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Preface

My first encounter with the term “pseudo-population” was when I was involved in
the DACSEIS project of the European Union (Data Quality in Complex Surveys
within the New European Information Society), wherein I was responsible for the
Austrian contribution. In this project, among other things, artificial or “pseudo-
populations,” herein called “plausible or synthetic universes,” generated on the
basis of data from the relevant national Labour Force Surveys of the participating
countries, were used to analyze the quality of different methods to estimate the
variance of labor force statistics such as the number of employed or unemployed
people by simulations (cf. Münnich et al. 2003).

Moreover, while teaching students of the bachelor’s and master’s programs in
statistics at my university in courses on sampling methods, I realized that the
picture of generating a pseudo-population has the potential to substantially improve
the students’ understanding of various concepts in sampling theory and survey
methodology. One can describe, for instance, the Horvitz–Thompson estimator of
the total of a study variable, a statistic fundamental in sampling theory, by the
generation of a pseudo-population estimating the original finite population with
respect to this parameter. For this purpose, the variable values observed in the
sample are assigned to the units of the pseudo-population by replicating each of
these values by a factor that reflects both the sampling and estimation process. As
a rule, such replication factors are not integers. The Horvitz–Thompson estimator
of the total in the original population then is nothing else but the total of the same
variable in the pseudo-population consisting of not only whole units, but also parts
of whole units. Further concepts of estimators of the total, such as the ratio or
regression estimator, can be illustrated in the same way. The difference in these
concepts is explained by a different composition of the pseudo-population with
respect to the study variable.

The point is that the pseudo-population concept unites several features of
statistical sampling theory such as sampling techniques and estimation methods
under a single roof. In my experience, this approach may really help to communicate
a basic understanding of such techniques, by the formulae often not intuitively
comprehensible for all students, especially those with little knowledge of the
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probability theory. With this fundamental methodological understanding, students
and other users should be able to focus on questions concerning the difference
between methods and their practical implementation in statistical software such as
R (for recent books see, for instance, Lumley 2010; Kauermann and Küchenhoff
2011).

Therefore, the first part of this monograph can be seen as a textbook using the
unified approach of the pseudo-population concept to describe different aspects
of the sampling theory and survey methodology. After an introductory chapter
on statistical surveys, in Chap. 2, the pseudo-population concept is introduced to
describe the rationale behind the Horvitz–Thompson estimator. Subsequently, the
concept is applied to the presentation of different probability and non-probability
sampling methods and the alternative estimation procedures of ratio estimation,
regression estimation, and iterative proportional fitting using auxiliary information.
This chapter is continued by the presentation of the estimation of special totals
such as the size of the original population by the capture–recapture method and
the cumulative distribution function of a variable under study. It is complimented
by other examples of the application of the generation of pseudo-populations in
statistical surveys such as the estimation of covariance, measures of associations,
small area estimation, and two-phase sampling.

Chapter 3 is concerned with the practical problems of “Nonresponse and
Untruthful Answering.” The statistical methods of weighting adjustment and data
imputation compensating for nonresponse are also described intuitively within the
presented pseudo-populations approach that runs like a thread through this work.

The second part of this monograph is concerned with the fields of sampling
theory and survey methodology, in which the author applied the pseudo-population
concept in his research. In Chap. 4, the basic principles of simulation studies in the
area of survey sampling are presented. The basis for such studies is formed by either
the original population or a close-to-reality substitute—another pseudo-population.
An example of its usage in a secondary analysis of the Austrian PISA (Programme
for International Student Assessment) data concludes this chapter (cf. Quatember
and Bauer 2012).

Actually, the term pseudo-population was first used in the relevant literature on
a certain type of the bootstrap method for a finite population, which is used as a
computer-intensive alternative to estimate the sampling distribution of sample statis-
tics (see Chap. 5). In this context, the generation of a pseudo-population, also called
the “bootstrap population,” is the necessary step between the original sample already
drawn and the resamples needed to mimic the interesting sampling distribution. The
most important question for researchers to answer for this bootstrap procedure is
how to create a bootstrap population, which may serve as an adequate basis for
the resampling process with respect to the statistical properties of the estimator
under investigation. A review of approaches to answer this fundamental question is
presented in Sect. 5.2. Moreover, a direct implementation of the Horvitz–Thompson
approach of generating a pseudo-population allowing not only for whole units in
the bootstrap population is discussed in some detail as an application of the concept
to this resampling technique (cf. Quatember 2014b). It can be seen as a natural
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complement of recently published works in this field. An example of the application
of the finite population bootstrap concludes this chapter.

In Chap. 6, the problem of nonresponse and untruthful answering is addressed
again, when the concept of pseudo-populations is applied to “Generalized Random-
ized Response Questioning Designs,” which are privacy protecting alternatives to
direct questioning. In this context, this concept serves as the basis to extend theory
presented so far mostly for simple random sampling with replacement to general
probability sampling schemes. This is of great importance because in the fields
where these methods are used such as empirical social or health research, more
often than not complex probability sampling schemes are used. Quatember (2009,
2012) presented generalizations of specific families of such strategies applicable to
binary variables. Herein, such standardizations are presented for general categorical
as well as quantitative variables. The presented frameworks encompass strategies
already published and, at the same time, all other combinations of the questions and
instructions included in these families not yet published in individual articles. Such
methods are currently used in many occasions (cf. Lensvelt-Mulders et al. 2005),
but not really present in opinion and market research, where, if it would be possible
(or necessary) to leave the usual paths, it has the potential to raise the quality of
surveys on sensitive attributes such as in opinion polls.

The concluding chapter on “A Unified Framework for Statistical Disclosure
Control” (Chap. 7) considers statistical techniques, which are, without doubt,
different from the methods discussed in the preceding chapters because the aim is
not to improve the efficiency of survey results. On the contrary, the term statistical
disclosure control summarizes methods, which reduce data quality in a controlled
way to increase data privacy. This field has become increasingly important in recent
years. In the summer of 2013, for instance, according to an article published in the
German news magazine Spiegel, data privacy activists reported that the computer
center of the pharmacists in South Germany sold insufficiently encrypted patient
data to market research companies. Basically, trading with such data is legal when
data are handed out and used in an encrypted way. These microdata files contain
information that may be used in market research of pharmaceutical companies.
In this particular case, the identity of patients is only veiled by a code, which
enables the known user to conclude on the actual security numbers of the patients. In
addition, the age and sex of patients are included in the file. Hence, pharmaceutical
companies could possibly understand which medical practices prescribe which
medication. Data privacy activists point out that in this way, the companies could be
enabled to control the success of the work of their sales staff. A similar problem was
discussed at the same time in Austria, where doctors directly sold patients’ data.

In this chapter, the concept of pseudo-populations is applied to a group of
disclosure techniques to create a comprehensible unified framework for this “CSI
family” of methods (cf. Quatember and Hausner 2013). The abbreviation CSI stands
for a process that starts with the cloning of variables, followed by the artificial
suppression of the values of these clones and is finished with an imputation for these
suppressed values. At the end of the day, the original variable is deleted from the
file and its masked version has to take over its tasks. In this context, the description
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of the estimation process by the idea of generating a pseudo-population marks the
very moment when the balancing act between the mandatory data protection and the
understandable demand of third parties for access to survey data takes place.

Since this book contains my teaching as well as research experiences in the
field of data quality in statistical surveys under the unified approach of the pseudo-
population concept, I wish to thank all the people who have given me the opportunity
to have all these experiences at the Johannes Kepler University, Linz, Austria. In
particular, I am grateful to all my colleagues at the Department of Applied Statistics
for inspiring me over the years. Especially, I want to thank Werner Müller, head of
Data Acquisition and Data Quality, for his continuous support and encouragement.
Moreover, I do not want to forget to mention the group of people, who may not
really realize that they are my best motivator year by year—the students.

Linz, Austria Andreas Quatember
June 1, 2015
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Chapter 1
Statistical Surveys

1.1 Introduction

Looking at our everyday life, we find that nearly everything that we see, taste, hear,
smell, or touch is just a part of a whole. The unconscious conclusion from such
information on the specific “reality” incompletely described by these observations
has probably always been part of (not only) human behavior. This pattern was
originally developed as a survival strategy passed on from one generation to the
other. It ensured the survival of the clan (or the pack) through the evaluation of
signals with respect to potential food or imminent danger.

In contrast to such an unconscious behavior pattern, a conscious conclusion on
the whole based on a part is seemingly specific to the human race. Each one of
us applies this technique, for instance, every time when we cook. A little taste
of the dish stands for the quality of the whole food. Wine tasting follows the
same inference principle: A small sip poured from any barrel stands for the whole
barrel or even for the whole year. The same strategy is used when we try a new
fragrance before buying a regular-sized bottle in a perfumery or when we try the
sweetness of strawberries before buying the whole quantity needed from a market
stand. Moreover, the same principle applies when we read the individual costumer
reviews or the average rating for a product offered on online shops such as Amazon
or iTunes. Also, when taking blood tests or exams, everybody of use gained practical
experience in the application of this method. In all these cases, we are apparently
convinced that we can infer something about the whole from observations of a part.

The statistical method of sampling data had its first application in official
statistics as a method to estimate the size of populations (for the history of sampling,
see, for example, Bethlehem 2009). Sampling theory itself, meaning the theoretical
foundation of the conclusion from sampled data to parameters of interest, has been
developed only since the end of the nineteenth century (cf., for instance, Kruskal
and Mosteller 1980, or Bellhouse 1988). One can be convinced of the resounding
success of sampling theory day by day, when listening to any news show on radio or
television or when reading newsletters or magazines where the outcomes of market

© Springer International Publishing Switzerland 2015
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2 1 Statistical Surveys

or opinion research and academic empirical studies are presented. It is no surprise
that in our knowledge-based society, there is a constantly increasing demand for
objective information about issues of interest. Therefore, the application of such a
theory has become quite indispensable. Two important application examples are the
European Labour Force Survey conducted by the National Statistical Offices, which
has an important function in developing the labour market policy of individual
nations as well as of the whole European Union, and the international PISA test
(Programme for International Student Assessment) of the OECD (Organization
for Economic Cooperation and Development), with its function in the evaluation
and comparison of educational policies and their effects (for an overview of both
surveys, see Eurostat 2012 and OECD 2012). Oftentimes, the media response to the
results of surveys like those previously mentioned completely ignores the obvious
fact that such surveys are sample, not population, surveys. As such, their results are
exposed to natural sample-to-sample fluctuations. This is precisely where the task
of statistical sampling theory comes in: the accuracy of survey results and how this
accuracy can be influenced and controlled.

1.2 High-Quality Surveys

We define a statistical survey as a survey conducted with the aim of obtaining
information from a finite set of survey units, called the population, concerning the
frequency distributions of variables of interest or parameters characterizing these
distributions. Examples of such a population are the households in a region, the
pupils of a certain age class, or the population of eligible voters. Variables of interest
are, for instance, the consumption expenditure of households, the employment
status of household members, the scores of students in competence tests, or voting
behavior. Parameters of interest include the average consumption expenditure per
household, the unemployment rate, the average score of students’ performances,
the recent proportions of different political parties, or any other statistical indicator
characterizing the relevant population. A statistical survey can be conducted in the
whole population or in just a part of it, called a sample.

The preconditions for a good quality of statistical survey with respect to
unknown population distributions or parameters can be summarized under the
term representativeness. The representativeness of a survey can be defined in the
following way (cf., for instance, Quatember 1996a, or Gabler and Quatember 2012):
A survey is called “exactly representative” with respect to an interesting distribution
or parameter, if this distribution or parameter is exactly reproduced in the survey
(compare with the term “balanced sampling design” in Deville and Tillé 2004,
p. 895). It is called “representative,” if the distribution or parameter can be estimated
(approximately) unbiasedly and the estimation meets a previously defined accuracy
requirement. Finally, a survey is “not representative” at all if it is neither exactly
representative nor representative.

In this definition, the term “exact representativeness of a survey” corresponds
to the optimal target. In the practice of surveys, this meets a rather procedural
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descriptive purpose, as can be seen in Sects. 2.4.1, 2.4.4 and 2.5. Furthermore,
the representativeness of a survey is described, first, by the statistical similarity
concept of unbiasedness (see Sect. 2.1) and, second, by a requirement with respect
to the efficiency of the estimator. Following this definition, the representativeness
of a statistical survey is a precondition for high-quality inference from sample to
population on a probability basis. It implicitly includes

• the use of a selection procedure, the sampling technique, to select the survey units
of the population for the sample, which allows such a conclusion;

• the application of an appropriate estimation method;
• the choice of a large-enough sample size to meet the requirements for the

efficiency of the estimate for a given sampling technique and estimation method;
and

• the avoidance or at least the consideration of errors that cannot be explained by
carrying out the survey in a sample and not in the population

as necessary conditions (cf. Gabler and Quatember 2013).

1.3 Sampling and Non-sampling Error

The first three items at the end of the previous section refer to the so-called sampling
error. This term describes the sample-to-sample variation of estimators occurring
through the collection of data in a sample and not in the entire population. The
magnitude of the sampling error is determined by all three items, which describe
the whole sample design. The last of the four items refers to the non-sampling
error that could occur in sample as well as population surveys. There are various
possible sources for this category of errors in surveys (see, for instance, Groves
et al. 2004, Chaps. 7–10). The sampling frame is an available list of potential survey
units, which can serve as a basis for their selection. Its quality depends on the
relation between the true population of interest and the available frame population.
In this context, under-coverage occurs if units belonging to the true population
of interest are not listed in the frame population. On the other hand, we speak of
over-coverage if units that are not part of the target population are included in the
sampling frame. It is quite clear that in such situations, estimators can only relate
to parameters or distributions of the frame population and not the actual population
under study. Their presence might be ignored if both types of coverage errors are
negligible. With non-negligible frame imperfections, estimation techniques have
to be adapted. For over-coverage, the theory of domain estimation might offer an
appropriate approach (cf., for instance, Särndal et al. 1992, Chap. 10). For under-
coverage, ratio estimation may help (see Sect. 2.6.1). Also other methods of defining
the population may be applied. Such alternatives include dividing the population
into small areas (of a region, for instance) covering the whole population instead
of using a population register or generating telephone numbers instead of using a
telephone register (see, for instance, Gabler and Häder 2009).
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The term “nonresponse” refers to the “missing data problem,” which occurs when
a selected survey unit cannot be contacted, completely refuses to participate, or
provides no response for at least one of the survey variables. Of course, this is a
potential source of non-sampling errors. Therefore, everything should be done to
avoid the occurrence of nonresponse (for different approaches see Sects. 3.1 and 6).
If the amount of such occurrence is not negligible, so that the statistical analysis
cannot be based on the “available cases,” nonresponse has to be compensated on the
basis of model assumptions applying the methods of weighting adjustment and data
imputation as relevant statistical strategies (see Sects. 3.2 and 3.3).

With regard to the estimation quality, wrong answers are even worse than nonre-
sponse because they are usually indistinguishable from true answers. Strategies to
reduce untruthful answering have been developed, for instance, in the field of empir-
ical social research (see again Sect. 3.1). Also, the statistical methods of randomized
response address the problems arising from nonresponse and untruthful answering
(see Sect. 6). These are probabilistic-driven alternatives to direct questioning on
sensitive issues such as drug use, domestic violence, harassment at work, or voting
behavior. In all these alternatives, the actual question answered stays unknown to the
data collector. The idea is that not enabling the data collector to link the given answer
to the sensitive variable should increase the respondent’s willingness to cooperate.

Other potential sources of non-sampling errors are a poor questionnaire (cf., for
instance, Groves et al. 2004, Chaps. 7 and 8), the performance of the interviewer (cf.
Groves et al. 2004, Chap. 9), and sloppy data entry in the statistical software used
(cf. Groves et al. 2004, Chap. 10).

All of the items discussed (and many more not mentioned here) affect the
representativeness of statistical surveys and have to be taken into account in order
to manage a representative, and not just informative, statistical survey, from which
it should be possible to draw probabilistic-based conclusions about a population.



Chapter 2
The Pseudo-Population Concept

2.1 The Formulation of the Problem

Classical sampling theory addresses the effect of different sampling designs con-
sisting of a sampling method and estimation technique, on the efficiency of the
estimation of a parameter under study. Note that sampling design is used with
different meanings in the literature (cf., for instance, Särndal et al. 1992, p. 27).
In the practice of statistical surveys, totals and functions of totals, such as means,
proportions, variances, covariances, correlations, or regression coefficients, cover a
large majority of the interesting parameters. Hence, sampling theory traditionally
focuses mainly on the estimation of such parameters (cf., for instance, Cochran
1977).

Let U denote the interesting finite population of survey units. This set U consists
of N elements characterized by consecutive integers: U D f1; : : : ;Ng (here and in
the following, the notations largely follow Särndal et al. 1992 and Lohr 2010). Let
y denote a variable under study and yk be the fixed value of y assigned to population
unit k (k 2 U): U ! fy1; : : : ; yNg. The parameter � of interest may be, for instance,
the population total

t D
X

U
yk (2.1)

(
P

U yk is an abbreviated notation for a sum over all units k 2 U) or a function of
one or more totals. Such is, for instance, the mean value

y D t

N
(2.2)

© Springer International Publishing Switzerland 2015
A. Quatember, Pseudo-Populations, DOI 10.1007/978-3-319-11785-0_2
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population U: parameter θ

sample s: estimate θs

sampling method

all possible samples

. . .

Fig. 2.1 The sampling distribution of a certain estimator O� within all possible samples s drawn by
the same sampling method

or, in the case of a two-dimensional variable .y; x/ with assignment U !
f.y1; x1/; : : : ; .yN ; xN/g, the ratio

R D t

t.x/
(2.3)

of the totals t and t.x/ D P
U xk of the two variables.

With no census data on the variables of interest available, these population
parameters can be estimated by observing the variables under study and possible
auxiliary variables, if needed within the estimation process, in a sample s D
f1; : : : ; ng of n not necessarily distinct elements selected from U by a certain
sampling method. For y, this results in the assignment s ! fy1; : : : ; yng. Note that
k and yk denote the kth element and its value of y either in the population or in
the sample depending on the particular context. The observations on the survey
variables in the sample are used to calculate the estimates. A census is the special
case of a sample survey with s D U.

The sample selection follows a certain selection scheme, the sampling method.
Such a procedure assigns a certain selection probability to each possible sample s.
These probabilities determine the sampling distribution of a certain estimator O� of
parameter � . For the following, the expected value E. O�/ of O� and the theoretical
variance V. O�/ of this distribution are most important. Both statistical properties
provide information on the behavior of the estimator O� with respect to all possible
samples (see Fig. 2.1).

Because the bias of an estimator is defined as the difference between the expected
value E. O�/ and the parameter � , an estimator is called unbiased if E. O�/ D � applies.
The theoretical variance V. O�/ of an estimator O� is given by

V. O�/ D EŒ. O� � E. O�//2�:
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Further, its mean square error MSE. O�/ is defined by

MSE. O�/ D EŒ. O� � �/2�:

For an unbiased estimator O� , V. O�/ D MSE. O�/ applies. The random nature of O�
is explained by the fact that the sample s, from which the observations on the
survey variables are taken to calculate the estimate, is itself a set-valued outcome
of a random experiment.

Therefore, to allow design-based conclusions on a population based on the
knowledge of the applied sampling design without any modeling, the selection
probabilities of all possible samples s of U have to be known in advance. Thus, not
any kind of sampling scheme is suitable for such an inference. Sampling methods
that allow a design-based inference assign a non-zero inclusion probability to each
population unit k (k 2 U) and a computable probability to each possible sample
s. Such methods are called “random” or “probability sampling methods.” A sample
drawn in such manner is called a “random” or “probability sample” (cf., for instance,
Särndal et al. 1992, p. 8).

One way to control the precision of a given estimator is by assigning specific
selection probabilities to the units of U. The probability �k that population unit k
will be included in the sample is called the “first-order inclusion probability” of unit
k. Furthermore, the probability �kl that two elements k and l will both be included
is denoted as the “second-order inclusion probability” of units k and l. For k D l,
�kl D �k applies. These first- and second-order inclusion probabilities are the sums
of the selection probabilities of all samples s, which include element k and both
elements k and l, respectively.

Let the inclusion of a survey unit k in the sample s be indicated by the sample
inclusion indicator

Ik D
(
1 if unit k 2 s,

0 otherwise.

For any probability sampling method, the expectation of the sample inclusion
indicator E.Ik/ is equal to �k because E.Ik/ D P.Ik D 1/ applies. Its variance is
given by�kk � V.Ik/ D �k �.1��k/ because E.I2k / D E.Ik/ applies. The covariance
of the two sample inclusion indicators Ik and Il is given by �kl � C.Ik; Il/ D
�kl � �k � �l because E.Ik � Il/ D P.Ik � Il D 1/. With n D P

U Ik, the expectation of
size n of a sample for a given sampling method is proven to be E.n/ D P

U �k.

2.2 The Horvitz–Thompson Estimator of a Total

The estimation of the population total t of a variable y is a very important task
of statistical sampling theory. In without-replacement sampling,

P
s yk < t applies

for s � U. The question arises as to which factors d1; : : : ; dn the sampled values
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y1; : : : ; yn should be “weighted” with to allow an unbiased linear estimator
P

s yk �dk

for t when information on auxiliary variables is not available at all (cf. Horvitz and
Thompson 1952, p. 667ff). Hence, the following has to apply:

E
�X

s
yk � dk

�
D E

�X
U

Ik � yk � dk

�
D
X

U
yk � dk � E.Ik/ D t:

Because E.Ik/ D �k, this equation always holds for dk D 1
�k

, the reciprocal of
the first-order inclusion probabilities (k D 1; : : : ;N). Because the �k-values are
determined in the survey’s design phase, in which the sampling method is chosen,
the multiplicands dk are called “design weights.”

Therefore, the Horvitz–Thompson (HT) estimator of the total t of a variable y,

tHT D
X

s
yk � 1

�k
; (2.4)

is unbiased and applicable with any probability sample with arbitrary positive first-
order inclusion probabilities for all population units k. These design weights are
larger for elements having smaller inclusion probabilities, and vice versa. This
provides the necessary balance between the inclusion probabilities and the weights
given to the observed sample values, which enables the HT estimator to be unbiased
for the total of y.

Besides the first-order inclusion probabilities �k, the probability distribution of
all possible samples also determines the second-order inclusion probabilities �kl

(k; l 2 U). These first- and second-order inclusion probabilities are needed to
calculate the theoretical variance V.tHT/ of the HT estimator, which is given by

V.tHT/ D
XX

U
�kl � yk

�k
� yl

�l
(2.5)

(�k ¤ 0 8 k 2 U). Provided that �kl > 0 8 k; l 2 U,

OV.tHT/ D
XX

s

�kl

�kl
� yk

�k
� yl

�l
(2.6)

is an unbiased estimator of the theoretical variance V.tHT/. For a sampling method
with a fixed sample size n, Eq. (2.5) can be presented as follows:

V.tHT/ D �1
2

�
XX

U
�kl �

�
yk

�k
� yl

�l

�2
: (2.7)

Under the same conditions as for (2.6),

OV.tHT/ D �1
2

�
XX

s

�kl

�kl
�
�

yk

�k
� yl

�l

�2
(2.8)
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is an unbiased Yates–Grundy–Sen estimator of V.tHT/ (see Sen 1953; Yates and
Grundy 1953).

The quality of the HT estimator tHT does not depend on any modeling. Informa-
tion can be incorporated in this estimator only by the first- and second-order sample
inclusion probabilities in the design phase of the survey, in which the sampling
method is determined. Hence, tHT is a pure design-based estimator, meaning that its
accuracy depends solely on the applied sampling method, the inclusion probabilities
assigned by this method, and the sample size.

2.3 Introduction to the Pseudo-Population Concept

The rationale behind the HT estimation process as expressed by

tHT D
X

s
yk � 1

�k
;

in Eq. (2.4) can be described by the idea of generating an artificial population
estimating appropriately the original population with respect to the parameter under
study. The generation process starts at population U. Each element k of U is
assigned a certain value yk of variable y, but the parameter t is unknown. In the
next step, one of all possible samples in Fig. 2.1, which can be drawn according to
a given probability sampling scheme (see Sect. 2.4), is realized. In this sample s of
n elements, variable y is observed. In the next step, the original population U of
size N is estimated with respect to the total t of variable y by a pseudo-population
U�

HT. In the concluding step, the HT estimator of t is calculated as the total of the
replications of y in U�

HT.
For the generation of the pseudo-population U�

HT (see Fig. 2.2), the variable value
y1 of the first element in the sample is replicated 1

�1
times delivering 1

�1
“clones” y�

of y1 for the pseudo-population; value y2 of the second sample element is replicated
1
�2

times delivering 1
�2

clones, and so on. Hence, the design weights can be seen as

the replication factors of this process. Pseudo-population U�
HT has N�

HT D P
s
1
�k

elements. The expectation of size N�
HT is E.N�

HT/ D E
�P

U
1
�k

� Ik

�
D N. Its

variance depends on the sample size n and the variance of the design weights 1
�k

.
Assuming that all design weights were integers, pseudo-population U�

HT could
be characterized by the set U�

HT D f1; : : : ;N�
HTg of consecutive integers and the

assignment

U�
HT !

(
y�
1 ; : : : ; y

�
1
�1

; : : : ; y�P
k<n

1
�k

C1; : : : ; y
�
N�

HT

)
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Fig. 2.2 Generating a
pseudo-population for the
Horvitz–Thompson estimator population U (size N ): t

sample s (size n)

pseudo-population U∗
HT (size N ∗

HT = s
1

π k
): tHT

probability sampling method

HT approach

with y�
1 D : : : D y�

1
�1

D y1, y�
1
�1

C1 D : : : D y�
1
�1

C 1
�2

D y2, and so on, where

y1; y2; : : : are the values of y in the sample. Hence, the HT estimator (2.4) for
parameter

t D
X

U
yk

is presented as

tHT D
X

U�

HT

y�
k : (2.9)

Note that the design weights 1
�k

are not integers as a rule. Hence, the HT pseudo-

population U�
HT is special in the sense that it may not only contain b 1

�k
c whole units

with the same value yk of variable y (bxc denotes the integer part of x 2 R) but also
a . 1

�k
�b 1

�k
c/-piece of unit with that value when 1

�k
�b 1

�k
c > 0 applies (k 2 s). Also,

for non-integer 1
�k

-values, a presentation of type (2.9) will be used subsequently to
describe the idea of generating a pseudo-population in the estimation process.

Consequently, the efficiency of the unbiased HT estimator tHT for t depends
on the quality of the estimation of U by U�

HT with respect to y or, to be even
more precise, with respect to parameter t. For a census assuming full and truthful
responses, U�

HT D U, N�
HT D N, and tHT D P

U�

HT
y�

k D P
U yk D t applies.

Because the expectation of the pseudo-population size N�
HT equals N but N�

HT
itself does not necessarily have to and, additionally, the design weights 1

�k
do

not have to be integers, the estimator U�
HT is not the real set-valued Maximum
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Likelihood (ML) estimator of population U, which would be the one of all possible
populations producing the observed sample with the highest probability (cf., for
instance, Casella and Berger 2002, p. 315ff). Nevertheless, U�

HT can be considered as
an estimator of U “based on the ML principle.” For sampling methods for which N�

HT
does not have to equal N, an improvement over the HT estimator may be achieved
by correcting the design weights 1

�k
by the factor N

N�

HT
. We will return to this idea in

Sect. 2.6.1 on the ratio estimator.
In the subsequent section, the pseudo-population concept is applied to different

probability sampling methods. In Sect. 2.5, it will help to understand the specific
problems of non-probability samples.

2.4 Probability Sampling Methods

2.4.1 Probability Proportional to Size Random Sampling

The unbiased HT estimator tHT of the total t of study variable y (see Sect. 2.2)
can be applied to any probability sampling scheme. The most general without-
replacement probability sampling method with a fixed sample size to draw the
sample directly from the population U is “arbitrary probability random sampling”
(�). The � method assigns arbitrary inclusion probabilities �k > 0 to all population
units k. But, the optimum efficiency of the estimator tHT is ensured by choosing
the first-order sample inclusion probabilities �k / yk, the “size” of population unit
k with respect to y. Under the assumptions yk > 0 and �k � 1 8 k 2 U, for
�k D ykn

t applied to all population units, the HT estimator tHT is always equal to
t. For fixed n, this can also be seen easily from Eq. (2.7), where with these specific
sample inclusion probabilities, the variance V.tHT/ is zero.

In the HT approach as described by the pseudo-population concept introduced
in Sect. 2.3 (Fig. 2.2), the design weights 1

�k
can be seen as the replication factors

of this process. The expectation of the size N�
HT of the generated pseudo-population

U�
HT is always N, and its actual value varies depending on the variance of y and

the sample size n. In the case of �k / yk with replication factors t
ykn , however,

the fact that N�
HT might not be equal to the correct size N of U is irrelevant with

regard to the accuracy of the HT estimator. Each generated pseudo-population U�
HT

is perfect for the estimation of the interesting total t of y. If it actually contains less
than N elements, then this is compensated perfectly by proportionally higher yk-
values in U�

HT than in U, and vice versa. According to the definition in Sect. 1.2, a
survey conducted by this sampling mode is exactly representative with regard to the
total of y!

Naturally, this idea of choosing the �k-values in proportion to the yk-values
cannot be translated directly into practice because knowledge of the variable y
under study would be needed. Instead, a positive auxiliary variable x known for all
population units may serve as a substitute. Herein, this particular sampling method



12 2 The Pseudo-Population Concept

is denoted as “probability �k proportional to size xk random sampling” (�PS). For
a �PS scheme, the HT estimator tHT according to (2.4) is given by

t�PS D
X

s
yk � t.x/

xk � n
: (2.10)

The general � scheme mentioned above is included in �PS sampling by
assigning values xk of an artificial variable x to all population units k in a way that the
desired probabilities �k result from �k D xkn

t.x/
. When x is approximately proportional

to y, though, choosing the first-order inclusion probabilities according to �k D xkn
t.x/

will consequently result in an estimator with small variance because the survey will
be exactly representative with respect to the total t.x/. Note that xk > 0 and �k � 1

must hold true.
For �PS sampling, the HT pseudo-population U�

HT from Sect. 2.3 is denoted as

U�
�PS. It comprises t.x/

x1n replications y� of sample value y1, t.x/

x2n replications of sample

value y2, and so on. Hence, for the size N�
�PS of U�

�PS, N�
�PS D P

s
t.x/

xkn applies. The
actual value of N�

�PS depends on the values xk of the sample elements and the sample
size n. In the harmonizing pseudo-population concept, t�PS can be presented as

t�PS D
X

U�

�PS

y�
k : (2.11)

The variance of t�PS does not depend on N�
�PS but on the level of approximate

proportionality between x and y. With increasing variance of ratio y
x , the variance

V.t�PS/ of t�PS increases. The value of the second-order inclusion probabilities �kl

needed for the calculation of (2.5) and (2.6) depends on the practical realization
of the �PS scheme (cf., for instance, Kauermann and Küchenhoff 2011, p. 107ff).
However, their calculation can be cumbersome for sample sizes occurring in practice
(cf., for instance, Särndal et al. 1992, p. 90ff). To be able to estimate the variance of
the HT estimator, the much simpler theory of with-replacement proportional to size
sampling (see Sect. 2.4.3) might as well be used as its approximation by a computer-
intensive method such as the bootstrap (see Chap. 5).

In practice, a �PS sample (or a general � sample) of size n can be drawn, for
instance, by applying a specific version of systematic sampling from a list. For this
“systematic �PS with random frame order” (Rosén 1997, p. 162), the N population
units of the sampling frame have to be randomly ordered. Then, these units are
placed end-to-end to each other according to the size of x on a line of length tx.
The first element starts at point zero on the line and has length x1, the second one
ranges from x1 to x1 C x2, the third on from x1 C x2 to x1 C x2 C x3, and so on. The
sampling interval is calculated by tx

n . In the next step, a random number � is drawn
from the interval

�
0I tx

n

�
. The first unit selected for the sample s is the unit, which

covers value � on the line. From there, the other n � 1 sampling units are selected
by successively adding tx

n to �. Considering the random order of the N population
units, this systematic selection mode selects n units from U with first-order inclusion
probabilities �k D xkn

t.x/
, if only xk <

tx
n applies for all k 2 U.
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2.4.2 Simple Random Sampling Without Replacement

An example of a probability sampling method, which determines an equal prob-
ability for all possible samples by its design, is simple (or unrestricted) random
sampling without replacement (SI). The reasons for using this method are that
typically the application is rather simple, no auxiliary information is necessary, and
the estimation of multivariate relations, for instance, for regression or correlation
analysis, is also rather simple compared to other sampling schemes.

For an SI sample, according to the urn model in probability theory of drawing
balls without replacement, a fixed number n of all N population units is selected
successively without replacement from this population. This can be seen as a special
case of �PS sampling with an (artificial) auxiliary variable x having the same value
xk for all population elements resulting in first-order sample inclusion probabilities
�k D n

N (k 2 U) and second-order inclusion probabilities �kl D n.n�1/
N.N�1/ (k ¤ l).

Therefore, in the HT estimation procedure described by the generation of a pseudo-
population estimating the original population (see Sect. 2.3), each sample unit is
cloned N

n times to generate the pseudo-population U�
SI, and the representation burden

is evenly distributed on all sample elements. Hence, the size N�
SI of U�

SI is always
equal to N. In SI sampling, the HT estimator (2.4) for t can be calculated by

tSI D
X

s
yk � N

n
D N � ys (2.12)

with ys D 1
n �Ps yk, the sample mean of y.

In the standardized presentation of the HT approach by the pseudo-population
concept, the estimator tSI is presented as

tSI D
X

U�

SI

y�
k ; (2.13)

which differs from t�PS according to (2.11) in the composition of the pseudo-
population.

A sample drawn with uniform inclusion probabilities is called a “self-weighting
sample.” Because each element of a self-weighting sample represents the same
numbers of pseudo-population units, the sample measures of various distribution
characteristics, such as the mean, any quantile, or the variance, directly estimate the
respective population parameters without bias (see also Sect. 2.7).

Derived from (2.7), with the given SI first- and second-order inclusion probabil-
ities the theoretical variance of tSI yields

V.tSI/ D N2 � .1 � f / � S2

n
(2.14)
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with

S2 D 1

N � 1 �
X

U
.yk � y/2:

The “.N �1/-variance” S2 is usually used to harmonize the presentation in sampling
theory instead of the “N-variance” S2N because, in simple random sampling without
replacement, the sampling variance of y, S2s D 1

n�1 � Ps.yk � ys/
2, is the unbiased

estimator of S2. Hence, an unbiased estimator of V.tSI/ is given by

OV.tSI/ D N2 � .1 � f / � S2s
n
; (2.15)

and this perfectly harmonizes with the expression of Eq. (2.14).
In practice, also the systematic sampling mode from Sect. 2.4.1 can be applied

in order to generate an SI sample. For this purpose, let x D 1 for all N units of a
randomly ordered population list giving a line of length N. The random number �
is drawn from the interval Œ0I N

n �. From this starting point all n population elements
covering the points � C k � N

n on the given line are chosen (k D 0; 1; : : : ; n � 1).

2.4.3 Random Sampling with Replacement

In contrast to the SI technique, simple random sampling with replacement (SIR) of
n elements follows the i.i.d. principles (cf., for instance, Casella and Berger 2002,
p. 207). In this case, the first-order inclusion probabilities �k of population elements
k needed in the HT estimator are defined as the probabilities of being included in the
sample of m � n distinct elements. For general with-replacement sampling, Hansen
and Hurwitz (1943) developed an estimator of t using the constant probability �

0

k
to select element k in the next draw of with-replacement sampling. The Hansen–
Hurwitz (HH) estimator is given by

tHH D 1

n
�
X

s
yk � 1

�
0

k

: (2.16)

It is only for n D 1 that �
0

k D �k applies. Also in the HH estimation process, the
generation of a pseudo-population, denoted here as U�

HH, as a set-valued estimator
of the original population U serves as the basis for the estimation of parameter t
(see Fig. 2.3). For U�

HH, the variable value y1 of the first of n sample elements is
replicated 1

�
0

1n
times, value y2 of the second sample element is replicated 1

�
0

2n
times,

and so on. Assuming that all 1

�
0

k n
-values are integers, pseudo-population U�

HH can
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Fig. 2.3 Generating a
pseudo-population for the
Hansen–Hurwitz estimator population U (size N ): t

sample s (size n)

pseudo-population U∗
HH (size N ∗

HH = s
1

πk ·n
): tHH

probability sampling method

with replacement

HH approach

be characterized by the set U�
HH D f1; : : : ;N�

HHg and the assignment

U�
HH !

(
y�
1 ; : : : ; y

�
1

�
0

1n

; : : : ; y�P
k<n

1

�
0

k n
C1; : : : ; y

�
N�

HH

)

with y�
1 D : : : D y�

1

�
0

1n

D y1, y�
1

�
0

1n
C1 D : : : D y�

1

�
0

1n
C 1

�
0

2n

D y2, and so on. Hence, the

HH estimator (2.16) for parameter

t D
X

U
yk

is expressed by

tHH D
X

U�

HH

y�
k : (2.17)

Again, in practice, the numbers of replications in the HH process are not integers
as a rule, resulting in a HH pseudo-population including “pieces of units.” The size
of U�

HH is N�
HH D P

s
1

�
0

k n
.

The theoretical variance V.tHH/ of the HH estimator is given by

V.tHH/ D 1

n
�
X

U

 
yk

�
0

k

� t

!2
� � 0

k (2.18)
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(�
0

k ¤ 0 8 k 2 U). An unbiased estimator of the theoretical variance V.tHH/ is
given by

OV.tHH/ D 1

n
� 1

n � 1 �
X

s

 
yk

�
0

k

� tHH

!2
(2.19)

(cf., for instance, Lohr 2010, p. 228ff).
In SIR sampling, �

0

k D 1
N applies for all population units and N�

SIR D N, as in the
case of SI sampling. However, population elements may be drawn more than once
in an SIR sample; due to this information loss, the accuracy of the HH estimator tSIR

is lower than that of the HT estimator tSI in finite population surveys:

V.tSIR/ D N2 � S2N
n

(2.20)

with

S2N D 1

N
�
X

U
.yk � y/2:

An unbiased estimator of V.tSIR/ is achieved by the estimation of S2N by the sampling
variance S2s , which is an unbiased estimator of S2N in SIR sampling.

In the practice of sample surveys, with-replacement sampling schemes are
rarely applied. Under certain conditions, however, the sometimes simpler theory of
with-replacement techniques may serve as a theoretical approximation in without-
replacement procedures, such as for �PS sampling (cf., for instance, Särndal et al.
1992, p. 97ff).

2.4.4 Stratified Random Sampling

Instead of drawing a without-replacement sample unrestricted from the whole pop-
ulation, there may be reasons to split the population with the help of some auxiliary
information in different disjoint portions in the survey’s design phase. Within each
of these subpopulations, any probability sampling method can be applied. The
reason for the application of a probability sampling procedure restricted in such
a way may be the need for an estimator with given accuracy within so-built subsets
of the population or the cost saving operational structure of the survey organization.
Most importantly, an appropriate allocation of a given total sample number n on the
subsets may increase the efficiency compared to an unrestricted random sample (SI).
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Formally, the sampling procedure can be described in the following way: A
population U is partitioned into H different subsets Uh (h D 1; : : : ;H) by an
any-dimensional categorical auxiliary variable x with H categories. Hence, U D
fU1; : : : ;UHg applies with group sizes N1; : : : ;NH . The H subsets U1; : : : ;UH are
called “strata,” and variable x is the “stratification variable.” For stratified random
sampling (ST), a probability sample sh is selected from each stratum independently
from the other strata according to a specific without-replacement probability
sampling scheme with element first- and second-order inclusion probabilities�hk for
the kth element and �hkl for the kth and the lth elements of stratum h (k D 1; : : : ;Nh).
Therefore, the total sample s corresponds to the set union s D fs1; : : : ; sHg. Within
each stratum h, the HT estimator

th;HT D
X

sh
yk � 1

�hk

of the stratum total th is calculated considering the sample inclusion probabilities
�hk.

Hence, the HT approach to total estimation (see Fig. 2.2) generates a pseudo-
population U�

h;HT of expected size Nh for the hth stratum by replicating each y-value
of sampling units in that stratum �hk times. The estimator of the stratum total th
is found by summing all the replicated y-values of that stratum in the pseudo-
population:

th;HT D
X

U�

h;HT

y�
k :

Summing all these estimators over all strata gives the HT estimator

tST D
HX

hD1
th;HT: (2.21)

Therefore, the (imagined) HT pseudo-population U�
ST D fU�

1;HT; : : : ;U
�
H;HTg of

the ST sampling scheme consists of H stratum pseudo-populations with expected
stratum sizes N1; : : : ;NH . The expected total size N�

ST of U�
ST is N. Because the

strata samples are independent, adding the H theoretical variances of the estimators
of the stratum totals according to (2.5) leads to V.tST/, and doing the same with the
variance estimators corresponding to (2.6) yields OV.tST/.

The simplest and most frequent case is stratified simple random sampling
(STSI), where simple random sampling of nh of the Nh stratum elements in the
subpopulation Uh is applied within each stratum h (h D 1; : : : ;H). Thus, the first-
order inclusion probabilities of elements k belonging to stratum h are given by �hk D
nh
Nh

, and the second-order ones by �hkl D nh.nh�1/
Nh.Nh�1/ uniformly for all k; l 2 Uh; th;HT is

actually th;SI D Nh � ysh
with ysh

, the sample mean of y in stratum h. Therefore, in the
case of STSI, the generated HT pseudo-population U�

STSI always has the correct sizes
N1; : : : ;NH of all subsets U1; : : : ;UH and, consequently, the correct total size N of



18 2 The Pseudo-Population Concept

population U. In other words, a survey conducted by an STSI-sample is, by design,
exactly representative with respect to the stratification variable (see Sect. 1.2). For

a given total sample number n D
HP

hD1
nh and stratification U D fU1; : : : ;UHg, the

HT estimator’s overall performance depends on the allocation of n to the H different
strata or, equivalently, on how many times the sample elements from different strata
are replicated to create U�

STSI. It is the relationship of the different strata replication
factors that determines the accuracy of the HT estimator for a given n.

Two special cases of distributing n on the strata in the STSI method are
proportional (STSIP) and optimum allocation (STSIO). In the former case, n is
allocated in proportion to the relative stratum sizes Nh

N to the strata (nh D Nh
N � n),

leading to uniform first-order sample inclusion probabilities �k D n
N for all

population units so that all sample elements are replicated N
n times. This results

in a self-weighting sample with tSTSIP D N � ys. Hence, as soon as the variable under
study and the stratification variable are related, for not-too-small populations U and
strata Uh, an STSIP sample is more accurate than an SI sample of the same size with
regard to the HT estimation of total t. This can be explained by the fact that both the
generated pseudo-populations U�

STSIP and U�
SI have the same size N�

STSIP D N�
SI D N,

but at the same number of replications N
n of all units in the samples, the stratum sizes

Nh of U are also accurately reproduced in U�
STSIP.

The performance of a sampling design consisting of the estimator O� for parameter
� and a probability sampling method P with expected sample size n is usually
compared to the reference sampling design consisting of the same estimator and
an SI sample of size n by the ratio

d. O�;P/ D VP. O�/
VSI. O�/ : (2.22)

This measure is denoted as the “design effect” of sampling procedure P. In the case
of an STSIP sample, for not-too-small populations U and strata Uh, the design effect
d.tHT;STSIP/ is less than one when not all stratum means are equal.

The optimum “Neyman-Tschuprow allocation” of the total sample size n to
the strata with respect to the accuracy of the HT estimator is found by allocating
n proportionally to the product of strata sizes Nh and within-stratum standard

deviations Sh D
q

1
Nh�1 �PUh

.yhk � yh/
2 to the H strata (h D 1; : : : ;H). This results

in nh D NhShnP
NhSh

for stratum h (cf., for instance, Särndal et al. 1992, p. 106). Hence,
the design weight for element k in stratum h is given by

1

�hk
D
P

Nh � Sh

Sh � n

(h D 1; : : : ;HI k D 1; : : : ;Nh). Strata with higher standard deviations are
“overrepresented” in the sample to reduce the total variance of the HT estimator.
For the generation of the pseudo-population U�

STSIO of size N�
STSIO D N, this means
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that the replication factor 1
�k

is smaller in such strata than in others to compensate
for the higher inhomogeneity of the stratum elements with respect to y. This results
in a HT estimator tSTSIO with even higher efficiency than tSTSIP when not all stratum
standard deviations of y are equal. For the design effect, d.tHT;STSIO/ � d.tHT;STSIP/

applies.
Stratifying a population only after the data collection in the estimation phase

of the survey may also be useful to increase the efficiency of an estimator (see
Sect. 2.6.1). Furthermore, this can be applied to compensate for nonresponse (see
Sect. 3.2).

2.4.5 Random Cluster Sampling

The idea of random cluster sampling (C) without replacement is emerged to the
costs of face-to-face surveys. For this method, we have to distinguish between
selection and survey units. Before the selection process in the design phase of the
survey, the population U D f1; : : : ;Ng of survey units is partitioned into, say, M
different disjoint subsets U D fU1; : : : ;UMg of sizes N1; : : : ;NM . The population
UCL of clusters is numbered as follows: UCL D f1; : : : ;Mg. Such “clusters” of
survey elements may, for example, be geographically defined selection units. In a
without-replacement cluster sample, from the population of M clusters, m clusters
are selected according to any without-replacement probability sampling scheme
with first-order sample inclusion probability �i for cluster i (i D 1; : : : ;M). Within
the selected clusters, all population units are observed. If not all clusters are of equal
size, the sample size n of survey units is a random variable, the actual value of which
results from the numbers of population units belonging to the selected clusters:
n D P

sCL
Ni. Therein, sCL denotes the sample of m clusters with sCL D f1; : : : ;mg.

Its expectation is E.n/ D P
U �k D P

UCL
Ni � �i.

The first-order inclusion probability �k of a population element k corresponds
to the first-order inclusion probability �i of the cluster i, of which element k is
a member. The interpretation of clusters as survey units and of cluster totals as
variable values of these survey units allows the immediate derivation of the HT
estimator tC for the population total t of variable y according to (2.4):

tC D
X

sCL
ti � 1
�i

(2.23)

with ti, the total of y in the ith of the m sample clusters (i D 1; : : : ;m). In the unified
presentation of the HT approach to the estimation of t, for the C method, the HT
estimator (2.23) can be presented as

tC D
X

U�

C

y�
k (2.24)
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with the replications y� of the y-values in the sample s of survey units. The pseudo-
population U�

C of survey units generated in the HT procedure of the estimation of t
consists of 1

�i
replications of each sample cluster i or, in other words, 1

�i
clones of

all elements belonging to these clusters. The size of U�
C is N�

C D P
sCL

1
�i

� Ni, which
results in N if and only if both the Ni- and the �i-values or their product is equal for
all survey units.

Using the analogy above, the HT estimator (2.28) might as well be presented as

tC D
X

U�

CL

t�i

with the replications t� of the cluster totals in the sample sCL of selection units
constituting the cluster pseudo-population U�

CL. Moreover, Eqs. (2.5) and (2.6) can
also be applied to derive the theoretical variance and an unbiased variance estimator
of tC using �ij, the second-order cluster inclusion probabilities (i ¤ jI i; j D
1; : : : ;M).

Simple random cluster sampling (SIC) is a special type of cluster sampling,
where the clusters are selected according to the SI method. The expected sample
size is n D m � N with N, the average size of the clusters in U. For �k, �k D �i D m

M
with k 2 Ui applies for all population elements k (k 2 U). Thus, an SIC sample is
self-weighting at the cluster level, with

tSIC D M

m
�
X

sCL
ti: (2.25)

The size of the HT pseudo-population U�
C D U�

SIC, consisting of M
m replications of

each y-value from s, varies with the variance of the cluster sizes Ni. For all clusters
having the same size, Ni D N

M , N�
SIC D N applies. The second-order inclusion

probabilities are given by �ij D m.m�1/
M.M�1/ . To reduce the variance of the HT estimator

in a given SIC sample, ratio estimation can be applied with known population size
N to compensate for too-small or too-large pseudo-populations (see Sect. 2.6.1).
Compared to an SI sample of the survey units, an SI scheme applied to select clusters
of survey units leads, as a rule, to a less efficient estimation O� of a parameter � at
the same expected number of sampling units, meaning that d. O�;SIC/ > 1 usually
applies. However, it may lead to a more efficient estimation compared to the SI case
at the same expected survey costs.

Applying the idea of the �PS technique to cluster sampling, the most efficient
way to select the clusters with respect to the accuracy of the HT estimator is to
draw them with probabilities �i / ti (i D 1; : : : ;M). To be applicable in practice, a
good choice for these cluster inclusion probabilities �i with unknown ti-values is to
set them proportionally to the known cluster sizes Ni because, more often than not,
Ni / ti applies. This sampling technique is called “probability �k proportional to
size of cluster i sampling” (�PSC), which results in the HT estimator

t�PSC D N

m
�
X

sCL

ti
Ni
: (2.26)
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Within the HT process, for the probabilities �i D Nim
N , the generated pseudo-

population U�
C D U�

�PSC is always of size N�
�PSC D P

s
1
�k

D P
sC

1
�i

� Ni D N.
Therefore, t�PSC has a small variance if Ni / ti approximately holds. This high
efficiency is paid by more complexity and the variance estimation problem inherent
in �PS samples. When Ni D M

m for all clusters of UCL, tSIC is equal to t�PSC.

2.4.6 Two-Stage Random Sampling

Within a selected cluster i of a C sample, if not all Ni elements but rather a without-
replacement sample of ni elements belonging to the selected cluster is observed,
we speak of “two-stage random sampling” (TS). Any probability sampling method
might be applied at both stages of sampling.

TS sampling is the most general of the without-replacement sampling methods. It
contains all other without-replacement sampling schemes presented so far as special
cases. With �PS sampling at both stages and M D 1, the TS sampling scheme
comprises the �PS approach to sampling of Sect. 2.4.1 and, therefore, as its special
case also the SI sampling mode of Sect. 2.4.2. With m D M > 1, it encompasses also
the ST method of Sect. 2.4.4. Finally, a TS sample with m < M > 1 and ni D Ni is
nothing else than the cluster sample of Sect. 2.4.5. Also complex sampling schemes
can be derived from the TS approach to sampling because the clusters of the first
stage themselves may be stratified.

For the TS method, the first-order inclusion probability of a population element k
belonging to Ui is given by �k D �i ��kji, the product of the selection probability �i of
selecting cluster i as primary sampling unit and the conditional selection probability
�kji of selecting element k as secondary sampling unit, if cluster i is selected (k D
1; : : : ;NI i D 1; : : : ;M). For the generation of the HT pseudo-population U�

TS with
the TS method, each element k of the sample is replicated 1

�i��kji
times (k 2 Ui).

Considering the cluster structure of the population, the generation process can be
described in the following way (see Fig. 2.4): At the first stage, a pseudo-population
U�

i;HT is created within each sample cluster i by replicating each element k of sample
si within cluster i a number of 1

�kji
times (k 2 si; i D 1; : : : ;m). At the second

generation stage, each of these cluster pseudo-populations is replicated as a whole
1
�i

times. This generates the pseudo-population U�
TS of survey units as a set-valued

estimator of U with regard to the parameter of interest.
The HT estimator for a TS sample yields

tTS D
X

s
yk � 1

�i � �kji
D
X

sCL

�X
si

yk

�kji

�
� 1
�i

(2.27)
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Fig. 2.4 Generating a
pseudo-population for the
Horvitz–Thompson estimator
in TS sampling considering
the two-stage process

population U (size N ): t

sample s (size n)

pseudo-population U∗
T S (size N ∗

T S = sCL si
1

κ i ·πk | i
): tT S

TS sampling

1st generation stage: pseudo-popu-

lations within each sample cluster

m sample cluster pseudo-populations

U∗
i,HT (sizes N ∗

i,HT = si
1

πk | i
): t∗

i,HT

2nd generation stage: pseudo-popu-

lation of clusters

with
P

si

yk
�kji

, the HT estimator of the total ti of cluster i. In the pseudo-population
concept, as simple as always,

tTS D
X

U�

TS

y�
k (2.28)

applies. As usual, y� denotes the replications of y. For k ¤ l, the second-order
inclusion probabilities for the TS scheme are given by

�kl D
(
�i � �klji for k; l 2 Ui,

�ij � �kji � �ljj for k 2 Ui and l 2 Uj .i ¤ j/

(cf., for instance, Särndal et al. 1992, p. 136).
For clusters, homogeneous with respect to the study variable y, one could

increase the efficiency compared to tC by increasing the number of sampled clusters
m in the C sample and in turn, to save costs, by taking only a sample of elements
instead of all units within each selected cluster.

In two-stage simple random sampling (TSSI), the clusters at the first stage and the
elements at the second stage of the sampling procedure are both selected from the
respective populations by the SI method. This results in first-order sample inclusion
probabilities of �k D m

M � ni
Ni

for unit k in cluster i. Therefore, the size N�
TSSI of HT

population U�
TSSI varies with the different cluster sizes Ni. The best performance
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Table 2.1 Size N�

P and replication factors 1
�k

of the HT pseudo-population U�

P for without-
replacement probability sampling method P

Probability sampling method P Size N�

P of pseudo-population U�

P Replication factors 1
�k

�PS t.x/

n �Ps
1
xk

t.x/

xkn

SI N N
n

ST
P

s
1
�hk

1
�hk

STSI N Nh
nh

STSIP N N
n

STSIO N

HP
hD1

Nh �Sh

Shn

C
P

sCL
1
�i

� Ni
1
�i

SIC M
m �PsCL

Ni
M
m

�PSC N N
Nim

TS
P

sCL

P
si

1
�i��kji

� ni
1

�i��kji

TSSI M
m �PsCL

Ni
M
m � Ni

ni

with the TSSI procedure is achieved when clusters of equal size Ni are constructed.
The second-order inclusion probabilities �kl in TSSI samples are given by

�kl D
8
<

:

m
M � ni�.ni�1/

Ni�.Ni�1/ for k; l 2 Ui

m�.m�1/
M�.M�1/ � ni

Ni
� nj

Nj
otherwise:

Eventually, Table 2.1 summarizes the parameters (size and replication factors) of
the pseudo-population approach to different sampling techniques.

2.5 Non-probability Sampling Methods

The methods of purposive and arbitrary sample selection are non-probability
procedures. Up to a collective failure of these methods in predicting the outcome
of the presidential election in the USA in 1948 (cf., for instance, Quatember 2001a,
p. 53f), these were the most frequently used sampling methods in opinion and
market research. Nowadays, the problems of coverage, the long-term increase in
nonresponse rates, and the undeniable benefits of online surveys provide arguments
to discuss these methods again (cf., for instance, Baker et al. 2013, p. 6ff). They are
in use, for example, “in case-control studies, clinical trials, (or) evaluation research
designs” (Baker et al. 2013, p. 1).
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Serious examples of purposive sampling are quota, expert choice, and cut-off
sampling. These methods orient themselves to certain probability sampling designs.
In all these methods, the sample inclusion probabilities of population units cannot
be calculated just by the design without assuming a model. Hence, design-based
inference cannot be applied.

Quota sampling (QS), a method often applied by of market and opinion
research organizations, for example, is oriented towards the STSI sampling scheme.
Historically, it was developed in the U.S. market and opinion research field in the
1930s in reaction to the totally arbitrary sample selection modes used until then
(cf. Quatember 1996b, p. 29). In the QS scheme, the interviewers’ freedom in the
selection of sampling units without replacement is limited by known population
“quotas” of certain attributes that must be the same in the QS sample. For more
than one “quota variable,” the quotas can be provided in combined or marginal
form (cf., for instance, Quatember 1996b, p. 19ff), resulting in a survey that is
exactly representative with respect to the distribution of these combined or marginal
variables. On the use of the estimator

tQS D N � ys; (2.29)

based on the HT estimator in an STSIP sample, Ardilly and Tillé (2006) showed
that the extent of its bias depends, on the one hand, on the extent of the deviation
of the combined sample quotas from the combined population quotas and, on the
other hand, on the covariance of variable y and first-order inclusion probabilities (cf.
Ardilly and Tillé 2006, p. 111ff). Apart from rounding errors, the former extent is
always zero for quota sampling with combined quotas. Quatember (1996b) showed
that this does not apply for QS samples with marginal quotas (cf. Quatember 1996b,
p. 64ff). To minimize the impact of the above-mentioned covariance on the bias,
the QS sample has to take an STSIP sample with its uniform first-order inclusion
probabilities as its model. Various features may help to meet this target: the survey
topic itself, the choice of quota variables, the respective interviewer training, the
actual interviewer behavior, restrictions with respect to the allowed times and places
of interviews, etc. (cf., for instance, Quatember 2001b, p. 96f). In this context, it can
be seen that tQS is not a design-based but a model-based estimator of a total t, which
only works when the assumed model holds. In practice, this is the crucial point
because the adequacy of the model is always disputable.

To estimate t by tQS, a pseudo-population U�
QS is generated presuming uniform

first-order inclusion probabilities �k D n
N for all population elements. The quality

of U�
QS as an estimator of U with regard to t is bad, if the actual �k-values are not at

least approximately uniform, although the size N�
QS of U�

QS corresponds to the true
size N of U. The reason is that the pseudo-population U�

QS is not based on the ML
principle, unlike in the HT case, but on a questionable model assumption that will
almost never hold in the practice of quota sampling (for the pseudo-population-
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Fig. 2.5 Generating a
pseudo-population for a
model-based estimator in
quota sampling

population U (size N ): t

sample s (size n)

pseudo-population U∗
QS (size N ∗

QS = N ): tQS

quota sampling

model assumption: STSIP sampling

generating algorithm of all purposive and arbitrary sampling schemes exemplarily
shown for quota samples, see Fig. 2.5).

Another purposive method is expert choice sampling (EC). This non-probability
sampling method is oriented towards the idea of the SIC scheme. “Experts”
consciously select one or more clusters of population units that in their opinion are
typical for the survey topic. The survey is only investigated within these purposively
chosen clusters. This selection scheme can only deliver appropriate estimators for
population parameters if the assumed sampling model holds at least approximately.
SIC, as well as SI sampling, may be considered for this purpose. With the chosen
model, the design-based estimator of the parameter under study is calculated. For
the HT estimator, the generated pseudo-population U�

EC can only be appropriate for
the estimation of t when the chosen model holds true.

A third example of purposive sample selection schemes is cut-off sampling
(CO). This method can be reasonably applied only for the estimation of a highly
concentrated total. All the survey units with minor contributions to the sum of y
are cut off the population U, and only the few units for which the sum of the y-
values almost comes close to the total t are observed. This saves on financial costs
at a small reduction in inference quality. However, it must be clear that the estimator
tCO, the sum of the observed y-values, always underestimates t. The model applied to
treat the subpopulation U�

CO cuts off the original population U because the pseudo-
population for U is that of a full survey with respect to the parameter of interest.

Finally, arbitrary sampling does not even try to follow a probability sampling
plan. Those who are available are observed. This is not a problem as long as
the surveys are purely for entertainment, for instance, of a radio audience. When
taking such “convenient” samples in empirical research, for instance, in medicine
or psychology to draw statistical conclusions about the characteristics of any
population, the underlying model with respect to the sampling procedure must
be the SI scheme. With this model, there is a risk that, more often than not, the
model-based-generated pseudo-population does not even come close to the actual
population regarding the interesting parameters.
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2.6 Other Estimators of a Total

2.6.1 The Ratio Estimator

In this section, estimators of the total t of an interesting variable y in the population
U under study that “correct” the HT estimator tHT are considered. In contrast to tHT

alone, these other estimators can make use of auxiliary information not only in the
design phase of the survey but also in the estimation phase after the data collection.

An auxiliary variable is denoted as x. Then, let xk be the value of x for survey
unit k, t.x/ its total, and t.x/HT its HT estimator. An example of such an estimator as
described above is the ratio estimator trat, which is calculated by

trat D tHT � t.x/

t.x/HT

: (2.30)

Therein, tHT denotes the HT estimator of t and

t.x/HT D
X

s
xk � 1

�k

is the HT estimator for the total of x. The ratio estimator trat corrects (or “calibrates”)
the HT estimator tHT with respect to the total t.x/ of an auxiliary variable x. The
rationale behind this approach is that if in a sample the HT estimator t.x/HT under- or
overestimates the known total t.x/ of x, then the estimator tHT will very likely too
also under- or overestimate the unknown total t of y if y and x correlate positively.
Note that for negative correlations of y and x, the so-called product estimator tpro D
tHT � t

.x/
HT
t.x/

is preferred (cf., for instance, Cochran 1977, p. 186).
Let us return now to the representation of the concept of the HT estimator by

the idea of generating a pseudo-population (see Fig. 2.2). Applying this picture, the
reasoning behind the ratio estimator is that a pseudo-population U�

rat instead of the
HT pseudo-population U�

HT is generated by the replication of each y- and x-value

of s not 1
�k

times as in the HT approach, but

�
1
�k

� t.x/

t
.x/
HT

�
times. For t.x/HT ¤ t.x/, the

individuals are given higher or lower weights than the design weights to increase or
decrease the size N�

HT D P
s
1
�k

of the HT pseudo-population U�
HT. This is done in

such a way that the estimator t.x/rat of the total of x is exactly equal to the parameter
t.x/. Following the notation used in (2.9) and ignoring that the replication factors do
not have to be integers, with the clones x� of the x-values in the sample, t.x/rat can be
represented as

t.x/rat D
X

U�

rat
x�

k D t.x/:
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Fig. 2.6 Generating a
pseudo-population for the
ratio estimator population U (size N ): t

sample s (size n)

pseudo-population U∗
rat (size N ∗

rat = s
1

πk
· t ( x )

t ( x )

HT
): trat

probability sampling method

ratio-corrected HT approach

This means that in the light of the sample results, we depart deliberately from
the ML approach in generating the HT pseudo-population. Creating in this way a
pseudo-population U�

rat, the ratio estimator trat of t is again just the sum over the y�
k -

values of all (full or piece) units in this “ratio-corrected” pseudo-population U�
rat (see

Fig. 2.6). This completely corresponds to the generation of a typical HT population
U�

HT and the calculation of the estimator trat using the totals tHT and t.x/HT in U�
HT. This

results in the following alternative expression of the ratio estimator trat from (2.30):

trat D
X

U�

rat
y�

k D
X

U�

HT

y�
k � t.x/P

U�

HT
x�

k

: (2.31)

The quality of the estimator trat depends solely on the quality of the generated
pseudo-population U�

rat with respect to the total of variable y, which does not
necessarily mean with respect to population size N.

The appearance of the estimator trat from Eqs. (2.30) and (2.31) is a result of
the application of a general rule on the estimation of such parameters, which can be
expressed as a function of the population totals of several variables (cf., for instance,
Särndal et al. 1992, p. 162f). The principle is to generate a pseudo-population U�

HT
consisting of the variables involved in the function by replicating the observed
variable values of all of these variables 1

�k
times (k 2 s). Then, the unknown totals in

the function are replaced by their HT estimators, which are the pseudo-population
totals. Assuming, for instance, that we want to estimate the ratio

R D t

t.x/
; (2.32)



28 2 The Pseudo-Population Concept

following this principle, we estimate this function of two population totals by

RHT D tHT

t.x/HT

D
P

U�

HT
y�

kP
U�

HT
x�

k

: (2.33)

Multiplying RHT by t.x/ results in the ratio estimator trat (2.30). The ratio 1

t
.x/
HT

is only

approximately unbiased for 1

t.x/
. Consequently, OR and then also trat are approximately

unbiased estimators for the underlying parameters R and t.
The parameter R is a simple example of a parameter � , which is a nonlinear

function of unknown population totals. Replacing these totals by their HT estimators
yields an estimator O� of the nonlinear parameter, for which it is often impossible to
calculate an exact expression for its theoretical variance. Approximate expressions
for the variance and its estimator can make use of the Taylor linearization technique
(cf., for instance, Wolter 2007, p. 230ff). This strategy approximates a nonlinear
estimator O� by a proxy estimator, say O�T , which is a linear function of several HT
estimators. With this technique, the variance and a variance estimator for this proxy
estimator is calculated instead of the exact expressions. The actual substitute O�T is
a result of the first-order Taylor expansion of the nonlinear function O� of estimated
totals. In large samples, the linearized estimator O�T will behave approximately like
the original nonlinear estimator O� , in which the theoretical variance is needed. As
long as the partial derivatives can be calculated, an approximate variance formula
and an approximate estimator of the variance can be determined with this technique.

For the Taylor linearization of RHT, for example, the first-order Taylor series
expansion RT of RHT is given by

RHT � RT D R C
�
ıRHT

ıtHT
.t; t.x//

	
� .tHT � t/

C
"
ıRHT

ıt.x/HT

.t; t.x//

#
�
�

t.x/HT � t.x/
�

D R C t.z/HT

t.x/
:

Therein, the term ıRHT
ıtHT



t; t.x/

�
describes the first partial derivative of the function

RHT after tHT around the point .t; t.x//. Furthermore, t.z/HT denotes the HT estimator of

the population total of variable z D y � R � x, for which t.z/HT D tHT � R � t.x/HT applies.
The point is that the theoretical variance of RT ,

V.RT/ D 1


t.x/
�2 � V

�
t.z/HT

�
; (2.34)
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can be used as an approximation of the variance V.RHT/ of the nonlinear estimator
RHT. In (2.34), the term V.t.z/HT/ denotes the variance of the HT estimator of the
population total of variable z,

V
�

t.z/HT

�
D
XX

U
�kl � zk

�k
� zl

�l
; (2.35)

with zk D yk � R � xk (k 2 U).
Therefore, the approximate variance (2.34) of RHT can be estimated by

OV.RHT/ D 1
�

t.x/HT

�2 �
XX

s

�kl

�kl
� Ozk

�k
� Ozl

�l
; (2.36)

which arises as a result of the substitution of t.x/ by t.x/HT and of R by RHT, yielding
Ozk D yk � RHT � xk (k 2 s).

Returning to the ratio estimator trat of total t, following (2.30), trat can be
written as

trat D tHT � t.x/

t.x/HT

D t.x/ � RHT:

Hence, its variance results in

V.trat/ D 

t.x/
�2 � V.RHT/ � V

�
t.z/HT

�
: (2.37)

The theoretical variance V.RHT/ is approximated by V.RT/ from (2.34). Hence, the
variance of the ratio estimator can be approximated by the variance (2.35) of the HT
estimator of variable z D y � R � x. Following (2.36), V.trat/ is estimated by

OV.trat/ D


t.x/
�2

�
t.x/HT

�2 �
XX

s

�kl

�kl
� Ozk

�k
� Ozl

�l
: (2.38)

The disadvantage of only approximate unbiasedness of the ratio estimator in
comparison with the HT estimator can only be justified if the efficiency of the
estimation by trat increases directly compared to the estimation by tHT. It can be
shown that this will be the case when there is a high statistical relationship between
study variable y and auxiliary variable x represented by a straight line through the
origin of the coordinate system (cf., for instance, Lohr 2010, p. 133).

Ratio estimation and regression estimation (see Sect. 2.6.3) are examples of
model-assisted methods. This means that their efficiency compared to the design-
based HT estimator depends on the correctness of the underlying model. However,
the estimators’ approximate unbiasedness and the validity of the variance and
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Fig. 2.7 Generating a
pseudo-population for the
separate ratio estimator in ST
sampling

population U (size N ): t

sample s (size n)

pseudo-pop. U∗
sep (size N ∗

sep =
H

h=1
sh

1
πk

· t ( x )

h

t ( x )

h,HT
): tsep

ST sampling

ratio-corrected HT approach

within each stratum

variance estimator formulae are not affected if the model of linear dependency
between y and x does not hold.

In ST sampling, the ratio estimator (2.30) combines 1
�k

� t.x/

t
.x/
HT

replications of each

value yk in s to the overall-pseudo-population U�
rat. In an alternative approach to this

combined ratio estimator, ratio estimation is applied in each stratum h to estimate
the stratum totals t1; : : : ; tH of y (h D 1; : : : ;H). This corresponds to the generation
of separate pseudo-populations for each stratum. In this case, the replication factor

of unit k in stratum h is given by 1
�k

� t
.x/
h

t
.x/
h;HT

(k 2 Uh). The so-called separate ratio

estimator

tsep D
HX

hD1
th;HT � t.x/h

t.x/h;HT

(2.39)

may be chosen, if ratios th
t
.x/
h

vary considerably over the strata (see Fig. 2.7).

A special case of ratio estimation is obtained when the size N of population U
is used as known auxiliary information. For this purpose, an auxiliary variable x is
defined, for which xk D 1 applies for each population unit k. Then, the population
total of x is given by t.x/ D N. Its HT estimator results in t.x/HT D N�

HT D P
s
1
�k

, the
size of the pseudo-population U�

HT.
With this specific auxiliary variable x, the ratio estimator according to (2.30)

results in:

trat.N/ D tHT � t.x/

t.x/HT

D tHT � N
P

s
1
�k

: (2.40)
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If
P

s
1
�k

¤ N applies for the sample drawn, tHT is ratio-corrected by trat.N/ in

the same proportion that the sum of the design weights
P

s
1
�k

is adjusted to N.

If
P

s
1
�k

D N, which is the case in several probability sampling methods (see
Table 2.1), trat.N/ D tHT applies.

Looking at the adapted pseudo-population U�
rat.N/ (compare with Fig. 2.6), trat.N/

can be described as a HT estimator corrected in the most natural way. It is generated

by replicating each yk exactly

�
1
�k

� NP
s
1
�k

�
times, ensuring a pseudo-population

U�
rat.N/ of size N�

rat.N/ D N, the size of the original population U.
For the nonlinear approximately unbiased estimator trat.N/, approximate expres-

sions for the variance and its estimator can also make use of the Taylor linearization
technique. With RHT D tHTP

s
1
�k

being a natural estimator of the population mean

y D t
N , the ratio estimator trat.N/ can be expressed by trat.N/ D N � RHT. For the

approximation of variance V.trat.N//, the z-values in (2.35) are given by zk D yk � y
(k 2 U):

V.trat.N// �
XX

U
�kl � zk

�k
� zl

�l
: (2.41)

This variance is estimated by

OV.trat.N// D N2

.N�
HT/

2
�
XX

s

�kl

�kl
� Ozk

�k
� Ozl

�l
(2.42)

with Ozk D yk � tHT
N�

HT
(k 2 s).

2.6.2 Poststratification and Iterative Proportional Fitting

A type of ratio estimation based on known group sizes can also be used to increase
the efficiency of an estimator for t in a sample drawn from a population that was
not partitioned into these strata before the sample selection. The corresponding
estimation methods are poststratification and iterative proportional fitting (IPF) or
raking adjustment (cf., for instance, Bethlehem 2002).

In an observed probability sample s drawn from a population U, which was not
stratified by a one- or more-dimensional categorical variable x in the design phase
of the survey, it may appear that the interesting variable y differs in these sample
strata. Furthermore, the sizes of the H stratum pseudo-populations built by the HT
approach (see Sect. 2.2) may differ widely from the true stratum sizes Nh (h D
1; : : : ;H). If both cases apply, we might want to mimic the stratification by x after
the data collection.
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The poststratified (PST) estimator for t is given by

tPST D
HX

hD1
th;rat.N/ D

HX

hD1
th;HT � NhP

sh

1
�k

: (2.43)

This estimator is the sum over the ratio estimators th;rat.N/ calculated in each
poststratum h. Therein, th;HT D P

sh
yk � 1

�k
denotes the HT estimator for the total

th of y in category h of x. The sum
P

sh
denotes the sum over the nh elements of s

belonging to poststratum h, where the sample number nh is random. The estimator
tPST corrects the design weights of the HT estimator (and the replication factors
of the generated pseudo-population U�

PST) with respect to the relative category
sizes of variable x only after the data collection. As a consequence, the estimated
population U�

PST will be correctly distributed over x with the true strata sizes
N1; : : : ;NH although the sample itself is not exactly representative with respect to
this distribution. Therefore, N�

PST D N also applies.
An example of an application in which poststratification will pay off in terms of

accuracy is when an SI sample is drawn. Applying the PST estimator in this case
(SIPST) leads to

tSIPST D
HX

hD1

Nh

nh
�
X

sh
yhk: (2.44)

Hence, instead of U�
SI, a pseudo-population U�

SIPST is generated, for which each
sample unit of sample poststratum sh is replicated not N

n but Nh
nh

times (h D
1; : : : ;H). This shall correct for incorrect relative stratum sizes in the HT pseudo-
population U�

SI. For large n and not-too-small strata sizes Nh, the effect is that the
variance of tSIPST will be close to that of tSTSIP, the HT estimator of STSIP sampling
(cf., for instance, Lohr 2010, p. 143). This means that the estimation procedure
SIPST pays off when V.tSTSIP/ << V.tSI/ applies.

The same concept is the basis for the IPF (or raking) approach to estimation.
IPF may be applied when there is a more-dimensional categorical poststratification
variable x, of which in contrast to the requirements for PST estimation only marginal
population stratum sizes are known. The process consists of an iterative adjustment
of the original HT design weights 1

�k
of the sampling units k in a probability

sample s.
It starts with the first (one- or more-dimensional) marginal poststratification

variable by adapting the design weights dk D 1
�k

in the same way as in a PST
estimator considering only this variable (k 2 s). As a consequence, the sum of the
adapted design weights of the sample elements belonging to the different poststrata
of the first variable will equal the true stratum sizes of the first variable in population
U. By these first-step adapted design weights, the stratum sizes of all the other
marginal poststratification variables are only adjusted to correctly sum to N. In the
next step, the new weights are adapted again to sum to the true stratum sizes of
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the second marginal poststratification variable. This will in turn affect the stratum
sizes, calculated by the sum of the current weights over the sample elements in
the respective strata, of all the other variables, including the first. The process is
continued for all poststratification variables again and again until the stratum sizes
of all these variables, calculated from the adjusted weights, deviate from their true
marginal distributions in U by no more than a prescribed maximum. With these final
weights dk;IPF, the total t of y is estimated by

tIPF D
X

s
yk � dk;IPF: (2.45)

Assuming full response, the idea of the IPF estimator can be described in the
following way: It starts with the generation of a HT pseudo-population U�

HT of size
N�

HT D P
s
1
�k

with the replication factors 1
�k

for the sample elements k (k 2 s).
In the first iteration step, by an adjustment of the original replication factors, the
composition of the HT population is changed to equal the true category sizes of
the first marginal poststratification variable and, consequently, the true size N of the
original population. In the second iteration step, the pseudo-population generated in
the first step of this process is again adjusted by a change of the replication factors
calculated for each k 2 s in the first step, but this time with respect to the exact
representativeness of the second categorical variable. This, in turn, destroys the
exact representativeness of the pseudo-population for the first variable. In the next
step, the adjustment is done according to the third marginal variable, which again
destroys the distribution according to the second variable, and so on. The process
is repeated as long as the composition of the pseudo-population with respect to the
marginal distributions of the poststratification variables exceeds a prescribed limit
of deviation from the true distributions. If the marginal deviations for all categories
of all poststratification variables fall below this limit, the process is stopped and
the current replication factors are denoted by dk;IPF. When each sample unit k
is replicated dk;IPF times, a pseudo-population U�

IPF of size N�
IPF D N with the

replication variable y� is generated, in which the IPF estimator is calculated by

tIPF D
X

U�

IPF

y�
k (2.46)

(see Fig. 2.8). Pseudo-population U�
IPF corresponds approximately to the original

population U with respect to the marginal distributions of the poststratification
variables used. This property did not apply in the HT pseudo-population, but in
contrast to the PST estimation, in the IPF estimation this does not apply to the joint
distribution of the variables used for poststratification of the population.
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Fig. 2.8 Generating a
pseudo-population for the IPF
estimator population U (size N ): t

sample s (size n)

pseudo-population U∗
IP F (size N ∗

IP F = s dk,IP F ): t IP F

probability sampling design

IPF approach

2.6.3 The Regression Estimator

Another example of a model-assisted estimator that uses available auxiliary infor-
mation in the survey’s estimation phase is the regression estimator treg, of which
the ratio estimator itself is a special case. In contrast to the latter, the regression
estimator can be used without loss of efficiency when the data on y and x in the
scatter plot are based on an arbitrary straight line not necessarily going through the
origin.

Describing the idea for a single auxiliary variable x, known for all population
elements, the regression (reg) estimator develops from

t D
X

U
yk C

X
U

Oyk �
X

U
Oyk:

For k 2 U, the proxy yk-values Oyk are calculated from the linear regression equation
y D ˇ1 � x C ˇ2 C � with the residuals � D yk � Oyk (cf., for instance, Särndal et al.
1992, p. 230ff). After some calculation, this yields

t D
X

U
Oyk C

X
U
.yk � Oyk/

D
X

U
.ˇ1 � xk C ˇ2/C

X
U
.yk � ˇ1 � xk/� N � ˇ2:

Having information on all xk-values in the population, the only term that has to
be estimated is the second sum. The HT estimator of the sum t.z/ D P

U.yk �ˇ1 �xk/

of variable z D y � ˇ1 � x is given by t.z/HT D P
s.yk � ˇ1 � xk/ � 1

�k
. Rearranging
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Fig. 2.9 Generating a
pseudo-population for the
regression estimator population U (size N ): t

sample s (size n)

pseudo-population U∗
reg (size N ∗

reg = s
1

π k
· g): treg

probability sampling design

regression-corrected HT approach

the equation and replacing the regression coefficient ˇ1 by its estimator b1 from the
sample (see Sect. 2.8.1) gives the regression estimator

treg D tHT C b1 �
�

t.x/ � t.x/HT

�
: (2.47)

Equation (2.47) can be presented in the following way:

treg D tHT �
�
1C b1

tHT
�
�

t.x/ � t.x/HT

�	
:

With g D 1C b1
tHT

� .t.x/ � t.x/HT/, this results in

treg D tHT � g (2.48)

with g D 1 and treg D tHT for t.x/ D t.x/HT, which will be approximately fulfilled

for large n. For t.x/ ¤ t.x/HT, the weight g is not equal to one and tHT is “regression-

corrected” to treg. For the regression estimator of t.x/, t.x/reg D t.x/ applies.
Described by the picture of generating a pseudo-population, the regression

estimation process creates a population U�
reg of size N�

reg D P
s
1
�k

� g. Each sample

value yk is replicated
�
1
�k

� g
�

times, adapting in this way the sum of the replicated

values of auxiliary variable x in the HT pseudo-population U�
HT exactly to t.x/ and the

size N�
HT of U�

HT (compare with Fig. 2.2) to N�
reg based on an under- or overestimation

of t.x/ by t.x/HT (Fig. 2.9). This may lead to a more efficient estimation of the original
population U with respect to t.



36 2 The Pseudo-Population Concept

Table 2.2 Size N�

: of pseudo-population U�

: generated in different estimation processes for a total
t under general � sampling

Estimator Size N�

: of pseudo-population U�

: Replication factors

tHT
P

s
1
�k

1
�k

trat
P

s
1
�k

� t.x/

t
.x/
HT

1
�k

� t.x/

t
.x/
HT

trat.N/ N 1
�k

� NP
s
1
�k

treg N�

reg D P
s
1
�k

� g 1
�k

� g

tgreg N�

greg D P
s
1
�k

� gk
1
�k

� gk

Both the ratio (2.30) and the regression estimator (2.47) consist of the HT esti-
mator and a correction term based on information on x. Both are also approximately
unbiased for t. This is true for treg because ˇ1 can only be estimated approximately
unbiasedly. The theoretical variance of treg can be approximated through Taylor
linearization (see, for instance, Särndal et al. 1992, p. 234ff). For SI sampling, for
instance, the variance of the regression estimator treg;SI is approximately given by

V.treg;SI/ D N2 � .1� f / � S2

n
� .1 � 	yx/

with 	yx denoting the correlation of y and x in the population.
If a whole auxiliary vector x consisting of l � 1 auxiliary variables x1; : : : ; xl

is available, we can generalize treg to the general regression estimator tgreg using
regression theory for the estimation of the regression coefficients ˇ1i (see, for
instance, Särndal et al. 1992, p. 225ff). With these estimates b1i (i D 1; : : : ; l), to

create the pseudo-population U�
greg, each sample element k is replicated

�
1
�k

� gk

�

times with individual weights gk depending on the sample s and parameters of
the assumed regression model (for a discussion on the role of the model see, for
instance, Särndal et al. 1992, p. 238f). In U�

greg, the pseudo-population totals of
the replicated variables x�

1 to x�
l correspond to the respective population totals of

variables x1 to xl. For large n, the adjusted replication factors 1
�k

� gk will be close to

the original design weights 1
�k

.
Table 2.2 provides an overview of the sizes of the pseudo-populations U�

: and the
replication factors generated in different estimation processes for general � samples
(see Sect. 2.4.1).

2.7 The Estimation of Special Totals

Other tasks of statistical surveys concern, for instance, the estimation of the
cumulative distribution function of a variable or the estimation of the size of a
certain population under investigation. In this section, the concept of generating
a pseudo-population is applied to these two tasks.
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2.7.1 The Estimation of the Cumulative Distribution Function

The general principle of generating a pseudo-population to estimate an actual
population U and calculate estimators of parameters characterizing U by the
same characteristics describing the pseudo-population can also be applied for the
estimation of the cumulative distribution function or, vice versa, quantiles of the
distribution of variable y. The cumulative distribution function F.y0/ of variable y
at a certain point y D y0 in the population is defined as the proportion of population
units having a variable value � y0. Let variable z indicate the possession of the
property yk � y0 for element k of U. Then,

zk D
(
1 for yk � y0,

0 otherwise.

applies. Hence, at y D y0,

F.y0/ D t.z/

N
(2.49)

is the population mean of variable z according to (2.2) with t.z/ D P
U zk, the total

number of elements k in U with yk � y0.
The question is, how to estimate F.y0/ in a general without-replacement prob-

ability sampling setup with arbitrary inclusion probabilities �k. This can be done
by estimating t.z/ and then dividing this estimator by N if the generated pseudo-
population contains exactly N units as it would happen with SI sampling. Otherwise,
the estimation process may again follow the algorithm in Fig. 2.6 with size N
as auxiliary information and trat.N/ from (2.40) adapted as estimator of F.y0/.
Replicating all yk-values of the sampling units in a selected sample s exactly�
1
�k

� N
N�

HT

�
times, a set-valued estimator U�

rat.N/ of the original population U is

created with respect to y or, more specifically, to F.y0/. Therein, the cumulative
distribution function F.y�

0 / of the replication variable y� is the estimator of F.y0/ in
U. Using the replicated z-variable z� results in the approximately unbiased estimator

Frat.N/.y0/ D t.z/rat.N/

N
D 1

N
� t.z/HT � N

N�
HT

D t.z/HT

N�
HT

D FHT.y0/: (2.50)

Applying the ratio estimator t.z/rat.N/ correcting for estimated sizes N�
HT ¤ N in U�

rat.N/
by a division by N corresponds to the estimation of (2.49) by inserting the HT
estimators for both parameters, t.z/ and N. Hence, the estimation of the population
mean F.y0/ might as well follow the algorithm illustrated in Fig. 2.11. In this case,
a HT pseudo-population U�

HT is generated by cloning each sample unit k 1
�k

times
with respect to y. The cumulative distribution function FHT.y�

0 / of the replication



38 2 The Pseudo-Population Concept

variable y� in this estimated population U�
HT of size N�

HT D P
s
1
�k

estimates F.y0/ in
the same way as Frat.N/.y�

0 / does. Using the replicated z-values z� from U�
HT results

in the following HT based expression of (2.50):

FHT.y0/ D
P

U�

HT
z�

k

N�
HT

: (2.51)

In a self-weighting sample such as an SI or STSIP sample, this estimator of F.y0/
can be calculated directly by the observed sample distribution of y because each
sample unit represents the same number of population units.

Consequently, estimates for the median or other quantiles of the population
distribution of y can also be calculated directly from the distribution of y� in
the pseudo-population U�

HT. In self-weighting samples, this corresponds to the
calculation of these estimators directly in the sample.

2.7.2 The Estimation of the Unknown Size of a Population

In very special cases of statistical surveys, the size N of the population of interest
U itself is the parameter to be investigated. Since its development, the capture–
recapture (CR) procedure has been used to estimate the size of animal populations
such as fishes in a lake (for a historical review, see International Working Group
for Disease Monitoring and Forecasting 1995a, p. 1048f). Applications to human
populations started with a coverage evaluation in the U.S. census and the estimation
of the extent of the registration of human deaths and births (cf., for instance, Sekar
and Deming 1949). Other applications of the CR method include physics, empirical
social research, and epidemiology (see, for instance, International Working Group
for Disease Monitoring and Forecasting 1995b, and the bibliography in Fienberg
1992).

For the purpose of the estimation of N, let y be a variable with unique value
yk D 1 for all population units. Then, N can be interpreted as the total of y in
U. Hence, in a without-replacement probability sample s drawn from U, the HT
estimator NHT of N yields NHT D P

s
1
�k

, the number N�
HT of units in the pseudo-

population U�
HT. According to (2.9), this can be denoted as

NHT D
X

U�

HT

1: (2.52)

Obviously, the probabilities �k have to be known for the calculation of NHT. Hence,
the HT estimator of N can only be applied when the calculation of the probabilities
�k does not postulate the knowledge of N or when these probabilities can be
determined by a model concerning the actual sampling procedure. A simple random
cluster sample, for example, with �k D m

M for k 2 U yields NSIC D M
m � n, where

n is the number of units caught in the cluster sample sC (n D P
sC

Ni). In such a
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case, the estimation of N can be done by NHT and without the inclusion of further
auxiliary information.

As an alternative to the HT estimation, the above-mentioned CR technique
applies, in its basic form, the idea of ratio estimation (see Sect. 2.6.1) to the
specific problem of the estimation of N. The auxiliary information needed for
ratio estimation is brought into the process before the sample s is drawn. At this
pre-sampling stage, a sufficiently large number of C units from U are captured
without replacement, marked, and then replaced into the population. Only after
that, a probability sample s of size n is selected without replacement from U with
arbitrary first-order sample inclusion probabilities�k for all units k 2 U. In practice,
sometimes, a model concerning the actual sampling procedure must be formulated.
Understandably, in wildlife applications of the CR method, SI sampling is the most
used sampling model.

Let the auxiliary variable x indicate whether a sample element k 2 s is marked
(xk D 1) or not (xk D 0). In the sample s, for each element k, variable x is observed.
With these observations, the population size N can be estimated by

Nrat.CR/ D NHT � t.x/

t.x/HT

D
X

s

1

�k
� C
P

s xk � 1
�k

(2.53)

(for
P

s xk ¤ 0). The estimator (2.53) corrects the HT estimator NHT of N by
adapting the estimated number

P
s xk � 1

�k
of marked sampling units in U to

its parameter C. The CR estimator Nrat.CR/ can be applied not only if the first-
order inclusion probabilities �k are known or when they can be specified by a
corresponding model, but also if these probabilities are equal for all k 2 s as it
is the case for SI, STSI, or SIC sampling. In such cases, the estimator (2.53) reduces
to Nrat.CR/ D nCP

s xk
with

P
s xk being the number of marked elements recaptured in s.

Looking behind the idea of the estimator (2.53), the estimation of N by the CR
method can be described in the following way once again using the picture of the
generation of a pseudo-population: In a population U of unknown size N, at the
first process stage, C elements are captured and marked, resulting in a “recapture-
ready” population UCR of unknown size NCR D N. From UCR, a probability sample
s is drawn according to any probability sampling method. All sampling units are
observed with respect to auxiliary variable x. Using this information, an artificial
population U�

rat.CR/ is generated by replicating each element k of s a number of�
1
�k

� CP
s xk

1
�k

�
instead of 1

�k
times. Counting the number of elements of U�

rat.CR/

leads directly to the estimator Nrat.CR/ of N (see Fig. 2.10). Hence, within the
generated pseudo-population U�

HT, the estimator (2.53) can be re-written as

Nrat.CR/ D
X

U�

rat.CR/

1: (2.54)
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Fig. 2.10 Generating a
pseudo-population for the
estimation of population size
using the capture–recapture
method

population U: N

population UCR : N CR = N

sample s (size n)

pseudo-population U∗
rat (CR ) : N rat (CR )

marking of C elements

(capture stage)

probability sampling method

(recapture stage)

ratio-corrected HT approach

The performance of the estimator (2.53) with different probability sampling
methods may be increased by considering the population structure with respect to
the sampling scheme already at the capture stage of the CR technique. To start with
the most general probability sampling plan with, at most, two stages, to apply TS
sampling (see Sect. 2.4.6), only in each cluster i drawn for the random sample sC

consisting of m of all M clusters, a predetermined sufficiently large number of Ci

survey units have to be marked (i D 1; : : : ;m;
P

sC
Ci D C). Then, after drawing

sufficiently large probability samples of secondary units within the sample clusters,
the cluster sizes Ni of these clusters are estimated by the ratio estimator (2.53)
applied in each of them. Finally, the estimated total size of the sampled clusters
is projected to the number of clusters in the population. The sample inclusion
probabilities needed for the calculation of (2.53) have to be given or modeled. For
random cluster sampling, this approach leads to Nrat.CR/ D NHT.

It follows for the application of the CR technique in general �PS schemes,
which are examples of methods where no such population structure has to be
incorporated that the C population units to be marked are chosen from the entire
population. For Nrat.CR/ to be calculated with �PS sampling, the first-order sample
inclusion probabilities �k might only be determined according to an underlying
model concerning the population distribution of the used size variable. For the
application of an ST sampling scheme (see Sect. 2.4.4) with the CR technique, in
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its capture phase, a predetermined sufficiently large number of Ch elements have to
be marked in each population stratum h to be able to calculate either the combined
or separate ratio estimator as presented in Sect. 2.6.1 (h D 1; : : : ;H;

P
Ch D C).

The inclusion probabilities needed can be calculated again according either to the
actual sampling scheme or a model of it.

As Nrat.CR/ is a ratio estimator, the estimation of N by (2.53) is biased.
Furthermore, for small populations and samples, the usual approximate confidence
interval calculated with an estimator of the theoretical variance of Nrat.CR/ derived
from (2.38) is not valid because, in such cases, the distribution of Nrat.CR/ may be
skewed and hence violate the assumption of being approximately normal. A less
biased but still skewed estimator of N was presented for SI sampling by Chapman
(1951), and the appropriate variance estimator was presented by Seber (1970).
However, an alternative for the construction of valid confidence intervals is provided
by the finite population bootstrap method applying the pseudo-population concept
(see Sect. 5.4).

2.8 More Estimation Examples

2.8.1 The Estimation of Parameters Such As Covariance

Parameters other than the total of a study variable are often estimated in the
practice of statistical surveys, for instance, measures concerned with the relation
of variables such as their covariance. The “(N � 1)-population covariance” C.y; x/
of two variables is defined as

C.y; x/ D 1

N � 1 �
X

U
.yk � y/ � .xk � x/

D 1

N � 1 � t.y�x/ � 1

N � .N � 1/
� t � t.x/; (2.55)

with t.y�x/ denoting the population total of the product y � x of the two variables y and
x. Furthermore, the “(N � 1)-variance” V.y/ D C.y; y/ is consequently defined as

V.y/ D 1

N � 1
�
X

U
.yk � y/2

D 1

N � 1
� t.y

2/ � 1

N � .N � 1/ � t2; (2.56)

with t.y
2/ being the population total of the squared y-values.

To estimate these population parameters, a HT pseudo-population U�
HT is

generated with respect to the relevant information. This means that the sample
unit k drawn in a probability sample without replacement with first-order inclusion
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Fig. 2.11 Generating an HT
pseudo-population for the
estimation of various
parameters of the original
population

population U (size N ): C (y, x ), V (y), ρyx , β1, β2, ...

sample s (size n)

probability sampling method

HT approach

pseudo-population U∗
HT (size N ∗

HT = s
1

π k
):

CHT (y, x ), VHT (y), ρyx,HT , β1,HT , β2,HT , ...

probabilities �k is replicated 1
�k

times regarding the variables y and x under study.

This delivers the replicated variables y� and x� consisting of 1
�1

replications of

sample values y1 and x1, 1
�2

replications of sample values y2 and x2, and so on.
Then, the covariance and variance of U are estimated by the covariance and variance
in U�

HT (see Fig. 2.11). Note again that, as a rule, the replication factors 1
�k

are
non-integers. Nevertheless, following the general rule of presentation for pseudo-
populations consisting of whole and parts of units, as discussed after Eq. (2.9), the
estimators of C.y; x/ and V.y/ can be written as

CHT.y; x/ D 1

N�
HT � 1 �

X
U�

HT

.y�
k � y�/ � .x�

k � x�/; (2.57)

and

VHT.y/ D 1

N�
HT � 1 �

X
U�

HT

.y�
k � y�/2: (2.58)

The estimators of the relevant parameters in U are nothing else but the same
parameters in U�

HT. This is an application of the general rule on the estimation of
parameters (cf., for instance, Särndal et al. 1992, p. 162f), which are a function of
several population totals, presented in Sect. 2.6.1, for the estimation of a ratio R of
two such totals. The estimator (2.57) of C.y; y/ can be written as

CHT.y; x/ D 1

N�
HT � 1

� t.y�x/
HT � 1

N�
HT � .N�

HT � 1/
� tHT � t.x/HT; (2.59)



2.8 More Estimation Examples 43

with N�
HT D P

s
1
�k

, the number of units in pseudo-population U�
HT estimating the

size N of the original population U, and t.y�x/
HT D P

s yk � xk � 1
�k

, which can also be

written as t.y�x/
HT D P

U�

HT
y�

k �x�
k , the sum of the replicated y- and x-values in U�

HT. The
use of N�

HT, instead of the possibly known N, follows the considerations explained
for the ratio estimator with N as auxiliary information in (2.40). For the estimator
(2.58) for V.y/,

VHT.y/ D 1

N�
HT � 1 � t.y

2/
HT � 1

N�
HT � .N�

HT � 1/ � t2HT (2.60)

with t.y
2/

HT D P
s y2k � 1

�k
applies. The total of the squared y-values in U is estimated

by the sum of the squared y�-values in U�
HT. Both estimators are not unbiased,

but consistent (see, for instance, Särndal et al. 1992, p. 186ff). Because they are
nonlinear, Taylor linearization can be used to approximate their variances and
estimate these approximate variances (see Sect. 2.6.1).

Moreover, from the artificially generated pseudo-population U�
HT, the estimator

	yx;HT of the correlation coefficient 	yx of y and x in U can directly be calculated with
any without-replacement probability sampling scheme by dividing the estimated
covariance CHT.y; x/ by the square root of the product of the estimated variances
VHT.y/ and VHT.x/ of the two variables y� and x� in the HT pseudo-population U�

HT.
The same applies, for instance, to the regression coefficients ˇ1 and ˇ2 of a

simple regression line y D ˇ1 � x C ˇ2 calculated by the least square method. The
estimators

ˇ1;HT D CHT.y; x/

VHT.x/
(2.61)

and

ˇ2;HT D tHT

N�
HT

� ˇ1;HT � t.x/HT

N�
HT

(2.62)

for ˇ1 and ˇ2, respectively, can be calculated directly from the same pseudo-
population U�

HT as the coefficients of the regression line in U�
HT (see Fig. 2.11).

Both estimators of the regression coefficients are approximately unbiased for
the respective parameters. Taylor linearization serves as a tool to develop an
approximate variance formula and an estimator of this approximate variance (see,
for instance, Särndal et al. 1992, p. 195f).
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2.8.2 Measuring Associations in Contingency Tables

The concept of the generation of pseudo-populations in statistical surveys also
provides an instrument to estimate the population association between two cate-
gorical variables y and z with r and c categories in a general without-replacement
probability sample s with arbitrary first-order sample inclusion probabilities �k

(k 2 U). For this purpose, the technique discussed in Sect. 2.7.1 for the estimation
of the cumulative distribution function of a study variable y can be adapted. This
means that in a contingency table with r � c cells, the number Nij of population
units falling into the subpopulation Uij consisting of units belonging to category i of
variable y and category j of variable z can be estimated in the following way using
the HT approach, where yk D 1 applies for all population elements (i D 1; : : : ; r,
j D 1; : : : ; c):

Nij;HT D
X

sij

1

�k
: (2.63)

Therein, sij is the part of the sample s that belongs to Uij. This expression creates
a pseudo-population U�

HT of size
P

s
1
�k

consisting of r � c non-overlapping sub-
populations U�

ij;HT (i D 1; : : : ; r, j D 1; : : : ; c). The size N�
ij;HT D Nij;HT of U�

ij;HT

corresponds to the number 1
�k

of clones of each element k belonging to sij (N�
HT DP

ij N�
ij;HT).

With known auxiliary information N, according to the special type of the ratio
estimator described in Eq. (2.40) an “N-corrected” estimator of Nij is given by

Nij;rat.N/ D Nij;HT � N
P

s
1
�k

: (2.64)

(cf., for instance, Lohr 2010, p. 408). This means that from the sample s, a pseudo-
population U�

rat.N/ is generated, in which the number N�
ij;rat.N/ D Nij;rat.N/ of elements

belonging to subpopulation U�
ij is equal to the sum of the design weight of an

element belonging to sij multiplied by the “correction factor” NP
s
1
�k

. The total size

of U�
rat.N/ is

P
ij N�

ij;rat.N/ D N.

However, the proportion pij D Nij

N of population units being a member of group
Uij is estimated by

pij;HT D Nij;HT

NHT
D
P

sij

1
�kP

s
1
�k

D Nij;rat.N/

N
D pij;rat.N/ (2.65)

These identical relative category sizes of the combinations of variables y and z in
the pseudo-populations U�

HT and U�
rat.N/ serve as the basis for the calculation of an
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estimator of the association of these variables in the finite population U of size N,
which is measured, for instance, by Cramér’s V with

V D
s


2

N � .min.r; c/� 1/
(2.66)

and


2 D N �
X

ij

�
pij �P

j pij �Pi pij

�2

P
j pij �Pi pij

: (2.67)

For the estimation of (2.66), within the pseudo-populations U�
HT or U�

rat.N/, the
sums

X
ij

�
pij;HT �P

j pij;HT �Pi pij;HT

�2

P
j pij;HT �Pi pij;HT

or

X
ij

�
pij;rat.N/ �P

j pij;rat.N/ �Pi pij;rat.N/

�2

P
j pij;rat.N/ �Pi pij;rat.N/

are calculated with pij;HT D pij;rat.N/ estimating pij (see Fig. 2.12). With the statistic


2HT D n �
X

ij

�
pij;HT �P

j pij;HT �Pi pij;HT

�2

P
j pij;HT �Pi pij;HT

; (2.68)

Cramér’s V (2.66) is estimated by

VHT D
s


2HT

n � .min.r; c/� 1/
: (2.69)

Evidently, for statistical tests of independence with general probability sampling, the
measure 
2HT is not distributed as 
2.r�1/�.c�1/ because the sample counts of the r � c
categories are not multinomially distributed. Therefore, other methods for analyzing
these associations have been discussed as an alternative to the usual 
2 test (cf., for
instance, Rao and Thomas 1988, p. 235ff, or Thomas et al. 1995).
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Fig. 2.12 Generating a
pseudo-population for the
estimation of the association
of two categorical variables
by Cramér’s V

population U (size N ): V

sample s (size n)

pseudo-populations U∗
HT or U∗

rat (N ) (sizes N ∗
HT = s

1
πk

or N ∗
rat (N ) = N ): VHT

probability sampling method

HT or ratio approach

2.8.3 Small Area Estimation

Subgroups Uh of a population U (with Uh 	 U), for which parameters should be
estimated separately in a statistical survey and which are not defined as explicit
strata in the design-phase of the survey process, are called “domains” or “small
areas.” Hence, the number nh of sample elements in a sample s, which fall in such a
domain, is random. For instance, the total th of a variable y within a domain Uh of
size Nh may be estimated unbiasedly by the direct estimator

th;dir D
X

sh
yk � 1

�k
(2.70)

(cf., for instance, Rao 2003, p. 15f). This estimator only uses the domain data
set sh from a given without-replacement probability sample s belonging to the
subpopulation Uh. By (2.70), a pseudo-subpopulation U�

h;dir is generated as a set-
valued estimator of Uh with respect to th by replicating only the nh elements of s
belonging to domain Uh a number of 1

�k
times (k 2 sh). Hence, the direct estimator

th;dir of th is a part of the HT estimator tHT of t:

tHT D
X

s
yk � 1

�k
D th;dir C

X
snsh

yk � 1
�k
:

Therein, s n sh denotes the subset of the sample s that does not belong to domain Uh.
In the pseudo-population U�

HT (see Fig. 2.2), with the clones y� of the sample values
of variable y under study, this expression can be represented by

tHT D
X

U�

HT

y�
k D

X
U�

h;dir

y�
k C

X
U�

HTnU�

h;dir

y�
k :
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Fig. 2.13 Generating a
pseudo-population for the
direct estimator of a domain
total

population U (size N ) with domain Uh (size N h ): th

pseudo-domain U∗
h,dir (size N ∗

h,dir = sh
1

π k
): th,dir

sample s (size n)

with domain sh (size nh )

probability sampling method

HT-type approach

Hence, the estimator th;dir of domain total th, which is the sum of the y-values of all
units belonging to domain Uh of population U, is nothing else but the sum of the y�-
values of all units belonging to “pseudo-domain” U�

h;dir of pseudo-population U�
HT

(see Fig. 2.13). The theoretical variance V.th;dir/ and the variance estimator OV.th;dir/

are calculated by the usual HT estimator variance and variance estimator summed up
only over all survey units belonging to Uh and sh, respectively (cf., Rao 2003, p. 16).

Looking at the generation process in Fig. 2.13, obviously, an accurate estimate
th;dir for th is possible only for large samples and domains. However, in the case of
small domains that are also called “small areas,” for the generation of the pseudo-
subpopulation Uh;dir as shown in Fig. 2.13, only a small number nh of sample
elements belonging to Uh is replicated. With nh D 0, the domain Uh is not
represented in U�

h;dir at all and th;dir cannot be calculated.
An example for a basic model-based estimation technique in the field of small

area estimation is the synthetic estimator th;syn of the domain total th (for details on
model-based small area estimation see, for instance, Rao 2003, or Münnich et al.
2004). For the calculation of th;syn, auxiliary information available for the whole
sample can be used. Assuming that x is an auxiliary variable, for which the domain
total t.x/h is known, the synthetic estimator is given by

th;syn D tHT � t.x/h

t.x/HT

(2.71)

(cf., for instance, Rao 2003, p. 46ff). The estimators tHT and t.x/HT in (2.71) are
based on data from the whole sample and not just from the part that falls in the
domain under investigation. Therefore, under the model that the population ratio t

t.x/

is approximately equal to the domain ratio th
t
.x/
h

, the estimator th;syn performs well.



48 2 The Pseudo-Population Concept

Fig. 2.14 Generating a
pseudo-population for the
composite estimator of a
domain total

population U (size N ) with domain Uh (size N h ): th

sample s (size n)

probability sampling method

combined HT-type and

ratio-corrected approach

pseudo-domain U∗
h,com

(size N ∗
h,com = sh

1
πk

· h + s
1

πk
· t ( x )

h

t ( x )

HT
· (1 − h )): th,com

The idea behind this approach is to generate only a pseudo-subpopulation U�
h;syn

as a set-valued estimator of the subpopulation Uh with respect to the estimation of

parameter th by replicating all the n values of y observed in the sample s

�
1
�k

� t
.x/
h

t
.x/
HT

�

times. In comparison with the generation of U�
h;dir, the pseudo-subpopulation

U�
h;syn is created by the replication of all n sampled units, instead of just the nh

sampling units of sample domain sh, using smaller expected replication factors as
compensation. Based on a larger number of observed elements, its accuracy depends
primarily on the validity of the model assumption. If the model concerning the
approximate equality of t

t.x/
and th

t
.x/
h

does not hold, the synthetic estimator is biased.

The greater the deviation of the model and the reality, the larger the bias.
The design-based direct estimator of a domain total is unbiased, but probably

inaccurate. The model-based synthetic estimator has a comparatively small vari-
ance, but a possible large bias. An estimator that incorporates the advantages of
both approaches is the composite estimator (cf., for instance, Rao 2003, p. 57ff),
which is defined by

th;com D th;dir �  h C th;syn � .1 �  h/ (2.72)

with 0 �  h � 1. The composite estimator generates a pseudo-population U�
h;com

(see Fig. 2.14), which consists of
P

sh

1
�k

�
�
 h C t

.x/
h

t
.x/
HT

� .1 �  h/

�
elements that are

1
�k

�
�
 h C t

.x/
h

t
.x/
HT

� .1 �  h/

�
replications of each unit k from the sample domain sh

and
P

snsh

1
�k

� t
.x/
h

t
.x/
HT

� .1 �  h/ elements replicated from the other part s n sh of the

sample s all with replication factors 1
�k

� t
.x/
h

t
.x/
HT

� .1 �  h/. For  h D 1, the composite
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estimator reduces to the direct estimator of th with N�
h;com D N�

h;dir, whereas for
 h D 0, it reduces to the synthetic estimator with N�

h;com D N�
h;syn. The amount of

replication factors from the two sources depends on the choice of  h. For a good
balance between both approaches, with respect to the composition of U�

h;com, the
weight  h of th;dir should approximate zero when the number nh of sampling units
belonging to domain Uh is small, and vice versa.

2.8.4 Two-Phase Sampling

There are various possibilities to include auxiliary information in the design or
estimation phase of a statistical survey. In the absence of such information in the
population, the sampling process can be divided into two phases. In phase one, a
(large and cheap) without-replacement probability sample s

0

of n
0

units is drawn
just to observe the auxiliary variable x. In phase two, another without-replacement
probability sample s of size n � n

0

is selected as a sub-sample from s
0

to observe
the variable y under study (s 	 s

0

). The auxiliary information observed in the first
phase can be used at the design and/or the estimation stage of the second phase of
the survey (cf., for instance, Lohr 2010, Chap. 12). In both cases, the concept of the
generation of pseudo-population can be used to illustrate the estimation process.

An example of an estimator of the total t where auxiliary information from the
first phase of the process is incorporated in the design stage of the second phase of
a two-phase sampling procedure (tph) is the unbiased HT-type estimator

tHT;tph D
X

s
yk � 1

�
.s/
k

(2.73)

with the sample inclusion probability �.s/k D �
.s

0

/
k � �.sjs

0

/
k of element k in sample

s. This probability is the product of the inclusion probability in sample s
0

and the
conditional probability of inclusion in s given element k is in s

0

. It is this conditional

probability �.sjs
0

/
k where auxiliary information on x from s

0

can be incorporated, for
instance, to stratify s

0

into H strata with respect to variable x before s is drawn. For
example, in the first phase, an SI-sample s

0

of size n
0

is drawn from U to observe
x. The number n

0

h of units of s
0

that belong to stratum h is random (h D 1; : : : ;H).
In the second phase, an STSI-sample s D fs1; : : : ; sHg with stratum sample sizes
n1; : : : ; nH is drawn from s

0 D fs
0

1; : : : ; s
0

Hg. In this case of two-phase sampling

(SI/STSI), �.s
0

/
k D n

0

N applies for k 2 U, and �.sjs
0

/
k D nh

n
0

h

applies for k 2 s
0

h.

Consequently, the HT-type estimator (2.73) is given by

tHT;SI=STSI D N

n0
�

HX

hD1
n

0

h � ysh
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Fig. 2.15 Generating a
pseudo-population for the
HT-type estimator of a total in
two-phase sampling

population U (size N ): t

sample s (size n )

sample s (size n ≤ n )

pseudo-population U∗
HT,tph (size N ∗

HT,tph = s
1

π ( s )

k
): tHT,tph

probability sampling method

(without auxiliary variable x)

probability sampling method

(with auxiliary variable x)

HT-type approach

with ysh
, the mean value of y in sh. Hence, the relative stratum size Nh

N of stratum

h in U is estimated by the relative stratum size n
0

h

n0 of this stratum in the first phase

sample s
0

(h D 1; : : : ;H).
The unbiased estimator tHT;tph of parameter t is intuitively conceivable as the

generation of a pseudo-population U�
HT;tph for U with respect to the estimation of

t (see Fig. 2.15). For this purpose, each sample unit of s is replicated 1

�
.s/
k

times.

Hence, U�
HT;tph is of size N�

HT;tph D P
s

1

�
.s/
k

and the estimator tHT;tph sums up all of

the y�-values constituted by these replicated values in U�
HT;tph:

tHT;tph D
X

U�

HT;tph

y�
k :

By using the auxiliary variable x from the first sample, pseudo-population U�
HT;tph

may give better results with respect to the estimation of t, when compared with a
pseudo-population generated without applying x at the same sample size n.

Another way to incorporate the auxiliary information observed in the phase one
sample s

0

is to include it in the estimation phase of the second sample. This can be
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done, for instance, by a ratio-type estimator trat;tph. For this purpose, the total t.x/ of
auxiliary variable x is estimated by

t.x/
HT;s0 D

X
s0

xk � 1

�
.s0

/
k

;

its HT estimator in s
0

. The estimation of the total t of study variable y in the
subsequent second sample s can be done by

trat;tph D tHT;tph �
t.x/
HT;s0

t.x/HT;tph

; (2.74)

where tHT;tph and t.x/HT;tph are the HT-type estimators of t and t.x/ in s. Compared to

the estimator trat according to (2.30), in (2.74), the total t.x/ is substituted by its
HT estimator calculated in the phase one sample s

0

. This means that in contrast to
the ratio estimator trat, the HT-type estimator tHT;tph of t is corrected by the ratio
of two different estimators of t.x/. This corresponds to the generation of a pseudo-

population U�
rat;tph with elements created by a

 
1

�
.s/
k

� t
.x/

HT;s
0

t
.x/
HT;tph

!
times replication of

each yk-value of s. This results in a size of N�
rat;tph D P

s
1

�
.s/
k

� t
.x/

HT;s
0

t
.x/
HT;tph

. The estimator

trat;tph sums up all of the y�-values constituted by these clones in U�
rat;tph:

trat;tph D
X

U�

rat;tph

y�
k :

Again, using information on x from s
0

, the two-phase sampling design may be more
efficient than a one-phase design not incorporating this information.

The variances of both examples of estimators from the two-phase samples consist
of two summands. The first one is the variance that would occur if y is obtained in
the first sample s

0

. The second one corresponds to the additional inefficiency from
subsampling in the phase two sample s (cf., for instance, Särndal et al. 1992, p. 348).



Chapter 3
Nonresponse and Untruthful Answering

3.1 Introduction

Classical sampling theory considers only sampling errors and the effects of different
sampling designs on this type of errors. Therefore, it can be said to be a pure full
response theory with no place for nonresponse or untruthful answers. However,
the practice of surveys does not comply with these assumptions. Nonresponse
and untruthful answering are sources of so-called non-sampling errors. This term
implies that such errors can also occur in a census.

With respect to the variable under study, in the presence of nonresponse,
caused by unavailability of survey units, their refusal to participate at all, or their
noncooperation on certain items, the set s of n sampling units drawn from U
applying a probability sampling method without replacement is decomposed into
a response set sr (sr 	 s) of size nsr and a nonresponse set sm of nsm missing values
(s D sr [ sm, sr \ sm D ;, n D nsr C nsm). Additionally, especially for sensitive
subjects, such as harassment at work, domestic violence, or drug use, the response
set sr is further divided into a set st of truthful answers (st 	 sr) of size nst and a set
su of untruthful answers of size nsu (sr D st [ su, st \ su D ;, nsr D nst C nsu) (see
Fig. 3.1).

Hence, the HT estimator tHT (2.4) for the total t of variable y is decomposed into

tHT D
X

st
yk � 1

�k
C
X

su
yk � 1

�k
C
X

sm
yk � 1

�k
: (3.1)

For su D ; and sm D ; only, Eq. (3.1) reduces to the full response HT estimator
(2.4). The total absence of nonresponse and untruthful answering becomes a special
case of (3.1). When set su is nonempty, for the summand over su in the middle of
(3.1), “fakes” of the true values yk are unknowingly observed instead of the true
values (k 2 su). Moreover, for the last summand, no observations yk are available at
all (k 2 sm).
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sample s

response set sr missing set sm

truthful (st) untruthful answering set (su)

Fig. 3.1 The decomposition of a sample in the presence of nonresponse and untruthful answering

To analyze only the response set sr as if it were the sample s and there were no
untruthful answers in it is referred to as “available cases analysis.” This leads to
a biased estimator with an unknown extent of bias if the respondents differ from
the nonrespondents with respect to the variable under study and su ¤ ; applies.
Consequently, this will massively affect the validity of confidence intervals. One
must not ignore the fact that the set sr is only a sample of those members of
population U who are willing to participate and deliver the information asked in the
survey either truthfully- or untruthfully. An example of the bad effect of available
cases analysis is probably the persistent underestimation of the voting proportions
of political parties belonging to the far left or right wings of the political spectrum
in opinion polls in Europe.

Naturally, the best way to circumvent these problems is to avoid both nonre-
sponse and untruthful answering. Even the most sophisticated method of compen-
sation for nonresponse cannot be as good as the observation of the true value.
Empirical social researchers have been considering survey design features that
affect the quality and quantity of responses. Beatty and Herrmann (1995), for
instance, referred to the respondent’s decisions to respond and to provide a correct
answer as “formulating communicative intent” (p. 1007). Respondents with negative
communicative intent may believe, for instance, that their correct answer is socially
undesirable (cf. Beatty and Herrmann 2002, p. 75). Groves et al. (2004) listed
several strategies that have the potential to overcome such a negative intent (cf.
p. 189ff). Some of these aspects may only have an effect on the nonresponse rate,
whereas others may also influence the willingness to deliver the true values of the
variables asked.

Among the aspects that mainly affect the quantity of replies is the survey sponsor.
There is strong evidence that higher cooperation rates can be attained in surveys
conducted by a public sector institution, such as a university, than in surveys by a
market or opinion research institute (cf. Heberlein and Baumgartner 1978, p. 450ff).
Also, the duration of the data collection phase of a survey has an influence on the
response rates because of its relation to the effort planned to access the sampling
units (cf. James and Bolstein 1990, p. 350ff). According to Botman and Thornberry
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(1992), the length of the experiment or questionnaire is also among the survey
design features with an impact on the respondents’ willingness to participate (cf.
p. 310).

The survey design features that clearly affect both the quantity and the quality of
information asked from the respondents are strongly related to the sampling units’
concerns about “data confidentiality” and their “perceived protection of privacy.”
The first term refers to the respondents’ desire to keep their replies out of the
hands of uninvolved persons and the second to their wish to withhold information
from absolutely anybody. Singer et al. (1993, 2003), reporting on two successive
U.S. population surveys, observed that the higher these concerns are, the lower the
probability of the respondent’s participation in the survey (cf. p. 470ff and p. 375ff).
However, a stronger assurance of confidentiality does not seem to produce higher
response probabilities (cf. Dillman et al. 1996, or the meta-analysis in Singer et al.
1995). In fact, it turns out that confidentiality assurances have a positive effect on
response quantity and quality only when sensitive topics are asked. On the contrary,
for non-sensitive questions such an assurance could be counter-productive (cf.
Singer et al. 1995, p. 71ff). The method of data collection affects the nonresponse
rate and the untruthful answering rate, especially for sensitive subjects (cf. the
review of different methodological studies in Tourangeau and Smith 1996, p. 277ff).
For face-to-face and telephone surveys, Kreuter (2008) lists several strategies to
reduce the interviewers’ effects on quality and quantity of the responses such as
training and supervision (cf. Kreuter 2008, p. 371). Advance and persuasion letters
also play a role in this context. The respondent’s motivation to cooperate may
increase if these letters emphasize the importance of the study and cater to the
sample unit’s needs (cf. Traugott et al. 1987, p. 529ff).

Another possibility to overcome a negative communicative intent is the offering
of incentives. Monetary incentives appear to have a greater effect on willingness to
participate in a survey than nonmonetary gifts. Further, prepayment incentives have
a greater effect than promised incentives (cf. the results from experiments or from
different meta-analyses of experiments that implemented incentives to increase the
survey units’ cooperation, in Church 1993; James and Bolstein 1990; Singer et al.
1999, 2000). In the context of the overall field costs of a survey, Singer (2002)
reported on the cost-effectiveness of prepaid monetary incentives (cf. p. 174). There
is also some evidence that incentives do not increase response rates at the expense
of response quality (cf. Singer et al. 2000, p. 178ff).

Dillman (1978) was the first to integrate all these survey design features and all
other survey-related details into one system, the “Total Design Method,” to improve
the capability to obtain acceptable response rates. To overcome the “one size fits all”
approach of this method, Dillman (2000) proposed the “Tailored Design Method,”
in which he modified his principles by adapting them to various survey aspects to
satisfy the needs of both the respondents and the survey.

A system that allows to react on paradata concerning different design features
during the survey is termed “responsive survey design” (cf. Groves and Heeringa
2006). Such information might indicate the effect of sample clustering, offered
incentives, or repeated call-backs on the accuracy of the estimates and also costs.
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An example of such a design is the purely statistical responsive design of two-phase
sampling (see Sect. 2.8.4).

When a sufficient degree of these features is applied in the survey’s design phase,
it might be reasonable to assume that all the answers given are at least truthful
(sr D st). Under this model, Eq. (3.1) reduces to

tHT D
X

sr
yk � 1

�k
C
X

sm
yk � 1

�k
: (3.2)

Looking at Eq. (3.2), it is obvious that in the presence of nonresponse, there exist
two approaches to the estimation of parameter t by tHT: Either one tries to estimate
t only on the basis of the observations in the response set sr, or the second sum of
(3.2) over the missing set sm has to be estimated (see Sects. 3.2 and 3.3).

For both approaches to be efficient, it is necessary to model the underlying
nonresponse mechanism. The selection of a probability sample s drawn from U
follows a given sampling scheme. The selection of the response set sr from s follows
an unknown nonresponse mechanism that determines the probabilities of certain
sets sr (or, vice versa, missing sets sm) for a given sample s. Little and Rubin
(2002) distinguished between three types of nonresponse mechanisms (cf. p. 11ff).
Data are denoted as “missing completely at random” (MCAR) if the willingness
to participate depends neither on y itself nor on an observable auxiliary variable
vector x. The available cases analysis, which simply ignores nonresponse, assumes
MCAR.

If the survey units’ willingness to participate in the survey depends on the
observable auxiliary information x but not on the variable y under study, the
nonresponse mechanism is called “missing at random” (MAR). If this model
actually explains the nonresponse mechanism, such behavior of respondents can
be compensated because the necessary auxiliary information for the modeling of
the nonresponse mechanism is available for all sampling units. Therefore, such
a situation (as well as the MAR-case) is called “ignorable” nonresponse (cf.,
for instance, Lohr 2010, p. 339). Various studies comparing census results from
respondents and nonrespondents in surveys of official statistics have documented
higher nonresponse rates for individuals belonging to the following groups: city
dwellers, singles, couples without children, young and old persons, people who
are divorced or widowed, people with a low level of education, and self-employed
persons (cf., for instance, Holt and Elliot 1991, p. 334, or Bethlehem 2002, p. 285).

Eventually, if the response probability of a survey unit depends on the missing
data, the nonresponse mechanism is called “not missing at random” (NMAR). In
this case, a model cannot completely account for the nonresponse. In practice, in
most surveys nonresponse is likely to be of this last kind. Nonetheless, auxiliary
information can help to at least reduce the bias introduced in the estimation process
by the “missings.”
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3.2 Weighting Adjustment

To be able to estimate the total t of variable y with (3.2) solely on the basis of the
given responses yk (k 2 sr), the design weights 1

�k
of the elements belonging to

the response set sr have to be adjusted. This is done with the help of the response
probability !k of unit k of set sr, leading to the adjusted weights 1

�k
� 1
!k

. For
!k D 1 8 k 2 U, the adjusted weight equals the design weights, and we have the
classical sampling theory approach assuming full response. However, for sm ¤ ;,
the individual sample elements have to bear a heavier representation burden because
of the nonrespondents.

Alternatively, this can be described in the following way applying the concept
that was introduced in Sect. 2.3: Because of nonresponse, a pseudo-population U�

HT
formed in the usual way by replicating each yk in the response set only 1

�k
times

is expected to be too small. Hence, the idea is to generate a higher number of
clones from the observations in sr and increase the representation burden of each
responding unit. This weighting adjustment (W) results in

tW D
X

sr
yk � 1

�k
� 1O!k

: (3.3)

Estimator tW estimates parameter t unbiasedly if the !k-values are estimated
correctly by the O!k-values. Of course, this is the crucial assumption with this esti-
mator. To determine these estimated probabilities O!k, the underlying nonresponse
mechanism has to be modeled as discussed at the end of the previous section. The
question that needs to be addressed is: How does the model fit the reality? The
estimator tW is model-based because the effect of a wrong nonresponse model is a
biased estimator with an unknown extent of bias. With the pseudo-population U�

W

built up by
�
1
�k

� 1
O!k

�
clones of each response set unit k, tW can be represented by

tW D
X

U�

W

y�
k ;

the total of all replicated values y�
k in U�

W (see Fig. 3.2). This shows the importance
of a good model for the response mechanism because the estimated probabilities O!k

together with the sample’s design weights determine the composition of U�
W .

For a MCAR mechanism, the response probabilities are equal for all elements
of s: !k D ! 8 k 2 s. In estimating this constant probability considering this
assumption about the nonresponse mechanism, the response rate nsr

n will make
sense. An assumed MAR mechanism regards the selection of the response set sr

from the sample s as a stratified simple random selection from s according to a
known one- or more-dimensional stratification variable. The response probabilities
are considered to be equal for all elements within the same “response stratum” srh

of H such strata in the sample: !k D !sh 8 k 2 sh (h D 1; : : : ;H). Hence, the use of
the response rate

nsr;h

nh
in stratum h as an estimator of the response probability !h in
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Fig. 3.2 Generating a
pseudo-population for
weighting adjustment population U (size N): t

sr (size nr ) sm (nm)

pseudo-population U∗
W (size N ∗

W = sr
1

πk
· 1

ωk
): tW

probability sampling method

with nonresponse

weighting adjustment

stratum h will be a logical consequence of the nonresponse model (nsr;h:= number
of respondents in the sample of stratum h).

The variance expressions developed for two-phase sampling can be used in this
context (cf., for instance, Särndal et al. 1992, p. 581), viewing the sample selection
as the first phase and the sampling units’ response behavior as the second phase as
it was presented in Sect. 2.8.4.

3.3 Data Imputation

The other possibility to compensate for nonresponse is to estimate the second sum of
(3.2). This is done by an imputation of a substitute value yi

k for each unobserved yk of
study variable y (k 2 sm). With respect to y, this results in a sample substituting y by
an “imputed variable” yI consisting of actually observed and imputed values. This
yields a sample sI with the same n elements as s, but with a different assignment:
sI ! fyI

1; : : : ; y
I
ng. Hence, the total estimator tI based on the HT principle is given by

tI D
X

s
yI

k � 1
�k

(3.4)

with

yI
k D

(
yk if k 2 sr,

yi
k otherwise.
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Fig. 3.3 Generating a
pseudo-population for data
imputation population U (size N): t

sr sm

imputed sample sI (size n)

pseudo-population U∗
I (size N ∗

I = s
1

π k
): t I

probability sampling method

imputation in sm

HT approach

The idea behind this estimator of t is to generate a pseudo-population U�
I from the

“imputed sample” sI , of which either the observed value yk or the imputed value yi
k

of each sample unit k 2 s is replicated 1
�k

times (k 2 s). For this purpose, information
on the auxiliary variables x available for each survey unit in the missing set sm is
used for a reasonable imputation of variable y instead of excluding the whole unit
from the analysis (Fig. 3.3). The quality of U�

I with respect to the estimation of t
depends on the quality of the estimation of

P
sm

yk � 1
�k

in (3.2) by
P

sm
yi

k � 1
�k

, which
is a part of the sum (3.4). For measures concerned with the statistical relation of
variables such as the correlation between two quantitative variables, for instance,
the quality of U�

I with respect to the estimation of these parameters depends, of
course, on the quality of the estimation of each missing value yk by its imputed
estimate yi

k (k 2 sm).
Different imputation methods are used to determine the substitute values yi

k (see,
for instance, Little and Rubin 2002, Chaps. 4 and 5, or Lohr 2010, Sect. 8.6).
Deductive imputation, for instance, uses logical relationships between variables
to impute the correct variable value yk by deducing it from the values known for
other variables x or from other sources. The term “cold-deck imputation” describes
a method in which the values yi

k are imputed from other sources, such as a previous
survey.

Other techniques are based on different assumptions about the nonresponse
mechanism. “Hot-deck” procedures substitute missing values yk in sm for yi

k-values
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selected from donors in sr of the same survey. One such procedure is “random
hot-deck imputation.” In this type of data imputation, the donor delivering the
variable value to the recipient is randomly chosen from the same group of survey
units according to an auxiliary variable x, to which the recipient belongs with
respect to his or her nonresponse probability when the MAR model is assumed
(“random hot-deck imputation within classes”). When a MCAR model is assumed,
the donor is selected randomly from the entire response set (“random overall hot-
deck imputation”). When the correlation structure of variables is also of interest, all
missing values of a certain survey unit are replaced by the observed values of the
same donor. For “nearest neighbor imputation,” the nearest survey unit with respect
to some defined measure of distance provides his or her value yk to the unit with
the missing value. In “sequential hot-deck imputation,” the idea is that in the case
of survey units ordered in a list according, for instance, to a regional variable, the
unit observed right before the unit with the missing value will likely have a similar
variable value.

However, the most natural imputation procedure is, of course, “regression
imputation.” In the deterministic case, the missing values of a variable y are replaced
by the regressand of a regression equation calculated from data of the response
set sr using as independent regressors the auxiliary variables also available for the
units in sm. In the stochastic version of regression imputation, a stochastic error
term is added to the regressand. The respondents’ “mean imputation” can be seen
as a special case of regression imputation. It can also be applied in a stochastic
version, in which the imputations yi

k are generated from an assumed probability
distribution with the mean and variance calculated from the responding units. The
technique of regression imputation can also be applied overall or within classes with
the assumption of a MCAR and a MAR nonresponse mechanism, respectively.

Applying an imputation method, for which no numerical solution exists with
regard to the estimation of the variance V.tI/ of the estimator tI , this variance can
be estimated, for example, by the bootstrap method as discussed in Sect. 5, taking
into account the imputation technique applied. Shao and Sitter (1996) presented this
integration of data imputation into the bootstrap scheme. In the presence of values
imputed into the sample in place of the missing values, treating the sample as if
there were only true values and applying standard variance estimators will surely
underestimate the real variance of the estimator. To incorporate imputation into the
bootstrap technique (see Fig. 5.2), the originally used imputation method, whether
deterministic or stochastic, is also applied in each of the B bootstrap resamples
drawn from the generated bootstrap population. For this purpose, the imputed values
must be identifiable in the data set. Then, the bootstrap estimators O��

1 ; : : : ;
O��
B are

calculated in the B bootstrap samples considering the re-imputed values, and the
variance can be estimated by (5.1). In this way, the additional inaccuracy due to data
imputation of missing values is incorporated into the variance estimation process.

A different method that accounts for the imputation inaccuracy when a standard
variance estimator is available and also applies the pseudo-population concept is
“multiple imputation” (cf. Rubin 1987). It uses D imputations yi

k for each missing
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Fig. 3.4 Generating a
pseudo-population for
multiple imputation

population U (size N): t

sr sm

probability sampling method

multiple imputation in sm

D imputed samples

HT approach

D pseudo-
populations

imputed sample sMI d

(size n)

pseudo-population U∗
MI d

(size N ∗
MI d

= s
1

π k
): tMI d

yk in s, resulting in D differently imputed data sets sMId (d D 1; : : : ;D). On the one
hand, the mean value of the calculated estimator of interest in each of these D data
sets can serve as an estimator for the parameter. On the other hand, the average of
the D standard variance estimates provides an estimate of the full response variance
of the estimator, whereas the additional inaccuracy caused by the imputation process
can be estimated by the variance between these data sets.

For the estimation of t, this means in the present context that from the D
imputed data sets sMId , different pseudo-populations U�

MI1
; : : : ;U�

MID
are generated

by replicating the observed or the imputed value of sample unit k of imputed sample
sMId

1
�k

times (see Fig. 3.4). This results in the replication variable yI� in each U�
MId

.
In each of the D pseudo-populations, the estimator

tMId D
X

U�

MId

yI�
k

is calculated according to (3.4) resulting in a set tMI1 ; : : : ; tMID of estimators with a
mean value

tMI D 1

D
�

DX

dD1
tMId : (3.5)

The average tMI serves as the multiple imputation (MI) estimator for t.
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Further, let OV.tHT1 /; : : : ; OV.tHTD/ be D standard variance estimates treating the
values yi

k of the imputed sample sMI1 ; : : : ; sMID as if they were the true yk-values. We
define

V.tHT/ D 1

D
�

DX

dD1
OV.tHTd/

as an estimator of the full response variance of tHT. Then,

OV.tMI/ D 1

D � 1
�

DX

dD1
.tMId � tMI/

2

is an estimator of the variance between the D data sets caused by imputation. Hence,
an estimator of the total variance of tMI is given by

OV.tMI/ D V.tHT/C D C 1

D
� OV.tMI/ (3.6)

(cf. Rubin 1987, p. 76). The first component of (3.6) is the estimator of the sampling
error, and the second of the additional inaccuracy caused by data imputation for
nonresponse.

3.4 Combining Data Imputation and Weighting Adjustment

In fact, weighting adjustment and data imputation are two supplementing methods
to compensate for nonresponse. Usually, weighting adjustment is applied to com-
pensate for unit nonresponse, whereas data imputation is used in the presence of
item nonresponse. In practice, both types of nonresponse are natural in surveys.
Therefore, the two techniques are often applied in succession, starting with the
compensation of item nonresponse by data imputation followed by that of unit
nonresponse by weighting adjustment. This means that an imputed value yi

k is
calculated for each missing value yk in the item nonresponse subset sm;item of sm

only (sm;item 	 sm). For sm;item � sm, to compensate also for the unit nonresponse
that has occurred in the set sm;unit D sm � sm;item, the imputation is followed by an
adjustment of the design weights 1

�k
of elements k belonging to the imputed sample

sI D fsr; sm;itemg (see Fig. 3.5). When data imputation and weighting adjustment
(IW) are conducted in succession, this leads to the following estimator of t:

tIW D
X

sI
yI

k � 1
�k

� 1O!k
: (3.7)
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Fig. 3.5 Generating a
pseudo-population for the
two-step process of data
imputation and weighting
adjustment

population U (size N): t
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From the point of view of the pseudo-population concept, this means that the yI
k-

values of the imputed sample sI are replicated 1
�k

� 1
O!k

times according to the rules

of weighting adjustment to generate a pseudo-population U�
IW of size

P
sI

1
�k

� 1
O!k

.

Hence, with the replications yI� in U�
IW, the estimator tIW can be represented by

tIW D
X

U�

IW

yI�
k :



Chapter 4
Simulation Studies in Survey Sampling

4.1 The Basic Simulation Approach

An example of an application of the concept of pseudo-populations in research
comes from the field of computer simulation studies. This term describes a process
of conducting experiments, which are actually part of real life, on the computer.
In the context of statistics, simulation studies are applied when mathematical
derivations of the statistical properties of a method are cumbersome or not available
at all.

In finite population sampling, such studies are conducted, for example, when
the given complex sampling design does not allow for the formal calculation
of the bias or variance of an estimator O� for an interesting parameter � . Other
possible issues are, for instance, the estimation of the actual coverage rate of
an approximate confidence interval under normal assumption or the robustness
evaluation of a particular estimator under assumption violations. Possible aims may
be the strengthening of the confidence in the quality of a proposed method or a
comparison of the efficiency of different methods.

Naturally, the perfect starting point for these purposes would be the knowledge of
the original population U. Then, the used sampling method can be applied to these
data again and again to draw as many samples as possible on the computer. In each
of these B simulation runs the estimator under investigation is calculated. For large
B, the empirical distribution of these B estimates approximates the true sampling
distribution over all samples shown in Fig. 2.1 (see, for example, the simulation
study described in Sect. 5.3).

Unfortunately, population data are rarely available because they often simply do
not exist or they are not open to the public for reasons of data protection (see Sect. 7).
In such cases, a plausible (or synthetic) population U�

sim may be generated for the
simulation purposes from different sources such as the data of a sample survey and
other available information about the population (see Fig. 4.1). Such a population
shall serve as a close-to-reality pseudo-population for the non-observable original
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Fig. 4.1 Generating a
plausible population for a
simulation study in the field
of sample surveys

population U : parameter θ

sample s: estimate θ

plausible population U∗
sim

probability sampling method

generation procedure

probability sampling method

simulated sample s∗
b : estimate θ∗

b B simulated samples

population U so that the simulation results in the samples from U�
sim are comparable

to those which would occur in samples from U.
For the pseudo-population to be plausible, different generation procedures may

be considered depending on the available data and the specific requirements of the
simulation study (cf. Münnich and Schürle 2003, or Alfons et al. 2011a). Typically,
an adequate pseudo-population should reflect as close as possible the structure of
the original population with respect to stratification and clustering in the sample.
The number of clusters within each stratum can be generated either on the basis
of a given distribution or known information about the cluster population itself. To
avoid impossible combinations of important variables within the clusters, realistic
combinations may be drawn from survey data. The other variables needed for the
simulation can be generated from conditional distributions, which are calculated
from a given modeled or true multivariate distribution (cf. Templ et al. 2011, p. 12ff).
In addition, the original nonresponse mechanism and other survey characteristics
must be modeled if they are also part of the investigation (cf. Alfons et al. 2011b,
p. 7f).

4.2 An Example of a Simulation Study Based on a Generated
Plausible Population

An example of such a simulation study is a secondary analysis of the Austrian
data from PISA survey 2009. The Programme for International Student Assessment
(PISA) is currently one of the most important and most influential statistical surveys
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in the field of educational sciences. It is conducted on a triennial basis by the
Organization for Economic Co-operation and Development (OECD). Its topic is
the measurement of the abilities of the current birth cohort of 15- to 16- year-old
students with respect to their competencies in reading, mathematics, and natural
sciences (cf. here and in the following, OECD 2012). The results allow for cross-
national comparisons of these skills as effects of the different educational systems
and for the measurement of the effects of changes within national systems across
time.

The PISA survey 2009, for example, was conducted in the 34 OECD member
states and further in 31 countries outside of the OECD. The target population this
year was the group of about 26 million students born in 1993, attending school in
65 countries. In almost all countries, the PISA survey is not a full, but a sample
survey of the target population. Furthermore, the applied item-response model,
which calculates the distribution of competence of a unit and not a single value, is
an instrument deliberately chosen to document the inaccuracy of the measurement
process. For these two reasons, the PISA-results, which are the mean values of
the measured skills within each country, clearly, are only estimates of the related
unknown population parameters.

The calculation of the accuracy of these estimators of the population means is
nontrivial because the sampling method is of high complexity. To demonstrate this
complexity, in the following, the main features of the setup of the national PISA
survey 2009 in Austria serves as the representative for all participating countries:
The first-stage selection units contained in the sampling frame are schools with
pupils of the target population. These schools were explicitly stratified according to
the two stratification variables “region” and “school type,” giving a total of 32 strata.
The sample number of schools per stratum corresponds to the relative stratum size
with respect to the target population. The selection probabilities of different schools
depend on the size of the schools defined as the number of students belonging to the
target population. Schools with more than 35 students of the target population are
“large schools.” The selection probabilities of such schools are proportional to their
school sizes. “Small schools” of size 35 or less have sample selection probabilities
proportional to a school size of 35.

To generate a school sample with such first-order selection probabilities on
school level, the systematic sampling mode as described in Sect. 2.4.1 is applied.
However, the ordering of the schools is not done randomly, but by specific variables.
In Austria, these are “province,” “percentage category of girls attending the school,”
and “school size.” A systematic random selection from such a list introduces an
“implicit stratification” with respect to these variables into the sampling procedure.

Within schools drawn by this selection process, the selection of the actual test
persons differ depending on the school size. In large schools, 35 test students are
selected randomly according to a systematic sampling mode with uniform selection
probabilities from a list of sampling units ordered by “level of education,” “sex,”
and “age.” In small schools, all students are tested.

This results in uniform first-order selection probabilities for all students within
the same stratum of the target population because, on the one hand, for all students
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k in large schools i, �k D �i � �kji D Nim
N � 35Ni

D 35m
N applies (see Sect. 2.4.6). On

the other, for elements k attending a small school i, with conditional probability
�kji D 1, these inclusion probabilities are also given by �k D �i D 35m

N . The
resulting design weights of the N population units of the same stratum are uniformly
given by N

35m . Hence, the entire PISA sample is approximately self-weighting.
Moreover, the test results of a test person in the three key competencies of the

study are not single values describing his or her skills but posterior distributions
of these three skills. These posterior distributions are calculated from prior distribu-
tions assigned to each student with respect to some socio-economic variables, which
are corrected in light of the individual test results. To be able to calculate the mean
values though, from the resulting posterior distributions, five “plausible values” are
drawn from each one randomly under i.i.d. conditions (cf. Mislevy 1991).

The sampling method applied in the PISA survey can be described as a stratified
two-stage random sampling with proportional allocation of primary sampling units
to strata. Within each stratum, the selection of m schools at the first stage of the
TS selection process is done randomly with implicit stratification by systematic
selection and first-order sample inclusion probabilities proportional to school size.
At the second stage of the TS scheme of a stratum, the secondary sampling units
are chosen either randomly with implicit stratification by systematic selection and
uniform sample inclusion probabilities or with probability one depending on the
school size. The �PS sampling, implicit stratification, and systematic selection
mode, together with the measurement procedure, make the calculation of an
analytical variance estimator for the sample results more than cumbersome.

To estimate the sampling variance of the mean values per country and compe-
tence, in the original PISA survey, the resampling method of balanced repeated
half sampling according to Fay (1989) and Judkins (1990) was adapted to the
circumstances of the PISA sampling procedure (OECD 2012, p. 126ff). The
additional inaccuracy due to the use of plausible values was implemented into the
variance estimation as a measurement error.

In the secondary analysis of the Austrian PISA data of the 2009 survey,
Quatember and Bauer (2012) investigated different tasks concerning the sampling
process of the PISA survey on the bases of simulations. These issues were a
comparison of the efficiency of different sampling methods, the design effect of
the actual applied sampling method, and the validity of the approximate confidence
intervals calculated under the normal assumption.

For the simulation purposes, in absence of the true population U, different
methods for the generation of a bootstrap population as described in Sect. 5 and
an adjustment to known population parameters are integrated into the generation
procedure of a plausible population of pupils (see Fig. 4.1). This pseudo-population
reflects the given structure of the Austrian school population with respect to school-
types and corresponds exactly to the original target population of the PISA survey
with regard to the number of schools and the number of students of both sexes
within these schools. Hence, it can serve as basis for a close-to-reality simulation
study with respect to the issues mentioned above.
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From this pseudo-population, B D 10;000 samples are drawn for each sampling
method included in the study to compare the effect of different sampling schemes on
the efficiency of the survey results. Implicit stratification is ignored at both stages of
the sampling process. For each test student of a simulation run, five plausible values
are drawn from an assumed normal posterior distribution estimated from the actual
five plausible values for each of the three skills under investigation. Because of
the “imputation” of these five values for the “missing” true value of a test student,
the method of multiple imputation (see Sect. 3.3) is applied to calculate a single
estimator of the pseudo-population mean for each skill in each of the B simulated
samples combining the ideas of Shao and Sitter (1996) and Rubin (1987). The
distributions of these B estimators are interpreted as an approximation to the sample
distributions of the estimators under the given design.

The mean values of the three competencies (reading, mathematics, and science)
calculated in the simulation study by drawing resamples from a pseudo-population
as previously described show results that are very close to the original results. This
underpins the plausibility of the pseudo-population generated in this way.

Summarizing the most important results of this application of the pseudo-
population concept in a simulation study regarding the Austrian PISA survey 2009,
the actual PISA sampling method seems to provide good results from the sampling
theory point of view considering, in particular, the disproportionate higher cost
and time efforts of the SI method of sampling as the reference sampling scheme.
This also applies to other sampling methods, to which the PISA sampling mode is
compared.

The overall design effect [see (2.22)] of the true PISA design was about 4 for
all three skills (for the details concerning the results of this secondary analysis, see
Quatember and Bauer 2012, p. 540ff, and Bauer 2011). Moreover, it is shown for a
sufficiently large stratum in the pseudo-population that the systematic selection of
schools and students within sample schools may result in multi-modal sampling
distributions, for which approximate confidence intervals based on the normal
assumption are not valid.



Chapter 5
The Bootstrap Method in Survey Sampling

5.1 The Finite Population Bootstrap Approach Based
on Pseudo-Populations

When no explicit variance formula is available and the calculations for Taylor
linearization (cf., for instance, Wolter 2007, p. 230ff) are too cumbersome, so-called
computer-intensive methods that use computer power instead of heavy calculations
can be applied alternatively. One such procedure is the random group method (cf.,
for instance, Wolter 2007, Chap. 2). In this case, the sample drawn is divided into
different nonoverlapping subsamples, called “random groups,” according to the
original sampling design. After calculating the original estimator of the parameter
under study in each of the groups, the variance of these estimators serves as the
basis for extrapolation regarding the variance of the estimator in the original sample.
The calculations are truly simple, but for obvious reasons are often inefficient for
complex surveys because the construction of subgroups according to the original
sampling design might be difficult.

To overcome the problem of poor efficiency of the random group method, the
balanced repeated half sampling was developed where a stratified sampling design
with only two units per stratum is used as a sampling method. The basic idea is to
generate half samples by the selection of one element per stratum. If this is done “in
a balanced way,” the estimators for the parameter of interest, calculated in each of
the half samples, can be used to estimate the variance of the parameter estimate in
the original sample (cf., for instance, Wolter 2007, Chap. 3). The method has been
extended to other sampling schemes by applying adapted techniques of balancing
the half samples.

Another technique of estimating the theoretical variance of an estimator is the
bootstrap method. This strategy falls under the resampling methods. While another
strategy, the jackknife method, generates resamples from the original sample, which
consist of all but one or a certain number of elements of the original sample drawn,
the basic bootstrap procedure generates resamples of the same size as the original
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sample. The reason why we concentrate on the bootstrap is that a major approach to
the application of this procedure to finite population surveys is based on the idea of
generating pseudo-populations that runs like a red thread through this work.

Lahiri (2003) described the bootstrap as “probably the most flexible and efficient
method of analyzing survey data since it can be used to solve a variety of challenging
statistical problems (e.g., variance estimation, imputation, small-area estimation,
etc.) for complex surveys involving both smooth and non-smooth statistics” (p. 199).
This technique was originally developed by Efron (1979) for the calculation of the
sample distribution of an estimator O� for the parameter � of a probability distribution
�. For this purpose, a sample drawn according to the i.i.d. principle is observed (cf.,
for instance, Casella and Berger 2002, p. 207). The observed empirical distribution
of a random variable y can be interpreted as the ML estimator of the true probability
distribution � of y (cf. Chao and Lo 1994, p. 391ff). Drawing i.i.d. resamples of
the same size as the original sample from the empirical distribution, the true sample
distribution of O� is approximated by the theoretical distribution of the estimator
calculated in all possible resamples (for the mathematical details see Shao and Tu
1995). This bootstrap distribution in turn can be approximated by the Monte Carlo
approximation. For this purpose, a number of, say, B resamples is drawn. Within
each of the B bootstrap samples s�

1 ; : : : ; s
�
B, the estimator O��

b is calculated in the same
way that the estimator O� was calculated in the original i.i.d. sample s (b D 1; : : : ;B).
For a large B, the distribution of O��

b is interpreted as an estimation of the sample
distribution of O� . Hence, the theoretical variance V. O�/ is estimated by the Monte
Carlo variance estimator given by

OVboot. O�/ D 1

B � 1 �
BX

bD1

� O��
b � �

��2
(5.1)

with

�
� D 1

B
�

BX

bD1
O��
b ;

being the mean value of estimators O��
b from the B bootstrap samples. For approxi-

mately normally distributed O��
b (or O�) values, this variance estimator can be used for

the calculation of an approximate confidence interval. For a large B, also for non-
normally distributed bootstrap estimators, a confidence interval can be calculated
by applying the percentile method (Efron 1981, p. 317ff). This method directly uses
the .˛=2/- and .1 � ˛=2/-quantile of the observed distribution of the estimators O��

b
as the lower and the upper bound of the confidence interval, respectively (cf. Efron
1981).

With increasing computer power, this technique has also become attractive for
finite populations surveys. In this context, an extension of Efron’s technique has to
consider complex sampling designs consisting of complex estimators and complex
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techniques of sampling without replacement at various stages of the sample process.
For this purpose, different approaches are available in the relevant literature (cf.,
for instance, Shao and Tu 1995, p. 247ff, or Wolter 2007, p. 200ff). One of
them rescales the observations in the resamples drawn with replacement from the
original without-replacement sample in a way that the bootstrap variance (5.1)
approximates the actual variance for a given sampling design (cf. Rao and Wu
1988). Another approach is to use the with-replacement bootstrap technique and
adjust its bootstrap variance estimator to the parameter by choosing an appropriate
size for the resamples (cf. McCarthy and Snowden 1985). Sitter (1992a) presented
the Mirror-Match Method, in which subsamples of the original sample are drawn
repeatedly according to the original sampling plan with a subsample size chosen
to appropriately match the original variance of the estimator. Antal and Tillé
(2011) discuss another approach, in which different with- and without-replacement
resampling procedures are combined in such a way that the bootstrap variance
estimator, calculated from resamples of the same size as that of the original without-
replacement probability sample, under this combination of resampling schemes
equals the interesting variance.

However, for a direct extension of the i.i.d. bootstrap to finite population
sampling, the population U of N elements takes over the role of the unknown
probability distribution �. The population elements are characterized, as always,
by their values yk of the variable y under study and xk of possible auxiliary variables
x (k D 1; : : : ;N). Gross (1980) was the first to adapt this method to the specific
case of SI sampling, but only with restriction of integer design weights N

n 2 N (cf.
Gross 1980, p. 184). For this purpose, from the SI sample s, a set-valued estimator
U� of the true population U of size N is generated according to the HT pseudo-
population approach to SI sampling with N� D N (see Sect. 2.4.2 and Fig. 2.2).
Hence, for this restriction, pseudo- (or in this case, bootstrap) population U� equals
U�

SI and consists of N
n replications of each element of the sample s with respect to

the variables observed. The generated bootstrap population is the finite population
of size N with the maximum likelihood regarding the sample drawn.

In the next step of the without-replacement bootstrap as proposed by Gross
(1980) (see Fig. 5.1), B bootstrap samples s�

1 ; : : : ; s
�
B of size n are drawn from the

bootstrap population by applying the original sampling method. In other words,
the resamples are no i.i.d. samples of size n from the original sample s. Instead,
the resampling process from U� follows a poly-hypergeometric distribution. Hence,
each of the n sample values y1; : : : ; yn has the same probability 1

n of being chosen as
the first value in the resample of same size n. After the first draw, the value, already
drawn at the first step, has a probability of N�n

n.N�1/ for being chosen as the second
element of the resample. The other n � 1 values of y in s, not selected as the first
resample element, have a probability of N

n.N�1/ and so on. Generally, the value yk

observed in s has a probability

N � n � hk;j�1
n � .N � j C 1/
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populationU (size N ): θ

sample s (size n)

bootstrap population U∗ (size N ∗ = N ): θ

bootstrap sample s∗b (size n )

SI sampling ( Nn ∈ )

HT approach

SI sampling

pseudo-population U∗
b

(size N ∗
b = N ): θ∗

b

B bootstrap samples

HT approach

N

Fig. 5.1 Estimating the sampling distribution of an estimator O� applying the bootstrap method in
SI sampling with integer design weights according to Gross (1980)

of being selected at the jth step of the selection of a resample from U� D U�
SI

( j D 1; : : : ; n). Therein, hk;j�1 denotes the number of times the value yk was already
selected in the first j � 1 steps of the process to generate a resample (hk;0 D 0

8 k 2 s). This shows that such bootstrap populations need not be generated in
reality. Obviously, the resampling process might as well be carried out by applying
the probability mechanism described above directly to the sample s (for other
procedures that can be applied with different sampling schemes instead of the
physical generation of a bootstrap population, cf. Ranalli and Mecatti 2012).
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These resamples form the basis for estimating the SI sampling distribution of the
estimator O� for the interesting parameter � based on simulations. For this purpose,
in each of the B resamples s�

b , the estimator O��
b has to be calculated (b D 1; : : : ;B).

Considering, for instance, the estimation of parameter t of variable y by the HT
estimator tSI, this means that within each resample s�

b , an estimate t�SIb
is calculated.

This comprises, in particular, the generation of B pseudo-populations U�
SI1
; : : : ;U�

SIB
,

each of them estimating the bootstrap population U� by replicating the resampling
units of each of the bootstrap samples s�

1 ; : : : ; s
�
B

N
n times. Within these B pseudo-

populations generated from the B resamples, the bootstrap estimators t�SI1
; : : : ; t�SIB

are calculated, and their variance (5.1) serves as an estimator of the variance of tSI.
This variance estimator is approximately unbiased in large samples (cf., for instance,
Chao and Lo 1985, p. 400, or Sitter 1992b, p. 139).

For general applicability in survey sampling, this idea had to be extended to

• non-integer design weights, and
• general probability sampling with arbitrary first-order inclusion probabilities.

In fact, the key to an efficient application of the bootstrap method in finite population
sampling without replacement in this way is the generation of a pseudo-population
U� suitable as the basis for drawing the bootstrap samples with respect to the
estimation problem to be solved. In the following section, an overview of various
ideas in this respect is given with an application to the estimation of the total t of y.
In Sect. 5.3, these suggestions are presented in a general framework.

5.2 An Overview of Different Finite Population Bootstrap
Techniques

The most important step in this type of bootstrap approach to finite populations is the
generation of an adequate bootstrap population U�. Bickel and Freedman (1984), for
example, addressed the question of the actual number of replications of each sample
element when the constant design weight of the SI method is not an integer. They
departed from the ML principle in the generation process used by Gross (1980) by
generating two bootstrap populations, U�

a and U�
b , instead of one. The first consists

of a number of i replicates of the n sampling units. Therein, i denotes the integer part
of the ratio N

n . For the second, each sample value yk is cloned .i C 1/ times. This
creates pseudo-populations of size N�

a D n � i and N�
b D n �.iC1/, respectively. Both

pseudo-populations have the same estimated cumulative distribution function of y.
Note that for N

n … N, neither N�
a nor N�

b equals the true size N of U. Then, one of
these populations is selected according to “an artificial randomization” (Rao and Wu
1988, p. 237) with probabilities appropriately calculated to compensate for incorrect
population sizes with respect to the unbiased estimation of the variance of tSI. After
randomly choosing the actual bootstrap population, its design weights are adapted

to N�

a
n or N�

b
n , both being integers, and the resampling procedure is applied. It can
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be shown that the estimator for the variance of the HT estimator is approximately
unbiased for large n (cf. Bickel and Freedman 1984, p. 474, or Chao and Lo 1985,
p. 401).

After modifying the size of the resamples, the replication factors, and the
probabilities of selecting one of the two bootstrap populations of Bickel and
Freedman (1984) for SI sampling, Sitter (1992b) also applied the method to STSI,
TSSI and, with replication factors corresponding to the specific design weights
of �PS sampling (see Sect. 2.4.1), to �PS sampling according to Rao–Hartley–
Cochran model (cf. Cochran 1977, p. 266f). Such an application of the bootstrap
method to a sampling design dividing the given population into strata and clusters
must reflect this given structure in the bootstrap population (cf. Chao and Lo 1994,
p. 398).

Booth et al. (1994) presented another answer to the central question of how the
finite bootstrap population should be generated from an SI sample with non-integer
N
n -values: A number of i clones of the original SI sample s are combined with an
SI subsample of size r � n D N � i � n drawn from s



N
n D i C r

�
. Considering

the randomness of the generation of the r � n supplementary elements, C pseudo-
populations U�

1 ; : : : ;U
�
C of correct size N are created, which serve as the basis for

the resampling process. In this process, B SI resamples of the original size n are
drawn from each of these C pseudo-populations. The variance of an estimator O�
for a parameter � such as the total t within these C � B bootstrap samples gives an
approximately unbiased Monte Carlo estimator of the true variance of O� (cf. Booth
et al. 1994, p. 1287f).

Kuk (1989) tried to extend the idea of replicating the sample elements according
to their design weights to generate a bootstrap population as the basis for the resam-
pling process to systematic �PS sampling from a population ordered according to a
size variable x providing an implicit stratification with respect to x. Therein, the
actual replication factor for sample unit k is calculated by c � 1

�k
assuming that

this product is an integer. The constant c is chosen in a way that the bootstrap
population U� consists of N� D N units. For a pseudo-population generated in
this way, it is shown for this specific application of the �PS sampling technique that
the resampling procedure fails in estimating the variance of the HT estimator.

For this special sampling method, which is used widely in official statistics or
in institutional surveys such as the PISA survey, Kuk (1989) proposes a method to
generate a pseudo-population of original size N, in which the y-values of all units
are estimated by a model relating y and x, where the values of x are known for
all population units. The model is estimated by the sample data. With a residual
component randomly chosen from these data, C different pseudo-populations are
generated. The resampling is conducted within each of these pseudo-populations
according to the original sampling plan. For C that is large enough, the bootstrap
variance estimator (5.1) over all of these resamples approximates the variance of
any statistic under this specific sampling scheme (cf. Kuk 1989, p. 75f).

Eventually, Holmberg (1998) developed a bootstrap approach to �PS sampling,
or general � sampling, respectively (cf. Sect. 2.4.1). The design weight 1

�k
D t.x/

xkn of
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survey unit k 2 U is decomposed into its integer part ik and the “rest” rk ( 1
�k

D ik C
rk). To generate the pseudo-population U�, each sample unit k is replicated ik times
and independently from each other, randomly once more with probability rk. This
process creates a pseudo-population of expected size N. Only for the unusual case
that rk D 0 applies for all sample elements, the bootstrap population U� corresponds
to the pseudo-population U�

�PS from �PS sampling (see Sect. 2.4.1).
After U� is generated, the element bootstrap sample inclusion probabilities have

to be recalculated according to the replicated variable x� as a rule, resulting in ��
k D

x�

k nP
U�

�PS
x�

k
. Then, B �PS resamples of size n can be drawn from U� according to the

original �PS sampling scheme. After that, the estimation of parameter � is done in
the same way in each of these bootstrap samples as in the original one. For Pareto
�PS sampling presented by Rosén (1997), it is shown in the study by Holmberg
(1998) that for N� ! 1 and large n, the bootstrap variance estimator (5.1) achieves
approximate unbiasedness with respect to the variance of the HT estimator of t (cf.
Holmberg 1998, p. 381). With xk

t.x/
D 1

N and rk D 0 8 k 2 U, U� D U�
SI applies

and the approach by Holmberg reduces to that of Gross (1980) for SI schemes (see
Fig. 5.1).

Barbiero and Mecatti (2010) aimed to simplify the procedure for �PS sampling
suggested by Holmberg (1998) and, at the same time, improve its efficiency with
respect to the estimation of the variance of t�PS. They proposed to make “a more
complete use of the auxiliary information” (Barbiero and Mecatti 2010, p. 62)
available for an auxiliary variable x, in particular, for its total t.x/. According to
these authors, the following understandable properties should apply to a bootstrap
algorithm with respect to the estimation of a total t of variable y (cf. Barbiero and
Mecatti 2010, p. 60ff):

1. Given the sample s, in a bootstrap population U�, the total
P

U� x�
k of the

replicated values of an auxiliary variable x should be equal to the total
P

U xk

of x in the original population U.
2. Given s, the total

P
U� y�

k of the replications of the study variable y in U� should
be equal to t�PS, the HT estimator of t.

3. Over the resampling process, for given s, the HT estimators of t calculated in the
B resamples should have an expectation of t�PS.

Obviously, these properties are desirable for an efficient estimation of the variance
V.t�PS/ of the HT estimator t�PS according to Eq. (2.10) by OVboot.t�PS/ according to
Eq. (5.1). For different bootstrap methods dealing with the generation of bootstrap
populations as described above, these properties only apply for rk D 0 for all
k 2 s. For this reason, an “x-balanced �PS-bootstrap” is proposed by Barbiero and
Mecatti (2010), where after replicating each sample unit k ik times, further units are
iteratively added to the bootstrap population up to the element, where the minimum
difference of

P
U� x�

k , when compared with the given parameter t.x/ of the original
population U, is achieved. In this process, the additional selection of units may
simply start with that element k of s having the highest rk-value or the highest ratio
qk D 1

�k
� 1

ikC1 . Then, the element with the second highest rest-value rk or ratio qk is
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selected, and so on. In the second case, considering the qk-values, for the same rk-
values, elements with a higher integer part ik of the design weight 1

�k
have a higher

probability of again being added to U�, when compared with elements with a lower
integer part. However, this procedure results in a pseudo-population with the total
of the replicated x-values being close to the total of x in U. Note that by using x D 1

as an auxiliary variable, the method corresponds to Holmberg (1998) approach to
the �PS-bootstrap for SI sampling with a pseudo-population U� D U�

SI of fixed
size N� D N. At the end of the process, it would be more than natural that when
more than one survey unit has the same rk- or qk-value, elements with xk-values
leading to an approximation closer to t.x/ would be preferred. If such elements also
have the same xk-values, a random selection of the last element would complete the
procedure.

After U� is generated, the first-order inclusion probabilities �k have to be

recalculated by ��
k D x�

k nP
U� x�

k
before the resampling process can start. Generating

a bootstrap population that is close to the original population with respect to t.x/

promises an improvement in the bootstrap estimation of the variance of the estimator
under study (cf. Barbiero and Mecatti 2010, p. 63ff). But, also these proposals will
not guarantee a size N� D N even for SI sampling, when 1

�k
… N (cf. Ranalli and

Mecatti 2012, p. 4095).
Another challenge for the bootstrap method is the incorporation of data impu-

tation (see Sect. 3.3). When such a technique is applied to compensate for the
nonresponse that occurred, treating the imputed values as if they were true ones
will certainly underestimate the real inaccuracy of an estimator using imputed
values. The reason is that this approach does not consider the uncertainty added
by the imputations. This also applies to the bootstrap method of estimating such
variances by Eq. (5.1). For such cases, Shao and Tu (1995) and Shao and Sitter
(1996) proposed to generate a bootstrap population U� of the same structure as U
by replicating values of the imputed sample sI (see Fig. 5.2). Therefore, U� consists
of replications y� of the true y-values in the response set sr and the imputed y-values
in the missing set sm (see Fig. 3.3). Then, as usual, B resamples s�

1 ; : : : ; s
�
B are drawn

from the bootstrap population. In each of these B resamples from U�, all values
originally belonging to the missing set sm of s are set to missing again. For these
missings in s�

b , the values are re-imputed by applying the same imputation method
that was used in the original sample s. Information on auxiliary variables x available
for all units in s�

b is used for this purpose. This leads to B imputed bootstrap samples
s�

I;1; : : : ; s
�
I;B.

In each of these resamples, the estimator O�I of the parameter � under study is
calculated using the observed and imputed values. This is done by the HT approach
of generating pseudo-populations U�

I;b from each imputed bootstrap sample s�
I;b

(see Sect. 2.3). The distribution of these estimators O��
I;1; : : : ;

O��
I;B approximates the

distribution of the imputed estimator O�I in the imputed sample sI (see, for example,
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population U (size N ): θ

sr sm

imputed sample sI (size n)

bootstrap population U∗ (size N ∗ = s
1

π k
): θI

bootstrap sample s∗b (size n ∗)

probability sampling method
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b

1
π ∗
k
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strap samples

Fig. 5.2 Estimating the sampling distribution of an estimator O�I applying the bootstrap method in
finite population sampling with data imputation

estimator tI according to (3.4) from Sect. 3.3). This bootstrap technique incorporates
the additional inaccuracy resulting from the use of imputed instead of true values
and delivers asymptotically unbiased variance estimators without the use of a
standard variance estimator (cf. Shao and Tu 1995; Shao and Sitter 1996, p. 1279ff).
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5.3 The Horvitz–Thompson Based Bootstrap

The different approaches to the variance estimation of an estimator O� for a finite
population parameter � by the bootstrap methods discussed in the previous section
can be summarized as follows (see Fig. 5.2 for sm D ;): The process starts from
the probability sample s, drawn according to a without-replacement probability
sampling scheme with inclusion probabilities �k (k 2 U). For non-integer design
weights, the presented bootstrap methods differ when it comes to the generation of
the bootstrap population U� of size N� (or of different bootstrap populations). Such
a bootstrap population U� shall serve as set-valued estimator of U, particularly for
simulations with respect to the variance of O� under the given sampling scheme.
Evidently, to mimic the sampling distribution of O� in this respect, bootstrap
population U� must have the same structure regarding strata and/or clusters as the
original population U (cf. Chao and Lo 1994, p. 398ff).

At this stage of the process, possibly, the �k-values also have to be adapted to the
original sampling method applied (cf., as an example, Holmberg 1998, p. 380). In
the next step, B bootstrap samples s�

1 ; : : : ; s
�
B of size n� are drawn from U� with the

original sampling method using these adapted inclusion probabilities ��
k . In each

resample s�
b , the estimate O��

b is calculated in the same way O� was calculated in the
original sample s. For this purpose, following the HT rule from Sect. 2.2 (Fig. 2.2), a
pseudo-population U�

b is generated by replicating the observed values of s�
b

1
��

k
times

(k 2 s�
b ). Within these B pseudo-populations U�

1 ; : : : ;U
�
B , the estimates O��

1 ; : : : ;
O��
B

are calculated. The distribution of these B O��
b -values serves as an estimator of the

sampling distribution of O� . In particular, this means that its variance is estimated by
(5.1).

For U� D U, this bootstrap framework, which also includes Efron’s original
i.i.d. bootstrap as a special case, would perfectly simulate the sample-to-sample
distribution of O� , which was shown in Fig. 2.1 (see Sect. 4). This is the intuitive
approach of this type of finite population bootstrap. Therefore, the crucial point
is the generation of the bootstrap population U� as an estimator of U so that
resamples can be drawn from U� to mimic the actual sampling distribution of O� . As
proposed above, when the parameter of interest is a function of population totals,
the generation of U� may directly follow the HT approach presented in Fig. 2.2 to
estimate the original population U.

All methods described so far for the finite population bootstrap in �PS (or
general �) sampling with non-integer design weights try to establish a bootstrap
population to start the resampling process from it, which includes solely integer
numbers of replications of the original sampling units, thus violating “the mimicking
principle” (Ranalli and Mecatti 2012, p. 4095) of Efron’s original bootstrap
approach for non-integer design weights to an unknown extent. Subsequently, a
procedure is presented, which is a natural development of the generation of a
pseudo-population for the HT estimation of a total, as shown in Fig. 2.2 (Quatember



5.3 The Horvitz–Thompson Based Bootstrap 81

2014b). It complements the proposals of Holmberg (1998) and Barbiero and Mecatti
(2010) for the problem of non-integer design weights in the most natural way.

In particular, this Horvitz–Thompson based bootstrap approach (HTB) allows
also non-integer numbers of replications of the sample values of variables y and x
to generate the bootstrap population U�. This is done in the same way as in the HT
estimator of a total to generate the HT pseudo-population U�

HT (see Sect. 2.2). For a

�PS sample, for example, let each unit k be replicated exactly 1
�k

D t.x/

xkn times. In
this way, a bootstrap population U� D U�

�PS is generated, which contains not only ik
whole units with values yk and xk, but also an additional rk-piece of a unit with these
values as it was described for the HT estimator in Sect. 2.2, when rk > 0 applies

(k 2 s). This pseudo-population has the expected size E.N�/ D E
�P

s
1
�k

�
D N.

But, for SI sampling with �k D n
N , which corresponds to �PS sampling with xk D 1

8 k 2 U, for instance, this means that a bootstrap population U� D U�
SI with size

N�
SI D N is guaranteed. Note that the bootstrap population has to be generated in

a way that the original sample s could also be a possible outcome of the sample
selection process.

For rk > 0 and increasing n, the difference between the standard deviation of
size N� of the HTB method and the finite population bootstrap methods allowing
only integer numbers of replications of y-values from s increases. Furthermore, the
difference between these standard deviations increases with less differing original
first-order inclusion probabilities.

In the resampling process, based on this bootstrap population U�, a whole unit
k belonging to this population has a resample inclusion probability proportional to
its original x-value. But, for an rk-piece of a unit k, this probability is proportional
to rk times xk. Hence, after the generation of U� as a set-valued estimator of U, the
design weights of the elements in U� will not have to be recalculated. In each of the
resamples drawn, the original estimator of the parameter under study is calculated.

For a �PS sample with xk D 1 8 k 2 U and N
n 2 N, the method reduces

to the strategy for the SI technique proposed by Gross (1980) as discussed above.
For arbitrary �k-values and integer design weights, this procedure reduces to the
techniques proposed by Holmberg (1998) and Barbiero and Mecatti (2010).

For the proposed HTB technique and a given without-replacement probability
sample s, in the light of the three desirable properties mentioned above for
efficient variance estimation (cf. Barbiero and Mecatti 2010, pp. 60ff), the following
applies:

1. The total
P

U� x�
k of the replications of size variable x in U� is given by:P

U� x�
k D P

s xk � 1
�k

D t.x/.
2. For the total

P
U� y�

k of the replications of variable y in U�,
P

U� y�
k D P

s yk �
1
�k

D t�PS applies.
3. The expected value of the HT estimator of the total

P
U� y�

k of the replications

y� in U� yields E�
�P

s�

b
y�

k � 1
�k

�
D P

U� y�
k D t�PS with E� denoting the

expectation over all resamples, given s and the sampling design.
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population U (size N ): t

sample s (size n)

bootstrap population U∗ (size N ∗ = s
1

π k
): tπPS

probability sampling method

HTB approach

Fig. 5.3 Generating a bootstrap population for the HTB bootstrap method applying the HT
approach of generating a pseudo-population

Nevertheless, for usual design weights, the proposed HTB method to generate
the bootstrap population is not expected to perform considerably better than, for
instance, the technique of Holmberg (1998). But, it might seem more understandable
in terms of educational reasons than the more or less heuristic methods from
literature presented in the previous section, because it follows the same idea as the
one behind the widely used HT estimator when it comes to the composition of the
bootstrap population (see Fig. 5.3). Additionally, the HTB bootstrap can still be used
in �PS situations, where other methods fail because of first-order sample inclusion
probabilities �k of the population units which are close to one, because with the
HTB method, these probabilities need not be recalculated before the resampling
process.

5.4 An Example of the Application of the Finite Population
Bootstrap

At the end of Sect. 2.7.2 on the capture–recapture (CR) method to estimate the
population size, it was emphasized that, although variance estimators for the ratio
estimator Nrat.CR/ (2.53) or the less-biased estimator by Chapman (1951) of the size
N of population U exist, the usual approximate confidence interval based on the
normal assumption of the estimator will hardly be valid, at least in small populations
and samples. The reason is that the distributions of these size estimators are skewed
to the right. Hence, confidence intervals based on the normal assumption do not
cover the targeted confidence level 1 � ˛.
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For such cases, estimating the actual distribution of a statistic such as Nrat.CR/

by the bootstrap method delivers not only an estimate of the theoretical variance,
but also an alternative for the determination of confidence intervals which does
not depend on assumptions regarding the sample distribution of the estimator. The
percentile method for the construction of a reasonable .1 � ˛/ � 100%-confidence
interval for a parameter � directly uses the .˛=2/- and .1 � ˛=2/-quantile of the
observed bootstrap distribution of the estimator O� as the lower and the upper bound
of the confidence interval, respectively (cf. Efron 1981).

Again, the key question for the application of the bootstrap method to this
finite population problem by generating a bootstrap population U� is: How can an
adequate bootstrap population (see, for example, Fig. 5.1), which may serve as the
basis for the resampling process, be generated from the observed sample s? In the
case of the CR method with the ratio estimator (2.53), a set-valued estimator of
the recapture-ready population UCR of unknown size N is the pseudo-population
U� D U�

rat.CR/ generated from the original sample s by the ratio-corrected HT
approach described in Sect. 2.7.2 (see Fig. 2.10).

To start with the drawing of the B bootstrap samples, the estimated size N� D
Nrat.CR/ D P

s
1
�k

� CP
s xk

1
�k

of U� can be rounded out to the nearest integer, resulting in

a pseudo-population of size ŒNrat.CR/� (Œx� denotes the result of rounding out x 2 R to
the nearest integer). Remember that in Sect. 2.7.2, the auxiliary variable x indicates
whether an observed sample unit is marked or not.

However, following the HTB approach to generate a bootstrap population by the
general HT approach to survey sampling (see Sect. 5.3), the size of the bootstrap
population does not have to be rounded out. Each sample element of s is replicated
1
�k

� CP
s xk

1
�k

times. This results in a bootstrap population of size N� D Nrat.CR/ with

C marked and N� �C unmarked elements. After that, the bootstrap process can start
considering the given structure of population U with respect to the original sampling
method applied (see Sect. 2.7.2).

For example, for the SI method, which is often used in this context at least
as a model, the number

P
s�

b
xk of marked elements in the resample s�

b of size n,
in principle, follows a hypergeometric distribution with parameters N� and C (cf.
Buckland 1984, p. 815f), but with N� not necessarily being an integer. Hence, the
first element of a resample s�

b is a marked one with probability C
N�

and an unmarked
one with the remaining probability. Depending on the outcome of the first draw, the
second element is a marked one with probability C�1

N��1 or C
N��1 and an unmarked

one with the adequate remaining probabilities, and so on. In this way, n elements
are drawn for the bth resample and a marked element has a probability

C �P
s�

bj�1
hj�1

N� � j C 1
(5.2)

of being selected at the jth step of a draw by draw process to select the units for
a resample from N� ( j D 1; : : : ; n). Therein, hj�1 denotes the number of times a
marked element was already selected in the first j�1 steps of the process to generate
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population U: N

population UCR : NCR = N

sample s (size n)

bootstrap population U∗: N ∗ = Nrat (CR )

marking of C elements

probability sampling method

bootstrap approach

probability sampling method

bootstrap sample s∗b (size n )
↓ratio-corrected    HT approach

pseudo-pop. U∗
b : N ∗

rat (CR ) ,b
B bootstrap samples

Fig. 5.4 Generating a bootstrap population for the application of the HTB bootstrap method with
the capture–recapture (CR) technique

a resample (h0 D 0). Furthermore, s�
bj�1

denotes the subset of the resample s�
b after

the ( j � 1)th of n draws. The probability of the selection of an unmarked unit at the
jth step of the process of drawing n resampling units is given by the complementary
probability.

Altogether, B resamples are drawn from U� following the original sampling
scheme. In each one, the ratio estimator (2.53) is calculated. This gives a bootstrap
estimation of the sample distribution of the CR estimator Nrat.CR/ of the unknown
size N of the original population U (see Fig. 5.4). For large B, the .˛=2/- and
.1 � ˛=2/-quantiles of this empirical bootstrap distribution serve as reasonable
bounds of an approximate confidence interval for the true population size N of the
original population U with coverage probability 1 � ˛.



Chapter 6
Generalized Randomized Response Questioning
Designs

6.1 Introduction

When questions on sensitive subjects, such as harassment at work, domestic
violence, illegal employment, number of abortions, income, or voting behavior,
are asked by direct questioning, nonresponse and untruthful answering will occur.
As can be seen from Eq. (3.1), in the presence of both, the HT estimator tHT,
for instance, is decomposed into three sums: one over the truthful answering set
st of sample s, another over the untruthful answering set su, and a third over
the missing set sm. Hence, such behavior by a respondent may cause serious
problems in the analysis of sample and population data because the estimators of
population parameters based only on a survey’s available cases may strongly be
biased. It is therefore essential for data collectors to not ignore nonresponse or
untruthful answering. Before applying such methods as weighting adjustment and
data imputation (see Sects. 3.2 and 3.3) to compensate for nonresponse that has
already occurred, data collectors should do everything to make the rates of both
nonresponse and untruthful answering as small as possible.

How can statistical science be embedded within the system of methods discussed
by empirical social researchers, as presented in Sect. 3.1, to ensure a high level
of data quality and quantity? For sensitive variables, randomized response (RR)
questioning designs applied at the survey’s design stage aim to address this question.
A common characteristic of these methods is that, instead of directly asking for
the sensitive variable, the question actually asked is randomly selected according
to reasonably determined “design probabilities.” The idea behind this questioning
approach can be described as setting the variable y under study as missing in the
whole sample and imputing the values yi

k instead of yk (8 k 2 s). This means that an
RR design does not allow the data collector to assign the given answer of any survey
element directly to the sensitive variable. This should reduce the individual’s fear of
an embarrassing “outing” and thus ensure that the responding person is willing to
cooperate.

© Springer International Publishing Switzerland 2015
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The development of such techniques commenced with the pioneering work of
Warner (1965) for the estimation of the relative size of a certain subgroup of the
population. In this questioning design each respondent has to answer randomly
either with probability pI the question “Are you a member of this subgroup?” or with
probability pII D 1 � pI the alternative “Are you a member of the complementary
subgroup?” (0 < pI < 1). Since then, various RR methods have been developed, for
instance, to increase the efficiency of strategies to estimate proportions (examples
of recent developments are Christofides 2003; Singh and Sedory 2011), to apply
the idea to categorical and quantitative variables (see Sects. 6.2.1 and 6.3) or to
include auxiliary information either at the survey’s design or estimation stage
(Diana and Perri 2009; Ryu et al. 2005). Other indirect questioning designs with
no randomization device have been published (Groenitz 2014; Tan et al. 2009).
Chaudhuri (2011) and Chaudhuri and Christofides (2013) wrote recent books on
the theoretical aspects of such procedures. The practical use of these questioning
designs is well documented (cf. the various papers on empirical sociological or
psychological research quoted in Lensvelt-Mulders et al. 2005 applying the RR
technique). The positive effect of these strategies on the response and the truthful
answering rate, as well as on the perceived privacy protection when asking for
sensitive information, has been repeatedly confirmed (see, for instance, the meta-
analysis in Lensvelt-Mulders et al. 2005). It shall not be concealed that in some
studies this positive effect was not found (cf., for instance, Holbrook and Krosnick
2010).

Warner (1971) was the first to note that the techniques of RR are also applicable
as methods for statistical disclosure control (see Sect. 7) to “mask” confidential
microdata sets in order to allow their release for public use (cf. Warner 1971,
p. 887). When RR techniques are used in this context, either the survey units already
perform data masking at the survey’s design stage or the statistical agency applies
the probability mechanism of the technique before the release of the microdata file
(cf., for instance, van den Hout and van der Heijden 2002).

6.2 The Estimation of the Sizes of Disjointed Subgroups
by the Randomized Response Technique

6.2.1 A Generalized Questioning Design for Categorical
Variables

After Warner’s kick-start, more basic ideas were presented, for instance, by Horvitz
et al. (1967) (with its theoretical framework presented by Greenberg et al. 1969) and
Boruch (1971). Other studies considered chaining and combining such proposals.
The estimators found in this way were apparently different from each other. The
efficiency comparisons rarely, hardly ever in fact, considered the privacy protection
offered by the different techniques although “since the degree of privacy is an
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essential part of the randomized response procedure, and greater privacy will,
in general, have greater costs in terms of variance of the estimate, one obvious
basis for comparing randomized models is to compare variances only when the
required degree of privacy is held constant” (Warner 1976, p. 205). Often, efficiency
comparisons were done by determining those randomization probabilities that
provide a better performance for the new strategy compared to others, as if the
choice of these design probabilities could not affect the perceived privacy protection
and therefore the respondents’ willingness to cooperate. Despite attempts to develop
a general framework (cf., for instance, Chaudhuri 2001; Quatember 2009), the main
result over the years has been to inflate the respective literature with a surplus supply
of theory “not keeping pace in practice” (Chaudhuri 2011, p. xiii).

Motivated by these facts, a unified approach for the estimation of the category
sizes of a categorical variable is introduced in the following. It brings together the
work of Quatember (2014a), which was based on Quatember (2009) and Quatember
(2012). Moreover, the theory is extended to the case that for some of the respondents
their true values of the sensitive variable can be observed.

This framework is broad enough to encompass as special cases several techniques
already published and the rest still “awaiting” their individual presentations.
Furthermore, whereas “almost invariably, the randomized response theory in the
literature till date is apparently connected to the case of simple random sampling
with replacement” (see Chaudhuri 2011, p. 1), the theory of the strategy proposed
in the following is developed for without-replacement probability sampling schemes
(see Sect. 2.4) with arbitrary first-order inclusion probabilities �k (k D 1; : : : ;N).
This seems to be important for the practical applicability of such theoretical ideas
because in fields, in which sensitive questions are asked, complex sampling schemes
with differing first-order sample inclusion probabilities, including stratification (by
region or sex, for example) or clustering (such as in household surveys) are often
used.

The unified questioning design can be formulated in the following way: Let
universe U of N population units be divided by a categorical variable y with
categories 1; : : : ;H into H � 2 non-overlapping subgroups U1; : : : ;UH of sizes
N1; : : : ;NH (U D S

Uh, N D P
Nh, Uh \ Ui D ; 8 h ¤ i; h; i D 1; : : : ;H).

Furthermore, let the parameters of interest be the sizes N1; : : : ;NH of the H
subgroups. For instance, one might be interested in the number of elements of
certain subgroups itself, or in the case of an ordinal or a quantitative discrete variable
y, proportions may be needed to calculate measures of position, dispersion, or other
distribution characteristics.

For element k, let the value yk be the true category i of variable y (yk D i).
Moreover,

ykh D
(
1 if yk D h,

0 otherwise
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indicates the membership of group Uh (h D 1; : : : ;H). The total of the ykh-values
over all population units k D 1; : : : ;N for category h is Nh D P

U ykh.
Let s be a without-replacement probability sample of size n. Aiming to increase

the survey units’ perception of privacy protection to reduce nonresponse and
untruthful answering, a generalized RR questioning design R can be formulated
in the following way: A drawn sample unit k is asked

• with probability pI for his or her true value yk D i of variable y (Instruction I);
• with probability pII to choose randomly one of the H � 1 categories h ¤ i of

y that he or she does not belong to according to preassigned probabilities (h D
1; : : : ;H, h ¤ i) (Instruction II);

• with probability pIII to choose randomly one of all H categories 1; : : : ;H of y
according to preassigned probabilities (Instruction III); or

• with probability pIV for his or her true value xk D j of a variable x with H
categories (j D 1; : : : ;H) (Instruction IV).

The sum of the probabilities pI, pII, pIII, and pIV equals 1. The probability pI of being
asked the direct question on variable y can be composed of the design probabilities
from, say, K � 1 stages in which the direct question might be asked (cf. Quatember
2012). The process might start at stage 1, at which Instruction I is presented with
probability p.1/I < 1. With the remaining probability, 1 � p.1/I , the respondent is

directed to a second stage, at which this question is asked with probability p.2/I .
With the remaining probability, the survey unit might be directed to a third stage
and so on. At the final Kth stage, the survey unit is asked the question on y with
probability p.K/I . With the probabilities pII, pIII, and pIV, Instructions II–IV are given
to the survey unit at the final stage. This gives a total probability

pI D p.1/I C
�
1 � p.1/I

�
� p.2/I C � � � C

�
1 � p.1/I

�
�
�
1 � p.2/I

�
� : : : �

�
1� p.K�1/

I

�
� p.K/I

of being asked the question on the variable y under study (Instruction I). Some
authors of RR techniques have suggested such multi-stage questioning designs
instead of a one-stage version with pI D p.1/I , apparently to increase the privacy
protection as perceived subjectively by the respondents at the cost of a more
complex procedure (cf., for instance, Bourke and Dalenius 1976, p. 220).

The probability pIII to get the instruction to choose randomly one of the
H categories is decomposed into a sum of H probabilities pIII;1; : : : ; pIII;H

(
P

h pIII;h D pIII). These can be calculated from the preassigned conditional
probabilities p1jIII; : : : ; pHjIII of choosing categories 1 to H if Instruction III is
selected (

P
h phjIII D 1), resulting in pIII;h D phjIII � pIII (h D 1; : : : ;H). The not

necessarily equal probabilities phjIII can be determined by the data collector in
advance according to, for instance, different sensitivity levels of the membership of
certain categories. When it comes to the allocation of Instruction II to a survey unit,
one could change these probabilities. However because they should be reasonably
assigned, there is a non-necessity to change them. Using the same category
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probabilities as for Instruction III results in pII;h D phjIIIP
h¤i phjIII

� pII (h D 1; : : : ;H;

h ¤ i). For equal conditional probabilities, phjIII D 1
H , pIII;h D pIII

H , and pII;h D pII
H�1

apply.
As another alternative to the question on the sensitive variable y, in the gener-

alized randomization technique R according to the idea by Horvitz et al. (1967), a
survey unit is asked with probability pIV for the value xk of a completely nonsensitive
variable x not related to y and having the same number H of categories as y, denoted
as 1; : : : ;H. For this purpose, the category sizes N.x/

h of category h of x must be

known for the population so that pIV;h D N
.x/
h
N � pIV and

P
h pIV;h D pIV apply.

The difference between the random selection of a category h with probabilities
pIII;h and pIV;h, respectively, lies in the random nature of the selection. In the first
case, the answer of a certain survey unit k can take different values, whereas in the
second case, the random nature stems solely from the grouping of U according to
variable x. In Instruction IV, the answer category h is a fixed value for a given survey
unit k similar to variable y in Instruction I.

Clearly, for pI < 1, the questioning design R does not enable the data
collector to identify with certainty the randomly selected question or instruction;
therefore, it protects the respondent’s privacy. Practicable randomizing devices for
this procedure can be found in different sources (see, for instance, Warner 1986 for
telephone surveys, and Boeije and Lensvelt-Mulders 2002 or Peeters et al. 2010,
p. 290ff, for computer-assisted RR).

All possible combinations of the four selectable instructions defined above
shall be included in the unified approach R under one theoretical umbrella. In
the following, some of these combinations, which to the author’s knowledge have
already been published are mentioned. The list starts with the direct questioning
design:

• For pI D 1, the direct questioning on the subject is included in strategy R.

For H D 2 categories, the following different ideas are special cases of R, in all of
which 0 < pI < 1 applies and the design probabilities pII, pIII, and pIV not mentioned
explicitly are set to zero:

• For pII D 1 � pI, Warner (1965) and its two-stage version by Mangat and Singh
(1990) are members of family R.

• With pIII;1; pIII;2 > 0 and pIII D 1 � pI, the technique of Boruch (1971) and its
two-stage version by Singh et al. (1995) belong to our framework R.

• The choice of pIII;1 D pIII for pIII D 1 � pI results in an RR questioning design
applied by Quatember (2009).

• With pIV D 1 � pI, Horvitz et al. (1967) and its two-stage version by Mangat
(1992) are incorporated into R.

• With pII > 0, pIII;2 D pIII, and pII C pIII D 1 � pI, Mangat et al. (1995) and its
two-stage version previously published by Mangat et al. (1993) become special
cases of the unified framework R.
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• For pII > 0, pIII;1 D pIII, and pII C pIII D 1 � pI, the RR family R also includes
the idea of Bhargava and Singh (2000).

• Fixing design probabilities as pII > 0; pIII;1; pIII;2 > 0 and pII C pIII D 1 � pI

results in the idea suggested by Chang et al. (2004).
• For pII > 0, pIV > 0, and pII C pIV D 1 � pI, Bourke (1984) is also found under

the unified theoretical umbrella R.
• Choosing pIII;1 D pIII, pIV > 0, and pIII C pIV D 1 � pI, Perri (2008) becomes a

member of the family R.
• With pIII;2 D pIII, pIV > 0, and pIII C pIV D 1 � pI, Singh et al. (2003) and its

two-stage version previously published by Singh et al. (1994) are members of the
unified approach.

• For pII > 0, pIII;1; pIII;2 > 0, pIV > 0, and pII C pIII C pIV D 1 � pI the
standardized RR questioning design by Quatember (2009) and its multi-stage
equivalent included in the family defined by Quatember (2012) are found under
the same umbrella R.

Moreover, for H > 2 categories,

• with design probabilities 0 < pI < 1, pIII;h > 0 8 h D 1; : : : ;H, and pIII D 1�pI,
the generalized RR technique R results in the design by Liu and Chow (1976) as
discussed in Quatember (2014a).

Just to assure that there can be no misunderstanding: This is not an invitation
to use all four Instructions with design probabilities larger than zero. Rather,
the objective is to provide a theoretical framework that can be applied with all
combinations of these Instructions for pI; pII; pIII; pIV � 0.

Now, let zk be the response category l of survey unit k (zk D l) with respect to the
randomized response questioning design R and

zkh D
(
1 if zk D h,

0 otherwise

(h D 1; : : : ;H). At this place, the idea of generating a pseudo-population offers
the opportunity to discuss the theoretical properties of the questioning design R for
general probability sampling instead of the limitation to i.i.d. sampling, which is
assumed in the vast majority of the relevant literature. For this purpose assuming
cooperation, the probability of zkh D 1 with respect to R for given ykh is calculated
by

PR.zkh D 1/ D pI � ykh C pII;h � .1 � ykh/C pIII;h C pIV;h

D uh C vh � ykh

with uh � pII;h C pIII;h C pIV;h and vh � pI � pII;h. Thus, the term

yi
kh D zkh � uh

vh
(6.1)
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Fig. 6.1 Generating a
pseudo-population with the
questioning design R population U (size N ):

s = sm

imputed sample sI (size n)

pseudo-population U∗
R (size ∗ = s

1
π k

):

probability sampling method

questioning design R

HT approach

NHN1N , ...,

, ...,,RN1NNRN ,RNH

is used as an unbiased estimator for the true value ykh (vh ¤ 0). To be able
to estimate the relative group sizes of variable y, the estimator (3.4) from data
imputation can be applied considering the special case of sr D ; and sm D s (see
Fig. 6.1). The yi

kh-values can be viewed as “imputations” of the unknown, missing
ykh-values. Adapting the derivations in Quatember (2012, 2014a) to the questioning
design R results in the following theorems.

Theorem 1a For a without-replacement probability sampling scheme P with arbi-
trary first-order inclusion probabilities �k (k 2 U) and the RR questioning design
R,

Nh;R D
X

s
yi

kh � 1
�k

(6.2)

is an unbiased estimator of size Nh D P
U ykh of group Uh in population U (h D

1; : : : ;H).
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Proof With EP and ER, denoting the expectation over the probability sampling
design P and over the randomized questioning design R, respectively,

E.Nh;R/ D EP

�
ER

�X
s

yi
kh � 1

�k

ˇ̌
ˇ̌ s
�	

D EP

�X
s
ykh � 1

�k

�

D
X

U
ykh D Nh

applies.

Based on (6.2), we can describe the estimation of Nh as a special case of the
imputation estimator tI (3.4). After the sampling units are drawn with probability
sampling method P, the questioning design R is applied to all sample elements of
s delivering an “imputed sample” sI of size n. Considering the sampling method,
the HT approach for the estimation of a population total described in Sect. 2.2
results in the generation of a pseudo-population U�

R of size N�
R D P

s
1
�k

elements,

with 1
�1

units having the imputed value yi
1h of the replication variable y�

h , 1
�2

units

having the value yi
2h, and so on, for each category h (h D 1; : : : ;H). The estimators

N1;R; : : :NH;R of the sizes N1; : : :NH of the H different subgroups U1; : : : ;UH of U
can be counted directly using the replicated variable values yi�

kh of units k for category
h in pseudo-population U�

R (Fig. 6.1). Applying a presentation of type (2.9), (6.2)
can be written as

Nh;R D
X

U�

R

yi�
kh: (6.3)

Theorem 1b The theoretical variance of Nh;R is given by

V.Nh;R/ D
XX

U
�kl � ykh

�k
� ylh

�l
C ah �

X
U

1

�k
C .bh � 1/ �

X
U

ykh � 1
�k

(6.4)

with ah � uh.1�uh/

v2h
, bh � 1�2uh

vh
(h D 1; : : : ;H).

Proof The theoretical variance of estimator (6.2) can be calculated by

V.Nh;R/ D VP.ER.Nh;Rjs//C EP.VR.Nh;Rjs//;

with VP and VR denoting the variances over the probability sampling procedure P
and questioning design R, respectively. For the first summand,

VP.ER.Nh;Rjs// D VP

�X
s
ykh � 1

�k

�

applies, which is given by V.tHT/ from Eq. (2.5). Let Ik indicate the sample inclusion
of a population unit k (see Sect. 2.1) with EP.Ik/ D �k. Further, performing the
randomization procedure R independently on each individual results in a covariance
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of yi
kh and yi

lh of CR.yi
kh; y

i
lhjs/ D 0 8 k ¤ l. Therefore, with EP.I2k / D EP.Ik/, the

following expectation over P of the variances over R is derived:

EP.VR.Nh;Rjs// D EP

�
VR

�X
U

Ik � yi
kh � 1

�k

ˇ̌
ˇ̌ s

��

D EP

�X
U

I2k � 1
�2k

� VR.y
i
kh/

�

D
X

U
VR.y

i
kh/ � 1

�k
:

Variance VR.yi
kh/ is given by

VR.y
i
kh/ D 1

v2h
� VR.zkh/

and because z2kh D zkh and y2kh D ykh,

VR.zkh/ D ER.z
2
kh/� E2R.zkh/

D vh � ykh C uh � .vh � ykh C uh/
2

D uh � .1 � uh/C vh � .1 � vh � 2 � uh/ � ykh

applies. Hence,

EP.VR.Nh;Rjs// D 1

v2h
�
�

uh � .1� uh/ �
X

U

1

�k
C

Cvh � .1 � vh � 2 � uh/ �
X

U
ykh � 1

�k

�
:

This completes the proof of (6.4).
The first summand of (6.4) corresponds to the variance formula for the direct

questioning under the assumption of full cooperation. The second one can be
regarded as the price that has to be paid by the data analyst for the increased privacy
protection of the respondents and the reduced risk of nonresponse. For s D U (and
n D N), (6.4) reduces to ah � N C .bh � 1/ � Nh.

Theorem 1c The theoretical variance V.Nh;R/ according to (6.4) can be estimated
unbiasedly by

OV.Nh;R/ D
XX

s

�kl

�kl
� yi

kh

�k
� yi

lh

�l
C ah � N�

R C .bh � 1/ � Nh;R (6.5)

(h D 1; : : : ;H).
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Proof For the proof of the unbiasedness of (6.5) with regard to the theoretical
variance V.Nh;R/ of Nh;R, we begin with

V.Nh;R/ D
XX

U
�kl � ykh

�k
� ylh

�l
C ah �

X
U

1

�k

C .bh � 1/ �
X

U
ykh � 1

�k

D
XX

U
�kl � ykh

�k
� ylh

�l
C ah � N C .bh � 1/ � Nh

C ah �
X

U

�
1

�k
� 1

�
C .bh � 1/ �

X
U

ykh �
�
1

�k
� 1

�
:

The expectation of
PP

s
�kl
�kl

� yi
kh
�k

� yi
lh
�l

over the questioning design R is given by:

ER

�XX
s

�kl

�kl
� yi

kh

�k
� yi

lh

�l

�
D
XX

U
Ik � Il � �kl

�kl
� ER.yi

kh � yi
lh/

�k � �l

D
XX

U.k¤l/
Ik � Il � �kl

�kl
� ykh

�k
� ylh

�l

C
X

U
I2k � �kk

�k
� ERŒ.yi

kh/
2�

�2k
:

Therein,

ERŒ.y
i
kh/

2� D ER

�
z2kh � 2 � uh � zkh C u2h

v2h

�

D 1

v2h
� 
.1 � 2 � uh/ � ER.zkh/C u2h

�

D .1 � 2 � uh/ � vh � ykh C uh � .1 � uh/

v2h

D bh � ykh C ah:

Next,

EP

�
ER

�XX
s

�kl

�kl
� yi

kh

�k
� yi

lh

�l

ˇ̌
ˇ̌ s

��

D
XX

U.k¤l/

�kl

�kl
� ykh

�k
� ylh

�l
� EP.Ik � Il/

C
X

U

�kk

�k
� ah C bh � ykh

�2k
� EP.I

2
k /
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D
XX

U
�kl � ykh

�k
� ylh

�l
C
X

U

�kk

�2k
� .ah C .bh � 1/ � ykh/

D
XX

U
�kl � ykh

�k
� ylh

�l
C
X

U
.1 � �k/ � .ah C .bh � 1/ � ykh/ � 1

�k

D
XX

U
�kl � ykh

�k
� ylh

�l
C ah �

X
U

�
1

�k
� 1

�

C .bh � 1/ �
X

U
ykh �

�
1

�k
� 1

�
:

With E.N�
R / D E.

P
s
1
�k
/ D N and E.Nh;R/ D Nh, Eq. (6.5) is unbiased for V.Nh;R/.

Theorem 1d The theoretical covariance C.Nh;R;Nj;R/ of estimators Nh;R and Nj;R

with h ¤ j is given by

C.Nh;R;Nj;R/ D � 1

vh � vj
�
X

U
.uh � vj � ykj C uj � vh � ykh C uh � uj/ � 1

�k

C
XX

U.k¤l/
ykh � ylj � �kl

�k � �l
� Nh � Nj (6.6)

(h ¤ jI h; j D 1; 2; : : : ;H).

Proof For the covariance applies

C.Nh;R;Nj;R/ D E

��X
s
yi

kh � 1
�k

�
�
�X

s
yi

lj � 1
�l

��
� Nh � Nj

D EP

�
ER

�X
s

yi
kh � yi

kj � 1
�2k

ˇ̌
ˇ̌ s

��

CEP

�
ER

�XX
s.k¤l/

yi
kh � yi

lj � 1
�k

� 1
�l

ˇ̌
ˇ̌ s

��

�Nh � Nj:

In the first of the two summands, the expectation of the product yi
kh � yi

kj over the
randomization strategy R is given by

ER.y
i
kh � yi

kjjs/ D ER

�
zkh � uh

vh
� zkj � uj

vj

ˇ̌
ˇ̌ s

�

D 1

vh � vj
� ER.�uh � zkj � uj � zkh C uh � ujjs/

D � 1

vh � vj
� .uh � vj � ykj C uj � vh � ykh C uh � uj/:
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In the second summand, for the expectation over R with k ¤ l

ER.y
i
kh � yi

ljjs/ D ER.y
i
khjs/ � ER.y

i
ljjs/ D ykh � ylj

applies. This results in

C.Nh;R;Nj;R/

D EP

�
� 1

vh � vj
�
X

U
.uh � vj � ykj C uj � vh � ykh C uh � uj/ � 1

�2k
� Ik

�

C EP

�XX
U.k¤l/

ykh � ylj � 1
�k

� 1
�l

� Ik � Il

�
� Nh � Nj:

Because EP.Ik/ D �k and EP.Ik � Il/ D �kl (see Sect. 2.1), the correctness of
Theorem 1d is proven.

Theorem 1e The covariance (6.6) is estimated unbiasedly by

OC.Nh;R;Nj;R/ D � 1

vh � vj
�
X

s
.uh � vj � yi

kj C uj � vh � yi
kh C uh � uj/ � 1

�2k

C
XX

s.k¤l/

�kl

�kl
� yi

kh

�k
� yi

lj

�l
(6.7)

(h ¤ jI h; j D 1; 2; : : : ;H).

Proof The following expectations have to be derived:

EP

�
ER

�X
s
yi

kh � 1
�2k

ˇ̌
ˇ̌ s

��
D EP

�X
U

ykh � 1
�2k

� Ik

�
D
X

U
ykh � 1

�k

and

EP

�
ER

�X
s

1

�2k

ˇ̌
ˇ̌ s

��
D EP

�X
U

1

�2k
� Ik

�
D
X

U

1

�k
:

With these results, the unbiasedness of the first summand of (6.7) for the first
summand of (6.6) is immediately proven. With respect to the last two summands of
(6.6), firstly

EP

�
ER

�XX
s.k¤l/

yi
kh � yi

lj � 1

�k � �l

ˇ̌
ˇ̌ s

��

D EP

�XX
U.k¤l/

ykh � ylj � 1

�k � �l
� Ik � Il

�

D
XX

U.k¤l/
ykh � ylj � �kl

�k�l
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applies. Furthermore, for the term
PP

s.k¤l/ yi
kh � yi

lj � 1
�kl

, the following expectation
over P and R is derived:

EP

�
ER

�XX
s.k¤l/

yi
kh � yi

lj � 1
�kl

ˇ̌
ˇ̌ s

��

D EP

�XX
U.k¤l/

ykh � ylj � 1
�kl

� Ik � Il

�

D
XX

U.k¤l/
ykh � ylj D Nh � Nj:

The development

XX
s.k¤l/

yi
kh � yi

lj �
�

1

�k � �l
� 1

�kl

�
D
XX

s.k¤l/
yi

kh � yi
lj � �kl � �k � �l

�k � �l � �kl

completes the proof of the unbiasedness of (6.7) for (6.6).
Together with the variances, statistical hypotheses tests on the difference between

two category sizes can be performed. Such an issue arises frequently in opinion
polls. The expressions given in the five theorems are general for probability
sampling and must be worked out for a specific sampling scheme using its specific
sample inclusion probabilities.

6.2.2 The Estimation of the Size of Very Small or Very Large
Categories

The estimators Nh;R may be outside the interval Œ0I N� if one or more of the
respective category sizes Nh are very small or very large (h D 1; : : : ;H). It follows
that the H estimators Nh;R according to (6.2) are moment but not ML estimators
of these parameters. For this reason, Mangat and Singh (1991) recommended
sequentially continuing sampling until a predetermined number of certain responses
are observed. These numbers are chosen in such a way that the probability for
estimators to be smaller than zero or larger than one is small. As with all sequential
schemes, the problem of unlikely, but possibly, large sample sizes limits the
applicability of the proposed procedure.

To determine the ML estimators of the Nh-values instead of the moment estima-
tors, the EM algorithm can be applied (cf. Dempster et al. 1977). For this purpose,
the observed responses z have to be viewed as a mixture with mixing proportions Nh

N .
The unobserved true variable y is completely missing (cf, for instance, Bourke and
Moran 1988, p. 966). As applied in Quatember (2014a), at iteration t the E step of
the EM algorithm replaces each missing value ykh by its expected value, conditioned
on zkj and the estimate Nh;R of the tth iteration. This expectation is given by

E.t/.yk D hjzk D j;N.t/
h;R/ D P.zkj D 1jykh D 1/ � N.t/

h;RP
h P.zkj D 1jykh D 1/ � N.t/

h;R

(6.8)
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(h; j D 1; : : : ;H). The M step of the EM algorithm maximizes the likelihood of the
observations. This corresponds to an “update” tC1 of the estimator N.t/

h;R considering
probability sampling procedure P:

N.tC1/
h;R D

X
s

�X
j
zkj � E.t/.yk D hjzk D j;N.t/

h;R/
�

� 1
�k
: (6.9)

Expression (6.8) is inserted into (6.9). To start with this iterative approximation of
the ML estimators, at step t D 1 of the process, plausible values N.1/

h;R are used as

estimates of Nh’s. From this starting point, the algorithm generates estimates N.t/
h;R

that converge to the ML estimators of N1; : : : ;NH for t ! 1.
Even when a moment estimator Nh;R lies close to the boundaries of the natural

parameter space, approximate confidence intervals based on the normal assumption
might not be valid because the sampling distribution of such an estimator is likely
non-symmetric. Alternatively, the finite population bootstrap procedure based on
the generation of a bootstrap population (see Sect. 5) may serve as an instrument to
calculate confidence intervals that include not only the sampling error but also the
additional inaccuracy caused by the response randomization. For this purpose, the
responses zk can be used to generate the pseudo-population U�

boot needed in this type
of bootstrap process (see Fig. 5.1). In creating U�

boot, value z1 is replicated 1
�1

times,

z2 is replicated 1
�2

times, and so on. This gives a total of N�
boot D P

sR

1
�k

replications

that make up U�
boot. Therein, with the yi

k-values calculated by (6.1), the estimates Nh;R

are calculated according to (6.3). For the estimation of the sampling distributions of
the Nh;R-values, B bootstrap samples are drawn from U�

boot according to probability
sampling method P with adapted first-order inclusion probabilities ��

k . In each of
these samples, variable z is observed. These observations are used to calculate B
times either the moment or the ML estimators of N1; : : : ;NH . With the percentile
method (Efron 1981, p. 317ff), the .˛=2/- and .1 � ˛=2/-quantiles of the empirical
distribution of the B estimators for each category size Nh are used to construct the
respective confidence intervals at level 1 � ˛ (cf., for instance, van den Hout and
van der Heijden 2002, p. 278).

6.2.3 Combining Direct and Randomized Responses

In practice, some of the respondents may be willing to divulge their true values of the
sensitive variable y. Of course, the interviewees should not be asked “Do you want
to disclose your true status or mask it?” In particular, for variables which are not
variables that are sensitive as a whole like sexual behavior or income, but of which
only the membership of a part of the possible categories is considered to be sensitive,
to choose the option to scramble the response might be interpreted as admission
to belong to one of these sensitive categories. This could apply, for instance, for
variables such as drug usage or abortion. Therefore, the respondents would not feel
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well protected by offering this choice explicitly (for the issue of privacy protection,
see Sect. 6.2.4). As a consequence, their willingness to participate in the survey
would not increase.

But, it may often happen that, for instance, a telephone interviewer, while
explaining the randomized response questioning design, recognizes that the inter-
viewee is spontaneously willing to furnish the sensitive information directly without
the randomization device (for example, by saying “Stop the explanations—I have
no problem answering the question directly!”). Such an offer from a respondent
to deliver the true yk-value must not be ignored. Instead, to increase the efficiency
of the estimators for the category sizes Nh (h D 1; : : : ;H), the offer should be
incorporated in the estimation procedure in the following way: Let population U
theoretically be divided into (1) a subpopulation UD of ND elements willing to
answer the direct question although an RR questioning design is offered to them,
and (2) a disjoint group UR, whose NR members will use the offered randomization
procedure (UD \ UR D ;, UD [ UR D U, and N D ND C NR). Assuming full
cooperation, the without-replacement probability sample s will then be divided into
a group sD D s \ UD with nD units delivering their true value yk and a group
sR D s \ UR with nR elements with “missing values” (sR D sm). These units will
deliver a randomized response zk. The true values yk must be flagged in the data of
the “mixed imputed sample” sI D sD [ sR (sD \ sR D ;, n D nD C nR).

This modification of a respondent’s possible behavior affects the estimation
procedure described in Sect. 6.2.1 in the following way.

Theorem 2a For a probability sampling method P with arbitrary first-order sample
inclusion probabilities �k, a mixture (M) of direct answers yk and randomized
responses zk collected using the RR model R,

Nh;M D
X

s
y

0

kh � 1
�k

(6.10)

with

y
0

kh D
(

ykh if k 2 UD,

yi
kh otherwise

(h D 1; : : : ;H) is unbiased for the true population size Nh of category h of variable
y in population U (h D 1; : : : ;H) for any probability sampling technique P.

Proof Because ER.yi
kh/ D ykh, the expectation of (6.10) over P and R is equal to Nh.

For sD D ; and s D sR, Nh;M reduces to Nh;R (6.2), whereas for sR D ; and
s D sD, the estimator Nh;M reduces to the HT estimator Nh;HT D P

s ykh � 1
�k

of
parameter Nh (h D 1; : : : ;H).

The calculation of estimators Nh;M of parameters Nh can be represented by the
picture of a pseudo-population U�

M of size N�
M D P

s
1
�k

generated as a set-valued
estimator of U with respect to these parameters (h D 1; : : : ;H). In U�

M , for each
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Fig. 6.2 Generating a
pseudo-population with the
mixed questioning design M population U = UD ∪ UR NH(size N ): N1N , ...,

sD sR = sm

mixed sample sI (size n)

pseudo-population U∗
M (size N ∗ = s

1
πk

):

probability sampling method

questioning design M

HT approach

, ...,,MN1N ,MNHNM

sampling element k 2 sD, a number of 1
�k

elements with variable values ykh build a

direct answering part U�
D of U�

M , and for each k 2 sR, a number of 1
�k

elements with

variable values yi
kh are generated, building the other part U�

R of U�
M . All replicated

variable values belong to the replication variable y�
h . Summing the variable values

y�
kh over the N�

M units of U�
M D U�

D [ U�
R (U�

D \ U�
R D ;) results in the estimator

Nh;M from Eq. (6.10), which can also be explicated as

Nh;M D
X

U�

M

y�
kh (6.11)

(see Fig. 6.2).

Theorem 2b The theoretical variance of the estimator Nh;M (h D 1; : : : ;H) is
given by

V.Nh;M/ D
XX

U
�kl � ykh

�k
� ylh

�l
Cah �

X
UR

1

�k
C.bh�1/�

X
UR

ykh � 1
�k
; (6.12)

with ah and bh as defined in Theorem 1b.

Proof The theoretical variance of estimator (6.10) can be decomposed into

V.Nh;M/ D VP.ER.Nh;Mjs//C EP.VR.Nh;M js//:
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For the first summand of the equation,

VP.ER.Nh;M js// D VP

�X
s
ykh � 1

�k

�

applies. Further,

EP.VR.Nh;M js//

D EP

�
VR

�X
sD

ykh � 1
�k

ˇ̌
ˇ̌ s C

X
sR

yi
kh � 1

�k

ˇ̌
ˇ̌ s

��

D EP

�
VR

�X
UD

ykh � 1
�k

� Ik

ˇ̌
ˇ̌ s C

X
UR

yi
kh � 1

�k
� Ik

ˇ̌
ˇ̌ s

��

D EP

�X
UR

1

�2k
� I2k � VR.y

i
kh/

�
:

With the development of VR.yi
kh/ presented in the proof of Theorem 1b,

EP

�X
UR

1

�2k
� I2k � VR.y

i
kh/

�
D ah �

X
UR

1

�k
C .bh � 1/ �

X
UR

ykh � 1
�k

applies, which completes the proof of Theorem 2b.

The sum of the second and third summand of (6.12) is the price to be paid in
terms of accuracy for the higher protection of the respondents’ privacy when the
“mixed strategy” M is applied. With UR D ;, (6.12) reduces to the variance of the
HT estimator of the total Nh. For UD D ;, (6.12) reduces to (6.4).

Theorem 2c The variance (6.12) can be estimated unbiasedly by

OV.Nh;M/ D
XX

s

�kl

�kl
� y

0

kh

�k
� y

0

lh

�l
Cah �

X
sR

1

�k
C.bh �1/ �

X
sR

yi
kh � 1
�k
: (6.13)

Proof The expectation of the first summand of (6.13) over R is given by

ER

 
XX

s

�kl

�kl
� y

0

kh

�k
� y

0

lh

�l

!

D
XX

U

�kl

�kl
� ER.y

0

kh � y
0

lh/

�k � �l
� Ik � Il

D
X

U

�kk

�k
� ERŒ.y

0

kh/
2�

�2k
� I2k C

XX
U.k¤l/

�kl

�kl
� ykh � ylh

�k � �l
� Ik � Il:
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For the expected value of .y
0

kh/
2,

ERŒ.y
0

kh/
2� D

(
ykh if k 2 UD,

bh � ykh C ah otherwise

applies. Hence, with �kk D �k � .1 � �k/,

X
U
.1 � �k/ � ERŒ.y

0

kh/
2�

�2k
� I2k D

X
UD
.1 � �k/ � ykh

�2k
� I2k

C
X

UR
.1 � �k/ � ah C bh � ykh

�2k
� I2k

is derived. It follows that

EP

 
ER

 
XX

s

�kl

�kl
� y

0

kh

�k
� y

0

lh

�l

ˇ̌
ˇ̌
ˇ s

!!

D
X

UD
.1 � �k/ � ykh

�2k
� EP.I

2
k /

C
X

UR
.1� �k/ � ah C bh � ykh

�2k
� EP.I

2
k /

C
XX

U.k¤l/

�kl

�kl
� ykh

�k
� ylh

�l
� EP.Ik � Il/

D
X

UD
.1 � �k/ � ykh

�k
C
X

UR
.1 � �k/ � .ah C bh � ykh/ � 1

�k

C
XX

U
�kl � ykh

�k
� ylh

�l
�
X

U
.1 � �k/ � ykh

�k

D
XX

U
�kl � ykh

�k
� ylh

�l
C ah �

X
UR

1 � �k

�k

C .bh � 1/ �
X

UR
.1 � �k/ � ykh

�k
:

With

EP

�
ER

�X
sR
.ah C .bh � 1/ � yi

kh/ � 1

�k

ˇ̌
ˇ̌ s
��

D EP

�
ER

�X
UR
.ah C .bh � 1/ � yi

kh/ � 1

�k
� Ik

ˇ̌
ˇ̌ s
��

D
X

UR
ah C .bh � 1/ �

X
UR

ykh;

Theorem 2c is completely proven.
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Theorem 2d The theoretical covariance C.Nh;M ;Nj;M/ of “mixed” estimators Nh;M

and Nj;M with categories h ¤ j is given by

C.Nh;M ;Nj;M/ D � 1

vh � vj
�
X

UR
.uh � vj � ykj C uj � vh � ykh C uh � uj/ � 1

�k

C
XX

U.k¤l/
ykh � ylj � �kl

�k � �l
� Nh � Nj (6.14)

(h; j D 1; 2; : : : ;H).

Proof The following applies

C.Nh;M;Nj;M/ D E

��X
s
y

0

kh � 1
�k

�
�
�X

s
y

0

lj � 1
�l

��
� Nh � Nj

D EP

�
ER

�X
s

y
0

kh � y
0

kj � 1
�2k

ˇ̌
ˇ̌ s

��

CEP

�
ER

�XX
s.k¤l/

y
0

kh � y
0

lj � 1
�k

� 1
�l

ˇ̌
ˇ̌ s

��
� Nh � Nj:

For

ER.y
0

kh � y
0

kj/ D
(
0 if k 2 UD,

� uh�vj�ykjCuj�vh �ykhCuh�uj

vh �vj
otherwise

applies. For k ¤ l, it follows that

ER.y
0

kh � y
0

ljjs/ D ER.y
0

khjs/ � ER.y
0

ljjs/ D ykh � ylj

applies. This yields

C.Nh;M;Nj;M/

D EP

�
� 1

vh � vj
�
X

UR
.uh � vj � ykj C uj � vh � ykh C uh � uj/ � 1

�2k
� Ik

�

C EP

�XX
U.k¤l/

ykh � ylj � 1

�k � �l
� Ik � Il

�
� Nh � Nj:

Because EP.Ik/ D �k and EP.Ik � Il/ D �kl, the correctness of Theorem 2d is proven.
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Theorem 2e The covariance (6.14) of Nh;M and Nj;M is estimated unbiasedly by

OC.Nh;M ;Nj;M/ D � 1

vh � vj
�
X

sR
.uh � vj � yi

kj C uj � vh � yi
kh C uh � uj/ � 1

�2k

C
XX

s.k¤l/

�kl

�kl
� y

0

kh

�k
� y

0

lj

�l
(6.15)

(h ¤ jI h; j D 1; 2; : : : ;H).

Proof Based on the proof of Theorem 1e, the following expectations are needed:

EP

�
ER

�X
sR

yi
kh � 1

�2k

ˇ̌
ˇ̌ s
��

D
X

UR
ykh � 1

�k

and

EP

�
ER

�X
sR

1

�2k

ˇ̌
ˇ̌ s

��
D
X

UR

1

�k
:

Hence, the unbiasedness of the first summand of (6.15) for the first summand of
(6.14) is proven. Then,

EP

�
ER

�XX
s.k¤l/

y
0

kh � y
0

lj � 1

�k � �l

ˇ̌
ˇ̌ s

��

D EP

�XX
s.k¤l/

ykh � ylj � 1

�k � �l
� Ik � Il

ˇ̌
ˇ̌ s

�

D
XX

U.k¤l/
ykh � ylj � �kl

�k � �l

applies. Moreover, in the same way as in the proof of Theorem 1e,

EP

�
ER

�XX
s.k¤l/

y
0

kh � y
0

lj � 1
�kl

ˇ̌
ˇ̌ s

��

D
XX

U.k¤l/
ykh � ylj D Nh � Nj

applies. This completes the proof of the unbiasedness of OC.Nh;M ;Nj;M/ for
C.Nh;M ;Nj;M/.

In summary, the randomization strategy R from Sect. 6.2.1 is a special case of
the mixed strategy M allowing for true answers to the question on variable y, with
sR D s and UR D U. Using the variance and covariance estimators explicated in
the present section, statistical hypotheses testing of differences in group sizes can
be performed.
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6.2.4 Accuracy and Privacy Protection

The efficiency of different strategies of RR depends strongly on the level of privacy
protection that they offer. Therefore, in contrast to past claims in some publications,
the efficiency of such strategies should be compared only at the same levels of pri-
vacy protection. Quatember (2009) showed the close connection between efficiency
and privacy protection for RR techniques to estimate proportions. Naturally, this
also applies for all special cases of the unified approach R (and M) discussed in the
current chapter. Guerriero and Sandri (2007) described models with the same level
of privacy protection as “equivalent” with respect to this protection (Guerriero and
Sandri 2007, p. 2185). Let us define the following measures �h of the theoretical
level of privacy protection according to the different categories h of the categorical
variable y under study (h D 1; : : : ;H):

�
.R/
h D P.zk D hjyk ¤ h/

P.zk D hjyk D h/
: (6.16)

For the measure �.R/h , the probability of answering “category h” (zk D h), given
that this is not the true category (yk ¤ h), is divided by the probability of this answer
if this is the true category (yk D h). Therefore, it refers to the privacy protection with
respect to response zk D h.

Assuming without loss of generality that pI > 0, pI � pII;h applies. Then, for the
questioning design R, the “�-measures” from (6.16) are given by

�
.R/
h D pII;h C pIII;h C pIV;h

pI C pIII;h C pIV;h
D uh

vh C uh
(6.17)

with uh; vh as defined in Sect. 6.2.1 (0 � �
.R/
h � 1, h D 1; : : : ;H). Hence, large �.R/h -

values indicate high theoretical privacy protection with respect to answer category
h. The more �.R/h differs from one, the more information on the membership of
group Uh is contained in the given answer zk of element k and the less protected
against disclosure the survey unit is with respect to variable y. Finally, for the direct
questioning with pI equal to one, �.R/h D 0 apply for all categories h D 1; : : : ;H.

If the membership of a certain category h of variable y is objectively more
sensitive than that of another category, its level �.R/h of privacy protection should be
higher than that of the other categories with regard to the respondents’ willingness
to cooperate. In other words, the questioning design probabilities pI, pII;h (with
yk D i and h ¤ i), pIII;h, and pIV;h according to the relative category sizes of
auxiliary variable x can be chosen in accordance with the sensitivity levels of the
different categories of variable y (h D 1; : : : ;H). This is relevant not only for the
application of the questioning design R as randomized response technique but also
for its application as a masking technique in the field of statistical disclosure control,
where the probability mechanism R can be applied after the data collection to protect
the privacy of respondents with regard to sensitive variables (see Sect. 7).
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6.2.5 An Application to Opinion Polls

During the last decades, and not only in Austria (Europe), the results from opinion
polls conducted shortly before a forthcoming election have increasingly differed
from the actual outcome of the election. Particularly, the proportions of parties
from the two margins of the political spectrum have constantly been underesti-
mated. For this reason, representatives of such parties in Austria have accused
opinion researchers of data manipulation. As a consequence, these politicians have
demanded a prohibition of opinion polls shortly before elections. Actually, besides
the increasingly late moment of voting decision, the growing sensitivity of the
variable “voting behavior” and particularly of certain categories of this variable
seem to be the main reason for this phenomenon.

For this application in the questioning design R, the design probabilities pII and
pIV can be set to zero, whereas the others, pI and pIII;h (h D 1; : : : ;H; h ¤ i
with yk D i), are freely selectable. This randomization setup is based on Liu and
Chow (1976). In a telephone or face-to-face survey, such a questioning design
can be implemented in the following manner (the procedure can also be easily
adapted to Web or postal surveys): The interviewer tells the survey unit that because
of the sensitivity of the subject, a questioning design will be applied to protect
the respondents’ privacy. Of course, the effect of this questioning design on data
protection has to be explained to the respondents in a vivid way to produce the
desired willingness to cooperate. Then, the respondent may be asked, for instance,
to think of a person whose date of birth he or she knows but without delivering this
information to the interviewer (for other random devices, see, for instance, Warner
1986, p. 441f). The .H � 1/ parties in question and a non-voting category give
altogether H possible answer categories. Then, if the date of birth is within a certain
interval, such as from January to September, the respondent shall answer truthfully a
question such as, “Imagine it’s election day. Which party gets your vote?” However,
if the date is, say, from the 1st to the 20th of October, the respondent shall simply
answer “party 1.” If the date lies within an interval, say, from the 21st of October
to the 9th of November, the survey unit shall simply answer “party 2,” and so on.
In any case, these disjoint date groups have to cover all possible dates of birth from
January to December. The chosen allocation of these dates to groups determines
the design probabilities. For simplicity, the probabilities for certain dates may, for
example, be approximated by a uniform distribution.

A mathematically more sophisticated randomizing device with no uniform
distribution that requires no instrument such as a dice was suggested by Diekmann
(2012) and makes use of the Newcomb–Benford distribution (cf. Newcomb 1881).
For this purpose, the respondent may be asked to think of a person of whom he
or she recalls the house number. Then, if the first digit of the house number is
within a certain interval as from 1 to 4, the respondent shall answer truthfully on
the interesting question from above. But, if it is, say, 5 or 6, the respondent shall
answer “party 1.” If the digit is 7, the survey unit shall answer “party 2,” and so on.
After all, the H groups of first digits have to cover all nine numbers. The probability
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of a certain first digit follows the Newcomb–Benford distribution. Therefore, the
probability of being asked the direct question is 0.699 (cf. Newcomb 1881, p. 40).
The probability of 5 or 6 is 0.146, of 7 is 0.058, of 8 is 0.051, and of 9 it is the
probability of 0.046. If other probabilities are needed for the questioning design
or the number H of answer categories is larger, the grouping of the first digits
should be done in another way, or the first two digits can be used to produce more
possible groups (cf. Newcomb 1881, p. 40). Diekmann (2012) emphasizes that for
this random device there is a discrepancy between the probabilities as perceived by
the respondents and the actual probabilities. For instance, the probability of picking
a house number with first digit from 1 to 4 is believed to be smaller than it actually
is. This “illusion” (Diekmann 2012, p. 330) has a positive effect on the perceived
privacy protection with regard to this RR questioning design (for a discussion on the
different aspects of theoretical and perceived privacy protection, see Chaudhuri and
Christofides 2013, Chap. 7).

If during the design explanations, a respondent reveals without being asked to do
so that he or she is willing to answer the sensitive question directly (as mentioned,
for instance, in Sect. 6.2.3), this answer must be flagged. Then the estimator (6.10)
has to be applied.

If the direct questioning on the sensitive variable leads to non-ignorable non-
response and untruthful answering, as expected in opinion polls, a considerably
biased estimator is the consequence. For such cases, the higher complexity of the
RR questioning design R will surely pay off under the assumption of cooperation.
The accuracy of the estimators increases although their variances exceed the (then
only) theoretical variances of the direct questioning.

6.3 The Estimation of a Total by the Randomized Response
Technique

6.3.1 A Generalized Questioning Design for Quantitative
Variables

The idea of reducing nonresponse and untruthful answering by applying an alter-
native questioning design that protects the respondent’s privacy need not to be
restricted to categorical variables. The first effort to apply such a method also to
quantitative variables was undertaken by Greenberg et al. (1971). It was a direct
development from the theoretical framework given by Greenberg et al. (1969) for the
estimation of proportions applying the model by Horvitz et al. (1967). To estimate
the mean y of a quantitative variable y (such as the number of abortions per unit in
a given population of women), it was suggested to ask a respondent k either with
probability pI for the true value yk or with the remaining probability pII for the true
value xk of a completely innocuous quantitative variable x unrelated to y. Variable x
should have a similar range of possible values as y. This means that for the technique
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discussed by Greenberg et al. (1971) the answer z.G/k of a respondent k is

z.G/k D
(

yk with probability pI,

xk with probability pII D 1 � pI

(0 � pI � 1). In practice, the design probabilities pI and pII can be implemented by
rotating a spinner, drawing cards, throwing the dice, building disjoint date groups
(see Sect. 6.2.5) or using a computer program as randomization instrument (cf.
Lensvelt-Mulders et al. 2005). Obviously, it is more efficient for the estimation of
y to know the population distribution of x with expectation x and variance �2x . If
these parameters are not known, a two-sample procedure can be applied, in which
the statistical characteristics of x have to be estimated as well (cf. Greenberg et al.
1971, p. 245).

After this first application of an RR questioning design to quantitative variables,
other techniques have been developed for the same purpose (cf. for a review, for
instance, Diana and Perri 2011, p. 635ff). Again, after the presentation of basic
ideas, other developments consist of chaining and combining these techniques
(recent examples are Bar-Lev et al. 2004; Gjestvang and Singh 2007). In the
following, a generalized framework for the estimation of the total t of a (sensitive)
variable y in general probability sampling is presented. It includes, as special cases,
the most important techniques already published. Furthermore, this unified approach
at the same time encompasses all the other combinations not yet published. The
execution of the statistical properties of this framework for general probability
sampling, being of the greatest importance for the practical application of the
procedure, is based on unbiased “imputations” yi

k for the true values yk (k 2 s)
and the HT approach of generating a pseudo-population.

The proposed unification Q of different RR questioning designs for the estima-
tion of the total t of a quantitative variable y is described in the following way: A
drawn sampling unit k is asked

• with an overall probability pI for his or her true value yk of variable y (Instruction
I);

• with probability pII for his or her true value xk of a nonsensitive auxiliary variable
x unrelated to y (Instruction II);

• with probability pIII to answer with the result of yk C uk where u is a random
variable with known distribution, expected valueu, and variance �2u (Instruction
III);

• with probability pIV to answer with the result of yk � vk where v is a random
variable with known distribution, expected valuev , and variance �2v (Instruction
IV); or

• with probability pV to answer with value wk of random variable w with known
distribution, expected value w, and variance �2w (Instruction V).
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This means that for the RR framework Q technique the answer zk of a respondent k
is

zk D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

yk with probability pI,

xk with probability pII,

yk C uk with probability pIII,

yk � vk with probability pIV,

wk with probability pV

(
P

pi D 1). As it was described for the questioning design R in Sect. 6.2.1, the
probability pI of being asked the direct question on variable y can be composed of
different probabilities from K � 1 stages (cf., for instance, Ryu et al. 2005). This
can be performed to increase the respondents’ subjective perception of the privacy
protection offered by the RR technique, which is considered as the “respondents’
criterion for participation in an indirect questioning survey” (Chaudhuri and
Christofides 2013, p. 151f). The procedure might start at stage 1, at which the
question on y is asked with probability p.1/I < 1. With the remaining probability, the
sampling unit is directed to a second stage and so on. At the final Kth stage, where
all the five instructions of Q are possible, the survey unit is asked the question on y
with probability p.K/I . This gives the overall probability

pI D p.1/I C .1 � p.1/I / � p.2/I C � � � C .1 � p.1/I / � .1 � p.2/I / � : : : � .1 � p.K�1/
I / � p.K/I

of being asked the question on variable y under study in the multi-stage questioning
design already mentioned in Sect. 6.2.1. The auxiliary variable x needed in Instruc-
tion II is the one adopted by Greenberg et al. (1971). The variables u and v are
scrambling random variables to mask the true value yk of a survey unit k. Lastly,
w is a random variable predetermined by the agency with respect to the possible
values of y. Instruction V differs from Instruction II in the random nature of the
mechanism that leads to answers xk and wk, respectively. On the one hand, the value
of variable x is fixed for a given sample unit k. Its random nature is solely the result
of the selection of a probability sample. On the other hand, the value of variable w is
random for each sample element. Note that the random variables u, v, and w should
be independent, but could have the same distributions.

Again, to avoid any misunderstanding about the meaning of this presentation,
this is not a proposal to use all of the instructions included in questioning design Q
at the same time. But based on the unified framework Q, the theoretical properties
of a total estimator can be derived under one theoretical roof for any combination of
the five instructions of Q. In the following, some of these combinations, which to the
author’s best knowledge have already been published are mentioned as examples.

• For pI D 1, the direct questioning on the subject is included in the RR
technique Q.
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• For pIII D 1, the addition strategy proposed by Pollock and Bek (1976) is part of
the generalization Q.

• For pIV D 1, the multiplicative model proposed and theoretically explicated by
Poole (1974), Pollock and Bek (1976), and Eichhorn and Hayre (1983) and its
two-stage version by Ryu et al. (2005) is a special case of Q.

Moreover, the following ideas are also special cases of Q. For all of them 0 < pI < 1

applies and those design probabilities from pII to pV not mentioned explicitly are set
to zero:

• For pII D 1 � pI, the strategy presented by Greenberg et al. (1971) with known
distribution of x is a member of family Q.

• With pIV D 1� pI, the strategy presented by Bar-Lev et al. (2004) belongs to our
framework Q.

• With pIV; pV > 0, pIV C pV D 1 � pI, and w being a “random variable” with
a fixed value, the model of Gjestvang and Singh (2007) is also an incorporated
member of Q.

To explicate the theoretical discussion of RR questioning design Q for general
probability sampling with arbitrary first-order sample inclusion probabilities�k (k 2
U), the expected value of the response zk of a certain survey unit k for given y results
in

EQ.zk/ D pI � yk C pII � x C pIII � .yk C u/C pIV � yk � v C pV � w

D yk � .pI C pIII C pIV � v/„ ƒ‚ …
�b

C pII � x C pIII � u C pV � w„ ƒ‚ …
�a

:

Obviously, the term

yi
k D zk � a

b
(6.18)

(b ¤ 0) is unbiased for the true value yk of unit k over the randomization Q.
The development of RR technique Q for a general without-replacement proba-

bility sampling technique P can make use of these substitutes yi
k for the unknown

yk-values to generate a pseudo-population, say, U�
Q as estimator of the original

population U with respect to the estimation of t from an imputed sample sI (see
Sect. 3.3). Assuming that the higher privacy protection offered by questioning
design Q promotes the respondents’ motivation to cooperate, the following theorems
apply:

Theorem 3a For a probability sampling method P with arbitrary first-order sample
inclusion probabilities �k (k 2 U) and questioning design Q, the total t of study
variable y in population U is unbiasedly estimated by

tQ D
X

s
yi

k � 1
�k
: (6.19)
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Fig. 6.3 Generating a
pseudo-population with the
questioning design Q population U (size N ): t

s = sm

imputed sample sI (size n)

pseudo-population U∗
Q (size N ∗

Q = s
1
πk

): tQ

probability sampling method

questioning design Q

HT approach

Proof It is easy to show the unbiasedness of estimator (6.19) because EQ.yi
k/

denoting the expectation of yi
k over the randomization process Q equals yk and the

HT estimator
P

s yk � 1
�k

is unbiased over sampling method P.

Hence, the estimation of t by (6.19), which is a special case of the imputation
estimator tI (3.4), can be interpreted as the generation of a pseudo-population U�

Q.
For this purpose, the sampling units drawn by a probability sampling scheme P are
subject to the randomization procedure Q. This probability mechanism that masks
the true values of variable y creates a sample s with imputed values yi

k, instead of
the true values yk (k 2 s). According to Eq. (6.19), the artificial population U�

Q is
generated from sQ by replicating each of the n sampled yi

k-values exactly 1
�k

times

(see Fig. 6.3). The size N�
Q of pseudo-population U�

Q is equal to the sum
P

s
1
�k

.
Hence, N�

Q depends on the probability sampling method P applied. The estimator tQ
is the sum of all values yi�

k (k 2 U�
Q) denoting the values yi

k replicated from sQ to
generate U�

Q:

tQ D
X

U�

Q

yi�
k : (6.20)



112 6 Generalized RR Questioning Designs

Theorem 3b For a probability sampling method P, the theoretical variance of tQ
is given by

V.tQ/ D
XX

U
�kl � yk

�k
� yl

�l
C 1

b2
�
�
.c � b2/ �

X
U

y2k � 1
�k

C2 � .d � a � b/ �
X

U
yk � 1

�k
C.e � a2/ �

X
U

1

�k

	
(6.21)

with c � pI CpIII CpIV � .�2v C2v/, d � pIII �u, and e � pII � .�2x C2x/CpIII � .�2u C
2u/C pV � .�2w C2w/. The first summand of variance (6.21) refers to the variance of
the HT estimator for the total of variable y for a given probability sampling scheme
P, when the question on variable y is asked directly. Then, the second summand
in (6.21) can be seen as the price to be paid in terms of accuracy for the privacy
protection offered by the questioning design Q to the respondents.

Proof The variance of tQ is given by

V.tQ/ D VP.EQ.tQjs//C EP.VQ.tQjs//: (6.22)

Herein, EP, VP, EQ, and VQ denote the expectations and variances over the two ran-
dom processes involved, the probability sampling design P, and the randomization
of responses Q. The first of the two summands on the right-hand side of (6.22) yields

VP.EQ.tQjs// D VP

�X
s
yk � 1

�k

�
D
XX

U
�kl � yk

�k
� yl

�l
: (6.23)

Let Ik again indicate the sample inclusion of survey unit k (k D 1; : : : ;N).
Because the covariance CR of the substitutes yi

k and yi
l (k ¤ l) over the randomization

Q is zero, the variance of tQ over the randomization Q conditioned on sample s is
given by

VQ.tQjs/ D VQ

�X
U

yi
k � 1
�k

� Ik

ˇ̌
ˇ̌ s

�
D
X

U
I2k � 1

�2k
� VQ.y

i
k/:

Hence, with EP.I2k / D �k, for the second summand on the right-hand side of (6.22),

EP.VQ.tQjs// D
X

U
VQ.y

i
k/ � 1

�k

applies with

VQ.y
i
k/ D 1

b2
� VQ.zk/:
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Moreover, VQ.zk/ D EQ.z2k/� E2Q.zk/. The first expected value yields

EQ.z
2
k/ D pI � y2k C pII � .�2x C 2x/C pIII � .y2k C 2 � yk � u C �2u C 2u/

CpIV � y2k � .�2v C 2v/C pV � .�2w C 2w/

D y2k � .pI C pIII C pIV � .�2v C 2v//„ ƒ‚ …
�c

C2 � pIII � u„ ƒ‚ …
�d

�yk

C pII � .�2x C 2x/C pIII � .�2u C 2u/C pV � .�2w C 2w/„ ƒ‚ …
�e

With E2Q.zk/ D .yk � b C a/2, variance VQ.zk/ is given by

VQ.zk/ D y2k � .c � b2/C 2 � yk � .d � a � b/C e � a2:

Hence, the expectation EP.VQ.tQjs// on the right-hand side of Eq. (6.22) results in

EP.VQ.tQjs// D 1

b2
�
�
.c � b2/ �

X
U

y2k � 1
�k

C2 � .d � a � b/ �
X

U
yk � 1

�k
C .e � a2/ �

X
U

1

�k

	
:

Summing this up with (6.23) proves Theorem 3b.
From the first derivative after w, for all other selectable options given, the

variance minimizing function of expected value w, which can be fixed by the
agency, results in

w D b �PU yk � 1
�k

C .pII � x C d/ �PU
1
�k

.1 � pV/ �PU
1
�k

: (6.24)

In (6.24), observations from past surveys may help to estimate the sum
P

U yk � 1
�k

needed in the enumerator. It can be estimated by
P

s yk � 1
�2k

from a direct questioning

design and by
P

s yi
k � 1

�2k
from an RR questioning design Q, respectively. Applying

the probability mechanism of randomization model Q as a method of statistical
disclosure control after the data collection (see the subsequent chapter), with (6.24),
the agency can minimize the variance of a total estimator calculated from the
masked data, when Instruction V is used in the masking process.

Theorem 3c An unbiased estimator of the theoretical variance V.tQ/ according to
(6.21) is given by

OV.tQ/ D
XX

s

�kl

�kl
� yi

k

�k
� yi

l

�l
C 1

c
�
�
.c � b2/ �

X
s
.yi

k/
2 � 1
�k

C2 � .d � a � b/ �
X

s
yi

k � 1
�k

C .e � a2/ �
X

s

1

�k

	
: (6.25)



114 6 Generalized RR Questioning Designs

Proof The expectation of the first summand over both processes P and Q yields

EQ

�XX
s

�kl

�kl
� yi

k

�k
� yi

l

�l

�
D
XX

U

�kl

�kl
� EQ.yi

k � yi
l/

�k � �l
� Ik � Il

D
XX

U.k¤l/

�kl

�kl
� yk

�k
� yl

�l
� Ik � Il

C
X

U

�kk

�k
� EQŒ.yi

k/
2�

�2k
� I2k :

Therein,

EQŒ.y
i
k/
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� 
EQ.z
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�

applies. With the notations from the proof of Theorem 3b, the expected value of the
squared responses z2k over the RR strategy Q is given by

EQ.z
2
k/ D y2k � c C 2 � yk � d C e:

Thus,
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Hence, to get an unbiased estimator of the variance (6.21), it is necessary to add
terms, of which the expectations over P and Q yield 1

b2
� .c � b2/ �PU y2k , 1

b2
� 2 � .d �

a � b/ �PU yk, and 1
b2

� .e � a2/ � N. With respect to the first of these three terms, with
EQŒ.yi

k/
2� D 1

b2
� .y2k � c C 2 � yk � .d � a � b/C e � a2/, the following applies:
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�
EQ
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Furthermore,
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U
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applies and the expected value of
P

s
1
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is equal to N. Therefore,
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is unbiased for V.tQ/. Summing up the components of this equation yields (6.25).

6.3.2 Combining Direct and Randomized Responses

As mentioned in Sect. 6.2.3, in the practice of statistical surveys conducted, for
example, by market or opinion research agencies, it may happen that some of the
respondents are willing to deliver the true value of the sensitive variable without
being asked to do so by saying something like “I have no problem answering
the question directly.” To not take up the offer and continue the RR strategy Q
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undeterred to mask the true answer would make no sense in such cases. To take
the offer and use the knowledge that the answer zk of a certain survey unit k is yk

has to be incorporated in the theoretical properties of the estimator for t because
the variance of the estimator will surely decrease when such responding behavior
happens.

For this purpose, let population U theoretically be divided into (1) a subpop-
ulation UD of ND elements willing to answer the direct question although an RR
questioning design is offered to them, and (2) a disjoint group UQ of size NQ,
whose members will use the offered randomization procedure Q (UD \ UQ D ;,
U D UD [ UQ, and N D ND C NQ). The partitioning of the without-replacement
probability sample s, as described in Sect. 6.2.3, into a group sD of survey units
answering the direct question and a second group sQ answering the RR technique
Q is incorporated in the questioning design Q in the following way. Note that the
values yk of the subgroup sD of the sample s have to be identifiable within the data
set.

Theorem 4a For a without-replacement probability sampling method P and a
mixture (L) of direct answers yk and randomized responses zk collected using the
RR model Q,

tL D
X

s
y

0

k � 1
�k

(6.26)

with

y
0

k D
(

yk if k 2 UD,

yi
k otherwise

is unbiased for the total t of variable y in population U for any probability sampling
scheme P.

Proof Because EQ.yi
k/ D yk, the expected value of (6.26) over P and Q results in

EP.EQ.tL// D EP

�X
s
yk � 1

�k

�
D t:

For sD D ; and s D sQ, tL reduces to tQ, whereas for sQ D ; and s D sD,
estimator tL reduces to the HT estimator tHT D P

s yk � 1
�k

of parameter t. For the
estimation process represented by formula (6.26), a pseudo-population U�

L of size
N�

L D P
s
1
�k

is generated according to the HT approach. The y�-values of the N�
L

elements of U�
L are created by a replication of the sample s D sD CsQ and, therefore,

correspond to either the true value yk or the imputed value yi
k (see Fig. 6.4). Hence,

tL can be written by

tL D
X

U�

L

y�
k : (6.27)
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Fig. 6.4 Generating a
pseudo-population with the
mixed questioning design L population U = UD ∪ UR (size N ): t

sD sR = sm

mixed sample sI (size n)

pseudo-population U∗
L (size N ∗

L = s
1

πK
): tL

probability sampling method

questioning design L

HT approach

Theorem 4b The theoretical variance of tL for a sample conducted by a probability
sampling scheme P is given by

V.tL/ D
XX

U
�kl � yk

�k
� yl

�l
C 1

b2
�
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.c � b2/ �

X
UQ

y2k � 1
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C2 � .d � a � b/ �
X

UQ
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�k
C .e � a2/ �

X
UQ

1

�k

	
(6.28)

with c, d, and e as defined in Theorem 3b.

Proof The variance of tL is given by

V.tL/ D VP.EQ.tLjs//C EP.VQ.tLjs//:

For

VP.EQ.tLjs// D VP

�X
s
yk � 1

�k

�
D
XX

U
�kl � yk

�k
� yl

�l
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applies, whereas the second of the two summands of V.tL/ is developed in the
following way:
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�k
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X
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1

�k

	
:

This results from the derivations for the proof of Theorem 3b and completes the
proof of Theorem 4b.

Theorem 4c An unbiased estimator of the theoretical variance V.tL/ is given by
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: (6.29)

Proof The expectation of the first summand over the randomization strategy Q
yields
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Moreover, the expected value of .y
0

kh/
2 over Q is given by
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y2k if k 2 UD,
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Hence,
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Hence, for (6.29) to be unbiased for (6.28), terms have to be added to
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the proof is completed.
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6.3.3 Accuracy and Privacy Protection

The measure of theoretical privacy protection considered in Sect. 6.2.4 for categori-
cal variables makes no sense for quantitative variables. In this case, the privacy of a
respondent may not be protected, although the given answer cannot be identified as
the true one. How close the given answers zk are compared with the true values
yk also has to be taken into account (for k 2 s). Hence, a possible measure of
disclosure is the expected squared difference between the answer z and the true
value y, E.z � y/2, as discussed by Zaizai et al. (2009). However, neither does this
measure show that the respondents’ privacy is well protected because E.z � y/2 has
no upper bound as mentioned by Diana and Perri (2011, p. 21), nor does a total
disclosure of the respondents’ true values of y mean that E.z � y/2 D 0 has to apply.
For instance, when the design Q is the multiplicative model zk D yk � uk with uk D u
being a non-zero constant and pIV D 1, we can directly conclude from zk to yk for
any u while E.z � y/2 D .u � 1/2 � .�2y C 2y/ is zero only for u D 1.

An example of a sound measure of the level of disclosure offered by an RR design
of our family Q with the desired properties is the squared correlation coefficient of
z and y. It results in zero when the privacy is totally protected and one for a full
disclosure. Hence,

�.Q/ D 1 � j	zyj (6.30)

is a measure of the level of privacy protection offered by the RR questioning design
Q with 0 � �.Q/ � 1. It is easy to show that �.Q/ is equal to zero only for a strategy
Q, for which pI D 1 applies. This is the direct questioning design with absolutely no
privacy protection. The measure reaches its other extreme�.Q/ D 1 for a questioning
design Q with design probabilities pI; pIII; pIV D 0 and pIICpV D 1. For such design
probabilities, the answer zk of survey unit k contains absolutely no information on
yk. In such cases, the privacy of a respondent is completely protected. In any case,
the efficiency of different members of the RR family Q should only be compared at
the same objective level of privacy protection as measured, for instance, according
to (6.30).



Chapter 7
A Unified Framework for Statistical Disclosure
Control

7.1 Introduction

Among the various application fields of the pseudo-population concept in statistical
surveys, the area of methods for statistical disclosure control (SDC) is exceptional
in a certain sense. What is unique about SDC methods is that in contrast to almost
all other procedures, they are not aimed at improving, but in deliberately reducing
the quality of data, which are observed in statistical surveys of the official statistics
or other institutions, in a controlled way.

These data are concerned with all kinds of fields such as employment, education,
public health, or others. SDC is nothing else than a balancing act between
compulsory data protection and the continuously increasing demand by the public
for access to original data. As such data may contain sensitive information on natural
or legal persons, such as information on poverty, addictive behavior, diseases, tax
morality, or bank rating, the release of such microdata files is subject to the laws
of data protection. Disclosure happens if the release of data allows an intruder to
connect the surveyed information to certain population units. To avoid such personal
loss of privacy protection, it might not suffice to just delete those variables that are
directly linked to survey units, such as name, address, telephone numbers, or an
artificial identification number such as the social security number. Some of the units
might still be identifiable by the rest of their records if they own, for instance, a rare
combination of different variables such as the municipality of the residence and a
very large income. In such situations, other sensitive information also contained in a
microdata file may be assignable to a certain individual. For this reason, methods of
SDC that make the linking of sensitive information to individuals impossible have to
be applied before data can be handed out to the public. With the increasing ability of
data collection and storage—think of the keyword “big data”—the issue of privacy
protection is becoming increasingly important (cf., for instance, Young and Ludloff
2011).

The ultimate goal of SDC can be formulated as “disseminating statistical
information in such a way that individual information is sufficiently protected
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A. Quatember, Pseudo-Populations, DOI 10.1007/978-3-319-11785-0_7

121



122 7 A Unified Framework for SDC

against recognition of the subjects to which it refers, while at the same time
providing society with such as much information as possible under this restriction”
(Willenborg and de Waal 1996, p. 2; emphasis in original). In concrete terms, this
means that variables have to be manipulated in a manner that enhances privacy
protection where it is still possible to estimate the unknown parameters of interest.

7.2 The CSI Family of Methods for SDC

In the relevant literature, several such methods are discussed (cf., for instance,
Winkler 2004, or Matthews and Harel 2011) and implemented into statistical
software (cf., for instance, Templ 2008). The simplest of these strategies artificially
introduces missing values, instead of sensitive values of a variable y into the
microdata file. This approach is called “suppression of data” (cf., for instance,
Willenborg and de Waal 2001, p. 28). In this way, the sample s is artificially divided
into a response set sr of size nr and a missing set sm of size nsm (s D sr [sm, sr \sm D
;, n D nsr Cnsm). Clearly, after suppressing data, the estimation of parameters under
study (such as population totals) from the available cases is as problematic as it
would be in the presence of real nonresponse (see Sect. 3.1). Assuming the absence
of untruthful answers, for instance, in the resulting decomposed HT estimator (3.2)
of t, the sum

P
sm

yk � 1
�k

simply cannot be calculated.
In this section, a general framework of a whole family of methods for SDC

to mask a sensitive or identifying variable y in a data file, the CSI technique, is
discussed. Within this framework, the masking process can be viewed a missing
data problem. Consequently, this process allows implementing the wide field of data
imputation techniques (see Sect. 3.3) and also strategies of randomized response
(see Chap. 6) into the methods of SDC for microdata. Hence, it may serve as another
example of the application of the pseudo-population concept.

The framework consists of four consecutive steps applied to a sample s of size
n (cf. Quatember and Hausner 2013): In the first, the C-step, an additional variable
yC is created by simply cloning the original variable y (yC D y). In the next, the S-
step of the masking process, the idea of data suppression is applied locally or even
globally to the y clone yC, which generates a variable yCS substituting yC. For this
variable yCS, the records of the cloned item are set to missing for a single survey
unit, a group of survey units, or all survey units. Hence, with respect to yCS, the
sample s is artificially divided into a response set sr of size nsr with yCS

k D yk 8
k 2 sr and a set sm of size nsm , where yCS

k of the cloned and suppressed variable yCS

is missing 8 k 2 sm.
In the following I-step, a method to impute data yi

k for these missings is applied.
In contrast to a real nonresponse case, herein, not only information on available
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Fig. 7.1 The four steps of
the CSI method in statistical
disclosure control

x yCSI

x y yCSI

x y yCS

x y yC

x y

publishable data

deletion of y

imputation for missings in yCS

of certain values of yC
global or local suppression

cloning of y

original data

auxiliary variables x, but also on the original sensitive or identifying variable y can
be used. In the end, the cloned and suppressed and imputed variable yCSI has values

yCSI
k D

(
yk if unit k 2 sr,

yi
k otherwise.

Note that the user of the data file should not be able to distinguish between true
and imputed values of yCSI. After the missing values yk of yCS

k in sm have been
replaced by imputed values yi

k for variable yCSI, in the concluding deletion step of
the CSI process, the original variable y is completely deleted from the microdata
file for all survey units. Henceforward, its masked substitute yCSI has to serve as the
basis for the estimation of the parameters under study in the publishable data file as
far as this variable is concerned (see Fig. 7.1).

As an example, let the total t of variable y be the parameter of interest. With
the original variable, the HT estimator tHT according to (2.4) unbiasedly estimates
t. When the CSI method described earlier is applied as the SDC technique to a
without-replacement probability sample s resulting in a masked sample sCSI with
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Fig. 7.2 Generating a
pseudo-population within the
CSI process of statistical
disclosure control

population U (size N ): t

sample s (size n)

pseudo-population (size N ∗
CSIU ∗

CSI = s
1
πk

): tCSI

probability sampling method

CSI process

privacy protected
sample sCSI (size n)

HT approach

regard to the study variable y, the estimation of t can be done by the following
estimator tCSI, which corresponds to tI in Eq. (3.4):

tCSI D
X

sCSI
yCSI

k � 1
�k
: (7.1)

The reasoning behind this is that the original population U of size N is estimated
with regard to the estimation of total t of variable y by a pseudo-population U�

CSI
of size N�

CSI D P
s
1
�k

(see Fig. 7.2). For this purpose, after cloning, suppression,

imputation and deletion, the masked variable value yCSI
k of each sample unit k in the

sample sCSI is replicated 1
�k

times (k 2 s). Hence, in this context, estimator (7.1) can
be presented as

tCSI D
X

U�

CSI

y�
k (7.2)

with the replications y� of the yCSI-values.
At this very point, the generation of the pseudo-population U�

CSI, the balancing
act of SDC between the two specific interests, mandatory data protection and the
demand from researchers for access to original data, takes place. On the one hand,
the quality of U�

CSI as set-valued estimator of U with respect to the estimation of t
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depends on the quality of the estimation of the second sum of Eq. (3.2),
P

sm
yk � 1

�k
,

by
P

sm
yi

k � 1
�k

using the imputed values of yCSI. On the other hand, the degree of
privacy protection offered by the CSI method to an element k of the sample depends
on the prediction quality of yi

k for yk.
Therefore, the perfect technique of SDC with regard to the estimation of t would

be a procedure that combines both interests. This could be done by a method that,
on the one hand, does not allow to conclude from yi

k in the privacy-protected sample
sCSI to the true value yk in the original sample s, while on the other allows that the
sum

P
sm

yi
k � 1

�k
of the artificial missing set sm estimates

P
sm

yk � 1
�k

fairly well.
The questions that have to be answered are:

• Which values of yC should be suppressed or, in other words, which artificial
nonresponse mechanism should be applied to the data set? and

• Which substitute values yCSI
k should be imputed for these suppressed values (k 2

sm)?

Actually, the answers to these questions may differ from situation to situation.
Possible methods to be applied at the I-step of the CSI process include the wide
range of imputation techniques from the field of missing data. For example, if
variable y observed in an SI sample s is sensitive as a whole, HD imputation as
discussed in Sect. 3.3 can be applied in this context. The resulting procedure can be
described in the following way: after the cloning of the original variable y in s, a
subset sm of nsm elements, a number which can be determined by the data supplier,
is randomly set to missing with respect to the clone yC. This mimics the MCAR
item nonresponse mechanism (cf. Little and Rubin 2002, p. 12). Privacy protection
with respect to study variable y increases with increasing proportion nsm

n because the
probability that yCSI

k is equal to the true value yk decreases. The ratio nsm
n indirectly

affects the composition of the pseudo-population U�
CSI with respect to yCSI. It can be

called the artificial item nonresponse rate of this process. In the I-step of this method,
the artificial missings are replaced by a random hot-deck imputation of values taken
randomly with replacement from all nsr remaining values in the response set sr of
yCS. This results in the masked variable yCSI.

The more imputed replicates are included in U�
CSI, the higher is the privacy

protection and the lower is the efficiency of an estimator such as tCSI. However, usual
estimates of the variance V.tCSI/ may be too small unless the number of suppressed
values is negligible because they do not account for imputation uncertainty. Here,
multiple imputation may be helpful (see Sect. 3.3). Rubin (1993) proposed its use
in the SDC context. When it is applied as an imputation method within the I-step
of the CSI framework to replace all or a certain part of the y-clone yC, the so-called
“partially synthetic datasets” are generated (cf. Drechsler et al. 2008, p. 1007). All
stochastic imputation methods may be used. For the estimation of the interesting
parameters, the multiple imputation framework can be used (cf. Reiter 2003, p. 5f).

Of course, procedures developed originally in the SDC context can be used. For
example, randomly interchanging the values of the sensitive variable of two different
groups of the same size is called “data swapping” (cf. Dalenius and Reiss 1982).
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This preserves the privacy of the units belonging to these groups. Hence, the real
data remain in the data set, but some of them are exchanged in groups. Obviously,
this does not affect the composition of pseudo-population U�

CSI resulting from (7.1),
in which each value yCSI

k is replicated 1
�k

times, if s is a self-weighting sample. For
such samples, this does not deteriorate the estimation quality of statistics for the
distribution of y, but it protects the privacy of the respondents.

The term “micro-aggregation of data” (cf. Defays and Anwar 1998) refers to a
strategy where sensitive values of a quantitative variable are—generally spoken—
substituted by aggregates such as means, medians, modes, or some other measures.
After the micro-aggregation, in particular in the case of mean imputation, simple
univariate statistics of y such as its total may still be calculated in the pseudo-
population U�

CSI, which then consists of replicated true values and replicated
aggregates. But, the variance of the variable of replicates yCSI� in U�

CSI will certainly
understate the true variance of y in U. When compared with the imputation of overall
aggregates, the imputation of aggregates calculated within the same classes (of x
and/or y) as the suppressed data will surely help in increasing the quality of the
estimation of such parameters on the basis of the new variable yCSI.

The addition of noise (cf. Fuller 1993) is another example of an SDC procedure
belonging to the CSI family. Herein, in the imputation step, random errors are added
to y to create the publishable variable yCSI. This I-step can be seen as an application
of stochastic regression imputation. The estimation of univariate parameters is
without a problem, if the chosen suppression mechanism is MCAR. If it is only
MAR, conditional stochastic regression imputation can be applied.

Furthermore, global recoding and top and/or bottom coding (see, for instance,
Willenborg and de Waal 2001, p. 27f) also belong to the CSI family of SDC
techniques. In these cases, the cloned data are globally or locally suppressed. The
concluding I-step of the CSI process uses only the original variable y as auxiliary
information and transforms its values, on the one hand, into large(r) intervals and,
on the other hand, limits the extreme values of y to an upper and/or lower bound.
This means a loss of information contained in the pseudo-population U�

CSI, which
may not very much affect the estimation of parameters when robust estimators with
respect to outliers are calculated in the pseudo-population, such as the median.

Moreover, techniques of RR, originally presented as methods to reduce nonre-
sponse and untruthful answering when sensitive questions such as harassment at
work, domestic violence, or illegal employment are asked in a survey (see Sect. 6),
can be incorporated in the CSI context. The central element of these methods
is that survey units do not have to answer the sensitive question with certainty,
but can choose the one to be answered randomly from two or more questions
(or instructions). This does not enable the data collector to identify the question,
on which the respondents have given their answers, although these answers still
allow estimating the parameter under study. In this way, the idea is to reduce the
individual’s fear of an embarrassing “outing” to make sure that the responding
person is willing to cooperate.

Warner (1971) was the first to indicate that these techniques are also applicable
as methods of SDC applied during the data collection (cf. Warner 1971, p. 887).
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In this case, the masking process is carried out by the respondents rather than the
agency (cf. Quatember 2009, p. 144). In the I-step of the CSI strategy, the true value
yk of a cloned and globally suppressed variable yCS is replaced by the value yCSI

k ,
derived from the respondent’s answer zk on the randomly selected question.

In the SDC context, strategies, where a randomization mechanism is used as
imputation algorithm after the data collection, are called “post randomization”
techniques (see Gouweleeuw et al. 1998). In such cases, within the randomization
device, the original variable value yk may serve as auxiliary information. For RR
technique Q presented in Sect. 6.3, this means that the randomization with respect
to the variable y to be masked has to be done by the agency. This results in masked
values

yCSI
k D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

yk with probability pI,

xk with probability pII,

yk C uk with probability pIII,

yk � vk with probability pIV,

wk with probability pV

(k D 1; : : : ; n,
P

pi D 1). For this purpose, all design probabilities and variables
have to be chosen reasonably with respect to a trade-off between efficiency and
data protection. For tCSI, for instance, the application of the RR questioning design
Q after the data collection results in the generation of a pseudo-population U�

CSI,
in which the sum of all values yCSI

k estimates unbiasedly the total of y in U. The
variance of tCSI and an estimate for this variance can be calculated with (6.21)
and (6.25), respectively. These formulae contain terms that correspond to the loss
of efficiency caused by the performed data protection. By choosing the design
probabilities and parameters of Q, both the efficiency of the mean estimation and
the level of privacy protection calculated according to (6.30) can be controlled and
balanced against each other.

Also, as described in Sects. 6.2.3 and 6.3.2 for categorical and quantitative
variables in the RR context, randomization does not have to be applied to all survey
units. In the field of SDC, this means that the sample s is not completely set to
missing with regard to variable yC (sm � s).

After all, there should be no doubt about it that it is absolutely necessary with
respect to the quality of the results regarding efficiency and data protection to use
the experience of practitioners such as members of national statistical agencies. With
their knowledge, the questions previously asked regarding the CSI method to be
applied could be answered satisfactorily. Also multivariate relationships between
surveyed variables may be maintained in most cases, when an efficient masking
process can simultaneously be applied to different variables.

The application of a member of the CSI family of techniques to create a
publishable microdata file by masking a sensitive variable y has two unavoidable
impacts. On the one hand, information is lost, and on the other hand, the privacy
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of respondents is better protected than without. With regard to the first impact, the
loss of data quality can be measured, for instance, by the amount of increased bias
and mean square error of estimators such as tCSI (7.1), when compared with the
estimators applied to the original data. This loss of efficiency of estimators can be
interpreted as the price that has to be paid by the data users for the increased privacy
protection of the survey units.

The privacy protection corresponding to a certain CSI method can be quantified,
for instance, by a simple measure such as the relative size nsm

n of the missing
set sm created at the S-step of the process. More sophisticated methods relate the
publishable variable yCSI to the sensitive variable y. For binary variables, measures
published, for instance, by Quatember (2009) or in Sect. 7.2 of Chaudhuri and
Christofides (2013) use the conditional probabilities of certain answers given the
possession or nonpossession of the sensitive attribute. For categorical variables,
such measures as �.R/h (6.16) presented in Sect. 6.2.4 can be applied. For quantitative
variables (see Sect. 6.3.3), these include the squared correlation coefficient between
variables yCSI and y (cf. Diana et al. 2013, p. 20f), and the mean value of the squared
differences of yCSI and y over all survey units in the cloned, suppressed and imputed
sample before the original variable y is deleted (cf. Zaizai et al. 2009). A squared
correlation of one and a sum of squared differences resulting in zero correspond
to the complete absence of data protection in the microdata file with regard to the
sensitive variable y.

These measures of data protection can be calculated by the data supplier after the
I-step of the process before the microdata file is ready to be published. But that is
another story that has nothing to do with the main topic of the book—the generation
of pseudo-populations.
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