar enough Variances. If these assumptions are not roughly met, then the
Kruskal–Wallis test can be used instead.

3. There are 3 types of ANOVA
� 1-Way, aka Single Factor
� 2-Way without Replication
� 2-Way with Replication

1-Way, also known as Single Factor, is covered in the Part 3 article.
There is one Factor – the x Variable – which affects the outcome, or y Vari-
able. For example, the single Factor could be blood pressure drug. There
could be several different drugs being compared. The y Variable would be
a measure of reduction in blood pressure.

The 2-Way types of ANOVA are covered in the Part 4 article. In both
cases, there are two Factors, or x Variables. For example, water temperature
and detergent type would be the two Factors, and a cleanliness measure
would be the outcome or y Variables.

If the data show that the two Factors interact, then the 2-Way with Repli-
cation (repeated measurements) must be used.

4. ANOVA is often used in Designed Experiments. An
ANOVA Table is often an output in a Multiple Linear
Regression analysis.

ANOVA Table

df SS MS F p-value

Regression −4.000 48,877.931 −12,219.483 32.727 0.009

Residual 3.000 1493.498 497.833

Total −1.000 50,371.429
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5. ANOVA Does ANOVA Does Not Do this instead

compare several
Means with each

other

compare several
Means with the
overall Mean

ANOM

say whether or not
there is a difference

among Means

say which Means
differ

ANOM or
Confidence

Intervals

require Continuous
data

handle Discrete
data

Chi-square Test of
Variance

require roughly
Normal

Distributions

handle very
Non-Normal
Distributions

Kruskal–Wallis

require somewhat
equal Sample

Variances

handle very
unequal Sample

Sizes and Variances

Ensure equal
Sample Sizes when
Sample Variances

are unequal

Related Articles in This Book: Part 2: How It Does It; Part 3: 1-Way;
Part 4: 2-Way; Sums of Squares; ANOVA vs. Regression; Design of Exper-
iments (DOE) – Part 3; Regression – Part 4: Multiple Linear



ANOVA – PART 2 (OF 4): HOW IT
DOES IT

Summary of Keys to Understanding

1. Sum of Squares Within (SSW) is the sum of the Variations
(as expressed by the Sums of Squares, SS’s) within each of
several Groups.

SSW = SS1 + SS2 +⋯ + SSn

2. Sum of Squares Between (SSB) measures Variation
between (among) Groups,

SSB =
∑

n(X − X)2

and Sums of Squares Total (SST) is the Total of both types
of Variation.

SST = SSW + SSB

3. The Mean Sums (of Squares), MSB and MSW, are averages of
SSB and SSW, respectively. With MSB and MSW, we have
only 2 Statistics which summarize the Variation in 3 or
more groups.

4. Mean Sums of Squares are similar to the Variance. As
such, they can be used to calculate the Test Statistic, F,
which is the ratio of two Variances.

5. Mean Sums of Squares are used in the F-tests in ANOVA.
A large value of MSB, compared with MSW, indicates

that the Sample Means are not close to each other. This
makes for a large value for F, which makes it more likely
that F ≥ F-critical.

SSB MSB

SSW MSW
= F  

If F ≥ F-critical, there is a difference.

If F < F-critical, there is no difference.
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Explanation
This article is about what goes on behind the scenes in an ANOVA. Spread-
sheets or software will do all the calculations for you

The generic Sum of Squares (SS) is the sum of the Squared Devia-
tions of all the data values in a single Group (e.g., a Sample). SS is one
measure of Variation (it also happens to be the numerator in the formula
for Variance).

SS =
∑

(x − x)2

MSB and MSW are special types of Sums of Squares. In this article, we
will show how MSB and MSW are derived from the data, starting with the
most basic kind of Sum of Squares.

The Deviation (of a single data value, x) is x − x.
“Deviation” here means distance from the Mean: x − x, where x is an

individual data value in a Group, and x is the Mean of the Group. It could
just as easily be x − x as x − x. For our purposes, we don’t care whether a
value is less than or greater than the Mean. We just want to know by how
much it deviates from the Mean. So we square it, to ensure we always get
a positive number. (Another article in this book, Variance, explains why
we don’t just use the absolute value instead of squaring).

A Squared Deviation is just the square of a Deviation.
If we want to find a measure of Variation for the Group we can total up

all the Squared Deviations of all data values in the Sample. That gives us
the Sum of the Squared Deviations, aka the Sum of Squares.

SS =
∑

(x − x)2

So, it is easy to see that – like Variance and Standard Deviation – Sum
of Squares (SS) is a measure of Variation. In fact, the Sum of Squares
is the numerator in the formula for Variance (s2).

s2 =
∑

(x − x)2

n − 1
= SS

n − 1

Variance is, for most purposes, a better measure of Variation than the
generic SS, because it takes into account the Sample Size, and it approxi-
mates the square of the average Deviation. But there is more to the SS story.
ANOVA uses 3 particular types of Sums of Squares: Within, Between,
and Total (SSW, SSB, and SST). Whereas the generic SS is only about
a single Group, these three each measure different kinds of Variation
involving multiple Groups.



38 ANOVA – PART 2 (OF 4): HOW IT DOES IT

1. Sum of Squares Within (SSW) is the sum of the Variations
(as expressed by the Sums of Squares, SS’s) within each of
several Groups.

SSW = SS1 + SS2 +⋯ + SSn

Sums of Squares Within (SSW) summarizes how much Variation
there is within each of several Groups (usually Samples) – by giving the
sum of all such Variations.

This is not numerically precise, but conceptually, one might picture SS
as the width of the “meaty” part of a Distribution curve – the part without
the skinny tails on either side.

+ =
SSW

+
Group 1 Group 2 Group 3

Variations within 3 Separate Groups Total of the Variations within
the individual Groups 

SS3

SS3

SS1

SS1

SS2

SS2

A comparatively small SSW indicates that the data within the individ-
ual Groups are tightly clustered about their respective Means. If the data
in each Group represent the effects of a particular treatment, for example,
this is indicative of consistent results (good or bad) within each individual
treatment.

“Small” is a relative term, so the word “comparatively” is key here.
We’ll need to compare SSW with another type of Sum of Squares (SSB)
before being able to make a final determination.

A comparatively large SSW shows that the data within the individual
Groups are widely dispersed. This would indicate inconsistent results
within each individual treatment.

Overall 
Mean

Within
Within

Between

BetweenWithin

Between
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2. Sum of Squares Between (SSB) measures Variation
between (among) Groups,

SSB =
∑

n(X − X)2

and Sums of Squares Total (SST) is the Total of both types
of Variation.

SST = SSW + SSB

(According to the dictionary, “between” is about 2 things, so the word
is used ungrammatically here; it should be “among.” However, “between”
is much more commonly used in this context, so we’ll go with that in this
book.)

To calculate Sum of Squares between, SSB:

SSB =
∑

n(X − X)2

where X is a Group Mean and X is the Overall Mean and n is the number
of values in that Group. The Overall Mean (also called the Grand Mean)
is the Mean of all the data values from all Groups.

– First, calculate the Overall Mean, (symbols X). You can forget the
individual groupings, just add up the data values from all Groups and
divide by the total number of values.

In the form of a formula – Overall Mean: X =
∑

xij∕N

where i represents the individual values in one Sample
and j represents the individual Samples
and N is the total of Sample Sizes of all Samples

For example, Sample #1 has values 40, 45, 45, 50, and a Mean
of 45; Sample #2 has values 25, 35, 35, 45, and a Mean of 35; Sample
#3 has values 40, 55, 55, 70, and a Mean of 55.

X = 40 + 45 + 45 + 50 + 25 + 35 + 35 + 45 + 40 + 55 + 55 + 70
12

= 540
12

= 45

– Next, subtract the Overall Mean, X, from each Group Mean Xj

Xj − X

Sample #1: 45 − 45 = 0; Sample #2: 35 – 45 = −10; Sample #3: 55 −
45 = 10
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– Then, square each of these deviations

(0)2 = 0 (−10)2 = 100 (10)2 = 100

– Multiply each squared Deviation by the Group size

0 × 4 = 0 100 × 4 = 400 100 × 4 = 400

– Sum these: SSB = 0 + 400 + 400 = 800

These numbers are graphed below left and are indicative of a compara-
tively small Variation between the Groups. Notice that the ranges overlap.

On the right above is a graph of comparatively large Variation between
the Groups. There is no overlap in the ranges. We keep saying “compara-
tively” because, as mentioned earlier, we need to consider both SSW and
SSB together in order to come to a definitive conclusion.

If we add SSW and SSB, we get a measure of the total Variation,
Sum of Squares Total, SST.

SST = SSW + SSB

Notation Alert: some authors use the term “Sum of Squares Treatment”
(SST) instead of Sum of Squares Between. That introduces a potential
source of confusion, since SST is usually used for Sum of Squares Total.

3. The Mean Sums (of Squares), MSB and MSW, are averages of
SSB and SSW, respectively. With MSB and MSW, we have
only 2 Statistics which summarize the Variation in 3 or
more Groups.

Sums of differences (like SSW and SSB) provide a gross measure of
Variation, somewhat analogous to a Range. Averages (Means) are gener-
ally more meaningful than sums. (That is why Variances or Standard Devi-
ations are generally more useful than Ranges.) So we calculate the Mean
equivalents of SSW and SSB: MSW and MSB.

MSB and MSW are Statistics which each distill information about
a type of Variation involving multiple Groups into a single number.
We can then use these 2 Statistics in a single F-test to accomplish the
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same thing that multiple t-tests would accomplish. Thus, we avoid the com-
pounding of Alpha Error which would occur with multiple t-tests.

The downside is that, in calculating the MS’s, we lose specific informa-
tion about the individual Groups. This is why ANOVA will tell us whether
there is a Statistically Significant difference among several Groups, but
it will not tell us which one(s) are different.

4. Mean Sums of Squares are similar to the Variance. As
such, they can be used to calculate the Test Statistic, F,
which is the ratio of two Variances.

Earlier in this article, we said that the generic Sum of Squares is the
numerator in the formula for Variance. The denominator in that formula is
n − 1. As described in the Part 3 article, MSB and MSW are calculated by
dividing the Sums of Squares, SSB and SSW, by terms similar to n – 1. So
MSB and MSW are similar to the Variance.

The Test Statistic F is the ratio of two Variances. So, ANOVA is able
to use the ratio of MSB and MSW in an F-test to determine if there is a
Statistical Significant difference among the Means of the Groups.

5. Mean Sums of Squares are used in the F-tests in ANOVA.
A large value of MSB, compared with MSW, indicates

that the Sample Means are not close to each other. This
makes for a large value for F, which makes it more likely
that F > F-critical.

SSB MSB

SSW MSW
= F  

If F ≥ F-critical, there is a difference.

If F < F-critical, there is no difference.

 

 

� The formulas for MSB and MSW are specific implementations of the
generic formula for Variance.

� So, MSB divided by MSW is the ratio of two Variances.
� The Test Statistic F is the ratio of two Variances.
� ANOVA uses an F-Test (F = MSB/MSW) to come to a conclusion.
� If F ≥ F-Critical, then we conclude that the Mean(s) of one or more

Groups have a Statistically Significant difference from the others.

Related Articles in This Book: ANOVA – Part 1: What It Does; ANOVA –
Part 3: 1-Way; ANOVA – Part 4: 2-Way; Sums of Squares; Variation/
Variability/Dispersion/Spread; Variance



ANOVA – PART 3 (OF 4): 1-WAY (AKA
SINGLE FACTOR)

Summary of Keys to Understanding

Builds on the content of the ANOVA Part 1 and Part 2 articles.

1. In 1-Way ANOVA, we study the effect of one Nominal
(named) Variable, x, on the Dependent Numerical Vari-
able, y.

2. Objective: Determine whether there is a Statistically Signif-
icant difference among the Means of 3 or more groups. Do
one or more group Means stand out from the rest?

x:Script y: sales in first 100 calls Mean

A 175 50 225 60 180 170 230 45 90 190 141.5

B 95 150 160 75 120 140 250 70 85 180 132.5

C 80 120 95 225 60 110 160 90 120 140 126.5

3. A 7-step method (summarized graphically below) performs
the analysis. Spreadsheets or software will do all this, you just
provide the data.

SSB MSB

SSW MSW
= F  

If F ≥ F-critical, there is a difference.

If F < F-critical, there is no difference.

 

 

4. The output includes an ANOVA Table like this:

ANOVA
Cannot Reject Null Hypothesis because p > 0.05

(Means are the same.)

Source of Variation SS df MS F p-Value F-crit

Between Groups 2686.67 2 1343.33 0.376 0.690 3.354

Within Groups 96567.50 27 3576.57

Total 99254.17 29

42
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Explanation

Prerequisite articles: ANOVA Part 1 and ANOVA Part 2.

1. In 1-Way ANOVA, we study the effect of one Nominal
(named) Variable, x, on the Numerical Variable, y.

A Nominal (aka Categorical) Variable is one whose values are names.
x is the Independent Variable, also called the Factor. y is the Dependent

Variable, since its value depends on the value of x. We might say y = f(x),
but in ANOVA (unlike in Regression) we are not interested in determining
what the function f is.

Three Examples of Variables in 1-Way ANOVA

Nominal Independent
Variable, x

values of the x Variable
Numerical Dependent

Variable, y

Script used in call
center sales calls

“A”, “B”, “C” Sales in dollars

Level of Training
Beginner, Intermediate,

Advanced
A worker productivity

measurement

School District names of the 6 school districts Test scores

ANOVA is frequently used in Designed Experiments. (See the articles
on Design of Experiments.)

2. Objective: Determine whether there is a Statistically Signif-
icant difference among the Means of 3 or more groups. Do
one or more group Means stand out from the rest?

A Sample of data is taken for each of the values of the x Variable, and
the Means of the y measurements for each Sample is calculated.

For example, let’s say we’re starting up a call center to sell a new prod-
uct. We hire 30 callers of similar background and divide them into 3 groups
of 10. Each group was given a different script to use for their opening sales
pitches. We recorded their sales in dollars for the first 100 calls. The x
Variable is the name of the script, and the y Variable is the sales amount.

x:script y: sales in first 100 calls Mean

A 175 50 225 60 180 170 230 45 90 190 141.5

B 95 150 160 75 120 140 250 70 85 180 132.5

C 80 120 95 225 60 110 160 90 120 140 126.5
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There are 3 Samples (groups), A, B, and C. Each has 10 data values, for
a total of 30.

Script A appears to give the best results and Script C the worst. But are
the differences in the 3 Means Statistically Significant? That’s what 1-Way
ANOVA can tell us.

3. A 7-step method performs the analysis. Spreadsheets or
software will do all this, you just provide the data.

Before collecting data, select a value for Alpha. Most commonly
𝛼 = 0.05 is selected.

Step 1. Calculate the Sum of Squares (SS) for each Sample.

SS =
∑

(xi − x)2

SS is a measure of Variation within one Sample. In fact, it is the numer-
ator in the formula for Variance.

Step 2. Add all these up for all Samples to get the Sum of Squares
Within

SSW = SS1 + SS2 +⋯ + SSn

SSW is a measure of Variation within all the Samples.

Step 3. Calculate the Overall Mean, (X), of all the data values in all
Samples.
Forget which data values go with which Samples, just put them all in
one bucket and calculate the Mean.

Step 4: Sum up the differences between each Sample Mean and the
Overall Mean to get Sum of Squares Between.

SSB =
∑

n(X − X)2

SSB is a measure of how much the Sample Means differ from the Over-
all Mean. It also contains information on how much the Sample Means
differ from each other.

Step 5: Calculate the Mean Sum of Squares Within (MSW) and
Between (MSB).
Sums of differences (like SSW and SSB) provide a gross measure
of Variation, somewhat analogous to a Range. But it is often not
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meaningful to compare sums of different numbers of things. Averages
(Means) are generally more meaningful than totals. (That is why Vari-
ances or Standard Deviations are generally more useful than Ranges.)
So we calculate MSW and MSB.

MSW = SSW
N − k

and MSB = SSB
k − 1

where N is the overall number of data values in all groups, and k is the
number of groups. In our example N = 30 and k = 3.

SSW and SSB are specific types of the generic Sum of Squares, SS.
And the formula for SS is the numerator for the formula for Variance, s2.

s2 =
∑

(xi − x)
n − 1

= SS
N − 1

So, if we divide the two special types of Sums of Squares, SSW and
SSB, by a Degrees-of-Freedom term (like N–k or k–1), it is easy to see
that MSW and MSB are Variances.

Step 6: Perform an F-test
The crux of ANOVA is comparing the Variation Within groups to the
Variation Between (Among) groups. The best way to do a comparison
is to calculate a ratio. The F-statistic is a ratio of two Variances, MSB
and MSW.

F = MSB
MSW

Note that this is a different concept from the usual F-test com-
paring Variances of two Samples. In that case, the Null Hypothesis
would be that there is not a Statistically Significant difference between
the Variances of two Samples. Although MSB and MSW have formulas
like Variances, MSB and MSW contain information about the dif-
ferences between the Means of the several groups. They contain no
information about the Variances of the groups.

In the F-Test within ANOVA, the ANOVA Null Hypothesis is that
there is not a Statistically Significant difference between MSB and
MSW – that is, there is not a Statistically Significant difference
among the Means of the several Groups.

Step 7:
As described in the article on the F-test, Alpha determines the value of
F-critical, and the F-statistic (calculated from the Sample data) deter-
mines the value of the Probability p. Comparing p to 𝛼 is identical to
comparing F and F-critical
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If F ≥ F-critical (equivalently, p ≤ 𝜶), then there is a Statistically
Significant difference between the Means of the groups. (Reject the
ANOVA Null Hypothesis.)

If F < F-critical (p > 𝜶), then there is not Statistically Significant
difference between the Means of the groups. (Accept/Fail to Reject the
ANOVA Null Hypothesis.)

The 7–Step ANOVA Process summarized in a concept flow diagram:

SSB MSB

SSW MSW
= F  

If F ≥ F-critical, there is a difference.

If F < F-critical, there is no difference.

 

 

4. The output includes an ANOVA Table like this:

ANOVA
Cannot Reject Null Hypothesis because p > 0.05

(Means are the same.)

Source of Variation SS df MS F p-Value F-crit

Between Groups 2686.67 2 1343.33 0.376 0.690 3.354

Within Groups 96567.50 27 3576.57

Total 99254.17 29

The conclusion of this ANOVA is stated at the top. Prior to the
test, Alpha (𝛼) was selected to be 0.05. We see that the p-Value (p) is
0.690, which is greater than Alpha (0.05). So, we do not reject the Null
Hypothesis.

Details are given in the table beneath the conclusion about the Null
Hypothesis:

“SS” stands for Sum of Squares, and values are given for Between
Groups (SSB) and Within Groups (SSW).

“df” is Degrees of Freedom. For Between Groups, df = k – 1, where k
is the number of groups. In our example, k is 3, so df = 3 – 1 = 2.
For Within Groups df = N – k, where N is the total number (30) of y
measurements, so df = 30 – 3 = 27.

“MS” is Mean Sum of Squares, and values are given for MSB and MSW.
You can see that their ratio gives us F.

F < F-critical, which is statistically equivalent to p > 𝛼.
You might remember that the Part 1 article said that an ANOVA assump-

tion was Continuous, not Discrete data. And the data in this example appear
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to be Discrete, being in increments of dollars. However, Discrete data in
money, which tend to have a large number of possible values, are effec-
tively Continuous.

Related Articles in This Book: ANOVA – Part 1: What It Does;
ANOVA – Part 2: How It Does It; ANOVA – Part 4: 2-Way; Variation/
Variability/Dispersion/Spread; Variance; F; Sums of Squares; Critical
Values; Alpha(𝛼); p-Value; ANOVA vs. Regression; p, t, and F: “>”
or “<”?



ANOVA – PART 4 (OF 4): 2-WAY (AKA
2-FACTOR)

Summary of Keys to Understanding

Builds on information in the article ANOVA: Part 3 – 1-Way.

1. In 2-Way ANOVA, we study the effect of 2 Nominal
(named) Variables, A and B, on the Dependent Numerical
Variable, y.

A and B are Factors influencing the value of y. “AB” –
the Interaction between and A and B – can be the 3rd
Factor.

2. There are 2 Methods for 2-way ANOVA
� The WITHOUT Replication method can be used if there

is no Interaction which is Statistically Significant.
� Otherwise, you must use the WITH Replication method.
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Interaction Significant

3. 2-Way ANOVA WITH Replication simply repeats (repli-
cates) the experiment several times for each combination of
A and B values in order to obtain sufficient data to identify
and quantify any Interaction, AB.

4. In an ANOVA Table, p ≤ 𝜶 indicates Statistical Signifi-
cance. If the Interaction, AB, is Statistically Significant,
then p-values for A and B are not usable.

48
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Explanation

1. In 2-Way ANOVA, we study the effect of 2 Nominal
(named) Variables, A and B, on the Dependent Numerical
Variable, y.

A and B are Factors influencing the value of y. “AB” –
the Interaction between and A and B – can be the 3rd
Factor

2-Way ANOVA is more complicated – and potentially much more con-
fusing – than 1-Way ANOVA. So, we’re going to proceed slowly and delib-
erately with descriptions of the individual elements involved.

First of all, the names used for different types of Variables can be con-
fusing.

We’re familiar with equations of the type

y = f (x) or y = f (x1, x2,… , xn).

The value of the Variable y is a function of one or more x Variables. In
other words, the value of y is dependent on the value of one or more x’s.
So, y is called the Dependent Variable. The x’s can vary independently and
are called Independent Variables.

In 2-Way ANOVA, the equation is of the type

y = f(A, B, AB)

� y is the Dependent Variable (also known as the “Outcome Vari-
able”).

y is a Numerical Variable. That is, its value is a Number, like 5,
not a Name, like “Detergent #1.”

� A and B are Nominal (named) Variables. That is, their values are
Names (hence “nominal”) within a Category. (Nominal Variables are
also known as Categorical Variables.)
◦ For example, if the Category A is type of detergent, the values of

A would be names or labels for two detergents, say “Detergent #1”
and “Detergent #2.”

◦ B, the second Category could be water temperature. It may have
values of “Cold,” “Warm,” and “Hot.” Note, that although these
names may have corresponding numerical temperatures (say 40,
80, and 120 degrees Fahrenheit) we do no calculations with those
numbers. We are naming 3 levels of temperature, but the numbers
behind these names are not used.
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� A, B, and AB are Factors. We don’t use the term Independent Vari-
able, in this context, because AB is not independent of A and B. A
and B are also called “Main Effects,” to distinguish them from Inter-
action Factors like AB.

� AB is the Interaction of A and B. It has an effect on the Outcome
Variable different from the effects of A or B separately. As we’ll see
later, if the Interaction term is Statistically Significant, then the
individual effects of A and B cannot be separately measured.

Interaction:
Sometimes Factors interact synergistically, that is, the effect of the

two of them together is more than just the sum of the effects of each indi-
vidually. For example, some detergents work much better in hot water than
in cold water.

Interacting Factors can also cancel each other out – as in two clean-
ers, one an acid and the other a base.

2. There are 2 Methods for 2-Way ANOVA
� The WITHOUT Replication method can be used if

there is no Interaction which is Statistically Signi-
ficant.

� Otherwise, you must use the WITH Replication
method

In 1-Way ANOVA, we worked with Samples of data in a Population.
In 2-Way ANOVA, we design experiments to ensure that we get the kind
of data that can be analyzed the way we need. For example, we select 2
different detergents and 3 levels of temperature. The numerical Outcome,
y, is “Cleanliness,” measured on a scale of 0 to 50.

There are 2 methods that can be used for 2-Way ANOVA. The WITH
Replication method is usually better, because it uses more data and pro-
vides more information. However if the experimental budget and time are
constraints, the WITHOUT Replication method can be used, but only
if there is no Interaction between the 2 Factors.

How do we know if there is no Interaction? Plot the data. If the lines
don’t intersect there is not a Statistically Significant Interaction.

Parallel or roughly parallel lines imply no Interaction.
Crossed lines imply Interaction.
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Separated Lines show that Factor A has an effect on the Out-
come Variable y.
Slanted Lines show that Factor B has an effect.

A Significant, B Not

B: Water Temperature

C
le

a
n

li
n

es
s

B

y

Cold Warm Hot

A: Detergent #1
A: D

etergent #
1

A: D
etergent #

1

A: D
etergent #

2

A: D
etergent #

2

A: Detergent #2

B: Water Temperature
C

le
a

n
li

n
es

s

B

y

Cold Warm Hot

B Significant, A Not

B: Water Temperature

C
le

a
n

li
n

es
s

B

y

Cold Warm Hot

A and B Significant

If Factor A has i number of values and Factor B has j, then there are
i × j pairs of combinations to test. In this example there are 2 values for A:
Detergent and 3 values for B: Water Temperature, so there are 2 × 3 = 6
pairs of combinations to test – yielding 6 values of y (the numbers in the
table above).

The WITHOUT Replication method measures only one value of y for
each of these combinations. Here is the data we would enter into a spread-
sheet or software.

Cold Warm Hot

Detergent #1 30 36 45

Detergent #2 20 29 35

Here is the ANOVA Table produced. (The format and labels will vary
somewhat by the tool.)

ANOVA Table: 2-Way WITHOUT Replication (Alpha = 0.05)

Source of Variation SS df MS F p-value F-crit

Rows (A) 121.5 1 121.5 81 0.012 18.51282

Columns (B) 225 2 112.5 75 0.013 19

Error 3 2 1.5

Total 349.5 5
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The key items in the ANOVA table are the p-values. In the above
example, p-values for both Rows (Factor A) and Columns (Factor B) are
less than 0.05 (the value selected for Alpha), so both have Statistically
Significant effects.

Error is the Variation left over after totaling up the Variations caused by
A and by B.

Sum of Squares (SS) is the measure of Variation shown. That column
shows how much of the total Variation in y is caused by Factors A (Rows)
and B (Columns), and how much is left over as Error.

Degrees of Freedom (df ), and Mean Sums of Squares (MS) are provided
for your information. They are used in interim calculations in producing
values for the p-value and F.

And, as is explained in the article, Critical Values, F ≥ F-critical is sta-
tistically identical to p ≤ 𝛼. So that information is redundant.

The WITHOUT Replication method has lower experimental costs,
but it is limited – it does not identify or quantify Interactions.

3. 2-Way ANOVA WITH Replication simply repeats (repli-
cates) the experiment several times for each combination of
A and B values in order to obtain sufficient data to identify
and quantify any Interaction, AB.

Suppose we collected data which produced the graph below.
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� The lines are separated. But are they separated enough for us to say
that Factor B has a Statistically Significant effect?

� The lines are slanted, indicating that Temperature has an effect. But
is it a Statistically Significant effect?

� The two lines don’t cross, but, if extended, they would. Does this indi-
cate a Statistically Significant Interaction?

The WITHOUT Replication method could answer the first two. But
the graph is ambiguous enough that we may want the greater accuracy
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to be achieved by using more data points, as with the WITH Replication
method. That could also answer the question of whether or not there is an
Interaction.

The WITH Replication method repeats (Replicates) the experiment
several times for each combination of A and B values. That can provide
sufficient data to identify and quantify an Interaction. The number of Repli-
cations required to achieve a specified level of accuracy is determined by
the methods of Design of Experiments, DOE. (This book has a 3-part
series of articles on DOE.)

Here’s the data.

Data for WITH Replication method

Factor B

Cold Warm Hot

F
ac

to
r

A Detergent #1 40, 42, 39 35, 33, 36 30, 29, 31

Detergent #2 20, 18, 21 24, 26, 23 28, 27, 29

4. In an ANOVA Table, p ≤ 𝜶 indicates Statistical Signifi-
cance. If – in the WITH Replication method – the Inter-
action, AB, is Statistically Significant, then p-values for A
and B are not usable.

Here’s the ANOVA Table, which is calculated from WITH Replication
data above:

ANOVA Table: 2-Way With Replication (Alpha = 0.05)

Source of Variation SS df MS F p-value F-crit

Sample (A) 93.4 1 93.4 5.4 0.038 4.7
Reject Null
Hypothesis

Columns (B) 310.3 2 155.2 9.0 0.004 3.9
Reject Null
Hypothesis

Interaction (AB) 14.8 2 7.4 0.4 0.660 3.9
Do Not
Reject Null
Hypothesis

Within 206.0 12 17.2

Total 624.5 17
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The first thing we do is check the p-value for the Interaction AB.
If that p-value indicates a Statistically Significant Interaction (p ≤

Alpha), then the p-values calculated for A and B separately would be
meaningless. The effects of A and B would be too intertwined to separate
them

In this example, the p > 𝛼, so we do not reject the Null Hypothesis. The
Null Hypothesis of No Statistically Significant effect for the Interaction is
supported by the analysis.

(Note that there are 3 different Null Hypotheses here: one each for Factor
A, Factor B, and the Interaction AB.)

Since there is no Statistically Significant Interaction, we can check the
p-values for the two Factors, A and B. If p ≤ 𝜶, then that Factor does
have a Statistically Significant Effect. The Null Hypothesis of No Statis-
tically Significant effect for the Factor is Rejected.

In this example, the p-values for both Factors A and B are less than
Alpha. So, we Reject the Null Hypothesis and conclude that both the Fac-
tors A and B have a Statistically Significant effect on the outcome Vari-
able y.

Related Articles in This Book: ANOVA: Part 1 – What It Is; ANOVA:
Part 2 – What It Does; ANOVA: Part 3 – 1-Way; ANOVA vs. Regression;
Design of Experiments – Parts 1–3; F; Variation/Variability/Dispersion/
Spread; p, p-Value; Alpha (𝛼); Critical Value



ANOVA vs. REGRESSION
The purpose of this article is to give you a more intuitive understanding of
both ANOVA and Regression by exploring how they are similar and how
they differ.

Summary of Keys to Understanding

ANOVA Regression

1. Purpose

Determine whether
the Means of 2 or

more Populations are
statistically the same.

Model Cause and Effect;
Predict y value from x

value(s).

2. Type of Question

Is there a Statistically
Significant difference
between drugs A, B,

and placebo?

How much do house
prices increase as the
number of bedrooms

increases?

3. Variable Types
x: Categorical,
y: Numerical

x and y both Numerical

4. Groups Being
Compared

Individual Populations
(or Samples of each)

data values for the y
Variable vs.

corresponding y values on
the Regression Line

5. Focuses on Variation Yes Yes

6. Uses Sums of Squares
to Partition Variation

Yes Yes

7. Variation of . . .
Means of Different

Populations

Dependent Variable (y)
vs. Independent
Variable(s) (x’s)

8. Involves Correlation No Yes

9. Sum of Squares Total
(SST) = SSW + SSB SSR + SSE

10. Key Sum of Squares
Ratio

F = MSW/MSB R2 = SSR/SST

11. Analysis Output
Includes ANOVA Table

Yes Yes

12. Used Primarily In Designed Experiments
Inferential Statistics, but
validated via Designed

Experiments
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Explanation
ANOVA and Regression have a number of similarities – they both
focus on Variation and they both use Sums of Squares in doing so. In
fact, some authorities say they’re just different sides of the same coin.
But that’s not intuitively obvious, since there are a number of basic
differences.

The purpose of this article is to give you a more intuitive understanding
of both ANOVA and Regression by exploring both how they overlap and
how they differ. Let’s start with some key differences.

ANOVA Regression

1. Purpose

Determine whether the
Means of 2 or more

Populations are
statistically the same.

Model Cause and Effect;
Predict y value from x

value(s).

2. Type of Question

Is there a Statistically
Significant difference

between Drug A, Drug
B, and Placebo?

How much do house
prices increase as the
number of bedrooms

increase?

ANOVA and Regression differ in their purposes and in the type of
question they answer.

ANOVA:
ANOVA is actually more similar to the t-test than to Regression.
ANOVA and the 2-Sample t-test do the same thing if there are only 2
Populations – they determine whether the Means of the 2 Populations
are statistically the same or different.

This, then, becomes a way of determining whether the 2 Populations
are the same or different – relative to the question being asked. ANOVA
can also answer the question for 3 or more Populations.

The answer to the question is Yes or No.

Regression:
The purpose of Regression is very different. It attempts to produce a Model
(an equation for a Regression Line or Curve) which can be used to predict
the values of the y (Dependent) Variable given values of one or more x
(Independent) Variables.

Regression goes beyond mere Correlation (which does not imply Cau-
sation) to attempt to establish a Cause and Effect relationship between
the x Variable(s) and the values of y.
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The answer to the question is the equation, for the best-fit Regres-
sion Line, e.g., House Price = $200,000 + ($50,000 × Number of Bed-
rooms).

ANOVA Regression

3. Variable Types x: Categorical, y: Numerical x and y both Numerical

ANOVA
The Independent Variables (x) Must be Categorical (Nominal). That
is, the different values of x in the category (e.g., drug) must be names (e.g.,
Drug A, Drug B, Drug C, Placebo), rather than numbers.

The Dependent Variable (y) must be Numerical, e.g., a blood pressure
measurement.

Regression
Both the Independent and Dependent Variables must be Numerical.
For example, x is Number of Bathrooms and y is House Price. As men-
tioned earlier, Regression attempts to establish a Cause and Effect rela-
tionship, that is, increasing the number of Bathrooms results in an increase
in House Price.

ANOVA Regression

4. Groups
Being
Compared

Individual Populations
(or Samples of each)

data values for the y Variable vs.
corresponding y values on the

Regression Line

Regression really doesn’t compare groups as such. But if one wants
to explore this similarity between Regression and ANOVA, one would
describe Regression concepts in terms used by ANOVA.

We can consider the Sample of paired (x, y) data to represent one group.
And the other group consists of corresponding paired (x, y) points on the
Regression Line. By “corresponding” we mean having the same x values.

Illustration: 7 pairs of (x, y) data and their corresponding points on the
Regression Line.

The Regression Line is y = 2x. We take the value of x from a data point,
and calculate the y value for the Regression Population using y = 2x

Group 1 Data Points
(x, y)

(1, 2.5) (2, 1.9) (4.7) (5, 9) (7, 15) (8, 18) (11, 22)

Group 2
Corresponding

Regression
Points

(1, 2) (2, 2) (4, 8) (5, 10) (7, 14) (8, 16) (11, 20)
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ANOVA will compare the Means of the y values of these groups.

ANOVA Regression

5. Focuses on Variation Yes Yes

6. Uses Sums of Squares
to Partition Variation

Yes Yes

The main conceptual similarity between ANOVA and Regression is
that they both analyze Variation – as measured by Sums of Squares –
to come to their conclusions.

“Partitioning” Variation Means dividing up the Total Variation – as mea-
sured by Sum of Squares Total (SST) – into components or portions of
the total Variation.

How they each do that is very different, as we’ll show later.

ANOVA Regression

7. Variation of . . .
Means of Different

Populations
Dependent Variable (y) vs.

Independent Variable(s) (x’s)

8. Involves Correlation No Yes

Both ANOVA and Regression use Variation as a tool. But “Variation”
is not any one thing. The kinds of Variation analyzed by ANOVA and by
Regression are quite different. This is because the types of questions they
attempt to answer are very different.

For Regression, we know that the Variables x and y vary – that is, all
their values in a Sample will not be identical. That is, a Sample will not be
something like (2, 3); (2, 3); (2, 3); (2, 3); (2, 3); (2, 3); (2, 3). The first
question for Regression is, do x and y vary together – either increasing
together, or moving in opposite directions. That is, is there a Correlation
between the x and y Variables? If there is not a Correlation – as demon-
strated by a Scatterplot and the Correlation Coefficient, r, then we will not
even consider doing a Regression analysis.

For ANOVA, there is no question of “varying together,” because the
values of the x Variable – being a Categorical Variable – are names like
“Drug A,” “Drug B,” and “Placebo.” They don’t increase or decrease. There
can be no Correlation.

ANOVA Regression

9. SST = SSW + SSB SSR + SSE

www.ebook3000.com

http://www.ebook3000.org
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Since ANOVA and Regression measure very different types of Varia-
tion, one would expect that the components of their total Variations are
very different.

ANOVA: SST = SSW + SSB where SST is Sum of Squares Total,
SSW is Sum of Squares Within, and SSB is Sum of Squares Between

Overall
Mean

Within
Within

Between

Between
Within

Between

The total Variation (SST) is the sum of all the Variations within each
of the individual Populations plus the sum of the Variations between each
Population Mean and the Overall Mean (the Mean of all data values of all
the populations).

Regression: SST = SSR + SSE

SSR is Sum of Squares Regression; SSE is Sum of Squares Error

6
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2

1

1 2

Error
y – yLine

Error
y – yLine

Error
y – yLine

0

6

5

4

3

2

1

1 2

0.25

0

1.00

0.25

SSE = 0.25 + 1.00 + 0.25 = 1.5
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The total Variation in Regression is that Variation explained by the
Regression Line (SSR) plus the “Error” in the Line as a Model for the
data – that is the Squared Deviations of the data points to the Regression
Line.

ANOVA Regression

10. Key Sum of
Squares Ratio

F = MSW/MSB R2 = SSR/SST

ANOVA: F = MSW/MSB

where MSW is the Mean Sum of Squares Within and MSB is the Mean
Sum of Squares Between. These are calculated by dividing SSW and SSB,
respectively, by their Degrees of Freedom. MSW and MSB are different
types of the Statistic, Variance.

The F-statistic is a ratio of two Variances – MSW and MSB, in this case.
Comparing F to its Critical Value tells us whether there is a Statistically
Significant difference among the (Means of) the Groups being compared.
To summarize the procedure:

SSB MSB

SSW MSW
= F  

If F ≥ F-critical, there is a difference.

If F < F-critical, there is no difference.

 

 

Regression: R2 = SSR/SST

where, SSR is the Sum of Squares Regression. SSR is the component
of the Variation in the Total Variation in the y Variable (SST) which is
explained by the Regression Line. SSR/SST is the proportion.

R2 is a measure of the Goodness of Fit of the Regression Line. If R2

is greater than a predetermined clip level (which varies by discipline, for
example, engineers can be more rigorous than social scientists), then the
Regression Model is considered good enough, and its predictions can then
be subjected to validation via Designed Experiments.

ANOVA Regression

11. Analysis Output
Includes ANOVA Table

Yes Yes

Spreadsheets and statistical software often include an ANOVA table in
their outputs for both ANOVA and for Regression:
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ANOVA Table from a Regression analysis

df SS MS F p-value

Regression 2 48,845.938 24,422.969 64.040 0.001

Residual 4 1525.490 381.373

Total 6 50,371.429

The “SS” column shows 3 different types of Sums of Squares. SS for
Regression is SSR, SS for Residual is SSE (“Residual” is another name for
Error) and SS for Total is SST.

Divide the SS’s by the df’s (Degrees of Freedom) to get the MS’s (Mean
Sums of Squares for Regression and Error). The F-statistic is MS Regres-
sion/MS Residual.

This particular table doesn’t show the Critical Value of F with which
to compare the value of F. But it does show the p-value, which can be
compared to the value we selected for the Significance Level, Alpha (𝛼).
The usual choice for Alpha is 0.05.

So, in this example p is much less than Alpha, so we can conclude
that the results are Statistically Significant. That’s another way of saying
the Regression Line is a good fit for the data. This was confirmed by the
value (not shown in the ANOVA table) of R2 = 0.893

ANOVA Regression

12. Used Primarily
In

Designed Experiments
Inferential Statistics, but

validated in Designed
Experiments

One of the most significant differences between ANOVA and Regres-
sion is in how they are used. ANOVA has a wide variety of uses. It is well-
suited for Designed Experiments, in which levels of the x Variable can be
controlled – for example, testing the effects of specific dosages of drugs.

Regression can be used to draw conclusions about a Population, based
on Sample data (Inferential Statistics). The purpose of Regression is to
provide a Cause and Effect Model – an equation for a Best Fit Regression
line or curve – which predicts a value for the y Variable from a value of
the x Variable(s). Subsequent to that, data can be collected in Designed
Experiments to prove or disprove the validity of the Model.

Related Articles in This Book: ANOVA – Parts 1–4; Regression – Parts 1–
5; r, Multiple R, R2, R Square, Adjusted R2; Sum of Squares; Variation/
Variability/Dispersion/Spread



BINOMIAL DISTRIBUTION

Summary of Keys to Understanding

1. The Binomial Distribution is used with Discrete data. It dis-
plays the Probabilities of Counts of outcomes of Binomial
Experiments. Units are counted, not Occurrences.

2. In a Binomial Experiment,
a. There are a fixed number, n, of trials.
b. Each trial can have only one of two outcomes − Yes or No.
c. The Probability, p, of a Yes in each trial is the same for

all trials.
d. Each trial is Independent of the others. This means the

sampling is done With Replacement.

3. There are different Binomial Distributions for different val-
ues of n (the number of trials) and p (the Probability of each
trial).

4. Mean: 𝝁 = np; Standard Deviation: 𝝈 =
√

np(1 − p)

5. The Binomial Distribution is useful for solving problems
of the kind:

What is the Probability that a Sample of 10 units will
include 2 or more defective units?

6. Under specific conditions, the Binomial can be related to
the Hypergeometric, Poisson, or Normal Distributions.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. The Binomial Distribution is used with Discrete data. It dis-
plays the Probabilities of Counts of outcomes of Binomial
Experiments. Units are counted, not Occurrences.

Discrete data are integers, such as Counts. Counts are non-negative. In
contrast to Continuous data, there are no intermediate values between con-
secutive integer values.

The Binomial Distribution is used for Counts of Units, such as
the number of shirts manufactured with defects. Units are different from
Occurrences. If a shirt (the Unit) we inspected had 3 defects, we would
add only 1 to the Count of defective Units, and we could use the Binomial
Distribution.

(If we were interested in the total number of Occurrences of defects –
not the number of defective Units – we would count 3 Occurrences for that
shirt and we would use a different Discrete data Distribution − the Poisson
Distribution.)

2. In a Binomial Experiment,
a. There are a fixed number, n, of trials.
b. Each trial can have only one of two outcomes – Yes or No.
c. The Probability, p, of a Yes in each trial is the same for

all trials.
d. Each trial is Independent of the others. This Means the

sampling is done With Replacement.

a. An example of a trial would be a single coin flip. In a Binomial Exper-
iment there is a fixed number, n, of trials.

b. Each trial can have only one of two outcomes. In this book, we will
call them “Yes” and “No.” In the trials, we will count only one of
the two outcomes. In a series of coin flip trials, we may choose to
count the number of heads. So we pose the question: is the coin flip
a head? If Yes, we add one to the Count.
Terminology:
– Note this “p” is a different concept from the “p” aka “p-value”

which is compared to Alpha in Inferential Statistics. They are both
Probabilities, but p-value is the Probability of an Alpha Error.

– Pretty much every other book or web page you might read would
call the outcomes “Success” or “Failure.” This results in the bizarre
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practice of calling a quality failure a “Success” when a trial out-
come observes a defect. To avoid this confusion, we’ll say “Yes”
instead of “Success” and “No” instead of “Failure.”

– Another name for Binomial Experiment is “Bernoulli Experiment.”
c. Another requirement is that the Probability for each trial is the

same – as in a coin flip. Each time you flip a coin, the Probability
of a head is 50%, 0.50. This doesn’t change.

d. Also, the outcomes of previous coin flips have no influence or those
that follow. That is, each trial is Independent of the others. If you
get 10 tails in a row, the Probability of a Yes (head) in the next coin
flip is still 50%. So, each trial is Independent.

The concept of Independent trials is related to the concept of Sam-
pling with Replacement.

To illustrate this, let’s say we’re doing a study in a small lake to deter-
mine the Proportion of Lake Trout. Each trial consists of catching and iden-
tifying one fish. If it’s a Lake Trout, we count one Yes. The Population of
the fish in the lake is finite. We have no way of knowing from our boat on
the lake, but let’s say there happen to be 100 fish in the lake, 70 Lake Trout,
and 30 Rainbow Trout.

CATCH AND
RELEASE
FISHING

ONLY

= Sampling With
Replacement = Independent Trials

OK to Use Binomial
Distribution

If we throw the fish back in before trying to catch the next fish, that is
called Sampling With Replacement. Each time we drop our line to catch
a fish (a trial), the Probability of catching a Lake Trout remains 70%. The
Probability of each trial does not depend on the outcomes of any other
trials. The trials are Independent of each other. That is a requirement
for a Binomial Experiment.

But, if we keep the fish − Sample without Replacement − the situation
changes. Let’s say that the first 5 fish which we catch (and keep) are Lake
Trout. There are now 95 fish in the lake − 65 Lake Trout and 30 Rainbow
Trout. The Probability of a Yes in the next trial is 65/95 = 68.4%; this is a
change from the original 70%.

So, Sampling Without Replacement causes the trials to not be Inde-
pendent, and we do not have a Binomial Experiment. We cannot use the
Binomial Distribution for Sampling Without Replacement; we must
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use the Hypergeometric Distribution instead. (See the article Hyperge-
ometric Distribution.)

Sampling a Population or Process that is “infinite” is Sampling With
Replacement. An ongoing Process, like continuing to flip coins, can be
considered infinite.

3. There are different Binomial Distributions for different val-
ues of n (the number of trials) and p (the Probability of each
trial).

There are infinitely many Distributions in the family of Binomial
Distributions − one for each combination of the values of n (the num-
ber of trials) and p (the Probability) of each trial. In the graphs that
follow, the horizontal axis is the Count of Units, denoted by X. The verti-
cal axis is the Probability of that Count, denoted by Pr(X).

The three graphs below show the effect that p has on the Binomial Dis-
tribution. For p = 0.5 (50%), the left graph shows that the Distribution is
symmetrical about the Mean. For p < 0.5, the mass of the Distribution is on
the left, and the tail is skewed to the right. p > 0.5 has the opposite effect.

The Effect of Varying p

X

Pr(X) Pr(X)

X0.000
0 5 10 15 20 25 30 0 1 2 3 4 5 6 7 8 9 10

0.100

0.200 0.500

0.400

0.300

0.200

0.100

0.000

p = 0.1  n = 10  μ = 1p = 0.5  n = 30  μ = 15  

Pr(X)

X

p = 0.9  n = 10  μ = 9

0 1 2 3 4 5 6 7 8 9 10

0.500

0.400

0.300

0.200

0.100

0.000

The graphs below show the effect of varying n. Basically, it moves the
Distribution to the right.

The Effect of Varying n
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So, the Probability of a given value of X is a function of X, p, and n.

Pr(X) = f (X, p, n)

(Note that we use a capitalized “X” for Discrete Variables, while a lower
case “x” is used for Continuous Variables.) Here’s what that function looks
like:

Pr(X) = n!
X!(n − X)!

pX(1 − p)n−X

This is the formula for the Probability of a Count of exactly X Yesses in
n trials.

Other books and web pages can take you through its derivation. It’s a
multiple-step procedure that doesn’t really add to an intuitive understand-
ing for most people. Besides, you never have to use it, because spreadsheets
and software are available to do it for you.

Distributions can often be succinctly described by their Mean and Stan-
dard Deviation. In contrast to the Probability formula above, the formu-
las for the Mean and Standard Deviation can help us get a more intuitive
understanding. So let’s take a look at them.

4. Mean: 𝝁 = np; Standard Deviation: 𝝈 =
√

np(1 − p)

Without knowing anything about statistics, if you were to flip a coin 30
times, and you had to guess how many heads there would be, what would
you guess? Almost everybody would say 15. Intuitively, you calculated np.
You know that it may not be exactly 15, but it would most probably be close
to 15. On average you would expect it to be 15. So, it makes intuitive sense
that the average, or Mean, of a Binomial Distribution would be np.

As we can see in the left graph below, the Mean is 15 and values close
to 15 also have high Probabilities. The middle and right graphs illustrate
np = 1 and np = 9 as the Means.
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The Standard Deviation is a measure of Variation about the Mean − how
spread-out a Distribution is from the Mean. The formula for the Standard
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Deviation of a Binomial Distribution is

𝝈 =
√

np(1 − p)

The first thing this formula tells us is that the Standard Deviation grows
larger as n grows larger. This makes sense, because if n = 5, then the
possible Counts, the X’s, can range only from 0 to 5. If n = 30, Counts can
range from 0 to 30.

The effect of p(1 − p) is less intuitive. But we can see from the table
below that the largest values for p(1 − p) are produced when p is closest
to 0.5.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 − p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

p(1 − p) 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09

So, the Standard Deviation of a Binomial Distribution gets larger as
p gets closer to 0.5.

5. The Binomial Distribution is useful for solving problems
of the kind:

What is the Probability that a Sample of 10 Units will
include 2 or more defective Units?

Let’s say a Process has historically produced products with a defective
unit rate of p = 0.02. We take a Sample of n = 10 units, and we find
1 unit is defective. We’re wondering if something has happened to the
Process. So, we want to know: what is the Probability of 1 or more
defective units?

This is the Probability of X = 1 defective unit + the Probability of 2
defective units + . . . + the Probability of 10 defective units. More simply,
it is 1 − the Probability of 0 units.

From a table or software we find that Pr(0) = 0.817. So, the Probability
of getting 1 or more defective units is 1 − 0.817 = 0.183. So we can expect
a Sample of 10 to have 1 or more defects about 18% of the time. This is
not strong evidence of a change in the defective unit rate in the Process –
if we’re used to thinking in terms of a Probability less than the Level of
Significance of 5% (0.05).

But what if we found 2 defective units? The Pr(1) = 0.167. So, the
Probability of 2 or more defective units is 1 − [Pr(0) + Pr(1)] = 1 −
[0.817 + 0.167] = 0.016, which is less than 2%. So, 2 defective units in a
Sample of 10 would be strong evidence that we have a problem with the
Process.
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6. Under specific conditions, the Binomial can be related to
the Hypergeometric, Poisson, or Normal Distributions.

We said earlier that when sampling Without Replacement, we should
use the Hypergeometric Distributions instead of the Binomial. However,
the Binomial can be used as an approximation for the Hypergeometric
when the Population Size (N) is large relative to the Sample Size (n),
for example, when N > 10n. This makes sense, because Replacement of
a Sample back into the Population has a small impact when the Sample is
very small and the Population is very large.

The Binomial Distribution approaches the Poisson Distribution as
n approaches infinity, while p approaches zero, (keeping np fixed). The
Poisson Distribution is another Discrete data Distribution; it is used when
counting Occurrences, not Units.

Also, the Binomial approaches the Normal Distribution as n
approaches infinity (while keeping p fixed).

Related Articles in This Book: Distributions – Parts 1–3; Hypergeo-
metric Distribution; Normal Distribution; Poisson Distribution; Standard
Deviation



CHARTS/GRAPHS/PLOTS – WHICH
TO USE WHEN

For this: Use this:

1 Variable:
Shape of the
data
Distribution

0
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2 Variables:
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- Exploratory
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Explanation
It has been said that the first three rules of Statistics are: #1. Plot the data
#2. Plot the data, and #3: Plot the data. (Alternately: #1 Draw a picture, #2
Draw a picture, #3 Draw a picture – of the data.)

“Chart,” “graph,” and “plot” are three words for the pictures we can
make from data. They can make patterns (or lack thereof) apparent that just
analyzing the numbers would not uncover. So, they are extremely useful
in getting an insight into what the data mean.

Calculated statistics alone can be misleading. For example, we plotted
the following two data sets in the article Correlation – Part 2.

y

x

y

x

The first graph would indicate that there is a roughly linear Correla-
tion between the x and y Variables. (As the value of x increases, the cor-
responding value of y increases – roughly following a diagonal straight
line.) The second plot shows data that are obviously not linearly corre-
lated. And yet, the calculated Correlation Coefficients for both data sets
are almost identical. They both indicate a strong linear Correlation. In
deciding how to interpret the data in this case, the visual interpreta-
tion of the graphs takes precedence over the calculated value of the
Statistic.

There are many different kinds of statistical charts. The following are
some of the most commonly used. Spreadsheets or statistical software can
produce these from your data.

1 Variable:
Shape of the
data
Distribution

0
0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99

2

4

6

8

Histogram

If you have data for a single Variable, call it “x”, and you want to get
a picture of how its values are distributed, you can use a Histogram.
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A Histogram is a bar chart with no spaces between the bars. Each bar
represents a range in the values of the Variable. These ranges are also called
“bins.” We decide limits of the range which define the bins.

In the example above, the ranges are 0 – 9, 10 – 19, etc. If a data value
is within the range, 1 is added to the Count represented by the height of the
bin. In the example, we can see that there is 1 value between 0 and 9, but
no values between 10 and 29. There are 7 values between 50 and 59.

The height of the bars can indicate a Count or a Percentage or a
Probability.

A Histogram can give you an indication of
� Shape: Is it roughly left–right symmetrical, like a Normal Distribution

and that shown in the Histogram above? Or is the long tail Skewed to
the right or left? Does it have one hump (Mode) or two or more?

� Central Tendency: Where is the Mean, Mode, or Median?

A Histogram is not good for picturing Variation (aka Spread). The
arbitrary choice of bin range can affect the visual depiction of Spread. We
could also squeeze or stretch out the image to make the Spread appear to
be smaller or larger.

Dot Plot

10 15 20

A Dot Plot can be used in place of a Histogram for small data sets. It
shows each data value as a point on the plot, so no information is lost due
to binning.

1 Variable:
- Variation
- Outliers

1.5 Box Lengths 1.5 Box Lengths

Percentiles
25th 50th 75th OutliersOutliers

5030 7040 60100 20 10080 90

IQR

cm

IQR Box

Boxplot aka Box and Whiskers Plot

A Boxplot is a very good way to get a picture of Variation. In the
example above, the IQR box represents the InterQuartile Range, which
is a useful measure of Variation. (See the article Variation/Variability/
Dispersion/Spread.) This plot shows us that 50% of the data points (those
between the 25th and 75th Percentiles) were within the range of 40–60 cm.
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25% were below 40 and 25% were above 60. The Median, denoted by the
vertical line in the box is about 48 cm.

Any data point outside 1.5 box lengths from the box is called an Outlier.
Here, the Outlier with a value of 2 cm is shown by a circle. Not shown
above, but some plots define an Extreme Outlier as one that is more than
three box lengths outside the box. Those can be shown by an asterisk.

Showing several vertically oriented Boxplots together is a good way
to compare Variation for multiple data sets. In the graph below, we can
see that the Medians (the lines in the middle of the IQR boxes) are fairly
close for treatments A, B, and C. Treatment A had the highest top–end
results. However, both the Box and the Whiskers for Treatment A are quite
spread out, indicating a comparatively large amount of Variability – a lack
of consistency. Treatment B, on the other hand, has much less Variability.
Plus, its lowest whisker is at the 25th percentile of its nearest competitor,
Treatment C. So, even without further analysis or study, one could use a
set of Boxplots like this to get a strong indication of which is the best
treatment.
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The charts shown so far have plotted Counts of values of a single Vari-
able. Now, we’ll cover charts for two Variables. The idea is to see whether
and how they interact with each other. Each data point is described by a pair
of values representing the values of the two Variables. The data points are
plotted in two dimensions. The first value in the pair is usually denoted by
x, and it is represented along the horizontal axis. The y value is represented
along the vertical axis.

Correlation

The Scatterplot simply plots the x, y points. It does not attempt to connect
them in any way. However, our minds will often do so. For example, it
is easy for us to mentally overlay a diagonal line through the data points
above. We infer that there is a Correlation between the two Variables’ tem-
perature and plant growth. This is the first step in Correlation analysis. If
we do not see a visual Correlation, then we do not proceed to the next step,
which is to calculate a Statistic (the Correlation Coefficient) to tell us the
strength of the Correlation

Exploratory Data Analysis (EDA)

The Scatterplot is often one of the first steps in EDA. We’re looking for
insights from data that we can follow up with further statistical analy-
sis or controlled experiments. Is there a potential cause/effect relationship
between the variables?

Residual Analysis

If a Regression Model is good, the Residuals (differences between indi-
vidual points in the calculated model and the corresponding results from
a subsequent test) should be randomly distributed. So, a Scatterplot of the
Residuals vs. y should show no patterns. Likewise, a Scatterplot of Resid-
uals vs. time should show no patterns. (See the article Residuals.)

2 or more
Variables:
- Trends
- Effects
- Interactions

U.S. Hourly Minimum Wage

7.50
7.00
6.50
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A Line Chart is like a Scatterplot with lines that connect points that
have adjacent x values. It works best when there are a small number of
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data points to be connected. It is often used to illustrate trends, with the
horizontal axis representing time.

It is also used to graph cause-and-effect, in which the x Variable is the
Factor which causes the effect in the y Variable. In the center chart above,
an increase in the Factor Variable, water temperature, causes an increase in
the Effect Variable, cleanliness. This is used in Regression analysis and
in the Designed Experiments which are conducted to test a Regression
Model.

The rightmost chart combines two line charts into one. It has the same
x and y Variables as the center chart, but it adds a second Factor (x) Vari-
able, Detergent type. So, there are two lines, connecting two sets of data
points. In 2-Way ANOVA, crossing lines indicate that there is an Interac-
tion between the two Factors. In this case, an increase in temperature has
the opposite effect for the two detergent types – it makes Detergent #1 do
better, and it makes Detergent #2 do worse. If the lines were parallel or did
not cross, then there would be no Interaction.

In a similar fashion, a Line Chart can help differentiate between
Observed and Expected Frequencies in a Chi-Square test for Goodness
of Fit.
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Pareto Chart

Factors: #1    #2    #3    #4    #5    #6   Other

The Pareto Chart helps illustrate the so-called 80/20 “rule”: About 80%
of the effect is often due to about 20% of the causes. (This is folk wisdom,
not a law of statistics.) Among other uses for the Pareto Chart, Multiple
Linear Regression involves casting a wide net to identify all possible Fac-
tors, and then selecting a few to analyze further.

The Pareto Chart combines two charts – a sorted Bar Chart and a Line
Chart. The bars are sorted left to right by Count of Occurrences of the
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Effect due to that Factor. The Counts over each bar line up with the “Count”
vertical axis on the left. After Factors #5 or 6 or so, it’s usually a good idea
to lump all the rest under “other.”

The line graph shows the cumulative percentage of the total Effect Count
which is comprised by the bar below it and the bars to the left. The dot at
the right top of each bar lines up with a cumulative percentage on the right
axis. In the example, the first three bars comprise about 80% of the total.
If you want to get to 90%, you’d have to address twice as many causes.

Proportions Orange: 50%

Apple: 35%

Grape: 15%

Pie Chart

Proportions represent shares of 100% (the whole pie). So, Pie Charts are
a good way to depict the relative size of the individual “slices,” as shown
in this chart of fruit juice preferences.

Related Articles in This Book: Correlation – Part 2; Distributions –
Part 1: What They Are; Variation/Variability/Dispersion/Spread; Residu-
als; Regression – Part 4: Multiple Linear; Proportion



CHI-SQUARE – THE TEST STATISTIC
AND ITS DISTRIBUTIONS
The three Chi-Square Tests are covered in separate articles.

Summary of Keys to Understanding

1. Chi-Square, 𝝌2, is a Test Statistic which is very versatile in
the types of data it can handle: Discrete, Continuous, non-
Normal, Categorical.

2. As with the F and the t Test Statistics, there is a different
Chi-Square Distribution for each value of Degrees of Free-
dom (df).
� In each case, the Distribution’s Mean is equal to the

Degrees of Freedom (𝝁 = df).
� For larger values of Degrees of Freedom:
◦ the Distributions move to the right
◦ they become more symmetrical
◦ Critical Values increase (move to the right)
◦ the Variances increase (the Spread becomes wider).

df = 𝜇 = 3

𝜒2-critical = 7.8

df = 𝜇 = 10

𝜒2-critical = 18.3

df = 𝜇 = 30

𝜒2-critical = 43.8

3. Furthermore, for All Chi-Square Distributions:
� the Mode = df – 2 (for df ≥ 3)
� the Variance = 2df; Range: 𝝌2 = 0 to Infinity
� they approach, but never touch the horizontal axis as they

extend to the right
� they are not symmetrical – they are skewed toward the right

tail.

4. Since Chi-Square Distributions are not symmetrical, there are
two different Critical Values for a 2-sided Chi-Square test.

5. Chi-Square is used in Inferential Statistics to analyze Vari-
ances via three different Chi-Square Tests: for the Vari-
ance, for Independence, and for Goodness of Fit.

76
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Explanation

1. Chi-Square, 𝝌2, is a Test Statistic which is very versatile in
the types of data it can handle: Discrete, Continuous, non-
Normal, Categorical.

Chi-Square, sometimes called “Chi-Squared,” is a Test Statistic like z,
t, and F. A Test Statistic is one which has a Distribution or Distributions
with known Probabilities for every value of the Test Statistic. So, for any
value of 𝜒2 (on the horizontal axis in the diagram below), there is a known
Probability of that value occurring (and vice versa). That Probability is the
height of the curve above that point.

𝜒2P
ro

b
ab

il
it

y

𝛼 = 5%

More importantly, we can calculate the area under the curve to the
left or right of any value of a Test Statistic. This gives us a Cumula-
tive Probability (such as 𝛼 or p) which we can use in various types of
Inferential Statistical tests involving Hypothesis Testing or Confidence
Intervals.

z, t, and F are fairly restrictive about the types of data they can handle.
But Chi-Square is much more versatile. It can handle:

– Discrete data (such as Counts of Nominal/Categorical variables. For
example, Counts by gender or political party affiliation)

– Continuous/Measurement data (e.g., temperature, weight)
– Non-Normal data
– Data in 2-dimensional tables

2. As with the F and the t Test Statistics, there is a different
Chi-Square Distribution for each value of Degrees of Free-
dom (df).
� In each case, the Distribution’s Mean is equal to the

Degrees of Freedom (𝝁 = df).
� For larger values of Degrees of Freedom:
◦ the Distributions move to the right
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◦ they become more symmetrical
◦ Critical Values increase (move to the right)
◦ the Variances increase (the Spread becomes wider).

The formula for Degrees of Freedom (symbol df or the Greek letter 𝜈)
varies with the Chi-Square test being used.

Chi-Square Test df Explanation

for Goodness of Fit n − 1 n: # bins, columns

for Independence (r − 1)(c − 1) # of rows and columns

for Variance n − 1 n: Sample Size

In its simplest form, df is one less than the Sample Size. For all three
tests, as the Sample Size increases, df increases.

The formulas for the Probability Density Function (which defines the
shapes of the Distribution curves) and the Cumulative Density Function
(which measures areas under the curves) are complicated and are rarely
used. Tables, spreadsheets, or software are used instead to calculate these
Probabilities.

Chi-Square Distributions
As shown in the graphs of three 𝜒2 Distributions below, for larger val-

ues of df (and, thus, larger values of the Mean), the Distributions are
stretched to the right, and they become more symmetrical. The Critical
Values (which mark the left boundary of the shaded area representing 𝛼 =
5% in these 1-sided graphs below) also grow larger as df increases.

df = 𝜇 = 3

𝜒2-critical = 7.8

df = 𝜇 = 10

𝜒2-critical = 18.3

df = 𝜇 = 30

𝜒2-critical = 43.8

As an FYI: The shapes of the 𝜒2 Distributions are similar to those of
F-Distributions, as shown below.

F-Distributions

df1 = df2 = 5

F-critical = 5.05

df1 = 30, df2 = 20

F-critical = 2.04

df1 = df2 = 100

F-critical = 1.39
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Both the 𝜒2 and the F Test Statistics are used in tests of the Variance.

3. Furthermore, for All Chi-Square Distributions:
� the Mode = df – 2 (for df ≥ 3)
� the Variance = 2df; Range: 𝝌2 = 0 to Infinity
� they approach, but never touch the horizontal axis as they

extend to the right.
� they are not symmetrical – they are skewed toward the right

tail

4. Since Chi-Square Distributions are not symmetrical, there are
two different Critical Values for a 2-sided test.

The graphs above showed 1-sided, right-tailed tests. The Cumulative
Probabilities (shaded areas) for p or Alpha were calculated only under the
right tail of the curves. For 1-sided (either left-tailed or right-tailed) tests,
there is only one Critical Value.

For 2-sided tests using the Test Statistics z and t, which have symmetrical
Distributions, there is only one Critical Value. That Critical Value is added
or subtracted from the Mean.

Since Chi-Square’s Distributions are not symmetric, the areas under
the curve at the left tail and the right tail side have different shapes,
for a given value of that area. So, there are two different Critical Values
– an Upper and a Lower – for a 2-sided Chi-Square test.

Unlike z and t, we do not add or subtract these from the Mean. The
two Critical Values of Chi-Square produced by tables, spreadsheets, or
software are the final values to be used.

Upper Critical: 27.49 

df = 15
𝛼 = 0.05

Lower Critical: 6.26

If you’re looking these up in a 2-sided table, you may need to look up the
Critical Values for 𝛼/2 and for 1 − 𝛼/2. Sometimes two different tables are
provided for Upper and Lower Critical Values. Or spreadsheets or software
will do this for you.
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5. Chi-Square is used to analyze Variances via three different
Chi-Square Tests: for the Variance, for Independence, and
for Goodness of Fit.

The Test Statistics z and t are used in analyzing Means. Chi-Square
and F are used in analyzing Variances.

The three Chi-Square tests use different methods for the different types
of analyses involving Variances. Each of these three tests is described indi-
vidually in one of the three articles which follow this article. Here is a
summary:

� Chi-Square Test for the Variance

This test compares the Sample Variance to a value of Variance which
we specify. The value we specify for the Variance could be a target, or
a historical value, or anything else. The test tells us whether there is a
Statistically Significant difference between the Sample Variance and
the specified Variance. It is analogous to the 1-Sample t-test for Means.

With this test, the formula for 𝝌2 is

𝝌
2= (n − 1)

𝝈
2

s2

where 𝜎2 is the specified Variance and s2 is the Sample Variance.
If you are familiar with the t-tests, this Chi-Square Test for the Variance

is analogous to the 1-Sample t-test for the Mean, and the F-test is analogous
to the 2-Sample t-test:

We Want to Compare the Statistic Test to Use

the Calculated value of a Sample Statistic
with a value we specify

Variance
Chi-Square Test
for the Variance

Mean 1-Sample t-test

Calculated values of Statistics from two
different Samples

Variance F-test

Mean 2-Sample t-test

� Chi-Square Test for Goodness of Fit

This test compares Observed Counts to Expected Frequencies. For
example the table below contains our estimate (Expected Frequencies) for
Counts of customers to a bar we are about to open. This is compared with
actual Observed Counts.
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Monday Tuesday Wednesday Thursday Friday Saturday

Expected
Frequencies

102.5 102.5 102.5 102.5 246 164

Observed
Counts

98 112 91 102 244 160

The test will tell us whether there is a Statistically Significant dif-
ference between our plan and the actual, or whether there is a good
fit.

With this test, the formula for 𝝌2 is the sum, for each cell, of (O – E)2

divided by E.

𝝌
2=

∑ (O − E)2

E

� Chi-Square Test for Independence

This test also uses a 2-dimensional table of data values. And its formula
for 𝝌

2 is the same as for the Goodness of Fit test:

𝝌
2=

∑ (O − E)2

E

This test will tell us whether there is an Association or a Statis-
tically Significant difference between two Categorical (aka Nominal)
Variables (e.g., Gender and Fruit Juice Preference).

Related Articles in This Book: Test Statistic; Distributions – Parts 1–
3; Degrees of Freedom; Critical Values; F; Variance; Chi-Square Test for
Goodness of Fit; Chi-Square Test for Independence; Chi-Square Test for
the Variance



CHI-SQUARE TEST FOR GOODNESS
OF FIT
This article builds on the content of the article, “Chi-Square: Test Statistic
and Distributions”.

Summary of Keys to Understanding

1. The Chi-Square (𝝌2) Test for Goodness of Fit is a 1-way
test of a Categorical (aka Nominal) Variable.

2. The Test can be used to determine whether (Observed)
Sample data:
– Fit a specified set of values (e.g., our estimate)
– Fit a specified Discrete or Continuous Distribution (e.g.,

are the data Normal?)

3. The Test determines whether there is a Good Fit between
Observed (O) Counts from data and Expected (E) Fre-
quencies which we have specified or a Distribution.

Monday Tuesday Wednesday Thursday Friday Saturday

Expected
Frequencies

102.5 102.5 102.5 102.5 246 164

Observed
Counts

98 112 91 102 244 160

4. Null Hypothesis (H0): There is no Statistically Significant
difference between the Observed Counts and the Expected
Frequencies. Therefore, there is a Good Fit.

5. Test Statistic: 𝝌2 =
∑ (O − E)2

E

Critical Value: determined by 𝛼, and the Degrees of Freedom, df.
df = n – 1, where n is the number of categories of the Variable.

82
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Explanation

1. The Chi-Square (𝝌2) Test for Goodness of Fit is a 1-way
test of a Categorical (aka Nominal) Variable.

“1-way” means that a single Variable is involved. So this test is less
complicated than the Chi-Square test for Independence, which involves
two Variables.

The values of a numerical Variable like height or weight or temperature
are numbers.

The values of a Categorical Variable are names of categories.

Variables

Numerical examples
Non-Numerical/

Categorical examples

Variable Example Values Variable category names

weight 102.4 kilograms gender female, male

temperature 98.6 degrees F process before, after

The numerical data for a Categorical Variable are the Counts within
each category.

In the example we’ll be using for this article, there are
1 Categorical Variable: Day of the Week
6 Categories: Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
1 Count for each category: 106, 112, 91, 102, 211, 143

Categories Monday Tuesday Wednesday Thursday Friday Saturday

Counts for
each category

106 112 91 102 211 143

2. The Test can be used to determine whether (Observed)
Sample data:
– Fit a specified set of values (e.g., our estimate)
– Fit a specified Discrete or Continuous Distribution (e.g.,

are the data Normal?)

A number of statistical tests assume the data are Normal. So, before
using those tests, one must make sure. The Chi-Square Goodness of Fit
test can be used as an alternative to the Anderson-Darling test for Normally
distributed data. It is unusually versatile in that it can also be used on other
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Continuous Distributions as well as on Discrete Distributions such as the
Binomial or Poisson.

This test is also useful in statistical modelling to determine whether a
specified Model fits the data.

3. The Test determines whether there is a Good Fit between
Expected (E) Frequencies which we have specified or a Dis-
tribution and Observed (O) Counts from data.

Expected: We estimate or state or hypothesize numbers that we have
reason to expect would be borne out by any Sample data. It’s simpler
if we can state our expected numbers in actual Counts. But it is often
the case that we need to deal in Proportions (in decimal format) or
percentages.

For example, let’s say we’re about to open a new bar, and we want to plan
staffing levels. We know from past experience that the number of customers
varies by day of the week. We don’t know how many customers to expect
in a week, but we can estimate what percentages to expect each day. We
will be closed on Sundays. Here’s what we expect:

Expected Percentages

Monday Tuesday Wednesday Thursday Friday Saturday Total

12.5% 12.5% 12.5% 12.5% 30% 20% 100%

Anticipating that we will be doing a statistical test on the validity of
the model represented by these percentages, we select Alpha = 5%, which
gives us a 95% Level of Confidence in the test. We opened the bar, and we
counted customers for 6 days. We observed the following:

Observed Counts

Monday Tuesday Wednesday Thursday Friday Saturday

106 112 91 102 211 143

“Observed” Counts are actual numbers from the Sample data. Counts,
by definition, are always non-negative integers (i.e., 0, 1, 2, 3 . . . ).

Now, to compare Observed Counts to Expected percentages, do not
convert Observed Counts from the Sample data into Proportions or
percentages. This is because Counts contain information related to Sam-
ple Size, and that information would get lost in converting to Proportions
or percentages. Instead, if needed, multiply the Expected Percentages
by the Total Count to get Expected Frequencies.
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Monday Tuesday Wednesday Thursday Friday Saturday

Expected
Frequencies

102.5 102.5 102.5 102.5 246 164

Observed
Counts

106 112 91 102 211 143

These Expected Frequencies don’t have to be integers, like Counts
do.

The Chi-Square Test for Goodness of Fit has certain minimum size
requirements (test Assumptions).

� Every Expected Frequency must be 1 or greater
� and no more than 20% of the Expected Frequencies can be below

5.

If either of these Assumptions are not met, increasing the Sample Size
will often help.

Always plot the data. If the plot shows that there is obviously no fit,
then do not proceed with the test.
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This plot looks like there is a fit. But to determine whether that fit is
“good enough” to meet our desired Level of Confidence, we’ll need to
perform the Chi-Square Test for Goodness of Fit. If we’re going to use
Hypothesis Testing, we’ll need to state a Null Hypothesis for this test.

4. Null Hypothesis (H0): There is no Statistically Significant
difference between the Observed Counts and the Expected
Frequencies. Therefore, there is a Good Fit.
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This may be confusing at first, because we are used to having H0 be a
statement of nothingness – there is no difference, no change, or no effect.
And now we are saying that it does mean something – there is a Good Fit.

But, the thing to remember is that a Good Fit means the same as no
difference.

No difference ... ... means a Good Fit.

The following table will help reinforce this.

If the Test Results are:
p ≤ 𝜶 and 𝝌

2 ≥

𝝌
2-critical

p > 𝜶 and 𝝌
2
<

𝝌
2-critical

then then

Is there a difference? Yes No

Is there a Good Fit? No Yes

Null Hypothesis Reject Fail to Reject (Accept)

5. Test Statistic: 𝝌2=
∑ (O − E)2

E
Critical Value: determined by 𝜶, and the Degrees of

Freedom, df.
df = n – 1, where n is the number of categories.

For each category (each day of the week in our example), the Test . . .

� Subtracts the Expected Frequency from the Observed Count: O − E
� Squares it to make it positive: (O − E)2

� Divides by the Expected Value (O − E)2/E
� Sums these for all the cells to get the Chi-Square Test Statistic, 𝝌2

𝝌
2=

∑ (O − E)2

E

The numerator (O − E)2 in the Test Statistic formula makes it clear why
the larger the difference between O and E, the larger the value of the
Chi-Square Test Statistic. And, therefore
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� the farther to the right 𝜒2 is on the graph below, thus
� the more likely it is that 𝜒2 > 𝜒2-critical, thus
� the more likely it is that 𝜒2 is in the Not a Good Fit range
� the more likely it is that there is not a Good Fit

0

𝜒2-critical

𝛼: Rejection Region

𝜒2 here Good Fit 𝜒2 here Not

1 – 𝛼:

Acceptance Region

Next, the Test . . .

� Calculates the Degrees of Freedom: df = k − 1, where k is the number
of categories of the Variable (the 6 days of the week, in our example)

� Uses df to identify the appropriate Chi-Square Distribution
� Uses 𝛼 and the Distribution to calculate the Critical Value, 𝝌2-critical
� Compares 𝝌2 to 𝝌

2-critical. Or equivalently, compares p to 𝛼

If 𝝌2 ≥ 𝝌
2-critical, or equivalently, p ≤ 𝜶,

– There is a Statistically Significant difference.
– There is not a Good Fit.
– Reject H0, the Null Hypothesis.

If 𝝌2
< 𝝌

2-critical, or equivalently, p > 𝜶,

– There is not a Statistically Significant difference.
– There is a Good Fit.
– Fail to Reject (Accept) H0, the Null Hypothesis.

In our bar day-of-the-week example,
The formula for Chi-Square gives us a Test Statistic 𝜒2 = 9.96
Since there are 6 columns (Monday – Saturday) df = 6 − 1 = 5
This gives us the Critical Value, 𝜒2-critical = 11.07
The Test Statistic value (𝝌2) of 9.96 is less than the Critical Value

(𝝌2-critical) of 11.07. (This result is equivalent to p > 𝛼). In the diagram
above, 𝜒2 is in the white Acceptance (of the Null Hypothesis) Region. We



88 CHI-SQUARE TEST FOR GOODNESS OF FIT

Accept (Fail to Reject) the Null Hypothesis which states there is no Statis-
tically Significant difference. We noted earlier, and this diagram reminds
us, that that means there is a Good Fit.

We might wonder – especially if there were a lot of rows and columns in
the table – which particular values made the difference between Good
Fit and not. The test results don’t tell us that. However, We could look
at the contribution of each cell to the value of 𝜒2. That would be:

(O − E)2

E

If needed, a Pareto chart could be used to help determine which cells
contributed enough to tip the scales. (See the article Charts, Graphs,
Plots – Which to Use When.)

Related Articles in This Book: Chi-Square: the Test Statistic and Its Dis-
tributions; Test Statistic; Alpha, p-Value, Test Statistic, and Critical Value –
How They Work Together; Degrees of Freedom; Hypothesis Testing; Null
Hypothesis; p-Value, p; Reject the Null Hypothesis; Fail to Reject the Null
Hypothesis; Chi-Square Test of Independence; Chi-Square Test of the Vari-
ance; Charts, Graphs, Plots – Which to Use When



CHI-SQUARE TEST FOR
INDEPENDENCE
This article builds on the content of the article, “Chi-Square: Test Statistic
and Distributions”.

Summary of Keys to Understanding

1. The Test Statistic, Chi-Square (𝜒2), can be used to test
whether two Categorical (aka “Nominal”) Variables are
Independent or Associated.

2. If two Categorical Variables are Independent, then the
Observed Frequencies (Counts) of the different values of
the Variables should be Proportional.

Juice Study: Proportions are the same, so the 
Variables, Gender and Juice are Independent

Ice Cream Study: Proportions are very different, so 
the Variables, Gender and Ice Cream are Associated 

(not Independent).

female male female male

Count Proportion Count Proportion Count Proportion Count Proportion

apple 28 0.35 14 0.35 chocolate 48 0.48 16 0.20

grape 12 0.15 6 0.15 strawberry 28 0.28 40 0.50

orange 40 0.50 20 0.50 vanilla 24 0.24 24 0.30

Total 80 1.00 40 1.00 Total 100 1.00 80 1.00

3. Using a Contingency Table, calculate the difference
between the Observed Count and the Expected Frequency
for each cell. The Test Statistic Chi-Square then distills all
this information into a single number:

𝝌
2=

∑ (O − E)2

E

4. The Test then uses the appropriate Chi-Square Distribu-
tion to calculate 𝝌

2-critical and p. Null Hypothesis: there
is no Association, that is, the Variables are Independent.
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Explanation

1. The Test Statistic, Chi-Square (𝜒2), can be used to test
whether two Categorical (aka “Nominal” or “Attributes”)
Variables are Independent or Associated.

To make things a little clearer, in this article, the Variables are shown in
upper case, while their values (the categories) are shown in lower case.

What is a Categorical Variable?

A Categorical Variable is one whose values are names of categories.
The Table below has two Categorical Variables, Gender and Ice Cream.
The Categorical Variable, Gender, has two values: the category names

“female” and “male.”
The Categorical Variable, Ice Cream flavor, has three values: the cate-

gory names “chocolate,” “vanilla,” and “strawberry.”

Gender

f m

Ic
e 

C
re

a
m chocolate 60 20

vanilla 25 30

strawberry 15 50

Variable
values of the Variable 

(category names)

Counts

Counts

values of the Variable 
(category names)

Categorical Variables are classified as “non-numerical” Variables,
because their values are names, not numbers. However, we get numbers
by counting items within categories.

In this table, Count data are recorded for each intersection of categories
from the two Variables. For example, at the intersection of the female col-
umn and the chocolate row, there were 60 people who were both female
and preferred chocolate.

Independent vs. Associated

Two or more Variables are Independent of one another if there is no rela-
tionship, Association, or Correlation between their values.

Examples:
Independent Variables: gender and day of birth – there is not a higher
Proportion of boys born on Tuesdays vs. Thursdays, for example
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Associated Variables: gender and types of clothes worn – many more
females wear skirts than males.

Independence is determined between Variables not between values
(category names) of the Variables. For example, “Is Ice Cream flavor pref-
erence dependent on Gender?” – Not: “Is “female” dependent on “male”
or is “male” dependent on “strawberry.”

For Numerical Variables, “Correlation,” is the opposite of Indepen-
dence, and there are a number of types of Correlation analyses available.
For Categorical Variables, the term “Association” is used instead of
“Correlation,” and the Chi-Square test of Independence is used.

2. If two Categorical Variables are Independent, then the
Observed Frequencies (Counts) of the different values of
the Variables should be Proportional.

(In the first few tables shown here, “Frequency” means the same as
Count. Later, we’ll be doing some calculations, which result in non-integer
“Frequencies.”) In this example, there are two Categorical Variables: Gen-
der and Juice preference. The Variable, Gender, has two possible values
– the category names “male” and “female.” The Categorical Variable,
Juice, has three possible values – the category names “apple,” “grape,”
and “orange.”

Q: Are the Variables, Gender and Juice, Independent? Put another way:
Does your Gender have no effect on your choice of fruit Juice?

Let’s say we surveyed 80 females and recorded their Juice preferences
in the table below.

This is the beginning of a Contingency Table. It is so named because
we’re trying to determine whether the Counts for one of the two Categorical
Variables (e.g., Juice) are contingent on (dependent on) the value of the
other Variable (e.g., Gender).

If Gender has no effect on fruit Juice preference (that is, if these two
Categorical Variables are Independent), then we would expect that the
preferences for males would follow a similar 35%/15%/50% pattern.

Gender

female
Count Proportion

Juice

apple 28 0.35
grape 12 0.15
orange 40 0.50

Total 80 1.00
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So, if we surveyed 40 males, and if the Variables, Gender and Juice were
Independent, one would expect the Proportions for males and females to
be close to equal. Half as many males are in the Sample, so we would
expect half as many males for each value of the Juice Variable. So, the
Proportions or percentages would be the same if the two Variables,
Gender and Juice preference, are Independent – that is, if Gender has no
effect on Juice preference.

Juice Study: Proportions are the same, so the 
Variables Gender and Juice are Independent

Gender

female male
Count Proportion Count Proportion

Juice

apple 28 0.35 14 0.35
grape 12 0.15 6 0.15
orange 40 0.50 20 0.50

Total 80 1.00 40 1.00

In terms of Counts, there are half as many males as females in total,
and half as many for each type of juice. The corresponding Proportions
are identical for male and female. So, from the table above, we conclude
that there is no Association between gender and fruit juice preference: the
Variables gender and juice are Independent.

Let’s see if the same can be said for ice cream. We conduct a new study
with 100 females and 80 males and get the following result:

Ice Cream Study: Proportions are very different, so the Variables 
Gender and Ice Cream are Associated (not Independent).

Gender
female male

Count Proportion Count Proportion

Ice Cream
chocolate 48 0.48 16 0.20
strawberry 28 0.28 40 0.50
vanilla 24 0.24 24 0.30

Total 100 1.00 80 1.00

Clearly, females preferred chocolate by a wide margin, and males
strongly preferred strawberry. So, gender and ice cream preference are
Associated, not Independent.

Most of the time, however, things are not so clear-cut. What if the Pro-
portions in the Gender/Juice Contingency Table were not the same, but
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were close? How close is close enough? We need to use the Chi-Square
test of Independence to determine whether the differences in the Pro-
portions are large enough to be Statistically Significant. If so, the Vari-
ables are Associated, not Independent.

3. Using a Contingency Table, calculate the difference
between the Observed Count and the Expected Frequency
for each cell. The Test Statistic Chi-Square then distills all
this information into a single number:

𝝌
2=

∑ (O − E)2

E

Important: the Expected Frequencies in each cell must be 5 or
larger. Otherwise, our Sample Size is not big enough to conduct the test,
or our categories are defined too narrowly.

In our earlier Gender–Juice example, the Proportions were identical for
female and male. That, of course, is not usually the case. Let’s say a cafe-
teria offers a choice of fish, meat, or vegetarian meals. Is the choice of
Meal influenced by Gender? We collect the following Observed Counts
on the selections of 90 females and 100 males. Thus, the Sample Size
n = 190.

Observed Counts

Gender
female male Row Total

Meal

fish 26 32 58
meat 29 44 73
vegetarian 35 24 59
Column Total 90 100 190

We can see one obvious difference: the first choice was vegetarian for
females and meat for males. But, both Genders chose meat over fish. And,
the picture is complicated by the fact that there are different total numbers
for the two Genders.

So, just looking at the data is insufficient to tell us whether we have
a Statistically Significant difference between male and female choices.
However, from this data, we can calculate the value of the Chi-Square Test
Statistic which we can use in the Test for Independence.
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The question is how likely is it that we would get these numbers
if there were no difference Associated with Gender (that is, if the two
Variables were Independent)? It’s a question of Probabilities, so, we can
make use of the . . .

Multiplicative Law of Probability: the Probability of both of two
things happening is the product of their individual Probabilities.

In our table of data above, each cell is the Count of two things happening.
For example, the upper left Count of 26 represents female and fish. Each
of these two things have their own Probabilities.

Prob(female) = total Count of females divided by total Count of people
polled = 90/190.

Note: this is the Probability of the female column.
Prob(fish)= total Count of fish choices divided by Count of all choices=

58/190.
Note: this is the Probability of the fish row.
Therefore, Prob(fish and female)= (90/190)× (58/190)= 0.305× 0.474

= 0.145.
Note: this is the product of the row and column probabilities for the cell

fish–female. So, for a table, the Multiplicative Law of Probability can be
restated as:

Expected Probability: The Expected Probability of each cell in a
table is the product of the Probability of its row times the Probability
of its column.

f m Total Row Probability

fish 26 32 58 58/190 = 0.305

meat 29 44 73 73/190 = 0.384

vegetarian 35 24 59 59/190 = 0.311

Total Column
Probability

90 100 190 1.000

90/190 = 0.474 100/190 = 0.526

For each cell, Expected Probability = Row Probability × Column
Probability

Expected Probabilities

f m

fish 0.145 0.161

meat 0.182 0.202

vegetarian 0.147 0.163

Expected Frequencies can be calculated from Expected Probabilities:
Expected Frequency = Sample Size × Expected Probability
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In, our example, the Sample Size, n = 190.
The Expected Frequency is what we would expect to see as data if

the Variables were Independent. Note that Frequencies do not need to be
integers as Counts do.

Expected Frequencies

f m

fish 0.145 × 190 = 27.6 0.161 × 190 = 30.6

meat 0.182 × 190 = 34.6 0.202 × 190 = 38.4

vegetarian 0.147 × 190 = 27.9 0.163 × 190 = 31.0

=> Important: Although, within the calculations there are comparisons
of Proportions, do not convert the Count data to Proportions or per-
centages before entering the data into the table and doing the calculations.
Count data contains information on the Sample Size, and that informa-
tion is lost when you convert to Proportions. Likewise, do not round the
Count data.

In the formula for calculating the Chi-Square Test Statistic from the data,
the O represents – for each cell – the Observed Count from the data. The
E represents the calculated Expected Frequency for that cell.

For each cell,

� Subtract the Expected Value from the Observed Value: O − E
� Square it to make it positive: (O – E)2

� Divide by the Expected Value (O – E)2/E

Then, sum these for all the cells to get the Chi-Square Test Statistic,
which distills all the values in the Sample into one number. This number
summarizes how much the Sample varies from one which would have
Independent Variables.

𝝌
2=

∑ (O − E)2

E

This formula makes it clear why the larger the difference between O
and E,

� the greater the value of the Chi-Square Test Statistic, and thus
� the more likely it is to be greater than the Critical Value, thus
� the more likely it is that the Variables are Associated (not Inde-

pendent).

It also explains why this test is always Right-tailed – only large posi-
tive values of 𝜒2 are in the extremes beyond the Critical Value.
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Following the formula, we get a value for 𝜒2 which summarizes the data
and how it differs from what we would expect if the Variables, gender and
meal preference, were Independent. In our example, 𝜒2 = 5.24.

4. The Test then uses the appropriate Chi-Square Distribu-
tion to calculate 𝝌

2-critical and p. Null Hypothesis: there
is no Association, that is, the Variables are Independent.

If we were doing a Hypothesis Test, we would have stated a Null
Hypothesis along with selecting a value for Alpha before collecting the
Sample data. A Null Hypothesis, H0, usually states that there is no differ-
ence or no change, or no effect. In this test, we can view it as saying that
there the values of one Variable have no effect on the Counts in the other
Variable.

Null Hypothesis (symbol H0): There is no Association; the Variables
are Independent.

The Chi-Square Test

� Uses Alpha(𝛼) and the Distribution to calculate the Critical Value, 𝝌2-
critical.

� Uses 𝜒2 and the Distribution to calculate the p-value, p.
� Compares 𝝌2 to 𝝌

2-critical. Or equivalently, compares p to 𝛼.

If 𝝌2 ≥ 𝝌
2-critical, or equivalently, p ≤ 𝜶,

The variables are not Independent. H0, Reject the Null Hypoth-
esis.

If 𝝌2
< 𝝌

2-critical, or equivalently, p > 𝜶,
The variables are Independent. Fail to Reject (Accept) the Null
Hypothesis, H0.

There is a different Chi-Square Distribution for each value of
Degrees of Freedom. For a Contingency Table with r rows and c columns,
calculate the Degrees of Freedom as:

df = (r − 1) × (c − 1) where r is the number of rows and c is the number
of columns.
In our meal preference example, df = (3 − 1) × (2 – 1) = 2

As we explained earlier, the test is right-tailed. For a right-tailed test
with df = 2 and Alpha selected to be 0.05, the Critical Value 𝜒2-critical is
5.99. (This can be found in reference tables or via software.)

For our example, the following table is how one software package sum-
marized the results:
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f m Total
f

Expected
m

Expected
Chi

Sq-Crit
5.99

fish 26 32 58 27.47 30.53 Chi-Sq 5.24

meat 29 44 73 34.58 38.42 p 0.07

vegetarian 35 24 59 27.95 31.05 𝜶 0.05

Total 90 100 Conclusion: Variables are Independent

(You may have noticed that the f Expected and m Expected numbers
calculated by software in the table above differ slightly from the Expected
Frequencies table we calculated earlier. This is because, in the previous
tables, we rounded several times in order to display interim numbers with-
out overly long strings of decimals.)

𝝌
2
< 𝝌

2–critical and, equivalently p > 𝜶, so we Fail to Reject (that
is, we Accept) the Null Hypothesis of no Association. So, the Variables,
Gender and Meal preference, are Independent.

The graph below is a closeup of the right tail of the 𝜒2 Distribution. The
shaded area representing Alpha is sometimes called the Rejection Region,
and the white area is called the Acceptance Region. We can see that 𝝌2 is
in the Acceptance Region.

p = 0.07, the unshaded and shaded areas under the curve to the right of 𝜒2

𝛼 = 0.05, the shaded area under the curve to the right of 𝜒2-critical

𝜒2-critical

3 5 7 9 11 13

𝜒2

We might wonder − especially if there were a lot of rows and columns
in the table − which particular cells made the difference between Indepen-
dence and Association. Some software packages provide this as part of the
test output. Or, we could calculate the cell values individually using the
formula:

(O − E)2

E

A Pareto Chart could then help us see which cells contributed enough to
tip the scales. See the article Charts, Graphs, Plots – Which to Use When.

Related Articles in This Book: Variables; Chi-Square: Test Statistic and
Distributions; Degrees of Freedom; Alpha, p-Value, Test Statistic, and Crit-
ical Value – How They Work Together; Hypothesis Testing; Null Hypoth-
esis; Reject the Null Hypothesis; Fail to Reject the Null Hypothesis; Chi-
Square Test for Goodness of Fit; Chi-Square Test for the Variance



CHI-SQUARE TEST FOR THE
VARIANCE
Builds on the content of the article, “Chi-Square: the Test Statistic and its
Distributions”.

The Chi-Square Test for the Variance compares the Variance
calculated from the Sample data to a value for the Variance
which we specify.

The Test can be

� 1-sided (1-tailed left or right) or 2-sided (2-tailed).
� framed as a Confidence Interval test or a Hypothesis test.

The specified Variance can be, for example,
a target value of a quality measurement,
the historical value of a Process Variance,
an estimate of a Population or Process Variance.

The Chi-Square test for the Variance is non-Parametric; it can be
used with non-Normal variables and data.

Note: the F-test is also a test involving Variances. But the F-test com-
pares Variances from two Samples representing two different Populations
or Processes. Also the F-test is Parametric – it assumes the data Distribu-
tion is approximately Normal.

If you’re familiar with the t-tests, the Chi-Square Test for the Variance
is analogous to the 1-Sample t-test, while the F-test is analogous to the
2-Sample t-test.

Procedure for Chi-Square Test for the Variance

0. If Hypothesis Testing is being used, we would state the Null Hypothesis
(H0).

� 2-sided: H0: Population or Process Variance = specified Variance.
� 1-sided, left-tailed: H0: Population or Process Variance ≥ specified

Variance.
� 1-sided right-tailed: H0: Population or Process Variance ≤ specified

Variance.

where 𝜎2 is the unknown Population or Process Variance

1. Select a value for the Significance Level, usually 𝜶 = 0.05.
2. Collect a Sample of data, size n.

98
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3. Determine the Degrees of Freedom; df = n – 1.
4. Use a spreadsheet, software, or table to calculate the Critical

Value(s). Inputs are 𝜶 and df. A 2-sided test would have two Criti-
cal Values. As noted in the article, Chi-Square – the Test Statistic and
its Distributions, these two would not be equal, since the Chi-Square
Distribution is not symmetrical.

5. From the Sample data, calculate the value of the Chi-Square
Test Statistic, 𝝌2, and/or the Probability, p. Either one contains the
same information, since p is the Cumulative Probability of all values
beyond the Test Statistic.

𝝌
2= (n − 1)

𝝈
2

s2

where s is the Standard Deviation calculated from the Sample and 𝜎2

is the specified Variance.
6. Compare either 𝝌2 to 𝝌

2-critical(s) or compare p to 𝜶. The com-
parisons are statistically identical, since 𝛼 (for 1-sided tests or 𝛼/2 for
2-sided tests) is the Cumulative Probability for a Critical Value.

Acceptance

Region
Rejection Region Rejection Region 

If 𝜒2 is in here, Accept H0

If 𝜒2 is here, or here, Reject H0

The farther out along either tail, the smaller the Probabilities get. If the
Test Statistic 𝝌

2 (which was calculated from the Sample data) is more
extreme (farther out along a right or left tail) than a Critical Value (equiv-
alently, if p ≤ 𝛼), we conclude that the Probability is very small that this
result is due only to chance. Thus, there is a Statistically Significant dif-
ference (Reject the Null Hypothesis, H0) between the specified Variance
and the Variance of the Population or Process from which our Sample was
taken.

If the Test Statistic 𝝌
2 is not more extreme than a Critical Value

(equivalently, if p > 𝛼), then there is not a Statistically Significant dif-
ference (Fail to Reject H0/Accept H0).
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The Confidence Interval is between the Critical Values. Confidence
Intervals for Variances and Standard Deviations are wider than those for
Means, because estimates of Means are more accurate than estimates of
Variances or Standard Deviations.

Related Articles in This Book: Variance; Chi-Square – the Test Statistic
and Its Distributions; Degrees of Freedom; Alpha, p-value, Test Statistic
and Critical Value – How They Work Together; Hypothesis Testing – Parts
1 and 2; Null Hypothesis; Reject the Null Hypothesis; Fail to Reject the
Null Hypothesis; Chi-Square Test for Goodness of Fit; Chi-Square Test for
Independence; p, t, and F: “>” or “<” ?



CONFIDENCE INTERVALS – PART 1
(OF 2): GENERAL CONCEPTS

Summary of Keys to Understanding

1. There are two main methods in Inferential Statistics:
� Hypothesis Testing, which produces a point estimate
� Confidence Intervals, which produces an Interval

Estimate

2. The selected Level of Significance, 𝜶, is plotted on the Dis-
tribution of a Test Statistic to determine the Critical Value.

We then convert a Critical Value into units of the data Vari-
able (x) in order to get the Limits which define the Confidence
Interval.

Critical Value
z = –1.960

Critical Value
z = +1.960

z
0

95%

x in cm.

Confidence
Interval

Confidence Limit
170 cm

Confidence Limit
180 cm

𝜶/2 = 2.5% 𝜶/2 = 2.5%

x = 𝝈z + x

x = 175 cm

3. The Margin of Error (MOE) is one-half the width of 2-
sided Confidence Interval. Three factors affect the size of
the MOE: Sample Size (n), Level of Significance (𝜶), and
Standard Deviation (𝝈 or s).

4. A Confidence Bound defines the boundary of a 1-sided
Confidence Interval.

101
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Explanation
In Inferential Statistics, we calculate a Sample Statistic, e.g., its Mean
or Standard Deviation, as an estimate of the corresponding property of
the Population or Process from which the Sample was collected (e.g., the
Population or Process Mean).

1. There are two main methods in Inferential Statistics:
� Hypothesis Testing, which produces a point estimate
� Confidence Intervals, which produces an interval esti-

mate

In Hypothesis Testing, the estimate is a point value: “With a 95% Level
of Confidence, we can say that the Population Mean is 175 cm.”

In the Confidence Interval method, the estimate is an interval:
“With a 95% Level of Confidence, we can say that the Population
Mean is between 170 and 180 cm.”

So what’s the difference? Statistically, none. Both go through similar
calculations, they just present the conclusions in different ways.

� Hypothesis Testing may be more useful when you want a Yes or
No answer about the Statistical Significance of an observed dif-
ference, change, or effect. For example,
– Is there a Statistically Significant difference between our school’s

test results and the national average?
– Has there been a Statistically Significant change in our Process’s

defect rate?
– Does the training have a Statistically Significant effect?

Note that these all involve comparisons. In the last case, the comparison
is with zero.

� Confidence Intervals may be more useful when you want an esti-
mate of a Population or Process Parameter.

For example, What is the average height of adult males in the Popula-
tion?

Confidence Intervals also provide more information, namely, the Margin
of Error. More on that later in this article.

� Confidence Intervals may be less confusing.

Hypothesis Testing, as detailed in this book’s articles on the subject, can
be confusing – even for experienced practitioners. For example, you have
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to be prepared to deal with confusing language like this triple negative:
“We Fail to Reject the Null Hypothesis.”

The output of a Confidence Interval analysis (see the Part 2 article) usu-
ally includes a graph. Visuals are usually helpful in improving understand-
ing.

2. The selected Level of Significance, 𝜶, is plotted on the Dis-
tribution of a Test Statistic to determine the Critical Value.

We then convert a Critical Value into units of the data
Variable (x) in order to get the Confidence Limits which
define the Confidence Interval.

The first thing to do – before collecting a Sample of data – is to select
a Level of Significance,𝜶. Alpha is the level of risk of an Alpha Error (also
known as Type I Error or False Positive) which we can tolerate. The Level
of Confidence is calculated as 1 – the Significance Level. Most often 𝛼 =
5% is chosen, giving a 95% Level of Confidence.

We select a Test Statistic to use – such as z, t, F, or Chi-Square (𝜒2) –
appropriate to the purpose of the analysis and the Sample Size (n). Since
z – used for estimating the Mean – is the simplest, we’ll use it in this Part 1
article.

A Test Statistic has a Probability Distribution curve with known
Probabilities. That is, for any value of the Test Statistic, the Probability
of that value occurring is known. And the Cumulative Probabilities of all
values in a range of the Test Statistic can be calculated.

Alpha is a Cumulative Probability represented by a shaded area or
areas under the curve.

z
0

95%
𝜶/2 = 2.5% 𝜶/2 = 2.5%

I select
𝜶 = 5%

The illustration above is for a 2-sided (2-tailed) analysis, using the
Standard Normal Distribution and its associated Test Statistic, z. z is the
horizontal axis Variable. The vertical axis is the Probability of a value
of z. The 5% shaded area representing Alpha is split between the two
tails.
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The value of the Test Statistic which forms a boundary for the
shaded area(s) representing Alpha is a called a “Critical Value.” Crit-
ical Values for common choices of Alpha can be found in tables or calcu-
lated with software. The Critical Value of z for 𝛼/2 = 2.5% is 1.960.

Critical Value
z = –1.960

Critical Value
z = +1.960

z
95%

𝜶/2 = 2.5% 𝜶/2 = 2.5%

We needed to use a Test Statistic in order to find the values on the hor-
izontal (z) axis which correspond to the Cumulative Probability, Alpha/2.
These are the Critical Value + or − the Mean.

Critical Values are in the units of the Test Statistic (z in this example).
A Confidence Interval is in the units of the data Variable, x.

To make use of Critical Values in the real world, we need to convert
the information into the units of the data Variable, x – centimeters in this
case.

In doing so, we convert Critical Values into Confidence Limits.

Critical Value
z = –1.960

Critical Value
z = +1.960

z
0

95%

x in cm.

Confidence
Interval

Confidence Limit
170 cm

Confidence Limit
180 cm

𝜶/2 = 2.5% 𝜶/2 = 2.5%

x = 𝝈z + x

x = 175 cm

The formula for converting a value of z into a value of x is

x = 𝝈z + x̄

. . . where 𝜎 is the Standard Deviation of the Population or Process and
x̄ is the Sample Mean. If we don’t know the value of 𝜎, then we would



CONFIDENCE INTERVALS – PART 1 (OF 2): GENERAL CONCEPTS 105

have to use the Test Statistic t instead of z, and we would use the Standard
Deviation of the Sample, s, instead of 𝜎.

How to interpret the Confidence Interval in this example:

� If we were to calculate Confidence Intervals from many Samples of
the same size, 95% would contain the true Mean.

� With a 95% Level of Confidence, we can say that the Population Mean
is between 170 and 180 cm, or

� With a 95% Level of Confidence, we can say that the Population Mean
is 175 cm plus or minus an MOE of 5 cm.

Most texts caution against saying, “The Confidence Interval of 170 –
180 cm has a 95% Probability of including the Population Mean.” This
is because the concept of Confidence is wrapped up in a method which
involves taking Samples, calculating a Test Statistic, and using its Distri-
bution and Alpha to calculate Critical Values. It is not a direct calculation
of Probabilities. However other experts say that the distinction has little
practical consequence.

3. The Margin of Error (MOE) is one-half the width of 2-
sided Confidence Interval. Three factors affect the size of
the MOE: Sample Size (n), Level of Significance (𝜶), and
Standard Deviation (𝝈 or s).

Let’s continue with our example of the Mean and the z-Distribution,
since it’s the simplest case. The formula for MOE is

MOE = 𝝈 (z-critical)
n

Alpha, the Level of Significance, determines the value of z-critical. n is the
Sample Size.

x in inches

180170

MOE

95%

Confidence

175

MOE
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“With a 95% Level of Confidence, we estimate the Mean height to be
175 cm, with an MOE of plus or minus 5 cm.”

See the article, Margin of Error for more.

4. A Confidence Bound defines the boundary of a 1-sided
Confidence Interval.

To this point, we’ve been discussing 2-sided Confidence Intervals.
Alpha is split into two shaded areas, each representing 𝛼/2. A 2-sided Con-
fidence Interval places both an Upper Confidence Limit and a Lower Con-
fidence Limit on the estimated value of the Parameter (e.g., the Population
Mean).

A 1-sided (1-tailed) Confidence “Interval,” however, places either an
Upper Confidence Bound or a Lower Confidence Bound on the esti-
mate.

z

x in hours

x = σz + x

𝜶 = 5%

Critical Value
z = –1.645

960 
Lower Confidence  

Bound

1000

There is some disagreement on whether the term “Confidence Interval”
should be used for 1-sided analyses. The dictionary defines “interval” as a
“space between two things.” In the case of 1-sided Confidence Intervals,
one of the two things is missing, because the range of Confidence extends
to infinity in the direction opposite the Bound.

This presents a difficulty with using the concept of Margin of Error
(MOE). The MOE is defined as half the width of the Confidence Interval,
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and it would be half of infinity – still infinitely wide – for a 1-sided analy-
sis. However, if we want a 1-sided analysis, we really are not interested in
an MOE on both sides of the center of an estimate.

In a 1-sided Confidence Interval, Alpha is not split into two halves, but it
is entirely under the left or right tail of the Distribution. And the unshaded
Level of Confidence area – under which lies Confidence Interval – extends
to infinity in the other direction.

That is important to remember if you are using software which doesn’t
distinguish between 2-sided and 1-sided Confidence Intervals. You can use
the Upper Confidence Limit in a 2-sided interval to give you an Upper
Confidence Bound, for example, but you must input an Alpha which is
twice that of which you want to see under the single tail of the Distribution.
For example, enter 𝛼 = 10%. Then the software will divide that in two,
putting 𝛼/2 = 5% under both the left tail and the right tail. You are ignoring
the left tail, so you will have the correct value for Alpha under the right tail.
That will give you a Upper Confidence Limit which you can use as your
Upper Confidence Bound for a right-tailed analysis.

Related Articles in This Book: Confidence Intervals – Part 2: Some
Specifics; Hypothesis Testing – Parts 1 and 2; Critical Value; Alpha (𝛼);
Test Statistic; z; Margin of Error; Alpha and Beta Errors



CONFIDENCE INTERVALS – PART 2
(OF 2): SOME SPECIFICS

Summary of Keys to Understanding

1. Purpose
Test

Statistic
Confidence Interval (CI)

Formula

Estimate Mean (when 𝜎

is known and n > 30)
z CI = x̄ ± 𝝈Z

𝜶∕2∕
√

n

Estimate Mean t CI = x̄ ± st
𝜶∕2∕

√
n

Estimate Proportion z CI = p̂ ± z
𝜶∕2

√
p̂ (1 − p̂) ∕n

Estimate Variance 𝜒2 CI = s2 ± (n − 1) s2∕𝝌2
𝜶∕2

2. The form of the output of Confidence Intervals analysis
varies with the type of analysis (e.g., Regression, t-test) and
the type of software.

95% Confidence Interval for Mean

75.551                  81.915

95% Confidence Interval for Median

75.229                  81.771

Mean

Median

75.0 76.5 78.0 79.5

95% Confidence Intervals

81.0 82.5

3. Confidence Intervals which do not overlap indicate a Sta-
tistically Significant difference. Experts disagree on whether
the opposite is always true.

Individual 95% CIs for Mean
Pressure Mean
High Pressure 34.2667 (-----*-----)
Low Pressure 23.0667 (----*----)
Med Pressure 25.6000 (----*-----)

---------|---------|---------|---------|
25 30 35 40

4. For Processes, use Confidence Intervals only if Control
Charts show that the Process is under Control.

108
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Explanation

1. Purpose Test Statistic CI Formula

Estimate Mean (when 𝜎

is known and n > 30)
z CI = x̄ ± 𝜎z

𝜶∕2∕
√

n

Estimate Mean t CI = x̄ ± st
𝜶∕2∕

√
n

Mean

In the Part 1 article, we used the Test Statistic z to illustrate the concepts,
because z is somewhat simpler to use than t. There is only one z Distribu-
tion, the Standard Normal Distribution. It is defined by having a Mean (𝜇)
= 0 and a Standard Deviation (𝜎) = 1. z can be convenient to use for quick
estimates, especially if one has memorized some of its values, such as:

z for Alpha = 5% is 1.645, and the corresponding z for 𝛼/2 = 1.96.
In the Confidence Interval (CI) formulas in the table above,

– x̄ is the Sample Mean, our Statistic
– 𝜎, Sigma, is the Standard Deviation of the Population or Process
– z𝛼 /2 is the Critical Value of z for 𝛼/2.
– n is the Sample Size
– t𝛼 /2 is the Critical Value of t for 𝛼/2.
– s is the Standard Deviation of the Sample

But z has its limitations. It should only be used only when we know
the Standard Deviation (𝜎, Sigma) of the Population or Process – or if
we believe we have a very good estimate of it – and when the Sample Size
(n) is large enough, say when n > 30 (some say when n > 100). And we
usually don’t know Sigma, because if we had exact information about the
Population or Process, we wouldn’t need to estimate things from Samples.

Also, the value of z is the same no matter the Sample Size, so it doesn’t
take into account the improving accuracy of ever-larger Samples. t does.
There is a different t Distribution for each different value of n − 1, the
Degrees of Freedom, df.

Use t instead of z when Sigma is not known, or when the Sample Size
is small. Since accuracy suffers when Sigma is not known, the Confidence
Intervals calculated with t are wider than those calculated with z. That
is, their MOE is larger.

Confidence Intervals for the Mean and Proportion
for Non-Normal Data.

In general, the assumption or requirement for using both the t and z Test
Statistics is that the data are approximately Normally distributed. But, for
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n > 30 we can use t and z for Confidence Intervals for the Mean even if
the data are not Normally distributed. This is due to the Central Limit
Theorem, which is explained in the article Normal Distribution.

Proportion

Purpose Test Statistic CI Formula

Estimate Proportion z CI = p̂ ± z
𝜶∕2

√
p̂ (1 − p̂) ∕n

where,

– p̂ is the Sample Proportion
– the Critical Value of z for 𝛼/2 is denoted by z𝛼 /2

– n is the Sample Size

Proportions (the decimal equivalent of percentages) are often used with
Categorical/Nominal Variables. Such Variables include Counts of things
like gender, voters for a particular candidate, favorite fruit juice, etc.

Let’s say our Categorical Variable is favorite fruit juice. We survey n =
200 people for their favorite and get the following data for the three values
(apple, orange, grape) of the Variable.

favorite flavor Count Proportion

apple 44 0.22

orange 104 0.52

grape 52 0.26

Total 200

Confidence Interval for the Proportion of orange as favorite juice:

CI = 0.52 ± 1.96
√

(1 − 0.52) ∕200 = 0.52 ± 0.10

Variance

Purpose Test Statistic CI Formula

Estimate Variance 𝝌
2 CI = s2 ± (n − 1)s2∕𝝌2

𝜶∕2

Whereas the Sampling Distribution of the Mean and Proportion follow
a Normal Distribution, the Sampling Distribution of the Variance follows
the Chi-Square (𝝌2) Distribution. So the Test Statistic we use is 𝝌2.

The Central Limit Theorem does not apply to Variances. Confidence
Intervals for the Variance assume that the underlying data follow a
Normal Distribution.
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Since the Standard Deviation is defined as the square root of the Vari-
ance, the Confidence Interval for the Standard Deviation is just the
square root of the Confidence Interval for the Variance.

2. The form of the output of Confidence Interval analysis
varies with the type of analysis (e.g., t-test, Regression) and
the type of software.

The following are some examples of Confidence Interval calculated with
different statistical software.

Example output from Multiple Linear Regression

Coefficients Std Err t-Stat p-Value Lower 95% Upper 95% Lower 99% Upper 99%

Intercept −34.750 40.910 −0.849 0.458 −164.944 95.445 −272.702 204.203

House Size −5.439 21.454 −0.254 0.816 −73.716 62.838 −130.751 119.874

Bedrooms 85.506 15.002 5.700 0.011 37.763 133.249 −2.119 174.132

Bathrooms 77.486 18.526 4.183 0.025 18.529 136.443 −30.721 185.693

“Lower 95%” and “Upper 95%” refer to Lower and Upper Confidence
Limits for 𝛼 = 5%. The Confidence limits are also given for 𝛼 = 1%.

Example output: CIs for Mean and Median

95% Confidence Interval for Mean

75.551                  81.915

95% Confidence Interval for Median

75.229                  81.771

Mean

Median

75.0 76.5 78.0 79.5

95% Confidence Intervals

81.0 82.5

Example output from 1-Sample t-test

One-Sample T: Pulse
Variable N Mean StDev SE Mean 95% CI

Pulse 30 78.73 8.52 1.56 (75.55, 81.92)

Example output from 2-Sample t-test
Two Samples are tested to see if they are statistically the same. The

difference in their Means is analyzed. If the zero is within the Confi-
dence Interval, then there is no Statistically Significant difference and
(if Hypothesis Testing is used), the Null Hypothesis (of no difference) is
Accepted (that is, we Fail to Reject it).

2-Sample t for Furnace 1 vs. Furnace 2 and CI: Furnace 1, Furnace 2

n Mean Std Dev SE Mean

Furnace 1 40 9.91 3.02 0.48

Furnace 2 50 10.14 2.77 0.39
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Difference = mu (Furnace 1) – mu (Furnace 2)
Estimate for difference: − 0.235
95% CI for difference: (−1.450, 0.980)

3. Confidence Intervals which do not overlap indicate a Sta-
tistically Significant difference. Experts disagree on whether
the opposite is always true.

If the analysis is comparing Samples from two or more Populations
or Processes, it can produce Confidence Intervals for the Mean of each
Sample.

If Confidence Intervals do not overlap, then any observed differ-
ence in the Sample Statistics is Statistically Significant. Conversely,
some experts say that any overlap means no difference. But other experts
say there can be a Statistically Significant difference with a slight overlap.
In that case, a Hypothesis Test could be used to make sure. In the exam-
ple below, there is definitely a Statistically Significant difference between
High Pressure and the other two treatments. And the overlap for Low and
Medium Pressure is sufficiently large to conclude there is not a Statistically
Significant difference between them. If there is any doubt, use a 2-Sample
t-test for two of the Means that are in question.

Individual 95% CIs for Mean
Pressure Mean
High Pressure 34.2667
Low Pressure 23.0667
Med Pressure 25.6000

25 30 35 40

(     *      )

(      *       )
(     *     )

4. For Processes, use Confidence Intervals only if Control
Charts show that the Process is under control.

Outliers can have a big effect on Confidence Intervals. So, for Processes,
use Control Charts to ensure the Process is stable before doing any test
dependent on Confidence Intervals. A Process that is not under control is
being affected by Special Causes of Variation outside the Process. These
must be addressed before the Process can be accurately analyzed – and
improved, if necessary

Related Articles in This book: Confidence Intervals – Part 1: General
Concepts; Alpha, 𝛼; Critical Value; Test Statistic; Normal Distribution;
Sampling Distribution; z; t, the Test Statistic and Its Distributions; t-tests
– Part 1; Proportion



CONTROL CHARTS – PART 1 (OF 2):
GENERAL CONCEPTS AND
PRINCIPLES

Summary of Keys to Understanding

1. All Processes have Variation. A Process can be said to be
“under control,” “stable,” or “predictable” if the Variation
is
� confined within a defined range, and is
� random (shows no pattern)

2. Such Variation is called Common Cause Variation; it is
random “noise” within an under-control Process.

Variation which is not Common Cause is called Special
Cause Variation. It is a signal that Factors outside the Pro-
cess are affecting it.

3. Any Special Cause Variation must be eliminated before
one can attempt to narrow the range of Common Cause
Variation.

4. Control Charts show Variation in a time sequence from
left to right.

Control Charts tell us whether the Variation is within
the prescribed range for Common Cause Variation. The
Upper Control Limit (UCL) and the Lower Control Limit
(LCL) define this range.

Run Rules define whether the Variation is random or
whether there is a pattern (e.g., a trend, shift, or cycle).
These patterns are also visible on a Control Chart.

5. Data are collected in a number of Rational Subgroups of
size n ≥ 4 under essentially the same conditions.

113
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Explanation

1. All Processes have Variation. A Process can be said to be
“under control,” “stable,” or “predictable” if the Variation
is
� confined within a defined range, and is
� random (shows no pattern)

2. Such Variation is called Common Cause Variation; it is
like random “noise” within an under-control Process.

Variation which is not Common Cause is called Special
Cause Variation. It is a signal that Factors outside the Pro-
cess are affecting it.

In much of statistics, the universe of data is from a Population. For Sta-
tistical Process Control – the discipline which uses Control Charts – the
universe is a specific Process. There are any number of measurements or
Counts that can be taken to monitor the performance of a Process or parts of
a Process, e.g., timings, measurements, quantities, defects, costs. Almost
none of these will remain absolutely constant over time; there will be Vari-
ation.

We can’t eliminate Variation from a Process, but we want to have
Variation that is predictable. If the Variation is random, and if it
is within a defined range, we can be comfortable that the Process
itself is consistent. And we can be comfortable in predicting that it
will continue to vary in a random fashion within that range. As we’ll
explain later, the range is usually defined as plus or minus three Standard
Deviations.

Predictability is very important in Process management as well as for
Customer Satisfaction. If we don’t limit Variation to a predictable range,
we can’t plan – our expenses, our revenues, our purchases, our hours, and
so on. And a customer who buys a quarter-pound hamburger may not notice
if they get 0.24 or 0.26 pounds of meat. But, they will probably be dissat-
isfied with 0.18 pounds even if the average has been 0.25. Customers feel
Variation, they do not feel averages.

There are two types of Variation: Common Cause and Special
Cause.
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Common Cause Variation Special Cause Variation

expected unexpected

like random “noise”
a “signal” that something is

different or has changed

is part of the Process outside the Process

occurs within consistent range
of values and no pattern

some data points occur outside
that range, or there is a pattern

Example
A manufacturing process step
took 21, 19, 18, 20, 22, 20, 18,

19, 22, and 20 seconds.

Sometimes, it takes more than
26 seconds.

3. Any Special Cause Variation must be eliminated before
one can attempt to narrow the range of Common Cause
Variation.

Here are some examples of Special Causes of Variation:

– an equipment malfunction causes occasional spikes in the size of
holes drilled

– an out-of-stock condition causes a customer order to be delayed
– vibration from a passing train causes a chemical reaction to speed up
– a temporarily opened window causes the temperature to drop
– an untrained employee temporarily fills in

Until we eliminate Special Cause Variation, we don’t have a Process
that we can improve. There are Factors outside the Process which affect it,
and that changes the actual Process that is happening in ways that we don’t
know.

Once we know that we have Special Cause Variation, we can use various
Root Cause Analysis methods to identify the Special Cause, so that we can
eliminate it. Only then can we use process/quality improvement methods
like Lean Six Sigma to try to reduce the Common Cause Variation.

But how do we know if we have Special Cause Variation?

4. Control Charts show Variation in a time sequence from
left to right.

Control Charts tell us whether the Variation is within
the prescribed range for Common Cause Variation. The
Upper Control Limit (UCL) and the Lower Control Limit
(LCL) define this range
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Run Rules define whether the Variation is random or
whether there is a pattern (e.g., a trend, shift or cycle). These
patterns are also visible on a Control Chart.

Control charts are used to analyze Process Variation over time. So,
the data are collected and recorded in time sequence (data point 1 happened
first, data point 2 happened next). The results of the Control Chart analysis
are displayed in time sequence from left to right.

We said earlier that there are two criteria which determine whether a Pro-
cess is under control – a defined range and randomness. Control Charts
display the range and identify any points outside the range. Random-
ness is defined as lack of specific patterns which are non-random. These
patterns are defined by Run Rules which we will show later. Most soft-
wares which produce Control Charts will also identify any patterns defined
by Run Rules.

There are a number of different types of Control Charts. These are
described in the article Control Charts – Part 2: Which to Use When.

The defined range for Common Cause Variation is generally three
Standard Deviations above and below the Center Line (e.g., the
Mean). The upper and lower boundaries of this range are called the Upper
Control Limit (UCL) and the Lower Control Limit (LCL). These limits
are usually depicted as colored or dotted horizontal lines; the Center
Line is solid. If zero is the lowest possible value (e.g., when we’re
measuring time) a Lower Control Limit calculated to be less than zero
is not shown.

1 2 3

LCL

Center Line

X
 V

a
lu

es

UCL

X Chart

24.7

19.9

15.0

30

28

26

24

22

20

18

16

14
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

This chart plots the time in seconds that it took to complete a specific
step in a manufacturing Process. All the times except for the Outlier at 28
seconds are between the Lower Control Limit (LCL) and the Upper Control
Limit (UCL). So, they are due to Common Cause Variation. But because
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of the one value outside the range, this Process is not under control. We
need to take a look at what may be the Special Cause of that anomaly and
try to fix it.

Control Limits are not the same as Specification Limits. Control
Limits are statistically calculated from the data; they are used to help make
a Process stable and predictable. Specification limits are usually set by a
management decision with customer satisfaction in mind.

Run Rules define patterns which indicate the Variation is not ran-
dom.

There are a number of Run Rules, and some patterns are not always
easy to spot by eyeballing charts. Fortunately, the same software which
produces Control Charts will usually also identify patterns described by the
Run Rules. Here are some common patterns which indicate non-random
(Special Cause) Variation. A Sigma is a Standard Deviation.

� Trend: 6 consecutively increasing or 6 consecutively decreasing
points

� Shift in the Mean: 8 consecutive points on the same side of the Center
Line

� Cycle: 14 consecutive points alternating up and down
� 2 out of 3 points beyond 2 Sigma and on the same side of the Center

Line
� 4 out of 5 points beyond 1 Sigma and on the same side of the Center

Line
� 15 consecutive points within 1 Sigma of the Center line

5. Data are collected in a number of Rational Subgroups of
size n ≥ 4 under essentially the same conditions.

Statistical Process Control (SPC) is different from Inferential Statistics
(e.g., t-tests or ANOVA). In Inferential Statistics, we collect a Sample of
data (the larger, the better – up to a point). And we’re trying to infer the
value of a Parameter (e.g., the Mean) in the Population or Process from the
value of the corresponding Statistic in the Sample.

In SPC, we collect a number of small Samples in order to identify Vari-
ation over time. The Samples could be as small as 4 or 5, and we collect 25
or more of them. These are a special kind of Sample called the Rational
Subgroup.

Rational Subgroups are comprised of individual data points col-
lected from a Process under the same conditions. For example,
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� the same step in the Process
� the same operator
� the same machine, etc.
� close together in time

These conditions are the same, because we want to eliminate (block)
them as potential causes of Variation.

With the exception of the X (“Individuals”) chart, like the one shown
above, Rational Subgroups are composed of more than one data point. So
we can calculate a Statistic (e.g., the Mean, Proportion, Standard Devia-
tion, or Range) for each Rational Subgroup. It is the value of that Statistic
which gets plotted in the Control Chart.

The Part 2 article will describe various different Control Charts and tell
you which to use when.

Related Articles in This Book: Control Charts – Part 2: Which to Use
When; Variation/Variability/Dispersion/Spread



CONTROL CHARTS – PART 2 (OF 2):
WHICH TO USE WHEN
This article assumes knowledge of the content of the Part 1 article.

Summary of Keys to Understanding

1. Continuous/Measurement Data

Statistic plotted Sample Size (n) Distribution
Control Chart(s)

to Use

Standard Deviation
and Mean

3+ – s and X-bar

Range and Mean 2 – R and X-bar

Moving Range 1 Normal MR and X

Recommendation:

� Collect data in 25 or more Rational Subgroups (see the Part 1 arti-
cle) with n ≥ 4.
◦ Use the s chart first to determine if the Variation is under con-

trol. If not, no need to bother with the X-bar chart.
� Use the X-bar chart to determine if the Central Tendency is under

control.
� Use the X (aka Individuals aka I) Chart to test for non-random

Run Rule patterns.

2. Discrete/Count data

Statistic plotted Sample Size (n) Counted Item
Control Chart(s)

to Use

Proportion All the same
units

np

Proportion Varies p

Count All the same
occurrences

c

Occurrences Varies u

3. Run Rules: non-random patterns of Variation can be found with the
following charts
� X-bar
� X (if the data are Normally distributed)
� np
� c
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Explanation
There are many different types of Control Charts; this article describes
some of the most common.

The 1st criterion for deciding what Control Chart to use is the type
of data.

Much as there are different Distributions for Continuous vs. Discrete
data, there are different Control Charts. Continuous data come from
Measurements of things like temperature, length, and weight. Discrete data
come from integer Counts of things like defects.

Continuous data Control Charts are sometimes call Shewhart Control
Charts. Discrete data Control Charts are sometime called Attributes Con-
trol Charts, because they count the number of times an Attribute (say, a
defect) is present.

1. Continuous Data
For Continuous data, we want both the Variation (Standard Deviation
or Range) and the Central Tendency (Mean, Mode, or Median) of our
Process to be under control. So, we should look at a Control Chart for
each. That is why software often produces them in pairs. (s and X-bar, R
and X-bar, MR and X).

Recommendation for Continuous Data

� Collect data in 25 or more Rational Subgroups (see the Part 1 arti-
cle) with n ≥ 4.

� Use the s chart first to determine if the Variation is under con-
trol.
– If not, no need to bother with the X-bar chart.

� Use the X-bar chart to determine if the Central Tendency is under
control.

� Use the X (aka Individuals aka I) Chart to test for non-random
Run Rule patterns (if the software for the above charts doesn’t auto-
matically provide that information) and also to identify individual out-
of-control points.

Control Charts Statistics plotted
Rational Subgroup Size

(n)

s and X-bar
Standard Deviation

and Mean
4+

If we have sufficient time, money, and opportunity, the best approach is
to use the Rational Subgroup (see the Part 1 article) type of Sample. Each
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Subgroup has the same Size. The minimum Size is n = 4, although more
is better. In a Rational Subgroup, the individual data points are collected
close together in time, under essentially the same conditions. We need at
least 25 such Rational Subgroups to show Variation over time.

Software usually shows these two Control Charts together, with the X-
bar (aka Averages) Chart on top and the s Chart below. Unfortunately, this
can lead the user to consider the X-bar first. The problem is that Control
Limits (UCL and LCL) shown on the X-bar Chart are calculated using a
Statistic which measures Variation (the Range). If the Variation is out of
control, the Control Limits on the X-bar charts will be meaningless.
So, examine the s Chart first. If it is out of control, the Process is out
of control.
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Sometimes, cost or the need to use historical data prohibits us from using
Rational Subgroups of Size n ≥ 4. The results won’t be as accurate, but
we can use smaller Sample Sizes and the Range instead of the Standard
Deviation to determine if the Variation is under control. Examine the R
(Range) Chart first. If it is out of control, the Process is out of control,
and the X-bar Chart is not usable.
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As we explain in the article Variation/Variability/Dispersion/Spread,
Range is an inferior measure of Variation compared with Standard Devia-
tion. For Sample Size n = 2, there is not much difference between the two.
But as n increases, s provides more and more accuracy. By the time n >

9, the difference in accuracy is generally deemed to be intolerable. That is
why the R Chart can be used for Sample Sizes n = 2 to 9. But, for any
Size larger than 2, it’s better to use the s Chart.

Statistic plotted Sample Size (n) Distribution Control Chart(s) to Use

Range and Mean 2 – R and X-bar

Moving Range 1 Normal MR and X

If n = 1, we can’t calculate any kind of Statistic within each Sample.
But we can calculate a Range for two adjacent data points. This is called a
Moving Range (MR).

Often paired with the MR is the X Chart (aka the Individuals or the I
Chart) which plots the individual data points – the x’s. If the data are Nor-
mal, we don’t need to use Means and the Central Limit Theorem in order
to know that 99.7% of the data should lie within three Standard Deviations
(Sigmas) of the Mean. We can just use the raw data, as in the X Chart.

The X Chart may seem less sophisticated than the X-bar or s Charts,
but it has the advantage of showing us the raw data. This enables us
to see individual points beyond the Control Limits, which can be helpful
in investigating the causes of Variation. So, many practitioners always
include it in their assessments.

If the data are not Normal, and the Sample Size is 1 we cannot cal-
culate 3 Sigma Upper and Lower Control Limits, so we don’t have a Con-
trol Chart. What’s left is an X chart without Control Limits. This is called
a Run Chart. It’s not a Control Chart, but it can be used for checking at
least a few of the Run Rules (see the Part 1 article) which identify non-
random patterns of Variation. These patterns also indicate an out-of-control
Process.

2. Discrete Data

Counted Item Sample Size (n) Control Chart to Use Run Rules?

Units
All the same np applicable

Varies p no

Occurrences
All the same c applicable

Varies u no
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Discrete data are integers, such as Counts. Counts are non-negative. In
contrast to Continuous data, there are no intermediate values between con-
secutive integer values.

For Discrete data, the first criterion in selecting a Control Chart is
type of thing counted – Units or Occurrences.

Let’s say we’re counting defects in a Process which manufactures shirts.
The shirt is the Unit; the number of defects is the number of Occurrences.

number of Units
with defects

number of Occurrences

1 shirt with 3 defects 1 3

FYI: the reason there are two different sets of Discrete data Control
Charts is that they are based on two different Discrete Distributions – the
Binomial Distribution (used for Units) and the Poisson Distribution (used
for Occurrences).

For Units – the np and p Charts – the Statistic plotted is the Propor-
tion of Units (with defects). If the Samples are all the same Size, use the
np chart; otherwise, use the p Chart.

For Occurrences, use the c (Count) Chart if the Samples are all the
same Size; otherwise use the u chart.

3. Run Rules: non-random patterns of Variation can be found with the
following charts
� X-bar
� X (if the data are Normally distributed)
� np
� c

See the Part 1 article for a list of common Run Rules.

Related Articles in This Book: Control Charts – Part 1: General
Concepts & Principles; Variation/Variability/Dispersion/Spread; Standard
Deviation; Proportion; Binomial Distribution; Poisson Distribution
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Summary of Keys to Understanding

1. Correlation is observed when two Variables either increase
together or decrease together in a roughly linear pattern.
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2. Covariance is a Statistic or a Parameter which can tell us the
direction of a Correlation between two paired Variables, x
and y, from data consisting of (x, y) pairs.

3. Covariance can be conceptually viewed as a 2-dimensional
Variance of the (x, y) data points about the point with their
average values, (x̄, ȳ).

Sample: Cov(x, y) = sxy

∑
(x − x̄)(y − ȳ)

n − 1

Population: Cov(x, y) = 𝜎xy =
∑

(x − 𝜇x)(y − 𝜇y)

N

4. Covariance can not tell us the strength of the Correlation.

5. When normalized or standardized, the Covariance
becomes a Correlation Coefficient, which is a very useful
measure of the direction and strength of the Correlation.
That is the subject of the next article, Correlation – Part 2.

124
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Explanation

1. Correlation is observed when two Variables either increase
together or decrease together in a roughly linear pattern.

Correlation is Negative when larger values for one Variable are paired
with smaller numbers of the other. Positive Correlation is the opposite –
the values of both Variables grow together.
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2. Covariance is a Statistic or a Parameter which can tell us the
direction of a Correlation between two paired Variables, x
and y, from data consisting of (x, y) pairs.

The Covariance calculated from a Sample of data is, by definition, a
Statistic. The Covariance calculated from all the data in a Population or
Process, is, by definition a Parameter.

Covariance is calculated for two paired Variables, which we will label x
and y. It is a signed number or zero. The sign indicates the direction of the
Correlation.

What do we Mean by “paired” variables?
Each data point has 2 values, 1 for the x Variable and 1 for the y Variable.

Each data point can be written as (x, y). For example, if we are comparing
height (say, x) and weight (y), each (x, y) data point is from one person; it
contains a height from a person and that same person’s weight. You cannot
calculate a Covariance between height and weight by using the height of
one person and the weight of another.

It is important to note that Correlation does not attempt to demon-
strate Cause and Effect. That is the purpose of Regression analysis, which
can be considered to be an extension of Correlation analysis.

So, although we use the terms x and y for the paired variables, the exis-
tence of Covariance does not mean that y = f(x).

3. Covariance can be conceptually viewed as a 2-dimensional
Variance of the (x, y) data points about the point with their
average values, (x̄, ȳ).
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For a single Variable, x, Variance is a measure of Variation of the val-
ues of x in the data about their Mean, (symbol x̄ for a Sample, or 𝜇 for a
Population or Process). Covariance is a measure of Variation of the values
of 2-Variable data points (x, y)’s about the point made up of the Means of
x and y – the point (x̄, ȳ). So, we can think of Covariance as a 2-Variable
counterpart to the Variance.

Variance (1 Variable) Formulas

Sample: s2 =
∑

(x − x̄)2

n − 1
Population: 𝜎2 =

∑
(x − 𝜇x)2

N

where n and N are the Sample Size and Population Size, respectively

Covariance (2 Variable) Formulas

Sample : Cov(x, y) = sxy =
∑

(x − x̄)(y − ȳ)

n − 1

Population : Cov(x, y) = 𝝈xy =
∑

(x − 𝝁x)(y − 𝝁y)

N

Here’s an example; in the United States, we measured height and weight
for 10 individuals.

Covariance of Height (inches) and Weight (pounds)

Individual Height(x) Weight(y) x-Mean(x) y-Mean(y) Product

#1 70 180 2.3 21 48.3

#2 65 125 −2.7 −34 91.8

#3 67 140 −0.7 −19 13.3

#4 71 195 3.3 36 118.8

#5 62 105 −5.7 −54 307.8

#6 73 210 5.3 51 270.3

#7 68 190 0.3 31 9.3

#8 65 110 −2.7 −49 132.3

#9 70 200 2.3 41 94.3

#10 66 135 −1.7 −24 40.8

Total 677 1590

Means 67.7 159.0 Sum of Products: 1127.0

Divide the Sum by n − 1 = 9 to get the Covariance: 125.2 inch-pounds
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Note that we divided the sum by n − 1 = 9, because this is a Sample.
You may be wondering, “What’s an inch-pound?” Good question for

which there is no good answer. This is one reason why the Covariance is
of limited usefulness.

Now, let’s say after being measured and weighed as above, each of the
10 subjects walked across the hall and were weighed and measured again –
this time by some researchers visiting from Europe. Below are the data they
recorded:

Covariance of Height (meters) and Weight (kilograms)

Individual Height (x) Weight (y) x-Mean(x) y-Mean(y) Product

#1 1.8 81.7 0.1 9.5 0.6

#2 1.7 56.8 −0.1 −15.4 1.1

#3 1.7 63.6 0.0 −8.6 0.2

#4 1.8 88.5 0.1 16.3 1.4

#5 1.6 47.7 −0.1 −24.5 3.5

#6 1.9 95.3 0.1 23.2 3.1

#7 1.7 86.3 0.0 14.1 0.1

#8 1.7 49.9 −0.1 −22.2 1.5

#9 1.8 90.8 0.1 18.6 1.1

#10 1.7 61.3 0.0 −10.9 0.5

Total 17.2 721.9

Mean 1.72 72.2 Sum of Product: 13.0

Divide the Sum by n − 1 = 9 to get the Covariance: 1.4 meter-kilograms

You can see the difficulty in using Covariance. Not only do we have
meaningless units, we have widely varying values, 125.2 and 1.4, for the
same data.

4. Covariance cannot tell us the strength of the Correlation.

One thing we can say from both sets of measurements above is that there
is a positive Correlation. That is, as height increases, weight also increases.
So, we can use the sign of these numbers (positive) to tell us the direction
of Correlation (positive).

But how good is this Correlation? How strong is it? We can’t use the
values of the numbers, because the units are meaningless and we would
have to make an arbitrary choice between whether the strength was 125.2
or 1.4.
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So the numerical values of the Covariance are not used. We only use
the sign – positive or negative – of the Covariance to tell us the direction
of the correlation.

We can see that Covariance itself is of limited use because

� It can tell us the direction of Correlation, but not the strength.
� It is in units that are often meaningless, e.g., meter-kilograms.

So, it is easy to see that a better measure of Correlation is needed.

5. When normalized or standardized, the Covariance
becomes the Correlation Coefficient, a measure of the
direction and strength of the Correlation.

The primary purpose of Covariance is to serve as an interim step in the
calculation of the Correlation Coefficient – which is the subject of the next
article, Correlation Part 2.

Related Articles in This Book: Correlation Part 2; Variance
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Summary of Keys to Understanding

1. Always plot the data first. Statistics alone can be misleading.

2. The Correlation Coefficient, r, is a measure of Correlation.
It is the “standardization” or “normalization” of Covari-
ance.

r =
Cov(x, y)

sxsy

3. The Correlation Coefficient, r, ranges from −1 to +1. r = 0
indicates no Correlation. r = −1 and r = +1 indicate a per-
fect negative or positive Correlation, respectively. But per-
fection almost never happens, and there are different opinions
on where to set the thresholds for “strong” or “weak” Corre-
lation.

4. Correlation is not Causation.

5. Establishing Correlation is a prerequisite for Linear
Regression.

129
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Explanation

1. Always plot the data first. Statistics alone can be mislead-
ing.

It has been said that the first three laws of statistics are 1. Plot the data, 2.
Plot the data, and 3. Plot the data. The need for this is never more apparent
than in Correlation. Scatter Plots like those below are probably the most
useful type for this purpose.

Statistics alone can be misleading. The values of the Correlation
Coefficient, r, for these two plots are almost identical – and they both
indicate a very strong Linear Correlation.

That makes sense for the one on the left. However the one on the right
is not linear at all. That data would more likely to be approximated by a
polynomial curve.

Since Correlation analysis is only about linear relationships, if the two
Variables are Correlated, the data should at least roughly cluster about
an imaginary slanted line – throughout its entire range. If you don’t
see that in the plot, it would be unwise to proceed with trying to use
Correlation Analysis to prove differently.

Why a slanted line? A horizontal or vertical line would mean that one
Variable can increase or decrease while the other stays the same.

2. The Correlation Coefficient, r, is a measure of Correlation.
It is the “standardization” or “normalization” of Covari-
ance.

In Part 1, we learned that Covariance has some serious shortcomings. It
is in meaningless units like “kilogram-meters.” As a result, it is not useful
as a measure of the strength of the relationship between the variables. It
can only tell us the direction (negative, zero or positive).

The Covariance is in units which are the product of the units of x and
the units of y. To get rid of this confusion, we can divide Covariance by
something which has those same units.
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Since Standard Deviations are in the units of the data, the product of the
Standard Deviation of x and the Standard Deviation of y will be in the units
of xy, e.g., kilograms, multiplied by the units of y, e.g., meters that yields
“kilogram-meters.”

So, if we divide Covariance by the product of the Standard Devi-
ations of x and y, we can eliminate the units and “standardize” the
Covariance. The following formulas are for Samples. For Populations or
Processes, use sigma, 𝜎, instead of s and N instead of n−1.

The Correlation Coefficient is defined as: r =
Cov(x, y)

sxsy
r is also known as “Pearson’s r” or the “Pearson product-moment cor-

relation coefficient” (don’t ask). There are other alternatives for the Corre-
lation Coefficient, but this is the most widely used.

We divide the Covariance by the product of the Standard Deviations of x
and y to “standardize” the Covariance. As a result, r is a unit-less number.

The following indented section is optional. It shows two other (but
equivalent) formulas for r. Looking at r in several different ways may be
helpful for some people.

The Covariance can be shown as the Standard Deviation of xy, i.e.,
Cov(x,y) = sxy. That gives us our 2nd equivalent formula for r:

r =
sxy

sxsy

In the Part 1 article, we said: Cov(x, y) = sxy =
∑

(x − x̄)(y − ȳ)

n − 1
Using simple algebra, we move things around to get:

r = 1
n − 1

∑(
x − x̄

sx

)(
y − ȳ

sy

)

Those terms in the parentheses may look familiar. z is the Test Statis-
tic for the z-Distribution, which is also known as the Standard Normal
Distribution.

zx = x − x̄
sx

and likewise for y. If we make those substitutions, we

can see that r can be expressed in a 3rd equivalent formula, the
“normalized” Covariance.

r =
∑

zxzy

n − 1

where n is the number of (x,y) pairs in our data.
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To put the three formulas for the Correlation Coefficient all in one place:
Remember, these are just different algebraic manipulations of the same

thing.

r =
Cov(x, y)

sxsy
=

sxy

sxsy
=

∑
zxzy

n − 1

The above formulas are for Samples, so the terms are all Latin charac-
ters. For Populations or Processes, substitute the Greek letter rho (𝜌) for r
and the Greek letter sigma (𝜎) for s.

3. The Correlation Coefficient, r, ranges from −1 to +1. r = 0
indicates no Correlation. r = −1 and r = +1 indicate a per-
fect negative or positive Correlation, respectively. But per-
fection almost never happens, and there are different opinions
on where to set the thresholds for “strong” or “weak” Corre-
lation.

In the Part 1 article, we showed that the value of Covariance is different
for different units of measure. The standardization or normalization that
we described above eliminates this shortcoming. The Correlation Coeffi-
cient, r, tells us both the direction and the strength of the Correlation.

Evidence of Correlation
e.g., Less Rigorous

Standard
e.g., More Rigorous

Standard

very strong 0.7 − 1.0 0.81 − 1.00

strong 0.5 − 0.7 0.61 − 0.80

moderate 0.3 − 0.5 0.41 − 0.60

weak 0.1 − 0.3 0.21 − 0.40

none 0.0 − 0.1 0.00 − 0.20

(Negative Correlation thresholds are the same, only negative). In the
social sciences, the phenomena being analyzed are not as precisely gov-
erned by the laws of science as are engineering and scientific phenomena
or processes. So, the standard in social sciences tends to be less rigorous.

4. Correlation is not Causation.

Correlation analysis does not attempt to determine Cause and Effect.
The value of r may tell us that x and y have a strong Correlation, but it
cannot tell us that x causes y or vice versa. It may well be neither. There
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could be one or more unknown “lurking” Variables which influence both
x and y.

We can’t even use the fact that r is near zero to conclude that there is no
cause-effect relationship, just that there is no linear cause-effect relation-
ship.

Regression is the tool for trying to explore cause and effect. But even
Regression is limited. Cause and Effect cannot be proven by statistics
alone.

But the results from a Correlation analysis may give us some insights to
test further with subject-matter-expert knowledge of the real-world interac-
tions of the Factors involved and Linear Regression, followed by Designed
Experiments.

5. Establishing Correlation is a prerequisite for Linear
Regression.

You can’t use Linear Regression unless there is a Linear Correlation.
The following compare-and-contrast table may help in understanding both
concepts.

Correlation Linear Regression

Purpose
Description, Inferential

Statistics
Prediction, Designed

Experiments

Statistic r r, R2, R2-adjusted

Variables Paired 2, 3, or more

Variables
No differentiation

between the Variables.
Dependent y,

Independent x, y = f(x)

Fits a straight line
through the data

Implicitly Explicitly: y = a + bx

Cause and Effect Does not address Attempts to show

Correlation analysis describes the present or past situation. It uses
Sample data to infer a property of the source Population or Process.
There is no looking into the future. The purpose of Linear Regression, on
the other hand, is to define a Model (a linear equation) which can be used
to predict the results of Designed Experiments.

Correlation mainly uses the Correlation Coefficient, r. Regression
also uses r, but employs a variety of other Statistics.

Correlation analysis and Linear Regression both attempt to discern
whether two Variables vary in synch. Linear Correlation is limited to
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two Variables, which can be plotted on a 2-dimensional x–y graph. Linear
Regression can go to three or more Variables/dimensions.

In Correlation, we ask to what degree the plotted data forms a shape
that seems to follow an imaginary line that would go through it. But we
don’t try to specify that line. In Linear Regression, that line is the whole
point. We calculate a best-fit line through the data: y = a + bx.

Correlation Analysis does not attempt to identify a Cause-Effect
relationship, Regression does.

Related Articles in This Book: Correlation – Part 1; Regression – Parts
2–4; Standard Deviation; z



CRITICAL VALUE
It may be helpful to read the article “Alpha, 𝛼” before reading this article.

Summary of Keys to Understanding

1. A Critical Value is derived from the Significance Level, 𝜶,
and the Probability Distribution of a Test Statistic (like z,
t, F, or Chi-square).

I select 𝜶 = 5%

𝜶 = 5%
1 – 𝜶 = 95% 1 – 𝜶 = 95%

z

1.645

z-critical

𝜶 = 5%

2. In Inferential Statistics, comparing a Test Statistic (e.g., z)
to its Critical Value (z-critical) is statistically the same as
comparing the p-value to Alpha.

p ≤ α
z ≥ z-critical

p > α
z < z-critical

The observed difference, change, or effect is: Statistically
Significant

not Statistically

Significant

Areas under the curve (right tail)

α: p:
z-critical z z

z-critical

3. Critical Values are used in defining the boundaries of Con-
fidence Intervals.

α/2 = 2.5% 

z

0

x in cm

180170

x = 𝝈z + x 

α/2 = 2.5% 

Critical
Value

z = –1.960

Critical
Value

z = +1.960

α/2 = 2.5% α/2 = 2.5% 

Confidence
Interval
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Explanation
It may be helpful to read the article “Alpha, 𝛼” before reading this article.

1. A Critical Value is derived from the Significance Level, 𝜶,
and the Probability Distribution of a Test Statistic (like z,
t, F, or Chi-square).

In Inferential Statistics, we estimate the value of a Population or Pro-
cess Parameter, say the Mean, from the corresponding Statistic in a Sam-
ple. Being an estimate, there is a Probability of error. Before collecting the
Sample data, we select a tolerable level of Alpha (False Positive) Error for
this estimate. If we want a 95% Confidence Level of avoiding an Alpha
Error, we select a Significance Level, Alpha (denoted by 𝛼), of 5%.

So, I'll select 𝛼 = 5%.
I want to be 95% confident 

of avoiding an Alpha Error.

A Test Statistic (e.g., z, t, F and Chi-square) is one that has a Prob-
ability Distribution. That is, for any given value of the Test Statistic, the
Probability of that value occurring is known. Graphically, it is the height of
the Distribution’s curve above that value. These Probabilities are available
in tables or via software.

The total of the Probabilities of a range of values is called a Cumulative
Probability. The Cumulative Probability of all values under the curve is
100%. Alpha is a Cumulative Probability. In the following illustration of a
1-sided test, we shade the rightmost 5% of the area under the curve of the
z-Distribution to represent Alpha.
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1 – 𝜶 = 95%
z

z-critical

𝜶 = 5%



CRITICAL VALUE 137

We then draw a vertical line to mark the boundary between the 𝛼 and
1 – 𝛼 areas under the curve. The intersection of this line with the horizontal
axis gives us a number which is the Critical Value for a given value of
Alpha. Given a Test Statistic Distribution and a value for Alpha, tables or
software can provide us the Critical Value.

In this example, selecting 𝛼 = 5% and using the z-Distribution results in
1.645 as the Critical Value of z, also known as “z-critical.”

The Cumulative Probability of z-critical occurring, and that of all z-
scores more extreme (farther from The Mean) than z-critical, is Alpha.
When looking up or calculating Critical Values, we also need to know
whether our test is left-tailed, right-tailed, or 2-tailed.

1-Sided, Right-Tailed

z
1 – 𝜶 = 95%

𝜶 = 5%

1.645

The above example is a 1-sided or 1-tailed test, specifically, a right-
tailed test. You may find tables that are right-tailed or left-tailed (or 2-
tailed). They will often show a graph like the one above (without the dog)
to help identify which one it is.

1-Sided, Left-Tailed

z
1 – 𝜶 = 95%

𝜶 = 5%

–1.645

Note that the Critical Value for z in a left-tailed test is just the nega-
tive of the Critical Value for the right-tailed test. So, if the Distribution is
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left–right symmetrical around zero (like z and t), you can use a right-tailed
table to get a left-tailed value. You cannot do this for Test Statistics like
F and Chi-square, which have asymmetrical (skewed) Distributions.
Their left and right Critical Values must be calculated separately.

2-Sided (aka 2-Tailed)

𝜶/2 = 2.5% 𝜶/2 = 2.5%

–1.960 1.960

z
1 – 𝜶 = 95%

For 2-sided tests, use the Critical Value for 𝜶∕2 for each of the two
shaded areas. This results in Critical Values more extreme (farther away
from the Mean) than the single value for 𝛼 (e.g., 1.960 vs. 1.645 for z, with
𝛼 = 5%).

2. In Inferential Statistics, comparing a Test Statistic (e.g., z)
to its Critical Value (e.g., z-critical) is statistically the same
as comparing the p-value to Alpha.

Let’s say we calculate z = 1.2 from our Sample data. What is the Proba-
bility of any given Sample of the same size getting that value or larger? We
can use the z-Distribution to give us that Probability, 11.5% in this exam-
ple. We find the area under the curve for z and all values more extreme
(farther from the Mean). That area is the p-value (p).

So, like 𝜶 and z-critical, p and z convey the same information. Using
the Distribution, we can get either one from the other – p from z or z
from p.

z
1.2

Sample data
65, 71, 68, 73,  ...

z = 1.2

z
1.2

p = 11.5%

The p-value (p) is a Sample’s actual Probability of an Alpha Error. We
compare this with Alpha (𝛼) – the maximum tolerable Probability of Alpha
Error which we selected.
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Comparing a Test Statistic value to a Critical Value (e.g., z to z-
critical) gives the same result as comparing p to 𝜶. Either of these com-
parisons will tell us the conclusion to be drawn from the analysis.

p ≤ α
z ≥ z-critical

p > α
z < z-critical

The observation from the Sample data is an 
accurate estimate for the Population or 

Process as a whole.

True False

Null Hypothesis Reject Accept (Fail to 
Reject)

The observed difference, change, or effect is: Statistically
Significant

not Statistically

Significant

Areas under the curve (right tail)

α: p:
z-critical z z

z-critical

To further your understanding of how all this works, it may be helpful
to read the article Alpha, p, Critical Value and Test Statistic – How They
Work Together. Also, if you’re having trouble remembering which way the
inequality signs go, see the article p, t, and F: “>” or “<” ?

The terms Critical Region, Rejection Region, etc. are sometimes used
to describe the shaded and unshaded areas, as shown below.

Critical Value

“Critical”/ 

“Rejection”
Region

“Non-Critical”/

“Do Not Reject”
Region

3. Critical Values are used in defining the boundaries of Con-
fidence Intervals.

𝜶/2 = 2.5% 𝜶/2 = 2.5%

Critical 

Value
z = –1.960

Critical 

Value
z = +1.960

z

0

𝜶/2 = 2.5% 𝜶/2 = 2.5%

x in cm

180170
Confidence

Interval

x = 𝝈z + x
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Critical Values are in units of the Test Statistic, like z’s. We can convert
Critical Values into the real-world units of the Sample data, using formulas
like the one shown above. This converts the Critical Values into Confidence
Limits, which define a Confidence Interval.

The Confidence Intervals method is one of the two main methods of
Inferential Statistics; Hypothesis Testing is the other.

Related Articles in This Book: Alpha, 𝛼; Distributions – Part 1: What
They Are; Inferential Statistics; Test Statistic; z; Alpha, p, Critical Value
and Test Statistic – How They Work Together; p, p-Value; p, t, and F: “>”
or “<” ?; Confidence Intervals; Hypothesis Testing – Parts 1 and 2; Reject
the Null Hypothesis; Fail to Reject the Null Hypothesis



DEGREES OF FREEDOM

Summary of Keys to Understanding

1. Degrees of Freedom (symbol: df or the Greek letter 𝜈) is a
way of adjusting for the additional error introduced when
one Statistic is used to calculate another.

Sample Mean =
∑

x

n
Sample Variance =

∑
(x − Sample Mean)

n − 1

2. The effect of the adjustment gets smaller for larger Sample
Sizes.

3. The individual members of some families of Distributions
are specified by their df.

4. Formulas for Degrees of Freedom vary by the Statistics
and the test they are used in

Statistic df Explanation

ANOVA: Mean Sum of Squares
Within (MSW)

N − k N: total # of all data
points

k: # of groups
ANOVA: Mean Sum of Squares

Between (MSB)
k − 1

𝜒2 n − 1 n: Sample Size

𝜒2 test for Goodness of Fit n − 1 n: # of categories

𝜒2 test for Independence (r − 1)(c − 1) # of rows and
columns

𝜒2 test for Variance n − 1 n: Sample Size

F n1 − 1 and n2 − 1 n1 and n2: Sizes of
the 2 Samples

t n − 1
n: Sample Size1-Sample t-test, and Paired

t-test
n − 1

2 (Independent)-Sample t-test n1 + n2 − 2 n1 and n2: Sizes of
the 2 Samples

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. Degrees of Freedom (symbol: df or the Greek letter 𝜈) is a
way of adjusting for the additional error introduced when
one Statistic is used to calculate another.

Notation: Degrees of Freedom is often abbreviated as “df” in text; the
Greek letter nu (𝜈) is commonly used in formulas or equations.

A Statistic is a numerical property of a Sample, for example, the Sample
Mean or Sample Variance. A Statistic is an estimate of the correspond-
ing property (“Parameter”) in the Population or Process from which the
Sample was drawn. Being an estimate, it will likely not have the exact
same value as its corresponding population Parameter. The difference is
the error in the estimation.

So, if we calculate a Statistic entirely from data values, there is a
certain amount of error.

Example: Sample Mean
The Sample Mean is calculated entirely from the values of the Sam-

ple data. It is the sum of all the data values in the Sample divided by the
number, n, of items in the Sample. There is one source of error in its
formula – the fact that it is an estimate because it does not use all the
data in the Population or Process.

Sample Mean =

∑
x

n

If we then use that Statistic to calculate another Statistic, it brings its
own estimation error into the calculation of the second Statistic. This
error is in addition to the second Statistic’s estimation error. This happens
in the case of the Sample Variance.

Example: Sample Variance

Numerator for Sample Variance: =
∑

(x − Sample Mean)2

The numerator of the formula for Sample Variance includes the Sample
Mean. It takes each data value (the x’s) in the Sample and subtracts from
it the Sample Mean. Then it squares and sums all those subtracted values.

So, the Sample Variance has two sources of error:

– it is an estimate from Sample data
– the estimation error from the Sample Mean
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It would be good to somehow distinguish between the effects of the one
source of error for the Mean and the two sources of error for the Variance.
The Degrees of Freedom is intended to adjust for the additional error
introduced when one Statistic is used to calculate another.

We don’t need to make this adjustment for the Sample Mean, but we do
need to do so for the Sample Variance. We divide by n – 1, instead of n.

Sample Mean =

∑
x

n
Sample Variance =

∑
(x− Sample Mean)

n − 1

(The following is an alternative description of the concept of Degrees of
Freedom. Feel free to skip this if you’re comfortable with your understand-
ing at this point.)

Another way that Degrees of Freedom is described is “The number
of independent pieces of information that go into the calculation of a
Statistic.” To illustrate, let’s say we have a Sample of n = 5 data values: 2,
4, 6, 8, and 10.

When we calculate the Sample Mean, we have 5 independent pieces of
information – the 5 values of the data. They are independent because none
of the values are dependent on the values of another. So, for the Mean,
df = 5.

Sample Mean = (2 + 4 + 6 + 8 + 10)∕5 = 30∕5 = 6

But, when we calculate the Sample Variance, we use the Mean as well
as the 5 data values. The Mean is not an independent piece of information,
because is it dependent on the other 5 values.

Also, when we include the Mean, we only have 4 independent pieces
of information left. If we know that the Mean is 30, and we have the data
values 2, 4, 6, and 8, then we can calculate that the last data value has to
be 10. So, 10 no longer brings independent information to the table.

2. The effect of the error adjustment gets smaller for larger
Sample Sizes.

n n − 1 % adjustment

10 9 10%

100 99 1%

The adjustment is applied because using Sample data will never be as
accurate as using all the Population or Process data would be (if that were
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possible and practical). However, using a larger Sample will always have
less inherent error than using a smaller Sample.

For large values of n, the difference between n and n – 1 can be
negligible.

3. The individual members of some families of Distributions
are specified by their df.

The z-Test Statistic has only one Probability Distribution – the Standard
Normal Distribution. But the Probabilities for t, F, and Chi-Square (𝜒2) are
described by families of Distributions. The individual members of these
families are defined by their Degrees of Freedom.

For example, pictured below are three members of the Chi-Square fam-
ily of Distributions. The shaded area represents Alpha = 5%. And the
numbers below the horizontal axis represent the Critical Value of 𝜒2 for
𝛼 = 5%.

43.818.37.8

df = 3 df = 30df = 10

For small values of Degrees of Freedom, the bulk of the 𝜒2 Distribution
is on the left, close to zero, with the tail skewed to the right. As df increases,
the bulk moves to the right and the shape becomes more symmetrical. And
the Critical Value, which is the boundary of the 5% shaded area under the
curve, is a larger number.

The F Test Statistic is the ratio of the Variances of two Samples.
The Sample Sizes, n1 and n2 can be different. The two Degrees of
Freedom from the two Samples are required to specify an individual
Distribution. The shapes of these Distributions are similar to those of Chi-
Square, and they go through similar changes as the Degrees of Freedom
increase.

The shape of the Distribution of the t Test Statistic is the same as the
familiar bell-shaped curve of the Normal Distribution. For smaller values
of df, the t-Distribution is wider than the Normal. As df increases, the shape
narrows and the difference between the two shapes becomes progressively
smaller.

4. Formulas for Degrees of Freedom vary by the Statistics
and the test they are used in
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Statistic df Explanation

ANOVA: Mean Sum of Squares
Within (MSW)

N − k N: total # of all data
points

k: # of groupsANOVA: Mean Sum of Squares
Between (MSB)

k − 1

𝜒2 n − 1 n: Sample Size

𝜒2 test for Goodness of Fit n − 1 k: # of categories

𝜒2 test for Independence (r − 1)(c − 1) # of rows and
columns

𝜒2 test for Variance n − 1 n: Sample Size

F n1 − 1 and n2 − 1 n1 and n2: Sizes of
the 2 Samples

t n − 1

n: Sample Size1-Sample t-test, and Paired
t-test

n − 1

2 (Independent)-Sample t-test n1 + n2 − 2 n1 and n2: Sizes of
the 2 Samples

Related Articles in This Book: Variance; Chi-Square – the Test Statistic
and Its Distributions; Chi-Square Test for Goodness of Fit; Chi-Square Test
for Independence; Chi-Square Test for the Variance; F; t – The Test Statistic
and Its Distributions; t-tests – Parts 1 and 2; ANOVA—Part 3: One Way



DESIGN OF EXPERIMENTS (DOE) –
PART 1 (OF 3)
An exhaustive coverage of DOE is beyond the scope of this book. This 3-
part series attempts to cover the key points and to clarify the most confusing
concepts.

Summary of Keys to Understanding

1. For a Process output y which is a function of several
Factors (x’s),

y = f (x1, x2,… , xn),

DOE can design the most efficient and effective
experiments to determine the values of the x’s which pro-
duce the optimal value of y.

2. Since Designed Experiments provide strong evidence of
Cause and Effect, DOE can also be used to validate – or
invalidate – Regression Models.

3. Statistical software packages perform DOE calculations
which help to specify the elements which make up the
Design: Levels, Combinations, Replications, Runs, Order.

4. Don’t extrapolate. Whatever conclusions we make as a result
of the experiment are only valid within the range of Levels
tested.

Our experiments show that 3

pills produce results which

are 3 times as good as 1 pill.

So, 10 pills should be

10 times as good.

Actually, 10 pills would send

you to the hospital.

5. To start, identify all reasonably plausible Factors.
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Explanation

1. For a Process output y, which is a function of several
Factors (x’s),

y = f (x1, x2,… , xn),

DOE can design the most efficient and effective
experiments to determine the values of the x’s which pro-
duce the optimal value of y.

DOE can be used to select values for Factors (x Variables) which pro-
duce the optimal value for – or the minimal Variation in – the Response
(y Variable). Examples of Factors in a laundry Process could be water
temperature and type of detergent. The Response would be a measure of
cleanliness.

DOE is active and controlling. (This can be done with Processes, but
usually not with Populations).

DOE doesn’t collect or measure existing data with pre-existing val-
ues for y and the x’s. DOE specifies Combinations of values for
inputs (Factors) and then measures the resulting values of the outputs
(Responses). This is the Design of the Experiment.

DOE is more efficient and effective than other methods.

� Trial and Error is, by definition, chancy. It rarely gets good results.
� Testing one Factor at a time can require a large number of experi-

mental Runs. DOE uses statistics to minimize the number of Runs.
Also, 1-Factor-at-a-time does not account for Interactions between
the Factors. DOE does. Interactions can be very important. We need
to understand them.

� Testing all possible Factors at once can be inefficient and risky. The
phased approach of DOE allows for learning and adjusting during
the experiment.

2. Since Designed Experiments provide strong evidence of
Cause and Effect, DOE can also be used to validate – or
invalidate – Regression Models.

Designed Experiments (those designed by DOE) provide much stronger
evidence of Cause and Effect than Inferential Statistics. Designed Experi-
ments are based on careful statistical design and controlled conditions.

Compared to Inferential Statistical analyses, Designed Experiments
are much less susceptible to unknown Factors outside the process.
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The article “Regression – Part 3” said that we can’t use the same data
to create a Regression Model and to test it. If a Regression Model is to be
a valid model of Cause and Effect, it must be able to predict future data
derived from controlled experiments. Experiments designed by DOE are
the way to test this.

3. Statistical software packages perform DOE calculations
which help to specify the elements which make up the
Design:
� Levels
� Combinations
� Replications
� Runs
� Order

There are many calculations to be performed in the various aspects of
DOE, and almost always, statistical software is employed to perform this
work. So, we won’t go into those calculations here.

Levels

Usually, for practical reasons (cost and time), only two Levels of each
Factor are tested. Let’s use a hypothetical example of a laundry experi-
ment.

Levels can be high or low numerical values for Factors such as tem-
perature or time. Or they can represent Yes or No answers to question
such as “Was there a pre-wash cycle?”, or they can be a choice, (e.g.,
“Detergent #1” or “Detergent #2”).

We can use shorthand labels such as “−1” and “+1” (or just “−” and
“+”) to identify the two Levels. For example, “−1” for 50◦F and “+1” for
150◦F. (Later we’ll see that this shorthand has a purpose, since we’ll be
“multiplying” the −1s and +1s.)

For numerical Levels, it is important to select values which are suffi-
ciently separated to have measurably different effects. Often this means
using values which are outside the normal operating range, sometimes con-
siderably so.

Combinations

Let’s say we have three Factors, each of which has two Levels (labeled
“+1” and “−1”).
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Then there are 23 = 8 possible Combinations of values which we can
test: (−1, −1, −1); (−1, +1, −1); (−1, −1, +1); (−1, +1, +1); (+1, −1,
−1); (+1, +1, −1); (+1, −1, +1); and (+1, +1, +1).

Replications

Every Process has some amount of random internal Variation
(“noise”). If we repeat (Replicate) a given Combination 3 times, we are
likely to get three somewhat different values of the Response. DOE will
specify a number of Replications which will enable this internal Vari-
ation to be accurately quantified – and thus allow it to be separated from
the Variation which is caused by varying the values of the Factors.

Runs

One “Run” is a single Combination tested once. Three Replications of one
Combination is three Runs.

Order

Testing the Combinations in a random order is important, as we’ll
explain in Part 3. The software can provide the order in which the Combi-
nations are to be tested.

4. Don’t extrapolate. Whatever conclusions we make as a result
of the experiment are only valid within the range of Levels
tested.

Our experiments show that 3

pills produce results which

are 3 times as good as 1 pill.

So, 10 pills should be

10 times as good.

Actually, 10 pills would send

you to the hospital.

This is another reason to select low and high numerical Levels which
are widely separated.

5. To start, identify all reasonably plausible Factors.
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Statistics need not be involved in this. Use subject matter expertise
(preferably from brainstorming with several knowledgeable people who
have different roles in the process) to identify all reasonably plausible Fac-
tors which might influence the value of the Response, y. Typically, there
would be 6 to 8 or more of these.

Please continue with the article, Design of Experiments (DOE) –
Part 2.



DESIGN OF EXPERIMENTS (DOE) –
PART 2 (OF 3)
Builds on the content of the article, Design of Experiments (DOE) – Part 1.

Summary of Keys to Understanding

1. The Estimated Effect of a Factor xi is:
Ei = (the Average of the y’s in Runs where xi was “High”)
minus (the Average of the y’s in Runs where xi was “Low”)

2. The “−1” and “+1” Coded Level notation is more than just
a shorthand. These values can be multiplied to provide a
formula for Estimated Effect of a Factor or Interaction.

3. An Interaction is present when the two Levels of a Factor
react differently to a change in Level of another Factor.

Parallel lines indicate No Interaction. Crossed lines indicate an Inter-
action.

No Interaction

B: Water Temperature
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A: Detergent #1

A: Detergent #2

B: Water Temperature
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Cold Warm Hot

No Interaction

A: D
etergent #

1

A: D
etergent #

2

B: Water Temperature

C
le
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n
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n

es
s

B

y

Cold Warm Hot

Interaction Significant

A: D
etergent #

1

A: Detergent #2

4. To calculate the Coded Level of an Interaction, AB for a
given Run, multiply the Coded Level of A by the Coded
Level of B.

Run
A
x1

× B
x2

= AB
x1×2

#1 −1 −1 +1

#2 +1 −1 −1

#3 −1 +1 −1

#4 +1 +1 +1

#5 −1 −1 +1

#6 +1 −1 −1

#7 −1 +1 −1

#8 +1 +1 +1
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Explanation

1. The Estimated Effect of a Factor xi is:
Ei = (the Average of the y’s in Runs where xi was “High”)
minus (the Average of the y’s in Runs where xi was “Low”)

That seems like a common-sense way to do it.
Factors are the x Variables – the inputs – in the function, y = f(x1, x2,

. . . , xn). The output, y, is called the “Response Variable.” (Sometimes,
A, B, C, etc. are used instead of x1, x2, x3, etc. to denote the Factors.)

In the simple example of 3 Factors (X1, X2, and X3) and 2 Levels (low
and high), we have 23 = 8 different Combinations we can test. Without
repeating a Combination, we can have 8 experimental Runs with 8 results
for y.

Example
“−1” represents the low Level for the Factor, and “+1” represents the

high Level. We call these “Coded Levels.”

Inputs: Coded
Levels of Factors

Output: Response
value

Run
A
x1

B
x2

C
x3

y

#1 −1 −1 −1 1

#2 +1 −1 −1 6

#3 −1 +1 −1 6

#4 +1 +1 −1 11

#5 −1 −1 +1 2

#6 +1 −1 +1 11

#7 −1 +1 +1 5

#8 +1 +1 +1 13

The Estimated Effect of a Factor is the average value of y when the
Factor is at a high Level minus the average value of y when the Factor was
is at a low Level.

A was high in Runs 2, 4, 6, 8. Average y = (6+11+11+13)/4 = 10.25
A was low in Runs 1, 3, 5, 7. Average y = (1 + 3 + 4 + 5)/4 = 3.5
The Estimated Effect, E1, of the Factor x1, is 10.25 – 3.5 = 6.75
Likewise, E2, the Estimated Effect of x2, is (35/4) – (20/4) = 3.75
And E3 is (31/4) – (24/4) = 1.75

Terminology: The Estimated Effects of Factors – as opposed to Interac-
tions between Factors – are called “Main Effects.”
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2. The “−1” and “+1” Coded Level notation is more than
just a shorthand. These values can be multiplied to
provide a formula for the Estimated Effect of a Factor or
Interaction.

For example, the Level for Factor x1 was “High” in Runs 2, 4, 6, and 8.
So, we multiply the y values for those Runs by the +1s that are in the x1
column for those rows.

x1 was Low in Runs 1, 3, 5, and 7. So, we multiply the y value by the
−1s.

Level of x1 is High

Run x1 × y =
#2 +1 6 6

#4 +1 5 5

#6 +1 11 11

#8 +1 13 13

Total: 41

Divide by 4 for the Average: 10.25

Level is of x1 is Low

Run x1 × y =
#1 −1 1 −1

#3 −1 3 −3

#5 −1 4 −4

#7 −1 5 −5

Total −14

Divide by 4 for the Average: −3.5

(Note: the average value of the y’s when x1 is Low is 3.5. It is the mul-
tiplication by the −1s that turn it into −3.5)

The Estimated Effect of x1, E1 = 10.25 + (−3.5) = 6.75, just like we
calculated above. If we do this in a single table, we can get the same result
by single addition of the values of the rightmost column and then divide
by half the number of Runs (4).
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Run x1 × y =
#1 −1 1 −1

#2 +1 6 6

#3 −1 6 −6

#4 +1 11 11

#5 −1 2 −2

#6 +1 11 11

#7 −1 5 −5

#8 +1 13 13

Total:

Divide by 4 for E1, the Effect of x1: 6.75

This series of calculations can be summarized in a formula:

Ei =
1

2k−1

2k∑

j=1

ci,jyj or Ei =
∑2k

j=1 ci,jyj

2k−1

where

Ei is the estimated Effect of the Factor xi

i is the number identifier of the Factor
k is the number of Factors (3, in this example);

2k is the number of Runs;
2k−1 is half the number of Runs

j is number of the Run (from 1 to 8 in this example)
cij is the Coded Level (“−1” or “+1”) for “Low” or “High” Levels of

the Factor i in Run j; yj is the value of the Response y in the Run j.

3. An Interaction is present when the two Levels of one
Factor react differently to a change in Level of another
Factor.

For example, we are trying to maximize cleanliness in a laundry Process.
y is a numerical measure of cleanliness
Factor 1, A, is detergent type. The Levels are detergent #1 and detergent

#2
Factor 2, B, is brand of washing machine. The Levels are Brand P and

Brand Q
Factor 3, C, is the amount of bleach added. The levels are Low and High
Factor 4, D, is water temperature. The levels are Low and High
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Left Diagram below:
– Detergent #1 cleans better than Detergent #2.
– However the brand of washing machine makes no difference.
So, the two Levels of detergent type react the same (no reaction at all)

to a change in the Level of washing machine. Thus, there is no Interaction
between x1 and x2.

Center Diagram:
– An increase in the Level of Factor C, bleach, increases the value of

Y by an equal amount for the two Levels of detergent. There is no
synergy between bleach and detergent type. There is no Interaction.
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Parallel lines indicate No Interaction. Crossed lines indicate an Interaction.

Right Diagram:
One Level (Detergent #1) of Factor A (detergent type) reacts

significantly stronger than the other Level (Detergent #2) to a Level change
in Factor D (water temperature). There is an Interaction. When the lines are
crossed at substantially differently angles – as in the right diagram – the
Effect of the Interaction is likely to be Statistically Significant. If the lines
cross, but are close to parallel, the Interaction may not be Statistically Sig-
nificant. Statistical software will tell us which is the case.

4. To calculate the Coded Level of an Interaction, AB, simply
multiply the Coded Level of A by the Coded Level of B.

Run
A
x1

× B
x2

= AB
x1×2

#1 −1 −1 +1

#2 +1 −1 −1

#3 −1 +1 −1

#4 +1 +1 +1

#5 −1 −1 +1

#6 +1 −1 −1

#7 −1 +1 −1

#8 +1 +1 +1
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Performing these multiplications for all Interactions for 3 Factors, we
get the following table:

A
x1

B
x2

C
x3

AB
x1 x2

AC
x1 x3

BC
x2 x3

ABC
x1 x2 x3

Run

c1 c2 c3 c12 c13 c23 c123

#1 −1 −1 −1 +1 +1 +1 −1

#2 +1 −1 −1 −1 −1 +1 +1

#3 −1 +1 −1 −1 +1 −1 +1

#4 +1 +1 −1 +1 −1 −1 −1

#5 −1 −1 +1 +1 −1 −1 +1

#6 +1 −1 +1 −1 +1 −1 −1

#7 −1 +1 +1 −1 −1 +1 −1

#8 +1 +1 +1 +1 +1 +1 +1

As before, the top row of these tables shows two different naming con-
ventions for each Factor and Interaction. For example, “AB” and “x1x2”
are two different names for the same Interaction. In this table, we added
another row to show how the Coded Levels (the c’s) are denoted. For exam-
ple, the name of the Coded Levels for AB (for any Run) will include “c12.”
The name for the Coded Level of AB in the jth Run will be of the form
“c12,j.” For example, c12,8 = +1

This table includes three different sets of information:
Design: The Runs and the Factor columns, A, B, C, tell us how to set

the inputs (Levels of Factors) for each Run. We know this prior to running
the experiment. In this example, there is just one Replication of the Runs.
Each Run is to be performed in the order shown. The order of the Runs is
set by statistical software to ensure Randomness.

Calculated Levels: We cannot set Levels for Interactions; the Interac-
tion Columns are calculated from the Factor Columns. We could calcu-
late them prior to the experiment, but that information is not useful without
the y values which are measured during the experiment.

Notation:
– It seems that, for labelling Interactions, the letter notation (ABC) is

more common – and maybe less confusing – than using x’s with sub-
scripts.

– On the other hand subscripts are useful in formulas that involve sum-
mation signs.
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For example, in the Formula for Estimated Effects, the coded value
for the ABC Interaction in the 7th run is c123,7

– Here, we are using c’s with subscripts to denote the Coded Levels
(“−1” or “+1”). Other publications sometimes use c’s with subscripts
to denote the estimate of Effects (instead of E’s with subscripts, as we
do here.)

We can use these Coded Levels and our formula to calculate the
Effect for each Factor and each Interaction. For example, Factor AB
(aka x1x2) has the Coded Levels C12,j where j goes from 1 to 8.

E12 =
1

23−1

8∑

j=1

c12,jyj

= 1
4

[(+1)(1) + (−1)(6) + (−1)(6) + (+1)(11) + (+1)(2)

+ (−1)(11) + (−1)(5) + (+1)(13)]

= 1
4

[−1] = −0.25

Other than zero, this is the smallest Effect a Factor can have, so it is
unlikely that it is Statistically Significant. The statistical software will tell
us for sure.

=> Please continue with the article “Design of Experiments (DOE) –
Part 3”
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PART 3 (OF 3)
Builds on the content of the articles, Design of Experiments – Parts 1 and 2.

Summary of Keys to Understanding

1. Full Factorial designs test all possible Combinations of
Factors and their Levels. They yield the best information
on the Effects of all Factors and all possible Interactions.
But, they can be prohibitively expensive.

2. Fractional Factorial designs test fewer Combinations and
can provide acceptable rigor.

Full Factorial
for 2 Factors

⇨
Calculate

Interaction for
Confounding

⇨ Fractional Factorial
for 3 Factors

Run
A
x1

B
x2

Run
A
x1

B
x2

AB
x1x2

Run
A
x1

B
x2

C≈AB
x3

#1 −1 −1 #1 −1 −1 +1 #1 −1 −1 +1

#2 +1 −1 #2 +1 −1 −1 #2 +1 −1 −1

#3 −1 +1 #3 −1 +1 −1 #3 −1 +1 −1

#4 +1 +1 #4 +1 +1 +1 #4 +1 +1 +1

3. DOE Screening Experiments are Resolution III or IV exper-
iments designed to tell us which Factors are most Signifi-
cant.

4. Next, Full Factorial or Fractional Factorial Experiments
are designed and conducted, using just the most Signifi-
cant Factors which were identified in the Screening Exper-
iments. The focus is on Interactions, as well as Main
Effects.

5. For Nuisance Factors and Unknown Factors,
Block (group) what you can; Randomize what you can’t.

6. Analyze the data and confirm the DOE results.
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Explanation

1. Full Factorial designs test all possible Combinations of
Factors and their Levels. They yield the best information
on the Effects of all Factors and all possible Interactions.
But, they can be prohibitively expensive.

In most DOE experiments, only two Levels − “High” and “Low” – are
tested. If k is the number of Factors, then there are 2k different Combina-
tions. A 2k design is called a Full Factorial design.

In Part 1, the first step was to identify 6 to 8 or more possible Factors to
be evaluated. Six factors would yield 26 = 64 Combinations to be tested –
each with several Replications. That many Runs would give us the
needed information to analyze all Factors and all possible Interactions.

There would be 2-level Interactions, such as AB, 3-level Interactions,
like ABC – all the way up to the 6-level Interaction, ABCDEF.

However, performing that many Runs would often be prohibitively
expensive or otherwise impractical.

2. Fractional Factorial designs test fewer Combinations and
can provide acceptable rigor.

If a Full Factorial design has 2k Combinations, then a Fractional Fac-
torial design has a fraction of that number 2k−p Combinations. If we set
p = 1, then we’ll get a half-fractional design, because 2k−1 is half of 2k.
For our simple example, let’s have k = 3 (indicating 3 Factors), and p = 1.
So, we’ll have 22 = 4 Combinations, instead of 23 = 8.

We start with a Full Factorial table (left) of Coded Levels for k − 1 =
2 of our 3 Factors. We can call the Factors A and B or x1 and x2. With 2
Factors, we have 4 Combinations and 4 Runs.

Full Factorial
for 2 Factors

⇨
Calculate

Interaction for
Confounding

⇨ Fractional Factorial
for 3 Factors

Run
A
x1

B
x2

Run
A
x1

B
x2

AB
x1x2

Run
A
x1

B
x2

C≈AB,
x3

#1 −1 −1 #1 −1 −1 +1 #1 −1 −1 +1

#2 +1 −1 #2 +1 −1 −1 #2 +1 −1 −1

#3 −1 +1 #3 −1 +1 −1 #3 −1 +1 −1

#4 +1 +1 #4 +1 +1 +1 #4 +1 +1 +1
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Next (center table), we’ll multiply the two columns of these Coded
Levels to calculate a third column, which will therefore have Coded Levels
for the Interaction AB.

Step 3 is to re-label the Interaction column as the column for the third
Factor, C, mixed up or Confounded with the Interaction of A and B. So
we’re using the design calculated for the Interaction column in testing
for the third Factor. This Fractional Factorial design has 4 Runs for 3
Factors instead the 8 Runs which the Full Factorial design would have.

This would be acceptable so long as we have reason to believe that
the Effect of the Interaction is not Statistically Significant.

� Not infrequently, 2-level Interactions have Significant effects, and
these can be very useful in explaining apparently strange process out-
comes.

� Significant 3-level Interactions are comparatively rare.
� There is some difference in opinion regarding Significant 4-Level

Interactions, that is, are they so exceedingly rare as to be ignored?
� 5-or more–Level Interactions are not worth considering.

Our simple example of a 3-Factor Fractional Factorial (23−1) design
would be risky. We’re Confounding a Main Effect (C) with a 2-Factor Inter-
action (AB), which could be Significant.

This C≈AB Confounding is actually the design Generator for an Alias
Structure which the statistical software will produce. This structure may
involve Confounding other Factors with Interactions and Interactions with
each other. (Terminology note: “Aliasing and Aliased” are sometimes used
as synonyms for “Confounding” and “Confounded.”)

Reviewing this Alias structure may reveal, for example, that a specific
Factor, say B, is involved with all of the Confounded 2-Factor Interactions.
We, not the statistical software, choose which real-world Factors we
assign to which letters (A, B, C, etc.). So, we should designate as “B” a
real-life Factor which is unlikely to Interact with others.

In the laundry process described in the Part 2 article, we might expect
that the Factor washing machine brand would not interact with other Fac-
tors, so we could designate that as Factor B. Then, the aliasing structure
could Confound B with other the Factors involved in 2-Factor Interactions,
and we could greatly lessen our concern that these Interactions would be
Statistically Significant.

3. DOE Screening Experiments are Resolution III or IV exper-
iments designed to tell us which Factors are most Signifi-
cant.
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In Part 1, we said the first step was to use subject matter expertise to
identify all possible or reasonably plausible Factors – 6 to 8 or more of
these.

We would like to save our time and budget focusing on the “critical
few” Factors with the most impact. So, Step 2 is to use a “Screening
Experiment” to screen out Factors that are not Statistically Significant or
which have the least significance. So, we don’t need as high a “Resolution”
experiment as we will later. Resolution III or IV is sufficient.

Resolution measures the extent to which estimated Main Effects are
Confounded with Interactions.

Resolution III: (1+2)
Main Effect (1) Confounded with 2-Factor Interactions

Resolution IV: (1+3 or 2+2)
Main Effect (1) Confounded with 3-Factor interactions and
2-Factor interactions Confounded with other 2-Factor Interactions

Statistical software can serve up a choice of design options of various
Resolutions for us

Terminology note: “2-Factor” and “3-Factor,” etc. Interactions are
sometimes called “2nd Order” and “3rd Order” etc. Interactions.

In the ANOVA table output from the Screening Experiment,

ANOVA table

Factors df SS MS F Effect p

A Detergent 1 91.1 91.1 729 6.75 0.02

B Water Temp. 1 28.1 28.1 225 3.75 0.04

C Washing Machine 1 6.1 6.1 49 1.75 0.09

Interactions

AB Detergent × Water Temp. 1 0.1 0.1 1 −0.25 0.50

AC Detergent × Washing Machine 1 6.1 6.1 49 1.75 0.09

BC Water Temp × Washing Machine 1 3.1 3.1 25 −1.25 0.13

ABC Detergent × Temp X Machine 1 0.1 0.1 1.0 −0.3 0.5

� a Factor with a p ≤ 𝜶 (𝛼 is most commonly selected to be 0.05)
has a Statistically Significant Effect on the Response (y). We’ll
screen out those that don’t. In the table above, A (detergent) and B:
(water temperature) have Statistically Significant Effects. C (washing
machine brand) does not. So, we would keep A and B, and proceed
without C.
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� ANOVA is used to apportion the Variation contributed by each Factor
and Interaction. The Sums of Squares (SS) column indicates the
relative magnitude of the Effect of each Factor on the Response.
We may want to proceed with just the top 2 or 3 Significant Factors – if
there is sizeable gap in Sums of Squares between these and the others.
In this example, we have only two Significant Factors (A and B), so
we don’t need to use the SS for screening purposes. A Pareto chart
can also be used to determine which Factors survive the Screening
Experiment and move on to the next step.

If none of the Factors have p ≤ 𝜶:

� The original list may not have included Factors that had a Significant
influence, and/or

� The Levels were not sufficiently separated to result in a difference
in y.

4. Next, Full Factorial or Fractional Factorial Experiments
are designed and conducted, using just the most Signifi-
cant Factors which were identified in the Screening Exper-
iments. The focus is on Interactions, as well as Main
Effects.

In a Screening Experiment, we ignore Interactions, but Interactions can
have very important effects on Responses. So our next set of experiments
will focus on both Interactions and Main Effects.

Earlier, we said that there were 23 = 8 possible Combinations for 2 Lev-
els of 3 Factors. A Full Factorial experiment tests all possible Combina-
tions. For 2 Levels of k factors, there are 2k possible Combinations. If we
tested all of them, we would have a Full Factorial Design.

Screening Experiments are often Fractional Factorial Experiments
which fully test fewer than 2k Combinations. If time and budget per-
mit, at this stage, we would perform a Full Factorial Experiment with
the Factors selected in the Screening Experiment. If we use our Screen-
ing Experiment to reduce the number of Significant Factors to 3 or 2,
then we are more likely to be able to afford the Full Factorial number
of Runs.

With 4, 5 or more Factors at this point, budget and time constraints
could require a Fractional Factorial design. The statistics software can
calculate the Resolution for various options. We select the option with
which we are comfortable, based on the following definitions.
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Resolution IV: (1+3 or 2+2)

� Main Effects Confounded with 3-Factor Interactions. (Significant
3-Factor Interactions are fairly rare, so this may be OK for some exper-
iments.)

� 2-Factor interactions Confounded with other 2-Factor Interactions

Resolution V: (1+4 or 2+3 or 3 + 2)

� Main Effects Confounded with 4-Factor Interactions. (Signifi-
cant 4-Factor Interactions are almost unheard of, so this Resolution
should be fine for almost all purposes.)

� 2-Factor Interactions Confounded with 3-Factor Interactions
� 3-Factor Interactions Confounded with 2-Factor Interactions

Resolution VI: Main Effect Confounded with 5-Factor Interactions.
This is overkill. Stick with Resolution V.
Or, since this is only possible with 5 or more Factors, use your Screening

Experiment to select the top 4 Significant Factors.

5. For Nuisance Factors and Unknown Factors,
Block (group) what you can; Randomize what you can’t.

A Nuisance Factor is one outside the Process. This is also known as
a Special Cause of Variation. For example, the ambient temperature of a
factory can increase steadily as the day goes on. For some Processes, this
can affect the results. (y values). See the article Control Charts – Part 1 for
more on Special Cause Variation.

A known Nuisance Factor can often be Blocked. To “Block” in this
context means to group into Blocks. By so doing, we try to remove the
Effect of Variation of the Nuisance Factor. In this example, we Block the
Effect of the daily rise in ambient temperature by performing all our exper-
imental Runs within a narrow Block of time. And, if it takes several days to
complete all the Runs, we do them all at the same time of day and the same
ambient temperature. We thus minimize the Variation in the Nuisance
Factor, ambient temperature. That minimizes the Variation in y caused
by the Nuisance Factor.

There can also be Factors affecting y which we don’t know about. Obvi-
ously, we can’t Block what we don’t know. But we can often avoid the
influence of Unknown Factors (also known as “Lurking” Variables) by
Randomizing the order in which the experimental combinations are tested.
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For example – unbeknownst to us – the worker performing the steps
in an experiment may get tired over time, or, conversely, they might “get
in a groove” and perform better over time. So we need to Randomize
the order in which we test the Combinations. Statistical software can
provide us with the random sequences to use in the experiment.

6. Analyze the data and confirm the DOE results.

We said in the Part 1 article that a full coverage of DOE is beyond the
scope of this book. That certainly holds for the analysis of the results of the
experiments. Here are some of the things that should be done. Use subject
matter knowledge in addition to the statistical tools.

� Find the Statistically Significant Factors and Interactions (p ≤ 𝛼).
� Re-run the analysis with only these Statistically Significant Effects.
� Analyze all the data and graphs produced by the software; look for

anomalies, time-order effects, etc.
� Create a Regression Model from the data; R2 should be high.
� Residual plots from the Regression Model should be Normally dis-

tributed around zero.
� Find the optimal settings of the Factors.
� Run several tests at the optimal settings to confirm the results. The

Regression Model can only be proven valid if it correctly predicts
future results.

Related Articles in This Book: Design of Experiments (DOE) – Parts 1
and 2; ANOVA, Parts 1 – 4; Sums of Squares; Alpha (𝛼); p-Value, p; Control
Charts – Part 1: General Concepts and Principles; Regression Parts 1–5;
Residuals; Charts, Graphs, Plots – Which to Use When



DISTRIBUTIONS – PART 1 (OF 3):
WHAT THEY ARE

1. A Distribution (also known as Probability Distribution) is a
set of values of a Variable, along with the associated Proba-
bility of each value of the Variable. Distributions are usually
plotted with the Variable on the horizontal axis and the Prob-
ability on the vertical axis.

Prob(z)

0.40
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0.20
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0.00
–3 –2 –1 0 +1 +2 +3

z

2. Named Distributions usually occur in families, e.g., Nor-
mal Distributions, t -Distributions, F- Distributions, Binomial
Distributions, etc.

3. Different Distributions can have Discrete or Continuous
Probability Curves for Discrete or Continuous data.

Distribution Data Probability Curve

Binomial, Hypergeometric,
Poisson

Discrete Discrete

Exponential, Normal, t Continuous Continuous

F, Chi-Square Both Continuous

4. Distributions can be numerically described by three cate-
gories of Parameters: Central Tendency (e.g., Mean), Vari-
ation/Spread (e.g., Standard Deviation), Shape (e.g., Skew).

Central Tendency Variation/ Spread Shape
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Explanation

1. A Distribution (also known as Probability Distribution) is a
set of values of a Variable, along with the associated Proba-
bility of each value of the Variable. Distributions are usually
plotted with the Variable on the horizontal axis and the Prob-
ability on the vertical axis.

Prob(z)
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This is a graph of the Standard Normal Distribution, whose Variable is
z. We can see that the Probability of z = 0 is about 0.4 and the Probability
of 1 or −1 is about 0.2.

2. Named Distributions usually occur in families, e.g., Nor-
mal Distributions, t- Distributions, F -Distributions, Binomial
Distributions, etc.

Some authors say that a Distribution is any collection of data values for
a Variable. But that could just as easily describe a Sample or a Population,
and it is not descriptive of how Distributions are generally used in statistics.
So, here we will focus on named families of Distributions.

The Standard Normal Distribution in the graph above is a member of the
Normal Distribution family. Different values for the Mean and/or Standard
Deviation would produce different members of the family with different
Probabilities. For the Normal Distribution, the shapes would still be fairly
similar. But different values for the defining or generating properties of
other families can result in dramatic differences as shown below:

Pr(X)
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3 members of the Binomial Distribution family
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Distribution families and the properties which generate different
Distributions within each family:

� Binomial: number of trials (n) and Probability of each trial (p)
� Chi-Square: Degrees of Freedom (df)
� Exponential: Mean (𝜇)
� F: Degrees of Freedom (df) for the numerator and df for the denomi-

nator
� Hypergeometric; Proportion of successes
� Normal: Mean (𝜇) and Standard Deviation (𝜎)
� Poisson: Mean (𝜇, also known as 𝜆, the Expected Value)
� t: Degrees of Freedom (df)

There are a number of named families of Probability Distributions. This
3-part series of articles on Distributions will concentrate on these eight
commonly-used ones. There are individual articles on each. Four of these
Distributions have their own Test Statistics: Chi-Square, F, t, and Nor-
mal (z).

3. Different Distributions can have Discrete or Continuous
Probability Curves for Discrete or Continuous data.

Distribution Data Probability Curve

Binomial, Hypergeometric,
Poisson

Discrete Discrete

Exponential, Normal, t Continuous Continuous

F, Chi-Square Both Continuous

Standard Normal Distribution
Continuous Data and Continuous

Probability Curve

Prob(z)

–30 1 2 3 4 5 6 7 8 9 10 –2 –1 0 1 2 3
z

Prob(X)

Binomial Distribution
Discrete Data and Discrete

Probability Curve

X
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These graphs show the difference between a Distribution that has a Dis-
crete data and a Discrete curve compared to a Distribution with Continuous
data and a Continuous curve.

For the Discrete data Distribution, the values of the Variable X can
only be non-negative integers, because they are Counts. There is no Prob-
ability shown for 1.5, because 1.5 is not an integer, and so it is not a
legitimate value for X. The Probabilities for Discrete data Distribution
are shown as separate columns. There is nothing between the columns,
because there are no values on the horizontal axis between the individual
integers.

For Continuous Distributions, values of horizontal-axis Variable are real
numbers, and there are an infinite number of them between any two inte-
gers. Continuous data are also called Measurement data; examples are
length, weight, pressure, etc. The Probabilities for Continuous Distri-
butions are infinitesimal points on smooth curves.

For the first six Distributions described in the table above, the data used
to create the values on the horizontal axis come from a single Sample or
Population or Process. And the data are either Discrete or Continuous. The
F and Chi-Square (𝜒2) Distributions are hybrids. Their horizontal axis
Variable is calculated from a ratio of two numbers, and the source data
don’t have to be one type or another. (This is explained in the three articles
on the different types of Chi-Square tests.) Being a ratio, the horizontal
axis Variable (F or 𝜒2) is Continuous. The Probability curve is smooth and
Continuous.

4. Distributions can be numerically described by three cate-
gories of Parameters: Central Tendency (e.g., Mean), Vari-
ation/Spread (e.g., Standard Deviation), Shape (e.g., Skew).

The named Distributions are intended to represent Populations (and not
usually Samples), so we use the term “Parameter” (instead of “Statistic”) to
describe measures of their properties. There are three categories of Param-
eters which we can use to describe a Distribution:

� Central Tendency: e.g., Mean, Mode, Median
� Variation (aka “Variability,” “Dispersion,” “Spread,” and “Scatter”)

e.g., Standard Deviation, Variance, Range
� Shape: e.g., Skew and Kurtosis

Central Tendency Variation/ Spread Shape
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Central Tendency

The Mean is the average of all the x values. The Median is the x value in
the middle of the range, and the Mode is the x value that is most common.

In the Poisson Distribution below left, the Mean is four, and the Modes
are three and four. Note that – unlike Mean and Median – there can be more
than one Mode. And the two or more Modes do not need to be contiguous,
as they are in this example. In the Exponential Distribution below right,
the Mean is five, and the Mode is zero. In both cases, the Median is not
meaningful, since the Range extends indefinitely toward the right.
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Actually, for these two Distributions, we didn’t need to calculate the
Mean; the Mean is the Parameter which is used to generate individual
Distributions within these two families. The individual members of the
Poisson and Exponential Distribution families are produced by their
individual values for the Mean. Similarly, individual members of the
Normal family are defined by their individual values for two Param-
eters – Mean and Standard Deviation. For example, the Standard Nor-
mal Distribution is the one whose Mean is zero and Standard Deviation
is 1.

In statistical analyses like t-tests, ANOVA, and ANOM, the Means of
Samples or Populations (or a Sample and a Population) are compared as a
way of determining whether the two entities are statistically similar or dif-
ferent. In Nonparametric analyses, where data do not approximate a Nor-
mal Distribution, the Medians are compared.

Variation/Variability/Dispersion/Spread/Scatter

All mean the same thing, and there is a separate article devoted to that
subject. They are measures of how “spread-out” a Distribution is. The most
useful measure is Standard Deviation. Other measures include Variance,
Range, and InterQuartile Range. These are all explained in that article.
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Shape

Skew or “Skewness” and Kurtosis are the two most commonly used mea-
sures of Shape. If a Distribution is left–right symmetrical, it has a Skew of
zero. Otherwise, the Skewness measures the direction and the degree to
which the Distribution appears to be stretched out in one direction or
another. See the article Skew, Skewness.

Tail is a term used to describe the rightmost and/or leftmost parts of
a Distribution. The dog’s tail in the picture above points in the direction
of the Skew. Since the right tail is thicker across a longer stretch in the
illustration above, the Skewness is positive.

Kurtosis is a measure of how “pointy” the Distribution is. The Nor-
mal Distribution has a Kurtosis of zero. Distributions pointier than the Nor-
mal have a positive Kurtosis. Less-pointy Distributions (which then have
heavier tails) have a negative Kurtosis.

Related Articles in This Book: Distributions – Part 2: How They Are
Used; Distributions – Part 3: Which to Use When; Which Statistical Tools
to Use to Solve Some Common Problems; Binomial Distribution; Chi-
Square – the Test Statistic and Its Distributions; Exponential Distribu-
tion; F – the Test Statistic and Its Distributions; Hypergeometric Distri-
bution; Nonparametric; Normal Distribution; Poisson Distribution; Skew,
Skewness; t, the Test Statistic and its Distributions; Test Statistic; Varia-
tion/Variability/Dispersion/Spread
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HOW THEY ARE USED

1. A Discrete Distribution – like the Binomial, Hypergeometric,
or Poisson – can provide Probabilities for individual values
of X or Cumulative Probabilities of a range of values.
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2. A Continuous Distribution associated with a Test Statis-
tic – e.g., the Standard Normal, t, F, and Chi-Square – can
take a value for the Cumulative Probability, Alpha, and
give us a Critical Value of the Test Statistic.

3. Or it can take a calculated value of the Test Statistic and
give us a Cumulative Probability, the p-value.

z
1.2

Sample data
65, 71, 68, 73,  ...

z = 1.2

z
1.2

p = 11.5%

4. Then, we can compare p to 𝜶 or, (equivalently) the Criti-
cal Value to the value of the Test Statistic to determine the
outcome of a Hypothesis Test. Alternately, we can use the
Critical Value in the Confidence Interval method.

5. Which Distribution to use is dependent on the type of data
and the type of test or analysis. That is the subject of the
Part 3 article.
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Explanation

1. A Discrete Distribution – like the Binomial, Hypergeometric,
or Poisson – can provide Probabilities for individual values
of X or Cumulative Probabilities of a range of values.

In all Distributions, the vertical axis is the Probability of a value on the
horizontal axis occurring. In Discrete Distributions – like the Binomial,
Hypergeometric, or Poisson – the horizontal axis is Discrete data repre-
senting Counts.
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Rather than the individual Probability of a specific value, say X, of the
horizontal axis Variable, we are usually more interested in the Proba-
bility of all values greater than or less than X. This kind of Probability
of a range of values is called a Cumulative Probability.

For a Discrete Distribution, a Cumulative Probability is just the sum
of the individual Probabilities of the Counts within a range.

For example, let’s say we are operating a small call center which aver-
ages 3 incoming calls every 10 minutes. We can handle up to 5 calls in
10 minutes. What is the Probability that our capacity will be exceeded in
any given 10 minute period?

The Poisson Distribution above can tell us the Probability of exactly
X = 6 in 10 minutes. But, we also need to know the Probabilities of 7, 8,
and so on. The Poisson Distribution can tell us those also.

But, since there is theoretically no limit on the number of calls, our
approach is to use the Poisson Distribution to get the Probabilities of
X = 0, 1, 2, 3, 4, and 5. We total these and subtract from 1 (or 100%)
to get the Probability of exceeding 5.

The Probability of X being five or fewer is the sum of the six Prob-
abilities shown to the right of the diagram: 0.916. So the Probability of
exceeding our limit of 5 calls is 1 – 0.916 = 0.084.
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For Continuous Distributions, it is a little more complicated, since there
are an infinite number of point Probabilities in any range of horizontal axis
values. If we consider a Continuous Distribution to be the limiting case
of a Discrete Distribution with narrower and narrower columns, we
know from calculus that the integral would play the role of summing
the values of the (infinitely narrow) columns. We also know that the
integral is the area under the curve above the specified range of values
on the horizontal axis.

Cumulative Probabilities

Discrete Distribution Continuous Distribution

2. A Continuous Distribution associated with a Test
Statistic – e.g., the Standard Normal, t, F, and Chi-Square –
can take a value for the Cumulative Probability, Alpha,
and give us a Critical Value of the Test Statistic.

In a Continuous Distribution, the horizontal axis Variable is not a Count;
it is a measurement, like a test score. Continuous Distributions are used dif-
ferently. They are used in Inferential Statistics, in which we take a Sample
of data, and then we calculate a Statistic, like the Sample Mean. We then
use this Statistic as an estimate of the corresponding property of the Pop-
ulation or Process from which the Sample was taken.

Inferential Statistics involve the concepts of Alpha, p, Critical Value,
and Test Statistic. And Distributions play an integral part in determining
the values of these things.

α = 5%1 – α =
95% z

1.645
z-critical

α = 5%1 – α =
95%

I select α = 5%

Before collecting a Sample of data, we must select a value for Alpha, the
Level of Significance. If we want a 95% Confidence Level of not getting
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an Alpha Error, we select 𝛼 = 5%. We then plot that as a shaded area under
the curve of the appropriate Continuous Distribution. The boundary point
separating the shaded from the unshaded area is the Critical Value. In this
case we are using the Standard Normal Distribution, which has z as its
Test Statistic. Tables or software can tell us that 5% (for a right-tailed test)
corresponds to a Critical Value for of 1.645.

3. Or it can take a calculated value of the Test Statistic and
give us a Cumulative Probability, the p-value.

We just showed how we can start with a Cumulative Probability and
use a Distribution to get a point value which serves as its boundary. We
can do the opposite also: start with a point value and use the Distribution
to give use the area under the curve (Cumulative Probability) beyond that
point.

We take our Sample of data, and – using a formula for the Test Statistic –
we calculate a point value for the Test Statistic, z = 1.2 in this case. Tables
or software for the Distribution tell us that 11.5% is the corresponding
Cumulative Probability.

z
1.2

Sample data
65, 71, 68, 73,  ...

z = 1.2

z
1.2

p = 11.5%

4. Then, we can compare p to 𝜶 or, (equivalently) the Criti-
cal Value to the value of the Test Statistic to determine the
outcome of a Hypothesis Test. Alternately, we can use the
Critical Value in the Confidence Interval method.

Since p is derived from z, and since Alpha determines the value
of z-critical, comparing p to Alpha is statistically identical to compar-
ing z to z-critical. So, we can use either comparison in coming to our
conclusion.

Hypothesis Testing and Confidence Intervals are the two main methods
of Inferential Statistics.

Hypothesis Testing

The diagrams in the table below are close-ups of the right tail of the Dis-
tribution in a right-tailed test.



DISTRIBUTIONS – PART 2 (OF 3): HOW THEY ARE USED 175

p ≤ α
z ≥ z-critical

p > α
z < z-critical

The observation from the Sample

data is an accurate estimate for the

Population or Process as a whole.

True False

Null Hypothesis

The observed difference, change, or

effect is: 

Reject
Accept (Fail to

Reject)

Areas under the curve (right tail)

α: p:
z-critical z z z-critical

Statistically

Significant

not Statistically

Significant

Confidence Intervals

The Distribution and Alpha are used to determine the bounds of a Confi-
dence Interval, as illustrated below for a 2-tailed test.

α/2 = 2.5% 

z
0

x in cm

180170

x = σz + x 

α/2 = 2.5% 

Critical
Value

z = –1.960

Critical
Value

z = +1.960

α/2 = 2.5% α/2 = 2.5% 

Confidence
Interval

The articles on Confidence Intervals explain how they are used in com-
ing to a conclusion about the test.

5. Which Distribution to use is dependent on the type of data
and the type of test or analysis to be used.

This is explained in the following article, Distributions – Part 3: Which
to Use When

Related Articles in This Book: Distributions – Part 1: What They Are;
Distributions – Part 3: Which to Use When; Alpha, p-Value, Critical Value,
and Test Statistic – How They Work Together; p, t, and F: “>” or “<” ?;
Critical Values; Confidence Intervals – Parts 1 and 2; Hypothesis Testing –
Parts 1 and 2
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Plus, there are these articles on individual Distributions:

� Binomial Distribution
� Chi-Square – the Test Statistic and its Distributions
� Exponential Distribution
� F
� Hypergeometric Distribution
� Normal Distribution
� Poisson Distribution
� t – the Test Statistic and Its Distributions
� z



DISTRIBUTIONS – PART 3 (OF 3):
WHICH TO USE WHEN
There are individual articles in this book devoted to each of these Distri-
butions.

Distribution

Continuous Data, Continuous Distribution

Compare 2 Means

Population or Process Standard Deviation is
not known

t

Population or Process Standard Deviation is known.

Sample Size < 30 t

Sample Size ≥ 30 t or Normal (z)

Compare Variances

Two Sample Variances F

Sample Variance to specified Variance Chi-Square

Involves time to an event or between events Exponential

Discrete/Count Data, Discrete Distribution
“What is the Probability of . . . ?”

Occurrences are counted Poisson

Units are counted

Sampling Without Replacement Hypergeometric

Sampling With Replacement, and other criteria
met

Binomial

Discrete/Count Data, Continuous Distribution

Compare Observed to Expected Counts Chi-Square

Compare 2 or more Proportions Chi-Square

Compare 2 Proportions Normal (z)

See the Part 1 article for an explanation of Continuous vs. Discrete data
and Distributions.

See also the article, “Which Statistical Tool to Use to Solve Some Com-
mon Problems.”
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ERRORS – TYPES, USES, AND
INTERRELATIONSHIPS

Summary of Keys to Understanding

1. Errors in statistics can be classified into two kinds:
� Experimental Errors: someone or something did some-

thing wrong.
� Sampling Errors: a statistical estimate from a Sample is not

identical to the property of the Population or Process which
it estimates.

2. Experimental Errors largely involve errors in collecting
the data – Measurement Errors and Sampling Bias.

3. Sampling Errors include Alpha and Beta Errors, Margin
of Error, Regression Residuals, and Sum of Squares Error.

4. Some types of Sampling Errors influence each other.

α Error

α Errorβ Error

β Error

5. An increase in Sample Size reduces Sampling Errors.

n

α Error MOE

MOE

MOE

α

α

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. Errors in statistics can be classified into two kinds:
� Experimental Errors: someone or something did some-

thing wrong.
� Sampling Errors: a statistical estimate from a Sample is not

identical to the property of the Population or Process which
it estimates.

“Error” has the connotation of something gone wrong; a mistake has
been made. And this is true in the kinds of errors classified as Experimen-
tal Errors. A mistake was made; usually in the collection of data.

However, Sampling “Error” is something of a misnomer. Nobody did
anything wrong; no mistakes were made. A Sampling “Error” might be
better described as a Sampling “difference” or “deviation.” It is the
difference between the numerical estimate of a property (a Statistic) cal-
culated from a Sample (e.g., the Sample Mean) and the true value of that
property (a Parameter) in the Population or Process from which the Sample
was collected (e.g., the Population or Process Mean).

Usually, we do not know the true value of the Population or Process
Parameter (otherwise we wouldn’t be trying to estimate it with a Sample).
So, the error is calculated from Probabilities.

This being statistics, there are several names for the same thing, and
use of these names is not consistent. Sampling Error is sometimes called
“Random Error” or “Stochastic Error.”

2. Experimental Errors largely involve errors in collecting
the data – Sampling Bias and Measurement Errors.

Sampling Bias occurs when a non-random Sample is collected. Some
examples:

� Self-Selection Bias: e.g., a phone survey. The people surveyed are the
ones who agreed to respond. These may be people who have a lot of
time on their hands.

� Many social science surveys are performed on college campuses. Sur-
vey participants tend to be younger than the population at large.

� Inspectors of physical items tend to select for their Sample, those
items which have a visible defect.

(For more, on this subject, see the article Sample, Sampling.)
Measurement Errors (also known as “Systematic Error” or “Obser-

vational Error”) can be caused by the measuring device, the person
measuring, or both. For example,
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� The measuring device is faulty, or several inconsistently calibrated
measuring devices are used.

� The needle on an analog meter rests between 2 and 3. The person
reading the device does a visual interpolation in deciding whether to
record a 2.6 or a 2.7.

� Different inspectors may make slightly different judgments on
whether something constitutes a defect or not.

In quality improvement disciplines, like Six Sigma, there is an entire
sub-discipline, Measurement System Analysis (MSA) devoted to this sub-
ject. Lack of Repeatability and Reproducibility are two major types of
Measurement Errors examined in MSA.

3. Sampling Errors include Alpha and Beta Errors, Margin
of Error, Regression Residuals, Standard Error, and Sum
of Squares Error.

Sampling Errors are the most “statistical” of errors in statistics, and
we’ll devote most of this article to them. In fact much of Inferential Statis-
tics is devoted to quantifying and studying these calculated differences
between a Sample Statistic and the corresponding Population or Process
Parameter.

Alpha Error (see the article Alpha and Beta Errors):

� The error of falsely concluding that there is a difference, change,
or effect, when there is not. (That is, it is the error of rejecting the
Null Hypothesis when it is true.)

� Also known as a False Positive

p, the p-value, is the Probability of an Alpha Error
Alpha (𝛼) is the maximum value of p that we will accept in an Inferential

Statistical analysis, such as a t-test or ANOVA.
Beta Error (see the article Alpha and Beta Errors):

� The error of falsely concluding that there is not a difference,
change, or effect, when there is. (That is, it is the error of failing
to reject the Null Hypothesis when it is false.)

� Also known as a False Negative

Margin of Error (see the article Margin of Error)

� symbol MOE or E
� half the width of a 2-sided Confidence Interval
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For example, MOE is the 2% in the statement, “With a 95% Level of
Confidence, and a Margin of Error of + 2%, we predict that Candidate A
will get 54% of the vote.”

Random Error: another name for Sampling Error
Residuals in Regression (see the article Residuals)
For any value of the Independent Variable, x, in a Regression Model, the

Residual is the difference between the value of the Dependent Variable,
y, predicted by the Model and the actual value of y in the data. Design
of Experiments (see the three articles on this subject) can help refine a
Regression Model and reduce the size of the Residuals.

y

x

y

ŷ
^Residual = y – y

Regression Line

Standard Error: (see the article Standard Error).
Standard Error is defined as the Standard Deviation of the Sampling Dis-

tribution. It is frequently found as the denominator in Inferential Statistical
formulas.

Stochastic Error: another name for Sampling Error
Sum of Squares Error (SSE): (see the article Regression – Part 1: Sums

of Squares)
� the sum of the squared Residuals
� It measures the Variation in y which is not explained by the

Regression Model.

Type I Error: another name for Alpha Error
Type II Error: another name for Beta Error
Some publications included Sampling Bias as a type of Sampling Error.

According to our definition, it is classified as an Experimental Error.

4. Some types of Sampling Errors influence each other.

Alpha Error and Beta Error

Alpha = 0.05 is the most common selection for the maximum Probability
of an Alpha Error (False Positive) which we are willing to accept. One
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might ask, why not make it 99.9%? The reason is that the Probability of
Alpha Error and Beta Errors affect each other inversely. If one goes down,
the other goes up.

If you want to reduce the Probability of a False Positive (Alpha) in your
conclusions, and you select a very small value for Alpha, you pay a price
in the form of an increased Probability of Beta Error (False Negative). The
article Alpha and Beta Errors has more on this.

α Error

β Error α Error

β Error

Margin of Error (MOE) and Alpha Error

The Critical Value of a Test Statistic (such as z, t, F, or 𝜒2) is in the numer-
ator of the formula for Margin of Error. So larger values for the Critical
Value will result in a larger MOE. But, for any given Distribution, the Crit-
ical Value is dependent entirely on the value of Alpha. A larger value for
Alpha results in a smaller Critical Value. And a smaller Critical Value
is closer to the center of the Distribution. So, a larger value for Alpha
results in a smaller Margin of Error.

MOE MOE MOE MOE

Small MOELarge Alpha

70% 95%
α = 30% α = 5%

=> Large MOESmall Alpha =>

For more on this, see the article Margin of Error.

Standard Error

The Standard Error is used in Inferential Statistics to account for the error
inherent in using a Sample for an estimate – the Sampling Error. It is a
measure of how accurately a Sample represents a Population or Process.
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It can be found in the denominator of the formulas for other Statistics. For
example,

t =
sample Mean − specified Mean

Standard Error

Critical Value =
Margin of Error
Standard Error

The formula for Standard Error is different for different Statistics. Below
are formulas for Standard Error of the Mean, of the difference between two
Means, and of the Proportion.

SEM = s√
n

SE (x̄1 − x̄2) =

√
s2

1

n1
+
s2

2

n2
SEp =

√
p (1 − p)

n

For more, see the article Standard Error.

5. An increase in Sample Size reduces Sampling Errors.

n

α Error MOE

MOE

MOE

α

α

As we’ve shown, there are tradeoffs between different types of Sampling
Errors. However, there is a way for us to “have our cake and eat it too.”
Increase the Sample Size, n, and you decrease Probability of a Sampling
Error. For more, see the articles on Sample Size.

Related Articles in This Book: Alpha and Beta Errors; Margin of Error;
Regression – Part 1: Sums of Squares; Residuals; Sample Size – Parts
1 and 2; Sample, Sampling; Standard Error; Design of Experiments –
Parts 1–3



EXPONENTIAL DISTRIBUTION

Summary of Keys to Understanding

1. Exponential Distributions can be used to solve problems
involving the time interval to or between events.

2. Exponential Distributions can be used when events occur
independently and at a constant average Rate.

3. The Exponential is a family of Continuous data Distribu-
tions. An individual Distribution within the family can be
specified by a single Parameter, either the Mean (𝝁) or the
Rate (𝝀).

Mean = 2Prob(X)

X
5 10 15 200

X

Prob(X)

5 10 15 20

Mean = 8

0
0

0.8
0.6
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0

0.8
0.6
0.4
0.2

4. The Probability curve (PDF) of the Exponential Distribu-
tion approaches 1 atX= 0 and approaches 0 atX= infinity.

5. The Cumulative Probability (CDF) of the Distribution can
be calculated with a formula.

Prob(X> x) = e−x∕𝝁

63% of this area under the curve is to the left of the Mean.

Mean = 5

Mean

Prob(X)

X
10

37%

63%

15 200
0

0.8

0.6

0.4

0.2
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Explanation

1. Exponential Distributions can be used to solve problems
involving the time interval to or between events.

For example,
We own a small shop, and one new customer arrives, on average, about

every 15 minutes. We would like to close up shop 10 minutes early today.
What is the Probability that a new customer would arrive after we left but
before our normal closing time?

The Mean time interval between customer arrivals is 15 minutes.
The Exponential Distribution can help us calculate the Probability of a

customer arriving in the 10 minute interval between the time we leave early
and our usual closing time.

Similar uses include:

– Time to complete a process step
– Time between failures

The Mean time between events is the inverse of the Rate at which
the events occur.

In the example above, a Mean time between customer arrivals of 15 min-
utes corresponds to a Rate of 1/15 customers per minute. So, . . .

Mean = 1∕Rate and Rate = 1∕Mean

The symbol for Mean is 𝜇 (the Greek letter mu), and the symbol for
Rate is 𝝀 (the Greek letter lambda). So, . . .

𝝁 = 1
𝝀

and

𝝀 = 1
𝝁

Terminology note: “Expected Value,” E, is a term used almost synony-
mously with “Mean” in this context. In the above example, we started with
a known value for the Mean interval and then calculated a value for the
Rate. If we had, instead, started with a known value for the Rate, say four
customers per hour, we could have then calculated an Expected Value for
the time interval between future customers. That would be 15 minutes. We
call it “expected” because it is a projection into the future, rather than a
calculation of past data, like the Mean.
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2. Exponential Distributions can be used when events occur
independently and at a constant average Rate.

If a random customer comes into our store at a given time, that does
not normally affect when another random customer comes in. The events
occur independently. If, however, we had a barbershop with only one chair
and no room for waiting, the next customer could not come in until the
previous one was finished. So customer entries would not be independent.

A constant average Rate is a consequence of so-called “memoryless-
ness” which is a property of Exponential Distributions. The Exponential
Distributions works in “memoryless” situations, that is, when the past has
no influence on the future.

For example, coin flipping is memoryless. The fact that you flipped
heads 10 times in a row does not change the fact that the next coin flip
has a 50% chance of being a head (or a tail).

However, memorylessness is not a property of things that decline with
age. The time to engine breakdown for a car is not the same for a new car
as for one with 150,000 miles. Car problems do not occur at a constant
average Rate throughout the lifetime of a car.

3. The Exponential is a family of Continuous data Distribu-
tions. An individual Distribution within the family can be
specified by a single Parameter, either the Mean (𝝁) or the
Rate (𝝀).

As described in the Distributions – Part 1 article, Continuous data
Distributions are used with data that can have real number values as
opposed to integer-only values for Discrete data Distributions. And they
have smooth curves, as opposed to the stairstep pattern of Discrete Dis-
tributions.

A Parameter is a numerical property of a Distribution (“Statistic” is the
corresponding term for a property of a Sample.) Whereas it requires two
Parameters – the Mean and the Standard Deviation – to describe a unique
Normal Distribution, only one Parameter is required to specify a unique
member of the family of Exponential Distribution, either the Mean (𝝁)
or the Rate (𝝀).

Some texts will use the Mean to specify a unique Exponential Distribu-
tion, others use the Rate. Both contain the same information, so either can
be used. For the two graphs below, the Rate is 𝝀=1/2 and 1/8, respectively.
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Mean = 2Prob(X)
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4. The Probability curve (PDF) of the Exponential Distribu-
tion approaches 1 at x= 0 and approaches 0 at x= infinity.

Graphs of the Probability Density Function (PDF) of two members of
the Exponential family of Distributions are shown above.

For x < 0, the Probability is 0.
For x ≥ 0, Point Probability (PDF): Prob(x) = 1

𝝁
e−x∕𝝁 = 𝝀 e−𝝀 x

where e is the Exponential Constant: e = 2.718.
In statistics, the Point Probabilities for individual values of x shown on

the PDF are usually of little interest. The main use of a PDF is for calculat-
ing the Cumulative Probability of a range of values. For other Distributions,
this is done by calculating the integral (remember that from calculus?) –
the area under the PDF curve which is above the range of values on the
horizontal axis. For Exponential distributions, this is not necessary.

5. The Cumulative Probability (CDF) of the Distribution can
be calculated with a formula.

Prob(X≤ x) = 1− e−x∕𝝁

63% of this area under the curve is to the left of the Mean;
37% is to the right.

Unlike most Distributions, the Cumulative Distribution Function (CDF)
of the Exponential Distribution is a formula that does not involve the
integral.

Cumulative Probability (CDF): Prob(X≤ x) = 1 − e−x∕𝝁 = 1 − e−𝝀x

Where X is the horizontal axis Variable and x is a specified value of that
Variable. In our example above, x = 10.

As shown in the graph below, most of the Cumulative Probability in any
Exponential Distribution lies to the left of the Mean.



188 EXPONENTIAL DISTRIBUTION

Mean = 5

Mean

Prob(X)

X
10

37%

63%

15 200
0

0.8

0.6

0.4
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The split is about 63% to the left of the Mean and 37% to the right. This
can be seen by plugging x = 𝜇 into the formula:

Prob(X ≤ 𝝁) = 1 − e−𝝁∕𝝁

= 1 − 2.718−1

= 1 − (1∕2.718)

= 0.632 ∼ 63%
Prob(X>𝝁) = 1 − Prob(X ≤ 𝝁)

= 0.368 ∼ 37%

Back to our example at the beginning of this article,
We own a small shop, and one new customer arrives, on average, about

every 15 minutes (𝜇 = 15).
We would like to close up shop 10 minutes early today (x = 10).
What is the Probability that a new customer would arrive within the

10 minute interval between the time when we left but before our normal
closing time? (Cumulative Probability of x ≤ 10)

Prob(X < x) = e−x∕𝝁

= 2.718−10∕15

= (1∕2.718)0.667

= 51.3%

Related Articles in This Book: Distributions – Part 1: What They Are;
Distributions – Part 2: How They Are Used; Distributions – Part 3: Which
to Use When
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Summary of Keys to Understanding

1. F is a Test Statistic which is the ratio of two Variances.

Samples: F = (s1)2∕(s2)2 Populations: F = (𝝈1)2∕(𝝈2)2

ANOVA: F = MSB∕MSW

2. F has a different Probability Distribution for each combi-
nation of Degrees of Freedom – for the numerator Sample
and the denominator Sample.

As the dfs grow larger, the Distributions become more
symmetrical.

df1 = df2 = 5 
F-critical = 5.05

df1 = df2 = 100
F-critical = 1.39

df1 = 30, df2 = 20 
F-critical = 2.04

All F Distributions:
� start at zero. (F can never be negative.)
� extend to the right to infinity (and never touch the horizontal axis).
� are not symmetrical.
� have a Median of roughly 1.

3. The F-test tests for “equal Variance” – that is, whether
there is a Statistically Significant difference in the Vari-
ation of two or more Populations or Processes.

Statistically

Significance

difference in

Variance

“equal”

Variance

4. The F-test is a key component of ANOVA.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. F is a Test Statistic which is the ratio of two Variances.

A Test Statistic is one whose Distribution has known Probabilities.
So, for any value of F (on the horizontal axis below), there is a known
Probability of that value occurring. That Probability is the height of the
curve above that point.

F-axis

P
ro

ba
bi

lit
y

More importantly, we can calculate the area under the curve beyond the
value of F. This gives us a Cumulative Probability (such p) which we can
use to compare to the Significance Level, 𝛼 (also a Cumulative Probabil-
ity), in various types of analyses in Inferential Statistics. A Cumulative
Probability is usually depicted as a shaded area under the curve.

F is the ratio of Two Variances. To keep things simple, the larger
Variance is entered as the numerator, and the smaller is the denom-
inator, except for ANOVA, where the numerator and denominator are
specified:

� For Samples: F = (s1)2/(s2)2

where s1 and s2 is the symbol for the Standard Deviations of a Samples 1
and 2, and their squares are the Variances.

� For Populations or Processes: F = (𝝈1)2/(𝝈2)2

𝜎1 and 𝜎2 are the Standard Deviations of Populations 1 and 2, respectively.
So, (𝜎1)2 and (𝜎2)2 are the respective Variances.

� In ANOVA: F = MSB/MSW,

where MSB is the Mean Sum of Squares Between and MSW is the Mean
Sum of Squares Within. Both are special types of Variances. See the
ANOVA – Part 2 article.

F is Continuous Distribution. Its curve has a smooth shape, unlike the
histogram-like shape of Discrete Data Distributions. However, it can work
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with Samples of Discrete data. The ratio of the Variances of two sets of
Discrete Data is Continuous.

2. F has a different Probability Distribution for each combi-
nation of the two Degrees of Freedom – for the numerator
Sample and the denominator Sample.

As the dfs grow larger, the Distributions become more
symmetrical.

df1 = df2 = 5 
F-critical = 5.05

df1 = df2 = 100
F-critical = 1.39

df1 = 30, df2 = 20 
F-critical = 2.04

(The shaded area α = 0.05 in these diagrams)

All F Distributions:
� start at zero. (F can never be negative.)
� extend to the right to Infinity (and never touch the horizontal axis).
� are not symmetrical.
� have a Median of roughly 1.

The F-statistic has a different Distribution for each combination of
the two values of Degrees of Freedom, df. For F, df = n −1, where n is
the Sample Size. Since F is the ratio of two Variances, and since each one
has their own df, F has a different Distribution for each combination of dfs.

F is never negative, because Variances, being squares, cannot be
negative.

Tables of Critical Values of F have the columns represent one of the dfs
and the rows the other df. The third Variable in calculating F-critical is the
Significance Level, 𝛼. Since we can’t have 3-dimensional tables, there is
usually a different table of Critical Values for each value of 𝛼.

3. The F-test tests for “equal Variance” – that is, whether
there is a Statistically Significant difference in the Vari-
ation of two or more Populations or Processes.

Statistically

Significance

difference in

Variance

“equal”

Variance
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A number of statistical tests, including the t-tests, assume equal Vari-
ance between the two Populations or Processes that are being analyzed.
“Equal” does not mean identical. It means that the Variances are close
enough that there is no Statistically Significant difference between them.
The F-test can be used to determine this.

Also when one is trying to determine whether two Populations or
Processes are statistically the same or different, Variation (of which
Variance is a good measure) is one of three criteria which can be eval-
uated. The other two are Central Tendency (e.g., the Mean) and Shape
(Skewness and Kurtosis).

As we noted earlier, the F for two Samples is:

F = (s1)2∕(s2)2

where s2 is the symbol for a Sample Variance. (s is the symbol for Sample
Standard Deviation.)

If F is close enough to 1, then there is not a Statistically Significant
difference between the Variances of the two Samples.

How do we know if F is close enough to 1? The F-test does an Inferential
Statistical analysis involving the Alpha we select and the F Distribution
with dfs of n1 and n2. It produces a p-value which we can compare with
Alpha. It also produces values for F and F-critical, which we can compare
with each other. Either of the following two comparisons can be used. They
are equivalent:

If p ≤ 𝛼, or, equivalently if F ≥ F-critical, then
there is a Statistically Significant difference – Reject the Null
Hypothesis)

Otherwise,
there is not a Statistically Significant difference – Fail to Reject (i.e.,

Accept) H0
Assumptions: The F-test requires that

� the Sample data be approximately Normal
� the two Samples are independent

If the data are not approximately Normal, Levene’s test can be used
instead.

“Independent” means that there is not a Correlation or Association
between the two Samples. For example, “before” and “after” Samples of
the same test subjects would not be independent.

Outliers: In addition, the accuracy of the test can be adversely
affected by Outliers especially in small Samples. Outliers can have an
outsize effect on the Variance.
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Another test for the Variance: Whereas the F-test compares the Vari-
ances of two Populations or Processes, the Chi-Square Test for the Vari-
ance compares the Variance of one Population or Process to a Variance
we specify. A typical specified Variance could be an estimate, a target, or
a historical value.

(If you’re familiar with t-tests, the F-test would be analogous to the
2-Sample t-test, and the Chi-Square Test for the Variance would be analo-
gous to the 1-Sample t-test.)

4. The F-test is a key component of ANOVA.

ANOVA is a type of Inferential Statistical analysis. It is an acronym for
“Analysis of Variance.” This is something of a misnomer. The purpose
of ANOVA is to analyze several Sample Means (usually three or more)
to determine whether there is a Statistically Significant difference among
them. The method by which it does this is by analyzing Variances.

t-tests are usually used to analyze differences between two Means. If we
have three Means, we could do three pairwise comparisons, two Means at a
time. However, each of those t-tests would bring an Alpha Error (the error
of a False Positive). And that error would be compounded three times.

However – as explained in the ANOVA – Part 2 article – ANOVA can
take information on multiple Means and distill them into two Statis-
tics. These are the Mean Sum of Squares Between (MSB) and the Mean
Sum of Squares Within (MSW). MSB and MSW are two special kinds
of Variances. Then, ANOVA uses these two Statistics in a single F-test
to accomplish the same thing that multiple t-tests would accomplish. This
avoids compounding the Alpha Errors.

F = MSB
MSW

If the value of F is close to 1, then there is no Statistically Significant
difference between the Means of the Populations or Processes being
compared.

The output of an ANOVA is a table like the one below. An ANOVA table
is also provided in Regression analyses.

ANOVA
Cannot Reject Null Hypothesis because p > 0.05

(Means are the same)

Source of Variation SS df MS F p-value F-crit

Between Groups 44970.83 9 4996.759 1.840992 0.123 2.39814

Within Groups 54283.33 20 2714.167

Total 99264.17 29
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In this example, we see that F < F-critical (and, equivalently, p > 𝛼). So
we Fail to Reject (we Accept) the Null Hypothesis. That is, we conclude
that there is not a Statistically Significant difference in the Variances MSB
and MSW. So, there is not a Statistically Significant difference among the
Means in this ANOVA.

Related Articles in This Book: Test Statistic; Variance; Distributions –
Parts 1–3; Degrees of Freedom; Inferential Statistics; ANOVA – Parts 1 and
2; Alpha (𝛼); p-Value, p; Critical Value; Chi-Square Test for the Variance



FAIL TO REJECT THE NULL
HYPOTHESIS

Summary of Keys to Understanding

1. “Fail to Reject the Null Hypothesis” is 1 of 2 possible con-
clusions from a Hypothesis Test. The other conclusion is
“Reject the Null Hypothesis.”

If p > 𝜶, Fail to Reject the Null Hypothesis.

2. A Null Hypothesis states that there is no (Statistically Sig-
nificant) difference, change, or effect. “Fail” and “Reject”
cancel each other out, leaving the Null Hypothesis in place
when we fail to reject it.

Oh No! That means “No”!

The Null Hypothesis is a

negative, and to Fail to

Reject the negative leaves

it in place.

I Fail to Reject the

Null Hypothesis. 
Will you

marry me? 

A statistician responds to a marriage proposal:

3. Practically speaking, it is OK to “Accept the Null Hypoth-
esis.” You don’t have to “Fail to Reject.”

195



196 FAIL TO REJECT THE NULL HYPOTHESIS

Explanation

It may be helpful to read the articles “Null Hypothesis” and “Reject the
Null Hypothesis” before reading this one.

1. “Fail to Reject the Null Hypothesis” is 1 of 2 possible con-
clusions from a Hypothesis Test. The other conclusion is
“Reject the Null Hypothesis.”

If p > 𝜶, Fail to Reject the Null Hypothesis.

As stated in the article in this book, “Hypothesis Testing – Part 1:
Overview,” Hypothesis Testing is one method of Inferential Statistics. It
is a method for answering questions about a Population or a Process by
analyzing data from a Sample.

The “Part 2” article describes the 5 steps in this method. In Step 1, we
select a value for the Level of Significance, Alpha (𝛼). In Step 4, the anal-
ysis calculates a value for p, the Probability of an Alpha Error.

Step 5 is to come to a conclusion about the Null Hypothesis by compar-
ing p to Alpha. There are only two possible conclusions:

� If p > 𝜶, Fail to Reject the Null Hypothesis
� If p ≤ 𝜶, Reject the Null Hypothesis

Inferential Statistical Analyses, such as t-tests or ANOVA, also calculate
the value of a Test Statistic – for example, t – and the Critical Value of the
Test Statistic – t-critical. Comparing t to t-critical is the same as comparing
p to Alpha. You can do either one; they are redundant. But the “≤” is in the
opposite direction.

� If t < t-critical, Fail to Reject the Null Hypothesis
� If t ≥ t-critical, Reject the Null Hypothesis

See the article in this book, p, t, and F: “>” or “<” ? for some tips
on how to remember which way the comparison symbol points. It may
also be helpful to read the article, “Alpha, p-value, Critical Value, and Test
Statistic – How They Work Together.”

2. A Null Hypothesis states that there is no (Statistically Sig-
nificant) difference, change, or effect. “Fail” and “Reject”
cancel each other out, leaving the Null Hypothesis in place
when we fail to reject it.
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Examples of Null Hypotheses:
� There is no difference between the Mean effectiveness of the two

medicines.
� There has been no change in the Process Standard Deviation from its

historical value.
� The training program has had no effect on worker performance.

Triple Negatives:

I fail

to reject

the Null

Hypothesis.

I don’t

not have

no

money.

We are all taught in elementary school to avoid using double negatives
like, “I don’t have no money.” However, statistics goes beyond the dou-
ble negative, to an even-more-confusing triple negative: “Fail to Reject the
Null Hypothesis.”

“Fail” and “Reject” cancel each other out, leaving the Null Hypothesis
standing. Perhaps the following table may help make this clearer.

Positive statement
There is a difference between the
two Means.

+1

Null Hypothesis
(H0)

There is no difference between
the two Means.

−1

Reject H0
There is not no difference . . .
i.e., There is a difference . . .

−1 × −1 = +1 =
Positive statement

Fail to Reject H0
There is not not no difference . . .
i.e., There is no difference

−1 × −1 × −1 = −1
= Null Hypothesis

3. Practically speaking, it is OK to “Accept the Null Hypoth-
esis.” You don’t have to “Fail to Reject.”

So, if you don’t reject H0, then you accept it – right? Many experts insist
on saying “Fail to Reject” because the Null Hypothesis is a negative (no
difference, no change, no effect), and one can’t prove a negative.
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“You can’t prove a negative.” is true – if you require 100% accuracy.
But, Hypothesis Testing does not strive for 100% accuracy.

In fact, if we could get 100% accuracy, we would not need Inferential
Statistics. We would just answer our question via counting, measurement,
or a precise formula.

An integral part of Hypothesis Testing is accepting a specified Probabil-
ity of error. Before collecting data, we must select a Level of Significance,
Alpha (𝛼), which is the Probability of a “False Positive.” Most often, 𝛼 =
5% is selected. So, we know we’re not getting 100% accuracy.

One consequence of insisting that “You can’t prove a negative”:

You can’t prove

that I don’t exist

and that I’m not

hiding out in

Chicago.

So, some say that the

most you can do is “Fail

to Reject” the Null

Hypothesis that there are

no unicorns living in

Chicago.     

Also, practically speaking, we’re not going to conduct an experiment or
test, spend significant time and money on it, and then go tell our boss or
our customer that we can’t conclude anything from it.

So, we may not want to say that we have proven the Null Hypothesis.
But we can proceed to take action as if we Accept the Null Hypothesis.
And many experts say that it’s fine to come out and say that we Accept the
Null Hypothesis.

Parsing the Statisticians’ Response to the Marriage Proposal:

(no change in our status)(accept)

I Fail to Reject the Null Hypothesis.

Will you marry

me? 

Oh No! That means “No”!

The Null Hypothesis is a

negative, and to Fail to

Reject the negative leaves it

in place.     
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What is the Null Hypothesis in the case of the Statisticians Marriage
Proposal?

– Prior to the proposal of marriage, they were not engaged to be married.
– A Null Hypothesis means there is no change, no effect, or no differ-

ence.
– So the Null Hypothesis would be that things remain the same for

this couple. There is no change in their status – no new status of
being engaged to be married.

– And, by Failing to Reject it, she accepts the Null Hypothesis. That
is, she accepts no change. They will not be engaged.

Related Articles in This book: Null Hypothesis; Reject the Null Hypoth-
esis; Hypothesis Testing – Part 1: Overview; Hypothesis Testing – Part 2:
How To; Null Hypothesis; Alternative Hypothesis; p, t, and F: “>” or
“<”?; Alpha, p-Value, Critical Value, and Test Statistic – How They Work
Together



HYPERGEOMETRIC DISTRIBUTION

1. The Hypergeometric is a Distribution for Discrete data.
Units are counted, not Occurrences.

Discrete data are integers, such as Counts. Counts are non-negative. In
contrast to Continuous data, there are no intermediate values between con-
secutive integer values.

The Hypergeometric Distribution is used for Counts of Units, such
as the number of shirts manufactured with defects. Units are different from
Occurrences. If a shirt (the Unit) we inspected had three defects, we would
add only one to the Count of defective Units, and we could use the Hyper-
geometric Distribution.

If we were interested in the total number of Occurrences of defects – not
the number of defective Units – we would count three Occurrences for that
shirt and we would use a different Discrete data Distribution – the Poisson
Distribution.

2. Use the Hypergeometric Distribution, instead of the Bino-
mial Distribution, when
� Sampling without Replacement
� the Sample Size is large relative to the Population, i.e.,

when n > 10% of N

To illustrate the concept of Replacement, let’s say we’re doing a study
in a small lake to determine the Proportion of Lake Trout. If we throw the
fish back in before trying to catch the next fish that is called Sampling with
Replacement. When Sampling with Replacement, a different Discrete data
Distribution should be used – the Binomial Distribution.

But, if we keep the fish, that is Sampling without Replacement, and
the Hypergeometric Distribution should be used.

We should also use the Hypergeometric, instead of the Binomial,
when the Sample Size (n) is large, relative to the Population size (N). If
the Sample Size is more than 10% of the Population size, use the Hyper-
geometric.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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3. The Probability of exactly X units in a Sample is a func-
tion of N, the Population Size, n, the Sample Size, and D,
the number of counted Units (e.g., defective shirts) in the
Population.

This can be calculated using spreadsheets or software.

Related Articles in This Book: Binomial Distribution; Distributions —
Parts 1–3; Poisson Distribution



HYPOTHESIS TESTING – PART 1
(OF 2): OVERVIEW

Summary of Keys to Understanding

1. Hypothesis Testing is one method of Inferential Statistics,
that is, for answering a question about a Population or Process,
based on analysis of data from a Sample.

2. The question usually asks whether there is a Statistically
Significant difference, change, or effect. The question is
converted to a negative statement called a Null Hypothesis
(symbol H0).

3. There are two possible outcomes from a Hypothesis Test:
� Reject the Null Hypothesis, or
� Fail to Reject the Null Hypothesis

Question

Equivalent Null
Hypothesis:

(Negative
Statement)

Answer to the
Question if we
Reject the Null

Hypothesis

Answer to the
Question if we
Fail to Reject

the Null
Hypothesis

Q: Is there a
Statistically
Significant
difference between
the Means of these
two Populations?

There is no
difference in the
Means of these
two Populations.

Yes. No.

4. For some types of tests, you can use the Confidence Inter-
vals method instead of Hypothesis Testing.

202
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Explanation
Hypothesis Testing can be confusing for many people. So, this book
devotes a fair amount of space to explaining it in several ways and in bite-
sized chunks.

The core concept of Hypothesis Testing is addressed by two articles in
this book:

� Hypothesis Testing – Part 1: Overview (this article)
� Hypothesis Testing – Part 2: How To

That information is expanded upon in four other articles which are
essential to understanding the concept:

� Null Hypothesis
� Alternative Hypothesis
� Reject the Null Hypothesis
� Fail to Reject the Null Hypothesis

In addition, there are separate articles on related concepts mentioned in
these articles, such as Alpha (𝛼), Alpha and Beta Errors, p-Value, Critical
Value, Confidence Interval, Test Statistic, etc.

1. Hypothesis Testing is one method of Inferential Statistics,
that is, for answering a question about a Population or Process,
based on an analysis of data from a Sample.

In Descriptive Statistics, we have complete data on the entire universe
we wish to observe. So we can just calculate various properties (Parame-
ters) of the Population or Process.

On the other hand, in Inferential Statistics (aka “Statistical Inference”),
we don’t have the complete data. The Population or Process is too big, or
it is always changing. So we can never be 100% sure about it. We can col-
lect a Sample of data and make estimates of the Population or Process
Parameters (such as the Mean or Standard Deviation).

Hypothesis Testing and Confidence Intervals are the two main methods
for doing this.

2. The question usually asks whether there is a Statistically
Significant difference, change, or effect. The question is
converted to a negative statement called a Null Hypothesis
(symbol H0).
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For example,
� Is there a Statistically Significant difference in the Means of these two

Populations?
� Is there a Statistically Significant difference between the actual Mean

lifetime of our light bulbs and the target Mean?
� Has there been a Statistically Significant change in the Standard Devi-

ation of our Process from its historical value?
� Does this experimental medical treatment have a Statistically Signi-

ficant effect?

To use the Hypothesis Testing method, we first need to convert the Infer-
ential Statistics question into a negative statement, the Null Hypothesis:

Question
Equivalent Null Hypothesis (H0)

(Negative Statement)

Q: Is there a Statistically Significant
difference between the Means of
these two Populations?

H0: There is no difference in the
Means of these two Populations.

Q: Is there a Statistically Significant
difference between the actual Mean
lifetime of our light bulbs and the
target Mean?

H0: There is no difference between
the actual Mean lifetime of our light
bulbs and the target Mean.

Q: Has there been a Statistically
Significant change in the Standard
Deviation of our Process from its
historical value?

H0: There has been no change in the
Standard Deviation of our Process
from its historical value.

Q: Does this experimental medical
treatment have a Statistically
Significant effect?

H0: This experimental medical
treatment does not have an effect.

If you understand this so far, you’ve overcome half the confusion which
people have with Hypothesis Testing. (The other half comes from the two
possible outcomes of Hypothesis testing: “Reject the Null Hypothesis” or
“Fail to Reject the Null Hypothesis.”) But even if you’re still confused,
there is another chance. Please read the article Null Hypothesis in this book,
and hopefully that will help clear things up.

3. There are two possible outcomes from a Hypothesis Test:
� Reject the Null Hypothesis, or
� Fail to Reject the Null Hypothesis
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These are very confusing for most people. Since the Null Hypothesis is
a negative statement, Reject the Null Hypothesis is a double negative.
This is akin to saying, “I don’t have no money.” And we’re all taught in
elementary school to avoid talking like that.

“I don’t have no money,” the double negative, actually means “I do have
money.” So the double negative becomes a positive.

Let’s go back to one of our Inferential Statistical questions:

Question
Equivalent Null

Hypothesis (Negative
Statement)

Answer to the Question
if we Reject the Null

Hypothesis

Q: Is there a Statistically
Significant difference
between the Means of
these two Populations?

There is no difference
in the Means of these
two Populations.

Yes.

Fail to Reject the Null Hypothesis is even worse; it is a triple negative.
Triple Negatives:

I don’t

not have

no

money.

I fail

to reject

the Null

Hypothesis.

Question

Equivalent Null
Hypothesis
(Negative
Statement)

Answer to the
Question if we
Reject the Null

Hypothesis

Answer to the
Question if we Fail
to Reject the Null

Hypothesis

Q: Is there a
Statistically
Significant
difference between
the Means of these
two Populations?

There is no
difference in the
Means of these
two Populations.

Yes. No.

There is a separate article on Reject the Null Hypothesis and another on
Fail to Reject the Null Hypothesis. These offer different ways of explaining
what we just covered, in case it’s helpful.
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4. For some types of tests, you can use the Confidence Inter-
vals method instead of Hypothesis Testing.

Hypothesis Testing has some drawbacks:
� The language can be confusing, as we have shown.
� It can appear to be inconclusive.

Many authorities are adamant that we must “Fail to Reject” the Null
Hypothesis and that we cannot Accept it. This seems to indicate that the
results were inconclusive.

� Experts disagree on key concepts in Hypothesis Testing.

“Fail to Reject” is one of these. Some experts have a contrary view to that
stated above. They say that the Null Hypothesis is the default condition, so
that if we fail to Reject it, the Null Hypothesis stands. Similarly, others
say – and this book agrees – that one can just proceed as if one Accepts the
Null Hypothesis.

Also, there is strong disagreement on whether or not an Alternative
Hypothesis must be stated. The article in this book on that subject explains
how an Alternative Hypothesis can be helpful in certain situations (i.e.,
1-tailed tests).

For these reasons, many people prefer a different way. The Confidence
Interval method is the other main method of Inferential Statistics. Some
experts recommend using it instead of Hypothesis Testing whenever pos-
sible. The Confidence Interval method is less confusing, and Confidence
Intervals are more graphical.

� The Confidence Interval method can be used when comparing the
Parameter (e.g., the Mean) of one Population or Process to a spec-
ified Parameter (e.g., a target we specify, a historical value, or zero).

� However, when comparing Parameters of two Populations or Pro-
cesses, it can give unclear results, which may require a Hypothesis
Test to resolve. (See the article Confidence Intervals – Part 2: Some
Specifics.)

Examples:

Null Hypothesis (H0)
Negative Statement

Specified
Parameter

Use

H0: There is no difference between
the actual Mean lifetime of our light
bulbs and the target Mean.

target Mean
Confidence Intervals
Hypothesis Testing

H0: There is no difference in the
Means of these two Populations.

not applicable Hypothesis Testing
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Related Articles in This Book: Hypothesis Testing – Part 2: How to; Null
Hypothesis; Alternative Hypothesis; Reject the Null Hypothesis; Fail to
Reject the Null Hypothesis; Confidence Intervals – Parts 1 and 2



HYPOTHESIS TESTING – PART 2
(OF 2): HOW TO

Summary of Keys to Understanding

Five–Step Method for Hypothesis Testing

1. State the problem or question in the form of a Null Hypoth-
esis (H0) and Alternative Hypothesis (HA).

2. Select a Level of Significance (𝜶),
This is the maximum level of risk for a “False Positive,” i.e.,

an Alpha Error that we are willing to tolerate. Most frequently,
it’s 0.05.
3. Collect a Sample of data for analysis.
4. Perform a statistical analysis on the Sample data.

For example, t-test, F-test, ANOVA
5. Come to a Conclusion about the Null Hypothesis.

Reject it or Fail to Reject it.

Example of Hypothesis Testing viewed as Input/Processing/Output

t-test
result:
p ≤ α

     Conclusion:

  Reject the Null

 Hypothesis 

Step 4 Step 5

Processing Output

Sample Data:
1356
1213
994
1476
1302
1275
 etc.

α: 0.05

H  : µ = 1300 hours0 
H  : µ    1300 hoursA

Input

Step 2

Step 3

Step 1

208
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Explanation
In Steps 1, 2, and 3, we provide the inputs.

Step 1: State the problem or question in the form of a Null Hypothesis
(H0) and Alternative Hypothesis (HA).

The Null Hypothesis (H0) is a statement that there is no Statistically
Significant

� difference,
� change, or
� effect.
For example, if we want to know whether the current Mean lifetime of

the light bulbs we make has changed from the historical Mean of 1300
hours, our Null Hypothesis would be:

“There is no Statistically Significant difference between the cur-
rent Mean lifetime of our light bulbs and the historical Mean of
1300 hours.”

Or, more simply, “𝜇 = 1300,” where 𝜇 is the symbol for the current
Mean.

There is some disagreement among experts whether an Alternative
Hypothesis (HA) is necessary or desirable. It is included in this method
of Hypothesis Testing, because it helps make obvious whether the test
is 2-tailed, left-tailed, or right-tailed. And we need to know that in per-
forming Step 3 of this method.

Recommendation: please read the articles Null Hypothesis and Alter-
native Hypothesis – in that order.

Step 2: Select a Level of Significance, Alpha (𝛼).
This is where we define what is Statistically Significant or not. The con-
cept of Alpha is covered extensively in this book in the article “Alpha, 𝛼”
and related articles referenced there. But briefly, Alpha is the maximum
Probability of a “False Positive” Error (aka “Alpha Error” or “Type I
Error”) which we are willing to tolerate and still call our results Statis-
tically Significant.

Alpha thus is a clip level, a maximum tolerable level for the Prob-
ability, p, of an Alpha Error. If value of p (the “p-value), which is
calculated in Step 4, is less than or equal to Alpha (i.e., p ≤ 𝛼), then
any observed difference, change, or effect is deemed to be Statistically
Significant.

See the article Alpha, 𝛼.
Step 3: Collect a Sample of data.

It is essential to the integrity of the Hypothesis Test that Steps 1 and 2
be completed before collecting the Sample of data. We don’t want our
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framing of the Null Hypothesis or our selection of the value of Alpha to
be tainted by how the data may appear to us.

Sample Data:
1356

1213

 994

1476

1302

1275

 etc.

α: 0.05

H  : µ = 1300 hours0
H  : µ ≠ 1300 hoursA

Input

Step 2

Step 3

Step 1

Steps 1–3 give us the input portion of our Input/Processing/Output
way of looking at our five-step method for Hypothesis Testing.

Step 4: Perform the Statistical Analysis.
This can be something like a t-test, F-test, Chi-Square tests, ANOVA,
etc. (See the article Which Statistical Test to Use to Solve Some Common
Problems.) Since our example uses the Mean of a single Population or
Process in the Null Hypothesis, we will use a 1-Sample t-test. In this
test, t is the Test Statistic.

The analysis will use the Sample data to:
� calculate a value for the Test Statistic, t
� calculate the p-value
It will also use our selected value of Alpha and the Probability Dis-

tribution of the Test Statistic to:
� calculate the Critical Value of the Test Statistic, t-critical
We then can make either one of two comparisons; these are sta-

tistically identical:
� Compare the p-value to Alpha
� Compare the calculated value of the Test Statistic, t, to its Critical

Value, t-critical
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Step 5: Come to a Conclusion about the Null Hypothesis, based on the
results of the analysis. We either
� Reject the Null Hypothesis if
◦ p ≤ 𝛼

(which is statistically identical to . . . )
◦ the calculated value of the Test Statistic ≥ Critical Value (e.g.,

t ≥ t-critical)
� or Fail to Reject the Null Hypothesis if the results are the opposite,

that is, if
◦ p > 𝛼

(which is statistically identical to . . . )
� the calculated value of the Test Statistic < Critical Value (e.g.,

t < t-critical)

There are separate articles in this book on each of these two conclusions.

Related Articles in This Book: Null Hypothesis; Alternative Hypothesis;
Alpha, 𝛼; p-Value, p; Alpha, p-Value, Critical Value, and Test Statistic –
How they Work Together; p, t, and F: “>” or “<” ?; Alpha and Beta
Errors; Reject the Null Hypothesis; Fail to Reject the Null Hypothesis;
Hypothesis Testing – Part 1: Overview



INFERENTIAL STATISTICS
Inferential Statistics (aka Statistical Inference) is a huge umbrella topic
whose scope includes many of the articles comprising this book. This
article is a high-level overview. For a similarly wide-scope article address-
ing Inferential Statistical tools, see the article Which Statistical Tool to Use
to Solve Some Common Problems.

Summary of Keys to Understanding

1. In Inferential Statistics, we calculate a numerical property
of a Sample of data (e.g., the Sample Mean) and use it to
infer (estimate) the value of that property for the Popula-
tion or Process from which the Sample was collected.

2. We make these inferences with a specified Level of Confi-
dence. The level of Confidence is 1 minus the Level of Sig-
nificance, Alpha (𝜶). We select the value for Alpha.

Then, you should select α = 5% I want a 95% Level of Confidence

3. Confidence Intervals is one of the two main methods used
in Inferential Statistics.

4. Hypothesis Testing is the other.

5. Inferential Statistics is involved in such analyses as
ANOM, ANOVA, Chi-Square Tests, F-tests, Regression,
t-tests, and z-tests.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. In Inferential Statistics, we calculate a numerical property
of a Sample of data (e.g., the Sample Mean) and use it to
infer (estimate) the value of that property for the Popula-
tion or Process from which the Sample was collected.

In Descriptive Statistics, we have all the data on an entire Population or
Process. So, we can calculate numerical values which describe its statistical
properties. For a Population or Process, these are properties called Param-
eters. Examples of Parameters include Mean, Mode, Median, Proportion,
Standard Deviation, Variance, Skewness, and Kurtosis.

But most often, we don’t have all the data from the entire universe
under consideration. It is impractical or impossible to collect data from all
the residents of a country, for example. And, for an ongoing Process, new
data are constantly being created, so whatever we gather will be incomplete
soon afterward.

So, we collect a Sample of data, and we calculate a statistical prop-
erty for the Sample. This is called a Statistic. For every Population or pro-
cess Parameter, there is a corresponding Sample Statistic. In Inferential
Statistics, the value of the Sample Statistic, e.g., the Sample Mean,
becomes our estimate (inference) of the value of its corresponding Pop-
ulation or Process Parameter, e.g., the Population Mean.

But how good is this estimate?
Since it’s usually impossible to know the exact value of a Population or

Process Parameter, one might think that we could never know with 100%
accuracy if our Sample’s estimate is accurate or even close. But through
Inferential Statistics, we can specify precisely the Level of Confidence that
we need.

For example, let’s say we measured the height of a Sample of adult males
and calculated the Mean (average) as 175 cm. We can specify that we want
a 95% Level of Confidence. Depending on the Sample Size and the amount
of Variation of the measurements in the Sample, we could come up with a
result that said,

� With a 95% Level of Confidence
� the Mean height of adult males in the Population is 175 cm
� plus or minus 5 cm

The “plus or minus 5 cm” tells us this is an Interval Estimate. More on
this, when we get to Confidence Intervals.
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2. We make these inferences with a specified Level of Confi-
dence. The level of Confidence is 1 minus the Level of Sig-
nificance, Alpha (𝜶). We select the value for Alpha.

We can never be 100% certain about an estimate. But Inferential Statis-
tics enables us to get close to that. In fact the most common Level of Con-
fidence is 95% (0.95). The good news is that, in Inferential Statistics,
we get to select the level of Confidence.

But what exactly are we confident about when we say we want a certain
Level of Confidence? We want to be confident that our conclusion is not a
False Positive. A False Positive would be to conclude that the Mean height
is 175 cm + 5 cm, when in fact the true Population Mean was outside that
range.

A False Positive is called an Alpha Error or Type I Error. Alpha (𝜶)
is the maximum Probability of an Alpha Error which we are willing
to tolerate. We get to select the value of Alpha.

𝜶 = 1 − Level of Confidence

If we want a 95% Level of Confidence, we select Alpha = 5%. (Most
spreadsheets or software will expect you enter this as 0.05.)

Then, you should select α = 5% I want a 95% Level of Confidence

The concept of Alpha is central to understanding Inferential Statistics,
so you may want to read the article Alpha, 𝛼. There is a separate article on
Alpha and Beta Errors.

3. Confidence Intervals is one of the two main methods used
in Inferential Statistics.

Earlier, we gave an example of an Interval Estimate: the Mean height of
adult males in the Population is 175 cm plus or minus 5 cm. (This “plus
or minus” amount, 5 cm, is called the Margin of Error; see the article by
that name.) Our Inferential Statistical analysis had come to the conclusion
that the true Population Mean is somewhere in the interval of 170–180 cm,
with a 95% Level of Confidence. That interval is a Confidence Interval.
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We use the selected value of Alpha to mark off shaded areas under one
or both tails of the Distribution curve of a Test Statistic such as z. In this
example, a “plus or minus” interval tells us to split Alpha (5%) in half and
shade, under each tail, 2.5% of the area under the curve.

α/2 = 2.5%

z
0

95%
α/2 = 2.5%

I select
α = 5%

The inner boundaries of these shaded areas are the Critical Values of the
Test Statistic. Between these boundaries is an interval. But it is in the units
of the Test Statistic (z, in this example). We need to convert it to units of
the original data (centimeters) in order to get the Confidence Limits which
define the Confidence Interval.

We just use the formula for the Test Statistic to make this conversion as
shown below.

I select

α = 5%
Critical Value 

 z = –1.960 
Critical Value
z = +1.960

z

0

95%

x in cm

Confidence
Interval

Confidence Limit
170 cm

Confidence Limit
       180 cm

α/2 = 2.5% α/2 = 2.5%

x = σz + x 

x = 175 cm. 

The Confidence Interval method can be used to determine whether there
is a Statistically Significant difference between our Sample Statistic and a
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specified value for a Parameter (say a historical Mean or a target Mean for
a Population or Process). In this type of analysis, if the specified value is
within the Confidence Interval, we conclude that there is not a Statis-
tically Significant Difference between that specified value and the actual
value for the Population or Process.

The Confidence Intervals (CI) method is less useful for analyses in
which Parameters from two Populations or Processes are compared. If
their CIs do not overlap, we conclude that there is a Statistically Sig-
nificant difference between them. However, the converse is not always
true. If the CIs do overlap somewhat, we cannot conclude that there is not
a Statistically Significant difference. We would need to use a Hypothesis
Test to be certain. For more on this, see the article, Confidence Intervals –
Part 2: Some Specifics.

4. Hypothesis Testing is the other of the two main methods
used in Inferential Statistics.

Hypothesis Testing can be done in five steps.

1. State the problem or question in the form of a Null Hypothesis (H0).
2. Select a Level of Significance (𝛼).
3. Collect a Sample of data for analysis.
4. Perform a statistical analysis on the Sample data.
5. Come to a conclusion about the Null Hypothesis.

Step 1: State the problem or question in the form of a Null Hypothesis
(H0).
The Null Hypothesis is a statement of nothingness – no difference,
change, or effect.

What’s

happening? 

Absolutely

nothin’

No

change 

No

effect 

No

difference 
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The following are some examples.
No (Statistically Significant) Difference

– There is no difference between the Mean heights of Population A
and Population B.

– There is no difference between the Standard Deviation of the Pro-
cess and our target for its Standard Deviation.

No (Statistically Significant) Change
– There is no change between the Mean test scores from last year to

this year.
– There is no change in the Mean diameter of holes drilled from the

historical Mean.
No (Statistically Significant) Effect

The experimental medical treatment has had no effect on Mean can-
cer survival rates.

Some experts say that one must also state an Alternative Hypothesis
(symbol HA or H1) at this point; others disagree.
See the articles Null Hypothesis and Alternative Hypothesis.

Step 2: Select a Level of Significance (𝛼). (covered earlier in this article)
Step 3: Collect a Sample of data for analysis.

Not just for Hypothesis Testing, but in general, this must be done after
the selection of Alpha. This protects the integrity of the test. If we take
a peek at the data first, that might influence our selection of a value for
Alpha.

Step 4: Perform a statistical analysis on the Sample data.
This can be any kind of Inferential Statistical test.
The test will produce values for the following:
� the Test Statistic, e.g., t
� the Critical Value of the Test Statistic. e.g., t-critical
� p, which is the calculated actual Probability of an Alpha Error

See the articles Test Statistic, Critical Value, and p, p-Value.
Example output: Hypothesis Test: 2-Sample t-test

t-Stat 3.232 T-Critical Two-tail: 2.145

P(T<=t) two-tail 0.006 Reject Null Hypothesis because
p < 0.05 (Means are Different)

Step 5: Come to one of two conclusions about the Null Hypothesis.
� Either Reject the Null Hypothesis if

Test Statistic ≥ Critical Value, which is statistically identical to . . .
p ≤ 𝛼 (actual Probability is less than or equal to the maximum we said
we would tolerate)

� otherwise Fail to Reject the Null Hypothesis
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These two verbal conclusions can be very confusing, because they
involve a double negative and a triple negative, respectively. So, there are
articles on each of the two in this book.

Oh No! That means “No”!

The Null Hypothesis is a 

negative, and to Fail to 

Reject the negative

leaves it in place.    

I Fail to Reject the

Null Hypothesis. 

 Will you

    marry me? 

A statistician responds to a marriage proposal:

In addition to the articles referenced above, it may be best to read – in
fact, start with – the articles Hypothesis Testing – Part 1: Overview and
Hypothesis Testing – Part 2: How To.

5. Inferential Statistics is involved in such analyses as
ANOM, ANOVA, Chi-Square Tests, F-tests, Regression,
t-tests, and z-tests.

They all use Sample data and make inferences from them. There are
articles on each of these.

In addition to the articles listed above (and in addition to the other arti-
cles suggested, in turn, by those articles), it would be a good idea to read
the article, Alpha, p, Critical Value, and Test Statistic – How they Work
Together. It gives a comprehensive explanation of the interactions among
these four important numbers in Inferential Statistics, and it should help
deepen your understanding.
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It explains in detail the concepts and interactions summarized in the
following table:

Alpha p
Critical Value

of Test Statistic
Test Statistic

value

What is it?
How is it
pictured?

a Cumulative Probability a value of the Test Statistic

an area under the curve of
the Distribution of the

Test Statistic

a point on the horizontal axis of
the Distribution of the Test

Statistic

Boundary
Critical

Value marks
its boundary

Test
Statistic

value marks
its boundary

Forms the
boundary for

Alpha

Forms the
boundary for p

How is its
value
determined?

Selected by
the tester

area
bounded by

the Test
Statistic

value

boundary of the
Alpha area

calculated
from Sample

Data

Compared
with

p Alpha
Test Statistic

Value

Critical Value
of Test
Statistic

Statistically
Significant/
Reject the
Null
Hypothesis
if

p ≤ 𝛼
Test Statistic ≥ Critical Value

e.g., z ≥ z-critical
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1. The Margin of Error (MOE) is one-half the width of a
2-sided Confidence Interval.

A Confidence Interval is a range of values which comprise an Inter-
val Estimate. It can be used in Inferential Statistics instead of the Hypoth-
esis Testing of a Point Estimate. (See the articles Confidence Intervals –
Part 1 and Part 2.)

A Confidence Interval is usually described by the value of a Statistic
(e.g., the Mean, or Standard Deviation) plus or minus the Margin of Error.
For example,

x in cm

180170

MOE

95%

Confidence

175

MOE

“MOE” and “E” are used as symbols for Margin of Error.

2. The “error” is not a mistake.

It simply the “Sampling Error” – the reduction in accuracy to be
expected when one makes an estimate based on a portion (a Sample) of
the data in the Population or Process.

3. Three things affect the size of the MOE: s, 𝜶, and n.

The formula for Margin of Error is:

MOE = s(Critical Value)
√

n

1. Standard Deviation: s is the Sample Standard Deviation. Being in
the numerator – with all other things being equal – a larger value for the
Standard Deviation results in a larger MOE. This makes sense, because

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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if the data values Process are spread widely (large Standard Deviation), the
Distribution is spread out – and the Confidence Interval is spread out with
it, as shown below.

MOE

95%

MOE

Larger Standard Deviation
=> Larger MOE

Larger MOE

MOE

95%

MOE

Smaller Standard Deviation
=> Smaller MOE

Smaller MOE

2. Alpha, 𝛼: The Critical Value of a Test Statistic (such z, t, F, or 𝜒2)
is also in the numerator of the formula for MOE. So, larger values for the
Critical Value will result in a larger MOE. But, for any given Distribution,
the Critical Value is dependent entirely on the value selected for Alpha, the
Significance Level. And, as illustrated below, selecting a smaller value for
Alpha results in a larger Critical Value (farther away from the Mean).
This, in turn, results in a larger MOE. Alpha is the sum of the two shaded
areas under the curves below.

70%
α = 30%

α

α

Large Alpha => Small MOE

MOE MOE

Critical Value

95%
α = 5%

Small Alpha => Large MOE

MOE MOE

Critical Value

3. Sample Size: The Sample Size, n, is in the denominator of the formula
for MOE. So a larger Sample Size results in a smaller MOE. There is
no statistical tradeoff here. But there may be a practical tradeoff between
the increased cost of gathering a larger Sample vs. narrowing the MOE.
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Increasing the Sample Size for larger values of n yields diminishing returns
in reducing the MOE.

Related Articles in This Book: Confidence Intervals—Parts 1 and 2;
Errors – Types, Uses, and Interrelationships; Standard Deviation; Criti-
cal Value; Alpha,𝛼; Test Statistic; Sample Size – Part 2: for Continuous/
Measurement Data
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Summary of Keys to Understanding

1. Nonparametric (NP) statistical methods have no
requirements about the shape of the Distribution(s)
from which Samples are collected.

2. Nonparametric methods convert Measurement data into
Signs, Ranks, Signed Ranks, or Rank Sums.

3. Nonparametric methods can work with Ordinal data (e.g.,
“beginner,” “intermediate,” “advanced”).
NP methods work with Medians instead of Means.

4. Nonparametric methods work better in dealing with
Outliers, Skewed data, and Small Samples. But, NP
methods have less Power.

5.
Nonparametric

Test
What it does

Parametric
Counterpart

Wilcoxon
Signed Rank

Compares 1 Median to a
specified value

z-test, 1-Sample
t-test

Compares 2 Dependent
(Paired) Medians

Paired (Dependent)
Samples t-test

Mann–
Whitney

Compares 2 Independent
Medians

2 (Independent)
Samples t-test

Kruskal–
Wallis

Compares 3 or more
Medians, 1 Variable

1-way ANOVA

Friedman
Compares 3 or more
Medians, 2 Variables

2-way ANOVA

Chi-Square
Test of
Independence

Tests 2 Categorical
Variables for Independence
(lack of Association)

none

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. Nonparametric (NP) statistical methods have no
requirements about the shape of the Distribution(s)
from which Samples are collected.

Many of the most common statistical analyses have fairly stringent
“Assumptions.” These are requirements that must be met if the analysis
is to be valid. The most common Assumption is that the Population or
Process data must have Parameters which approximated those of Normal
Distributions.

Parametric Assumption: Normal Distribution

Parameters are statistical properties of a Population or Process. (Corre-
sponding properties of Samples are called Statistics.) The key Parameters
which define a Parametric (approximately Normal) Distribution are:

� Mean = Mode = Median
� Skewness = 0 (the shape is Symmetrical)
Nonparametric methods can work with these:

Parametric Assumption: Equal Variance

OR

Parametric methods which use two or more Samples from two different
Populations or Processes usually assume roughly equal Variance. Nonpara-
metric methods don’t.

Nonparametric methods can work with this:

Nonparametric methods are often called “distribution-free,” because
they are free of any assumptions about the source Distribution(s).
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2. Nonparametric methods convert Measurement data into
Signs, Ranks, Signed Ranks, or Rank Sums.

One reason that NP methods can use data from any Distribution is that
they usually don’t work directly with the data. The Sample data are con-
verted to Signs and/or Ranks and the numerical values of the data are lost
before any calculations are done. So, it makes no difference what type of
Distribution the source data have.

Signs

We’ll be comparing Sample data to a value we specify. It could be a target,
a historical value, an industry standard, etc. Let’s say that the historical
Median time to complete an operation in an industrial process has been 30
seconds. We collect a Sample of 10 time measurements: 28, 31, 30, 33, 32,
28, 30, 31, 27, 32

If a time is less than 30 seconds, we give it a negative sign. If it is 30 sec-
onds, we give it a zero. If it is greater than 30 seconds, we give it a plus sign.

Specified Value = 30

Sample Data 28 31 30 33 32 28 30 31 27 32

Sign − + 0 + + − 0 + − +

Count of +’s: 5
Count of –’s: 3
We could use the Counts of these signs – instead of the original data –

in a Nonparametric method called the Sign Test.

Ranks

Let’s take that same Sample of data, and order it from low to high. Next,
assign a Rank from low to high. For ties, split the difference between the
values tied. For example, there are two 28’s. These occupy two Ranks after
1 (a 2 and a 3), so we give them both a 2.5. The next Rank would be a 4,
but there’s another tie, so we mark the next two as 4.5’s.

Sample Data 27 28 28 30 30 31 31 32 32 33

Rank 1 2.5 2.5 4.5 4.5 6.5 6.5 8.5 8.5 10

Signed Ranks

Signed Ranks, as you might guess, combine the concepts of Signs and
Ranks.
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But there is a change in how Signs are assigned, and one step uses abso-
lute values, so we’ll use a different example with some negative numbers.

Let’s say we are doing an analysis of the effect of a training program
on employee productivity. If we were doing a Parametric test we’d use
the Paired t-test (aka Dependent Samples t-test.) We count the number
of transactions that they process in an hour. For each employee, we subtract
their Before number from their After number. The data we are capturing is
the difference.

Instead of plus and minus signs, we’ll use +1 and 0. We compare the
data values to a specified value, as we did in our example of the historical
Median of 30. Each Sample data value is their After production number
minus their Before number.

We’ll be testing the Null Hypothesis that there is zero difference, so the
specified value is zero.

Step 1: Sign: For each data value, assign a Sign:

– if it’s greater than the specified value (0 in this example), then
the Sign = +1

– if it’s less than or equal to the specified value: Sign = 0

Step 2: Absolute Value
Step 3: Rank the Absolute Values to produce the Absolute Ranks
Step 4: Signed Rank: Multiply the Sign times the Absolute Ranks

Sample data −6 −2 0 +4 +7 +8 +11 +12 +14 +16

1. Sign 0 0 0 1 1 1 1 1 1 1

2. Absolute Value 6 2 0 4 7 8 11 12 14 16

3. Absolute Rank 4 2 1 3 5 6 7 8 9 10

4. Signed Rank 0 0 0 3 5 6 7 8 9 10

Signed Rank tests are the NP counterpart to the Dependent Samples
(aka Paired Samples) t-test.

Rank Sum tests are the NP counterpart the Independent Samples
(aka 2-Samples) t-test.

Rank Sums

We are comparing Samples taken from two Independent Populations or
Processes. That is, the data values of one Population are not influenced by
the data values of another.

Step 1: Group: Put all the data from both Samples into a single group
(but keep track of which ones came from which group).
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Step 2: Rank: Rank the values in the combined group.
Step 3: Rank Sum: Total the Ranks for each Sample

1. Data, Sample 1 12 7 15 13 13

1. Data, Sample 2 11 16 8 6 12

2. Ranks 5.5 2 9 7.5 7.5 4 10 3 1 5.5

3. Rank Sum 31.5 26.5

There are many Nonparametric methods, and their calculations are usu-
ally done with statistical software, so we won’t cover that detail here.

3. Nonparametric methods can also work with Ordinal data
(e.g., “beginner,” “intermediate,” “advanced”).
Nonparametric methods work with Medians instead of
Means.

Ordinal data are non-numerical; they consist of names. The names imply
an ordering (hence “Ordinal”), but there are no corresponding numerical
values upon which any calculations can be performed. Even if the names
include numbers (e.g., movie ratings of one to four stars) those numbers
cannot be used in calculations (a 4-star movie is not defined as 1.33 times
as good as a 3-star movie).

The order in Ordinal data is similar to the Ranks in Nonparametric (NP)
statistics. So NP tests which use Ranks are well-suited for Ordinal data.

Means are normally used as the measure of Central Tendency (aka Cen-
tral Location) in Parametric tests. In converting the data to Signs, Ranks,
etc., we lose the ability to calculate the Mean. The Median is another
measure of Central Tendency. It is well-suited for NP tests, because it
uses the number(s) that Rank in the middle. To determine the Median,
arrange the data values in order (low to high or high to low). For an odd
number of data values, the Median will be the middle value. For an even
number, it will be the average of the two middle values.

The Median has advantages over the Mean:

� It is less influenced by Outliers.
� It is less influenced by the Skew in Skewed data.

4. Nonparametric methods work better in dealing with
Outliers, Skewed data, and Small Samples. But, NP
methods have less Power.
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Outliers and Skewed Data

Since Nonparametric (NP) methods use the Median instead of the Mean,
they are better than Parametric methods in minimizing the influence
of Outliers and Skewed data.

Also, in certain situations, the Median is a more useful measure of
Central Tendency than the Mean. Here’s an example: A couple is look-
ing for a house in a community in which most houses are in the price
range they can afford, say $400,000. They look at a report on recent home
sales which shows Mean prices. One community shows a Mean price of
about $670,000, so they immediately exclude it from consideration. But
the underlying data show that five houses were sold for around $400,000,
and one outlier was sold for $2,000,000. The Median for the same numbers
would be around $400,000.

Skewed data:

Similarly, for Skewed data, the Mean can be a less meaningful mea-
sure in a practical sense than the Median. Of course, with Skewed data,
the Assumption of Normality would not be met, so an NP method would
need to be used, in any event.

Small Sample Sizes

For small Sample Sizes, it is not possible to accurately determine whether
the Distribution is Normal. So, a small Sample Size is a reason to use an
NP method.

Nonparametric methods can be used in any situation where a Para-
metric method is used. The opposite is, of course, not true. So why
wouldn’t you use NP methods all the time?

NP methods have less Power. This means that:

� NP methods have a higher Probability of a Beta (False Negative)
Error.

� NP methods have less ability to detect small differences, changes,
or effects.

Beta, 𝛽, is the Probability of a Beta (False Negative) Error. Power =
1 – 𝛽. Power is the Probability of avoiding a Beta Error. Lower Power
means that NP methods have a higher Probability of Beta (False Negative)
Error than Parametric methods. Also, lower Power means a larger mini-
mum Effect Size. (See the article Power.)
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Why is this the case? When Nonparametric methods convert from
Measurement data to Signs and Ranks, information – and thus pre-
cision – is lost. The 3rd and 4th ranked Measurements in the data may
be 25 and 26, while the 9th and 10th ranked numbers may be 35 and 45.
Ranks and signs would lose the information that the difference between the
9th and 10th ranked numbers is 10 times as much as that between the 3rd
and 4th. This reduction in precision is what causes the Power of the test
to be reduced in NP methods.

5. There are many Nonparametric tests. Here are some of the
most commonly used:

Nonparametric
Test

What it does
Parametric
Counterpart

Wilcoxon
Signed Rank

Compares 1 Median to a
specified value

z-test, 1-Sample
t-test

Compares 2 Dependent
(Paired) Medians

Paired (Dependent)
Samples t-test

Mann–
Whitney

Compares 2 Independent
Medians

2 (Independent)
Samples t-test

Kruskal–
Wallis

Compares 3 or more
Medians, 1 Variable

1-way ANOVA

Friedman
Compares 3 or more
Medians, 2 Variables

2-way ANOVA

Chi-Square
Test of
Independence

Tests 2 Categorical
Variables for Independence
(lack of Association)

none

Related Articles in This Book: Normal Distribution; Skew, Skewness;
Power; z; t-tests-Part 1 and 2; ANOVA – Parts 3 and 4; Chi-Square Test
for Independence
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Summary of Keys to Understanding

1. Normal Distributions
� are bell-shaped, left–right symmetrical
� have tails which get closer to the horizontal axis, but

never touch it
� have one Mode and the Mean = Mode = Median

2. It takes two Parameters to specify an individual Normal
Distribution – the Mean, 𝝁, and the Standard Deviation,
𝝈. The Standard Normal Distribution (whose Test Statistic
is z) has 𝝁 = 0 and 𝝈 = 1.

3. Empirical Rule: Cumulative Probabilities bounded
by Standard Deviations are the same for all Normal
Distributions – roughly 68%, 95%, and 99.7% for 1, 2,
and 3 Standard Deviations, respectively.

Standard Deviations

99.7%

95%

68%

0 1 2–1–2 3–3

4. Central Limit Theorem: No matter the Shape of the Dis-
tribution of the underlying data, if we take multiple Sam-
ples (of the same Size, n) and compute the Means or Propor-
tions for each Sample, the resulting Distribution of Sample
Means or Proportions will be approximately Normal.

5. Normality is an Assumption for a number of statistical
tests.

230
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Explanation
It may be helpful to first read the article Distributions – Part 1: What They
Are.

1. Normal Distributions
� are Continuous
� are bell-shaped, left–right symmetrical
� have tails which get closer to the horizontal axis, but

never touch it
� have one Mode and the Mean = Mode = Median

Normal (aka Gaussian) Distributions are Continuous and are graphed
as smooth curves, like the Exponential, F, and Chi-Square Distributions –
and unlike Discrete Distributions, such as the Binomial or Poisson.

Mean = 
Mode = 
Median

They are the familiar “bell-shaped curve” with most of their mass cen-
tered near the Mean.

Their tails extend asymptotically to infinity to the left and the right. That
is, they get ever closer to the horizontal axis without touching it.

There is only one hump designating the Mode. And that same point
marks the Mean and the Median – which is required in order to have such
a bell shape.

Normal Distributions are by far the most common type of Distribu-
tion we run into in statistics and in our daily lives. They are common in
natural and human processes that are influenced by many small and unre-
lated random effects. Some examples:

– height or weight of individuals of the same gender
– test scores
– blood pressure
– Residuals in a Regression Model with a good fit
– variations in a manufacturing process which is under control
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Most people are of average height or close to it (the center of the Distri-
bution). The farther one gets from the center out toward the tails of the Dis-
tribution – shorter or taller – the smaller the number of people at that height.

2. It takes two Parameters to specify an individual Normal
Distribution – the Mean, 𝜇, and the Standard Deviation,
𝝈. The Standard Normal Distribution (whose Test Statistic
is z) has 𝝁 = 0 and 𝝈 = 1.

The Mean, 𝜇, tells us where to position the center of the Normal
Distribution – left or right along the Horizontal axis. The Standard Devia-
tion tells us whether the shape of the Normal Distribution will be tall and
narrow or wide and short.

large σsmall σ
As we’ll see next, in the Empirical Rule, it is very useful to select one

member of family of Normal Distributions and calculate Probabilities for
it. Statisticians made it simple this time, they selected the Normal Dis-
tribution with its Mean = Mode = Median = 0 and the simplest pos-
sible Standard Deviation, 𝝈 = 1. This defines the Standard Normal
Distribution.

A Test Statistic is one which has an associated Probability Distribution.
z is the Test Statistic associated with the Standard Normal Distribution.
(See the article z).

3. Empirical Rule: Cumulative Probabilities bounded
by Standard Deviations are the same for all Normal
Distributions – roughly 68%, 95%, and 99.7% for 1, 2,
and 3 Standard Deviations, respectively.

Standard
Deviations

99.7%
95%
68%

0 1 2–1–2 3–3
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This is also called the “68, 95, 99 Rule” or the “68, 95, 99.7 Rule.”
Cumulative Probabilities are Probabilities for ranges of values. They are

pictured as areas under the curve. In this case the ranges are between −1
and 1, −2 and 2, and −3 and 3. These Probabilities are the same for all
Normal Distributions.

The values of the z Test Statistic are plotted along the horizontal axis,
and they correspond to the Standard Deviations. We can calculate the
Cumulative Probability for any value of z, not just integer Standard
Deviations. Likewise, if we know a Cumulative Probability (as when
we select Alpha = 5% in z-test) we can calculate the value of z (1.645,
for a 1-tailed test).

z

1 –α = 
95%

α = 5%

1.645
The z transformation formula below can be used to transform any Nor-

mal Distribution to the Standard Normal Distribution, aka the z Distribu-
tion.

z = (x − 𝜇)∕𝜎

With a little algebra, we get:

x = z𝜎 + 𝜇

We know the Cumulative Probability for any value of z. This formula
tells us which value of x in another Normal Distribution has that same
Cumulative Probability.

4. Central Limit Theorem: No matter the Shape of the Dis-
tribution of the underlying data,

if we take multiple Samples (of the same Size, n) and com-
pute the Means (or Proportions) for each Sample,

the resulting Distribution of Sample Means (or Propor-
tions) will be approximately Normal.

The Central Limit Theorem (CLT) is a powerful concept which
helps us perform statistical analyses on any Population or Process, no
matter the underlying shape of its data. We just take Samples of data
(with replacement) and calculate the Means for those Samples. The
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resulting Distribution of these Means of Samples will approximate a
Normal Distribution. And then we can use known facts about Normal
Distributions – like their Cumulative Probabilities – in statistical analyses.

x x

Distribution of
Sample Means- OR -

x

There is something intuitive about the CLT. The Mean of a Sample taken
from any Distribution is very unlikely to be at the far left or far right of the
range of the Distribution. Means by their very nature tend to average-out
extremes, so their Probability would be highest in the center and lowest at
the extremes.

Note that x, representing the data, is the horizontal axis Variable for the
two strange Distributions left of the arrow. However, for the Distribution
of the Sample Means, the horizontal axis Variable is x̄. The points on
the horizontal axis represent values of Means of the Samples taken. (Such
a Distribution of a Statistic of a Sample is called a Sampling Distribution;
see the article by that name.)

n is the number of individual data points in each Sample; it is not the
number of Samples taken. As n grows larger, the Distribution of the
Means of the Samples approaches a Normal Distribution more closely.
For n ≥ 30, the approximation will be very close; some say that there is no
reason to go any higher for the Sample Size. In fact, for use with Control
Charts, a Sample Size as low as four can be used.

5. Normality is an Assumption for a number of statistical
tests.

For a number of statistical tests – for example, t-test, z-test, and
ANOVA – assume that the data are “roughly Normal.” Different tests have
different levels of sensitivity to how non-Normal the data can be.

The Anderson–Darling test is often used to determine Normality.

Related Articles in This Book: Distributions – Part 1: What They Are;
Distributions – Part 2: What They Do; Distributions – Part 3: Which to
Use When; z; Sampling Distribution; Control Charts



NULL HYPOTHESIS

Summary of Keys to Understanding

1. Stating a Null Hypothesis and an Alternative Hypothesis
is the first step in our five-step method for Hypothesis
Testing.

2. The Null Hypothesis (symbol H0) is the hypothesis of
nothingness or absence. In words, the Null Hypothesis is
stated in the negative:

What’s
happening?

Absolutely
nothin’

No
change

No
effect

No
difference

3. It is probably less confusing to state the Null Hypothesis in
a formula. It must include an equivalence in the compari-
son operator, using one of these: “=”, “≥”, or “≤”.

4. If “=” is not to be used in the Null Hypothesis, start with
the Alternative Hypothesis to determine whether to use
“≥”, or “≤” in the Null Hypothesis.

Comparison Operator
Tails of the Test

H0 HA

= ≠ 2-tailed

≤ > Right-tailed

≥ < Left-tailed

5. The last step in Hypothesis Testing is to either
– “Reject the Null Hypothesis” if p ≤ 𝜶, or
– “Fail to Reject (Accept) the Null Hypothesis” if p > 𝜶.
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Explanation

1. Stating a Null Hypothesis and an Alternative Hypothesis
is the first step in our five-step method for Hypothesis
Testing.

Hypothesis Testing is one of two common methods for Inferential Statis-
tics. Confidence Intervals is the other. In Inferential Statistics, we estimate
a statistical property (e.g., the Mean or Standard Deviation) of a Population
or Process by taking a Sample of data and calculating the property in the
Sample.

In the article, “Hypothesis Testing – Part 2: How To “ we describe a
5-step method of Hypothesis Testing:

1. State the problem or question in the form of a Null Hypothesis and
Alternative Hypothesis.

2. Select a Level of Significance (𝛼).
3. Collect a Sample of data for analysis.
4. Perform a statistical analysis on the Sample data.
5. Come to a conclusion about the Null Hypothesis (Reject or Fail to

Reject).

2. The Null Hypothesis (symbol H0) is the hypothesis of
nothingness or absence. In words, the Null Hypothesis is
stated in the negative:

What’s
happening?

Absolutely
nothin’

No
change

No
effect

No
difference

A hypothesis is a statement, opinion, or conjecture about a statistical
property of a Population or Process. At the time we state a hypothesis, we
don’t know if it’s true or false. Subsequent steps in the Hypothesis Testing
method determine that.

We normally think in terms of things that exist, but the hypothesis in
Hypothesis Testing is stated in terms of nonexistence or absence. For exam-
ple, instead of asking whether the Sample data are Normally distributed,
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we state a Null Hypothesis like this: “There is no difference between the
distribution of this data and a Normal distribution.” This is one thing that
makes Hypothesis Testing confusing for many people.

Many common Null Hypotheses state that there is no Statistically Sig-
nificant

� Difference,
� Change, or
� Effect

The following are some examples.
No Difference

– There is no difference between the Mean heights of Population A and
Population B.

– There is no difference between the Standard Deviation of the Process
and our target for its Standard Deviation.

No Change

– There is no change between the Mean test scores from last year to this
year.

– There is no change in the Mean diameter of holes drilled from the
historical Mean.

No Effect

The experimental medical treatment has had no effect on Mean cancer
survival rates.

3. It is probably less confusing to state the Null Hypothesis in
a formula. It must include an equivalence in the compari-
son operator, using one of these: “=”, “≥”, or “≤”.

In a formula, we don’t have to use the confusing language of nonexis-
tence. If we want to say that there is no Statistically Significant difference
between the Means of Population A and Population B, we don’t have to
write it as 𝜇A – 𝜇B = 0. We can just write:

H0:𝜇A = 𝜇B

That Null Hypothesis would be tested with a 2-sided (2-tailed) test, with
𝛼/2 under each tail. See the article Alpha, 𝛼,



238 NULL HYPOTHESIS

α/2 = 2.5% α/2 = 2.5%

2-tailed test

But, we may not be interested in whether there is a difference, so much
as if there is a difference in a particular direction. For example, if we make
light bulbs with an advertised minimum life of 1300 hours, we don’t want
to know whether the actual Mean (as estimated from Sample data) within
a statistically insignificant distance from 1300 hours. We want to know if
the actual Mean is 1300 or more. Our Null Hypothesis would then be:

H0:𝜇 ≤ 1300 hours

And if there was a Statistically Significant conclusion from the test, we
would Reject this Null Hypothesis and conclude that the 𝜇 > 1300 hours.

But this is kind of confusing: the ≤ in H0 points in the opposite direction
from the > in the conclusion. That’s why we use the Alternative Hypoth-
esis, HA, instead of the Null Hypothesis, to determine the direction of the
tail in 1-tailed analyses. One-tailed analyses can be either left- or right-
tailed. A shaded area representing the full value of 𝛼 is under either the left
or right tail.

4. If “=” is not to be used in the Null Hypothesis, start with
the Alternative Hypothesis, HA, to determine whether to
use “≥”, or “≤” in the Null Hypothesis.
HA also tells us which way the tail points in 1-tailed tests.

� The Alternative Hypothesis (notation: HA or H1) is the opposite of the
Null Hypothesis.

� It is the Hypothesis which is true when the Null Hypothesis is false –
and vice versa.

� Whereas the Null Hypotheses always has an equivalence in its com-
parison operator, the Alternative Hypothesis never does. The Null
hypothesis has “<” or “>”.

But the biggest benefit to stating an Alternative Hypothesis is:
The Alternative Hypothesis points in the direction of the tail in a

1-tailed test.
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That is why – for a 1-tailed test – it is less confusing to start by stating
an Alternative Hypothesis and then take the opposite of that as the
statement of the Null Hypothesis.

There is more on this in the article Alternative Hypothesis, but the fol-
lowing table may be helpful in explaining this relationship between H0, HA
and the tails of the test.

Comparison Operator
Tails of the Test

H0 HA

= ≠ 2-tailed
α/2 α/2

≤ > Right-tailed
α = 5%

≥ < Left-tailed
α = 5%

5. The last step in Hypothesis Testing is to either
– “Reject the Null Hypothesis” if p ≤ 𝜶, or
– “Fail to Reject (Accept) the Null Hypothesis” if p > 𝜶.

Note that p ≤ 𝛼 is statistically identical to the value of the Test Statistic
being ≥ the Critical Value (e.g., t ≥ t-critical).

If the Null Hypothesis is stated as a negative, then to “Reject” it is a
double negative, and to “Fail to Reject” it is a triple negative. This gets
confusing, even for experienced practitioners.

To help clear up the confusion, you can read the two articles in this book
which have as their titles the two alternatives for the last step, listed above.

And, as we note in the article Hypothesis Testing – Part 1, some prac-
titioners choose to avoid Hypothesis Testing and use Confidence Intervals
instead.

Related Articles in This book: The Null Hypothesis is just one concept in
Hypothesis Testing. We’ve broken things up into bite-sized-chunks, con-
sisting of the following articles.
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– Hypothesis Testing – Part 1: Overview
– Hypothesis Testing – Part 2: How To
– Null Hypothesis (this article)
– Reject the Null Hypothesis
– Fail to Reject the Null Hypothesis
– Alternative Hypothesis

Also, . . .
Alpha, 𝛼; Confidence Intervals – Parts 1 and 2; Inferential Statistics



p, p-VALUE

Summary of Keys to Understanding

1. In Inferential Statistical analyses, p is the Probability of
an Alpha Error (also known as a “False Positive” or a Type
I Error).

2. From Sample data, a value is calculated for a Test Statistic.
This value is plotted on the Probability Distribution of the Test
Statistic. The p-value is calculated as the Cumulative Prob-
ability of the area under the curve beyond the Test Statistic
Value.

z
1.2

Sample data
163, 182, 177,  ...

z = 1.2
z

1.2

p = 11.5%

3. In Hypothesis Testing, p is compared with Alpha to deter-
mine the conclusion from an Inferential Statistics test. If
p ≤ 𝛼, Reject the Null Hypothesis. If p > 𝛼, Fail to Reject
(i.e., Accept) the Null Hypothesis

p ≤ α
z ≥ z-critical

p > α
z < z-critical

The observed difference, change,

or effect is: 

Statistically

Significant

not Statistically

Significant

Null Hypothesis Reject Accept (Fail to

Reject)

Areas under the curve (right tail)

α: p:
z-critical z z z-critical

4. The smaller the value of p, the more accurately the Sample
represents the Population or Process.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. In Inferential Statistical analyses, p is the Probability of
an Alpha Error (also known as a “False Positive” or a Type
I Error).

In Inferential Statistics, we use data from a Sample to estimate a property
(e.g., the Mean) of the Population or Process from which the Sample was
drawn. Being an estimate, there is a chance for error.

In Inferential Statistical tests – such as the z-test, the t-tests, the F-
tests, Chi-square tests, and ANOVA – the conclusion we make from
the test depends on how likely it is that we have avoided an Alpha
Error.

An Alpha Error is the error of observing something – for example,
a change in a Process, a difference between two treatments, or an effect
(positive or negative) of a new drug – when there is nothing. It may be
more memorable to think of an Alpha Error as a False Positive, like this
one:

I saw a unicorn. 

Alpha Error

(False Positive)

In Hypothesis Testing (one of the two main methods of Inferential
Statistics), it is the error of rejecting the Null Hypothesis (and conclud-
ing that there is a difference, change, or effect) when the Null Hypoth-
esis (which says there is not) is true. (See the article “Alpha and Beta
Errors.”)

2. From Sample data, a value is calculated for a Test Statistic.
This value is plotted on the Probability Distribution of the Test
Statistic. The p-value is calculated as the Cumulative Prob-
ability of the area under the curve beyond the Test Statistic
Value.

A Statistic is a numerical property of a Sample, e.g., the Mean or
Standard Deviation. A Test Statistic is a Statistic that has an associated
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Probability Distribution. The most common are z, t, F and Chi-Square.
Below is the formula for z, which is used in analyses of Means:

z= (𝝁 − x̄)∕s

where x̄ is the Sample Mean and s is the Standard Deviation and 𝜇 is a
specified value of the Population Mean. It could be an estimate, a historical
value, or a target, for instance.

Here’s how the value of p (the “p-value”) is determined:

z
1.2

Sample data
163, 182, 177,  ...

z = 1.2
z

1.2

p = 11.5%

� The Sample Data are used to calculate a value for the Test Statistic
(1.2 in this example).

� This Test Statistic value is plotted on the graph of the Probability
Distribution of the Test Statistic.

The height of the curve above each value on the horizontal axis is
the Probability of that value occurring. The Cumulative Probability of
a range of values occurring is the area under the curve above those
values.

� p is calculated (from tables or software) as the Cumulative Prob-
ability of the range of values from the Test Statistic value out-
ward (from the Mean, which in this case is to the right, extending to
infinity.)

3. In Hypothesis Testing, p is compared with Alpha to deter-
mine the conclusion from an Inferential Statistics test. If
p ≤ 𝛼, Reject the Null Hypothesis. If p > 𝛼, Fail to Reject
(i.e., Accept) the Null Hypothesis

(If you’re not familiar with the concept of Alpha, it may be a good idea
to read the article Alpha, 𝛼 before proceeding.) We select a value for Alpha,
the Level of Significance, before we collect a Sample of data. If we want a
95% Level of Confidence of avoiding an Alpha Error, then we would select
100% − 95% = 5% (0.05) for Alpha.

Alpha is called the Level of Significance, because if the Probability (p)
of an Alpha Error is less than or equal to our selected level of Alpha,
we can call the results of our test “Statistically Significant.”
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p ≤ α
z ≥ z-critical

p > α
z < z-critical

The observed difference, change,

or effect is: 

Statistically

Significant

not Statistically

Significant

Null Hypothesis Reject Accept (Fail to

Reject)

Areas under the curve (right tail)

α: p:
z-critical z z z-critical

Since p is defined as the Probability of an Alpha Error, p≤𝜶 means
that any difference, change, or effect observed in our Sample Data
is Statistically Significant, and we Reject the Null Hypothesis (which
states that there is no difference, change, or effect).

p ≤ 𝛼 is shown in the diagram in the middle column of the table above,
which is a closeup of the right tail of the curve of the Test Statistic (z, in
this case) Distribution. Our example, in which p = 11.5% and 𝛼 = 5%, is
illustrated by the right column.

4. The smaller the value of p, the more accurately the Sample
represents the Population or Process.

Since p is the Probability of an error, it has an inverse relationship to
the validity of the Statistical Inference. If p is high, then the Probability
for error is high, and it is unlikely that the estimate from the Sample is an
accurate portrayal of the Population or Process. Conversely, if p is low, then
the Probability for error is low, and it is likely that the estimate is accurate.

Instead of selecting a value for Alpha and then comparing p to that value,
some experimenters prefer to use p alone. Various levels of strength of evi-
dence are defined, as shown below. Different experimenters and different
disciplines may use somewhat different adjectives and different clip levels.
Here is one scheme:

p > 0.1 is very weak or no evidence against the Null Hypothesis.
0.05 < p < 0.1 is slight or weak evidence against the Null Hypothesis.
0.01 < p < 0.05 is moderate evidence against the Null Hypothesis.
0.001 < p < 0.01 is strong evidence against the Null Hypothesis.
p < 0.001 is very strong or overwhelming evidence against the Null

Hypothesis.
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And finally, to put it all in context, below is a compare-and-contrast
table showing how p fits in with and interacts with three other key ele-
ments of Inferential Statistics. This diagram is explained in detail in the
article Alpha, p-Value, Test Statistic, and Critical Value – How They Work
Together

Alpha p
Critical

Value of Test
Statistic

Test
Statistic

value

What is it? a Cumulative Probability a value of the Test Statistic

How is it
pictured?

an area under the curve of
the Distribution of the

Test Statistic

a point on the horizontal
axis of the Distribution of

the Test Statistic

Boundary

Critical
Value

marks its
boundary

Test
Statistic

value marks
its boundary

Forms the
boundary for

Alpha

Forms the
boundary

for p

How is its
value
determined?

Selected
by the
tester

area
bounded by

the Test
Statistic

value

boundary of
the Alpha

area

calculated
from

Sample
Data

Compared
with

p Alpha
Test Statistic

Value

Critical
Value of

Test
Statistic

Statistically
Significant/
Reject the
Null
Hypothesis
if

p ≤ 𝛼
Test Statistic ≥ Critical
Value e.g., z ≥ z-critical

Related Articles in This Book: Alpha, p-Value, Test Statistic, and Criti-
cal Value – How They Work Together; Alpha, 𝛼; Alpha and Beta Errors;
Distributions – Part 1: What They Are; Inferential Statistics; Test Statistic;
Hypothesis Testing – Part 1: Overview; Null Hypothesis; Reject the Null
Hypothesis; Fail to Reject the Null Hypothesis; p, t, and F: “>” or “<” ?



p, t, AND F: “>” OR “<”?

We run into p and Test Statistics – such as t, F, z, and 𝜒2 – in a number of
statistical tests, such as t-tests, F-tests, and ANOVA. After performing one
of these tests, we come to a conclusion based on whether p ≤ or > 0.05
(or other value for Alpha) – or whether the Test Statistic is greater than
or less than its Critical Value.

But beginners can sometimes forget which way the “<” or “>” is sup-
posed to point in each case. In this article, we’ll clarify this in three different
ways – first, via three rules, second, by providing a Statistical Explanation,
and third, with a gimmicky memory cue.

1. Three Rules

Rule #1: t, F, z, and 𝝌
2 – all point in the same direction.

They are all Test Statistics and behave similarly. That is, t ≥ t-critical,
F ≥ F-critical, z ≥ z-critical, and 𝝌

2 ≥ 𝝌
2-critical all imply the same

conclusion: Reject H0, the Null Hypothesis. That is, we conclude that
there is a Statistically Significant difference, change, or effect.

Rule #2: p points in the opposite direction.
p is not a Test Statistic. p ≤ 𝜶 means the same as t ≥ t-critical, F ≥

F-critical, etc.
So, a small value for p corresponds to a large value for t, F, z, and 𝜒2,

and vice-versa

p

t

t

p

Alpha, 𝛼, is the Level of Significance (1- the Level of Confidence)
which we select. Most commonly 𝛼 = 0.05 (5%) is selected.

Rules #1 and #2 are illustrated in the following output from an
ANOVA analysis.

ANOVA Table 𝜶 = 0.05

Source of Variation SS df MS F p-value F-crit

Sample 103 1 103 5.9 0.031 4.7

Columns 254 2 127 7.4 0.008 3.9

Interaction 20 2 10 0.6 0.574 3.9

246
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The three rows for the Variables, “Sample,” “Column,” and “Interac-
tion” each have p-values as well as values for the Test Statistic, F, and
its Critical Value (“F-crit”).

� Sample: p at 0.031 < 𝛼 at 0.05 and F at 5.9 > F-crit at 4.7
� Columns: p at 0.008 < 𝛼 at 0.05 and F at 7.4 > F-crit at 3.9
� Interaction: p at 0.574 > 𝛼 at 0.05 and F at 0.6 < F-crit at 3.9

Rule #3: Reject H0 if p ≤ 𝜶; Accept (Fail to Reject) H0 if p > 𝜶.
(You can forget the Test Statistic, and use only p. This is because of Rule
2, above.)

2. Statistical Explanation

These graphs are close-ups of the right tail of a t Distribution for a 1-
tailed test, but the principle applies for all Test Statistics. p and Alpha are
Cumulative Probabilities represented by areas under the curve. Alpha is
the shaded area under the curve. p is the hatched area.

t < t-critical so p > αt ≥ t-critical, so p ≤ α

t-critical  t t t-critical 

Areas under the curve (right tail)

α: p:

t-critical marks the boundary for α, and t marks the boundary for p.

Left diagram above: t ≥ t-critical so p ≤ 𝜶 (these two comparisons are
statistically identical)

The value of the Test Statistic, e.g., t, is calculated from the Sample data.
It is plotted on the horizontal axis below the curve of the Test Statistic
Distribution. The value of p is then calculated as the area under the curve
beginning at t and extending outward below the tail of the curve.

The larger the value for t (the farther to the right it is on the horizontal
axis), the smaller the area representing p. So, if t is greater than or equal
to t-critical, then the hatched area representing p is less than or equal to
the shaded area representing Alpha (which is bounded by t-critical). So,
t ≥ t-critical means that p ≤ 𝜶.

So, we must conclude that there is a Statistically Significant differ-
ence, change, or effect. In Hypothesis Testing, we Reject the Null
Hypothesis of no difference.
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Right Diagram above: t < t-critical so p > 𝜶 (these two comparisons
are statistically identical)

If the calculated value of t is < t-critical, then t is to the left of t-critical
on the horizontal axis. This means that the area under the curve bounded
by t is greater than the area bounded by t-critical. So p > 𝛼.

In Hypothesis Testing, we Fail to Reject (i.e., we Accept) the Null
Hypothesis, which says there is no difference, change, or effect.

Another statistical explanation which may be helpful: p represents
error, and we would like p to be small before we make a claim of Sta-
tistically Significant.

3. Memory Cue

(This is a non-statistical gimmick, but it may be helpful for some – it was
for the author.) In this book, we don’t focus on confusing things like the
“nothingness” of the Null Hypothesis. We focus on something that does
exist – like a difference, change, or effect. So, to make things easy, we
want a memory cue that tells us when there is something, as opposed to
nothing.

We can come to the following conclusions (depending on the test):

If then

p ≤ 𝜶,
t ≥ t-critical,
F ≥ F-critical, etc.

there is a difference between the two Samples, or
something has changed in the process, or
the treatment we are studying does have an effect.
So, we Reject H0, the Null Hypothesis.

But how do we remember which way the inequality symbol should go?
Remember back in kindergarten or first grade, when you were learning

how to print? The letters of the Alphabet were aligned in three zones –
middle, upper, and lower as below.

p is different from t or f, because p extends into the lower zone, while
F, t, and 𝝌

2 extend into the upper zone. (z doesn’t; it stays in the middle
zone. But we can remember that z is similar to t and it is a Test Statistic.)

If we associate the lower zone with less than, and the upper zone with
greater than, we have the following memory cue:

Greater than
Upper zone

F ≥ F-critical
Lower zone 
Less than

p ≤0.05

Greater than
Upper zone

t ≥ t-cri icalt
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Related Articles in This book: Alpha (𝛼); p, p-Value; Null Hypothesis;
Reject the Null Hypotheses; Fail to Reject the Null Hypothesis; Test Statis-
tic; Critical Values; Alpha, p, Critical Value and Test Statistic – How They
Work Together



POISSON DISTRIBUTION

Summary of Keys to Understanding

1. The Poisson Distribution is a Distribution for Discrete data.
It consists of the Probabilities of Counts of Occurrences.

2. Given an average number of Occurrences, the Poisson Dis-
tribution is useful in predicting the Probability of X (or
more than X or fewer than X) Occurrences in a given
observation area in time or space.

3. There are different Poisson Distributions for different val-
ues of the Mean, 𝝁.
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4. The Variance (𝝈2) of a Poisson Distribution is equal to the
Mean (𝝁) and the Expected Value (𝝀).

𝝈
2 = 𝝁 = 𝝀

5. The Binomial Distribution converges to the Poisson Distri-
bution as its number of trials, n, approaches infinity.
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Explanation

1. The Poisson Distribution is a Distribution for Discrete data.
It consists of the Probabilities of Counts of Occurrences.

Discrete data are integers, such as Counts. Counts are non-negative. In
contrast to Continuous data, there are no intermediate values between con-
secutive integer values.

The Poisson Distribution is used for Counts of Occurrences, as
opposed to Units.

Occurrences are different from Units. Let’s say we are inspecting shirts
at the end of the manufacturing line. We may be interested in the number of
defective Units – shirts, because any defective shirt is likely to be rejected
by our customer. However one defective shirt can contain more than one
defect. So, we are also interested in the Count of individual defects – the
Occurrences – because that tells us how much of a quality problem we have
in our manufacturing process.

Other Discrete data Distributions, the Binomial and the Hypergeomet-
ric, are used for Units, not Occurrences.

If the Occurrences are rare, instead of using Counts and the Pois-
son Distribution, record the time between Occurrences, and use the
Exponential Distribution.

For an example of relatively rare Occurrences, let’s say that a small town
averages 0.4 ambulance calls per day. In trying to determine the Proba-
bility of a call during an upcoming understaffed 2-day period, it would
be better to think in terms of the average time-to-occurrence.

0.4 Occurrences/24 hours = 0.017 Occurrences per hour = 59 hours
between Occurrences. They could use this number and the Exponen-
tial Distribution to calculate the Probability of a call during the 48-hour
period.

2. Given an average number of Occurrences, the Poisson Dis-
tribution is useful in predicting the Probability of X (or
more than X or fewer than X) Occurrences in a given
observation area in time or space.

For example, let’s say we are operating a small call center which aver-
ages 3 incoming calls every 10 minutes. We can handle up to 5 calls in
10 minutes. What is the Probability that our capacity will be exceeded?

The Poisson Distribution can tell us the Probability of exactly X = 6 in
10 minutes. But, we also need to know the Probabilities of 7, 8, and so on.
The Poisson Distribution can tell us those also.
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But, since there is theoretically no limit on the number of calls, our
approach is to use the Poisson Distribution to get the Probabilities of
X = 0, 1, 2, 3, 4, and 5. We total these and subtract from 1 (or 100%)
to get the Probability of exceeding 5.

Pr(X = 0): 0.050
Pr(X = 1): 0.149
Pr(X = 2): 0.224
Pr(X = 3): 0.224
Pr(X = 4): 0.168
Pr(X = 5) 0.101

The Probability of X being five or fewer is the sum of these six Proba-
bilities, so Pr(X ≤ 5) = 0.916. So the Probability of exceeding our limit of
five calls is 1 – 0.916 = 0.084, about 8%.

3. There are different Poisson Distributions for different val-
ues of the Mean, 𝝁.

We need only one Parameter, the Mean, to define a Poisson Distribution,
and different values of the Mean give us different Distributions:
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Notice that, as the Mean grows larger:

� the Distribution moves to the right (because the Mean moves to the
right)

� The individual Probabilities get smaller (the bars are shorter)
� the Distribution becomes more symmetrical
� the Distribution spreads out (the Variance grows larger)
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Alternate terminology and symbols: The Mean of a Poisson Distribution
is also known as the Expected Value E(X). It is also sometimes denoted by
𝜆, instead of 𝜇.

4. The Variance (𝝈2) of a Poisson Distribution is equal to the
Mean (𝝁) and the Expected Value (𝝀).

𝝈
2 = 𝝁 = 𝝀

That explains why the Distribution spreads out as the Mean gets larger,
as shown in the graphs above.

The Population or Process Mean is the average. The Expected Value (𝜆)
is similar to a Sample average. It is based on past data, and it gives us an
estimate of what to expect in the future. If our store had 71 customers in a
typical 10-hour day, the Mean would be 7.1 customers per hour. And we
might expect around 7.1 customers per hour going forward.

5. The Binomial Distribution converges to the Poisson Distri-
bution as its number of trials, n, approaches infinity.

The Binomial Distribution is another Discrete data Distribution. n is its
number of trials (a trial can be a coin flip).

One could say that the Poisson Distribution is a limiting case of the
Binomial Distribution or that the Binomial is a special case of the Poisson.
The Binomial has two Parameters, n and p, which is the Probability of
a trial. If p remains fixed and n increases, the Binomial converges to the
Poisson. For large n and small p, one Distribution has been used as an
approximation for the other.

Related Articles in This book: Distributions – Parts 1–3; Variance; Bino-
mial Distribution



POWER
It may be helpful to first read the article on Alpha and Beta Errors.

Summary of Keys to Understanding

1. The Power of a test in Inferential Statistics is its Probability
of correctly concluding that there is no difference, change,
or effect when, in reality, there is none.

2. Power is the opposite of Beta. Beta (𝛽) is the Probability of
making a Beta (False Negative) Error. Power is the Probabil-
ity of not making a Beta Error. Power = 1 − 𝜷

3. Power is affected by three factors – directly by Significance
Level (𝜶) and Sample Size (n), and inversely by the Effect
Size (ES).

Power
ES

ES

α Power
Power

Power
n

4. Power is useful for determining the minimum Sample Size
needed to detect an effect of a specified Effect Size.

5. In the social and behavioral sciences, a minimum Power of
80% has been suggested. In medical studies and manufac-
turing quality studies, higher Powers are needed.

6. Parametric Tests, e.g., the F-test, have higher Power than
Nonparametric Tests, e.g., Levene’s test.
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Explanation
It may be helpful to first read the article on Alpha and Beta Errors.

1. The Power of a test in Inferential Statistics is its Probability
of correctly concluding that there is no difference, change,
or effect when, in reality, there is none.

Put in other words:

The Power of a test in Inferential Statistics is its Probability of
correctly accepting (Failing to Reject) the Null Hypothesis when,
in reality, the Null Hypothesis is true.

Power is good. Higher Power gives you a more accurate test.

2. Power is the opposite of Beta. Beta (𝛽) is the Probability of
making a Beta (False Negative) Error. Power is the Probabil-
ity of not making a Beta Error. Power = 1 − 𝜷

In Inferential Statistical tests – such as the t-tests or ANOVA – a
property (e.g., the Mean) of the Sample data is used to estimate the
corresponding property of the Population or Process from which the
Sample was collected.

Since it is an estimate, there are errors involved. These are expressed as
Alpha and Beta Errors (False Positive and False Negative, respectively).

Beta Error (False Negative)

What it means The error of concluding that there is 
nothing – no difference, or no change, or no 

effect – when, in reality, there is
Null Hypothesis is Accepted (Fail to Reject) when it is false
Probability of making 
this Error β

Probability of not making 
this Error

Power = 1 − β

Smoking doesn't cause cancer.
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If you are familiar with the concept of Alpha and Alpha Errors, you will
need to be a little careful with the terms associated with Beta and Beta
Errors. There is not symmetry in these terms. 𝛽 is analogous to p, not 𝛼:

p is the Probability of an Alpha Error 𝛽 is the Probability of a Beta Error

𝛼 is the maximum tolerable
Probability for an Alpha Error

1 – 𝛼 is called the Confidence Level 1 – 𝛽 is called the Power of the test

3. Power is affected by three factors – directly by Significance
Level (𝜶) and Sample Size (n), and inversely by the Effect
Size (ES).

α Error

β Error α Error

β Error

The illustrations above are from the article Alpha and Beta Errors. All
other things being equal, as the Probability of an Alpha Error decreases,
the Probability of a Beta Error increases.

If we require a low Probability of an Alpha Error (at left), we select a
low value for Alpha (𝜶). This causes 𝜷 to increase. If 𝜷 increases, then
Power (which is 1 – 𝛽) decreases.

So, decreasing Alpha causes Power to decrease (if Effect Size and
Sample Size remain the same). And, increasing Alpha causes Power to
increase.

Powerα

Power and Effect Size, on the other hand, have an inverse relation-
ship.

Power

PowerES

ES
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If we want to be able to detect a small difference, change or effect
(small Effect Size), then we’ll need a test with more Power than we
would need for larger Effect Sizes. This can be achieved by increasing
the Sample Size.

Samples Size (n) affects Power directly. All other things being equal,
increasing the Sample Size increases the Power of the test. Reducing the
Sample Size reduces the Power.

Powern

We keep saying “all other things being equal.” But what if all other
things are not equal? What if we wanted to reduce the Effect Size, reduce
the Alpha Error, and increase the Power. Sample Size is the universal
cure. Keep increasing the Sample Size, and you can counteract both of the
other things that go into determining the value of Power.

4. Power is useful for determining the minimum Sample Size
needed to detect an effect of a specified Effect Size.

After an Inferential Statistics test is completed (“post hoc”), Power is not
very useful for analyzing the results. In fact, there is controversy regarding
whether it should be used then at all.

However before the data are collected (“a priori”) Power can be used
to determine the minimum Sample Size needed to detect a difference,
change, or effect of a given Effect Size.

We said earlier that Power is affected by three things, Alpha, Effect Size,
and Sample Size. In other words, Power is a function of Alpha, Effect
Size, and Sample Size.

Power = f (Alpha, Effect Size, Sample Size)

The actual formula is complicated beyond the scope of this book. But if
we did some math, we could manipulate it to form a function for Sample
Size:

Sample Size = f (Power, Alpha, Effect Size)

Minimum Sample Size calculations from these three things can be done
with commercial or open source software or via website calculators.
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5. In the social and behavioral sciences, a minimum Power of
80% has been suggested. In medical studies and manufac-
turing quality studies, higher Powers are needed.

In the social and behavioral sciences, it has been said that it is about four
times as important to avoid a False Positive as it is to avoid a False Negative.
So, if Alpha is selected to be 0.05, then a maximum value for Beta would
be 0.20. Power = 1 – 𝛽 = 0.8 = 80%. And the Sample Size would be
calculated using these requirements. In practice, a number of studies in
these areas focus entirely on avoiding Alpha Errors in their experimental
design. The resulting studies then have Power considerably less than 80%.

In medical studies, it is very important to avoid a False Negative (con-
cluding that there is no disease, when in reality there is), so the required
Power will be much higher.

In process manufacturing quality studies, the specification limits which
define the acceptable range of measured values can be quite narrow. So, the
Effect Size is small. Consequently, the Power of the test must be high in
order to detect small effects. How high is determined by Power and Sample
Size software into which Alpha and Effect Size have been entered as inputs.

6. Parametric Tests, e.g., the F-test, have higher Power than
Nonparametric Tests, e.g., Levene’s test.

Parametric tests are the most commonly used tests. But they can have
somewhat stringent requirements (assumptions) – Normal distribution and
equal Variance, for example. There are “Nonparametric” counterparts to
these tests which do not have those assumptions. The natural question is
Why not use Nonparametric tests all the time? The answer is that they have
lower Power than Parametric tests.

Related Articles in This Book: Alpha and Beta Errors; Alpha, p-Value,
Critical Value, and Test Statistic – How They Work Together; Design of
Experiments – Part 1; Nonparametric; Sample Size – Parts 1 and 2



PROCESS CAPABILITY ANALYSIS
(PCA)

Summary of Keys to Understanding

1. First, use Control Charts and Run Rules to determine
whether the Variation in a Process is stable and predictable
within statistically calculated Control Limits.

Tools Used Focus
Variation

Limits

Statistical
Process Control
(SPC)

Control Charts, Run
Rules

eliminate Special
Cause Variation

calculated
Control Limits

Process
Capability
Analysis (PCA)

Capability Indices,
Performance

Indices

reduce Common
Cause Variation

specified
Specification

Limits

2. If the Process is Under Control, then Process Capability
Analysis (PCA) can be used to determine how consistently
Variation in the Process is contained within Specification
Limits.

Process Capability = Voice of the Customer
Voice of the Process

3. Cpk is a Capability Index which measures the best that the
Process is capable of – in terms of short-term Variation.

Cpk =
Absolute Value (Mean − Closer Spec Limit)

3σ̂

4. For every Capability Index, there is a corresponding Per-
formance Index which measures how well the Process
actually performs over the long term.

5. Capability Indices are used to calculate the Sigma qual-
ity level of a Process and to guide efforts to improve the
Process.

259
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Explanation

1. First, use Control Charts and Run Rules to determine
whether the Variation in a Process is stable and predictable
within statistically calculated Control Limits.

� All Processes have Variation. Control Charts and Run Rules (see the
articles Control Charts – Parts 1 and 2) tell us whether this Variation is
stable and predictable, that is, whether the Process is “Under Control.”

� If a Process is not Under Control, we cannot use Process Capa-
bility Analysis (PCA). That is because we really don’t know what
the actual Process is. Known or unknown Factors (Special Causes of
Variation) outside the designed Process are changing what should nor-
mally happen within it.

� These Special Causes of Variation must be identified and elimi-
nated before we can use PCA to begin efforts to reduce Variation
within the Process

Variation from Special Causes

� is identified by Control Charts and Run Rules
– Variation outside the Control Limits on the Control Charts
– non-random patterns identified by Run Rules

� is unexpected
� is a “signal” that something is different or has changed (as opposed

to the “noise” of random Variation within a Process which is Under
Control)

� is outside the Process

Upper and Lower Control Limits for Control Charts are calculated.
Usually, they are plus and minus three Standard Deviations (Sigmas) from
a Center Point (usually the Mean). This would include about 99.7 of
expected random Variation in Normally distributed data.

Tools Used Focus
Variation

Limits

Statistical
Process Control
(SPC)

Control Charts, Run
Rules

eliminate Special
Cause Variation

calculated
Control Limits

Process
Capability
Analysis (PCA)

Capability Indices,
Performance

Indices

reduce Common
Cause Variation

specified
Specification

Limits
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2. If the Process is Under Control, then Process Capability
Analysis (PCA) can be used to determine how consistently
Variation in the Process is contained within Specification
Limits.

If there is no Special Cause Variation, then any remaining Variation is
from Common Causes. This is the normal, expected random “noise” within
any Process – for example, the normal tiny amount of wobbling of a drill
in a drilling operation.

Specification Limits specify upper and/or lower bounds on a key
measurement in a Process. They can be specified by:

� Customer requirement
� Management decision
� Engineering requirement

For example, let’s say we make quarter-pound ground beef patties
for sale to restaurants. Our customers tell us that anything less than
0.23 pounds is unacceptable. Our management tells us that anything over
0.27 pounds is unacceptable waste. So, our lower and upper Specification
Limits are 0.23 and 0.27 pounds.

In this example, the Lower Specification Limit (LSL) was set by the
customer and the Upper Specification Limit (USL) by management. Spec
Limits can also be specified by engineering requirements. For example, a
part produced by one step in a manufacturing process must measure within
specified limits in order to be usable by a machine in a subsequent process
step. Spec Limits can be upper or lower, or both.

So, how can we measure how consistently our Process is meeting the
Specification Limits? That is what Capability Indices and Performance
Indices do.

Use Measurements, not Counts

As we’ll see later, PCA Indices can be used to estimate the defects per
million opportunities (DPMO) in a Process. But, in capturing the data,
be sure to preserve the values of the measurements. Do not use a mea-
surement to determine a Count of defect or no defect; to do so would
lose information and reduce accuracy.

In our quarter pound burger example, if we measured burgers weighing
0.28 and 0.33 pounds (both outside the Spec Limits), we should not
record them as a Count of 2 defects. That would treat these two equally,
when in fact, there is a substantial difference between the two. We need
to record the actual measurements – 0.28 and 0.33.
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3. Cpk is a Capability Index which measures the best that the
Process is capable of – in terms of short-term Variation.

Conceptually,

Process Capability = Voice of the Customer
Voice of the Process

The “Voice of the Customer” (or Management or Engineering) is
defined by the Specification Limits. It is the difference between the Upper
Specification Limit and the Lower Specification Limit, that is, USL – LSL.

The “Voice of the Process” is defined as the width of the Range within
which 99.7% of the Process data measurements fall in Normally distributed
data. This is three Standard Deviations (3𝜎) above and 3𝜎 below the Mean,
for a total of 6𝜎. The narrower the Range the better. Conceptually,

Process Capability = Voice of the Customer
Voice of the Process

= USL − LSL
6𝜎

Since we’re usually analyzing ongoing Processes, potential new data
continue to be generated on an ongoing basis. As a result, we never know
the true Process Standard Deviation, 𝜎. So, we use an estimate which is
denoted by �̂� (“sigma hat”).

This gives us a first cut at a Statistic for Process Capability, the Capa-
bility Index known as Cp.

Cp = USL − LSL
6�̂�

(Since Capability Indices are usually calculated by just entering the data
into a software program, we won’t go into the formulas (there are two pos-
sibilities) for calculating �̂�. They involve the use of constants which vary
by Sample Size and are usually shown in tables.)

Cp is useful for gaining a conceptual understanding of Capability
Indices, but it has serious practical limitations. It assumes that there is both
an Upper and Lower Spec limit. Often there is only one or the other. It also
assumes that the Process Mean is exactly halfway between the LSL and
the USL, which is often not the case.

The Capability Index Cpk was developed to avoid these limitations.

– It only uses the Spec Limit (USL or LSL) which is closest to the Mean
of the data.
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– So, instead of comparing a spread of 6𝜎 to the difference from top
to bottom of the Spec Limits, it compares 3𝜎 to the spread from the
Mean to the closer Spec Limit.

Cpk = Absolute Value [Mean − Closer Limit]
3�̂�

In a Normal Distribution 99.7% of the data lie within three Standard
Deviations (Sigmas) of the Mean. So, if 99.7% of our data lie between the
Spec Limits, then the Spec Limits correspond to 3𝜎. Given the formula
above, Cpk would equal 1.

Number of 𝜎’s that fit within
the Spec Limit

Cpk

3 1.0

4 1.33

5 1.66

6 2.0

Cpk is the most effective and most widely used Capability Index. It
assumes the data are Normally Distributed, which is how random Variation
within a Process which is Under Control would be distributed.

There are other Capability Indices, including one for individual
machines and one when target values are used rather than Spec Limits.

Capability Indices measure short-term Variation – the Variation
observed when a Sample of data is collected in a short period of time
under essentially the same conditions. Such a Sample is called a Ratio-
nal Subgroup.

4. For every Capability Index, there is a corresponding Per-
formance Index which measures how well the Process
actually performs over the long term.

One might expect that, over longer periods of time, Variation would
increase. The Process Mean might “drift” from its initial value, or the Stan-
dard Deviation might increase – or both. Conditions can change, and the
Process may no longer be stable and Under Control.

Process Performance Indices are intended to measure this. The data are
collected in subgroups over a period of time. From each subgroup, a Capa-
bility Index could be calculated. If all the data in all the subgroups are
lumped together and treated as a single Sample, then a Performance Index
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can be calculated. The formulas for Capability and Performances are the
same; the difference is the length of time over which the data are collected.

Capability Index Performance Index

Example index Cpk Ppk

Data collected in subgroups ungrouped

Measures

within-group Variation
Variation across all the data of
multiple subgroups (includes

between-group Variation)

short-term Variation long-term Variation

the best the process is
capable of

how the process actually
performs over the long term

5. A Capability Index can be used to calculate the Sigma
quality level of a Process and to guide efforts to improve the
Process. There is, traditionally, an assumed 1.5 Sigma drop
from Capability to Performance.

We showed earlier how a value of Cpk can be calculated from the number
of Standard Deviations (Sigmas) which fit within the Specification Limits.
And we know from the Empirical Rule (see the article Normal Distribu-
tion) exactly what percentage of data points fall within any number of Stan-
dard Deviations. For example,

� 68.27% within one Standard Deviation
� 95.45% within two Standard Deviations
� 99.73% within three Standard Deviations

Likewise, we know the percentages for four, five, six, and more Sigmas.
This enables us to convert values of Cpk and Ppk into Sigmas.

In the “Six Sigma” (and “Lean Six Sigma”) process improvement dis-
ciplines, “Sigmas” are used as a shorthand to describe the quality of the
Process – as measured by the number of DPMO for a defect.

To account for the difference between short-term and long-term Varia-
tion, the convention in Six Sigma is to claim a DPMO rating corresponding
to 1.5 Sigma less than that measured in a short-term study.

The objective, as determined by data in a short-term study, is to have six
Standard Deviations (Sigmas) fit within the Spec Limits. If that is achieved,
a Process can claim 3.4 DPMO. That is, only 3.4 data points out of one
million are outside the Spec Limits. But, for a Normal Distribution, that is
what you get when 4.5 Standard Deviations are inside the Spec Limits.
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Cpk Sigma Level DPMO % Good

0.33 1 691,463 31%

0.67 2 308,537 69.1%

1.00 3 66,807 93.3%

1.33 4 6,210 99.4%

1.67 5 233 99.977%

2.00 6 3.4 99.99966%

Related Articles in This Book: Control Charts – Part 1: General Con-
cepts and Principles; Standard Deviation; Normal Distribution
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Summary of Keys to Understanding

1. Proportion is the primary Statistic used for summarizing
Count data from Categorical (aka Nominal) Variables. It is
the decimal equivalent of a percentage.

Categorical Variable gender

categories female male

data: Counts 44 36

Statistic: Proportion = Count/Total 44 / 80 = 0.55 36 / 80 = 0.45

2. The Count data in a 2-category Variable generally follow
a Binomial Distribution.

3. The Central Limit Theorem (CLT) applies to Proportions as
well as to Means: For a Proportion p, provided that np > 5
and n(1 − p) > 5,

the Distribution of the Sample Proportions will be
Normal, with

the Mean of the Sampling Distribution = p
the Standard Deviation of the Sampling Distribution =√

p(1 − p)∕n =
√

pq∕n

4. Therefore, the Test Statistic, z, can be used to solve prob-
lems involving Proportions of 2-category Count data, for
example,
� Estimate the Population or Process Proportion.
� Is there a Statistically Significant difference between two

Population Proportions?

5. The Chi-Square test for Independence can be used for Pro-
portions of Count data in three or more categories.

266
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Explanation

1. Proportion is the primary Statistic used for summarizing
Count data from Categorical (aka Nominal) Variables. It is
the decimal equivalent of a percentage.

A Statistic is a numerical property of Sample data, for example, the
Mean or Standard Deviation. “Parameter” is the name for the correspond-
ing property of the Population or Process from which the Sample was
drawn.

Statistics and their corresponding Parameters usually have different
symbols. Mean and Standard Deviation use Greek letters for their Param-
eters and Roman (the English alphabet) for Statistics.

p is the symbol for the Proportion of a Population or Process.
p is also the symbol for Probability. The two concepts are closely

related. If the Proportion of green candies in a bin of holiday candies is
0.35, then the Probability of blindly picking a green candy is 0.35.

p̂ (“p-hat”) is the symbol for the Proportion of a Sample. The hat is
usually used for estimates, and Statistics from Samples are, by definition,
estimates of their corresponding Parameters.

Proportion is a Statistic used with Count data from Categorical
Variables. Count data consists of non-negative integers, e.g., 0, 1, 2, 3,
etc.

A Categorical Variable (also known as a Nominal or Attributes Variable)
divides data into two or more categories. The values of the Variable are
names (hence Nominal) of the categories.

Categorical Variable gender

Values of the Variable (category names) female male

Contrast this with a Continuous or Measurement type of Variable. For
the Variable height, the values of the Variable could be Measurement data
in inches, e.g., 65.2, 72.6, 70.4, 68.9, etc.

For Categorical/Nominal Variables, the data are the Counts in each
category.

In the example below, the data are the Counts of females and males from
a random Sample of 80 people entering a building. 80 is the Total.

Categorical Variable gender

categories female male

data: Counts 44 36

Statistic: Proportion 44 / 80 = 0.55 36 / 80 = 0.45
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Proportion = Count / Total
Proportion is expressed as a decimal. The Statistics are the two Pro-
portions – 0.55 for category named “female” and 0.45 for the category
named “male.” Note that the Proportions are just the decimal equivalent
of the two percentages (55% and 45%).

This being statistics, more than one term can be used for the same thing.
“Frequency” is sometimes used instead of “Count.” “Relative Frequency”
is sometimes used instead of Percentage. (Percentage is Proportion multi-
plied by 100).

2. The Count data in a 2-category Categorical Variable gen-
erally follow a Binomial Distribution.

If the following four conditions are met, Samples of Counts will follow a
Binomial Distribution. (See the article by that name for more information.)

� Each Sample has the same number of “trials” (e.g., a coin flip or an
inspection of an item).

� Each trial can have only one of two outcomes. This means that there
are only two categories in the Categorical Variable, for example,

Categorical Variable categories (values) of the Variable

gender female, male

candy color green, not green

item inspection defective, not defective

� The trials are Independent and do not affect one another.
� The Probability of a success is the same for all trials.

The term “success” indicates that the item selected has the property
we are interested in counting. For example, if we are interested in the
Proportion of green candies, a trial which selected a candy that turned
out to be green would count as a success. (Somewhat perversely, if we
were inspecting for items that had defects, a defective item would be
called a “success.”)

There are many Binomial Distributions. Much as a unique Normal Dis-
tribution can be identified by specifying the Mean and Standard Deviation,
a unique Binomial Distribution can be described by specifying the Pro-
portion (p) of successes and the Sample Size (n).

The Proportion determines whether the tail of a Binomial Distribution
will be skewed to the right (p < 0.5), to the left (p > 0.5), or whether the
Distribution will be symmetrical (p = 0.05).
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Pr(X)

X

p = 0.1  n = 10  μ = 1

Pr(X)

X

p = 0.9  n = 10  μ = 9  
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The horizontal (X) axis shows the possible Counts of successes in a
Sample. For n = 10, the possible Counts are 0 through 10. For n = 30,
the Counts are 0 through 30. The vertical axis shows the Probability of
getting that Count in any given Sample.

As, we’ll see next, whereas the Probability of any given value of a
Count can be determined using the appropriate Binomial Distribution,
the Probability of any given value for Proportion can be determined
using a Normal Distribution.

3. The Central Limit Theorem (CLT) applies to Proportions as
well as to Means: For a Proportion p, provided that np > 5
and n(1 − p) > 5,

the Distribution of the Sample Proportions will be Nor-
mal, with

the Mean of the Sampling Distribution = p
the Standard Deviation of the Sampling Distribution =√

p (1 − p) ∕n=
√

pq∕n

“provided that np > 5 and n(1 – p) > 5” is sometimes replaced with
the statement “provided the Sample is large enough.” And then, “np > 5
and n(1 – p) > 5” is given as the definition of “large enough.”

Below are some values of p and the minimum Sample Size (“min. n”)
to get np and n(1 − p) > 5. You can see that only the smaller of the two
(p or 1 – p), is the deciding value. These are shaded.

You can also see that larger Sample Sizes are needed when the Propor-
tions are very different (0.9 and 0.1) and the smallest Sample size corre-
sponds to the Proportions being equal at 0.5.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

np 5.1 5.2 5.1 5.2 5.5 7.8 11.9 20.8 45.9

min. n 51 26 17 13 11 13 17 26 51
1 – p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

n(1 − p) 45.9 20.8 11.9 7.8 5.5 5.2 5.1 5.2 5.1
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But this isn’t the only consideration which determines the minimum
Sample Size. (See the article Sample Size – Part 1: Proportions for Count
Data.) Those other considerations usually result in minimum Sample Sizes
larger than those needed to support the CLT minimum.

The article Normal Distribution, describes how taking the Mean of a
Sample has a smoothing effect on the Distribution. The Proportion has a
similar effect. So, no matter the shape of the raw data, the Distribution
of all possible Sample Proportions of a given size n (a Sampling Dis-
tribution) will be a smooth, symmetrical Normal Distribution. This is
called the Central Limit Theorem (CLT).

The Mean of the Sampling Distribution of Proportions is the Popu-
lation Proportion, p.

Its Standard Deviation is
√

p (1 − p) ∕n Notation: some publications
use q to represent 1 – p.

� the larger the sample Size, n, the smaller the Standard Deviation
� The closer p (and therefore 1 − p) is to 0.5, the larger the Standard

Deviation
It stands to reason that the larger the Sample Size, the more accurate

the Sample would be as an estimate of the Population or Process. So its
Variation as measured by the Standard Deviation would be smaller. Having√

n in the denominator ensures that.

But, what about the numerator,
√

p (1 − p) ?

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 – p 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

p(1 – p) 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09

We can see that the largest values for the numerator (and thus for the
Standard Deviation) are produced when p (and, therefore, 1 – p also) is
closest to 0.5. This also makes intuitive sense. Let’s say we take a Sample
of 100 and have a count of 50 (p = 0.5). Plus or minus 20% from 50 would
include a range from 40 – 60. If, on the other hand, we have a count of 5
(p = 0.5), plus or minus 20% covers a range from 4 to 6.

For more of an understanding of the Central Limit Theorem, read the
article, Normal Distribution.

4. Therefore, the Test Statistic, z, can be used to solve prob-
lems involving Proportions of 2-category Count data, for
example,
� Estimate the Population or Process Proportion.
� Is there a Statistically Significant difference between two

Population Proportions?
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z is the Test Statistic used with data that follow a Normal Distribution.
A Test Statistic is one that has an associated Probability Distribution from
which we can calculate Probabilities for values of the Test Statistic.

Example #1: Confidence Interval Estimate of a Process Proportion
We use the formula

p = p̂ ± z
√

s∕n

p is the Population or Process Proportion and is p̂ the Sample Proportion

z is the value of the Test Statistic z for a specified Level of Significance,
Alpha

s is the Sample Standard Deviation and n is the Sample Size

What is the Proportion of defective units produced by a Process? (Note:
this method could also be used for an estimate of the Proportion of a Popu-
lation.)

Before we collect the data, we must select a value for Alpha (𝛼), which
is the highest Probability of an Alpha Error that we will tolerate. We want a
95% Confidence Level, so we select 𝛼 = 5%. We then conduct an inspection
of 200 units and find that 8 were defective.

So, the Sample Proportion p̂ = 8/200 = 0.04. We don’t know the Process
Proportion, so we use the Sample Proportion p̂ to determine whether the
Sample is large enough.

np̂ = (200)(.04) = 8 and n(1− p̂) = (200)(.96) = 192. Both of these are
more than five, so we can proceed.

Our estimate of the Process Proportion (p) is the Sample Proportion,
0.04, plus or minus a Margin of Error (MOE).

p = 0.04 ± MOE

We can use z to calculate the Confidence Interval depicted above – that
is, the Range around p which includes the MOE. The formula for MOE is

MOE = z
√

s∕n

We look up the value of z for 𝛼 = 5% and a 2-tailed analysis (MOE
includes plus and minus) and find that z = 1.96.

We also need to know the value of s, the Sample Standard Deviation. We
use the formula for the Standard Deviation of the Sampling Distribution:

s =
√

p̂(1 − p̂)∕n =
√

(0.04)(0.96)∕200 = 0.014 so

MOE = 1.96
√

0.014∕200 = 0.016

p = 0.04 ± 0.016

So, with a Confidence Level of 95%, we can say that the Process
Proportion is 0.04 plus or minus 0.016

Note: The formula for MOE above can be algebraically manipulated to
become a formula for n, the Sample Size required to achieve a given value
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of MOE. See the article Sample Size – Part 1: Proportions for Count Data
for details.

Example #2: Hypothesis Test of the difference in Proportions between
two Populations

We want to know whether there is a Statistically Significant difference
between the Population of female voters and the Population of male voters
in their preference for a particular candidate for public office.

Before collecting data, we select 𝛼 = 5%. For a 2-sided test, this gives us
the Critical Value of z; z-critical = 1.96.

The Null Hypothesis, H0, states that there is no difference. We’ll do a 2-
tailed analysis, since we don’t care whether the difference is on one direction
or the other, just whether there is a difference.

We then surveyed 100 women and find that 52 prefer the candidate. We
surveyed 80 men and 38 said they preferred the candidate.

So, the Counts are X1 = 52 and X2 = 38. And the Proportions are p̂1 =
0.52 and p̂2 = 38/80 = 0.475. Is this a Statistically Significant difference?

For this type of test, the Samples are large enough if there are at least
five successes and five failures in each of the Populations. That is the case
here.

The formulas get somewhat complicated, so software is usually used. The
result:

z = 0.60, so z ≤ z-critical.

The p-value is 0.548, so p > 𝛼.
(Note that this p is not a Proportion. It is the Probability of an Alpha

Error.)
Both of these results tell us the same story: So we Fail to Reject (we

Accept) the Null Hypothesis of no difference. There is not a Statistically
Significant difference.

This 2-tailed z-test for two Population Proportions is statistically the
same as a Chi-Square Test for the Independence using a 2 by 2 table.
(2 Populations, 2 Proportions).

5. The Chi-Square test for Independence can be used for Pro-
portions of Count data in three or more categories.

Juice Study: Proportions are the same, so the 
Variables Gender and Juice are Independent

Ice Cream Study: Proportions are very different, so 
the Variables Gender and Ice Cream are Associated 

(not Independent).

female male female male

Count Proportion Count Proportion Count Proportion Count Proportion

apple 28 0.35 14 0.35 chocolate 48 0.48 16 0.20

grape 12 0.15 6 0.15 strawberry 28 0.28 40 0.50

orange 40 0.50 20 0.50 vanilla 24 0.24 24 0.30

Total 80 1.00 40 1.00 Total 100 1.00 80 1.00
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There are three commonly used Chi-Square tests – for Goodness of
Fit, Independence, and Variation. This book has articles for each of them.
All three tests analyze Count data. The Chi-Square Test for Independence
focuses on the Proportion Statistic.

If the Proportions are the same (or there is no Statistically Significant
difference) then the Variables are said to be Independent. In our Example
#2 above, there was no Statistically Significant difference, so the Variables
gender and candidate preference were Independent.

In the example of the ice cream study, illustrated in the right table
above, the Variables gender and Ice Cream preference are not Indepen-
dent. According to this data, person’s gender does affect their choice in Ice
Cream flavor to a Statistically Significant degree.

Related Articles in This Book: Sample Size – Part 1: Proportions/
Percentages; Binomial Distribution; Normal Distribution; Sampling Dis-
tribution; Standard Deviation; Test Statistic; z; Alpha, a; Statistically Sig-
nificant; Confidence Intervals – Parts 1 and 2; Margin of Error; Hypothesis
Testing – Parts 1 and 2; Null Hypothesis; Fail to Reject the Null Hypothesis;
Chi-Square Test for Independence



r, MULTIPLE R, r2, R2, R SQUARE, R2

ADJUSTED
This article is for clarifying possible confusion about similar terms. For
details, see the articles: Correlation – Part 2; Regression – Part 2: Simple
Linear; and Regression Part 4: Multiple Linear.

Summary of Keys to Understanding

Term Name Used In Comments

r
Correlation
Coefficient

Correlation
� Values range from −1 to 1.
� Values near −1 or 1 indicate

strong Negative or strong
Positive Correlation.

� 0 indicates no Correlation.
When there are only two
Variables, Multiple R = r.

Multiple R
Multiple

Correlation
Coefficient

Multiple Linear
Regression

r2
It’s just the square of r.
In Simple Linear Regression,
r2 = R2.

R2

R Square aka
Coefficient of
Determination
aka Squared

Error

Simple Linear
Regression and
Multiple Linear

Regression

The most common measure
for the Goodness of Fit of a
Regression line.
� Values range from 0 to 1.
� Values nearer to 1 indicate a

better fit.

R̄2
Adjusted R2

aka R2

Adjusted

Simple Linear
Regression and
Multiple Linear

Regression

� Adjusts R2 for Degrees of
Freedom.

� Experts disagree on whether
it is necessary.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation
All these terms are used in Correlation analysis and Linear Regression.

Term Name Used In Comments

r
Correlation
Coefficient

Correlation

� Values range from −1 to 1.
� Values near −1 or 1

indicate strong Negative or
strong Positive Correlation.

� 0 indicates no Correlation.

r is the Correlation Coefficient. (See the article Correlation – Part 2.)
It is a measure of the linear Correlation between two Variables, x and y.
r is also known as the “Pearson product-moment correlation coefficient,”
“PPMCC” or “PCC,” or “Pearson’s r.” r ranges in value from −1 to +1.

If r = 0, there is no Correlation. The closer r is to −1 or 1, the
stronger the Correlation. Negative values indicate Negative Correlation –
as one Variable increases in value, the other decreases. Positive values indi-
cate Positive Correlation – both Variables increase together.

Term Name Used In Comments

Multiple R
“Multiple

Correlation
Coefficient”

Multiple Linear
Regression

� Values range from −1 to 1.
� Values near −1 or 1 indicate

strong Negative or strong
Positive Correlation.

� 0 indicates no Correlation.
When there are only two
Variables, Multiple R = r.

Multiple R is the “Multiple Correlation Coefficient.” It measures the
Correlation between the values of y (the Dependent Variable) predicted
by the Regression Model and the actual y’s in the data. So, it is a measure
of the Goodness of Fit of the Regression Model.

−1 ≤ Multiple R ≤ 1

Similar to r, Multiple R= 0 indicates no Correlation. The closer Multiple
R is to −1 or +1, the stronger the Correlation.

The main purpose of Multiple R appears to be as an interim
calculation for R2.

Term Name Used In Comments

r2
It’s just the square of r.

In Simple Linear
Regression, r2 = R2.
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Term Name Used In Comments

R2

R Square aka
Coefficient of
Determination
aka Squared

Error

Simple Linear
Regression and
Multiple Linear

Regression

The square of Multiple R.
The most common measure
for the Goodness of Fit of a
Regression line.
� Values range from 0 to 1.
� Values nearer to 1 indicate

a better fit.

R2 is a measure of how well the Regression Model fits the data. It is
the portion of the total Variation in y which is explained by the Model.

Being the square of Multiple R, which ranges from −1 to 1, the range
of R2 is: 0 ≤ R2 ≤ 1.

Higher values indicate a better fit of the Regression Model to the
data.

R2 has a shortcoming: As the number of x Variables increases, the
value of R2 also increases, irrespective of how good the fit is. That is
the reason for Adjusted R2. (See the article Regression – Part 4: Multiple
Linear.)

Term Name Used In Comments

R̄2 Adjusted R2 aka
R2 Adjusted

Simple Linear
Regression and
Multiple Linear

Regression

� Adjusts R2 for the number of
x Variables.

� Experts disagree on whether
it is necessary.

The purpose of the adjustment is to counteract the shortcoming in R2

noted above. However, not all experts agree it is needed.

Related Articles in This Book: Correlation – Part 2; Regression – Part 2:
Simple Linear; Regression Part 4: Multiple Linear; Degrees of Freedom



REGRESSION – PART 1 (OF 5): SUMS
OF SQUARES

Summary of Keys to Understanding

1. The Sum of the Squared Deviations – from each value of
y to the Mean of y – is called the Sum of Squares Total, or
SST.

SST measures ALL the Variation in the Variable y
around the Mean of y.

2. In Regression, the Sum of Squares Error, SSE, measures
the Variation in y which IS NOT explained by a Regression
Line. It is the Sum of the Squared Deviations from each value
of y to a Regression Line. It is a component of SST.

SSE = 1 + 1 + 0 = 2
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1.00

No Error 

Squared
Error

Squared
Error

3. Sum of Squares Regression (SSR) is that part of SST which
IS modeled by a Regression Line. And, since SST = SSE +
SSR,

SSR = SST − SSE.

R2 = SSR/SST is a measure of the Goodness of Fit of the
Regression Line.

4. The Best Fit line is the one with the smallest SSE – the
“(Ordinary) Least Sum of Squares.”
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Explanation

1. The Sum of the Squared Deviations – from each value of
y to the Mean of y – is called the Sum of Squares Total, or
SST.

SST = 𝚺(y − ȳ)2

SST measures ALL the Variation in the Variable y.

If we have a Sample or other group of data values for a single Variable,
call it y, we can calculate the Mean, ȳ. Then Deviation (from the Mean) of
any single data value, y is defined as y – ȳ.

Example 1: one Variable (y)
Let’s say we have a Sample of three values of a single Variable y: 1, 2,

and 6. These are plotted along the vertical (y) axis in the diagram below.
The Mean is ȳ = (1 + 2 + 6) / 3 = 3.

Mean y = 3 

y
Deviation 

1 1 – 3 = –2 

2 2 – 3 = –1 

6 6 –3 = 3 

2

Mean 3

1

0

y

6

5

4

D
ev

ia
ti

o
n

D
ev

ia
ti

o
n
s

y – y

If we want to get a measure of how much Variation (also known as “Vari-
ability,” “Spread,” or “Dispersion”) there is in the Sample, we cannot just
total up the Deviations for each of the data values. That is because the data
points with negative values for Deviation from the Mean would cancel out
those with positive Deviations, resulting in a total Deviation of zero. (This
is guaranteed by the definition of Mean.)

The Squared Deviation of any single data value of y is (y – ȳ)2. Squar-
ing eliminates the negative values. It also disproportionately increases the
impact of data points farther from the Mean. (32 is more than 3 × 12.) This
is consistent with how things are done in calculating the Standard Devia-
tion and Variance.
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The Sum of the Squared Deviations from the Mean is called the
“Sum of Squares Total,” or SST.

Sum of Squares Total: SST = 𝚺(y − ȳ2)

If we draw squares with sides which are the length of the Deviations,
the areas of the squares are equal to the Squared Deviations:

Example 1 continued: one Variable (y)

Mean =3

y Deviation
y – y

Squared
Deviation

(y – y)2

1 1 – 3 = –2 4

2 2 – 3 = –1 1

6 6 – 3 = 3 9

Sum of Squared 
Deviations 14

Mean 3

2

1

0

y
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4
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2
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Squared

Deviation:

(6 – 3)2
 = 9

Σ(y – y)2

y

In the illustration above, SST = 4 + 1 + 9 = 14.
The Sum of Squares Total includes all of the Variation in the values

of the y Variable. There is no other Variation in the y Variable that is
not included in SST.

2. In Linear Regression, the Sum of Squares Error (SSE) mea-
sures the Variation in y which is NOT explained by the
Regression Line. It is the Sum of the Squared Deviations from
each value of y to a Regression Line. It is a component of
SST.

When all we have is the single Variable y, then all we have is a 1-
dimensional (y-axis only) graphs like those above, and that is the end of
the story.

But what if we suspect that the Variation in y is caused by another Vari-
able x? Then, we’ll need to collect data in (x, y) pairs, e.g., x = years of
education and y = income for a number of individuals.

In Simple Linear Regression, we try to fit a line to paired (x, y)
data.
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The “Error” in Sum of Squares Error is the error in the Regression
Line as a Model for explaining the data.

� SST is the Sum of Squared Deviations from the Mean.
� SSE is the Sum of Squared Deviations from the Regression Line.

SSE = 𝚺(y − yLINE)2

� SST is the total of all Variation in the y Variable.
� SSE is: the part of SST not explained by the Regression Line.

SSE = SST − SSR

To illustrate, let’s say that instead of our y-only data values of 1, 2, and
6, we collected data in (x, y) pairs: (0, 1), (1, 2), and (2, 6).

In the table below, the first two columns show the paired (x, y) data. If
we plot the data, we might take a guess that a line from (0, 0) to (2, 6) might
be a good start in trying to fit a line to the data. The equation for that line
is ŷ = 3x. (ŷ, “y hat,” is the predicted value for y, given our first estimate
of a Regression line.) Using this equation, we can calculate the values of
y on the line for x = 0, 1, and 2. Then, we calculate the Deviation and the
Squared Deviation.

Example 2: paired (x, y) data and an estimated Regression Line, ŷ = 3x

x y ŷ Deviation y – ŷ
Squared Deviation
(Squared Error)

0 1 0 1 1

1 2 3 −1 1

2 6 6 0 0

Sum of Squared Errors (SSE) = Sum of Squared
Deviations

2

Several things should be noted at this point:

� The equation ŷ = 3x is just our first estimate of a Regression Line for
purposes of illustration. We don’t know if it is a good fit to the data or
not.

� A Regression Line (or curve) is described by a Model (which is a
formula like ŷ = 3x). Given a value for x, the Model will predict a
corresponding value for y.

� A Deviation from the Regression Line or curve is called an Error.
This is because the values of y on a Regression Line or curve
are predictions made by the Model. And a difference between a
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prediction and the actual data is considered to be an Error in the
Model.

The diagrams below display the information in the table – Example 2 –
above. The three (x, y) data points are shown as black dots. The circles are
(x, ŷ) points on our estimated Regression Line. Each of these points has the
same x-value as one of the data points, but the ŷ values of these points are
calculated using the equation for the estimated Regression Line ŷ = 3x.

The Deviations between the y-values of the black data dots and the ŷ
values of the circles represent the Error in the estimated Regression line
as a Model for explaining the Variation in the y Variable in the data.

SSE = 1 + 1 + 0 = 2
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In the diagram above right, the Squared Errors are illustrated as
squares.

Sum of Squares Error (SSE) is the sum of the Squared Errors from the
Regression Line.

3. Sum of Squares Regression (SSR) is that part of SST which
IS modeled by a Regression Line. And, since SST = SSE +
SSR,

SSR = SST − SSE

R2 = SSR/SST is a measure of the Goodness of Fit of the
Regression Line.
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Given what we’ve shown above, it is a very simple step to determine
how much of the Variation in the Variable y is modeled by a Regression
Line:

� SST is ALL the Variation in the Variable y.
� SSE is the Variation in y, NOT modeled by a Regression Line.
� So, the Total (SST) minus what’s NOT (SSE) is what IS (modeled by

a Regression Line). This is:

Sum of Squares Regression: SSR = SST − SSE

In our example with an estimated Regression Line, SST = 14 and
SSE = 2, so SSR = 12.

Is this a good fit? A good fit would have a large value of SSR (which
means, a small value of SSE). But simply a large value of SSR can be
misleading, because SST might be very large. Obviously, we’re looking
for a large value of SSR relative to the value of SST. So SSR/SST would
be an appropriate measure of Goodness of Fit of the Regression line to
the data.

SSR/SST is denoted by R2 and is called the “Coefficient of Determi-
nation.” More on that in the Part 2 article.

4. The Best Fit line is the one with the smallest SSE – the
“(Ordinary) Least Sum of Squares.”

There are several methods for determining the Best Fit, but the most
common method is to calculate Sums of Squares, as we have above, and
then to determine the Least Sum of Squares – the lowest SSE. (This is
also known as OLS, the Ordinary Least Sum of squares.)

Since SSE = SST – SSR, the lowest SSE corresponds to the highest
SSR. And R2 = SSR/SST is a measure of Goodness of Fit. So the Best Fit
could just as easily been described as the one with the highest value of SSR
or the highest value of R2.

Spreadsheets or statistical software can calculate the Best Fit Regression
Line for you. In our example, the Best Fit line (the Regression Model) was
described by the equation: y= 0.5+ 2.5x. This line gives us the (x, y) points
(0, 0.5), (1, 3), and (2, 5.5).
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Its SSE is 1.5 (compared to 2 for our estimated line). And its R2 =
SSR/SST= 14.5/16= 90.6%, compared to 14/16= 87.5%. (We were pretty
lucky with our estimated line being such a good fit. But it only had three
data points, and we’re not going to see that too often in actual practice.)

A few other items before we go:

� We’ll elaborate on this in the Part 3 article, but don’t extrapolate the
Regression Line or Curve beyond the Range of the x’s in the data.
The Model is only valid within that Range – in this example between
x = 0 and x = 2.

� We’ve focused on a 2-dimensional Regression Line in this article.
That is but one type of Regression, Simple Linear Regression. Non-
linear Regression, covered in the Part 5 article, is not restricted to
fitting lines but can use curves of various types.

� Also, if we just have one Independent Variable x, we have Simple
Regression (Part 2), and we can graph it on a simple x-y axis in two
dimensions. Multiple Regression (Part 4) is not Simple, but involves
multiple x’s and one y. This effectively involves working in three or
more dimensions.

� This article deals with the types of Sums of Squares which are used
in Regression. Another article, Sums of Squares, describes, SS’s used
with ANOVA and other types of analysis.
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For both ANOVA and Regression, Sums of Squares are used to “parti-
tion” (allocate, or “divide up”) the total Variation (SST) into components
which are other types of Sums of Squares.

Related Articles in This Book: Variation/Variability/Dispersion/Spread;
Regression – Part 2: Simple Linear; Regression – Part 3: Analysis Basics;
Regression Part 4: Multiple Linear; Regression Part 5: Simple Nonlinear;
Sums of Squares; r, Multiple R, r2, R2, R Square, Adjusted R2



REGRESSION – PART 2 (OF 5):
SIMPLE LINEAR
Builds on the content in the article, “Regression – Part 1: Sum of Squares”.

Summary of Keys to Understanding

1. The purpose of Regression analysis is to develop a Cause
and Effect “Model” in the form of an equation: y = f(x) or
y = f(x1, x2, . . . , xk).

The Model predicts what future (yet-to-be-collected)
data will be like. It is validated – or invalidated – in
Designed Experiments.

2. First, plot the data. Then, perform a Correlation analy-
sis. Only perform a Simple Linear Regression if there is a
moderately strong Correlation between the Variables.

3. Simple Linear Regression fits a line

y = bx + a

to 2-dimensional (x, y) data.
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4. The (best fit) Regression Line is the line with the smallest
value of the Sum of Squares Error(SSE).

5. The Coefficient of Determination, R2, is a measure of how
well the Regression Model fits the data.

R2 = SSR
SST

= 1 − SSE
SST

= r2

It is the Proportion of the total Variation in y which is
explained by the Regression Model.

285
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Explanation

1. The purpose of Regression analysis is to develop a Cause
and Effect “Model” in the form of an equation: y = f(x) or
y = f(x1, x2, . . . , xk).

The Model predicts what future (yet-to-be-collected)
data will be like. It is validated – or invalidated – in
Designed Experiments.

In Correlation analysis, there is no Cause and Effect. Correlation
analysis studies whether two Variables are interrelated such that they vary
together. The two Variables are considered equal in the sense that we
don’t consider whether one influences the other. There may also be other
unknown Variables involved which influence one or both.

Regression analysis extends Correlation analysis to determine one
or more Causes – one or more x variables – and their Effect on the y
Variable. So unlike Correlation analysis, Regression analysis differenti-
ates between the x and y variables. Regression is not symmetric. That is,
modeling x vs. y is different from modelling y vs. x.

So, we have different names for the x and the y variables. Also – not
surprisingly for statistics – there are several different names for each.
Here, we’ll use Predictor for x and Outcome for y, since those seem most
descriptive

Synonyms:

x Independent
Variable

Cause Predictor Variable Explanatory Variable

y Dependent
Variable

Effect Outcome
Variable

Response
Variable

Criterion Variable

There is always only one y (Outcome) Variable. It is a function of one
or more x’s.

Simple Regression: one x (Predictor) Variable: y = f(x)
Multiple Regression: multiple x variables: y = f(x1, x2, . . . , xn)
These equations are called Models, because they attempt to model the

real-world phenomena described by the data.
If the Model is accurate, it should accurately predict future behav-

ior of the phenomena, as evidenced by any data we collect in the
future.

We determine whether the Model is accurate using the statistical
discipline of Design of Experiments (DOE). We test various levels of
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the x Variable(s) and predict the resulting values of the y Variable. The
results of the Designed Experiments determine whether or not the Model
is valid.

Sometimes it’s not always clear which Variable should be the x Variable
and which would be the y. In general, the Outcome Variable, y, is the
one we are studying, the Variable whose value we want to predict, and
the Predictor Variables, (x’s) are used to make that prediction.

For example, we are interested in the reading level of children entering
1st grade. We believe that a Factor influencing the reading level would
be the parents’ educational level. The Outcome Variable, y, would be the
reading level and one of the Predictor Variables, x’s, would be the parents’
educational level.

2. First, plot the data. Then, perform a Correlation analy-
sis. Only perform a Simple Linear Regression if there is a
moderately strong Correlation between the Variables.
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As described in the article, Correlation Analysis Part 2, statistics alone
can be misleading. It is important to plot the data. For Simple (with one
x Variable) Regression, data can be plotted in a 2-dimensional Scatterplot.
For Simple Linear Regression – which has a single x Variable – the Scat-
terplot should show at least a roughly linear pattern. If it does not, do
not proceed further.

If it does, the next step is to determine the strength of the linear
Correlation. Perform a Correlation analysis. This produces a Correlation
Coefficient, r, which is a measure of the strength of a linear relationship
between two Variables. If r does not indicate that there is at least a moder-
ately strong correlation (r ≥ 0.50 or r ≤ −0.50), it would not be productive
to perform a Simple Linear Regression analysis to fit a line and make pre-
dictions.
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3. Simple Linear Regression fits a line to two dimensional
(x, y) data. The equation describing the line is

y = bx + a

“Simple,” as opposed to “Multiple,” means there is only one x Variable.
“Linear,” as opposed to “Nonlinear,” means the equation describes a

line.
You may see variations on this equation, such as y = a + bx or y = ax +

b or y = mx + b or y = b0 + b1x. But it’s all the same thing, just different
letters and ordering.

The data are “paired” as in Correlation. That is, each data point is of the
form (x, y). It consists of one value of x and one value of y from a single test
subject – for example, the height and weight of one person. (It makes no
sense to pair the height of one person with the weight of another person.)

y = bx + a

Independent Variable Dependent Variable

Slope y-Intercept
The Slope, denoted by the constant b, describes the slant of the line.

In these diagrams, the line described by the equation is dotted.

y

x
y-Intercept = 0
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The y-Intercept (or just “Intercept”), denoted by the constant a,
describes where the line intercepts the y-axis. It is the value of y for
which x = 0.

So, how do we determine the values of b and a, which define the Regres-
sion Line? There are a number of methods for doing so. But the most
widely used is the Least Squares method. This is described in the Part 1
article. The Regression Line is the one which minimizes the SSE (Sum
of Squares Error).

The following are the formulas for calculating the slope and intercept
of the Regression Line. You won’t normally use these, since spreadsheets
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or software can provide these values. First, calculate the Slope, b:

Slope: b =
∑

(x − x̄)(y − ȳ)
∑

(x − x̄)2

This may look somewhat reminiscent of the formula’s use in Correla-
tion. If fact, with a little algebraic manipulation, it can be rewritten in terms
of the Correlation Coefficient, r, and the Standard Deviations of x and y:

Slope: b = r
sy

sx

Having calculated the Slope, the y-Intercept is a simple matter.

y-Intercept: a = ȳ − bx̄

The y-Intercept does not always have a physical meaning. In the illus-
tration below, we show some data on height and weight of people. The line
through the data is extended to the left until it intercepts the y axis (at x =
0). This is the point at which the height of a person would be zero which,
of course, is meaningless.
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4. The (best fit) Regression Line is the line with the smallest
value of the Sum of Squares Error, SSE.

There are a number of methods for calculating a line which best fits
the data. The one most commonly used is the Least Squares method. As
explained in the Part 1 article, Sum of Squares Error, SSE, is the Variation
in y NOT modeled by a line. The line with the smallest value of SSE is
the Regression Line. It is also called the Best Fit Line or the Line of Least
Squares.

The Regression Line always passes through the point (x̄, ȳ).
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5. The Coefficient of Determination, R2, is a measure of how
well the Regression Model fits the data.

R2 = SSR
SST

= 1 − SSE
SST

= r2

It is the Proportion of the total Variation in y which is
explained by the Regression Model.

In Part 1, we described how the total Variation in the Variable y can
be expressed as the Sum of the Squares Total, SST.

As described in Part 2, we can develop a Regression Model – in Lin-
ear Regression, this is an equation for a line. The Regression Model, will
explain a portion – hopefully a major portion – of the Variation. The part
of the Variation in the Variable y explained by the Regression Model
is expressed as the Sum of Squares Regression (SSR). (That’s why it is
sometimes called the “Explained Variation.”)

What’s left over – the Unexplained Variation – is viewed as the Error
in the Regression Model, the Sum of Squares Error, or SSE. So, . . .

SST = SSR + SSE

Example:
Let’s say we have some data and a Regression Model, and we calcu-
late:

SST = 100, SSR = 80, and SSE = 20

The Proportion of the total Variation in the Variable y which is
explained by the Regression Model is

SSR
SST

= 80
100

= 0.8 = 80%

The Proportion of the Error in the Regression Model is what’s
left:

SSE
SST

= 1 − SSR
SST

= 20
100

= 0.2 = 20%

Clearly a Model which, for example, explains 80% of the Variation in the
Variable y is better than a Model which explains only 60%. So, SSR/SST
would seem to be a good measure of the Goodness of Fit of the Regression
Model.

R2 = SSR
SST

= 1 − SSE
SST

As described in the article, Correlation, Part 2, the formula for r2, the
Coefficient of Correlation, is made up of Sums of Squares and Standard
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Deviations. The formula for the latter is also based on Sums of Squares.
And, with some algebraic manipulation (which we won’t go into here) r2

can be shown to equal SSR/SST.
So, in Simple Linear Regression, the Coefficient of Determination,

R2, equals the square of the Coefficient of Correlation, r.

R2 = r2

These are the same thing, and the notations are interchangeable. R2 is
also called Multiple R2. (If these different r’s are starting to get confusing,
see the article r, Multiple R, r2, R2, R Square, R2 Adjusted.)

Since it equals SSR/SST, R2 is the Proportion of the total Variation
in the Variable y which is explained by the Regression Model. Since
R2 = r2, and since r, the Coefficient of Correlation, ranges from −1 to +1,

Proportion: 0 ≤ R2
≤ 1

R2 is a decimal between 0 and 1. To convert it to a percentage, multiply
by 100.

Percentage: 0% ≤ R2 × 100 ≤ 100%

Different disciplines have different standards for what is a good enough
“Goodness of Fit,” as measured by R2, as explained in the Part 3 article.
If the Model does not meet the desired clip level, then a different x
Variable or additional x Variables can be tried.

In Multiple Regression (Part 4 article), an Adjusted R2 is sometimes
used.

An R2 which meets the desired clip level is necessary, but not suf-
ficient. The Regression – Part 3 article on Analysis Basics explains why.
And the 3-part series of articles on Design of Experiments (DOE) explains
how to verify the predictions made by the Model.

Important: Please continue on to read the Part 3 article, which provides
Analysis Basics for Simple Linear as well as other types of Regression.

Related Articles in This Book: Correlation – Part 2; Regression – Part 1:
Sum of Squares; Charts, Graphs, Plots – Which to Use When; r, Multiple
R, r2, R2, R Square, R2 Adjusted; Regression – Part 3: Analysis Basics;
Regression – Part 4: Multiple Linear; Regression – Part 5: Simple Nonlin-
ear; Design of Experiments (DOE) — Parts 1–3
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ANALYSIS BASICS
These basics apply to all types of Regression. Additional considerations
for Multiple Linear Regression and Non-linear Regression are covered in
Parts 4 and 5.

Summary of Keys to Understanding

1. Different disciplines have different standards for what is a
good enough “Goodness of Fit,” as measured by R2.

An R2 which meets the desired clip level is necessary, but
not sufficient.

2. The Residual – for each (x, y) data point – is the difference
between the value predicted by the Model, ŷ, and the actual
value of y.

Analysis of Residuals is essential in assessing the validity
of the Model.

y
Residual = y – y

x

y

y
Regressio

n Line

3. Cautions:
� Cause and Effect cannot be determined by statistics

alone.
� Regression predictions must be tested with experiments

on new data.
� Never attempt to predict (extrapolate) beyond the range

of the x Variable in the data.
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Explanation

1. Different disciplines have different standards for what is a
good enough “Goodness of Fit,” as measured by R2.

An R2 which meets the desired clip level is necessary, but
not sufficient.

In the physical sciences and in engineering situations in which precise
laws of nature prevail, one might expect R2 ≥ 0.9.

In process improvement work: R2 ≥ 0.7.
In social sciences, R2 ≥ 0.3 may be considered good enough.
If the Model does not meet the desired clip level, then a different x

Variable or additional x Variables can be tried.
In Multiple Regression (Part 4 article), an Adjusted R2 is sometimes

used. And statistical software packages can provide p and F values and
ANOVA tables to aid in the analysis.

Even if we do have a strong value for R2, we cannot conclude that our
Regression Line is a good fit. An R2 which meets the desired clip level
is necessary, but not sufficient, as the rest of this article demonstrates.

2. The Residual – for each (x, y) data point – is the difference
between the value predicted by the Model, ŷ, and the actual
value of y.

Analysis of Residuals is essential in assessing the validity
of the Model.

Virtually no Model is a perfect fit for real-world data. For any given
value of x (or multiple x’s) the predicted (aka “expected”) value of y cal-
culated by the Model will usually not be the same as the actual value. This
difference is considered an Error in the Model. It is called a Residual.

In the diagram below, the Regression Line is the diagonal dashed line.
The black dots are the (x, y) data points. The values of the Residuals are
the lengths of the vertical dotted lines. The Predicted Value of ŷ (“y-hat”)
for a given x is the value of y on the Regression Line for that x. The
actual (aka observed) value of y is that of the data point.

y

y

y
Regressio

n Line

Residual = y – y

x
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The value of the Residual of any (x, y) data point is the value of y
which is predicted (calculated) by the Regression Model (denoted by y
with a “hat”) minus the actual value of y.

Residual = ŷ − y

Residuals can contain a lot of useful information, and analysis of
Residuals is essential to verifying the accuracy of the Model. The Resid-
uals in any Model should exhibit the following characteristics:

Residuals must:
� be Random
� be Normally Distributed
� not be Correlated with any x Variable
� not be Autocorrelated (relative to time sequence)
� have Constant Variance
� have no unexplained Outliers

To keep this article to a reasonable size, specifics are provided in the
article “Residuals.”

3. Cautions:
� Cause and Effect cannot be determined by statistics

alone.
� The Regression Model must be tested with experiments

on new data.
� Never predict (extrapolate) beyond the range of the x

Variable in the data.

It is important to engage subject matter experts to describe credible
real-life mechanisms or scenarios by which the Correlation we observe can
be explained by x causing y. If it’s a mystery why there is a Correlation, then
there could be other explanations. For example an unknown “lurking”
Variable could be causing the Variation in both x and y.

As we said in Part 2, the purpose of Regression analysis is to develop
a Cause and Effect “Model” in the form of an equation. The Model pre-
dicts what future (yet-to-be-collected) data will be like. For Simple Linear
Regression, the Model is the equation, y = bx + a, which describes a Best
Fit line.

A value for R2 above a commonly accepted clip level and compliant
Residuals tells us that we can proceed to the next stage of analysis – a
Controlled or Designed Experiment.

We can’t use the original data as proof of Cause and Effect. If we want
to use the Model to predict values for y, then we must actually predict some
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new values, and test them with Controlled or Designed Experiments. See
the articles Design of Experiments (DOE) Parts 1–3. So, we must:

� take a new Sample of data, and
� compare the y-values predicted by the Model with the Actual

y-values in the new Sample.

The experiment should enable us to fix values of x at several levels – for
example, specific doses of a new drug – and then predict what the corre-
sponding y-values will be.

Probably the biggest No-No is extrapolation. Never predict beyond
the range of the x Variable in the data.

Let’s say there is a clinical trial of a new drug which tested dosages
ranging from 0 (placebo) to 30 mg. The resulting data, shown in the left-
most diagram, indicate a close fit to a Regression line which shows that
increasing the dosage (x Variable) increases the subject’s health outcome
(y Variable) proportionally.
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If the experimenters knew little about statistics (and had little common
sense), they might be tempted to call a press conference announcing that
they had proved that larger and larger doses of the drug produce better and
better results (middle graph). They basically would then be extrapolating
their findings beyond the range of the dosages (x Variable) tested.

Fortunately, wiser heads prevailed, and they announced that their test
results were only valid for 0 – 30 mg. Subsequent research tested doses
from 40 to 50 mg (right diagram). This showed that doses of 40 and 50 mg
actually resulted in poorer health outcomes than those for 40 mg.

Here’s a little cartoon that may help reinforce the dangers of extrapola-
tion.
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Our experiments show

that 3 pills produce

results which are 3 times

as good as 1 pill.

So, 10 pills should be

10 times as good.

Actually, 10 pills 

would send you to

the hospital.

Related Articles in This Book: Design of Experiments – Parts 1–3; Cor-
relation Part 2; Regression Parts 1, 2, 4, and 5; Residuals



REGRESSION – PART 4 (OF 5):
MULTIPLE LINEAR
Prerequisite articles: Correlation, Part 2; Regression Parts 1, 2, and 3;
and Residuals.

Summary of Keys to Understanding

1. The same basic principles that apply to Simple Linear
Regression and to Residuals also apply to Regression using
two or more variables, Multiple Linear Regression.

y = b1x1 + b2x2 + ⋯ + bkxk + a

However, additional considerations (and complications)
apply.

2. Start by identifying possible Predictor Variables (the x’s),
using subject matter knowledge. Then collect the data.
Then, plot the data and perform Correlation Analyses to
identify candidates for the Regression Model.

3. The more is NOT the merrier. Drop x Variables which are
not Correlated with the y Variable or which are Correlated
with other x Variables.

4. From a data set of y and corresponding x variables, statistical
software can provide the Regression Model and a number
of Statistics for evaluating it.

y = −38.824 + 83.725 × Bedrooms + 76.078 × Bathrooms

5. A Model cannot be validated with the data used to pro-
duce it. Use Design of Experiments to design and conduct
controlled experiments on the predictions from the Model.

297
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Explanation

1. The same basic principles that apply to Simple Linear
Regression and to Residuals also apply to Regression using
two or more variables, Multiple Linear Regression.

y = b1x1 + b2x2 + ⋯ + bkxk + a

However, additional considerations (and complications)
apply.

In Simple Linear Regression, y is a function of a single x Vari-
able, y = f (x). In Multiple Linear Regression there are more x Variables.
y = f (x1, x2,… , xk).

In Simple Linear Regression, the equation for the Regression Model is
y = bx + a. In Multiple Linear Regression, the following is the equation
for the Model. k is the number of Predictor Variables (x’s).

y = b1x1 + b2x2 + … + bkxk + a

Outcome Variable
Predictor Variables

Intercept

Coefficients

The addition of additional x’s is non-trivial. A number of considerations
and complications arise in Multiple Regression that do not exist in Simple
Regression. This makes it much more complicated:

� There are several methods and measures for selecting the x vari-
ables to include in the Regression Model.

� The Coefficient of Determination, R2, tends to grow solely as a
result of increasing the number of x Variables. However, some
other Statistics don’t have this shortcoming.

� You can’t plot a 2-dimensional graph with two or more x Vari-
ables. With two x Variables plus one y Variable, the Regression
produces a Best Fit 2-dimensional Plane in a 3-dimensional space.
Beyond that, we get into an imaginary realm of 4+ dimensions. How-
ever, we can and do use plots of y vs. each individual x.

� Usually, there are a number of candidates for inclusion as x Variables
in the Regression Model. Various methods and Statistics are employed
to winnow these down to a Best Subset or Subsets.

� ANOVA is often used to help evaluate the Model.
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� There may be Interactions between or among the x Variables. These
are normally analyzed during the Designed Experiments which are
required for validating the predictive ability of the Model.

2. Start by identifying possible Predictor Variables (the x’s),
using subject matter knowledge. Then collect the data.
Then, plot the data and perform Correlation Analyses to
identify candidates for the Regression Model.

Step 1: The first thing to be done does not involve statistics. Use your
subject matter knowledge – and that of other subject matter experts, if
available – to identify all measurable causes (x Variables) of Variation
in the y Variable. It is important to get this right, because once the data
are collected, you can’t go back and get data on additional x’s.

Step 2: Collect the data, For each subject, you must collect all the x-
values at the same time. You can’t record someone’s blood pressure today
and then come back a couple of weeks later to get their weight. This is why
Step 1 is so important.

Example
We are developing a Model for predicting House Price (the y, in thou-
sands of dollars). Subject matter experts have identified four possi-
ble x’s (actually, there are more, but let’s keep this example simple):
House Size, in thousands of square feet; Lot Size, also in thousands
of square feet; number of Bedrooms; and number of Bathrooms.
We collected this data:

Price House Size Lot Size Bedrooms Bathrooms

200 2.0 7.5 2 1

300 1.3 5.0 2 2

300 1.8 5.0 3 1

350 1.9 8.0 3 2

340 2.2 8.0 3 2

280 2.5 10.0 2 2

500 3.0 8.0 4 2.5

3. The more is NOT the merrier. Drop x Variables which are
not Correlated with the y Variable or which are Correlated
with other x Variables.
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Simpler – fewer x Variables – is better. Including a large number of
possible x’s can be counterproductive, due to interactions among the x Vari-
ables, increased expense, and complexity of subsequent experiments.

Step 3: The Part 2 article said, “ . . . plot the data. Then perform a Cor-
relation analysis. Only perform a . . . Regression if there is a moderately
strong Correlation between the Variables.” This applies to Multiple Regres-
sion as well.

Do a Scatterplot of y vs. each candidate x. If the Scatterplot shows a
roughly linear Correlation, proceed to Step 4; otherwise drop that x Vari-
able from consideration.
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Price vs. Lot Size looks random, so we drop it. As the article Corre-
lation Part 2 instructs, we don’t even bother to calculate the Correlation
Coefficient if the plot doesn’t look at least roughly linear.

The plots of the other three x’s do. So, we can proceed with them to the
next step.

Step 4: Calculate r’s, the Correlation Coefficients, for each x Vari-
able with the y Variable. Guideline: If r ≥ 0.50 or r ≤ −0.50, then there
is at least a moderately strong Correlation between that x Variable and the
y Variable. Drop any x Variable which does not have at least a moder-
ately strong Correlation with the y Variable.
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After dropping Lot Size as a result of the Scatterplot, we see the remain-
ing three x Variables all have r > 0.50. So we retain all three – for now.

While we do want each x to be linearly Correlated with y, we don’t
want

� any two x’s Linearly Correlated with each other.
� any single x Linearly Correlated with all the rest.

If any two (or more) x Variables are Correlated with each other, that
is called Multicollinearity. Multicollinear x Variables would have a sim-
ilar effect on the y Variable, and the Regression software would have
no good way to determine how to allocate this effect among the two
(or more) Multicollinear x Variables. So, inaccurate Regression Models
could result.

Step 5: Measure the Correlation between all pairs of x Variables. If any
pair of x Variables is strongly Correlated, drop one of them. Drop the
one that is less correlated with the y Variable. As one might expect, different
experts use different numbers as the clip level for “Strongly Correlated” 0.6
or 0.7 seem to be common. We calculate:

for House Size vs. Bedrooms: r = 0.57
for House Size vs. Bathrooms: r = 0.46
for Bedrooms vs. Bathrooms: r = 0.42
So, we’ll keep all three x Variables at this point

4. From a data set of y and corresponding x variables, statistical
software can provide the Regression Model and a number
of Statistics for evaluating it.

Step 6: Using statistical software, run a Regression Analyses on the
remaining x Variables.

In our example, we obtain this equation for a Regression Model:
y = −34.75 − (5.349 × House Size) + (85.506 × Bedrooms) + (77.486

× Bathrooms)
−34.75 is the Intercept. The three Coefficients corresponding to the

three x Variables are −5.439, 85.506, and 77.486.
In addition to this equation for the Regression Model, two other

sections of the Regression analysis output – Regression Statistics and
ANOVA – describe the Model as a whole. (Another section describes the
individual x Variables.)

“R Square,” R2, tells us that 97% of the Variation in the value of the
House Price is explained by the Model. Adjusted R Square is almost as
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good. So this Model is a very good fit for the data. The Standard Error is
the Standard Deviation of the Errors (Residuals).

Regression Statistics

Multiple R 0.985

R Square 0.970

Adjusted R Square 0.955

Standard Error 19.529

Observations 7

The ANOVA section evaluates the Null Hypothesis that the Regression
Model explains none of the Variation in the data.

ANOVA

df SS MS F p-value

Regression 2 48845.938 24422.969 64.040 0.001

Residual 4 1525.490 383.371

Total 6 50371.429

The p-value of 0.001 is the Probability that the results obtained are a
False Positive, as opposed to the Model being valid. (With some software,
p-value is labeled “Significance F.”) Here, it is well below the usual clip
level for Alpha of 0.05, so this is further corroboration of the validity of
the Model.

The following section looks at properties of the individual components
of the Model. It will tell us which of the three x Variables we selected make
a Statistically Significant contribution to the Model. Those will be included
in the final version of the Model.

Coefficients Std
Error

t-Stat p-value
Lower
95%

Upper
95%

Intercept −34.750 40.910 −0.849 0.458 −164.944 95.445

House Size −5.439 21.454 −0.254 0.816 −73.716 62.838

Bedrooms 85.506 15.002 5.700 0.011 37.763 133.249

Bathrooms 77.486 18.526 4.183 0.025 18.529 136.443

The Coefficients for the x Variables (House Size, Bedrooms, and Bath-
rooms in this example) are the b’s in the equation: y = a + b1x1 + b2x2 +
b3x3. The Coefficient of the Intercept (a) is its value, since it is a constant.

p-value: In this example, we selected 𝛼 = 5%. If the p-value ≤ 𝛼, then
we can conclude that the Coefficient of that x-Variable is different from
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zero to a Statistically Significant degree, and thus it can be included in the
Model.

We see that the p-values for Bedrooms and Bathrooms are comfortably
below 𝛼 = 0.05. This tells us that they do make a Statistically Significant
contribution to the Model. So we will retain them going forward. However,
for House size, the p-value is very large.

Step 7: The statistical software identifies a best subset or best subsets
of x Variables.

This can get very complicated – testing all possible combinations of
subsets. Also, some “common sense” methods of adding or subtracting
individual x Variables are less than effective. So it’s best to find a statistical
software which can do this for you.

For example, the very high p-value for House Size makes it a candidate
to be dropped. As we see in the summary below, doing so does not decrease
the accuracy of the Model.

# of x Variables x Variables R2

3 House Size, Bedrooms, Bathrooms 0.970

2 Bedrooms and Bathrooms 0.970

2 House Size and Bathrooms 0.649

2 House Size and Bathrooms 0.797

There are a number of methods for selecting best subsets. The best
approach may be to select a set or sets of x Variables which optimize one
of the Statistics: R2, Adjusted R2, or Mallow’s Cp:

� R Square, R2, is the square of Multiple R in Multiple Regression.
As discussed in Part 2, R2 is the proportion of the Variation in y that
is explained by the Model. Being a Proportion, R2 ranges from 0 to
1. The larger the value of R2, the better. The drawback to R2 is that it
tends to gets larger simply as a result of more x Variables being added.
(This is another reason why the more is not the merrier.)

R2 = SSR
SST

= 1 − SSE
SST

(see the part 2 article)

Adjusted R2, denoted R̄
2
, adjusts for this shortcoming in R2. If n is

the Sample Size and p is the number of Predictor (x) Variables then,

R̄
2 = R2 − (1 − R2)

p
n − p − 1

There are mixed opinions regarding whether it is a substantial
improvement.
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� Mallows Cp makes a similar adjustment. It is preferred by some
experts, but it is not often included in the standard output of software
and spreadsheets.

For the best subset Bedrooms and Bathrooms Model above, the Regres-
sion Model is:

y = −38.824 + (83.725 × Bedrooms) + (76.078 × Bathrooms)
Step 8: Finally, we need to analyze the Residuals, as described in the

article Residuals.
Remember: Don’t extrapolate! In this example Regression analysis,

the data ranges of our remaining two x variables were: Bedrooms; 2–4 and
Bathrooms 1–2.5. So, the Model is only good for houses with Bedrooms
and Bathrooms within those ranges.

5. A Model cannot be validated with the data used to pro-
duce it. Use Design of Experiments to design and conduct
controlled experiments on the predictions from the Model.

What we just did was to test the Model with the data that produced it.
That was useful in determining the best subset of x variables to include
in the Model, and to give us confidence that we are on the right track.
But we’re not done yet. The whole purpose of Regression is to make
predictions about data we have not yet collected.

So, we must conduct experiments in which, for specific values (levels)
of each of our x Variables, we predict a y-value. There is a discipline called
Design of Experiments which describes how to do this in order to get Statis-
tically Significant results. This needs to be done before we can make any
definitive conclusions about Cause and Effect between the x and y Vari-
ables.

Related Articles in This Book: Regression, Parts 1–3 and 5; Correlation
Part 2; r, Multiple R, r2, R2, R Square, R2 Adjusted; Alpha, 𝛼; Design of
Experiments (DOE) – Parts 1–3; p-Value (p); t-tests – Parts 1 and 2; F;
ANOVA – Parts 1–4; Residuals; Standard Error



REGRESSION – PART 5 (OF 5):
SIMPLE NONLINEAR
Prerequisite articles: Correlation, Part 2; Regression Parts 1, 2, and 3;
and Residuals.

Summary of Keys to Understanding

1. Simple Nonlinear Regression fits a curve to nonlinear x–y
data. The y is a function of a single x Variable: y = f(x).

Depending on the shape of the data, there are many different
types of curves, resulting from many different kinds of func-
tions.

2. Data shaped like Exponential, Logarithmic, and some
other functions can be transformed so that Simple Linear
Regression can be used on them.

Transform
the Data

12
10
8
6
4
2
0

0 2 4 6 8 10

Original Data
0.80

0.60

0.40

0.20

0.00
0 2 4 6 8 10

12.00
10.00
8.00
6.00
4.00
2.00

0.00
0 2 4 6 8 10

Fit a Line to the
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Reverse the
Transformation

3. If the data curve changes direction, a Polynomial curve can
be fit.

4. The usual Regression cautions and restrictions apply:
� Analyze the Residuals
� Don’t Extrapolate
� A Regression Model cannot be validated with the data

used to produce it. Use Design of Experiments (DOE) to
design and conduct controlled experiments on the pre-
dictions from the Model.
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Explanation

1. Simple Non-linear Regression fits a curve to non-linear x–y
data. The y is a function of a single x Variable: y = f(x).

Depending on the shape of the data, there are many different
types of curves, resulting from many different kinds of func-
tions.

“Simple” means there is only one x-Variable – the same as in Simple
Linear. In both Simple Linear and Simple Non-linear Regression, y = f (x).
“Simple” is the opposite of “Multiple.” In “Multiple” Regression (Linear or
Non-linear), there are two or more x Variables: y = f (x1, x2,… , xk). Mul-
tiple Linear Regression was covered in Part 4

“Non-linear” means we try to fit a curve to the data, as opposed to
a line. Multiple Non-linear Regression can be very complicated, and it is
beyond the scope of this book.

Even for Simple Nonlinear Regression, the calculations can be involved,
and it is advisable to use statistical software which automates them, as opp-
osed to trying to do them with spreadsheets alone. This article will illustrate
the concepts, without attempting to show the individual calculations.

“Curve” is a very inclusive term. Depending on the shape of the data,
there are many different types of curves, resulting from many different
kinds of functions, which can be used. The following are the most common:

Exponential Logarithmic Power Polynomial

y = a ∗ bx y = a + (b ∗ log(x)) y = a ∗ xb y = aix
i + ai−1xi−1

+ ⋯+ a1x+ a0

Exponential and Logarithmic have rapid accelerations or decelerations
in the Slope. Power curves have a more gradual change. Polynomial func-
tions can be used for more complex curves, as we’ll see later.

2. Data shaped like Exponential, Logarithmic, and some
other functions can be Transformed so that Simple Linear
Regression can be used on them.

It is much more difficult to fit a curve to data than to fit a line. So, Non-
linear Regression makes use of mathematical Transformations in order to
use Simple Linear Regression techniques on Nonlinear data.
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Step 1: Select a type of curve that approximates the shape of the
data. The curve type may be Exponential, Logarithmic, Power, Polyno-
mial, or another type. In the example below, the data do not follow a linear
pattern. The curve for y = 1∕x appears to be a fair approximation. y = 1∕x
can be rewritten as y = x−1, which makes it a Power function.

Original data

x 2 3 4 5 6 7 8 9 10

y 0.75 0.45 0.26 0.20 0.25 0.14 0.16 0.13 0.09

Generic Curve for y = 1/xOriginal Data (x, y)
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

0 2 4 6 8 10 12

y

Step 2: Transform the data: For each value of x, calculate a
Transformed value for y, using the inverse of the function for the
selected curve. The specific equation can be determined by solving for
x algebraically.

Exponential and Logarithmic functions are, by definition, inverses of
each other. That is, if x = logb(y), then y = bx.

In our example, y = 1∕x, so, algebraically, xy = 1, and then x = 1∕y.
So, we apply the Transformation y = 1∕y, i.e., a Transformed y = 1∕ the

Original y.

Transformed data

x 2 3 4 5 6 7 8 9 10

Transformed
y = 1/Original y

1.33 2.22 3.85 5.00 4.00 7.14 6.25 7.69 11.11

If the original data follow the shape of the selected curve, the
Transformed data – in pairs of values (x, Transformed y) – should
approximately follow a straight line. And it does, as shown in the plot
below left:
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Transformed Data
(x, transformed y)
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Step 3: Use Simple Linear Regression to fit a line to the Transformed
data.

The Simple Linear Regression analysis comes up with the following
equation for the fitted line:

y = −0.847 + 1.041x

It is pictured above in the plot above right. The analysis also tells us that
R Square = 0.893, Adjusted R Square = 0.878, and the p-value is 0.0001.
So this is a good fit of a straight line to the Transformed data.

Step 4: Reverse Transform the fitted Regression Line to produce the
equation for the fitted Regression Curve.

To recap: Curve selected in Step 1: y = 1∕x
Transformed y = 1/ Original y

So, to reverse this transformation
y for Fitted Regression Curve = 1/ y from Fitted Regression Line

In our example, y = 1∕(−0.847 + 1.041).
If we plug in x’s from 2 to 10, we get:

x 2 3 4 5 6 7 8 9 10

Y from fitted
Curve

0.810 0.439 0.301 0.229 0.185 0.155 0.134 0.117 0.105

Original y
(for comparison)

0.75 0.45 0.26 0.20 0.25 0.14 0.16 0.13 0.09

The y’s from the fitted Curve are those predicted by the Simple Nonlin-
ear Regression Model, y = 1/(−0.847 + 1.041).

One might have been originally skeptical about the distortions caused
by Transforming and Reverse Transforming. But as we can see from the
Scatterplot below, good results can be obtained.
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Transformed formula;

y = 1/(–0.847 + 1.041x)
Original Data y

3. If the data curve changes direction, a Polynomial curve can
be fit.

A Polynomial has an equation of the form:

y = bkxk + bk− 1xk− 1 + ⋯ + b1x + a

Note that there is just one x Variable, but it is raised to various powers,
starting with the power of 2: x2. (If there were only a power of 1, the equa-
tion would be that of a straight line.) The b’s are Coefficients and the a is
an Intercept.

A “second degree,” also known as “second order” or “Quadratic,” Poly-
nomial is of the form:

y = b2x2b1x + a

For example, y = 3x2 +7x + 11. A second order Polynomial has one
change in direction. As x increases, y increases and then decreases (or y
decreases and then increases). Two examples are pictured above. These
shapes are Parabolas.

A “third degree,” aka “third order” aka Cubic” Polynomial has an x3

term and changes direction twice.
A kth degree Polynomial has k−1 changes in direction.
Simpler is better. It is usually not necessary to go beyond three orders.

Larger orders are harder to work with. Also, they may be too closely
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associated with the idiosyncrasies of the data provided in a particular Sam-
ple, and they may not be generally applicable to data in other Samples from
the same Population or Process.

4. The usual Regression Cautions and Restrictions apply:
� Analyze the Residuals
� Don’t extrapolate
� A Regression Model cannot be validated with the data

used to produce it. Use Design of Experiments (DOE) to
design and conduct controlled experiments on the pre-
dictions from the Model.

These are covered in the articles,

� Residuals
� Regression – Part 3, Analysis Basics
� Design of Experiments

See also: Correlation – Part 2; Regression – Part 3: Simple Linear



REJECT THE NULL HYPOTHESIS

Summary of Keys to Understanding

1. “Reject the Null Hypothesis” is one of two possible conclu-
sions from a Hypothesis Test.

The other is “Fail to Reject the Null Hypothesis”

2. The Null Hypothesis (symbol H0) states that that there
is no
– difference, or
– change, or
– effect

3. So, to Reject the Null Hypothesis is to conclude that there
is a
– difference, or
– change, or
– effect

Yes! “Reject” means “Yes”,

because the Null Hypothesis is a

negative, and rejecting a negative

results in a positive.

I Reject the

Null Hypothesis.

Will you marry

me?

A statistician responds to a marriage proposal:
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Explanation

1. “Reject the Null Hypothesis” is one of two possible conclu-
sions from a Hypothesis Test.

The other is “Fail to Reject the Null Hypothesis”
As stated in the article in this book, “Hypothesis Testing – Part 1:

Overview,” Hypothesis Testing is one method of Inferential Statistics. It
is a method for answering questions about a Population or a Process by
analyzing data from a Sample.

The Hypothesis Testing Part 2 article describes the five steps in this
method. In Step 2, we select a value for the Level of Significance, Alpha
(𝛼). In Step 4, the analysis calculates a value for p, the Probability of an
Alpha Error.

Step 5 is to come to a conclusion about the Null Hypothesis by compar-
ing p to Alpha. There are only two possible conclusions:

� If p ≤ 𝜶, Reject the Null Hypothesis (the subject of this article), or
� Otherwise, Fail to Reject the Null Hypothesis (the subject of a sep-

arate article)

2. The Null Hypothesis (symbol H0) states that that there is no
– difference, or
– change, or
– effect

There is also an article devoted to the Null Hypothesis with a number of
examples. However, a picture may be worth a thousand words.

Will you marry

me?

You might think that these cartoon examples are kind of silly and are
unbecoming of a serious tome about a precisely defined science. But since
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this is not that serious of a tome, and since statistics is not always a precisely
defined science, maybe it’s not so unbecoming.

Also, silly can be beneficial in this case, because the silliness may be
what helps us to remember that rejecting is a positive result because the
Null Hypothesis is a negative statement.

3. So, to Reject the Null Hypothesis is to conclude that there
is a
– difference, or
– change, or
– effect

In our illustration,

– If the woman statistician were to agree to get married, there would be
a change in their relationship; there would be something different.

– So by Rejecting the Null Hypothesis, she has agreed that there has
been a change – they are now engaged to be married.

I Reject the Null Hypothesis.

(no change)

(I reject the status quo, so 
there is now a change in 
our status — to engaged to  
be married.)

Yes! “Reject” means “Yes”,

because the Null Hypothesis is a

negative, and rejecting a negative

results in a positive.

What about the Alternative Hypothesis?
As explained in the article by that name, experts have conflicting views

whether or not an Alternative Hypothesis is necessary and how it should
be defined. In any event,

� if an Alternate Hypotheses (HA) was stated at the same time as the
Null Hypothesis (H0), and
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� if HA is defined as the hypothesis which must be true if H0 is false
(i.e., the two are collectively exhaustive),

then
to Reject the Null Hypothesis is to accept the Alternative Hypothesis.

The “Leave Well-Enough Alone” caution:
If you’re comfortable that things are clear now, and that you understand

the concept, feel free to stop here. But we can also continue with another
explanation which may help in understanding the concept.

� The Null Hypothesis is verbally stated as a Negative. In this situation,
it would be,

“There is no change in the relationship.”
(If it helps, think of a negative statement as having a value of −1.)

� Rejecting adds a “not” making it a double negative, which adds to the
confusion.

“There is not no change in the relationship”
(There are now two −1s.)

� A double negative is logically equivalent to a positive.
“There is a change in the relationship.”
(−1 × −1 = 1)

� So Rejecting the Null Hypothesis is the same as answering Yes to
the Yes/No Question:

“Is there a change in the relationship?” Answer: Yes
The change is from not being engaged to being engaged.

Related Articles in This Book: Null Hypothesis; Fail to Reject the
Null Hypothesis; Alternative Hypothesis; Hypothesis Testing – Part 1:
Overview; Hypothesis Testing – Part 2: How To; Alpha, p-Value, Critical
Value, and Test Statistic – How They Work Together



RESIDUALS

Summary of Keys to Understanding

1. Residuals are an important part of Regression analysis. The
value of the Residual of any (x, y) data point is the value
of the y predicted by the Regression Model (denoted by y
with a “hat”) minus the actual value of y observed in the data
point.

Residual=predicted− actual= ŷ− y

y
Residual = y – y

x

y

y
Regressio

n Line

2. Residuals represent the Error – in the Regression Model – the
Variation of the Outcome Variable y which is unexplained
by the Model. They must be analyzed to ensure that this
Variation is truly unexplainable by any other factors (x Vari-
ables) which are not included in the Regression Model.

3. Standardize the Residuals before analyzing them.

4. Residuals must:
� be Random
� be Normally Distributed
� not be Correlated with any x Variable
� not be Autocorrelated (relative to time sequence)
� have Constant Variance
� have no unexplained Outliers

315



316 RESIDUALS

Explanation

1. Residuals are an important part of Regression analysis. The
value of the Residual of any (x, y) data point is the value
of the y predicted by the Regression Model (denoted by y
with a “hat”) minus the actual value of y observed in the data
point. Residual = ŷ – y.

Virtually no Regression Model is a perfect fit for real-world data. For
any given value of x (or multiple x’s) the predicted (aka “expected”) value
of y calculated by the Model will usually not be identical to the actual value
of y for that x (or x’s) in the data. (Assuming there is a data point for that
particular value of x). This difference is considered an Error in the Model.
It is called a “Residual.”

“Residue,” according to Dictionary.com means “something that remains
after a part is removed, disposed of, or used; remainder; rest; remnant.”
After we remove the Variation in Y which is explained by the Regres-
sion Model, what’s left (the residue) is called a Residual. The remaining
Variation is – for each (x, y) data point – the distance from that point to the
Regression Line, as measured along the y-axis.

Residual= predicted− actual= ŷ− y

In the diagram below, the Regression Model is graphed as the diagonal
dashed line. “y” is the actual value of y for the data point (x, y) and the y-hat
is the predicted value of y which is on the Regression Line for that value
of x.

The values of the Residuals are the lengths of the vertical dotted lines.
Residuals for points above the Regression Line are negative.

y

x

y

y
Regressio

n Line

Residual = y – y

The value of the Residual of any (x, y) data point is the value of y
Predicted by the Regression Model (denoted by y with a “hat”) minus
the Actual value of y.
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2. Residuals represent the Error – in the Regression Model – the
Variation of the Outcome Variable y which is unexplained
by the Model. They must be analyzed to ensure that this
Variation is truly unexplainable by any other factors (x Vari-
ables) which are not included in the Regression Model.

In the article Regression – Part 1: Sum of Squares, we learned that the
Sum of Squares Total (SST) is a measure of the total Variation in y.
Regression attempts to account for this Variation as being caused by one
or more x Variables:

y = f (x) or y = f (x1, x2,… , xn)

This total Variation, SST, can be divided into two parts: the Variation
explained by the Regression Model, which is the Sum of Squares Regres-
sion (SSR), and the remaining unexplained Variation, which is the Sum
of Squares Error, SSE. SSE is the Variation exhibited in the Residuals.

SST = SSR + SSE

The Regression – Part 2 article, defines R2, a measure of the Goodness
of Fit of the Model.

R2 = 1 − SSE
SST

But, it’s not just the size of SSE that is important. The article Regres-
sion – Part 3, Analysis Basics goes on to say that having a good fit, – a
high enough value for R2 – is not good enough. It’s the kind of errors
(Residuals) comprising SSE that is also important. But first, . . .

3. Standardize the Residuals before analyzing them.

Residuals are in the real-world units of the y-values in the data, e.g.,
kilograms, dollars, seconds. Residual analysis (aka Residual diagnostics)
will be easier to understand if we convert them to Standardized Residuals.
For any individual residual,

a Standardized Residual = the Residual
Standard Deviation of all Residuals

So, Standardized Residuals are in units of Standard Deviations. As
we’ll see below, this will help us make better use of the Normal Distribution
in our analysis.
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4. Residuals must:
� be Random
� be Normally Distributed
� not be Correlated with any x Variable
� not be Autocorrelated (relative to time sequence)
� have Constant Variance
� have no unexplained Outliers

If the Regression Model has accounted for all sources of Variation
(the x’s), then any remaining Variation in the value of the y Variable – the
Residuals – must be just Random noise.

So, a Scatterplot of Residuals against y-values should illustrate Ran-
domness.

R
es

id
u

a
l

y

There should be no pattern. A pattern forming a curve may indicate
that Nonlinear Regression is needed. If there is a pattern approximating a
slanted line, then there may be an additional x Variable that needs to be
added to the Model. Other patterns are shown on the following page.

Random noise should be Normally Distributed. This can be illus-
trated with a Histogram of the Residual Values and statistically verified
with a test for Normality, such as the Anderson–Darling test.

Using Standardized Residuals with a Normal Distribution enables us to
use the Empirical Rule (aka the “68 – 95 – 97 Rule”), as shown below

Standard Deviations

99.7%

95%

68%

0 1 2–1–2 3–3
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Residuals must not be Correlated with any x Variable. Check this
with a Scatter Plot of the Residuals against each of the x Variables. There
should be no pattern. Or the pattern should approximate a horizontal
band, which indicates that the Residuals do not vary as the x varies. Also,
evaluate the Coefficients of Correlation, the r’s.

Residuals must not be Correlated with each other (Autocorrela-
tion). This can be seen in a time sequence plot with the time period as
the horizontal axis and the value of the Residual on the vertical axis. There
should be no pattern. Below is an example what we should not be seeing.

Time

R
es

id
u

a
l

Not Random:
Autocorrelation:

Residuals must have Constant Variance. The Spread of the Residuals
should not increase or decrease over time or in concert with an increase in
an x Variable. We should not see a “megaphone” shape on a scatter plot.

Not Random:
Megaphone shape, Lack of
Constant Variance: R

es
id

u
a
l

Time

Outliers are a potential cause for concern and should be investi-
gated. Definitions vary regarding what exactly is an Outlier. Any point
beyond about 2.5 Standard Deviations from the Mean has about a 1%
chance of occurring in a Standard Normal Distribution (which is the Dis-
tribution that Standardized Residuals should follow if they are random).
So, that is a reasonable definition for these purposes.

A Control Chart or a “Box-and-Whiskers” plot can be used to iden-
tify Outliers. (With the latter, an Outlier will be outside a “whisker.”) With
small Sample Sizes, Outliers can have a disproportionate effect on the cal-
culations.

In addition, Outliers are considered to be outside the Distribution and
due to “Special Causes” which are outside of the Process or Population
which generated the data. So, Outliers need to be investigated to see what
may be causing them.

Related Articles in This Book: Regression, Parts 1–5; Standard Devia-
tion; Normal Distribution; Correlation Part 2; Variance; Control Charts –
Parts 1 and 2; Charts, Graphs, Plots – Which to Use When



SAMPLE, SAMPLING

Summary of Keys to Understanding

1. To get a good Sample which accurately represents the Pop-
ulation or Process from which it was collected, we need to
minimize Sampling Error and Sampling Bias.

Sampling Error can generally be decreased by increas-
ing the Sample Size.

2. Sampling Bias causes a Sample to not be representative of
the Population or Process.

3. If possible, obtain a Sampling Frame which includes all
members of the Population or Process.

4. Randomness is likely to be representative. Simple Ran-
dom Sampling (SRS) can be the most effective method of
achieving Randomness.

5. Other Sampling methods include Systematic, Stratified,
and Clustered.

6. Statistical Process Control uses a special type of Sample –
the Rational Subgroup – to Block the effects of potential
causes of Variation.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. To get a good Sample which accurately represents the Pop-
ulation or Process from which it was collected, we need to
minimize Sampling Error and Sampling Bias.

Sampling Error can generally be decreased by increas-
ing the Sample Size.

In Descriptive Statistics, we have all the data on an entire Population
or Process. So, we can calculate numerical values which describe its sta-
tistical properties. For a Population or Process, these are properties called
Parameters, e.g., the Mean or Standard Deviation.

But most often, we don’t have all the data from the entire universe under
consideration. So, we collect a Sample of data, and we calculate a statisti-
cal property for the Sample. This property of a Sample is called a Statis-
tic. For every Parameter, there is a corresponding Statistic. In Inferential
Statistics, the value of the Sample Statistic becomes our estimate
(inference) of the value of its corresponding Population or Process
Parameter.

Even if we did everything right in collecting our Sample, there is a cal-
culable Probability that our particular Sample is not a good representative
of the Population or Process. For example, we know that the Population
of coin flips is 50% heads and 50% tails. We also know that many Sam-
ples of coin flips will not be 50/50; in fact some Samples will be more
like 60/40.

This is called the Sampling Error. It is not an error in the sense that a
mistake has been made. It is just acknowledging the fact that some of the
Samples we can potentially collect are not going to be representative of the
Population or Process. (See the article Alpha and Beta Errors.)

We can minimize Sampling Error to an acceptable level by having a
sufficiently large Sample Size. This subject is addressed in the two articles
in this book on Sample Size.

But no increase in Sample Size will address Sampling Bias.

2. Sampling Bias causes a Sample to not be representative of
the Population or Process.

Sampling Bias does not occur by chance, as does Sampling Error. It
occurs because a non-representative method of collecting data was used.
Let’s say we are conducting a poll to determine how voters plan to vote
in a 2-candidate race. We get our clipboard and stand outside a women’s
clothing store in a mall one evening and try to question every person that
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happens by. There are number of sources of Selection Bias in this approach
which can lead to a Sample that is not representative of the Population:

� More women than men will be going in and out of a women’s clothing
store.

� The men would more likely be married or have a girlfriend or a close
female relative.

� People who work the evening shift will be excluded.
� People who are not eligible to vote can be included.
� If the mall caters to either high-income or low-income customers, the

other income level will be under-represented.
� If the mall is in the city center, then rural and suburban voters will be

under-represented.

Response Bias is a type of Sampling Bias. Almost all polls and surveys
suffer from Response Bias: many people will not take the time to respond
to the questions.

� People with more time on their hands are more likely to respond. This
can lead to over-representation of retired people and the unemployed
(and people without two screaming toddlers clinging to them).

� People with strong opinions about the question are more likely to
respond.

� Patient people are more likely to respond than impatient people.

Sampling other than for polls and surveys can also have Selection bias.
For example, in manufacturing, inspectors of physical items tend to select
for their Sample those items which have a visible defect.

3. If possible, obtain a Sampling Frame which includes all
members of the Population or Process.

A Sampling Frame is a list which identifies all possible units that can be
selected for our Sample. An example would be a list of registered voters,
or a numbering scheme for uniquely identifying each item produced in a
manufacturing run.

A Sampling Frame can be used in the Sampling methods described
below.

4. Randomness is likely to be representative. Simple Ran-
dom Sampling (SRS) can be the most effective method of
achieving Randomness.
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There is no Bias in true Randomness. In a Random selection method,
each possible Sample of a given Sample Size is equally likely to be
selected. So, a Random selection method is Unbiased.

So, if the Sample Size is large enough to reduce Sampling Error to a
tolerable level (see the articles on Sample Size), the Sample will be as rep-
resentative as possible.

To implement the Simple Random Sampling (SRS) method, a random-
izing technique is needed. This can take the form of “picking numbers out
of a hat” or using a computer random number generator. (A spreadsheet
can provide the latter.) In the latter case, the list of units in the Sampling
Frame is numbered, and the units corresponding to the generated numbers
become the Sample.

5. Other Sampling methods include Stratified, Clustered,
and Systematic.

There are many different Sampling methods. Here are three of the most
common.

Stratified Sampling

� Divide the Population or Process into homogeneous groups (strata).
� Select a Simple Random Sample from each group. The Sample Size

for each group corresponds to a known Proportion of the group in the
Population or Process.

To use this method, you must know the Proportion. Let’s say that our
Population is the student body of a college. We know that 55% are women
and 45% are men. We define two homogeneous groups – women and men.
We want our Sample to have the same gender Proportions as the Popula-
tion. So, for a Sample of size n = 100, we Randomly select 55 women and
45 men.

Advantage: Avoids selecting a Sample which we know is not represen-
tative – at least with regard to the Proportions of the homogenous groups.

Disadvantage: Can’t be used when there are no homogeneous sub-
groups.

Clustered Sampling

� Divide the Population or Process into small clusters (e.g., city blocks)
� Select a Simple Random Sample of these clusters
� Collect data from each unit within each cluster
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Advantages: It can be less time-consuming and less expensive. For
example, the Population is the inhabitants of a city, and a cluster is a city
block. We randomly select an SRS of city blocks. There is less time and
travel involved in driving to a limited number of city blocks and then walk-
ing door to door, compared with traveling to more-widely-separated indi-
viduals all over the city. Also, one does not need a Sampling Frame listing
all individuals, just all clusters.

Disadvantage: The increased Variability due to between-cluster differ-
ences may reduce accuracy.

Systematic Sampling
A Sampling Frame, say a Population list or a sequential manufacturing

production run, is required. Number the Sampling Frame from 1 to N.

� Randomly select or generate a number, j, to be the first unit selected
for the Sample. (Don’t just start with 1, because that would not be
Random.)

� Select the kth item after that to be the second item selected.
� Repeat until the desired Sample Size, n, is reached.

k can be randomly selected, but it needs to be small enough to give you
the desired Sample Size, n. So, you could calculate it this way: If N is
the total number of items in the Population or Process and j is the random
number generated for the first item selected then k could be (N – j)/n. Round
down to an integer.

Example: N = 300, n = 30, and j = 6, so the 6th unit is selected to be
the first unit in the Sample.

k = (300 − 6)/ 30 = 9.8, Round down to 9

Select the 6th item, then the 15th, 24th, 33rd, etc.

Advantage: If the Sampling Frame is ordered in some obvious or non-
obvious manner, Systematic Sampling avoids a Sample comprised of a dis-
proportionate number of units from the top or bottom of the range.

Disadvantages: If the Sampling Frame has periodic variations which
coincide with k, the Sample will not be representative.

6. Statistical Process Control uses a special type of Sample –
the Rational Subgroup—to Block the effects of potential
causes of Variation.
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Up to this point in the article, the Sampling has been for use in Inferential
Statistics. In Statistical Process Control (SPC), we need a special kind of
Sampling method to determine whether a Process is under Control or not.
(See the article Control Charts – Part 1: General Concepts and Principles.)

In SPC, we collect a number of small Samples in order to identify Vari-
ation over time. These are a special kind of Sample called the Rational
Subgroup. The Rational Subgroups (Samples) could be as small as 4 or 5,
and we collect 25 or more of them. Rational Subgroups are comprised
of individual data points collected from a Process under the same con-
ditions, for example,

� the same operation
� the same operator
� within a narrow timeframe

These conditions are kept the same, because we want to eliminate
(Block) them as potential causes of Variation. We can calculate a Statis-
tic (e.g., the Mean, Proportion, Standard Deviation, or Range) for each
Rational Subgroup. It is the value of that Statistic which gets plotted in
the Control Chart.

Related Articles in This Book: Inferential Statistics; Alpha and Beta
Errors; Errors – Types, Uses, and Interrelationships; Sample Size – Part 1:
Proportions/Percentages; Sample Size – Part 2: Measurement/Continuous
data; Control Charts – Part 1: General Concepts and Principles



SAMPLE SIZE – PART 1 (OF 2):
PROPORTIONS FOR COUNT DATA

Summary of Keys to Understanding

1. Minimum Sample Sizes are calculated very differently for
Count data and Measurement Data. This article is about
Sample Sizes for Proportions of Count data.

2. The report of the results of our statistical analysis might use
wording like this:

We predict, with a 95% Level of Confidence, that Candidate A 
will capture 55% of the vote, plus or minus 3%.

1 – α

MOEp

3. When there is an estimate, p̂, for the Population/Process
Proportion, the formula for the minimum Sample Size is

n = (p̂)(1 − p̂)(z
𝜶∕2)2∕(MOE)2

When there is not an estimate, or if you want to take the most
conservative approach, set p̂ = 0.5 and the formula becomes

n = (0.25)(z
𝜶∕2)2∕(MOE)2

There are websites that will do these calculations for you.

4. The following things increase the minimum Sample Size:
� Higher Level of Confidence (i.e., smaller value of Alpha)

selected
� Smaller Margin of Error specified
� Estimated Proportion closer to 0.5

5. After a certain point, larger Sample Sizes yield diminish-
ing returns in accuracy.

326
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Explanation

1. Minimum Sample Sizes are calculated very differently for
Count data and Measurement Data. This article is about
Sample Sizes for Proportions of Count data.

The Part 2 article is about Sample Sizes for Measurement/
Continuous data.

A Proportion is a percentage expressed as a decimal. So 50% is 0.50
and 100% is 1.0. Statistical formulas usually use the Proportion format.

Proportions are calculated from Count (aka Discrete) data. These are
non-negative integer numbers, e.g., 0, 1, 2, 3, etc.

Examples of Proportions of Count Data

Count Sample Size Proportion

66 people said they’d
vote for Candidate A

120 people were surveyed 66/120 = 0.55

8 people preferred
strawberry ice cream

20 people in a focus group 8/20 = 0.40

6 defective items production run of 1000 6/1000 = 0.006

The symbol for a Proportion is p. That is also the symbol for Proba-
bility. The two concepts are related. If the Proportion of people favoring
Candidate A is 0.55 then the Probability of any one person favoring Can-
didate A is 0.55.

If all you want is a quick number – without understanding what’s behind
it – here are the minimum Sample Sizes for a 95% Confidence Level (the
most common) and for several values of the Margin of Error (symbol MOE
or E).

95% Confidence Level (the most common)

MOE 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Sample Size (n) 9604 2401 1068 601 385 267 196 151 119 97

These results assume you don’t know the Population Size (N). If you
do, divide the Sample Size above by 1 + n/N. But if you have to do that,
you might as well just do a web search on “Sample Size Calculator” and
just enter the relevant numbers on one of those websites.
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2. The report of the results of our statistical analysis might use a
statement like this:

We predict, with a 95% Level of Confidence, that Candidate A 
will capture 55% of the vote, plus or minus 3%.

MOE

1 – α

p

As we’ll see in Key to Understanding #3, the formula for calculating n,
the Sample Size, includes four symbols, 𝛼, p, MOE, and z. The statement
above helps explain what 𝛼, p, and MOE (Margin of Error) are about. z is
derived from 𝛼, as we’ll explain later.

Alpha, 𝜶 can be thought of as the “Lack-of-Confidence” Level
In other contexts, Alpha is called the Level of Significance, and it is
involved with the concept of Alpha Error. For our purposes here, it may
be more helpful to think of it colloquially as a “Lack-of-Confidence”
Level. It is the opposite of the Confidence Level.

In statistics, we don’t have a symbol for the Confidence Level, but we
do for its opposite. The symbol is the Greek letter Alpha (𝛼).

Level of Confidence = 1 − 𝜶, so𝜶 = 1 − Level of Confidence

(When dealing in percentages, we would use 100% instead of 1.)

The person performing the statistical analysis selects a value for Alpha
prior to collecting data for the Sample. If we want to be 95% Confi-
dent that our Sample is representative of the overall Population or
Process, that means that we are willing to accept the fact that 5%
of the time we will collect a Sample which is not representative. In
that case, we would select 𝛼 = 5%. (That is the value most commonly
selected.)

You may be wondering why you have to settle for 5% or some other
number. Why can’t you have 0%? Statistically, the only way you can
get 𝛼 = 0% is if you poll 100% of the Population or Process. However,
you could select 1%, for example, but that could negatively affect other
things, as we’ll see later.

MOE is the Margin of Error, sometimes denoted by “E,” instead of
MOE.
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The actual Population or Process Proportion will very likely not be the
exact number which we calculate for p from Sample data. But, we would
like it limited to a narrow range. How narrow is specified by the Margin
of Error, MOE. MOE is one-half the width of the “plus or minus” range.
So, if we say “plus or minus 3%,” then MOE = 3%.

We specify the values of Alpha and Margin of Error prior to col-
lecting the Sample data and beginning the analysis. Both of these are
involved in calculating how large our Sample will need to be, as can be
seen in the following formula.

3. When there is an estimate, p̂, for the Population/Process
Proportion, the formula for the minimum Sample Size is

n = (p̂)(1 − p̂)(z
𝜶∕2)2∕(MOE)2

When there is not an estimate, or if you want to take the most
conservative approach, set p̂ = 0.5 and the formula becomes

n = (0.25)(z
𝜶∕2)2∕(MOE)2

There are websites that will do these calculations for you.

This formula assumes you don’t know the Population Size (N). If you
do know N, divide the n above by 1 + n/N.

Note: There are websites which will do all these calculations for you.
You just have to bring the inputs: your selected values for Alpha (𝛼) and
the Margin of Error (MOE), the estimate (or default) Proportion (p̂), and
the value of N, if known.

p̂ is an estimate (or a default) for the actual Proportion of the
Population or Process

The formula above was derived from some other equations which
assumed that we knew the true Proportion for the Population or Process
as a whole. For our purposes, obviously, we don’t, or we wouldn’t be tak-
ing a Sample. So, we must make an estimate or use a conservative default
value for p̂ (pronounced “p-hat”).

The estimate must be from the same Population or Process. It can be
another survey, for example, or an earlier sampling of a production run.

With an estimate, there is always a chance for error. Some things may
have been different in the other survey, or some Factors may have changed
since the earlier production run.
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The most conservative approach would be to use the default value of p̂
which gives the maximum value for the product (p̂) (1 − p̂). That is, p̂ =
0.5 (50%). As demonstrated in the following table, the closer p is to 0.5,
the larger the value of the product of p̂ multiplied by 1 − p̂, and thus,
the larger the value of n.

p̂ 1 − p̂ p̂ (1 − p̂)

0.10 0.90 0.0900

0.25 0.75 0.1875

0.40 0.60 0.2400

0.50 0.50 0.2500

0.90 0.10 0.0900

Earlier, we explained what MOE and 𝛼 are. What is left to explain is z
with a subscript of 𝛼/2.

z𝛼 /2 is the value of z for a given value of 𝛼/2
z is a Test Statistic. That means it is calculated from Sample data, and that
it has an associated Probability Distribution. z is uniquely suited for our
purpose. Other Test Statistics (like t, for example) have a different Distri-
bution for each different value of n, the Sample Size. That wouldn’t work
for us, because we don’t have a number for the Sample Size. We’re trying
to develop a formula for calculating that number.

z = –1.960 z = +1.960

z
0

95%
α/2 = 2.5% α/2 = 2.5%

I select
α = 5%

In the Distribution pictured, the height of the curve above any point on
the horizontal (z) axis is the Point Probability of the value of z directly
below it. The shaded areas represent Cumulative Probabilities of ranges of
points. They extend outward to infinity.

We split the 5% Alpha area in half, and we position the resulting two
2.5% areas under the left and right tails of the curve. Since z is a Test
Statistic, we can find out from tables or software that the two shaded 2.5%
Cumulative Probability areas are bounded by the values of z = 1.96 and
−1.96. This gives us the value of z𝛼 /2 = 1.96.
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So if we select 𝛼 = 5%, we get z = 1.960. If we specify that we want
the Margin of Error to be 3%, we can use the default formula to calculate
a Sample Size:

n = (0.25)(z
𝜶∕2)2∕(MOE)2

= (0.25)(1.960)2∕(0.03)2

= 1067.11

Round up (always) to 1068

So, we will need to poll at least 1068 people to be 95% Confident
with a 3% Margin of Error.

What if we can’t afford the time or money to collect data of the
calculated Sample Size?

We can sacrifice some accuracy in either the Level of Confidence or
the Margin of Error or both.

Let’s say we can only afford to poll 625 people. What can we do? With
a little algebra, we see that we can plug in a value for n and then calculate
either MOE or z𝛼 /2. Here’s how we calculate MOE, given n = 625, p̂ = 0.5,
and z𝛼 /2:

n = (0.25)(z𝛼∕2)2∕MOE2

625 = (0.25)(1.96)2∕MOE2

MOE2 = (0.25)(1.96)2∕625

MOE = (0.5)(1.96)∕25 = 0.0392

So, if we reduce the minimum Sample Size from 1068 to 625, that
increases the Margin of Error from 3% to about 4%.

What if we were willing to go to a lower Confidence Level (higher level
of Alpha) while keeping the MOE at 0.03 and the Sample Size at 625? If
we go back to the formula for n, set n to 625 and MOE to 0.03, a little
algebra will give us z𝛼 /2 = 1.5.

From tables or software we see that this gives us 𝛼 = 0.134. So, we
must be willing to tolerate a 13.4% Probability of an Alpha Error (False
Positive), if we want to decrease the Sample Size from 1068 to 625, while
keeping a 3% Margin of Error.

For a given Sample Size, Alpha and Margin of Error affect each other
inversely.

� If we select a lower value of Alpha (which means a higher Level of
Confidence), the Margin of Error increases.
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� If we select a higher value for Alpha, the Margin of Error decreases.
� The only way to reduce both is to increase the Sample Size.

𝜶

MOE

MOE

𝜶 n

𝜶 MOE

4. The following things increase the minimum Sample Size:
� Higher Level of Confidence (i.e., smaller value of Alpha)

selected
� Smaller Margin of Error specified
� Estimated Proportion closer to 0.5

𝜶

n

p

Higher Level of
Confidence selected

MOE

n

Smaller Margin
of Error specified

≈ 0.5

n

Estimated Proportion
closer to 0.5

If we keep everything else the same, and we . . .

� select a lower value for Alpha, 𝜶, (which means a higher Level of
Confidence) or

� specify a smaller Margin of Error, MOE,

then the minimum Sample Size will increase.
Also, as we showed earlier, if we use an estimated Proportion, p

(1 − p) is higher – and as a result the Sample Size is larger – when p is
nearer 0.5.

5. After a certain point, larger Sample Sizes yield diminish-
ing returns in accuracy.

Increasing “accuracy” here means a lower value for Alpha and/or the
Margin of Error. We start with the formula,

n = (0.25)(z
𝜶∕2)2∕MOE2
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Note that the two terms describing types of errors, z𝛼 /2 and MOE, are
squared, while n is not. If we solve for either one of them, we’re going to
get a square root of n in the denominator. For example,

MOE= (0.5)(z
𝜶∕2)∕

√
n

So, any reduction in MOE is proportional to the square root of n, not
to n itself. For 𝛼 = 5%, we saw that n = 1068 gave us MOE = 3%. If we
increase n by about 1000, we can reduce MOE to 2%. If we increase n by
another 1000, we’ll reduce MOE to only 1.79%. This diminishing returns
effect continues to get worse after that.

Related Articles in This Book: Proportion; Sample Size – Part 2: for Mea-
surement/Continuous Data; Margin of Error; z; Test Statistic

Note, this article addresses a limited aspect of Alpha. There are a num-
ber of other articles on Alpha in this book, but they may be unnecessarily
confusing if you are just interested in Sample Size right now.
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MEASUREMENT/CONTINUOUS DATA

Summary of Keys to Understanding

1. Measurement (aka Continuous) data contain more infor-
mation than Count data, so smaller Sample Sizes can
achieve good accuracy.

2. If your focus is on avoiding an Alpha Error (False Positive),
you can calculate minimum Sample Size for tests of the
Mean using:
� 𝜶, the selected Level of Significance
� 𝝈, Standard Deviation of the Population or Process (or an

estimate of it)
� MOE, the desired Margin of Error

3. All other things being equal, an increase in Sample Size (n)
reduces all types of Sampling Errors, including Alpha and
Beta Errors and the Margin of Error.

βpn MOEnn

4. A larger Sample Size enables smaller differences (Effect
Sizes) to be detected.

n

Power

ES

5. Statistical software or websites perform Power and Sam-
ple Size calculations that can be used to determine the min-
imum Sample Size required for a given level of Power or
Effect Size.

334
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Explanation

1. Measurement (aka Continuous) data contain more infor-
mation than Count data, so smaller Sample Sizes can
achieve good accuracy.

The Part 1 article addressed minimum Sample Size for Count data, also
known as Discrete data. Count data are non-negative integers: 0, 1, 2, 3,
etc. Proportion is the Statistic commonly used with Count data.

Measurement/Continuous data are collected by measuring (widths, for
example), not counting. Measurement data will often have decimal points.
For example, the following data were collected on the diameters of holes
drilled in a manufacturing operation in centimeters: 1.9, 2.1, 2.0, 2.1, 2.1,
2.0, 2.2, 2.0, 2.0, 2.2 cm. The quality specification limits state that the hole
must be 2.0 cm + 0.1 cm.

If you capture Sample data as measurements, don’t convert it to Count
data. Information is lost in converting Measurement data to Count
data.

In the Sample of 10 measurements above, 2 of the measurements were
outside the specification limits. So, we could record a Count of 2 defective
items in a Sample of size n = 10. What we would then know about the
Sample would be summarized in one Statistic:

� Proportion (of defects) = 0.2

But if we used the measurements we collected, we’d have a lot more,
and more detailed, information at our disposal:

� Mean = 2.06
� Mode = 2.00
� Standard Deviation = 0.097

We could also calculate a number of other Statistics, including
Skewedness, Kurtosis, etc. And we can verify that the Sample data are
roughly Normally distributed.

Standard Deviation is particularly valuable, because it tells us how much
Variation there is in the data. And, as we’ll see later, Variation (in the form
of the Population or Process Standard Deviation) is a key factor in deter-
mining minimum Sample Sizes for Measurement data.

So, Measurement data provide us more statistical information, enabling
us to fine-tune our calculations for minimum Sample Size. This enables us
to have smaller Sample Sizes for Measurement data.
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2. If your focus is on avoiding an Alpha Error (False Positive),
you can calculate minimum Sample Size for tests of the
Mean using:
� 𝜶, the selected Level of Significance
� 𝝈, Standard Deviation of the Population or Process (or an

estimate of it)
� MOE, the desired Margin of Error

Inferential Statistical Studies – those which use information from a Sam-
ple to estimate something about the overall Population or Process – are
subject to Alpha Errors (False Positives) and Beta Errors (False Negatives).
See the article Alpha and Beta Errors for more on this.

An Alpha Error is the error of concluding that there is a Statistically
Significant difference, change, or effect, when, in reality, there is not. Many
behavioral and social science studies focus only on avoiding Alpha Errors.
Whether or not this is always appropriate can be debated, but if that is the
focus, the minimum Sample Size calculations can be simpler. They can be
done using

� 𝜶, the selected Level of Significance
� 𝝈, Standard Deviation of the Population or Process (or an estimate of

it)
� MOE, the desired Margin of Error

We can do this by algebraically manipulating a formula which has these
Variables. For example:

MOE = 𝝈 (critical value)
√

n

𝜎 is the Population or Process Standard Deviation. Often, we don’t know it,
so we must use an alternative, for example, estimate from previous studies,
from an industry standard, or using our Sample Standard Deviation.

Alpha is used to determine the Critical Value. For example, from a table
or from software we know that the Critical Value of the Test Statistic z for
a 2-sided test with 𝛼 = 5% is z𝛼 /2 = 1.96.

A little algebraic manipulation gives us:

n = 𝝈
2 (Critical value)2

MOE2

Minimizing False Negative Errors as well as False Positive Errors makes
for more complicated Power and Sample Size calculations, as discussed in
Key to Understanding #5.
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3. All other things being equal, an increase in Sample Size (n)
reduces all types of Sampling Errors, including Alpha and
Beta Errors and the Margin of Error.

A Sampling “Error” is not a mistake. It is simply the reduction in accu-
racy to be expected when one makes an estimate based on a portion – a
Sample – of the data in Population or Process. There are several types of
Sampling Error.

Two types of Sampling Errors are described in terms of their Probabili-
ties:

� p is the Probability of an Alpha Error, the Probability of a False
Positive.

� 𝜷 is the Probability of a Beta Error, the Probability of a False Neg-
ative.

A third type, the Margin of Error (MOE) is the width of an interval in
the units of the data. It is half the width of a 2-sided Confidence Interval.

All three types of Sampling Error are reduced when the Sample Size
is increased.

βpn MOEnn

This makes intuitive sense because a very small Sample is more likely
to not be a good representative of the properties of the larger Population or
Process. But, the values of Statistics calculated from a much larger Sample
are likely to be very close to the values of the corresponding Population or
Process Parameters.

4. A larger Sample Size enables smaller differences (Effect
Sizes) to be detected.

In manufacturing quality studies, for example, the specification limits
which define the acceptable range of measured values can be quite narrow.
So, it is important to be able to detect small differences, that is, the Effect
Size (ES) of the test is small.

To detect small Effect Sizes, the Power of the test (see the article Power)
must be high. One way to increase Power is to increase 𝛼, the acceptable
threshold for the Probability of an Alpha Error. But we normally don’t want
to do that. The only other way to increase Power is to increase Sample
Size, n.
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n

Power

ES

5. Statistical software or websites perform Power and Sam-
ple Size calculations that can be used to determine the min-
imum Sample Size required for a given level of Power or
Effect Size.

We said earlier that, if all you’re interested in is avoiding Alpha Errors,
then you can use some simple formulas for minimum Sample Size. But
for some areas like medical research and process quality improvement,
avoiding Beta Errors is very important.

When we add the need to manage Beta Errors and Effect Sizes, the for-
mulas for minimum Sample Size can get very complicated and are beyond
the scope of this book. However, there are a number of commercial and free
statistical software packages and websites that will do the calculations for
you.

Related Articles in This Book: Sample Size – Part 1: Proportions for
Count Data; Alpha and Beta Errors; Margin of Error; Power
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Summary of Keys to Understanding

1. The concept of Sampling Distribution is involved in the
concepts of the Central Limit Theorem and Standard
Error.

2. The values which comprise a Sampling Distribution are
not data values, but Statistics (e.g., the Means) of Samples.
The Samples must be all of the same Size (n), and be taken,
With Replacement, from one Population or Process.

Mean
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Units of the data

Standard Error

x x x x x x x x x x x x x x
x x x x x x x x

x x x x x x
x x x x
x x x x

x x

Probability Distribution
(e.g., Normal, Binomial)

Sampling
Distribution

Comprised of: data values Statistics

Term for the average Mean
Expected Value of the

Mean

Term for the Standard
Deviation

Standard Deviation Standard Error

Mean and Standard
Deviation are expressed
in units of:

the data values the data values

3. If the Statistic comprising the Sampling Distribution is the
Mean or a Proportion, the Central Limit Theorem applies.
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Explanation

1. The concept of Sampling Distribution is involved in the
concepts of the Central Limit Theorem and Standard
Error.

So, some authors say that you need a good understanding of the concept
of the Sampling Distribution in order to understand these other two con-
cepts. That can be debated. Sampling Distribution is an abstract concept,
and the other two are more concrete and can be understood directly. (See
the articles Normal Distribution and Standard Error.)

In any event, here is how they relate to Sampling Distribution:
� The Standard Error is defined as the Standard Deviation of the Sam-

pling Distribution.
� Central Limit Theorem: Even if the data are not Normally distributed,

the Sampling Distribution of the Means or Proportions of the data
approaches the Normal Distribution as the Sample Size, n, increases.

2. The values which comprise a Sampling Distribution are
not data values, but Statistics (e.g., the Means) of Samples.
The Samples must be all of the same Size (n), and be taken,
With Replacement, from one Population or Process.

The Distributions with which we are most familiar are Probability Dis-
tributions or Frequency Distributions. The horizontal axis is an x Variable
such as height, test score, or defect count. The vertical axis is the Proba-
bility or Count associated with the value of each x.

In a Sampling Distribution, the horizontal axis represents the value
of a Statistic calculated from Samples.

How to create a Sampling Distribution:

Take a number of Samples – With Replacement – of equal size, n –
from a Population or Process. (“With Replacement” means that, after
collecting a Sample of data, those data values remain in – or are returned
to – the Population or Process before we take the next Sample.)

For each Sample, calculate a Statistic – the same Statistic for each
Sample, e.g., the Mean of each Sample.

The collection of the values of these Sample Statistics – e.g., all the
Sample Means – form a Distribution, called the Sampling Distribution.

In the illustration below, each x̄ represents the Mean of one Sample.
They are placed above the x axis above the point which represents their
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value. If more than one occurs within the same narrow range of val-
ues, they are stacked one above the other. The height of each stack is
proportional to the Probability of that value of the Mean.
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Standard Error

x x x x x x x x x x x x x x
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x x x x x x
x x x x
x x x x

x x

The collection of Means is itself a Distribution, a Sampling Distribution.
This is not a Distribution of individual data values, but a Distribution of
Statistics (Means) each calculated from a Sample of data.

We can calculate the usual descriptive Statistics for this Sampling Dis-
tribution. It has a Mean (called the Expected Value of the Mean) and a
Standard Deviation (called the Standard Error of the Mean).

A Sampling Distribution vs. the Sampling Distribution
� We can have a Sampling Distribution produced from a few Samples,

as shown in the chart above.
� The Sampling Distribution includes all possible Samples. So, it is a

something of a theoretical concept.

The definition of Standard Error refers to the Sampling Distribution.
The Central Limit Theorem is intended to be used with practical num-

bers of Samples, so it is usually stated with a reference to a Sampling Dis-
tribution.

The following table compares and contrasts a Sampling Distribution
with the Probability Distributions (e.g., Binomial, Normal, F) with which
we are more familiar.

Probability Distribution
(e.g., Normal, Binomial)

Sampling
Distribution

Comprised of: data values Statistics

Term for the average Mean
Expected Value of the

Mean

Term for the Standard
Deviation

Standard Deviation Standard Error

Mean and Standard
Deviation are
expressed in units of:

the data values the data values
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4. If the Statistic comprising the Sampling Distribution is the
Mean or a Proportion, the Central Limit Theorem applies.

There are various wordings of the theorem, but here is the essence:

Central Limit Theorem (CLT):
No matter the shape of the Distribution of the underlying data, if you
take multiple Samples (of the same Size, n) and compute the Means (or
Proportions) for each Sample,

� the resulting Sampling Distribution of Sample Means (or Propor-
tions) will be approximately Normal,

� and the Mean (or Proportion) of the Distribution will approximate the
Mean (or Proportion) of the Population or Process.

� The larger the Sample Size, the closer these approximations will
be. But even relatively small Samples will demonstrate these
characteristics.

Related Articles in This Book: Distributions – Part 1: What They Are;
Standard Error; Standard Deviation; Normal Distribution



SIGMA

Keys to Understanding

1. Sigma (𝝈) is a Greek letter which represents the Standard
Deviation of a Population or Process. “A sigma” is one
Standard Deviation.

(The Roman letter s is used for the Standard Deviation of a Sample.)
See the article Standard Deviation.

2. According to the Empirical Rule for Normal Distributions,
roughly 68% of the data lie within 1 Sigma on either side of
the Mean, 95% within 2 Sigma, and 99.7% within 3 Sigma.

Standard Deviations

99.7%

95%

68%

0 1 2–1–2 3–3

See the article Normal Distribution.

3. “Six Sigma” is the name of a process improvement disci-
pline which aims to have 6 Sigmas define the percentage
of defects. Six Sigma translates to 3.4 defects per million
opportunities (for a defect).

See the article Process Capability Analysis for specifics of how this
translation is done.

(The “7 Sigma” referenced in the dedication to this book would be fewer
than 2 defects per 100 million opportunities.)
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SKEW, SKEWNESS

Summary of Keys to Understanding

1. Skew is a property of the Shape of a Distribution or a Sam-
ple of data. Skewness is a measurement of Skew.

Properties of a Distribution

Central Tendency Variation/Spread Shape

Mean Range Skew

Median Variance Kurtosis

Mode Standard Deviation

2. In Statistics, the Skew direction is the opposite of that in every-
day language. The Skew is in the direction toward which the
long tail of the Distribution points.

Skewed Left,

Negative Skew
Skewness = 0 Skewed Right,

Positive Skew

3. There are rules of thumb for what the Skew can tell you
about the relationship between Mean, Mode, and Median.
But these don’t apply for all Distributions.

4. There are many different types of Skewness with many differ-
ent formulas and names and symbols. Understand what type
of Skewness measure your software has used for your spe-
cific data set, and describe that measure when reporting
your results.

344



SKEW, SKEWNESS 345

Explanation

1. Skew is a property of the Shape of a Distribution or a Sam-
ple of data. Skewness is a measurement of Skew.

There are three Categories of measurements which describe Distribu-
tions of data:

Properties of a Distribution

Central Tendency Variation/Spread Shape

Mean Range Skew

Median Variance Kurtosis

Mode Standard Deviation

� Central Tendency: e.g., Mean, Median, Mode
� Variation (aka Variability, Dispersions or Spread): e.g., Range, Stan-

dard Deviation
� Shape: e.g., Skewness, Kurtosis

We can say that a Distribution is “skewed to the left” or “skewed to the
right.” Usually, the term “Skewness” is used to refer to the measurement
of Skew. As such, it would be a Parameter for a Population or Process and
a Statistic for a Sample.

2. In Statistics, the Skew direction is the opposite of that in every-
day language. It’s the direction in which the long tail of the
Distribution points.

In this article, we’ll use the term “Distribution” to include any collection
of data. It could be a Population, a Process, or a Sample.

When looking at a curve like the Distribution below, most people would
focus on the bulk of the area under the curve, which is to the left. They
would say it was “skewed to the left.”

Everyday language:

“Skewed to the left”
Statistics:

“Skewed to the right”,

“Positive Skew.”

But in statistics, we say that it is “Skewed to the right.” And since pos-
itive numbers on a graph are to the right, we say it “Positively Skewed.”
The value of its Skewness measurement would be positive.
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Memory Cue: Think of “the tail wagging the dog”. It’s the tail that
defines the direction of the Skew, not the bulk of the dog’s body.

It may also help to think of the Distribution as being “stretched out” in
the direction of the Skew.

Skewed Left,

Negative Skew
Skewness = 0 Skewed Right,

Positive Skew

The Skew is in the direction of the long tail.

3. There are rules of thumb for what the Skew can tell you
about the relationship between Mean, Mode, and Median.
But these don’t apply for all Distributions.

For example, some books say that,

for Left-Skewed Distributions: Mean < Mode < Median
for Right Skewed Distributions: Median > Mode > Mean

Looking at simple shapes like those pictured above, this might make
intuitive sense – at least the relationship between the Mean and the Mode.

But Distributions can come in all sorts of weird shapes for which these
rules of thumb are not true. Even a simple bimodal (double-humped) Dis-
tribution can be a counterexample.

4. There are many different types of Skewness with many differ-
ent formulas and names and symbols. Understand what type
of Skewness measure your software has used for your spe-
cific data set, and describe that measure when reporting
your results.

In other articles, we have noted that there are several different names
and symbols for one thing. And we tried to list them all. For Skewness,
this appears to be an impossible task.

The noted statistician, Karl Pearson, alone had at least three different
formulas for different measures of Skewness. And, unfortunately, a book
may refer to “Pearson’s Coefficient of Skewness” without specifying which
one. There are also a “Percentile Coefficient of Skewness,” a “Quartile
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Coefficients of Skewness,” an “L-skewness,” and various “Moment Coef-
ficients of Skewness.”

Symbols for Skewness include Skp, Skq, k, 𝜇3, b1, G1, skew(x),
dSkew(x), and more.

Also, different formulas for Skewness are used with different types of
Distributions

Since the formulas for Skewness can involve calculations that are cum-
bersome to do manually (involving summations of differences, for exam-
ple), software is usually used. The caveat here is: Understand what type
of Skewness measure your software has used for your specific data set,
and describe that measure when reporting your results.

Related Article in This Book: Distributions – Part 1: What They Are



STANDARD DEVIATION

Summary of Keys to Understanding

1. Standard Deviation is probably the most common measure
of Variation in statistics. It is in units of the data.

2. It is the square root of the Variance.

Population or Process: 𝝈 =

√∑
(xi − 𝝁)2

N
Sample: s =

√∑
(xi − x̄)2

n − 1

3. Data and Distributions are often described by their Mean
and their Standard Deviation.

4. “A Standard Deviation” can itself be used as a unit of mea-
sure of Variation.

For example, “This data point is 1.5 Standard Deviations
from the Mean.”

5. For both Normal and non-Normal Distributions, each unit
of Standard Deviation corresponds to a given Cumulative
Probability of the data points

Standard
Deviations

Cumulative % of Data Points within that number of
Standard Deviations from the Mean

Normal non-Normal

1 68.27% NA

2 95.45% at least 75%

3 99.73% at least 88.9%

4 at least 93.7%
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Explanation

1. Standard Deviation is probably the most common measure
of Variation in statistics. It is in units of the data.

There are a number of measures of Variation (also known as “Variabil-
ity,” “Dispersion,” and “Spread.”)

� Range gives you the upper and lower bounds. But it doesn’t tell you
anything about how much (if at all) data are clustered around the
Mean.

� Variance does tell you about the clustering, but its units are squares of
the data. (“The Variance is 2 square kilograms.”)

� Mean Absolute Deviation gives you the average distance of data
points from the Mean. But its formula uses Absolute values, which
are not as conducive to mathematical manipulation as are the squares
and square roots used in Variation and Standard Deviation.

Standard Deviation does tell you about clustering. It is also an
approximation of the average distance from the Mean. Extreme Out-
liers can have a disproportionate effect on Standard Deviation.

The units of Standard Deviation are the same as the units of the data.
For example if we are collecting data on household incomes in dollars for
a community, we may find that the Standard Deviation of incomes is 40,000
dollars.

Notation:
Standard Deviation of a Population or Process: 𝜎 (“Sigma”)
Standard Deviation of a Sample: s
Variance of a Population or Process: 𝜎2

Variance of a Sample: s2

2. It is the square root of the Variance.

Population or Process: 𝝈 =

√∑
(xi − 𝝁)2

N
Sample: s =

√∑
(xi − x̄)2

n − 1

In the numerators of both these formulas, we have the sum of the squared
differences (Deviations) from the Mean. But the denominators are differ-
ent. The Population Standard Deviation divides by its Size, but the Sample
Standard Deviation divides by the Sample Size minus 1. This gives us a
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somewhat larger value for Sample Standard Deviation. How much larger
is dependent on the Sample Size:

n n − 1 % difference

5 4 20%

100 99 1%

The n – 1 adjustment accounts for the fact that small Samples will give
less accurate estimations of the Population or Process Standard Deviation
than will large Samples. So, Standard Deviations calculated from small
Samples will be wider than those calculated from large Samples.

3. Data and Distributions are often described by their Mean
and their Standard Deviation.

There are three categories of Statistics/Parameters which are used to
describe data and Distributions:

� Central Tendency: e.g., Mean, Mode, Median
� Variation: e.g., Standard Deviation, Variance, Range
� Shape: e.g., Skew, Kurtosis

Much of the data in the world are approximately Normally distributed,
and we don’t hear much about Skew and Kurtosis. So, describing data or a
Distribution by the Mean and Standard Deviation usually gives us a good
description of the situation.

Too often, Standard Deviation is not provided in the popular media, so
we are left wondering whether the Distribution looks like the one on the
left or the right.

Larger Standard Deviation
Smaller

Standard
Deviation

4. “A Standard Deviation” can be used as a unit of measure
of Variation.

For example, “This data point is 1.5 Standard Deviations
from the Mean.”
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5. For both Normal and non-Normal Distributions, each unit
of Standard Deviation corresponds to a given Cumulative
Probability of the data points.

Percent of Values Found within this Number of 
Standard Deviations from the Mean

1 2 3 4

Normal Distribution (Empirical Rule) 68.27% 95.45% 99.73%

All Distributions (Chebyshev’s Theorem) >75% >88.9% >93.7%

The Normal percentages shown illustrate the Empirical Rule, some-
times called the “68, 95, 99.7” Rule.

Standard Deviations

99.7%

95%

68%

0 1 2–1–2 3–3

The non-Normal percentages illustrate Chebyshev’s Theorem, also
known as the Bienayme–Chebyshev Rule. The Theorem calculates the per-
centages with the formula:

100% × (1 − (1∕k)2)

where k is the number of Standard Deviations.

Related Articles in This Book: Variation/Variability/Dispersion/
Spread; Variance; Normal Distribution



STANDARD ERROR
An understanding of the concept of Standard Deviation is assumed.

Summary of Keys to Understanding

1. Standard Error is the Standard Deviation of a Sample
Statistic.

2. Standard Error can be found in formulas in Inferential
Statistics. And there are different formulas for different
types of Standard Errors.

Margin of Error = Standard Error × Critical Value

SEM = s√
n

SE(x̄1 − x̄2) =

√
s2

1

n1
+

s2
2

n2
SEp =

√
p(1 − p)

n

3. Standard Error and Standard Deviation have similarities
and differences.

4. Standard Error is shown in the output from Regression
analysis and other tests.

Coefficients Std
Error

t-Stat p-Value Lower
95%

Upper
95%

Intercept −38.824 32.929 −1.179 0.304 −130.248 52.601

Bedrooms 83.725 11.602 7.217 0.002 51.514 115.937

Bathrooms 76.078 15.469 4.918 0.008 33.129 110.027

5. Definition: The Standard Error is the Standard Deviation of
the Sampling Distribution of a Statistic.
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Explanation

1. Standard Error is the Standard Deviation of a Sample
Statistic.

First of all, the “Error” in Standard Error does not imply that a mis-
take has been made. It’s just a way of saying that any estimate from a
Sample can be expected to be less than 100% accurate.

In Inferential Statistics, we collect a Sample of data from a Population.
(Note: this book usually says “Population or Process.” But that would be
repeated many times in this article, so we’ll just say “Population” in the
rest of this article.) Then, we calculate a Statistic from the Sample data,
e.g., the Sample Mean or Standard Deviation. We use the Sample Statistic
as an estimate of the corresponding property in the Population, e.g., the
Population Mean or Standard Deviation.

In calculating the Standard Error, the Sample data are not used directly.
In place of the x’s in one Sample, the Standard Error of the Mean
theoretically uses the Means of all possible Samples of the Sample Size
n. The Standard Error is the Standard Deviation of all these Means. (These
are the Means in the so-called Sampling Distribution, which is a theoretical
concept described in the article by that name.)

Of course, we could never collect data on all possible Samples, but
statisticians have derived formulas for calculating the Standard Errors of
various Statistics. Here’s the one for Standard Error of the Mean, SEM:

SEM = s√
n

2. Standard Error can be found in formulas in Inferential
Statistics. And there are different formulas for different
types of Standard Errors.

To a considerable extent, Standard Error plays a behind-the-scenes
role. It is used more frequently as an interim step in calculations or as
a component of formulas than it is as a quoted Statistic in its own right.
Experts disagree on whether it is important to understand Standard Error
as a separate concept. It is an abstract concept, and it can be confusing.

The Margin of Error article in this book shows the following formula:

MOE = s(Critical Value)
√

n

Using the formula for SEM above, we could rewrite this as

Margin of Error = Standard Error × Critical Value
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In the article t-tests – Part 2, we show the following formula for t for a
1-Sample t-test. We see the SEM in the denominator.

t = x̄ − 𝝁

s∕
√

n
That article also show the following generic formula for the Test Statis-

tic, t. It applies to all three t-tests (which have different kinds of “differ-
ences between two Means” and different kinds of Samples). In this case,
the concept of Standard Error does simplify the description of what’s hap-
pening in the three tests.

t = difference between two Means
Standard Error

That article also shows three different formulas for Standard Error, cor-
responding to the three different t-tests. These are in the denominators
below:

1-Sample t-test:
x̄ − 𝝁

s∕
√

n
2-Sample t-test:

x̄1 − x̄2

sp∕
√

1
n1

+ 1
n2

Paired t-test:
d̄ − 0

sd∕
√

n

Another commonly used formula is the Standard Error of the Propor-
tion:

SEp =
√

p(1 − p)
n

3. Standard Error and Standard Deviation have similarities
and differences.

Standard Deviation Standard Error

It is
a Sample Statistic or
Population Parameter

a Sample Statistic

Can calculate it for a Population or a Sample Sample or Samples

It measures: Variation Variation

Variation of what? individual data values
Statistics (e.g., Sample
Means) calculated from

Samples

It is the Standard
Deviation of

a Sample or a Population
the Sampling Distribution

of the Statistic

How calculated
the square root of the

Variance
(varies by the Statistic

used)
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4. Standard Error is provided in the output from Regression
analysis and other tests.

Coefficients Std
Error

t-Stat p-Value Lower
95%

Upper
95%

Intercept −38.824 32.929 −1.179 0.304 −130.248 52.601

Bedrooms 83.725 11.602 7.217 0.002 51.514 115.937

Bathrooms 76.078 15.469 4.918 0.008 33.129 110.027

Here, the Standard Error is the Standard Deviation of the three Variables
in the first column. That may be of interest, but the deciding information
is the p-value and the 95% Confidence Interval.

5. Definition: The Standard Error is the Standard Deviation of
the Sampling Distribution of a Statistic.

Normally one might start with the definition. But this one is so abstract
that it probably inhibits, rather than helps, understanding. If you’ve under-
stood everything up to this point, it may not be worth worrying about trying
to make sense of this definition. If you do wish to proceed, please first read
the article Sampling Distribution.

If we took a lot of Samples – all of the same size, n – we could use the
Standard Deviation of those Sample Means (from the Population Mean)
as a measure of how good an estimate any one Sample is likely to be. The
more Samples we took, the more reliable this Standard Deviation could be
expected to be.

Theoretically, if we were able to take all possible Samples of a given
Sample Size (n) and calculate the Standard Deviation of their Statistics, we
would calculate the Standard Error. The Distribution of a specified Statis-
tic of all possible Samples of equal size n is called the Sampling Distri-
bution. (If a Sampling Distribution does not include all possible Samples,
it is called a Sampling Distribution.)
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Above is a conceptual illustration of a Sampling Distribution. The usual
Probability Distributions (say, the Normal, Exponential, or Binomial) have
the x values of the data represented along the horizontal axis. In a Sam-
pling Distribution, however, the Statistic (e.g., the Mean) of each Sample
is graphed instead of a data point.

Related Articles in This Book: Standard Deviation; Inferential Statistics;
Margin of Error; Critical Value; Confidence Intervals – Part 1; Hypothe-
sis Testing – Parts 1 and 2; Null Hypothesis; t-Tests – Part 1: Overview;
Variation/Variability/Dispersion/Spread; Sampling Distribution



STATISTICALLY SIGNIFICANT

Summary of Keys to Understanding

1. A difference, change, or effect which is observed in Sam-
ple data is considered “Statistically Significant,” if there
is a high Probability that the difference, change, or effect
is real for the whole Population or Process from which the
Sample was taken.

2. Stated another way, a difference, change, or effect which
is observed in Sample data is considered “Statistically
Significant,” if there is a low Probability that the differ-
ence, change, or effect is not real. That is, there is a low
Probability of an Alpha Error (False Positive).

3. p is the Probability of an Alpha Error. The following
things make this Probability lower (and the Probability of
Statistical Significance higher).
� a bigger difference, change, or effect shown in the Sam-

ple data
� a bigger Sample Size
� smaller Variation (Standard Deviation) in the Sample

4. The person performing the statistical analysis defines what
it means to be Statistically Significant by selecting a value
for the clip level Alpha (𝜶), the Level of Significance.

5. There is a Statistically Significant difference, change, or
effect if p ≤ 𝜶.

5% 

p

10%

0%

p ≤ α: StatisticallySignificant

p > α: Not Statistically Significant

p = 4%
p = 6%
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α: Level of Significance
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Explanation

1. A difference, change, or effect which is observed in Sam-
ple data is considered “Statistically Significant,” if there
is a high Probability that the difference, change, or effect
is real for the whole Population or Process from which the
Sample was taken.

In Inferential Statistics, we collect a Sample of data from a Population
or Process. Then we perform a statistical analysis on the data. We use the
results of that analysis to make a conclusion about the Population or Pro-
cess from which the Sample was drawn. For example,

� We poll 50 people exiting a voting location and determine that Can-
didate A was preferred 52% to 48%. Is this a Statistically Significant
difference? That is, is there a high Probability that Candidate A being
in the lead is true for the Population as a whole?

� A drilling Process has historically had a Standard Deviation of 0.010.
Our latest sampling indicates a Standard Deviation of 0.012. Is this
a Statistically Significant change? That is, is there a high Probability
that the Standard Deviation has, in fact, changed?

� A new software program for handling insurance claims was tested
with 20 claims and found to reduce the Mean processing time by
5 minutes. Is this a Statistically Significant effect? That is, is there
a high Probability that rolling out this new software will improve the
operation company-wide?

Q: We keep saying “high Probability,” but how high is high enough?
A: Higher than our chosen Level of Confidence. If we want a 95%

Level of Confidence that the difference, change, or effect is real, we
would select a 5% Level of Significance (𝛼 = 5%). Our selection of this
Level of Significance defines what is Statistically Significant and what is
not. (More on this in Key to Understanding #3.)

2. Stated another way, a difference, change, or effect which
is observed in Sample data is considered “Statistically
Significant” if there is a low Probability that the difference
change, or effect is not real. That is, there is a low Probability
of an Alpha Error (False Positive).
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I saw a unicorn.

Alpha Error

(False Positive)

An Alpha Error (aka Type I Error) is the error of seeing something that
is not there.

It is the error of concluding – from Sample data – that there is a differ-
ence, change, or effect in the entire Population or Process as a whole,
when, in fact there is not.

A common example: in a medical diagnostic test, a “positive” indicates
that a disease is present. If the test conclusions are wrong, and there is no
such problem, it would be a False Positive (an Alpha Error).

3. p is the Probability of an Alpha Error. The following
things make this Probability lower (and the Probability of
Statistical Significance higher):
� a bigger difference, change, or effect shown in the Sam-

ple data
� a bigger Sample Size
� smaller Variation (Standard Deviation) in the Sample

All this, thankfully, makes common sense.
� a bigger difference, change, or effect in the Sample data

Let’s say we are comparing the heights of adult males with Samples
from two countries. If the difference of the averages of the two Sam-
ples is 1 cm, we might wonder whether that’s a real difference in the
Populations, or if it’s just due to random Variation in selecting subjects
for the Samples.

However, if the difference of the averages is 5 cm, then we would
intuitively feel more confident that the difference is real.

� a bigger Sample Size
One would expect a Sample with more items to be a more accurate
representation of the overall Population or Process. This is true.

� smaller Variation (Standard Deviation) in the Sample
Let’s say we’re comparing the Mean of test scores in our school (84)
with the national average of 80. And, let’s say that most of the scores
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in our school are clustered between 81 and 87, with a high of 95 and
a low of 75. This shows a relatively small amount of Variation, and it
would tend to argue that the difference is real.

On the other hand, if our scores were spread out from 50 to 100,
with very little clustering about the Mean, that would be a less com-
pelling case for a real difference.

p is the key decision-making output from Inferential Statistical anal-
yses, like the t-tests, ANOVA, and Regression. This is explained in Key
to Understanding #5.

4. The person performing the statistical analysis defines what
it means to be Statistically Significant by selecting a value
Alpha (𝜶), the Level of Significance.

OK, so we know there’s going to be some chance, p, of an Alpha Error
in our testing. How much are we willing to tolerate? How high a value of
p will we accept before we say the observed difference, change, or effect
is not Statistically Significant?

The answer varies by the situation being analyzed. There’s more infor-
mation on this question in the articles Alpha, 𝛼 and Alpha and Beta Errors.
The person performing the analysis gets to choose the upper limit for p
which defines the difference between Statistically Significant and Not
Statistically Significant.

This upper limit or clip level for p (which is the Probability of an
Alpha Error) is called Alpha (symbol 𝜶). It is important to select the level
for Alpha prior to collecting Sample data. Otherwise, if we take a peek at
the data, it might influence our choice for Alpha. And that would corrupt
the validity of our analysis.

Most of the time, 5% is selected. So, let’s use that going forward.
Conceptually, it may help to think in terms of the Level of Confidence
first and have that determine our Level of Significance (𝛼). The Level of
Confidence = 1 – 𝜶 (in percentages, 100% − 𝛼). So, if we want to be
95% confident of not having a False Positive error, then we would select
Alpha to be 5%.

So, I’ll select α = 5%.
I want to be 95% confident

of avoiding an Alpha Error.
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Why wouldn’t we always select Alpha to give us a 99.99% Level of
Confidence? This is explained in the article Alpha and Beta Errors. But
briefly, the lower the level of Alpha Error we select, the higher the level of
Beta Error (“False Negative”) we must be willing to tolerate.

5. There is a Statistically Significant difference, change, or
effect if p ≤ 𝜶.
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α: Level of Significance

In the diagram above, the clip level Alpha is identified by the dotted line
separating Not Statistically Significant from Statistically Significant. One
can see why Alpha is called the Level of Significance. Any p-value at that
level or below indicates Statistical Significance.

Any value for p (which is calculated from the Sample data) less than
or equal to Alpha leads us to conclude that the difference, change, or
effect observed in the Sample is Statistically Significant. (Remember p
is the Probability of an Alpha Error. And Alpha was selected as the bound-
ary value for that Probability separating Statistically Significant from not
Statistically Significant.)

If p ≤ 𝜶, then any difference, change, or effect in the Sample is Sta-
tistically Significant.

If p > 𝜶, then any difference, change, or effect in the Sample is not
Statistically Significant.

So, the 6% pictured above is in the Not Statistically Significant range.
But the 4% value for p is in the Statistically Significant range. (5% is also
in that range, since that range includes the line).

For many of us, it may be difficult at first to remember which way the
“<” points. Is it p < 𝛼 or p > 𝛼 which indicates Statistical Significance?
One thing which might help is to remember that p represents error, so we
would like it to be small before we accept a conclusion of Statistically
Significant. In addition, this book has a separate article – p, t, and F: “<”
or “>”? – with three different tips for remembering which is which.

In Hypothesis Testing
p ≤ 𝜶 causes us to Reject the Null Hypothesis. The Null Hypothesis

states that there is no (Statistically Significant) difference, change, or
effect. p ≤ 𝛼 says that there is.
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p > 𝜶 causes us to Fail to Reject (i.e., to Accept) the Null Hypothesis
that there is no Statistically Significant difference, change, or effect.

To summarize some of key points in this article:

Statistically
Significant

Not Statistically
Significant

There is a high Probability that the
difference, change, or effect observed in
the Sample is real for the Population or
Process as a whole.

Yes No

Probability of an Alpha Error p ≤ 𝛼 p > 𝛼

Null Hypothesis Reject
Accept/Fail to

Reject

Related Articles in This Book: Alpha and Beta Error; p, p-Value; Alpha,
𝛼; p, t, and F: “<” or“>”?



SUMS OF SQUARES

Keys to Understanding
This article is provided as a 1-page summary of the concept. For more
information, see the articles, ANOVA – Parts 2 and 3, and Regression –
Part 1.

1. A Deviation is the difference from a single data value to a
target value, e.g., the Mean (x − x̄) or a point on a Regression
line (y − yR).
Each individual Deviation is squared to eliminate negative
numbers, e.g., (x − x̄)2, then all are totaled to give the Sum
of Squared Deviations, or Sum of Squares (SS).

SS =
∑

(x − x̄)2

2. Sums of Squares come in several types. Sums of Squares
are measures of Variation. A Sum of Squares divided by
its Degrees of Freedom is a Variance (symbol s2).

s2 =
∑

(x − x̄)2

n − 1
= SS

n − 1

Larger SSSmaller SS

3. ANOVA uses Sum of Squares Between groups (SSB) and
Sum of Squares Within groups (SSW). Their respective
Means – MSB and MSW – are Variances.

Sum of Squares Total, SST = SSB + SSW

F = MSB∕MSW

4. In Regression, Sum of Squares Total (SST) measures the
total Variation in the y Variable. Sum of Squares Regression
(SSR) is that portion of SST which is explained by the Regres-
sion Line. Sum of Squares Error (SSE) is what’s left over.

SST = SSR + SSE
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t – THE TEST STATISTIC AND ITS
DISTRIBUTIONS

Summary of Keys to Understanding

1. t is a Test Statistic used in tests involving the difference
between two Means.

2. t = difference between two Means
Standard Error

=
(difference between two Means)

√
n

s

3. t is a measure of how likely it is that a difference in Means
is Statistically Significant.

that the
difference is
Statistically
Significant 

Larger Difference between Means Larger t More likely

Larger Sample Size Larger t More likely

Larger Sample Standard Deviation Smaller t Less likely

4. There is not one t-Distribution, but a different t-Distribution
for each value of the Degrees of Freedom, df. As df grows
larger, the t-Distribution approaches the z-(Standard Nor-
mal) Distribution.

5. t has a number of similarities to z and some key differences.

6. Use t instead of z when
– the Standard Deviation (Sigma, 𝜎) of the Population or Pro-

cess is unknown
– or the Sample size is small (n < 30)

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

364



t – THE TEST STATISTIC AND ITS DISTRIBUTIONS 365

Explanation

1. t is a Test Statistic used in tests involving the difference
between two Means.

t is also known as “Student’s t” or the “t-statistic.”
. . . Test Statistic . . .
A Statistic is a property of a Sample. A Test Statistic is one that has

an associated Probability Distribution (or associated family of Probability
Distributions). So, for any value of the Test Statistic, we can determine
the Probability of that value. More importantly, we know the Cumula-
tive Probability of all values greater or less than that particular value.
This is an essential part of Inferential Statistics, in which we estimate
(infer) a Parameter (e.g., the Mean or Standard Deviation) of a Popula-
tion or Process based on the corresponding Statistic of a Sample. Common
Test Statistics are t, z, F, and 𝜒2 (Chi-Square).

. . . the difference between two Means.
One Mean is always the Mean of a Sample.
The Second Mean can be either

– A specified Mean, such as a target Mean, a historical Mean or an
estimate, or

– The Mean of a Sample from a different Population or Process
than the first Mean, or

– A second Mean from the same test subjects (e.g., before and after
some event).

These three different types of the second Mean correspond to three dif-
ferent t-tests. See the articles t-tests – Part 1 and Part 2.

t-test Mean 1 Mean 2

1-Sample Sample from a Population or
Process

Specified Mean (a target, an
estimate, or a historical value)

2-Sample Sample from a Population or
Process

Sample from a different
Population or Process

Paired
one half of a Sample of paired
data, e.g., score before
training

the other half of the Sample of
paired data for the same test
subjects, e.g., score after training

2. Descriptive formula:

t = difference between two Means
Standard Error
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The numerator is straightforward enough, but what is the Standard
Error? Standard Error is a measure of Variation in the Sample(s). See the
article Standard Error for more information.

Different t-tests have different formulas for the Standard Error. But, a
generic formula for Standard Error can be stated as

Standard Error = s∕
√

n

where s is the Standard Deviation of the Sample and n is the Sample
Size.

Since Standard Error is in the denominator of the formula for t, the
square root of n is in the denominator of the denominator. Let’s simplify
the formula with simple algebra:

t =
(difference between two Means)

√
n

s

3. t is a measure of how likely it is that a difference in Means
is Statistically Significant.

As with all Test Statistics, we compare t to its Critical Value. The value
of t is calculated from Sample data, as shown in the formulas above. The
value of t-critical is determined by the value selected for Alpha, the Sig-
nificance Level, and the appropriate t-Distribution.

A large value for t makes it more likely to be larger than t-critical,
and so makes it more likely that there is a Statistically Significant dif-
ference in the Means.

Since the difference between the Means and the Sample Size, n, are in
the numerator, larger values for either of these would make t larger. Since
it’s actually the square root of n that is in the numerator, an increase in the
difference between the Means would have much more of an effect than a
proportional increase in the Sample Size.

Since the Standard Deviation is in the denominator, a larger Variation
in the Sample(s) will make t smaller.

This is all summarized in the graphic below:

that the
difference is
Statistically
Significant

Larger Difference between Means Larger t More likely

Larger Sample Size Larger t More likely

Larger Sample Standard Deviation Smaller t Less likely



t – THE TEST STATISTIC AND ITS DISTRIBUTIONS 367

Some authors say that t is a measure of “how good the Sample is”
or “how accurate the Sample is in estimating the Population or Process
Mean.” But it’s probably more accurate to say that t is a measure of how
likely it is that a difference in Means is Statistically Significant.

4. There is not one t-Distribution, but a different t-Distribution
for each value of the Degrees of Freedom, df. As df grows
larger, the t-Distribution approaches the z-(Standard Nor-
mal) Distribution.

For a single Sample, df = n – 1, where n is the Sample Size. For other
situations it gets more complicated, for example, in the 2-Sample t-test,
df = n1 + n2 − 2.

A t-Distribution is like a z-(Standard Normal) Distribution which has
been modified to account for the increase in Variation due to being Sample-
based.

It stands to reason that the smaller the Sample, the less likely it is to
accurately depict the Population or Process. So, the Standard Deviation
of a t-Distribution for a small Sample is larger than that for a large
Sample. The Distribution curve for a small Sample would be spread wider
than for a larger Sample.

For a (theoretical) Sample Size of infinity, the t-Distribution and the z-
Distribution are identical – the Standard Normal Distribution.

5. t has a number of similarities to z and some key differences.

z t

It is a . . . Test Statistic

Probability Distribution(s)

Bell-shaped, Symmetrical,
Never touches the horizontal axis

1 1 for each value of df

Mean = Mode = Median Yes, and they all = 0

Formula z = (x̄−𝝁)∕𝝈 t = (x̄−𝝁)∕(s∕
√

n)

Varies with Sample Size No Yes

Accuracy less more

Standard Deviation = 1 Always > 1
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where

df is Degrees of Freedom; x̄ is the Sample Mean; 𝜇 is the Popula-
tion or Process Mean; s is the Sample Standard Deviation; 𝜎 is the
Population or Process Standard Deviation; n is the Sample Size.

z and t are both Test Statistics. There is only one z-Distribution, but
there is a whole family of t-Distributions, one for each value of df. For a
single Sample (as in a 1-Sample t-test) df = n – 1.

The Probability Distributions of both z and t are centered on zero.
They are both symmetrically bell-shaped. In addition, for both z and t,
the Probability Distribution curves never touch the horizontal axis. (The
Probability is never zero for any value of z or t.) The left and right tails
of the curves just extend to infinity, getting ever closer to zero.

The z-Distribution is the idealized Standard Normal Distribution, with
Mean = Mode = Median = 0 and a Standard Deviation of 1.

The key practical difference between z and t is that t takes into
account the error introduced when Sample Statistics (e.g., the Sample
Mean) are used as estimates for the Population or Process Parameter
(e.g., the Population or Process Mean). The formula for t includes a term
for the Sample Size, n; z’s formula does not. So the value of z is the same
for a Sample Size of 1 or a Sample Size of 1000. You can see how z would
generally be less accurate than t – much less accurate for small Sample
Sizes (n < 30).

6. Use t instead of z when
– the Standard Deviation (Sigma, 𝜎) of the Population or Pro-

cess is unknown
– or the Sample size is “small” (n < 30)

The formula for z is z = (x̄−𝝁)∕𝝈
𝜎 (Sigma) is the Population or Process Standard Deviation. If you don’t

know the Population or Process Sigma, and you rarely do, you can’t use
the formula for z. Instead, you’d have to use an estimate for Sigma, and
that would be s, the Standard Deviation of a Sample. But z doesn’t take
into account the fact that you’re using an estimate from a Sample, so its
calculation is less legitimate. That’s why you need to use t.

As the Sample Size increases, the Probabilities of t get closer and
closer to the Probabilities for z. For n = infinity, they are the same. So, it
is often said that you can use z instead of t when the Sample is “large.”



t – THE TEST STATISTIC AND ITS DISTRIBUTIONS 369

Many experts say 30 is large enough, others say 100. Some say it’s best
to use t whenever a Sample is used.

Related Articles in This Book: t-tests – Parts 1 and 2; Standard Devia-
tion; Standard Error; Alpha, p-Value, Critical Value, and Test Statistic –
How they Work Together; Degrees of Freedom; z



t-TESTS – PART 1 (OF 2): OVERVIEW
Builds on the content of the article “t – the Test Statistic and Its Distribu-
tions”.

Summary of Keys to Understanding

1. The three types of t-tests are differentiated by the types of
Means that they compare:

Means being compared

1- Sample Sample Mean to a specified Mean

2-Sample Means of Samples from two different Populations
or Processes

Paired Mean of the differences in pairs of measurements
to a Mean of zero

2. Assumptions for the data are: Normality, and – for the 2-
Sample t-test – equal Variance.

3. The 1-Sample t-test compares a calculated Sample Mean
to a Mean we specify.

4. The 2-Sample (aka Independent Samples) t-test compares
the Means of two Samples from different Populations or
Processes.

5. The Paired – aka Dependent Samples – t-test compares the
differences between pairs of measurements taken from the
same test subjects at different times or under different condi-
tions.
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Explanation
Builds on the content of the article “t – the Test Statistic and Its Distribu-
tions”.

1. The three types of t-tests are differentiated by the types of
Means that are compared:

Means being compared

1- Sample Sample Mean to a specified Mean

2-Sample Means of Samples from two different Populations
or Processes

Paired Mean of the differences in pairs of measurements
to a Mean of zero

t is the Test Statistic for the t-tests. We use t when we are trying to
determine if there is a Statistically Significant difference between two
Means. (For three or more Means, use ANOVA.)

Each of the three types of t-tests compares two Means, but the two
Means are of different types for the different tests. This results in three
different mathematical formulas for calculating t and for the Degrees
of Freedom, df. These are described in the Part 2 article. The article t,
the Test Statistic and Its Distributions explains how there are different t-
Distributions for each different value of df.

2. Assumptions for the data are: Normality, and – for the 2-
Sample t-test – equal Variance.

Tests in statistics usually have restrictions on the kinds of data that can
use the test. These are called “Assumptions.”

The data are assumed to be roughly Normal 

OK NOT OK NOT OK

The t-Distributions are bell-shaped and symmetrical. As the Sam-
ple Size increases, t-Distributions get closer and closer to the Normal
Distribution. So, if we are going to use the values and probabilities of a
t-Distribution, the data must be at least roughly “Normal.”
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How do we know if the data are “Normal enough”?
Many software packages do a Normality test, such as the Anderson–
Darling, as part of the t-test. If the Anderson–Darling p-value is
greater than the chosen Significance Level, Alpha, then the data are
“Normal enough.” To be certain, it’s good to look at a Normal Prob-
ability plot, to see if the plot points roughly track the straight line
relatively closely.

What do we do if the data are not “Normal enough”?
There are so-called “Non-Parametric” counterparts to “Parametric”
tests (those which require roughly Normal data).

The Non-Parametric counterparts to the 1-Sample t-test include the
1-Sample sign or Wilcoxon signed rank tests. These use Medians,
rather than Means.

For the 2-Samples t-test, use the Mann–Whitney test, which also uses
Medians.

For the Paired t-test, use the Wilcoxon signed-rank test for paired
Samples.

For the 2-Sample t-test, roughly equal Variance is also required.

Statistically

Significance

difference in

Variance 

“equal”

Variance

If the data are roughly Normal, the F-test can be used to test for equal
Variances.

If the Variances are not roughly equal, Welch’s t-test can be used.

3. The 1-Sample t-test compares a calculated Sample Mean
to a Mean we specify.

In the 1-Sample t-test, there is only 1 Sample of data and 1 Sam-
ple Mean which is calculated from that Sample. We need to compare two
Means; where does the other Mean come from? It can come from any-
where. Some common examples are:

� A Mean calculated outside our test. For example, we compare Mean
exam scores for our high school class with the national average.

� An estimated or hypothesized Mean.
� A historical Mean. For example, we may suspect that the Mean of our

Process has drifted slightly from what it’s always been.
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� A target Mean. For example, is the current Mean number of defects
in our production Process below our target?

4. The 2-Sample (aka Independent Samples) t-test compares
the Means of two Samples from different Populations or
Processes.

In the 2-Sample t-test, one Sample of data is taken from each of two
different Populations or Processes.

The Means of the two Samples are compared in the t-test to determine
if there is a Statistically Significant difference.

This is sometimes called the Independent Samples t-test. Samples are
said to be independent if they come from unrelated Populations or Pro-
cesses, and the Samples have no effect on each other. For example in a
test of a new drug, one Population took the drug and the other Population
took the placebo. Different patients – different “experimental units” (aka
“statistical units”) – took either the drug or the placebo.

The table below illustrates the difference between the 2-Sample and the
Paired t-test. Note that, in the 2-Sample (Independent Samples) t-test,
there are different test subjects in Sample 1 and Sample 2. But in the
Paired (Dependent Samples) t-test, the same people are measured twice.

2-Sample t-test Paired t-test

Sample 1
Not trained

n1 = 6

Sample 2
Trained
n2 = 5

Before
Training

After
Training

Difference
n = 5

J. Black 72 A. Conrad 76 K. Albert 74 78 +4

T. Gerard 80 J. David 78 P. Jacobs 76 83 +7

M. Lowry 78 W. Johns 83 T. Smith 73 81 +8

P. Mason 74 F. Lyons 86 R. Wang 81 84 +3

R. Vargas 79 M. White 61 D. Young 78 86 +8

B. Wilson 70

5. The Paired aka Dependent Samples t-test compares the dif-
ferences between pairs of measurements taken from the
same test subjects at different times or under different condi-
tions.
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The Paired t-test is also called the Dependent Samples t-test or the Paired
Samples t-test. But, these two names can be misleading, because they imply
that two Samples are taken.

There are two sets of measurements taken – before and after, in the above
example. And we provide the software with the two sets. But the test treats
it as one Sample which consists of the differences calculated between the
two measurements taken from each individual test subject.

The table above right shows 10 measurements of worker production in
5 pairs, and n = 5 is the Sample Size. That is the number of pairs, the
number of differences. The Paired t-test tells us whether the differences
are Statistically Significant.

But didn’t we say that t-tests compare two Means? Should we be com-
paring the Mean before with the Mean after? Well, if we did that, we’d
be losing some information – specifically how much Variation there is in
the differences for individuals. If some individuals improved greatly and
others not at all, there would be a large Standard Deviation in the differ-
ences which may not show if we averaged them all together. And, as we’ll
see in Part 2, the Standard Deviation is involved in calculating the value
of t.

So, we can calculate a Mean for the differences; what is the other Mean
we compare it to? Essentially a specified Mean of zero. So, the Paired t-test
is like the 1-Sample t-test in which the Sample of differences is compared
to specified Mean of zero.

The most common use for the Paired t-test is for a “before and after”
analysis. For example, Does a training program make a Statistically Sig-
nificant difference in the production output of individual workers? The 2-
Sample t-test would not work as well for answering that question. There are
any number of Factors which can affect worker production output. Expe-
rience is one. If one Sample has workers with more experience than the
other Sample, then that could give us misleading results. But if we mea-
sure the same workers before and after training, we can eliminate other
Factors, like experience, so that we can focus on only one Factor – the
training.

So, compared to the 2-Samples t-test the Paired t-test does a much
better job of Blocking out the effect of other Factors. (See the article
Design of Experiments (DOE) – Part 3 for more on Blocking.) The price
to pay for this is that we need to take twice as many measurements to get
the same value for Sample Size, n. And, all other things being equal, a
larger Sample Size gives a more accurate result in our testing.
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This article, Part 1, gives an overview of t-tests and describes the three
different types. Part 2 describes the calculations and analyses that happen
when t-tests are done.

Related Articles in This Book: t – the Test Statistic and Its Distributions;
Degrees of Freedom; Normal Distribution; Non-parametric; F; Design of
Experiments (DOE) – Part 3; t-tests – Part 2: Calculations and Analyses



t-TESTS – PART 2 (OF 2):
CALCULATIONS AND ANALYSIS

Prerequisite: t-tests – Part 1: Overview

Summary of Keys to Understanding

1. Much the same thing happens in the three types of t-tests
covered in Part 1. There are just different formulas for t
and for the Degrees of Freedom, df.

2. First, identify the Means to be compared and the test type.
Next, select a Significance Level, Alpha (𝛼). Then, collect a
Sample or Samples of data.

3. Then, use the Sample data to calculate some Descriptive
Statistics, t, and the Degrees of Freedom, df.

4. Use the appropriate t-Distribution and Alpha to determine
t-critical.

5. Or use the appropriate t-Distribution and t to determine p.

6. If t ≥ t-critical (equivalently, if p ≤ 𝜶), then there is a Sta-
tistically Significant difference between the Means. Other-
wise, there is not.

t-critical t

pα

Means are different

t-criticalt

p α

Means are not different
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Explanation
Prerequisite: t-tests – Part 1: Overview

1. Much the same thing happens in the three types of t-tests
covered in Part 1. There are just different formulas for t
and for the Degrees of Freedom, df.

t is the Test Statistic for the t-tests. The article in this book, t, the Test
Statistic and Its Distributions says, “t is a measure of how likely it is that
a difference in Means is Statistically Significant.”

Like all Test Statistics, t is calculated from Sample data. Here is a
descriptive formula:

t = difference between two Means
Standard Error

Each of the three types of t-tests compares two Means, but the two
Means are of different types for the different tests. So, the mathematical
formula for the numerator is different for each type of t-test. Likewise,
the mathematical formula for the denominator, the Standard Error, is
different for each type of t-test.

And finally, each type of test has a different formula for the Degrees
of Freedom, df. df is not involved in the formula for t. However, there is
a different t-Distribution for each different value of Degrees of Freedom.
And different Distributions give different values for the Probability of a
given value of t.

You don’t have to memorize these formulas. Spreadsheets or statistical
software can do all these calculations for you once you select the t-test and
provide the data and a value for Alpha, the Level of Significance. However,
you may find these formulas useful in getting a conceptual understanding
of what’s going on in the tests.

t-test t df

1-Sample
x̄ − 𝝁

s∕
√

n
n − 1

2-Sample

x̄1 − x̄2

sp∕
√

1
n1

+ 1
n2

n1 + n2 − 2

Paired
d̄ − 0

sd∕
√

n
n − 1

(n is the number of pairs)
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x̄, x̄1, and x̄2 are Sample Means.
𝝁 is a specified Mean.
d̄ is the Mean of the differences in the two values comprising each pair.
sp is called the “pooled Standard Deviation”; it has its own multi-term

formula.
sd is the Standard Deviation of the differences.

Note the similarities in the formulas for 1-Sample and Paired t-tests.
They are similar in concept, except that the Paired test uses calculated dif-
ferences as the data in its Sample. Usually the formula for t in the Paired test
is shown using x̄1 − x̄2 instead of d̄ − 0. But that can be confusing, since –
as we explained in Part 1 – there are not two Samples involved. There is
a pair of measurements on each test subject (e.g., a worker’s efficiency
measurements before and after training). The differences in the two mea-
surements for each individual become the data values in the single Sample.

2. First, identify the Means to be compared and the test type.
Next, select a Significance Level, Alpha (𝛼). Then, collect a
Sample or Samples of data.

This is the usual sequence in Inferential Statistical analyses. The order
is important.

How to Do a t-test

Step Input Process Output

A.
The situation to be

analyzed

Identify the Means to

be compared

Select a Significance

two Means identified

Null Hypothesis

(optional)

B. Judgment of the tester
Level

Alpha, (often 0.05)

C. Population or Process Collect data
one or two Samples of

data

⇨⇨

Step A: Identify the Means to be compared and the test type.
One will determine the other; see the Part 1 article.
If Hypothesis Testing is to be used, a Null Hypothesis must be stated
at this time. The question or problem to be resolved by the test is stated
in the negative. Examples:

– There is no (Statistically Significant) difference between the Means
of these two Populations.
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– There has been no (Statistically Significant) change in the Mean of
this measurement in the Process from its historical Mean.

– The training has had no (Statistically Significant) effect.

Step B: Select a Significance Level, Alpha (𝜶).
As noted in the article in this book, “Alpha, 𝛼”, in order to keep the
integrity of any test, we must select a value for Alpha, the Level of Sig-
nificance before collecting a Sample of data. The Level of Confidence
is 1 − 𝜶. So, if we want to be 95% confident in our conclusions, we
select 𝜶 = 5% (0.05). This is our clip level for the Statistical Signifi-
cance mentioned in the Null Hypothesis examples above.

Step C: Collect the Sample(s) of data.

3. Then, use the Sample data to calculate some Descriptive
Statistics, t, and the Degrees of Freedom, df.

Step D: Calculate Descriptive Statistics from the Sample data. For the
2-Sample t-test, there will be two sets of x̄, s, n, and df.

Step E: Calculate t.

Step Input Process Output

D. Sample data
Calculations,

counting

Sample Mean: x̄
Sample Std. Deviation: s

Sample Size: n
Degrees of Freedom: df

E.

x̄, s, n
1-Sample test: specify

an estimate or target

for the Population or

Process Mean, (if

applicable)

Calculate t using

the formula

appropriate to the

type of t-test

t

F. df
Table lookup

or software

The t-Distribution
to be used

⇨⇨

Step F: Use the Degrees of Freedom, df, to identify the appropriate
t-Distribution.
A Test Statistic is one which has an associated Probability Distribu-
tion or family of Probability Distributions. t has a different Distribu-
tion for each different value of df. As df gets larger and larger, the
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t-Distribution more closely approximates the Standard Normal Distri-
bution (for which z is the Test Statistic).

4. Use the appropriate t-Distribution and Alpha to determine
t-critical.

Step Inputs ⇨ Process ⇨ Output

G.
Alpha,

the t-Distribution,
1-tailed or 2-tailed

Calculate the boundary
of an area under the curve

t-critical

Given the t-Distribution and the information on whether it’s a 1-tailed or
2-tailed analysis, the t-test uses the Cumulative Probability, Alpha, to
calculate the numerical value, t-critical. Critical values of t are available
in tables, or they can be calculated with spreadsheets or software.

t-critical and Alpha convey the same information. Either one can be
derived from the other along with the t-Distribution.

A t-Distribution is a Probability Distribution pictured as in the curves
below. The horizontal axis is for values of t. The height of the curve over
a given value of t is the Probability of that value. Of more interest is the
Cumulative Probability of a range or ranges of values of t, because Alpha
and p are Cumulative Probabilities. A Cumulative Probability is calcu-
lated as the area under the curve of the range of t-values.

Let’s say we have selected 𝛼 = 5%. So, we shade 5% of the area under
the curves below.

1-tailed
For a 1-tailed (right-tailed or left-tailed) test, we shade either the right-
most or left-most 5% under the curve. In the t-Distributions pictured
below, t-critical is calculated as the value of t which defines the
boundary of the shaded area under the curve representing Alpha.

Right-tailed test: Have our school’s tests scores shown a Statistically
Significant better performance than the national average?

α = 5%

t-axis
0

α = 5%

t-critical 0
t-axis

Left-tailed test: Does our new Process show a Statistically Significant
lowering in our defect rate?
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α = 5%

t-axis
0

α = 5%

-t-critical 0
t-axis

2-tailed test: Has there been a Statistically Significant change (in either
direction) from the historical Process Mean?

For a 2-tailed test, Alpha is split in half, and the halves are positioned
under the left and right tails of the curve.

α/2 = 2.5% α/2 = 2.5%

t-axis
0

α/2 = 2.5% α/2 = 2.5%

-t-critical t-critical 0

t-axis

The t-Distribution is symmetrical about its Mean of zero. t-critical
is the distance from the boundary of a shaded Alpha area to zero. For
a 2-tailed test, the half-Alpha areas are smaller than the full Alpha area.
So, they will begin far out from the center. So, the boundaries marked by
t-critical and its negative will be farther from the center. That means that
the value of t-critical for a 2-tailed Distribution will be larger than that
for a 1-tailed.

Note that the data values in the Sample have nothing to do with
determining the values of Alpha or t-critical. Alpha is a Cumulative
Probability which we choose, and t-critical is calculated from Alpha and
the t-Distribution. (We do use the Sample Size, n, in identifying which t-
Distribution to use, but we don’t use any data values.)

5. Or use the appropriate t-Distribution and t to determine p.

Step H.
t,

the t-Distribution,

1-tailed or 2-tailed
⇨Calculate the area under

the curve from t outward
⇨ p

(aka the p-value)

If we’re going to make an yes or no conclusion – that is, the difference
is or is not Statistically Significant – then Step G and Step H are redundant.
Comparing t to t-critical gives us exactly the same answer as comparing p
to Alpha.

However, as explained in the article “p, p-value” some testers use the
p-value to define different gradations of how strong the evidence is against
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the Null Hypothesis. For example, p < 0.05 may be considered “moderate”
evidence against, while p < 0.01 is considered “strong” evidence.

The situation with p and t is kind of the reverse of the situation with
Alpha and t-critical. To find the value of p, we start with the value of t,
which forms the boundary for an area under the curve of the appropriate
t-Distribution. p, then, is the Cumulative Probability of the area under
the curve along a tail which is bounded by t.

t

p

0t0

p is the Probability of an Alpha Error. (An Alpha Error is also known
as a Type I Error, or a False Positive. It is the Probability that the test will
falsely conclude that there is a Statistically Significant difference between
the two Means, when in fact there is not a Statistically Significant differ-
ence.)

Exactly like Alpha and t-critical, t and p convey the same informa-
tion. If you know the value of one and which t-Distribution to use, you can
calculate the value of the other.

6. If p ≤ 𝜶 (equivalently, if t ≥ t-critical), then there is a Sta-
tistically Significant difference between the Means. Other-
wise, there is not.

Step I. t and t-critical

and p
⇨Is t ≥ t-critical?

or (same thing)

Is p ≤ ?

⇨
Yes: There is a difference;

reject the Null Hypothesis (H0)

No: There is no difference;

Accept/Fail to Reject H0

The shaded area representing Alpha is sometimes called the Rejec-
tion Region. If t is in this region – as in the left graph below – then the
Null Hypothesis is Rejected. Conversely, the unshaded area outside Alpha
(1 – 𝛼) is called the Acceptance Region. If t is in this area – as in the right
graph – we Accept (Fail to Reject) the Null Hypothesis.

t

1 – α
Acceptance 

Region

Rejection 

Region (α)

t

Rejection 

Region (α)
1 – α

Acceptance 
Region
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If p ≤ 𝜶 or t ≥ t-critical (these two comparisons are statistically identi-
cal)

We said earlier that “t is a measure of how likely it is that a difference
in Means is Statistically Significant.” So the larger the value of t, the
more likely it is that the difference is Statistically Significant (and that
we reject the Null Hypothesis).

What factors make t larger? Let’s look at the generic formula for t:

t = difference between two Means
Standard Error

So, a larger difference between the two Means and/or a smaller Standard
Error would make t larger. A generic formula for Standard Error is:

Standard Error = s∕
√

n

This gives us:

t =
(difference between two Means) (square root of Sample Size)

Standard Deviation

So, these things will make t larger:
� a larger difference in the Means
� a larger Sample Size
� less Variation in the Sample data

And if t is large enough, (t ≥ t-critical), then we conclude that there
is a Statistically Significant difference, that is, we Reject the Null
Hypothesis.

(Alpha is the shaded area in the diagrams below; p is the hatched area.)

t-critical t

pα

Means are different

A larger t means that t is farther away from the Mean and farther out on
the tail. This makes p, the area bounded by t smaller. You can see how t>
t-critical means that p (the hatched area) must be less than Alpha (shaded
area). (Note, to avoid the visual becoming too cramped, the Alpha pic-
tured above is considerably larger than the usual 5%)
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If p > 𝜶 or t < t-critical (these two comparisons are statistically identi-
cal)

t-criticalt

p α

Means are not different

If the calculated value of t is < t-critical, then t is inside the Acceptance
Region – the unshaded area which includes the center of the Distribu-
tion. t being smaller than t-critical makes p larger than Alpha.

We conclude that there is not a Statistically Significant difference
between the two Means we are comparing. In Hypothesis Testing, we
Accept (Fail to Reject) the Null Hypothesis (which states there is no
difference).

Confidence Intervals
Hypothesis Testing and Confidence Intervals are the two major methods
of Inferential Statistics. Instead of comparing p to Alpha, or t to t-critical,
as in Hypothesis Testing, it is logically and statistically equivalent to
use Confidence Intervals. These are provided by the software used in t-
tests. Confidence Intervals are in units of the data, x, not t. (See the articles,
Confidence Intervals – Parts 1 and 2.)

t-test If . . . then

1-Sample the specified Mean
is within the

Confidence Interval
there is not a Statistically

Significant difference.
2-Sample

zero
Paired

Related Articles in This book: t-tests – Part 1: Overview; t, the Test Statis-
tic and Its Distributions; Alpha, p-Value, Critical Value and Test Statistic –
How They Work Together; Confidence Intervals – Parts 1 and 2; Critical
Values; Degrees of Freedom; Hypothesis Testing; Null Hypothesis; Stan-
dard Error; Standard Deviation; p, t, and F: “>” or “<” ?; Alpha and
Beta Errors



TEST STATISTIC

Summary of Keys to Understanding

1. A Statistic is a numerical property calculated from Sam-
ple Data. A Test Statistic is one which has an associated
Probability Distribution.

2. There are four commonly used Test Statistics: z, t, F, and
𝝌

2 (Chi-Square). They are used in a variety of tests in
Inferential Statistics.

Test Statistic Used for

z Comparing Proportions,
Comparing Means

t Comparing Means

F Comparing Variances

𝝌
2

Comparing Variances,
Determining Independence,
Determining Goodness of Fit

3. A higher value for the Test Statistic tells us that the Sam-
ple is likely to be more accurate as a representative of the
Population or Process as a whole.

4. The calculated value for a Test Statistic is a point on the
horizontal axis of the Test Statistic’s Distribution. It marks
the boundary for p, the Probability of an Alpha Error.

5. If Test Statistic ≥ Critical Value (this is statistically identical
to p ≤ 𝛼), we conclude that there is a Statistically Signifi-
cant difference, change, or effect. That is, we Reject the Null
Hypothesis.

385
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Explanation
This article is an overview of the concept of Test Statistic. There are indi-
vidual articles providing additional detail on each of the four Test Statistics
covered here.

1. A Statistic is a numerical property calculated from Sam-
ple Data. A Test Statistic is one which has an associated
Probability Distribution.

A Statistic distills the information contained in the multiple data values
of a Sample into a single number which is used to describe the Sample. For
example, the Mean is a Statistic which describes the center of the Sample’s
data, and the Standard Deviation describes how widely spread the data are.
But, if we know the value of one of these Statistics in a Sample, say the
Mean = 172 cm, that’s the end of the story.

A Test Statistic, on the other hand, is associated with a Probability Dis-
tribution or a family of such Distributions. Given a value for the Test Statis-
tic, we can use the Distribution to tell us how likely that value is. It gives
us a Probability. It also gives us a Cumulative Probability for all the values
less than or greater than that value of the Test Statistic. This is very useful
in Inferential Statistics, as we will see.

2. There are four commonly used Test Statistics: z, t, F, and
𝝌

2 (Chi-Square). They are used in a variety of tests in
Inferential Statistics.

Test Statistic Used for

z Comparing Proportions,
Comparing Means

t Comparing Means

F Comparing Variances

𝝌
2

Comparing Variances,
Determining Independence,
Determining Goodness of Fit

In Inferential Statistics, unlike Descriptive Statistics, we don’t have
access to all the data in the Population or Process. So, we take a Sample
and use that to estimate a property of the Population or Process. Being an
estimate, there is a Probability of error. The Probability Distributions
associated with Test Statistics enable us to precisely determine the
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Probability of error inherent in our estimates from Sample data. This
is why Test Statistics are so valuable, they bring known Probabilities to the
analysis.

z is the Test Statistic associated with the Standard Normal Distri-
bution,

the Normal Distribution with a Mean of 0 and a Standard Deviation of
1. If we assume that the x data in the Population or Process follow
this Distribution, we can use z to tell us what is the Probability of
exceeding (or being less than) a given value for x.

And, as described in the article Proportions, z can also be used to solve
problems involving Proportions of 2-category Count data.

z can also be used in determining whether there is a Statistically Signifi-
cant difference between a Sample Mean and a specified Mean. However,
problems involving Means are better solved using the t Test Statistic.
This is true when the Population or Process Standard Deviation (𝜎) is
not known and for “small” Sample Sizes, e.g., n < 30 (some experts say
when n < 100).

z is unique in only having one associated Distribution. The other Test
Statistics are all associated with families of Distributions, a different
Distribution for each different value of Degrees of Freedom (which is
calculated from the Sample Size).

t is the preferred Test Statistic for solving problems involving Means.

The formula for t involves the Sample Size, n. This means that there are
different t-Distributions for different values of n. Consequently, t self-
adjusts for small Sample Sizes. This is why t should be used instead of
z for problems involving Means when the Sample Size is small (n < 30,
although some say n < 100).

There are three different t-tests, differentiated by the types of Means
that they compare:

t-test Means being compared

1- Sample Sample Mean to a specified Mean

2-Sample Means of Samples from two different Populations or Processes

Paired Mean of the differences in pairs of measurements to a Mean
of zero

F is the Test Statistic for comparing two Variances.

F is simply the ratio of the Variances of two Samples. The F-test will
tell us whether there is a Statistically Significant difference between
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the two Variances. This is analogous to what the 2-Sample t-test does
with Means.

Data sets are often succinctly described by giving their Mean (for a
description of the center) and Standard Deviation (to describe the Varia-
tion). Variance is the square of the Standard Deviation. So, often a t-test
and an F-test can be used to determine if there is a Statistically Signifi-
cant difference between the two sets of data.

“Equal” Variance is also a prerequisite for using a number of statistical
tests. The F-test can be used to determine this.

Also, the F-test is used – in a very creative way – to determine if there
is a Statistically Significant difference among three or more Means. See
the article ANOVA – Part 2: How it Does It.

Chi-Square is a very versatile Test Statistic used in three tests.

The Chi-Square Test for the Variance is analogous to the 1-Sample t-
test. It compares the Variance calculated from a Sample with a specified
Variance. The Variance we specify could be a target value, a historical
value, or an estimate.

The Chi-Square Test for Goodness of Fit can be used to determine
whether Sample data

– fit a specified set of values (e.g., our predicted values)
– fit a Discrete or Continuous Distribution

The Chi-Square Test for Independence can be used to determine whether
two Categorical Variables are Independent or Associated. (e.g., gender
and fruit juice preference.)

There are separate articles in this book for each of these three tests.

3. A higher value for the Test Statistic tells us that the Sam-
ple is likely to be more accurate as a representative of the
Population or Process as a whole.

Here we’re defining “more accurate” as having a lower Probability of
an Alpha (False Positive) Error. That is, it has a lower Probability of lead-
ing to a conclusion that there is a Statistically Significant Difference,
when – in reality – there is not.

t

t
 𝞪 Error

 𝞪 Error
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To illustrate, let’s look at the formula for the Test Statistic t in the 2-
Sample t-test

t =
(difference between two Sample Means)

√
n

s

Let’s start with the difference between the two Means in the numerator.
It stands to reason that, it would be highly unlikely to have a huge difference
between the data values in the two Samples if there were no difference in
the two Populations.

The Sample Size is also in the numerator (although the magnitude of its
influence is mitigated by the square root). It also makes sense that a larger
Sample would be less likely to be very unrepresentative of the Population.

The Standard Deviation, s, is in the denominator. So, the smaller the
Variation in the data, the more consistent it is, and thus the more likely that
the Sample would be representative.

All this is an attempt to explain in common-sense fashion why a Test
Statistic is a measure of how accurate our Sample is likely to be. Let’s now
look at the statistics of it.

4. The calculated value for a Test Statistic is a point on the
horizontal axis of the Test Statistic’s Distribution. It marks
the boundary for p, the Probability of an Alpha Error.

Using a formula like the one for t shown above, we calculate the value
of the Test Statistic from the Sample data. We plot this value on the hor-
izontal axis of the Test Statistic’s Distribution. This marks the boundary
for the area under the curve beyond (farther from the Mean than) the
calculated value of the Test Statistic. This area is p, the Probability of
an Alpha (False Positive) Error.

Test Statistic 
value

p

Probability Distribution 
curve for Test Statistic

Sample data

You can see that, if the Test Statistic is larger, the boundary it
forms is farther to the right, resulting in the area representing p being
smaller. This is how a larger value for the Test Statistics results in a
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smaller Probability of Alpha Error. Conversely, a smaller value for the
Test Statistic moves the boundary to the left, resulting in a larger p, a larger
Probability of Alpha Error.

5. If Test Statistic ≥ Critical Value (this is statistically identical
to p ≤ 𝛼), we conclude that there is a Statistically Signifi-
cant difference, change, or effect, that is, we Reject the Null
Hypothesis.

How large does the Test Statistic need to be in order for us to conclude
that any difference, change, or effect observed in the Sample is Statistically
Significant for the Population or Process as a whole? Larger than its Critical
Value.

In Inferential Statistics, one of the first steps is to select a value for Alpha
(𝛼), the Level of Significance. Most commonly, 5% is selected. This is a
clip level for p. It defines the boundary between those values of p which
lead to a conclusion of Statistically Significant and those that do not. So, as
shown in the table below, we could compare p to 𝛼 to come to a conclusion.

Alternately, we could take the value for Alpha, plot it as an area under
the curve, and calculate its boundary. This boundary is the Critical Value
(t-critical below).

Comparing the Cumulative Probabilities (areas under the curve) 𝛼 and
p is statistically identical to comparing the point values of the Test Statistic
and the Critical Value of the Test Statistic. The table and diagrams below
illustrate all this.

p ≤ α
t ≥ t-critical

p > α
t < t-critical

The observation from the Sample

data is an accurate estimate for the

Population or Process as a whole.

True False

Null Hypothesis

The observed difference, change, or

effect is: 

Reject
Accept (Fail to

Reject)

Areas under the curve (right tail)

α: p:
t-critical t t t-critical

Statistically

Significant

not Statistically

Significant
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To reinforce your understanding of how these concepts work together,
it may be a good idea to read the article Alpha, p, Critical Value, and Test
Statistic – How They Work Together.

Related Articles in This Book: Inferential Statistics; Distributions – Parts
1–3; z; Normal Distribution; Proportion; F; ANOVA – Part 2; t – the Test
Statistic and its Distributions; t-tests – Parts 1 and 2; Chi-Square—the Test
Statistic and its Distributions; Chi-Square Test for Goodness of Fit; Chi-
Square Test for Independence; Chi-Square Test for the Variance; Alpha,
𝛼; p, p-Value; Critical Value; Alpha, p, Critical Value, and Test Statistic –
How They Work Together; p, t, and F: “<” or “>” ?



VARIABLES

Summary of Keys to Understanding

1. A Variable is a fundamental mathematical construct
which represents entities that can be measured or counted,
resulting in more than one value of the Variable.

2. Continuous Variables (aka “Measurement” or “Vari-
ables” Variables) represent entities that can be measured,
resulting in Continuous data.

0.40

–3 –2 –1 0 +1 +2 +3
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0.00

0.300

0.200

0.100

0.000
0

Discrete data DistributionContinuous data Distribution

1 2 3 4 5 6 7 8 9 10 Xx

Prob(X)

Prob(x)

3. Categorical Variables (aka “Nominal” or “Attributes”
Variables) represent entities that can be counted, resulting
in Discrete data.

Categorical Variable gender

values of the Variable (the categories) female male

Counts within each category 53 47

4. A Dependent (aka Response) Variable, y, is a function of
one or more Independent (Factor) Variables, x’s.

y = f (x1, x2,… , xn)

5. A Random Variable is one whose values are determined by
chance.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.
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Explanation

1. A Variable is a fundamental mathematical construct
which represents entities that can be measured or counted,
resulting in more than one value of the Variable.

If you look up “Variable” in five different books or websites, you may
find five different definitions saying somewhat different things. Since there
does not appear to be an official or consensus definition, let’s try the one
above.

Given how ill-defined and widely encompassing this concept is, our def-
inition has to be somewhat abstract. But don’t worry, we get down into the
details and examples soon enough.

A Variable is a fundamental . . .

“Fundamental” is used to distinguish a Variable from a function,
which might otherwise also fit the definition. (In this usage, a func-
tion, like y = a1x1 + a2x2 + b, is not fundamental, because it can con-
tain Variables.)

. . . mathematical construct which represents entities . . .

A Variable does not exist in the real world. It can be used to represent
things that do. It can also be used to represent entities that don’t, such
as other mathematical constructs.

. . . that can be measured or counted,

Numerical Variables, like length or weight, can be measured. But
even non-numerical Categorical Variables, like gender (which has the
non-numerical values of “female” and “male”), can give us numerical
Counts.

. . . resulting in more than one value of the Variable.

That’s the whole point of a Variable – it represents entities that can
vary in value. Otherwise it would be a Constant, not a Variable.

2. Continuous Variables (aka “Measurement” or “Variables”
Variables) represent entities that can be measured, result-
ing in Continuous data.

Examples are length, weight, and temperature. Theoretically, Contin-
uous Variables can take on an infinite number of values between any two
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values. This would give a smooth curve for a Probability Distribution. Prac-
tically speaking, things that have a lot of values without being infinitely
divisible (e.g., money) can be treated as Continuous Variables/data.

The main reason that there is a distinction between Continuous and Dis-
crete data is that two different types of Probability Distributions are used
for the two different types of Variables/data. See the article, Distributions –
Part 3: Which to Use When.
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3. Categorical Variables (aka “Nominal” or “Attributes” Vari-
ables) represent entities that can be counted, resulting in
Discrete data.

Let’s say we’re interested in determining whether there was a Statisti-
cally Significant difference between the number of men and women who
shopped at a certain store. We took a Sample of 100 people as they entered
the store.

Categorical Variable gender

values of the Variable (the categories) female male

Counts within each category 53 47

� The Categorical Variable is gender.
It classifies the test subjects by a non-numerical Attribute.

� The values of the Variable are the names (hence “Nominal”) of the
categories.

� The data is the Count within each category.

Count data can be collected for Categorical Variables. Count data
are Discrete; they can only consist of non-negative integers, such as 0, 1,
2, 3 . . .
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Ordinal Variables are a type of Categorical Variable. In this type, the cat-
egory names convey an implicit ordering, but there is no explicit numerical
value associated with each category name. Examples are “good,” better,”
“best” or “beginner,” “intermediate,” “advanced.”

Numerical and non-numerical: Variables are sometimes classified into
two groups – numerical and non-numerical. Categorical Variables are clas-
sified as non-numerical, because their values are category names, not num-
bers. However, this can be confusing, because, as we have seen, numerical
data, in the form of Counts, are collected for Categorical Variables.

Bins can be used to change Continuous data into Counts of a Cate-
gorical Variable.

The Bins can be names of ranges, e.g., Continuous data: weight in
pounds. The values of the Categorical Variable called “Weight” would then
be the names of the ranges:

categories (bins) “<100” “101 to 125” “126 to 150” “151 to 200” “>200”

Counts 22 49 117 53 19

4. A Dependent (aka Response) Variable, y, is a function of
one or more Independent (Factor) Variables, x’s.

y = f (x1, x2,… , xn)

We run into this classification of Variables in ANOVA, Regression, and
Design of Experiments. There is a cause (Independent Variables) and an
effect (Dependent Variable) relationship implied. This is a stronger rela-
tionship than Correlation or Association.

The Independent Variable(s) (the x’s) can take on values independently.
But the value of the y Variable is Dependent on the values of the x Vari-
able(s).

Synonyms:

x Independent
Variable

Cause Predictor Variable Explanatory Variable

y Dependent
Variable

Effect Outcome
Variable

Response
Variable

Criterion Variable

5. A Random Variable is one whose values are determined by
chance.
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For example, the number of heads in 10 coin flips or the number of
shoppers entering a store in a 15-minute interval. Random Variables can
have either Discrete or Continuous data. So all data collected in random
Samples could be expressed as Random Variables.

A Binomial Random Variable is one that has only two values, for exam-
ple, heads or tails, green or not green, defective or not defective, and which
meets the other requirements for using the Binomial Distribution. See the
article Binomial Distribution.

Related Articles in This Book: Distributions – Part 1: What They Are;
Distributions – Part 3: Which to Use When; Binomial Distribution; Chi-
Square Test for Independence; Regression – Part 2: Simple Linear



VARIANCE
Symbols: 𝜎2, s2, V(x), VAR(x), Var(x)

Summary of Keys to Understanding

1. Variance is a measure of Variation about the Mean.

2. Variance of a Population or Process: 𝝈
2 =

∑
(xi −𝝁)2

N

Variance of a Sample: s2 =
∑

(xi − x̄)2

n− 1
There are also formulas for the Variance of Random Variables.

3. Variance is of limited practical use, because it is expressed
in units which are squares of the units of the data, e.g.,
square kilograms, square gallons, square IQ points.

The Standard Deviation is the square root of the Vari-
ance.

It is more useful and more used than Variance, because it
is in the same units as the data, e.g., kilograms, gallons, IQ
points.

4. The Squaring is done to convert negative differences (for
values less than the Mean) into positive numbers, so that they
don’t cancel out the positive differences.

Absolute Values would do the same thing, but there are
advantages to squaring.

5. The F-test compares the Variances from two Samples.

The Chi-Square Test for the Variance compares the Vari-
ance calculated from one Sample of data to a Specified
Variance.

6. Equal Variance – which can be determined via the F-Test or
Levene’s Test – is a requirement for being able to perform
a number of Inferential Statistical analyses.

397
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Explanation

1. Variance is a measure of Variation about the Mean.

Variation (also known as Variability, Dispersion, or Spread) is one of three
categories of descriptors for a Population or a Distribution or a Sample. The
other two categories are Central Tendency (e.g., Mean, Mode, Median) and
Shape (Skewness and Kurtosis).

Variance is one of several measures of Variation. Others include Range
and Standard Deviation (the latter of which is derived from Variance).

Let’s look at three admittedly unusual Populations in order to demon-
strate a few points.

Population A:   –50, –40, –30, –20, –10, 0, 10, 20, 30, 40, 50 

Population B:   (5 values at –50 and 5 at 50) 

Population C:   –50, –20, –20, –10, –10, –10, 0, 0, 0, 0, 10, 10, 10, 20, 20, 50 

Population A

0–50 50

Population C

0–50 50

Population B

0 50–50

The first thing we might notice is that, while they are very different, they
have the same Mean: 0. So, a measure of Central Tendency like the Mean
is not sufficient to describe a Distribution. Adding a measure of Variation
(also known as Variability, Dispersion, or Spread) would be helpful. But
which measure of Variation?

Range is a somewhat limited measure. It defines the boundaries of a
set of values, but it doesn’t tell you much about what happens in between.
For example: Populations A, B, and C all have the same Range: 100 (from
−50 to +50). But they are very different in whatever other definition of
Variation we may want to have.

We need a more descriptive measure of Variation. It would be good
if we could somehow quantify the degree of “clustering” around the
Mean. Clustering is good to emphasize, because it measures how accurate
a Sample is likely to be in estimating a property of a Population. (And this
is the central purpose of Inferential Statistics.)

How might we go about this? Maybe we could calculate the average
distance of the data values from the Mean.

Average distance From the Mean = (Σ(xi) – 𝜇)/N
Since the Mean (𝜇) is zero for Populations A, B, and C, we would be

subtracting zero. So, we just sum the individual data values. Here we’ll
re-sequence the individual values to make a point more obvious:
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Sum of the data Values:

Population A: −50 + 50 + −40 + 40 + −30 + 30 + −20 + 20 + −10 +
10 + 0 = 0

Population B: −50 + 50 + −50 + 50 + −50 + 50 + −50 + 50 + −50 +
50 = 0

Population C: − 50 + 50 + −20 + 20 + −20 + 20 + −10 + 10 + −10 +
10 + −10 + 10 + 0 + 0 + 0 + 0 = 0

No need to go any farther; we can see this is not going to work. The
average distance from the Mean will always be zero. In retrospect, this
is not surprising, since the very nature of the Mean guarantees that this
will happen. Some values will be less than the average (yielding negative
values for differences) and some more (yielding positive values). And these
negatives and positives average each other out.

There are two ways to change negatives to positives – square them or use
their absolute value. The Variance uses the squaring method. The reason
why is explained in Key to Understanding #4.

2. Variance of a Population or Process: 𝝈
2 =

∑
(xi −𝝁)2

N

Variance of a Sample: s2 =
∑

(xi − x̄)2

n− 1
There are also formulas for the Variance of Random Variables.

Where
𝝈 is the Standard Deviation of the Population or Process
s is the Standard Deviation of the Sample
xi represents the individual data values
𝝁 (mu) is the Population or Process Mean
x̄ is the Sample Mean
N is the number of items in the Population or Process
n is the number of items in (the Size of) the Sample

Note that the symbols for the Variance are the squares of the symbols
for Standard Deviation.

The formula for the Population or Process divides by N. But the for-
mula for the Sample divides by the Sample Size minus 1. This gives us
a somewhat larger value for any given Sample Size. How much larger is
dependent on the Sample Size. The effect on the Variance of using n – 1 is
larger for small Sample Sizes.
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n n − 1 % difference

5 4 20%

100 99 1%

The n − 1 adjustment accounts for the fact that small Samples will give
less accurate estimations of the Population or Process Standard Deviation
than will larger Samples. So, Variances of small Samples will generally
be larger than those of large Samples.

There are also formulas for the Variance of Random Variables. The for-
mulas above are for data values which we can measure in a Population,
Process, or Sample. Random Variables take on values due to chance. They
are described by Probability functions. So, the formulas for Variance can
use these Probability functions, P(x), to predict values for summing.

Variance of a Discrete (countable) Random Variable:

Var(X) = P(Xi)𝚺(Xi −𝝁)2

where 𝜇 is the Expected Value.

Variance of a Continuous Random Variable:
Continuous variables can take on an infinite number of values, so they can’t
be summed like Discrete Variables. The integral is used in place of the sum:

Var(x) = P(xi)
∫

(xi −𝝁)2

Variance of a Binomial Random Variable:

Var(x) = np(1− p), where p is the Proportion

3. Variance is of limited practical use, because it is expressed
in units which are squares of the units of the data, e.g.,
square kilograms, square gallons, square IQ points.

The Standard Deviation is the square root of the Vari-
ance.

It is more useful and more used than Variance, because it
is in the same units as the data, e.g., kilograms, gallons, IQ
points

These squared units have either no meaning − e.g., square kilograms,
square gallons, square IQ points, or they are misleading − e.g., square kilo-
meters. As a result, Variance often serves only as an interim point in the
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calculation of the Standard Deviation, which is the square root of the Vari-
ance. The Standard Deviation is in the same units as the data – e.g., kilo-
grams, gallons, IQ points, or kilometers.

However, special types of Variances appear as interim steps in calcula-
tions in some statistical analyses. For example, if we use a generic descrip-
tion of Variance as

Variance = Sum of Squares∕Degrees of Freedom,

then Mean Sums of Squares Within (MSW) and Mean Sums of Squares
Between (MSB) are two types of Variances used in ANOVA. See the article
ANOVA − Part 2: How it Does It.

4. The Squaring is done to convert negative differences (for
values less than the Mean) into positive numbers, so that they
don’t cancel out the positive differences.

Absolute Values would do the same thing, but there are
advantages to Squaring.

Why not just use the absolute values instead of squaring? After all,
one usually reverses the squaring in the Variance by taking the square root
to calculate the Standard Deviation. It makes sense to think of the absolute
value first, when you want to change negative numbers to positive numbers.
In fact, there are measures – variously called the Average Absolute Devi-
ation or the Mean Absolute Deviation – which do just that. Compared to
Variance, these downplay the effect of outliers. And that may be desirable
for some uses.

By using squares, Variance confers an outsized significance on val-
ues far from the Mean. In order to have a relatively low value for Vari-
ance, the values have to be clustered close to the Mean. Data points far
outside have a disproportion impact on the value of the Variance. In addi-
tion to avoiding square units, this is another reason why Standard Deviation
is used more often than Variance. The Variance’s overemphasis of far-out
values can be mitigated to a significant degree by taking the square root of
the Variance, yielding the Standard Deviation.

The following table illustrates this with some admittedly extreme Pop-
ulations. Note that Populations D and E have exactly the same data
values, with one exception: Population D has one outlier at −50. This
makes its Range triple that of Population E, and its Variance is almost
four times as much. But its Standard Deviation is only about twice
as much.
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Range 100 60 20

Avg. Absolute Dev. 27.3 8.7 5.7

Variance 1000 220 57

Standard Deviation 32 15 7.6

0–50 50

Population A Population D

0 50–50 –50

Population E

0 50

But, the main reason for using squaring is that, it is simpler to math-
ematically manipulate squares than absolute values. This is due to the
so-called “Pythagorean” Theorem of Statistics. For Variances, this says
that, if X and Y are independent Random Variables, then

Var(X ± Y) = Var(X) + Var(Y)

So, a number of statistical formulas and calculations use the Variance
through the initial calculation steps and then calculate the Standard Devi-
ation from the Variance.

5. The F-test compares Variances from two Samples.

The Chi-Square Test for the Variance compares the Vari-
ance calculated from one Sample of data to a Specified
Variance.

If we want to know whether there is a Statistically Significant difference
in the Variation of two Populations or Processes, we would use the F-test.
The F-Test Statistic is simply the ratio of the two Variances.

If, however, we’re interested in the Variation in one Population or Pro-
cess, and we want to know whether there is Statistically Significant differ-
ence between that Variance and a specified value, then we would use the
Chi-Square Test for the Variance. The specified value could be something
like a target – say, a national average (for which we would not have the
underlying data) – or a historical level, say the usual Variation in a manu-
facturing process.

If you’re familiar with t-tests, it may help to think of the F-test as
being analogous to the 1-Sample t-test, while the Chi-Square Test for
the Variance is analogous to the 2-Sample (aka Independent Samples)
t-test.
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6. Equal Variance – which can be determined via an F-Test or
Levene’s Test – is a requirement for being able to perform
a number of Inferential Statistical analyses.

. . . including ANOVA, the 2-Sample t-test, Residuals in Multiple
Regression.

Related Articles in This Book: Variation/Variability/Dispersion/Spread;
Standard Deviation; Binomial Distribution; ANOVA – Part 2: How it Does
It; F; Chi-Square Test for the Variance; Nonparametric



VARIATION/VARIABILITY/
DISPERSION/SPREAD

Summary of Keys to Understanding

1. Variation (also known as Variability, Dispersion, and Spread)
is one of three major categories of measures describing a
Distribution or data set.

Larger Variation 
Smaller

Variation

2. There are a number of different measures of Variation –
each with its pros and cons.

Range
InterQuartile
Range (IQR)

Variance
Mean Abs.
Deviation

(MAD)

Standard
Deviation

Effect of
very high
or very
low values

Is defined
by highest
and lowest

None
Overly

emphasized
by Squaring

Handled
the same as

other
values

Somewhat
dispropor-

tionate

Identifies
Clustering
around
Mean

N Y Y Y Y

Is in Units
of the data

Y Y N Y Y

Use
Least useful
in statistics

In Box-and-
Whiskers

Plot

For
calculating
Standard
Deviation

Least
Common

Most
Common

3. Distributions are often succinctly described by stating the
Mean (for Central Tendency) and the Standard Deviation
(for Variation).
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Explanation

1. Variation (also known as Variability, Dispersion, and Spread)
is one of three major categories of measures describing a
Distribution or data set.

A fifth synonym is “Scatter.” The other two categories are Central Ten-
dency (Mean, Mode, Median) and Shape (Skew and Kurtosis).

The Distribution can be of a Population, Process, Sample, or other data
set.

Larger Variation
Smaller 
Variation

2. There are a number of different measures of Variation –
each with its pros and cons.

Range
InterQuartile
Range (IQR)

Variance
Mean Abs.
Deviation

(MAD)

Standard
Deviation

Effect of
very high
or very
low values

Is defined
by highest
and lowest

None
Overly

emphasized
by Squaring

Handled
the same as

other
values

Somewhat
dispropor-

tionate

Identifies
Clustering
around
Mean

N Y Y Y Y

Is in Units
of the data

Y Y N Y Y

Use
Least useful
in statistics

In Box-and-
Whiskers

Plot

For
calculating
Standard
Deviation

Least
Common

Most
Common

This is not an exhaustive list.
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Range:
Range is simply the difference between the highest and lowest values.
It may be the least useful in statistics. It only tells you about two

values – out of the many which may be in the Distribution or dataset. It
tells you nothing of the values in between the highest and lowest values.

InterQuartile Range (IQR):
The InterQuartile Range provides information on 50% of the data val-

ues, which is why it is also called the “middle 50.” It is the Range of the
values around the Mean which comprise 50% of the total values.

The lower boundary value of the IQR box in the diagram below is called
the 25th percentile, and the upper boundary value is called the 75th per-
centile. This is because 25% (one quarter) of the Distribution’s values are
below the lower limit of the IQR, and 25% are above the upper limit of the
IQR. The 50th percentile is, by definition, the Median.

The IQR is used to define Outliers and Extremes.
IQRs are often depicted via Boxplots – or Box-and-Whiskers Plots, such

as the one below.

1.5 Box Lengths 1.5 Box Lengths

Percentiles
25th 50th 75th OutliersOutliers

5030 7040 60100 20 10080 90

IQR

cm

IQR Box

The box defines the boundaries of the “middle fifty.” The IQR (Box
Length) in this example is 20 cm (50 – 30). The thickness (height) of the
box is meaningless; it just serves to make the rectangular shape that differ-
entiates the box from the “whiskers” to the left and right.

1.5 box length is 30 cm. Outliers and Extremes are any values outside
1.5 box lengths and 3 box lengths, respectively, beyond from the 25th and
75th percentile.

The Box-and-Whiskers Plot is very useful for conveying a lot of infor-
mation visually. Showing several vertically oriented Boxplots together is
a good way to compare the Variations of several data sets. See the article
Charts, Graphs, Plots – Which to Use When.

Variance:
There is a separate article on Variance. But briefly, it is the average of the

squares of the distances of each data value from the Mean. Its units are the
square of the data units (e.g., square gallons, square degrees Centigrade,
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etc). As a result it is not very useful by itself. Its main use is as an interim
step in calculating the Standard Deviation – which is its square root.

Mean Absolute Deviation (MAD):
MAD is the average (unsquared) distance of the data points from the

Mean. It is useful when it is desirable to avoid emphasizing the effects of
outliers. But it is not very common. It is in the same units as the data.

Standard Deviation:
The Standard Deviation is the most commonly used measure of Varia-

tion. It is the square root of the Variance. As a result, it is in the same units
as the data. See the article Standard Deviation.

3. Distributions are often succinctly described by stating the
Mean (for Central Tendency) and the Standard Deviation
(for Variation).

The Mean is the most common and most useful measure of Central Ten-
dency, and the Standard Deviation is the same for Variation. The two are
often quoted together to portray a Distribution.

One reason for this is that the percentages of the values which fall within
a given number of Standard Deviations from the Mean have been deter-
mined. For a Normal Distribution, they can be stated very precisely. How-
ever, for any Distribution, lower-bound estimates are known.

1 2 3 4 

Normal Distribution (Empirical 
Rule) 

68.5% 95.5% 99.7% 

All Distributions (Chebyshev's 
Theorem)   

>75% >88.9% >93.7% 

Percent of Values Found within this Number
of Standard Deviations from the Mean 

Related Articles in This Book: Distributions – Part 1: What They Are;
Variance; Standard Deviation; Charts, Graphs, Plots – Which to use When



WHICH STATISTICAL TOOL TO USE
TO SOLVE SOME COMMON
PROBLEMS
There are similar “Which to Use When” articles for Charts/Graphs/Plots,
for Control Charts, and for Distributions. They can be found in this book
alphabetically by the topic name.

EXPECTED FREQUENCIES vs. OBSERVED COUNTS

Problem/Question/Need
Tool

(article which describes it)

Is our prediction of Expected percentages a
good fit with the actual Observed data
subsequently collected?
For example, We predict the following
allocation of customers at our bar by day of the
week: M – Th 12.5% each:, Fri 30%, Sat 20%

Chi-Square Test for
Goodness of Fit

(article by the same name)

FITTING A FUNCTION (line or a curve) to DATA

Problem/Question/Need
Tool

(articles which describe it)

What is the straight-line (y = bx +
a) function (Model) that describes
the relationship between one
independent (Factor) Variable x
and the dependent (Response)
Variable y?
For example, Total crop harvested
as a function of acres planted.

First: Scatterplot and Correlation
analysis to verify linear Correlation.

(Charts, Plots, and Graphs – Which to
Use When; Correlation – Parts 1 and 2)

Then, Simple Linear Regression
(Regression – Part 2: Simple Linear)

What is the straight-line (y = b1x1
+ b2x2 + . . . + bnxn) function
(Model) that describes the
relationship between multiple
independent (Factor) Variables
and the dependent (Response)
Variable?
For example, House price as a
function of the number of bedrooms
and bathrooms.

First: Scatterplots and Correlation
analyses to verify linear Correlation
between each x Variable and the y

Variable – and not between x variables
(Charts, Plots, and Graphs – Which to

Use When; Correlation – Parts 1 and 2)
Then, Multiple Linear Regression

(Regression – Part 4: Multiple Linear)

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
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FITTING A FUNCTION (line or a curve) to DATA (Continued)

Problem/Question/Need
Tool

(articles which describe it)

What is the nonlinear function
(Model) that fits a curve y = f(x)
to the data?

Simple Nonlinear Regression
(Regression – Part 5: Simple Nonlinear)

How do I validate a Regression
Model?
Not with the data used to produce it.
A controlled experiment must be
used to test predictions from the
Model with new data.

Design of Experiments (Design of
Experiments, DOE – Parts 1–3)

INDEPENDENCE of Categorical Variables

Problem/Question/Need
Tool

(articles which describe it)

Are the Proportions associated with categories
of one Categorical Variable influenced by
those of a second Categorical Variable?
For example, Is the preference for a “flavor of ice
cream” (which is the Categorical Variable with
values of “chocolate,” “strawberry,” and
“vanilla”) influenced by gender (the Categorical
Variable with values “male” and “female”)?

Chi-Square Test for
Independence

(article by the same name)

MEANS – Measurement/Continuous data
These all assume data which are roughly Normal. For non-Normal data, use

the Median.

Problem/Question/Need
Tool

(article which describes it)

Is this Mean different from a specified Mean?
For example:
� Is our school’s average test score different

from the national average?
� Has the Mean of a measurement or a defect

rate in the Process has changed from its
historical value?

� Does the Mean reduction in blood pressure
meet or exceed the target for this new
treatment?

1- Sample t-test
(t-tests – Parts 1 and 2)

(Continued)
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MEANS – Measurement/Continuous data (Continued)
These all assume data which are roughly Normal. For non-Normal data, use

the Median.

Problem/Question/Need
Tool

(article which describes it)

Are these two Means different? For example:
� Are our high school’s test scores different from

another school’s?
� Do these two treatments have different effects?

2-Sample t-test
(t-tests – Parts 1 and 2)

Are these two Means different for the same
subjects?
For example, Do individuals perform better after
this new training than before?

Paired t-test
(t-tests – Parts 1 and 2)

Is there a difference among several (more than
two) Means, compared with each other?
For example, There are three types of training
given to our workers. Do they result in different
effects on worker performance?

ANOVA
(ANOVA – Parts 3 and 4)

Which of several Means are different from the
Overall Mean?
For example, Which of several production
facilities does significantly better or worse than
the others?

ANOM
(ANOM)

MEDIANS
For Non-Normal data, use Medians instead of Means.

(See the article “Nonparametric”)

Problem/Question/Need Nonparametric Test

Is this Median different from a specified
Median?

Wilcoxon Signed Rank

Independent Samples: Are these two Medians
different?

Mann–Whitney

Paired Samples: Are these two Medians
different?

Wilcoxon Signed Rank

1 Variable: Is there a difference among several
Medians?

Kruskal–Wallis

2 Variables: Is there a difference among several
Medians?

Friedman
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PROPORTION

Problem/Question/Need
Tool

(article which describes it)

Confidence Interval estimate of a Proportion
from Sample data

z
(Proportion)

Is there a difference between the Proportions
from 2 Populations or Processes?
For example, 0.52 of women and 0.475 of men
preferred Candidate A

z
(Proportion)

Is there a difference among the Proportions
from 3 or more Populations or Processes?

Chi-Square Test for
Independence

(article by the same name)

VARIATION

Problem/Question/Need
Tool

(article which describes it)

Is this Variance (or Standard Deviation)
different from a Specified Variance (Standard
Deviation)?
For example, Has the Variation in our Process
increased from the historical value?

Chi-Square Test for the
Variance

(article by the same name)

Are these two Variances different?
For example, Two treatments have the same
Mean effect. The tie-breaker would be whether
one had a significantly smaller Variance – that
is, it was more consistent.

F-test
(article: F)
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Summary of Keys to Understanding

1. z is a Test Statistic whose Probabilities do not vary by
Sample Size.

2. z has only one associated Distribution, the Standard Nor-
mal Distribution.

3. A value of z tells you – in units of Standard Deviations –
how far away from the Mean an individual data value is.

4. For Normal or near-Normal Distributions, z can be used
to solve problems like:
– Given a value x, what is the Probability of exceeding x? or

not exceeding x?
– Conversely, given a Cumulative Probability, what value of

x defines its boundary?
z can also be used to calculate a Confidence Interval estimate
of a Proportion.

For your convenience, here are the z scores for several common values of
Alpha:

𝛼 0.025 0.05 0.1 0.9 0.95 0.975

z −1.960 −1.645 −1.282 1.282 1.645 1.960

5. For analyzing Means, z has several significant similarities
to t and some key differences. Use z only for large Samples
(n > 30) and only when the Population Standard Deviation
(𝝈) is known. Otherwise, use t.

Statistics from A to Z: Confusing Concepts Clarified, First Edition. Andrew A. Jawlik.
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Explanation

1. z is a Test Statistic whose Probabilities do not vary by
Sample Size.

A Test Statistic is a Statistic (a property of a Sample) with a known
Probability Distribution. That is, for each value of the Test Statistic, we
know the Probability of that value occurring.

z has several uses:

� For data distributed roughly like a Normal Distribution, z can give you
the Cumulative Probability associated with a given value for x. Con-
versely, given a Cumulative Probability, z can give you the associated
value of x.

� z can also be used in analyzing Means, but t is a better choice for that
purpose.

� z can solve problems involving Proportions of 2-category Count data.
(See the article Proportion.)

The common Test Statistics other than z – e.g. t, F, and Chi-Square –
have a different Distribution for each value of Degrees of Freedom (which
is related to Sample Size). Unlike other Test Statistics, there is no “n” for
Sample Size in the formulas for z. So z does not vary with Degrees of
Freedom. This is because . . .

2. z has only one associated Distribution, the Standard Nor-
mal Distribution.

A Normal Distribution is the familiar bell-shaped curve. The Proba-
bilities of many properties of Populations and Processes approximate the
Normal Distribution.

z, in units of Std Dev

Po
in

t  
Pr

ob
ab

ili
ty

0 1 2–1–2 3–3

0.4

0.3

0.2

0.1

0

The z Distribution 

-- the Standard Normal Distribution (Mean = 0, Standard Deviation = 1)
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The Standard Normal Distribution is an idealized version – the Nor-
mal Distribution with a Mean of zero and a Standard Deviation of 1.
This is the Distribution for z.

z is the Variable along the Horizontal axis in the Standard Normal
Distribution.

Point Probability

As for any other Distribution, the vertical axis is the Point Probabil-
ity. So, for any value of z (any point on the horizontal axis), its Point
Probability (the Probability of it occurring) is the height of the curve
above z. In the diagram above, we can see that the Point Probability of
z = 0 is about 0.4.

Cumulative Probability

A Cumulative Probability is the total of the Point Probabilities for
a range of values. It is represented by the area under the curve of
the range. For example, we can see that Cumulative Probability of the
range z > 0 is 50% – half the area under the curve.

Here are useful Cumulative Probabilities for the Standard Normal Dis-
tribution:

Standard Deviations

99.7%

95%

68%

0 1 2–1–2 3–3

We see that values of z within plus or minus 1 Standard Deviation of the
Mean (1𝜎) occur 68% of the time. Within 2𝜎, it’s 95%; and 99.7% for 3𝜎.

These percentages were straightforward to calculate for the idealized
z-Distribution. But they can be used for every Normal Distribution,
because of the Empirical Rule:
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Empirical Rule (aka the 68, 95, 99.7 Rule): Given a value – expressed
in Standard Deviations – on the horizontal axis of any Normal Distri-
bution, the Probability of that value (vertical axis) is the same for every
Normal Distribution.

Next, we’ll see exactly how we use this to find Probabilities for x values
in any Normal or near-Normal Distribution.

3. A value of z tells you – in units of Standard Deviations, –
how far away from the Mean an individual data value, x,
is.

What does an individual value of z tell me?
A value of z is often called a “z-score”

– It tells you how far away the corresponding data point (x) is from
the Mean.

– It tells you this in units of Standard Deviations.

Example: The height of adult males in a Population has a Mean, 𝜇, of
175 cm and a Standard Deviation, 𝜎, of 7 cm.

We use the formula, z = (x − 𝝁) / 𝝈 to convert x values into z values (aka
z scores).
For x = 168 cm, z = (168 − 175)/7 = −1; for x = 175 cm, z = (175 −
175)/7 = 0; for 189 cm, z = (189 − 175)/7 = +2

Distance from the
mean in Std Dev

value of z

Height in cmvalue of x 154 161 168 175 182 196189

–3 –2 –1 0 1 32

4. For Normal or near-Normal Distributions, z can be used
to solve problems like:
– Given a value x, what is the Probability of exceeding x? or

not exceeding x?
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– Conversely, given a Cumulative Probability, what value of
x defines its boundary?

z can also be used to calculate a Confidence Interval estimate
of a Proportion.

Examples of the kind of problems z can be used to solve:

1. The Mean lifetime for a brand of light bulb is 1000 hours, with a Stan-
dard Deviation of 100 hours. What percentage (Cumulative Probabil-
ity) of light bulbs can be expected to burn out before 900 hours (x)?

0

0.001

0.002

0.003

0.004

0.005

0 500 1000 1500

15.9%

Using z, we can find in a table or via a spreadsheet that the per-
centage = 15.9%.

This percentage – of the total area under the curve – is represented
by the shaded area left of x = 900.

2. For the same brand of light bulbs, how many hours (x) can we expect
90% (𝜶) of the light bulbs to exceed?

0.005

0.004

0.003

0.002

0.001

0
0 500 1000

90%

1500 2000

Using z, we find that x = 872 hours.
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The shaded area to the right of 872 hours comprises 90% of the
area under the curve.

How to do it:
To find a Cumulative Probability for a given x, we

1. Convert x to its z value.
2. Find the Cumulative Probability for that z on the Standard Normal

Distribution.

To find x, given a Cumulative Probability, we

1. Find the z value corresponding to that Probability on the Standard
Normal Distribution.

2. Convert the z to the corresponding x value.

It may help to depict these steps graphically: If you know x and want
to find its Cumulative Probability:

x

Convert to z
z = (x – μ) / 𝝈

or
z = (x – x)/s

Find α
via table

lookup or
software 

Find z
via table
lookup or
software 

z Cumulative
Probability

Step 1 Step 2

If you know a Cumulative Probability and want to find the corresponding x:

Convert  to x
x = 𝝈z + μ

or
x = sz + x

z

Step 1 Step 2

x
Cumulative
Probability

z can also be used to calculate a Confidence Interval estimate of a
Proportion. This is explained in the article Proportion.

5. For analyzing Means, z has several significant similarities
to t and some key differences. Use z only for large Samples
(n > 30) and only when the Population Standard Deviation
(𝝈) is known. Otherwise, use t.
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z t

It is a . . . Test Statistic

Probability Distribution(s)
Bell-shaped, Symmetrical,

Never touches the horizontal axis

1 1 for each value of df

Mean = Mode = Median Yes, and they all = 0

Formula z = (x̄ − 𝝁) / 𝝈 t = (x̄ − 𝝁) / (s/
√

n)

Varies with Sample Size No Yes

Accuracy less more

Standard Deviation = 1 Always > 1

Note that this formula for calculating z from Sample data for use as a
Test Statistic is different from the formula for z-score shown earlier.

z is the simplest Test Statistic, and so it is useful to start with it when
learning the concept. But it has some significant limitations, due to the fact
that it does not take Sample Size into account. There is a much larger risk
for errors when a Sample Size of 5 is used vs. 500, but z treats them equally.

z should NOT be used

1. When the Population is not Normal or near-Normal.
2. When the Population Standard Deviation (Sigma, 𝝈) is not

known.
3. When the Sample Size is small – some say when n < 30, others say

when n <100.

As the Sample Size grows larger, the values of z and t converge. For very
large Sample Sizes, there is little difference between the values of z and t.
As n approaches infinity, the difference between z and t approaches zero.
That is why z can be used instead of t for large Sample Sizes.

Related articles in This book: Test Statistic; Normal Distribution; Stan-
dard Deviation; Alpha, 𝛼; Proportion; t – the Test Statistic and its Distri-
butions



HOW TO FIND CONCEPTS
IN THIS BOOK

This book is alphabetically organized, like a dictionary or an encyclopedia,
so an index is not needed.

Readers can quickly �nd articles on statistical concepts by �ipping
through the book like a dictionary or a mini-encyclopedia.

The Contents at the beginning of the book lists all the articles on the
major concepts.

Immediately following the Contents is a Section called •Other Concepts
Covered in the Articles.Ž This lists additional concepts and statistical terms
which do not headline an article. For example,

AcceptanceRegion: See the articleAlpha,� .
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