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Preface

Machine Learning: Modeling Data Locally and Globally delivers the
main contemporary themes and tools in machine learning including proba-
bilistic generative models and Support Vector Machines. These themes are
discussed or reformulated from either a local view or a global view. Diffe-
rent from previous books that only investigate machine learning algorithms
locally or globally, this book presents a unified and new picture for machine
learning both locally and globally. Within the new picture, various seemly
different machine learning models and theories are bridged in an elegant and
systematic manner. For precise and thorough understanding, this book also
presents applications of the new hybrid theory.

This book not only provides researchers with the latest research results
lively and timely, but also presents an excellent overview on machine learning.
Importantly, the new line of learning both locally and globally goes through
the whole book and makes various learning models understandable to a large
proportion of audience including researchers in machine learning, practition-
ers in pattern recognition, and graduate students.

The Chinese Univ. of Hong Kong, Kaizhu Huang
Jan. 2008 Haiqin Yang

Irwin King
Michael R. Lyu
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1

Introduction

The objective of this book is to establish a framework which combines two
different paradigms in machine learning: global learning and local learning.
The combined model demonstrates that a hybrid learning of these two dif-
ferent schools of approaches can outperform each isolated approach both
theoretically and empirically. Global learning focuses on describing a phe-
nomenon or modeling data in a global way. For example, a distribution over
the variables is usually estimated for summarizing the data. Its output can
usually reconstruct the data. This school of approaches, including Bayesian
Networks [8, 13, 30], Gaussian Mixture Models [3, 21], and Hidden Markov
Models [2, 25], has a long and distinguished history, which has been exten-
sively applied in artificial intelligence [26], pattern recognition [9], and com-
puter vision [7]. On the other hand, local learning does not intend to sum-
marize a phenomenon, but builds learning systems by concentrating on some
local parts of data. It lacks the flexibility yet surprisingly demonstrates supe-
rior performance to global learning according to recent researches [4, 16, 15].
In this book, a bridge has been established between these two different
paradigms. Moreover, the resulting principled framework subsumes several
important models, which respectively locate themselves into the global learn-
ing paradigm and the local learning paradigm.

In this chapter, we address the motivations of the two different learning
frameworks. As a summary, we present the objectives of this book and outline
the main models or the contributions. Finally, we provide an overview of the
rest of this book.

1.1 Learning and Global Modeling

When studying real world phenomena, scientists are always wondering whether
some underlying laws or nice mathematical formulae exist for governing these
complex phenomena. Moreover, in practice, due to incomplete information,
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the phenomena are usually nondeterministic. This motivates to base proba-
bilistic or statistical models to perform a global investigation on sampled data
from the phenomena. A common way for achieving this goal is to fit a density
on the observations of data. With the learned density, people can then in-
corporate prior knowledge, conduct predictions, and perform inferences and
marginalizations. One main category in the framework of global learning is
the so-called generative learning. By assuming a specific mathematical model
on the observations of data, e.g. a Gaussian distribution, the phenomena can
therefore be described or re-generated. Fig. 1.1 illustrates such an example.
In this figure, two classes of data are plotted as ∗’s for the first class and
◦’s for the other class. The data can thus be modeled as two different mix-
tures of Gaussian distributions as illustrated in Fig. 1.2. By knowing only the
parameters of these distributions, one can then summarize the phenomena.
Furthermore, one can clearly employ this information to distinguish one class
of data from the other class or simply know how to separate two classes. This
is also well-known as Bayes optimal decision problems [12, 6].

Fig. 1.1. Two classes of two-dimensional data

In the development of learning approaches within the community of ma-
chine learning, there has been a migration from the early rule-based meth-
ods [11, 32] wanting more involvement of domain experts, to widely-used
probabilistic global models mainly driven by data itself [5, 9, 14, 17, 22, 33].
However, one question for most probabilistic global models is what kind of
global models, or more specifically, which type of densities should be speci-
fied beforehand for summarizing the phenomena. For some tasks, this can be
prescribed by a slight introduction of domain knowledge from experts. Unfor-
tunately, due to both the increasing sophistication of the real world learning
tasks and active interactions among different subjects of research, it is more
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Fig. 1.2. An illustration of distribution-based classifications (also known as
the Bayes optimal decision theory). Two Gaussian mixtures are engaged to
model the distribution of two classes of data respectively. The distribution
can then be used to construct the decision plane

and more difficult to obtain fast and valuable suggestions from experts. A fur-
ther question is thus proposed, i.e. what is the next step in the community
of machine learning, after experiencing a migration from rule-based models
to probabilistic global models? Recent progress in machine learning seems to
imply local learning as a solution.

1.2 Learning and Local Modeling

Global modeling addresses describing phenomena, no matter whether the
summarized information from the observations is applicable to specific tasks
or not. Moreover, the hidden principle under global learning is that infor-
mation can be accurately extracted from data. On the other hand, local
learning [10, 27, 28] which recently attracts active attention in the machine
learning community, usually regards that a general and accurate global learn-
ing is an impossible mission. Therefore, local learning focuses on capturing
only local yet useful information from data. Furthermore, recent research
progress and empirical study demonstrate that this much different learning
paradigm is superior to global learning in many facets.

In further details, instead of globally modeling data, local learning is more
task-oriented. It does not aim to estimate a density from data as in global
learning, which is usually an intermediate step for many tasks such as pattern
recognitions (note that the distribution or density obtained by global lear-
ning actually is not directly related to the classification itself); it also does not
intend to build an accurate model to fit the observations of data globally. Dif-
ferently, it only extracts useful information from data and directly optimizes
the learning goal. For example, when used in learning classifiers from data,
only those observations of data around the separating plane need to be ac-
curate, while inaccurate modeling over other data is certainly acceptable for
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the classification purpose. Fig. 1.3 illustrates such a problem. In this figure,
the decision boundary is constructed only based on those filled points, while
other points make no contributions to the classification plane (the decision
boundary is given based on the Gabriel Graph method [1, 18, 34]).

Fig. 1.3. An illustration of local learning (also known as the Gabriel
Graph classification). The decision boundary is just determined by
some local points indicated as filled points

However, although containing promising performance, local learning ap-
pears to locate itself at another extreme end to global learning. Employing
only local information may lose the global view of data. Consequently, some-
times, it cannot grasp the data trend, which is critical for guaranteeing better
performance for future data. This can be seen in the example as illustrated
in Fig. 1.4. In this figure, the decision boundary (also constructed by the
Gabriel Graph classification) is still determined by some local points indi-
cated as filled points. Clearly, this boundary does not grasp the data trend.

Fig. 1.4. An illustration on that local learning cannot grasp data trend.
The decision boundary (constructed by the Gabriel Graph classification)
is determined by some local points indicated as filled points. It, however,
loses the data trend. The decision plane should be obviously closer to the
filled squares rather than locating itself in the middle of filled �’s and ◦’s
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More specifically, the class associated with ◦’s is obviously more scattered
than the class

associated with �’s on the axis indicated as dashed line. Therefore, a
more promising decision boundary should lie closer to filled �’s than those
filled ◦’s instead of lying midway between filled points. A similar example
can also be seen in Chapter 2 on a more principled local learning model, i.e.
the current state-of-the-art classifier, Support Vector Machines (SVM) [31].
Targeting this problem, we then suggest a hybrid learning in this book.

1.3 Hybrid Learning

There are complementary advantages for both local learning and global lear-
ning. Global learning summarizes data and provides practitioners with know-
ledge on the structure, independence, and trend of data, since with the precise
modeling of phenomena, the observations can be accurately regenerated and
therefore can be studied or analyzed thoroughly. However, this also presents
difficulties in how to choose a valid model to describe all the information
(also called the problem of model selection). In comparison, local learning
directly employs part of information, critical for the specific oriented tasks,
and does not assume models to re-synthesize/restore the whole road-map of
data. Although demonstrated to be superior to global learning in many facets
of machine learning, it may lose some important global information. The
question here is thus, can reliable global information, independent of specific
model assumptions, be combined into local learning? This question clearly
motivates a hybrid learning of two largely different schools of approaches,
which is also the focus of this book.

1.4 Major Contributions

In this book, we aim to describe a hybrid learning scheme to combine two
different paradigms, namely global learning and local learning. Within this
scheme, we propose a hybrid model, named the Maxi-Min Margin Machine
(M4), demonstrated to contain both the merits of global learning in repre-
senting data and the advantages of local learning in handling tasks directly
and effectively. Moreover, adopting the viewpoint of local learning, we also
introduce a global learning model, called the Minimum Error Minimax Prob-
ability Machine (MEMPM), which does not assume specific distributions on
data and thus distinguishes itself from traditional global learning approaches.
The main models discussed in this book are briefly described as follows.

• The Maxi-Min Margin Machine model, a hybrid learning framework suc-
cessfully combining global learning and local learning
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� A unified framework of many important models
As will be demonstrated, our proposed hybrid model successfully uni-
fies both important models in local learning, e.g. the Support Vector
Machines [4], and significant models in global learning, such as the
Minimax Probability Machine (MPM) [19] and the Fisher Discrimi-
nant Analysis (FDA) [9].

� With the generalization Guarantee
Various statements from many views such as the sparsity and Mar-
shall and Olkin Theory [20, 23] will be presented for providing the
generalization bound for the combined approach.

� A sequential Conic Programming solving method
Besides the theoretic advantages of the proposed hybrid learning, we
also tailor a sequential Conic Programming method [24, 29] to solve
the corresponding optimization problem. The computational cost is
shown to be polynomial and thus the proposed M4 model can be
solved practically.

• The Minimum Error Minimax Probability Machine, a general global
learning model
� A worst-case distribution-free Bayes optimal classifier

Different from traditional Bayes optimal classifiers, MEMPM does
not assume distributions for the data. Starting with the Marshall
and Olkin theory, this model attempts to model data under the mini-
max schemes. It does not intend to extract exact information but the
worst-case information from data and thus presents an important
progress in global learning.

� Derive an explicit error bound for future data
Inheriting the advantages of global learning, the proposed general
global learning method contains an explicit worst-case error bound
for future data under a mild condition. Moreover, the experimental
results suggest that this bound is reliable and accurate.

� Propose a sequential Fractional Programming optimization
We have proposed a Fractional Programming optimization method
for the MEMPM model. In each iteration, the optimization is shown
to be a pseudo-concave problem, which thus guarantees that each
local solution will be the global solution in this step.

• The Biased Minimax Probability Machine (BMPM), a global learning
method for biased or imbalanced learning
� Present a rigorous and systematic treatment for biased learning tasks

Although being a special case of our proposed general global learning
model, MEMPM, this model provides a quantitative and rigorous
approach for biased learning tasks, where one class of data is always
more important than the other class. Importantly, with explicitly
controlling the accuracy of one class, this branch model can precisely
impose biases on the important class.
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� Containing explicit generalization bounds for both classes of data
Inheriting the good feature of the MEMPM model, this model also
contains explicit generalization bounds for both classes of data. This
therefore guarantees a good prediction accuracy for future data.

• The Local Support Vector Regression (LSVR), a novel regression model
� Provide a systematic and automatic treatment in adapting margins

Motivated from M4, LSVR focuses on considering the margin setting
locally. When compared to the regression model of SVM, i.e. the Sup-
port Vector Regression (SVR), this novel regression model is shown
to be more robust with respect to the noise of data in that it contains
the volatile margin setting.

� Incorporate special cases very much similar to the standard SVR
When considering a consistent trend for all data points, the LSVR
can derive special cases very much similar to the standard SVR. We
further demonstrate that in a meaningful assumption, the standard
SVR is actually the special case of our LSVR model.

• Support Vector Regression with Local Margin Variations
Motivated from the local view of data, another variation of SVR is pro-
posed. It aims to adapt the margin in a more explicit way. This model is
similar to LSVR in the sense that they both adapt margin locally.

We describe the relationship among our developed models in Fig. 1.5.

Fig. 1.5. The relationship among the developed models in this book



8 1 Introduction

1.5 Scope

This book states and refers to the learning first as statistical learning, which
appears to be the current main trend of learning approaches. We then further
restrict the learning in the framework of classification, one of the main prob-
lems in machine learning. The corresponding discussions on different models
including the conducted analysis of the computational and statistical aspects
of machine learning are all subject to the classification tasks. Nevertheless,
we will also extend the content of this book to regression problems, although
it is not the focus of this book.

1.6 Book Organization

The rest of this book is organized as follows:

• Chapter 2
We will review different learning paradigms in this chapter. We will es-
tablish a hierarchy graph attempting to categorize various models in the
framework of local learning and global learning. We will then base this
graph to describe and discuss these models. Finally, we motivate the
Minimum Error Minimax Probability Machine and the Maxi-Min Mar-
gin Machine.

• Chapter 3
We will develop a novel global learning model, called the Mininum Error
Minimax Probability Machine. We will demonstrate how this new model
represents the worst-case Bayes optimal classifier. We will detail its model
definition, provide interpretations, establish a robust version, extend to
nonlinear classifications, and present a series of experiments to demon-
strate the advantages of this model.

• Chapter 4
We will present the Maxi-Min Margin Machine, which successfully com-
bines two different but complementary learning paradigms, i.e. local
learning and global learning. We will show how this model incorporates
the Support Vector Machine, the Minimax Probability Machine, and the
Fisher Discriminant Analysis as special cases. We will also demonstrate
the advantages of Maxi-Min Margin Machine by providing theoretical,
geometrical, and empirical investigations.

• Chapter 5
An extension of the proposed MEMPM model will be discussed in this
chapter. More specifically, the Biased Minimum Minimax Probability Ma-
chine will be discussed and applied into the imbalanced learning tasks.
We will review different criteria for evaluating imbalanced learning ap-
proaches. We will then base these criteria to tailor BMPM into this type
of learning. Both illustrations on toy datasets and evaluations on real
world imbalanced and medical datasets will be provided in this chapter.
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• Chapter 6
A novel regression model called the Local Support Vector Regression,
which can be regarded as an extension from the Maxi-Min Margin Ma-
chine, will be introduced in detail in this chapter. We will show that our
model can vary the tube (margin) systematically and automatically ac-
cording to the local data trend. We will show that this novel regression
model is more robust with respect to the noise of data. Empirical eval-
uations on both synthetic data and real financial time series data will
be presented to demonstrate the merits of our model with respect to the
standard Support Vector Regression.

• Chapter 7
In this Chapter, we show how to adapt the margin settings locally for
the Support Vector Regression differently from the LSVR. We demon-
strate how the local view of data can be widely used in various models
or even differently applied in the same model. Empirical evaluations are
also presented in comparison with other competitive models on financial
data.

• Chapter 8
We will then summarize this book and conduct discussions on future
work.

We try to make each of these chapters self-contained. Therefore, in several
chapters, some critical contents, e.g. model definitions or illustrative figures,
having appeared in previous chapters, may be briefly reiterated.
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2

Global Learning vs. Local Learning

In this chapter, we conduct a more detailed and more formal review on two
different schools of learning approaches, namely, the global learning and local
learning. We first provide a hierarchy graph as illustrated in Fig. 2.1 in which
we try to classify many statistical models into their proper categories, either
global learning or local learning. Our review will also be conducted based on
this hierarchy structure. To make it clear, we use filled shapes to highlight
our own work in the graph.

Global learning fits a distribution over data. If a specific mathematical
model, e.g. a Gaussian model, is assumed on the distribution, this is often
called generative learning, whose name implies that the mathematical formu-
lation of the assumed model governs the generation of data in the learning
task. To learn the parameters from the observations of data for the specific
model, several schemes have been proposed. This includes Maximum Likeli-
hood (ML) learning, which is easy to conduct but is less accurate, Conditional
Likelihood (CL) learning, which is usually hard to perform optimization but
is more effective, and Bayesian Average (BA) learning, which has a compara-
tively short history but is more promising. As generative learning pre-assigns
a specific model before learning, it often lacks the generality and thus may
be invalid in many cases. This thus motivates the non-parametric learning,
which still estimates a distribution on data but assumes no specific mathe-
matical generative models. The common way in this type of learning is to
locally fit over each observation a simple density and then sums all the local
densities as the final distribution for data. Although in some circumstances,
this approach is successful, it is criticized for requiring a huge quantity of
training points and containing a large space complexity. Differently, in this
book, we will demonstrate a novel global learning method, named Minimum
Error Minimax Probability Machine (MEMPM). Although still in the frame-
work of global learning, it does not belong to non-parametric learning, there-
fore requiring no extremely heavy storage spaces. Moreover, it does not
assume any specific distribution on data, which hence distinguishes itself
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Fig. 2.1. A hierarchy graph of statistical learning models

from the traditional global generative learning. As a critical contribution,
MEMPM represents a distribution-free Bayes optimal classifier in a worst-
case scenario. Furthermore, we will show that this model incorporates two
important global learning approaches, Biased Minimax Probability Machine
(BMPM) and Minimax Probability Machine (MPM) [29, 30]. Since all ap-
proaches within the paradigm of global learning require summarizing the
data information completely and globally, it thus may waste computational
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resources and is widely argued to be less direct. This motivates the local
learning which makes no attempt to model the data globally, but focuses on
extracting only those information directly related to the task. This type of
learning is often refereed to as discriminative learning in the context of classi-
fications. One famous model among them is Support Vector Machine (SVM).
With the task-oriented, robust, computationally tractable properties, SVM
has achieved a great success and is considered as the current state-of-the-
art classifier. Although local learning demonstrates superior performance to
traditional global learning, it appears to situate itself at another extreme
end, which totally discards the useful global information, e.g. the structure
information of data.

Our suggestion is that we should combine these two different but comple-
mentary paradigms. Towards this end, we then propose a new model called
Maxi-Min Margin Machine (M4), which not only successfully employs the
global structure information from data but also holds merits of local learning
such as robustness and superior classification accuracies. As a critical contri-
bution, M4, the hybrid learning model represents a general model successfully
shown to contain both local learning models and global learning models as
special cases. More specifically, it contains two significant and popular global
learning models, i.e. Fisher Discriminant Analysis (FDA) [13] and Minimax
Probability Machine [28, 29, 30] as special cases. Meanwhile, SVM, the local
learning model can also be considered as one of its branches. In addition,
M4 also demonstrates a strong connection with MEMPM, the novel general
global learning model.

In the following, we first present the problem definition which will be used
throughout this book. We then base Fig. 2.1 to provide introductions and
comments for each type of learning model sequently. Finally, we summarize
the review and conclude with the proposition of the hybrid framework, the
objective of this book.

2.1 Problem Definition

Given a dataset D consisting of N observations, where each observation is
of the form (z1, z2, . . . , zn, c) (zi ∈ R, for 1 ≤ i ≤ n, c ∈ F, where F is a
finite set), the basic learning problem is to construct a mapping rule or a
function f from {z1, z2, . . . , zn} called features or attributes to the output
c, denoted as the class variable, namely f(z1, z2, . . . , zn, Θ, D) → c, where Θ
means the function parameters. The function f should be not only as accurate
as possible to fit the observations D, but also can robustly predict the class
for the new data. Sometimes, we also use Θ to denote the mapping model
f and its associated parameters. For simplicity, we often use z to denote
the n-dimensional variable {z1, z2, . . . , zn}. If we use zj , we refer it to the
j-th observation in D. Throughout this book, unless we provide statements
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explicitly, and bold typeface will indicate a vector or matrix, while normal
typeface will refer to a scale variable or the component of the vectors.

2.2 Global Learning

Global learning often describes the data by attempting to estimate a distribu-
tion over variables (z1, z2, . . . , zn, c), denoted as p(z, c, Θ|D). The estimated
distribution can then be used to make predictions by calculating the proba-
bility that a specific value of c will occur, when given an instance of features
z. In more details, the decision rule or the mapping function can be described
as:

c = arg max
ck∈F

p(ck|D, z) = arg max
ck∈F

∫
p(ck, Θ|D, z)dΘ . (2.1)

By employing Bayes theory, one can transform the above joint probability
(the item inside the integral) into the following equivalent forms:

p(ck, Θ|D, z) =
p(ck,z|D, Θ)p(Θ|D)∑

ck∈F

∫
p(ck,z|D, Θ)p(Θ|D)dΘ

. (2.2)

Since the denominator in the above does not influence the decision in
practice, the decision rule of Eq.(2.1) can be written into a relatively easily-
calculated form:

c = arg max
ck∈F

∫
p(ck,z|D, Θ)p(Θ|D)dΘ . (2.3)

Depending on how the model Θ is assumed on D, global learning can
be further divided into generative learning and non-parametric learning as
elaborated in the following subsections.

2.2.1 Generative Learning

Generative learning often assumes a specific model on data D. For example,
a Gaussian distribution is assumed to be the underlying model to generate
D. In this case, the parameters Θ refer to the mean and covariance for the
Gaussian distribution. There are many models which belong to this type of
learning. Among them are Naive Bayes model [9, 26, 32], Gaussian Mixture
Model [4, 15, 16, 33], Bayesian Network [19, 20, 21, 31, 40], Hidden Markov
Model [2, 48], Logistic Regression [23], Bayes Point Machine [18, 36, 44],
Maximum Entropy Estimations [22], etc. The key problem for generative
learning is how to learn the parameters Θ from data. Generally, in the lit-
erature of machine learning, three schemes, Maximum Likelihood learning,
Conditional Likelihood learning and Bayesian Average learning, are engaged
for estimating the parameters. We state these approaches one by one in the
following.
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2.2.1.1 Maximum Likelihood Learning & Maximum A Posterior
Learning

Considering that it is not always easy to calculate the integral in Eq.(2.3),
earlier researchers often try to compute some approximations of Eq.(2.3)
instead. This motivates the Maximum Likelihood learning and Maximum A
Posterior (MAP) learning [9, 40].

These learning methods replace Eq.(2.3) with the formulation below:

c = arg max
ck∈F

p(ck,z|D, Θ∗) . (2.4)

In the above, how Θ∗ are estimated, thus discriminates MAP from ML.
In MAP, Θ∗ are estimated as:

Θ∗ = arg max p(Θ|D) , (2.5)

while in ML, the parameters are given as:

Θ∗ = arg max p(D|Θ) . (2.6)

Observing Eq.(2.3), one can see that MAP actually enforces the approxi-
mated conditional distribution over parameters as a delta function situating
itself at the most prominent Θ. Namely,

p̂(Θ|D) =
{

1, if Θ = arg max p(Θ|D)
0, otherwise . (2.7)

For ML, it is even simpler. This can be observed by looking into the
relationship between MAP and ML:

arg max p(Θ|D) = arg max p(D|Θ)p(Θ) . (2.8)

Thus, compared to MAP, ML omits the item p(Θ), the prior probability
over the parameters. In practice, a model with a more complex structure
may be more possible to cause over-fitting, which means the model can fit
the training data perfectly while having a bad prediction ability on the test
or future data. In this sense, discarding the prior probability, ML lacks the
flexibility to favor simple models by conditioning the prior probability [5, 49].
On the other hand, MAP permits a regularization on the prior probability
and thus contains potentials to resist over-fitting problems.

When applied in practice, under independent, identically distributional
data (i.i.d.) conditions, rather than directly optimizing the original form, ML
estimations usually take the maximization on the log-likelihood, which can
transform the multiplication form into an easily-solved additional one:

Θ∗ = arg max p(D|Θ) = arg max log p(D|Θ) = arg max
N∑

j=1

log p(zj |Θ). (2.9)
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2.2.1.2 Maximum Conditional Learning

Rather than computing the integral form, both the above ML learning and
MAP learning seek to use one specific point Θ∗ to calculate Eq.(2.3). The
difference between them lies in how they estimate the specific parameter
Θ∗. Compared with the long history in using ML and MAP estimations,
Maximum Conditional (MC) learning enjoys a short span of time but has
achieved state-of-the-art performance in many domains such as speech recog-
nition [4, 42, 53].

Maximum Conditional learning also focuses on adopting one certain Θ∗
to simplify the computation of Eq.(2.3). Differently, the selection of Θ∗ is
based on maximizing a conditional likelihood defined as follows:

Θ∗ = arg max p(C|Θ, Z) , (2.10)

where C = {c1, c2, . . . , cN} is the vector formed by the class label of each
observation in D, and Z = {z1,z2, . . . ,zN} corresponds to the data of the
attributes (or features) in D. Similar to the relation between ML and MAP,
MC can also plug in a prior probability into the above formulae for resisting
over-fitting problems, i.e.

Θ∗ = arg max p(C|Θ,Z)p(Θ) . (2.11)

By maximizing the conditional likelihood, MC is thus more direct and
classification–oriented. Note that only the conditional probability which is
maximized above is directly related to the classification purpose. Maximizing
other quantities as done in ML or MAP, possibly optimizes unnecessary infor-
mation for classifications, which is wasteful and imprecise. However, although
MC appears to be more precise, it is usually hard to conduct the optimiza-
tion due to the involvement of the conditional item. Such an example can be
seen in optimizing a tree-based Bayesian network [12]. Moreover, when there
is missing information, the optimization of MC may even present a more
tough problem in general, while in such circumstances, powerful Expectation
Maximization (EM) techniques [27, 35] can easily be applied in ML.

2.2.1.3 Bayesian Average Learning

It is noted that in ML, MAP and MC, for the easy calculation of Eq.(2.3)
one certain Θ∗ is adopted for approximations. However, although one point
estimation enjoys computational advantages in approximating Eq.(2.3), in
practice it may be very inaccurate and in this sense may impair the prediction
ability of global learning. Aiming to solve this problem, recent researches
have suggested to use the Bayesian Average learning approaches. This type
of approaches facilitates the computation of Eq.(2.3) by changing the integral
into a summation form based on sampling methods, e.g. Markov Chain Monte
Carlo methods [14, 25, 37, 38, 41].
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Following this trend, many models are proposed. Among them are Bayesian
Point Machine [18, 36, 44] and Maximum Entropy Estimation [22]. Bayes
Point Machine restricts the averaging of the parameters in the version space
which denotes the space where the training data can be perfectly classified.
This proposed method is reported to contain a better generalization ability
within the global learning framework. But it is challenged to lack systematic
ways to extend its applications into non-separable datasets, where the version
space may include no candidate solutions. Maximum Entropy Estimation, on
the other hand, seems to provide a more flexible and more systematic scheme
to perform the averaging of models. By trying to maximize an entropy-like
objective, Maximum Entropy Estimation demonstrates some characteristics
of both global learning and local learning. However, only two small datasets
are used to evaluate its performance. Moreover, the prior, usually unknown,
plays an important role in this model, but has to be assumed beforehand.

2.2.2 Non-parametric Learning

In contrast with generative learning discussed in the above, non-parametric
learning does not assume any specific global models before learning. There-
fore, no risk will be taken on possible wrong assumptions on data. Con-
sequently, non-parametric learning appears to set a more valid foundation
than generative learning models. Typical non-parametric learning models in
the context of classifications consist of Parzen Window estimation [10] and
the widely used k-Nearest-Neighbor model [7, 43]. We will discuss these two
models in the following.

The Parzen Window estimation also attempts to estimate a density among
the training data. However it employs a totally different way. Parzen Window
first defines an n-dimensional cell hypercube region RN over each observation.
By defining a window function:

w(u) =
{

1, |uj | ≤ 1/2, j = 1, 2, . . . , n
0, otherwise , (2.12)

the density is then estimated as:

pN (z) =
1
N

N∑
i=1

1
hN

w

(
z − zi

hN

)
, (2.13)

where hN is defined as the length of the edge of RN .
From the above, one can observe that Parzen Window puts a local den-

sity over each observation, the final density is then the statistical result of
averaging all local densities. In practice, the window function can actually
be general functions including the most commonly-used Gaussian function.
Fig. 2.2 illustrates a density estimated by the Parzen Window algorithm.

The k-Nearest-Neighbor method can be cast as designing a special cell
over each observation and then averages all the cell densities as the overall
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Fig. 2.2. An illustration of Parzen Window estimation

density for data. More specifically, the cell volume VN is designed as follows:
let the cell volume be a function of the training data, by centering a cell
around each point zj and increasing the volume until kN samples are con-
tained, where kN depends on N . The local density for each observation is
then defined as

p
N

(zj) =
kN/N

VN
. (2.14)

When used for classifications, the prediction is given by the class with the
maximum posterior probability, i.e.

c = arg max
ci∈F

pN (ci|z) . (2.15)

Further, the posterior probability can be calculated as below:

pN (ci|z) =
pN (ci,z)∑

i∈F

pN (z, ci)
=

(ki/N)/V∑
i∈F

(ki/N)/V
=

ki

k
. (2.16)

Therefore, the prediction result is just the class with the maximum fraction
of the samples in a cell.

These non-parametric methods make no underlying assumptions on data
and appear to be more general in real cases. However, using no parameters
actually means using many parameters so that each parameter would not
dominate other parameters (in the discussed models, the data points can
be in fact considered as the “parameters”). In such a way, if one parameter
fails to work, it will not influence the whole system globally and statistically.
However, using many parameters also results in serious problems. One of
the main problems is that the density is overwhelmingly dependent on the
training samples. Therefore, to generate an accurate density, the number of
samples needs to be very large (much larger than would be required if we per-
form the estimation by generative learning approaches). What is even worse
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is that the number of data will unfortunately increase exponentially with the
dimension of data. Another disadvantage caused is its severe requirement for
the storage, since all the samples need to be saved beforehand in order to
predict new data.

2.2.3 The Minimum Error Minimax Probability Machine

Within the context of global learning, a dilemma seems existing: If we assume
a specific model as in generative learning, it loses the generality; if we use
instead non-parametric learning, it is impractical for high-dimension data.
One question is then proposed, can we have an approach which does not
require a large number of training samples for reducing complexities and also
does not assume specific models for maintaining the generality? Towards this
end, we propose Minimum Error Minimax Probability Machine (MEMPM)
in this book.

Unlike generative learning or non-parametric learning, Minimum Error
Minimax Probability Machine does not try to estimate a distribution over
data. Instead, it attempts to extract reliable global information from data and
estimates parameters for maximizing the minimal possibility that a future
data will fall into the correct class. More precisely, rather than seeking to
find an accurate distribution, MEMPM focuses on studying the worst-case
probability (which is relatively robust) to predict data. In terms of the style
in making decisions, MEMPM is more like a local learning method due to
its direct optimization for classification and the task-oriented characteristic.
However, because MEMPM only summarizes global information from data
(not a distribution) as well, we still locate it in the framework of global
learning.

The proposed MEMPM contains many appealing features. Firstly, it rep-
resents a distribution-free Bayes optimal classifier in the worst-case scenario.
A perfect balance is achieved by MEMPM in this way: No specific model is
assumed on data, since it is distribution-free. At the same time, although in
the worst-case scenario, it is also the Bayes optimal classifier which is only
originally applicable in the cases with a known distribution. Another critical
feature of MEMPM is that under a mild condition, it contains an explicit
generalization bound. Furthermore, by exploring the bound, the recently-
proposed promising model, Minimax Probability Machine is clearly demon-
strated to be its special case. Importantly, based on specifying a bound for
one class of data, a Biased Minimax Probability Machine is branched out
from MEMPM, which will be shown to provide a rigorous and systematic
treatment for biased classifications. We will detail the MEMPM model and
BMPM model in the next chapter.
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2.3 Local Learning

Local learning adopts a largely different way to construct classifiers. This
type of learning is even more task-oriented than Minimum Error Minimax
Probability Machine and Maximal Conditional learning. In the context of
classifications, only the final mapping function from the features z to c is
crucial. Therefore, describing global information from data or explicitly sum-
marizing a distribution whatever is conditional or joint, is a roundabout or
intermediate step and therefore may be deemed wasteful or imprecise espe-
cially when the global information cannot be estimated accurately.

Alternatively, recent progress has suggested a local learning method, or
well known as the discriminative learning method. The family of approaches
directly pin-points the most critical quantities for classifications, while all
other information less irrelevant to this purpose is simply omitted. Compared
to global learning, no model is assumed and also no explicit global information
will be engaged in this scheme. Among this school of methods are Neural
Networks [1, 11, 17, 34, 39, 43], Gabriel Graph methods [3, 24, 54], large
margin classifiers [8, 45, 46, 47] including Support Vector Machine (SVM),
a state-of-the-art classifier which achieves superior performance in various
pattern recognition fields. In the following, we will focus on introducing SVM
in details.

Support V ector Machines

Support Vector Machine is established based on minimizing the expected
classification risk as defined as follows:

R(Θ) =
∫

z,c

l(z, c, θ)d(p(z, c)) , (2.17)

where l(z, c, Θ) is the loss function. Similar problems occur in the global
learning, since generally p(z, c) is unknown. Therefore, in practice, the above
expected risk is often approximated by the so-called empirical risk:

Remp(Θ) =
1
N

N∑
j=1

l(zj , cj , Θ) . (2.18)

The above loss function describes the extent on how close the estimated
class disagrees with the real class for the training data. Various metrics can be
used for defining this loss function, including the 0−1 loss and the quadratic
loss [50].

However, considering only the training data may lead to the over-fitting
problem again. In SVM, one big step in dealing with the over-fitting problem
has been made, i.e. the margin between two classes should be pulled away
in order to reduce the over-fitting risk. Fig. 2.3 illustrates the idea of SVM.
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Fig. 2.3. An illustration of Support Vector Machine

Two classes of data depicted as circles and solid dots are presented in this
figure. Intuitively observed, there are many decision hyperplanes which can be
adopted for separating these two classes of data. However, the one plotted in
this figure is selected as the favorable separating plane, because it contains the
maximum margin between two classes. Therefore, in the objective function
of SVM, a regularization term representing the margin shows up. Moreover,
as seen in this figure, only those filled points called support vectors mainly
determine the separating plane, while other points do not contribute to the
margin at all. In another word, only several local points are critical for the
classification purpose in the framework of SVM and thus should be extracted.

Actually, a more formal explanation and theoretical foundation can be
obtained from the Structure Risk Minimization criterion [6, 52]. Therein,
maximizing the margin between different classes of data is minimizing an
upper bound of the expected risk, i.e. the VC dimension bound [52]. However,
since the focus of this book does not lie in the theory of SVM, we will not go
further to discuss the details about this. Interested readers can refer to [51,
52].

2.4 Hybrid Learning

Local learning (or simply regarded as SVM) has demonstrated its advantages,
such as its state-of-the-art performance (the lower generalization error), the
optimal and unique solution, and the mathematical tractability. However, it
does discard many useful information from data, e.g. the structure informa-
tion from data.

An illustrative example has been seen in Fig. 1.4. In the current state-
of-the-art classifier, i.e. SVM, similar problems also occur. This can be seen
in Fig. 2.4. In this figure, the purpose is to separate two catergories of data
x and y. As observed, the classification boundary is intuitively observed to
be mainly determined by the dotted axis, i.e. the long axis of the y data
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(represented by �’s) or the short axis of the x data (represented by ◦’s).
Moreover, along this axis, the y data are more possible to scatter than the x
data, since y contains a relatively larger variance in this direction. Noting this
“global” fact, a good decision hyperplane seems reasonable to lie closer to the
x side (see the dash-dot line). However, SVM ignores this kind of “global”
information, i.e. the statistical trend of data occurrence. The derived SVM
decision hyperplane (the solid line) lies unbiasedly right in the middle of
two “local” points (the support vectors).The above considerations directly
motivate Maxi-Min Margin Machine.

Fig. 2.4. A decision hyperplane with considerations of
both local and global information

2.5 Maxi-Min Margin Machine

After examining the road-map of the learning models, especially the global
learning and local learning, we have seen a strong motivation for combining
two different but complementary schemes. More specifically, borrowing the
idea from local learning by assuming no distribution on data would set a
valid foundation for the learning models. Meanwhile, fusing robust global
information, e.g. structure information, into learning models appears to be-
nefit more on refining decisions in separating data.

Our effort will be made in this direction. As will be detailed in Chap-
ter 4, the hybrid learning model, Maxi-Min Margin Machine successfully plugs
the global information into the learning and enjoys good features from both
local learning and global learning. As seen in Fig. 2.1, the Maxi-Min Mar-
gin Machine model has built up various connections with many models in
the literature; it incorporates Support Vector Machine as a special case,
which lies in the framework of local learning; it also includes Minimax
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Probability Machine and Fisher Discriminant Analysis as direct spin-offs.
Moreover, a strong link has been established between this model and Mini-
mum Error Minimax Probability Machine. Moreover, empirical investigations
have shown that this combined model outperforms both local learning model
such as SVM and global learning models, e.g. MPM.

In the next chapter, we will first present the Minimum Error Minimax
Probability Machine which is a general global learning model. Following that,
we then introduce the Maxi-Min Margin Machine and demonstrate its merits
both theoretically and empirically.
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3

A General Global Learning Model: MEMPM

Traditional global learning, especially generative learning, enjoys a long and
distinguished history, holding a lot of merits, e.g. a relatively simple opti-
mization, and the flexibility in incorporating global information such as struc-
ture information and invariance, etc. However, it is widely argued that this
model lacks the generality for having to assume a specific model beforehand.
Assuming a specific model over data is useful in some cases. However, the as-
sumption may not always coincide with the true data distribution in general
and thus may be invalid in many circumstances. In this chapter, we propose
a novel global learning model, named Minimum Error Minimax Probability
Machine (MEMPM), which is directly motivated from Marshall and OlKin
Probability Theory [20, 24]. For classifying data correctly, this model focuses
on estimating the worse-case probability, which is not only more reliable,
but also more importantly provides no need for assuming specific models.
Furthermore, this new model consists of several appealing features.

First, MEMPM acutally presents a novel general framework for classifica-
tions. As demonstrated later, MEMPM includes a recently-proposed promi-
sing model Minimax Probability Machine as its special case, which is reported
to achieve comparable performance to SVM. Interpretations from both view-
points of the optimal thresholding problem and the geometry will be provided
to show the advantages of MEMPM. Moreover, this novel model branches out
another promising special case, named Biased Minimax Probability Machine
(BMPM) [12] and extends its application into a type of important classifica-
tions, i.e. biased classifications.

Second, this model derives a distribution-free Bayes optimal classifier
in the worst-case scenario. It thus distinguishes itself from the traditional
global learning methods, or more particularly, the traditional Bayes optimal
classifiers which have to assume a distribution on data and thus lack the
generality in real cases. Furthermore, we will show that under some condi-
tions, e.g. when a Gaussian distribution is assumed on data, the worst-case
Bayes optimal classifier becomes the true Bayes optimal hyperplane.
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Third, the MEMPM model contains an explicit performance indicator,
namely an explicit upper bound on the probability of misclassification of
future data. Moreover, we will demonstrate theoretically and empirically that
MEMPM attains a smaller upper bound of the probability of misclassification
than MPM, which thus implies the advantages of MEMPM over MPM.

Fourth, although in general the optimization of MEMPM is shown to
be a non-concave problem, empirically, it demonstrates a good concavity in
the main “interest” region and thus can be solved practically. Furthermore,
we will show that the final optimization problem involves solving a one-
dimensional line search problem and thus results in a satisfactory solving
method.

This chapter is organized as follows. In the next section, we will first in-
troduce the Marshall and Olkin Theory. We then present the main content
of this chapter, the MEMPM model, including its definition, interpretations,
the practical solving method, and the sufficient conditions for the conver-
gence into the true Bayes decision hyperplane. Following that, we demon-
strate a robust version of MEMPM. In Section 3.4, we seek to kernelize the
MEMPM model to attack nonlinear classification problems. We then, in Sec-
tion 3.5, present a series of experiments on synthetic datasets and real-world
benchmark data sets. In Section 3.6, we analyze the tightness of the worst-
case accuracy bound. In Section 3.7, we show that empirically MEMPM is
often concave in the main “interest” region. In Section 3.8, we present the
limitations of MEMPM and envision the possible future work. Finally, we
summarize this chapter in Section 3.9.

3.1 Marshall and Olkin Theory

The Marshall and Olkin Theory can be described as follows:

Theorem 3.1. [Marshall and Olkin Theory] The probability that a random
vector y belongs to a convex set S can be bounded by the following formulation:

sup
y∼(y,Σy)

Pr{y ∈ S} =
1

1 + d2
, with d2 = inf

y∈S
(y − y)TΣ−1

y (y − y) , (3.1)

where the supremum is taken over all distributions for y containing the mean
as y and the covariance matrix as Σy

1.

The theory provides us with a possibility to assume no model, but bound
the probability of misclassifying a point and consequently develop a novel
classifier within the framework of global learning. More specifically, one can
design a linear separating plane by replacing S with a half space associated

1We assume Σy to be positive definite for simplicity. Otherwise, we can always
add a small positive amount to its diagonal elements to force its positive definition.
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with this linear plane. To take the supremum can then be considered to
bound the misclassification rate for one class of data. We in the following,
first introduce the model definition and then show how this theory can be
applied therein for deriving a distribution-free classifier.

3.2 Minimum Error Minimax Probability Decision
Hyperplane

In this section, we first present the model definition of MEMPM while review-
ing the original MPM model. We then in Section 3.2.2 interpret MEMPM
with respect to MPM. In Section 3.2.3, we specialize the MEMPM model
for dealing with biased classifications. In Section 3.2.4, we analyze the
MEMPM optimization problem and propose a practical solving method. In
Section 3.2.5, we address the sufficient conditions when the worst-case Bayes
optimal classifier derived from MEMPM becomes the true Bayes optimal clas-
sifier. In Section 3.2.6, we provide a geometrical interpretation for BMPM and
MEMPM.

3.2.1 Problem Definition

The notation in this chapter will largely follow that of [16]. Let x and y
denote two random vectors representing two classes of data with means and
covariance matrices as {x,Σx} and {y,Σy}, respectively, in a two-category
classification task, where x, y, x, y ∈ R

n, and Σx, Σy ∈ R
n×n.

Assuming {x,Σx}, {y,Σy} for two classes of data are reliable, MPM
attempts to determine the hyperplane wTz = b (w ∈ R

n\{0}, z ∈ R
n,

b ∈ R, and superscript T denotes the transpose) which can separate two
classes of data with the maximal probability. The formulation for the MPM
model is written as follows:

max
α,β,w �=0,b

{θα + (1 − θ)β} , (3.2)

s.t. inf
x∼(x,Σx)

Pr{wTx ≥ b} ≥ α , (3.3)

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β , (3.4)

where α and β indicate the worst-case classification accuracies of future data
points for the class x and y, respectively, namely, the worst-case accuracy for
classifying x data and y data. Future points z for which wTz ≥ b are then
classified as the class x; otherwise they are judged as the class y. θ ∈ [0, 1] is
the prior probability of the class x and 1 − θ is thus the prior probability of
the class y. Intuitively, maximizing θα+(1−θ)β can be naturally considered
as maximizing the expected worst-case accuracy for future data. In other
words, this optimization leads to minimizing the expected upper bound of
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the error rate. More precisely, if we change max{θα+(1− θ)β} to min{θ(1−
α)+(1−θ)(1−β)} and consider 1−α as the upper bound probability that an
x data is classified into class y (1 − β is similarly considered), the MEMPM
model exactly minimizes the maximum Bayes error and thus derives the
Bayes optimal hyperplane in the worst-case scenario. In comparison, MPM
assumes the equal worst-case probability for both classes, i.e. it forces α = β.
Obvisouly, this is inappropriate since it is unnecessary that the worst-case
accuracies are presumed equal. However, even in such a constrained way,
MPM is reported to achieve comparable performacne to SVM, a current
state-of-the-art classifier. Therefore, the generalized case of MPM, namely,
MEMPM may be expected to be more pomising. This will be empirically
demonstrated in the experimental part of this chapter.

3.2.2 Interpretation

We interpret MEMPM with respect to MPM in this section. First, it is evident
that if we presume α = β, the optimization of MEMPM degrades to the
MPM optimization. This would mean that MPM is actually a special case of
MEMPM.

An analogy to illustrate the difference between MEMPM and MPM can
be seen in the optimal thresholding problem. Fig. 3.1 illustrates this analogy.
To separate two classes of one-dimensional data with density functions as p1

and p2, respectively, the optimal thresholding is given by the decision plane
in Fig. 3.1(a) (assuming that the prior probabilities for two classes of data
are equal). This optimal thesholding corresponds to the point minimizing the

(a) (b)

Fig. 3.1. An analogy to illustrate the difference between MEMPM
and MPM with equal prior probabilities for two classes. The optimal
decision plane corresponds to the intersection point, where the error
(1 − α) + (1 − β) is minimized (or the accuracy α + β is maximized)
as implied by MEMPM, rather than the one where α is equal to β as
implied by MPM
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error rate (1−α)+(1−β) or maximizing the accuracy α+β, which is exactly
the intersection point of two density functions (1 − α represents the area of
135◦-line filled region and 1− β represents the area of 45◦-line filled region).
On the other hand, the thresholding point to force α = β is not necessarily
the optimal point to separate these two classes.

It should be clarified that the MEMPM model assumes no distributions.
This distinguishes the MEMPM model from the traditional Bayes optimal
thresholding method which has to make specific assumptions on data distri-
bution. On the other hand, although MEMPM minimizes the upper bound
of the Bayes error rate of future data points, as shown later in Section 3.2.5,
it will represent the true Bayes optimal hyperplane under some conditions,
e.g. when a Gaussian distribution is assumed on data.2

3.2.3 Special Case for Biased Classifications

The above discussion only covers the unbiased classification tasks, which does
not favor one class over the other class intentionally. However, another im-
portant type of pattern recognition tasks, namely biased classification, arises
very often in practice. In this scenario, one class is usually more important
than the other class. Thus a bias should be imposed towards the important
class. Such typical example can be seen in the diagnosis of epidemical dis-
ease. Classifying a patient who is infected with a disease into an opposite
class results in serious consequence. Thus in this problem, the classification
accuracy should be biased towards the class with disease. In other words, we
would prefer to diagnose the person without the disease to be the infected
case rather than the other way round.

We in the following demonstrate that MEMPM actually contains a special
case we call Biased Minimax Probability Machine for biased classifications.
We formulate this special case as:

max
α,β,w �=0,b

α ,

s.t. inf
x∼(x,Σx)

Pr{wTx ≥ b} ≥ α ,

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β0 ,

2Another interpretation of the difference between MEMPM and MPM can be
stated from the viewpoint of Game Theory. MPM can be regarded as a non-
cooperative competitive game. In this game, each player (class) tries to maximize
its individual benefit, i.e. α. The competition leads to each class obtaining the same
benefit when all classes fulfill a kind of equilibrium. However, in the game theory,
many models, e.g. the prisoners’ dilemma, Counot Model and the tragedy of the
commons [21], have stated that maximizing individual benefit does not lead to
maximizing the global optimum. Our model, on the contrary, can be considered as
a kind of cooperative game. It achieves the global optimum through cooperation.
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where β0 is a pre-specified positive constant, which represents an acceptable
accuracy level for the less important class y.

The above optimization utilizes a typical setting in biased classifications,
i.e. the accuracy for the important class (associated with x) should be as high
as possible, if only the accuracy for the less important class (associated with
y) maintains at an acceptable level specified by the lower bound β0 (which
can be set by users).

With quantitatively plugging a specified bias β0 into classifications and
also containing an explicit accuracy bound α for the important class, BMPM
provides a more direct and elegant way for biased classifications. Compa-
ratively, to achieve a specified bias, traditional biased classifiers such as the
Weighted Support Vector Machine [23] and the Weighted k-Nearest Neighbor
method [18] usually adapt different costs for different classes. However, due
to the difficulties in building up quantitative connections between the cost
and the accuracy,3 for imposing a specified bias, these methods need resort
to the trial and error procedure to attain suitable costs which are generally
indirect and lack rigorous treatments.

3.2.4 Solving the MEMPM Optimization Problem

In this section, we will propose to solve the MEMPM optimization prob-
lem. As will be demonstrated shortly, the MEMPM optimization can be
transformed into a one-dimensional line search problem. More specifically,
the objective function of the line search problem is implicitly determined by
dealing with a BMPM problem. Therefore, solving the line search problem
corresponds to solving a Sequential Biased Minimax Probability Machine
(SBMPM) problem. Before we proceed, we first introduce how to solve the
BMPM optimization problem.

3.2.4.1 Solving the BMPM Optimization Problem

First, we describe Lemma 3.2 which is developed in [16].

Lemma 3.2. Given w 	= 0 and b, such that wTy ≤ b and β ∈ [0, 1), the
condition:

inf
y∼(y,Σy)

Pr{wTy ≤ b} ≥ β

holds if and only if b − wTy ≥ κ(β)
√

wTΣyw with κ(β) =
√

β
1−β .

The lemma can be proved according to the Marshall and Olkin Theory
and the Lagrangian Multiplier theory.

3Although cross validations could be used to provide empirical connections, they
are problem-dependent and are usually slow procedures as well.
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Proof. In Marshall and Olkin Theory, if we define S = {wTy ≥ b}, the
theorem is changed to:

sup
y∼{y,Σy}

Pr{wTy ≥ b} =
1

1 + d2
, with d2 = inf

wTy≥b
(y − y)TΣ−1

y (y − y) .

We next show that d can be obtained as follows:

d2 = inf
wTy≥b

(y − y)TΣ−1
y (y − y) =

max (b − wTy, 0)2

wTΣyw
.

This can be proved by using the Lagrangian multiplier method as follows:

(1) If wTy ≤ b.

Denoting pT = wTΣ1/2
y , g = Σ−1/2

y (y − y), and q = b − wTy, one
can write d2 = inf

pTw≥q
gTg. One can obtain g by introducing Lagrangian

multiplier:

{g, λ} = arg min
g

arg max
λ

{gTg + λ(q − pTg)},

where the multiplier λ ≥ 0. Therefore, one can get the following equalities:

g =
λp

2
, q = pTg.

Since wTy ≤ b, one can easily obtain q ≥ 0. One can further obtain:

λ =
2q

pTp
, g =

dp

pTp
.

Finally, this leads to the following equation:

d2 = inf
wTy≥b

(y − y)TΣ−1
y (y − y) =

(b − wTy)2

wTΣyw
.

(2) If wTy ≥ b.
In this case, we can only have y = y. Therefore, d = 0.

By integrating the above, we thus complete the proof of this theorem.

By using Lemma 3.2 we can transform the BMPM optimization problem
as follows:

max
α,w �=0,b

α , (3.5)

s.t. −b + wTx ≥ κ(α)
√

wTΣxw , (3.6)

b − wTy ≥ κ(β0)
√

wTΣyw , (3.7)



36 3 A General Global Learning Model: MEMPM

where κ(α) =
√

α
1−α , κ(β0) =

√
β0

1−β0
. Eq.(3.7) is directly obtained from

Eq.(3.4) by using Lemma 3.2. Similarly, by changing wTx ≥ b to wT(−x) ≤
−b, Eq.(3.6) can be obtained from Eq.(3.3).

From Eqs.(3.6) and (3.7), we get

wTy + κ(β0)
√

wTΣyw ≤ b ≤ wTx − κ(α)
√

wTΣxw . (3.8)

If we eliminate b from this inequality, we obtain:

wT(x − y) ≥ κ(α)
√

wTΣxw + κ(β0)
√

wTΣyw . (3.9)

We observe that the magnitude of w does not influence the solution of
Eq.(3.9). Moreover, we can assume x 	= y; otherwise, if x = y, the mini-
max machine does not have a physical meaning. In this case, Eq.(3.9) may
even have no solution for every β0 	= 0, since the right hand side would be
always positive provided that w 	= 0. Thus in the extreme case, β and α have
to be zero, which means the worst-case misclassification are always zero.

Without loss of generality, we can set wT(x − y) = 1. Thus the problem
can be further changed as:

max
α,w �=0

α , (3.10)

s.t. 1 ≥ κ(α)
√

wTΣxw + κ(β0)
√

wTΣyw , (3.11)

wT(x − y) = 1 . (3.12)

Since Σx can be assumed as positive definite (otherwise, we can always
add a small positive amount to its diagonal elements and make it positive
definite), from Eq.(3.11) we can obtain:

κ(α) ≤ 1 − κ(β0)
√

wTΣyw√
wTΣxw

. (3.13)

Because κ(α) increases monotonically with α, maximizing α is equivalent
to maximizing κ(α), which further leads to:

max
w �=0

1 − κ(β0)
√

wTΣyw√
wTΣxw

,

s.t. wT(x − y) = 1 .

This kind of optimization is called Fractional Programming (FP) prob-
lem [13, 19, 26]. To elaborate further, this optimization is equivalent to solving
the following fractional problem:

max
w �=0

f(w)
g(w)

, (3.14)
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subject to w ∈ A = {w|wT(x−y) = 1}, where f(w) = 1−κ(β0)
√

wTΣyw,

g(w) =
√

wTΣxw.

Theorem 3.3. The Fractional Programming problem Eq.(3.14) associated
with the BMPM optimization is a pseudo-concave problem whose every lo-
cal optimum is the global optimum.

Proof. It is easy to see that the domain A is a convex set on R
n, f(w)

and g(w) are differentiable on A. Moreover, since Σx and Σy can be both
considered as positive definite matrices, f(w) is a concave function on A and
g(w) is a convex function on A. Then f(w)/g(w) is a concave-convex FP
problem. Hence it is a pseudo-concave problem [26]. Therefore, every local
maximum is the global maximum [26].

To handle this specific FP problem, many methods such as the parametric
method [26], the dual FP method [7, 25], and the concave FP method [6] can
be used. A typical Conjugate Gradient method [2] in solving this problem will
have a worst-case O(n3) time complexity. Adding the time cost to estimate
x, y, Σx, and Σy, the total cost for this method is O(n3 +Nn2), where N is
the number of data points. This complexity is in the same order as the linear
Support Vector Machines [27] and the linear MPM [16].

In this chapter, the Rosen gradient projection method [2] is used to find
the solution of this pseudo-concave FP problem, which is proved to converge
to a local maximum with a worse-case linear convergence rate. Moreover, the
local maximum will exactly be the global maximum in this problem.

3.2.4.2 Sequential BMPM Optimization Method for MEMPM

We now turn to solving the MEMPM problem. Similar to Section 3.2.4.1, we
can base on Lemma 3.2 to transform the MEMPM optimization as follows:

max
α,β,w �=0,b

{θα + (1 − θ)β} , (3.15)

s.t. −b + wTx ≥ κ(α)
√

wTΣxw , (3.16)

b − wTy ≥ κ(β)
√

wTΣyw . (3.17)

Using the similar analysis as in Section 3.2.4.1, we can further transform
the above optimization into

max
α,β,w �=0

{θα + (1 − θ)β} , (3.18)

s.t. 1 ≥ κ(α)
√

wTΣxw + κ(β)
√

wTΣyw , (3.19)

wT(x − y) = 1 . (3.20)

In the following we provide a lemma to show that the MEMPM solution
is actually attained on the boundary of the set formed by the constraints of
Eqs.(3.19) and (3.20).
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Lemma 3.4. The maximum value of θα + (1 − θ)β under the constraints of
Eqs.(3.19) and (3.20) is achieved when the right hand side of Eq.(3.19) is
strictly equal to 1.

Proof. Assume the maximum is achieved when

1 > κ(β)
√

wTΣyw + κ(α)
√

wTΣxw .

A new solution constructed by increasing α or κ(α) by a small positive
amount,4 and maintaining β, w unchanged will satisfy the constraints and
will be a better solution.

By applying Lemma 3.4 we can transform the optimization problem
Eq.(3.18) under the constraints of Eqs.(3.19) and (3.20) as follows:

max
β,w �=0

{
θκ2(α)

κ2(α) + 1
+ (1 − θ)β

}
, (3.21)

s.t. wT(x − y) = 1 , (3.22)

where

κ(α) =
1 − κ(β)

√
wTΣyw√

wTΣxw
.

In Eq.(3.22), if we fix β to a specific value within [0, 1), the optimization
is equivalent to maximizing κ2(α)/κ2(α) + 1 and further equivalent to max-
imizing κ(α), which is exactly the BMPM problem. We can then update β
according to some rules and repeat the whole process until an optimal β is
found. This is also the so-called line search problem [2, 1]. More precisely,
if we denote the value of optimization as a function f(β), the above proce-
dure corresponds to finding an optimal β to maximize f(β). Instead of using
an explicit function as in traditional line search problems, the value of the
function here is implicitly given by a BMPM optimization procedure.

Many methods can be used to solve the line search problem. In this
chapter, we use the Quadratic Interpolation (QI) method [2]. As illustrated
in Fig.3.2, QI finds the maximum point by updating a three-point pattern
(β1, β2, β3) repeatedly. The new β denoted by βnew is given by the quadratic
interpolation from the three-point pattern. Then a new three-point pattern
is constructed by βnew and two of β1, β2, β3. This method can be shown to
converge superlinearly to a local optimum point [2]. Moreover, as shown in
Section 3.7, although MEMPM generally cannot guarantee its concavity, em-
pirically it is often a concave problem. Thus the local optimum will be often
the global optimum in practice.

4Since κ(α) increases monotonically with α, increasing α by a small positive
amount corresponds to increasing κ(α) by a small positive amount.



3.2 Minimum Error Minimax Probability Decision Hyperplane 39

Fig. 3.2. A three-point pattern and quadratic line search method.
A βnew is obtained and a new three-point pattern is constructed
by βnew and two of β1, β2 and β3

Until now, we do not mention how to calculate the intercept b. From
Lemma 3.4, we can see that the inequalities Eqs.(3.16) and (3.17) will become
equalities at the maximum point (w∗, b∗). The optimal b will thus be obtained
by

b∗ = wT
∗ x − κ(α∗)

√
wT∗ Σxw∗ = wT

∗ y + κ(β∗)
√

wT∗ Σyw∗ . (3.23)

3.2.5 When the Worst-case Bayes Optimal Hyperplane Becomes
the True One

As discussed, the MEMPM derives the worst-case Bayes optimal hyperplane,
thus it is interesting to dig out on what conditions the worst-case optimal
one changes into the true optimal one.

In the following we demonstrate two propositions: the first is that when
data are assumed under some distributions, e.g. Gaussian distribution, the
MEMPM leads to the Bayes optimal classifier; the second is that when applied
into high-dimensional classification tasks, the MEMPM can be adapted to
converge into the true Bayes optimal classifier under the Lyapunov condition.

To introduce the first proposition, we begin with assuming data distribu-
tion as a Gaussian distribution.

Assuming x ∼ N(x,Σx) and y ∼ N(y,Σy), Eq.(3.3) becomes:
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inf
x∼N(x,Σx)

Pr{wTx ≥ b} = Prx∼N(x,Σx){wTx ≥ b}

= Pr

{
N(0, 1) ≥ b − wTx√

wTΣxw

}

= 1 − Φ

(
b − wTx√
wTΣxw

)

= Φ

(
−b + wTx√

wTΣxw

)
≥ α , (3.24)

where Φ(z) is the cumulative distribution function for the standard normal
Gaussian distribution defined as:

Φ(z) = Pr{N(0, 1) ≤ z} =
1√
2π

∫ z

−∞
exp

(−s2

2

)
ds.

Due to the monotonic property of Φ(z), we can further write Eq.(3.24) as:

−b + wTx ≥ Φ−1(α)
√

wTΣxw .

Constraint Eq.(3.4) can be reformulated to a similar form. The optimization
Eq.(3.2) is thus changed as:

max
α,β,w �=0,b

{θα + (1 − θ)β} , (3.25)

s.t. −b + wTx ≥ Φ−1(α)
√

wTΣxw ,

b − wTy ≥ Φ−1(β)
√

wTΣyw . (3.26)

The above optimization is nearly the same as Eq.(3.2) subject to the con-
straints of Eqs.(3.3) and (3.4) except that, κ(α) is equal to Φ−1(α), instead
of

√
α

1−α . Thus, it can be similarly solved based on the Sequential Biased
Minimax Probability Machine method.

On the other hand, the Bayes optimal hyperplane corresponds to the one,
wTz = b, which minimizes the Bayes error:

min
w �=0,b

θPrx∼N(x,Σx){wTx ≤ b} + (1 − θ)Pry∼N(y,Σy){wTy ≥ b} (3.27)

The above is exactly the upper bound of θα + (1− θ)β. From Lemma 3.4 we
can know that Eq.(3.26) will eventually become equalities. Traced back to
Eq.(3.24), the equalities imply that α and β will achieve their upper bounds
respectively. Therefore, with the Gaussian distribution assumption on data,
the MEMPM derives the optimal Bayes hyperplane.

We propose Proposition 3.5 to extend the above analysis to general dis-
tribution assumptions.
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Proposition 3.5. If the distribution of the normalized random variable

wTx − wTx√
wTΣxw

,

denoted as NS, is independent of w, as the case in Gaussian distribution,
the similar MEMPM version as in Gaussian distribution assumption will be
easily derived, except that Φ(z) is changed as Pr{NS(0, 1) ≤ z}. In such
case, minimizing the Bayes error bound will exactly minimize the true Bayes
error.

Before presenting Proposition 3.7, we first introduce the Central Limit
Theorem under the Lyapunov condition [5].

Theorem 3.6. Let xn be a sequence of independent random variables defined
on the same probability space. Assume that xn has finite expected value μn

and finite standard deviation σn. We define s2
n =

n∑
i=1

σ2
i . Assume that the

third central moment r3
n =

n∑
i=1

E(|xn − μn|3) is finite for every n, and that

lim
n→∞ (rn/sn) = 0 (This is the Lyapunov condition). The sum Sn = x1 + ...+
xn converges towards a Gaussian distribution.

One interesting finding directly elicited from the above Central Limit
Theorem is that, if the component variable xi of a given n-dimensional ran-
dom variable x satisfies the Lyapunov condition, the sum of weighted com-
ponent variables xi, 1 ≤ i ≤ n, namely, wTx tends to be a Gaussian distri-
bution, as n grows.5 This shows that, under the Lyapunov condition, when
the dimension n grows, the hyperplane derived by MEMPM with Gaussian
assumption tends to be the true Bayes optimal hyperplane. In this case, the
MEMPM using Φ−1(α), the inverse function of the normal cumulative dis-
tribution, instead of

√
α/(1 − α), will converge to the true Bayes optimal

decision hyperplane in the high-dimensional space. We summarize the ana-
lysis into Proposition 3.7.

Proposition 3.7. If the component variable xi of a given n-dimensional ran-
dom variable x satisfies the Lyapunov condition, the MEMPM hyperplane de-
rived by using Φ−1(α) the inverse function of normal cumulative distribution,
will converge to the true Bayes optimal one.

The underlying justifications in the above two propositions root in the
fact that the generalized MPM is exclusively determined by the first and sec-
ond moments. These two propositions actually emphasize the dominance of
the first and second moments in representing data. More specifically, Propo-
sition 3.5 hints that the distribution is only decided by up to the second

5Some techniques such as Independent Component [8] can be applied to decor-
relate the dependence among random variables beforehand.
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moment. The Lyapunov condition in Proposition 3.7 also implies that the
second order moment dominates the third order moment in the long run. It
also deserves attention that with the fixed mean and covariance, the distribu-
tion of Maximum Entropy Estimation is the Gaussian distribution [14]. This
would once again suggest the usage of Φ−1(α) in the high-dimensional space.

3.2.6 Geometrical Interpretation

In this section, we first provide a parametric solving method for BMPM, then
demonstrate that this parametric method actually enables a nice geometrical
interpretation for both BMPM and MEMPM.

3.2.6.1 A Parametric Method for BMPM

According to the parametric method, the fractional function can be itera-
tively optimized in two steps [26]:
Step 1. Find w by maximizing f(w)−λg(w) in the domain A, where λ ∈ R

is the newly introduced parameter.
Step 2. Update λ by f(w)/g(w).
The iteration of the above two steps will guarantee to converge to the local
maximum which is also the global maximum in our problem. In the following,
we adopt a method to solve the maximization problem in Step 1. Replacing
f(w) and g(w), we expand the optimization problem as:

max
w �=0

{
1 − κ(β0)

√
wTΣyw − λ

√
wTΣxw

}
, s.t. wT(x − y) = 1. (3.28)

Maximizing Eq.(3.28) is equivalent to minw κ(β0)
√

wTΣyw + λ
√

wTΣxw
under the same constraint. By writing w = w0 + Fu, where w0 = (x − y)/
‖ x − y ‖2

2 and F ∈ R
n×(n−1) is an orthogonal matrix whose columns span

the subspace of vectors orthogonal to x−y, an equivalent form (a factor 1/2
over each term has been dropped) to remove the constraint can be obtained:

min
u,η>0,ξ>0

{
η +

λ2

η
‖Σx

1/2(w0 + Fu)‖2
2 + ξ +

κ(β0)2

ξ
‖Σy

1/2(w0 + Fu)‖2
2

}
,

(3.29)
where η, ξ ∈ R. This optimization form is very similar to the one in Minimax
Probability Machine [15] and can also be solved by using an iterative least-
squares approach.

3.2.6.2 A Geometrical Interpretation for BMPM and MEMPM

The parametric method actually enables a nice geometrical interpretation of
BMPM and MEMPM in a fashion similar to that of MPM in [16]. Similarly,
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we assume x 	= y for the meaningful classification and also assume that Σx

and Σy are positive definite for the purpose of simplicity.
By using the 2-norm definition of a vector z : ‖z‖2 = max{uTz : ‖u‖2 ≤

1}, we can express Eq.(3.28) in its dual form:

τ∗ := min
w �=0

max
u,v

{
λuTΣx

1/2w + κ(β0)vTΣy
1/2w + τ(1 − wT(x − y))

}
s.t. ‖u‖2 ≤ 1, ‖v‖2 ≤ 1 .

We change the order of the min and max operators and consider the min:

min
w �=0

{λuTΣx
1/2w + κ(β0)vTΣy

1/2w + τ(1 − wT(x − y))}

=
{

τ, if τx − λΣx
1/2u = τy + κ(β0)Σy

1/2v;
−∞, otherwise.

Thus, the dual problem can be further changed to:

max
τ,u,v

τ : ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, τx − λΣx
1/2u = τy + κ(β0)Σy

1/2v. (3.30)

By defining � := 1/τ we rewrite the dual problem as:

min
�,u,v

� : x − λΣx
1/2u = y + κ(β0)Σy

1/2v, ‖u‖2 ≤ �, ‖v‖2 ≤ � . (3.31)

When the optimum is attained, we have

τ∗ = λ‖Σx
1/2w∗‖2 + κ(β0)‖Σy

1/2w∗‖2 = 1/�∗ . (3.32)

We consider each side of Eq.(3.31) as an ellipsoid centered at the means
x and y and shaped by the weighted covariance matrices λΣx and κ(β0)Σy

respectively:

Hx(�) = {x = x + λΣx
1/2u : ‖u‖2 ≤ �}, (3.33)

Hy(�) = {y = y + κ(β0)Σy
1/2v : ‖v‖2 ≤ �}. (3.34)

The above optimization involves finding a minimum � for which two ellip-
soids intersect. For the optimum �, these two ellipsoids would be tangent to
each other. We further note that, according to Lemma 3.4, at the optimum,
λ∗, which is maximized via a series of the above procedures, would satisfy

1 = λ∗‖Σx
1/2w∗‖2 + κ(β0)‖Σy

1/2w∗‖2 = τ∗ = 1/�∗ , (3.35)
⇒ �∗ = 1 . (3.36)

This means that the ellipsoid for the class y finally changes to the one
centered at y, whose Mahalanobis distance to y is exactly equal to κ(β0).
Moreover, the ellipsoid for the class x would be the one centered at x and
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tangent to the ellipsoid for the class y. In comparison, for MPM, two el-
lipsoids grow with the same speed (with the same κ(α) and κ(β)). On the
other hand, since MEMPM corresponds to solving a sequence of BMPMs,
it similarly leads to a hyperplane tangent to two ellipsoids, which achieves
to minimize the maximum of the worst-case Bayes error. Moreover, it is not
necessarily attained in a balanced way as in MPM, i.e. two ellipsoids do not
necessarily grow with the same speed and hence probably contain the unequal
Mahalanobis distance from their corresponding centers. This is illustrated in
Fig. 3.3.

Fig. 3.3. The Geometrical interpretation of MEMPM and BMPM. Finding
the optimal BMPM hyperplane corresponds to finding the decision plane
(the black dashed line) tangent to an ellipsoid (the inner dashed ellipsoid
on the y side) , which is centered at y, shaped by the covariance Σy and
whose Mahalanobis distance to y is exactly equal to κ(β0) (κ(β0) = 1.28
in this example). The worst-case accuracy α for x is determined by the
Mahalanobis distance κ (κ = 5.35 in this example), at which an ellipsoid
(centered at x and shaped by Σx) is tangent to that κ(β0) ellipsoid, i.e. the
outer dahsed ellipsoid on the x side. In comparison, MPM tries to find out
the minimum equality-constrained κ, at which two ellipsoids for x and y
intersect (both dotted ellipsoids with κ = 2.77). For MEMPM, it achieves
a tangent hyperplane in a non-balanced fashion, i.e. two ellipsoids may not
attain the same κ but are globally optimal in the worst-case setting (see
the solid ellipsoids)
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3.3 Robust Version

In the above, the estimates of means and covariance matrices are assumed
reliable. We now consider how the probabilistic framework in Eq.(3.2) changes
against the variation of the means and covariance matrices:

max
α,β,w �=0,b

{θα + (1 − θ)β} , (3.37)

s.t. inf
x∼(x̄,Σx)

Pr{wTx ≥ b} ≥ α,∀(x̄,Σx) ∈ X , (3.38)

inf
y∼(ȳ,Σy)

Pr{wTy ≤ b} ≥ β,∀(ȳ,Σy) ∈ Y , (3.39)

where X and Y are the sets of means and covariance matrices and are the
subsets of R×P+

n , where P+
n is the set of n×n symmetric positive semidefinite

matrices.
Motivated by the tractability of the problem and from the statistical view,

a specific setting of X and Y is proposed in [16]. However, they consider the
same variations of the means for two classes, which is easy to handle but less
general. Now, considering the unequal treatment of each class, we propose
the following setting which is in a more general and complete form:

X =
{
(x̄,Σx) | (x̄ − x̄0)Σ −1

x (x̄ − x̄0) ≤ ν2
x, Σx ∈ ‖Σx − Σ 0

x ‖F ≤ ρx

}
,

Y =
{
(ȳ,Σy) | (ȳ − ȳ0)Σ −1

y (ȳ − ȳ0) ≤ ν2
y, Σy ∈ ‖Σy − Σ 0

y ‖F ≤ ρy

}
,

where x̄0, Σ0
x are the “nominal” means and covariance matrices obtained

through estimating. Parameters νx, νy, ρx, and ρy are positive constants.
The matrix norm is defined as the Frobenius norm: ‖M‖2

F = Tr(MTM).
With the assumption that variations of the means for two classes are the

same, the parameters νx and νy are required equal in [16]. This may enable
the direct usage of the MPM optimization into its robust version. However,
the assumption may not be true in real cases. Moreover, in MEMPM, this
requirement is also not necessary and inappropriate. This will be later demon-
strated in the experiment.

By applying the results from [16], we obtain the robust MEMPM as:

max
α,β,w �=0,b

{θα + (1 − θ)β} ,

s.t. −b + wTx̄0 ≥ (κ(α) + νx)
√

wT(Σ 0
x + ρxIn)w,

b − wTȳ0 ≥ (κ(β) + νy)
√

wT(Σ 0
y + ρyIn)w.

Analogously, we transform the above optimization problem as:

max
α,β,w �=0

θ
κ2

r(α)
1 + κ2

r(α)
+ (1 − θ)β , (3.40)

s.t. wT(x̄0 − ȳ0) = 1, (3.41)
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where κr(α) = max
(

1−(κ(β)+νy)
√

wT(Σ 0
y +ρyIn)w√

wTy(Σ 0
x +ρxIn)w

− νx, 0
)

, and thus can be

solved by the SBMPM method. The optimal b is therefore calculated by:

b∗ = w∗Tx̄0 − (κ(α∗) + νx)
√

w∗T(Σ 0
x + ρxIn)w∗

= w∗Tȳ0 + (κ(β∗) + νy)
√

w∗T(Σ 0
y + ρyIn)w∗ .

Remarks. Interestingly, if MPM is treated with unequal robust parameters
νx and νy, it leads to solving an optimization similar to MEMPM, since
κ(α) + νx will not be equal to κ(α) + νy. In addition, similar to the robust
MPM, when applied in practice, the specific values of νx, νy, ρx and ρy can
be provided based on the Central Limit Theorem.

3.4 Kernelization

We note that, in the above, the classifier derived from MEMPM is given in
a linear configuration. In order to handle nonlinear classification problems,
in this section, we seek to use the kernelization trick [22] to map the n-
dimensional data points into a high-dimensional feature space R

f , where a
linear classifier corresponds to a nonlinear hyperplane in the original space.

Since the optimization of MEMPM corresponds to a sequence of BMPM
optimization problems, this model naturally inherits the kernelization abi-
lity of BMPM. We thus in the following mainly address the kernelization of
BMPM.

Assuming training data points are represented by {xi}Nx
i=1 and {yj}Ny

j=1

for the class x and y, respectively, the kernel mapping can be formulated as:

x → ϕ(x) ∼ (ϕ(x),Σϕ(x)) ,

y → ϕ(y) ∼ (ϕ(y),Σϕ(y)) ,

where ϕ : R
n → R

f is a mapping function. The corresponding linear clas-
sifier in R

f is wTϕ(z) = b, where w, ϕ(z) ∈ R
f , and b ∈ R. Similarly, the

transformed FP optimization in BMPM can be written as:

max
w �=0

1 − κ(β0)
√

wTΣϕ(y)w√
wTΣϕ(x)w

, s.t. wT(ϕ(x) − ϕ(y)) = 1. (3.42)

However, to make the kernel work, we need to represent the final decision
hyperplane and the optimization in a kernel form, K(z1,z2) = ϕ(z1)Tϕ(z2),
namely an inner product form of the mapping data points.
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3.4.1 Kernelization Theory for BMPM

In the following, we demonstrate that although BMPM possesses a signifi-
cantly different optimization form from MPM, the kernelization theory pro-
posed in [16] is still viable, provided that suitable estimates for means and
covariance matrices are applied therein.

We first state a theory similar to Corollary 5 of [16] and prove its validity
in BMPM.

Corollary 3.8. If the estimates of means and covariance matrices are given
in BMPM as:

ϕ(x) =
Nx∑
i=1

λiϕ(xi) , ϕ(y) =
Ny∑
j=1

ωjϕ(yj) ,

Σϕ(x) = ρxIn +
Nx∑
i=1

Λi(ϕ(xi) − ϕ(x))(ϕ(xi) − ϕ(x))T ,

Σϕ(y) = ρyIn +
Ny∑
j=1

Ωj(ϕ(yj) − ϕ(y))(ϕ(yj) − ϕ(y))T ,

where In is the identity matrix of dimension n, then the optimal w in problem
Eq.(3.42) lies in the space spanned by the training points.

Proof. Similar to Corollary 5 of [16], we write w = wp + wd, where wp

is the projection of w in the vector space spanned by all the training data
points and wd is the orthogonal component to this span space. It can be
easily verified that Eq.(3.42) changes to maximize the following:

1−κ(β0)
√

wT
p

∑Nx
i=1 Λi(ϕ(xi)−ϕ(x))(ϕ(xi)−ϕ(x))Twp+ρx(wT

p wp+wT
d wd)√

wT
p

∑Ny
j=1 Ωj(ϕ(yj)−ϕ(y))(ϕ(yj)−ϕ(y))Twp+ρy(wT

p wp+wT
d wd)

,

subject to the constraints of wT
p (ϕ(x) − ϕ(y)) = 1. Since we intend to max-

imize the fractional form and both the denominator and the numerator are
positive, the denominator needs to be as small as possible and the numera-
tor needs to be as large as possible. This would finally lead to wd = 0. In
other words, the optimal w lies in the vector space spanned by all the train-
ing data points. Note that the introduction of ρx and ρy actually enables a
direct application of the robust estimates in the kernelization.

According to Corollary 3.8, if appropriate estimates of means and co-
variance matrices are applied, the optimal w can be written as the linear
combination of training points. In particular, if we obtain the means and
covariance matrices as the plug-in estimates, i.e.
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ϕ(x) =
1

Nx

Nx∑
i=1

ϕ(xi) , ϕ(y) =
1

Ny

Ny∑
j=1

ϕ(yj) ,

Σϕ(x) =
1

Nx

Nx∑
i=1

(ϕ(xi) − ϕ(x))(ϕ(xi) − ϕ(x))T ,

Σϕ(y) =
1

Ny

Ny∑
j=1

(ϕ(yj) − ϕ(y))(ϕ(yj) − ϕ(y))T ,

we can write w as:

w =
Nx∑
i=1

μiϕ(xi) +
Ny∑
j=1

υjϕ(yj), (3.43)

where the coefficients μi, υj ∈ R for i = 1, . . . , Nx and j = 1, . . . , Ny.
By simply substituting Eq.(3.43) and four plug-in estimates into Eq.(3.42),

we can obtain the Kernelization Theorem of BMPM.

3.4.2 Notations in Kernelization Theorem of BMPM

Before we present the main kernelization result, we first introduce the nota-
tions. Let {z}N

i=1 denote all N = Nx + Ny data points in the training set
where

zi = xi, i = 1, 2, . . . , Nx ,

zi = y
i−Nx

, i = Nx + 1, Nx + 2, . . . , N.

The element of the Gram matrix K in the position of (i, j) is defined
as Ki,j = ϕ(zi)Tϕ(zj) for i, j = 1, 2, . . . , N . We further define Kx and Ky

as the matrices formed by the first Nx rows and the last Ny rows of K,
respectively, namely,

K :=
(

Kx

Ky

)
.

By setting the row average of the Kx block and the Kx block to zero,
the block-row-averaged Gram matrix K̃ is thus obtained:

K :=
(

K̃x

K̃y

)
=

(
Kx − 1Nx k̃

T

x

Ky − 1Ny
k̃

T

y

)
,

where k̃x, k̃y ∈ R
Nx+Ny are defined as:
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[k̃x]i :=
1

Nx

Nx∑
j=1

K(xj ,zi) , [k̃y]i :=
1

Ny

Ny∑
j=1

K(yj ,zi) .

In the above, 1Nx
∈ R

Nx and 1Ny
∈ R

Ny , are defined as:

1i = 1, i = 1, 2, . . . , Nx ,

1j = 1, j = 1, 2, . . . , Ny .

Finally, we define vector formed by the coefficients of γ as:

w = [μ1, μ2, . . . , μNx , υ1, υ2, . . . , υNy ]T. (3.44)

3.4.3 Kernelization Results

Theorem 3.9. [Kernelization Theorem of BMPM] The optimal decision hy-
perplane of the problem Eq.(3.42) involves solving the Fractional Program-
ming problem:

κ(α∗) = max
w �=0

1 − κ(β0)
√

1
Ny

wTK̃
T

y K̃yw√
1

Nx
wTK̃

T

xK̃xw
,

s.t. wT(k̃x − k̃y) = 1 .

The intercept b is calculated as:

b∗ = wT
∗ k̃x − κ(α∗)

√
1

Nx
wT∗ K̃

T

xK̃xw∗ = wT
∗ k̃y + κ(β0)

√
1

Ny
wT∗ K̃

T

y K̃yw∗ ,

where κ(α∗) is obtained when the above equation attains its optimum (w∗, b∗).
For the robust version of BMPM, we can incorporate the variations of the
means and covariances by conducting the following replacements:

1
Nx

wT
∗ K̃

T

xK̃xw∗ → wT
∗ (

1
Nx

K̃
T

xK̃x + ρxK)w∗ ,

1
Ny

wT
∗ K̃

T

y K̃yw∗ → wT
∗ (

1
Ny

K̃
T

y K̃y + ρyK)w∗ ,

κ(β0) → κ(β0) + μy ,

κ(α∗) → κ(α∗) + μx .

The optimal decision hyperplane can be represented as a linear form in the
kernel space

f(z) =
Nx∑
i=1

w∗iK(z,xi) +
Ny∑
i=1

w∗Nx+iK(z,yi) − b∗ .
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3.5 Experiments

In this section, we first evaluate our model on a synthetic dataset. Then we
compare the performance of MEMPM with that of MPM, on six real-world
benchmark datasets (since MPM is reported comparable to SVM, we do
not perform comparisons with SVM). To demonstrate that BMPM is ideal
for imposing a specified bias in classification, we also implement it on the
Heart-disease dataset. The means and covariance matrices for two classes are
obtained directly from the training datasets by plug-in estimations. The prior
probability θ is given by the proportion of x data in the training dataset.

3.5.1 Model Illustration on a Synthetic Dataset

To verify that the MEMPM model achieves the minimum Bayes error rate
in the Gaussian distribution, we synthetically generate two classes of two-
dimensional Gaussian data. As plotted in Fig. 3.4(a), data associated with the
class x are generated with the mean x as [3, 0]T and the covariance matrix Σx

as [4, 0; 0, 1], while data associated with the class y are generated with the
mean y as [−1, 0]T and the covariance matrix Σy as [1, 0; 0, 5]. The solved
decision hyperplane z1 = 0.333 given by MPM is plotted as the solid line
and the solved decision hyperplane z1 = 0.660 given by MEMPM is plotted
as the dashed line. From the geometrical interpretation, both hyperplanes
should be perpendicular to the z1 axis.

As shown in Fig. 3.4(b), the MEMPM hyperplane exactly represents the
optimal thresholding under the distributions of the first dimension for two
classes of data, i.e. the intersection point of two density functions. On the
other hand, we find that the MPM hyperplane exactly corresponds to the
thresholding point with the same error rate for two classes of data, since the
cumulative distribution Px(z1 < 0.333) and Py(z1 > 0.333) are exactly the
same.

3.5.2 Evaluations on Benchmark Datasets

We next evaluate our algorithm on six benchmark datasets. Data for the
Twonorm problem were generated according to [4]. The rest five datasets
including the Breast, Ionosphere, Pima, Heart-disease, and Vote data were
obtained from UCI machine learning repository [3]. Since handling the miss-
ing attribute values is out of the scope of this chapter, we simply remove
instances with missing attribute values in these datasets.

We randomly partition data into 90% training and 10% test sets. The
final results are averaged over 50 random partitions of data. We compare the
performance of MEMPM and MPM in both the linear setting and Gaussian
kernel setting. The width parameter (σ) for the Gaussian kernel is obtained
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Fig. 3.4. An evaluation of MEMPM and MPM on a synthetic dataset.
The decision hyperplane derived from MEMPM (the dashed line) exactly
corresponds to the optimal threshholding point, i.e. the intersection point,
while the decision hyperplane given by MPM (the solid line) corresponds
to the point on which two error rates for two classes of data are equal

via cross validations over 50 random partitions of the training set. The ex-
perimental results are summarized in Tables 3.1 and 3.2 for the linear kernel
and Guassian kernel respectively.

From the results we can see that our MEMPM demonstrates better perfor-
mance than MPM in both the linear and Gaussian kernel setting. Moreover,
as observed in these benchmark datasets, the MEMPM hyperplanes are ob-
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Table 3.1. Lower bound α, β, and test accuracy compared to MPM in the
linear setting

Dataset Performance of MEMPM(%) Performance of MPM(%)

α β θα + (1 − θ)β Accuracy α Accuracy

Twonorm 80.3 ± 0.2 79.9 ± 0.1 80.1 ± 0.1 97.9 ± 0.1 80.1 ± 0.1 97.9 ± 0.1

Breast 77.8 ± 0.8 91.4 ± 0.5 86.7 ± 0.5 96.9 ± 0.3 84.4 ± 0.5 97.0 ± 0.2

Ionosphere 95.9 ± 1.2 36.5 ± 2.6 74.5 ± 0.8 88.5 ± 1.0 63.4 ± 1.1 84.8 ± 0.8

Pima 0.9 ± 0.0 62.9 ± 1.1 41.3 ± 0.8 76.8 ± 0.6 32.0 ± 0.8 76.1 ± 0.6

Heart-disease 43.6 ± 2.5 66.5 ± 1.5 56.3 ± 1.4 84.2 ± 0.7 54.9 ± 1.4 83.2 ± 0.8

Vote 82.6 ± 1.3 84.6 ± 0.7 83.9 ± 0.9 94.9 ± 0.4 83.8 ± 0.9 94.8 ± 0.4

Table 3.2. Lower bound α, β, and test accuracy compared to MPM in the
Gaussian kernel

Dataset
Performance of MEMPM(%) Performance of MPM(%)

α β θα + (1 − θ)β Accuracy α Accuracy

Twonorm 91.7 ± 0.2 91.7 ± 0.2 91.7 ± 0.2 97.9 ± 0.1 91.7 ± 0.2 97.9 ± 0.1

Breast 88.4 ± 0.6 90.7 ± 0.4 89.9 ± 0.4 96.9 ± 0.2 89.9 ± 0.4 96.9 ± 0.3

Ionosphere 94.2 ± 0.8 80.9 ± 3.0 89.4 ± 0.8 93.8 ± 0.4 89.0 ± 0.8 92.2 ± 0.4

Pima 2.6 ± 0.1 62.3 ± 1.6 41.4 ± 1.1 77.0 ± 0.7 32.1 ± 1.0 76.2 ± 0.6

Heart-disease 47.1 ± 2.2 66.6 ± 1.4 58.0 ± 1.5 83.9 ± 0.9 57.4 ± 1.6 83.1 ± 1.0

Vote 85.1 ± 1.3 84.3 ± 0.7 84.7 ± 0.8 94.7 ± 0.5 84.4 ± 0.8 94.6 ± 0.4

tained with significantly unequal α and β except in the Twonorm set. This
further confirms the validity of our proposition, i.e. the optimal minimax ma-
chine is not certain to achieve the same worst-case accuracies for two classes.
For the Twonorm, it is also not an exception. The two classes of data in this
set are generated under the multivariate normal distributions with the same
covariance matrices. In this special case, the intersection point of two density
functions will exactly represent the optimal thresholding point and the one
with the same error rate for each class as well. Another important finding is
that the accuracy bounds, namely θα + (1− θ)β in MEMPM and α in MPM
are all increased in the Gaussian kernel setting when compared with those
in the linear setting. This shows the advantage of the kernelized probability
machine over the linear probability machine.

In addition, to clearly see the relationship between the bounds and the
test set accuracies (TSA), we plot them in Fig. 3.5. As observed, the test
set accuracies including TSAx (for the class x), TSAy (for the class y), and
the overall accuracies TSA are all greater than their corresponding accuracy
bounds both in MPM and MEMPM. This demonstrates how the accuracy
bound can serve as the performance indicator on future data.
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Fig. 3.5. Empirical evaluations on bounds and test set accuracies of MEMPM. The
test accuracies including TSAx (for the class x), TSAy (for the class y), and the
overall accuracies TSA are all greater than their corresponding accuracy bounds
both in MPM and MEMPM. This demonstrates how the accuracy bound can serve
as the performance indicator on future data

It is also observed that the overall worst-case accuracies θα + (1 − θ)β
in MEMPM are greater than α in MPM both in the linear and Gaussian
settings. This again demonstrates the advantages of MEMPM over MPM.
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Since the lower bounds keep well with the test accuracies in the above
experimental results, we do not perform the robust version of both models for
the real-world datasets. To see how the robust version works we generate two
classes of Gaussian data. As illustrated in Fig. 3.6, the x data are sampled

(a) Robust MPM and MEMPM with νx �= νy

(b) Robust MPM and MEMPM with νx = νy

Fig. 3.6. An example in R
2 demonstrates the results of robust versions of

MEMPM and MPM. Training points are indicated with black +’s for the
class x and magenta �’s for class y. Test points are represented by blue ×’s
for class x and by green o’s for the class y. In (a), the robust MEMPM out-
performs both MEMPM and the robust MPM. In (b), the robust MEMPM
with νx �= νy outperforms the robust MEMPM with νx = νy .

from the Gaussian distribution with the mean as [3, 0]T and the covariance
as [1 0; 0 3], while the y data are sampled from another Gaussian distribution
with the mean as [−3, 0]T and the covariance as [3 0; 0 1]. We randomly select
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10 points of each class for training and leave the rest points for test from the
above synthetic dataset. We present the result in the following.

First, we calculate the corresponding means x̄0 and ȳ0, covariance matri-
ces Σ 0

x and Σ 0
y and plug them into the linear MPM and the linear MEMPM.

We obtain the MPM decision line (dotted line) with a lower bound (assuming
the Gaussian distribution) being 99.1% and the MEMPM decision line (dash-
dot line) with a lower bound as 99.7% respectively. However, for the test set
we only obtain the accuracies 93.0% for MPM and 97.0% for MEMPM (see
Fig. 3.6(a)). This obviously violates the lower bound.

Based on our knowledge of the real means and covariance matrices in this
example, we set the parameters as

νx =
√

(x̄ − x̄0)TΣ −1
x (x̄ − x̄0) = 0.046 ,

νy =
√

(ȳ − ȳ0)TΣ −1
y (ȳ − ȳ0) = 0.496 ,

ρx = ‖Σx − Σ 0
x ‖F = 1.561 ,

ρy = ‖Σy − Σ 0
y ‖F = 0.972 ,

ν = max(νx, νy) .

We then train the robust linear MPM and the robust linear MEMPM by
these parameters and obtain the robust MPM decision line (dashed line), the
robust MEMPM decision line (solid line), as seen in Fig. 3.6(a). The lower
bounds decrease to 87.3% for MPM and 93.2% for MEMPM respectively,
but the test accuracies increase to 98.0% for MPM and 100.0% for MEMPM.
Obviously, the lower bounds accord with the test accuracies.

Note that in the above, the robust MEMPM also achieves a better per-
formance than the robust MPM. Moreover, νx and νy are not necessarily
the same. To see the result of MEMPM when νx and νy are forced to be
the same, we train the robust MEMPM again by setting the parameters as
νx = νy = ν as used in MPM. We obtain the corresponding decision line
(dash-dot line) as seen in Fig. 3.6(b). The lower bound decreases to 91.0%
and the test accuracy decreases to 98.0%. The above example indicates how
the robust MEMPM clearly improves over the standard MEMPM when a
bias is incorporated by the inaccurate plug-in estimates and also validates
that νx need not be equal to νy.

3.5.3 Evaluations of BMPM on Heart-disease Dataset

To demonstrate the advantages of the BMPM model in dealing with biased
classifications, we implement BMPM on the Heart-disease dataset, where
different treatments for different classes are necessary. The x class is associ-
ated with data with heart diseases, whereas the y class corresponds to data
without heart diseases. Obviously, a bias should be considered for x, since
misclassification of an x case into the opposite class would delay the therapy
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and is more risky than the other way round. Similarly, we randomly parti-
tion data into 90% training and 10% test sets. Also, the width parameter
(σ) for the Gaussian kernel is obtained via cross validations over 50 random
partitions of the training set. We repeat the above procedures 50 times and
report the average results.

By intentionally varying β0 from 0 to 1, we obtain a series of test accu-
racies, including the x accuracy TSAx, the y accuracy TSAy for both the
linear and Gaussian kernels. For simplicity, we denote the x accuracy in the
linear setting as TSAx(L), while others are similarly defined.

The results are summarized in Fig. 3.5. Four observations are worth high-
lighting. First, in both linear and Gaussian kernel settings, the smaller β0,
the higher the test accuracy for x. This indicates a bias can be indeed embed-
ded in the classification boundary for the important class x by specifying a
relatively smaller β0. In comparison, MPM forces an equal treatment on each
class and thus is not suitable for biased classification. Second, the test accura-
cies for y and x are strictly lower bounded by β0 and α. This shows how a bias
can be quantitatively, directly and rigorously imposed towards the important
class x. Note that again, for other weight-adapting-based biased classifiers,
the weights themselves lack accurate interpretations and thus cannot rigo-
rously impose a specified bias, i.e. they would try for different weights for a
specified bias. Third, when given a prescribed β0, the test accuracy for x and
its worst-case accuracy α in the Gaussian kernel setting are both increased
compared to the corresponding accuracies in the linear setting. Once again,
this demonstrates the power of the kernelization. Fourth, we note that β0

actually contains an upper bound which is around 90% for the linear BMPM
in this dataset. This is reasonable. Observed from Eq.(3.11), the maximum
β0 denoted as β0max is decided by setting α = 0, i.e.

κ(β0max) = max
w �=0

1√
wTΣyw

, s.t. wT(x − y) = 1 . (3.45)

It is interesting noting that when β0 is set to zero, the test accuracies for
y in the linear and Gaussian settings are both around 50% (see Fig. 3.7(b)).
This seeming “irrationality” is actually reasonable. We will discuss this in
the next section.

3.6 How Tight Is the Bound?

A natural question for MEMPM is how tight is the worst-case bound. In this
section, we present a theoretical analysis in addressing this problem.

In Marshall and Olkin Theory, if we define S = {wTy ≥ b}, the theorem
is changed to:

sup
y∼{y,Σy}

Pr{wTy ≥ b} =
1

1 + d2
, with d2 = inf

wTy≥b
(y − y)TΣ−1

y (y − y) .
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Fig. 3.7. Bounds and real accuracies for BMPM in Heart-disease dataset.
With β0 varying from 0 to 1, the real accuracies are lower bounded by the
worst-case accuracies. In addition, α(G) is above α(L), which shows the
power of the kernelization

Looking into the above equation and Eq.(3.4), for a given hyperplane
{w, b} we can easily obtain:

β =
d2

1 + d2
. (3.46)

Moreover, in [16], a simple closed-form expression for the minimum dis-
tance d is derived:
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d2 = inf
wTy≥b

(y − y)TΣy
−1(y − y) =

max((b − wTy), 0)
wTΣyw

. (3.47)

It is easy to see that when the decision hyperplane (w, b) passes the center
y, d would be equal to 0 and the worst-case accuracy β would be 0 according
to Eq.(3.46).

However, if we consider the Gaussian data (which we assume as y data)
in Fig. 3.8, a vertical line approximating y would achieve about 50% test
accuracy. The large gap between the worst-case accuracy and the real test
accuracy seems strange. In the following, we construct an example of one-
dimensional data to show the inner rationality of this observation. We at-
tempt to provide the worst-case distribution containing the given mean and
covariance, while a hyperplane passing its mean achieves a real test accuracy
of zero.

Fig. 3.8. Theoretical comparison between the worst-case accuracy and the
real test accuracy for the Gaussian data in Fig. 3.10(a)

Consider the one-dimensional data y consisting of N−1 observations with
values as m and one single observation with the value as σ

√
N + m. If we

calculate the mean and the covariance, we obtain:

y = m +
σ√
N

,

Σy =
N − 1

N
σ2 .

When N goes to infinity, the above one-dimensional data have the mean as m
and the covariance as σ. In this extreme case, a hyperplane passing the mean
will achieve a zero test accuracy which is exactly the worst-case accuracy
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given the fixed mean and covariance as m and σ respectively. This example
demonstrates the inner rationality of the minimax probability machines.

To further examine the tightness of the worst-case bound in Fig. 3.9(a),
we vary β from 0 to 1 and plot against β the real test accuracy that a vertical

Fig. 3.9. Three two-dimensional data with the same means and covariances but
with different skewness. The worst-case accuracy bound of (a) is tighter than that
of (b) and looser than that of (c)

line classifies the y data by using Eq.(3.46). Note that the real accuracy can
be calculated as Φ(z ≤ d). This curve is plotted in Fig. 3.10.

Fig. 3.10. Three two-dimensional data with the same means and covari-
ances but with different skewness. The worst-case accuracy bound of (a) is
tighter than that of (b) and looser than that of (c)

Observed from Fig. 3.9, the smaller the worst-case accuracy, the looser it
is. On the other hand, if we skew the y data towards the left side, while simul-
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taneously maintaining the mean and covariance unchanged (see Fig. 3.9(b)),
even a bigger gap will be generated when β is small; analogically, if we skew
the data towards the right side (see Fig. 3.9(c)), a tighter accuracy bound will
be expected. This finding would mean that only adopting up to the second
order moments may not achieve a satisfactory bound. In other words, for a
tighter bound, higher order moments such as skewness need to be consid-
ered. This problem of estimating a probability bound based on moments is
presented as the (n, k,Ω)-bound problem, which means “finding the tightest
bound for n-dimensional variable in the set Ω based on up to the k-th mo-
ments.” Unfortunately, as proved in [24], it is NP-hard for (n, k, Rn)-bound
problems with k ≥ 3. Thus tightening the bound by simply scaling up the
moment order may be intractable in this sense. We may have to exploit other
statistical techniques to achieve this goal. Certainly, this deserves a closer
examination in the future.

3.7 On the Concavity of MEMPM

We address the issue of the concavity on the MEMPM model in this sec-
tion. We will demonstrate that although MEMPM cannot generally guaran-
tee its concavity, there is strong empirical evidence showing that many real-
world problems demonstrate reasonable concavity in MEMPM. Hence, the
MEMPM model can be solved successfully by standard optimization meth-
ods, e.g. the linear search method proposed in this chapter.

We first present a lemma on BMPM.

Lemma 3.10. The optimal solution for BMPM is a strictly and monotoni-
cally decreasing function with respect to β0.

Proof. Let the corresponding optimal worst-case accuracies on x be α1 and
α2 respectively, when β01 and β02 are set as the acceptable accuracy levels
for y in BMPM. We will prove that if β01 > β02, then α1 < α2.

This can be proved by considering the contrary case, i.e. we assume α1 ≥
α2. From the problem definition of BMPM, we have:

α1 ≥ α2 =⇒ κ(α1) ≥ κ(α2)

=⇒ 1 − κ(β01)
√

wT
1 Σyw1√

wT
1 Σxw1

≥ 1 − κ(β02)
√

wT
2 Σyw2√

wT
2 Σxw2

,(3.48)

where, w1 and w2 are the corresponding optimal solutions which maximize
κ(α1) and κ(α2) respectively, when β01 and β02 are specified.

From β01 > β02 and Eq.(3.48), we have

1 − κ(β02)
√

wT
1 Σyw1√

wT
1 Σxw1

>
1 − κ(β01)

√
w1

TΣyw1√
w1

TΣxw1

(3.49)

≥ 1 − κ(β02)
√

w2
TΣyw2√

w2
TΣxw2

. (3.50)
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On the other hand, since w2 is the optimal solution of

max
w �=0

1 − κ(β02)
√

wTΣyw√
wTΣxw

,

we have

1 − κ(β02)
√

wT
2 Σyw2√

wT
2 Σxw2

≥ 1 − κ(β02)
√

wT
1 Σyw1√

wT
1 Σxw1

.

This is obviously contradictory to Eq.(3.50).

From the sequential solving method of MEMPM, we know that MEMPM
actually corresponds to a one-dimensional line search problem. More specifi-
cally, it further corresponds to maximizing the sum of two functions, namely,
f1(β) + f2(β)6, where f1(β) is determined by the BMPM optimization and
f2(β) = β. According to Lemma 3.10, f1(β) strictly decreases as β increases.
Thus it is strictly pseudo-concave. However, generally speaking, the sum of
a pseudo-concave function and a linear function is not necessarily a pseudo-
concave function and thus cannot assure that every local optimum is the
global optimum. This can be clearly observed in Fig. 3.10. In this figure, f1

is pseudo-concave in three sub-figures; however, the sum f1 + f2 does not
necessarily lead to a pseudo-concave function.

Nevertheless, there is strong empirical evidence showing that for many
“well-behaved” real world classification problems, f1 is overall concave, which
results in the concavity of f1 + f2. This is first verified by the datasets used
in this chapter. We shift β from 0 to the corresponding upper bound and
plot out α against β in Fig. 3.11. It is clearly observed that in all six datasets
including both kernel and linear cases, the curves of α against β are overall
concave. This motivates us to look further into the concavity of MEMPM.
As shown in the following, when two classes of data are “well-separated,” f1

would be concave in the main “interest” region.
We analyze the concavity of f1(β) by imagining that β changes from

0 to 1. In this process, the decision hyperplane moves slowly from y to x
according to Eq.(3.46) and Eq.(3.47). At the same time, α = f1(β) should
decrease accordingly. More precisely, if we denote dx and dy respectively as
the Mahalanobis distances that x and y are from the associated decision
hyperplane with a specified β, we can formulate the changing of α and β as:

α → α − k1(dx)Δdx,

β → β + k2(dy)Δdy,

where k1(dx) and k2(dy) can be considered as the changing rate of α and β
when the hyperplane lies dx distance far away from x and dy distance far

6For simplicity, we assume θ as 0.5. Since a constant does not influence the
concavity analysis, the factor of 0.5 is simply dropped.
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(a) Twonorm (b) Breast

(c) Ionosphere (d) Pima

(e) Heart-disease (f) Vote

Fig. 3.11. The curves of α against β (f1) are all concave-like in the datasets
used in this chapter
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away from y respectively. We consider the changing of α against β, namely,
f ′
1:

f ′
1 =

−k1(dx)Δdx

k2(dy)Δdy
.

If we consider that dx and Δdy insensitively change against each other or
change with a proportional rate, i.e. Δdx ≈ cΔdy (c is a positive constant)
as the decision hyperplane moves, the above equation can be further written
as

f ′
1 = c

−k1(dx)
k2(dy)

.

Lemma 3.11. (1) If dy ≥ 1/
√

3 or the corresponding β ≥ 0.25, k2(dy) de-
creases as dy increases. (2) If dx ≥ 1/

√
3 or the corresponding α ≥ 0.25,

k1(dx) decreases as dx increases.

Proof. Since (1) and (2) are actually very similar statements, we only prove
(1). k2(d) is actually the first order derivative of d2/(1 + d2) according to
Eq.(3.46). We consider the first order derivative of k2(d) or the second order
derivative of d2/(1 + d2). It is easily verified that (d2/(1 + d2))′′ ≤ 0 when
d ≥ 1/

√
3. This is also illustrated in Fig. 3.12. According to the definition of

the second derivative, we immediately obtain the lemma. Note that d ≥ 1/
√

3
corresponds to β ≥ 0.25. Thus the condition can be also replaced by β ≥ 0.25.

In the above procedure, dy, β increase and dx, α decrease as the hyper-
plane moves towards x. Therefore, according to Lemma 3.11, k1(dx) increases
while k2(dy) decreases when α, β ∈ [0.25, 1). This shows that f ′

1 is getting
smaller as the hyperplane moves towards x. In other words, f ′′

1 would be
less than 0 and thus is concave when α, β ∈ [0.25, 1). It should be noted
that in many well-separated real world datasets, the optimal α and β will be
greater than 0.25 with a high possibility, since to achieve good performance,
the worst-case accuracies are naturally required to be greater than a smaller
amount, e.g. 0.25. This is observed in the datasets used in the chapter. All
the datasets except Pima attain their optimums satisfying this constraint.
For Pima, the overall accuracy is relatively lower, which implies that two
classes of data in this dataset appear to largely overlap each other7.

An illustration can be also seen in Fig. 3.13. We generate two classes of
Gaussian data with x = [0, 0]T, y = [L, 0]T, and Σx = Σy = [1, 0; 0, 1].
The prior probability for each data is set as an equal value 0.5. We plot
the curves of f1(β) and f1(β) + β when L is set as different values. It is

7It is observed, even for Pima, the proposed solving algorithm is still successful,
since α is approximately linear as shown in Fig. 3.11. Moreover, due to the fact
that the slope of α is slightly greater than −1, the final optimum naturally leads β
to achieve its maximum.
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Fig. 3.12. An illustration of the concavity of MEMPM. Subfigure (a)
shows that when two classes of data overlap largely each other, the optimal
solution of MEMPM lies in the small-value range of α and β which is usually
not concave. (b), (c), and (d) show that when two classes of data are well-
separated, the optimal solutions lie in the region with α, β ∈ [0.25, 1) which
is often concave

observed that when two classes of data largely overlap each other, for example
in Fig. 3.12(a) with L = 1, the optimal solution of MEMPM lies in the
small-value range of α and β, which is usually not concave. On the other
hand, Fig. 3.12(b), (c), and (d) show that when two classes of data are well-
separated, the optimal solutions lie in the region with α, β ∈ [0.25, 1), which
is often concave.

Note that, in the above, we make an assumption that as the decision hy-
perplane moves, dx and dy change at an approximately fixed proportional
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Fig. 3.13. The curve of d2/(1+d2). This function is concave when
d ≥ 1/

√
3

rate. From the definition of dx and dy, this assumption implies that w,
the direction of the optimal decision hyperplane, is insensitive to β. This
assumption does not hold in all cases; however, observed from the geometrical
interpretation of MEMPM, for those data with isotropic or not significantly
anisotropic Σx and Σy, w would be indeed insensitive to β.

We summarize the above analysis into the following proposition.

Proposition 3.12. Assuming (1) two classes of data are well-separated and
(2) dx and dy change at an approximately fixed proportional rate as the
optimal decision hyperplane (associated with a specified β) moves, the one-
dimensional line search problem of MEMPM is often concave in the range of
α, β ∈ [0.25, 1) and will often attain its optimum in this range. Therefore the
proposed solving method leads to a satisfactory solution.

Remarks. As demonstrated in the above, although MEMPM is often overall
concave in real world tasks, there exist cases that MEMPM optimization
problem is not concave. This may lead to the case that the solved local
optimum, based on the SBMPM method, is not the global optimum. In these
instances, we may need carefully choose the initial starting point. In addition,
the physical interpretation of β as the worst-case accuracy, may make it
relatively easy to choose a suitable initial value. For example, we can set the
initial value by using the information obtained from prior domain knowledge.

3.8 Limitations and Future Work

In this section, we present the limitations and future work.
First, although MEMPM achieves better performance than MPM, its

sequential optimization of Biased Minimax Probability Machine may cost



66 3 A General Global Learning Model: MEMPM

more training time than MPM. In our experiments, MEMPM needs to solve
5−15 BMPM optimizations on the average. Supposing that BMPM is solved
based on Conjugate Gradient Methods (with a worst-case time complexity
in the same order as MPM), MEMPM would be 5− 15 times as expensive as
MPM. Although in pattern recognition tasks, especially in off-line classifica-
tions, effectiveness is often more important than efficiency, expensive time-
cost presents one of the main limitations of the MEMPM model, in particular
for large scale datasets with millions of samples. To solve this problem, one
possible direction is to reduce those redundant points which actually make
less contributions to the classification. In this way, the problem dimension
(in the kernelization) would be greatly decreased and therefore may help in
reducing the computational time required. Another possible direction is to
exploit some techniques to decompose the Gram matrix (as is done in SVM)
and to develop some specialized optimization procedures for MEMPM. Un-
doubtedly, speeding up the algorithm will be a highly worthy topic in the
future.

Second, as a generalized model, MEMPM actually incorporates some
other variations. For example, when the prior probability (θ) cannot be esti-
mated reliably (e.g. in sparse data), maximizing α+β, namely the sum of the
accuracies or the difference between true positive and false positive, would
be considered. This type of approaches is widely used in pattern recognition
field, e.g. in medical diagnosis [10] and in graph detection, especially line
detection and arc detection, where it is called Vector Recovery Index [9, 17].
Moreover, when there are domain experts at hand, a variation of MEMPM,
namely, the maximization of Cxα + Cyβ may be used, where Cx (Cy) is the
cost of a misclassification of x (y) obtained from experts. Exploring these
variations in some specific domains is thus a valuable direction in the future
(we actually will discuss these variations as criteria for biased or imbalanced
learning in Chapter 5).

Third, [16] has built up a connection between MPM and SVM from the
perspective of the margin definition, i.e. MPM corresponds to finding the
hyperplane with the maximal margin from the class center. Nevertheless,
some deeper connections need to be investigated, e.g. how is the bound of
MEMPM related to the generation bound of SVM? More recently, [11] and
also the next chapter have disclosed the relationship between them from
either a local or global viewpoint of data. It is particularly useful to look into
these links and explore their further connections in the future.

3.9 Summary

In this chapter, we have proposed a novel global learning model named Mini-
mum Error Minimax Probability Machine. By minimizing the upper bound of
the Bayes error of future data points, our model derives the distribution-free
Bayes optimal hyperplane in the worst-case setting. This thus distinguishes
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itself from the traditional global learning approaches, or more particularly
from traditional Bayes optimal classsifers. More importantly, we have shown
that the worst-case Bayes optimal hyperplane derived by MEMPM becomes
the true Bayes optimal hyperplane, when some conditions are satisfied, e.g.
when a Gaussian distribution is assumed on data. We have shown that how
to exploit Mercer kernels in this setting to derive a nonlinear classification
boundary. We also have demonstrated that how a robust framework can be
introduced to make solid the foundation of the proposed model. Moreover, we
have demonstrated that this novel model permits an explicit accuracy bound
on future data theoretically and validate this proposition empirically as well.
We have evaluated our algorithms on both synthetic datasets and real-world
benchmark datasets. The performance of MEMPM is demonstrated to out-
perform MPM, a comparable model with SVM.

References

1. Bazaraa MS (1993) Nonlinear Programming: Theory and Algorithms. New
York, NY: John Wiley & Sons, 2nd edition

2. Bertsekas DP (1999) Nonlinear Programming. Athena Scientific, Belmont,
Massachusetts, 2nd edition

3. Blake CL, Merz CJ(1998) Repository of machine learning databases, University
of California, Irvine, http://www.ics.uci.edu/∼mlearn/MLRepository.html

4. Breiman L(1997) Arcing Classifiers. Technical Report 460, Statistics Depart-
ment, University of California

5. Chow YS, Teicher H(1997) Probability Theory: Independence, Interchange-
ability, Martingales. New York, NY: Springer-Verlag, 3rd edition

6. Craven BD (1978) Mathematical Programming and Control Theory. London,
UK: Chapman & Hall

7. Craven BD (1988) Fractional Programming, Sigma Series in Applied Mathe-
matics 4. Berlin: Heldermann Verlag

8. Deco G, Obradovic D (1996) An Information-theoretic Approach to Neural
Computing. Heidelberg; New York: Springer-Verlag

9. Dori D, Liu W (1999) Sparse pixel vectorization: An algorithm and its per-
formance evaluation. IEEE Trans. Pattern Analysis and Machine Intelligence
21:202–215

10. Grzymala-Busse JW, Goodwin LK, Zhang X (2003) Increasing sensitivity of
preterm birth by changing rule strengths. Pattern Recognition Letters 24:903–
910

11. Huang K, Yang H, King I, Lyu MR (2004) Learning large margin classifiers
locally and globally. In The 21st International Conference on Machine Learning
(ICML-2004)

12. Huang K, Yang H, King I, Lyu MR, Chan L (2003) Biased minimax probability
machine for medical diagnosis. In the Eighth International Symposium on
Artificial Intelligence and Mathematics

13. Ibaraki T (1981). Solving mathematical programming problems with fractional
objective functions In S. Schaible and W. T. Ziemba., editors, Generalized



68 References

Concavity in Optimization and Economics. New York, NY: Academic Press
441–472

14. Keysers D, Och FJ, Ney H(2002) Maximum entropy and Gaussian models
for image object recognition. In Proceedings of the 24th DAGM Symposium,
Lecture Notes in Computer Science. Heidelberg: Springer-Verlag, LNCS 2449:
498–506

15. Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2001) Minimax
probability machine. In Advances in Neural Information Processing Systems
(NIPS)

16. Lanckriet GRG, Ghaoui LE, Bhattacharyya C, Jordan MI (2002) A robust
minimax approach to classification. Journal of Machine Learning Research
3:555–582

17. Liu W, Dori D (1997) A protocol for performance evaluation of line detection
algorithms. Machine Vision and Application 9:240–250

18. Maloof MA, Langley P, Binford TO, Nevatia R, Sage S (2003) Improved rooftop
detection in aerial images with machine learning. Machine Learning 53:157–191

19. Mangasarian Olvi L (1994) Nonlinear Programming. Philadelphia: Society for
Industrial and Applied Mathematics

20. Marshall AW, Olkin I (1960) Multivariate Chebyshev inequalities. Annals of
Mathematical Statistics 31(4):1001–1014
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4

Learning Locally and Globally: Maxi-Min
Margin Machine

The proposed MEMPM model obtains the decision hyperplane by using only
global information, e.g. the mean and covariance matrices. However, although
these moments can be more reliably obtained than estimating the distribu-
tion, they may still be inaccurate in many cases, e.g. when the data are very
sparse.

Recently, local learning methods, especially large margin classifiers [19]
have attracted much interest in the community of machine learning and pat-
tern recognition. Support Vector Machine (SVM) [25], the most famous one
of them, represents a state-of-the-art classifier. The essential point of SVM
is to find a linear separating hyperplane, which achieves the maximal mar-
gin among different classes of data. Furthermore, one can extend SVM to
build nonlinear separating decision hyperplanes by exploiting kernelization
techniques.

These methods do not try to summarize any global information before-
hand, but to focus on obtaining the decision hyperplane in a “local” way. For
example, in SVM the decision boundary is exclusively determined by some
critical points which are called support vectors, whereas all other points are
totally irrelevant to this hyperplane. Although this scheme is both theoret-
ically and empirically demonstrated to be powerful, it actually discards the
global information of data.

An illustration example can be seen in Fig. 4.1. In this figure, the clas-
sification boundary is intuitively observed to be mainly determined by the
dotted axis, i.e. the long axis of the y data (represented by �’s) or the short
axis of the x data (represented by ◦’s). Moreover, along this axis, the y data
are more possible to scatter than the x data, since y contains a relatively
larger variance in this direction. Noting this “global” fact, a good decision
hyperplane seems reasonable to lie closer to the x side (see the dash-dot line).
However, SVM ignores this kind of “global” information, i.e. the statistical
trend of data occurrence: the derived SVM decision hyperplane (the solid
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line) lies unbiasedly right in the middle of two “local” points (the support
vectors)1.

Fig. 4.1. A decision hyperplane with considerations of both local
and global information

Aiming to construct classifiers both locally and globally, we propose the
Maxi-Min Margin Machine (M4) in this chapter. We will attempt to combine
the local learning into the global information, i.e. the covariance information,
which can represent the data trend. Moreover, as this model also contains
the properties of local learning, it will naturally neutralize the impact when
the global information is inaccurate.

As we show later, one critical contribution of this novel model is that
M4 actually presents a unified model of SVM and another recently-proposed
promising model Minimax Probability Machine (MPM) [11]. Moreover, based
on our proposed local and global view of data, another popular model, Fisher
Discriminant Analysis (FDA) [4] can also be interpreted as its special case.

Another good feature of the M4 model is that it can be cast as a se-
quential Conic Programming problem [17], or more specifically, a sequential
Second Order Cone Programming (SOCP) problem [12, 15, 10], which thus
can be practically solved in polynomial time. In addition, with incorporating
the global information, a reduction method is proposed for decreasing the
computation time of this new model.

The third important feature of our proposed model is that the kerneliza-
tion methodology is also applicable for this formulation. This thus generalizes
the linear M4 to a more powerful classification approach which can derive
nonlinear decision boundaries.

The rest of this chapter is organized as follows. In the next section, we
introduce the M4 model in detail, including its model definition, the geometri-

1This figure has appeared earlier in Chapter 2. However, for the purpose of
self-containing for each chapter, we still present it here.
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cal interpretation, connections with other models, and the associated solving
methods. In Section 4.2, we derive a generation bound for the M4 model. In
Section 4.3, we develop a reduction method to remove redundant points for
decreasing the computational time. In Section 4.4, we exploit the kerneliza-
tion trick to extend M4 to nonlinear classification tasks. In Section 4.5, we
evaluate this novel model on both synthetic datasets and real world bench-
mark datasets. In Section 4.6, we make discussions on the M4 model and also
present future work. Finally, we conclude this chapter in Section 4.7. This
work can be also seen in [5] [7] for a short version.

4.1 Maxi-Min Margin Machine

In the following, we first, for the purpose of clarity, divide M4 into sep-
arable and nonseparable categories, and then introduce the corresponding
hard-margin M4 and soft-margin M4 sequently. In this section, we will also
establish the connections of the M4 model with other large margin classi-
fiers including SVM, MPM, FDA and Mininum Error Minimax Probability
Machine (MEMPM) [6].

4.1.1 Separable Case

Assuming the classification samples are separable, we first introduce the
model definition and the geometrical interpretation. We then transform the
model optimization problem into a sequential SOCP problem and discuss the
detailed optimization method.

4.1.1.1 Problem Definition

Only two-category classification tasks are considered in this chapter. Let a
training dataset contain two classes of samples represented by xi ∈ R

n and
yj ∈ R

n respectively, where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. The basic task
here can be informally described to find a suitable hyperplane f(z) = wTz+b
separating two classes of data as robustly as possible (w ∈ R

n\{0}, b ∈ R,
and wT is the transpose of w). Future data points z for which f(z) ≥ 0 are
then classified as the class x; otherwise, they are classified as the class y.

The formulation for M4 can be written as:

max
ρ,w �=0,b

ρ , (4.1)

s.t.
(wTxi + b)√

wTΣxw
≥ ρ , i = 1, 2, . . . , Nx , (4.2)

−(wTyj + b)√
wTΣyw

≥ ρ , j = 1, 2, . . . , Ny , (4.3)
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where Σx and Σy refer to the covariance matrices of the x and the y data,
respectively.

This model tries to maximize the margin defined as the minimum Maha-
lanobis distance for all training samples,while simultaneously classifying all
the data correctly. Compared to SVM, M4 incorporates the data information
in a global way; namely, the covariance information of data or the statistical
trend of data occurrence is considered, while SVMs, including l1-SVM [27]
and l2-SVM [24] (lp-SVM means the “p-norm” distance-based SVM) [19],
simply discard this information or consider the same covariance for each
class.

4.1.1.2 Geometrical Interpretation

A geometrical interpretation of M4 can be seen in Fig. 4.2. In this figure, the

Fig. 4.2. A geometric interpretation of M4. The M4 hyperplane corre-
sponds to the tangent line (the solid line) of two small dashed ellipsoids
centered at the support vectors (the local information) and shaped by the
corresponding covariances (the global information). It is thus more reason-
able than SVM (the dotted line)

x data are represented by the inner ellipsoid on the left side with its center
as x0, while the y data are represented by the inner ellipsoid on the right
side with its center as y0. It is observed that these two ellipsoids contain
unequal covariances or risks of data occurrence. However, SVM does not
consider this global information: its decision hyperplane (the dotted line) is
located unbiasedly in the middle of two support vectors (filled points). In
comparison, M4 defines the margin as a Maxi-Min Mahalanobis distance,
which thus constructs a decision plane (the solid line) with considerations
of both the local and global information: the M4 hyperplane corresponds to
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the tangent line of two dashed ellipsoids centered at the support vectors (the
local information) and shaped by the corresponding covariances (the global
information).

4.1.1.3 Optimization Method

In the following, we propose the optimization method for the M4 model. We
will demonstrate that the above problem can be cast as a sequential Conic
Programming problem, or more specifically, a sequential SOCP problem.

Our strategy is based on the “Divide and Conquer” technique. One may
note that in the optimization problem of M4, if ρ is fixed to a constant ρn, the
problem is exactly changed to “conquer” the problem of checking whether
the constraints of Eqs.(4.2) and (4.3) can be satisfied. Moreover, as will be
demonstrated shortly, this “checking” procedure can be stated as an SOCP
problem. Thus the problem now becomes that how ρ is set, which we can
use “divide” to handle: if the constraints are satisfied, we can increase ρn

accordingly; otherwise, we decrease ρn.
We detail this solving technique in the following two steps:

(1) Divide: Set ρn = (ρ0 +ρm)/2, where ρ0 is a feasible ρ, ρm is an infeasible
ρ, and ρ0 ≤ ρm.

(2) Conquer: Call the Modified Second Order Cone Programming (MSOCP)
procedure elaborated in the following to check whether ρn is a feasible ρ.
If yes, set ρ0 = ρn; otherwise, set ρm = ρn.

In the above, if a ρ satisfies the constraints of Eqs.(4.2) and (4.3), we call it
a feasible ρ; otherwise, we call it an infeasible ρ. These two steps are iterated
until |ρ0 − ρm| is less than a small positive value.

We propose the following Theorem 4.1 showing that the MSOCP proce-
dure, namely, the checking problem with ρ fixed to a constant ρn, is solvable
by casting it as an SOCP problem.

Theorem 4.1. The problem of checking whether there exist a w and a b
satisfying the following two sets of constraints Eqs.(4.4) and (4.5) can be
transformed as an SOCP problem which can be solved in polynomial time,

(wTxi + b) ≥ ρn

√
wTΣxw, i = 1, . . . , Nx , (4.4)

−(wTyj + b) ≥ ρn

√
wTΣyw, j = 1, . . . , Ny . (4.5)

Proof. Introducing dummy variables τ , we rewrite the above checking prob-
lem as an equivalent optimization problem:

max
w �=0,b,τ

{
Nx+Ny

min
k=1

τk}

s.t. (wTxi + b) ≥ ρn

√
wTΣxw − τ i ,

−(wTyj + b) ≥ ρn

√
wTΣyw − τ j+Nx ,



74 4 Learning Locally and Globally: Maxi-Min Margin Machine

where i = 1, . . . , Nx and j = 1, . . . , Ny.
By checking whether the minimum τk at the optimum point is positive,

we can know whether the constraints of Eqs.(4.2) and (4.3) can be satisfied.
If we go further, we can introduce another dummy variable and transform
the above problem into an SOCP problem:

max
w �=0,b,τ ,η

η

s.t. (wTxi + b) ≥ ρn

√
wTΣxw − τ i ,

−(wTyj + b) ≥ ρn

√
wTΣyw − τ j+Nx ,

η ≤ τk ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx + Ny. By checking
whether the optimal η is greater than 0, we can immediately know whether
there exist a w and a b satisfying the constraints of Eqs.(4.2) and (4.3).
Moreover, the above optimization is easily verified to be the standard SOCP
form, since the optimization function is a linear form and the constraints are
either linear or the typical second order conic constraints.

Remarks. In practice, many SOCP programs, e.g. Sedumi [20], provide
schemes to directly handle the above checking procedure. It thus need not
introduce dummy variables as what we have done in the proof.

We now analyze the time complexity of M4. As indicated in [12], if the
SOCP is solved based on interior-point methods, it contains a worst-case
complexity of O(n3). If we denote the range of feasible ρ’s as L = ρmax−ρmin

and the required precision as ε, then the number of iterations for M4 is
log(L/ε) in the worst case. Adding the cost of forming the system matrix
(constraint matrix) which is O(Nn3) (N represents the number of training
points), the total complexity would be O(log(L/ε)n3+Nn3) ≈ O(Nn3) which
is relatively large but can still be solved in polynomial time2.

4.1.2 Connections with Other Models

In this section, we establish connections between M4 and other models. We
show that SVM and MPM are actually special cases of our model. Moreover,
FDA can be interpreted and extended according to our local and global views
of data.

4.1.2.1 Connection with Minimax Probability Machine

If one expands the constraints of Eq.(4.2) and adds all of them together, one
can immediately obtain the following equation:

2Note that the system matrix needs to be formed only once.
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wT
Nx∑
i=1

xi + Nxb ≥ Nxρ
√

wTΣxw ⇒ wTx + b ≥ ρ
√

wTΣxw , (4.6)

where x denotes the mean of the x training data.
Similarly, from Eq.(4.3) one can obtain:

− (wT

Ny∑
j=1

yj + Nyb) ≥ Nyρ
√

wTΣyw

⇒ −(wTy + b) ≥ ρ
√

wTΣyw , (4.7)

where y denotes the mean of the y training data.
Adding Eqs.(4.6) and (4.7), one can obtain:

max
ρ,w �=0

ρ

s.t. wT(x − y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) . (4.8)

The above optimization is exactly the MPM optimization [11]. Note, how-
ever, that the above procedure cannot be reversed. This means that MPM is
a special case of M4.
Remarks. In MPM, since the decision is completely determined by the global
information, namely, the mean and covariance matrices [11]3, to assure an ac-
curate performance the estimates of mean and covariance matrices need to
be reliable. However, it cannot always be the case in real world tasks. On
the other hand, M4 seems to solve this problem in a natural way, because
the impact caused by inaccurately estimated mean and covariance matrices
can be neutralized by utilizing the local information, namely by satisfying
those constraints of Eqs.(4.2) and (4.3) for each local data point. This is also
demonstrated in the later experiment.

4.1.2.2 Connection with Support Vector Machine

If one assumes Σx = Σy = Σ, the optimization of M4 can be changed as:

max
ρ,w �=0,b

ρ,

s.t. (wTxi + b) ≥ ρ
√

wTΣw ,

−(wTyj + b) ≥ ρ
√

wTΣw ,

where i = 1, . . . , Nx and j = 1, . . . , Ny.
Observing that the magnitude of w will not influence the optimization,

without loss of generality, one can further assume ρ
√

wTΣw = 1. Therefore
the optimization can be changed as:

3This can be directly observed from Eq.(4.8).
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min
w �=0,b

wTΣw, (4.9)

s.t. (wTxi + b) ≥ 1 , (4.10)
−(wTyj + b) ≥ 1 , (4.11)

where i = 1, . . . , Nx and j = 1, . . . , Ny.
A special case of the above with Σ = I is precisely the optimization of

SVM, where I is the identity matrix.
Remarks. In the above, two assumptions are implicitly made by SVM: One
is the assumption on data “orientation” or data shape, i.e. Σx = Σy = Σ,
and the other is the assumption on data “scattering magnitude” or data
compactness, i.e. Σ = I. However, these two assumptions are inappropriate.
We demonstrate this in Figs. 4.3 and 4.4. We assume the orientation and
the magnitude of each ellipsoid represent the data shape and compactness,
respectively, in these figures.

Fig. 4.3. An illustration on that SVM omits the data compactness
information

Fig. 4.3 plots two types of data with the same data orientations but differ-
ent data scattering magnitudes. It is obvious that by ignoring data scattering
SVM is improper to locate itself unbiasedly in the middle of the support vec-
tors (filled points), since x is more possible to scatter on the horizontal axis.
Instead, M4 is more reasonable (see the solid line in this figure). Furthermore,
Fig. 4.4 plots the case with the same data scattering magnitudes but different
data orientations. Similarly, SVM does not capture the orientation informa-
tion. In comparison, M4 grasps this information and demonstrates a more
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Fig. 4.4. An illustration on that SVM discards the data orienta-
tion information

suitable decision plane: M4 represents the tangent line between two small
dashed ellipsoids centered at the support vectors (filled points). Note that
SVM and M4 do not need to achieve the same support vectors. In Fig. 4.4,
M4 contains the above two filled points as support vectors, whereas SVM has
all the three filled points as support vectors.

4.1.2.3 Link with Fisher Discriminant Analysis

FDA, an important and popular method, is used widely in constructing de-
cision hyperplanes and reducing the feature dimensionality. In the following
discussion, we mainly consider its application as a classifier. FDA involves
solving the following optimization problem:

max
w �=0

|wT(x − y)|√
wTΣxw + wTΣyw

.

Similar to MPM, FDA also focuses on using the global information rather
than considering data both locally and globally. We now show that FDA can
be modified to consider data both locally and globally.

If one changes the denominators in Eqs.(4.2) and (4.3) as √
wTΣxw + wTΣyw ,

the optimization can be changed as:
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max
ρ,w �=0,b

ρ, (4.12)

s.t.
(wTxi + b)√

wTΣxw + wTΣyw
≥ ρ , (4.13)

−(wTyj + b)√
wTΣxw + wTΣyw

≥ ρ , (4.14)

where i = 1, . . . , Nx and j = 1, . . . , Ny. The above optimization is actually
a generalized case of FDA, which considers data locally and globally. This is
verified as follows.

If one performs the procedure similar to that of Section 4.1.2.1, the above
optimization problem is easily verified to be the following optimization:

max
ρ,w �=0,b

ρ, (4.15)

s.t. wT(x − y) ≥ ρ
√

wTΣxw + wTΣyw .

One can change Eq.(4.15) as: ρ ≤ |wT(x−y)|√
wTΣxw+wTΣyw

, which is exactly the

optimization of the FDA (wT(x−y) is implicitly implied as a positive value
from Eqs.(4.13) and (4.14)).
Remarks. The extended FDA optimization actually focuses on considering
the data orientation, while omitting the data scattering magnitude informa-
tion. Using the analysis similar to that of Section 4.1.2.2, we can know that
the extended FDA lacks the consideration on the data scattering magnitude.
Its decision hyperplane in the example of Fig. 4.3 coincides with that of
SVM. With respect to the data orientation, it actually uses the average of
covariances for two types of data. As illustrated in Fig. 4.5, the extended
FDA corresponds to the line lying exactly in the middle of the long axes of
the x and y data. This shows that the extended FDA considers the data
orientation partially yet incompletely.

4.1.3 Nonseparable Case

In this section, we modify the M4 model to handle the nonseparable case.
We need to introduce slack variables in this case. The optimization of M4 is
changed as:

max
ρ,w �=0,b,ξ

⎧⎨⎩ρ − C

Nx+Ny∑
k=1

ξk

⎫⎬⎭ , (4.16)

s.t. (wTxi + b) ≥ ρ
√

wTΣxw − ξi , (4.17)

−(wTyj + b) ≥ ρ
√

wTΣyw − ξj+Nx
, (4.18)

ξk ≥ 0 ,
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Fig. 4.5. An illustration on that FDA partly yet incompletely
considers the data orientation

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx+Ny. C is the positive
penalty parameter and ξk is the slack variable which can be considered as
the extent how the training point zk disobeys the ρ margin (zk = xk when
1 ≤ k ≤ Nx; zk = yk−Ny

when Nx + 1 ≤ k ≤ Nx + Ny). Thus
∑Nx+Ny

k=1 ξk

can be conceptually regarded as the training error or the empirical error.
In other words, the above optimization achieves maximizing the minimum
margin while minimizing the total training error.

4.1.3.1 Solving Method

As clearly observed, when ρ is fixed, the optimization is equivalent to mini-
mizing

∑Nx+Ny

k=1 ξk under the same constraints. This is once again an SOCP
problem and thus can be solved in polynomial time. We can then update ρ
according to some rules and repeat the whole process until an optimal ρ is
found. This is once again the so-called line search problem. We still adopt
Quadratic Interpolation method to solve this problem, which converges su-
perlinearly to the global optimum if suitable starting points are assigned [1].
Since we have introduced this linear search method in Chapter 3, we simply
omit it here.

In summary, we iterate the following two steps to solve the modified op-
timization.

Step 1. Generate a new ρn from three previous ρ1, ρ2, ρ3 by using the
Quadratic Interpolation method.

Step 2. Fix ρ = ρn, perform the optimization based on SOCP algorithms.
Update ρ1, ρ2, ρ3.
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4.1.4 Further Connection with Minimum Error Minimax
Probability Machine

In this section, we show how the M4 can be connected with Minimum Er-
ror Minimax Probability Machine [6], which is a worst-case Bayes optimal
classifier and a superset of MPM as well.

If one looks into carefully the optimization of nonseparable M4, a more
precise form is the one replacing ξk with ξk

√
wTΣxw in Eq.(4.17) and

ξk

√
wTΣyw in Eq.(4.18). However, this optimization may prove to be a

difficult problem. Nevertheless, we can start from this precise form and de-
rive the connection of M4 with MEMPM.

We reformulate the optimization of Eqs.(4.17) and (4.18) as their precise
forms as follows:

max
ρ,w �=0,b,ξ

⎧⎨⎩ρ − C

Nx+Ny∑
k=1

ξk

⎫⎬⎭ , (4.19)

s.t.
wTxi + b√
wTΣxw

≥ ρ − ξi , (4.20)

− wTyj + b√
wTΣyw

≥ ρ − ξj+Nx
, (4.21)

ξk ≥ 0 , (4.22)

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx + Ny.
Maximizing Eq.(4.20) contains a similar meaning as minimizing

B
Nx+Ny∑

k=1

ξk + 1/ρ2 (B is a positive parameter) in a sense that they both

attempt to maximize the margin ρ and minimize the error rate. If we con-

sider
Nx+Ny∑

k=1

ξk as the residue and regard 1/ρ2 as the regularization term, the

optimization can be cast into the framework of solving ill-posed problems. 4

According to [24, 26], the above optimization pointed as the Tikhonov’s
Variation Method [22] is equivalent to the optimization below refereed to
Ivannov’s Quasi-Solution Method [8],in the sense that if one of the methods
for a given value of the parameter (say C) produces a solution {w, b}, then
the other method can derive the same solution by adapting its corresponding
parameter (say A).

4A trick can be made by assuming 1/ρ2 as a new variable and thus the condition
that the regularization is convex can be satisfied.
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min
ρ,w �=0,b,ξ

Nx+Ny∑
k=1

ξk, (4.23)

s.t.
wTxi + b√
wTΣxw

≥ ρ − ξi , (4.24)

− wTyj + b√
wTΣyw

≥ ρ − ξj+Nx
, (4.25)

ρ ≥ A , ξk ≥ 0 , (4.26)

where A is a positive constant parameter.
Now if we expand Eq.(4.24) for each i and add them all together, we can

obtain:

Nx
wTx + b√
wTΣxw

≥ Nxρ −
Nx∑
i=1

ξi . (4.27)

This equation can easily be changed as:

Nx∑
i=1

ξi ≥ Nxρ − Nx
wTx + b√
wTΣxw

. (4.28)

Similarly, if we expand Eq.(4.25) for each j and add them all together, we
obtain:

Ny∑
j=1

ξj+Nx
≥ Nyρ + Ny

wTy + b√
wTΣyw

. (4.29)

By adding Eq.(4.28) and Eq.(4.29), we obtain:

N∑
k=1

ξk ≥ Nρ −
(

Nx
wTx + b√
wTΣxw

− Ny
wTy + b√
wTΣyw

)
. (4.30)

To achieve minimum training error, namely, min
ρ,w �=0,b,ξ

Nx+Ny∑
k=1

ξk, we

may consider to minimize its lower bound as specified by the right hand side
of Eq.(4.30). Hence in this case ρ should attain its lower bound A, while the
second part should be as large as possible, i.e.

max
w �=0,b

{
θ

wTx + b√
wTΣxw

− (1 − θ)
wTy + b√
wTΣyw

}
, (4.31)

where θ is defined as Nx/N and thus 1 − θ denotes Ny/N . If one further
transforms the above to:
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max
w �=0,b

{θt + (1 − θ)s}, (4.32)

s.t.
wTx + b√
wTΣxw

≥ t , (4.33)

− wTy + b√
wTΣyw

≥ s , (4.34)

one can see that the above optimizes a very similar form as the MEMPM
model except that Eq.(4.33) changes to [6]

min
w �=0,b

{θ t2

1 + t2
+ (1 − θ)

s2

1 + s2
}.

In MEMPM, t2s2/(1 + t2)(1 + s2) (denoted as α (β)) represents the worst-
case accuracy for the classification of future x (y) data. Thus MEMPM max-
imizes the weighted accuracy on the future data. In M4, s and t represent the
corresponding margin which is defined as the distance from the hyperplane
to the class center. Therefore, it represents the weighted maximum margin
machine in this sense. Moreover, since the function of g(u) = u2/(1 + u2)
increases monotonically with u, maximizing the above formulae contains a
physical meaning similar to the optimization of MEMPM in some sense.
Remarks. Implicit constraints are contained for the optimization of the
above derived special case of M4. Empirically, Eq.(4.27) cannot achieve the
equality in the normal case, since Eqs.(4.24) and (4.25) can only achieve
equalities for support vectors. Moreover, the slack variables are usually far
smaller than ρ. This implies we can consider

wTx + b√
wTΣxw

> ρ = A.

Analogously, for y, a similar statement can be obtained. The presence of
these two constraints is essential, since with the constraints the parameter ρ
is involved in the optimization. Moreover, these two constraints also prevent
the circumstance that the decision hyperplane is extremely far away from one
class center, while being very close to the other class center.

4.2 Bound on the Error Rate

In this section, we provide theoretical results on the bound of the error rate
of M4. We first borrow the leave-one-out theorem from [13] and [25].

Lemma 4.2. The leave-one-out estimator is almost unbiased.

We then present the generation bound of M4 as the following theorem:
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Theorem 4.3. If (1) the training set containing N samples is separated by
the decision hyperplane derived by M4 and (2) the mean and covariance ma-
trices are reliably estimated, then the expectation of the probability of the test
error is bounded by the expectation of the minimum of two values: the ratio

m/N and θ
1

1 + d2
x

+ (1 − θ)
1

1 + d2
y

,

where m is the number of support vectors, dx and dy are the correspond-
ing Mahalanobis distances from the class centers x and y to the decision
hyperplane, and θ is prior probability of the x data. Namely,

E[Perror] ≤ E

{
min

[
m

N
, θ

1
1 + d2

x

+ (1 − θ)
1

1 + d2
y

]}
. (4.35)

Proof. According to Lemma 4.2, to prove E[Perror] ≤ E[m
N ], we only need

to show that the number of errors by the leave-one-out method does not
exceed the number of support vectors. Actually, this is the case. If we leave a
non-support vector out and then we perform training on the remaining data,
the decision hyperplane will not change, since the decision hyperplane is just
decided by support vectors and the covariance matrices (statistically, one
point will not influence the covariance of data). Therefore, this non-support
vector will be recognized correctly. Thus the leave-one-out method classifies
correctly all the samples that are not support vectors, i.e. the number of the
leave-one-out errors does not exceed the number of the support vectors.

We next prove E[Perror] ≤ E
{

min
[

m
N , θ 1

1+d2
x

+ (1 − θ) 1
1+d2

y

]}
. Accor-

ding to [11, 6, 14], if the means and covariances are reliably estimated,
d2

x/(1 + dx
2) and d2

y/(1 + dy
2) represent the worst-case rates in recognizing

correctly the x data and y data respectively. Therefore,

θ
1

1 + d2
x

+ (1 − θ)
1

1 + d2
y

represents the expected maximum error rate, i.e.

E[Perror] ≤ E

{
min

[
m

N
, θ

1
1 + d2

x

+ (1 − θ)
1

1 + d2
y

]}
.

Remarks. Note that the above two items actually represent two meanings
of the M4 model, i.e. minimizing the leave-one-out error presents the contri-
bution by considering the local information from data; on the other hand,
the second item describes the effect by considering the global information
from data. Moreover, if we further examine the second item, dx (dy) is ac-
tually determined by two parts: the Mahalanobis distance from the support
vectors to the corresponding class center x (y) and the margin ρ. This can
be observed in Fig. 4.2. Intuitively, the larger the margin ρ is, the larger dx

and dy are, which leads to a smaller expected test error in the future. This
motivates the margin maximization in the large margin machines.
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4.3 Reduction

The variables in previous sections are [w, b, ξ1, . . . , ξNx
, . . . , ξNx+Ny

], whose
dimension is n + 1 + Nx + Ny. The number of the second order conic con-
straints is easily verified to be Nx +Ny. This size of the generated constraint
matrix will be a big number and may thus encounter problems in solving
large scale classification tasks. Therefore, we should reduce both the number
of constraints and the number of variables.

Since this problem is caused by the number of the data points, we con-
sider removing some redundant points to reduce both the space and time
complexity. The reduction rule is introduced as follows.

Reduction Rule: Set a threshold ν ∈ [0, 1). In each class, calculate the
Manhalanobis distance di of each point to its corresponding class center. if
d2

i /(1 + d2
i ) denoted as νi is greater than ν, namely, νi ≥ ν, keep this point;

otherwise, remove this point.
The intuition under this rule is that, in general the more discriminant

information the point contains, the further it is from its center (unless it is a
noise point). The inner justification under this rule is from [11]: d2/(1+d2) is
the worst-case classification accuracy for future data, where d is the minimax
Manhalanobis distance from the class center to the decision hyperplane. Thus
removing those points with small ν’s, namely, d2

i /(1 + d2
i ) will not affect

the worst-case classification accuracy and will not greatly reduce the overall
performance.

Nevertheless, to cancel the negative impact caused by removing those
points, we add the following global constraint:

wT(x − y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) . (4.36)

Integrating the above, we formulate the modified model as follows:

max
ρ,w �=0,b,ξ

{
ρ − C

(
rx+ry∑
k=1

ξk + (Nx + Ny − rx − ry)ξm

)}
s.t. (wTxi + b) ≥ ρ(

√
wTΣxw) − ξi, i = 1, . . . , rx ,

−(wTyj + b) ≥ ρ(
√

wTΣyw) − ξj+rx
, j = 1, . . . , ry ,

wT(x − y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) − ξm ,

ξm ≥ 0, ξk ≥ 0, k = 1, . . . , rx + ry ,

where, ξm is the slack variable for the global constraint Eq.(4.36), ξk are
modified slack variables for the remaining data points, rx is the number of
the remaining points for x, and ry is the number of the remaining points
for y.
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Remarks. An interesting observation from the above is that when we set the
reduction threshold ν to a larger value, or simply to the maximum value 1, the
M4 optimization degrades to the standard MPM optimization. This would
imply that the above modified M4 model contains a worst-case performance
of MPM, if the incorporated local information is useful.

4.4 Kernelization

One may note that in the above, the classifier derived from M4 is provided in
a linear configuration. In order to handle nonlinear classification problems,
in this section, we seek to use the kernelization trick [18] to map the n-
dimensional data points into a high-dimensional feature space R

f , where a
linear classifier corresponds to a nonlinear hyperplane in the original space.

The kernel mapping can be formulated as: xi → ϕ(xi), yj → ϕ(yj),
where i = 1, . . . , Nx, j = 1, . . . , Ny, and ϕ : R

n → R
f is a mapping function.

The corresponding linear classifier in R
f is γTϕ(z) = b, where γ, ϕ(z) ∈ R

f ,
and b ∈ R.

The optimization of M4 in the feature space can be written as:

max
ρ,γ �=0,b

ρ , (4.37)

s.t.
(γTϕ(xi) + b)√

γTΣϕ(x)γ
≥ ρ, i = 1, 2, . . . , Nx , (4.38)

−(γTϕ(yj) + b)√
γTΣϕ(y)γ

≥ ρ, j = 1, 2, . . . , Ny . (4.39)

However, to make the kernel work we need to represent the optimization and
the final decision hyperplane in a kernel form, K(z1,z2) = ϕ(z1)Tϕ(z2),
namely, an inner product form of the mapping data points.

4.4.1 Foundation of Kernelization for M4

In the following, we demonstrate that the kernelization trick indeed works in
M4, provided suitable estimates of means and covariance matrices are applied
therein.

Corollary 4.4. If the estimates of means and covariance matrices are given
in M4 as the following estimates:
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ϕ(x) =
Nx∑
i=1

λiϕ(xi), ϕ(y) =
Ny∑
j=1

ωjϕ(yj) ,

Σϕ(x) = ρxIn +
Nx∑
i=1

Λi

(
ϕ(xi) − ϕ(x)

)(
ϕ(xi) − ϕ(x)

)T

,

Σϕ(y) = ρyIn +
Ny∑
j=1

Ωj

(
ϕ(yj) − ϕ(y)

)(
ϕ(yj) − ϕ(y)

)T

,

where In is the identity matrix of dimension n, then the optimal γ in
Eqs.(4.37)–(4.39) lies in the space spanned by the training points.

Proof. We write γ = γp + γd, where γp is the projection of γ in the vector
space spanned by all the training data points and γd is the orthogonal com-
ponent to this span space. By using γT

d ϕ(xi) = 0 and γT
d ϕ(yj) = 0, one can

easily verify that the optimization Eqs.(4.37)-(4.39) change to:

max
ρ,{γp,γd}�=0,b

ρ,

s.t.
−(γT

p ϕ(xi) + b)√
γT

p

Nx∑
i=1

Λi(ϕ(xj) − ϕ(x))(ϕ(xi) − ϕ(x))Tγp + ρx(γT
p γp + γT

d γd)

≥ ρ,

−(γT
p ϕ(yj) + b)√

γT
p

Ny∑
j=1

Ωj(ϕ(yj) − ϕ(y))(ϕ(yj) − ϕ(y))Tγp + ρy(γT
p γp + γT

d γd)

≥ ρ,

where i = 1, . . . , Nx, j = 1, . . . , Ny. Since we intend to maximize the margin
ρ, the denominators in the above two constraints need to be as small as
possible. This would lead to γd = 0. In other words, the optimal γ lies in
the vector space spanned by all the training data points. Note that the above
discussion is assumed in the feature space.

According to Corollary 4.4, if we use the plug-in estimates to approximate
the means and covariance matrices, we can write γ as a linear combination
form of training data points:

γ =
Nx∑
i=1

μiϕ(xi) +
Ny∑
j=1

υjϕ(yj) , (4.40)

where the coefficients μi, υj ∈ R, i = 1, . . . , Nx, j = 1, . . . , Ny.

4.4.2 Kernelization Result

We present the kernelization result as the following theorem.
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Theorem 4.5. [Kernelization Theorem of M4] The optimal decision hyper-
plane for M4 involves solving the following optimization problem:

max
ρ,η �=0,b

ρ,

s.t.
(ηTKi + b)√
1

Nx
ηTK̃

T

xK̃xη
≥ ρ, i = 1, 2, . . . , Nx ,

−(ηTKj+Nx + b)√
1

Ny
ηTK̃

T

y K̃yη
≥ ρ, j = 1, 2, . . . , Ny .

Proof. The theorem can easily be proved by simply substituting the plug-in
estimations of means and covariances matrices and Eq.(4.40) into Eqs.(4.38)–
(4.39).

The optimal decision hyperplane can be represented as a linear form in
the kernel space:

f(z) =
Nx∑
i=1

η∗iK(z,xi) +
Ny∑
i=1

η∗Nx+iK(z,yi) + b∗ ,

where η∗ and b∗ are the optimal parameters obtained by the optimization
procedure. The notations in the above are defined similar to Chapter 3. How-
ever, for an easy reference, we also summarize them in Table 4.1.

Table 4.1. Notations used in Kernelization

Notation

z ∈ R
Nx+Ny zi := xi i = 1, 2, . . . , Nx

zi := yi−Nx
i = Nx + 1, Nx + 2, . . . , Nx + Ny

η ∈ R
Nx+Ny η := [μ1, . . . , μNx , υ1, . . . , υNy ]T

K is Gram matrix Ki,j := ϕ(zi)
Tϕ(zj)

Kx :=

⎛⎜⎜⎜⎜⎝
K1,1 K1,2 . . . K1,Nx+Ny

K2,1 K2,2 . . . K2,Nx+Ny

.

.

.
.
.
.

.

.

.
.
.
.

KNx,1 KNx,2 . . . KNx,Nx+Ny

⎞⎟⎟⎟⎟⎠

Ky :=

⎛⎜⎜⎜⎜⎝
KNx+1,1 KNx+1,2 . . . KNx+1,Nx+Ny

KNx+2,1 KNx+2,2 . . . KNx+2,Nx+Ny

.

.

.
.
.
.

.

.

.
.
.
.

KNx+Ny,1 KNx+Ny,2 . . . KNx+Ny,Nx+Ny

⎞⎟⎟⎟⎟⎠ .

k̃x, k̃y ∈ R
Nx+Ny [k̃x]i := 1

Nx

∑Nx
j=1 K(xj , zi) .

[k̃y ]i := 1
Ny

∑Ny
j=1 K(yj , zi)

1Nx ∈ R
Nx 1i := 1, i = 1, 2, . . . Nx

1Ny ∈ R
Ny 1i := 1, i = 1, 2, . . . Ny

K̃ :=

(
K̃x

K̃y

)
:=

(
Kx − 1Nx k̃

T
x

Ky − 1Ny k̃
T
y

)



88 4 Learning Locally and Globally: Maxi-Min Margin Machine

4.5 Experiments

In this section, we present the evaluation results of M4 in comparison with
SVM and MPM on both synthetic toy datasets and real world benchmark
datasets. SOCP problems are solved based on the general software named
Sedumi [20, 21]. The covariance matrices are given by the plug-in estimates.

4.5.1 Evaluations on Three Synthetic Toy Datasets

We demonstrate the advantages of our approach in comparison with SVM
and MPM in the following synthetic toy datasets first.

As illustrated in Fig. 4.6, we generate two types of data with the same
data orientations but different data magnitudes in Fig. 4.6 (a), while we gen-
erate two types of data with the same data magnitudes but different data
orientations in Fig. 4.6 (b). In (a), the x data are randomly sampled from
the Gaussian distribution with the mean as [−3.5, 0]T and the covariance as
[3, 0; 0, 4.5], while the y data are randomly sampled from another Gaussian
distribution with the mean and the covariance as [3.5, 0]T and [1, 0; 0, 1.5]
respectively. In (b), the x data are randomly sampled from the Gaussian dis-
tribution with the mean as [−4, 0]T and the covariance as [1, 0; 0, 5], while
the y data are randomly sampled from another distribution with the mean
and the covariance as [4, 0]T and [1, 0; 0, 5] respectively. Moreover, to gener-
ate different data orientation, in Fig. 4.6 the y data are rotated anti-clockwise
at the angle of − 7

8π. In both (a) and (b), training (test) data consisting of 120
(250) data points for each class are presented as o’s (+’s) and ×’s (�’s) for x
and y respectively. Observed from Fig. 4.6, M4 demonstrates its advantages
over SVM. More specifically, in Fig. 4.6 (a), SVM discards the information of
the data magnitudes, whose decision hyperplane lies basically in the middle
of boundary points of two types of data, while M4 successfully utilizes this
information, i.e. its decision hyperplane lies closer to the compact class (y
data), which is more reasonable. Similarly, in Fig. 4.6 (b), M4 takes advan-
tage of the information of the data orientation, while SVM simply overlooks
this information, which results in a lot of points incorrectly classified.

In comparison of MPM with M4, since in the above two datasets the global
information, i.e. the mean and the covariance can be reliably estimated from
data, they achieve similar performance. To see the difference between M4 and
MPM, we generate another dataset as illustrated in Fig. 4.7, where we inten-
tionally generate a very small number of training data, i.e. only 20 training
points. Similarly, the data are generated under two Gaussian distributions:
the x data are randomly sampled from the Gaussian distribution with the
mean as [−3, 0]T and the covariance as [0.5, 0; 0, 8], while the y data are
randomly sampled from another distribution with the mean and the covari-
ance as [4, 0]T and [6, 0; 0, 1] respectively. Training data and test data
are represented using similar symbols to Fig. 4.6. From Fig. 4.7, once again
M4 achieves ideal decision boundary which considers data both locally and
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(a)

(b)

Fig. 4.6. The first two synthetic toy examples to illustrate M4. Training
(test) data consisting of 120 (250) data points for each class are presented as
o’s (+’s) and ×’s (�’s) for x and y respectively. Subfigure (a) demonstrates
that SVM omits the data compactness information and (b) demonstrates
that SVM discards the data orientation information, while M4 achieves
ideal decision boundary which considers data both locally and globally

globally; whereas SVM obtains local boundary just in the middle of the sup-
port vectors, which discards the global information, namely the statistical
“trend” of data occurrence. For MPM, its decision hyperplane is exclusively
dependent on the mean and covariance matrices. Thus we can see that this
hyperplane coincides with the data shape, i.e. the long axis of training data of
x is nearly in the same direction as the MPM decision hyperplane. However,
the estimated mean and covariance are inaccurate due to the small number
of data points. This results in a relatively lower test accuracy as illustrated
in Fig. 4.7(b). In comparison, M4 incorporates the information of the local
points to neutralize the effect caused by inaccurate estimations. The test ac-
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(a)

(b)

Fig. 4.7. The third synthetic toy example to illustrate M4. Training (test)
data, consisting of 20 (60) data points for each class are presented as o’s
(+’s) and ×’s (�’s) for x and y respectively. Subfigure (a) demonstrates
the decision boundaries derived from training data, while (b) illustrates
the performance of these hyerplanes on the test set. The M4 achieves ideal
decision boundary which considers data both locally and globally

curacies for the above three toy datasets listed in Table 4.2 also demonstrate
the advantages of M4.

4.5.2 Evaluations on Benchmark Datasets

We perform evaluations on seven standard datasets. Data for Twonorm prob-
lem are synthetically generated according to [3]. The remaining six datasets
are real world data obtained from the UCI machine learning repository [2].
We compared M4 with SVM and MPM engaging with both the linear and
Gaussian kernels. The parameter C for both M4 and SVM was tuned via
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Table 4.2. Comparisons of classification accuracies between M4, SVM,
and MPM on the toy datasets

Dataset
Classification accuracy (%)

M4 SVM MPM

I(%) 98.8 96.8 98.8

II(%) 98.8 97.2 98.8

III(%) 98.3 97.5 95.8

cross validations [9], so was the width parameter in the Gaussian kernel for
all three models. The final performance results were obtained via the 10-fold
cross validation. Table 4.3 summarizes the evaluation results.

Table 4.3. Comparisons of classification accuracies among M4, SVM, and MPM

Dataset Classification accuracy of linear kernel(%) Classification accuracy of Gaussian kernel(%)

M4 SVM MPM M4 SVM MPM

Twonorm 96.5 ± 0.6 95.1 ± 0.7 97.6 ± 0.5 96.5 ± 0.7 96.1 ± 0.4 97.6 ± 0.5

Breast 97.5 ± 0.7 96.6 ± 0.5 96.9 ± 0.8 97.5 ± 0.6 96.7 ± 0.4 96.9 ± 0.8

Ionosphere 87.7 ± 0.8 86.9 ± 0.6 84.8 ± 0.8 94.5 ± 0.4 94.2 ± 0.3 92.3 ± 0.6

Pima 77.7 ± 0.9 77.9 ± 0.7 76.1 ± 1.2 77.6 ± 0.8 78.0 ± 0.5 76.2 ± 1.2

Sonar 77.6 ± 1.2 76.2 ± 1.1 75.5 ± 1.1 84.9 ± 1.2 86.5 ± 1.1 87.3 ± 0.8

Vote 96.1 ± 0.5 95.1 ± 0.4 94.8 ± 0.4 96.2 ± 0.5 95.9 ± 0.6 94.6 ± 0.4

Heart-disease 86.6 ± 0.8 84.1 ± 0.7 83.2 ± 0.8 86.2 ± 0.8 83.8 ± 0.5 83.1 ± 1.0

From the results we observe that M4 achieves the best overall perfor-
mance. In comparison with SVM and MPM, M4 wins five cases in the linear
kernel and four in the Gaussian kernel. The evaluations on these standard
bench-mark datasets demonstrate that it is worth considering data both lo-
cally and globally, which is emphasized in M4. Inspecting the differences
between M4 and SVM, the kernelized M4 appears marginally better than
the kernelized SVM, while the linear M4 demonstrates a distinctive advan-
tage over the linear SVM. This phenomenon may be explained on two hands.
On one hand, this can be explained from the fact that the data points are
very sparse in the kernelized space or feature space (compared with the huge
dimensionality in the Gaussian kernel). Thus the plug-in estimates of the
covariance matrices may not accurately represent the data information in
this case. On the other hand, it is well-known that the kernelization will not
keep the structure information in the feature space. One direct consequence
is that maximizing the margin in the feature space does not necessarily max-
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imize the margin in the original space [23]. Therefore, without building some
connections between the original space and the feature space, utilizing the
structure information, e.g. covariance matrices in the feature space seems not
to do much help in this sense. Inspecting these two points, one interesting
topic in the future is to consider forcing constraints on the mapping function
so as to maintain the data topology in the kernelization process.

In the above, we do not perform the reduction on these datasets. To illus-
trate how the reduction algorithm works for decreasing the computation time
while maintaining the test accuracy, we implement it on the Heart-disease
dataset. We perform the reduction in training sets and then keep test sets un-
changed. We repeat this process for different thresholds ν. We then plot the
curve of the cross validation accuracy against the threshold ν. Moreover, we
also plot the curve of the computation time against the threshold. This can
be seen in Fig. 4.8. From this figure, we can see that both that the computa-
tion time and the test accuracy change insensitively against ν when ν is set
to some small values, e.g. ν ≤ 0.7. If looking into the Heart-disease dataset,
we find that most data points are far away from their corresponding class
center in terms of the Manhalanobis distance. Thus setting small values to ν
does not actually reduce many data points. This generates both a relatively
flat changing curve in the test accuracy and the computation time in this
range. As ν is changing larger, the computation time decreases fast as more
and more data points are removed, while the test accuracy goes down slowly.
When the threshold is set to 1, the M4 degrades to the MPM model, yielding
the test accuracy of M4 achieves the same value of MPM. This demonstrates
how the proposed reduction algorithms can decrease the computation time
while maintaining good performance. When used in practice, the threshold
can be set according to the required response time.

(a) Test accuracy vs. threshold (b) Running time vs. threshold

Fig. 4.8. Reduction on the Heart-disease dataset
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4.6 Discussions and Future Work

We will discuss several important issues in this section. First, although M4

can be solved in polynomial time, the large computation time is still one of its
biggest limitations. This may cause problems especially in its kernelization
version. Note that the proposed reduction algorithm in this chapter does
not completely solve this problem, since removing points will inevitably lose
information. In this sense, it is crucial to develop some special algorithms
for M4. Due to the sparsity of M4 (it also contains support vectors), it is
therefore very interesting to investigate whether decomposable methods or
an analogy to the Sequential Minimal Optimization [16] designed for SVM
can also be applied in training M4. We believe that there is much to obtain
from such explorations. Certainly, this is a highly worthy research direction
in the future.

Second, although we have derived an error bound for M4, digging out
the direct connection or performing empirical comparison of this bound with
those of its special cases is still interesting, namely, SVM and MPM maintains
an interesting problem. Especially, it is an open problem whether there exists
a unified form of the bounds for M4, SVM, and MPM. This interesting subject
deserves future deep explorations.

Third, since in this chapter we mainly discuss M4 for two-category clas-
sifications, how to extend its application to multi-way classifications is also
an important topic in the future.

4.7 Summary

Local learning approaches, e.g. large margin machines have demonstrated
their advantages in machine learning and pattern recognition. However, they
derive the decision boundary only in a local way. For example, the most pop-
ular large margin classifier, Support Vector Machine obtains the decision hy-
perplane by focusing on considering some critical local points called support
vectors, while discarding all other points; on the other hand, global learning
models (e.g. Minimax Probability Machine) obtain the classifier only based
on global information, i.e. the mean and covariance information in MPM,
while ignoring all individual local points. Differently, our proposed model
is constructed based on both domestic and global view of data. This new
model is theoretically important in the sense that SVM and MPM can both
be considered as its special cases. Furthermore, the optimization of M4 can
be cast as a sequential Conic Programming problem which can be solved in
polynomial time.

We have provided a clear geometrical interpretation, and established de-
tailed connections among our model and other models such as Support Vector
Machine, Minimax Probability Machine, Fisher Discriminant Analysis, and
Minimum Error Minimax Probability Machine. We have also shown to exploit
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Mercer kernels to extend our model to build up nonlinear decision bound-
aries. In addition, we have also proposed a reduction method to decrease
the computation time. Experimental results on both synthetic datasets and
real world benchmark datasets have demonstrated the advantages of M4 over
Support Vector Machine and Minimax Probability Machine.
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5

Extension I: BMPM for Imbalanced Learning

In this chapter, we consider the imbalanced learning problem. This problem
means the task of binary classification on imbalanced data, in which nearly
all the instances are labeled as one class, while far fewer instances are labeled
as the other class, usually the more important class. Traditional machine
learning methods seeking accurate performance over a full range of instances
are not suitable to deal with this problem, since they tend to classify all
the data into the majority class, usually the less important class. Moreover,
many current methods have tried to utilize some intermediate factors, e.g.
the distribution of the training set, the decision thresholds or the cost matrix,
to impose a bias towards the important class. However, it remains uncertain
whether these roundabout methods can improve the performance in a sys-
tematic way. In this chapter, we apply Biased Minimax Probability Machine,
one of the special cases of Minimum Error Minimax Probability Machine to
deal with the imbalanced learning tasks. Different from previous methods,
this model achieves in a worst-case scenario to derive the biased classifier by
directly controlling the classification accuracy on each class. More precisely,
BMPM builds up an explicit connection between the classification accuracy
and the bias, which thus provides a rigorous treatment on imbalanced data.
We examine different models and compare BMPM with three other com-
petitive methods, i.e. the Naive Bayesian classifier, the k-Nearest Neighbor
method, and the decision tree method C4.5. The experimental results demon-
strate the superiority of this model.

This chapter is organized as follows. In the next section, we briefly present
an introduction to the imbalanced learning. We then reiterate in a tight
version the theoretical foundation of this chapter, namely the BMPM model.
Following that in Section 5.3 we apply the BMPM model to deal with the
imbalanced learning tasks. In Section 5.4, we evaluate the BMPM model
based on a series of experiments, and in Section 5.5, we make discussions and
present future work. Finally, we summarize this chapter in Section 5.6.
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5.1 Introduction to Imbalanced Learning

Learning classifiers from imbalanced or skewed datasets is an important topic,
arising very often in practice in classification problems. In such problems,
almost all the instances are labeled as one class, while far fewer instances
are labeled as the other class, usually the more important class. It is obvious
that traditional classifiers seeking accurate performance over a full range of
instances are not suitable to deal with imbalanced learning tasks, since they
tend to classify all the data into the majority class, which is usually the less
important class.

To cope with imbalanced datasets, there are types of methods such as
the methods of sampling [4, 22, 15], the methods of moving the decision
thresholds [26, 29], and the methods of adjusting the cost matrix [3, 26].
The first school of methods aims to reduce the data imbalance by “down-
sampling” (removing) instances from the majority class or “up-sampling”
(duplicating) the training instances from the minority class or both. The
second school of methods tries to adapt the decision threshold to impose a
bias on the minority class. Similarly, the third school of methods improves
the prediction performance by adjusting the weight (cost) for each class.

A common problem for all the three families of methods is that they lack
a rigorous and systematic treatment on imbalanced data. For the sampling
method, either up- or down-sampling is unsuitable: up-sampling will intro-
duce noise, while down-sampling the data will lose information. Moreover,
to incorporate a good bias, it is usually difficult to know what a proportion
should be sampled. For these reasons, Provost stated it as an open problem
whether simply varying the skewness of the data distribution can improve
prediction performance systematically [29]. For the method of adjusting the
cost matrix or adapting weights, similar problems are also encountered, i.e.
they are hard to build direct connections between the cost matrix or the
weights and the biased classification quantitatively. To impose a suitable
bias towards the important class, they have to adapt these factors by trials.
Therefore, these methods cannot rigorously handle imbalanced data.

In this chapter, we apply Biased Minimax Probability Machine (BMPM)
to handle the tasks of learning from imbalanced data. Different from the sam-
pling methods, BMPM does not remove or duplicate data. When compared
with the methods of changing the thresholds or weights, our model builds
up an explicit connection between the classification accuracy and the bias.
It thus offers an elegant way to incorporate the bias into classification by
directly controlling the real accuracy.

5.2 Biased Minimax Probability Machine

Suppose two random n-dimensional vectors x and y represent two classes of
data, where x belongs to the family of distributions with a given mean x̄
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and a covariance Σx, denoted as x ∼ (x̄,Σx); similarly, y belongs to the
family of distributions with a given mean ȳ and a covariance Σy, denoted
as y ∼ (ȳ,Σy). Here x, y, x̄, ȳ ∈ R

n, and Σx, Σy ∈ R
n×n. In this chapter,

the class x also represents the important or minority class and the class y
represents the corresponding less important or majority class.

The Biased Minimax Probability Machine can be described as follows1:

max
α,β,b,w �=0

α ,

s.t. inf
x∼(x̄,Σx)

Pr{wTx ≥ b} ≥ α , (5.1)

inf
y∼(ȳ,Σy)

Pr{wTy ≤ b} ≥ β , (5.2)

β ≥ β0 . (5.3)

Here α means the lower bound of the probability (accuracy) for the classifi-
cation of future cases of the class x with respect to all distributions with the
mean and covariance as (x, Σx); in other words, α is the worst-case accuracy
for the class x. Similarly, β is the lower bound of the accuracy of the class y.
This optimization achieves to maximize the accuracy (the probability α) for
the biased class x while simultaneously maintaining the class y’s accuracy at
an acceptable level β0 by setting a lower bound as Eq.(5.3). In comparison,
the Minimax Probability Machine (MPM) in [16, 17] considers the balanced
dataset; therefore, it makes α equal to β.

This optimization setting seems to be more useful in incorporating a bias
into classifications for imbalanced learning problems. A typical example can
be seen in the epidemic disease diagnosis problem which is usually an imbal-
anced classification problem as well. The “ill” cases are usually much fewer
than the healthy cases. However, misclassification of the “ill” class results in
more serious consequence than misclassification of the “healthy” case. Thus
an unequal treatment on different classes is obviously necessary.

We summarize the advantages of our biased model in the following. First,
this method provides a different treatment on different classes, i.e. the hy-
perplane w∗Tz = b∗ given by the solution of this optimization favors the
classification of the important class x over the less important class y. Sec-
ond, given reliable mean and covariance matrices, the derived decision hy-
perplane is directly associated with two real accuracy indicators, i.e. α and
β, for each class. Thus, by varying the lower bound of β, i.e. β0 and deriving
the corresponding classifier, we can quantitatively incorporate a bias into the
classification. Third, this model contains a distribution-free feature. With no
distribution assumption on data, the derived hyperplane seems to be more
general and valid than a large family of classifiers, namely the generative clas-
sifiers [10, 12] including the Naive Bayesian classifier [18], which has to make

1Note that, for easy explanations, the model description is in the slightly differ-
ent but essentially the same form as the one introduced in Chapter 3.
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specific distribution assumptions. Fourth, as shown shortly in Section 5.3, ei-
ther we can simply modify this BMPM optimization to automatically search
the best β0 in terms of some standard criteria, or slightly different from the
current setting, we can quantitatively generate the trade-off curve between
the accuracies on different classes and leave the task of choosing the best β0

to the users. Finally, although the BMPM contains the above advantages, it
does not trade them for efficiency. It is shortly shown that the optimization of
BMPM can be cast as a Fractional Programming (FP) problem and thus can
be solved efficiently. In short, with these important features, BMPM appears
to offer a more direct and rigorous scheme to handle biased classification
tasks, especially the imbalanced classifications, where the importance or cost
for each class is unequal.

5.3 Learning from Imbalanced Data by Using BMPM

In this section, we apply the novel BMPM model to the tasks of learning from
imbalanced data. We first review four standard imbalanced learning criteria,
then based on two of them, we apply BMPM to the imbalanced learning
tasks.

5.3.1 Four Criteria to Evaluate Learning from Imbalanced Data

In general, four criteria are used to evaluate the imbalanced learning. They
are (1) the criterion of Minimum Cost (MC), (2) the criterion of Maximum
Geometry Mean (MGM) of the accuracies on the majority class and the
minority class, (3) the criterion of the Maximum Sum (MS) of the accuracies
on the majority class and the minority class, and (4) the criterion of Receiver
Operating Characteristic (ROC) analysis. We review these criteria as follows.

Aiming to solve the problems caused by maximizing the accuracy over a
full range of data, instead, Grzymala-Busse, et al. [9] maximized the sum of
the accuracies on the minority class and the majority class (or maximized
the difference between the true positive and false positive accuracy). This
criterion is also widely used in other fields, e.g. graph detection, especially line
detection and arc detection, where it is called Vector Recovery Index [6, 23].
Similarly, Kubat, et al. [14] proposed to use the geometric mean instead
of the sum of the accuracies. However, compared to maximizing the sum,
this criterion has a nonlinear form, which is not easy to be automatically
optimized. On the other hand, when the cost of misclassification is known, a
minimum cost measure defined as Eq.(5.4) should be used [2]:

Cost = Fp · CFp + Fn · CFn , (5.4)

where Fp is the number of the false positive, CFp is the cost of a false positive,
Fn is the number of the false negative, and CFn is the cost of a false nega-
tive. However, because the cost of misclassification is generally unknown in
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real cases, the usage of this measure is somewhat restricted. Considering this
point, some researchers introduced the ROC analysis [25, 26, 34]. This crite-
rion plots a so-called ROC curve to visualize the tradeoff between the false
positive rate and the true positive rate and leaves the task of the selection
of a specific tradeoff to the practitioners. Fig. 5.1 illustrates an artificially
generated ROC curve. It has been suggested that the area beneath an ROC
curve can be used as a measure of accuracy in many applications [30, 33].
Thus, a good classifier for imbalanced learning should have a larger area.

Fig. 5.1. An artificially generated Receiver Operating Character-
istic (ROC) curve

Based on the above review, in this chapter we will focus on using the
criterion of MS and the ROC curve analysis to evaluate the classifiers.

5.3.2 BMPM for Maximizing the Sum of the Accuracies

In the following, we first modify the formulation of BMPM to maximize the
sum of the accuracies for two classes. Next, we make an analysis on the
solvability of the modification version. Finally, we present the optimization
method.

5.3.2.1 Model Modification

When using BMPM for the criterion of MS, we can modify the formulation
of BMPM as follows:

max
α,β,b,w �=0

(α + β) , (5.5)

s.t. inf
x∼{x,Σx}

Pr{wTx ≥ b} ≥ α , (5.6)

inf
y∼{y,Σy}

Pr{wTy ≤ b} ≥ β . (5.7)
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The above formulate directly maximize the sum of the lower bounds of the
accuracies so as to maximize the sum of the accuracies. In comparison, to
achieve the maximum sum of the accuracies, some other approaches, e.g. the
methods of sampling or the methods of adapting the weights have to search
the best sampling proportion or the best weights by trials, which are in
general very time-consuming. Since the above optimization is in fact nearly
the same as the Minimum Error Probability Machine, it can be similarly
solved by the Sequential Biased Minimax Probability Machine optimization
method as introduced in Chapter 3. We thus do not elaborate it here.

5.3.3 BMPM for ROC Analysis

It is straightforward to apply the BMPM model to plot the ROC curve, since
the lower bounds α and β directly and quantitatively control the accuracies
for two classes. We only need to adapt the acceptable level for β, namely
β0, from 0 to 1, to obtain a sequence of trade-offs between the accuracies
of the important class and the negative class. We address that again, since
β0 represents the lower bound of the accuracy of the less important class,
varying β0 provides a direct and quantitative way to move the decision plane
with different trade-offs. Directly associating accuracies with the moving of
the hyperplane while assuming no distribution is one of advantages of BMPM
over the other methods by adapting the weights or thresholds.

5.4 Experimental Results

In this section, we first illustrate the BMPM model with a toy example,
and then evaluate the performance of BMPM on two real world imbalanced
datasets, namely the recidivism dataset and the rooftop dataset in compari-
son with the Naive Bayesian (NB) classifier, the k-Nearest Neighbor (k-NN)
method [1], and the decision tree classifier C4.5 [31].

5.4.1 A Toy Example

We present a toy example to illustrate the BMPM model in this section.
Suppose 15 data points of the class x are generated from a 2D Gaussian
distribution with the mean and covariance matrix as x = [0 1.5]T and Σx =
[0.5 0; 0 0.5] and 65 data points of the class y from another 2D Gaussian
distribution with y = [0 0]T and Σy = [0.5 0; 0 0.5].

By adapting the lower bound accuracy β0 for the class y, with optimizing
the corresponding BMPM, we obtain a series of decision boundaries for the
toy example when using the Gaussian kernel e−‖x−y‖2/σ with the parameter σ
as 5. These boundaries are illustrated in Fig. 5.2. Gray regions are classified as
the class x represented by +’s, whereas those outside gray regions are judged
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Fig. 5.2. A toy example to illustrate BMPM. Data of the class x is plotted
as +’s, and data of class y as �’s. The gray area represents the classification
region of the class x, while the area outside the gray region is classified as
the class y

as the class y plotted as �’s. It is clear to observe that the lower bound β0

directly controls the accuracy of the class y. More specifically, when β0 is set
to small values such as 10.00%, 60.00% and 95.00%, the boundary is biased
towards the class x. When β0 is set to larger values such as 99.00%, the
classification is biased towards the class y. Moreover, Table 5.1 demonstrates
that the lower bounds β0 and α can serve as the accuracy indictors. It is
observed that these lower bounds keep well, i.e. the corresponding accuracies
are slightly higher than the lower bounders except in the case when β0 =
0.95. The exception, i.e. that the value of α, 99.16% is greater than the real
accuracy 93.33%, is understandable due to the relatively smaller number of
training samples: one single misclassification will influence the classification
results significantly. This toy example demonstrates that by changing β0,
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Table 5.1. Lower bounds of accuracies, α, β0 and the real accuracies

β0(%) True negative rate(%) α(%) True positive rate(%)

10.00 13.85 100.00 100.00

60.00 63.08 100.00 100.00

95.00 95.38 99.16 93.33

99.00 100.00 81.94 86.67

BMPM provides an elegant and direct way to incorporate the bias into the
classification.

5.4.2 Evaluations on Real World Imbalanced Datasets

In this section, we evaluate our novel BMPM model in comparison with three
competitive classification methods, namely the Naive Bayesian classifier, the
k-Nearest Neighbor methods and the decision tree C4.5, on two real world
imbalanced datasets, the recidivism dataset and the rooftop dataset. Before
we go into the experimental details, we first introduce these three techniques
and adapt them to learn from imbalanced datasets according to previous
research results [20, 26].

5.4.2.1 Modifying Three Learning Techniques

We investigate and modify three learning techniques, the Naive Bayesian
classifier, the k-Nearest Neighbor method, and the decision tree C4.5 in the
following.

The Naive Bayesian classifier [11, 18] is proposed based on a very sim-
ple assumption, i.e. each attribute is conditionally independent of each
other when given the class variable. The decision in a two-category predic-
tion task is made according to the calculation of the posterior probability
p(C|z), where C is the class variable and z represents the observation. When
p(C1|z) ≥ 0.5 or another equivalent yet more convenient rule is satisfied,
i.e. p(C1)p(z|C1) ≥ p(C2)p(z|C2), z is classified into C1; otherwise, it is
judged as C2. Even with the strong conditional independency assumption,
the Naive Bayesian classifier demonstrates a surprisingly good performance
when compared with state-of-the-art classifiers [8, 19] such as Support Vector
Machines [35] and C4.5 in many domains. By simply introducing a parameter
τ into the decision rule p(C1)p(z|C1) ≥ τp(C2)p(z|C2), Naive Bayesian clas-
sifiers can be adapted to the imbalanced learning. For example, specifying
τ < 1 imposes a bias towards the C1 class, whereas specifying τ > 1 imposes
a bias towards the C2 class.

In the k-Nearest Neighbor classification [1], based on some distance mea-
sure, e.g. the Euclidean distance measure, k data points, which are the clos-
est to the query point, are selected out. It then labels the query point as
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the most frequent class among the chosen k points. Although this method is
very simple and may suffer from difficulties in high dimensions, it achieves
satisfactory performance in many real domains. Following [26], we alter the
distance measure δj for the class Cj to handle imbalanced learning tasks
according to Eq.(5.8):

δj = dE(z,zj) − τjdE(z,zj) , (5.8)

where zj is the closest point from class Cj to the query point, and dE(z,zj)
represents the Euclidean distance measure. Similar to the Naive Bayesian
classifier, by modifying τj the Nearest Neighbor method can build biased
classifiers.

C4.5 is a kind of algorithm introduced by Quinlan for inducing classi-
fication models, also called decision trees, from data [31]. By selecting the
attributes according to the gain ratios criterion, an information measure of
homogeneity, C4.5 builds up a decision tree where each path from the root
to a leaf represents a specific classification rule. We adapt C4.5 to learn from
imbalanced dataset based on the similar method to [26], i.e. by changing the
prior probability to bias the classification.

5.4.2.2 Evaluations on the Recidivism Dataset

The recidivism dataset was obtained from a cohort of releases of the North
Carolina prison system during the time period from July 1, 1977 to June
30, 1978. There are totally 4, 618 individuals in this dataset, including a
training set with 1, 540 individuals and a test set with 3, 078 individuals. In
the training set, 570 (27.5%) individuals were recidivists and 970 (72.5%) were
not. In the test set, 1, 151 individuals were recidivists and 1, 927 were not.
Although this dataset is not skewed as severely as other reported datasets,
for example, the fog dataset [28] and the rooftop dataset used in the next
subsection, it is enough to use this dataset to evaluate the performance of
the imbalanced learning [26].

We use the same processing method [32] to select and scale nine attributes
that appear in Table 5.2, while six other attributes are dropped based on an
insignificant test at the 5% level.

We compare the performance of our proposed Biased Minimax Proba-
bility Machine model, in both the linear (BMPML) and the Gaussian kernel
setting (BMPMG), with the Naive Bayesian classifier, C4.5 and the k-Nearest
Neighbor method. These methods are modified into the imbalanced learning
according to the methods introduced in the previous section. We run k-NN
methods for k = 1, 3, 5, . . . , 21, but we only present the best three results
for brevity. The width parameter for the Gaussian kernel is tuned via cross
validation methods [13].

We first present the experimental results based on the MS criterion in
Table 5.3. To be more comparable, we show the average of the accuracy for
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Table 5.2. Attribute description in the recidivism dataset

Attribute Description

TSERVED Time served (in months)

AGE Age (in months) at the time of release

PRIORS Number of previous incarcerations

WHITE Is the individual Caucasian?

FELON Was the sentence for a felony?

LCHY Does individual’s record indicate a serious problem with alcohol?

JUNKY Does individual’s record indicate a serious problem with hard drugs?

PROPTY Was individual’s sentence for a crime against property?

MALE Is the individual male?

each class when each classifier attains the point of the maximum sum. The
BMPML achieves an average accuracy of 0.6391 and the BMPMG achieves an
average accuracy of 0.6490, while the highest average accuracy among other
classifiers is given as 0.6272 by NB. Therefore, in this dataset, BMPML and
BMPMG outperform other methods in terms of the MS criterion.

Table 5.3. Performance on a recidivism prediction task based on the MS
criterion

Method True negative rate True positive rate (True positive rate+true negative rate)/2

NB 0.6177 0.6377 0.6272

k-NN(9) 0.6255 0.5464 0.5860

k-NN(11) 0.6238 0.5542 0.5890

k-NN(13) 0.5569 0.6201 0.5885

C4.5 0.7405 0.4900 0.6153

BMPML 0.7037 0.5745 0.6391

BMPMG 0.7203 0.5778 0.6490

Let us next present the experimental results based on the ROC analy-
sis. By setting the thresholds or costs by trials for NB, k-NN, and C4.5, the
ROC curves are generated with good shapes as evenly distributed along their
length as possible. As discussed in [26], although this generation method may
increase the running time for some methods, e.g. k-NN, it works well in C4.5
and NB and is sufficient to evaluate the performance of imbalanced learning.
For the BMPM model, since the lower bound β0 serves as the accuracy in-
dicators, we simply vary it from 0 to 1 to generate the corresponding ROC
curve. The ROC curves are shown in Fig. 5.3(a). As seen in this figure, the
performances of BMPML and BMPMG are once again superior to those of
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Fig. 5.3. ROC curves for the recidivism dataset. Subfigure (a)
shows a full range of the ROC curve, while (b) shows a critical
proportion of the ROC curve, which is of more interest in real ap-
plications. Both figures demonstrate the superiority of the BMPM
model, since the curves of BMPML and BMPMG cover those of
other models in most parts and thus have a larger area

other methods, since their ROC curves cover those of other models in most
parts. To quantitatively demonstrate the difference, in Table 5.4 we also show
the areas beneath the ROC curves approximated by using the trapezoid rule.
The BMPML and BMPMG show a consistent superiority to NB which is the
best of the other three methods.

In addition, in real applications not all the portions of the ROC curve are
of great interest [27]. Usually, those with a small false positive rate and a high
true positive rate should be more of interest and importance [36]. We thus
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Table 5.4. Performance on a recidivism prediction task
based on the area of ROC curve

Method Area under ROC curve

NB 0.6646

k-NN(11) 0.6155

k-NN(13) 0.6189

k-NN(17) 0.6148

C4.5 0.6383

BMPML 0.6842

BMPMG 0.6798

especially show the portion of the ROC curve in the range when the false
positive rate FP∈ [0, 0.5] and the true positive rate TP∈ [0.5, 1]. As shown
in Fig. 5.3(b), in this range, the superiority of the BMPL and BMPMG is
more obvious than the whole ROC curve analysis. This again demonstrates
our model’s advantages over other methods.

5.4.2.3 Evaluations on the Rooftop Dataset

The rooftop dataset consists of 17, 829 overhead images of Fort Hood, Texas,
collected as part of the RADIUS project [7], which are of a military base.
Depending on whether they are buildings (with a detected rooftop) or not,
781 images in this dataset are labeled as positive examples while 17, 048
images are labeled as negative examples. It is clearly observed that this is
a severely skewed dataset. According to [7, 26], these images were taken
from two different viewpoints, i.e. a nadir aspect and an oblique aspect and
covered three different areas. Following [21, 26], we represent each of these
images in nine continuous attributes which are extracted based on various
image analysis. The detailed information about this dataset is summarized
in Tables 5.5 and 5.6.

Table 5.5. Description of images in the rooftop dataset

Sub-dataset Location Image size Aspect #Positive #Negative

1 A 2055 × 375 Nadir 71 2645

2 A 1803 × 429 Oblique 74 3349

3 B 670 × 645 Nadir 197 982

4 B 704 × 568 Oblique 238 1955

5 C 1322 × 642 Nadir 87 3722

6 C 1534 × 705 Oblique 114 4395
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Table 5.6. Description of the attributes in the rooftop dataset

Attribute Description

1 Evaluation of the edge support

2 Evaluation of the corner support

3 Evaluation of the parallel support

4 Evaluation of the OTV (Orthogonal Trihedral Vertex) support

5 Evaluation of the shadow corner support

6 Evaluation of gap overlap

7 Evaluation of displacement of edge support

8 Evaluation of crossing lines on any side of the hypothesis

9 Evaluation of existence of T-junction or L-junction on any side

We randomly split the rooftop data into a training set with 60% data and
a test set with 40% data. We then construct classifiers from imbalanced data
based on the training dataset and perform evaluations on the test dataset.
We repeat this procedure ten times and use the average of the results as the
performance metric. In such a setup, we compare our BMPM with other three
approaches, i.e. NB, C4.5 and k-NN. Similar to the case in the recidivism
dataset, NB, C4.5 and k-NN are modified to handle imbalanced data. The
width parameter σ is chosen by cross validation methods again. Moreover, we
still run k-NN with k = 1, 3, 5, ..., 21 and present the best three for brevity.

The results are summarized in Table 5.7 based on the MS criterion, and

Table 5.7. Performance on the rooftop dataset based on the MS criterion

Method True negative rate True positive rate (True positive rate + True negative rate)/2

BMPML 0.8015 ± 0.0058 0.8231 ± 0.0063 0.8123 ± 0.0060

BMPMG 0.7997 ± 0.0087 0.8405 ± 0.0100 0.8201 ± 0.0091

k-NN(7) 0.7510 ± 0.0055 0.8069 ± 0.0062 0.7789 ± 0.0052

k-NN(13) 0.7409 ± 0.0051 0.8140 ± 0.0083 0.7774 ± 0.0061

k-NN(15) 0.7433 ± 0.0067 0.8211 ± 0.0072 0.7822 ± 0.0072

NB 0.7969 ± 0.0043 0.8177 ± 0.0080 0.8073 ± 0.0066

C4.5 0.8176 ± 0.0040 0.7942 ± 0.0063 0.8059 ± 0.0051

Fig. 5.4 and Table 5.8 based on the ROC analysis. As is clearly observed, for
both criteria, the BMPM method demonstrates its superiority to the other
methods, since it has higher sums of the accuracies and larger areas under the
ROC curves. Similar to what we do in the recivisim dataset, we also plot the
more critical portion of the ROC curve in Fig. 5.4(b). The predominance of
BMPML and the BMPMG is even more obvious. To evaluate the performance
more reliably, we perform a significance test based on both LabMRMC [5, 24]
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and a t-test. The analysis shows that the accuracies of BMPML and BMPMG
are significantly different from those of other methods at P ≤ 0.05, both in
terms of the MS criterion and the ROC curve criterion.

Fig. 5.4. ROC curves for the rooftop dataset. We ran each method by
randomly partitioning the dataset into a training dataset (60%) and a test
dataset (40%). The evaluations were iterated 10 times. We then average
the true positive rate and false positive rate to generate the ROC curves.
Subfigure (a) shows a full range of the ROC curve, while (b) shows a critical
proportion of the ROC curve, which is of more interest in real applications.
Both figures demonstrate the superiority of the BMPML and BMPMG
model to other models, since the curves of BMPML and BMPMG cover
those of other models in most parts and thus have a larger area
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Table 5.8. Performance on the rooftop dataset based on
the area of ROC curve

Method Area under ROC curve

BMPML 0.8791 ± 0.0061

BMPMG 0.8819 ± 0.0087

k-NN(9) 0.8601 ± 0.0091

k-NN(11) 0.8569 ± 0.0058

kNN(15) 0.8582 ± 0.0063

NB 0.8678 ± 0.0060

C4.5 0.8744 ± 0.0062

5.4.3 Evaluations on Disease Datasets

Diagnosing diseases contain a very similar characteristic to the imbalanced
learning, since one class, usually the disease class needs to be given more bias
than the other class. Therefore, the above discussed model modifications will
be automatically applicable for this kind of tasks. In the following, we evalu-
ate the performance of BMPM on two disease datasets, namely, the Breast-
cancer dataset and the Heart-disease dataset, which are obtained from UCI
machine learning repository. In the context of diagnosing diseases, the true
positive rate is usually called sensitivity, while the true negative rate is called
specificity. Therefore, we should maximize the sensitivity while maintaining
the specificity acceptable. In the following, we present the experimental re-
sults still compared with the best three, namely the modified Naive Bayesian
classifier, k-NN, and C4.5. We randomly split the data for each dataset into a
training set with 80% data and a test set with 20% data. We then construct
classifiers based on the training dataset and perform evaluations on the test
dataset. We repeat this procedure ten times and use the average of the results
as the performance metric.

We present the results based on the MS criterion in Table 5.9 for the
breast-cancer dataset and Table 5.10 for the heart disease dataset. Obsereved
from these two tables, the BMPM model also demonstrates a superiority to
other three models. In addition, the t-test also shows that the accuracies of
BMPML and BMPMG are significantly different from those of other three
classifiers at P ≤ 0.05.

We next present the experimental results based on the ROC analysis
in Fig. 5.5(a) and Fig. 5.6(a). It is observed that BMPML and BMPMG
perform better than other classifiers for both datasets, since in most parts
the BMPM curves dominate those of other methods. More specifically, we
calculate the areas under the ROC curves as illustrated in Table 5.11, based
on the trapezoid rule. For the breast-cancer dataset, it produces a curve with
an area of 0.9953 in the linear setting and a curve with an area of 0.9963 in
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Table 5.9. Comparison of the model performance based on the
MS criterion on the breast-cancer dataset

Method Specificity Sensitivity (Specificity+Sensitivity)/2

BMPML 0.9684 ± 0.0029 0.9872 ± 0.0015 0.9778 ± 0.0021

BMPMG 0.9612 ± 0.0018 0.9915 ± 0.0011 0.9764 ± 0.0016

k-NN(11) 0.9900 ± 0.0047 0.9620 ± 0.0034 0.9760 ± 0.0029

k-NN(17) 0.9862 ± 0.0081 0.9664 ± 0.0058 0.9762 ± 0.0050

k-NN(7) 0.9721 ± 0.0071 0.9752 ± 0.0049 0.9737 ± 0.0058

NB 0.9366 ± 0.0059 0.9719 ± 0.0049 0.9543 ± 0.0051

C4.5 0.9378 ± 0.0074 0.9582 ± 0.0067 0.9480 ± 0.0072

Table 5.10. Comparison of the model performance based on the
MS criterion on the heart disease dataset

Method Specificity Sensitivity (Specificity+Sensitivity)/2

BMPML 0.8549 ± 0.0042 0.8158 ± 0.0013 0.8354 ± 0.0035

BMPMG 0.8403 ± 0.0053 0.8572 ± 0.0017 0.8488 ± 0.0026

k-NN(17) 0.7654 ± 0.0029 0.8837 ± 0.0018 0.8246 ± 0.0027

k-NN(7) 0.7754 ± 0.0038 0.8844 ± 0.0042 0.8299 ± 0.0037

k-NN(15) 0.7512 ± 0.0028 0.8653 ± 0.0037 0.8082 ± 0.0036

NB 0.7862 ± 0.0052 0.8024 ± 0.0031 0.7943 ± 0.0040

C4.5 0.8831 ± 0.0022 0.7065 ± 0.0018 0.7948 ± 0.0021

the Gaussian kernel, whereas the k-NN with k = 11 forms a curve with a
smaller area equal to 0.9908, the best result of the k-NN, NB and C4.5. For
the Heart disease dataset, the BMPM shows a curve with an area of 0.8814
in the linear setting and a curve with an area of 0.8932 in the Gaussian kernel
setting. These two areas are both greater than those of the other methods,
i.e. the k-NN classifier, NB and C4.5. In summary, the evaluations based on
the area of the ROC curve quantitatively demonstrate the superiority of our
BMPM model for both datasets.

In addition, as illustrated in Fig. 5.5(b) and Fig. 5.6(b), we show the
critical portion of Fig. 5.5(a) and Fig. 5.6(a) respectively when the false
positive rate is in the range of 0.0 to 0.5 and the true positive rate is in
the range of 0.5 to 1.0. In this critical region, most parts of the ROC curves
of BMPM cover the corresponding curves of other models in both datasets,
which again demonstrates the superiority of the BMPM model.
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Table 5.11. Comparison of the model performance based
on the ROC analysis

Method Area under ROC Curve

Breast-cancer Heart

BMPML 0.9953 ± 0.0018 0.8814± 0.0056

BMPMG 0.9963 ± 0.0016 0.8932± 0.0043

k-NN(11) 0.9908 ± 0.0060 0.8701 ± 0.0038

k-NN(17) 0.9902 ± 0.0100 0.8689± 0.0050

k-NN(7) 0.9887 ± 0.0080 0.8596 ± 0.0038

NB 0.9841 ± 0.0060 0.8162 ± 0.0034

C4.5 0.9762 ± 0.0120 0.8301± 0.0038

Fig. 5.5. ROC curves for the breast-cancer dataset. The ROC
curves of BMPML and BMPMG dominate those of other models
and BMPMG yields the largest area under the ROC curve
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Fig. 5.6. ROC curves for the heart disease dataset. The ROC
curves of BMPML and BMPMG dominate those of other models
and BMPMG yields the largest area under the ROC curve

5.5 When the Cost for Each Class Is Known

There exists cases in which the cost for each class can be given by experts.
In the following, we show that the BMPM model can naturally be adapted
to this type of tasks.

Assuming x and y are the minority class and the majority class respec-
tively, it is easily verified that minimizing the optimization function given by
Eq.(5.4) is equivalent to maximizing the following formulation:

max (rxKx + ryKy) ,

where rx is the true positive rate or the accuracy of the class x, ry is the true
negative rate or the accuracy of the class y, Kx and Ky are two constants
which are equal to CFpNy and CFnNx respectively (Nx, Ny are respectively
the number of data points labeled as the classes x and y). Similar to the
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optimization procedure of MS, we can naturally modify the BMPM model in
the following formulation:

max
α,β,b,w �=0

(Kxα + Kyβ) ,

s.t. inf
x∼{x,Σx}

Pr{wTx ≥ b} ≥ α ,

inf
y∼{y,Σy}

Pr{wTy ≤ b} ≥ β .

The above optimization derives the classification boundary by maximizing
the weighted lower bound of the real accuracies or the weighted worst-case
real accuracies so as to minimize the overall classification risk. Moreover,
similar to the MS case, it is easily validated that this optimization problem
can be cast as a sequential BMPM problem. Hence, it can similarly be solved
based on the method presented in Chapter 3.

5.6 Summary

In this chapter, we have applied a novel model named Biased Minimax Prob-
ability Machine to deal with the task of learning from imbalanced datasets.
Given reliable estimation of the mean and covariance of data, this model con-
structs the classification boundary by directly controlling the lower bound of
the real accuracy and thus provides a systematic and rigorous treatment
on skewed data. We have evaluated the BMPM model on two real world
imbalanced datasets and two disease datasets in terms of two criteria. In
both criteria, the performances are shown to be the best when compared
with other competitive methods such as the Naive Bayesian classifier, the
k-Nearest Neighbor method, and the decision tree classifier, C4.5.
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6

Extension II: A Regression Model from M4

In this chapter, we present a novel regression model which is directly moti-
vated from the Maxi-Min Margin Machine(M4) model described in Chapter 4.
Regression is one of the problems in supervised learning. The objective is to
learn a model from a given dataset, {(x1, y1), . . . , (xN , yN )}, and then based
on the learned model, to make accurate predictions of y for future values of x.
Support Vector Regression (SVR), a successful method in dealing with this
problem contains the good generalization ability [20, 17, 8, 6]. The standard
SVR adopts the �2-norm to control the functional complexity and chooses an
ε-insensitive loss function with a fixed tube (margin) to measure the empir-
ical risk. By introducing the �2-norm, the optimization problem in SVR can
be transformed to a quadratic programming problem. On the other hand, the
ε-tube has the ability to tolerate noise in data and fixing the tube enjoys the
advantages of simplicity. These settings are in a global fashion and are effec-
tive in common applications, but they lack the ability and the flexibility to
capture the local trend in some applications. For example, in stock markets,
the data are highly volatile and the associated variance of noise varies over
time. In such cases, fixing the tube cannot capture the local trend of data
and cannot tolerate the noise adaptively.

One typical illustration can be seen in Fig. 6.1. In this figure, the data
contain larger noise as the x value of the data becomes larger. However, the
SVR cannot flexibly and suitably handle it. As shown in Fig. 6.1(a), with a
fixed ε-margin (set to 0.04) SVR considers the data globally and equally: The
derived approximating function in SVR deviates from the actual data trend.
On the other hand, as illustrated in Fig. 6.1(b), if we adequately consider
the local volatility of data by adaptively and automatically setting a small
margin in low volatile regions and a larger margin in high volatile areas, the
resulting approximating function (the solid line in Fig. 6.1(b)) would be more
suitable and reasonable.

Targeting to solve these problems, we propose the Local Support Vector
Regression (LSVR) model. We will show that with consideration of the local
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Fig. 6.1. Illustration of the ε-insensitive loss function with fixed and non-
fixed margins in the feature space. In (b), a non-fixed margin setting is more
reasonable. It can moderate the effect of the noise by enlarging (shrinking)
the margin width in the local area with large (small) variance of noise

data trend, our model provides a systematic and automatic scheme to locally
and flexibly adapt the margin. Moreover, we will also demonstrate that this
novel LSVR model can derive special cases, containing a very similar physical
meaning to the standard SVR. Another critical feature of our model is that
the associated optimization of LSVR can be cast as a Second Order Cone
Programming (SOCP) problem which can be efficiently solved in polynomial
time [11]. The margin setting in the novel LSVR model is different from that
in our previous work [21]. Concretely, the tube here is adapted directly based
on the functional complexity and the local trend of data. This hence provides
a more systematic and more rigorous way to moderate the margin automat-
ically. This model can be seen as an extension to the regression model of
M4. In M4, the main purpose is to build a classification boundary for differ-
ent classes, while in LSVR the goal is to model a function approximating the
data. Therefore, M4 considers different data trends for different classes, while
LSVR focuses on employing different data trends in different data regions.
This is more valuable with the framework of regression tasks.

The rest of this chapter is organized as follows: the linear LSVR model
with its theoretical background is presented in Section 6.1. In Section 6.2, we
demonstrate how the standard SVR can be considered as the special case of
our proposed model. In Section 6.3, we show the link between our proposed
LSVR model and the general large margin classifier M4. The kernelized LSVR
is tackled by utilizing the Mercer’s kernel in Section 6.5. Section 6.6 provides
an additional interpretation on the issue of controlling the complexity of the
LSVR model. Section 6.7 presents the experiments on both synthetic and
real data. The chapter is concluded in Section 6.8.
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6.1 A Local Support Vector Regression Model

In this section, we first present the problem and model definition of the LSVR
model. We then detail its interpretation and its appealing characteristics.
After that we state its corresponding optimization method.

6.1.1 Problem and Model Definition

A basic idea to avoid overfitting in function approximation is to restrict the
class of admissible solutions by a regularization term. A common method
is to find a function, f : R

d �→ R, based on an N -instance dataset D =
{(xi, yi) | xi ∈ R

d, yi ∈ R, i = 1, . . . , N} by minimizing the following
regularized functional risk:

Rreg[f ] = Ω[f ] + C · Remp[f ],

where C > 0 is a regularization parameter used as the tradeoff between the
minimal empirical risk Remp[f ] and the smoothness or functional complexity
controlled by Ω[f ].

Support Vector Regression is a successful regression model following this
idea. It attempts to find an approximating function in the linear form:

f(x) = wTx + b, w,x ∈ R
d, b ∈ R. (6.1)

For the complexity term Ω[f ], SVR selects �2-norm or other �p-norm of w. To
measure the empirical risk Remp[f ], the standard SVR uses an ε-insensitive
loss function [20].

In order to improve the flexibility of the standard SVR, we propose a
new regression model, namely Local Support Vector Regression (LSVR). The
objective is to learn the function in Eq.(6.1) approximating the data in D
by making the function locally as less volatile as possible while keeping the
error as small as possible. We formulate this objective as follows:

min
w,b,ξi,ξ∗

i

1
N

N∑
i=1

√
wTΣiw + C

N∑
i=1

(ξi + ξ∗i ) , (6.2)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣiw + ξi ,

(wTxi + b) − yi ≤ ε
√

wTΣiw + ξ∗i , (6.3)
ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

where ξi and ξ∗i are the corresponding up-side and down-side errors at the
i-th point, respectively, ε is a positive constant, Σi is the covariance matrix
formed by the i-th data point and those data points close to it.
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6.1.2 Interpretations and Appealing Properties

In this section, beginning with stating the physical meaning of the term,
wTΣiw, we interpret our novel LSVR model.

Suppose yi = wTxi + b and ȳi = wTx̄i + b. We have the variance around
the i-th data point as

Δi =
1

2k + 1

k∑
j=−k

(yi+j − ȳi)2 =
1

2k + 1

k∑
j=−k

[wT(xi+j − x̄i)]2 = wTΣiw,

where 2k is the number of data points closest to the i-th data point. There-
fore, Δi = wTΣiw actually captures the volatility in the local region around
the i-th data point. In addition, Δi can also measure the local functional
complexity around the i-th data, since it reflects the smoothness of the cor-
responding local region. This will be in details addressed later in Section 6.6.

By using the first meaning of Δi = wTΣiw (representing the local volatil-
ity), LSVR can systematically and automatically vary the tube: If the i-th
data point lies in the area with a larger variance of noise, it will contribute to
a larger ε

√
wTΣiw or a larger local margin. This will result in reducing the

impact of the noise around the point; on the other hand, in the case that the
i-th data point is in the region with a smaller variance of noise, the local mar-
gin (tube), ε

√
wTΣiw, will be smaller. Therefore, the corresponding point

would contribute more in the fitting process. In comparison, the standard
SVR adopts a fixed margin, which treats each point equally and therefore
lacks the ability to tolerate the change in noise.

By engaging the second compelling property of Δi = wTΣiw, namely,
a measure in describing the local functional complexity, LSVR controls the
overall smoothness of the approximating function by minimizing the average
of Δi as seen in Eq.(6.2). Intuitively, the margin around each point can be
neither too large nor too small: If the margin is too large, the local data
trend may not be captured for “over-tolerating” data; if the margin is too
small, the local data trend may be “over-emphasized” resulting in a highly
zig-zag approximating curve. Therefore by adding the regularization term, a
trade-off can be achieved via adapting the parameter C.

6.2 Connection with Support Vector Regression

We now analyze the connection of the LSVR model with the standard Sup-
port Vector Regression model. By considering the data trend globally and
equally, i.e. setting Σi = Σ, for i = 1, . . . , N , we can transform the opti-
mization of Eq.(6.2) as follows:
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min
w,b,ξi,ξ∗

i

√
wTΣw + C

N∑
i=1

(ξi + ξ∗i ) ,

s.t. yi − (wTxi + b) ≤ ε
√

wTΣw + ξi ,

(wTxi + b) − yi ≤ ε
√

wTΣw + ξ∗i , (6.4)
ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .

Further, if Σ = I, we obtain:

min
w,b,ξi,ξ∗

i

(
‖w‖ + C

N∑
i=1

(ξi + ξ∗i )

)
, (6.5)

s.t. yi − (wxi + b) ≤ ‖w‖ε + ξi ,

(wxi + b) − yi ≤ ‖w‖ε + ξ∗i , (6.6)
ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .

The above optimization problem is very similar to the �1-norm SVR, except
that it has a margin related to the complexity term. In the following, we will
prove that the above optimization is actually equivalent to the �1-norm SVR
in a meaningful sense.

Lemma 6.1. The LSVR model with setting Σi = I is equivalent to the �1-
norm SVR in the sense that: (1) Assuming a unique ε∗1 exists for making �1-
norm SVR optimal (i.e. setting ε to ε∗1 will make the objective function mini-
mal), if for ε∗1 the �1-norm SVR achieves a solution {w∗, b∗} = SVR(ε∗1), then
the LSVR can produce the same solution by setting the parameter ε = ε∗1

‖w∗
1‖ ,

i.e. LSVR( ε∗1
‖w∗

1‖ ) = SVR(ε∗1); (2) Assuming a unique ε∗2 exists for making
the special case of LSVR optimal (i.e. setting ε to ε∗2 will make the objec-
tive function minimal), if for ε∗2 the special case of LSVR achieves a solution
{w∗

2, b
∗
2} = LSVR(ε∗2), then the �1-norm SVR can produce the same solution

by setting the parameter ε = ε∗2‖w∗
2‖, i.e. SVR(ε∗2‖w∗

2‖) = LSVR(ε∗1).

Proof. Since (1) and (2) are very similar statements, we only prove (1).
When ε of the special case of LSVR is setting to ε∗1

‖w∗
1‖ , the value of the objec-

tive function of LSVR will be at least smaller than the one by simply setting
{w, b} = {w∗

1, b
∗
1}, since {w∗

1, b
∗
1} is easily verified to satisfy the constraints

of LSVR. Namely,

LSVR
(

ε∗1
‖w∗

1‖
)

� SVR(ε∗1) , (6.7)

where we use � to represent “superior to”. We assume the solution for ε =
ε∗1

‖w∗
1‖ in LSVR as {w2, b2}. Similarly, by setting ε = ε∗1

‖w2‖
‖w∗

1‖ in SVR, we have:

SVR
(

ε∗1
‖w2‖
‖w∗

1‖
)

� LSVR
(

ε∗1
‖w∗

1‖
)

. (6.8)
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Combining Eqs.(6.7) and (6.8), we have:

SVR
(

ε∗1
‖w2‖
‖w∗

1‖
)

� LSVR
(

ε∗1
‖w∗

1‖
)

� SVR (ε∗1) . (6.9)

Since ε∗1 is the unique ε making the objective of SVR minimal, Eq.(6.9) implies
that w2 = w∗

1.

In addition, if in LSVR we use the item of wTΣw instead of its square
root form as the structure risk or complexity risk, a similar proof will also be
applicable that the �2-norm SVR is equivalent to the special case of LSVR
with Σi = Σ. In summary, we can see that the LSVR model actually contains
the standard SVR model as special cases.

6.3 Link with Maxi-Min Margin Machine

The LSVR model can also be considered as an extension of the general large
margin classifier, Maxi-Min Margin Machine (M4) presented previously in
this book or [10]. Within the framework of binary classifications for class x
and y, the M4 is formulated as follows:

max
ρ,w �=0,b

ρ, (6.10)

s.t.
(wTxi + b)√

wTΣxw
≥ ρ, i = 1, 2, . . . , Nx , (6.11)

−(wTyj + b)√
wTΣyw

≥ ρ, j = 1, 2, . . . , Ny , (6.12)

where Σx and Σy refer to the covariance matrices of the x and the y data,
respectively.

Within the framework of classifications, M4 considers different data trends
for different classes. Analogously, in the novel LSVR model we allow different
data trends for different regions, which is more suitable for the regression
purpose.

6.4 Optimization Method

In order to solve the optimization problem of Eq.(6.2), we introduce auxiliary
variables, t1,. . . , tN , and transform the problem as follows:
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min
w,b,ti,ξi,ξ∗

i

(
1
N

N∑
i=1

ti + C

N∑
i=1

(ξi + ξ∗i )

)
, (6.13)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣiw + ξi ,

(wTxi + b) − yi ≤ ε
√

wTΣiw + ξ∗i , (6.14)√
wTΣiw ≤ ti , (6.15)

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .

It is clear that Eqs.(6.14) and (6.15) are non-convex constraints. This
may present difficulties in optimizing the LSVR problems. In the following,
we relax the optimization to a Second Order Cone Programming (SOCP)
problem [11] by replacing

√
wTΣiw with its upper bound ti:

min
w,b,ti,ξi,ξ∗

i

(
1
N

N∑
i=1

ti + C
N∑

i=1

(ξi + ξ∗i )

)
,

s.t. yi − (wTxi + b) ≤ εti + ξi ,

(wTxi + b) − yi ≤ εti + ξ∗i ,√
wTΣiw ≤ ti ,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .

Since ti is closely related to
√

wTΣiw, weighting the margin width with
ti will contain a meaning similar to the original motivation, i.e. adapting
the margin flexibly. More importantly, the relaxed form is a linear program-
ming problem under quadratic cone constraints, or more specifically it is a
Second Order Cone Programming. Therefore, this problem can be solved in
polynomial time by many general optimization packages, e.g. Sedumi [18, 19].

6.5 Kernelization

In this section we extend the above linear regression model to the non-linear
one by using the Mercer’s kernel. Suppose the training data are mapped into
a kernel space or a feature space by the mapping function, ϕ : R

d �→ R
f .

Then, the objective in the feature space is transformed as follows:

min
w,b,ti,ξi,ξ∗

i

(
1
N

N∑
i=1

ti + C
N∑

i=1

(ξi + ξ∗i )

)
, (6.16)

s.t. yi − (wTϕ(xi) + b) ≤ εti + ξi ,

(wTϕ(xi) + b) − yi ≤ εti + ξ∗i ,√
wTΣϕ

i w ≤ ti ,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .
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In order to utilize the Mercer’s kernel, we first present the following theorem.

Theorem 6.2. If the corresponding local covariance Σϕ
i can be estimated by

the mapped training data, i.e. ϕ̂i, Σϕ
i can be written as

ϕ̂i =
1

2k + 1

k∑
j=−k

ϕ(xi+j) , (6.17)

Σϕ
i =

1
2k + 1

k∑
j=−k

(ϕ(xi+j) − ϕ̂i)(ϕ(xi+j) − ϕ̂i)T, (6.18)

where we just consider 2k data points which are the closest to the i-th data,
then the optimal w lies in the span of the mapped training data.

Proof. Suppose w = wp + wo, where wp is the projection of w in the span
of the mapped training data, wo is the orthogonal component to the span.
Since wT

rmoϕ(xi) = 0, i = 1, . . . , N , we can easily know that:

wTϕ(xi) = wT
p ϕ(xi) ,

wTΣϕ
i w = wT

p Σϕ
i wp .

Therefore, we can omit wo since it disappears in the optimization. We then
set it to 0 and obtain w = wp, i.e. the optimal w lies in the span of the
mapped training data.

By using Theorem 6.2, we write w as
N∑

j=1

μjϕ(xj) and substitute it into

Eq.(6.17). By rewriting Eq.(6.17) in the kernel form by a kernel function
K(z1,z2) = ϕ(z1)Tϕ(z2), we then obtain:

wTϕ(xi) =
N∑

j=1

μjK(xi,xj) = μTKi ,

wTΣϕ
i w = μTLT

i Liμ ,

where μ = [μ1, . . . , μN ]T, Ki = [K(x1,xi) . . .K(xN ,xi)]T, Kij = K(xi,xj),

Li = 1√
2k+1

(K [i−k:i+k,N ]−12k+1l
T
i ), K [i−k:i+k,N ] =

⎛⎜⎝Ki−k,1 . . . Ki−k,N

...
. . .

...
Ki+k,1 . . . Ki+k,N

⎞⎟⎠,

(lTi )t = 1
2k+1

k∑
j=−k

K(xi+j ,xt), and 12k+1 is a column vector with ones of di-

mension 2k + 1.
Consequently, the corresponding objective in Eq.(6.16) becomes:
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min
μ,b,ti,ξi,ξ∗

i

(
1
N

N∑
i=1

ti + C

N∑
i=1

(ξi + ξ∗i )

)
,

s.t. yi − (μTKi + b) ≤ εti + ξi ,

(μTKi + b) − yi ≤ εti + ξ∗i ,√
μTLT

i Liμ ≤ ti ,

ti ≥ 0, ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N .

Hence we only need a kernel function in the optimization without knowing a
specific mapping function and it can be easily solved by the SOCP methods.

6.6 Additional Interpretation on wTΣiw

We now interpret in terms of sparse approximation [2, 3, 7, 5, 4, 9, 14] why
wTΣiw can be considered as the local complexity around the data point xi.

In [7], Girosi has demonstrated an equivalence between sparse approxi-
mation and Support Vector Machines. In the view of sparse approximation,
the regression can be regarded as the task of approximating data using lin-
ear superpositions of basis functions selected from a large, redundant set of
basis functions, called dictionary [12]. A common sense in choosing a good
approximating function is that one should not only approximate the given
data as accurately as possible, more importantly, one should use as few as
possible basis functions. Therefore, a sparsity concept is invoked, i.e. the ap-
proximating function should be sparse in using the basis functions. When it
is connected with Support Vector Regressions, the readers can regard that
a basis function is associated with each data point (note that the regres-
sion function can be represented as the linear combination form in the kernel
space). The fact that SVR contains the property of sparsity, i.e. only a small
fraction of data points (support vectors) makes contributions to the final
approximating function, may therefore explain why it has achieved a great
success. The measure of sparsity of the approximating function f , which is
also regarded as the measure of complexity is formulated as follows:

Ω[f ] =

(
N∑

i=1

δi

)p

, (6.19)

where, δi =
{

1, if xi appears ;
0, otherwise .

(6.20)

It is well known that the �0-norm of a vector counts the number of elements
different from zero. The complexity term can also be described as:

Ω[f ] = ‖w‖p
�0

. (6.21)
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However, due to involving in minimizing a combinatorial term as the above,
it is extremely difficult to perform the optimization in practice. Therefore,
instead, one often uses �1-norm as its approximated version, i.e.

Ω[f ] = ‖w‖p
�1

. (6.22)

When p is set to 1, it therefore leads to the standard �1-norm SVR. When

one looks back on the LSVR model, minimizing (1/N)
N∑

i=1

√
wTΣiw presents

another approximated version to the sparsity, since it also tries to make w as

sparse as possible.1 Another advantage of using (1/N)
N∑

i=1

√
wTΣiw is that

it leads to an easy solving method as illustrated in Section 6.4.

6.7 Experiments

In this section, we report the experiments on both synthetic sinc datasets and
real world datasets. The SOCP problem associated with our LSVR model is
solved by a general software, Sedumi [18, 19]. The SVR algorithm is per-
formed by LIBSVM [1].

6.7.1 Evaluations on Synthetic Sinc Data

Fifty examples (xi, yi) are generated from a sinc function [16], where xi are
drawn uniformly from [−3, 3], and yi = sin(πxi)/(πxi) + τi, with τi drawn
from a Gaussian with zero mean and variance σ2. Two cases are evaluated.
One is with σ = 0. The standard deviation of the data in the other case
increases linearly from 0.5 at x = −3 to 1.5 at x = 3. It is clearly observed that
in the second case, the variance of noise is different in different regions. We use
the default parameters C = 100, the RBF kernel K(u, v) = exp(−‖u − v‖2).

Table 6.1 reports the average results over 100 random trails with different
ε values. Fig. 6.2 illustrates the difference between the LSVR model and the
SVR algorithm when ε = 0.2. For the case I, σ = 0.0, the LSVR model can
adjust the tube automatically to fit the data with a smaller Mean Square
Error (MSE), which can be seen in Fig. 6.2(c). However, containing a fixed
tube, the SVR algorithm lacks the flexibility (see Fig. 6.2(a)). This also yields
that the MSE increases as ε increases. As reported in Table 6.1, when ε ≥ 0.8,
there are no support vectors in SVR and MSE is the largest. In case II, the
LSVR model has smaller MSE’s and smaller STD’s for all ε’s. Fig. 6.2(d) also
shows that the obtained approximating function in LSVR is smoother than
that in SVR.

1Intuitively, when w is sparser, (1/N)
N∑

i=1

√
wTΣiw would be smaller.
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Table 6.1. Experimental results (MSE±STD) of the LSVR model and the SVR
algorithm on the sinc data with different ε values

ε Case I: σ = 0.0 Case II: Varying σ

LSVR SVR LSVR SVR

0.0 0 0 0.1825±0.1011 0.3101±0.1165

0.2 0.0004 0.0160 0.2338±0.0888 0.2761±0.1111

0.4 0.0016 0.0722 0.1917±0.0726 0.2217±0.0840

0.6 0.0044 0.1695 0.1540±0.0687 0.2384±0.0867

0.8 0.0082 0.1748 0.1333±0.0674 0.2333±0.1096

1.0 0.0125 0.1748 0.1115±0.0597 0.2552±0.1218

2.0 0.0452 0.1748 0.0959±0.0421 0.2616±0.1517

(a) SVR, σ=0.0 (b) SVR with varying σ

(c) LSVR, σ=0.0 (d) LSVR with varying σ

Fig. 6.2. Experimental results on synthetic sinc data with ε=0.2



130 6 Extension II: A Regression Model from M4

6.7.2 Evaluations on Real Financial Data

We evaluate our model on the financial time series data which are highly
volatile and non-stationary. The experimental data are three major indices:
(1) the Dow Jones Industrial Average (DJIA), (2) the NASDAQ, and (3) the
Standard & Poor 500 index (S&P500) in the period from January 2, 2004
to April 30, 2004. We choose this period of data because three indices data
contain different statistical properties as reported in Table 6.2. Especially,
one may note that the data in this period for three indices contain largely
different skewness. In this way, the diversity in the data may not bias the
comparison of the models.

Table 6.2. Summary statistics of normalized returns of DJIA,
NASDAQ and S&P500 in the experiments. These indices show
different statistical properties.

Moments DJIA NASDAQ S&P500

Train Test Train Test Train Test

Mean 0.0000 −0.2850 −0.0000 −0.4819 0.0000 −0.3858

S.D. 1.0000 0.9957 1.0000 1.1312 1.0000 1.1298

Skew −0.0678 0.1684 0.0928 0.3256 −0.1298 −0.0102

Kurt 2.5437 2.7706 2.6600 1.8631 2.5308 2.4124

Following the procedure in [15], we convert the daily closing prices (dt)
of these indices to continuously compounded returns (rt = log(dt+1/dt)) and
set the ratio of the number of the training return series to the number of
test return series to 5 : 1. We perform normalization on these return series
by Rt = (rt − Mean(rt))/SD(rt), where the means and standard deviations
are computed for each individual index in the training period.

We compare the performance of the LSVR model against the SVR. The
predicted system is modelled as R̂t = f(xt), where xt takes the previous four
days’ normalized returns as indicators, i.e. xt = (Rt−4, Rt−3, Rt−2, Rt−1).
Here this simple setting we employ is based on the suggestions in [15]: A
suitable selection for the sequent values is four. We then apply the modelled
function f to test the performance by one-step ahead prediction. The trade-off
parameter C and the parameter of the RBF kernel (K(u,v) = exp(−β‖u −
v‖2)), (C, β), are obtained by a five-fold cross-validation conducting the
SVR on the following paired points: [2−5, 2−4, . . . , 210] × [2−5, 2−4, . . . , 210].
We obtain the corresponding parameters as (24, 2−3) for DJIA, (2−3, 21) for
NASDAQ, and (20, 22) for S&P500.

As suggested in [15], there is a relationship in the sequential five days’
values. We select k = 2, i.e. five days’ values, to model the local volatility.
Since when ε ≥ 2.0, there are no support vectors in SVR, we just set the ε
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values from 0.0, 0.2, . . . , 1.0, to 2.0. The corresponding results are reported
in Table 6.3. As observed, the LSVR model demonstrates a consistent supe-
riority to the SVR algorithm, even though the paired parameters (C, β) are
not tuned for our LSVR model. Furthermore, a paired t-test [13] performed
on the best results of both models in Table 6.3, shows that the LSVR model
outperforms SVR with α = 10% significance level for a one-tailed test.

Table 6.3. Experimental results of the LSVR model and the SVR algo-
rithm on the financial data with different ε values

ε DJIA NASDAQ S&P500

LSVR SVR LSVR SVR LSVR SVR

0.0 0.9204 1.3241 1.2897 1.3050 1.2372 1.2833

0.2 0.9835 1.1274 1.2896 1.3246 1.2399 1.2831

0.4 0.9341 0.9156 1.2898 1.3314 1.2442 1.2952

0.6 0.9096 0.9387 1.2901 1.3404 1.2540 1.2887

0.8 0.9273 0.9450 1.2904 1.3891 1.2788 1.2798

1.0 0.9434 0.9713 1.2908 1.4105 1.3044 1.2664

2.0 0.9666 1.0337 1.2928 1.3619 1.2643 1.3220

6.8 Summary

In this chapter, we propose a Local Support Vector Regression model. Dif-
ferent from the standard Support Vector Regression model, our novel model
offers a systematic and automatic scheme to locally and flexibly adapt the
margin. Therefore, it can tolerate the noise adaptively. We demonstrate that
the promising model can not only capture the local information of the data
in approximating functions, but also can branch out similar models to the
standard SVR. The experiments conducted on sinc datasets and three indices
data from stock markets show that our model outperforms the standard SVR.
One future work of this model is to investigate efficient methods to directly
solve the original optimization of LSVR instead of solving a relaxed form. In
addition, both theoretical and empirical comparisons between the true solu-
tion and the approximated relaxed solution quantitatively are also valuable
research topics in the future.
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7

Extension III: Variational Margin Settings
within Local Data in Support Vector
Regression

In Chapter 6, we propose a Local Support Vector Regression Model to include
the local information of data. In this chapter, we consider another extension
of the Support Vector Regression (SVR) which also includes the local infor-
mation of data for a specific application, i. e. financial engineering. Both these
models are motivated from the local viewpoint of data.

SVR is derived from the Support Vector Machine which is based on
the principle of Structural Risk Minimization (SRM). Due to its solid
theoretical ground, SVR has been applied successfully in time series predic-
tion [9, 10]. Usually, when SVR is applied in time series forecasting, it uses
the ε-insensitive loss function to measure the empirical risk. This loss func-
tion contains an ε margin. It not only measures the training error (empirical
risk), but also controls the sparsity of the solution (the number of support
vectors). When the width of ε-margin increases, it may tend to reduce the
number of support vectors. Extremely, a too wide margin may result in a
constant regression function. When the width of ε-margin decreases, it may
increase the number of support vectors. Ultimately, all the data points are
used for support vectors [19]. In this case, it may include the data noise in
seeking the regression function. Hence, setting the width of ε-margin is very
important. It affects the complexity and the generalization of the regression
function indirectly.

Normally, the setting of ε is fixed, which is a kind of global setting.
However, in some applications, e. g. financial engineering, the global setting
will not be an optimal choice. Since financial data are usually volatile and
noisy, we extend the previous global margin setting to a variation one which
includes the local information of data.

In the following, we will first describe the SVR model briefly in Section 7.1.
We then indicate the problem of margin settings in Section 7.2. To solve the
problem of margin settings, we propose a general ε-insensitive loss function
for SVR in Section 7.3. We further aim at a specific application, i. e. financial
engineering by introducing momentum and including GARCH model for the
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variational margin settings in Section 7.4. After the detailed experimental
setup and experimental results in Section 7.5, we conclude the chapter with
discussions in Section 7.6.

7.1 Support Vector Regression

The aim of SVR is to find a function f with parameters w and b by minimizing
the regression error as follows:

Rreg(f) =
1
2
〈w,w〉 + C

N∑
i=1

l(f(xi), yi) , (7.1)

where 〈, 〉 denotes the inner product. This Euclidean norm 〈w,w〉 measures
the flatness of the function f . Minimizing 〈w,w〉 will make the regression
function as flat as possible [16].

The function f is then defined as

f(x,w, b) = 〈w, φ(x)〉 + b , (7.2)

where φ(x) : x → Ω, maps x ∈ X(Rd) into a high (possible infinite) dimen-
sional space Ω, and b ∈ R.

There are several loss functions which could be used to measure the re-
gression error, e.g. squared loss function, Huber’s loss function, ε-insensitive
loss function, etc. In SVR, the ε-insensitive loss function is used to measure
the loss [19] (illustrated in Fig. 7.1):

lε(y, f(x)) =

{
0, if |y − f(x)| < ε ;
|y − f(x)| − ε, otherwise .

(7.3)

The advantage of this loss function is that it could affect the seeking of
regression function implicitly.

Fig. 7.1. Linear regression in the feature space by ε loss function
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To solve the minimization of Eq.(7.1) with loss function of Eq.(7.3) is
equivalent to solving the following constrained minimization problem:

min Υ (w, b, ξ(∗)) =
1
2
〈w,w〉 + C

N∑
i=1

(ξi + ξ∗i ) , (7.4)

subject to

yi − (〈w,φ(xi)〉 + b) ≤ ε + ξi ,

(〈w,φ(xi)〉 + b) − yi ≤ ε + ξ∗i , (7.5)

ξ
(∗)
i ≥ 0 .

Here and below, for every i, it ranges from 1 to N and (∗) is a shorthand
implying both the variables with and without asterisks. ξi and ξ∗i measure
the up error and down error for the sample point (xi, yi), respectively, see
Fig. 7.1.

A standard method to find the optimal solution of the above minimiza-
tion problem in Eq.(7.4), further finding the function f in Eq.(7.2), is to
construct the dual problem of this optimization problem (primal problem)
by the Lagrange Method and to translate the (primal) minimization prob-
lem to maximize its dual function. Therefore, the optimization becomes a
Quadratic Programming (QP) problem as follows [19]:

min Q(α(∗)) =
1
2

N∑
i=1

N∑
j=1

(αi − α∗
i )(αj − α∗

j )〈φ(xi), φ(xj)〉

+
N∑

i=1

(ε − yi)αi +
N∑

i=1

(ε + yi)α∗
i , (7.6)

subject to
N∑

i=1

(αi − α∗
i ) = 0, α

(∗)
i ∈ [0, C] . (7.7)

After solving this QP problem, we obtain the objective function as:

f(x) =
N∑

i=1

(αi − α∗
i )〈φ(xi), φ(x)〉 + b ,

where α, α∗ are the Lagrange multipliers used to pull and push f towards
to the observation y. Those sample points (xi, yi) with nonzero αi or α∗

i are
called support vectors.

By using the trick of kernel function, one could define the kernel func-
tion as the inner product of mapping function, i. e. K(x,z) = 〈φ(x), φ(z)〉.
Therefore, one only needs to specify a kernel function without considering the
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mapping function or the feature space explicitly. The property of the kernel
function is that it should satisfy the Mercer’s Theorem [6, 14].

Four kernel functions are common used:

Linear function: K(xk,xl) = 〈xk,xl〉 ;
Polynomial function with parameter d, K(xk,xl) = (〈xk,xl〉 + 1)d ;
Radial Basis Function (RBF) with parameter β:

K(xk,xl) = exp(−β‖xk − xl‖2) , (7.8)

Hyperbolic tangent: K(xk,xl) = tanh(2〈xk,xl〉 + 1) .

7.2 Problem in Margin Settings

Since the width of ε-margin holds the ability to affect the complexity and the
generalization of the regression function indirectly, it is very important to
seek an optimal value for different applications. Commonly, the ε is difficult
to control [10], as one does not know beforehand which one is able to fit the
curve better.

Usually, there are several methods to deal with it. Firstly, most practition-
ers set the value of ε as a non-negative constant value just for convenience.
For example, in [18], they simply set the margin width to 0. This amounts to
the least modulus loss function. In other instances, the margin width has been
set to a very small value [5, 9, 20]. The second method is the cross-validation
technique, e. g. [4, 10]. It is usually too expensive in terms of computation. A
more efficient approach is to use another variant called ν-SVR [12, 13, 14, 15],
which determines ε by using another parameter ν. It is stated that ν may
be easier to specify than ε. Another approach by Smola, et al. [17] is to find
the “optimal” choice of ε based on maximizing the statistical efficiency of a
location parameter estimator. They showed that the asymptotically optimal
ε should be scaled linearly with the input noise of training the data, and this
was verified experimentally. Recently, a regularization path was proposed for
SVR to seek optimal parameters in [7, 21].

In financial time series, however, the data are noisy and high volatile. The
fixed margin setting is not suitable for this special application. We therefore
extend the fixed ε margin setting to variational ones.

7.3 General ε-insensitive Loss Function

First, we note that the margin in ε-insensitive loss function contains two
characteristics: fixed and symmetrical. Based on these two characteristics, we
have proposed a general ε-insensitive loss function and classified the margin
into four cases in [22]: Fixed and Symmetrical Margin (FASM), Fixed and
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Asymmetrical Margin (FAAM), Non-fixed and Symmetrical Margin (NASM)
and Non-fixed and Asymmetrical Margin (NAAM). Table 7.1 gives a simple
description of these four categories. FASM is equivalent to the margin in
ε-insensitive loss function, see Fig. 7.2(a). FAAM is divided into up margin
and down margin, each margin is fixed but they are not equal (Fig. 7.2(b)).
While NASM is with equal up margin and down margin, but they are varied
with data (Fig. 7.2(c)). NAAM combines two characteristics of the margin
(Fig. 7.2(d)).

Table 7.1. Margin categories

Symmetrical Asymmetrical

Fixed FASM FAAM

Non-fixed NASM NAAM

Fig. 7.2. Four categories in general ε-insensitive loss function of SVR

In the following, we will derive the SV formula based on the general
ε-insensitive loss function. The general ε-insensitive loss function splits the
margin in the original ε-insensitive loss function into two parts: up margin
and down margin,

l′ε(f(xi)−yi) =

⎧⎪⎨⎪⎩
0, if −d(xi) < yi − f(xi) < u(xi);

yi − f(xi) − u(xi), if yi − f(xi) ≥ u(xi);
f(xi) − yi − d(xi), if f(xi) − yi ≥ d(xi),

(7.9)



138 7 Extension III: Variational Margin Settings within Local Data

where d(xi), u(xi) ≥ 0, are two functions determining the down-margin and
up margin at point xi respectively. When d(x) and u(x) are both constant
functions and d(x) = u(x), Eq.(7.9) amounts to the ε-insensitive loss function
in Eq.(7.3) and we label it as FASM (Fixed and Symmetrical Margin). When
d(x) and u(x) are both constant functions but d(x) 	= u(x), this case is
labeled as FAAM (Fixed and Asymmetrical Margin). In the case of NASM
(Non-fixed and Symmetrical Margin), d(x) = u(x) but are varied with the
data. The last case is with a non-fixed and asymmetrical margin (NAAM)
where d(x) and u(x) are varied with the data and d(x) 	= u(x).

In the same way, we use the standard method to find the solution of
Eq.(7.1) with the cost function of Eq.(7.9) as [19] and obtain:

min
w,b,ξ(∗)

{
1
2
〈w,w〉 + C

N∑
i=1

(ξi + ξ∗i )

}
, (7.10)

subject to

yi − 〈w, φ(xi)〉 − b ≤ u(xi) + ξi ,

〈w, φ(xi)〉 + b − yi ≤ d(xi) + ξ∗i ,

ξ
(∗)
i ≥ 0 .

Using the standard primal-dual method as above, we also obtain a QP prob-
lem as follows:

min Φ(α(∗)) =
1
2

N∑
i=1

N∑
j=1

(αi − α∗
i )(αj − α∗

j )〈φ(xi), φ(xj)〉

+
N∑

i=1

(u(xi) − yi)αi +
N∑

i=1

(d(xi) + yi)α∗
i , (7.11)

subject to
N∑

i=1

(αi − α∗
i ) = 0, αi, α

∗
i ∈ [0, C] .

This QP problem is very similar to the original QP problem in Eq.(7.6),
therefore, we just need to modify the SMO algorithm a little bit to implement
this QP problem. Practically, we add a new data structure to store both
margins: up margin, u(x), and down-margin, d(x). This will not impact the
time complexity of the SVR algorithm; we just need more space linear to
the size of data points to store the corresponding margins. We modify the
LIBSVM from [5] to implement the SVR algorithm.

After solving this QP problem, we then obtain the regression function:

f(x) =
N∑

i=1

(αi − α∗
i )〈φ(xi), φ(x)〉 + b , (7.12)
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where α, α∗ are corresponding Lagrange multipliers also used to pull and
push f towards to the observation y.

The computation of b is exploited by the Karush-Kuhn-Tucker (KKT)
conditions. Here, they are:

αi(u(xi) + ξi − yi + 〈w, φ(xi)〉 + b) = 0 ,

α∗
i (d(xi) + ξ∗i + yi + 〈w, φ(xi)〉 − b) = 0 ,

and

(C − αi)ξi = 0 ,

(C − α∗
i )ξ

∗
i = 0 .

Therefore, b can be computed as follows:

b =
{

yi − 〈w, φ(xi)〉 − u(xi), for αi ∈ (0, C) ;
yi − 〈w, φ(xi)〉 + d(xi), for α∗

i ∈ (0, C) .

When no α
(∗)
i ∈ (0, C), methods e. g. [5] are used.

7.4 Non-fixed Margin Cases

7.4.1 Momentum

In [23], we have focused on the case of NAAM. More specially, we have added
a momentum term in the margin setting. The margin is a linear combination
of the standard deviation and the momentum. The up margin and down-
margin are set in the following forms:

u(xi) = λ1 · σ(xi) + μ · Δ(xi), i = 1, . . . , N,

d(xi) = λ2 · σ(xi) − μ · Δ(xi), i = 1, . . . , N, (7.13)

where σ(xi) is the standard deviation of input xi, Δ(xi) is the momentum at
point xi, λ1, λ2 are both positive constants and μ is a non-negative constant.
Therefore, the width of margin at point xi is:

W (xi) = (λ1 + λ2) · σ(xi) .

It is determined by σ(xi) and the sum of λ1 and λ2. Here we called λ1, λ2

as the coefficients of the margin width. We also called μ as the coefficient of
momentum and we know that the margin setting of Eq.(7.13) includes the
case of NASM (when μ = 0).

From [22], when μ 	= 0 and Δ(x) > 0, the up margin is larger than the
down-margin and we can under-predict the stock price. While μ 	= 0 and
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Δ(x) < 0, the up margin is smaller than the down-margin and we can over-
predict the stock price. A simple illustration is shown in Fig. 7.3. Based on
these observations, in our prediction we assume that we are risk aversion, or
downside risk aversion. When the stock price reveals an uptrend, we know
that it will not be always up, so we tend to under-predict the stock prices
in this case. On the contrary, when the stock price goes down, we tend to
over-predict it. We add this information in the margin setting by controlling
the momentum term.

Fig. 7.3. Margin settings: dashed lines are the bounds of margins; dashed-
dotted lines are actual data series; solid-bold lines are the new objective
function, fnew, by new margin settings. The upper shadow area is the case
of new objective function under-predicted to the actual function; the lower
shadow parts are the case of “over-predicted”

Actually, there are many ways to calculate the momentum. For example,
the simplest way is to set it as a constant. In this chapter, we will concentrate
on using the Exponential Moving Average (EMA). The reason of using EMA
is that it is time-varying and can reflect the uptrend and down-tendency of
the financial data. A little deficiency is that there exists the lag problem. An
n-day’s EMA sequence begins from the first day, i. e. EMA1 = y1 and the
following is calculated by:

EMAi = EMAi−1 × (1 − r) + yi × r ,

where r = 2/(1 + n), and yi is the information about day i, e.g. the closing
price in day i, the volume in day i, etc. Here, the current day’s momentum
is set as the difference between the current day’s EMA and the EMA in the
previous k day, i. e.

Δ(xi) = EMAi − EMAi−k .

7.4.2 GARCH

In the above methods, the datasets we used in the experiments are the price of
the share [22, 23]. We use the standard deviation of input xt, which can reflect



7.5 Experiments 141

the volatility of the financial time series over time, to determine the width of
margin at time t in our prediction. Actually, the Generalized AutoRegressive
Conditionally Heteroscedastic (GARCH) model [3] is a more common used
model to reflect the volatility of the financial time series.

The standard GARCH(p, q) model with Gaussian shocks takes the fol-
lowing form:

yt = c0 + xT
t b + εt, εt|Ψt−1 = N(0, σ2

t ) ,

where

σ2
t = κ0 +

p∑
i=1

λiσ
2
t−i +

q∑
j=1

μjε
2
t−j .

This GARCH toolbox is applied to the return series. So we use the con-
tinuous compounded return as the data series and use the σt calculated by
GARCH(1,1) as the width of margin at time t.

7.5 Experiments

In this section, we will perform the experiments by using the momentum and
GARCH models to set the margins. Before illustrating the experiments, we
define the accuracy and risk measurement first.

7.5.1 Accuracy Metrics and Risk Measurement

In order to measure the prediction performance of our model, we define the
Mean Absolute Error (MAE).

Let at and pt be the actual values respectively and predicted values at
day t, let m be the number of testing data.

Definition 7.1. Mean Absolute Error (MAE) measures the discrepancy
between the actual and predicted values; the smaller the value of MAE, the
closer are the predicted values to the actual values. MAE is calculated by:

MAE =
1
m

m∑
t=1

|at − pt| . (7.14)

We also consider the risk of using this model in the prediction. Actually,
risk is a term frequently encountered in strategic management and financial
literature. However, risk has a variety of different meanings and rarely is
the meaning used in a particular project clarified in [2]. In financial litera-
ture, Markowitz first formulated the portfolio selection into a mathematical
model [8]. In his model, the “return” of a portfolio is measured by the ex-
pected value of the random portfolio return and the associated “risk” is quan-
tified by the variance of the portfolio return. However, the use of variance
to measure risk makes no distinction between gains and losses. Markowitz
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also proposed to use semi-variance to measure the risk of loss. That is the
sum of the squares of negative deviations from the mean divided by the total
number of observations:

1
m

m∑
t=1

[min(rt − μ, 0)]2 .

The great advantage of the use of semi-variance over variance is that
it does not include positive gains, so what is considered as risk takes into
account only negative deviations. However, minimizing downside does not
mean minimizing only negative deviations. For example, if the distribution,
like the normal curve, is symmetric, minimizing variance and semi-variance
will lead to the same problem. The only case that justifies the use of semi-
variance is when the presence of skewness is observed [1]. A generalization of
semi-variance is given in [1]:

downside risk ⇒ 1
m

m∑
t=1

[min(rt − μ, 0)]k , (7.15)

where k is any power that one chooses; when k=1, it should be considered
the absolute value of the term in the brackets and μ is a chosen benchmark
(not necessarily the mean).

Based on Eq.(7.15), we choose k=1 and define the following risk measure-
ments.

Definition 7.2. Upside Mean Absolute Error (UMAE) measures up-
side risk; the smaller the value of UMAE, the smaller the upside risk. UMAE
is defined as:

UMAE =
1
m

m∑
t=1

at≥pt

(at − pt) . (7.16)

Definition 7.3. Downside Mean Absolute Error (DMAE) measures
the downside risk; the smaller the value of DMAE, the smaller the downside
risk. DMAE is defined as:

DMAE =
1
m

m∑
t=1

at<pt

(pt − at) . (7.17)

7.5.2 Momentum

We compare the modified SVR algorithm by adapting margins using momen-
tum with the AutoRegression (AR) model and the Radial Basis Function
(RBF) method. The results are presented as follows one by one for three
algorithms.
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7.5.2.1 SVR Algorithm

Two datasets are used in this experiment:
HSI: daily closing prices of Hong Kong’s Hang Seng Index (HSI) from

January 2nd, 1998 to December 29, 2000.
DJIA: daily closing prices of Dow Jones Industrial Average (DJIA) from

January 2nd, 1998 to December 29, 2000.
The ratio of the number of training data and the number of testing data

is set to 5:1. Therefore, the corresponding initial training time periods are
obtained and listed as in Table 7.2.

Table 7.2. Indices, time periods and parameters for momentum experi-
ments

Indices Initial training time periods C β

HSI 02/01/1998 − 04/07/2000 16000 2−27

DJIA 02/01/1998 − 29/06/2000 8000 2−22

Furthermore, we model the system as pt = f(xt), where f is learned by
the SVR algorithm from the training data, xt = (at−4, at−3, at−2, at−1), at

is the daily closing index in day t.
Before generating the model, we do a cross-validation on the initial trai-

ning data to determine the parameters that are needed in SVR. They are C,
the cost of error and β, the parameter of kernel function. The corresponding
parameters are also listed in Table 7.2. With these parameters we begin to
build the model by SVR from the initial training data. After obtaining the
predictive value, we shift the input window to the next time-step and train
the model again to obtain the next day’s price. This one-step ahead prediction
is done as the window shifted for the remaining data.

Non-fixed Cases: The margins setting is followed as Eq.(7.13). In the
case of NASM, we set λ1 = λ2 = 1/2 and μ = 0, thus the overall margin
width at day t is equal to the standard deviation of input xt, σ(xt).

In the case of NAAM, we also fix λ1 = λ2 = 1/2, hence we have a fair com-
parison of NASM case. In addition, we have to determine three parameters,
i.e. n, the length of EMA; k, the lag of EMA; μ, the coefficient of momentum.
We have performed the following experiments to test their effects:

(a) At first, we set k = 1, μ = 1 and use 10, 30, 50, 100 as the length of
EMA respectively. From the result of Table 7.3 we can see that the DMAE
values in all cases of NAAM are smaller than that in NASM case, thus we have
a smaller downside risk in NAAM case; this exactly meets our assumption.
We also see that the MAE gradually decreases with the increase of the length
of EMA, and that when the length equals 100, the MAE and the DMAE are
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the smallest in all cases of NAAM for dataset HSI. For dataset DJIA, when
the length equals 30, the MAE and the DMAE are also the smallest in all
cases of NAAM.

Table 7.3. Effect of the length of EMA on HSI with parameters
(k, μ)=(1,1)

Type n HSI DJIA

MAE UMAE DMAE MAE UMAE DMAE

NASM 216.78 104.58 112.20 85.33 40.29 45.04

10 222.43 115.64 106.79 85.68 43.13 42.55

NAAM 30 218.18 114.04 104.14 84.12 41.82 42.30

50 217.93 113.38 104.55 84.57 42.12 42.45

100 216.50 113.04 103.46 84.80 42.41 42.39

In the following, we will use the best length of EMA from the above
experiments for the corresponding datasets, i. e. n = 100 for data set HSI
and n = 30 for dataset DJIA.

(b) When testing the effect of lag k, we let μ = 1 and set k to 1, 2, 4, 8
respectively for both datasets. The results are listed in Table 7.4. They show
that the MAE increases with increasing of the lag of EMA. These indicate
that the results when the lag of EMA equals 1 are superior to the other cases.

Table 7.4. Effect of the distance of EMA on HSI and DJIA

k HSI with (n, k) = (100, 1) DJIA with (n, k) = (30, 1)

MAE UMAE DMAE MAE UMAE DMAE

1 216.50 113.04 103.46 84.12 41.82 42.30

2 219.02 125.30 93.72 85.42 43.91 41.51

4 228.25 149.36 78.88 90.99 49.16 41.83

8 260.73 200.74 59.99 103.77 58.03 45.74

(c) Here, we set k = 1 and μ = 1, 1/2, 1/4, 1/8 respectively for both
datasets to see the effect of the μ. From Table 7.5, we see that the DMAE
increases gradually with decreasing of the coefficient of EMA and that the
MAE is smaller than the value in the NASM case. The change of the MAE
for dataset HSI in (2−4 columns of) Table 7.5 is fluctuating and the MAE
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in (5−7 columns of) Table 7.5 increases gradually with the decrease of the
coefficient of EMA.

Table 7.5. Effect of the coefficient of momentum on HSI and DJIA

μ HSI with (n, k) = (100, 1) DJIA with (n, k) = (30, 1)

MAE UMAE DMAE MAE UMAE DMAE

1 216.50 113.04 103.46 84.12 41.82 42.30

1/2 216.55 108.97 107.58 84.88 41.32 43.56

1/4 216.19 106.36 109.83 85.02 41.14 43.88

1/8 216.41 105.32 111.08 85.22 40.86 44.36

We also plot the daily closing prices of HSI with 100 days’ EMA and
the prices of DJIA with 30 days’ EMA in Fig. 7.4 and Fig. 7.5 respectively,
and list the Average Standard Deviations (ASD) of input x of the training
datasets HSI and DJIA, respectively in Table 7.6, the Average of Absolute
Momentums (AAM) of input x for the best length of both training datasets
respectively in Table 7.6. We can observe that the ASD of HSI is higher than
that of DJIA and that the ratio of AAM to ASD is smaller for HSI than that
for DJIA.

Table 7.6. ASD and AAM

AAM

Dataset ASD
n Δ

Ratio

HSI 182.28 100 20.80 0.114

DJIA 79.95 30 15.64 0.196

Now, we will make a summary for the above experiments. At first, we can
know the effects of n, k and μ from the above experiments results. Following
these results, we can say that a suitable setting for k and μ will both be
1, which can be applied when a new dataset comes. The only parameter
needed to determine is the length of EMA, n, this may refer to the ASD of
the training dataset. When the ASD is larger, we may use a longer length
of EMA. On the contrary, when the ASD is smaller, we may use a shorter
length of EMA.

Fixed Cases: After considering the non-fixed margin cases, we also test
the predictive results of fixed margins. Actually, for dataset HSI, we let
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Fig. 7.4. HSI with 100 days’ EMA

Fig. 7.5. DJIA with 30 days’ EMA

the width of margin equal to 200 (approximate to the ASD of HSI), i. e.
u(x) + d(x) = 200. The up-margin u(x) ranges from 0 to 200, each incre-
ment is one-tenth of 200, i. e. 20. The results are listed in (1−5 columns of)
Table 7.7. Similarly, for dataset DJIA, we let the width of margin equal to
90 (approximate to ASD of DJIA), i. e. u(x) + d(x) = 90. The up-margin
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u(x) ranges from 0 to 90, each increment is also one-tenth of 90, i. e. 9. The
results are listed in (6−10 columns of) Table 7.7. We can see that for both
datasets, as the up-margin increases, the DMAE tends to decrease.

Table 7.7. Results of FASM and FAAM for HSI and DJIA

HSI [u(x)+d(x)] DJIA [u(x)+d(x)]

u(x) d(x) MAE UMAE DMAE u(x) d(x) MAE UMAE DMAE

0 200 236.04 62.24 173.80 0 90 91.63 20.45 71.18

20 180 230.85 69.65 161.20 9 81 89.14 23.70 65.44

40 160 226.29 77.37 148.92 18 72 87.35 27.31 60.04

60 140 222.24 85.34 136.90 27 63 86.09 31.18 54.91

80 120 219.35 93.90 125.45 36 54 85.30 35.28 50.02

100 100 217.83 103.14 114.69 45 45 85.45 39.86 45.59

120 80 217.35 112.90 104.45 54 36 86.33 44.80 41.53

140 60 217.88 123.16 94.72 63 27 87.40 49.83 37.57

160 40 219.49 133.97 85.52 72 18 88.64 54.95 33.69

180 20 221.66 145.05 76.61 81 9 90.80 60.53 30.27

200 0 224.83 156.64 68.19 90 0 93.75 66.51 27.24

Comparing the results in Table 7.3 with the results in Table 7.7 (the
experimental results are plotted in Fig. 7.6(b) and Fig. 7.7(b) respectively),
we can see that NASM and NAAM are both superior to FASM and FAAM
in both datasets.

In the following, we will perform other models, such as AR models and
RBF network, on the above two datasets. The best results of all the models
are illustrated in Fig. 7.6(a) for HSI and Fig. 7.7(a) respectively.

7.5.2.2 AR Models

For AR models, we use the AR model with order 4 to predict the prices of
HSI and DJIA, hence we can compare the AR model with NASM, NAAM in
SVR with the same order. The results are listed in the Table 7.8. From these
results, we can see that NASM and NAAM are superior to AR model with
the same order.
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Fig. 7.6. Experimental results of HSI

Fig. 7.7. Experimental results of DJIA

Table 7.8. Results on AR(4)

Dataset MAE UMAE DMAE

HSI 217.75 105.96 111.79

DJIA 88.74 46.36 42.38

7.5.2.3 RBF Network

For the RBF network, we use the RBF network which was implemented in
NETLAB [11] and perform the one-step-ahead prediction to predict the prices
of HSI and DJIA. Concretely, we let other parameters as default and set the
number of hidden units to 3, 5, 7, 9 to learn f by training the RBF network
on the training samples, and obtain the results in Table 7.9 for both datasets.
Comparing the results in Table 7.3 with the results in Table 7.9, we can see
that NASM and NAAM are also better than RBF network.
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Table 7.9. Effect of number of hidden units on HSI and DJIA

Hidden No. HSI DJIA

MAE UMAE DMAE MAE UMAE DMAE

3 386.65 165.08 221.57 88.31 44.60 43.71

5 277.83 128.92 148.91 98.44 48.46 49.98

7 219.32 104.15 115.17 90.53 46.22 44.31

9 221.81 109.46 112.35 87.23 44.09 43.14

7.5.3 GARCH

In this experiment, the experimental data are 3 years’ daily closing indices
(2000–2002) from stock markets in different countries:

Nikkei225: Nikkei225 Stock Average from Japan, the daily closing prices
are plotted in Fig. 7.11(a);

DJIA00-02: Dow Jones Industrial Average (DJIA) from USA, the daily
closing prices are plotted in Fig. 7.13(a);

FTSE100: FTSE100 index from UK, the daily closing prices are plotted
in Fig. 7.15(a).

In the data processing step, the daily closing prices of these indices are
converted to continuously compounded returns and the ratio of the number
of training data to the number of testing data is set to 5:1. Therefore, we
obtain and list the corresponding training and testing periods in Table 7.10.

Table 7.10. GARCH experimental data description

Indices Training period Testing period

Nikkei225 4 Jan., 2000 − 2 Jul., 2002 4 Jul., 2002 − 30 Dec., 2002

DJIA00-02 3 Jan., 2000 − 3 Jul., 2002 5 Jul., 2002 − 31 Dec., 2002

FTSE100 4 Jan., -2000 − 3 Jul., 2002 4 Jul., 2002 − 31 Dec., 2002

7.5.3.1 GARCH(1, 1)

We apply the Matlab toolbox to calculate the GARCH model. In the Matlab
toolbox, Before running the SVR algorithm, we run the GARCH(1,1) model
to determine the width of margin in SVR. For Nikkei225, we obtain the
parameter estimates and their standard errors in Table 7.11, i. e. the best fits
for Nikkei225 by (1,1) is:
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yt = 0.49468 + εt,

σ2
t = 0.00073917 + 0.8682σ2

t−1 + 0.077218ε2t−1 .

Table 7.11. GARCH parameter for Nikkei225

Standard T

Parameter Value error statistic

c0 0.49468 0.0045008 109.9083

κ0 0.00073917 0.00034866 2.1200

GARCH(1) 0.8682 0.048144 18.0334

ARCH(1) 0.077218 0.027279 2.8306

We also show that the log-likelihood contours of GARCH(1,1) model
fit to the returns of dataset, Nikkei225 Fig. 7.8(a) The log-likelihood con-
tours are plotted in a GARCH coefficient-ARCH coefficient (G1 −A1) plane,
holding the parameters c0 and κ0 fixed at their maximum likelihood esti-
mates 0.49468 and 0.00073917, respectively. The contours confirm the results
in Table 7.11. The maximum log-likelihood value occurs at the coordinates
G1 = GARCH(1) = 0.8682 and A1 = ARCH(1) = 0.077218. This figure also
reveals a highly negative correlation between the estimates of the G1 and
A1 parameters of the GARCH(1,1) model. It implies that a small change in
the estimate of the G1 parameter is nearly compensated for a corresponding
change of opposite sign in the A1 parameter. The innovations, standard de-
viations (σt) and returns of Nikkei225 are shown in Fig. 7.8(b).

Fig. 7.8. GARCH(1,1) of Nikkei225. The color-coded bar at the right of (a) indi-
cates the height of the log-likelihood surface of the GARCH(1,1) plane
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For dataset DJIA00-02, GARCH(1,1) parameter estimates are listed in
Table 7.12, therefore, the best fits for DJIA00-02 by GARCH(1,1) is

yt = 0.60363 + εt ,

σ2
t = 0.00056832 + 0.85971σ2

t−1 + 0.092295ε2t−1 .

Table 7.12. GARCH parameter for DJIA00-02

Standard T

Parameter Value error statistic

c0 0.60363 0.0041185 146.5631

κ0 0.00056832 0.00023491 2.4193

GARCH(1) 0.85971 0.031773 27.0580

ARCH(1) 0.092295 0.020352 4.5350

The corresponding log-likelihood contours of DJIA00-02 are plotted in
Fig. 7.9(a), the maximum log-likelihood value occurs at the coordinates
G1 = GARCH(1) = 0.85971 and A1 = ARCH(1) = 0.09229. The cor-
responding innovations, standard deviation and returns of DJIA00-02 are
shown in Fig. 7.9(b).

Fig. 7.9. GARCH(1,1) of FTSE100. The color-coded bar at the right of (a) indi-
cates the height of the log-likelihood surface of the GARCH(1,1) plane

For dataset FTSE100, GARCH(1,1) parameter estimates are listed in
Table 7.13 therefore, the best fits for FTSE100 by GARCH(1,1) is
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yt = 0.50444 + εt ,

σ2
t = 0.0011599 + 0.82253σ2

t−1 + 0.12693ε2t−1 .

Table 7.13. GARCH parameter for FTSE100

Standard T

Parameter Value error statistic

c0 0.50444 0.0053313 94.6180

κ0 0.0011599 0.00049206 2.3573

GARCH(1) 0.82253 0.04906 16.7658

ARCH(1) 0.12693 0.034698 3.6582

The corresponding log-likelihood contours of FTSE100 are plotted in
Fig. 7.10(a). The maximum log-likelihood value occurs at the coordinates
G1 = GARCH(1) = 0.82253 and A1 = ARCH(1) = 0.12693. The corre-
sponding innovations, standard deviation and returns of FTSE100 are shown
in Fig. 7.10(b).

Fig. 7.10. GARCH(1,1) of DJIA00-02. The color-coded bar at the right of (a)
indicates the height of the log-likelihood surface of the GARCH(1,1) plane

7.5.3.2 SVR Algorithm

For SVR algorithm, the experimental procedure consists of three steps: at
first, we normalize the return value by ti = (ri−rlow)/(rhigh−rlow), where ri

is the actual return of the stock at day i, rlow and rhigh are the correspond-
ingly minimum and maximum return in the training data, respectively. Then,



7.5 Experiments 153

we train the normalized training data once and then obtain the normalized
predicted return value pni

= f(xi), where xi = (ti−4, ti−3, ti−2, ti−1). Finally,
we unnormalize pni

, convert the result to price and obtain the corresponding
predicted price pi.

Before running the SVR algorithm, we have to choose two parameters: C,
the cost of error; β, the parameter of kernel function. Here the parameters
we choose are the same respectively for different indices. They are listed in
Table 7.14.

Table 7.14. Parameters in GARCH experiments for NASM

Indices C β

Nikkei225 2 2−4

DJIA 2 2−4

FTSE100 2 2−4

Here, we just consider the case of NASM. The margin setting is as
Eq.(7.13). Concretely, we set the margin width to σ calculated by GARCH(1,1)
from return series y, therefore λ1 = λ2 = 1/2 and μ = 0. For fixed
margin cases, we set the margin width as 0.1, i. e. u(x) + d(x) = 0.1,
and each increment is 0.02. The corresponding results are shown in the
Tables 7.15−7.17. We also plot the training and testing data results of NAAM
in Figs. 7.12(a) and 7.12(b) for index Nikkei225, in Figs. 7.14(a) and 7.14(b)
for index DJIA00-02, in Figs. 7.16(a) and 7.16(b) for index FTSE100, re-
spectively. From these results, we can see that for FTSE100 index, NASM
outperforms in the prediction than in fixed margin cases. For Nikkei225, when
u(x) = 0.06, d(x) = 0.04 and u(x) = 0.08, d(x) = 0.02, the predicted results
are better than NASM. For DJIA00-02, when u(x) = 0.06, d(x) = 0.04, the
predicted result is slightly better than NASM.

7.5.3.3 AR Models

We also use AR model with different orders (1−6) to predict the prices of the
above three indices. The experimental procedure is to apply the AR model on
training return series and to obtain the predicted return value from testing
data. Then we convert the predicted return values to price values. We obtain
the experimental results and show them in Table 7.18. After comparing the
results in Tables 7.15 and 7.17 with the results in 2−4 and 8−10 columns
of Table 7.18, we can see that for Nikkei225 and FTSE100 index, the NASM
method is better than AR model. For DJIA, we can see that NASM method
is slight worse than AR(1), but better than other order of AR model.

For index Nikkei225, the predictive error and risks comparison results
graphs are shown in Fig. 7.11(b), the corresponding bar values are from
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Table 7.15. SVR results for Nikkei225

Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 124.37 55.97 68.40

0 0.10 141.60 30.70 110.90

0.02 0.08 131.25 39.02 92.23

FAAM 0.04 0.06 125.63 49.66 75.97

0.06 0.04 123.11 61.81 61.30

0.08 0.02 124.00 75.63 48.37

0.10 0 129.19 91.56 37.63

Table 7.16. SVR results for DJIA00-02

Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 129.56 62.74 66.83

0 0.10 139.82 41.56 98.26

0.02 0.08 134.33 49.16 85.17

FAAM 0.04 0.06 130.49 57.56 72.93

0.06 0.04 128.51 66.87 61.64

0.08 0.02 129.65 77.72 51.94

0.10 0 133.76 90.02 43.74

Table 7.17. SVR results for FTSE100

Type u(x) d(x) MAE UMAE DMAE

NASM σ σ 69.61 33.42 36.19

0 0.10 73.46 25.93 47.53

0.02 0.08 71.98 28.52 43.46

FAAM 0.04 0.06 70.83 31.27 39.56

0.06 0.04 70.10 34.22 35.88

0.08 0.02 69.86 37.42 32.45

0.10 0 70.26 40.92 29.34
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Table 7.18. AR results

Order Nikkei225 DJIA00-02 FTSE100

MAE UMAE DMAE MAE UMAE DMAE MAE UMAE DMAE

1 125.31 53.40 71.91 128.58 61.67 66.91 71.44 33.9 37.53

2 125.68 53.31 72.36 130.00 62.08 67.92 71.40 33.46 37.94

3 125.67 53.37 72.30 130.56 62.50 68.06 70.41 32.76 37.65

4 125.22 52.91 72.31 131.20 62.93 68.27 69.96 32.76 37.20

5 125.32 53.08 72.24 131.27 62.90 68.38 70.12 32.89 37.23

6 125.40 52.72 72.68 131.32 62.89 68.43 69.99 32.78 37.21

Table 7.15 and (2−4 columns of) Table 7.18. The predictive error and risks
of DJIA00-02 are shown in Fig. 7.13(b), where the corresponding bar values
are from Table 7.16 and (5−7 columns of) Table 7.18. The predictive error
and risks of FTSE100 are shown in Fig. 7.15(b), where the corresponding bar
values are from Table 7.17 and (8−10 columns of) Table 7.18.

Fig. 7.11. Nikkei225 data plot and experimental results graphs

7.6 Discussions

Having described the experiments and their results, we know that NASM is
superior to FASM and FAAM generally. One reason is that NASM catches
the stock market information and adds the information into the setting of the
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Fig. 7.12. Experimental results graphs using GARCH method for Nikkei225

Fig. 7.13. DJIA00-02 data plot and experimental results graphs

Fig. 7.14. Experimental results graphs using GARCH method for DJIA00-02
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Fig. 7.15. FTSE100 data plot and experimental results graphs

Fig. 7.16. Experimental results graphs using GARCH method for FTSE100

margin. This provides helpful information for the prediction. Another reason
is that by using NASM, the margin width is determined by a meaningful
value. This value changes with the stock market. Obviously, this method is
more flexible than fixed margin cases and avoids risk of getting bad predictive
results partially when the margin values are determined by random selection
in the fixed margin cases.

Furthermore, we know that NAAM may be better than NASM. For
example, by adding a momentum, we may not only improve the accuracy
of prediction, but also reduce the predictive downside risk.

Another notice is that by cautiously selecting parameters, SVR algorithm
has similar predictive performance to other models, from Figs. 7.6(a) and
7.7(a). However, for a novice, the SVR libraries are easy to run. Since every
local optimum is the global optimum, it guarantees the user to find an optimal
solution easily and stably. This advantage is very useful for a novice to learn
a new model, or library, and strengthen his confidence of learning new things
comparing with learning other non-linear model, e. g. RBF networks.
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In general, our methods can be considered as a model selection, deter-
mining the parameter, ε. We do not consider the setting of other parameters,
such as C and β. We just use the cross-validation technique to find suitable
values for them. However, this procedure is time-consuming. We may add
some market information to set these parameters, e. g. [4]. In addition, the
margin width set by GARCH model is too wide; we may need to add more
useful terms to shrink it. This can be one of our future works. A valuable
experience is that the normalized procedure will be helpful for selecting suit-
able parameters easily and stably.

Finally, we turn to a key weakness of our model: the predictive model
does not lead to direct profit making in real life and we do not provide the
confidence of these predictive models. However, we may find some useful
information through using our model to predict the stock market prices; the
predictive results may provide some helpful suggestions.
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8

Conclusion and Future Work

In this chapter, a summary of this book is provided. We will review the whole
journey of this book, which starts from two schools of learning thoughts
in the literature of machine learning, and then motivate the resulting com-
bined learning thought including Maxi-Min Margin Machine, Minimum Error
Minimax Probability Machine and their extensions. Following that, we then
present both future perspectives within the proposed models and beyond the
developed approaches.

8.1 Review of the Journey

Two paradigms exist in the literature of machine learning. One is the
school of global learning approaches; the other is the school of local learning
approaches. Global learning enjoys a long and distinguished history, which
usually focuses on describing phenomena by estimating a distribution from
data. Based on the estimated distribution, the global learning methods can
then perform inferences, conduct marginalizations, and make predictions.
Although containing many good features, e.g. a relatively simple optimiza-
tion and the flexibility in incorporating global information such as structure
information and invariance, etc., these learning approaches have to assume a
specific type of distribution a prior. However, in general, the assumption itself
may be invalid. On the other hand, local learning methods do not estimate
a distribution from data. Instead, they focus on extracting only the local
information which is directly related to the learning task, i.e. the classifica-
tion in this book. Recent progress following this trend has demonstrated that
local learning approaches, e.g. Support Vector Machine (SVM), outperform
the global learning methods in many aspects. Despite of the success, local
learning actually discards plenty of important global information on data,
e.g. the structure information. Therefore, this restricts the performance of
this types of learning schemes. Motivated from the investigations of these



162 8 Conclusion and Future Work

two types of learning approaches, we therefore suggest to propose a hybrid
learning framework. Namely, we should learn from data globally and locally.

Following the hybrid learning thought, we thus develop a hybrid model
named Maxi-Min Margin Machine (M4), which successfully combines two
largely different but complementary paradigms. This new model is demon-
strated to contain both appealing features in global learning and local learn-
ing. It can capture the global structure information from data, while it can
also provide a task-oriented scheme for the learning purpose and inherit the
superior performance from local learning. This model is theoretically im-
portant in the sense that M4 contains many important learning models as
special cases including Support Vector Machines, Minimax Probability Ma-
chine (MPM), and Fisher Discriminant Analysis; the proposed model is also
empirically promising in that it can be cast as a Sequential Second Order
Cone Programming problem yielding a polynomial time complexity.

The idea of learning from data locally and globally is also applicable in
regression tasks. Directly motivated from the Maxi-Min Margin Machine, a
new regression model named Local Support Vector Regression (LSVR) is
proposed in this book. LSVR is demonstrated to provide a systematic and
automatic scheme to locally and flexibly adapt the margin which is globally
fixed in the standard Support Vector Regression (SVR), a state-of-the-art
regression model. Therefore, it can tolerate the noise adaptively. The pro-
posed LSVR is promising in the sense that it not only captures the local
information of the data in approximating functions, but more importantly,
includes special cases, which enjoy a physical meaning very much similar to
the standard SVR. Both theoretical and empirical investigations demonstrate
the advantages of this new model.

Besides the above two important models, another important contribution
of this book is that we also develop a novel global learning model called
Minimum Error Minimax Probability Machine (MEMPM). Although still
within the framework of global learning, this model does not need to assume
any specific distribution beforehand and represents a distribution-free Bayes
optimal classifier in a worst-case scenario. This thus makes the model distin-
guished from the traditional global learning models, especially the traditional
Bayes optimal classifier. One promising feature of MEMPM is that it can
derive an explicit accuracy bound under a mild condition, leading to a good
generalization performance for future data.

The fourth contribution of this book is that we develop the Biased Mini-
max Probability Machine (BMPM) model. Even though it is a special case of
MEMPM, we highlight this model because BMPM provides the first system-
atic and rigorous approach for a kind of important learning tasks, namely, the
biased learning or imbalanced learning. Different from traditional imbalanced
(biased) learning methods, BMPM can quantitatively and explicitly incorpo-
rate a bias for one class and consequently emphasize the more important
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class. A series of experiments demonstrate that BMPM is very promising in
imbalanced learning and medical diagnosis.

8.2 Future Work

The models developed in this book bridge the gap between local learning and
global learning. This brings a new viewpoint for both existing local models
and global models. Following the viewpoint of learning from data both glo-
bally and locally, there seems to be a lot of immediate directions both inside
and beyond the proposed models in this book.

8.2.1 Inside the Proposed Models

There are certainly a lot of work for improving the proposed models in this
book.

First, all the models proposed in this book including Minimum Error
Minimax Probability Machine, Maxi-Min Margin Machine and Local Sup-
port Vector Machine, involve in solving either a single Second Order Cone
Programming or a Sequential Second Order Cone Programming problem.
Although many optimization programs have demonstrated their good per-
formance and mathematic tractability in solving this kind of problems, they
are designed for general purposes and may not adequately exploit the spe-
cific properties in our models. Therefore, it is highly possible and valuable to
develop some special optimization algorithms for speeding up their training.
In particular, Maxi-Min Margin Machine enjoys the feature of sparsity. By
taking advantages of this property, researchers have developed fast optimiza-
tion algorithms for Support Vector Machine. It is therefore very interesting to
investigate whether similar procedures can be applied here. This interesting
topic deserves much attention and remains to be an open problem.

Second, an immediate problem for Minimum Error Minimax Probability
Machine is the possible presence of local optimum in the practical optimiza-
tion procedures. While empirical evidence shows that the global optimum
can be attained in most of cases, the local optimum may occur when two
types of data are not well-separated. Conventional simulated annealing [6, 14]
or deterministic annealing methods [11, 12] are certainly possible ways to
attack this problem, however a formal approach that is either a regularization
augment or an algorithmic approximation may be proved more appropriate.

Third, as shown in this book, all the proposed models apply the ker-
nelization trick to extend their applications to nonlinear tasks. However, it
is well known that some global information, e.g. the structure information,
may not be well kept when the data are mapped from the original space to
the feature space. This may restrict the power of learning from data both
globally and locally. Motivated from this view, it is thus highly valuable to
develop techniques to retain the global information of data when performing
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the projection from the original space to the feature space. This can also
be considered as a task on how to choose a suitable kernel, which currently
attracts much interest in the machine learning community [4, 15].

Another important future direction for the proposed classification models,
i.e. Minimum Error Minimax Probability Machine and Maxi-Min Margin
Machine, is how to extend the current binary classifications into multi-way
classifications. Although one vs. all and one vs. one [1, 16] approaches present
the main tools for conducting the upgrading, one always prefers to a more
systematic and more rigorous approach.

8.2.2 Beyond the Proposed Models

Although several important models have been motivated and developed from
the viewpoint of learning from data both globally and locally, beyond these
models there are plenty of work deserving future investigations.

One natural question is whether other famous local models or global mod-
els can be extended by engaging the viewpoint of learning from data globally
and locally. For example, Neural Networks, a large family of popular learning
models, might be also considered as modelling data in a local fashion. It is
therefore very interesting to investigate whether global information can also
be incorporated into these kinds of learning processes.

It is noted that the learning discussed in this book is restricted within
the framework of either classification or regression tasks. Both tasks belong
to the so-called supervised learning [5, 9, 18]. However, the other largely
different learning paradigm, unsupervised learning [10, 13, 17], and the re-
cently emerging semi-supervised learning [2, 3, 8, 7] are not considered. There-
fore, exploring possible applications of hybrid learning in this field presents
a straightforward and immediate ongoing topic.
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