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Preface 

We have long been fascinated by the interplay of variables in multivariate data and 
by the challenge of unraveling the effect of each variable. Our continuing objective 
in the third edition has been to present the power and utility of multivariate analysis 
in a highly readable format. 

Practitioners and researchers in all applied disciplines often measure several vari-
ables on each subject or experimental unit. In some cases, it may be productive to 
isolate each variable in a system and study it separately. Typically, however, the 
variables are not only correlated with each other, but each variable is influenced by 
the other variables as it affects a test statistic or descriptive statistics. Thus, in many 
instances, the variables are intertwined in such a way that when analyzed individu-
ally they yield little information about the system. Using multivariate analysis, the 
variables can be examined simultaneously in order to access the key features of the 
process that produced them. The multivariate approach enables us to (1) explore the 
joint performance of the variables and (2) determine the effect of each variable in the 
presence of the others. 

Multivariate analysis provides both descriptive and inferential procedures—we 
can search for patterns in the data or test hypotheses about patterns of a priori inter-
est. With multivariate descriptive techniques, we can peer beneath the tangled web 
of variables on the surface and extract the essence of the system. Multivariate infer-
ential procedures include hypothesis tests that (1) process any number of variables 

XVII 
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without inflating the Type I error rate and (2) allow for whatever intercorrelations the 
variables possess. A wide variety of multivariate descriptive and inferential proce-
dures is readily accessible in statistical software packages. 

Our selection of topics for this volume reflects years of consulting with researchers 
in many fields of inquiry. A brief overview of multivariate analysis is given in Chap-
ter 1. Chapter 2 reviews the fundamentals of matrix algebra. Chapters 3 and 4 give 
an introduction to sampling from multivariate populations. Chapters 5, 6, 7, 10, and 
11 extend univariate procedures with one dependent variable (including ί-tests, anal-
ysis of variance, tests on variances, multiple regression, and multiple correlation) to 
analogous multivariate techniques involving several dependent variables. A review 
of each univariate procedure is presented before covering the multivariate counter-
part. These reviews may provide key insights that the student has missed in previous 
courses. 

Chapters 8, 9, 12, 13, 14, 15, and 16 describe multivariate techniques that are 
not extensions of univariate procedures. In Chapters 8 and 9, we find functions of 
the variables that discriminate among groups in the data. In Chapters 12, 13, and 
14 (new in the third edition), we find functions of the variables that reveal the basic 
dimensionality and characteristic patterns of the data, and we discuss procedures for 
finding the underlying latent variables of a system. In Chapters 15 and 16, we give 
methods for searching for groups in the data, and we provide plotting techniques that 
show relationships in a reduced dimensionality for various kinds of data. 

In Appendix A, tables are provided for many multivariate distributions and tests. 
These enable the reader to conduct an exact test in many cases for which software 
packages provide only approximate tests. Appendix B gives answers and hints for 
most of the problems in the book. 

Appendix C describes an ftp site that contains (1) all data sets and (2) SAS com-
mand files for all examples in the text. These command files can be adapted for use 
in working problems or in analyzing data sets encountered in applications. 

To illustrate multivariate applications, we have provided many examples and ex-
ercises based on 60 real data sets from a wide variety of disciplines. A practitioner 
or consultant in multivariate analysis gains insights and acumen from long experi-
ence in working with data. It is not expected that a student can achieve this kind of 
seasoning in a one-semester class. However, the examples provide a good start, and 
further development is gained by working problems with the data sets. For example, 
in Chapters 12-14, the exercises cover several typical patterns in the covanance or 
correlation matrix. The student's intuition is expanded by associating these covari-
ance patterns with the resulting configuration of the principal components or factors. 

Although this is a methods book, we have included a few derivations. For some 
readers, an occasional proof provides insights obtainable in no other way. We hope 
that instructors who do not wish to use proofs will not be deterred by their presence. 
The proofs can easily be disregarded when reading the book. 

Our objective has been to make the book accessible to readers who have taken as 
few as two statistical methods courses. The students in our classes in multivariate 
analysis include majors in statistics and majors from other departments. With the 
applied researcher in mind, we have provided careful intuitive explanations of the 
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concepts and have included many insights typically available only in journal articles 
or in the minds of practitioners. 

Our overriding goal in preparation of this book has been clarity of exposition. We 
hope that students and instructors alike will find this multivariate text more comfort-
able than most. In the final stages of development of each edition, we asked our 
students for written reports on their initial reaction as they read each day's assign-
ment. They made many comments that led to improvements in the manuscript. We 
will be very grateful if readers will take the time to notify us of errors or of other 
suggestions they might have for improvements. 

We have tried to use standard mathematical and statistical notation as far as possi-
ble and to maintain consistency of notation throughout the book. We have refrained 
from the use of abbreviations and mnemonic devices. These save space when one 
is reading a book page by page, but they are annoying to those using a book as a 
reference. 

Equations are numbered sequentially throughout a chapter; for example, (3.75) 
indicates the 75th numbered equation in Chapter 3. Tables and figures are also num-
bered sequentially throughout a chapter in the form "Table 3.9" or "Figure 3.1." 
Examples are not numbered sequentially; each example is identified by the same 
number as the section in which it appears and is placed at the end of the section. 

When citing references in the text, we have used the standard format involving the 
year of publication. For a journal article, the year alone suffices, for example, Fisher 
(1936). But for books, we have included a page number, as in Seber (1984, p. 216). 

This is the first volume of a two-volume set on multivariate analysis. The sec-
ond volume is entitled Multivariate Statistical Inference and Applications by Alvin 
Rencher (Wiley, 1998). The two volumes are not necessarily sequential; they can 
be read independently. Al adopted the two-volume format in order to (1) provide 
broader coverage than would be possible in a single volume and (2) offer the reader 
a choice of approach. 

The second volume includes proofs of many techniques covered in the first 13 
chapters of the present volume and also introduces additional topics. The present 
volume includes many examples and problems using actual data sets, and there are 
fewer algebraic problems. The second volume emphasizes derivations of the results 
and contains fewer examples and problems with real data. The present volume has 
fewer references to the literature than the other volume, which includes a careful 
review of the latest developments and a more comprehensive bibliography. In this 
third edition, we have occasionally referred the reader to "Rencher (1998)" to note 
that added coverage of a certain subject is available in the second volume. 

We are indebted to many individuals in the preparation of the first two editions 
of this book. Al's initial exposure to multivariate analysis came in courses taught 
by Rolf Bargmann at the University of Georgia and D.R. Jensen at Virginia Tech. 
Additional impetus to probe the subtleties of this field came from research conducted 
with Bruce Brown at BYU. William's interest and training in multivariate statistics 
were primarily influenced by Alvin Rencher and Yasuo Amemiya. We thank these 
mentors and colleagues and also thank Bruce Brown, Deane Branstetter, Del Scott, 
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Robert Smidt, and Ingram Olkin for reading various versions of the manuscript and 
making valuable suggestions. 

We are grateful to the following colleagues and students at BYU who helped 
with computations and typing: Mitchell Tolland, Tawnia Newton, Marianne Matis 
Mohr, Gregg Littlefield, Suzanne Kimball, Wendy Nielsen, Tiffany Nordgren, David 
Whiting, Karla Wasden, Rachel Jones, Lonette Stoddard, Candace B. McNaughton, 
J. D. Williams, and Jonathan Christensen. We are grateful to the many readers who 
have pointed out errors or made suggestions for improvements. The book is better 
for their caring and their efforts. 

THIRD EDITION 

For the third edition, we have added a new chapter covering confirmatory factor 
analysis (Chapter 14). We have added new sections discussing Kronecker products 
and vec notation (Section 2.12), dynamic graphics (Section 3.5), transformations to 
normality (Section 4.5), classification trees (Section 9.7.4), seemingly unrelated re-
gressions (Section 10.4.6), and prediction for multivariate multiple regression (Sec-
tion 10.6). Additionally, we have updated and revised the graphics throughout the 
book and have substantially expanded the section discussing estimation for multi-
variate multiple regression (Section 10.4). 

Many other additions and changes have been made in an effort to broaden the 
book's scope and improve its exposition. Additional problems have been added to 
accompany the new material. The new ftp site for the third edition can be found at: 
ftp://ftp.wiley.com/public/sci_tech_med/multivariate_analysis-3e. 

We thank Jonathan Christensen for the countless ways he contributed to the revi-
sion, from updated graphics to technical and formatting assistance. We are grateful 
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CHAPTER 1 

INTRODUCTION 

1.1 WHY MULTIVARIATE ANALYSIS? 

Multivariate analysis consists of a collection of methods that can be used when sev-
eral measurements are made on each individual or object in one or more samples. We 
will refer to the measurements as variables and to the individuals or objects as units 
(research units, sampling units, or experimental units) or observations. In practice, 
multivariate data sets are common, although they are not always analyzed as such. 
But the exclusive use of univariate procedures with such data is no longer excusable, 
given the availability of multivariate techniques and inexpensive computing power 
to carry them out. 

Historically, the bulk of applications of multivariate techniques have been in the 
behavioral and biological sciences. However, interest in multivariate methods has 
now spread to numerous other fields of investigation. For example, we have collab-
orated on multivariate problems with researchers in education, chemistry, environ-
mental science, physics, geology, medicine, engineering, law, business, literature, 
religion, public broadcasting, nursing, mining, linguistics, biology, psychology, and 
many other fields. Table 1.1 shows some examples of multivariate observations. 
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Table 1.1 Examples of Multivariate Data 

Units 

1. Students 
2. Students 

3. People 

4. Skulls 
5. Companies 
6. Manufactured items 

7. Applicants for bank loans 

8. Segments of literature 

9. Human hairs 
10. Birds 

Variables 

Several exam scores in a single course 
Grades in mathematics, history, music, art, 
physics 
Height, weight, percentage of body fat, resting 
heart rate 
Length, width, cranial capacity 
Expenditures for advertising, labor, raw materials 
Various measurements to check on compliance 
with specifications 
Income, education level, length of residence, sav-
ings account, current debt load 
Sentence length, frequency of usage of certain 
words and style characteristics 
Composition of various elements 
Lengths of various bones 

The reader will notice that in some cases all the variables are measured in the same 
scale (see 1 and 2 in Table 1.1). In other cases, measurements are in different scales 
(see 3 in Table 1.1). In a few techniques such as profile analysis (Sections 5.9 and 
6.8), the variables must be commensurate, that is, similar in scale of measurement; 
however, most multivariate methods do not require this. 

Ordinarily the variables are measured simultaneously on each sampling unit. Typ-
ically, these variables are correlated. If this were not so, there would be little use for 
many of the techniques of multivariate analysis. We need to untangle the overlapping 
information provided by correlated variables and peer beneath the surface to see the 
underlying structure. Thus the goal of many multivariate approaches is simplifica-
tion. We seek to express "what is going on" in terms of a reduced set of dimensions. 
Such multivariate techniques are exploratory; they essentially generate hypotheses 
rather than test them. 

On the other hand, if our goal is a formal hypothesis test, we need a technique that 
will (1) allow several variables to be tested and still preserve the significance level 
and (2) do this for any intercorrelation structure of the variables. Many such tests are 
available. 

As the two preceding paragraphs imply, multivariate analysis is concerned gen-
erally with two areas, descriptive and inferential statistics. In the descriptive realm, 
we often obtain optimal linear combinations of variables. The optimality criterion 
varies from one technique to another, depending on the goal in each case. Although 
linear combinations may seem too simple to reveal the underlying structure, we use 
them for two obvious reasons: (1) mathematical tractability (linear approximations 
are used throughout all science for the same reason) and (2) they often perform well 
in practice. These linear functions may also be useful as a follow-up to inferential 
procedures. When we have a statistically significant test result that compares sev-
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eral groups, for example, we can find the linear combination (or combinations) of 
variables that led to rejection. Then the contribution of each variable to these linear 
combinations is of interest. 

In the inferential area, many multivariate techniques are extensions of univariate 
procedures. In such cases we review the univariate procedure before presenting the 
analogous multivariate approach. 

Multivariate inference is especially useful in curbing the researcher's natural ten-
dency to read too much into the data. Total control is provided for experimentwise 
error rate; that is, no matter how many variables are tested simultaneously, the value 
of a (the significance level) remains at the level set by the researcher. 

Some authors warn against applying the common multivariate techniques to data 
for which the measurement scale is not interval or ratio. It has been found, however, 
that many multivariate techniques give reliable results when applied to ordinal data. 

For many years the applications lagged behind the theory because the computa-
tions were beyond the power of the available desk-top calculators. However, with 
modern computers, virtually any analysis one desires, no matter how many variables 
or observations are involved, can be quickly and easily carried out. Perhaps it is not 
premature to say that multivariate analysis has come of age. 

1.2 PREREQUISITES 

The mathematical prerequisite for reading this book is matrix algebra. Calculus is not 
used [with a brief exception in equation (4.29)]. But the basic tools of matrix algebra 
are essential, and the presentation in Chapter 2 is intended to be sufficiently complete 
so that the reader with no previous experience can master matrix manipulation up to 
the level required in this book. 

The statistical prerequisites are basic familiarity with the normal distribution, t-
tests, confidence intervals, multiple regression, and analysis of variance. These tech-
niques are reviewed as each is extended to the analogous multivariate procedure. 

This is a multivariate methods text. Most of the results are given without proof. In 
a few cases proofs are provided, but the major emphasis is on heuristic explanations. 
Our goal is an intuitive grasp of multivariate analysis, in the same mode as other 
statistical methods courses. Some problems are algebraic in nature, but the majority 
involve data sets to be analyzed. 

1.3 OBJECTIVES 

We have formulated three objectives that we hope this book will achieve for the 
reader. These objectives are based on long experience teaching a course in multivari-
ate methods, consulting on multivariate problems with researchers in many fields, 
and guiding statistics graduate students as they consulted with similar clients. 

The first objective is to gain a thorough understanding of the details of various 
multivariate techniques, their purposes, their assumptions, their limitations, and so 



4 INTRODUCTION 

on. Many of these techniques are related, yet they differ in some essential ways. 
These similarities and differences are emphasized. 

The second objective is to be able to select one or more appropriate techniques 
for a given multivariate data set. Recognizing the essential nature of a multivariate 
data set is the first step in a meaningful analysis. Basic types of multivariate data are 
introduced in Section 1.4. 

The third objective is to be able to interpret the results of a computer analysis 
of a multivariate data set. Reading the manual for a particular program package is 
not enough to make an intelligent appraisal of the output. Achievement of the first 
objective and practice on data sets in the text should help achieve the third objective. 

1.4 BASIC TYPES OF DATA AND ANALYSIS 

We will list four basic types of (continuous) multivariate data and then briefly de-
scribe some possible analyses. Some writers would consider this an oversimplifica-
tion and might prefer elaborate tree diagrams of data structure. However, many data 
sets can fit into one of these categories, and the simplicity of this structure makes it 
easier to remember. The four basic data types are as follows: 

1. A single sample with several variables measured on each sampling unit (sub-
ject or object). 

2. A single sample with two sets of variables measured on each unit. 

3. Two samples with several variables measured on each unit. 

4. Three or more samples with several variables measured on each unit. 

Each data type has extensions, and various combinations of the four are possible. 
A few examples of analyses for each case will now be given: 

1. A single sample with several variables measured on each sampling unit: 

a. Test the hypothesis that the means of the variables have specified values. 
b. Test the hypothesis that the variables are uncorrelated and have a com-

mon variance. 
c. Find a small set of linear combinations of the original variables that sum-

marizes most of the variation in the data (principal components). 
d. Express the original variables as linear functions of a smaller set of un-

derlying variables that account for the original variables and their inter-
correlations (factor analysis). 

2. A single sample with two sets of variables measured on each unit: 

a. Determine the number, the size, and the nature of relationships between 
the two sets of variables (canonical correlation). For example, we may 
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wish to relate a set of interest variables to a set of achievement variables. 
How much overall correlation is there between these two sets? 

b. Find a model to predict one set of variables from the other set (multivari-
ate multiple regression). 

3. Two samples with several variables measured on each unit: 

a. Compare the means of the variables across the two samples (Hotelling's 
T2-test). 

b. Find a linear combination of the variables that best separates the two 
samples (discriminant analysis). 

c. Find a function of the variables that will accurately allocate the units into 
the two groups (classification analysis). 

4. Three or more samples with several variables measured on each unit: 

a. Compare the means of the variables across the groups (multivariate anal-
ysis of variance). 

b. Extension of 3b to more than two groups. 
c. Extension of 3c to more than two groups. 



CHAPTER 2 

MATRIX ALGEBRA 

2.1 INTRODUCTION 

This chapter introduces the basic elements of matrix algebra used in the remainder of 
this book. It is essentially a review of the requisite matrix tools and is not intended to 
be a complete development. However, it is sufficiently self-contained so that those 
with no previous exposure to the subject should need no other reference. Anyone 
unfamiliar with matrix algebra should plan to work most of the problems entailing 
numerical illustrations. It would also be helpful to explore some of the problems 
involving general matrix manipulation. 

With the exception of a few derivations that seemed instructive, most of the results 
are given without proof. Some additional proofs are requested in the problems. For 
the remaining proofs, see any general text on matrix theory or one of the specialized 
matrix texts oriented to statistics, such as Graybill (1969), Searle (1982), or Harville 
(1997). 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 7 
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2.2 NOTATION AND BASIC DEFINITIONS 

2.2.1 Matrices, Vectors, and Scalars 

A matrix is a rectangular or square array of numbers or variables arranged in rows 
and columns. We use uppercase boldface letters to represent matrices. All entries in 
matrices will be real numbers or variables representing real numbers. The elements 
of a matrix are displayed in brackets. For example, the ACT score and GPA for three 
students can be conveniently listed in the following matrix: 

(2.1) 

The elements of A can also be variables, representing possible values of ACT and 
GPA for three students: 

( «11 «12 \ 
02i a2 2 · (2.2) 

031 032 / 
In this double-subscript notation for the elements of a matrix, the first subscript in-
dicates the row; the second identifies the column. The matrix A in (2.2) could also 
be expressed as 

A = (ay), (2.3) 
where a^ is a general element. 

With three rows and two columns, the matrix A in (2.1) or (2.2) is said to be 
3 x 2. In general, if a matrix A has n rows and p columns, it is said to be n x p. 
Alternatively, we say the size of A is n x p. 

A vector is a matrix with a single column or row. The following could be the test 
scores of a student in a course in multivariate analysis: 

/ 98 \ 
86 
93 

\ 9 7 / 

Variable elements in a vector can be identified by a single subscript: 

/ * i \ 

X (2.4) 

(2.5) 

We use lowercase boldface letters for column vectors. Row vectors are expressed as 

x' = (x\,X2,xz,Xi) oras x' — (x± a:2 xz £4), 

where x' indicates the transpose of x. The transpose operation is defined in Sec-
tion 2.2.3. 
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Geometrically, a vector with p elements identifies a point in a p-dimensional 
space. The elements in the vector are the coordinates of the point. In (2.35) in 
Section 2.3.3, we define the distance from the origin to the point. In Section 3.13, 
we define the distance between two vectors. In some cases, we will be interested in 
a directed line segment or arrow from the origin to the point. 

A single real number is called a scalar, to distinguish it from a vector or matrix. 
Thus 2, —4, and 125 are scalars. A variable representing a scalar will usually be 
denoted by a lowercase nonbolded letter, such as a = 5. A product involving vectors 
and matrices may reduce to a matrix of size l x l , which then becomes a scalar. 

2.2.2 Equality of Vectors and Matrices 

Two matrices are equal if they are the same size and the elements in corresponding 
positions are equal. Thus if A = (α^) and B = (bij), then A = B if α^ = b^ for 
all i and j . For example, let 

- ( ! - ; ! ) ■ - ( - ! · ) ■ 

°-(!1ί)· D=(!1i)· 
Then A = C. But even though A and B have the same elements, A φ Β because 
the two matrices are not the same size. Likewise, A φ D because 023 Φ d^. Thus 
two matrices of the same size are unequal if they differ in a single position. 

2.2.3 Transpose and Symmetric Matrices 

The transpose of a matrix A, denoted by A', is obtained from A by interchanging 
rows and columns. Thus the columns of A' are the rows of A, and the rows of A' 
are the columns of A. The following examples illustrate the transpose of a matrix or 
vector: 

A'=(1 i ) · 
* - ( - ϊ ί ) . 
a' = ( 2, - 3 , 1 ). 

The transpose operation does not change a scalar, since it has only one row and 
one column. 

A ~ \ 3 6 - 2 ) 

*=(r?)· 
- ( ■ ? ) ■ 
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If the transpose operator is applied twice to any matrix, the result is the original 
matrix: 

(A') ' = A. (2.6) 

If the transpose of a matrix is the same as the original matrix, the matrix is said to 
be symmetric; that is, A is symmetric if A = A'. For example, 

A = - 2 10 - 7 , A' = 

Clearly, all symmetric matrices are square. 

2.2.4 Special Matrices 

The diagonal of a p x p square matrix A consists of the elements an, 0,22, · · ·, app. 
For example, in the matrix 

A = I 7 
-6 

the elements 5, 9, and 1 lie on the diagonal. If a matrix contains zeros in all off-
diagonal positions, it is said to be a diagonal matrix. An example of a diagonal 
matrix is 

/ 10 0 0 0 \ 
0 - 3 0 0 
0 0 0 0 

\ 0 0 0 7 / 

D 

This matrix could also be denoted as 

D = diag(10,-3,0,7). (2.7) 

A diagonal matrix can be formed from any square matrix by replacing off-diagonal 
elements by 0's. This is denoted by diag(A). Thus for the above matrix A, we have 

/ 5 - 2 4 \ / 5 0 0 \ 
diag(A)=diag 7 9 3 = 0 9 0 . (2.8) 

\ - 6 8 1 / \ 0 0 1 / 

A diagonal matrix with a 1 in each diagonal position is called an identity matrix 
and is denoted by I. For example, a 3 x 3 identity matrix is given by 

(2.9) 
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An upper triangular matrix is a square matrix with zeros below the diagonal, for 
example, 

/ 8 3 4 7 \ 
0 0 - 2 3 
0 0 5 1 

\ 0 0 0 6 / 
A lower triangular matrix is defined similarly. 

A vector of 1 's will be denoted by j : 

(2.10) 

/ 1 \ 
1 

w 
(2.11) 

A square matrix of l's is denoted by J. For example, a 3 x 3 matrix J is given by 

(2.12) 

Finally, we denote a vector of zeros by 0 and a matrix of zeros by O. For example, 

O - I 0 0 0 0 I . (2.13) 

1 1 1 
J = I 1 1 1 

1 1 1 

0 
0 = | 0 

0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

2.3 OPERATIONS 

2.3.1 Summation and Product Notation 

For completeness, we review the standard mathematical notation for sums and prod-
ucts. The sum of a sequence of numbers αχ, α2 , . . . , an is indicated by 

} at — a\ + Ü2 + ■ 

If the n numbers are all the same, then ΣΗ=1 a — a + a-{ \-a — na. The sum of 
all the numbers in an array with double subscripts, such as 

an a\2 ai3 
(221 <X22 Ö 2 3 J 

is indicated by 

2 3 

5 Z 5 Z a i i - a H + a12 + 013 + «21 + Ö22 + Gt23· 
i = l j=l 
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This is sometimes abbreviated to 
2 3 

The product of a sequence of numbers a\, «2, ■ ■ ·, a,n is indicated by 
n 

J J ü i = (ai)(a2)---(an). 

If the n numbers are all equal, the product becomes ΠΓ=ι α = ( α ) ( ° ) ' ' ' (α) — α™· 

2.3.2 Addition of Matrices and Vectors 

If two matrices (or two vectors) are the same size, their sum is found by adding 
corresponding elements, that is, if A is n x p and B is n x p, then C = A + B is 
also n x p and is found as (CJJ) = (α^ + bij). For example, 

-2 
3 
7 

Similarly, the difference between two matrices or two vectors of the same size is 
found by subtracting corresponding elements. Thus C = A — B is found as (c^·) = 
(aij —bij). For example, 

(3 9 - 4 ) - ( 5 - 4 2) = ( -2 13 - 6 ) . 

If two matrices are identical, their difference is a zero matrix; that is, A = B implies 
A — B = O. For example, 

3 - 2 4 \ _ / 3 - 2 4 \ / 0 0 0 
6 7 5 / \ 6 7 ö j ' ^ O 0 0 

Matrix addition is commutative: 

A + B = B + A. (2.14) 

The transpose of the sum (difference) of two matrices is the sum (difference) of 
the transposes: 

(A + B) ' = A' + B ' , (2.15) 
( A - B ) ' = A ' - B ' , (2.16) 
(x + y ^ x ' + y', (2.17) 
(x - y ) ' = x ' - y' . (2.18) 
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2.3.3 Multiplication of Matrices and Vectors 

In order for the product AB to be defined, the number of columns in A must be the 
same as the number of rows in B, in which case A and B are said to be conformable. 
Then the (ij)th element of C = AB is 

/ ^jkbkj. (2.19) 

Thus Cij is the sum of products of the ith row of A and the jth column of B. We 
therefore multiply each row of A by each column of B, and the size of A B consists 
of the number of rows of A and the number of columns of B. Thus, if A is n x m 
and B is m x p, then C = AB is n x p. For example, if 

/ 

A = 
\ 

and B 

then 

AB 

2-
4-
7-
1-
13 
31 
20 
13 

1 + 1-2 + 3 
1 + 6-2 + 5 
1 + 2 - 2 + 3 
1 + 3 - 2 + 2 

38 \ 
92 
64 
38 

4 + 1· 
4 + 6-
4 + 2· 
4 + 3· 

6 + 3-8 \ 
6 + 5-8 
6 + 3-8 
6 + 2 -8 / 

7 
Note that A is 4 χ 3, Β is 3 χ 2, and AB is 4 x 2. In this case, A B is of a different 
size than either A or B. 

If A and B are both nx n, then AB is also n x n. Clearly, A2 is defined only if 
A is square. 

In some cases AB is defined, but B A is not defined. In the above example, B A 
cannot be found because B is 3 x 2 and A is 4 x 3 and a row of B cannot be multiplied 
by a column of A. Sometimes AB and B A are both defined but are different in size. 
For example, if A is 2 x 4 and B is 4 x 2, then A B is 2 x 2 and B A is 4 x 4. If A 
and B are square and the same size, then AB and B A are both defined. However, 

AB φ BA, 

except for a few special cases. For example, let 

Α = ί ί 3 V B= 

(2.20) 

Then 
A B = i 14 16 I ' B A 

- 3 - 5 
13 29 
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Thus we must be careful to specify the order of multiplication. If we wish to multiply 
both sides of a matrix equation by a matrix, we must multiply "on the left" or "on 
the right" and be consistent on both sides of the equation. 

Multiplication is distributive over addition or subtraction: 

A(B + C) = A B + AC, (2.21) 
A(B - C) = AB - AC, (2.22) 
(A + B)C = AC + BC, (2.23) 
(A - B)C = AC - BC. (2.24) 

Note that, in general, because of (2.20), 

A(B + C) φ B A + CA. (2.25) 

Using the distributive law, we can expand products such as (A — B)(C — D) to 
obtain 

(A - B)(C - D) = (A - B)C - (A - B)D [by (2.22)] 
= AC - B C - A D + B D [by (2.24)]. (2.26) 

The transpose of a product is the product of the transposes in reverse order: 

(AB)' = Β'Α' . (2.27) 

Note that (2.27) holds as long as A and B are conformable. They need not be square. 
Multiplication involving vectors follows the same rules as for matrices. Suppose 

A i s n x p , a i s p x 1, b is p x 1, and c is n x 1. Then some possible products are 
Ab, c'A, a'b, b'a, and ab ' . For example, let 

I-It)· H-2 · H ? · - -I 
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Then 

A b 

c'A 

c 'Ab 

a 'b 

b ' a 

ab ' 

ac ' 

Note that A b is a column vector, c'A is a row vector, c 'Ab is a scalar, and a 'b = 
b'a. The triple product c 'Ab was obtained as c'(Ab). The same result would be 
obtained if we multiplied in the order (c'A)b: 

(c 'A)b = (1 - 19 - 17) I 3 j = -123. 

This is true in general for a triple product: 

A B C = A(BC) = (AB)C. (2.28) 

Thus multiplication of three matrices can be defined in terms of the product of two 
matrices, since (fortunately) it does not matter which two are multiplied first. Note 
that A and B must be conformable for multiplication, and B and C must be con-
formable. For example, if A is n x p, B is p x q, and C is q x m, then both 
multiplications are possible and the product A B C is n x m. 

We can sometimes factor a sum of triple products on both the right and left sides. 
For example, 

A B C + A D C = A(B + D)C. (2.29) 
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As another illustration, let X be n x p and A b e n x n . Then 

X 'X - X 'AX = X' (X - AX) = X'(I - A)X. (2.30) 

If a and b are both n x l , then 

a'b = aibi + a2b2 + l· anbn (2.31) 

is a sum of products and is a scalar. On the other hand, ab ' is defined for any size a 
and b and is a matrix, either rectangular or square: 

ab ' 
0.2 

( 6i b2 

\ an j 
( a\bi aib2 

a2b\ a2b2 

\ anbi anb2 

bP ) 

a-ibp \ 
a2bp 

anbp j 

(2.32) 

Similarly, 

ii + a\ + 

( «? 
α2αι 

\ ana\ 

••• + an. 
a\a2 ■■■ 

a2 

ana2 ■ · ■ 

a\an \ 
a2an 

< j 

(2.33) 

(2.34) 

Thus a'a is a sum of squares and aa ' is a square (symmetric) matrix. The products 
a'a and aa ' are sometimes referred to as the dot product and matrix product, respec-
tively. The square root of the sum of squares of the elements of a is the distance 
from the origin to the point a and is also referred to as the length of a: 

Length of a = V a a = \]ΣΛ=Ι of-

As special cases of (2.33) and (2.34), note that if j i s n x l , then 

(2.35) 

J J = n, j j = 

/ I 1 
1 1 

\ i i 

1 \ 
1 

J, (2.36) 
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where j and J were defined in (2.11) and (2.12). If a is n x 1 and A is n x p, then 
n 

a'j = j ' a = ^ Oi, (2.37) 
i = l 

j'A = (Σίαίι,Σίαί2,...,Σίαίρ),
 A i (2.38) 

Thus a'j is the sum of the elements in a, j ' A contains the column sums of A, and 
Aj contains the row sums of A. In a'j , the vector j is n x 1; in j ' A , the vector j is 
n x l ; and in Aj, the vector j is p x 1. 

Since a 'b is a scalar, it is equal to its transpose: 

a 'b = (a'b) ' = b ' (a ' ) ' = b'a. (2.39) 

This allows us to write (a'b)2 in the form 

(a 'b)2 = (a'b) (a'b) = (a'b) (b'a) = a '(bb')a. (2.40) 

From (2.18), (2.26), and (2.39) we obtain 

( x - y ) ' ( x - y ) = x ' x - 2 x ' y + y 'y. (2.41) 

Note that in analogous expressions with matrices, however, the two middle terms 
cannot be combined: 

( A - B ) ' ( A - B ) = A'A - A 'B - B 'A + B 'B , 
( A - B ) 2 = ( A - B ) ( A - B ) = A 2 - A B - B A + B 2 . 

If a and xi , X2, . . . , x n are all p x 1 and A is p x p, we obtain the following factoring 
results as extensions of (2.21) and (2.29): 

^ a ' x i = a ' ] T x i , 
i=\ i=\ 
n n 

/ J Α - Χ Ϊ = A y ^ X-i, 
i= l i= l 

n / n \ 

]T(a'x,)2 = a ' K > x M a [by (2.40)], 
i = l \ i = l / 

n / n \ 

^ A X i ( A x , ) ' = A Π Γ χ ί χ Π Α ' . 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

We can express matrix multiplication in terms of row vectors and column vectors. 
If â  is the ith row of A and bj is the jth column of B, then the (ij)th element of 
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AB is a^bj. For example, if A has three rows and B has two columns, 

/ a ' i \ 
, B = (b 1 ,b 2 ) , 

then the product A B can be written as 

( a ib i a i b 2 \ 
a^b! a 2 b 2 . (2.46) 

agbi a^b2 / 
This can be expressed in terms of the rows of A: 

/ a U b ! , ^ ) \ / a i B \ / ai \ 
A B = a 2 (b! ,b 2 ) = a 2 B = a2 B. (2.47) 

V a^(b!,b2) ) V 4 B / V a3 / 

Note that the first column of A B in (2.46) is 

a i \ 
a2 b i = A b j 

and likewise the second column is Ab 2 . Thus AB can be written in the form 

AB = A(bi ,b2) = (Abi ,Ab2) . 

This result holds in general: 

AB = A ( b 1 ; b 2 , . . . ,b p ) = ( A b l t A b 2 , . . . , Ab„). (2.48) 

To further illustrate matrix multiplication in terms of rows and columns, let A — 

be a 2 x p matrix, x be a p x 1 vector, and S b e a p x p matrix. Then 

a Ax = ",1 x = X , (2.49) 

ASA' = ( a'jlai ajla2 ) . (2.50) 
\_ a2Sai a2Sa2 J 

Any matrix can be multiplied by its transpose. If A is n x p, then 

A A ' i s n x n and is obtained as products of rows of A [see (2.52)]. 

Similarly, 

A 'A is p x p and is obtained as products of columns of A [see (2.54)]. 
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From (2.6) and (2.27), it is clear that both AA' and A 'A are symmetric. 
In the above illustration for AB in terms of row and column vectors, the rows of 

A were denoted by Ά[ and the columns of B by bj. If both rows and columns of a 
matrix A are under discussion, as in AA' and A'A, we will use the notation â  for 
rows and a^·) for columns. To illustrate, if A is 3 x 4, we have 

«11 

" 2 1 

«31 

«12 

0,22 

ß32 

« 1 3 

a-23 

a-33 

«14 

024 

ß34 

( a ( i ) , a ( 2 ) , a ( 3 ) , a ( 4 ) ) , 

where, for example, 
a 2 = («2i ß22 a23 a2i), 

*(3) 

With this notation for rows and columns of A, we can express the elements of 
A 'A or of AA' as products of the rows of A or of the columns of A. Thus if we 
write A in terms of its rows as 

/ « ί \ 

then we have 
( ai \ 

A'A = ( a i , a 2 , . . . , a „ / y
a ^ a i ; (2.51) 

\ < ) 

( a ' i \ 

AA' ( a i , a 2 , . . . , a T l ) 

\ < ) 
I a'xai a ia 2 

a2ai a2a2 

alan ' 

ana,, 
(2.52) 

\ < a l a ' n a 2 a n a " / 
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Similarly, if we express A in terms of columns as 

A = ( a ( i ) » a ( 2 ) , - - - , a ( p ) ) , 

then 

A A ' = ( a ( 1 ) , a ( 2 ) , . . . , a ( p ) ) 

/ a ( D \ 
a ' (2) 

3 = 1 

(2.53) 

/ aw \ 
A ' A 

l (2 ) 
( a ( i ) , a (2 ) , · . ■ ,a, (p)> 

\ a'(P) / 

/ a ( l ) a ( l ) a ( l ) a ( 2 ) 
1 (2 ) a ( l ) a (2 ) a (2 ) 

W ( p ) ^ 1 ) d ( p ) d ( 2 ) 

l'(l)a(p) \ 

*(2)a(p) 

a (p) a (p) / 

(2.54) 

Let A = (aij) be an nxn matrix and D be a diagonal matrix, D — d iag(di ,d2, . . . , 
dn). Then, in the product D A , the ith row of A is multiplied by dj, and in A D , the 
j th column of A is multiplied by dj. For example, if n = 3, we have 

D A = 

A D 

D A D 

(2.55) 

άχαχι 
d\a21 

d i a 3 i 

dfan 

d2dia2\ 

d2a12 

d2Ö22 

d2a32 

did 2Oi 2 

d\a22 

d3a13 

d3a23 

d3a33 

d id 3 a i3 
^2^3023 

d3dia3i d3d2a32 d%a33 

In the special case where the diagonal matrix is the identity, we have 

I A = A I = A . 

(2.56) 

(2.57) 

(2.58) 
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If A is rectangular, (2.58) still holds, but the two identities are of different sizes. 
The product of a scalar and a matrix is obtained by multiplying each element of 

the matrix by the scalar: 

For example, 

cA = (caij) 

I can cai2 ■ ■ ■ calm \ 
ca2i ca22 · · · ca2m 

\ cani can2 ■ ■ ■ canm j 

cl 

ex 

/ c 0 
0 c 

\ 0 0 
I ex i ^ 

cx2 

V cxn j 

0 

c / 

Since ca^ = a,ijC, the product of a scalar and a matrix is commutative: 

cA = Ac. 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

Multiplication of vectors or matrices by scalars permits the use of linear combi-
nations, such as 

^ α,Χί = αιχι + a2x2 H h a/cXfc, 
i= l 
fe 

^ aiBj = a iBi + a 2 B 2 H l· afcBfc. 

If A is a symmetric matrix and x and y are vectors, the product 

y 'Ay = Σ a«y? + ΣΖ ai0iVj 
i ίψί 

is called a quadratic form, while 

x'Ay = ^2aijxlyj 

(2.63) 

(2.64) 

is called a bilinear form. Either of these is, of course, a scalar and can be treated as 
such. Expressions such as x 'Ay/v / x 7 Ax are permissible (assuming A is positive 
definite; see Section 2.7). 
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2.4 PARTITIONED MATRICES 

It is sometimes convenient to partition a matrix into submatrices. For example, a 
partitioning of a matrix A into four submatrices could be indicated symbolically as 
follows: 

A n A12 
A21 A22 

For example, a 4 x 5 matrix A could be partitioned as 

where 

2 
- 3 

9 
4 

1 
4 
3 
8 

3 
0 
6 
3 

8 
2 
5 
1 

4 \ 
7 

- 2 

6 ) 

A n A12 
A2 i A2 2 

A n L12 

k-21 ( 4 8 3 ), A2 2 = ( 1 6 ). 

If two matrices A and B are conformable and A and B are partitioned so that the 
submatrices are appropriately conformable, then the product A B can be found by 
following the usual row-by-column pattern of multiplication on the submatrices as if 
they were single elements; for example, 

A B B12 
B22 

A n A12 \ / B u 

A21 A 2 2 ) \ B 2 i 

A i i B n + A12B21 A11B12 + A12B22 
A21B11 + A22B21 A21B12 + A22B22 

(2.65) 

It can be seen that this formulation is equivalent to the usual row-by-column defi-
nition of matrix multiplication. For example, the (1,1) element of A B is the product 
of the first row of A and the first column of B. In the (1, 1) element of A n B n we 
have the sum of products of part of the first row of A and part of the first column of 
B. In the (1, 1) element of A12B21 we have the sum of products of the rest of the 
first row of A and the remainder of the first column of B. 

Multiplication of a matrix and a vector can also be carried out in partitioned form. 
For example, 

b i 
b 2 

A b = (A 1 ; A 2 ) = A i b i + A 2 b 2 , (2.66) 

where the partitioning of the columns of A corresponds to the partitioning of the 
elements of b. Note that the partitioning of A into two sets of columns is indicated 
by a comma, A = (Αχ, Α2) . 
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The partitioned multiplication in (2.66) can be extended to individual columns of 
A and individual elements of b: 

A b = ( a i , a 2 , . . . , a p ) 
b2 

b\3ii +6 2 a 2 + l·b (2.67) 

Thus A b is expressible as a linear combination of the columns of A, the coefficients 
being elements of b. For example, let 

and b 

Then 

A b 

Using a linear combination of columns of A as in (2.67), we obtain 

A b = bia.i + b2a2 + 63a3 

3 \ / - 2 

We note that if A is partitioned as in (2.66), A = (A2, A2) , the transpose is not 
equal to (A'l5 A2), but rather 

A' = (Ai ,A 2 ) ' = / _ ( A ' i 
A^ (2.68) 

2.5 RANK 

Before defining the rank of a matrix, we first introduce the notion of linear inde-
pendence and dependence. A set of vectors ai , a2, . . . , a„ is said to be linearly 
dependent if constants ci, c 2 , . . . , cn (not all zero) can be found such that 

ciai + c2a2 + h c„a„ 0. (2.69) 
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If no constants c\, C2,. .., cn can be found satisfying (2.69), the set of vectors is said 
to be linearly independent. 

If (2.69) holds, then at least one of the vectors â  can be expressed as a linear 
combination of the other vectors in the set. Thus linear dependence of a set of vec-
tors implies redundancy in the set. Among linearly independent vectors there is no 
redundancy of this type. 

The rank of any square or rectangular matrix A is defined as 

rank( A) = number of linearly independent rows of A 
= number of linearly independent columns of A. 

It can be shown that the number of linearly independent rows of a matrix is always 
equal to the number of linearly independent columns. 

If A is n x p, the maximum possible rank of A is the smaller of n and p, in which 
case A is said to be offull rank (sometimes said full row rank or full column rank). 
For example, 

A " V 5 2 4 ) 

has rank 2 because the two rows are linearly independent (neither row is a multiple of 
the other). However, even though A is full rank, the columns are linearly dependent 
because rank 2 implies there are only two linearly independent columns. Thus, by 
(2.69), there exist constants c\, ci, and c^ such that 

By (2.67), we can write (2.70) in the form 

( ί ΐ ί ) ( ; ) - ( ϊ ) 
or 

Ac = 0. (2.71) 

A solution vector to (2.70) or (2.71) is given by any multiple of c = (14, —11, —12)'. 
Hence we have the interesting result that a product of a matrix A and a vector c is 
equal to 0, even though A φ O and c φ 0. This is a direct consequence of the linear 
dependence of the column vectors of A. 

Another consequence of the linear dependence of rows or columns of a matrix is 
the possibility of expressions such as A B = CB, where A φ C. For example, let 

- ( ! ί - ϊ ) · - ( ϊ ! ) · ° - ( ϊ - ί - ϊ ) · 
Then 

AB = CB=(? \\ 
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All three of the matrices A, B, and C are full rank; but being rectangular, they have a 
rank deficiency in either rows or columns, which permits us to construct A B = C B 
with A / C . Thus in a matrix equation, we cannot, in general, cancel matrices from 
both sides of the equation. 

There are two exceptions to this rule. One involves a nonsingular matrix to be 
defined in Section 2.6. The other special case occurs when the expression holds for 
all possible values of the matrix common to both sides of the equation. For example, 

If Ax = Bx for all possible values of x, then A = B. (2.72) 

To see this, let x = (1 ,0 , . . . , 0)'. Then the first column of A equals the first column 
of B. Now let x = (0 ,1 ,0 , . . . . 0)', and the second column of A equals the second 
column of B. Continuing in this fashion, we obtain A = B. 

Suppose a rectangular matrix A is n x p of rank p, where p < n. We typically 
shorten this statement to "A is n x p of rank p < n." 

2.6 INVERSE 

If a matrix A is square and of full rank, then A is said to be nonsingular, and A has 
a unique inverse, denoted by A - 1 , with the property that 

A A " 1 = A"XA = I. (2.73) 

For example, let 

Then 

AA" 

3 4 
2 6 

.6 - . 4 
-.2 .3 

3 4 V .6 -A \ _ / 1 0 
2 6 ) \ - . 2 .3 ) ~ \ 0 1 

If A is square and of less than full rank, then an inverse does not exist, and A is 
said to be singular. Note that rectangular matrices do not have inverses as in (2.73), 
even if they are full rank. 

If A and B are the same size and nonsingular, then the inverse of their product is 
the product of their inverses in reverse order, 

(AB)" 1 = B 1 A 1 . (2.74) 

Note that (2.74) holds only for nonsingular matrices. Thus, for example, if A is n x p 
of rank p < n, then A'A has an inverse, but ( A ' A ) - 1 is not equal to A _ 1 ( A ' ) _ 1 

because A is rectangular and does not have an inverse. 
If a matrix is nonsingular, it can be canceled from both sides of an equation, 

provided it appears on the left (right) on both sides. For example, if B is nonsingular, 
then 

AB = C B implies A = C, 
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since we can multiply on the right by B 1 to obtain 

A B B - 1 = C B B _ 1 , 
AI = CI, 
A = C. 

Otherwise, if A, B, and C are rectangular or square and singular, it is easy to con-
struct A B = CB, with A φ C, as illustrated near the end of Section 2.5. 

The inverse of the transpose of a nonsingular matrix is given by the transpose of 
the inverse: 

(A ' )" 1 = (A" 1 ) ' . (2.75) 

If the symmetric nonsingular matrix A is partitioned in the form 

A n »12 

a'12 o22 

then the inverse is given by 

A"1 = - ( bAn + Aji^a'^Aü1 - A ^ a u \ ^ ( 2 γ 6 ) 
b \ _ a i 2 A n 1 ) ' 

where b = 0,22 — ai2Aj~1
1ai2. A nonsingular matrix of the form B + cc', where B 

is nonsingular, has as its inverse 

(B + cc ' )" 1 = B - 1 - ** C C * . (2.77) 
l + c 'B _ 1 c 

2.7 POSITIVE DEFINITE MATRICES 

The symmetric matrix A is said to be positive definite if x 'Ax > 0 for all possible 
vectors x (except x = 0). Similarly, A is positive semidefinite if x 'Ax > 0 for all 
x φ 0. [A quadratic form x 'Ax was defined in (2.63).] 

The diagonal elements an of a positive definite matrix are positive. To see this, 
let x ' = ( 0 , . . . , 0 ,1 ,0 , . . . , 0) with a 1 in the ith position. Then x 'Ax = an > 0. 
Similarly, for a positive semidefinite matrix A, an > 0 for all i. 

One way to obtain a positive definite matrix is as follows: 

If A = B 'B , where B is n x p of rank p < n, then B 'B is positive definite. 
(2.78) 

This is easily shown: 

x 'Ax = x 'B 'Bx = (Bx)'(Bx) = z'z, 
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where z = Bx. Thus, x 'Ax = ]ζ™=1 zf, which is positive (Bx cannot be 0 unless 
x = 0, because B is full rank). If B is less than full rank, then by a similar argument, 
B 'B is positive semidefinite. 

Note that A = B 'B is analogous to a = b2 in real numbers, where the square of 
any number (including negative numbers) is positive. 

In another analogy to positive real numbers, a positive definite matrix can be 
factored into a "square root" in two ways. We give one method below in (2.79) and 
the other in Section 2.11.8. 

A positive definite matrix A can be factored into 

A = T 'T , (2.79) 

where T is a nonsingular upper triangular matrix. One way to obtain T is the 
Cholesky decomposition, which can be carried out in the following steps. 

Let A = (aij) and T = (t^) be n x n. Then the elements of T are found as 
follows: 

2 < j < n 

2 <i <n 

2 <i<j<n 

1 < j < i < n 

3 0 - 3 
0 6 3 

-3 3 6 

Then by the Cholesky method, we obtain 

i n 

t-ii 

Hj 

tij 

example, let 

/ 4 ftli 
— y/au, t\j — -— 

in 
= γθϋ — Z^fc=l tki 

aij ~ Z f̂c = l tkitkj 

tii 

= 0 

T ' T 
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2.8 DETERMINANTS 

The determinant of an n x n matrix A is defined as the sum of all n\ possible 
products of n elements such that 

1. Each product contains one element from every row and every column, and 

2. The factors in each product are written so that the column subscripts appear in 
order of magnitude and each product is then preceded by a plus or minus sign 
according to whether the number of inversions in the row subscripts is even or 
odd. 

An inversion occurs whenever a larger number precedes a smaller one. The symbol 
n! is defined as 

n! = η ( η - 1 ) ( η - 2 ) · · - 2 · 1 . (2.80) 

The determinant of A is a scalar denoted by |A| or by det(A). The preceding 
definition is not useful in evaluating determinants, except in the case of 2 x 2 or 
3 x 3 matrices. For larger matrices, other methods are available for manual compu-
tation, but determinants are typically evaluated by computer. For a 2 x 2 matrix, the 
determinant is found by 

a n a12 
0-21 0,22 

ana22 - a2iai2. (2.81) 

For a 3 x 3 matrix, the determinant is given by 

| A | — 0,110,220,33 + 012023031 + «13032021 

- α3 ΐ ΐ 22α ΐ3 - 032023011 ~ 033012021- (2.82) 

This can be found by the following scheme. The three positive terms are obtained by 

O i l Oj2 Ol3 

O21 0,22 « 2 3 , 
>^ ^< 

031 θ 3 2 _ θ33 

and the three negative terms by 

0,21 0,22 0,23 

031 032 033 
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The determinant of a diagonal matrix is the product of the diagonal elements; that 
is, if D = diag(d1,d2, ■ ■ · ,dn), then 

n 

|D| = JJ di. (2.83) 

As a special case of (2.83), suppose all diagonal elements are equal, say, 

D = diag(c, c , . . . , c) = cl. 

Then 
n 

|D| = |d| = IJc = cn. (2.84) 
i=\ 

The extension of (2.84) to any square matrix A is 

|cA| = c"|A|. (2.85) 

Because the determinant is a scalar, we can carry out operations such as 

IAI2, iAr , jJL 

provided that |A| > 0 for \K\ll2 and that |A| φ 0 for 1/|A|. 
If the square matrix A is singular, its determinant is 0: 

|A| = 0 if A is singular. (2.86) 

If A is near singular, then there exists a linear combination of the columns that is 
close to 0, and | A| is also close to 0. If A is nonsingular, its determinant is nonzero: 

|A| φ 0 if A is nonsingular. (2.87) 

If A is positive definite, its determinant is positive: 

| A| > 0 if A is positive definite. (2.88) 

If A and B are square and the same size, the determinant of the product is the 
product of the determinants: 

IABI = lAIIBI. (2.89) 

For example, let 

Then 

A = i -3 I) and B = U 3 

A B = ( b
7 l j , |AB| = 110, 

IAI = 11, |B| = 10, |A| |B | = 110. 
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The determinant of the transpose of a matrix is the same as the determinant of the 
matrix, and the determinant of the the inverse of a matrix is the reciprocal of the 
determinant: 

ΙΑΊ = IAI, 

Ι Α - 1 ^ 

If a partitioned matrix has the form 

A = 

1 
ΪΧΪ 

A u O 
O A2 2 

(2.90) 

(2.91) 

where A n and A22 are square, but not necessarily the same size, then 

|A| = 

For a general partitioned matrix, 

A 

A n O 
O A2 2 

| A n | | A 221 (2.92) 

A n A12 
A21 A22 

where A n and A22 are square and nonsingular (not necessarily the same size), the 
determinant is given by either of the following two expressions: 

A n A12 
A21 A22 = | A n | |A22 - A 2 iA 1 1

1 Ai 2 | 

= |A22 | |An - Ai2A22
1A2 i | 

(2.93) 

(2.94) 

Note the analogy of (2.93) and (2.94) to the case of the determinant of a 2 x 2 
matrix as given by (2.81): 

a n ai2 
^ 2 1 «22 

a n Ö 2 2 — α,2ΐθΊ2 

Q21Q12 

an 
Ο ΐ 2 θ 2 ΐ \ 

Ö22 / 

= «11 a 22 

θ22 a i l 

If B is nonsingular and c is a vector, then 

IB + cc'lHBKl + c'B-1«:). (2.95) 
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2.9 TRACE 

A simple function of an n x n matrix A is the trace, denoted by tr(A) and defined 
as the sum of the diagonal elements of A; that is, tr( A) = Σ™=1 au- The trace is, of 
course, a scalar. For example, suppose 

Then 
tr(A) = 5 + ( - 3 ) + 9 = 11. 

The trace of the sum of two square matrices is the sum of the traces of the two 
matrices: 

tr(A + B) = t r (A)+tr (B) . (2.96) 

An important result for the product of two matrices is 

tr(AB) = tr(BA). (2.97) 

This result holds for any matrices A and B where A B and B A are both defined. It 
is not necessary that A and B be square or that A B equal BA. For example, let 

A = 2 - 1 , B 

Then 

/ 
= 

V 

9 
4 

24 

1 
2 -
4 

10 
- 8 
16 

M 
- i 
s) 

16 
- 3 
34 

3 - 2 1 
2 4 5 

A B = I 4 - 8 - 3 I , B A ' 3 1 ? 

30 32 

tr(AB) = 9 - 8 + 34 = 35, tr(BA) = 3 + 32 = 35. 

From (2.52) and (2.54), we obtain 
n p 

tr(A'A) = tr(AA') = £ Σ 4> (2.98) 
i = l j = l 

where the α^ 's are elements of the n x p matrix A. 

2.10 ORTHOGONAL VECTORS AND MATRICES 

Two vectors a and b of the same size are said to be orthogonal if 

a 'b = αι&ι + a2b2 + ■■·+ anbn = 0. (2.99) 
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Geometrically, orthogonal vectors are perpendicular [see (3.14) and the comments 
following (3.14)]. If a 'a = 1, the vector a is said to be normalized. The vector a can 
always be normalized by dividing by its length, vVa . Thus 

c = — = (2.100) 

is normalized so that c'c = 1. 
A matrix C = (ci, C2, . . . , cp) whose columns are normalized and mutually or-

thogonal is called an orthogonal matrix. Since the elements of C 'C are products of 
columns of C [see (2.54)], which have the properties ĉ Cj = 1 for all i and c^Cj = 0 
for all i φ j , we have 

C 'C = I. (2.101) 

If C satisfies (2.101), it necessarily follows that 

C C ' = I, (2.102) 

from which we see that the rows of C are also normalized and mutually orthogonal. 
It is clear from (2.101) and (2.102) that C " 1 = C for an orthogonal matrix C. 

We illustrate the creation of an orthogonal matrix by starting with 

whose columns are mutually orthogonal. To normalize the three columns, we divide 
by the respective lengths, \ / 3 , %/6, and \ /2, to obtain 

l/>/3 l/VQ 1/^2 \ 
l/>/3 l/%/6 - l / v / 2 . 
l/y/3 -2/VH 0 / 

Note that the rows also became normalized and mutually orthogonal so that C satis-
fies both (2.101) and (2.102). 

Multiplication by an orthogonal matrix has the effect of rotating axes; that is, if a 
point x is transformed to z = Cx, where C is orthogonal, then 

z'z = (Cx)'(Cx) = x 'C 'Cx = x ' lx = x'x, (2.103) 

and the distance from the origin to z is the same as the distance to x. 

2.11 EIGENVALUES AND EIGENVECTORS 

2.11.1 Definition 

For every square matrix A, a scalar λ and a nonzero vector x can be found such that 

Αχ = λχ. (2.104) 
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In (2.104), λ is called an eigenvalue of A and x is an eigenvector. To find λ and x, 
we write (2.104) as 

(A - AI)x = 0. (2.105) 

If |A - λΙ| φ 0, then (A - AI) has an inverse and x = 0 is the only solution. Hence, 
in order to obtain nontrivial solutions, we set |A — AI| = 0 to find values of λ 
that can be substituted into (2.105) to find corresponding values of x. Alternatively, 
(2.69) and (2.71) require that the columns of A — AI be linearly dependent. Thus in 
(A — λΙ)χ = 0, the matrix A — λΐ must be singular in order to find a solution vector 
x that is not 0. 

The equation JA — λΙ| = 0 is called the characteristic equation. If A is n x 
n, the characteristic equation will have n roots; that is, A will have n eigenvalues 
λ ι , λ 2 , . . . ,λη . TheA's will not necessarily all be distinct or all nonzero. However, if 
A arises from computations on real (continuous) data and is nonsingular, the A's will 
all be distinct (with probability 1). After finding λχ, λ2, · ■ ■, λη , the accompanying 
eigenvectors x 1 ; x 2 , . . . , x n can be found using (2.105). 

If we multiply both sides of (2.105) by a scalar k and note by (2.62) that k and 
A — AI commute, we obtain 

(A - AI)fcx = k0 = 0. (2.106) 

Thus if x is an eigenvector of A, A;x is also an eigenvector, and eigenvectors are 
unique only up to multiplication by a scalar. Hence we can adjust the length of x, 
but the direction from the origin is unique; that is, the relative values of (ratios of) 
the components of x = (x\, X2, ■ ■ ■, xn)'

 a r e unique. Typically, the eigenvector x is 
scaled so that x 'x = 1. 

To illustrate, we will find the eigenvalues and eigenvectors for the matrix 

The characteristic equation is 

IA - All = 1 - A 2 
- 1 4 - A ( 1 - λ ) ( 4 - λ ) + 2 = 0, 

A2 - 5A + 6 = (A - 3)(A - 2) = 0, 

from which Ai = 3 and A2 = 2. To find the eigenvector corresponding to Ai = 3, 
we use (2.105), 

(A - AI)x = 0, 

1 - 3 2 \ / n \ / 0 
- 1 4 - 3 ^ ^ ΐ 2 / ~ \ 0 

-2x i + 2x2 = 0 
-Xi + x2 = 0. 
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As expected, either equation is redundant in the presence of the other, and there 
remains a single equation with two unknowns, x\ = x2. The solution vector can be 
written with an arbitrary constant, 

' xi \ / 1 \ ( I 
X2 ) = x \ l ) = \ l 

If c is set equal to l / \ /2 to normalize the eigenvector, we obtain 

Xl " I 1/̂ 2 
Similarly, corresponding to X2 = 2, we have 

2.11.2 I + A a n d l - A 

If λ is an eigenvalue of A and x is the corresponding eigenvector, then 1 + λ is an 
eigenvalue of I + A and 1 — λ is an eigenvalue of I — A. In either case, x is the 
corresponding eigenvector. 

We demonstrate this for I + A: 

Ax = λχ, 
x + Ax = x + λχ, 

(Ι + Α ) χ = ( 1 + λ)χ. 

2.11.3 tr(A)and|A| 

For any square matrix A with eigenvalues λι, X2, ■ ■ ■, A„, we have 

tr(A) = ^ A i , (2.107) 
i = l 
n 

\A\ = H\i. (2.108) 
i—l 

Note that by the definition in Section 2.9, tr(A) is also equal to JZ"=1 an, but an Φ 
Xi. 

We illustrate (2.107) and (2.108) using the matrix 

1 2 
- 1 4 

from the illustration in Section 2.11.1, for which λι = 3 and λ2 = 2. Using (2.107), 
we obtain 

tr( A) = λι + λ2 = 3 + 2 = 5, 
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and from (2.108), we have 

|A| = AiA2 = 3(2) = 6. 

By definition, we obtain 

tr(A) = 1 + 4 = 5 and |A| = (1)(4) - (-1)(2) = 6. 

2.11.4 Positive Definite and Semidefinite Matrices 

The eigenvalues and eigenvectors of positive definite and positive semidefinite ma-
trices have the following properties: 

1. The eigenvalues of a positive definite matrix are all positive. 

2. The eigenvalues of a positive semidefinite matrix are positive or zero, with the 
number of positive eigenvalues equal to the rank of the matrix. 

It is customary to list the eigenvalues of a positive definite matrix in descending 
order: λι > λ2 > ■ · · > λρ. The eigenvectors x i , x 2 , . . . , xra are listed in the same 
order; xi corresponds to λι, x2 corresponds to λ2, and so on. 

The following result, known as the Perron-Frobenius theorem, is of interest in 
Chapter 12: If all elements of the positive definite matrix A are positive, then all ele-
ments of the first eigenvector are positive. (The first eigenvector is the one associated 
with the first eigenvalue, λχ.) 

2.11.5 The Product AB 

If A and B are square and the same size, the eigenvalues of A B are the same as 
those of BA, although the eigenvectors are usually different. This result also holds 
if AB and B A are both square but of different sizes, as when A is n x p and B is 
p x n. (In this case, the nonzero eigenvalues of A B and B A will be the same.) 

2.11.6 Symmetric Matrix 

The eigenvectors of an n x n symmetric matrix A are mutually orthogonal. It follows 
that if the n eigenvectors of A are normalized and inserted as columns of a matrix 
C = (xi, x 2 , . . . , x„), then C is orthogonal. 

2.11.7 Spectral Decomposition 

It was noted in Section 2.11.6 that if the matrix C = (xi,X2, · · · >Xn) contains the 
normalized eigenvectors of an n x n symmetric matrix A, then C is orthogonal. 
Therefore, by (2.102), I = C C , which we can multiply by A to obtain 

A = A C C . 
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We now substitute C = (xi, x 2 , . . . , x n ) : 

A = A ( x i , x 2 , . . . , x „ ) C ' 
= ( A x 1 , A x 2 , . . . , A x „ ) C 
= (λιχι , A2X2, ■ · ■, A n x„)C 
= C D C ' 

[by (2.48)] 
[by (2.104)] 
[by (2.56)], 

where 
/ λ ι 

D 

0 
0 λ2 0 

(2.109) 

(2.110) 

\ 0 0 ■■■ \ n J 

The expression A = C D C in (2.109) for a symmetric matrix A in terms of its 
eigenvalues and eigenvectors is known as the spectral decomposition of A. 

Since C is orthogonal and C 'C = C C = I, we can multiply (2.109) on the left 
by C and on the right by C to obtain 

C 'AC = D. (2.111) 

Thus a symmetric matrix A can be diagonalized by an orthogonal matrix containing 
normalized eigenvectors of A, and by (2.110) the resulting diagonal matrix contains 
eigenvalues of A. 

2.11.8 Square Root Matrix 

If A is positive definite, the spectral decomposition of A in (2.109) can be modified 
by taking the square roots of the eigenvalues to produce a square root matrix, 

where 

D l / 2 

A i / 2 = CD^C 

/ \/Ä7 o 
0 y% 0 

(2.112) 

(2.113) 

\ o o ·■· VK ) 

The square root matrix A 1 / 2 is symmetric and serves as the square root of A: 

A l / 2 A l / 2 = ( A l / 2 ) 2 = A _ ( 2 J 1 4 ) 

2.11.9 Square and Inverse Matrices 

Other functions of A have spectral decompositions analogous to (2.112). Two of 
these are the square and inverse of A. If the square matrix A has eigenvalues 
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λι, λ 2 , . . . , λη and accompanying eigenvectors χ ι , x 2 , . . . , χ„ , then A2 has eigen-
values λ2, λ2 , , . . . , A2 and eigenvectors χ ι , χ 2 , . . . , χ „ . If A is nonsingular, then 
A - 1 has eigenvalues 1/λι, 1/A2,..., 1/A„ and eigenvectors xi,X2, ■ · ■ , x n . If A 
is also symmetric, then 

A2 = C D 2 C , (2.115) 

A ^ 1 = C D - 1 C , (2.116) 

where C = (xi, x 2 , . . . , x n ) has as columns the normalized eigenvectors of A (and 
of A2 and A" 1 ) , D 2 = diag(A2,A|,... , λ 2 ) , and D " 1 = diag(l/Ai, 1/A2,..., 
1/λ„). 

2.11.10 Singular Value Decomposition 

In Section 2.11.7 we expressed a symmetric matrix in terms of its eigenvalues and 
eigenvectors in the spectral decomposition. In a similar manner, we can express any 
(real) matrix A in terms of eigenvalues and eigenvectors of A 'A and AA' . Let A 
be an n x p matrix of rank k. Then the singular value decomposition of A can be 
expressed as 

A = U D V , (2.117) 

where U is n x fc, D is k x k, and V is p x k. The diagonal elements of the non-
singular diagonal matrix D = diag(A1; λ 2 , . . . , Afc) are the positive square roots of 
Af, A 2 , . . . , A2., which are the nonzero eigenvalues of A 'A or of AA' . The values 
Ai, A 2 , . . . , A/j are called the singular values of A. The k columns of U are the nor-
malized eigenvectors of A A' corresponding to the eigenvalues Af, A 2 , . . . , A2,. The 
k columns of V are the normalized eigenvectors of A 'A corresponding to the eigen-
values A2, A 2 , . . . , A2.. Since the columns of U and V are (normalized) eigenvectors 
of symmetric matrices, they are mutually orthogonal (see Section 2.11.6), and we 
have U 'U = V ' V = I. 

2.12 KRONECKER AND VEC NOTATION 

When manipulating matrices with block structure, it is often convenient to use Kro-
necker and vec notation. The Kronecker product of an m x n matrix A with a p x q 
matrix B is an rnp x nq matrix that is denoted A <g> B and is defined as 

A<g>B 

/ a n B a i 2 B ·■· αίηΒ \ 
a 2 i B a2 2B · · · a2r lB 

\ ttmlB a m 2 B ' · ' ßmraB 

(2.118) 
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For example, because of the block structure in the matrix 

/ 1 
4 
2 

\ 8 

we can write 

where 

2 
5 
4 

B 10 

I B 
2 B 

3 
6 
6 
12 

0 
0 
10 
40 

0 
0 
20 
50 

0 
10 

0 - B 
10-B 

B 

0 \ 
0 
30 
60 / 

A<giB, 

1 2 
4 5 

If A is an m x n matrix with columns a i , 
of A in vector (or "vec") form using 

vec A — 

( *ι \ 
a2 

\ an / 
(«11 ,021 , · · · , « m l , «12 ,^22 , 

, ara, then we can refer to the elements 

(2.119) 

, aTO2, . · · , a i r i , Ö 2 n , X 
so that vec A is an mn x 1 vector. 

If A is an m x m symmetric matrix, then the m2 elements in vec A will include 
m(m — l ) /2 pairs of identical elements (since α^ = üji). In such settings it is 
often useful to denote the vector half (or "vech") of a symmetric matrix in order 
to include only the unique elements of the matrix. If we separate elements from 
different columns using semicolons, we can define the "vech" operator with 

vech A = (an,a2i , · · ·, ami5022,032, · · · , Om2; · · · \o-mrn) , (2.120) 

so that vech A is an m(m + l ) /2 x 1 vector. Note that vech A can be obtained by 
finding vec A and then eliminating the m(m — l ) /2 elements above the diagonal of 
A. 

Assuming that all matrix dimensions for matrices A, B, C, and D are appropriate 
for matrix multiplication, the following important properties related to Kronecker 
products will hold true: 

(i) 
(ii) 

(iii) 
(iv) 

(A ® B)(C ® D) = (AC) ® (BD) 
vec A B C = ( C <g> A) vec B 

(A ® B) ' = Α' ® Β ' 
(AigiB)^1 = A - ^ B " 1 

(2.121) 
(2.122) 
(2.123) 
(2.124) 

Finally, following the discussion in Fuller (1987, Section 4.3), we can also define 
an m2 x m(m + l ) /2 matrix H m such that 

H„,vech A = vec A. (2.125) 
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Further, we can define a generalized inverse H+ = (Hj„Hm) 1Ή-'πι so that 

H+vec A = H^H m vech A 
= vechA. (2.126) 

Consider, for example, the 2 x 2 symmetric matrix 

«11 «12 
«21 «22 

Then 

and 

/ a n \ / 1 0 0 \ 
α2ι _ 0 1 0 
ai2 ~ 0 1 0 

\a22 j \ 0 0 1 / 
s, ' v v 

vec A H 2 
vech A 

1 0 0 0 
0 1/2 1/2 0 
0 0 0 1 

vech A Ho 

/ a n \ 
«21 
«12 

\ a22 / 

vec A 

PROBLEMS 

2.1 Let 
4 2 3 
7 5 8 and B 

(a) Find A + B and A - B. 

(b) Find A 'A and AA' . 

2.2 Use the matrices A and B in Problem 2.1: 

(a) Find (A + B) ' and A' + B ' and compare them, thus illustrating (2.15). 
(b) Show that (A') ' = A, thus illustrating (2.6). 

2.3 Let 
B 2 0 

1 5 

(a) Find A B and BA. 
(b) Find |AB|, |A|, and |B| and verify that (2.89) holds in this case. 

2.4 Use the matrices A and B in Problem 2.3: 
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(a) Find A + B and tr(A + B). 
(b) Find tr(A) and tr(B) and show that (2.96) holds for these matrices. 

2.5 Let 
1 2 3 
2 - 1 1 B = | 2 

(a) Find A B and BA. 
(b) Compare tr(AB) and tr(BA) and confirm that (2.97) holds here. 

2.6 Let 
1 
2 
5 

2 
4 

10 

3 
6 

15 

1 
1 
1 

1 
1 

- 1 

- 2 
- 2 

2 

(a) Show that A B = O. 
(b) Find a vector x such that Ax = 0. 
(c) Show that |A| = 0. 

2.7 Let 

Find the following: 

(a) Bx (d) x 'Ay (g) xx ' 
(b) y 'B (e) x 'x (h) xy ' 
(c) x 'Ax (f) x'y (i) B 'B 

2.8 Use x, y, and A as defined in Problem 2.7: 

(a) Find x + y and x — y. 
(b) Find (x - y) 'A(x - y). 

2.9 Using B and x in Problem 2.7, find Bx as a linear combination of columns of 
B as in (2.67) and compare with Bx found in Problem 2.7(a). 

2.10 Let 

2 1\ n _ 1 4 2 \ / 1 0 
1 3 / ' V 5 0 3 / ' V O l 
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(a) Show that (AB)' = Β 'Α ' as in (2.27). 
(b) Show that AI = A and that IB = B. 
(c) Find IAI. 

2.11 Let 

and b = 

(a) Find a 'b and (a 'b)2 . 
(b) Findbb 'anda ' (bb ' )a . 

(c) Compare (a'b) with a ' (bb ' )a and thus illustrate (2.40). 

1 
4 
7 

2 
5 
8 

3 \ 
6 

9 
, D = 

a 

o 
\o 

0 
b 
0 

0 
0 
c 

2.12 Let 

Find DA, AD, and DAD. 

2.13 Let the matrices A and B be partitioned as follows: 

B 
' 1 

2 

2 

1 
1 
3 

1 
1 
1 

0 
2 

2 

(a) Find A B as in (2.65) using the indicated partitioning. 
(b) Check by finding AB in the usual way, ignoring the partitioning. 

2.14 Let 

1 3 2 
2 0 - 1 B 1 1 

-6 - 4 

Find A B and CB. Are they equal? What is the rank of A, B, and C? 

2.15 Let 
/ 5 4 4 \ / 1 0 1 

A = 2 - 3 1 1 , B = 0 1 0 
\ 3 7 2 / \ 1 2 3 

(a) Find tr(A) and tr(B). 
(b) Find A + B and tr(A + B). Is tr(A + B) = tr(A) + tr(B)? 
(c) Find |A| and |B|. 
(d) Find AB and |AB|. Is |AB| = |A||B|? 
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2.16 Let 
/ 3 4 3 \ 

A = 4 8 6 . 
\ 3 6 9 / 

(a) Show that |A| > 0. 
(b) Using the Cholesky decomposition in Section 2.7, find an upper triangu-

lar matrix T such that A = T 'T . 

2.17 Let 
/ 3 - 5 - 1 \ 

A = - 5 13 0 . 
V - l o i ; 

(a) Show that |A| > 0. 
(b) Using the Cholesky decomposition in Section 2.7, find an upper triangu-

lar matrix T such that A = T 'T . 

2.18 The columns of the following matrix are mutually orthogonal: 

/ I - 1 1 \ 
A = 2 1 0 . 

V 1 -1 -1 ) 

(a) Normalize the columns of A by dividing each column by its length; de-
note the resulting matrix by C. 

(b) Show that C is an orthogonal matrix, that is, C 'C = C C = I. 

2.19 Let 
/ 1 1 - 2 \ 

A = - 1 2 1 . 
V 0 1 - 1 / 

(a) Find the eigenvalues and associated normalized eigenvectors. 
(b) Find tr(A) and |A| and show that tr(A) = £ ? = 1 A; and |A| = Γ]?=ι λ*· 

2.20 Let 
/ 3 1 l \ 

A = 1 0 2 . 
V 1 2 0 / 

(a) The eigenvalues of A are 1,4, —2. Find the normalized eigenvectors and 
use them as columns in an orthogonal matrix C. 

(b) Show that C 'AC = D as in (2.111), where D is diagonal with the 
eigenvalues of A on the diagonal. 

(c) Show that A = C D C as in (2.109). 
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2.21 For the positive definite matrix 

Α - ( - ? 1 ) · 
calculate the eigenvalues and eigenvectors and find the square root matrix 
A1 /2 as in (2.112). Check by showing that (A 1 / 2 ) 2 = A. 

2.22 Let 

( 3 6 ~ l \ A = 6 9 4 . 
V -1 4 3 ) 

(a) Find the spectral decomposition of A as in (2.109). 
(b) Find the spectral decomposition of A2 and show that the diagonal matrix 

of eigenvalues is equal to the square of the matrix D found in part (a), 
thus illustrating (2.115). 

(c) Find the spectral decomposition of A " 1 and show that the diagonal ma-
trix of eigenvalues is equal to the inverse of the matrix D found in part 
(a), thus illustrating (2.116). 

2.23 Find the singular value decomposition of A as in (2.117), where 

/ 4 - 5 - 1 \ 
7 - 2 3 

A " - 1 4 - 3 ' 
\ 8 2 6 / 

2.24 If j is a vector of l's, as defined in (2.11), show that the following hold: 

(a) j ' a = a'j = Σ* a» a s i n (2·37) 
(b) j ' A is a row vector whose elements are the column sums of A as in 

(2.38) 
(c) Aj is a column vector whose elements are the row sums of A as in (2.38) 

2.25 Verify (2.41); that is, show that (x - y) '(x - y) = x 'x - 2x'y + y'y-

2.26 Show that A 'A is symmetric, where A is n x p. 

2.27 If a and xi , x 2 , . . . , xra are all p x 1 and A is p x p, show that (2.42)-(2.45) 
hold: 

(a) ΣΓ=ι a ' x » = a ' ΣΓ=ι x* 
(b) Σ Γ = ι Α χ ; = Α Σ Γ = ι χ ; 
( ε ) Σ Γ = ι ( * ' χ , ) 2 = & ' ( Σ Γ = ι * ^ ) * 
(d) ΣΓ=ι Ax,(Ax,) ' = Α(ΣΓ=ι XixJ)A' 
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2.28 Assume that A = ί ,1 j is 2 x p, x is p x 1, and S is p x p. 

(a) Show that 

as in (2.49). 
(b) Show that 

as in (2.50). 

Ax ' & l X 

a^x 

ASA' = ( a ' l S a i a ' l S a 2 

a2Sai a2Sa2 

2.29 (a) If the rows of A are denoted by a£, show that A 'A = Σ7=ι a»a^ as in 
(2.51). 

(b) If the columns of A are denoted by a(j), show that AA' = Y^= i a(j) a ( ) 
as in (2.53). 

2.30 Show that (A ' )" 1 = (A" 1 ) ' as in (2.75). 

2.31 Show that the inverse of the partitioned matrix given in (2.76) is correct by 
multiplying by 

A n a12 

a'12 CL22 

to obtain an identity. 

2.32 Show that the inverse of B + cc' given in (2.77) is correct by multiplying by 
B + cc' to obtain an identity. 

2.33 Show that |cA| = c"|A| as in (2.85). 

2.34 Show that (A"1! = 1/|A| as in (2.91). 

2.35 If B is nonsingular and c is a vector, show that |B + cc' | = |B|(1 + c 'B~ c) 
as in (2.95). 

2.36 Show that tr(A'A) = tr(AA') = £ „ «fj as in (2.98). 

2.37 Show that C C = I in (2.102) follows from C C = I in (2.101). 

2.38 Show that the eigenvalues of A B are the same as those of BA, as noted in 
Section 2.11.5. 

2.39 If A 1 / 2 is the square root matrix defined in (2.112), show that 

(a) (A1 /2)2 = A as in (2.114), 
(b) IA1/2!2 = |A|, 
(c) IA1/2! = jAI1^. 
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2.40 Let A and B be n x k and p x p matrices, respectively. Use the properties of 
Kronecker products in Section 2.12 to show that 

(I„ ® A) ' (B ® I „ ) _ 1 (Ip <g> A)] ' = B ® (A 'A)" 1 . 



CHAPTER 3 

CHARACTERIZING AND DISPLAYING 
MULTIVARIATE DATA 

We review some univariate and bivariate procedures in Sections 3.1, 3.2, and 3.3 and 
then extend them to vectors of higher dimension in the remainder of the chapter. 

3.1 MEAN AND VARIANCE OF A UNIVARIATE RANDOM VARIABLE 

Informally, a random variable may be defined as a variable whose value depends on 
the outcome of a chance experiment. Generally, we will consider only continuous 
random variables. Some types of multivariate data are only approximations to this 
ideal, such as test scores or a seven-point semantic differential (Likert) scale con-
sisting of ordered responses ranging from "strongly disagree" to "strongly agree." 
Special techniques have been developed for such data, but in many cases, the usual 
methods designed for continuous data work almost as well. 

The density function f(y) indicates the relative frequency of occurrence of the 
random variable y. (We do not use Y to denote the random variable for reasons 
given at the beginning of Section 3.6.) Thus if f(yi) > / (2/2), then points in the 
neighborhood of y\ are more likely to occur than points in the neighborhood of j/2· 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 4 7 
Copyright © 2012 John Wiley & Sons, Inc. 
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The population mean of a random variable y is defined (informally) as the mean 
of all possible values of y and is denoted by μ. The mean is also referred to as the 
expected value of y or E(y). If the density f(y) is known, the mean can sometimes 
be found using methods of calculus, but we will not use these techniques in this text. 

If f(y) is unknown, the population mean μ will ordinarily remain unknown unless 
it has been established from extensive past experience with a stable population. If 
a large random sample from the population represented by f(y) is available, it is 
highly probable that the mean of the sample is close to μ. 

The sample mean of a random sample of n observations 2/i, 2/2 > · · · > 2/n is given by 
the ordinary arithmetic average 

1 " 
n *-^ (3.1) 

Generally, y will never be equal to μ; by this we mean that the probability is zero that 
a sample will ever arise in which y is exactly equal to μ. However, y is considered a 
good estimator for μ because E(y) = μ and var(y) = σ2/η, where σ2 is the variance 
of y. In other words, y is an unbiased estimator of μ and has a smaller variance than a 
single observation y. The variance σ2 is defined below. The notation E(y) indicates 
the mean of all possible values of y; that is, conceptually, every possible sample is 
obtained from the population, the mean of each is found, and the average of all these 
sample means is calculated. 

If every y in the population is multiplied by a constant a, the expected value is 
also multiplied by a: 

E(ay) = aE(y) = αμ. (3.2) 

The sample mean has a similar property. If Zi = ayi for i = 1,2,. . . , n, then 

z = ay. (3.3) 

The variance of the population is defined as var(y) = σ2 = E(y - μ)2. This is 
the average squared deviation from the mean and is thus an indication of the extent to 
which the values of y are spread or scattered. It can be shown that σ2 = E(y2) - μ2. 

The sample variance is defined as 

s2 = Σΐ=Λνί-ν)2
 {3Λ) 

n — 1 

which can be shown to be equal to 
Ση 9 —2 

„ = ^ y - n y . 0.5) 
n — 1 

The sample variance s2 is generally never equal to the population variance σ2 (the 
probability of such an occurrence is zero), but it is an unbiased estimator for σ2; that 
is, E(s2) = σ2. Again the notation E(s2) indicates the mean of all possible sample 
variances. The square root of either the population variance or the sample variance 
is called the standard deviation. 
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Table 3.1 Height and Weight for a Sample of 20 College-Age 
Males 

Person 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Height, 
X 

69 
74 
68 
70 
72 
67 
66 
70 
76 
68 

Weight, 

y 

153 
175 
155 
135 
172 
150 
115 
137 
200 
130 

Person 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Height, 
X 

72 
79 
74 
67 
66 
71 
74 
75 
75 
76 

Weight, 

y 

140 
265 
185 
112 
140 
150 
165 
185 
210 
220 

If each y is multiplied by a constant a, the population variance is multiplied by a2, 
or var(ay) = α2σ2. Similarly, if z; = ayt,i = 1,2,... ,n, then the sample variance 
of z is given by 

s2
z = a2 ,s·2. (3.6) 

3.2 COVARIANCE AND CORRELATION OF BIVARIATE RANDOM 
VARIABLES 

3.2.1 Covariance 

If two variables x and y are measured on each research unit (object or subject), we 
have a bivariate random variable (x, y). Often x and y will tend to covary; if one 
is above its mean, the other is more likely to be above its mean, and vice versa. For 
example, height and weight were observed for a sample of 20 college-age males. 
The data are given in Table 3.1. 

The values of height x and weight y from Table 3.1 are both plotted in the vertical 
direction in Figure 3.1. The tendency for x and y to stay on the same side of the mean 
is clear in Figure 3.1. This illustrates positive covariance. With negative covariance 
the points would tend to deviate simultaneously to opposite sides of the mean. 

The population covariance is defined as cov(x,y) = axy = E[(x — ßx)(y — 
μυ)}, where μχ and μυ are the means of x and y, respectively. Thus if x and y are 
usually both above their means or both below their means, the product (x - μχ)^ — 
μυ) will typically be positive and the average value of the product will be positive. 
Conversely, if x and y tend to fall on opposite sides of their respective means, the 
product will usually be negative and the average product will be negative. It can be 
shown that axy = E(xy) — μχμυ. 
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Figure 3.1 Two variables with a tendency to covary. 

If the two random variables x and y in a bivariate random variable are added or 
multiplied, a new random variable is obtained. The mean of x + y or xy is as follows: 

E(x + y) = E(x) + E(y) (3.7) 
E(xy) — E(x)E(y) if x, y independent. (3.8) 

Formally, x and y are independent if their joint density factors into the product of 
their individual densities: f(x, y) = g(x)h(y). Informally, x and y are independent 
if the random behavior of either of the variables is not affected by the behavior of the 
other. Note that (3.7) is true whether or not x and y are independent, but (3.8) holds 
only for x and y independently distributed. 

The notion of independence of x and y is more general than that of zero covari-
ance. The covariance axy measures linear relationship only, whereas if two random 
variables are independent, they are not related either linearly or nonlinearly. Inde-
pendence implies axy = 0, but axy = 0 does not imply independence. It is easy to 
show that if x and y are independent, then axy — 0: 

axy = E(xy) - μχμυ 

= E{x)E{y) - μχμυ [by (3.8)] 

One way to demonstrate that the converse is not true is to construct examples of 
bivariate x and y that have zero covariance and yet are related in a nonlinear way 
(the relationship will have zero slope). This is illustrated in Figure 3.2. 
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Figure 3.2 A sample from a population where x and y have zero covariance 
and yet are dependent. 

If x and y have a bivariate normal distribution (see Chapter 4), then zero covari-
ance implies independence. This is because (1) the covariance measures only linear 
relationships and (2) in the bivariate normal case, the mean of y given x (or x given 
y) is a straight line. 

The sample covariance is defined as 

= EIU^-^-17). (3 9) 
y n-l 

It can be shown that 

sxy^^y\n^. (3.10) 
n - l 

Note that sxy is essentially never equal to axy (for continuous data), that is, the 
probability is zero that sxy will equal axy. It is true, however, that sxy is an unbiased 
estimator for axy, that is, E(sxy) = axy. 

Since sxy φ axy in any given sample, this is also true when axy = 0. Thus when 
the population covariance is zero, no random sample from the population will have 
zero covariance. The only way a sample from a continuous bivariate distribution will 
have zero covariance is for the experimenter to choose the values of x and y so that 
sxy = 0. (Such a sample would not be a random sample.) One way to achieve this 
is to place the values in the form of a grid. This is illustrated in Figure 3.3. 

The sample covariance measures only linear relationships. If the points in a bi-
variate sample follow a curved trend, as, for example, in Figure 3.2, the sample 
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Figure 3.3 A sample of (x, y) values with zero covariance. 

covariance will not measure the strength of the relationship. To see that sxy mea-
sures only linear relationships, note that the slope of a simple linear regression line 
is 

a _ Z-<i=l\Xi — x)(yi ~~ V) _ sxy /Q 1 1 \ 

Thus sxy is proportional to the slope, which shows only the linear relationship be-
tween y and x. 

Variables with zero sample covariance can be said to be orthogonal. By (2.99), 
two sets of numbers 0,1,0,2,· ■■ ,an and 61,62; · · · > bn are orthogonal if Σ™=1 αφι — 
0. This is true for the centered variables Xi — x and y, — y when the sample covariance 
is zero, that is, Y™=1(xi - x){yi -y) = 0. 

■ EXAMPLE 3.2.1 

To obtain the sample covariance for the height and weight data in Table 3.1, 
we first calculate x, y, and J2i xiVi> where x is height and y is weight: 

_ 69 +74 + ··- + 76 
x = = 71.45, 

20 
_ 153+175 + · · · + 220 
V = ^ = 164.7, 
y 20 

20 

Y^XiVi = (69)(153) + (74)(175) + · · · + (76)(220) = 237,805. 
i = l 
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Now, by (3.10), we have 

_ i=\ XiVi -nxy 
xy~ n - 1 

= 237,805-(20) (71.45) (164.7) = uggg 

By itself, the sample covariance 128.88 is not very meaningful. We are not sure 
if this represents a small, moderate, or large amount of relationship between y 
and x. A method of standardizing the covariance is given in the next section. 

D 

3.2.2 Correlation 

Since the covariance depends on the scale of measurement of x and y, it is difficult to 
compare covariances between different pairs of variables. For example, if we change 
a measurement from inches to centimeters, the covariance will change. To find a 
measure of linear relationship that is invariant to changes of scale, we can standardize 
the covariance by dividing by the standard deviations of the two variables. This 
standardized covariance is called a correlation. The population correlation of two 
random variables x and y is 

Pxy = corr(z, y) = ^ = % - ^ ) ( ^ J L ) ( 3 . 1 2 ) 
σ*°ν VE(x-ßx)WE(y-ßy)2 

and the sample correlation is 

Sxy = Σ7=ΐ(χί ~ X)(Vi ~ V) (3.13) 

Either of these correlations will range between — 1 and 1. 
The sample correlation rxy is related to the cosine of the angle between two vec-

tors. Let Θ be the angle between vectors a and b in Figure 3.4. The vector from the 
terminal point of a to the terminal point of b can be represented as c = b — a. Then 
the law of cosines can be stated in vector form as 

COSÖ 
a'a + b , b - ( b - a ) , ( b - a ) 

2 v V a ) ( b ' b ) 
a 'a + b 'b - (b 'b + a 'a - 2a'b) 

2V(a 'a)(b 'b) 
a 'b 

V(a 'a)(b 'b) 
(3.14) 

Since cos(90°) = 0, we see from (3.14) that a 'b = 0 when Θ = 90°. Thus a 
and b are perpendicular when a 'b = 0. By (2.99), two vectors a and b, such that 
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Figure 3.4 Vectors a and b in 3-space. 

a 'b = 0, are also said to be orthogonal. Hence orthogonal vectors are perpen-
dicular in a geometric sense. 

To express the correlation in the form given in (3.14), let the n observation vec-
tors (xi,yi), {x2,2/2), · · ·, (im Vn) in t w 0 dimensions be represented as two vectors 
x' = (xi ) and y' = {yx, y2, ■ ■ ■, yn) in n dimensions, and let x and y 
be centered as x — xj and y — j/j. Then the cosine of the angle Θ between them [see 
(3.14)] is equal to the sample correlation between x and y: 

cos9 — 
(x - xj)'(y - y'i) 

\ / [ ( x - ^ ) ' ( χ - x3)][(y - yj)'(y ■i/j)] 

ν/ΣΓ=ι(;Εί - χ)2 Σί'=ι(ί/< - v) τΛ2 
(3.15) 

' xy 

Thus if the angle Θ between the two centered vectors x — xj and y — yj is small so 
that cos Θ is near 1, rxy will be close to 1. If the two vectors are perpendicular, cos Θ 
and rxy will be zero. If the two vectors have nearly opposite directions, rxy will be 
close to —1. 

EXAMPLE 3.2.2 

To obtain the correlation for the height and weight data of Table 3.1, we first 
calculate the sample variance of x: 



SCATTERPLOTS OF BIVARIATE SAMPLES 5 5 

Figure 3.5 Bivariate scatterplot of the data in Figure 3.1. 

si Σ τι 2 —2 

i=1 xj - nxz 

n — 1 
102,379- (20)(71.45)2 

19 
14.576. 

Then sx = \/l4.576 = 3.8179 and, similarly, sy = 37.964. By (3.13), we 
have 

sxu 128.88 
sxsy (3.8179) (37.964) 

D 

3.3 SCATTERPLOTS OF BIVARIATE SAMPLES 

Figures 3.2 and 3.3 are examples of scatterplots of bivariate samples. In Figure 3.1, 
the two variables x and y were plotted separately for the data in Table 3.1. Figure 
3.5 shows a bivariate scatterplot of the same data. 

If the origin is shifted to (x, y), as indicated by the dashed lines, then the first and 
third quadrants contain most of the points. Scatterplots for correlated data typically 
show a substantial positive or negative slope. 

A hypothetical sample of the uncorrelated variables height and IQ is shown in 
Figure 3.6. We could change the shape of the swarm of points by altering the scale 
on either axis. But because of the independence assumed for these variables, each 
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Figure 3.6 A sample of data from a population where x and y are uncorrelated. 

quadrant is likely to have as many points as any other quadrant. A tall person is as 
likely to have a high IQ as a low IQ. A person of low IQ is as likely to be short as to 
be tall. 

3.4 GRAPHICAL DISPLAYS FOR MULTIVARIATE SAMPLES 

It is a relatively simple procedure to plot bivariate samples as in Section 3.3. The 
position of a point shows at once the value of both variables. However, for three or 
more variables it is a challenge to show graphically the values of all the variables 
in an observation vector y. On a two-dimensional plot, the value of a third variable 
could be indicated by color or intensity or size of the plotted point. Four dimensions 
might be represented by starting with a two-dimensional scatterplot and adding two 
additional dimensions as line segments at right angles, as in Figure 3.7. The "corner 
point" represents yi and 2/2» whereas j/3 and 2/4 are given by the lengths of the two 
line segments. 

We will now describe various methods proposed for representing p dimensions in 
a plot of an observation vector, where p > 2. 

Profiles represent each point by p vertical bars, with the heights of the bars depicting 
the values of the variables. Sometimes the profile is outlined by a polygonal 
line rather than bars. 
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Figure 3.7 Four-dimensional plot. 

Stars portray the value of each (normalized) variable as a point along a ray from the 
center to the outside of a circle. The points on the rays are usually joined to 
form a polygon. 

Glyphs (Anderson 1960) are circles of fixed size with rays whose lengths represent 
the values of the variables. Anderson suggested using only three lengths of 
rays, thus rounding the variable values to three levels. 

Faces (Chernoff 1973) depict each variable as a feature on a face, such as length 
of nose, size of eyes, shape of eyes, and so on. Flury and Riedwyl (1981) 
suggested using asymmetric faces, thus increasing the number of representable 
variables. 

Boxes (Hartigan 1975b) show each variable as the length of a dimension of a box. 
For more than three variables, the dimensions are partitioned into segments. 

Among these five methods, Chambers and Kleiner (1982) prefer the star plots 
because they "combine a reasonably distinctive appearance with computational sim-
plicity and ease of interpretation." Commenting on the other methods, they state, 
"Profiles are not so easy to compare as a general shape. Faces are memorable but 
they are more complex to draw and one must be careful in assigning variables to pa-
rameters and in choosing parameter ranges. Faces to some extent disguise the data in 
the sense that individual data values may not be directly comparable from the plot." 
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Table 3.2 Percentage of Republican Votes in Presidential Elections 
in Six Southern States for Selected Years 

State 

Missouri 
Maryland 
Kentucky 
Louisiana 
Mississippi 
South Carolina 

1932 

35 
36 
40 

7 
4 
2 

1936 

38 
37 
40 
11 
3 
1 

1940 

48 
41 
42 
14 
4 
4 

1960 

50 
46 
54 
29 
25 
49 

1964 

36 
35 
36 
57 
87 
59 

1968 

45 
42 
44 
23 
14 
39 

■ EXAMPLE 3.4 

The data in Table 3.2 are from Kleiner and Hartigan (1981). For these data, 
the preceding five graphical devices are illustrated in Figure 3.8. The relative 
magnitudes of the variables can be compared more readily using stars or pro-
files than faces. D 

3.5 DYNAMIC GRAPHICS 

In the previous section, we discussed several methods for static graphical displays. 
Over the past 25 years, there have been several new methods for visualization of 
multivariate data that employ computer animation and/or interactive approaches. Be-
cause these approaches have profoundly affected the world of statistical graphics, we 
discuss some dynamic graphics tools here. 

For bivariate data, visualization of a data set is fairly straightforward with the 
standard scatterplot that shows the location of each observation in a two-dimensional 
space. For p-dimensional data, the problem is much more challenging because there 
is no simple way to show the locations of objects (observation vectors) in an arbi-
trarily large p-dimensional space. Finding ways to easily digest the "shape" of a 
high-dimensional data set is one of the primary goals of dynamic graphical methods. 
Of great importance is the use of low-dimensional projections of high-dimensional 
data. For example, we can create a two-dimensional projection (or "shadow") of an 
n x p data matrix X by post-multiplying it by a p x 2 projection matrix A. 

The grand tour of a data set is a set of random projections of the data with a 
smooth interpolation between projections via intermediate projection matrices (Cook 
and Swayne, 2007; Asimov, 1985; Buja, Cook, Asimov, and Hurley, 2005). Most 
commonly, the data set is projected onto a two-dimensional space. When the pro-
jections are viewed in sequence as a movie, we see the data points so that the series 
of projections resembles a swarm of insects. The nature of the movements of the 
data swarm can provide profound insights about the essential dimensionality of the 
data as well as the existence of outliers or clusters of observations. Algorithms for 
the grand tour have been implemented in software packages such as ggobi (Swayne, 
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Figure 3.8 Profiles, stars, glyphs, faces, and boxes of percentage of Republican votes in 
six presidential elections in six southern states. The radius of the circles in the stars is 50%. 
Assignments of variables to facial features are 1932, shape of face; 1936, length of nose; 1940, 
curvature of mouth; 1960, width of mouth; 1964, slant of eyes; and 1968, length of eyebrows. 
(From the Journal ofthe American Statistical Association, 1981, p. 262.) 

Temple Lang, Buja, and Cook, 2003; Cook and Swayne, 2007) and R (Wickham, 
Cook, Hofmann, and Buja, 2011; R Development Core Team, 2010). 

Interactive methods such as linked brushing of scatterplots and/or parallel coordi-
nates plots have also proven to yield unique insights about the nature of a data set. 
For each of the n observations in the data set, the parallel coordinates plot (Insel-
berg, 1985; Wegman, 1990) places the p variables at equal intervals along one axis 
and on the other axis plots the scaled value of each variable as a dot. The p dots for 
a given observation are then connected to form a multi-segment line. If the variables 
are time points, this plot is identical to the profile plots used in Section 6.8. (For ex-
ample, see Figure 6.3.) These plots are useful in illustrating the general correlation 
structure and highlighting those outliers that do not conform to the typical structure. 

In linked brushing, multiple plots of a data set are connected (e.g., two scatterplots 
are linked together or a scatterplot is linked to a parallel coordinates plot). Obser-
vations of interest in one plot are manually "brushed" to change the observations' 
appearance. In a scatterplot, the brush will change the points' color or glyph (sym-
bol). In a parallel coordinates plot, the brush will change the lines' color or line type. 
The power of linked brushing is that the same observations in the linked plots will be 
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appropriately altered, allowing the user to thoroughly explore the nature of outliers 
and the multidimensional dependencies among variables in the data set. While the 
static graphical methods discussed in Section 3.4 can illuminate many of the funda-
mental properties of a data set, dynamic graphics and linked brushing often provide 
additional insights about complex and often nonlinear relationships among variables. 

■ EXAMPLE 3.5 

The data set in Table 3.3 contains yield and soil quality measurements at each 
of 215 locations in a 16-hectare field. The Baker field (Colvin et al., 1997) 
consists of 8 transects (y) with 28 locations (x) on each transect. The first 
transect (y = 1) lies along the southern boundary of the field, and the last 
transect (y = 8) lies along the northern boundary, with rows roughly 48 meters 
apart. The locations within a transect run from west (x — 1) to east (x = 28) 
and are approximately 12.2 meters apart. Data at nine of the locations in the 8 
by 28 layout are missing. At each location, the data set consists of corn yield 
in bushels per acre for 1997 (Corn97BU) and richness of 10 soil nutrients in 
parts per million (B, Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn). 

We begin by considering a grand tour of the 10 soil richness variables. In the 
tour, we observe that many (but not all) of the projections indicate collinearity 
in the data [compare panels (a) and (b) of Figure 3.9 with panel (c) of the 
same figure]. Also apparent in a large of number of the projections observed 
during the grand tour is the presence of several outliers. By brushing the five 
outliers, we change the points from dots to X's. Linking the grand tour to a 
scatterplot of x (location within transect) versus y (transect) in Figure 3.9(d), 
we note that the 5 outliers are clustered near the western end of the fourth and 
fifth transect, which corresponds to a low elevation point in the field (Colvin 
et al., 1997). Linking these locations to a parallel coordinates plot of the soil 
richness measures (Figure 3.10), we note the ways in which the profiles for 
the five outliers deviate from the typical profile. Specifically, the outliers are 
characterized by unusually high amounts of Ca, Mg, and Na coupled with 
comparatively low amounts of Fe. 

To further illustrate the complicated dependence structures that can be de-
coded using linked brushing, consider the linked plots in Figure 3.11. Panel (a) 
of this figure gives a dotplot of Ca with random jitter added in the horizontal 
direction for ease of visualization. Panel (b) plots log(Fe) against log(yield) 
(i.e., log of Corn97BU) and indicates a pronounced nonlinear relationship be-
tween these variables. By brushing the highest values of Ca, we uncover a 
complicated dependency between Fe and yield. When Ca is high, the linear 
relationship between log(Fe) and log(yield) is very weak. However, among 
low-Ca measurements, the linear relationship between log(Fe) and log(yield) 
is a relatively strong positive one. □ 
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Table 3.3 Baker Corn Field Measurements of Yield and Soil Richness 

x y 

1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
9 1 
10 1 
11 1 
12 1 
13 1 
14 1 
15 1 
16 1 
17 1 
18 1 
19 1 
20 1 
21 1 
22 1 
23 1 
24 1 
25 1 
26 1 
27 1 
28 1 
1 2 
2 2 
3 2 
4 2 

25 8 
26 8 
27 8 
28 8 

Corn97BU 

174.73 
147.43 
155.39 
141.46 
148.54 
135.30 
145.80 
150.83 
146.21 
167.43 
147.65 
155.80 
152.11 
161.02 
171.58 
160.72 
151.71 
137.44 
136.81 
126.73 
130.15 
139.24 
163.20 
159.59 
147.29 
167.77 
181.79 
148.83 
152.27 
148.18 
171.04 

144.88 
159.65 
135.49 
151.52 

B 

2.74 
4.23 
2.78 
1.92 
3.95 
1.99 
1.87 
2.00 
1.89 
1.73 
4.64 
3.21 
3.07 
2.54 
2.81 
4.35 
4.79 
4.12 
4.10 
4.34 
4.07 
2.35 
6.35 
3.96 
4.65 
5.52 
5.74 
3.31 
4.79 
6.76 
2.66 

3.67 
5.99 
3.05 
8.01 

Ca 

2608 
3167 
2359 
1766 
1647 
1505 
1755 
1902 
1970 
2069 
2306 
2827 
3187 
3952 
2973 
1963 
1612 
1650 
1759 
1765 
1858 
2152 
2172 
2191 
3179 
3096 
3931 
1997 
2589 
2874 
3697 

2541 
1952 
1702 
1525 

Cu 

1.44 
1.73 
1.27 
0.76 
0.48 
0.44 
0.52 
0.86 
0.96 
0.92 
1.15 
1.73 
2.02 
2.44 
1.78 
1.50 
1.15 
0.89 
0.97 
0.98 
0.87 
1.32 
1.21 
1.52 
2.10 
2.14 
2.59 
0.92 
1.32 
1.58 
2.23 

1.81 
1.46 
1.34 
1.14 

Fe 

192 
180 
249 
189 
188 
147 
125 
188 
236 
209 
208 
230 
201 
202 
191 
260 
197 
142 
139 
116 
142 
220 
271 
247 
298 
332 
248 
212 
161 
177 
255 

191 
228 
230 
270 

K 

88 
81 
110 
117 
99 
72 
111 
112 
105 
108 
101 
85 
94 
112 
82 
95 
85 
86 
77 
65 
79 
99 
82 
46 
117 
78 
86 
199 
79 
129 
141 

88 
118 
167 
158 

Mg 

442 
522 
413 
314 
304 
263 
302 
325 
327 
343 
381 
454 
491 
628 
444 
307 
259 
290 
322 
342 
356 
363 
342 
341 
528 
519 
651 
330 
360 
431 
521 

412 
310 
267 
228 

Mn 

62 
66 
85 
63 
73 
58 
47 
76 
93 
85 
73 
87 
95 
117 
94 
88 
69 
41 
63 
75 
60 
110 
114 
88 
91 
63 
73 
75 
67 
65 
92 

77 
84 
91 
97 

Na 

14 
16 
15 
15 
15 
13 
13 
15 
12 
13 
15 
13 
15 
15 
14 
15 
16 
16 
16 
14 
17 
16 
17 
12 
17 
17 
19 
16 
17 
19 
15 

14 
18 
14 
18 

P 

16 
20 
24 
21 
17 
14 
16 
23 
20 
20 
25 
18 
23 
36 
18 
19 
21 
13 
11 
9 
13 
19 
16 
12 
26 
20 
21 
41 
19 
45 
46 

40 
54 
61 
63 

Zn 

0.74 
1.48 
1.33 
0.95 
0.64 
0.60 
0.62 
1.00 
1.16 
0.92 
1.37 
1.37 
2.34 
2.85 
1.75 
1.04 
0.69 
0.35 
0.72 
0.35 
0.36 
1.04 
1.26 
1.02 
1.33 
1.31 
2.16 
0.89 
1.17 
1.99 
3.20 

1.65 
1.52 
1.36 
1.17 
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Figure 3.9 Grand tour of the soil richness measurements in Table 3.3. Panels (a), (b), and (c) show 
three different projections observed during the grand tour, and panel (d) indicates the geographic 
locations of the five outliers discovered by the grand tour and brushed to become X's instead of dots. 
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Figure 3.10 Parallel coordinates plot of the soil richness measurements in Table 3.3. 
Highlighted lines are linked to the points denoted as outliers in Figure 3.9. 

Figure 3.11 Linked and brushed plots of the Baker field data in Table 3.3. The dotplot of 
Ca in panel (a) is linked to the scatterplot of log(Fe) versus log(yield) in panel (b), with the 
points associated with high Ca brushed to appear as X's. 

3.6 MEAN VECTORS 

It is a common practice in many texts to use an uppercase letter for a variable name 
and the corresponding lowercase letter for a particular value or observed value of 
the random variable, for example, P(Y > y). This notation is convenient in some 
univariate contexts, but it is often confusing in multivariate analysis, where we use 
uppercase letters for matrices. In the belief that it is easier to distinguish between a 
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random vector and an observed value than between a vector and a matrix, throughout 
this text we follow the notation established in Chapter 2. Uppercase boldface letters 
are used for matrices of random variables or constants, lowercase boldface letters 
represent vectors of random variables or constants, and univariate random variables 
or constants are usually represented by lowercase nonbolded letters. 

Let y represent a random vector of p variables measured on a sampling unit (sub-
ject or object). If there are n individuals in the sample, the n observation vectors are 
denoted by y i , y 2 , . . . , y„, where 

/ 2/ii \ 
Vii 

\ Viv ) 

The sample mean vector y can be found either as the average of the n observation 
vectors or by calculating the average of each of the p variables separately: 

1 " 
T) L—< 

(V}\ 

\yPJ 

(3.16) 

where, for example, y2 = ΣΓ=ι V^ln- Thus yx is the mean of the n observations 
on the first variable, y2 is the mean of the second variable, and so on. 

All n observation vectors yi ,y2, · · · ,yn can be transposed to row vectors and 
listed in the data matrix Y as follows: 

Y = 

y2 

\ y W 

i / yn 

(units) 

2/21 

2/12 

2/22 

yn Va 

\ Vn\ 2/n2 

(variables) 

3 
■ ■ ■ yij 

■ ■ ■ V2j 

■■■ yij 

Vnj 

V 

yip \ 
yip 

y-np / 

(3.17) 

Since n is usually greater than p, the data can be more conveniently tabulated by 
entering the observation vectors as rows rather than columns. Note that the first 
subscript i corresponds to units (subjects or objects) and the second subscript j refers 
to variables. This convention will be followed whenever possible. 

In addition to the two ways of calculating y given in (3.16), we can obtain y from 
Y. We sum the n entries in each column of Y and divide by n, which gives y'. This 
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can be indicated in matrix notation using (2.38), 

y' = - J ' Y , (3.18) 

where j ' is a vector of l's, as defined in (2.11). For example, the second element of 
j ' Y i s 

(y\2\ 
2/22 

(1 ,1 , . . . ,1) 

We can transpose (3.18) to obtain 

= & « ■ 

\ 2 / n 2 / 
i=\ 

-Y' j (3.19) 

We now turn to populations. The mean of y over all possible values in the popu-
lation is called the population mean vector or expected value of y. It is defined as a 
vector of expected values of each variable, 

f yi \ 

E(y) = E 
2/2 

V Vv J 

( E(yi) \ 
E{y2) 

\ E(yP) J 

( ß i \ 

μι 

\ VP J 

μ, (3.20) 

where pj is the population mean of the jth variable. 
It can be shown that the expected value of each y · in y is μ^, that is, E(ljj) — ßj. 

Thus the expected value of y (over all possible samples) is 

fVi \ 

E(y) = E 
2/2 

V Vv ) 

( E{yx) \ 
E(y2) 

V E(yp) ) 

/ M i \ 
M2 

μ. (3.21) 

\ th ) 

Therefore, y is an unbiased estimator of μ. We emphasize again that y is never equal 
to μ. 

■ EXAMPLE 3.6 

Table 3.4 gives partial data from Kramer and Jensen (1969a). Three variables 
were measured (in milliequivalents per 100 g) at 10 different locations in the 
South. The variables are 

2/1 = available soil calcium 
2/2 = exchangeable soil calcium 
2/3 = turnip green calcium 



66 CHARACTERIZING AND DISPLAYING MULTIVARIATE DATA 

Table 3.4 Calcium in 
Turnip Greens 

Location 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2/i 

35 
35 
40 
10 
6 

20 
35 
35 
35 
30 

V2 

3.5 
4.9 

30.0 
2.8 
2.7 
2.8 
4.6 

10.9 
8.0 
1.6 

Soil and 

ya 

2.80 
2.70 
4.38 
3.21 
2.73 
2.81 
2.88 
2.90 
3.28 
3.20 

To find the mean vector y, we simply calculate the average of each column and 
obtain 

y ' = (28.1,7.18,3.089). 

D 

3.7 COVARIANCE MATRICES 

The sample covariance matrix S = (sjk) is the matrix of sample variances and 
covariances of the p variables: 

S = (sjk) 

( Sll 

«21 

«12 

S22 

•· Sip \ 

·· S2p 

\ Spi Sp2 

(3.22) 

Dpp ) 

In S the sample variances of the p variables are on the diagonal, and all possible 
pairwise sample covariances appear off the diagonal. The jth row (column) contains 
the covariances of yj with the other p — 1 variables. 

We give three approaches to obtaining S. The first of these is to simply calculate 
the individual elements sjk- The sample variance of the jth variable, Sjj 
calculated as in (3.4) and (3.5), using the jth column of Y: 

ή, is 

sjj ~ sj 
1 n 

= — ^ f e -Vjf 
(3.23) 

(3.24) 
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where y is the mean of the jth variable, as in (3.16). The sample covariance of the 
jth and fcth variables, Sjk, is calculated as in (3.9) or (3.10), using the jth and fcth 
columns of Y: 

n - _ 
i=l 

r y Y^ivij - Vj)(yik - yk) (3 ·25) 
i=l 

= -—^ ί Σ y^yik - nyßk ] · (3·26) 

Note that in (3.23) the variance Sjj is expressed as s2-, the square of the standard 
deviation Sj, and that S is symmetric because Sjk = s^j in (3.25). Other names 
used for the covariance matrix are variance matrix, variance-covariance matrix, and 
dispersion matrix. 

By way of notational clarification, we note that in the univariate case, the sam-
ple variance is denoted by s2. But in the multivariate case, we denote the sample 
covariance matrix as S, not as S2. 

The sample covariance matrix S can also be expressed in terms of the observation 
vectors: 

S 
i. 
-^Σ^-y^-yy ( 3 · 2 7 ) 

i — 1 *-^ 

= irh(E*yi-»yy'V ( 3 · 2 8 ) 

Since ( y ; - y ) ' = (i/ii-j/i,2/i2-1/2, ■ · · , y i P -y p ) , the element in the (1,1) position of 
(y«— y)(yi— y) ' ' s (ya — 2/i )2- a nd when this is summed over i as in (3.27), the result 
is the numerator of su in (3.23). Similarly, the (1, 2) element of (y, — y)(yi — y) ' 
is (yn — Vi)(yi2 — ^2)' which sums to the numerator of S12 in (3.25). Thus (3.27) is 
equivalent to (3.23) and (3.25), and likewise (3.28) produces (3.24) and (3.26). 

We can also obtain S directly from the data matrix Y in (3.17), which provides 
a third approach. The first term in the right side of (3.26), ]T^ VijVik, is the product 
of the jth and fcth columns of Y, whereas the second term, ny^ yk, is the (jfc)th 
element of ny y'. It was noted in (2.54) that Y ' Y is obtained as products of columns 
of Y. By (3.18) and (3.19), y = Y ' j /n and y' = j ' Y / n ; and using (2.36), we have 
ny y' = Y ' ( J / n )Y . Thus S can be written as 

1 
n - 1 

Y ' Y - Y ' ( - J ) Y 
n 

n 
^ W l - - J l Y [by (2.30)]. (3.29) 

Expression (3.29) is a convenient representation of S, since it makes direct use of 
the data matrix Y. However, the matrix I - J / n i s n x n and may be unwieldy in 
computation if n is large. 
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If y is a random vector taking on any possible value in a multivariate population, 
the population covariance matrix is defined as 

cov(y) 

/ σιι 
^ 2 1 

o~\2 

0~22 

\ σρι σΡ2 

σιρ \ 
C2p 

0~pp ) 

(3.30) 

The diagonal elements σ^ = σ | are the population variances of the y's, and the 
off-diagonal elements σ ^ are the population covariances of all possible pairs of y's. 

The notation Σ for the covariance matrix is widely used and seems natural be-
cause Σ is the uppercase version of σ. It should not be confused with the same 
symbol used for summation of a series. The difference should always be apparent 
from the context. To help further distinguish the two uses, the covariance matrix Σ 
will differ in typeface and in size from the summation symbol ^ . Also, whenever 
they appear together, the summation symbol will have an index of summation, such 

Σ η 

The population covariance matrix in (3.30) can also be found as 

Έ = E[(y - μ)(γ - μ)'], (3.31) 

which is analogous to (3.27) for the sample covariance matrix. The p x p matrix 
(y — μ)(γ — μ)' is a random matrix. The expected value of a random matrix is 
defined as the matrix of expected values of the corresponding elements. To see that 
(3.31) produces population variances and covariances of the p variables as in (3.30), 
note that 

Έ = E[(y - μ)(γ - μ)'} = E 

/ 2/i - μι \ 
2/2 - μι 

(2/1 - M i , 2/2 - μ 2 , · · · , 2 / Ρ ~ μΡ) 

\ yP - μΡ / 
I {yi-μιΫ (yi -μι)(2/2 - μι) 

{V2 - μ2){ν\ - μι) ( ϊ / 2 -μ2 ) 2 

\ (yP - μΡ)(υι - μι) {yP - μΡ)(υ2 - μ2) 

( E(yi - μ ι ) 2 E(yi - μι)(ρ2 - μ2) 
E{y2 - μ2){νι - μι) E(y2 - μ2)

2 

Ε 

(yi - μι)(νΡ - μΡ) \ 
(y2 - μ2)(νΡ - μΡ) 

{yP - μΡΫ I 
E(yi - μι)(νΡ - μΡ) \ 
E(y2 -μ2)(υΡ-μΡ) 

\ E(yp - μΡ){νι - μι) E(yp 

( e n σΐ2 ■ · · σ\ρ \ 
0~21 ^ 2 2 ■ · · σ 2 ρ 

■ μΡ)(ν2 - μ2) E(yP - μΡ)2 ) 

\ σρ\ σΡ2 I 
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It can be easily shown that Σ can be expressed in a form analogous to (3.28): 

Σ = £(yy ' ) - μμ'. (3.32) 

Since E{sjk) = Ojh for all j,k, the sample covariance matrix S is an unbiased 
estimator for Σ : 

E(S) = Σ . (3.33) 

As in the univariate case, we note that it is the average of all possible values of S that 
is equal to Σ . Generally, S will never be equal to Σ . 

■ EXAMPLE 3.7 

To calculate the sample covariance matrix for the calcium data of Table 3.4 
using the computational forms (3.24) and (3.26), we need the sum of squares 
of each column and the sum of products of each pair of columns. We illustrate 
the computation of S13. 

10 

J2yliyi3 = (35)(2.80) + (35)(2.70) + · · · + (30)(3.20) = 885.48. 

From Example 3.6 we have y1 = 28.1 and y3 = 3.089. By (3.26), we obtain 

Sl3 
1 17 471 

[885.48- 10(28.1)(3.089)] = — - — = 1.9412. 1 0 - 1 

Continuing in this fashion, we obtain 

140.54 49.68 1.94 
S = I 49.68 72.25 3.68 

1.94 3.68 .25 

D 

3.8 CORRELATION MATRICES 

The sample correlation between the jth and kth variables is defined in (3.13) as 

'f'jk 
VSjj^kk SjSk 

(3.34) 

The sample correlation matrix is analogous to the covariance matrix with correla-
tions in place of covariances: 

R = ( r j f c ) 

/ 1 r12 

T2\ 1 

V rpl rp2 

rip \ 

T2p 

1 ) 

(3.35) 



7 0 CHARACTERIZING AND DISPLAYING MULTIVARIATE DATA 

The second row, for example, contains the correlation of y2 with each of the y's 
(including the correlation of y2 with itself, which is 1). Of course, the matrix R is 
symmetric, since r.,/. = r^j-

The correlation matrix can be obtained from the covariance matrix and vice versa. 
Define 

D , diag(\/sIT, y/s^, · · ·, V^PP) 
diag(si, s 2 , . . . , s p ) 
/ s i 0 ■·■ 0 \ 

0 s2 ■ 

\ 0 0 

0 

sP j 

(3.36) 

Then by (2.57) 

R = D S
1 S D S

1 , 
S = D , R D , . 

(3.37) 

(3.38) 

The population correlation matrix analogous to (3.35) is defined as 

(Pjk) = 

where 

as in (3.12). 

/ 1 Pi2 
P21 1 

\ Ppl Pp2 

ajk 

Pip \ 
P2p 

i ) 

(3.39) 

Pjk 
OjOk 

EXAMPLE 3.8 

In Example 3.7, we obtained the sample covariance matrix S for the calcium 
data in Table 3.4. To obtain the sample correlation matrix for the same data, 
we can calculate the individual elements using (3.34) or use the direct matrix 
operation in (3.37). The diagonal matrix D s can be found by taking the square 
roots of the diagonal elements of S, 

D s 

(note that we have used the unrounded version of S for computation). Then by 
(3.37), 

1.000 .493 .327 
R = D ^ S D r 1 = ( .493 1.000 .865 

.327 .865 1.000 

11.8551 
0 
0 

0 
8.4999 

0 

0 
0 

.5001 
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Note that .865 > .493 > .327, which is a different order than that of the 
covariances in S in Example 3.7. Thus we cannot compare covariances, even 
within the same matrix S. D 

3.9 MEAN VECTORS AND COVARIANCE MATRICES FOR SUBSETS 
OF VARIABLES 

3.9.1 Two Subsets 

Sometimes a researcher is interested in two different kinds of variables, both mea-
sured on the same sampling unit. This corresponds to type 2 data in Section 1.4. For 
example, several classroom behaviors are observed for students, and during the same 
time period (the basic experimental unit) several teacher behaviors are also observed. 
The researcher wishes to study the relationships between the pupil variables and the 
teacher variables. 

We will denote the two subvectors by y and x, with p variables in y and q vari-
ables in x. Thus each observation vector in a sample is partitioned as 

/ Vi\ \ 

1,2, . , 7 1 . (3.40) 

\ Xi<i ) 

Hence there are p + q variables in each of n observation vectors. In Chapter 10 
we will discuss regression of the y's on the x's, and in Chapter 11 we will define a 
measure of correlation between the y's and the x's. 

For the sample of n observation vectors, the mean vector and covariance matrix 
have the form 

Χχ 

\ xq ) 

y ^xx 

7yy 

&xy 

(3.41) 

(3.42) 

where Syy is p x p, Syx is p x q, Sxy is q x p, and Sxx is q x q. Note that because 
of the symmetry of S, 

>xy s: yx- (3.43) 
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Thus (3.42) could be written 

S = Jyy 

s: 
■>yx 

yx 

To illustrate (3.41) and (3.42), let p = 2 and q = 3. Then 

V2 

X~2 

V^3 / 

(3.44) 

xy 

Dy2yi 

\ s 
X3V1 

Dyiyz 
s2 

y-i 

sxiyi sxiyi 

^X3y2 

°y2X3 

X3 

The pattern in each of Syy, Syx, Sxy, and S ^ is clearly seen in this illustration. For 
example, the first row of Syx has the covariance of y\ with each of x\, X2, £3; the 
second row exhibits covariances of j/2 with the three x's. On the other hand, Sxy has 
as its first row the covariances of x\ with y\ and y^, and so on. Thus Sxy = S' as 
noted in (3.43). 

The analogous population results for a partitioned random vector are 

E 

cov 

E{y) \ _ 
E{*) 

Jyy 
Jxy 

Vx 

■'yx 

(3.45) 

(3.46) 

where Έχυ — Σ ^ . The submatrix Έυυ is a p x p covariance matrix containing the 
variances of j/i, y2, ■ ■ ■, yp on the diagonal and the covariance of each yj with each 
yk off the diagonal. Similarly, Έχχ is the q x q covariance matrix ofxi,X2,...,xq. 
The matrix Y,yx is p x q and contains the covariance of each yj with each x^. The 
covariance matrix Έυχ is also denoted by cov(y, x), that is, 

cov(y,x) = Ej / :c. (3.47) 

Note the difference in meaning between cov(^) = Σ in (3.46) and cov(y, x) = Έυχ 

in (3.47); cov(^) involves a single vector containing p + q variables, and cov(y, x) 
involves two vectors. 

If x and y are independent, then S y x = O. This means that each yj is uncorre-
lated with each Xk so that aViXk = 0 for j = 1,2,. . . , p; k — 1,2,... ,q. 
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EXAMPLE 3.9.1 

Reaven and Miller (1979; see also Andrews and Herzberg 1985, pp. 215-219) 
measured five variables in a comparison of normal patients and diabetics. In 
Table 3.5 we give partial data for normal patients only. The three variables of 
major interest were 

x\ = glucose intolerance 
X2 = insulin response to oral glucose 
x-i = insulin resistance 

The two additional variables of minor interest were 

yi = relative weight 
yi = fasting plasma glucose 

The mean vector, partitioned as in (3.41), is 

(Vj \ 
2/2 

y 
X Xl 

V^3 / 

/ .918 \ 
90.41 

340.83 
171.37 

\ 97.78 / 

The covariance matrix, partitioned as in the illustration following (3.44), is 

S = 

/ 

Z>yy >~>yx 

&xy ^ χ ι 

.0162 .2160 

.2160 70.56 

V 

.7872 
-.2138 
2.189 

26.23 
-23.96 
-20.84 

.7872 
26.23 

-.2138 
-23.96 

2.189 \ 
-20.84 

1106 
396.7 
108.4 

396.7 
2382 
1143 

108.4 
1143 
2136 / 

Note that Syy and S x x are symmetric and that Sxy is the transpose of Syx. D 

3.9.2 Three or More Subsets 

In some cases, three or more subsets of variables are of interest. If the observation 
vector y is partitioned as 

/ y i \ 

Y2 

\yk ) 
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Table 3.5 Relative Weight, Blood Glucose, and 
Insulin Levels 

Patient 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

46 

2/i 

.81 

.95 

.94 
1.04 
1.00 
.76 
.91 
1.10 
.99 
.78 
.90 
.73 
.96 
.84 
.74 
.98 
1.10 
.85 
.83 
.93 
.95 
.74 
.95 
.97 
.72 
1.11 
1.20 
1.13 
1.00 
.78 
1.00 
1.00 
.71 
.76 
.89 
.88 
1.17 
.85 
.97 

.91 

V2 

80 
97 
105 
90 
90 
86 
100 
85 
97 
97 
91 
87 
78 
90 
86 
80 
90 
99 
85 
90 
90 
88 
95 
90 
92 
74 
98 
100 
86 
98 
70 
99 
75 
90 
85 
99 
100 
78 
106 

86 

Xl 

356 
289 
319 
356 
323 
381 
350 
301 
379 
296 
353 
306 
290 
371 
312 
393 
364 
359 
296 
345 
378 
304 
347 
327 
386 
365 
365 
352 
325 
321 
360 
336 
352 
353 
373 
376 
367 
335 
396 

328 

X2 

124 
117 
143 
199 
240 
157 
221 
186 
142 
131 
221 
178 
136 
200 
208 
202 
152 
185 
116 
123 
136 
134 
184 
192 
279 
228 
145 
172 
179 
222 
134 
143 
169 
263 
174 
134 
182 
241 
128 

106 

X3 

55 
76 
105 
108 
143 
165 
119 
105 
98 
94 
53 
66 
142 
93 
68 
102 
76 
37 
60 
50 
47 
50 
91 
124 
74 
235 
158 
140 
145 
99 
90 
105 
32 
165 
78 
80 
54 
175 
80 

56 
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where yi has px variables, y2 has P2, ■ ■ ■ ,Yk has pk, with p = P\ + P2 
then the sample mean vector and covariance matrix are given by 

(y_i \ 
y2 

\yk ) 

I S n S12 '11 
S21 >22 

>fc2 

Slfc \ 
S2/C 

Sfcfc / 

+ Pk, 

(3.48) 

(3.49) 

\ Sfci 

Thep2 x Pk submatrix S2k, for example, contains the covariances of the variables in 
y2 with the variables in yfc. 

The corresponding population results are 

μ2 
μ 

Σ = 

/ Σ ι ι Σ12 
Σ21 Σ22 

V Σ fei ■>k2 

Sifc ^ 
Σ2Α: 

Σ/cfc / 

(3.50) 

(3.51) 

3.10 LINEAR COMBINATIONS OF VARIABLES 

3.10.1 Sample Properties 

We are frequently interested in linear combinations of the variables 2/1,2/2, · · ·, ί/ρ· 
For example, two of the types of linear functions we use in later chapters are (1) 
linear combinations that maximize some function and (2) linear combinations that 
compare variables, for example, y\ — y^. In this section, we investigate the means, 
variances, and covariances of linear combinations. 

Let αι, 0 2 , . . . , ap be constants and consider the linear combination of the ele-
ments of the vector y, 

where a' = (01,02, 
a sample, we have 

= a1yl+a2y2-\ h apyp = a'y, (3.52) 

, Op). If the same coefficient vector a is applied to each yj in 

aiVii + aiVt2 H V apyip 

(3.53) 



7 6 CHARACTERIZING AND DISPLAYING MULTIVARIATE DATA 

The sample mean of z can be found either by averaging the n values z\ = a 'y 1, z2 = 
a ' y 2 , . . . , zn = a 'y n or as a linear combination of y, the sample mean vector of 
y i , y 2 , - - - , y « : 

l n 

ζ = ~Σ*=*'Ϋ· (3·54) 

The result in (3.54) is analogous to the univariate result (3.3), ~z = ay, where Zi = 
ayiti = 1,2, ...,n. 

Similarly, the sample variance of zt — a'yi, i — 1,2,. . . , n, can be found as the 
sample variance of ζχ, z2, ■ ■ ■, zn or directly from a and S, where S is the sample 
covariance matrix of y i , y2, ■ ■ ■, yn' 

si = Σ^ι(^-^)2
 = a/Sa> {355) 

n—\ 

Note that s\ = a 'Sa is the multivariate analogue of the univariate result in (3.6), 
si — a2s2, where Zi = ayi, i = 1, 2 , . . . , n, and s2 is the variance of j/i, y2,..., yn. 

Since a variance is always nonnegative, we have s2. > 0, and therefore a 'Sa > 0, 
for every a. Hence S is at least positive semidefinite (see Section 2.7). If the variables 
are continuous and are not linearly related, and if n - 1 > p (so that S is full rank), 
then S is positive definite (with probability 1). 

If we define another linear combination w = b 'y = biyi + b2y2 + · · ■ + bpyp, 
where b ' = (&i, b2,..., bp) is a vector of constants different from a', then the sample 
covariance of z and w is given by 

szw = Σ ? = ι ( * - * ' ) ( " < - * ) = a 'Sb. (3.56) 
n — 1 

The sample correlation between z and w is readily obtained as 

szw Q- ^ b 

v / S ^(a'Sa)(b'Sb)' 
(3.57) 

We now denote the two constant vectors a and b as ai and a2 to facilitate later 
expansion to more than two such vectors. Let 

and define 

Then we can factor y from this expression by (2.49): 

y = Ay 
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If we evaluate the bivariate Zj for each p-variate y$ in the sample, we obtain 
Zj = Ay i 5 i = 1,2,. . . , n, and the average of z over the sample can be found from 
y: 

z\ 
^2 

a iy 
a2y 

Ay 

[by (3.54)] 

[by (2.49)]. 

(3.58) 

(3.59) 

We can use (3.55) and (3.56) to construct the sample covariance matrix for z: 

By (2.50), this factors into 

a'j Sai a'j Sa2 
a2Sai a2Sa2 

S(ai ,a 2 ) = ASA'. 

(3.60) 

(3.61) 

The bivariate results in (3.59) and (3.61) can be readily extended to more than 
two linear combinations. (See principal components in Chapter 12, for instance, 
where we attempt to transform the y's to a few dimensions that capture most of the 
information in the y's.) If we have k linear transformations, they can be expressed as 

z\ = αιι2/ι + ai2y2 H l· alvyv = a^y 
z2 = a2\yv + a22y2 H H a2pyp = a'2y 

Zk = akiUi + ak2y2 -\ l· akpyp = a'fey 

or in matrix notation 

f ΖΛ 
z2 

\Zk / 

( a'iY \ 
a2y 

V â y / 

/ a ' i \ 

a, y = Ay [by (2.47)], 

Va'fc / 
where z is k x 1, A is k x p, and y is p x 1 (we typically have k < p). If Zj = Ay^ 
is evaluated for all y,, i = 1,2,. . . , n, then by (3.54) and (2.49), the sample mean 
vector of the z's is 

ta;y ̂  a2y 

V aiy ) 

= 

/ a i \ 
a2 

V "ί / 

y = Ay. (3.62) 
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By an extension of (3.60), the sample covariance matrix of the z's becomes 

( a'jSai a'xSa2 
ai,Sai a2Sa2 

V afcS a l afeSa2 
/ a i (Sai , Sa2, 

a2(Sai , Sa2 , 

a'xSafc \ 
a2^ afe 

a'fcSafc ) 

Safc) \ 
Safc) 

\ a'fc(Sai, Sa2 , · · · , Safe) / 

/ a i \ 
a 2 

V4 / 
/ a ' i \ 

(Sa 1 ; Sa 2 , . . . ,Sa f c ) [by (2.47)] 

S(ai ,a 2 ) . . . ,afc) [by (2.48)] 

V4 / 
= ASA'. 

Note that by (3.63) and (3.64), we have 

k 

tT(ASA,) = Y^SL,
iSai. 

A slightly more general linear transformation is 

Zi = A y i + b , i = l,2,...,n. 

The sample mean vector and covariance matrix of z are given by 

z = Ay + b, 

Sz = ASA'. 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

(3.67) 
(3.68) 

EXAMPLE 3.10.1 

Timm (1975, p. 233; 1980, p. 47) reported the results of an experiment in 
which subjects responded to "probe words" at five positions in a sentence. The 
variables are response times for the jth probe word, yj,j = 1,2,. . . , 5. The 
data are given in Table 3.6. 

These variables are commensurate (same measurement units and similar 
means and variances), and the researcher may wish to examine some simple 
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Table 3.6 Response Times for Five 
Probe Word Positions 

Subject 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Ϊ/1 

51 
27 
37 
42 
27 
43 
41 
38 
36 
26 
29 

2/2 

36 
20 
22 
36 
18 
32 
22 
21 
23 
31 
20 

2/3 

50 
26 
41 
32 
33 
43 
36 
31 
27 
31 
25 

2/4 

35 
17 
37 
34 
14 
35 
25 
20 
25 
32 
26 

2/5 

42 
27 
30 
27 
29 
40 
38 
16 
28 
36 
25 

linear combinations. Consider the following linear combination for illustrative 
purposes: 

= 3yi - 2y2 + 4y3 -1/4 + 2/5 
= ( 3 , - 2 , 4 , - l , l ) y a'y-

If z is calculated for each of the 11 observations, we obtain z\ — 288, z2 = 
155, ■ · · , zn = 146 with mean ~z = 197.0 and variance sz = 2084.0. These 
same results can be obtained using (3.54) and (3.55). The sample mean vector 
and covariance matrix for the data are 

/ 36.09 \ 
25.55 
34.09 
27.27 

\ 30.73 / 

Then, by (3.54), 

/ 65.09 33.65 47.59 36.77 25.43 \ 

1 

33.65 
47.59 
36.77 

\ 25.43 

( 3 . - 2 , 4 , - 1 , 

46.07 28.95 40.34 
28.95 60.69 37.37 
40.34 37.37 62.82 
28.36 41.13 31.68 

/ 36.09 \ 

1) 
25.55 
34.09 
27.27 

\ 30.73 ) 

= 197.0 

28.36 
41.13 
31.68 
58.22 

z = ay 

and by (3.55), s2
z = a 'Sa = 2084.0. 

We now define a second linear combination: 

w = 2/i + 3y2 - ys + 2/4 - 22/5 
= ( l , 3 , - l , l , - 2 ) y = b'y. 
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The sample mean and variance of warew = b 'y = 44.45 and s^ = b 'Sb = 
605.67. The sample covariance of z and w is, by (3.56), szw — a 'Sb = 40.2. 

Using (3.57), we find the sample correlation between z and w to be 

40.2 

^ .2 „2 v/(2084) (605.67) 

We now define the three linear functions 

Z\ = 2/1 + 2/2 + 2/3 + 2/4 + 2/5 
Z2 = 2j/i - 3y2 + 2/3 - 2j/4 - y5 

Z3 = -2/1 - 22/2 + 2/3 - 2y4 + 3y5, 

which can be written in matrix form as 

.0358. 

1 
2 
1 

1 1 
- 3 1 
- 2 1 

1 
- 2 
- 2 

1 \ 

- 1 

3 / 

/ 2/1 \ 

2/2 

2/3 

2/4 

\sfc / 
or 

z = Ay. 

The sample mean vector for z is given by (3.62) as 

/ 153.73 
z = Ay = -55.64 

\ -15.45 

and the sample covariance matrix of z is given by (3.64) as 

Sz = ASA' = 
995.42 
502.09 
211.04 

-502.09 
811.45 
268.08 

-211.04 
268.08 
702.87 

The covariance matrix S2 can be converted to a correlation matrix by use of 
(3.37): 

R z 

where 

D-'S Z D: 

D 2 

- ( 

31.55 
0 
0 

1.00 
- .56 
- .25 

0 
28.49 

0 

- .56 
1.00 
.35 

0 
0 

26.51 

- .25 
.35 

1.00 

) 

is obtained from the square roots of the diagonal elements of S2 a 
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3.10.2 Population Properties 

The sample results in Section 3.10.1 for linear combinations have population coun-
terparts. Let z = a'y, where a is a vector of constants. Then the population mean of 
z is 

E(z) = E(a 'y) = a'£:(y) = α'μ, (3.69) 

and the population variance is 

σ\ = var(a'y) = a 'Ea. (3.70) 

Let w = b'y> where b is a vector of constants different from a. The population 
covariance of z = a'y and w = b 'y is 

cov (z,w) = azw = a ' S b . (3.71) 

By (3.12) the population correlation of z and w is 

pzw = corr(a y, b y) 
o~zo-w 

a'Eb 
Vfa'Eaj^'lb]' (3.72) 

If Ay represents several linear combinations, the population mean vector and 
covariance matrix are given by 

£ (Ay) = A£7(y) = Αμ, (3.73) 
cov(Ay) = Α Σ Α ' . (3.74) 

The more general linear transformation z = Ay + b has population mean vector and 
covariance matrix 

£ ( A y + b) = A£(y ) + b = Αμ + b, (3.75) 
cov(Ay + b) = Α Σ Α ' . (3.76) 

3.11 MEASURES OF OVERALL VARIABILITY 

The covariance matrix contains the variances of the p variables and the covariances 
between all pairs of variables and is thus a multifaceted picture of the overall vari-
ation in the data. Sometimes it is desirable to have a single numerical value for the 
overall multivariate scatter. One such measure is the generalized sample variance, 
defined as the determinant of the covariance matrix: 

Generalized sample variance = |S|. (3.77) 
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The generalized sample variance has a geometric interpretation. The extension of 
an ellipse to more than two dimensions is called a hyperellipsoid. A p-dimensional 
hyperellipsoid (y - y ) ' S - 1 ( y - y) = a2, centered at y and based on S _ 1 to 
standardize the distance to the center, contains a proportion of the observations 
Yi> Y2> · · · > Yn in the sample (if S were replaced by Σ, the value of a2 could be 
determined by tables of the chi-square distribution; see property 3 in Section 4.2). 
The ellipsoid (y — y) 'S _ 1 (y — y) has axes proportional to the square roots of the 
eigenvalues of S. It can be shown that the volume of the ellipsoid is proportional to 
jSI1/2. If the smallest eigenvalue \p is zero, there is no axis in that direction, and the 
ellipsoid lies wholly in a (p — l)-dimensional subspace of p-space. Consequently, 
the volume in p-space is zero. This can also be seen by (2.108), |S| = λιλ2 · ■ · λρ. 
Hence, if λρ = 0, |S| = 0. A zero eigenvalue indicates a redundancy in the form 
of a linear relationship among the variables. (As will be seen in Section 12.7, the 
eigenvector corresponding to the zero eigenvalue reveals the form of the linear de-
pendency.) One solution to the dilemma when λρ — 0 is to remove one or more 
variables. 

Another measure of overall variability, the total sample variance, is simply the 
trace of S: 

Total sample variance — sn + S22 + · · · + ·%> — tr(S). (3.78) 

This measure of overall variation ignores covariance structure altogether but is found 
useful for comparison purposes in techniques such as principal components (Chap-
ter 12). 

In general, for both |S| and tr(S), relatively large values reflect a broad scatter of 
Yi > Y2; · · · > Yp about y, whereas lower values indicate closer concentration about y. 
In the case of |S|, however, as noted above, an extremely small value of |S| or |R| 
may indicate either small scatter or multicollinearity, a term indicating near-linear 
relationships in a set of variables. Multicollinearity may be due to high pairwise 
correlations or to a high multiple correlation between one variable and several of 
the other variables. For other measures of intercorrelation, see Rencher (1998, Sec-
tion 1.7). 

3.12 ESTIMATION OF MISSING VALUES 

It is not uncommon to find missing measurements in an observation vector, that is, 
missing values for one or more variables. A small number of rows with missing 
entries in the data matrix Y [see (3.17)] does not constitute a serious problem; we 
can simply discard each row that has a missing value. However, with this procedure, 
a small portion of missing data, if widely distributed, would lead to a substantial loss 
of data. For example, in a large data set with n = 550 and p = 85, only about 1.5% 
of the 550 x 85 = 46,750 measurements were missing. However, nearly half of the 
observation vectors (rows of Y) turned out to be incomplete. 

The distribution of missing values in a data set is an important consideration. 
Randomly missing variable values scattered throughout a data matrix are less serious 
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than a pattern of missing values that depends to some extent on the values of the 
missing variables. 

We discuss two methods of estimating the missing values or "filling the holes" 
in the data matrix, also called imputation. Both of the procedures presume that the 
missing values occur at random. If the occurrence or non-occurrence of missing 
values is related to the values of some of the variables, then the techniques may not 
estimate the missing responses very well. 

The first method is very simple: Substitute a mean for each missing value, specif-
ically the average of the available data in the column of the data matrix in which 
the unknown value lies. Replacing an observation by its mean reduces the variance 
and the absolute value of the covariance. Therefore, the sample covariance matrix S 
computed from the data matrix Y in (3.17) with means imputed for missing values 
is biased. However, it is positive definite. 

The second technique is a regression approach. The data matrix Y is partitioned 
into two parts, one containing all rows with missing entries and the other comprising 
all the complete rows. Suppose y,j is the only missing entry in the zth row of Y. 
Then using the data in the submatrix with complete rows, y^ is regressed on the 
other variables to obtain a prediction equation yj — &o + ι̂Ζ/ι + · · · + frj-ii/j-i + 
bj+iyj+i + ■ ■ ■ + byyp. Then the nonmissing entries in the ith row are entered as 
independent variables in the regression equation to obtain the predicted value, y^. 
The regression method was first proposed by Buck (1960) and is a special case of 
the EM algorithm (Dempster, Laird, and Rubin 1977). 

The regression method can be improved by iteration, carried out, for example, in 
the following way. Estimate all missing entries in the data matrix using regression. 
After filling in the missing entries, use the full data matrix to obtain new prediction 
equations. Use these prediction equations to calculate new predicted values jjij for 
missing entries. Use the new data matrix to obtain revised prediction equations and 
new predicted values y~ij. Continue this process until the predicted values stabilize. 

A modification may be needed if the missing entries are so pervasive that it is 
difficult to find data to estimate the initial regression equations. In this case, the 
process could be started by using means as in the first method and then beginning 
the iteration. 

The regression approach will ordinarily yield better results than the method of 
inserting means. However, if the other variables are not very highly correlated with 
the one to be predicted, the regression technique is essentially equivalent to imputing 
means. The regression method underestimates the variances and covariances, though 
to a lesser extent than the method based on means. 

■ EXAMPLE 3.12 

We illustrate the iterated regression method of estimating missing values. Con-
sider the calcium data of Table 3.4 as reproduced here and suppose the entries 
in parentheses are missing: 
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Location 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2/i 

35 
35 
40 
10 
6 

20 
35 
35 
35 
30 

2/2 

(3.5) 
4.9 

30.0 
2.8 
2.7 
2.8 
4.6 

10.9 
8.0 
1.6 

2/3 

2.80 
(2.70) 

4.38 
3.21 
2.73 
2.81 
2.88 
2.90 
3.28 
3.20 

We first regress y2 on y\ and y3 for observations 3-10 and obtain y2 = &o + 
6i2/i + 631/3. When this is evaluated for the two nonmissing entries in the 
first row (yi = 35 and y3 = 2.80), we obtain y2 = 4.097. Similarly, we 
regress y3 on y\ and y2 for observations 3-10 to obtain y3 = CQ + C\y\ + c2y2. 
Evaluating this for the two nonmissing entries in the second row yields £3 = 
3.011. We now insert these estimates for the missing values and calculate the 
regression equations based on all 10 observations. Using the revised equation 
2/2 = b0+612/1+Ö3J/3, we obtain a new predicted value, y2 = 3.698. Similarly, 
we obtain a revised regression equation for y3 that gives a new predicted value, 
y3 = 2.981. With these values inserted, we calculate new equations and obtain 
new predicted values, y2 = 3.672 and y3 = 2.976. At the third iteration we 
obtain y2 = 3.679 and y3 = 2.975. There is very little change in subsequent 
iterations. These values are closer to the actual values, y2 = 3 . 5 and 2/3 — 2.70, 
than the initial regression estimates, y2 = 4.097 and yz = 3.011. They are 
also much better estimates than the means of the second and third columns, 
y2 = 7.589 and y3 = 3.132. D 

3.13 DISTANCE BETWEEN VECTORS 

In a univariate setting, the distance between two points is simply the difference (or 
absolute difference) between their values. For statistical purposes, this difference 
may not be very informative. For example, we do not want to know how many 
centimeters apart two means are, but rather how many standard deviations apart they 
are. Thus we examine the standardized or statistical distances, such as 

\μι -ß2\ o r l y - μ Ι 

To obtain a useful distance measure in a multivariate setting, we must consider 
not only the variances of the variables but also their covanances or correlations. The 
simple (squared) Euclidean distance between two vectors, (yi — y2)'(yi — y2)> is 
not useful in some situations because there is no adjustment for the variances or the 
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covariances. For a statistical distance, we standardize by inserting the inverse of the 
covariance matrix: 

rf2 = ( y i - y 2 ) ' S - 1 ( y i - y 2 ) . (3.79) 

Other examples are 

r>2 = ( y - / * ) ' s _ 1 ( y - M ) (3.80) 
Α2 = (γ-μ)'Σ-1(γ-μ) (3.81) 

Α2 = (μ1-μ2)'Έ-1(μ1-μ2). (3.82) 

These (squared) distances between two vectors were first proposed by Maha-
lanobis (1936) and are often referred to as Mahalanobis distances. If a random 
variable has a larger variance than another, it receives relatively less weight in a Ma-
halanobis distance. Similarly, two highly correlated variables do not contribute as 
much as two variables that are less correlated. In essence, then, the use of the inverse 
of the covariance matrix in a Mahalanobis distance has the effect of (1) standardizing 
all variables to the same variance and (2) eliminating correlations. To illustrate this, 
we use the square root matrix defined in (2.112) to rewrite (3.81) as 

Δ2 = (y - μΥΈ-^γ -μ) = (γ- μ)'{Έ1Ι2Έ1Ι2)-\γ - μ) 

= [ ( Σ 1 / 2 ) - 1 ( γ - μ ) ] ' [ ( Σ 1 / 2 ) - 1 ( γ - μ ) ] = ζ ' ζ , 

where z = (Σ 1 / 2 )~ 1 ( γ - μ) = (Σ1/2)-1:γ - (Σ 1 / 2 ) _ 1 μ- Now, by (3.76) it can be 
shown that 

cov(z) = - I . (3.83) 
n 

Hence the transformed variables z\, z2,..., zp are uncorrelated, and each has vari-
ance equal to 1/n. If the appropriate covariance matrix for the random vector were 
used in a Mahalanobis distance, the variances would reduce to 1. For example, if 
cov(y) = Σ / η were used above in place of Σ , we would obtain cov(z) = I. 

PROBLEMS 

3.1 If Zi = ayi for i = 1, 2 , . . . , n, show that ~z = ay as in (3.3). 

3.2 If Zi = ayi for i = 1, 2 , . . . , n, show that s2 = a2s2 as in (3.6). 

3.3 For the data in Figure 3.3, show that Σ^Χί - x){y% — y)=0. 

3.4 Show that (x - xj)'(y - yj) = Σι(χί " Έ)(νί ~ V)'tnus verifying (3.15). 

3.5 For p = 3 show that 

— 7 yZ(y· - y)(yi -y)' = s^ 
»=1 \ S31 

«11 «12 «13 

S22 S23 

«32 «33 
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which illustrates (3.27). 

3.6 Show that ~z — a 'y as in (3.54), where Zi = a 'y^ i = l,2,...,n. 

3.7 Show that s\ = a 'Sa as in (3.55), where Zi = a'y^, i — 1,2,. . . , n. 

3.8 Show that tr(ASA') = ^ = 1 a^Sa* as in (3.65). 

3.9 Use (3.76) to verify (3.83), cov(z) = I/n, where z = ( S 1 / 2 ) - x ( y - μ). 

3.10 Use the calcium data in Table 3.4: 

(a) Calculate S using the data matrix Y as in (3.29). 

(b) Obtain R by calculating ri2, ri3, and Γ23, as in (3.34) and (3.35). 

(c) Find R using (3.37). 

3.11 Use the calcium data in Table 3.4: 

(a) Find the generalized sample variance |S| as in (3.77). 

(b) Find the total sample variance tr(S) as in (3.78). 

3.12 Use the probe word data of Table 3.6: 

(a) Find the generalized sample variance |S| as in (3.77). 
(b) Find the total sample variance tr(S) as in (3.78). 

For the probe word data in Table 3.6, find R using (3.37). 

For the variables in Table 3.4, define z = 3yi — yi + 2yz = (3, —1,2)y. Find 
~z and s\ in two ways: 

(a) Evaluate z for each row of Table 3.4 and find ~z and s2
z directly from 

ζι,ζ2,...,ζιο using (3.1) and (3.5). 
(b) Use z = a 'y and s\ = a'Sa, as in (3.54) and (3.55). 

For the variables in Table 3.4, define w = —1y\ + 3j/2 + Vz and define z as in 
Problem 3.14. Find rzw in two ways: 

(a) Evaluate z and w for each row of Table 3.4 and find rzw from the 10 
pairs (zi,Wi),i = 1,2,. . . , 10, using (3.10) and (3.13). 

(b) Find rzw using (3.57). 

3.16 For the variables in Table 3.4, find the correlation between y\ and \{y-i + yz) 
using (3.57). 

3.13 

3.14 

3.15 
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Table 3.7 Ramus Bone Length at Four Ages 
for 20 Boys 

Age 
8yr 8 | yr 9 yr 9§ yr 

Individual (y{) (y2) (y3) (2/4) 

1 47.8 48.8 49.0 49.7 
2 46.4 47.3 47.7 48.4 
3 46.3 46.8 47.8 48.5 
4 45.1 45.3 46.1 47.2 
5 47.6 48.5 48.9 49.3 
6 52.5 53.2 53.3 53.7 
7 51.2 53.0 54.3 54.5 
8 49.8 50.0 50.3 52.7 
9 48.1 50.8 52.3 54.4 

10 45.0 47.0 47.3 48.3 
11 51.2 51.4 51.6 51.9 
12 48.5 49.2 53.0 55.5 
13 52.1 52.8 53.7 55.0 
14 48.2 48.9 49.3 49.8 
15 49.6 50.4 51.2 51.8 
16 50.7 51.7 52.7 53.3 
17 47.2 47.7 48.4 49.5 
18 53.3 54.6 55.1 55.3 
19 46.2 47.5 48.1 48.4 
20 46.3 47.6 51.3 51.8 

3.17 Define the following linear combinations for the variables in Table 3.4: 

z\ — 2/i +2/2+2/3 

22 = 2y! - 3y2 + 2t/3 

•Z3 = -2/1 - 22/2 - 32/3 

(a) Find z and Sz using (3.62) and (3.64). 

(b) Find R z from Sz using (3.37). 

3.18 The data in Table 3.7 (Elston and Grizzle 1962) consist of measurements 
2/i 12/27 2/3- a n d 2/4 ° f t n e ramus bone at four different ages on each of 20 boys. 

(a) Find y , S, and R 

(b) Find |S | and tr(S). 

3.19 For the data in Table 3.7, define z = j/i + 2y2 + 2/3 - 3y4 and w = -2yx + 

32/2 - 2/3 + 2y4. 

(a) Find ~z,w, s2
z, and .sj, using (3.54) and (3.55). 
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Table 3.8 Measurements on the First and 
Second Adult Sons in a Sample of 25 Families 

First Son Second Son 
Head Head Head Head 

Length, Breadth, Length, Breadth, 
2/i 

191 
195 
181 
183 
176 
208 
189 
197 
188 
192 
179 
183 
174 
190 
188 
163 
195 
186 
181 
175 
192 
174 
176 
197 
190 

2/2 

155 
149 
148 
153 
144 
157 
150 
159 
152 
150 
158 
147 
150 
159 
151 
137 
155 
153 
145 
140 
154 
143 
139 
167 
163 

Xl 

179 
201 
185 
188 
171 
192 
190 
189 
197 
187 
186 
174 
185 
195 
187 
161 
183 
173 
182 
165 
185 
178 
176 
200 
187 

X2 

145 
152 
149 
149 
142 
152 
149 
152 
159 
151 
148 
147 
152 
157 
158 
130 
158 
148 
146 
137 
152 
147 
143 
158 
150 

(b) Find szw and rzw using (3.56) and (3.57). 

3.20 For the data in Table 3.7 define 

z\ = 2y1 + 3j/2 - 2/3 + 4?/4 
zi = -2j/i - j/2 + 4y3 - 2y4 

Z3 - 3yi - 2y2 - 2/3 + 3?/4 

Find z, Sz, and R2 , using (3.62), (3.64), and (3.37), respectively. 

3.21 The data in Table 3.8 consist of head measurements on first and second sons 
(Frets 1921). Define j/i and yi as the measurements on the first son and x\ 
and X2 for the second son. 
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(a) Find the mean vector for all four variables and partition it into (|) as in 
(3.41). 

(b) Find the covariance matrix for all four variables and partition it into 

yy ^yx 

as in (3.42). 

3.22 Table 3.9 contains data from O'Sullivan and Mahan (1966; see also Andrews 
and Herzberg 1985, p. 214) with measurements of blood glucose levels on 
three occasions for 50 women. The y's represent fasting glucose measure-
ments on the three occasions; the x's are glucose measurements 1 hour after 
sugar intake. Find the mean vector and covariance matrix for all six variables 

and partition them into [ _ 1, as in (3.41), and 

°2/κ Jyx 
^xy ^xx 

as in (3.42). 
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Table 3.9 Blood Glucose Measurements 
on Three Occasions 

Fasting 

2/i 

60 
56 
80 
55 
62 
74 
64 
73 
68 
69 
60 
70 
66 
83 
68 
78 
103 
77 
66 
70 
75 
91 
66 
75 
74 
76 
74 
74 
67 
67 
78 
64 
71 
63 

2/2 

69 
53 
69 
80 
75 
64 
71 
70 
67 
82 
67 
74 
74 
70 
66 
63 
77 
68 
77 
70 
65 
74 
75 
82 
71 
70 
90 
77 
71 
71 
75 
66 
80 
75 

2/3 

62 
84 
76 
90 
68 
70 
66 
64 
75 
74 
61 
78 
78 
74 
90 
75 
77 
74 
68 
72 
71 
93 
73 
76 
66 
64 
86 
80 
69 
69 
80 
71 
76 
73 

One Hour After 
Su; 

X\ 

97 
103 
66 
80 
116 
109 
77 
115 
76 
72 
130 
150 
150 
99 
119 
164 
160 
144 
77 
114 
77 
118 
170 
153 
143 
114 
73 
116 
63 
63 
105 
83 
81 
120 

gar Intake 

X2 

69 
78 
99 
85 
130 
101 
102 
110 
85 
133 
134 
158 
131 
98 
85 
98 
117 
71 
82 
93 
70 
115 
147 
132 
105 
113 
106 
81 
87 
87 
132 
94 
87 
89 

X3 

98 
107 
130 
114 
91 
103 
130 
109 
119 
127 
121 
100 
142 
105 
109 
138 
121 
153 
89 
122 
109 
150 
121 
115 
100 
129 
116 
77 
70 
70 
80 
133 
86 
59 

52 70 76 92 94 100 

Note: Measurements are in mg/100 ml. 



CHAPTER 4 

THE MULTIVARIATE NORMAL 
DISTRIBUTION 

4.1 MULTIVARIATE NORMAL DENSITY FUNCTION 

Many univariate tests and confidence intervals are based on the univariate normal 
distribution. Similarly, the majority of multivariate procedures have the multivariate 
normal distribution as their underpinning. 

The following are some of the useful features of the multivariate normal distri-
bution (see Section 4.2): (1) the distribution can be completely described using only 
means, variances, and covariances; (2) bivariate plots of multivariate data show lin-
ear trends; (3) if the variables are uncorrelated, they are independent; (4) linear func-
tions of multivariate normal variables are also normal; (5) as in the univariate case, 
the convenient form of the density function lends itself to derivation of many prop-
erties and test statistics; and (6) even when the data are not multivariate normal, the 
multivariate normal may serve as a useful approximation, especially in inferences 
involving sample mean vectors, which are approximately multivariate normal by the 
central limit theorem (see Section 4.3.2). 

Since the multivariate normal density is an extension of the univariate normal den-
sity and shares many of its features, we review the univariate normal density function 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 91 
Copyright © 2012 John Wiley & Sons, Inc. 
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Figure 4.1 The normal density curve. 

in Section 4.1.1. We then describe the multivariate normal density in Sections 4.1.2— 
4.1.4. 

4.1.1 Univariate Normal Density 

If a random variable y, with mean μ and variance σ2, is normally distributed, its 
density is given by 

f(y)= J: r-e^y-^l2*2, -oo < y < oo. (4.1) 
\/2πνσζ 

When y has the density (4.1), we say that y is distributed as Ν(μ, σ2), or simply y is 
Ν(μ, σ2). This function is represented by the familiar bell-shaped curve illustrated 
in Figure 4.1 for μ = 10 and σ — 2.5. 

4.1.2 Multivariate Normal Density 

If y has a multivariate normal distribution with mean vector μ and covariance matrix 
Σ, the density is given by 

g(y) = * e-(y-v)"z-x{w)n ( 4 .2) 

where p is the number of variables. When y has the density (4.2), we say that y is 
distributed as Νρ(μ, Σ) , or simply y is Νρ(μ, Σ ) . 
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The term (y — μ)2/σ2 — (y — μ)(σ2)~1 (y — μ) in the exponent of the univariate 
normal density (4.1) measures the squared distance from y to μ in standard deviation 
units. Similarly, the term (y — μ)'Έ~1(γ — μ) in the exponent of the multivariate 
normal density (4.2) is the squared generalized distance from y to μ, or the Maha-
lanobis distance, 

A2 = ( y - M ) ' E _ 1 ( y - M ) · (4-3) 

The characteristics of this distance between y and μ were discussed in Section 3.13. 
Note that Δ, the square root of (4.3), is not in standard deviation units as is (y — μ)/σ. 
The distance Δ increases with p, the number of variables (see Problem 4.4). 

In the coefficient of the exponential function in (4.2), |Σ|1 / / 2 appears as the ana-
logue of v V in (4.1). In the next section, we discuss the effect of |Σ | on the density. 

4.1.3 Generalized Population Variance 

In Section 3.11, we referred to |S| as a generalized sample variance. Analogously, 
|Σ | is a generalized population variance. If σ2 is small in the univariate normal, 
the y values are concentrated near the mean. Similarly, a small value of |Σ | in the 
multivariate case indicates that the y's are concentrated close to μ in p-space or that 
there is multicollinearity among the variables. The term multicollinearity indicates 
that the variables are highly intercorrelated, in which case the effective dimensional-
ity is less than p. (See Chapter 12 for a method of finding a reduced number of new 
dimensions that represent the data.) In the presence of multicollinearity, one or more 
eigenvalues of Σ will be near zero and |Σ | will be small, since |Σ | is the product of 
the eigenvalues [see (2.108)]. 

Figure 4.2 shows, for the bivariate case, a comparison of a distribution with small 
| Σ | and a distribution with larger | Σ |. An alternative way to portray the concentration 
of points in the bivariate normal distribution is with contour plots. Figure 4.3 shows 
contour plots for the two distributions in Figure 4.2. Each ellipse contains a different 
proportion of observation vectors y. The contours in Figure 4.3 can be found by 
setting the density function equal to a constant and solving for y, as illustrated in 
Figure 4.4. The bivariate normal density surface sliced at a constant height traces an 
ellipse, which contains a given proportion of the observations [see Rencher (1998, 
Section 2.1.3)]. 

In both Figures 4.2 and 4.3, small |Σ | appears on the left and large |Σ | appears 
on the right. In Figure 4.3(a), there is a larger correlation between y\ and y2- In 
Figure 4.3(b), the variances are larger (in the natural directions). In general, for 
any number of variables p, a decrease in intercorrelations among the variables or an 
increase in the variances will lead to a larger |Σ | . 

4.1.4 Diversity of Applications of the Multivariate Normal 

Nearly all the inferential procedures we discuss in this book are based on the multi-
variate normal distribution. We acknowledge that a major motivation for the wide-
spread use of the multivariate normal is its mathematical tractability. From the mul-
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Figure 4.2 Bivariate normal densities. 

Figure 4.3 Contour plots for the distributions in Figure 4.2. 

tivariate normal assumption, a host of useful procedures can be derived, and many 
of these are available in software packages. Practical alternatives to the multivariate 
normal are fewer than in the univariate case. Because it is not as simple to order (or 
rank) multivariate observation vectors as it is univariate observations, there are not 
as many nonparametric procedures available for multivariate data. 

Although real data may not often be exactly multivariate normal, the multivariate 
normal will frequently serve as a useful approximation to the true distribution. Tests 
and graphical procedures are available for assessing normality (see Sections 4.4 and 
4.6). Fortunately, many of the procedures based on multivariate normality are robust 
to departures from normality. 

4.2 PROPERTIES OF MULTIVARIATE NORMAL RANDOM VARIABLES 

We list some of the properties of a random pxl vector y from a multivariate normal 
distribution Νρ(μ, Σ) : 

1. Normality of linear combinations of the variables in y 



PROPERTIES OF MULTIVARIATE NORMAL RANDOM VARIABLES 9 5 

Figure 4.4 Constant density contour for bivariate normal. 

a. If a is a vector of constants, the linear function a'y = a\yi + α2ϊ/2 + 
• · · + apyp is univariate normal: 

If y is Νρ(μ, Σ) , then a'y is ΑΓ(β'μ, a 'Sa) . 

The mean and variance of a'y were given previously in (3.69) and (3.70) 
as £J(a'y) = a!μ and var(a'y) = a ' E a for any random vector y. We 
now have the additional attribute that a'y has a (univariate) normal dis-
tribution if y is Νρ(μ, Σ) . 

b. If A is a constant q x p matrix of rank q, where q < p, the q linear 
combinations in Ay have a multivariate normal distribution: 

If y is Νρ{μ, Σ ) , then Ay is Ν^Αμ, Α Σ Α ' ) . 

Here, again, E(Ay) = Αμ and cov(Ay) = Α Σ Α ' , in general, as given 
in (3.73) and (3.74). But we now have the additional feature that the q 
variables in Ay have a multivariate normal distribution. 

2. Standardized variables 

A standardized vector z can be obtained in two ways: 

z = ( T ' ) - 1 ( y - M ) , (4-4) 
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where Σ = T ' T is factored using the Cholesky procedure in Section 2.7, or 

ζ = ( Σ ι / 2 ) - 1 ( γ _ μ ) ; ( 4 - 5 ) 

where Σ 1 ' 2 is the symmetric square root matrix of Σ defined in (2.112) such 
that Σ = Σ 1 / 2 Σ 1 / 2 . In either (4.4) or (4.5), the standardized vector of random 
variables has all means equal to 0, all variances equal to 1, and all correlations 
equal to 0. In either case, it follows from property lb that z is multivariate 
normal: 

If y is Νρ(μ, Σ) , then z is Np(0,I), 

3. Chi-square distribution 

A chi-square random variable with p degrees of freedom is defined as the sum 
of squares of p independent standard normal random variables. Thus if z is the 
standardized vector defined in (4.4) or (4.5), then Y^-i z? = z'z has the χ2-
distribution with p degrees of freedom, denoted as χ2 or χ2(ρ). From either 
(4.4) or (4.5) we obtain z'z = (y - μ)'Έ~1(γ - μ). Hence, 

If y is Νρ(μ, Σ) , then (y - μ ) ' Σ " 1 ( Υ - μ) is χ2. (4.6) 

4. Normality of marginal distributions 

a. Any subset of the y's in y has a multivariate normal distribution, with 
mean vector consisting of the corresponding subvector of μ and covari-
ance matrix composed of the corresponding submatrix of Σ . To illus-
trate, let yi = (j/i, 2/2, · · ·, yr)' denote the subvector containing the first 
r elements of y and y2 = (yr+i, ■ ■ ■, yPY consist of the remaining p — r 
elements. Thus y, μ, and Σ are partitioned as 

*=(£)· "-(£)■ "=(£ £)· 
where y1 and μγ are r x 1 and Σχι is r x r. Then yi is multivariate 
normal: 

If y is Νρ(μ, Σ) , then yi is ΝΓ(μ1,Έη). 

Here, again, E(y\) = μλ and cov(yi) = E n hold for any random 
vector partitioned in this way. But if y is p-variate normal, then yi is 
r-variate normal. 

b. As a special case of the preceding result, each j/j in y has the univariate 
normal distribution: 

If y is Νρ(μ, Σ) , then %· is N(ßj; ajj),j = 1,2,...,p. 

The converse of this is not true. If the density of each yj in y is normal, 
it does not necessarily follow that y is multivariate normal. 
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In the next three properties, let the observation vector be partitioned into two 
subvectors denoted by y and x, where y is p x 1 and x is q x 1. Or, alternatively, let 
x represent some additional variables to be considered along with those in y. Then, 
as in (3.45) and (3.46), 

E 
Vx 

cov 
■lyx 

■ixy 

In properties 5, 6, and 7, we assume that 

is TV, p+q 
ßx Jyy 

■>xy 

■•yx 

5. Independence 

a. The subvectors y and x are independent if Hyx = O. 
b. Two individual variables yj and yk are independent if Ojk = 0. Note 

that this is not true for many nonnormal random variables, as illustrated 
in Section 3.2.1. 

6. Conditional distribution 

If y and x are not independent, then Έυχ φ O, and the conditional distribution 
of y given x, / (y |x ) , is multivariate normal with 

E{y\x) = μν + Σ ^ Σ ^ χ - μχ), 

cov(y|x) = Σ,,„ - Σ„ΤΣΓ^Σ.Τ Jyv ^yx' 

(4.7) 

(4.8) 

Note that 25(yjx) is a vector of linear functions of x, while cov(yjx) does 
not depend on x. The linear trend in (4.7) holds for any pair of variables. 
Thus to use (4.7) as a check on normality, one can examine bivariate scatter-
plots of all pairs of variables and look for any nonlinear trends. In (4.7), we 
have the justification for using the covariance or correlation to measure the 
relationship between two bivariate normal random variables. As noted in Sec-
tion 3.2.1, the covariance and correlation are good measures of relationship 
only for variables with linear trends and are generally unsuitable for nonnor-
mal random variables with a curvilinear relationship. The matrix Σ ! /ΧΣ~Χ in 
(4.7) is called the matrix of regression coefficients because it relates ^ ( y |x) to 
x. The sample counterpart of this matrix appears in (10.57). 

7. Distribution of the sum of two subvectors 

If y and x are the same size (both p x l ) and independent, then 

y + x is Νρ(μυ +μχ,Έυυ + Τ,χχ), 

y - x is Νρ(μ - μχ,Συυ + Σχχ). 

(4.9) 
(4.10) 
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In the remainder of this section, we illustrate property 6 for the special case of the 
bivariate normal. Let 

' y 
u 

X 

have a bivariate normal distribution with 

*(">=(£), ™<„> = Σ = ( £ £ ) . 
By definition f(y\x) — g(y, x)/h{x), where g(y, x) is the joint density of y and x 
and h{x) is the density of x. Hence 

g(y,x) = f(y\x)h(x), 

and because the right side is a product, we seek a function of y and x that is indepen-
dent of x and whose density can serve as f(y\x). Since linear functions of y and x 
are normal by property la, we consider y — ßx and seek the value of ß so that y — ßx 
and x are independent. 

Since z = y — ßx and x are normal and independent, cov(ir, z) — 0. To find 
cov(:r, z), we express x and z as functions of u, 

s = ( 0 , l ) ( j j ) = ( 0 , l ) u = a'u, 

z = y - ßx = (1, -ß)u = b 'u. 

Now 

cov(x, z) = cov(a'u, b 'u) 
= a ' E b [by (3.71)] 

=<»·»( t ϊ )(-i )-<"-*( 4 
= σ ^ - βσχ 

~ ''yxl Since cov(x, z) = 0, we obtain /3 = συχ/σχ and z = y — ßx becomes 

σ 
2 X · 

By property la above, the density of y - (συχ/σχ)χ is normal with 
1 yx \ &yx 

E[y~ ~jtx) = μν ~ ^ μ χ ' 

σΐ 
var( y - ^ψχ ) = var(b'u) = b ' S b 
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For a given value of x, we can express y as y — ßx + (y - ßx), where ßx is a 
fixed quantity corresponding to the given value of x and y—ßxisa random deviation. 
Then f(y\x) is normal, with 

E{y\x) =ßx + E{y - ßx) = ßx + μυ - βμχ 

= μυ + ß(x - μχ) = μυ + -^{x ~ βχ), 

vai(y\x) — σ. 
2 

2 _ ayx 
rr2 ■ 

4.3 ESTIMATION IN THE MULTIVARIATE NORMAL 

4.3.1 Maximum Likelihood Estimation 

When a distribution such as the multivariate normal is assumed to hold for a popula-
tion, estimates of the parameters are often found by the method of maximum likeli-
hood. This technique is conceptually simple: The observation vectors y i , y2, ·· ·, yK 
are considered to be known, and values of μ and Σ are sought that maximize the 
joint density of the y's, called the likelihood function. For the multivariate normal, 
the maximum likelihood estimates of μ and Σ are 

A = y, (4.11) 

i = l 

= iw 
n 

= ^ S , (4.12) 
n 

where W = Σ™=1 (yi — y)(yt — y) ' and S is the sample covariance matrix denned 
in (3.22) and (3.27). Since Σ has divisor n instead of n — 1, it is biased [see (3.33)], 
and we usually use S in place of Σ . 

We now give a justification of y as the maximum likelihood estimator of μ. Be-
cause the yj's constitute a random sample, they are independent, and the joint density 
is the product of the densities of the y's. The likelihood function is, therefore, 

£ ( M , S ; y i , y 2 , . . . , y „ ) = jQ/ (y i ,M, Σ) 

l \ (VfcF)p|E|V2 
-(γί-μ)'Σ-1(γί-μ)/2 

1
 6 - Σ Γ = ι ( γ ί - μ ) ' Σ : " 1 ( Υ ί - μ ) / 2 - ( 4 1 3 ) 

(ν^Γ)ηρ\Έ\η/2 
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To see that μ = y maximizes the likelihood function, we write the exponent of (4.13) 
in terms of y. By adding and subtracting y, the exponent in (4.13) becomes 

1 n 

- ö £ ( y < ~y+y - μ ) ' Σ _ 1 ( ^ - y + y - μ). 

When this is expanded in terms of y, — y and y — μ, two of the four resulting terms 
vanish because X^(yi — y) = 0, and (4.13) becomes 

L = - e~ Σΐ=1(Υ.-ν)'·ε-ι(γι-γ)/2-η(γ-μ)'Σ-1(γ-μ)/2 „ u ) 

(ν/2π)"Ρ|Σ|η/2 

Since Σ 1 is positive definite, we have — n(y — μ ) ' Σ *(y — μ)/2 < 0 and 0 < 
ε-η(γ-μ) Σ (γ-μ)/2 <- ^ w j m m e m a x i m u m occurring when the exponent is 0. 
Therefore, L is maximized when μ = y. 

The maximum likelihood estimator of the population correlation matrix P p [see 
(3.39)] is the sample correlation matrix, that is, 

P p = R. 

Relationships among multinormal variables are linear, as can be seen in (4.7). 
Thus the estimators S and R serve well for the multivariate normal because they 
measure only linear relationships (see Sections 3.2.1 and 4.2). These estimators are 
not as useful for some nonnormal distributions. 

4.3.2 Distribution of y and S 

For the distribution of y = ΣΓ=ι y« / n ' w e c a n distinguish two cases: 

(a) When y is based on a random sample y i , y 2 , . . . , y„ from a multivariate nor-
mal distribution Νρ(μ, Σ) , then y is Νρ(μ, Σ /η ) . 

(b) When y is based on a random sample yi , y 2 , . . . , yn from a nonnormal multi-
variate population with mean vector μ and covariance matrix Σ , then for large 
n, y is approximately Νρ(μ, Σ /η ) . More formally, this result is known as the 
multivariate central limit theorem : If y is the mean vector of a random sample 
y i , y 2 , . . . , y n from a population with mean vector μ and covariance matrix 
Σ , then as n -> oo, the distribution of y/n(y - μ) approaches Np(0, Σ ) . 

There are p variances in S and I 1 covariances, for a total of 

p + ( 2 ) =P + P(P~1)/2 = P(P+1)/2 

distinct entries. The joint distribution of these p(p + l ) /2 distinct variables in W = 
( n - l ) S = 5Dj(yj—y)(yi—y)'isthe Wishart distribution, denoted by Wp(ra—Ι,Σ), 
where n — 1 is the degrees of freedom. 
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The Wishart distribution is the multivariate analogue of the χ2 -distribution, and 
it has similar uses. As noted in property 3 of Section 4.2, a χ2 random variable is 
denned formally as the sum of squares of independent standard normal (univariate) 
random variables: 

Σ ζ ? = Σ(ΚΖΜΐ_ i s χ 2 ( η ) . 
i=\ i = l 

If yis substituted for μ, then Σί(νί~ν)2 / °2 — (n —l)s2/a2 is χ2(η—1). Similarly, 
the formal definition of a Wishart random variable is 

n 

Σ ( Υ * - M)(yi - M)' is Wp(n,E), (4.15) 
i = l 

where yi , y 2 , . . . , y n are independently distributed as Νρ(μ, Σ ) . When y is substi-
tuted for μ, the distribution remains Wishart with one less degree of freedom: 

n 

(n-l)S = Y/(yl-y)(yl-y)' is Ψρ(η-1,Σ). (4.16) 
i = l 

Finally, we note that when sampling from a multivariate normal distribution, y 
and S are independent. 

4.4 ASSESSING MULTIVARIATE NORMALITY 

Many tests and graphical procedures have been suggested for evaluating whether 
a data set likely originated from a multivariate normal population. One possibility 
is to check each variable separately for univariate normality. Excellent reviews for 
both the univariate and multivariate cases have been given by Gnanadesikan (1997, 
pp. 178-220) and Seber (1984, pp. 141-155). We give a representative sample of 
univariate and multivariate methods in Sections 4.4.1 and 4.4.2, respectively. 

4.4.1 Investigating Univariate Normality 

When we have several variables, checking each for univariate normality should not 
be the sole approach, because (1) the variables are correlated and (2) normality of 
the individual variables does not guarantee joint normality. On the other hand, mul-
tivariate normality implies individual normality. Hence, if even one of the separate 
variables is not normal, the vector is not multivariate normal. An initial check on the 
individual variables may therefore be useful. 

A basic graphical approach for checking normality is the Q-Q plot comparing 
quantiles of a sample against the population quantiles of the univariate normal. If the 
points are close to a straight line, there is no indication of departure from normality. 
Deviation from a straight line indicates nonnormality (at least for a large sample). In 
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Figure 4.5 Typical Q-Q plots for nonnormal data. 

fact, the type of nonlinear pattern may reveal the type of departure from normality. 
Some possibilities are illustrated in Figure 4.5. 

Quantiles are similar to the more familiar percentiles, which are expressed in 
terms of percent; a test score at the 90th percentile, for example, is above 90% of the 
test scores and below 10% of them. Quantiles are expressed in terms of fractions or 
proportions. Thus the 90th percentile score becomes the .9 quantile score. 
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The sample quantiles for the Q-Q plot are obtained as follows. First we rank 
the observations y l5 y2, ■ ■ ., yn and denote the ordered values by 3/(1), 2/(2)5 ■ ■ ■, V(n)\ 
thus j/(i) < j/(2) < ■ · ■ < j/(ra). Then the point y^ is the i/n sample quantile. For 
example, if n = 20, y^) is the ^ = .35 quantile, because .35 of the sample is less 
than or equal to y^7y The fraction i/n is often changed to (i — \)/n as a continuity 
correction. If n = 20, (i — | ) / n ranges from .025 to .975 and more evenly covers 
the interval from 0 to 1. With this convention, y^ is designated as the (i — \)/n 
sample quantile. 

The population quantiles for the Q-Q plot are similarly defined corresponding to 
(i — \)/n. If we denote these by ft, «72, · · · , ftz, then ft is the value below which a 
proportion (i — \)/n of the observations in the population lie; that is, (i — \)/n is 
the probability of getting an observation less than or equal to qi. Formally, ft can be 
found for the standard normal random variable y with distribution N(0,1) by solving 

Φ(9ί) = P(y < ft) = A-, (4.17) 
n 

which would require numerical integration or tables of the cumulative standard nor-
mal distribution, Φ(χ). Another benefit of using (i — \)/n instead of i/n is that 
n/n = 1 would make qn = 00. 

The population need not have the same mean and variance as the sample, since 
changes in mean and variance merely change the slope and intercept of the plotted 
line in the Q-Q plot. Therefore, we use the standard normal distribution, and the qi 
values can easily be found from a table of cumulative standard normal probabilities. 
We then plot the pairs (ft, y^) and examine the resulting Q-Q plot for linearity. 

Special graph paper, called normal probability paper, is available that eliminates 
the need to look up the qi values. We need only plot (i — \)/n in place of ft, 
that is, plot the pairs [(i — \)/n, y^)] and look for linearity as before. As an even 
easier alternative, most general -purpose statistical software programs provide normal 
probability plots of the pairs (ft, y^)). 

The Q-Q plots provide a good visual check on normality and are considered 
to be adequate for this purpose by many researchers. For those who desire a more 
objective procedure, several hypothesis tests are available. We give three of these 
that have good properties and are computationally tractable. 

We discuss first a classical approach based on the following measures of skewness 
and kurtosis: 

ν ^ = ^ Σ - ΐ ( ? Λ " ? /
3

2 , (4-18) 

6 2 = η Σ - ι ( " ) 4
2 . (4.19) 

E?=i(w -y)2f 
These are sample estimates of the population skewness and kurtosis parameters y/ß[ 
and /?2, respectively. When the population is normal, \fß[ = 0 and /?2 = 3. If 
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Figure 4.6 A distribution with positive skewness. 

yfß~[ < 0, we have negative skewness; if \fß\ > 0, the skewness is positive. Positive 
skewness is illustrated in Figure 4.6. If 02 < 3, we have negative kurtosis, and if 
/?2 > 3, there is positive kurtosis. A distribution with negative kurtosis is character-
ized by being flatter than the normal distribution, that is, less peaked, with heavier 
flanks and thinner tails. A distribution with positive kurtosis has a higher peak than 
the normal, with an excess of values near the mean and in the tails but with thinner 
flanks. Positive and negative kurtosis are illustrated in Figure 4.7. 

The test of normality can be carried out using the exact percentage points for \fb[ 
in Table A. 1 for 4 < n < 25, as given by MulhoUand (1977). Alternatively, for 
n > 8 the function g as defined by 

g{^b[)=öSm\r1l^-\ (4.20) 

is approximately iV(0,1), where 

Sinti-1 (a;) = ln(x + y/x2 + 1). (4.21) 

Table A.2, from D'Agostino and Pearson (1973), gives values for δ and l /λ . To 
use 62 as a test of normality, we can use Table A.3, from D'Agostino and Tietjen 
(1971), which gives simulated percentiles of 62 for selected values of n in the range 
7 < n < 50. Charts of percentiles of 62 for 20 < n < 200 can be found in 
D'Agostino and Pearson (1973). 
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Figure 4.7 Distributions with positive and negative kurtosis compared to the 
normal. 

Our second test for normality was given by D'Agostino (1971). The observations 
2/i, 3/2, · · ·, J/n are ordered as y(1) < y(2) < · · ■ < V(n),

 a nd w e calculate 

D 
Z7=i[i-k(n+l)]y( 0 

Vn3T^Li(yi-y)2 
(4.22) 

Y 
^ [ D - ( 2 ^ ) " 1 ] 

.02998598 (4.23) 

A table of percentiles for Y, given by D'Agostino (1972) for 10 < n < 250, is 
provided in Table A.4. 

The final test we report is by Lin and Mudholkar (1980). The test statistic is 

\ / \ Λ- r 

z = tanh~ (r) = - In I (4.24) 

where r is the sample correlation of the n pairs (j/j, x{), i = 1,2,. . . , n, with Xi 
defined as 

n — 1 

1/3 

(4.25) 
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If the y's are normal, z is approximately N(Q, 3/n). A more accurate upper 100a 
percentile is given by 

za = ση [ua + ^{uz
a - 3ωα)72„] , (4.26) 

with 

ια = φ- 1 (α) , - I -

f2n = 

3 7.324 53.005 

n n2 n3 

11.70 55.06 

n n^ 

where Φ is the distribution function of the iV(0, 1) distribution; that is, Φ(χ) is the 
probability of an observation less than or equal to x, as in (4.17). The inverse function 
Φ - 1 is essentially a quantile. For example, u.os = —1.645 and w.95 = 1.645. 

4.4.2 Investigating Multivariate Normality 

Checking for multivariate normality is conceptually not as straightforward as assess-
ing univariate normality, and consequently the state of the art is not as well devel-
oped. The complexity of this issue can be illustrated in the context of a goodness-
of-fit test for normality. For a goodness-of-fit test in the univariate case, the range 
covered by a sample yi,V2, ■ ■ ■ ,Vn is divided into several intervals, and we count 
how many y's fall into each interval. These observed frequencies (counts) are com-
pared to the expected frequencies under the assumption that the sample came from 
a normal distribution with the same mean and variance as the sample. If the n ob-
servations y i , y 2 , . . . , y n are multivariate, however, the procedure is not so simple. 
We now have a p-dimensional region that would have to be divided into many more 
subregions than in the univariate case, and the expected frequencies for these subre-
gions would be less easily obtained. With so many subregions, relatively few would 
contain observations. 

Thus because of the inherent "sparseness" of multivariate data, a goodness-of-fit 
test would be impractical. The points yi ,y2, · · · ,yn are more distant from each 
other in p-space than in any one of the p individual dimensions. Unless n is very 
large, a multivariate sample may not provide a very complete picture of the distribu-
tion from which it was taken. 

As a consequence of the sparseness of the data in p-space, the tests for multivariate 
normality may not be very powerful. However, some check on the distribution is 
often desirable. Numerous procedures have been proposed for assessing multivariate 
normality. We now discuss three of these. 

The first procedure is based on the standardized distance from each y^ to y, 

A ? = ( y < - y ) ' s - 1 ( y i - y ) , i = 1,2, · · - , « · (4.27) 

Gnanadesikan and Kettenring (1972) showed that if the y^'s are multivariate normal, 
then 

(n — \y 
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has a beta distribution, which is related to the F. To obtain a Q-Q plot, the values 
U\,U2, ■ ■ ■ ,un are ranked to give u^ < U(2) < · · · < U(n), and we plot (u^,Vi), 
where the quantiles V{ of the beta are given by the solution to 

f fnS^-^1 -̂ 6"1 dx = *~* + ι · ^ 
J0 T(a)T(b) n - a - β + 1 

where a = \p,b = \ (n — p ~ 1), 

p - 2 
α = ^ — , (4.30) 

2p 

2(n — p — 1) 

A nonlinear pattern in the plot would indicate a departure from normality. The quan-
tities of the beta are easily obtained in many software packages. A formal signifi-
cance test is also available for D? ·. = maxi £>?. Table A.6 gives the upper 5% and 
1% critical values for p = 2, 3, 4, 5 from Barnett and Lewis (1978). 

Some writers have suggested that the distribution of Dj in (4.27) can be ade-
quately approximated by a Xp since (y — μ ) ' Σ - 1 (y — μ) is χ^ [see (4.6)]. However, 
in Section 5.3.2, it is shown that this approximation is very poor for even moderate 
values of p. Small (1978) showed that plots of Df vs. χ2 quantiles are misleading. 

The second procedure involves scatterplots in two dimensions. If p is not too high, 
the bivariate plots of each pair of variables are often reduced in size and shown on 
one page, arranged to correspond to the entries in a correlation matrix. In this visual 
matrix, the eye readily picks out those pairs of variables that show a curved trend, 
outliers, or other nonnormal appearance. This plot is illustrated in Example 4.6.2 
in Section 4.6.2. The procedure is based on properties 4 and 6 of Section 4.2, from 
which we infer that (1) each pair of variables has a bivariate normal distribution and 
(2) bivariate normal variables follow a straight-line trend. 

An extension of this method for assessing multivariate normality is the use of 
the grand tour discussed in Section 3.5. In the grand tour, we consider a series 
of random two-dimensional projections of the p-variate data. For the purposes of 
normality assessment, properties 1 and 6 from Section 4.2 imply that each projection 
viewed during the grand tour should exhibit bivariate normality, with no indications 
of nonlinearity in the projected data. Any deviation from elliptical clouds of points 
is an indication of potential nonnormality. 

The third procedure for assessing multivariate normality is a generalization of the 
univariate test based on the skewness and kurtosis measures y/b~i and 62 as given by 
(4.18) and (4.19). The test is due to Mardia (1970). Let y and x be independent and 
identically distributed with mean vector μ and covariance matrix Σ . Then skewness 
and kurtosis for multivariate populations are defined by Mardia as 

/?!,„ = Ε Κ γ - μ / Σ - ^ χ - μ ) ] 3 , (4.32) 
β2,Ρ = Ε[(γ-μΥΈ-1(γ-μ)}2. (4.33) 
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Since third-order central moments for the multivariate normal distribution are zero, 
βι,ρ = 0 when y is Νρ(μ, Σ ) . It can also be shown that if y is Νρ(μ, Σ) , then 

/?2,P=p(p + 2). (4.34) 

To estimate /?iiP and /32,p using a sample y i , y2, · · ·, yP, we first define 

9n = (Yi-y)"z~\yj-y), (4.35) 

where Σ = ^™=1(yi — y)(yi — y )V n 1S m e maximum likelihood estimator (4.12). 
Then estimates of ßltP and /32,P are given by 

1 n n 

1 " 
& 2 ' Ρ = η Σ ^ · (4·37> 

i = l 

Table A.5 (Mardia 1970, 1974) gives percentage points of &IJP and 62,P for p = 
2,3,4, which can be used in testing for multivariate normality. For other values of p 
or when n > 50, the following approximate tests are available. For 6i;P, the statistic 

_ ( p + l ) ( n + l)(n + 3) 
6[(n + l){p+ 1) - 6J 

is approximately χ2 with \p(p+ l){p+2) degrees of freedom. Reject the hypothesis 
of multivariate normality if z\ > χ2

05. With62,p, on the other hand, we wish to reject 
for large values (distribution too peaked) or small values (distribution too flat). For 
the upper 2.5% points of &2,p use 

z2 =
 by~P(P + 2 \ (4.39) 

λ/8ρ(ρ + 2)/η 

which is approximately ^ (0 , 1). For the lower 2.5% points we have two cases: (1) 
when 50 < n < 400, use 

z =
b2,P-P(P + 2)(n + P+l)/n 4 4 Q ) 

3 ^8p(p + 2)/(n-l) ' 

which is approximately Λ (̂0, 1); (2) when n > 400, use z2 as given by (4.39). 

4.5 TRANSFORMATIONS TO NORMALITY 

As noted in Section 4.3.2, the asymptotic distribution of y is normal, regardless 
of the distribution of y. However, there are many scenarios in which we wish to 
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draw inferences about statistics other than the mean, and/or we do not have a large 
enough sample size to appeal to the central limit theorem. For such situations, it 
is often useful to consider transformations of the data that exhibit greater normality 
than the original data. In many cases, transformations will be very natural from a 
phenomenological standpoint. For example, log abundance of bacteria in a replicated 
experiment may not only appear more normal, but will often be a more natural way 
of quantifying the growth process of interest. 

Although our aim here is to find a multivariate transformation <?(·) that makes 
g(y) look as close to p-variate normality as possible, it is often the case that trans-
forming each of the p variables to a marginal normal distribution will yield a mul-
tivariate transformation that is close to optimal. Because univariate transformations 
are much less complicated, we primarily focus on the univariate approach devel-
oped by Box and Cox (1964). We then briefly consider an extension for multivariate 
transformations based on Andrews, Gnanadesikan, and Warner (1971). 

4.5.1 Univariate Transformations to Normality 

When the histogram or normal probability plot for a variable y exhibits skewness, 
a transformation will usually yield a modified distribution that is more normal in 
appearance. For increasingly right-skewed observations, it is useful to use transfor-
mations such as log(y), y^1, y~2, etc. For increasingly left-skewed observations, 
it is useful to use transformations such as y2, yz, y4, etc. One can choose an ap-
propriate transformation "by eye" using the trial-and-error approach of choosing a 
transformation g(-), evaluating the histogram of g(y), and repeating the process until 
the "best" transformation has been obtained. Because this process is neither system-
atic nor objective, Box and Cox (1964) present the family of transformations defined 
by 

( λ ) = f ^ Γ 1 forÄ^O, 
y \ ln(y) for λ = 0. 

The value of λ is chosen by maximizing 

n 

£(X) = -7l\nsl + (X-l)J2ln(yi), (4.42) 
i = l 

where 

1/n^y^-yWf 
i = l 

is the maximum likelihood estimate of the variance of y^ and j/(A) is the sample 
mean of the n transformed observations. Note that although the transformations (y1, 
y2, yz,...) are not substantively different from the Box-Cox transformations (y^\ 
y(2\ y(3\...) defined by (4.41), we use the Box-Cox transformations because the 
criterion to be maximized [£(X)] is continuous in λ, even when λ approaches 0. Thus, 
the Box-Cox transformations allow us to objectively evaluate the comparative utility 
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of any possible transform yW. The optimal λ can be found by explicitly maximizing 
the function in (4.42), but it is more common that £(X) is calculated for a wide range 
of values for λ, and then λ is plotted against £(λ) to find the optimal value. 

4.5.2 Multivariate Transformations to Normality 

An extension of the Box-Cox method for transforming to p-variate normality was 
proposed by Andrews, Gnanadesikan, and Warner (1971). The multivariate approach 
is motivated by the fact that the optimal transformation to p-variate normality is not 
necessarily based on the collection of p transformations obtained when targeting 
marginal normality for each of the p variables. In practice, the collection of univari-
ately transformed variables will often be very close to the optimal p-variate transfor-
mation, but a more precise criterion for transforming to multivariate normality is to 
find the collection of transformations λ = ( λ ι , . . . , λρ) such that the function 

^(λ) = -^1η|8λ | + Σ (λ,·-1)]Γΐη(^) 
t = l 

(4.43) 

is maximized. In (4.43), yij is the ith measurement on the jth variable, S> is the 
maximum likelihood estimate of the covariance matrix for the transformed data with 
its (j, k) element equal to 

i£(„^)_„^W**)-„<^ 
n Μ^-νΓΚν^-νΐΛ 

and y\. **' is the sample mean of the n transformed observations on the fcth variable. 
As in the univariate case in Section 4.5.1, the optimal value for λ can be found by 
explicitly maximizing the function in (4.43), or the value of l(\) can be found for 
every choice of λ within a p-dimensional array of candidate values. 

■ EXAMPLE 4.5.2 

We use the soil richness data in Table 3.3 to illustrate the process of trans-
forming data to appear more normal. The top row of Figure 4.8 illustrates 
distributions for the concentrations of Fe, K, and Mg. Note that Fe appears 
relatively normal, with Mg exhibiting moderate right-skewness and K exhibit-
ing extreme right-skewness. Applying the Box-Cox approach discussed in 
Section 4.5.1, we obtain λ values of 1.0, -0 .3 , and 0.1, respectively. The mid-
dle row of Figure 4.8 shows the plot of £(X) versus λ for each variable. The 
distribution for iron (Fe) concentrations is at the near-optimal transformation 
for appearing normal. Potassium (K) requires a transformation that is more 
extreme than the log transformation, while magnesium (Mg) needs a transfor-
mation that is slightly less extreme than the log transformation. The bottom 
row of Figure 4.8 shows the distributions of the three elements after applying 
the optimal univariate Box-Cox transformation. 
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Figure 4.8 Transforming data from Table 3.3 to near-normality. Top row: histograms for 
concentrations of Fe, K, and Mg. Middle row: plot of λ against l{\) for Fe, K, and Mg. 
Bottom row: histograms for the transformed concentrations of Fe, K, and Mg when using 
λ values of 1.0 (no transformation), —0.3, and 0.1, respectively. 

We apply the multivariate Box-Cox approach discussed in Section 4.5.2 by 
considering an array of values for λ = (λρβ, ^κ, -Wg) such that Xpe e (0.5, 
0 .6 , . . . , 1.5), λ κ e (-0.8, - 0 . 7 , . . . , 0.2), and AMg € (-0.4, - 0 . 3 , . . . , 0.6). 
The value of λ that maximizes l{\) in (4.43) is λ = (1.0, -0.4, 0.2), which 
is predictably similar to the transformation obtained by applying the optimal 
univariate transformation to each of the three variables. D 

4.6 OUTLIERS 

The detection of outliers has been of concern to statisticians and other scientists for 
over a century. Some authors have claimed that the researcher can typically expect 
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up to 10% of the observations to have errors in measurement or recording. Occa-
sional stray observations from a different population than the target population are 
also fairly common. We review some major concepts and suggested procedures for 
univariate outliers in Section 4.6.1 before moving to the multivariate case in Sec-
tion 4.6.2. An alternative to detection of outliers is to use robust estimators of μ and 
Σ (see Rencher 1998, Section 1.10) that are less sensitive to extreme observations 
than are the standard estimators y and S. 

4.6.1 Outliers in Univariate Samples 

Excellent treatments of outliers have been given by Beckman and Cook (1983), 
Hawkins (1980), and Barnett and Lewis (1978). We abstract a few highlights from 
Beckman and Cook. Many techniques have been proposed for detecting outliers in 
the residuals from regression or designed experiments, but we will be concerned only 
with simple random samples from the normal distribution. 

There are two principal approaches for dealing with outliers. The first is identifi-
cation, which usually involves deletion of the outlier(s) but may also provide impor-
tant information about the model or the data. The second method is accommodation, 
in which the method of analysis or the model is modified. Robust methods, in which 
the influence of outliers is reduced, provide an example of modification of the anal-
ysis. An example of a correction to the model is a mixture model that combines two 
normals with different variances. For example, Marks and Rao (1978) accommo-
dated a particular type of outlier by a mixture of two normal distributions. 

In small or moderate-sized univariate samples, visual methods of identifying out-
liers are the most frequently used. Tests are also available if a less subjective ap-
proach is desired. 

Two types of slippage models have been proposed to account for outliers. Under 
the mean slippage model, all observations have the same variance, but one or more of 
the observations arise from a distribution with a different (population) mean. In the 
variance slippage model, one or more of the observations arise from a model with 
larger (population) variance but the same mean. Thus in the mean slippage model, 
the bulk of the observations arise from Ν(μ, σ2), whereas the outliers originate from 
Ν(μ + θ, σ2). For the variance slippage model, the main distribution would again 
be Ν(μ, σ2), with the outliers coming from Ν(μ, ασ2) where a > 1. These models 
have led to the development of tests for rejection of outliers. We now briefly discuss 
some of these tests. 

For a single outlier in a sample j/i, j / 2 , ■ · ·, Vn, most tests are based on the maxi-
mum studentized residual, 

max Ti 
Vi-y (4.44) 

If the largest or smallest observation is rejected, one could then examine the n — 1 
remaining observations for another possible outlier, and so on. This procedure is 
called a consecutive test. However, if there are two or more outliers, the less extreme 
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ones will often make it difficult to detect the most extreme one, due to inflation of 
both mean and variance. This effect is called masking. 

Ferguson (1961) showed that the maximum studentized residual (4.44) is more 
powerful than most other techniques for detecting intermediate or large shifts in the 
mean and gave the following guidelines for small shifts: 

1. For outliers with small positive shifts in the mean, tests based on sample skew-
ness are best. 

2. For outliers with small shifts in the mean in either direction, tests based on the 
sample kurtosis are best. 

3. For outliers with small positive shifts in the variance, tests based on the sample 
kurtosis are best. 

Because of the masking problem in consecutive tests, block tests have been pro-
posed for simultaneous rejection of k > 1 outliers. These tests work well if k is 
known, but in practice, k is usually not known. If the value we conjecture for k is 
too small, we incur the risk of failing to detect any outliers because of masking. If 
we set k too large, there is a high risk of rejecting more outliers than there really are, 
an effect known as swamping. 

4.6.2 Outliers in Multivariate Samples 

In the case of multivariate data, the problems in detecting outliers are intensified for 
several reasons: 

1. For p > 2 the data cannot be readily plotted to pinpoint the outliers. 

2. Multivariate data cannot be ordered as can a univariate sample, where extremes 
show up readily on either end. 

3. An observation vector may have a large recording error in one of its compo-
nents or smaller errors in several components. 

4. A multivariate outlier may reflect slippage in mean, variance, or correlation. 
This is illustrated in Figure 4.9. Observation 1 causes a small shift in means 
and variances of both y\ and y2 but has little effect on the correlation. Obser-
vation 2 has little effect on means and variances, but it reduces the correlation 
somewhat. Observation 3 has a major effect on means, variances, and correla-
tion. 

One approach to multivariate outlier identification or accommodation is to use 
robust methods of estimation. Such methods minimize the influence of outliers in 
estimation or model fitting. However, an outlier sometimes furnishes valuable infor-
mation, and the specific pursuit of outliers can be very worthwhile. 

We present two methods of multivariate outlier identification, both of which are 
related to methods of assessing multivariate normality. (A third approach based 
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Figure 4.9 Bivariate sample showing three types of outliers. 

on principal components is given in Section 12.4.) The first method, due to Wilks 
(1963), is designed for detection of a single outlier. Wilks' statistic is 

„.„,ηΙίρΜ^ (4.45, 
i \{n— 1)S| 

where S is the usual sample covariance matrix and S_; is obtained from the same 
sample with the ith observation deleted. The statistic w can also be expressed in 
terms of Dfn) = max^y, - y) /S~1(y i - y) as 

nDM 
(n — 1)^ 

thus basing a test for an outlier on the distances D\ used in Section 4.4.2 in a graphi-
cal procedure for checking multivariate normality. Table A.6 gives the upper 5% and 
1% critical values for D?n■, from Barnett and Lewis (1978). 

Yang and Lee (1987) provide an F-test of w as given by (4.46). Define 

i = l , 2 , . . . , n . (4.47) 
P 1 - nD2J{n - l)2 

Then the Fi's are independently and identically distributed as FP )„_p_i, and a test 
can be constructed in terms of max» Ff. 

p(maxFi > / ) = ! - P(aU F4 < / ) = 1 - [P(F < / ) ] " . 
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Therefore, the test can be carried out using an F-table. Note that 

71 — D— 1 / 1 \ 
maxFi = F ( n ) = ^ " - 1 > (4·48) 

i p \W } 
where w is given in (4.46). 

The second test we discuss is designed for detection of several outliers. Schwager 
and Margolin (1982) showed that the locally best invariant test for mean slippage is 
based on Mardia's (1970) sample kurtosis &2,p as defined by (4.35) and (4.37). To 
be more specific, among all tests invariant to a class of transformations of the type 
z = Ay + b, where A is nonsingular (see Problem 4.8), the test using 62>P is most 
powerful for small shifts in the mean vector. This result holds if the proportion of 
outliers is no more than 21.13%. With some restrictions on the pattern of the outliers, 
the permissible fraction of outliers can go as high as 331%. The hypothesis is H0: 
no outliers are present. This hypothesis is rejected for large values of &2,p-

A table of critical values of &2,P and some approximate tests were described in 
Section 4.4.2 following (4.37). Thus the test doubles as a check for multivariate 
normality and for the presence of outliers. One advantage of this test for outliers is 
that we do not have to specify the number of outliers and run the attendant risk of 
masking or swamping. Schwager and Margolin (1982) pointed out that this feature 
"increases the importance of performing an overall test that is sensitive to a broad 
range of outlier configurations. There is also empirical evidence that the kurtosis test 
performs well in situations of practical interest when compared with other inferential 
outlier procedures." 

Sinha (1984) extended the result of Schwager and Margolin to cover the general 
case of elliptically symmetric distributions. An elliptically symmetric distribution 
is one in which / (y ) = |E|_1/2(7[(y — μ)'Έ^1(γ — //)]. By varying the function 
g, distributions with shorter or longer tails than the normal can be obtained. The 
critical value of &2,p must be adjusted to correspond to the distribution, but rejection 
for large values would be a locally best invariant test. 

■ EXAMPLE 4.6.2 

We use the ramus bone data set of Table 3.7 to illustrate a search for multivari-
ate outliers, while at the same time checking for multivariate normality. An 
examination of each column of Table 3.7 does not reveal any apparent univari-
ate outliers. To check for multivariate outliers, we first calculate Df in (4.27) 
for each observation vector. The results are given in Table 4.1. We see that D | , 
D\2, and £>2o s e e m t 0 stand out as possible outliers. In Table A.6, the upper 
5% critical value for the maximum value, D%Qy is given as 11.63. In our case, 
the largest Df is Dg = 11.03, which does not exceed the critical value. This 
does not surprise us, since the test was designed to detect a single outlier, and 
we may have as many as three. 

We compute u, and Vi in (4.28) and (4.29) and plot them in Figure 4.10. 
The figure shows a departure from linearity due to three values and possibly a 
fourth. 
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Table 4.1 Values of D? for the Ramus Bone Data in Table 3.7 

Observation 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

m 
0.7588 
1.2980 
1.7591 
3.8539 
0.8706 
2.8106 
4.2915 
7.9897 

11.0301 
5.3519 

Observation 
Number 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

m 
2.8301 

10.5718 
2.5941 
0.6594 
0.3246 
0.8321 
1.1083 
4.3633 
2.1088 

10.0931 

Figure 4.10 Q-Q plot of m and Vi for the ramus bone data of Table 3.7. 

We next calculate &iiP and b2,p as given by (4.36) and (4.37): 

&I,P = 11.338, b2,p = 28.884. 

In Table A.5, the upper .01 critical value for bitP is 9.9; the upper .005 critical 
value for 62,P is 27.1. Thus both bitP and 62)P exceed their critical values, 
and we have significant skewness and kurtosis, apparently caused by the three 
observations with large values of Dj. 
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Figure 4.11 Scatterplots for the ramus bone data in Table 3.7, with density curves for 
each variable. 

The bivariate scatterplots are given in Figure 4.11. Three values are clearly 
separate from the other observations in the plot of y\ versus y±. In Table 3.7, 
the 9th, 12th, and 20th values of i/4 are not unusual, nor are the 9th, 12th, 
and 20th values of y\. However, the increase from y\ to y^ is exceptional in 
each case. If these values are not due to errors in recording the data and if this 
sample is representative, then we appear to have a mixture of two populations. 
This should be taken into account in making inferences. D 

PROBLEMS 

4.1 Consider the two covariance matrices 
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Show that |Σ 2 | > |ΣΧ | and that tr(E2) < tr(Ei). Thus the generalized 
variance of population 2 is greater than the generalized variance of population 
1, even though the total variance is less. Comment on why this is true in terms 
of the variances and correlations. 

4.2 For z = (T ' )^ 1 (y - μ) in (4.4), show that E(z) = 0 and cov(z) = I. 

4.3 Show that the form of the likelihood function in (4.13) follows from the previ-
ous expression. 

4.4 For (y - μ)'Έ~1(γ - μ) in (4.3) and (4.6), show that E[(y - /x ) 'E - 1 (y -
μ)] = p. Assume E(y) — μ and cov(y) — Σ. Normality is not required. 

4.5 Show that by adding and subtracting y, the exponent of (4.13) has the form 
given in (4.14), that is, 

1 n 

2 Σ ( * - y + y - /*)'s_1(yi - y + y - /*) 

= jE(y l-y)'s-1(y l-y) + f(y-^)'s-1(y-M). 
1 = 1 

4.6 Show that \/b[ and b2, as given in (4.18) and (4.19), are invariant to the trans-
formation zi = ayi + b. 

4.7 Show that if y is Νρ(μ, Σ) , then β2<ρ = p(p + 2) as in (4.34). 

4.8 Show that i>ljP and b2,p, as given by (4.36) and (4.37), are invariant under the 
transformation Zj = Ay^ + b, where A is nonsingular. Thus b\iP and 62iP do 
not depend on the units of measurement. 

4.9 Show that F(n) = [(n-p- l)/p]{l/w - 1) as in (4.48). 

4.10 Suppose y is Ν3(μ, Σ) , where 

"-(l)· E = ( - H ! ) · 
(a) Find the distribution of z = 2y\ — y2 + 3y3· 
(b) Find the joint distribution of z\ = yi+y2 + 2/3 and z2 = y\ — y2 + 2y3. 
(c) Find the distribution of y2. 

(d) Find the joint distribution of y\ and y%. 

(e) Find the joint distribution of y\, 2/3, and |(j/i +y2). 

4.11 Suppose y is Ν3(μ, Σ) , with μ and Σ given in Problem 4.10. 
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(a) Find a vector z such that z = (T ' ) _ 1 (y - μ) is N3(0,I) as in (4.4). 
(b) Find a vector z such that z = (S1/2)™1(y - μ) is iV3(0,1) as in (4.5). 
(c) What is the distribution of (y - μ ) ' Σ - 1 ^ - μ)? 

4.12 Suppose y is-Λ/4(μ,Σ), where 

/ - 2 \ / 11 - 8 3 9 \ 
3 - 8 9 - 3 - 6 

M ~ - l ' 3 - 3 2 3 " 
\ 5 / \ 9 - 6 3 9 / 

(a) Find the distribution of z = Ayx — 2y2 + y3 — 3ΐ/4. 
(b) Find the joint distribution of z\ = yx + y2 + y3 + 2/4 and z2 — — 2yx + 

3y2 + yz - 2y4-
(c) Find the joint distribution of z\ = 3yi + yi — 4j/3 — j / 4 , z-i = —y\ — 

3j/2 + 2/3 ~ 2y4, and z3 = 2yx + 2y2 + 4y3 - 5y4· 
(d) What is the distribution of 2/3? 
(e) What is the joint distribution of y2 and y4? 
(f) Find the joint distribution of yx, \ (\)X + 2/2), 5 (2/1 + 2/2 + 2/3), and \(y x + 

2/2 + 2/3 + 2/4)-

4.13 Suppose y is Ν^{μ, Σ) with μ and Σ given in Problem 4.12. 

(a) Find a vector z such that z = (T ' ) _ 1 (y - /■*)is N4(0,1) as in (4.4). 
(b) Find a vector z such that z = ( Σ 1 / 2 ) - 1 ^ - μ) is 7V4(0,1) as in (4.5). 
(c) What is the distribution of (y - μ ) ' Σ _ 1 (y - μ)? 

4.14 Suppose y is Ν3(μ, Σ) , with 

4 - 3 0 \ 
- 3 6 0 . 

0 0 5 / 

Which of the following random variables are independent? 

(a)yiandy2 (d) (yx, y2) and y3 

(b) j/i and y3 (e) (yx, y3) and y2 

(c) y2 and y3 

4.15 Suppose y is Ν4(μ, Σ) , with 

/ - 4 \ 
2 

μ = 5 
V - i / 

μ 

/ 8 
0 

- 1 
V o 

0 
3 
0 
2 

- 1 0 \ 
0 2 
5 0 
0 7 / 
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Which of the following random variables are independent? 

(a) ?/i and y2 

(b) J/J and y3 

(c) y1 and y4 

(d) y2 and y3 

(e) j/2 and y4 

(f) y3andy4 

(g) (2/1,2/2) and j / 3 

(h) (2/1,2/2) and j / 4 

(i) (2/1,2/3) and j/4 
(j) 2/1 and (2/2,2/4) 

(k) 2/1 and y2 and 2/3 
(1) 2/1 and 2/2 and 2/4 

(m) (2/2,2/2) and (2/3,2/4) 
(n) (2/1,2/3) and (2/2,2/4) 

4.16 Assume y and x are subvectors, each 2 x 1 , where [ I is Ν4(μ, Σ) with 

/ 2 \ 
- 1 

μ 
3 

V W 

/ 7 3 
3 6 

- 3 0 
V 2 4 

- 3 
0 
5 

- 2 

2 \ 
4 

- 2 
4 / 

(a) Find £(y |x) by (4.7). 
(b) Find cov(y|x) by (4.8). 

4.17 Suppose y and x are subvectors, such that y is 2 x 1 and x is 3 x 1, with μ 
and Σ partitioned accordingly: 

/ 3 \ 
- 2 

μ 4 
- 3 

\ 5 / 

( u 

- 8 
15 
0 

\ 3 

- 8 
18 
8 
6 

- 2 

15 0 
8 6 

50 8 
8 4 
5 0 

3 \ 
- 2 

5 
0 
1 / 

Assume that! I is distributed as Ν5(μ, Σ) . 

(a) Find E(y\x) by (4.7). 
(b) Find cov(y|x) by (4.8). 

4.18 Suppose that y i , y2,. · ■, y n is a random sample from a nonnormal multivari-
ate population with mean μ and covariance matrix Σ . If n is large, what is the 
approximate distribution of each of the following? 

(a) y/n(y - μ) 

(b) y 
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4.19 For the ramus bone data treated in Example 4.6.2, check each of the four vari-
ables for univariate normality using the following techniques: 

(a) Q-Q plots 
(b) y/bi and b2 as given by (4.18) and (4.19) 
(c) D'Agostino's test using D and Y given in (4.22) and (4.23) 
(d) The test by Lin and Mudholkar using z defined in (4.24) 

4.20 For the calcium data in Table 3.4, check for multivariate normality and outliers 
using the following tests: 

(a) Calculate Df as in (4.27) for each observation. 
(b) Compare the largest value of Df with the critical value in Table A.6. 
(c) Compute Ui and vi in (4.28) and (4.29) and plot them. Is there an indi-

cation of nonlinearity or outliers? 
(d) Calculate b\tP and b2,p in (4.36) and (4.37) and compare them with criti-

cal values in Table A.5. 

4.21 For the probe word data in Table 3.6, check each of the five variables for 
univariate normality and outliers using the following tests: 

(a) Q-Q plots 
(b) s/b{ and b2 as given by (4.18) and (4.19) 
(c) D'Agostino's test using D and Y given in (4.22) and (4.23) 
(d) The test by Lin and Mudholkar using z defined in (4.24) 

4.22 For the probe word data in Table 3.6, check for multivariate normality and 
outliers using the following tests: 

(a) Calculate Df as in (4.27) for each observation. 
(b) Compare the largest value of Df with the critical value in Table A.6. 
(c) Compute Ui and v^ in (4.28) and (4.29) and plot them. Is there an indi-

cation of nonlinearity or outliers? 
(d) Calculate &iiP and 62,P in (4.36) and (4.37) and compare them with criti-

cal values in Table A.5. 

4.23 Six hematology variables were measured on 51 workers (Royston 1983): 

2/i = hemoglobin concentration 2/4 = lymphocyte count 
y2 = packed cell volume 2/5 = neutrophil count 
3/3 = white blood cell count y$ ~ serum lead concentration 
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Table 4.2 Hematology Data 

Observation 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

yi 

13.4 
14.6 
13.5 
15.0 
14.6 
14.0 
16.4 
14.8 
15.2 
15.5 
15.2 
16.9 
14.8 
16.2 
14.7 
14.7 
16.5 
15.4 
15.1 
14.2 
15.9 
16.0 
17.4 
14.3 
14.8 
14.9 
15.5 
14.5 
14.4 
14.6 
15.3 

2/2 

39 
46 
42 
46 
44 
44 
49 
44 
46 
48 
47 
50 
44 
45 
43 
42 
45 
45 
45 
46 
46 
47 
50 
43 
44 
43 
45 
43 
45 
44 
45 

2/3 

4100 
5000 
4500 
4600 
5100 
4900 
4300 
4400 
4100 
8400 
5600 
5100 
4700 
5600 
4000 
3400 
5400 
6900 
4600 
4200 
5200 
4700 
8600 
5500 
4200 
4300 
5200 
3900 
6000 
4700 
7900 

2/4 

14 
15 
19 
23 
17 
20 
21 
16 
27 
34 
26 
28 
24 
26 
23 
9 
18 
28 
17 
14 
8 
25 
37 
20 
15 
9 
16 
18 
17 
23 
43 

2/5 

25 
30 
21 
16 
31 
24 
17 
26 
13 
42 
27 
17 
20 
25 
13 
22 
32 
36 
29 
25 
34 
14 
39 
31 
24 
32 
30 
18 
37 
21 
23 

2/6 

17 
20 
18 
18 
19 
19 
18 
29 
27 
36 
22 
23 
23 
19 
17 
13 
17 
24 
17 
28 
16 
18 
17 
19 
29 
17 
20 
25 
23 
27 
23 

14.7 44 7800 38 34 16 

The data are given in Table 4.2. Check each of the six variables for univanate 
normality using the following tests: 

(a) Q-Q plots 
(b) y/b[ and b2 as given by (4.18) and (4.19) 
(c) D'Agostino's test using D and Y given in (4.22) and (4.23) 
(d) The test by Lin and Mudholkar using z defined in (4.24) 
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4.24 For the hematology data in Table 4.2, check for multivariate normality using 
the following techniques: 

(a) Calculate Df as in (4.27) for each observation. 
(b) Compare the largest value of Df with the critical value in Table A.6 

(extrapolate). 
(c) Compute m and Vi in (4.28) and (4.29) and plot them. Is there an indi-

cation of nonlinearity or outliers? 
(d) Calculate 6 l jP and b2,p in (4.36) and (4.37) and compare them with criti-

cal values in Table A.5. 

4.25 Use the glucose data in Table 3.9. 

(a) Use the methods in Section 4.5.1 to find the optimal univariate transfor-
mation to normality for each of the glucose measurements obtained one 
hour after sugar intake (χχ, x2, and X3). 

(b) Use the methods in Section 4.5.2 to find the optimal multivariate trans-
formation to 3-variate normality for the glucose measurements obtained 
one hour after sugar intake (χχ, x2, and x$). 

(c) How do the transformations obtained from the two approaches compare? 

4.26 Use the Baker corn field data in Table 3.3. 

(a) Use the methods in Section 4.5.1 to find the optimal univariate transfor-
mation to normality for the B, Ca, and Cu measurements. 

(b) Use the methods in Section 4.5.2 to find the optimal multivariate trans-
formation to 3-variate normality for the B, Ca, and Cu measurements. 

(c) How do the transformations obtained from the two approaches compare? 



CHAPTER 5 

TESTS ON ONE OR TWO MEAN 
VECTORS 

5.1 MULTIVARIATE VERSUS UNIVARIATE TESTS 

Hypothesis testing in a multivariate context is more complex than in a univariate 
setting. The number of parameters may be staggering. The p-variate normal dis-
tribution, for example, has p means, p variances, and (ζ) covariances, where (ζ) 
represents the number of pairs among the p variables. The total number of parame-
ters is 

p + p + ( 2 ) = 2p(p + 3^ 

Forp =10 , for example, the number of parameters is 65, for each of which a hypoth-
esis could be formulated. Additionally, we might be interested in testing hypotheses 
about subsets of these parameters or about functions of them. In some cases, we have 
the added dilemma of choosing among competing test statistics (see Chapter 6). 

We first discuss the motivation for testing p variables multivariately rather than 
(or in addition to) univariately, as for example, in hypotheses about μι,β2,. ■ ■ ,μρ 

in μ. There are at least four arguments for a multivariate approach to hypothesis 
testing: 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 125 
Copyright © 2012 John Wiley & Sons, Inc. 
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1. The use of p univariate tests inflates the Type I error rate, a, whereas the 
multivariate test preserves the exact a level. For example, if we do p = 10 
separate univariate tests at the .05 level, the probability of at least one false 
rejection is greater than .05. If the variables were independent (they rarely 
are), we would have (under Ho) 

P(at least one rejection) = 1 — P(all 10 tests accept Ho) 

= 1 - (.95)10 = .40. 

The resulting overall a of .40 is not an acceptable error rate. Typically, the 10 
variables are correlated, and the overall a would lie somewhere between .05 
and .40. 

2. The univariate tests completely ignore the correlations among the variables, 
whereas the multivariate tests make direct use of the correlations. 

3. The multivariate test is more powerful in many cases. The power of a test is 
the probability of rejecting HQ when it is false. In some cases, all p of the 
univariate tests fail to reach significance, but the multivariate test is significant 
because small effects on some of the variables combine to jointly indicate 
significance. However, for a given sample size, there is a limit to the number of 
variables a multivariate test can handle without losing power. This is discussed 
further in Section 5.3.2. 

4. Many multivariate tests involving means have as a by-product the construction 
of a linear combination of variables that reveals more about how the variables 
unite to reject the hypothesis. 

5.2 TESTS ON μ WITH Σ KNOWN 

The test on a mean vector assuming a known Σ is introduced to illustrate the issues 
involved in multivariate testing and to serve as a foundation for the unknown Σ case. 
We first review the univariate case, in which we work with a single variable y that is 
distributed as Ν(μ, σ2). 

5.2.1 Review of Univariate Test for H0: μ = μ0 with σ Known 

The hypothesis of interest is that the mean of y is equal to a given value, μο. versus 
the alternative that it is not equal to μ0: 

Ho ■ μ = μο vs. Hx: μ φ μ0. 

We do not consider one-sided alternative hypotheses because they do not readily 
generalize to multivariate tests. We assume a random sample of n observations 
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2/ι,2/2,· ·· ,2/η from Ν(μ,σ2) with σ2 known. We calculate y = E™=1yj/n and 
compare it to μο using the test statistic 

y - μο y- μο 
σ-, y σ 

(5.1) 

which is distributed as N(0,1) if i/o i s t r u e · F° r a = .05, we reject i/o if\z\ > 1.96. 
Equivalently, we can use z2, which is distributed as χ2 with one degree of freedom, 
and reject i/o if z2 > (1.96)2 = 3.84. If n is large, we are assured by the central 
limit theorem that z is approximately normal, even if the observations are not from a 
normal distribution. 

5.2.2 Multivariate Test for H0: μ = μ 0 with Σ Known 

In the multivariate case we have several variables measured on each sampling unit, 
and we wish to hypothesize a value for the mean of each variable, Ho: μ = μ0 vs. 
Hi: μ φ μ0. More explicitly, we have 

H0: 

( μι \ 
M2 

= 

/ Moi \ 
M02 

, Hi: 

( μι \ 
μ2 

Φ 

( Moi \ 
M02 

\th I \ μοΡ J \ μΡ ) \ μοΡ J 

where each μοί is specified from previous experience or is a target value. The vector 
equality in HQ implies ßj = μoj for all j = 1,2,... ,p. The vector inequality in Hi 
implies at least one ßj φ ß0j ■ Thus, for example, if ßj = ßoj for all j except 2, for 
which β2 φ μο2> then we wish to reject i/o· 

To test i/o, we use a random sample of n observation vectors y i , y2, ...,yn from 
Νρ(μ, Σ) , with Σ known, and calculate y = Σ™=ιΥϊ/η. The test statistic is 

Ζ2=η(γ-μ0)'Έ-1(γ-μ0). (5.2) 

72 : is distributed as χ2 by (4.6), and we therefore reject i/o if Z > 
2 

If i/o is true, Z2 

χ2
α . Note that for one variable, z2 [the square of (5.1)] has a chi-square distribution 

with one degree of freedom, whereas for p variables, Z2 in (5.2) is distributed as a 
chi-square with p degrees of freedom. 

If Σ is unknown, we could use S in its place in (5.2), and Z2 would have an 
approximate ^-distribution. But n would have to be larger than in the analogous 
univariate situation, in which t = (y — ßo)/(s/y/n) is approximately iV(0,1) for 
n > 30. The value of n needed for n(y — μ 0 ) ' 8 _ 1 (y — μ0) to have an approximate 
X2-distribution depends on p. This is clarified further in Section 5.3.2. 

EXAMPLE 5.2.2 

In Table 3.1, height and weight were given for a sample of 20 college-age 
males. Let us assume that this sample originated from the bivariate normal 
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Figure 5.1 Elliptical acceptance region. 

Ν2(μ, Σ) , where 
/ 20 100 \ 
V 100 1000 ) ' 

Suppose we wish to test H0: μ = (70,170)'. From Example 3.2.1, y1 

71.45 and y2 = 164.7. We thus have 

Ζ2 = η(γ-μ0)'Έ-1(γ-μ0 

= (20) 
71 .45-70 Y / 20 100 \ 1 / 71 .45-70 
164.7 - 170 y \̂  100 1000 ) \ 164.7 - 170 

= (20)(1.45,-5.3)(_0J 7 0 S ) ( - 5 1 ) = 8 · 4 0 2 6 · 

Using a = .05, χ2
05<2 = 5.99, and we therefore reject H0: μ = (70,170)' 

because Z2 = 8.4026 > 5.99. 
The rejection region for y = ( y i , ^ ) ' ' s o n o r outside the ellipse in Fig-

ure 5.1; that is, the test statistic Z2 is greater than 5.99 if and only if y is 
outside the ellipse. If y falls inside the ellipse, Ho is accepted. Thus distance 
from μ0 as well as direction must be taken into account. When the distance 
is standardized by Σ - 1 , all points on the curve are "statistically equidistant" 
from the center. 

Note that the test is sensitive to the covariance structure. If cov(yi, yi) were 
negative, y2 would tend to decrease as y\ increases, and the ellipse would be 
tilted in the other direction. In this case, y would be in the acceptance region. 
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Figure 5.2 Acceptance and rejection regions for univariate and multivariate tests. 

Let us now investigate the consequence of testing each variable separately. 
Using za/2 = 1.96 for a — .05, we have 

Zl = Έΐ^β = 1.450 < 1.96, 

z2 = y'2 μ^ = -.7495 > -1.96. 

Thus both tests accept the hypothesis. In this case neither of the y's is far 
enough from the hypothesized value to cause rejection. But when the positive 
correlation between yi and y2 is taken into account in the multivariate test, the 
two evidences against μ0 combine to cause rejection. This illustrates the third 
advantage of multivariate tests given in Section 5.1. 

Figure 5.2 shows the rectangular acceptance region for the univariate tests 
superimposed on the elliptical multivariate acceptance region. The rectangle 
was obtained by calculating the two acceptance regions 

μοι - 1-96-^= < y1 < μ0ι + 1.96-^=, 

C"2 _ σ2 

μ02 - 1.96—p= < y2 < μο2 + 1.96-^=. 

Points inside the ellipse but outside the rectangle will be rejected in at least 
one univariate dimension but will be accepted multivariately. This illustrates 
the inflation of a resulting from univariate tests, as discussed in the first motive 
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for multivariate testing in Section 5.1. This phenomenon has been referred to 
as Rao's paradox. For further discussion see Rao (1966), Healy (1969), and 
Morrison (1990, p. 174). Points outside the ellipse but inside the rectangle will 
be rejected multivariately but accepted univariately in both dimensions. This 
illustrates the third reason for multivariate testing given in Section 5.1, namely, 
that the multivariate test is more powerful in some situations. 

Thus in either case represented by the shaded areas, we should use the mul-
tivariate test result, not the univariate results. In the one case, the multivariate 
test is more powerful than the univariate tests; in the other case, the multi-
variate test preserves a whereas the univariate tests inflate a. Consequently, 
when the multivariate and univariate results disagree, our tendency is to trust 
the multivariate result. In Section 5.5, we discuss various procedures for as-
certaining the contribution of the individual variables after the multivariate test 
has rejected the hypothesis. D 

5.3 TESTS ON μ WHEN Σ IS UNKNOWN 

In Section 5.2, we said little about properties of the tests, because the tests discussed 
were of slight practical consequence because of the assumption that Σ is known. 
We will be more concerned with test properties in Sections 5.3 and 5.4, first in the 
one-sample case and then in the two-sample case. The reader may wonder why we 
include one-sample tests, since we seldom, if ever, have need of a test for HQ\ μ = 
μ0. However, we will cover this case for two reasons: 

1. Many general principles are more easily illustrated in the one-sample frame-
work than in the two-sample case. 

2. Some very useful tests can be cast in the one-sample framework. Two ex-
amples are (1) H0: μά = 0 used in the paired comparison test covered in 
Section 5.7 and (2) H0: Ομ = 0 used in profile analysis in Section 5.9, in 
analysis of repeated measures in Section 6.9, and in growth curves in Sec-
tion 6.10. 

5.3.1 Review of Univariate t-Test for H0: μ = μ0 with σ Unknown 

We first review the familiar one-sample ί-test in the univariate case, with only one 
variable measured on each sampling unit. We assume that a random sample yi, j/2, 
... ,yn is available from Ν(μ, σ2). We estimate μ by y and σ2 by s2, where y and 
s2 are given by (3.1) and (3.4). To test H0: μ = μο vs. Ηχ: μ φ μ0, we use 

ί=ν-μο = φϊ(ν-μ0) ( 5 3 ) 

s/y/n s 

If H0 is true, t is distributed as i n _i , where n — 1 is the degrees of freedom. We 
reject H0 if \y/n(y — Mo)/s| > ία/2,η-ι» where ta/2,n-i is a critical value from the 
i-table. 
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The first expression in (5.3), t = (y - ßo)/(s/y/n), is the characteristic form of 
the ί-statistic, which represents a sample standardized distance between y and ßo- In 
this form, the hypothesized mean is subtracted from y and the difference is divided 
by Sy — s/y/n. Since yi, y2, ■ ■., yn is a random sample from Ν(μ, σ2), the random 
variables y and s are independent. We will see an analogous characteristic form for 
the T2-statistic in the multivariate case in Section 5.3.2. 

5.3.2 Hotelling's T2-Test for H0: μ — μ0 with Σ Unknown 

We now move to the multivariate case in which p variables are measured on each 
sampling unit. We assume that a random sample yi ,y2, · · ·, y n is available from 
Νρ(μ, Σ) , where y^ contains the p measurements on the ith sampling unit (subject or 
object). We estimate μ by y and Σ by S, where y and S are given by (3.16), (3.19), 
(3.22), (3.27), and (3.29). In order to test H0 : μ = μ0 versus H\\ μ φ μ0, we use 
an extension of the univariate ί-statistic in (5.3). In squared form, the univariate t 
can be rewritten as 

t = =n(y-ßo)(s) (y-ßo). (5.4) 
sz 

When y — ßo and s2 are replaced by y — μ0 and S, we obtain the test statistic 

T2 = n ( y - M o ) ' S - 1 ( y - M o ) . (5.5) 

Alternatively, T2 can be obtained from Z2 in (5.2) by replacing Σ with S. 
The distribution of T2 was obtained by Hotelling (1931), assuming HQ is true 

and sampling is from Νρ(μ, Σ) . The distribution is indexed by two parameters, the 
dimension p and degrees of freedom v = n — 1. We reject HQ if T2 > T2

 1 and 
accept H0 otherwise. Critical values of the T2-distribution are found in Table A.7, 
taken from Kramer and Jensen (1969a). 

Note that the terminology "accept H0" is used for expositional convenience to 
describe our decision when we do not reject the hypothesis. Strictly speaking, we 
do not accept H0 in the sense of actually believing it is true. If the sample size were 
extremely large and we accepted Ho, we could be reasonably certain that the true μ 
is close to the hypothesized value μ0. Otherwise, "accepting H0" means only that 
we have failed to reject H0. 

The T2-statistic can be viewed as the sample standardized distance between the 
observed sample mean vector and the hypothetical mean vector. If the sample mean 
vector is notably distant from the hypothetical mean vector, we become suspicious 
of the hypothetical mean vector and wish to reject Ho-

The test statistic is a scalar quantity, since T2 = n(y — μ0)'8~1(γ — μ0) is 
a quadratic form. As with the ^-distribution of Z2, the density of T2 is skewed 
because the lower limit is zero and there is no upper limit. 

The characteristic form of the X"2-statistic (5.5) is 

Τ2 = (γ-μ0γ(^-) (y-Mo). (5.6) 
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The characteristic form has two features: 

1. S/n is the sample covariance matrix of y and serves as a standardizing matrix 
in the distance function. 

2. Since yi , y 2 , . . . , yra are distributed as Νρ(μ, Σ) , it follows that y is Νρ(μ, 
^ Σ) , (n - 1)S is W(n — Ι ,Σ ) , and y and S are independent (see Sec-
tion 4.3.2). 

In (5.3), the univariate ί-statistic represents the number of standard deviations y is 
separated from μ0. In appearance, the T2-statistic (5.6) is similar, but no such simple 
interpretation is possible. If we add a variable, the distance in (5.6) increases. (By 
analogy, the hypotenuse of a right triangle is longer than either of the legs.) Thus 
we need a test statistic that indicates the significance of the distance from y to μ0, 
while allowing for the number of dimensions (see comment 3 below about the Tr-
iable). Since the resulting T2-statistic cannot be readily interpreted in terms of the 
number of standard deviations y is from μ0, we do not have an intuitive feel for its 
significance as we do with the univariate t. We must compare the calculated value 
of T2 with the table value. In addition, the T2-table provides some insights into the 
behavior of the T2-distribution. Four of these insights are noted at the end of this 
section. 

If a test leads to rejection of H0 : μ — μ0, the question arises as to which variable 
or variables contributed most to the rejection. This issue is discussed in Section 5.5 
for the two-sample T2-test of H0: μϊ = μ2, and the results there can be easily 
adapted to the one-sample test of HQ : μ = μ0. For confidence intervals on the 
individual μ / s in μ, see Rencher (1998, Section 3.4). 

The following are some key properties of the T2-test: 

1. We must have n > p. Otherwise, S is singular and T2 cannot be computed. 

2. In both the one-sample and two-sample cases, the degrees of freedom for the 
T2-statistic will be the same as for the analogous univariate ί-test, that is, 
v — n — 1 for one sample and v = n\ + n2 — 2 for two samples (see Section 
5.4.2). 

3. The alternative hypothesis is two-sided. Because the space is multidimen-
sional, we do not consider one-sided alternative hypotheses, such as μ > μ0. 
However, even though the alternative hypothesis H\: μ φ μ0 is essentially 
two-sided, the critical region is one-tailed (we reject for large values of T2). 
This is typical of many multivariate tests. 

4. In the univariate case, t2
l_1 = Fi )7 l_i. The statistic T2 can also be converted 

to an F-statistic as follows: 
v_Zl±lr2 - F r5 7Ϊ 

up μ' 

Note that the dimension p (number of variables) of the T2 -statistic becomes 
the first of the two degrees-of-freedom parameters of the F. The degrees of 



TESTS ON μ WHEN Σ IS UNKNOWN 1 3 3 

freedom for T2 is denoted by v, and the F-transformation is given in terms of 
a general v, since other applications of T2 will have v different from n — 1 
(see, for example, Sections 5.4.2 and 6.3.2). 

Equation (5.7) gives an easy way to find critical values for the T2-test. However, we 
have provided critical values of T2 in Table A.7 because of the insights they provide 
into the behavior of the T2-distribution in particular and multivariate tests in general. 
The following are some insights that can readily be gleaned from the T2-tables: 

1. The first column of Table A.7 contains squared values from the t table; that 
is, Γ 2 i j , = t2

a,2 v. (We use i2 ,2 because the univariate test of H0: μ = μ0 

versus Ηχ: μ φ μ0 is two-tailed.) Thus for p = 1, T2 reduces to t2. This can 
easily be seen by comparing (5.5) with (5.4). 

2. The last row of each page of Table A.7 contains χ2 critical values, that is, 
Tp = x2. Thus as n increases, S approaches Σ, and 

T 2 = n ( y - M o ) ' S - 1 ( y - M o ) 

approaches Z2 — n(y - μ 0 ) 'Σ _ 1 ( ;γ - μ0) in (5.2), which is distributed as 

3. The values increase along each row of Table A.7; that is, for a fixed v, the 
critical value T2 increases with p. It was noted above that in any given 
sample, the calculated value of T2 increases if a variable is added. However, 
since the critical value also increases, a variable should not be added unless it 
adds a significant amount to T2. 

4. As p increases, larger values of v are required for the distribution of T2 to 
approach χ2. In the univariate case, t in (5.3) is considered a good approxima-
tion to the standard normal z in (5.1) when v = n — 1 is at least 30. In the first 
column (p = 1) of Table A.7, we see T^5)1)30 = 4.171 and T£5>l i00 = 3.841, 
with a ratio of 4.171/3.841 = 1.086. For p = 5, v must be 100 to obtain the 
same ratio: Τ2

055100/Τ
2

055οο = 1.086. For p = 10, we need v = 200 to 
obtain a similar value of the ratio: 7ΊΟ5Ι10Ι2ΟΟ/^1.05,ΙΟ,ΟΟ = 1076. Thus one 
must be very cautious in stating that T2 has an approximate χ2 -distribution 
for large n. The a level (Type I error rate) could be substantially inflated. For 
example, suppose p = 10 and we assume that n = 30 is sufficiently large for 
a x2-approximation to hold. Then we would reject H0 for T2 > 18.307 with 
a target a-level of .05. However, the correct critical value is 34.044, and the 

Γ2 
10,2 misuse of 18.307 would yield an actual a of P(T?0 29 > 18.307) = .314. 

EXAMPLE 5.3.2 

In Table 3.4 we have n = 10 observations on p = 3 variables. Desirable levels 
for y\ and y? are 15.0 and 6.0, respectively, and the expected level of y-A is 
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2.85. We can, therefore, test the hypothesis 

/ 15.0 
Η0:μ=\ 6.0 

\ 2.85 

In Examples 3.6 and 3.7, y and S were obtained as 

140.54 49.68 1.94 
49.68 72.25 3.68 

1.94 3.68 .25 

To test H0, we use (5.5): 

T 2 = n ( y - M o ) ' S - 1 ( y ^ / x 0 ) 

140.54 49.68 1.94 \ /28.1 - 15.0 
49.68 72.25 3.68 7.18 - 6.0 

1.94 3.68 .25 / V 3.09 - 2.85 
24.559. 

From Table A.7, we obtain the critical value T2
05 3 9 = 16.766. Since the 

observed value of T2 exceeds the critical value, we reject the hypothesis. D 

5.4 COMPARING TWO MEAN VECTORS 

We first review the univariate two-sample f-test and then proceed with the analogous 
multivariate test. 

5.4.1 Review of Univariate Two-Sample i-Test 

In the one-variable case we obtain a random sample yu,yi2, ■ ■ ■ ,Vini from Ν(μι, 
σ\) and a second random sample j/21,2/22, · · ·) V2n2 fr°m Ν(μ2, σ2). We assume 
that the two samples are independent and that σ\ — σ\ — σ2, say, with σ2 unknown. 
[The assumptions of independence and equal variances are necessary in order for the 
ί-statistic below in (5.8) to have a i-distribution.] From the two samples we calculate 
yl,y2,SS1 = ΣΓ=ι(2/ι*-2/ι)2 = ( n , - l ) s 2 , S S 2 = E? i i ( l t a -J7 2 ) 2 = ("2-1)*!, 
and the pooled variance 

2 SS1+SS2 (ni - l)sf + (n2 - V)s% 
pl n1+n2-2 m+n2-2 

where n\ + n2 — 2 is the sum of the weights n\ — 1 and n2 — 1 in the numerator. With 
this denominator, s^ is an unbiased estimator for the common variance, σ2, that is, 
E{sll)=a\ pi; 

To test 
H0: μΎ = μ2 vs. Hi: μχ φ μ2, 



COMPARING TWO MEAN VECTORS 1 3 5 

we use _ _ 
t= Vl

ri
y^=, (5.8) 

Sp\\ — + — 

V n\ n2 

which has a ί-distribution with m + n2 — 2 degrees of freedom when HQ is true. We 
therefore reject H0 if |i| > ta/2,„l+n2-2· 

Note that (5.8) exhibits the characteristic form of a i-statistic. In this form, the 
denominator is the sample standard deviation of the numerator, that is, 

is an estimate of 

ayi-y2 

Spw/l/ni + l /n 2 

\/war(y1 - y2) 

σ2 σ 2 

— + — ni n2 

= σχ 
\ 

/ ! 1 
/—+ — ' ni n2 

5.4.2 Multivariate Two-Sample T2-Test 

We now consider the case where p variables are measured on each sampling unit in 
two samples. We wish to test 

i/o: Mi = μ2 vs. Ηχ: μχ φ μ2. 

We obtain a random sample y n , yi2, · ■ ■, yim fr°m ^ ( / - h , Σ ι ) anc^ a second ran-
dom sample y2i, y22, · · · , Ύ2η2 from Νρ{μ2, Σ 2 ) . We assume that the two samples 
are independent and that Σ ι = Σ2 = Σ, say, with Σ unknown. These assumptions 
are necessary in order for the T2-statistic in (5.9) to have a T2-distribution. A test of 
Ho: Σ ι = Σ 2 is given in Section 7.3.2. For an approximate test of i/o : Mi — M2 
that can be used when Σ ι φ Σ 2 , see Rencher (1998, Section 3.10). 

The sample mean vectors arey^ = Σ™1] Ύα/ηί andy2 = Σ Ι ^ ι Ύ2%/η2. Define 
W i and W2 to be the matrices of sums of squares and cross products for the two 
samples: 

« 1 

Wi = £ > i i - y^iyii - yj = (m - 1)S1; 
i=l 

" 2 

w 2 = ^2{y2i - y2)(y2i - y 2 ) ' = («2 - i )S 2 . 
i = l 

Since (ηχ — l)Si is an unbiased estimator of (n\ — 1)Σ and (n2 — 1)S2 is an unbiased 
estimator of (n2 — 1)Σ, we can pool them to obtain an unbiased estimator of the 
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common population covariance matrix, Σ : 

Spi = ——^ ^ ( W 1 + W 2 ) 
ni + n2 - 2 

1 [(ni - l)Si + (n2 - 1)S2 
n\ + n2 - 2 

Thus E(Spi) = Σ . 
The square of the univariate i-statistic (5.8) can be expressed as 

1 =
 n 4.,, ( ^ ι - ^ Κ ι ) (2/1-2/2)· 

til + 7i2 

This can be generalized to p variables by substituting y 1 — y2 for yx — y2 and Spi 
for Sp, to obtain 

which is distributed as T2
ni+„2_2 when H0: μι = μ2 is true. To carry out the 

test, we collect the two samples, calculate T2 by (5.9), and reject H0 if T2 > 
T 2

p rai+„2_2. Critical values of T2 are found in Table A.7. For tables of the power 
of the T2-test (probability of rejecting HQ when it is false) and illustrations of their 
use, see Rencher (1998, Section 3.11). 

The T2-statistic (5.9) can be expressed in characteristic form as the standardized 
distance between y± and y2 : 

r 2 = ( y i - y 2 ) ' 
1 1 

ni n2 ' 
(Ϋ1-Ϋ2). (5-10) 

where (1/rii + l /n2)Sp i is the sample covariance matrix for y1 — y2 and Spi is 
independent of yx - y2 because of sampling from the multivariate normal. For a 
discussion of robustness of T2 to departures from the assumptions of multivariate 
normality and homogeneity of covariance matrices (Σι = Σ 2 ) , see Rencher (1998, 
Section 3.8). 

Some key properties of the two-sample T2-test are given in the following list: 

1. It is necessary that ηχ + n2 - 2 > p for Spi to be nonsingular. 

2. The statistic T2 is, of course, a scalar. The 3p + p(p — l ) /2 quantities in 
y ! ,y 2 , and Spi have been reduced to a single scale on which T2 is large if 
the sample evidence favors Hi: μλ ψ μΊ and small if the evidence supports 
HQ : μλ = μ2; we reject Ho if the standardized distance between y\ and y2 
is large. 

3. Since the lower limit of T2 is zero and there is no upper limit, the density is 
skewed. In fact, as noted in (5.11) below, T2 is directly related to F, which is 
a well-known skewed distribution. 

4. For degrees of freedom of T2 we have n\ -f n2 — 2, which is the same as for 
the corresponding univariate i-statistic (5.8). 
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5. The alternative hypothesis Hi: μχ φ μ2 is two sided. The critical region 
T2 > T2 is one-tailed, however, as is typical of many multivariate tests. 

6. The T2-statistic can be readily transformed to an F-statistic using (5.7): 

ni + n2 - p - I 
(ni + n2 - 2)p 

T2 = F +ri2~ p— l i (5.11) 

where again the dimension p of the T2-statistic becomes the first degree-of-
freedom parameter for the F-statistic. 

EXAMPLE 5.4.2 

Four psychological tests were given to 32 men and 32 women. The data are 
recorded in Table 5.1 (Beall 1945). The variables are 

yi — pictorial inconsistencies 
%j2 — paper form board 

y3 = tool recognition 
2/4 = vocabulary 

The mean vectors and covariance matrices of the two samples are 

S i 

/ 15.97 \ 
15.91 
27.19 

\ 22.75 ) 

/ 5.192 
4.545 
6.522 

\ 5.250 
/ 9.136 

7.549 
4.864 

\ 4.151 

. y: 

4.545 
13.18 
6.760 
6.266 
7.549 
18.60 
10.22 
5.446 

> — 

/ 

V 
6.522 
6.760 
28.67 
14.47 
4.864 
10.22 
30.04 
13.' 19 

12.34 \ 
13.91 
16.66 ϊ 

21.94 / 
5.250 \ 
6.266 
14.47 
16.65 / 
4.151 \ 
5.446 
13.49 
28.00 / 

The sample covariance matrices do not appear to indicate a disparity in the 
population covariance matrices. (A significance test to check this assumption 
is carried out in Example 7.3.2, and the hypothesis HQ : Σ ι = Έ2 is not re-
jected.) The pooled covariance matrix is 

Spi — 
1 

32 + 32 -
/ 7.164 

6.047 
5.693 

\ 4.701 

[ ( 3 2 - l ) S i + ( 3 2 - l ) S 2 2 
6.047 
15.89 
8.492 
5.856 

5.693 
8.492 
29.36 
13.98 

4.701 \ 
5.856 
13.98 
22.32 ) 
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Table 5.1 Four Psychological Test Scores on 32 
Males and 32 Females 

2/i 

15 
17 
15 
13 
20 
15 
15 
13 
14 
17 
17 
17 
15 
18 
18 
15 
18 
10 
18 
18 
13 
16 
11 
16 
16 
18 
16 
15 
18 
18 
17 
19 

Males 

2/2 

17 
15 
14 
12 
17 
21 
13 
5 
7 
15 
17 
20 
15 
19 
18 
14 
17 
14 
21 
21 
17 
16 
15 
13 
13 
18 
15 
16 
19 
16 
20 
19 

2/3 

24 
32 
29 
10 
26 
26 
26 
22 
30 
30 
26 
28 
29 
32 
31 
26 
33 
19 
30 
34 
30 
16 
25 
26 
23 
34 
28 
29 
32 
33 
21 
30 

2/4 

14 
26 
23 
16 
28 
21 
22 
22 
17 
27 
20 
24 
24 
28 
27 
21 
26 
17 
29 
26 
24 
16 
23 
16 
21 
24 
27 
24 
23 
23 
21 
28 

2/i 

13 
14 
12 
12 
11 
12 
10 
10 
12 
11 
12 
14 
14 
13 
14 
13 
16 
14 
16 
13 
2 
14 
17 
16 
15 
12 
14 
13 
11 
7 
12 
6 

Females 

2/2 

14 
12 
19 
13 
20 
9 
13 
8 
20 
10 
18 
18 
10 
16 
8 
16 
21 
17 
16 
16 
6 
16 
17 
13 
14 
10 
17 
15 
16 
7 
15 
5 

2/3 

12 
14 
21 
10 
16 
14 
18 
13 
19 
11 
25 
13 
25 
8 
13 
23 
26 
14 
15 
23 
16 
22 
22 
16 
20 
12 
24 
18 
18 
19 
7 
6 

2/4 

21 
26 
21 
16 
16 
18 
24 
23 
23 
27 
25 
26 
28 
14 
25 
28 
26 
14 
23 
24 
21 
26 
28 
14 
26 
9 
23 
20 
28 
18 
28 
13 

By (5.9), we obtain 

T2 = - ^ - ( Ϋ ! - y 2 ) V ( y i - y2) = 97.6015. 

From interpolation in Table A.7, we obtain T2
01Afi2 = 15.373, and we there-

fore reject H0: μχ = μ2. See Example 5.5 for a discussion of which variables 
contribute most to separation of the two groups. □ 
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5.4.3 Likelihood Ratio Tests 

The maximum likelihood approach to estimation was introduced in Section 4.3.1. As 
noted there, the likelihood function is the joint density of y i, y 2 , . . . , yn. The values 
of the parameters that maximize the likelihood function are the maximum likelihood 
estimators. 

The likelihood ratio method of test construction uses the ratio of the maximum 
value of the likelihood function assuming H0 is true to the maximum under Hi, 
which is essentially unrestricted. Likelihood ratio tests usually have good power and 
sometimes have optimum power over a wide class of alternatives. 

When applied to multivariate normal samples and H0: μλ = μ2, the likelihood 
ratio approach leads directly to Hotelling's T2-test in (5.9). Similarly, in the one-
sample case, the T2-statistic in (5.5) is the likelihood ratio test. Thus the T2-test, 
which we introduced rather informally, is the best test according to certain criteria. 

5.5 TESTS ON INDIVIDUAL VARIABLES CONDITIONAL ON 
REJECTION OF H0 BY THE T2-TEST 

If the hypothesis HQ : μχ = μ2 is rejected, the implication is that μχ^ ψ μ^- for 
at least one j — 1,2,... ,p. But there is no guarantee that H0: μλ3 — ß2j will be 
rejected for some j by a univariate test. However, if we consider a linear combination 
of the variables, z = a'y, then there is at least one coefficient vector a for which 

i(a) = , ~Zl~~Z2 (5.12) 
v / ( l / m + l/n2)S2 

will reject the corresponding hypothesis HQ : μΖι = μΖ2 or Ho: a 'μ λ = a 'μ 2 . By 
(3.54), ζχ = a'yj and z2 = a'y2, and from (3.55) the variance estimator s2 is the 
pooled estimator a'Spia. Thus (5.12) can be written as 

i(a) = a ' y t - a ' y g _ ( 5 B ) 

V[(ni +n 2 ) /n 1 n 2 ]a 'Spia 

Since i(a) can be negative, we work with £2(a). The linear function z = a 'y 
is a projection of y onto a line through the origin. We seek the line (direction) on 
which the difference y x — y2 is maximized when projected. The projected difference 
a '(Yi ~ Ϋ2) [standardized by a'Spia as in (5.13)] will be less in any other direction 
than that parallel to the line joining yx and y2 . The value of a that projects onto this 
line, or equivalenfly, maximizes i2(a) in (5.13), is (any multiple of) 

a = S p l
1 ( y 1 - y 2 ) - (5.14) 

Since a in (5.14) projects y1 - y2 onto a line parallel to the line joining y1 and y2 , 
we would expect that i2(a) = T2 , and this is indeed the case (see Problem 5.3). 

When a = S~1
1(y1 — y2) , then z = a'y is called the discriminant function. 

Sometimes the vector a itself in (5.14) is loosely referred to as the discriminant 
function. 
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If H0: μχ = μ2 is rejected by T2 in (5.9), the discriminant function a'y will lead 
to rejection of H0: a 'μ λ = &'μ2 using (5.13), with a = S l ^ y ^ - y 2) . We can 
then examine each a,j in a for an indication of the contribution of the corresponding 
yj to rejection of Ho- This follow-up examination of each aj should be done only 
if HQ : μχ = μ2 is rejected by T2 . The discriminant function will appear again in 
Section 5.6.2 and in Chapters 8 and 9. 

We list these and other procedures that could be used to check each variable fol-
lowing rejection of H0 by a two-sample T2-test: 

1. Univariate i-tests, one for each variable, 

, _ Vij-y2j 

ν ϊ (η ι + n2)/nin2 

j = l,2,...,p, (5.15) 
j] 

where Sjj is the j'th diagonal element of Spi. Reject HQ: ßij = ß2j if 
\tj\ > ία/2,η1+η2-2· F° r confidence intervals on μ^- — ß2j, see Rencher 
(1998, Section 3.7). 

2. To adjust the a-level resulting from performing the p tests in (5.15), we could 
use a Bonferroni critical value ία/2ρ,ηι+η2-2 

for (5.15) (Bonferroni 1936). 
A critical value ta/2p is much greater than the corresponding ta/2, and the 
resulting overall a-level is conservative. Bonferroni critical values ta/2p^ are 
given in Table A.8, from Bailey (1977). 

3. Another critical value that could be used with (5.15) is TQ)P) r i l+n2_2, where 
Ta is the square root of T2 from Table A.7; that is, 

-l a,p,nl+n2-2 — y - t a > p j r l l + η 2 _ 2 · 

This allows for all p variables to be tested as well as all possible linear com-
binations, as in (5.13), even linear combinations chosen after seeing the data. 
Consequently, the use of Ta is even more conservative than using ta/2p; that 
IS, -ία,ρ,ηι+«2 —2 ^" ^α/2ρ,η1+Π'ζ—1· 

4. Partial F- or ί-tests [test of each variable adjusted for the other variables; see 
(5.32) in Section 5.8] 

5. Standardized discriminant function coefficients (see Section 8.5) 

6. Correlations between the variables and the discriminant function (see Sec-
tion 8.7.3) 

7. Stepwise discriminant analysis (see Section 8.9) 

The first three methods are univariate approaches that do not use covariances or 
correlations among the variables in the computation of the test statistic. The last four 
methods are multivariate in the sense that the correlation structure is explicitly taken 
into account in the computation. 
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Method 6, involving the correlation between each variable and the discriminant 
function, is recommended in many texts and software packages. However, Rencher 
(1988) has shown that these correlations are proportional to individual t- or F-tests 
(see Section 8.7.3). Thus this method is equivalent to method 1 and is a univariate 
rather than a multivariate approach. Method 7 is often used to identify a subset of 
important variables or even to rank the variables according to order of entry. But 
Rencher and Larson (1980) have shown that stepwise methods have a high risk of 
selecting spurious variables, unless the sample size is very large. 

We now consider the univariate procedures 1, 2, and 3. The probability of reject-
ing one or more of the p univariate tests when HQ is true is called the overall a or 
experimentwise error rate. If we do univariate tests only, with no T2-test, then the 
tests based on ta/2p and Ta in procedures 2 and 3 are conservative (overall a too 
low), and tests based on ta/2 in procedure 1 are liberal (overall a too high). How-
ever, when these tests are carried out only after rejection by the T2-test (such tests are 
sometimes called protected tests), the experimentwise error rates change. Obviously 
the tests will reject less often (under HQ) if they are carried out only if T2 rejects. 
Thus the tests using ta/2p and Ta become even more conservative, and the test using 
ta/i becomes more acceptable. 

Hummel and Sligo (1971) studied the experimentwise error rate for univariate t-
tests following rejection of Ho by the T2-test (protected tests). Using a = .05, they 
found that using ta/2 for a critical value yields an overall a acceptably close to the 
nominal .05. In fact, it is slightly conservative, making this the preferred univariate 
test (within the limits of their study). They also compared this procedure with that of 
performing univariate tests without a prior T2-test (unprotected tests). For this case, 
the overall a is too high, as expected. Table 5.2 gives an excerpt of Hummel and 
Sligo's results. The sample size is for each of the two samples; the r2 in common is 
for every pair of variables. 

Hummel and Sligo therefore recommended performing the multivariate T2-test 
followed by univariate ί-tests. This procedure appears to have the desired overall 
a level and will clearly have better power than tests using Ta or ta/2p as a critical 
value. Table 5.2 also highlights the importance of using univariate ί-tests only if 
the multivariate T2-test is significant. The inflated a's resulting if ί-tests are used 
without regard to the outcome of the T2-test are clearly evident. Thus among the 
three univariate procedures (procedures 1, 2, and 3 above), the first appears to be 
preferred. 

Among the multivariate approaches (procedures 4, 5, and 7 above), we prefer 
the fifth procedure, which compares the (absolute value of) coefficients in the dis-
criminant function to find the effect of each variable in separating the two groups of 
observations. These coefficients will often tell a different story from the univariate 
tests, because the univariate tests do not take into account the correlations among the 
variables or the effect of each variable on T2 in the presence of the other variables. A 
variable will typically have a different effect in the presence of other variables than 
it has by itself. In the discriminant function z = a'y = a\y\ + a2y2 + · ■ ■ + apyp, 
where a = Sp1

1(y1 — y2) , the coefficients ai,a2,... ,ap indicate the relative im-
portance of the variables in a multivariate context, something the univariate i-tests 
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Table 5.2 Comparison of Experimentwise Error Rates 
(Nominal a = 0.05) 

Sample 
Size 

10 
10 
10 
30 
30 
30 
50 
50 
50 

Number of 
Variables .10 

Common r2 

.30 

Univariate Tests Onlya 

3 
6 
9 
3 
6 
9 
3 
6 
9 

.145 

.267 

.348 

.115 

.225 

.296 

.138 

.230 

.324 

.112 

.190 

.247 

.119 

.200 

.263 

.124 

.190 

.258 

.50 

.114 

.178 

.209 

.117 

.176 

.223 

.102 

.160 

.208 

Multivariate Test Followed by Univariate Tests 

10 
10 
10 
30 
30 
30 
50 
50 
50 

3 
6 
9 
3 
6 
9 
3 
6 
9 

.044 

.046 

.050 

.037 

.037 

.042 

.038 

.037 

.036 

.029 

.029 

.026 

.044 

.037 

.042 

.041 

.039 

.038 

.035 

.030 

.025 

.029 

.032 

.030 

.033 

.028 

.026 

.70 

.077 

.111 

.129 

.085 

.115 

.140 

.083 

.115 

.146 
b 

.022 

.017 

.018 

.025 

.021 

.021 

.028 

.027 

.020 
a Ignoring multivariate tests. 
b Carried out only if multivariate test rejects. 

cannot do. If the variables are not commensurate (similar in scale and variance), 
the coefficients should be standardized, as in Section 8.5; this allows for more valid 
comparisons among the variables. Rencher and Scott (1990) provide a decomposi-
tion of the information in the standardized discriminant function coefficients. For a 
detailed analysis of the effect of each variable in the presence of the other variables, 
see Rencher (1993; 1998, Sections 3.3.5 and 3.5.3). 

■ EXAMPLE 5.5 

For the psychological data in Table 5.1, we obtained y l 5 y 2 , and Spi in Exam-
ple 5.4.2. The discriminant function coefficient vector is obtained from (5.14) 
as 

/ .5104 \ 
e - i / - - x "-2033 

a = S p l ( y i - y 2 ) = _4 6 6 0 
\ -.3097 
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Thus the linear combination that best separates the two groups is 

a'y = .5104T/! - .2033Ϊ/2 + -4660y3 - -3097?/4, 

in which y\ and 2/3 appear to contribute most to separation of the two groups. 
(After standardization, the relative contribution of the variables changes some-
what; see the answer to Problem 8.7 in Appendix B.) D 

5.6 COMPUTATION OF Γ 2 

If one has a program available with matrix manipulation capability, it is a simple 
matter to compute T2 using (5.9). However, this approach is somewhat cumbersome 
for those not accustomed to the use of such a programming language, and many 
would prefer a more automated procedure. But very few general-purpose statistical 
programs provide for direct calculation of the two-sample T2-statistic, perhaps be-
cause it is so easy to obtain from other procedures. We will discuss two types of 
widely available procedures that can be used to compute Γ 2 . 

5.6.1 Obtaining T2 from a MANOVA Program 

Multivariate analysis of variance (MANOVA) is discussed in Chapter 6, and the 
reader may wish to return to the present section after becoming familiar with that 
material. One-way MANOVA involves a comparison of mean vectors from several 
samples. Typically, the number of samples is three or more, but the procedure will 
also accommodate two samples. The two-sample T2 test is thus a special case of 
MANOVA. 

Four common tests of significance are defined in Section 6.1: Wilks' Λ, the 
Lawley-Hotelling U^, Pillai's V^K and Roy's largest root Θ. Without concern-
ing ourselves here with how these are defined or calculated, we show how to use 
each to obtain the two-sample T2: 

T2 = ( m + n 2 - 2 ) ^ A (5.16) 

T2 = ( m + n 2 - 2 ) ( / W , (5.17) 

T2 = ( n 1 + n 2 - 2 ) i _ y ( s ) , (5.18) 

T2 = ( n ! + n 2 - 2 ) ^ . (5.19) 

(For the special case of two groups, V^ = Θ.) These relationships are demonstrated 
in Section 6.1.7. If the MANOVA program gives eigenvectors of E _ 1 H (E and H 
are defined in Section 6.1.2), the eigenvector corresponding to the largest eigenvalue 
will be equal to (a constant multiple of) the discriminant function Srj^Vj — y 2) . 
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5.6.2 Obtaining T2 from Multiple Regression 

In this section, the y's become independent variables in a regression model. For each 
observation vector yu and y2i in a two-sample T2 , define a "dummy" group variable 
as 

n2 
Wi = ■ for each of y n , y i 2 , · · ·, yim in sample 1 

ri\ + n2 

= ; for each of y 2 i , y22 , · · ·, y2n2 in sample 2. 
n\ + n2 

Then w — 0 for all n\ + n2 observations. The prediction equation for the regression 
of w on the y's can be written as 

Wi=b0 + hyn + b2yi2 Λ V bpyip, 

where i ranges over all ri\ + n2 observations and the least squares estimate bo is [see 
(10.15)] 

b0 = w- b1y1 - b2y2 bpyP-

Substituting this into the regression equation, we obtain 

Wi = w + bi(yu - yx) + b2{yi2 - y2) H 1- bp{yip - yp) 

= öi(j/ii -Vi) + b2(yi2 -y2)-\ \-bp(yip-yp) (since w = 0). 

Let b ' = (bi, b2,..., bp) be the vector of regression coefficients and R2 the 
squared multiple correlation. Then we have the following relationships: 

D 2 

(5.20) T2 = (n1+n2-2)i_R2, 

a = S" 1
1 (y 1 -y 2 ) ^ ± ^ ( n 1 + n 2 - 2 + T2) 

nxn2 
b. (5.21) 

Thus with ordinary multiple regression, one can easily obtain Γ 2 and the discrimi-
nant function Slj1 (y1 - y 2) . We simply define Wi as above for each of the n\ + n2 

observations, regress the w's on the y's, and use the resulting R2 in (5.20). For b, 
delete the intercept from the regression coefficients for use in (5.21). Actually, since 
only the relative values of the elements of a = S",1 (y1 —y2) are of interest, it is not 
necessary to convert from b to a in (5.21). We can use b directly or standardize the 
values b\, b2,..., bp as in Section 8.5. 

■ EXAMPLE 5.6.2 

We illustrate the regression approach to computation of T2 using the psycho-
logical data in Table 5.1. We set w = n 2 / (n i + n2) = | | = \ for each 
observation in the first group (males) and equal to —n\/{ni + n2) = — \ in 
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the second group (females). When w is regressed on the 64 y's, we obtain 

/bo \ 
k 
b2 

h 
\h ) 

= 

( ~ · 7 5 1 \ 
.051 

-.020 
.047 

^ -.031 ) 

R2 .6115. 

By (5.20), 

rpZ (rii + n2 - 2) R2 62(.6115) 
1 - i ? 2 1 .6115 

97.601, 

as was obtained before in Example 5.4.2. Note that b ' = (61,62,63,64) = 
(.051, —.020, .047, —.031), with the intercept deleted, is proportional to the 
discriminant function vector a from Example 5.5, as we would expect from 
(5.21). D 

5.7 PAIRED OBSERVATIONS TEST 

As usual, we begin with the univariate case to set the stage for the multivariate pre-
sentation. 

5.7.1 Univariate Case 

Suppose two samples are not independent because there exists a natural pairing be-
tween the ith observation j/j in the first sample and the ith observation Xi in the 
second sample for all i, as, for example, when a treatment is applied twice to the 
same individual or when subjects are matched according to some criterion, such as 
IQ or family background. With such pairing, the samples are often referred to as 
paired observations or matched pairs. The two samples thus obtained are correlated, 
and the two-sample test statistic in (5.8) is not appropriate because the samples must 
be independent in order for (5.8) to have a ί-distribution. [The two-sample test in 
(5.8) is somewhat robust to heterogeneity of variances and to lack of normality but 
not to dependence.] We reduce the two samples to one by working with the differ-
ences between the paired observations, as in the following layout for two treatments 
applied to the same subject: 

Pair Number Treatment l 
Difference 

Treatment 2 di = yi — x, 

V2 

xi 
X2 d2 
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To obtain a ί-test, it is not sufficient to assume individual normality for each of y 
and x. To allow for the covariance between y and x, we need the additional assump-
tion that y and x have a bivariate normal distribution with 

μ 
_ ( H Σ = σ, yx 

It then follows by property la in Section 4.2 that di — yi — x» is Ν(μυ — μχ,σ%), 
where σ\ = σ\ — 2ayx + σ2

χ. From d\,d,2, 

- 1 
d= - y di 

and 
n 

«3 = 

, dn we calculate 

1 

i = l n 1 ^ ( d i - d ) 2 . 

To test Ho: μυ = μχ, that is, H0: μα = 0, we use the one-sample statistic 

d 
t 

Sd/V™' 
(5.22) 

which is distributed as in_i if H0 is true. We reject H0 in favor of Hi: μ^ -φ 0 
if |ί| > ία/2,η-ι· It is not necessary to assume σ^ = σχ because there are no 
restrictions on Σ. 

This test has only n — 1 degrees of freedom compared with 2(n — 1) for the two 
independent sample i-test (5.8). In general, the pairing reduces the within-sample 
variation Sd and thereby increases the power. 

If we mistakenly treated the two samples as independent and used (5.8) with n\ = 
n2 — n, we would have 

t y-x y-χ 

However, 

= 2E 
(n-l)sl + (n-l)s2

x 

(n + n — 2)n 
(?l + <?l)/n, 

whereas var(y — x) = (σ^ +σχ- 2ayx)/n. Thus if the test for independent samples 
(5.8) is used for paired data, it does not have a ^-distribution, and in fact underesti 
mates the true average i-value (assuming H0 is false), since σ^+σ^ > σ^+σχ—2σ. 
if ayx > 0, which would be typical in this situation. One could therefore use 

yx 

v ^ 3 y x )A 
(5.23) 

but t = y/nd/sd in (5.22) is equal to it and somewhat simpler to use. 
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5.7.2 Multivariate Case 

Here we assume the same natural pairing of sampling units as in the univariate case, 
but we measure p variables on each sampling unit. Thus y* from the first sample is 
paired with Xj from the second sample, i — 1,2,... ,n. In terms of two treatments 
applied to each sampling unit, this situation is as follows: 

Difference 
Pair Number Treatment 1 Treatment 2 di = yi — Xj 

1 y i x i d i 
2 y 2 X2 d 2 

n y n Xn d „ 

In Section 5.7.1, we made the assumption that y and x have a bivariate normal 
distribution, in which y and x are correlated. Here we assume y and x are correlated 
and have a multivariate normal distribution: 

I) ™N2P 
f^y) I W yx 

To test H0: μά — 0, which is equivalent to H0: μν = μχ since μά = E(y — x) 
μν — μχ, we calculate 

1 n 1 n 

d = - V d , and Sd = -Y(dt-d)(di-dy. 
n f—' n — 1 t-^1 

We then have 

n 

-1 

d ' ( — J d = nd 'S^d . (5.24) 

Under H0, this paired comparison T2-statistic is distributed as Tpn_x. We reject Ho 
if T2 > T%pn^1. Note that Srf estimates cov(y - x) = Ένυ - Έυχ - Hxy + Έχχ, 
for which an equivalent estimator would be Syy — Syx — Sxy + Sxx [see (3.42)]. 

The cautions expressed in Section 5.7.1 for univariate paired observation data also 
apply here. If the two samples of multivariate observations are correlated because 
of a natural pairing of sampling units, the test in (5.24) should be used rather than 
the two-sample T2-test in (5.9), which assumes two independent samples. Misuse 
of (5.9) in place of (5.24) will lead to loss of power 

Since the assumption T.yy = Έχχ is not needed for (5.24) to have a T2-distri-
bution, this test can be used for independent samples when Σ] φ Σ2 (as long as 
m = nz). The observations in the two samples would be paired in the order they 
were obtained or in an arbitrary order. However, in the case of independent samples, 
the pairing achieves no gain in power to offset the loss of n — 1 degrees of freedom. 

By analogy with (5.14), the discriminant function for paired observation data be-
comes 

a = S ^ d . (5.25) 
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Table 5.3 Maximum Depth of Pits and Number of Pits of Coated Pipes 

Coating 1 Coating 2 Difference 

Location 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Depth 
2/i 

73 
43 
47 
53 
58 
47 
52 
38 
61 
56 
56 
34 
55 
65 
75 

Number 
2/2 

31 
19 
22 
26 
36 
30 
29 
36 
34 
33 
19 
19 
26 
15 
18 

Depth 
Xl 

51 
41 
43 
41 
47 
32 
24 
43 
53 
52 
57 
44 
57 
40 
68 

Number 
X2 

35 
14 
19 
29 
34 
26 
19 
37 
24 
27 
14 
19 
30 
7 

13 

Depth 
di 

22 
2 
4 

12 
11 
15 
28 
- 5 

8 
4 

- 1 
- 1 0 

- 2 
25 

7 

Number 
d2 

- 4 
5 
3 

- 3 
2 
4 

10 
- 1 
10 
6 
5 
0 

- 4 
8 
5 

For tests on individual variables, we have 

tj = —f====, j = 1,2,...,p. (5.26) 

The critical value for tj is ία /2Ρ ,η-ι o r ta/2,n-i depending on whether a T2-test is 
carried out first (see Section 5.5). 

■ EXAMPLE 5.7.2 

To compare two types of coating for resistance to corrosion, 15 pieces of pipe 
were coated with each type of coating (Kramer and Jensen 1969b). Two pipes, 
one with each type of coating, were buried together and left for the same length 
of time at 15 different locations, providing a natural pairing of the observations. 
Corrosion for the first type of coating was measured by two variables, 

i/i = maximum depth of pit in thousandths of an inch 
y2 = number of pits 

with χι and x% defined analogously for the second coating. The data and differ-
ences are given in Table 5.3. Thus we have, for example, y[ = (73,31), x i = 
(51,35), and di = yi - x'x = (22, - 4 ) . For the 15 difference vectors, we 
obtain 

3 _ / 8.000 \ _ / 121.571 17.071 \ 
\ 3.067 J ' d ~ \ 17.071 21.781 ) ' 
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By (5.24), 

T 2 n c u e n n n im?7\( 1 2 L 5 7 1 1 7 ' 0 7 1 V V 8 · 0 0 0 ~\ in «in T = (15)(8.000,3.067)(^ 1 7 ( m 2 1 ? g l J (̂  g ^ j = 10.819. 

Since T2 = 10.819 > T2
0521i = 8.197, we reject H0: μά = 0 and conclude 

that the two coatings differ in their effect on corrosion. □ 

5.8 TEST FOR ADDITIONAL INFORMATION 

In this section, we are again considering two independent samples as in Section 
5.4.2. We start with a basic p x l vector y of measurements on each sampling unit 
and ask whether a q x 1 subvector x measured in addition to y (on the same unit) 
will significantly increase the separation of the two samples as shown by T2. It is not 
necessary that we add new variables. We may be interested in determining whether 
some of the variables we already have are redundant in the presence of other variables 
in terms of separating the groups. We have designated the subset of interest by x for 
notational convenience. 

It is assumed that the two samples are from multivariate normal populations with 
a common covariance matrix, that is, 

y n \ / yi2 \ / yim 
Xll ) ' V X12 / ' " ' \ X l " i 
Y21 "\ ( Y22 \ / Y2n2 

X21 J ' V χ22 / ' " ' ' V χ2η2 

are from Np+q(ß1, Σ ) , 

are from Np+q(ß2, Σ ) , 

μι=Ε[^Λ = (^ν), μ2 = Ε(Υ2Λ = (^ν 

where 

χ 1 ί / \VlxJ VX2i/ \/*2 

Σ = c o v f y H ) = covf y 2 A = (ξ™ ξνχ 

\ x l i / \X2J/ X^xy ^xx 

We partition the sample mean vectors and covariance matrix accordingly: 

>Ί j [ ^2 | g _ ( Syy Syx 
xi / \ x2 / ' pl V S*y sxx 

where Spi is the pooled sample covariance matrix from the two samples. 
We wish to test the hypothesis that xi and X2 are redundant for separating the 

two groups, that is, that the extra q variables do not contribute anything significant 
beyond the information already available in y! and y2 for separating the groups. 
This is in the spirit of a full and reduced model test in regression [see (5.31) and 
Section 10.2.5b]. However, here we are working with a subset of dependent variables 
as contrasted to the subset of independent variables in the regression setting. Thus 
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both y and x are subvectors of dependent variables. In this setting, the independent 
variables would be grouping variables 1 and 2 corresponding to μχ and μ2. 

We are not asking whether the x's can significantly separate the two groups by 
themselves, but whether they provide additional separation beyond the separation 
already achieved by the y's. If the x's were independent of the t/'s, we would have 
T2

+q = T2 + T2 , but this does not hold, because they are correlated. We must 
compare TpJrq for the full set of variables ( t / i , . . . , yp, x\,..., xq ) with Tp based on 
the reduced set ( j / i , . . . , yp). We are inquiring whether the increase from T2 to Tp+q 

is significant. 
By definition, the T2-statistic based on the full set of p + q variables is given by 

rp2 
1P+q 

n\1l2 

nx + n2 

y_i 

x i 
y 2 

X2 

c - i y_i 
xi 

y 2 

X2 
(5.27) 

whereas T2 for the reduced set of p variables is 

rpZ nin2 (yi - y 2 ) ' S w
1 ( y 1 - y 2 ) . (5.28) 

r?i + n2 

Then the test statistic for the significance of the increase from Tp to Tp+q is given by 

T2(x\y) = (v-p) 
rp2 _ rp2 
■'■p+q ±p (5.29) 

which is distributed as Tqi/_p We reject the hypothesis of redundancy of x if 
T 2 ( x | y ) > T 2 „. 

By (5.7), T (x|y) can be converted to an F-statistic: 

■p-q+1 T-1 
p+q 

T2 
p 

v + T2 (5.30) 

which is distributed as FqtU-p-q+\, and we reject the hypothesis of redundancy if 

In both cases v = ri\ + n2 - 2. Note that the first degrees-of-freedom parameter 
in both (5.29) and (5.30) is q, the number of x\. The second parameter in (5.29) is 
v — p because the statistic is adjusted for the p variables in y. 

To prove directly that the statistic defined in (5.30) has an F-distribution, we can 
use a basic relationship from multiple regression [see (10.33)]: 

q^~ p-q+l 
(R2

p+q~R2
p)(v-p-q+1) 

(1 Rl+q)l 
(5.31) 

where R^+q is the squared multiple correlation from the full model with p + q inde-
pendent variables and R2 is from the reduced model with p independent variables. If 
we solve for R2 in terms of T2 from (5.20) and substitute this into (5.31), we readily 
obtain the test statistic in (5.30). 
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If we are interested in the effect of adding a single x, then q = 1, and both (5.29) 
and (5.30) reduce to 

i2(*jy) = ( ^ p ) % ^ , (5.32) 

and we reject the hypothesis of redundancy of x if t2(x\y) > ί2 ,2 υ_ = Fatitl/-P. 

■ EXAMPLE 5.8 

We use the psychological data of Table 5.1 to illustrate tests on subvectors. We 
begin by testing the significance of 2/3 and y4 above and beyond yi and 2/2· (In 
the notation of the present section, y3 and y4 become x\ and 22·) For these 
subvectors, p = 2 and q = 2. The value of T£+ for all four variables as given 
by (5.27) was obtained in Example 5.4.2 as 97.6015. For 2/1 and 2/2, we obtain, 
by (5.28), 

2 = J ! i n 2 _ 
v ni + ri2 

(32)2 / 15.97-12.34 \' f 7.16 6.05 V V 15.97-12.34 
32 + 32 V 15.91-13.91 ) \ 6.05 15.89 ) \ 15.91-13.91 

= 31.0126. 

By (5.29), the test statistic is 

97 1 601^3L0126 = 
1 ; 62 + 31.0126 

We reject the hypothesis that x = (2/3,2/4)' is redundant, since 42.955 > 
T Q ! 2 60 = 10-137. We conclude that x = (y3,3/4)' adds a significant amount 
of separation to y = (2/1,2/2)'· 

To test the effect of each variable adjusted for the other three, we use (5.32). 
In this case, p = 3, v = 62, and v—p = 59. The results are given below, where 
T2

+i = 97.6015 and T2 in each case is based on the three variables, excluding 
the variable in question. For example, T2 = 90.8348 for 2/2 is based on 2/1,2/3, 
and 2/4, and i2(2/2!2/1,2/2,i/3) = 2.612: 

Variable Tp
2 (1/ - p ) T p 2 + 1 " Tp 

v + T* 

yi 78.8733 7.844 
2/2 90.8348 2.612 
2/3 32.6253 40.513 
2/4 74.5926 9.938 

When we compare these four test statistic values with the critical value i2
025 59 

= 4.002, we see that each variable makes a significant contribution to T2 ex-
cept 2/2· Note that 2/3 contributes most, followed by 2/4 and then y1. This order 
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differs from that given by the raw discriminant function in Example 5.5 but 
agrees with the order for the standardized discriminant function given in the 
answer to Problem 8.7 in Appendix B. D 

5.9 PROFILE ANALYSIS 

If y is Νρ(μ, Σ) and the variables in y are commensurate (measured in the same 
units and with approximately equal variances as, for example, in the probe word data 
in Table 3.6), we may wish to compare the means μ1, μ 2 , . . . , μρ in μ. This might 
be of interest when a measurement is taken on the same research unit at p successive 
times. Such situations are often referred to as repeated measures designs or growth 
curves, which are discussed in some generality in Sections 6.9 and 6.10. In the 
present section, we discuss one- and two-sample profile analysis. Profile analysis for 
several samples is covered in Section 6.8. 

The pattern obtained by plotting μι, μ2, ■ ■ ■, μρ as ordinates and connecting the 
points is called a profile; we usually draw straight lines connecting the points (1, μ\), 
(2, μ2), ..., (ρ, μρ). Profile analysis is an analysis of the profile or a comparison of 
two or more profiles. Profile analysis is often discussed in the context of administer-
ing a battery of p psychological or other tests. 

In growth curve analysis where the variables are measured at time intervals, the 
responses have a natural order. In profile analysis where the variables arise from test 
scores, there is ordinarily no natural order. A distinction is not always made between 
repeated measures of the same variable through time and profile analysis of several 
different commensurate variables on the same individual. 

5.9.1 One-Sample Profile Analysis 

We begin with a discussion of the profile of the mean vector μ from a single sample. 
A plot of μ might appear as in Figure 5.3, where we plot (1, μι) , (2, μ 2 ) , . . . , (ρ, μρ) 
and connect the points. 

In order to compare the means μ\, μ2 , . ■ ■, μρ in μ, the basic hypothesis is that 
the profile is level or flat: 

H0 : μι = μ2 μρ vs. Hi: μ$ φ μ& for some j φ k. 

The data matrix Y is given in (3.17). We cannot use univariate analysis of variance to 
test HQ because the columns in Y are not independent. For a multivariate approach 
that allows for correlated variables, we first express H0 as p - 1 comparisons, 

/ 

Ho 
M2 

M2 

μ3 
\ 

0 

\ MP-I — MP / w 
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Figure 5.3 Profile of a mean vector. 

or as 

Hn 

I Mi 
μι 

μ·2 

ß3 0 

0 and Η0 : 0 2 μ = 0, 

/ 1 
0 

\o 

- 1 
1 

0 

0 ·· 
- 1 ·· 

0 ·· 

0 

• - i ) 

, c2 = 

/ i 
1 

u 
- 1 

0 

0 

0 ·· 
- 1 ·· 

0 ·· 

• °\ 
0 

• - i / 

\ βλ-βρ ) \ 0 ) 

These two expressions can be written in the form HQ : C\ß 
where Ci and C 2 are the ( p - l ) x p matrices: 

Ci 

In fact, any (p — 1) x p matrix C of rank p — 1 such that Cj = 0 can be used in 
HQ : Ομ = 0 to produce HQ : μ\ = μ2 = · · · = μρ. If Cj = 0, each row cj of 
C sums to zero by (2.38), and Ομ is a set of p — 1 contrasts in the / / s . A linear 
combination ζ[μ = c îMi + Cj2/U2 H + CiPßp is called a contrast in the ß's if the 
coefficients sum to zero, that is, if ^ \ cy = 0. The contrasts in Ομ must be linearly 
independent in order to express Η0: μχ — μ2 = · · · = μρ as Η0 : Ομ = 0. Thus 
rank(C) = p — 1. 

From a sample y i , y 2 , . . . , y n , we obtain estimates y and S of population pa-
rameters μ and Σ. To test H0: Ομ ~ 0, we transform each y», i = 1,2,. . . , n, 
to z, = Cyj, which is (p — 1) x 1. By (3.62) and (3.64), the sample mean vector 
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Figure 5.4 Comparison of two profiles under the hypothesis of parallelism. 

and covariance matrix of z» = Cyi,i — 1,2,. . . , n, are z = Cy and S2 — CSC' , 
respectively. If y is Νρ(μ,Έ), then by property lb in Section 4.2, z = Cy is 
Νρ_ι(Ομ,α:θ). Thus when H0: Ομ = 0 is true, Cy is Νρ_!(0, C E C ' / n ) , 
and 

T2 = (Cy) ' (CSCVn)- 1 (Cy) = ^ C y ^ C S C ' ) " 1 (Cy) (5.33) 

is distributed as T^_hn_v We reject H0: Ομ = 0 if T2 > Τ^ρ_1ιη^. The 
dimension p— 1 corresponds to the number of rows of C. Thus z = Cy is (p— 1) x 1 
and S2 = C S C ' is (p - 1) x (p ~ 1). Note that the C's in (5.33) don't "cancel" 
because C is (p — 1) x p and does not have an inverse. In fact, T2 in (5.33) is less 
than T2 = n y ' S _ 1 y [see Rencher (1998, p. 84)]. 

If the variables have a natural ordering, as, for example, in the ramus bone data 
in Table 3.7, we could test for a linear trend or polynomial curve in the means by 
suitably choosing the rows of C. This is discussed in connection with growth curves 
in Section 6.10. Otherwise, any comparisons of interest can be made as long as they 
are linearly independent. 

5.9.2 Two-Sample Profile Analysis 

Suppose two independent groups or samples receive the same set of p tests or mea-
surements. If these tests are comparable, for example, all on a scale of 0 to 100, the 
variables will often be commensurate. 

Rather than testing the hypothesis that μ1 = μ2, we wish to be more specific in 
comparing the profiles obtained by connecting the points (j, ßij),j = 1,2,... ,p, 
and (j, M2j), j = 1,2,... ,p. There are three hypotheses of interest in comparing 
the profiles of two samples. The first of these hypotheses addresses the question 
"Are the two profiles similar in appearance, or more precisely, are they parallel?" 
We illustrate this hypothesis in Figure 5.4. If the two profiles are parallel, then one 
group scored uniformly better than the other group on all p tests. 
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The parallelism hypothesis can be defined in terms of the slopes. The two profiles 
are parallel if the two slopes for each segment are the same. If the two profiles are 
parallel, the two increments for each segment are the same, and it is not necessary to 
use the actual slopes to express the hypothesis. We can simply compare the increase 
from one point to the next. The hypothesis can thus be expressed as Η0Ϊ: μ^ — 
Mi,j-i = ß2j - M2,i-i for j = 2 , 3 , . . . ,p, or 

/ 

H, o i ■ 

μΐ2 
μΐ3 

Mil 
■ μ ΐ 2 

\ / 

\ βΐρ - μι,Ρ-ι / 

μ22 

μ23 

■M21 

μ22 

\ 

\ μ2Ρ - μ2,Ρ-ι / 

which can be written as HQI: Ομ1 = Ομ2, using the contrast matrix 

/ 1 0 
-1 1 

\ 0 0 0 

0 

1 / 

From two samples, y n , y i 2 , · · ■ , y i n i and y2i,y22, · · · ,Y2n2, we obtain y 1 , y 2 , 
and Spi as estimates of μ1, μ2, and Σ. As in the two-sample T2-test, we assume 
that each y ^ in the first sample is Νρ(μ1,Έ), and each y2i in the second sample is 
Νρ(μ2, Σ ) . If C is a (p — 1) x p contrast matrix as before, then C y H and Cy 2 i 
are distributed as Νρ-ι(Ομ1, C S C ) and Arp_1(C^2 iCSC') , respectively. Under 
HQ1: Ομ1 - Ομ2 = 0, the random vector Cy^ - Cy 2 is iVp_i[0, C S C ' ( l / n i + 
l/n2)] and 

T2 = (CY! - Cy2) 

ΠΐΠ 2 

1 1 — + — ni n2 
CSpiC 

- 1 

(Cyx - Cy2) 

Πΐ +Π2 
(y i -y2) 'C ' [CS p l C']- 1 C(y 1 -y 2 ) (5.34) 

Note that the dimension p — 1 is the number of rows is distributed as Tp_1 „1+ri2_ 
ofC. 

By analogy with the discussion in Section 5.5, if £f0i is rejected, we can follow up 
with univariate tests on the individual components of C(yj — y2) . Or alternatively 
we can calculate the discriminant function 

a = ( C S p l C ' ) - 1 C ( y 1 - y 2 ) (5.35) 

as an indication of which slope differences contributed most to rejection of Hoi in 
the presence of the other components of C(yj — y 2) . There should be less need in 
this case to standardize the components of a as suggested in Section 5.5, because the 
variables are assumed to be commensurate. The vector a is (p— 1) x 1, corresponding 
to the p — 1 segments of the profile. Thus if the second component of a, for example, 
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Table 5.4 Data Layout for Two-Sample Profile 
Analysis 

Tests (variables) 

1 2 ·· · p 

Group 1 
(i/iii 2/U2 ·· · yiip) 

(2/121 2/122 · · · 2/12p) 

(2/lnjl yini2 ■■■ 2/lnlP) 

Group 2 
Y21 = (2/211 2/212 · · · 2/21p) 

Y22 = (2/221 2/222 ■ ■ · 2/22p) 

Ύ2η2 = (2/2n2l 2/2n22 ·■■ 2/2n2p) 

is largest in absolute value, the divergence in slopes between the two profiles on the 
second segment contributes most to rejection of Hoi-

If the data are arranged as in Table 5.4, we see an analogy to a two-way ANOVA 
model. A plot of the means is often made in a two-way ANOVA; a lack of paral-
lelism corresponds to interaction between the two factors. Thus the hypothesis H0l 

is analogous to the group by test (variable) interaction hypothesis. 
However, the usual ANOVA assumption of independence of observations does 

not hold here because the variables (tests) are correlated. The ANOVA assumption 
of independence and homogeneity of variances would require cov(y) = Σ = σ2Ι. 
Hence the test of H0i cannot be carried out using a univariate ANOVA approach, 
since Σ φ σ2Ι. We therefore proceed with the multivariate approach using T2. 

The second hypothesis of interest in comparing two profiles is "Are the two pop-
ulations or groups at the same level!" This hypothesis corresponds to a group (pop-
ulation) main effect in the ANOVA analogy. We can express this hypothesis in terms 
of the average level of group 1 compared to the average level of group 2: 

„ Mil + μΐ2 H l· μιΡ __ A*2i + M22 H + M2P 
.«02 : — ~ ■ 

P V 

By (2.37), this can be expressed as 

#02: j'Mi = J ' M 2 · 

If Hoi is true, H02 can be pictured as in Figure 5.5(a). If H02 is false, then the two 
profiles differ by a constant (given that Hoi is true), as in Figure 5.5(b). 

The hypothesis H02 can be true when H0i does not hold. Thus the average level 
of population 1 can equal the average level of population 2 without the two profiles 
being parallel, as illustrated in Figure 5.6. In this case, the "group main effect" is 

y'n = 
y'12 

yini — 
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Figure 5.5 Hypothesis H02 of equal group effect, assuming parallelism. 

Figure 5.6 Hypothesis i702 of equal group effect without parallelism. 

somewhat harder to interpret, as is the case in the analogous two-way ANOVA, where 
main effects are more difficult to describe in the presence of significant interaction. 
However, the test may still furnish useful information if a careful description of the 
results is provided. 

To test i/02: j'(Mi - M2) = °> w e estimate ΐ'(μ1 - μ2) by j ' ^ - y2) , which is 
N[0, j ' S j ( l / n i + l/n2)] when H02 is true. We can therefore use 

t = J ' fo -ya) (5.36) 
^j 'SpJi l /m + l/na) 
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Figure 5.7 Hypothesis #03 of equal tests (variables) assuming parallelism. 

and reject H02 if |ί| > ί«/2,η1+η2-2· 
The third hypothesis of interest, corresponding to the test (or variable) main effect, 

is "Are the profiles flat?" Assuming parallelism (assuming H0i is true), the "flatness" 
hypothesis can be pictured as in Figure 5.7. If HQi is not true, the test could be carried 
out separately for each group using the test in Section 5.9.1. If iToi a nd Ä02 are true, 
the two profiles in Figure 5.7(a) and Figure 5.7(b) will be coincident. 

To express the third hypothesis in a form suitable for testing, we note from Fig-
ure 5.7(a) that the average of the two group means is the same for each test: 

H03: | O i i +M21) = |(Mi2 +^22) = ■·· = \{βιΡ + M2P) (5.37) 

or 
H03: | θ ( μ 1 + μ 2 ) = 0, (5.38) 

where C is a (p - 1) x p matrix such that Cj = 0. From Figure 5.7(a), we see 
that if i/01 is true> #03 could also be expressed as μχχ = μ\2 = · · · = μιρ and 
M2i = A*22 = ■ · ■ = β2Ρ or 

#03: ϋ μ ! = 0 and Ομ2 = 0. 

To estimate | (μχ +μ 2 ) , we use the sample grand mean vector based on a weighted 
average: 

- = rciYi + "2Ϋ2 
ni + n2 

It can easily be shown that under H03, E(Cy) = 0 and cov(y) = Σ / (η ι + n2). 
Therefore, Cy is ΛΓρ_ι [0, C S C ' / ( n i + n2)], and 

- (m + n 2 ) (Cy) ' (CS p l C' ) - 1 Cy (5.39) 

is distributed as T%_lni+n2_2 when H03 is true. It can be readily shown that H03 is 
unaffected by a difference in the profile levels (unaffected by the status of HQ2). 
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Figure 5.8 Profiles for the psychological data in Table 5.1. 

■ EXAMPLE 5.9.2 

We use the psychological data in Table 5.1 to illustrate two-sample profile anal-
ysis. The values of y^, y2 , and Spi are given in Example 5.4.2. The profiles of 
the two mean vectors y1 and y2 are plotted in Figure 5.8. There appears to be 
a lack of parallelism. 

To test for parallelism, HQ\ : Ομ1 = Ομ2, we use the matrix 

-7.05 -1.64 \ 
27.26 -12.74 

-12.74 23.72 / 

y2) = 74.240. 

Upon comparison of this value with T2
0l 3 62 — 12.796 (obtained by interpo-

lation in Table A.7), we reject the hypothesis of parallelism. 
In Figure 5.8 the lack of parallelism is most notable in the second and third 

segments. This can also be seen in the relatively large values of the second and 

- 1 1 0 0 
0 - 1 1 0 
0 0 - 1 1 

and obtain 

-1.62 \ / 10.96 
C(Fi - y2) = | 8.53 , C S p l C = -7.05 

-9.72 / \ -1.64 

Then, by (5.34), 

T2 = Ä § ( y ! -y2)'C(csplC)-1c(y1 
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third components of 

C ( y 1 - y 2 ) 

To see which of these made the greatest statistical contribution, we can exam-
ine the discriminant function coefficient vector given in (5.35) as 

a = ( C S p l C ' ) - 1 C ( y 1 - y 2 ) 

Thus the third segment contributed most to rejection in the presence of the 
other two segments. 

To test for equal levels, #02: J'A*I = J'A*2' w e u s e (5-36), 

■ ί ' (Ϋ ΐ -Ϋ2) 

0 'SpJ ( l / n i + l/ra2) 
16.969 

v/(164.276)(l/32 + l/32) 
5.2957. 

Comparing this with i.oos,62 = 2.658, we reject the hypothesis of equal levels. 
To test the flatness hypothesis, H03: \θ(μχ + μ2) = 0, we first calculate 

32y!+32y2 = y x + y 2 

32 + 32 2 

/ 14.16 \ 
14.91 
21.92 

\ 22.34 j 

Using 
-1 
1 
0 

we obtain, by (5.39), 

T2 = (32 + 32)(Cy) '(CSp iC')"1Cy = 254.004, 

which exceeds T2
m 3 62 = 12.796, so we reject the hypothesis of flatness. 

However, since the parallelism hypothesis was rejected, a more appropriate 
approach would be to test each of the two groups separately for flatness using 
the test of Section 5.9.1. By (5.33), we obtain 

T2 = n i i C y - i W C S i C ' r ^ C y ! ) = 221.126, 

T2 = n 2 (Cy 2 ) / (CS 2 C')" 1 (Cy 2 ) = 103.483. 

Both of these exceed T\ 01,3.31 
ness. 

14.626, and we have significant lack of flat-
D 
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PROBLEMS 

5.1 Show that the characteristic form of T2 in (5.6) is the same as the original form 
in (5.5). 

5.2 Show that the T2-statistic in (5.9) can be expressed in the characteristic form 
given in (5.10). 

5.3 Show that i2(a) = T2, where i(a) is given by (5.13), T2 is given by (5.9), and 
a = spi1(yi - y 2 ) as in (5.14). 

5.4 Show that the paired observation ί-test in (5.22), t = d/(sa/y/n), has the f„_i 
distribution. 

5.5 Show that s | = ΣΓ=ι (di — d)2 / (n — 1) = si + s2.— 2syx, as in a comparison 
of (5.22) and (5.23). 

5.6 Show that T2 = nd S ^ d in (5.24) has the characteristic form given by T2 = 

d'iSd/n)-1^. 

5.7 Use (5.7) to show that T2(x|y) in (5.29) can be converted to F as in (5.30). 

5.8 Show that the test statistic in (5.30) for additional information in x above and 
beyond y has an F-distribution by solving for R2 in terms of T2 from (5.20) 
and substituting this into (5.31). 

5.9 In Section 5.9.2, show that under H03 and Hoi, E(Cy) = 0 and cov(y) = 
Σ/(ηχ + ri2), where y = (riiy1 + Π2Ϋ2)/(ηι + 712) and Σ is the common 
covariance matrix of the two populations from which y t and y2 are sampled. 

5.10 Verify that T2 = (m + n 2 ) (Cy) ' (CS p iC ' )" 1 Cy in (5.39) is distributed as 
rp2 

p— I,ni+Tt2— 2* 

5.11 Test H0: μ' = (6,11) using the data 

/ 3 10 \ 
6 12 
5 14 ' 

V 1 0 9 ; 

5.12 Use the probe word data in Table 3.6: 

(a) Test H0 : μ = (30, 25,40,25,30)'. 
(b) If HQ is rejected, test each variable separately, using (5.3). 

5.13 For the probe word data in Table 3.6, test H0: μι — μ2 = · · · = A*5. using T2 

in (5.33). 

5.14 Use the ramus bone data in Table 3.7: 
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Table 5.5 Four Measurements on Two Species of Flea Beetles 

Haltica oleracea Haltica carduorum 

Experiment Experiment 
Number j/i y2 3/3 2/4 Number 7/1 y2 y3 2/4 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

189 
192 
217 
221 
171 
192 
213 
192 
170 
201 
195 
205 
180 
192 
200 
192 
200 
181 
192 

245 
260 
276 
299 
239 
262 
278 
255 
244 
276 
242 
263 
252 
283 
294 
277 
287 
255 
287 

137 
132 
141 
142 
128 
147 
136 
128 
128 
146 
128 
147 
121 
138 
138 
150 
136 
146 
141 

163 
217 
192 
213 
158 
173 
201 
185 
192 
186 
192 
192 
167 
183 
188 
177 
173 
183 
198 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

181 
158 
184 
171 
181 
181 
177 
198 
180 
177 
176 
192 
176 
169 
164 
181 
192 
181 
175 
197 

305 
237 
300 
273 
297 
308 
301 
308 
286 
299 
317 
312 
285 
287 
265 
308 
276 
278 
271 
303 

184 
133 
166 
162 
163 
160 
166 
141 
146 
171 
166 
166 
141 
162 
147 
157 
154 
149 
140 
170 

209 
188 
231 
213 
224 
223 
221 
197 
214 
192 
213 
209 
200 
214 
192 
204 
209 
235 
192 
205 

(a) Tes t i i o : μ = (48,49, 50,51) ' . 

(b) If Ho is rejected, test each variable separately, using (5.3). 

5.15 For the ramus bone data in Table 3.7, test HQ : μ\ = μ2 = μ% = μ^, using T 2 

in (5.33). 

5.16 Four measurements were made on two species of flea beetles (Lubischew 
1962). The variables were 

y\ = distance of transverse groove from posterior border of prothorax (/itn) 

7/2 = length of elytra (in 0.01 mm) 

?/3 = length of second antennal joint (μιη) 

t/4 = length of third antennal joint (μπ\) 

The data are given in Table 5.5. 

(a) Test H0: μχ = μ 2 using T 2 . 
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Table 5.6 Comparison of Six Tests on Engineer Apprentices and Pilots 

Engineer Apprentices Pilots 
2/1 

121 
108 
122 
77 
140 
108 
124 
130 
149 
129 
154 
145 
112 
120 
118 
141 
135 
151 
97 
109 

2/2 

22 
30 
49 
37 
35 
37 
39 
34 
55 
38 
37 
33 
40 
39 
21 
42 
49 
37 
46 
42 

2/3 

74 
80 
87 
66 
71 
57 
52 
89 
91 
72 
87 
88 
60 
73 
83 
80 
73 
76 
83 
82 

2/4 

223 
175 
266 
178 
175 
241 
194 
200 
198 
162 
170 
208 
232 
159 
152 
195 
152 
223 
164 
188 

2/5 

54 
40 
41 
80 
38 
59 
72 
85 
50 
47 
60 
51 
29 
39 
88 
36 
42 
74 
31 
57 

ye 

254 
300 
223 
209 
261 
245 
242 
242 
277 
268 
244 
228 
279 
233 
233 
241 
249 
268 
243 
267 

2/i 

132 
123 
129 
131 
110 
47 
125 
129 
130 
147 
159 
135 
100 
149 
149 
153 
136 
97 
141 
164 

2/2 

17 
32 
31 
23 
24 
22 
32 
29 
26 
47 
37 
41 
35 
37 
38 
27 
31 
36 
37 
32 

2/3 

77 
79 
96 
67 
96 
87 
87 
102 
104 
82 
80 
83 
83 
94 
78 
89 
83 
100 
105 
76 

2/4 

232 
192 
250 
291 
239 
231 
227 
234 
256 
240 
227 
216 
183 
227 
258 
283 
257 
252 
250 
187 

2/5 

50 
64 
55 
48 
42 
40 
30 
58 
58 
30 
58 
39 
57 
30 
42 
66 
31 
30 
27 
30 

2/6 

249 
315 
319 
310 
268 
217 
324 
300 
270 
322 
317 
306 
242 
240 
271 
291 
311 
225 
243 
264 

(b) If the T2-test in part (a) rejects H0, carry out a ί-test on each variable, as 
in (5.15). 

(c) Calculate the discriminant function coefficient vector a = S",1 (y1 — y 2) . 

(d) Show that if the vector a found in part (c) is substituted into i2(a) from 
(5.13), the result is the same as the value of T2 found in part (a). 

(e) Obtain T2 using the regression approach in Section 5.6.2. 

(f) Test the significance of each variable adjusted for the other three. 

(g) Test the significance of 2/3 and 2/4 adjusted for y\ and 2/2· 

5.17 Carry out a profile analysis on the beetle data in Table 5.5. 

5.18 Twenty engineer apprentices and 20 pilots were given six tests (Travers 1939). 
The variables were 

Hi = intelligence 2/4 = dotting 
j/2 = form relations 2/5 = sensory motor coordination 
t/3 = dynamometer j/6 — perseveration 

The data are given in Table 5.6. 
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(a) Test HQ : μχ = μ2. 

(b) If the T2-test in part (a) rejects H0, carry out a f-test for each variable, 
as in (5.15). 

(c) Test each variable adjusted for the other five. 

(d) Test the significance of 2/4,2/5,2/6 adjusted for 2/1,2/2,2/3· 

5.19 Data were collected in an attempt to find a screening procedure to detect car-
riers of Duchenne muscular dystrophy, a disease transmitted from female car-
riers to some of their male offspring (Andrews and Herzberg 1985, pp. 223-
228). The following variables were measured on a sample of noncarriers and 
a sample of carriers: 

2/1 = age 
2/2 — month in which measurements are taken 
2/3 = creatine kinase 
2/4 = hemopexin 
2/5 = lactate dehydrogenase 
2/6 = pyruvate kinase 

The data are given in Table 5.7. 

(a) Test H0: μχ = μ2 using 2/3,2/4,2/5, and y6. 

(b) The variables 2/3 and 2/4 are relatively inexpensive to measure compared 
to 2/5 and 2/6· Do 2/5 and 2/6 contribute an important amount to T2 above 
and beyond 2/3 and 2/4? 

(c) The levels of 2/3,2/4,2/5, and 2/6 may depend on age and season, 2/1 and 
2/2. Do 2/1 and 2/2 contribute a significant amount to T2 when adjusted 
for 2/3,2/4,2/5, and 2/6? 

5.20 Various aspects of economic cycles were measured for consumer goods and 
producer goods by Tintner (1946). The variables are 

2/1 = length of cycle 
2/2 = percentage of rising prices 
2/3 = cyclical amplitude 
2/4 = rate of change 

The data for several items are given in Table 5.8. 

(a) Test H0: μλ = μ2 using T2 . 
(b) Calculate the discriminant function coefficient vector. 
(c) Test for significance of each variable adjusted for the other three. 
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Table 5.7 Comparison of Carriers 

2/1 

22 
32 
36 
22 
23 
30 
27 
30 
25 
26 
26 
27 
26 
27 
27 
31 
31 
35 
28 
28 
28 
27 
27 
28 
24 
23 
27 
25 
34 
34 
25 
20 
20 
31 
31 
26 
26 
21 
27 

2/2 

6 
8 
7 
11 
1 
5 
8 
11 
10 
2 
3 
7 
10 
3 
7 
4 
9 
10 
4 
8 
9 
7 
3 
6 
9 
8 
3 
2 
3 
7 
7 
7 
5 
6 
7 
7 
7 
11 
6 

Noncarriers 

2/3 

52 
20 
28 
30 
40 
24 
15 
22 
42 
130 
48 
31 
47 
36 
24 
34 
38 
40 
59 
75 
72 
42 
30 
24 
26 
65 
34 
37 
73 
87 
35 
31 
62 
48 
40 
55 
32 
26 
25 

2/4 

83.5 
77.0 
86.5 
104.0 
83.0 
78.8 
87.0 
91.0 
65.5 
80.3 
85.2 
86.5 
53.0 
56.0 
57.5 
92.7 
96.0 
104.6 
88.0 
81.0 
66.3 
77.0 
80.2 
87.0 
84.5 
75.0 
86.3 
73.3 
57.4 
76.3 
71.0 
61.5 
81.0 
79.0 
82.5 
85.5 
73.8 
79.3 
91.0 

2/5 

10.9 
11.0 
13.2 
22.6 
15.2 
9.6 
13.5 
17.5 
13.3 
17.1 
22.7 
6.9 
14.6 
18.2 
5.6 
7.9 
12.6 
16.1 
9.9 
10.1 
16.4 
15.3 
8.1 
3.5 

20.7 
19.9 
11.8 
13.0 
7.4 
6.0 
8.8 
9.9 
10.2 
16.8 
6.4 
10.9 
8.6 
16.4 
10.3 

2/6 

176 
200 
171 
230 
205 
151 
232 
198 
216 
211 
160 
162 
131 
105 
130 
140 
158 
209 
128 
177 
156 
163 
100 
132 
145 
187 
120 
254 
107 
87 
186 
172 
181 
182 
151 
216 
147 
123 
135 

and Noncarriers of Muscular Dystrophy 

Carriers 
2/1 

30 
41 
22 
22 
20 
42 
59 
35 
36 
35 
29 
27 
27 
28 
29 
30 
30 
30 
31 
32 
32 
37 
38 
39 
39 
34 
35 
58 
58 
38 
30 
42 
43 
29 

2/2 

10 
10 
8 
8 
10 
9 
8 
9 
6 
2 
4 
4 
9 
4 
8 
2 
7 
8 
6 
2 
5 
2 
6 
1 
9 
6 
4 
8 
2 
1 
8 
8 
11 
3 

2/3 

167 
104 
30 
44 
65 
440 
58 
129 
104 
122 
265 
285 
25 
124 
53 
46 
40 
41 
657 
465 
485 
168 
286 
388 
148 
73 
36 
19 
34 
113 
57 
78 
73 
69 

2/4 

89.0 
81.0 
108.0 
104.0 
87.0 
107.0 
88.2 
93.1 
87.5 
88.5 
83.5 
79.5 
91.0 
92.0 
76.0 
71.0 
85.5 
90.0 
104.0 
86.5 
83.5 
82.5 
109.5 
91.0 
105.2 
105.5 
92.8 
100.5 
98.5 
97.0 
105.0 
118.0 
104.0 
111.0 

2/5 

25.6 
26.8 
8.8 
17.4 
23.8 
20.2 
11.0 
18.3 
16.7 
21.6 
16.1 
36.4 
49.1 
32.2 
14.0 
16.9 
12.7 
9.7 

110.0 
63.7 
73.0 
23.3 
31.9 
41.6 
18.8 
17.0 
22.0 
10.9 
19.9 
18.8 
12.9 
15.5 
20.6 
16.0 

ye 

364 
245 
284 
172 
198 
239 
259 
188 
256 
263 
136 
245 
209 
298 
174 
197 
201 
342 
358 
412 
382 
261 
260 
204 
221 
285 
308 
196 
299 
216 
155 
212 
201 
175 
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Table 5.8 Cyclical Measurements of Consumer Goods and Producer Goods 

Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Consumer Goods 

2/i 

72 
66.5 
54 
67 
44 
41 
34.5 
34.5 
24 

2/2 

50 
48 
57 
60 
57 
52 
50 
46 
54 

2/3 

8 
15 
14 
15 
14 
18 
4 
8.5 
3 

2/4 

0.5 
1.0 
1.0 
0.9 
0.3 
1.9 
0.5 
1.0 
1.2 

Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Producer Goods 

2/i 

57 
100 
100 
96.5 
79 
78.5 
48 

155 
84 

105 

2/2 

57 
54 
32 
65 
51 
53 
50 
44 
64 
35 

2/3 

12.5 
17 
16.5 
20.5 
18 
18 
21 
20.5 
13 
17 

2/4 

0.9 
0.5 
0.7 
0.9 
0.9 
1.2 
1.6 
1.4 
0.8 
1.8 

5.21 Each of 15 students wrote an informal and a formal essay Kramer (1972, p. 
100). The variables recorded were the number of words and the number of 
verbs: 

yi = number of words in the informal essay 
2/2 = number of verbs in the informal essay 
x\ = number of words in the formal essay 
X2 = number of verbs in the formal essay 

The data are given in Table 5.9. Since each student wrote both types of essays, 
the observation vectors are paired, and we use the paired comparison test. 

(a) Test HQ: μά = 0. 
(b) Find the discriminant function coefficient vector. 
(c) Do a univariate ί-test on each dj. 

5.22 A number of patients with bronchus cancer were treated with ascorbate and 
compared with matched patients who received no ascorbate (Cameron and 
Pauling 1978). The data are given in Table 5.10. The variables measured were 

y\, x\ = survival time (days) from date of first hospital admission 
2/2 5^2 = survival time from date of untreatability 

Compare y\ and y2 with x\ and x2 using a paired comparison T2-test. 

5.23 Use the glucose data in Table 3.9: 

(a) Test H0: μυ = μχ using a paired comparison test. 
(b) Test the significance of each variable adjusted for the other two. 
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Table 5.9 Number of Words and Number of Verbs 

Student 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Informal 

Words 
2/i 

148 
159 
144 
103 
121 
89 

119 
123 
76 

217 
148 
151 
83 

135 
178 

Verbs 
2/2 

20 
24 
19 
18 
17 
11 
17 
13 
16 
29 
22 
21 
7 

20 
15 

Formal 

Words 
Xl 

137 
164 
224 
208 
178 
128 
154 
158 
102 
214 
209 
151 
123 
161 
175 

Verbs 
X2 

15 
25 
27 
33 
24 
20 
18 
16 
21 
25 
24 
16 
13 
22 
23 

rfi = yi - xi 

+ 11 
- 5 

- 8 0 
-105 

-57 
- 3 9 
- 3 5 
- 3 5 
- 2 6 
+3 

-61 
0 

- 4 0 
- 2 6 
+3 

di = 2/2 - xi 

+5 
- 1 
- 8 

- 1 5 
- 7 
- 9 
- 1 
- 3 
- 5 
+4 
- 2 
+5 
- 6 
- 2 
- 8 

Table 5.10 Survival Times for Bronchus Cancer Pa-
tients and Matched Controls 

Ascorbate Patients 
2/i 

81 
461 

20 
450 
246 
166 
63 
64 

155 
151 
166 
37 

223 
138 
72 

245 

2/2 

74 
423 

16 
450 

87 
115 
50 
50 

113 
38 

156 
27 

218 
138 
39 

231 

Matched Controls 
X\ 

72 
134 
84 
98 
48 

142 
113 
90 
30 

260 
116 
87 
69 

100 
315 
188 

£ 2 

33 
18 
20 
58 
13 
49 
38 
24 
18 
34 
20 
27 
32 
27 
39 
65 



CHAPTER 6 

MULTIVARIATE ANALYSIS OF 
VARIANCE 

In this chapter we extend univariate analysis of variance to multivariate analysis of 
variance, in which we measure more than one variable on each experimental unit. 
For multivariate analysis of covariance, see Rencher (1998, Section 4.10). 

6.1 ONE-WAY MODELS 

We begin with a review of univariate analysis of variance (ANOVA) before covering 
multivariate analysis of variance (MANOVA) with several dependent variables. 

6.1.1 Univariate One-Way Analysis of Variance (ANOVA) 

In the balanced one-way ANOVA, we have a random sample of n observations from 
each of k normal populations with equal variances, as in the following layout: 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 169 
Copyright © 2012 John Wiley & Sons, Inc. 



1 7 0 MULTIVARIATE ANALYSIS OF VARIANCE 

Sample l Sample 2 Sample k 
ίτοπιΝ(μι,σ2) from Ν(μ2,σ

2) ... from N(ßk, σ2) 

2/ii 2/2i · · · 2/fei 
2/12 2/22 · · · Vk2 

Vln yin ■ ■ ■ Vkn 

Vk. 

Vk. 

The k samples or the populations from which they arise are sometimes referred to 
as groups. The groups may correspond to treatments applied by the researcher in an 
experiment. We have used the "dot" notation for totals and means for each group: 

Total 
Mean 
Variance 

2/1· 

Vi. 

si 

2/2. 

272. 

si 

Σ̂ > **. = Σν· (61) 

The k samples are assumed to be independent. The assumptions of independence 
and common variance are necessary to obtain an F-test. 

The model for each observation is 

Vij = μ + cti + Ei *3 

βί + ^ij, i — 1, 2 , . . . , fc;j — 1,2,.. . ,n; 
(6.2) 

where μ^ = μ + a.i is the mean of the ith population. We wish to compare the sample 
means yi , i = 1,2,.. . , k, to see if they are sufficiently different to lead us to believe 
the population means differ. The hypothesis can be expressed as H0: μ\ = μ^ = 
• · - = μΗ. Note that the notation for subscripts differs from that of previous chapters, 
in which the subscript i represented the observation. In this chapter, we use the last 
subscript in a model such as (6.2) to represent the observation. 

If the hypothesis is true, all y^· are from the same population, Ν(μ, σ2), and we 
can obtain two estimates of σ2, one based on the sample variances s\, s | , ·. ·, s\ 
[see (3.4) and (3.5)] and the other based on the sample means tji^y2.-, ■ ■ ■ ,Vk.- The 
pooled "within-sample" estimator of σ2 is 

o 1 v—"■ 2 Σ^ί=ι 2_7=ι(2/ϋ "~ Vi.) l^ijVij ~ z^iVi./11· t(-~s. 
si = T/

 Si = π n = —~π τ̂  · ( 6 ·3 ) 

e k ̂  kin - 1) k(n - 1) 
i = l 

Our second estimate of σ2 (under HQ) is based on the variance of the sample 
means, 

a2 = Zti(yi.-y..)2
) {6A) 

where y = Σί=ι Vi./k ' s t ne overall mean. If HQ is true, s^ estimates σ | = σ2/η 
[see remarks following (3.1) in Section 3.1], and therefore E(ns^) — η(σ2 jn) = 
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σ2, from which the estimate of σ2 is 

„2 n 
^k 

Σ<=ι (vi. - y.f Σί y?./n - v2/kn 

n4 = —,_! - = - , _Γ ' ( 6 · 5 ) 

where j / . . = ^V j / , . = Σ^ yi3 is the overall total. If H0 is false, £(ras|) = σ2 + 
n X]i «2/(fc - 1). and n s | will tend to reflect a larger spread in y1 , y2 ,..., yk . 
Since s2 is based on variability within each sample, it estimates σ2 whether or not 
Ho is true; thus E(sl) = σ2 in either case. 

When sampling from normal distributions, s2, a pooled estimator based on the k 
values of s2, is independent of s | , which is based on the j/^ 's. We can justify this 
assertion by noting that yi and sf are independent in each sample (when sampling 
from the normal distribution) and that the k samples are independent of each other. 
Since ns^ and s2 are independent and both estimate σ2, their ratio forms an F-
statistic (see Section 7.3.1): 

F = " 4 _ {Ejyl/n-y2.ßn)/(k-i) 
4 (Eijtij-Eiyin/lKn-i) 
SSH/(fc - 1) 

(6.6) 
SSE/[fc(n - 1)] 
M S H «ΊΛ 
MSE' ( 6 · 7 ) 

where SSH — J2i y\ jn -y2Jkn and SSE = £ \ . yf- -^iVi. In WQ m e "between"-
sample sum of squares (due to the means) and "within"-sample sum of squares, 
respectively, and MSH and MSE are the corresponding sample mean squares. The 
F-statistic (6.6) is distributed as Fk-itk(n-i) when Ho is true. We reject Ho if 
F > Fa. The F-statistic (6.6) can be shown to be a simple function of the likelihood 
ratio. 

6.1.2 Multivariate One-Way Analysis of Variance Model (MANOVA) 

We often measure several dependent variables on each experimental unit instead of 
just one variable. In the multivariate case, we assume that k independent random 
samples of size n are obtained from p-variate normal populations with equal covari-
ance matrices, as in the following layout for balanced one-way multivariate analysis 
of variance (MANOVA). (In practice, the observation vectors y^ would ordinarily 
be listed in row form, and sample 2 would appear below sample 1, and so on. See, 
for example, Table 6.2.) 
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Sample 1 Sample 2 Sample k 
from Νρ(μ1,'Σ) from Νρ(μ2, Σ) .. . from Νρ(μΙο, Σ) 

y n 
y i 2 

y i n 

y 2 i 
y22 

y 2 n 

y k i 
yfc2 

yfcn 

Total 
Mean 

y i . 
y i . 

ya. 

y2 . 

y* . 

Totals and means are defined as follows: 

Total of the ith sample: y,. = ^™=1 y%j. 

Overall total: y.. = £ * = 1 Έ]=ι Yy · 
Mean of the ith sample: yi# = y^./n. 
Overall mean: y = y.Jkn. 

The model for each observation vector is 

Yij — μ + ai+ £ij 

= μί + εα,ί = 1,2, ...,k; 

In terms of the p variables in y^ , (6.8) becomes 

/Viji\ 

\VijpJ 

(ßx\ 
ß2 

/ α « \ 

\ßp/ 

OLi2 

\Oiip) 

+ 
£ij2 

\£iJP/ 

1,2,. 

fßil\ 
μί2 

\ßip) 

+ 
£ij2 

\sijp/ 

(6.8) 

so that the model for the rth variable (r — 1,2,... ,p) in each vector yjj is 

yijr f^r t ^ i r ' &ijr Mir ' ^ijr· 

We wish to compare the mean vectors of the k samples for significant differences. 
The hypothesis is therefore 

HQ: μλ = μ2 = ■ · = μ>ΐ
 vs- Hi- at least two μ'β are unequal. 

Equality of the mean vectors implies that the k means are equal for each variable; 
that is, / i i r = μ2τ = ■ ■ ■ = ßkr for r — 1,2,.. . , p. If two means differ for just one 
variable, for example, μ23 Φ μ-43, then Ho is false and we wish to reject it. We can 
see this by examining the elements of the population mean vectors: 

i/o: 
μΐ2 

V /*lp / 

M22 

V M2p / 

/ Mfci \ 
Mfc2 

\ Mfcp / 
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Thus H0 implies p sets of equalities: 

μιι 
μΐ2 

μ2ΐ 
μ22 

μ/π 
Mfc2 

μ ΐ ρ μ 2 Ρ ßkp· 

All p(fc — 1) equalities must hold for Ho to be true; failure of only one equality will 
falsify the hypothesis. 

In the univariate case, we have "between" and "within" sums of squares SSH and 
SSE. By (6.3), (6.5), and (6.6), these are given by 

SSH >Σ& 
k n 

SSE = EE(^ 
i=l 3 = 1 

Vif 

k 2 

^ n 

Σ4-

kn 

-Σ yt 
n 

By analogy, in the multivariate case, we have "between" and "within" matrices H 
and E, defined as 

H = n£(y i.-yJ(y i.-y..)' 

k γ 

(6.9) 

-Υί.Ύί kn y..y.. 

E 
k 

i=l j = l 

(6.10) 

The pxp "hypothesis" matrix H has a "between" sum of squares on the diagonal for 
each of the p variables. Off-diagonal elements are analogous sums of products for 
each pair of variables. Assuming there are no linear dependencies in the variables, 
the rank of H is the smaller of p and VH, min(p, i/fj), where VH represents the degrees 
of freedom for hypothesis; in the one-way case VH = k — 1. Thus H can be singular. 
The pxp "error" matrix E has a "within" sum of squares for each variable on the 
diagonal with analogous sums of products off-diagonal. The rank of E is p, unless 
VE is less than p. 

Thus H has the form 

/ SSHn 
SPH12 

H 

SPH12 
SSH22 

SPH lp \ 
SPH2p 

\ SPH lp SPH2p 

(6.11) 

böfipp J 
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where, for example, 

SSH22 = n ^ , 2 - y . , ) 2 = E ^ - S > 
i=\ i 

SPH12 = n Q » u - »..i)(yi.2 - v..2) = Σ j/t.ij/i.2 y..iy..2 

n kn 

In these expressions, the subscript 1 or 2 indicates the first or second variable. Thus, 
for example, yi2 is the second element in y ; : 

/ Vi.i \ 
Vi.2 

Ύϊ. = 

\ Vi.P / 

The matrix E can be expressed in a form similar to (6.11): 

E = 

/ SSE11 SPE12 · · · SPE lp \ 
SPE i2 SSE22 ·■· SPE2p 

\ SPE lp SPE2p · ■ · SSEpp ) 

(6.12) 

where, for example, 

SSE22 = E 5> j2 - v^f = Σ 4 - Σ ? . 
i=l j = l ij i 

SPE12^^2^2(yiji-yi.l)(ylj2-yi.2) = 1^2yijiyij2-Y^ 

k n 

=1 i = i 
n 

Note that the elements of E are sums of squares and products, not variances and 
covariances. To estimate Σ , we use Spi = E/(nfe — k), so that 

E 
E 

nk — k 
= Σ . 

6.1.3 Wilks' Test Statistic 

The likelihood ratio test of H0: μ1 = μ2 = ■ ■ - = ßk is given by 

IE + HI ' 
(6.13) 
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which is known as Wilks' Λ. (It has also been called Wilks' U.) We reject Ho 
if A < AQ)Pii//f)„E. Note that rejection is for small values of Λ. Exact critical 
values AaiP^H^B for Wilks' Λ are found in Table A.9, taken from Wall (1967). The 
parameters in Wilks' Λ distribution are 

p = number of variables (dimension), 
VH = degrees of freedom for hypothesis, 
VE = degrees of freedom for error. 

Wilks' Λ compares the "within" sum of squares and products matrix E to the 
"total" sum of squares and products matrix E + H. This is similar to the uni-
variate F-statistic in (6.6) that compares the between sum of squares to the within 
sum of squares. By using determinants, the test statistic Λ is reduced to a scalar. 
Thus the multivariate information in E and H about separation of mean vectors 
yl. > y2. j · · · > y"fc. *s channeled into a single scale, on which we can determine whether 
the separation of mean vectors is significant. This is typical of multivariate tests in 
general. 

The mean vectors occupy a space of dimension s — min(p, UH), and within this 
space various configurations of these mean vectors are possible. This suggests the 
possibility that another test statistic may be more powerful than Wilks' Λ. Competing 
test statistics are discussed in Sections 6.1.4 and 6.1.5. 

Some of the properties and characteristics of Wilks' Λ are as follows: 

1. In order for the determinants in (6.13) to be positive, it is necessary that VE > 
P-

2. For any MANOVA model, the degrees of freedom VJJ and VE are always the 
same as in the analogous univariate case. In the balanced one-way model, for 
example, vH = k - 1 and vE = k(n - 1). 

3. The parameters p and vu can be interchanged; the distribution of APjVHtl/B is 
the same as that of AUHtPil/E+l///_p. 

4. Wilks' A in (6.13) can be expressed in terms of the eigenvalues λι, λ 2 , . . . , Xs 

of E" 1 ! ! , as follows: 
Λ = Πϊτν ( 6 · 1 4 ) 

The number of nonzero eigenvalues of E ^ H is s = min(p, VH), which is 
the rank of H. The matrix H E - 1 has the same eigenvalues as E - 1 H (see 
Section 2.11.5) and could be used in its place to obtain A. However, we prefer 
E _ 1 H because we will use its eigenvectors later. 

5. The range of A is 0 < A < 1, and the test based on Wilks' A is an inverse 
test in the sense that we reject H0 for small values of A. If the sample mean 
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Table 6.1 Transformations of Wilks' Λ to Exact Upper Tail F-Tests 

Parameters 
P,VH 

Any p, vH = 1 

Any p, vH = 2 

p = 1, any VH 

p = 2, any VH 

Statistic Having 
F-Distribution 

1 - Λ vE - p + 1 
Λ p 

1-VÄ VE-P+1 

y/K P 

1 - Λ vE 

Λ vH 

1 - Λ/Λ I/B - 1 

Λ/Λ ^Η 

Degrees of 
Freedom 

p, vE - P + 1 

2p,2(vB - p + 1) 

VH,VE 

2VH,2(VE-1) 

vectors were equal, we would have H = O and Λ = |E | / |E + 0 | = 1. On 
the other hand, as the sample mean vectors become more widely spread apart 
compared to the within-sample variation, H becomes much "larger" than E, 
and Λ approaches zero. 

6. In Table A.9, the critical values decrease for increasing p. Thus the addition 
of variables will reduce the power unless the variables contribute to rejection 
of the hypothesis by causing a significant reduction in Λ. 

7. When i/# = 1 or 2 or when p = 1 or 2, Wilks' Λ transforms to an exact 
-F-statistic. The transformations from Λ to F for these special cases are given 
in Table 6.1. The hypothesis is rejected when the transformed value of Λ 
exceeds the upper a-level percentage point of the F-distribution, with degrees 
of freedom as shown. 

8. For values of p and i/jj other than those in Table 6.1, an approximate F-statistic 
is given by 

- ^ 
with dfi and df2 degrees of freedom, where 

df!=pvH, df2 = wt- \{pvH - 2 ) , 

w = VE + VH ~ \{p + vH + 1), t 

When pun = 2, ί is set equal to 1. The approximate F in (6.15) reduces to 
the exact F-values given in Table 6.1, when either VH orp is 1 or 2. 
A (less accurate) approximate test is given by 

X2 = - h 5 - ^ ( p - ^ + l)]lnA, (6.16) 
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Figure 6.1 Three samples with significant Wilks' Λ but nonsignificant F's. 

which has an approximate x2-distribution with pun degrees of freedom. We 
reject HQ if χ2 > χ^. This approximation is accurate to three decimal places 
whenp2 + v2

H < \f, where / = vE - \(p - uH + 1). 

Although it is more expensive computationally, there is also a method for ob-
taining exact p-values for Λ. This exact method is due to Lee (1972) and Davis 
(1979) and is available in modern statistical computing packages. For exam-
ple, in SAS Version 9 (SAS Institute Inc., 2009) exact tests can be requested 
using the "MSTAT = EXACT" option of the MANOVA statement in PROC 
GLM. 

9. If the multivariate test based on Λ rejects HQ, it could be followed by an 
F-test as in (6.6) on each of the p individual y's. We can formulate a hy-
pothesis comparing the means across the k groups for each variable, namely, 
Hor: μιΓ = μιτ = ■ ■ ■ — μ^Γ, r = 1, 2 , . . . ,p. It does not necessarily follow 
that any of the F-tests on the p individual variables will reject the correspond-
ing Hor- Conversely, it is possible that one or more of the F's will reject Hor 

when the Λ-test accepts HQ. In either case, where the multivariate test and the 
univariate tests disagree, we use the multivariate test result rather than the uni-
variate results. This is similar to the relationship between Z2-tests and z-tests 
shown in Figure 5.2. 

In the three bivanate samples plotted in Figure 6.1, we illustrate the case where 
Λ rejects HQ : μχ = μ2 = μ3 but the F's accept both of HQT : μίτ = μ^τ = 
μ3Γ) r = 1,2, that is, for t/i and y^. There is no significant separation of the 
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three samples in either the y\ or y2 direction alone. Other follow-up proce-
dures are given in Sections 6.1.4 and 6.4. 

10. The Wilks' Λ-test is the likelihood ratio test. Other approaches to test con-
struction lead to different tests. Three such tests are given in Sections 6.1.4 
and 6.1.5. 

6.1.4 Roy's Test 

In the union-intersection approach, we seek the linear combination Zij = a!yij that 
maximizes the spread of the transformed means Zj. = a'y^ relative to the within-
sample spread of points. Thus we seek the vector a that maximizes 

Σ*=ιΣ?=ι(*ο·-*.)7(*«-*)' 

which, by analogy to s\ = a 'Sa in (3.55), can be written as 

(6.17) 

= a'H>/(fc - 1) 
a'Ea/(fcn - Jfc) 

This is maximized by ai , the eigenvector corresponding to λχ, the largest eigenvalue 
of E _ 1 H (see Section 8.4.1), and we have 

a lHa i / f l f c - l ) _ k(n - 1) 
a a'1Eai/(fcn - k) k - 1 

Since m a x a F in (6.19) is maximized over all possible linear functions, it no 
longer has an F-distribution. To test Ho : μ1 — μ2 — ■ ■ ■ = μ]ς. based on λι, we use 
Roy's union-intersection test, also called Roy's largest root test. The test statistic is 
given by 

(6.20) Ai 

1 + λΓ 
Critical values for Θ are given in Table A. 10 (Pearson and Hartley 1972, Pillai 1964, 
1965). We reject HQ : μ1 = μ2 = ■ ■ ■ = ßk if θ > θα,β<τη,Ν. The parameters s, m, 
and iV are defined as 

s = min(uH,p), rn = \{\vH - p\ - 1), N = \{vE - V ~ 1)· 

For s = 1, use (6.33) and (6.36) in Section 6.1.7 to obtain an F-test. 
The eigenvector ai corresponding to λι is used in the discriminant function, 

z — a'jy. Since this is the function that best separates the transformed means 
Zi. = B.'yi ,i = 1,2,... ,k [relative to the within-sample spread, see (6.17)], the 
coefficients a n , ai2, · · . , «iP in the linear combination z = a'xy can be examined 
for an indication of which variables contribute most to separating the means. The 
discriminant function is discussed further in Sections 6.1.8 and 6.4 and in Chapter 8. 



ONE-WAY MODELS 179 

We do not have a satisfactory F-approximation for Θ or λι, but an "upper bound" 
on F that is provided in some software programs is given by 

_ (VK — d — 1)λι 
F=K-^ LI, (6.21) 

with degrees of freedom d and vE — d — 1, where d = max(p, uH). The term 
"upper bound" indicates that the F in (6.21) is greater than the "true F"; that is, 
F > FdtVE-d-i- Therefore, we feel safe if H0 is accepted by (6.21), but if rejection 
of Ho is indicated, the information is virtually worthless. 

Fortunately, there exists a method due to Davis (1972) and Pillai and Flury (1984) 
that allows us to calculate an exact p-value associated with Roy's largest root. This 
exact method has been implemented in SAS Version 9 (SAS Institute Inc., 2009) by 
using the "MSTAT = EXACT" option of the MANOVA statement in PROC GLM. 

Some computer programs do not provide eigenvalues of nonsymmetric matrices, 
such as E _ 1 H . However, the eigenvalues of E _ 1 H are the same as the eigenvalues 
of the symmetric matrices ( Ε 1 / 2 ) - ΐ Η ( Ε 1 / 2 ) " 1 and ( U ' ) ^ H U ' 1 , where E 1 / 2 is 
the square root matrix of E given in (2.112) and U 'U = E is the Cholesky factor-
ization of E (Section 2.7). We demonstrate this for the Cholesky approach. We first 
multiply the defining relationship ( E _ 1 H — AI)a — 0 by E to obtain 

(H - AE)a = 0. (6.22) 

Then substituting E = U 'U into (6.22), multiplying by ( U ' ) - 1 , and inserting 
U~XU = I, we have 

(H - AU'U)a = 0, 

(U ' ) _ 1 (H - AU'U)a = (U ' ) _ 1 0 = 0, 

[ (U' ) _ 1 H - AU]U _ 1Ua = 0, 

[ ( U ' ) _ 1 H U _ 1 - AI]Ua = 0. (6.23) 

Thus ( U ' ) _ 1 H U _ 1 has the same eigenvalues as E _ 1 H and has eigenvectors of the 
form Ua, where a is an eigenvector of E _ 1 H . Note that ( U ' ) _ 1 H U _ 1 is positive 
semidefinite, and thus λ̂  > 0 for all eigenvalues of E _ 1 H . 

6.1.5 Pillai and Lawley-Hotelling Tests 

There are two additional test statistics for HQ : μλ = μ2 = · ■ · = ßk based on the 
eigenvalues λ1; λ 2 , . . . , Xs of E _ 1 H . The Pillai statistic is given by 

Ws)=tr[(E + H)-1H] = Υτ^ΓΤ- <6 ·2 4> 
i= i 1 + Xi 

We reject H0 for V^s^ > Va . The upper percentage points, Va , are given in Table 
A. 11 (Schuurmann et al. 1975), indexed by s, m, and N, which are defined as in 
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Section 6.1.4 for Roy's test. For s = 1, use (6.33) and (6.36) in Section 6.1.7 to 
obtain an F-test. 

Pillai's test statistic in (6.24) is an extension of Roy's statistic θ = λ ι / (1 + λ ι ) . If 
the mean vectors do not lie in one dimension, the information in the additional terms 
Ai/(1 + A;), i = 2 , 3 , . . . , s, may be helpful in rejecting H0. 

For parameter values not included in Table A.ll , we can use an approximate F-
statistic: 

(2N + s+l)V^ 
1 ~ (2m + s + l)(s-V(°)y ( 6"2 5 ) 

which is approximately distributed as Fs(2m+s+i),s(2N+s+i)- The approximation in 
(6.25) can also be given as 

(VB-p+a)V(-) 
F2~ d{s-Vl·)) ' ( 6 · 2 6 ) 

withstand S(VE—P+S) degrees of freedom, where d = max(p, vu). A more recent 
F-approximation due to Müller (1998) has been shown to yield better properties than 
F\ and F%, but is more computationally expensive. Although it is too complicated 
to present in detail here, it has been implemented in software packages such as SAS 
Version 9 (SAS Institute Inc., 2009). 

The Lawley-Hotelling statistic (Lawley 1938, Hotelling 1951) is defined as 
s 

U{s) = tr(E_1H) = ΣΚ (6.27) 
i = l 

and is also known as Hotelling's generalized T2-statistic (see a comment at the end 
of Section 6.1.7). Table A.12 (Davis 1970a,b, 1980) gives upper percentage points 
of the test statistic 

—C/ ( s ) . 
VH 

We reject H0 for large values of the test statistic. Note that in Table A.12, p < VH 
andp < vE- If p > VH, use {vH,p,vE + vH - p) in place of (p,VH,VE)- (This 
same pattern in the parameters is found in Wilks' Λ; see property 3 in Section 6.1.3) 
If VH = 1 and p > 1, use the relationship C (1 ) = T2/i/E [see (6.38) in Sec-
tion 6.1.7]. For other values of the parameters not included in Table A.12, we can 
use an approximate F-statistic: 

U(s) 
F1 = , (6.28) 

c 
which is approximately distributed as F0i&, where 

L t a+ 2 a(b-2) 
a — pvn-, o = 4 + — - , c — 

B 

B-V b(uE - P - 1)' 
(VE + VH -P- l)(^g ~ 1) 

{VE-P-S)(VE-P) 
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An alternative F-approximation is given by 

2(sN + l)t/(s) 
F 2 = 2V0 x x , v (6 ·29) 

r ( 2 m + s + 1) 

with s(2m + s + 1) and 2(sN + 1) degrees of freedom. The approximation in (6.29) 
can also be given by 

F3 = [ ^ - P - D + 2 ] ^ ) 

with ρι/# and «(ί^ — p — 1) + 2 degrees of freedom. 
An exact p-value based on U^ has been given by Davis (1970c, 1980) and has 

been implemented with the other multivariate exact tests in SAS Version 9 (SAS 
Institute Inc., 2009). 

6.1.6 Unbalanced One-Way MANOVA 

The balanced one-way model can be easily extended to the unbalanced case, in which 
there are rii observation vectors in the ith group. The model in (6.8) becomes 

Yij = ß + a>i + £ij = ßi+ £ij, i = 1,2,. . . , k; j = 1, 2 , . . . , m. 

The mean vectors become yL = Y™LX Yij/rii and y = Σ*=1 Σ%\ Yij/N> where 
iV = Σί=ι Tu. Similarly, the total vectors are defined as y». = Σ^ιΥν ar*d 
y.. = Σα y^. The H and E matrices are calculated as 

H = Ylni(yi.-y..)(yi.-yJ = Σ ^y.y·. - ^y..y'., (6.31) 
i = l i=l l 

E = Σ Σ > * - yi.)(y« -y,)' = Σ Σ > ^ ; - Σ ^*·^· <6-32> 
i = l j = l i = l .7 = 1 «=1 

Wilks' Λ and the other tests have the same form as in Sections 6.1.3-6.1.5 using H 
and E from (6.31) and (6.32). In each test we have 

k 

UH — k — 1, UE = N — k — 2 , ni ~ k. 

Note that N = Σί ni differs from N used as a parameter in Roy's and Pillai's tests 
in Sections 6.1.4 and 6.1.5. 
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6.1.7 Summary of the Four Tests and Relationship to T 2 

We compare the four test statistics in terms of the eigenvalues λι > λ2 > . . . > Xs 

of E _ 1 H , where s — min(^#,p): 

Pillai V^ =Σ~λί 

i= 1 

Lawley-Hotelling U{s) =Y^Xi 
i = l 

s 1 
Wilks' lambda Λ = TT 

« = 1 

Roy's largest root Θ 
1 + λι 

Note that for all four tests we must have VE > P- As noted in Section 6.1.3 and else-
where, p is the number of variables, VH is the degrees of freedom for the hypothesis, 
and VE is the degrees of freedom for error. 

Why do we use four different tests? All four are exact tests; that is, when H0 is 
true, each test has probability a of rejecting H0. However, the tests are not equiva-
lent, and in a given sample they may lead to different conclusions even when Ho is 
true; some may reject H0 while others accept H0. This is due to the multidimensional 
nature of the space in which the mean vectors μλ, μ 2 , . . . , μ^ lie. A comparison of 
power and other properties of the tests is given in Section 6.2. 

When VH = 1, then s is also equal to 1, and there is only one nonzero eigenvalue 
λι. In this case, all four test statistics are functions of each other and give equivalent 
results. In terms of Θ, for example, the other three become 

uW = λ ι = Γ=-0> ( 6 · 3 3 ) 

V{1) = θ, (6.34) 

Λ = 1 - θ. (6.35) 

In the case of VH = 1, all four statistics can be transformed to an exact F using 

F=VE-P+1U11) {636) 

P 
which is distributed as Fp „E_ p + i . 

The equivalence of all four test statistics to Hotelling's T2 when vH = 1 was 
noted in Section 5.6.1. We now demonstrate the relationship T2 = (m + n^ — 
2)f7<x> in (5.17). For H and E, we use (6.31) and (6.32), which allow unequal 
rii, since we do not require n\ = n2 in T2. In this case, with only two groups, 
H = Y?i=l n^yj - y..)(yj. - y..)' can be expressed as 

H = ; r x ? r ^ 1 - " ^2.)(Ϋι. - y2.)' = <ΫΙ. - Ϋ2 .)(ΫΙ. - y2.)', (637) 
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where c = n1n2/(n1 + n2). Then by (6.33) and (6.27), U^ becomes 

U(1) = λι = t r ^ H ) 

= ί φ Ε " 1 ^ . - y ^ f o . - y2.)'] [by (6.37)] 

= ctrKWi. ~ Ϋ2.)Έ-1(Ϋι. " Ϋ2.)] N (2.97)] 

n\ + n2 - 2 
T2 

(YI . -Ύ2. 
E 

n\ + n2 - 2 (yi. - y 2 . ) 

n\ +n2 
2' 

(6.38) 

since E/ (n i + n2 - 2) = Sp] (see Section 5.4.2). From this result, (5.16), (5.18), 
and (5.19) follow immediately using (6.33)-(6.35). 

Because of the direct relationship in (6.38) between U^ and T2 for the case 
of two groups, the Lawley-Hotelling statistic U^ is often called the generalized 
T2-statistic. 

EXAMPLE 6.1.7 

In a classical experiment carried out from 1918 to 1934, apple trees of different 
rootstocks were compared (Andrews and Herzberg 1985, pp. 357-360). The 
data for eight trees from each of six rootstocks are given in Table 6.2. The 
variables are 

yi = trunk girth at 4 years (mm x 100) 
2/2 = extension growth at 4 years (m) 
2/3 = trunk girth at 15 years (mm x 100) 
2/4 = weight of tree above ground at 15 years (lb x 1000) 

The matrices H, E, and E + H are given by 

/ 

H 

E 

E + H 

V 

.074 

.537 

.332 

.208 
.320 

1.697 
.554 
.217 
.394 

2.234 
.886 
.426 

.537 .332 .208 \ 
4.200 2.355 1.637 
2.355 6.114 3.781 1 

1.637 3.781 2.493 / 
1.697 

12.143 
4.364 
2.110 
2.234 

16.342 
6.719 
3.747 

.554 .217 \ 
4.364 2.110 
4.291 2.482 
2.482 1.723 / 

.886 .426 \ 
6.719 3.747 

10.405 6.263 
6.263 4.21 6 / 

In this case, the mean vectors represent six points in four-dimensional space. 
We can compare the mean vectors for significant differences using Wilks' Λ as 
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Table 6.2 Rootstock Data 

Rootstock 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 

y i 

1.11 
1.19 
1.09 
1.25 
1.11 
1.08 
1.11 
1.16 
1.05 
1.17 
1.11 
1.25 
1.17 
1.15 
1.17 
1.19 
1.07 
.99 

1.06 
1.02 
1.15 
1.20 
1.20 
1.17 
1.22 
1.03 
1.14 
1.01 
.99 

1.11 
1.20 
1.08 
.91 

1.15 
1.14 
1.05 
.99 

1.22 
1.05 
1.13 
1.11 
.75 

1.05 
1.02 
1.05 
1.07 
1.13 
1.11 

2/2 

2.569 
2.928 
2.865 
3.844 
3.027 
2.336 
3.211 
3.037 
2.074 
2.885 
3.378 
3.906 
2.782 
3.018 
3.383 
3 Ml 
2.505 
2.315 
2.667 
2.390 
3.021 
3.085 
3.308 
3.231 
2.838 
2.351 
3.001 
2.439 
2.199 
3.318 
3.601 
3.291 
1.532 
2.552 
3.083 
2.330 
2.079 
3.366 
2.416 
3.100 
2.813 

.840 
2.199 
2.132 
1.949 
2.251 
3.064 
2.469 

2/3 

3.58 
3.75 
3.93 
3.94 
3.60 
3.51 
3.98 
3.62 
4.09 
4.06 
4.87 
4.98 
4.38 
4.65 
4.69 
4.40 
3.76 
4.44 
4.38 
4.67 
4.48 
4.78 
4.57 
4.56 
3.89 
4.05 
4.05 
3.92 
3.27 
3.95 
4.27 
3.85 
4.04 
4.16 
4.79 
4.42 
3.47 
4.41 
4.64 
4.57 
3.76 
3.14 
3.75 
3.99 
3.34 
3.21 
3.63 
3.95 

2/4 

.760 

.821 

.928 
1.009 
.766 
.726 

1.209 
.750 

1.036 
1.094 
1.635 
1.517 
1.197 
1.244 
1.495 
1.026 
.912 

1.398 
1.197 
1.613 
1.476 
1.571 
1.506 
1.458 
.944 

1.241 
1.023 
1.067 
.693 

1.085 
1.242 
1.017 
1.084 
1.151 
1.381 
1.242 
.673 

1.137 
1.455 
1.325 
.800 
.606 
.790 
.853 
.610 
.562 
.707 
.952 
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given by (6.13): 
Λ = Α = ^ Ζ 1 = .154. 

E + H 4.2667 

In this case, the parameters of the Wilks' Λ distribution are p = 4, vu = 
6—1 = 5, and VE = 6(8 — 1) = 42. We reject HQ: μλ = μ2 — ■ ■ ■ = μ6 

because 
Λ = .154 <Λ.05,4,5,4ο = -455. 

Note the use of UE = 40 in place of VE = 42. This is a conservative approach 
that allows a table value to be used without interpolation. 

To obtain an approximate F, we first calculate 

j?v*H - 4 / 4252-4 
* = V P ' + ^ - S = V 42 + 5 2 - 5 = 3 · 3 1 6 6 , 

w = vE + vH - \(p + vH + 1) = 42 + 5 - | ( 4 + 5 + 1) = 42, 

dfj = pvH = 4(5) = 20, df2 =wt- \{pvH - 2) = 130.3. 

Then the approximate F is given by (6.15), 

1 - A1/* df2 = 1 - (.154)1/3·3166 130.3 = 

Λ1/* dfi (.154)1/3·3166 20 ' ' 

which exceeds F.001,20,120 = 2.53, and we reject HQ. 
The four eigenvalues of E _ 1 H are 1.876, .791, .229, and .026. With these 

we can calculate the other three test statistics. For Pillai's statistic we have, by 
(6.24), 

Λ 

"λ,; V(») = Σ ^ V = 1.305. 
=1 

To find a critical value for V^ in Table A.l 1, we need 

s = min(vH,p) = 4 , m = \{\vH - p\ - 1) = 0, 
N = ±(vE - p - 1) = 18.5. 

Then V$ = .645 (by interpolation). Since 1.305 > .645, we reject H0. 
For the Lawley-Hotelling statistic we obtain, by (6.27), 

[/(*) = ^ λ ί = 2.921. 

To make the test, we calculate the test statistic 

f^tfO») = f (2.921) = 24.539. 
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The .05 critical value for i/ßU^/un is given in Table A.12 as 7.6188 (using 
VE = 40), and we therefore reject HQ. 

Roy's test statistic is given by (6.20) as 

« λ ΐ L 8 7 6 .652, 
1 + λι 1 + 1.876 

which exceeds the .05 critical value .377 obtained (by interpolation) from Ta-
ble A. 10, and we reject H0. D 

6.1.8 Measures of Multivariate Association 

In multiple regression, a measure of association between the dependent variable y 
and the independent variables x\, X2, ■ ■ ■, xq is given by the squared multiple corre-
lation 

2 regression sum of squares 
R = ——— . (6.39) 

total sum of squares 

Similarly, in one-way univariate ANOVA, Fisher's correlation ratio η2 is defined as 

2 between sum of squares 
n total sum of squares 

This is a measure of model fit similar to R2 and gives the proportion of variation in 
the dependent variable y attributable to differences among the means of the groups. It 
answers the question "How well can we predict y by knowing what group it is from?" 
Thus η2 can be considered to be a measure of association between the dependent 
variable y and the grouping variable i associated with μ» or a» in the model (6.2). In 
fact, if the grouping variable is represented by k — 1 dummy variables (also called 
indicator or categorical variables), then we have a dependent variable related to 
several independent variables as in multiple regression. 

A dummy variable takes on the value 1 for sampling units in a group (sample) and 
0 for all other sampling units. (Values other than 0 and 1 could be used.) Thus for k 
samples (groups), the k — 1 dummy variables are 

{i 
if sampling unit is in ith group 

0 otherwise l , 2 , . . . , f c - l . 

Only k — 1 dummy variables are needed because if x\ = χ<χ = ■ ■ ■ = Xk-ι = 0, the 
sampling unit must be from the fcth group (see Section 11.6.2 for an illustration). The 
dependent variable ?/can be regressed on the fc—1 dummy variables x\,X2, ■ ■ ■ ,Xk-i 
to produce results equivalent to the usual ANOVA calculations. 

In (one-way) MANOVA, we need to measure the strength of the association 
between several dependent variables and several independent (grouping) variables. 
Various measurements of multivariate association have been proposed. Wilks (1932) 
suggested a "generalized if": 

MANOVA η2 = η\ = 1 - Λ, (6.40) 
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based on the use of |E| and |E + H| as generalizations of sums of squares. We use 
1 — Λ because Λ is small if the spread in the means is large. 

We now consider an η2 based on Roy's statistic, Θ. We noted in Section 6.1.4 
that the discriminant function is the linear function z = a[y that maximizes the 
spread of the means ~z~i. = a[yi ,i = 1,2,.. . , k, where ai is the eigenvector of 
E - 1 H corresponding to the largest eigenvalue λχ. We measure the spread among 
the means by SSH = n Σί=ι(^ί- ~~ z..)2, divided by the within-sample spread SSE 
— Σζί(ζν ~ ~Zi.)2· The maximum value of this ratio is given by λι [see (6.19)]. 
Thus 

_ SSH(z) 
1 ~ SSE(z)' 

and by (6.20), 
λι SSH(z) 

l + λ ι SSE(z) + SSH(z)' 
Hence Θ serves directly as a measure of multivariate association: 

λ 

(6.41) 

It can be shown that the square root of this quantity, 

* = VTTV ( 6 · 4 3 ) 

is the maximum correlation between a linear combination of the p dependent vari-
ables and a linear combination of the k — 1 dummy group variables (see Section 
11.6.2). This type of correlation is often called a canonical correlation (see Chap-
ter 11) and is defined for each eigenvalue λχ, λ 2 , . . . , \ s as τ̂  = ^/λΐ/(1 + λ7). 

We now consider some measures of multivariate association suggested by Cramer 
and Nicewander (1979) and Müller and Peterson (1984). It is easily shown (Sec-
tion 11.6.2) that Λ can be expressed as 

Λ=Πτ^-=ήο-.2>. (6.44) 

where rf = Ai/(1 + λ») is the ith squared canonical correlation described above. 
The geometric mean of a set of positive numbers a i , a 2 , . . . , a n is defined as 
(a\a2 ■ ■. an)1/71. Thus Λ1/5 is the geometric mean of the (1 - rf )'s, and another 
measure of multivariate association based on Λ, in addition to that in (6.40), is 

A A = l-A1/s. (6.45) 

In fact, as noted by Müller and Peterson, the F-approximation given in (6.15), 

1 - Λ1/« df2 
F Λ1/« dfi' 
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is very similar to the univariate F-statistic (10.31) for testing significance in multiple 
regression, 

F= /ffrf
del> (6.46) 

(1 - Rd)/{df error) 
based on R2 in (6.39). 

Pillai's statistic is easily expressible as the sum of the squared canonical correla-
tions: 

i—1 i—1 

and the average of the rf can be used as a measure of multivariate association: 

AP = ^ = 1 ' = . (6.48) 
s s 

In terms of Ap the F-approximation given in (6.26) becomes 

p = Ap/pvH 

(1 -Ap)/s(vE -VH + S ) ' 
(6.49) 

which has an obvious parallel to (6.46). 
For the Lawley-Hotelling statistic U^s\ a multivariate measure of association can 

be defined as 

ALH = fr—. (6.50) 
l + U^/s 

If s = 1, (6.50) reduces to (6.42). In fact, (6.42) is a special case of (6.50) because 
JJ(S) j s _ ^ * = 1 \i/s is the arithmetic average of the A;'s. It is easily seen that 
the F-approximation F 3 for the Lawley-Hotelling statistic given in (6.30) can be 
expressed in terms of ^4LH as 

F = ALH/pvH fi,n 
3 (l-ALH)/[s(vE-p-l)+2Y ( ■ ' 

which resembles (6.46). 

■ EXAMPLE 6.1.8 

We illustrate some measures of association for the rootstock data in Table 6.2: 

ηΐ = 1 - Λ = .846, 
η2

θ = θ = .652, 

AA = 1 - Λ1/4 = 1 - (.154)1/4 = .374, 

AP = V(s)/s = 1.305/4 = .326, 

_ uM/s _ 2.921/4 _ 
LH " 1 + t /W/s " 1 + 2.921/4 ~ 

There is a wide range of values among these measures of association. D 
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Figure 6.2 Two possible configurations for three mean vectors in 3-space. 

6.2 COMPARISON OF THE FOUR MANOVA TEST STATISTICS 

When i / 0 : Mi — A*2 = ' ' " = Vk ' s true> a ' l t n e mean vectors are at the same 
point. Therefore, all four MANOVA test statistics have the same Type I error rate, 
a, as noted in Section 6.1.7; that is, all have the same probability of rejection when 
Ho is true. However, when Ho is false, the four tests have different probabilities of 
rejection. We noted in Section 6.1.7 that in a given sample the four tests need not 
agree, even if HQ is true. One test could reject HQ and the others accept i /0 , for 
example. 

Historically, Wilks' Λ has played the dominant role in MANOVA significance 
tests because it was the first to be derived and has well-known χ2- and F-approxima-
tions. It can also be partitioned in certain ways we will find useful later. However, 
it is not always the most powerful among the four tests. The probability of rejecting 
Ho when it is false is known as the power of the test. 

In univariate ANOVA with p = 1, the means μ\, μ2,..., ßk can be uniquely or-
dered along a line in one dimension, and the usual F-test is uniformly most powerful. 
In the multivariate case, on the other hand, with p > 1, the mean vectors are points in 
s = min(p, VH) dimensions. We have four tests, not one of which is uniformly most 
powerful. The relative powers of the four test statistics depend on the configuration 
of the mean vectors μΧ, μ2, ■ ■ ■, μ& in the s-dimensional space. A given test will be 
more powerful for one configuration of mean vectors than another. 

If VH < p, then s = VH and the mean vectors lie in an s-dimensional subspace 
of the p-dimensional space of the observations. The points may, in fact, occupy a 
subspace of the s dimensions. For example, they may be confined to a line (one 
dimension) or a plane (two dimensions). This is illustrated in Figure 6.2. 

An indication of the pattern of the mean vectors is given by the eigenvalues of 
E _ 1 H . If there is one large eigenvalue and the others are small, the mean vectors lie 
close to a line. If there are two large eigenvalues, the mean vectors lie mostly in two 
dimensions, and so on. 
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Because Roy's test uses only the largest eigenvalue of E _ 1 H , it is more pow-
erful than the others if the mean vectors are collinear. The other three tests have 
greater power than Roy's when the mean vectors are diffuse (spread out in several 
dimensions). 

In terms of power, the tests are ordered Θ > U^ > A > V^ for the collinear 
case. In the diffuse case and for intermediate structure between collinear and diffuse, 
the ordering of power is reversed, V ^ > Λ > U^ > Θ. The latter ordering also 
holds for accuracy of the Type I error rate when the population covariance matrices 
Σ ι , Σ2, · · ·, Σ^ are not equal. These orderings are comparisons of power. For ac-
tual computation of power in a given experimental setting or to find the sample size 
needed to yield a desired level of power, see Rencher (1998, Section 4.4). 

Generally, if group sizes are equal, the tests are sufficiently robust with respect 
to heterogeneity of covariance matrices so that we need not worry. If the rij's are 
unequal and we have heterogeneity, then the a-level of the MANOVA test may be 
affected as follows. If the larger variances and covariances are associated with the 
larger samples, the true a-level is reduced and the tests become conservative. On the 
other hand, if the larger variances and covariances come from the smaller samples, 
a is inflated, and the tests become liberal. Box's M-test in Section 7.3.2 can be used 
to test for homogeneity of covariance matrices. 

In conclusion, the use of Roy's Θ is not recommended in any situation except 
the collinear case under standard assumptions. In the diffuse case its performance is 
inferior to that of the other three tests, both when the assumptions hold and when they 
do not. If the data come from nonnormal populations exhibiting skewness or positive 
kurtosis, any of the other three tests perform acceptably well. Among these three, 
V^ is superior to the other two when there is heterogeneity of covariance matrices. 
Indeed V^ is first in all rankings except those for the collinear case. However, Λ is 
not far behind, except when there is severe heterogeneity of covariance matrices. It 
seems likely that Wilks' Λ will continue its dominant role because of its flexibility 
and historical precedence. 

In practice, most MANOVA software programs routinely calculate all four test 
statistics, and they usually reach the same conclusion. In those cases when they differ 
as to acceptance or rejection of the hypothesis, one can examine the eigenvalues 
and covariance matrices and evaluate the conflicting conclusions in light of the test 
properties discussed previously. 

■ EXAMPLE 6.2 

We inspect the eigenvalues of E _ 1 H for the rootstock data of Table 6.2 for an 
indication of the configuration of the six mean vectors in a four-dimensional 
space. The eigenvalues are 1.876, .791, .229, .026. The first eigenvalue 1.876 
constitutes a proportion 

L™ = . 6 4 2 
1.876+ .791+ .229+.026 
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of the sum of the eigenvalues. Therefore, the first eigenvalue does not dominate 
the others and the mean vectors are not collinear. The first two eigenvalues 
account for a proportion 

1.876 + .791 
.913 1.876 +• • • + .026 

of the sum of the eigenvalues, and thus the six mean vectors lie largely in two 
dimensions. Since the mean vectors are not collinear, the test statistics Λ, V^s\ 
and U^ will be more appropriate than Θ in this case. D 

6.3 CONTRASTS 

As in Sections 6.1.1-6.1.5, we consider only the balanced model where m — ri2 = 
■■■ = rik = n. We begin with a review of contrasts in the univariate setting before 
moving to the multivariate case. 

6.3.1 Univariate Contrasts 

A contrast in the population means is defined as a linear combination 

δ = οΛμι +ο2μ2-\ hckßk, (6.52) 

where the coefficients satisfy 
k 

Σ ct = 0. (6.53) 
i= l 

An unbiased estimator of δ is given by 

£ = cii/i. + c2y2. + --- + ckyk.· (6.54) 

The sample means yi were defined in (6.1). Since the y^ 's are independent with 
variance σ 2 /η , the variance of δ is 

™& = ΐ-Σ*> 
i=l 

which can be estimated by 

s »-"^Σ* <«5> 71 ■ i 

where MSE was defined in (6.6) and (6.7) as SSE/fc(n - 1). 
The usual hypothesis to be tested by a contrast is 

H0: δ = βιμι + c2ß2 H h ckßk = 0. 
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For example, suppose k = 4 and that a contrast of interest to the researcher is 3μι -
M2 — β3 — Μ4· If t m s contrast is set equal to zero, we have 

3μι = β2 + M3 + μ\ or μι = | ( μ 2 + β3 + μ±), 

and the experimenter is comparing the first mean with the average of the other three. 
A contrast is often called a comparison among the treatment means. 

Assuming normality, HQ : δ = 0 can be tested by 

( 5 - 0 
t= , (6.56) 

S5 

which is distributed as tVE. Alternatively, since t2 = F, we can use 

F = ^ 

k 
δ2 [Ei=iciy· 
JS M S E E t x cf/n 
w ( E i c . F j 2 / £ , c i 

MSE (6.57) 

which is distributed as F\tVE . The numerator of (6.57) is often referred to as the sum 
of squares for the contrast. 

If two contrasts δ = ΣΪ aißi a nd 7 — Σ ί ^ißi are such that ΣΪ ai^i = 0> ^ 
contrasts are said to be orthogonal. The two estimated contrasts can be written in 
the form ^ α ^ = a'y and £ \ hyL = b 'y, where y = (Vi.,y2., ■ ■ ■ ,Vk)'■ T h e n 

Y^ii α&ί = a 'b = 0, and by the discussion following (3.14), the coefficient vectors a 
and b are perpendicular. 

When two contrasts are orthogonal, the two corresponding sums of squares are 
independent. In fact, for k treatments, we can find k — 1 orthogonal contrasts that 
partition the treatment sum of squares SSH into fc — 1 independent sums of squares, 
each with one degree of freedom. In the unbalanced case (Section 6.1.6), orthogonal 
contrasts such that J2i ai^i = 0 no longer partition SSH into k ~ 1 independent sums 
of squares. For a discussion of contrasts in the unbalanced case, see Rencher (1998, 
Sections 4.8.2 and 4.8.3) or Rencher and Schaalje (2008, Section 15.2.2). 

6.3.2 Multivariate Contrasts 

There are two usages of contrasts in a multivariate setting. We have previously en-
countered one use in Section 5.9.1, where we considered the hypothesis Ho: Ομ = 
0 with Cj — 0. Each row of C sums to zero, and Ομ is therefore a set of contrasts 
comparing the elements μι,μ2,...,μροΐμ with each other. In this section, on the 
other hand, we consider contrasts comparing several mean vectors, not the elements 
within a vector. 

A contrast among the population mean vectors is defined as 

δ = €Χμχ + ε2μ2 Η l· ckßk, (6.58) 
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where 2J i = 1 Q = 0. An unbiased estimator of δ is given by the corresponding 
contrast in the sample mean vectors: 

<* = ClYl. + C2Y2. + · · ■ + CfcYfc.· (6.59) 

The sample mean vectors y1 , y2 , . . . , yk as defined in Section 6.1.2 were assumed 
to be independent and to have common covariance matrix, cov(y"j_) = Σ / η . Thus 
the covariance matrix for δ is given by 

cov(i) + 4- + + 4 
Σ 

Σ· (6.60) 

which can be estimated by 

^ p i y c 2 
n ^ l 

i=l 
VE)\ n 

where Spi = E/v^ is an unbiased estimator of Σ . 
The hypothesis H0 : δ = 0 or HQ : ο\μι + ε2μ2 + · · · + c^k = 0 makes 

comparisons among the population mean vectors. For example, μχ — 2μ2 + μ3 = 0 
is equivalent to 

M2 = \{V\ +M3)> 
and we are comparing μ2 to the average of μ1 and μ3. Of course, this implies that 
every element of μ2 must equal the corresponding element of | ( μ χ + μ3): 

/ μ2ΐ \ / 5(^11 +M3i) \ 
/•*22 2 (Ml2 + /"32) 

\ β2ρ ) \ \{μΐρ + μΆρ) ) 

Under appropriate multivariate normality assumptions, H0: οχμ^ + ο2μ2 Η h 
c^k — 0 or HQ : δ = 0 can be tested with the one-sample T2-statistic 

Σ-= 
which is distributed as T!?,, . 

ba (tcS<) ( (6.61) 

In the one-way model under discussion here, VE = 
fc(n-l). 

An equivalent test of H0 can be made with Wilks' Λ. By analogy with the numer-
ator of (6.57), the hypothesis matrix due to the contrast is given by 

H i 
Σ Κ 

i= l 
I>y*. E c ^ (6.62) 

v i = l 
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The rank of Hi is 1, and the test statistic is 
IEI 

IE + H, 
(6.63) 

which is distributed as ΛΡιι)1/Ε. The other three MANOVA test statistics can also 
be applied here using the single nonzero eigenvalue of E _ 1 H i . Because VH = 1 
in this case, all four MANOVA statistics and T2 give the same results; that is, all 
five transform to the same F-value using the formulations in Section 6.1.7. If k — 1 
orthogonal contrasts are used, they partition the H matrix into k — 1 independent 
matrices H i , H 2 , . . . , Hfc_i. Each H^ matrix has one degree of freedom because 
rank (H*) = 1. 

■ EXAMPLE 6.3.2 

We consider the following two orthogonal contrasts for the rootstock data in 
Table 6.2: 

2 - 1 - 1 - 1 - 1 2 
1 0 0 0 0 - 1 . 

The first compares μχ and μ6 with the other four mean vectors. The second 
compares μ1 vs. μ6. Thus i f 0 i : 2μ·ι — A*2 ~ M3 — M4 — A*5 + 2^6 = 0 can 
be written as 

Hoi: 2μχ + 2μ6 = μ2 + μ3 + μ4+ μ5. 
Dividing both sides by 4 so as to express this in terms of averages, we obtain 

# o i : \{μ\ + μ6) = J(A*2 + Ms + M4 + Ms)· 

Similarly, the hypothesis for the second contrast can be expressed as 

#02: μ-ι = / V 
The mean vectors are given by 

Ϋ1. Ϋ2. Ϋ3. Ϋ4. Ϋ5. Ϋ6. 

1.14 1.16 1.11 1.10 1.08 1.04 
2.98 3.11 2.82 2.88 2.56 2.21 
3.74 4.52 4.46 3.91 4.31 3.60 
.87 1.28 1.39 1.04 1.18 .74 

For the first contrast, we obtain Hi from (6.62) as 

= γ^(2Ϋι. - y2. - · · · + 2y6.)(2y1. - y2. - · · ■ + 2y6 .) ' 

12 

/ - .095 \ 
- .978 
-2.519 

\ -1.680 / 

(-.095, -.978, -2.519, -1.680) 



TESTS ON INDIVIDUAL VARIABLES FOLLOWING REJECTION OF H0 BY THE OVERALL MANOVA TEST 1 9 5 

/ .006 .062 .160 .106 \ 
.062 .638 1.642 1.095 
.160 1.642 4.229 2.820 

\ .106 1.095 2.820 1.881 / 

Then 
IEI .6571 

.443, 
|E + H i | 1.4824 

which is less than Λ.05,4,1,40 = -779 from Table A.9. We therefore reject #01· 
To test the significance of the second contrast, we have 

o 
H 2 = 2 ^ 1 . - Ϋ 6 . ) ( Ϋ 1 . -Ϋ6.Υ 

(.101, .762,.142,.136) 

/ .101 \ 
.762 
.142 

V .136 / 
/ .041 .309 .058 .055 \ 

.309 2.326 .435 .415 

.058 .435 .081 .078 
\ .055 .415 .078 .074 / 

Then 
Λ IEI .6571 .750, 

|E + H 2 | .8757 
which is less than Λ.05,4,1,40 = -779, and we reject H02· D 

6.4 TESTS ON INDIVIDUAL VARIABLES FOLLOWING REJECTION OF 
Ho BY THE OVERALL MANOVA TEST 

In Section 6.1, we considered tests of equality of mean vectors, HQ: μχ — μ2 = 
■ ■ ■ — μ^, which implies equality of means for each of the p variables: 

H0r' Mir = A*2r = · · · = ßkr, r = 1,2, . . . , p . 

This hypothesis could be tested for each variable by itself with an ordinary univariate 
ANOVA F-test, as noted in property 9 in Section 6.1.3. For example, if there are 
three mean vectors, 

Mi = 

/ ^ 1 1 \ 
μΐ2 

V Mi? ) 

ß2 

( M21 \ 

M22 

V μ2Ρ ) 

μ3 

( /"31 \ 

Μ32 

V ^Ρ ) 

we have Hm : μη = μ2ι = μτα,Η02 ■ μ\ι = μιι = Μ32, · · ·, Η0ρ: μ1ρ = μ2ρ 

μ$ρ. Each of these p hypotheses can be tested with a simple ANOVA F-test. 
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If an F-test is made on each of the p variables regardless of whether the overall 
MANOVA test of H0- μ± = μ2 = μ% rejects H0, then the overall a-level will 
increase beyond the nominal value because we are making p tests. As in Section 5.5, 
we define the overall a or experimentwise error rate as the probability of rejecting 
one or more of the p univariate tests when HQ : μλ — μ2 = μ3 is true. We could 
"protect" against inflation of the experimentwise error rate by performing tests on 
individual variables only if the overall MANOVA test of HQ : μλ — μ2 = ^3 is 
rejected. In this procedure, the probability of rejection for the tests on individual 
variables is reduced, and these tests become more conservative. 

Rencher and Scott (1990) compared the above two procedures for testing the in-
dividual variables in a one-way MANOVA model. Since the focus was on a-levels, 
only the case where HQ is true was considered. Specifically, the two procedures were 
as follows: 

1. A univariate F-test is made on each variable, testing HQ,.: μχτ — μ2τ — 
■ ■ ■ = ßkry r = l,2,...,p. In this context, the p univariate tests constitute 
an experiment and one or more rejections are counted as one experimentwise 
error. No multivariate test is made. 

2. The overall MANOVA hypothesis H0: μ1 = μ2 = · ■ · = μ1ο is tested with 
Wilks' Λ, and if HQ is rejected, p univariate F-tests on HQI,HQ2,..., HQP are 
carried out. Again, one or more rejections among the F-tests are counted as 
one experimentwise error. 

The amount of intercorrelation among the multivariate normal variables was in-
dicated by X)f=1(l/Aj)/p, where λι, λ 2 , . . . , λρ are the eigenvalues of the popula-
tion correlation matrix P p . Note that X)j(l/Aj)/p = 1 for the uncorrelated case 
(P p = I) and Ι^(1/λ») /ρ > 1 for the correlated case (P p Φ I). When the vari-
ables are highly intercorrelated, one or more of the eigenvalues will be near zero (see 
Section 4.1.3), and Σ^Ι/λ^/ρ will be large. 

The error rates of these two procedures were investigated for several values of 
p, n, k, and Σ ; (1 /%) /ρ , where p is the number of variables, n is the number of 
observation vectors in each group, k is the number of groups, and ^ ( Ι / λ ^ / ρ is 
the measure of intercorrelation defined above. In procedure 1, the probability of 
rejecting one or more univariate tests when H0 is true varied from .09 to .31 (a was 
.05 in each test). Such experimentwise error rates are clearly unacceptable when 
the nominal value of a is .05. However, this approach is commonly used when the 
researcher is not familiar with the MANOVA approach or does not have access to 
appropriate software. 

Table 6.3 contains the error rates for procedure 2, univariate F-tests following a 
rejection by Wilks' Λ. The values range from .022 to .057, comfortably close to the 
target value of .05. No apparent trends or patterns are seen; the values do not seem 
to depend on p, k, n, or amount of intercorrelation as measured by ^ ( Ι / λ ^ / ρ . 
Thus when univariate tests are made only following a rejection of the overall test, the 
experimentwise error rate is about right. 
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Table 6.3 Experimentwise Error Rates for Procedure 2: Univariate F-Tests Following Re-
jection by Wilks' Λ 

Zj(l/Ai)/P 

1 10 100 1000 

n 

5 
5 
5 

10 
10 
10 
20 
20 
20 

V 

3 
5 
7 
3 
5 
7 
3 
5 
7 

k = 3 

.043 

.041 

.030 

.047 

.047 

.034 

.050 

.045 

.055 

k = 5 

.037 

.037 

.042 

.041 

.037 

.054 

.043 

.055 

.051 

k = 3 

.022 

.039 

.035 

.030 

.026 

.037 

.032 

.042 

.029 

k = 5 

.035 

.057 

.045 

.033 

.049 

.047 

.054 

.051 

.040 

k = 3 

.046 

.038 

.039 

.043 

.041 

.047 

.048 

.037 

.033 

fc = 5 

.039 

.035 

.037 

.045 

.026 

.040 

.039 

.044 

.051 

k = 3 

.022 

.027 

.026 

.026 

.027 

.040 

.040 

.050 

.039 

Jfc = 5 

.029 

.039 

.048 

.032 

.029 

.044 

.032 

.043 

.033 

Based on these results, we recommend making an overall MANOVA test followed 
by F-tests on the individual variables (at the same a-level as the MANOVA test) only 
if the MANOVA test leads to rejection of H0-

Another procedure that can be used following rejection of the MANOVA test is 
an examination of the discriminant function coefficients. The discriminant func-
tion was defined in Section 6.1.4 as z = a^y, where ai is the eigenvector as-
sociated with the largest eigenvalue λχ of E _ 1 H . Additionally, there are other 
discriminant functions using eigenvectors corresponding to the other eigenvalues. 
Since the first discriminant function maximally separates the groups, we can exam-
ine its coefficients for the contribution of each variable to group separation. Thus in 
z = o-nVi + fli22/2 -I 1- a-\vyv, if a\2 is larger than the other a\r's, we believe j/2 
contributes more than any of the other variables to separation of groups. A method of 
standardization of the ai r ' s to adjust for differences in the scale among the variables 
is given in Section 8.5. 

The information in a\r (from z = a'xy) about the contribution of yr to separation 
of the groups is fundamentally different from the information provided in a univariate 
F-test that considers yr alone (see property 9 in Section 6.1.3). The relative size of 
air shows the contribution of yr in the presence of the other variables and takes 
into account (1) the correlation of yr with the others y's and (2) the contribution 
of yr to Wilks' Λ above and beyond the contribution of the other y's. In contrast, 
the individual F-test on yr ignores the presence of the other variables. Because we 
are primarily interested in the collective behavior of the variables, the discriminant 
function coefficients provide more pertinent information than the tests on individual 
variables. For a detailed analysis of the effect of each variable in the presence of 
other variables, see Rencher (1993; 1998, Section 4.1.6). 



1 9 8 MULTIVARIATE ANALYSIS OF VARIANCE 

Huberty (1975) compared the standardized coefficients to some correlations that 
can be shown to be related to individual variable tests (see Section 8.7.3). In a lim-
ited simulation, the discriminant coefficients were found to be more valid than the 
univariate tests in identifying those variables that contribute least to separation of 
groups. Considerable variation was found from sample to sample in ranking the 
relative potency of the variables. 

■ EXAMPLE 6.4 

In Example 6.1.7, the hypothesis H0: μι — μ2 = · ■ ■ = μ6 was rejected 
for the rootstock data of Table 6.2. We can therefore test the four individual 
variables using the .05 level of significance. For the first variable, y\ = 4-year 
trunk girth, we obtain the following ANOVA table: 

Source Sum of Squares df Mean Square F 

Rootstocks .073560 5 .014712 1.93 
Error .319988 42 .007619 
Total .393548 47 

For F — 1.93 the p-value is .1094, and we do not reject H0. For the other 
three variables we have 

Variable F p- Value 

2/2 = 4-year extension growth 2.91 .024 
2/3 = 15-year trunk girth 11.97 < .0001 
2/4 = 15-year weight 12.16 < .0001 

Thus for three of the four variables, the six means differ significantly. We 
examine the standardized discriminant function coefficients for this set of data 
in Chapter 8 (Problem 8.12). D 

6.5 TWO-WAY CLASSIFICATION 

We consider only balanced models, where each cell in the model has the same num-
ber of observations, n. For the unbalanced case with unequal cell sizes, see Rencher 
(1998, Section 4.8). 

6.5.1 Review of Univariate Two-Way ANOVA 

In the univariate two-way model, we measure one dependent variable y on each 
experimental unit. The balanced two-way fixed-effects model with factors A and 
Bis 

Vijk = μ + <*i + ßj + Hi + £i3k (6.64) 

= ßij + Eijk, (6.65) 
i = 1,2,. . . , a, j = 1,2,. . . ,6, fc = l , 2 , . . . , n , 
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where c^ is the effect (on yijk) of the zth level of A, ßj is the effect of the jth level of 
B, jij is the corresponding interaction effect, and μ^ is the population mean for the 
ith level of A and the jth level of B. In order to obtain F-tests, we further assume 
that the e^k are independently distributed as iV(0, σ2). 

Let JLi — V ßij/b be the mean at the ith level of A and define /Z ■ and μ 
similarly. Then if we use side conditions Σί ai = Σ 7 ßj = Σί lij — Σ7· 7»j = 0, 
the effect of the ith level of A can be defined as α̂  = ~ßi — μ , with similar definitions 
of ßj and 7ij. We can show that Ύί

 a% ~ 0 if" a ; = Mi. ~~ P.. a s follows: 
a a 

i—1 / —1 i 

= αμ. — αμ = 0. 

Many texts recommend that the interaction AB be tested first, and if it is found 
to be significant, then the main effects should not be tested. However, with the side 
conditions imposed above (side conditions are not necessary in order to obtain tests), 
the effect of A is defined as the average effect over the levels of B and similarly 
for the effect of B. With this definition of main effects, the tests for A and B make 
sense even if AB is significant. Admittedly, interpretation requires more care, and 
the effect of a factor may vary if the number of levels of the other factor is altered. 
But in many cases, useful information can be gained about the main effects in the 
presence of interaction. 

We illustrate the preceding statement that a, — ßi —~ß% represents the effect of 
the ith level of A averaged over the levels of B. Suppose A has two levels and B has 
three. We represent the means of the six cells as follows: 

B 
1 2 3 Mean 

μ ι ι 

μ2 ΐ 

ß.l 

μ ΐ 2 
μ22 

μ.2 

μ ΐ 3 
μ23 

~β.3 

Ml. 

Μ2. 
~β.. 

The means of the rows (corresponding to levels of A) and columns (levels of B) are 
also given. Then α* = μ^ - μ can be expressed as the average of the effect of the 
ith level of A at the three levels of B. For example, 

ai = §[(μη - μ.ι) + (μΐ2 - μ.2) + (μΐ3 - μ.3)1 
= |(Α*ΙΙ +Μΐ2 + μΐ3) - | (μ. ι + μ.2 +Μ.3) = Mi. ~~ß..· 

To estimate ctj, we can use on = yi_ — y , with similar estimates for ßj and 7^. 
The notation yi indicates that y^k is averaged over the levels of j and k to obtain 
the mean of all nb observations at the ith level of A, namely, yi = Yijk Vijk/nb. 
The means y ·, yio■_, and y have analogous definitions. 

To construct tests for the significance of factors A and B and the interaction AB, 
we use the usual sums of squares and degrees of freedom in Table 6.4. Computational 
forms of the sums of squares can be found in many standard (univariate) methods 
texts. 



2 0 0 MULTIVARIATE ANALYSIS OF VARIANCE 

Table 6.4 Univariate Two-Way Analysis of Variance 

Source Sum of Squares df 

A SSA = nbZM..-y...f a - 1 
B SSB = ηαΣ3(ϋί ~ V ? b-\ 

AB ssAB = nziJ(yl3-~y^-y-J-+y-^ ( « - i ) (&- i ) 
Error SSE = E«fc(l/ü* " »y. f ab(n - 1) 
Total SST = T,l3k(yi3k - y..f abn - 1 

The sums of squares in Table 6.4 (for the balanced model) have the relationship 

SST = SSA + SSB + SSAB + SSE, 

and the four sums of squares on the right are independent. The sums of squares are 
divided by their corresponding degrees of freedom to obtain mean squares MSA, 
MSB, MSAB, and MSE. For the fixed-effects model, each of MSA, MSB, and 
MSAB is divided by MSE to obtain an F-test. In the case of factor A, for exam-
ple, the hypothesis can be expressed as 

HQA : ai — a2 = ■ ■ ■ = aa = 0, 

and the test statistic is F = MSA/MSE, which is distributed as Fa_i^ab^n_i). 
In order to define contrasts among the levels of each main effect, we can conve-

niently use the model in the form given in (6.65), 

Vijk — ßij i E-ijk-

A contrast among the levels of A is defined as Σ£=ι c ^ ' w h e r e Σ ί c « = 0· An esti-
mate of the contrast is given by £V c ^ , with variance σ2 Σί cl/n^' since each yi 

is based on nb observations and the yi 's are independent. To test H0: £ ^ ciPi. = 0> 
we can use an F-statistic corresponding to (6.57), 

F = η 6 (Σ^ ι^ . . )7Σ^ , (6.66) 
MSE 

with 1 and VE degrees of freedom. To preserve the experimentwise error rate, signifi-
cance tests for more than one contrast could be carried out in the spirit of Section 6.4; 
that is, contrasts should be chosen prior to seeing the data and tests should be made 
only if the overall F-test for factor A rejects HQA-

Contrasts V CjJL ^ among the levels of B are tested in an entirely analogous 
manner. 



TWO-WAY CLASSIFICATION 2 0 1 

Table 6.5 Multivariate Two-Way Analysis of Variance 

Sum of Squares and 
Source Products Matrix df 

A 
B 
AB 

Error 
Total 

H A = n & E l ( y l . . - y . . . ) ( y I . . - y . . . ) ' 
H B = n a E , ( y . , . - y . . . ) ( y . j . - y . . . ) ' 
HAB = nEi j (y»i . ~ Vi- -y.j. + y...) 

χ(Ϋα. -Vi.. -y.j. + y...Y 
E = H2iik(yi]k - y~ij.)(y~ijk - yV,.)' 
T = Eijfc(yijfc - y...)(yijk - y...Y 

a- 1 
6 - 1 

( a - l ) ( 6 - l ) 

ab(n — 1) 
afcra — 1 

6.5.2 Multivariate Two-Way MANOVA 

A balanced two-way fixed-effects MANOVA model for p dependent variables can 
be expressed in vector form analogous to (6.64) and (6.65): 

Yijk = μ + at + β3 + nfij + eljk = μίά + eijk, (6.67) 
i = l,2,...,a, J = 1,2,... ,6, k = 1,2,... ,n, 

where oci is the effect of the ith level of A on each of the p variables in yijk, ßj 
is the effect of the jth level of B, and 7 ^ is the AB interaction effect. We use 
side conditions £ \ on = Σ3 ßj = E i lij = E j fij = ° a n d assume the eljk

,s 
are independently distributed as Np(0, Σ) . Under the side condition J^ i a , — 0, 
the effect of 4̂ is averaged over the levels of B; that is, α , = μ^ — μ , where 
/Zj = V · Mij/^ a nd A*. = J2ij Vij/o-b- There are similar definitions for ßj and 

As in the univariate usage, the mean vector yi indicates an average over the 
subscripts replaced by dots, that is, yL = Y^]kYijk/nb. The means ν ^ . , ν ^ . , and 
y have analogous definitions: y^· = T,ikyijk/na, y^ = £)fcyijfc/n,y... = 
Σ/ijk yijk/nab. The sum of squares and products matrices are given in Table 6.5. 
Note that the degrees of freedom in Table 6.5 are the same as in the univariate case in 
Table 6.4. For the two-way model with balanced data, the total sum of squares and 
products matrix is partitioned as 

Τ = Η Λ + Η β + HAB + E. (6.68) 

The structure of any of the hypothesis matrices is similar to that of H in (6.11). 
For example, H ^ has on the diagonal the sum of squares for factor A for each of the 
p variables. The off-diagonal elements of H^ are corresponding sums of products 
for all pairs of variables. Thus the rth diagonal element of H ^ corresponding to the 
rth variable, r = 1,2,. . . , p, is given by 

hArr = η6Σ>..Ρ - y...rf = Σ ^ f " ^ , (6-69) 
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where yi r and y r represent the rth components of y, and y , respectively, and 
yi..r and y...r are totals corresponding to y^ r and y r. The (rs)th off-diagonal 
element of H ^ is 

hArs = nbJ2(V,.r ~ V...r)(Vi..s " V...s) = Σ ~ ^ " ^ ^ · (6-70) 

From (6.68) and Table 6.5, we obtain 

2 2 
, — V^ ^'ir y.--r u L 
IT-ABrr — / , ; i^Arr ~ ilßrr 

*■—^ r) rtnh 
n nab 

*3 
i \ Λ Vij.ryij.s y...rV...s , ■ 
"■ABrs — / _, Γ nArs ~ ^Brs-

^—' n nab 

j,,y,,s y^y_.., 

For the E matrix, computational formulas are based on (6.68): 

E = T — Ή.Α — H B - Ή-ΑΒ-

(6.71) 

Thus the elements of E have the form 
„2 

err =z / J Vijkr Γ ~~ "Άττ ~ h-Brr ~ ">. 
y2, 

ijkr Γ ^Arr Ιϊβττ riABm 
ijk 

E y...ry...s _ , , _ , 

yijkryijks , i^Ars I^Brs i^ABrs-
ijk 

(6.72) 

The hypotheses matrices for interaction and main effects in this fixed-effects 
model can be compared to E to make a test. Thus for Wilks' Λ, we use E to test 
each of A, B, and AB: 

lE l · Λ 
~ IE + H ! l s A P. a - 1 - a 6 ( " - i ) ' 

!E! · Λ 
_ IE + H I 1S P<t>-1<ab(.n-1')' 

lE l · Λ A A B = II? , IT Γ lsAP,(a-l)(fc-l),ab(n-l)· \L· + t±AB\ 

In each case, the indicated distribution holds when HQ is true. To calculate the other 
three MANOVA test statistics for A, B, and AB, we use the eigenvalues of Ε _ 1 Η ^ , 
E^HB, and Έ,^ΉΑΒ. 

If the interaction is not significant, interpretation of the main effects is simpler. 
However, the comments in Section 6.5.1 about testing main effects in the presence 
of interaction apply to the multivariate model as well. If we define each main effect 
as the average effect over the levels of the other factor, then main effects can be tested 
even if the interaction is significant. One must be more careful with the interpretation 
in case of a significant interaction, but there is information to be gained. 



TWO-WAY CLASSIFICATION 2 0 3 

By analogy with the univariate two-way ANOVA in Section 6.5.1, a contrast 
among the levels of factor A can be defined in terms of the mean vectors as fol-
lows: Σ°=1 aJIL, where £ \ ct = 0 and JIL = £ \ μ^/b. Similarly, Σ*=1 c,-/Z ^ 
represents a contrast among the levels of B. The hypothesis that these contrasts are 
0 can be tested by T2 or any of the four MANOVA test statistics, as in (6.61), (6.62), 
and (6.63). To test H0: Σί Cj/Zj = 0, for example, we can use 

^=^(f>4(ir(i>4 <-> 
which is distributed as T^VE when H0 is true. Alternatively, the hypothesis matrix 

Η ι = ά (έ**··) (έCi%-) (6-74) 

can be used in 

lE + Hil' 
which, under HQ, is ΛΡιιιΙ/£,, with VE = ab(n — 1) in the two-way model. The other 
three MANOVA test statistics can also be constructed from E _ 1 H i . All five test 
statistics will give equivalent results because vH = \. 

If follow-up tests on individual variables are desired, we can infer from Rencher 
and Scott (1990), as reported in Section 6.4, that if the MANOVA test on factor A or 
B leads to rejection of Ho, then we can proceed with the univariate F-tests on the 
individual variables with assurance that the experimentwise error rate will be close 
to a. 

To determine the contribution of each variable in the presence of the others, we 
can examine the first discriminant function obtained from eigenvectors of E _ 1H,4 
or Ε _ 1 Η β , as in Section 6.4 for one-way MANOVA. The first discriminant function 
for E - 1 H,4 , for example, is z = a'y, where a is the eigenvector associated with the 
largest eigenvalue of Ε _ 1 Η ^ . In z = aiyi + 022/2 + h a-pVp, if ar is larger than 
the other a's, then yr contributes more than the other variables to the significance of 
Λ^. (In many cases, the a r ' s should be standardized as in Section 8.5.) Note that the 
first discriminant function obtained from E _ 1 H ^ will not have the same pattern as 
the first discriminant function from Ε " 1 ! ! ^ . This is not surprising since we expect 
that the relative contribution of the variables to separating the levels of factor A will 
be different from the relative contribution to separating the levels of B. 

A randomized block design or a two-way MANOVA without replication can eas-
ily be analyzed in a manner similar to that for the two-way model with replication 
given here; therefore, no specific details will be given. 

■ EXAMPLE 6.5.2 

Table 6.6 contains data reported by Posten (1962) and analyzed by Kramer and 
Jensen (1970). The experiment involved a 2 x 4 design with 4 replications, for 



Table 6.6 Two-Way Classification of Mea-
surements on Bar Steel 

Lubricant 

Bi 

B2 

B3 

B4 

A 

yi 

7.80 
7.10 
7.89 
7.82 

9.00 
8.43 
7.65 
7.70 

7.28 
8.96 
7.75 
7.80 

7.60 
7.00 
7.82 
7.80 

1 

2/2 

90.4 
88.9 
85.9 
88.8 

82.5 
92.4 
82.4 
87.4 

79.6 
95.1 
90.2 
88.0 

94.1 
86.6 
85.9 
88.8 

A 

2/i 

7.12 
7.06 
7.45 
7.45 

8.19 
8.25 
7.45 
7.45 

7.15 
7.15 
7.70 
7.45 

7.06 
7.04 
7.52 
7.70 

2 

2/2 

85.1 
89.0 
75.9 
77.9 

66.0 
74.5 
83.1 
86.4 

81.2 
72.0 
79.9 
71.9 

81.2 
79.9 
86.4 
76.4 

a total of 32 observation vectors. The factors were rotational velocity [A\ 
(fast) and A2 (slow)] and lubricants (four types). The experimental units were 
32 homogeneous pieces of bar steel. Two variables were measured on each 
piece of bar steel: 

yi = ultimate torque, 

2/2 = ultimate strain 

We display the totals for each variable for use in computations. The numbers 
inside the box are cell totals (over the four replications), and the marginal totals 
are for each level of A and B: 
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Totals for yi 
Ai A2 

30.61 
32.61 
31.79 
30.22 
125.40 

29.08 
31.34 
29.45 
29.32 
119.19 

59.69 
64.12 
61.24 
59.54 
244.59 

Totals for y2 

A! A2 

354.0 
344.7 
352.9 
355.4 
1407.0 

327.9 
310.0 
305.0 
323.9 
1266.8 

681.9 
654.7 
657.9 
679.3 
2673.8 

in (6.69), the (1,1) element of H A Using computational forms for KA·, 
(corresponding to y{) is given by 
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(125.40)2 + (119.19)2 (244.59)2
 1 n n r 

kAU = (W) (4K4)M = L 2° 5 · 
For the (2,2) element of H^ (corresponding to y2), we have 

(1407.0)2 + (1266.8)2 (2673.8)2 

/ΙΛ22 = jg ^ — = 614.25. 

For the (1,2) element of H A (corresponding to 2/12/2), we use (6.70) for hAr 
to obtain 

, (125.40)(1407.0) + (119.19)(1266.8) (244.59)(2673.8) 
hAi2 - jg 32 

= 27.208. 

Thus 
_ / 1.205 27.208 

A ~~ \ 27.208 614.251 

We obtain H 5 similarly: 

(59.69)2 + · · · + (59.54)2 (244.59)2
 ι Βηλ 

hBii = ^ 2 ) 3 3 — = ! · 6 9 4 -

(681.9)2 + ■ ■ ■ + (679.3)2 (2673.8)2 

hB22 = g 05 = 74.874, 

(59.69)(681.9) + · · · + (59.54)(679.3) (244.59)(2673.8) 
Λ β 1 2 " 8 32 

= -9.862, 
_ . 1.694 -9.862, 

B ~ ' -9.862 74.874 

For HAB we have by (6.71) 

hAB11 = (30-61)2
 + -4- + (29.32)2 _ ( 2 4 4 ^ _ ^ _ ^ = ^ 

= (354.0)2
 + . . . + (323.9)2 _ ( 2 6 ^ _ _ 

A B ^ 4 32 
= 32.244, 

(30.61)(354.0) + · · · + (29.32)(323.9) (244.59)(2673.8) 
«ΛΒ12 4 32 

27.208 - (-9.862) = 1.585, 
.132 1.585 

HAB [ 1.585 32.244 
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The error matrix E is obtained using the computational forms given for er 

and ers in (6.72). For example, en and ei2 are computed as 

en = (7.80)2 + (7.10)2 + ■ · · + (7.70)2 - ( 2Φ*"59) - 1.205 

1.694 - .132 = 4.897, 

0)ί76.4) - <2™ 
32 

e12 = (7.80)(90.4) + · · ■ + (7.70)(76.4) - ( 2 4 4 - 5 9 K 2 6 7 3 · 8 ) _ 27.208 

- (-9.862) - 1.585 = -1.890. 

Proceeding in this fashion, we obtain 

4.897 -1.890 
E ' 1.890 736.390 

with vE = ab{n - 1) = (2)(4)(4 - 1) = 24. 
To test the main effect of A with Wilks' Λ, we compute 

|E| 3602.2 Ar7t k 
AA = Wrk\ = 76ÖÖ2 = · 4 7 4 < A - W = - 7 7 1 ' 

and we conclude that velocity has a significant effect on y\ or y2 or both. 
For the B main effect, we have 

We conclude that the effect of lubricants is not significant. 
For the AB interaction, we obtain 

h" = lETib = Ü 5 '̂932 > Ao5W4 = -591· 
Hence we conclude that the interaction effect is not significant. 

We now obtain the other three MANOVA test statistics for each test. For A, 
the only nonzero eigenvalue of E - 1Hyt is 1.110. Thus 

y(s) = λχ = 5 2g V(s) = \ 1 - 1 1 0 

1 + λι 

" Λ ι 526. 1 + λι 

In this case, all three tests give results equivalent to that of Λ^ because VH = 
s = l. 

For B,vH=2> and p — s = 2. The eigenvalues of E _ 1 H s are .418 and 
.020, and we obtain 
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V(s) = J2 - A - = .314, 
—̂  1 i=l + λ, 

[ / « = V Xi = .438, -^U{s) = 3.502, 

Ai 

1 + A] 
= .295. 

With s = 2, m = 0, and N = 10.5, we have V^ = .439 and 0 05 = .364. 
The .05 critical value of vEU^s)/vH is 5.1799. Thus V « , U^s\ and 6» lead 
to acceptance of H0, as does Λ. Of the four tests, Θ appears to be closer 
to rejection. This is because λ ι / (λ ι + λ2) = .418/(.418 + .020) = .954, 
indicating that the mean vectors for factor B are essentially collinear, in which 
case Roy's test is more powerful. If the mean vectors y x , y 2 , y 3 , and y 4 
for the four levels of B were a little further apart, we would have a situation in 
which the four MANOVA tests do not lead to the same conclusion. 

For AB, the eigenvalues of Έ~1ΉΑΒ are .0651 and .0075, from which 

V^ = V — V = ·°685. U{a) = .0726, ^U{s) = .580, 

Λ λ ΐ 0611. 
1 + λχ 

The critical values remain the same as for factor B, and all three tests accept 
H0, as does Wilks' Λ. With a nonsignificant interaction, interpretation of the 
main effects is simplified. D 

6.6 OTHER MODELS 

6.6.1 Higher-Order Fixed Effects 

A higher-order (balanced) fixed-effects model or factorial experiment presents no 
new difficulties. As an illustration, consider a three-way classification with three 
factors A, B, and C and all interactions AB, AC, BC, and ABC. The observation 
vector y has p variables as usual. The MANOVA model allowing for main effects 
and interactions can be written as 

Yijki = μ + OLi + ßj + 7fc + Sij + r]ik + Tjk + 4>xjk + eijki, (6.75) 

where, for example, c*j is the effect of the ith level of factor A on each of the p 
variables in yijki and Sij is the AB interaction effect on each of the p variables. 
Similarly, T7ife, Tjk, and φί^ represent the AC, BC, and ABC interactions on each 
of the p variables. 
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The matrices of sums of squares and products for main effects, interactions, and 
error are defined in a manner similar to that for the matrices detailed for the two-
way model in Section 6.5.2. The sum of squares (on the diagonal) for each variable 
is calculated exactly the same as in a univariate ANOVA for a three-way model. 
The sums of products (off-diagonal) are obtained analogously. Test construction 
parallels that for the two-way model, using the matrix for error to test all factors and 
interactions. 

Degrees of freedom for each factor are the same as in the corresponding three-
way univariate model. All four MANOVA test statistics can be computed for each 
test. Contrasts can be defined and tested in a manner similar to that in Section 6.5.2. 
Follow-up procedures on the individual variables (F-tests and discriminant func-
tions) can be used as discussed for the one-way or two-way models in Sections 6.4 
and 6.5.2. 

6.6.2 Mixed Models 

There is a MANOVA counterpart for every univariate ANOVA design. This applies 
to fixed, random, and mixed models and to experimental structures that are crossed, 
nested, or a combination. Roebruck (1982) has provided a formal proof that uni-
variate mixed models can be generalized to multivariate mixed models. Schott and 
Saw (1984) have shown that for the one-way multivariate random-effects model, the 
approach leads to the same test statistics involving the eigenvalues of E _ 1 H as in 
the fixed-effects model. 

In the (balanced) MANOVA mixed model, the expected mean square matrices 
have exactly the same pattern as expected mean squares for the corresponding uni-
variate ANOVA model. Thus a table of expected mean squares for the terms in the 
corresponding univariate model provides direction for choosing the appropriate error 
matrix to test each term in the MANOVA model. However, if the matrix indicated 
for "error" has fewer degrees of freedom than p, it will not have an inverse and the 
test cannot be made. 

To illustrate, suppose we have a (balanced) two-way MANOVA model with A 
fixed and B random. Then the (univariate) expected mean squares (EMS) and Wilks' 
Λ-tests are as follows: 

Source EMS Λ 

A σ2 + ησ\Β + nbaA
2 | H A S | / | H A B + H A | 

B σ2 + ηασ2
Β |Ε | / |Ε + Η Β | 

AB σ2 + ησ2
ΑΒ | E | / | E + H A B | 

Error σ2 

In the expected mean square for factor A, we have used the notation σΛ
2 in place of 

Σ"=ι al/(a ~ 1)· The test for A using HAB for error matrix will be indeterminate 
(of the form 0/0) if VAB < P, where vAB — (a - 1)(6 - 1). In this case, VAB 
will often fail to exceed p. For example, suppose A has two levels and B has three. 
Then VAB — 2, which will ordinarily be less than p. In such a case, we would 
have little recourse except to compute univariate tests on the p individual variables. 



OTHER MODELS 2 0 9 

Table 6.7 Wilks' Λ Tests for a Typical Split-Plot Design 

Source 

A 
B 
C 
AC 
BC 
Error 

df 

a- 1 
a ( b - l ) 

c - 1 
( o - l ) ( c -

a ( f t - l ) ( c -
a6c(e — 1) 

1) 
1) 

Expected Mean Squares 
2 , 2 , i * 2 

σ + ceaB + bceaA σ + cea% 
σ1 + ea%c + abea*c 

2 , 2 i L *2 

σ + eaBC + beaAC 2 , 2 

σ2 

Wilks' Λ 

| Η Β | / | Η Λ + Η Β | 
| Ε | / | Η Β + Ε | 
| H s c | / | H c + H s c | 
| H S C | / | H A C + H B C | 
| E | / | H B C + E | 

However, we would not have the multivariate test to protect against carrying out too 
many univariate tests and thereby inflating the experimentwise a (see Section 6.4). 
To protect against inflation of a when making p tests, we could use a Bonferroni 
correction, as in procedure 2 in Section 5.5. In the case of F-tests, we do not have 
a table of Bonferroni critical values, as we do for ί-tests (Table A.8), but we can 
achieve an equivalent result by comparing the p-values for the F-tests against a/p 
instead of against a. 

As another illustration, consider the analysis for a (balanced) multivariate split-
plot design. For simplicity, we show the associated univariate model in place of the 
multivariate model. We use the factor names A, B, AC,... to indicate parameters in 
the model: 

Uijki ~ μ + Ai + B^j + Cfc + ACik + BC^jk + e^j^i, 

where A and C are fixed and B is random. Nesting is indicated by bracketed sub-
scripts; for example, B and BC are nested in A. Table 6.7 shows the expected mean 
squares and corresponding Wilks tests. 

Since we use H g and Hsc» as well as E, to make tests, the following must hold: 

a(b-l)>p, a{b- l ) ( c - l ) > p, abc(e-l)>p. 

To construct the other three MANOVA tests, we use eigenvalues of the following 
matrices: 

Source Matrix 

A H ^ H A 
B E ιϊβ 
C H B C H c 
AC H B C H A C 
BC E - ' H B C 

With a table of expected mean squares, such as those in Table 6.7, it is a simple 
matter to determine the error matrix in each case. For a given factor or interaction, 
such as A, B, or AC, the appropriate error matrix is ordinarily the one whose ex-
pected mean square matches that of the given factor except for the last term. For 
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example, factor C, with expected mean square σ2 + ea2
BC + abea*^, is tested by 

BC, whose expected mean square is σ2 + ea2
BC. If H0: σ£? — 0 is true, then C and 

-BC have the same expected mean square. 
In some mixed and random models, certain terms have no available error term. 

When this happens in the univariate case, we can construct an approximate test us-
ing Satterthwaites' (1941) or other synthetic mean square approach. For a similar 
approach in the multivariate case, see Khuri, Mathew, and Nel (1994). 

6.7 CHECKING ON THE ASSUMPTIONS 

In Section 6.2 we discussed the robustness of the four MANOVA test statistics to 
nonnormality and heterogeneity of covariance matrices. The MANOVA tests (except 
for Roy's) are rather robust to these departures from the assumptions, although, in 
general, as dimensionality increases, robustness decreases. 

Even though MANOVA procedures are fairly robust to departures from multivari-
ate normality, we may want to check for gross violations of this assumption. Any of 
the tests or plots from Section 4.4 could be used. For a two-way design, for example, 
the tests could be applied separately to the n observations in each individual cell (if 
n is sufficiently large) or to all the residuals. The residual vectors after fitting the 
model yijk = μ^ + eijk would be 

Sijk=yijk-Yij., i = l,2,...,a, J = 1,2,... ,6 k = 1,2,... ,n. 

It is also advisable to check for outliers, which can lead to either a Type I or 
a Type II error. The tests of Section 4.6 can be run separately for each cell (for 
sufficiently large n) or for all of the abn residuals, e^k = Yijk — Yij.-

A test of the equality of covariance matrices can be made using Box's M-test 
given in Section 7.3.2. Note the cautions expressed there about the sensitivity of this 
test to nonnormality and unequal sample sizes. 

The assumption of independence of the observation vectors y ^ is even more 
important than the assumptions of normality and equality of covariance matrices. 
We are referring, of course, to independence from one observation vector to another. 
The variables within a vector are assumed to be correlated, as usual. In the univariate 
case, Barcikowski (1981) showed that a moderate amount of dependence among the 
observations produces an actual a much greater than the nominal a. This effect is 
to be expected, since the dependence leads to an underestimate of the variance, so 
that MSE is reduced and the F-statistic is inflated. We can assume that this effect on 
error rates carries over to MANOVA. 

In univariate ANOVA, a simple measure of dependence among the kn observa-
tions in a one-way model is the so-called intraclass correlation: 

_ MSB - MSE 
Tc~ MSB + ( n - l ) M S E ' ( ' 

where MSB and MSE are the between and within mean squares for the variable and 
n is the number of observations per group. This could be calculated for each variable 
in a MANOVA to check for independence. 
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In many experimental settings, we do not anticipate a lack of independence. But 
in certain cases the observations are dependent. For example, if the sampling units 
are people, they may influence each other as they interact together. In some educa-
tional studies, researchers must use entire classrooms as sampling units rather than 
individual students. Another example of dependence is furnished by observations 
that are serially correlated, as in a time series, for example. Each observation de-
pends to a certain extent on the preceding one, and its random movement is somewhat 
dampened as a result. 

6.8 PROFILE ANALYSIS 

The two-sample profile analysis of Section 5.9.2 can be extended to k groups. Again 
we assume that the variables are commensurate, as, for example, when each subject 
is given a battery of tests. Other assumptions, cautions, and comments expressed in 
Section 5.9.2 apply here as well. 

The basic model is the balanced one-way MANOVA: 

Yij — Hi + £ij 1,2 , · · · ,* , J = 1,2,. 

To test Ho: A*i = ^ 2 = ' ' ' = A*fc' w e u s e t n e u s u a l H a nd E matrices given in 
(6.9) and (6.10). If the variables are commensurate, we can be more specific and 
extend H0 to an examination of the k profiles obtained by plotting the p values 
ßn,ßi2,... ,μίρ in each μ^ as was done with two μ / s in Section 5.9.2. We are 
interested in the same three hypotheses as before: 

# 0 1 

# 0 2 

# 0 3 

The k profiles are parallel. 
The k profiles are all at the same level. 
The k profiles are flat. 

The hypothesis of parallelism for two groups was expressed in Section 5.9.2 as 
Hoi : ^μ± — Ομ2, where C is any (p - 1) x p matrix of rank p — 1 such that 
Cj = 0, for example, 

/ i - i 
0 1 

c = 
0 

\ 0 0 0 ■·· - 1 / 

For k groups, the analogous hypothesis of parallelism is 

i ioi: Cß} = C/i2 C/*fc (6.77) 

The hypothesis (6.77) is equivalent to the hypothesis HQ : μζ1 = μζ2 = · · · = μζΙ. 
in a one-way MANOVA on the transformed variables z^· = Cy^·. Since C has p— 1 
rows, Cy^· is (p - 1) x 1, Ομί is (p - 1) x 1, and C E C is (p - 1) x (p - 1). By 
property lb in Section 4.2, z^ is distributed as ]Υρ_ι(Ομ ί, CSC ' ) · 
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By analogy with (3.64), the hypothesis and error matrices for testing H0i in (6.77) 
are 

We thus have 

Hz = C H C ' , EZ = CEC ' . 

|CEC'| _ |CEC'| 
~ |CEC' + CHC'I ~ |C(E + H)C'|' (6'?8) 

which is distributed as Ap-itVHtVE, where uH = k - 1 and vE = k(n - 1). 
The other three MANOVA test statistics can be obtained from the eigenvalues of 
( C E C ' ) - 1 (CHC') . The test for H0i can easily be adjusted for unbalanced data, 
as in Section 6.1.6. We would calculate H and E by (6.31) and (6.32) and use 
VE = Σ ί ni - k-

The hypothesis that two profiles are at the same level is H02: j ' / i j = j ' μ 2 (see 
Section 5.9.2), which generalizes immediately to k profiles at the same level, 

Ηο2.ϊμ1=ΐ'μ2 = ---=ϊμΙί. (6.79) 

For two groups we used a univariate t, as defined in (5.36), to test H02. Similarly, for 
k groups we can employ an F-test for one-way ANOVA comparing k groups with 
observations j'yij. Alternatively, we can utilize (6.78) with C — j ' , 

which is distributed as Λ1ι1/Ηι„Ε (p = 1 because j ' y ^ is a scalar). This is, of course, 
equivalent to the F-test on j'y»j> since by Table 6.1 in Section 6.1.3, 

F = i ^ ^ (6.81) 
Λ vH 

is distributed as FVH tVE. 
The third hypothesis, that of "flatness," essentially states that the average of the k 

group means is the same for each variable [see (5.37)]: 

„ μ η + M2i H l· /ifei Mi2 + /̂ 22 H l· μπ2 
ΗθΆΐ k ~ k 

_ _ Mlp + M2p + · · · + ßkp 

or by analogy with (5.38), 

g o 3 : C U x 1 + / x + . - . + M f c ) 
k 

where C is a (p — 1) x p matrix of rank p — 1 such that Cj = 0 [see (6.77)]. If Hm 

is true, the flatness hypothesis can also be stated as, the means of all p variables in 
each group are the same, or μα = μα = ■ ■ ■ — μιρ, i = 1,2,. . . , k. This can be 
expressed as H03 : Ομλ = Ομ2 = ■ ■ ■ = ϋμ^. = 0. 
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Table 6.8 Weight of Guinea Pigs Under 3 Levels of Vitamin E Supplements 

Group 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 

Animal 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Week 1 

455 
467 
445 
485 
480 
514 
440 
495 
520 
503 
496 
498 
478 
545 
472 

Week 3 

460 
565 
530 
542 
500 
560 
480 
570 
590 
555 
560 
540 
510 
565 
498 

Week 4 

510 
610 
580 
594 
550 
565 
536 
569 
610 
591 
622 
589 
568 
580 
540 

Week 5 

504 
596 
597 
583 
528 
524 
484 
585 
637 
605 
622 
557 
555 
601 
524 

Week 6 

436 
542 
582 
611 
562 
552 
567 
576 
671 
649 
632 
568 
576 
633 
532 

Week 7 

466 
587 
619 
612 
576 
597 
569 
677 
702 
675 
670 
609 
605 
649 
583 

To test i/o3 as given by (6.82), we can extend the T2-test in (5.39). The grand 
mean vector (μ1 +μ2 -\ h/ifc)/fc in (6.82) can be estimated as in Section 6.1.2 by 

y = Σ Yl3 
kn 

Under H03, Cy is ΛΓρ_ι(0, C E C ' / t o ) , and Hoz can be tested by 

T2 = kn{CyJ{CEC'lvE)-lCy^ (6.83) 

where Έ/VE is an estimate of Σ . As in the two-sample case, HQ3 is unaffected by 
the status of Η02· When H03 is true, T2 in (6.83) is distributed as i i . 

■ EXAMPLE 6.8 

Three vitamin E diet supplements with levels zero, low, and high were com-
pared for their effect on growth of guinea pigs (Crowder and Hand 1990, 
pp. 21-29). Five guinea pigs received each supplement level, and their weights 
were recorded at the end of weeks 1, 3,4, 5, 6, and 7. These weights are given 
in Table 6.8. 

The three mean vectors are 

y'i. 

yl 
(466.4,519.4,568.8,561.6,546.6,572.0) 
(494.4,551.0,574.2,567.0,603.0,644.0) 

Ϋ3. = (497.8,534.6,579.8,571.8,588.2,623.2) 

and the overall mean vector is 

y^ = (486.2,535.0,574.3,566.8,579.3,613.1). 
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Figure 6.3 Profile of the three groups for the guinea pig data of Table 6.8. 

A profile plot of the means yx , y2 , and y 3 is given in Figure 6.3. There is a 
high degree of parallelism in the three profiles, with the possible exception of 
week 6 for group 1. 

The E and H matrices are as follows: 

E: 

/ 8481.2 
8538.8 
4819.8 
8513.6 
8710.0 
8468.2 

8538.8 
17170.4 
13293.0 
19476.4 
17034.2 
20035.4 

4819.8 
13293.0 
12992.4 
17077.4 
17287.8 
17697.2 

8513.6 
19476.4 
17077.4 
28906.0 
26226.4 
28625.2 

8710.0 
17034.2 
17287.8 
26226.4 
36898.0 
31505.8 

8468.2 
20035.4 
17697.2 
28625.2 
31505.8 
33538.8 

\ 

/ 

H 

Using 

2969.2 
2177.2 
859.4 
813.0 

4725.2 
5921.6 

C = 

2177.2 
2497.6 
410.0 
411.6 

4428.8 
5657.6 

1 
0 
0 
0 
0 

859.4 
410.0 
302.5 
280.4 

1132.1 
1392.5 

813.0 
411.6 
280.4 
260.4 

1096.4 
1352.0 

0 
0 

-1 
1 
0 

4725.2 
4428.8 
1132.1 
1096.4 
8550.9 
10830.9 

0 
0 
0 
0 
-1 

0 
0 
0 
-1 
1 

5921.6 
5657.6 
1392.5 
1352.0 

10830.9 
13730.1 

\ 
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in the test statistic (6.78), we have, as a test for parallelism, 

Λ 
_ |CEC' | _ 3.8238 x 1018 

~ |C(E + H)C ' | ~ 2.1355 x 1019 

= .1791 > Λ.ο5,5,2,ΐ2 = -153. 

Thus we do not reject the parallelism hypothesis. 
To test the hypothesis that the three profiles are at the same level, we use 

(6.80), 

Λ = 
J'Ej 632,605.2 

j ' E j + j ' H j 632,605.2 + 111,288.1 
= .8504 > A.o5,i,2,i2 = -607. 

Hence we do not reject the levels hypothesis. This can also be seen by using 
(6.81) to transform Λ to F, 

F = t 1 : ^ * = ( 1 : ; 8 5 0 4 ) 1 2 = 1.0555, 
KvH (.8504)2 

Which is clearly nonsignificant (jp — .378). 
To test the flatness hypothesis, we use (6.83): 

T2 = jfen(Cy..)'(CEC7i/B)-1Cy.. 

= 15 

/ -48.80 \ ' / 714.5 
-39.27 

7.47 
-12.47 

\ -33.80 ) 

( -48.80 \ 
-39.27 

7.47 
-12.47 

\ -33.80 ) 

13.2 207.5 -219.9 270.2 \ 
-13.2 298.1 -174.9 221.0 -216.0 
207.5 -174.9 645.3 -240.8 165.8 
219.9 221.0 -240.8 1112.6 -649.2 

\ 270.2 -216.0 165.8 -649.2 618.8 / 

= 297.13 >T2
m 49.739. .01,5,12 

Thus only the flatness hypothesis is rejected in this case. D 

6.9 REPEATED MEASURES DESIGNS 

6.9.1 Multivariate Versus Univariate Approach 

In repeated measures designs, the research unit is typically a human or animal sub-
ject. Each subject is measured under several treatments or at different points of time. 
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Table 6.9 Data Layout for /c-Groups Repeated Measures Experi-
ment 

Factor B 
(Group) 

S i 

B2 

Bk 

Subjects 

S l l 
S l 2 

S i n 

5*21 

S22 

S271 

Ski 

Sk2 

^kn 

Factor A I 

Ai 

( y i n 
(2/121 

(2/ini 

(2/211 
(2/221 

(2/2nl 

(ϊ/fcll 
(Vk21 

(Vknl 

A2 

2/112 
2/122 

2/ln2 

2/212 
2/222 

2/2n2 

Vk\2 

Vk22 

Vkn2 

[Repeated Measures) 

4 

y n p ) 
2/12p) 

2/lnp) 

2/21p) 
2/22p) 

2/2np) 

Vklp) 

Vk2p) 

Vknp) 

= y'n 
= y' i2 

= y'm 

= y i i 
= y22 

= y 2 n 

= yfci 
= y * 2 

y ^ n 

The treatments might be tests, drug levels, various kinds of stimuli, and so on. If 
the treatments are such that the order of presentation to the various subjects can be 
varied, then the order should be randomized to avoid an ordering bias. If subjects 
are measured at successive time points, it may be of interest to determine the degree 
of polynomial required to fit the curve. This is treated in Section 6.10 as part of an 
analysis of growth curves. 

When comparing means of the treatments applied to each subject, we are exam-
ining the within-subjects factor. There will also be a between-subjects factor if there 
are several groups of subjects that we wish to compare. In Sections 6.9.2-6.9.6, 
we consider designs up to a complexity level of two within-subjects factors and two 
between-subjects factors. 

We now discuss univariate and multivariate approaches to hypothesis testing in 
repeated measures designs. As a framework for this discussion, consider the layout 
in Table 6.9 for a repeated measures design with one repeated measures (within-
subjects) factor, A, and one grouping (between-subjects) factor, B. 

This design has often been analyzed as a univariate mixed-model nested design, 
also called a split-plot design, with subjects nested in factor B (whole-plot), which 
is crossed with factor A (repeated measures or split-plot). The univariate model for 
each yijr would be 

Vijr = μ + Bi + S(i)j + Ar + BAir + eijr, (6.84) 
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where the factor level designations (B, S, A, and BA) from (6.84) and Table 6.9 
are used as parameter values, and the subscript (i)j on S indicates that subjects 
are nested in factor B. In Table 6.9, the observations yijr for r = 1,2,... ,p are 
enclosed in parentheses and denoted by y^ ■ to emphasize that these p variables are 
measured on one subject and thus constitute a vector of correlated variables. The 
ranges of the subscripts can be seen in Table 6.9: i = 1, 2 , . . . , k; j = 1,2,. . . , n; 
and r = 1,2,. . . , p. With factors A and B fixed and subjects random, the univariate 
ANOVA is given in Table 6.10. 

However, our initial reaction would be to rule out the univariate ANOVA because 
the j/'s in each row are correlated and the assumption of independence is critical, 
as noted in Section 6.7. We will discuss below some assumptions under which the 
univariate analysis would be appropriate. 

In the multivariate approach, the p responses yij\, y ^ j · · · > Vijp (repeated mea-
sures) for subject Sij constitute a vector y , j , as shown in Table 6.9. The multivariate 
model for y^ is a simple one-way MANOVA model, 

yij■. = μ + ßi + ei:j, (6.85) 

where ßi is a vector of p main effects (corresponding to the p variables in y^·) for 
factor B, and ε^ is an error vector for subject S^. This model seems to include 
only factor B, but we show in Section 6.9.3 how to use an approach similar to pro-
file analysis in Section 6.8 to obtain tests on factor A and the BA interaction. The 
MANOVA assumption that cov(y.y) = Σ for all i and j allows the p repeated mea-
sures to be correlated in any pattern, since Σ is completely general. On the other 
hand, the ANOVA assumptions of independence and homogeneity of variances can 
be expressed as cov(yjj) = σ21. We would be very surprised if repeated measure-
ments on the same subject were independent. 

The univariate ANOVA approach has been found to be appropriate under less 
stringent conditions than Σ = σ2Ι. Wilks (1946) showed that the ordinary F-tests 
of ANOVA remain valid for a covariance structure of the form 

c o v(yij) = Σ = σ 

/ 1 p p · · · p \ 
p 1 p ■■■ p 

\ p p p · · · i / 
= σ2[(1-ρ)1 + ρ3], (6.86) 

where J is a square matrix of l's, as defined in (2.12) [see Rencher and Schaalje 
(2008, pp. 166-167)]. The covariance pattern (6.86) is variously known as uni-
formity, compound symmetry, or the intraclass correlation model. It allows for the 
variables to be correlated but restricts every variable to have the same variance and 
every pair of variables to have the same covariance. In a carefully designed experi-
ment with appropriate randomization, this assumption may hold under the hypothesis 
of no A effect. Alternatively, we could use a test of the hypothesis that Σ has the 
pattern (6.86) (see Section 7.2.3). If this hypothesis is accepted, one could proceed 
with the usual ANOVA F-tests. 
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Table 6.10 Univariate ANOVA for Data Layout in Table 6.9 

Source 

B (between) 
S (subjects) 
A (within or repeated) 
BA 
Error (SA interaction) 

(fc 
k(n 

df 

k-1 
k(n - 1) 

p - 1 
- l ) ( p -
- l ) ( p -

1) 
- i ) 

MS 

MSB 
MSS 
MSA 
MSBA 
MSE 

F 

MSB/MSS 

MSA/MSE 
MSBA/MSE 

Bock (1963) and Huynh and Feldt (1970) showed that the most general condition 
under which univariate F-tests remain valid is that 

C E C ' = σ2Ι, (6.87) 

where C is a (p — 1) x p matrix whose rows are orthonormal contrasts (orthogonal 
contrasts that have been normalized to unit length). We can construct C by choosing 
any p — 1 orthogonal contrasts among the means μ\, μ2,..., μρ of the repeated mea-
sures factor and dividing each contrast by \ / Σ Γ = Ι cr- (This matrix C is different 
from C used in Section 6.8 and in the remainder of Section 6.9, whose rows are con-
trasts that are not normalized to unit length.) It can be shown that (6.86) is a special 
case of (6.87). The condition (6.87) is sometimes referred to as sphericity, although 
this term can also refer to the covariance pattern Σ = σ2Ι on the untransformed y^ 
(see Section 7.2.2). 

A simple way to test the hypothesis that (6.87) holds is to transform the data by 
Zij = Cy^ and test H0: Έζ = σ2Ι, as in Section 7.2.2, using C S p i C in place of 
Spi - E / i / E . 

Thus one procedure for repeated measures designs is to make a preliminary test 
for (6.86) or (6.87) and, if the hypothesis is accepted, use univariate F-tests, as in 
Table 6.10. Fehlberg (1980) investigated the use of larger α-values with a prelimi-
nary test of structure of the covariance matrix, as in (6.87). He concludes that using 
a — .40 sufficiently controls the problem of falsely accepting sphericity so as to 
justify the use of a preliminary test. 

If the univariate test for the repeated measures factor A is appropriate, it is more 
powerful because it has more degrees of freedom for error than the corresponding 
multivariate test. However, even mild departures from (6.87) seriously inflate the 
Type 1 error rate of the univariate test for factor A (Box 1954, Davidson 1972, Boik 
1981). Because such departures can be easily missed in a preliminary test, Boik 
(1981) concludes that "on the whole, the ordinary F tests have nothing to recommend 
them" (p. 248) and emphasized that "there is no justification for employing ordinary 
univariate F tests for repeated measures treatment contrasts" (p. 254). 

Another approach to analysis of repeated measures designs is to adjust the univari-
ate F-test for the amount of departure from sphericity. Box (1954) and Greenhouse 
and Geisser (1959) showed that when Σ φ σ2Ι, an approximate F-test for effects 
involving the repeated measures is obtained by reducing the degrees of freedom for 
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Table 6.11 Data Layout for a Single-Sample Re-
peated Measures Design 

Subjects 

Si 

s2 

On 

Factor A 

Ar 

(2/11 
(2/21 

(ym 

A2 

yi2 

2/22 

2M2 

(Repeated Measures) 
A3 

2/13 
2/23 

2/n3 

A4 

2/14) 
2/24) 

Vm) 

= yi 
= y 2 

J n 

both numerator and denominator by a factor of 

[tr(E - JE/p) ] 2 

(p - l)tr(E - JE/p)2 
(6.88) 

where J is a p x p matrix of l's defined in (2.12). For example, in Table 6.10 the 
F-value for the BA interaction would be compared to Fa with e(k - l)(p - 1) and 
sk(n - l)(p - 1) degrees of freedom. An estimate έ can be obtained by substituting 
Σ = E/uE in (6.88). Greenhouse and Geisser (1959) showed that ε and έ vary 
between l / (p - 1) and 1, with ε = 1 when sphericity holds and ε > 1 /0 - 1) for 
other values of Σ . Thus ε is a measure of nonsphericity. For a conservative test, 
Greenhouse and Geisser recommend dividing numerator and denominator degrees 
of freedom by p - 1. Huynh and Feldt (1976) provided an improved estimator of ε. 

The behavior of the approximate univariate F-test with degrees of freedom ad-
justed by έ has been investigated by Collier et al. (1967), Huynh (1978), Davidson 
(1972), Rogan et al. (1979), and Maxwell and Avery (1982). In these studies, the 
true a level turned out to be close to the nominal a, and the power was close to that 
of the multivariate test. However, since the ε-adjusted F-test is only approximate 
and has no power advantage over the exact multivariate test, there appears to be no 
compelling reason to use it. The only case in which we need to fall back on a univari-
ate test is when there are insufficient degrees of freedom to perform a multivariate 
test, that is, when p> VE-

In Sections 6.9.2-6.9.6, we discuss the multivariate approach to repeated mea-
sures. We will cover several models, beginning with the simple one-sample design. 

6.9.2 One-Sample Repeated Measures Model 

We illustrate some of the procedures in this section with p = 4. A one-sample design 
with four repeated measures on n subjects would appear as in Table 6.11. There is a 
superficial resemblance to a univariate randomized block design. However, in the re-
peated measures design, the observations yn, jto, ya, and ya are correlated because 
they are measured on the same subject (experimental unit), whereas in a randomized 
block design yn, yi2, ya, and yn would be measured on four different experimental 
units. Thus we have a single sample of n observation vectors y i , y2, · · ·, yn-
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To test for significance of factor A, we compare the means of the four variables 

E{Yi) = μ 

my*, 
/ M i \ 

M2 

M3 

V M4 j 

The hypothesis is Ho: μ1 = μ2 = μ^, = μ±, which can be reexpressed as HQ : μ\ 
β2 = β2 — β3 = ßz — ßi = 0 or Ci/Lt = 0, where 

C i 

1 
0 
0 

- 1 
1 
0 

0 
- 1 

1 

0 
0 

- 1 

To test H0: Ci/x = 0 for a general p (p repeated measures on n subjects), we 
calculate y and S from yi , y 2 , . . . , yra and extend Ci to p — 1 rows. Then when H0 

is true, C i y is Np-i{0, C i S C i / n ) , and 

Ί* =n(C1y)'(C1SC'1)-
1(C1y) (6.89) 

0 if T 2 > T 2 p _ ι,η-ι- Note that is distributed as Τ^_-ί Ύ. We reject HQ : Οχμ 
the dimension is p — 1 because C i y is (p — 1) x 1 [see (5.33)]. 

The multivariate approach involving transformed observations z, = Ciy* was 
first suggested by Hsu (1938) and has been discussed further by Williams (1970) 
and Morrison (1972). Note that in C iy (for p = 4), we work with contrasts on the 
elements yx, y2, y3, and y4 within the vector 

(Vj \ 
y_2 
Vs 

\V4 J 

as opposed to the contrasts involving comparisons of several mean vectors them-
selves, as, for example, in Section 6.3.2. 

The hypothesis H0: μλ = μ2 = β3 — βΑ can also be expressed as HQ: μι—μ^ = 
μ2 — ßi = β3 - ßi = 0, or 02μ = 0, where 

The matrix Ci can be obtained from C 2 by simple row operations, for example, 
subtracting the second row from the first and the third row from the second. Hence, 
Ci = AC2, where 

1 - 1 0 
A = I 0 1 - 1 

0 0 1 
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In fact, H0 : μι — μ2 = · ■ ■ — μρ can be expressed as Ομ = 0 for any full-rank 
(p- 1) x p matrix C such that Cj = 0, and the same value of T2 in (6.89) will 
result. The contrasts in C can be either linearly independent or orthogonal. 

The hypothesis H0: μλ = μ2 = ■ ■ ■ = μρ = μ, say, can also be expressed as 

H0 : μ = μj, 

where j = ( 1 , 1 , . . . , 1)'. The maximum likelihood estimate of μ is 

"=ΪΗ- <6'90) 
The likelihood ratio test of HQ is a function of 

yg-y-<rg-;j>', 
j-s-'j 

Williams (1970) showed that for any (p - 1) x p matrix C of rank p - 1 such that 
Cj = 0, 

y ' S - i y - ^ y = (Cy/fCSC'r^Cy), 
J a J 

and thus the T2-test in (6.89) is equivalent to the likelihood ratio test. 

■ EXAMPLE 6.9.2 

The data in Table 6.12 were given by Cochran and Cox (1957, p. 130). As 
rearranged by Timm (1980), the observations constitute a one-sample repeated 
measures design with two within-subjects factors. Factor A is a comparison of 
two tasks; factor B is a comparison of two types of calculators. The measure-
ments are speed of calculation. 

To test the hypothesis Ho: μι — μ2 = M3 = μ4, we use the contrast matrix 

/ I 1 - 1 - 1 \ 
C = 1 - 1 1 - 1 , 

V i - l - l i / 
where the first row compares the two levels of A, the second row compares the 
two levels of B, and the third row corresponds to the AB interaction. From 
the five observation vectors in Table 6.12, we obtain 

9.2 7.4 \ 
16.2 -8 .7 
8.5 -10.5 ' 

10.5 24.3 J 

For the overall test of equality of means, we have, by (6.89), 

y = 

/ 23.2 \ 
15.6 
20.0 

V η · 6 ) 

, s = 
/ 51.7 

29.8 
9.2 

V 7.4 

29.8 
46.8 
16.2 

-8 .7 

T2 = n(Cy) ' (CSC')" 1 (Cy) = 29.736 < T2
0 5 A 4 = 114.986. 
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Table 6.12 Calculator Speed Data 

Subjects 

Si 
5 2 

s3 
s4 
s5 

A1 

B i 

30 
22 
29 
12 
23 

B2 

21 
13 
13 
7 

24 

A2 

B\ B2 

21 14 
22 5 
18 17 
16 14 
23 8 

Since the T2-test is not significant, we would ordinarily not proceed with tests 
based on the individual rows of C. We will do so, however, for illustrative 
purposes. (Note that the T2-test has very low power in this case, because 
n — 1 = 4 is very small.) 

To test A, B, and AB, we test each row of C, in which case 

T2 = «(ciyftciScO-^y 

is the square of the i-statistic 

where cj is the ith row of C. 
The three results are as follows: 

Factor A h = 1.459 < t.025,4 = 2.776, 
Factor B t2 = 5.247 > i.005,4 = 4.604, 

Interaction AB t3 = -.152 

Thus only the main effect for B is significant. Note that in all but one case in 
Table 6.12, the value for B\ is greater than that for B2. G 

6.9.3 ^-Sample Repeated Measures Model 

We turn now to the fc-sample repeated measures design depicted in Table 6.9. As 
noted in Section 6.9.1, the multivariate approach to this repeated measures design 
uses the one-way MANOVA model y^ = μ + /^ + £*,· = μί + £»_,·. From the 
k groups of n observation vectors each, we calculate yx , y 2_, . . . , yfc and the error 
matrix E. 

The layout in Table 6.9 is similar to that of a fc-sample profile analysis in Sec-
tion 6.8. To test (the within-subjects) factor A, we need to compare the means of 
the variables t/i, y2,..., yp within y averaged across the levels of factor B. The p 
variables correspond to the levels of factor A. In the model y^ = μί + ε^, the 
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mean vectors μι,μ2)...μί, correspond to the levels of factor B and are estimated 
by yi. , y2. · · · > Yfc. · T o compare the means of yx, y2,..., yp averaged across the lev-
els of B, we use /Z = Σ ;= ι Mi A» which is estimated by y = Σ*=1 Yi./k. The 
hypothesis H0: ~βΛ = ~β 2 = · · · = ~β p comparing the means of y\, y2, · · ·, yP (for 
factor A) can be expressed using contrasts: 

H0:Cß=0, (6.91) 

where C is any (p-l)xp full-rank contrast matrix with Cj = 0. This is equivalent 
to the "flatness" test of profile analysis, the third test in Section 6.8. Under Ho, 
the vector Cy is distributed as Np-i(0,CIlC'/N), where N = J ^ n » for an 
unbalanced design and N = kn in the balanced case. We can therefore test HQ with 

T2 = ^ ( C y J ' t C S ^ C T ^ C y . . ) , (6.92) 

where Spl = Έ/νΕ· The T2-statistic in (6.92) is distributed as Τ^_1<ι/Ε when H0 

is true, where vE = N — k [see (6.83) and the comments following]. Note that the 
dimension of T2 is p — 1 because Cy is (p — 1) x 1. 

For the grouping or between-subjects factor B, we wish to compare the means for 
the k levels of B. The mean response for the ith level of B (averaged over the levels 
of A) is YX-i ßir/p — ϊμ-ί/Ρ- The hypothesis can be expressed as 

Η0:}'μ1=ϊμ2 = -·-=ί'μΗ, (6.93) 

which is analogous to (6.79), the "levels" hypothesis in profile analysis. This is eas-
ily tested by calculating a univariate F-statistic for a one-way ANOVA on Zij — 
j'yij,i = 1,2,. . . , k; j = 1,2,.. . , η, . There is a Zij corresponding to each subject, 
S,j. The observation vector for each subject is thus reduced to a single scalar obser-
vation, and we have a one-way ANOVA comparing the means j ' y^ . j ' y^ . , · · ·, j'y"fc.· 
(Note that j ' y 4 Jp is an average over the p levels of A.) 

The AB interaction hypothesis is equivalent to the parallelism hypothesis in pro-
file analysis [see (6.77)], 

i r 0 : C / i 1 = C ^ 2 = --- = CMfc. (6.94) 

In other words, differences or contrasts among the levels of factor A are the same 
across all levels of factor B. This is easily tested by performing a one-way MANOVA 
on Zij = Cyi:j or directly by 

ICEC'I 
A = 1 C ( E + H i c i ( 6 - 9 5 ) 

[see (6.77)], which is distributed as Λρ_1[//ί ι1/£,, with v^ = k — 1 and VE = N — k; 
that is, VE = Σ ί (ni ~ 1) f° r m e unbalanced model or vE = k(n — 1) in the balanced 
model. 
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6.9.4 Computation of Repeated Measures Tests 

Some statistical software packages have automated repeated measures procedures 
that are easily implemented. However, if one is unsure as to how the resulting tests 
correspond to the tests in Section 6.9.3, there are two ways to obtain the tests di-
rectly. One approach is to calculate (6.92) and (6.95) outright using a matrix manip-
ulation routine. We would need to have available the E and H matrices of a one-way 
MANOVA using a data layout as in Table 6.9. 

The second approach uses simple data transformations available in virtually all 
programs. To test (6.91) for factor A, we would transform each y^· to ζ„ — Cy^· 
by using the rows of C. For example, if 

1 
0 
0 

- 1 
1 
0 

0 
- 1 

1 

0 
0 

- 1 

then each y ' = (2/1,2/2,2/3,2/4) becomes z' = (2/1 - 2/2,2/2 - 2/3,2/3 - 2/4)· We then 
test HQ : μζ — 0 using a one-sample T2 on all TV of the z^ 's, 

T2 = Nz'Szz, 

where N = Σίηζ> % = Σ ί , %ij/N, and Sz = ΈΖ/ΙΈ is the pooled covariance 
matrix. Reject H0 if T2 > I^,p_1>1/E. 

To test (6.93) for factor B, we sum the components of each observation vector to 
obtain Zij = j'yfj = Viji+yij2-\ 1- Uijp and compare the means zi.,z2.,... ,zk. 
by an F-test as in one-way ANOVA. 

To test the interaction hypothesis (6.94), we transform each y^ to z^ = Cy^· 
using the rows of C as above. Note that z^ is (p — 1) x 1. We then do a one-way 
MANOVA on Zij to obtain 

6.9.5 Repeated Measures with Two Within-Subjects Factors and One 
Between-Subjects Factor 

The repeated measures model with two within-subjects factors A and B and one 
between-subjects factor C corresponds to a one-way MANOVA design in which each 
observation vector includes measurements on a two-way factorial arrangement of 
treatments. Thus each subject receives all treatment combinations of the two factors 
A and B. As usual, the sequence of administration of treatment combinations should 
be randomized for each subject. A design of this type is illustrated in Table 6.13. 

Each yij in Table 6.13 has nine elements, consisting of responses to the nine treat-
ment combinations A\Bi, A\ B2, ■ ■ ■, A3B3. We are interested in the same hypothe-
ses as in a univariate split-plot design, but we use a multivariate approach to allow 
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Table 6.13 Data Layout for Repeated Measures with Two Within-Subjects Factors and 
One Between-Subjects Factor 

Within-Subjects Factors 

A1 A3 

Between-
Subjects 
Factor Subjects Βχ B2 B3 Bi B2 B3 Bi B2 B3 

C\ 5n (yni 2/112 2/113 2/114 2/ns 2/ne 2/117 2/ns 2/119) = y'n 
512 Yl2 

Jlni Jini 

C2 S21 

S22 

y2i 
Ύ22 

Sin Y2n2 

c3 S31 
S32 

ysi 
y32 

53713 y3n3 

for correlated y's. The model for the observation vectors is the one-way MANOVA 
model 

Yij = V + Ίί + £ij = Vi+ £ij, 

where 7 i is the C effect. 
To test factors A, B, and AB in Table 6.13, we use contrasts in the y's. An 

example of contrast matrices would be 

A = 

B 

2 2 2 
0 0 0 

2 
0 

/ 4 
0 
0 

-1 
1 

-2 
2 
0 
0 

- 1 
1 

-1 2 
-1 0 
-2 
-2 
0 
0 

- 1 
- 1 

-1 2 
-1 0 

1 
1 

- 1 
- 1 

- 1 - 1 
1 - 1 

- 2 1 1 \ 
0 - 1 1 

- 2 1 1 
0 - 1 1 / 

(6.97) 

(6.98) 

(6.99) 

Note that the matrices A, B, and G can be formed by turning the desired com-
parisons for each A;-level factor into a(fc — l ) x f c contrast matrix and then using 
Kronecker products (see Section 2.12). For example, the rows of A are orthogonal 
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contrasts with two comparisons: 

Ai vs. A2 and^43, 
A2 vs. A3. 

Similarly, B compares 

£?i vs. B2 and B3, 

B2 vs. ΒΆ. 

So if factor A has a levels and factor B has b levels, we obtain A, B, and G by 
constructing matrices A* and B* 

-2 1 1 \ , . . ( -2 1 1 
0 _l i J and A = { 0 -1 1 

and defining A = A* <g> l'b, B = l'a ® B*, and G = A* ® B*. Other orthogonal (or 
linearly independent) contrasts could be used for A and B. Note that the matrix G is 
for the AB interaction and can also be obtained from products of the corresponding 
elements of the rows of A and the rows of B. 

As before, we define y = YJi]ylj/N, Spl = E/uB, and N = Σίηί- I f 

there were k levels of C in Table 6.13 with mean vectors μ1,μ2,.--, μ^ then μ = 
Σ«=ι Mi A> a nd the A main effect corresponding to HQ : A/I = 0 could be tested 
with 

T2 = ^ ( A y J ' i A S p i A ' J - H A y . . ) , (6.100) 

which is distributed as T2l/E under HQ, where VE = Σ ί= ι ( η » — 1)· The dimension 
is 2, corresponding to the two rows of A. 

Similarly, to test Ho: Β μ = 0 and H0: Gjl = 0 for the B main effect and the 
AB interaction, respectively, we have 

T2 = J V i B y J ' i B S p i B T H B y J , (6.101) 

T2 - NiGyJiGS^G'r'iGy..), (6.102) 

which are distributed as T2VE and Γ | , respectively. In general, if factor A has a 
levels and factor B has δ levels, then A has a — 1 rows, B has 6—1 rows, and G has 
(a - 1)(6 - 1) rows. The T2-statistics are then distributed as Τ2_ίι/Ε, Γ6

2_χ VE, and 
T (a - i ) (6 - i ) ,^> r e s P e c t i v e l y-

Factors ^4, ß , and A S can be tested with Wilks' Λ as well as T2 . Define H* = 
Ny y' from the partitioning J2ij Yijy'ij = E + H + Ny y'. This can be used to 
test H0: μ = 0 (not usually a hypothesis of interest) by means of 

Λ = _ ' E | T ,, (6.103) 
|E + H*| 

which is AP JI I 1 / E if ifo is true. Then the hypothesis of interest, i/o: Α μ = 0 for 
factor A, can be tested with 

Α = | Α ( ί Α
+ ^ ' ) Α Ί ' ( 6 · 1 0 4 ) 
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which is distributed as Λα_ιι1;ί,Β when H0 is true, where a is the number of levels 
of factor A. There are similar expressions for testing factors B and AB. Note that 
the dimension of Λ in (6.104) is o - 1, because A E A ' is (a — 1) x (o - 1). 

The T2 and Wilks' Λ expressions in (6.100) and (6.104) are related by 

Λ = ^ , (6.105) 

T2 = VE^-j^- (6.106) 

We can establish (6.105) as follows. By (6.27), 
S 

[/(*) = Σ ^ = tr[(AEA')_1(AH*A')] 

= tr[(AEA')_1AiVy y' A'} 

= JVtr[(AEA')-1Ay..(AyJ'] 
= iVtr[(Ay..)'(AEA')-1AyJ 

= — (AyJ'tASpiA'^Ay.. 
VE 

- I ! 
VE 

Since rank (H*) = 1, only λι is nonzero, and 

i = l 

By (6.14), 
i i 1 

Λ 1 + λι 1 + i/d) l + T2/vE' 

which is the same as (6.105). 
Factor C is tested exactly as factor B in Section 6.9.3. The hypothesis is 

as in (6.93), and we perform a univariate F-test on Zjj = j'y^ in a one-way ANOVA 
layout. 

The AC, BC, and ABC interactions are tested as follows: 

AC Interaction. The AC interaction hypothesis is 

H0: A/Zj = Αμ 2 = · ■ · = Αμ*., 

which states that contrasts in factor A are the same across all levels of factor C. This 
can be tested by 
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which is distributed as A 2 J I / / / J „ E , where a - 1 = 2 is the number of rows of A and 
VH and VE are from the multivariate one-way model. Alternatively, the test can be 
carried out by transforming y^ to z^ — A y ^ and doing a one-way MANOVA on 

BC Interaction. The BC interaction hypothesis 

H0: Βμχ = Βμ 2 = · · · = Bßk 

[BEB'] 
|B(E + H ) B ' | ' 

2; i?0 can also be tested by doing MANOVA on 

ABC Interaction. The ABC interaction hypothesis 

H0: β μ ! = Gß2 = ■ ■ ■ = GMfc 

is tested by 

J G E G ] _ 
|G(E + H ) G ' | ' 

which is ^4,i/H,^E, or by doing MANOVA on z^· = Gy^·. In this case the dimension 
i s ( a - l ) ( f e ' - ' l ) = 4. 

The above tests for AC, BC, or ABC can be also carried out with the other three 
MANOVA test statistics using eigenvalues of the appropriate matrices. For example, 
for AC we would use (ΑΕΑ')^ 1 (ΑΗΑ'). 

■ EXAMPLE 6.9.5 

The data in Table 6.14 represent a repeated measures design with two within-
subjects factors and one between-subjects factor (Timm 1980). Since A and 
B have three levels each, as in the illustration in this section, we will use the 
A, B, and G matrices in (6.97), (6.98), and (6.99). The E and H matrices are 
9 x 9 and will not be shown. The overall mean vector is given by 

y ' = (46.45,39.25,31.70,38.85,45.40,40.15,34.55,36.90,39.15). 

By (6.100), the test for factor A is 

T2=N(AyJ(ASplA')-1(A.yJ 

=»<-*»*>(2^£SrUJS) 
= 8.645 > T2

05 = 7.606. 

is tested by 

A = 

which is h.2,Vf],vE, where b — 1 = 
ZH = B y i j . 
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Table 6.14 Data from a Repeated Measures Experiment with Two Within-Subjects Factors 
and One Between-Subjects Factor 

Between- Within-Subjects Factors 
Subjects A-i A2 A3 

Factor Subjects Bi B2 ΒΆ Βχ B2 B3 Bx B2 B3 

Sll 
Si 2 

Sl3 
S14 

Si 5 

Sie 
Sn 
Sis 
Si 9 

Si,10 

S21 

S22 

S23 

S24 

S25 

S26 

S27 

S28 

S29 

S240 

20 
67 
37 
42 
57 
39 
43 
35 
41 
39 

47 
53 
38 
60 
37 
59 
67 
43 
64 
41 

21 
48 
31 
40 
45 
39 
32 
34 
32 
32 

36 
43 
35 
51 
36 
48 
50 
35 
59 
38 

21 
29 
25 
38 
32 
38 
20 
34 
23 
24 

25 
32 
33 
41 
35 
37 
33 
27 
53 
34 

32 
43 
27 
37 
27 
46 
33 
39 
37 
30 

31 
40 
38 
54 
40 
45 
47 
32 
58 
41 

42 
56 
28 
36 
21 
54 
46 
43 
51 
35 

36 
48 
42 
67 
45 
52 
61 
36 
62 
47 

37 
48 
30 
28 
25 
43 
44 
39 
39 
31 

29 
47 
45 
60 
40 
44 
46 
35 
51 
42 

32 
39 
31 
19 
30 
31 
42 
35 
27 
26 

21 
46 
48 
53 
34 
36 
31 
33 
40 
37 

32 
40 
33 
27 
29 
29 
37 
39 
28 
29 

24 
50 
48 
52 
40 
44 
41 
33 
42 
41 

32 
41 
34 
35 
29 
28 
31 
42 
30 
32 

27 
54 
49 
50 
46 
52 
50 
32 
43 
46 

For factor B, we use (6.101) to obtain 

r 2 = JV(By. .) ' (BSp ,B ')-1(ByJ 

= 20(7.15,10.55)̂  MQ 6g g J (̂  1 Q ^ J 

= 37.438 > Γ2
01 ι218 = 12.943. 

By (6.102), the test for the AB interaction is given by 

T2 = JV(Gy..) '(GSp lG')-1(Gy..) 

= 61.825 > T o M i l 8 = 23.487. 

To test factor C, we carry out a one-way ANOVA on z^ = j ' y j j /9 : 

Source Sum of Squares df Mean Square F 

Between 3042.22 1 3042.22 8.54 
Error 6408.98 18 356.05 
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The observed F, 8.54, has a p-value of .0091 and is therefore significant. 
The AC interaction is tested by (6.107) as 

[AEA'I _ 3.058 x 108 

~ |A(E + H)A' | ~ 3.092 x 108 

= .9889 > A.05,2,1,18 = -703. 

For the BC interaction, we have 

|BEB' | _ 4.053 x 106 

~ |B(E + H)B ' | ~ 4.170 x 106 

- .9718 > Λ.ο5,2,ι,ΐ8 = -703. 

For ABC, we obtain 

|GEG' | _ 2.643 x 1012 

~ |G(E + H)G ' | ~ 2.927 x 1012 

= .9029 > Λ.ο5,4,ι,ΐ8 = -551. 

In summary, factors A, B, and C and the AB interaction are significant. D 

6.9.6 Repeated Measures with Two Within-Subjects Factors and Two 
Between-Subjects Factors 

In this section we consider a balanced two-way MANOVA design in which each 
observation vector arises from a two-way factorial arrangement of treatments. This 
is illustrated in Table 6.15 for a balanced design with three levels of all factors. Each 
yijk has nine elements, consisting of responses to the nine treatment combinations 
AiB1,A2B2, · · ·, A3B3 (see Table 6.13). 

To test A, B, and AB, we can use the same contrast matrices A, B, and G as 
in (6.97)-(6.99). We define a grand mean vector y = J2ijk Yijk/N, where N is 
the total number of observation vectors; in this illustration, N = 27. In general, 
N = cdn, where c and d are the number of levels of factors C and D and n is the 
number of replications in each cell (in the illustration, n — 3). The test statistics for 
A, B, and AB are as follows, where Spi = Έι/νΕ and the E matrix is obtained from 
the two-way MANOVA with vE = cd(n — 1) degrees of freedom. 

Factor A 
T2 = ^(Ay. . . ) ' (ASp lA')-1(Ay. . . ) 

is distributed as T2_x . 

Factor B 
T ^ A ^ B y . J ' l B S p i B O - H B y . . . ) 

is distributed as T^_1 . 



REPEATED MEASURES DESIGNS 231 

Table 6.15 Data Layout for Repeated Measures with Two Within-Subjects Factors and Two 
Between-Subjects Factors 

Between-Subjects 
Factors 

Within-Subjects Factors 

C D 

Αχ A2 A3 

Subject Bi B2 B3 Bi B2 B3 B\ B2 B3 

Cx Dx 

D2 

D3 

Sin 
S112 
5 l l 3 
S121 
S122 

5l23 
S131 
5Ί32 
5l33 

yiu 
y'112 
y'113 
y'121 
yi22 
yi23 
y'131 
yi32 
yi33 

c2 
Dx 

D2 

D3 

5211 
5212 
5213 
5221 

y211 
1 

Ύΐ\2 
y213 
y221 

c3 Dx 

D2 

D3 S333 y333 

AB Interaction 

T2=N{GyJ{GSplG')-1{GyJ 

is distributed as T? 1 U . 1λ 
(a-l)(b-l),i/E 

i'yukand c a r r y o u t To test factors C, D, and CD, we transform to Zijk 
univariate F-tests on a two-way ANOVA design. 

To test factors AC, AD, and ACD, we perform a two-way MANOVA on Ay i j f e . 
Then, the C main effect on Ay^ f c compares the levels of C on Ay i ; i f e , which is an 
effective description of the AC interaction. Similarly, the D main effect on Ay i j f c 

yields the AD interaction, and the CD interaction on A y f -fc gives the ACD inter-
action. 

To test factors BC, BD, and BCD, we carry out a two-way MANOVA on By i j f e . 
The C main effect on By i j f e gives the BC interaction, the D main effect on By i j f c 

yields the BD interaction, and the CD interaction on B y ^ j . corresponds to the 
BCD interaction. 

Finally, to test factors ABC, ABD, and ABCD, we perform a two-way MANOVA 
on Gy^ -fc. Then the C main effect on Gy i j f e gives the ABC interaction, the D main 
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effect on Gy i j fc yields the ABD interaction, and the CD interaction on Gy i j fc cor-
responds to the ABCD interaction. 

6.9.7 Additional Topics 

Wang (1983) and Timm (1980) give a method for obtaining univariate mixed-model 
sums of squares from the multivariate E and H matrices. Crepeau et al. (1985) 
consider repeated measures experiments with missing data. Federer (1986) discusses 
the planning of repeated measures designs, emphasizing such aspects as determining 
the length of treatment period, eliminating carry-over effects, the nature of pre- and 
posttreatment, the nature of a response to a treatment, treatment sequences, and the 
choice of a model. Vonesh (1986) discusses sample size requirements to achieve a 
given power level in repeated measures designs. Patel (1986) presents a model that 
accommodates both within- and between-subjects covariates in repeated measures 
designs. Jensen (1982) compares the efficiency and robustness of various procedures. 

A multivariate or multiresponse repeated measurement design will result if more 
than one variable is measured on each subject at each treatment combination. Such 
designs are discussed by Timm (1980), Reinsel (1982), Wang (1983), and Thomas 
(1983). Bock (1975) refers to observations of this type as doubly multivariate data. 

6.10 GROWTH CURVES 

When the subject responds to a treatment or stimulus at successive time periods, 
the pattern of responses is often referred to as a growth curve. As in repeated mea-
sures experiments, subjects are usually human or animal. We consider estimation 
and testing hypotheses about the form of the response curve for a single sample in 
Section 6.10.1 and extend to growth curves for several samples in Section 6.10.2. 

6.10.1 Growth Curve for One Sample 

The data layout for a single sample growth curve experiment is analogous to Ta-
ble 6.11, with the levels of factor A representing time periods. Thus we have a 
sample of n observation vectors y i ,y2, · · · ,yn, for which we compute y and S. 
The usual approach is to approximate the shape of the growth curve by a polynomial 
function of time. If the time points are equally spaced, we can use orthogonal poly-
nomials. This approach will be described first, followed by a method suitable for 
unequal time intervals. 

Orthogonal polynomials are special contrasts that are often used in testing for 
linear, quadratic, cubic, and higher-order trends in quantitative factors. For a more 
complete description and derivation see Guttman (1982, pp. 194-207), Morrison 
(1983, pp. 182-188), or Rencher and Schaalje (2008, pp. 363-371). Here we give 
only a heuristic introduction to the use of these contrasts. 
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Suppose we administer a drug to some subjects and measure a certain reaction at 
3-minute intervals. Let μι, μ2, μ^, μ^, and μ$ designate the average responses at 0, 
3,6,9, and 12 minutes, respectively. To test the hypothesis that there are no trends in 
the μ/s, we could test Ho: μι — μ2 — ■ · · = Ms or H0 : Ομ = 0 using the contrast 
matrix 

/ - 2 - 1 0 1 2 \ 
2 - 1 - 2 - 1 2 

C = - 1 2 0 - 2 1 
\̂  1 _4 6 - 4 1 / 

(6.108) 

in T2 = n(Cy) ' (CSC' ) _ 1 (Cy) as in (6.89). The four rows of C are orthogonal 
polynomials that test for linear, quadratic, cubic, and quartic trends in the means. As 
noted in Section 6.9.2 , any set of orthogonal contrasts in C will give the same value 
of T2 to test Ho: μχ — μ2 = ■ ■ ■ = μ$. However, in this case we will be interested 
in using a subset of the rows of C to determine the shape of the response curve. 

Table A. 13 (Kleinbaum, Kupper, and Muller 1988) gives orthogonal polynomials 
for p = 3 ,4 , . . . , 10. The p — 1 entries for each value of p constitute the matrix C. 
Some software programs will generate these automatically. 

As with all orthogonal contrasts, the rows of C in (6.108) sum to zero and are 
mutually orthogonal. It is also apparent that the coefficients in each row increase 
and decrease in conformity with the desired pattern. Thus the entries in the first row, 
(—2, —1, 0, 1, 2), increase steadily in a straight-line trend. The values in the second 
row dip down and back up in a quadratic-type bend. The third row entries increase, 
decrease, then increase in a cubic pattern with two bends. The fourth row bends three 
times in a quartic curve. 

To further illustrate how the orthogonal polynomials pinpoint trends in the means 
when testing H0 : Ομ = 0, consider the three different patterns for μ depicted 
in Figure 6.4, where μ'α = (8,8,8,8,8), μ'6 = (20,16,12,8,4), and μ'c = 
(5,12,15,12,5). Let us denote the rows of C in (6.108) as c[, c'2, c'3, and c'4. 
It is clear that c'^a = 0 for i = 1,2,3,4; that is, when H0: μλ = · · · — μ5 is true, 
all four comparisons confirm it. If μ has the pattern μ6, only c[ßb is nonzero. The 
other rows are not sensitive to a linear pattern. We illustrate this for c[ and c'2: 

c > 6 = (-2)(20) + (-1)(16) + (0)(12) + (1)(8) + (2)(4) = -44 , 
c'2ßb = 2(20) - 16 - 2(12) - 8 4- 2(4) = 0. 

For με, only ο'2μ0 is nonzero. For example, 

c' lMc = -2(5) - 12 + 12 + 2(5) = 0, 
ο'2μα = 2(5) - 12 - 2(15) - 12 + 2(5) = -19 . 

Thus each orthogonal polynomial independently detects the type of curvature it is 
designed for and ignores other types. Of course, real curves generally exhibit a 
mixture of more than one type of curvature, and in practice more than one orthogonal 
polynomial contrast may be significant. 
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Figure 6.4 Three different patterns for μ. 

To test hypotheses about the shape of the curve, we therefore use the appropriate 
rows of C in (6.108). Suppose we suspected a priori that there would be a combined 
linear and quadratic trend. Then we would partition C as follows: 

Ci = 

C 2 = 

- 2 - 1 0 1 2 
2 - 1 - 2 - 1 2 

- 1 2 0 - 2 1 
1 - 4 6 - 4 1 

We would test H0: Οιμ = 0 by 

T2 = n(Ciy) , (CiSC ,
1 ) - 1 (C 1 y) , 

which is distributed as T | η_ ΐ 5 where 2 is the number of rows of Ci , n is the number 
of subjects in the sample, and y and S are the mean vector and covariance matrix for 
the sample. Similarly, HQ : 02μ = 0 is tested by 

T2 = n(C2yY(C2SC'2r
l(C2y), 
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which is T 2 n_ 1 . In this case we might expect the first to reject H0 and the second to 
accept Ha-

lf we have no a priori expectations as to the shape of the curve, we could proceed 
as follows. Test the overall hypothesis HQ : C/z = 0, and if Ho rejected, use each 
of the rows of C separately to test HQ : ο[μ = 0, i = 1,2,3,4. The respective test 
statistics are 

T ^ n i C y / i C S C ' r ^ C y ) , 
which is T| r a_1 , and 

c'.y 
L'i — , -) fc — -L} Zi^ O5 ^ 5 

v/c^Scj/n 

each of which is distributed as fn_i (see Example 6.9.2). 
In a case where p is large so that μ has a large number of levels, say 10 or more, 

we would likely want to stop testing after the first four or five rows of C and test 
the remaining rows in one group. However, for larger values of p, most tables of 
orthogonal polynomials give only the first few rows and omit those corresponding 
to higher degrees of curvature. We can find a matrix whose rows are orthogonal 
to the rows of a given matrix as follows. Suppose p = 11 so that C is 10 x 11 
and Ci contains the first five orthogonal polynomials. Then a matrix C2, with rows 
orthogonal to those of Ci , can be obtained by selecting five linearly independent 
rows of 

B = I - C ' i ( C 1 C ' 1 ) - 1 C i , (6.109) 
whose rows can easily be shown to be orthogonal to those of C i . The matrix B 
is not full rank, and some care must be exercised in choosing linearly independent 
rows. However, if an incorrect choice of C 2 is made, the computer algorithm should 
indicate this as it attempts to invert C 2 SC 2 in T2 = n(C 2 y) ' (C2SC 2 )" 1 (C 2 y) . 

Alternatively, to check for significant curvature beyond the rows of Ci without 
finding C2 , we can use the test for additional information in a subset of variables in 
Section 5.8. We need not find C2 in order to find the overall T2 , since, as noted in 
Section 6.9.2 , any full rank (p - 1) x p matrix C such that Cj = 0 will give the 
same value in the overall T2-test of H0: C/x = 0. We can conveniently use a simple 
contrast matrix such as 

C = 

/ 1 - 1 0 ·■■ 0 \ 
0 1 - 1 · · · 0 

\ 0 0 0 · · · - 1 / 

in 
T2 = n i C y / C C S C ' r ^ C y ) , (6.110) 

which is Tp_ln_1. Let p\ be the number of orthogonal polynomials in Ci and p2 

be the number of rows of C 2 if it were available; that is p\ + P2 = P — 1. Then the 
test statistic for the p\ orthogonal polynomials in Ci is 

Tl = « ( C i y J ' i d S C O - ^ d y ) , (6.111) 
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which is T%un_v We wish to compare T2 in (6.111) to Γ 2 in (6.110) to check 
for significant curvature beyond the rows of Ci . However, the test for additional 
information in a subset of variables in Section 5.8 was for the two-sample case. We 
can adapt (5.29) for use with the one-sample case as follows. The test for significance 
of any curvature remaining after that accounted for in Ci is made by comparing 

{n-pi- 1) 
T 2 n 

1+7? 
with the critical value 7^ i P 2 j n_p i_1 . 

We now describe an approach that can be used when the time points are not 
equally spaced. It may also be of interest in the equal-time-increment case because 
it provides an estimate of the response function. 

Suppose we observe the response of the subject at p time points 11, ti,..., tp and 
that the average response μ at any time point t is a polynomial in t of degree k < p: 

μ = β0 + β1ί + β2ί
2 + ßktk 

This holds for each point tr and the corresponding average response μτ. Thus our 
hypothesis becomes 

Ha 

ßi=ßv+ ßih +&*? + ■·■+ ßkt\ 
μ2=βο+ ßih + /?2ί| + · · · + ßk4 

μΡ = βο+ ßitp + βιή, + ■■■+ ßktk
p 

which can be expressed in matrix notation as 

i/o: μ = A/3, 

(6.112) 

(6.113) 

where 

/ 1 ii 
1 h 

V 1 tp t2
v 

if \ 

tk
P J 

and β-

/ ßo\ 
ßl 

\ß» / 

In practice, it may be useful to transform the i r 's by subtracting the mean or the 
smallest value in order to reduce their size for computational purposes. 

The following method of testing H0 is due to Rao (1959, 1973). The model μ = 
Aß is similar to a regression model E(y) = X/3 (see Section 10.2.1). However, 
in this case, we have cov (y) = Σ rather than σ2Ι, as in the standard regression 
assumption. In place of the usual regression approach of seeking β to minimize 
SSE — (y -X/3) ' (y -X/3) [see (10.4) and (10.6)], we use a standardized distance as 
in (3.80), (y-AßYS-^y-Aß). The value of ß that minimizes ( y - A ^ ) ' S ~ x ( y -
A/3)is 



GROWTH CURVES 2 3 7 

ß = ( A ' S ^ A ^ A ' S ^ y (6.114) 

[see Rencher and Schaalje (2008, Section 7.8.1)], and H0: μ = Aß can be tested 
by 

T2=n(y-Aß)'S-l(y-Aß), (6.115) 

which is distributed as T2_k_ln_1. The dimension of T2 is reduced from p to 
p - k — 1 because k + 1 parameters have been estimated in ß. The T2-statistic in 
(6.115) is usually given in the equivalent form 

T 2 = n ( y ' S - 1 y - y / S - 1 A £ ) . ( 6 1 1 6 ) 

The mean response at the rth time point, 

μΓ = ßo + ßitr + ß2t
2
r + · · · + ßkt

k
r 

= (l,tr,t
2
r,...,t

k
r)ß = a'rß, 

can be estimated by 

ßr = a'rß. (6.117) 

Simultaneous confidence intervals for all possible a'ß are given by 

a'ß±^t a.'(A'S-1A)-1BL(l + -^—\ (6.118) 
φί V \ n-lj 

where TQ = JT2
 fe+1 n_x is from Table A.7 and T2 is given by (6.115) or (6.116). 

The intervals in (6.118) for a'ß include, of course, a'rß for the p rows of A, that is, 
confidence intervals for the p time points. If a'rß, r = 1,2,.. . , p, are the only values 
of interest, we can shorten the intervals in (6.118) by using a Bonferroni coefficient 
ta/2P in place of Ta: 

ta/2p / . , . . „ , . , , Λ T2 

a'rß ± ^ W a r ( A ' S - i A ) - i a r f 1 + ^ - ) , (6.119) 

where iQ/2P = ta/2P,n-i- Bonferroni critical values ta/2p,v a r e given in Table A.8. 
See procedures 2 and 3 in Section 5.5 for additional comments on the use of ta/2p 

and Ta. 

■ EXAMPLE 6.10.1 

Potthoff and Roy (1964) reported measurements in a dental study on boys and 
girls from ages 8 to 14. The data are given in Table 6.16. 

To illustrate the methods of this section, we use the data for the boys alone. 
In Example 6.10.2 we will compare the growth curves of the boys with those of 
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Table 6.16 Dental Measurements 

Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Girls' Age in Years 

8 

21.0 
21.0 
20.5 
23.5 
21.5 
20.0 
21.5 
23.0 
20.0 
16.5 
24.5 

10 

20.0 
21.5 
24.0 
24.5 
23.0 
21.0 
22.5 
23.0 
21.0 
19.0 
25.0 

12 

21.5 
24.0 
24.5 
25.0 
22.5 
21.0 
23.0 
23.5 
22.0 
19.0 
28.0 

14 

23.0 
25.5 
26.0 
26.5 
23.5 
22.5 
25.0 
24.0 
21.5 
19.5 
28.0 

Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Boys' Ag 

8 

26.0 
21.5 
23.0 
25.5 
20.0 
24.5 
22.0 
24.0 
23.0 
27.5 
23.0 
21.5 
17.0 
22.5 
23.0 
22.0 

10 

25.0 
22.5 
22.5 
27.5 
23.5 
25.5 
22.0 
21.5 
20.5 
28.0 
23.0 
23.5 
24.5 
25.5 
24.5 
21.5 

e in Years 

12 

29.0 
23.0 
24.0 
26.5 
22.5 
27.0 
24.5 
24.5 
31.0 
31.0 
23.5 
24.0 
26.0 
25.5 
26.0 
23.5 

14 

31.0 
26.5 
27.5 
27.0 
26.0 
28.5 
26.5 
25.5 
26.0 
31.5 
25.0 
28.0 
29.5 
26.0 
30.0 
25.0 

the girls. We first test the overall hypothesis H0: Ομ = 0, where C contains 
orthogonal polynomials for linear, quadratic, and cubic effects: 

1 - 3 - 1 
c = 1 l - l -

V - l 3 -

From the 16 observation vectors we obtain 

/ 22.88 \ / 6.02 

y = 
23.81 
25.72 

\ 27.47 ) 
, s = 

2.29 
3.63 

\ 1.61 

1 3 
-1 1 
-3 1 

2.29 
4.56 
2.19 
2.81 

\ 

/ 

3.63 
2.19 
7.03 
3.24 

1.61 \ 
2.81 
3.24 
4.35 ) 

(6.120) 

To test H0 : Ομ = 0, we calculate 

T2 = n(Cy) ' (CSC')~ 1(Cy) = 77.957, 

which exceeds Τ2
01315 = 19.867. We now test H0 : c ^ = 0 for each row of 

C to determine the shape of the growth curve. For the linear effect, using the 
first row, c[, we obtain 

i i 
C'IY 

v^s^Ä 
■ 7'.722 > t,oo5, is = 2.947. 
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The test of significance of the quadratic component using the second row yields 

ti 
c2y 

1.370 < i.025,i5 = 2.131. 
^/c'2Sc2/n 

To test for a cubic trend, we use the third row of C 
c

3 y 
*3 

y/c'3Sc3/n 
-.511 > -t .025,15 -2.131. 

Thus only the linear trend is needed to describe the growth curve. 
To model the curve for each variable, we use (6.112), 

Mr ßo + ßitr, r = 1,2,3,4, or 
μ = Αβ, 

where 

/ 1 - 3 \ 
1 - 1 
1 1 

V 1 3 / 
, ß = ßo 

ßx 

The values in the second column of A are obtained as t = age — 11. By 
(6.114), we obtain 

0 = (A'S ^ ^ A ' S ^ y 25.002 
.834 

and our prediction equation is 

μ = 25.002 + .834f = 25.002 + .834(age - 11) 
= 15.828 +.834(age). 

D 

6.10.2 Growth Curves for Several Samples 

For the case of several samples or groups, the data layout would be similar to that 
in Table 6.9, where the p levels of factor A represent time points. Assuming the 
time points are equally spaced, we can use orthogonal polynomials in the (p - 1) x p 
contrast matrix C and express the basic hypothesis in the form HQ : C/Z — 0, where 
μ = 5Z i=1 μ-i/k- This is equivalent to HQ : μ~Λ = ~μ 2 = · · · = β.ρ, which 
compares the means of the p time points averaged across groups. As in Section 6.9.3, 
let us denote the sample mean vectors for the k groups as yx , y2., · · · ,y~fc., with 
grand mean y and pooled covariance matrix Spi = E/z/g. For the overall test of 
H0: C p = 0 we use the test statistic 

T2 = iV(Cy..) ,(CSp ,C')-1(Cy..), (6.121) 
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which is Tp_lv,E as in (6.92), where TV = Σ ί = 1 n* for.unbalanced data or N = kn 
for balanced data. The corresponding degrees of freedom for error is VE — N — k 
or VE = kin — 1). A test that the average growth curve (averaged over groups) has 
a particular form can be tested with d > containing a subset of the rows of C: 

T2 = W i d y J ' t C i S ^ C i r ^ d y . . ) , (6.122) 

which is distributed as Tpi , where p\ is the number of rows in d · 
The growth curves for the k groups can be compared by the interaction or paral-

lelism test of Section 6.9.3 using either C or d · We do a one-way MANOVA on 
Cy- or Ciyij, or equivalently calculate by (6.95), 

lCEC ' l Λ IdECH ,£„„ 
A=\C(E + U)C'\ °r A ^ | d ( E + H)dr ( 6 · 1 2 3 ) 

which are distributed as Κρ^ι^-ι<νΕ and APlih-i,uE, respectively. 

■ EXAMPLE 6.10.2 

In Example 6.10.1, we found a linear trend for the growth curve for dental 
measurements of boys in Table 6.16. We now consider the growth curve for 
the combined group and also compare the girls' group with the boys' group. 

The two sample sizes are unequal and we use (6.32) to calculate the E 
matrix for the two groups, 

E 

/ 135.39 67.88 97.76 67.76 \ 
67.88 103.76 72.86 82.71 
97.76 72.86 161.39 103.27 

\ 67.76 82.71 103.27 124.64 / 

from which we obtain Spi = E/i/g. Using the C matrix in (6.120), we can test 
the basic hypothesis of equal means for the combined samples, H0 : Cji = 0, 
using (6.121): 

T2 = N(CyJ'(CSplC')-HCy..) 
= 118.322 > T|1 ) 3 i 2 5 = 15.538. 

To test for a linear trend, we use the first row of C in (6.122): 

T2^iV(c'1y..) '(c'1Sp lc1)-1(c'1y..) 
= 99.445 > T2

0 M j 2 5 = 7.770. 

This is, of course, the square of a ί-statistic, but in the T2 form it can readily 
be compared with the T2 above using all three rows of C. The linear trend is 
seen to dominate the relationship among the means. 
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We now compare the growth curves of the two groups using (6.123). For 
C, we obtain 

|CEC' | _ 1.3996 x 108 

~ |C(E + H)C ' | ~ 1.9025 x 108 

= .736 > Λ 05,3,1,25 = -717. 

For the linear trend, we have 

Ic'iEcil _ 1184.2 
~ Ic'^E + ^ c i j ~ 1427.9 
= .829 < Λ.ο5,ι,ι,25 = -855. 

Thus the overall comparison does not reach significance, but the more specific 
comparison of linear trends does give a significant result. □ 

6.10.3 Additional Topics 

Jackson and Bryce (1981) presented methods of analyzing growth curves based on 
univariate linear models. Snee (1972) and Snee et al. (1979) proposed the use of 
eigenvalues and eigenvectors of a matrix derived from residuals after fitting the 
model. If one of the eigenvalues is dominant, certain simplifications result. Bryce 
(1980) discussed a similar simplification for the two-group case. Geisser (1980) and 
Fearn (1975, 1977) gave the Bayesian approach to growth curves, including estima-
tion and prediction. Zerbe (1979a,b) provided a randomization test requiring fewer 
assumptions than normal-based tests. 

6.11 TESTS ON A SUBVECTOR 

6.11.1 Test for Additional Information 

In Section 5.8, we considered tests of significance of the additional information in 
a subvector when comparing two groups. We now extend these concepts to several 
groups and use similar notation. 

Let y b e a p x 1 vector of measurements and x be a q x 1 vector measured in 
addition to y. We are interested in determining whether x makes a significant con-
tribution to the test of H0: μχ = μ2 — ■ ■ ■ = μ-k a D O v e a nd beyond y. Another way 
to phrase the question is: Can the separation of groups achieved by x be predicted 
from the separation achieved by y? It is not necessary, of course, that x represent 
new variables. It may be that (^) is a partitioning of the present variables, and we 
wish to know if the variables in x can be deleted because they do not contribute to 
rejecting HQ. 

We consider here only the one-way MANOVA, but the results could be extended 
to higher-order designs, where various possibilities arise. In a two-way context, for 
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example, it may happen that x contributes nothing to the A main effect but does 
contribute significantly to the B main effect. 

It is assumed that we have k samples, 

from which we calculate 

i = l,2,...,k; j = l,2,...,n, 

g _ | ^yy *^yx \ JJ _ ( "-yy "-yx 
E E / ' \ H H 

where E and H are (p + q) x (p + q) and Ey2/ and Hj^ are p x p. 
Then 

AM = wfn\ (fU24) 

is distributed as Kp+q^HtVE and tests the significance of group separation using the 
full vector (^). In the balanced one-way model, the degrees of freedom are VH = 
k — 1 and VE = k(n — 1). To test group separation using the reduced vector y, we 
can compute 

A ( y ) = Ι Ε ' ^ Η Γ (6-125) 

\EJyy Ϊ - -tlyj/1 
which is distributed as ΛΡιί,Η >1/Ε. 

To test the hypothesis that the extra variables in x do not contribute anything 
significant to separating the groups beyond the information already available in y, 
we calculate 

A(x|y) = ^ ^ , (6.126) 

which is distributed as Aq)1/Hil/E_p. Note that the dimension of A(x|y) is q, the 
number of x's. The error degrees of freedom VE — p has been adjusted for the p y's. 
Thus to test for the contribution of additional variables to separation of groups, we 
take the ratio of Wilks' Λ for the full set of variables in (6.124) to Wilks' Λ for the 
reduced set in (6.125). If the addition of x makes A(y, x) sufficiently smaller than 
A(y), then A(x|y) in (6.126) will be small enough to reject the hypothesis. 

If we are interested in the effect of adding a single x, then q = 1, and (6.126) 
becomes 

. / | λ A(y i , . . . ,y p ,x ) 
A(X\yi,...,yP)= A ( y i i . . . ; y p ) , (6-127) 

which is distributed as KitVHiVE-p. In this test we are inquiring whether x reduces 
the overall A by a significant amount. With a dimension of 1, the Λ-statistic in 
(6.127) has an exact F-transformation from Table 6.1, 

F = ^ ^ , (6.128) 
A uH 

which is distributed as FVHfVB-p. The statistic (6.127) is often referred to as apartial 
A-statistic, and correspondingly, (6.128) is called a partial F-statistic. 
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In (6.127) and (6.128), we have a test of the significance of a variable in the 
presence of the other variables. For a breakdown of precisely how the contribution 
of a variable depends on the other variables, see Rencher (1993; 1998, Section 4.1.6). 

We can rewrite (6.127) as 

A(y1,...,yp,x) = A(a;|t/i,...,?/p)A(y1,...,j/p) < A(yi,...,yp), (6.129) 

which shows that Wilks' A can only decrease with an additional variable. 

■ EXAMPLE 6.11.1 

We use the rootstock data of Table 6.2 to illustrate tests on subvectors. From 
Example 6.1.7, we have, for all four variables, A(yi,y2,2/3, 2/4) = .1540. For 
the first two variables, we obtain A(y1; y2) = .6990. Then to test the signifi-
cance of 2/3 and 2/4 adjusted for ί/i and y2, we have by (6.126), 

A/ 1 i A(yi,y2,y3,y4) -1540 
A(y3,yi\yi,y2) = A ( y i > f e ) = — = .2203, 

which is less than the critical value A.05,2,5,40 = -639. 
Similarly, the test for 2/4 adjusted for 2/1,2/2, and 1/3 is given by (6.127) as 

A/ 1 x A(yx,y2,y3,y4) .1540 
A(2/4 2/1,2/2,2/3) = —77 —̂ = -τ^Η 

A(2/i,2/2,2/3) -2460 

= .6261 < Λ.ο5,ι,5,39 = -759. 

For each of the other variables, we have a similar test: 

2/3 : A(y3\yi,y2,y4) = ^ j = .5618 < A.05,1,5,39 = -759 

2/2 : A(2/2|yi,2/3,2/4) = j ^ = .8014 > Λ.05,1,5,39 = .759 

2/1 : A(2/i 12/2,2/3,2/4) = : y ^ = -9630 > Λ.05,1,5,39 = -759. 
Thus the two variables 2/3 and 2/4, either individually or together, contribute 

a significant amount to separation of the six groups. D 

6.11.2 Stepwise Selection of Variables 

If there are no variables for which we have a priori interest in testing for significance, 
we can do a data-directed search for the variables that best separate the groups. Such 
a strategy is often called stepwise discriminant analysis, although it could more aptly 
be called stepwise MANOVA. The procedure appears in many software packages. 

We first describe an approach that is usually called forward selection. At the first 
step calculate A(j/j) for each individual variable and choose the one with minimum 
A(j/j) (or maximum associated F). At the second step calculate A(?/j I2/1) for each of 



2 4 4 MULTIVARIATE ANALYSIS OF VARIANCE 

the p - 1 variables not entered at the first step, where y\ indicates the first variable 
entered. For the second variable we choose the one with minimum A(t/j \y{) (or max-
imum associated partial F), that is, the variable that adds the maximum separation 
to the one entered at step 1. Denote the variable entered at step 2 by y2. At the third 
step calculate A(yi | j/i, y2) for each of the p — 2 remaining variables and choose the 
one that minimizes A(i/j|yi, y2) (or maximizes the associated partial F). Continue 
this process until the F falls below some predetermined threshold value, say Fm. 

A stepwise procedure follows a similar sequence, except that after a variable has 
entered, the variables previously selected are reexamined to see if each still con-
tributes a significant amount. The variable with smallest partial F will be removed 
if the partial F is less than a second threshold value, F o u t . If -Fout is the same as Fjn , 
there is a very small possibility that the procedure will cycle continuously without 
stopping. This possibility can be eliminated by using a value of Fout slightly less 
than Fin. For an illustration of the stepwise procedure, see Example 8.9. 

PROBLEMS 

6.1 Verify the computational forms given in (6.3) and (6.5); that is, show that 

(a) Σφα - ϋύ2 = Σ « vfj ~ Σ,ί yl/n 

(■>) ηΣ,Μ. -y . . ) 2 = Ei!/?./«-ί/ϋ/fc» 

6.2 Show that Wilks' Λ can be expressed in terms of the eigenvalues of E _ 1 H as 
in (6.14). 

6.3 Show that the eigenvalues of the matrices E _ 1 H and ( E 1 / 2 ) _ 1 H ( E 1 / 2 ) - 1 

are the same, as noted in Section 6.1.4, where E 1 / 2 is the square root matrix 
defined in (2.112). 

6.4 Show that F2 in (6.26) is the same as f\ in (6.25). 

6.5 Show that F3 in (6.30) is the same as F2 in (6.29). 

6.6 Show that if there is only one nonzero eigenvalue λι, then U^l\ V^\ and Λ 
can be expressed in terms of Θ, as in (6.33)-(6.35). 

6.7 Show that (5.16), (5.18), and (5.19), which relate T2 to Λ, V^SK and Θ, follow 
from (6.33)-(6.35) and (6.38), C/W = T 2 / ( m +n2- 2). 

6.8 Verify the computational forms of H and E in (6.31) and (6.32); that is, show 
that 

(a) Σί=ι niiYi. - y..)(Yi. - y..)' = Τ!ϊ=ιΥί-Ύ'ί./ηί - y..y'..lN 

(b) E l
A =iE" i i (yy -y i . ) (y i i - y i . ) ' =E i

f c =iE" i i y^ -ELiy i . y i .M 
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6.9 Show that for two groups, H = X^2
=1 η;(5^ - y Xy; -yJ 'canbeexpressed 

as H = [n1n2/(n1 + ri2)](yi. - Ϋ2.)(Ϋι. ~ Ϋ2. ) '> t h u s verifying (6.37). Note 
that _ _ 

- = "iYi. +»2y 2 . 
ni+n2 

6.10 Show that Θ can be expressed as Θ = SSH(z)/[SSE{z) + SSH(z)] as in (6.41). 

6.11 Show that 

ΠΓΠ:-Π( ' 
i= l i= l 

■r?), 

as in (6.44), where rf = Aj/(1 + λ,). 

6.12 Show that the F-approximation based on Ap in (6.49) reduces to (6.26) if 

AP = V^/s, as in (6.48). 

6.13 Show that if s = 1, ALH in (6.50) reduces to (6.42). 

6.14 Show that the F-approximation denoted by F3 in (6.30) is equivalent to (6.51). 
6.15 Show that cov(£) = ^ Σ*=1 c2 as in (6.60). 

6.16 If Zij = Cy^ , where C is (p - 1) x p, show that Hz = C H C and E 2 = 
C E C , as used in (6.78). 

6.17 Why do C and C not "cancel out" of Wilks' Λ in (6.78)? 

6.18 Show that under H03 and H01, Cy is Np-i(Q,CEC'/kn), as noted preced-
ing (6.83). 

6.19 Show that T2 = kn(Cy ) ' (CEC7i / E ) " 1 Cy in (6.83) is distributed as 
T2 

ρ - Ι , Ι Έ ' 
6.20 For ε defined by (6.88), show that ε = 1 when Σ = σ2Ι. 

6.21 Give a justification of the Wilks' Λ test of H0: μ = 0 in (6.103). 

6.22 Provide an alternative derivation of (6.105), Λ = VEI{VE + T2), starting with 
(6.104). 

6.23 Obtain T2 in terms of Λ in (6.106) from (6.105). 

6.24 Show that the rows of Ci are orthogonal to those of B = I - C ' 1 ( C i C ' 1 ) _ 1 C i 
in (6.109). 

6.25 Show that β in (6.114) minimizes (y - A / ^ ' S ^ y - A/3). 

6.26 Show that T2 in (6.116) is equivalent to T2 in (6.115). 

6.27 Baten, Tack, and Baeder (1958) compared judges' scores on fish prepared by 
three methods. Twelve fish were cooked by each method, and several judges 
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Table 6.17 Judges' Scores on Fish Prepared by Three Methods 

2/1 

5.4 
5.2 
6.1 
4.8 
5.0 
5.7 
6.0 
4.0 
5.7 
5.6 
5.8 
5.3 

Method 1 
2/2 

6.0 
6.2 
5.9 
5.0 
5.7 
6.1 
6.0 
5.0 
5.4 
5.2 
6.1 
5.9 

2/3 

6.3 
6.0 
6.0 
4.9 
5.0 
6.0 
5.8 
4.0 
4.9 
5.4 
5.2 
5.8 

2/4 

6.7 
5.8 
7.0 
5.0 
6.5 
6.6 
6.0 
5.0 
5.0 
5.8 
6.4 
6.0 

2/1 

5.0 
4.8 
3.9 
4.0 
5.6 
6.0 
5.2 
5.3 
5.9 
6.1 
6.2 
5.1 

Method 2 
2/2 

5.3 
4.9 
4.0 
5.1 
5.4 
5.5 
4.8 
5.1 
6.1 
6.0 
5.7 
4.9 

Source: Baten, Tack, and Baeder (1958, 

2/3 

5.3 
4.2 
4.4 
4.8 
5.1 
5.7 
5.4 
5.8 
5.7 
6.1 
5.9 
5.3 

p. 8). 

2/4 

6.5 
5.6 
5.0 
5.8 
6.2 
6.0 
6.0 
6.4 
6.0 
6.2 
6.0 
4.8 

2/1 

4.8 
5.4 
4.9 
5.7 
4.2 
6.0 
5.1 
4.8 
5.3 
4.6 
4.5 
4.4 

Method 3 
2/2 

5.0 
5.0 
5.1 
5.2 
4.6 
5.3 
5.2 
4.6 
5.4 
4.4 
4.0 
4.2 

2/3 

6.5 
6.0 
5.9 
6.4 
5.3 
5.8 
6.2 
5.7 
6.8 
5.7 
5.0 
5.6 

2/4 

7.0 
6.4 
6.5 
6.4 
6.3 
6.4 
6.5 
5.7 
6.6 
5.6 
5.9 
5.5 

tasted fish samples and rated each on four variables: y\ — aroma, y2 = flavor, 
y3 = texture, and j/4 — moisture. The data are in Table 6.17. Each entry is an 
average score for the judges on that fish. 

(a) Compare the three methods using all four MANOVA tests. 

(b) Compute the following measures of multivariate association from Sec-
tion 6.1.8 : η\, η%, AA, ALH, AP. 

(c) Based on the eigenvalues, is the essential dimensionality of the space 
containing the mean vectors equal to 1 or 2? 

(d) Using contrasts, test the following two comparisons: 1 and 2 vs. 3, and 
1 vs. 2. 

(e) If any of the four tests in (a) is significant, run an ANOVA F-test on each 
yi and examine the discriminant function z = a'y (Section 6.4). 

(f) Test the significance of y3 and y4 adjusted for y\ and y2-

(g) Test the significance of each variable adjusted for the other three. 

6.28 Table 6.18 from Keuls et al. (1984) gives data from a two-way (fixed-effects) 
MANOVA on snap beans showing the results of four variables: yi = yield 
earliness, y2 = specific leaf area (SLA) earliness, y3 = total yield, and y4 = 
average SLA. The factors are sowing date (S) and variety (V). 

(a) Test for main effects and interaction using all four MANOVA statistics. 

(b) In previous experiments, the second variety gave higher yields. Compare 
variety 2 with varieties 1 and 3 by means of a test on a contrast. 
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Table 6.18 Snap Bean Data 
S V 

1 1 1 
2 
3 
4 
5 

1 2 1 
2 
3 
4 
5 

1 3 1 
2 
3 
4 
5 

2 1 1 
2 
3 
4 
5 

2 2 1 
2 
3 
4 
5 

2 3 1 
2 
3 
4 
5 

2/i 

59.3 
60.3 
60.9 
60.6 
60.4 
59.3 
59.4 
60.0 
58.9 
59.5 
59.4 
60.2 
60.7 
60.5 
60.1 
63.7 
64.1 
63.4 
63.2 
63.2 
60.6 
61.0 
60.7 
60.6 
60.3 
63.8 
63.2 
63.3 
63.2 
63.1 

2/2 

4.5 
4.5 
5.3 
5.8 
6.0 
6.7 
4.8 
5.1 
5.8 
4.8 
5.1 
5.3 
6.4 
7.1 
7.8 
5.4 
5.4 
5.4 
5.3 
5.0 
6.8 
6.5 
6.8 
7.1 
6.0 
5.7 
6.1 
6.0 
5.9 
5.4 

ya 

38.4 
38.6 
37.2 
38.1 
38.8 
37.9 
36.6 
38.7 
37.5 
37.0 
38.7 
37.0 
37.4 
37.0 
36.9 
39.5 
39.2 
39.0 
39.0 
39.0 
38.1 
38.6 
38.8 
38.6 
38.5 
40.5 
40.2 
40.0 
40.0 
39.7 

2/4 

295 
302 
318 
345 
325 
275 
290 
295 
296 
330 
299 
315 
304 
302 
308 
271 
284 
281 
291 
270 
248 
264 
257 
260 
261 
282 
284 
291 
299 
295 

S 

3 

3 

3 

4 

4 

4 

V 

1 1 
2 
3 
4 
5 

2 1 
2 
3 
4 
5 

3 1 
2 
3 
4 
5 

1 1 
2 
3 
4 
5 

2 1 
2 
3 
4 
5 

3 1 
2 
3 
4 
5 

2/i 

68.1 
68.0 
68.5 
68.6 
68.6 
64.0 
63.4 
63.5 
63.4 
63.5 
68.0 
68.7 
68.7 
68.4 
68.6 
69.8 
69.5 
69.5 
69.9 
70.3 
66.6 
66.5 
67.1 
65.8 
65.6 
70.1 
72.3 
69.7 
69.9 
69.8 

2/2 

3.4 
2.9 
3.3 
3.1 
3.3 
3.6 
3.9 
3.7 
3.7 
4.1 
3.7 
3.5 
3.8 
3.5 
3.4 
1.4 
1.3 
1.3 
1.3 
1.1 
1.8 
1.7 
1.7 
1.8 
1.9 
1.7 
0.7 
1.5 
1.3 
1.4 

2/3 

42.2 
42.4 
41.5 
41.9 
42.1 
40.9 
41.4 
41.6 
41.4 
41.1 
42.3 
41.6 
40.7 
42.0 
42.4 
48.4 
47.8 
46.9 
47.5 
47.1 
45.7 
46.8 
46.3 
46.3 
46.1 
48.1 
47.8 
46.7 
47.1 
46.7 

2/4 

280 
284 
286 
284 
268 
233 
248 
244 
266 
244 
293 
284 
277 
299 
285 
265 
247 
231 
268 
247 
205 
239 
230 
235 
220 
253 
249 
226 
248 
236 

(c) Test linear, quadratic, and cubic contrasts for sowing date. (Interpreta-
tion of these for mean vectors is not as straightforward as for univariate 
means.) 

(d) If any of the tests in part (a) rejects Ho, carry out ANOVA F-tests on the 
four variables. 

(e) Test the significance of 2/3 and 2/4 adjusted for y\ and 2/2 in main effects 
and interaction. 

(f) Test the significance of each variable adjusted for the other three in main 
effects and interaction. 
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Table 6.19 Blood Data 

Subject 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Reagent 1 
2/i 

8.0 
4.0 
6.3 
9.4 
8.2 

11.0 
6.8 
9.0 
6.1 
6.4 
5.6 
8.2 
5.7 
9.8 
5.9 
6.6 
5.7 
6.7 
6.8 
9.6 

2/2 

3.96 
5.37 
5.47 
5.16 
5.16 
4.67 
5.20 
4.65 
5.22 
5.13 
4.47 
5.22 
5.10 
5.25 
5.28 
4.65 
4.42 
4.38 
4.67 
5.64 

2/3 

12.5 
16.9 
17.1 
16.2 
17.0 
14.3 
16.2 
14.7 
16.3 
15.9 
13.3 
16.0 
14.9 
16.1 
15.8 
12.8 
14.5 
13.1 
15.6 
17.0 

Reagent 2 
2/i 

8.0 
4.2 
6.3 
9.4 
8.0 

10.7 
6.8 
9.0 
6.0 
6.4 
5.5 
8.2 
5.6 
9.8 
5.8 
6.4 
5.5 
6.5 
6.6 
9.5 

2/2 

3.93 
5.35 
5.39 
5.16 
5.13 
4.60 
5.16 
4.57 
5.16 
5.11 
4.45 
5.14 
5.05 
5.15 
5.25 
4.59 
4.31 
4.32 
4.57 
5.58 

2/3 

12.7 
17.2 
17.5 
16.7 
17.5 
14.7 
16.7 
15.0 
16.9 
16.4 
13.6 
16.5 
15.3 
16.6 
16.4 
13.2 
14.9 
13.4 
15.8 
17.5 

Reagent 3 
2/1 

7.9 
4.1 
6.0 
9.4 
8.1 

10.6 
6.9 
8.9 
6.1 
6.4 
5.3 
8.0 
5.5 
8.1 
5.7 
6.3 
5.5 
6.5 
6.5 
9.3 

2/2 

3.86 
5.39 
5.39 
5.17 
5.10 
4.52 
5.13 
4.58 
5.14 
5.11 
4.46 
5.14 
5.02 
5.10 
5.26 
4.58 
4.30 
4.32 
4.55 
5.50 

2/3 

13.0 
17.2 
17.2 
16.7 
17.4 
14.6 
16.8 
15.0 
16.9 
16.4 
13.6 
16.5 
15.4 
13.8 
16.4 
13.1 
14.9 
13.6 
16.0 
17.4 

Reagent 4 
2/i 

7.9 
4.0 
6.1 
9.1 
7.8 

10.5 
6.7 
8.6 
6.0 
6.3 
5.3 
7.8 
5.4 
9.4 
5.6 
6.4 
5.4 
6.5 
6.5 
9.2 

2/2 

3.87 
5.35 
5.41 
5.16 
5.12 
4.58 
5.19 
4.55 
5.21 
5.07 
4.44 
5.16 
5.05 
5.16 
5.29 
4.57 
4.32 
4.31 
4.56 
5.46 

2/3 

13.2 
17.3 
17.4 
16.7 
17.5 
14.7 
16.8 
15.1 
16.9 
16.3 
13.7 
16.5 
15.5 
16.6 
16.2 
13.2 
14.8 
13.5 
15.9 
17.5 

6.29 The bar steel data in Table 6.6 was analyzed in Example 6.5.2 as a two-way 
fixed-effects design. Consider lubricants to be random so that we have a mixed 
model. Test for main effects and interaction. 

6.30 In Table 6.19, we have a comparison of four reagents (Burdick 1979). The 
first reagent is the one presently in use and the other three are less expen-
sive reagents that we wish to compare with the first. All four reagents are 
used with a blood sample from each patient. The three variables measured 
for each reagent are y\ = white blood count, y2 = red blood count, and 
y3 = hemoglobin count. 

(a) Analyze as a randomized block design with subjects as blocks. 
(b) Compare the first reagent with the other three using a contrast. 

6.31 The data in Table 6.20 from Box (1950) show the amount of fabric wear yx, y2, 
and y3 in three successive periods: (1) the first 1000 revolutions, (2) the sec-
ond 1000 revolutions, and (3) the third 1000 revolutions of the abrasive wheel. 
There were three factors: type of abrasive surface, type of filler, and proportion 
of filler. There were two replications. Carry out a three-way MANOVA, test-
ing for main effects and interactions. (Ignore the repeated measures aspects of 
the data.) 
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Table 6.20 Wear of Coated Fabrics in Three Periods (mg) 

Surface 
Treatment 

To 

Ti 

Filler 

Fi 

F2 

Fi 

F2 

Pi (25%) 

2/i 

194 
208 
239 
187 
155 
173 
137 
160 

2/2 

192 
188 
127 
105 
169 
152 
82 
82 

2/3 

141 
165 
90 
85 
151 
141 
77 
83 

Proportion of Filler 

Pi (50%) 

2/i 

233 
241 
224 
243 
198 
177 
129 
98 

2/2 

217 
222 
123 
123 
187 
196 
94 
89 

2/3 

171 
201 
79 
110 
176 
167 
78 
48 

P3 (75%) 

2/i 

265 
269 
243 
226 
235 
229 
155 
132 

2/2 2/3 

252 207 
283 191 
117 100 
125 75 
225 166 
270 183 
76 92 
105 67 

Table 6.21 Weights of Cork Borings (eg) in Four Directions for 28 Trees 

Tree 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

N 

72 
60 
56 
41 
32 
30 
39 
42 
37 
33 
32 
63 
54 
47 

E 

66 
53 
57 
29 
32 
35 
39 
43 
40 
29 
30 
45 
46 
51 

S 

76 
66 
64 
36 
35 
34 
31 
31 
31 
27 
34 
74 
60 
52 

W 

77 
63 
58 
38 
36 
26 
27 
25 
25 
36 
28 
63 
52 
43 

Tree 

15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

N 

91 
56 
79 
81 
78 
46 
39 
32 
60 
35 
39 
50 
43 
48 

E 

79 
68 
65 
80 
55 
38 
35 
30 
50 
37 
36 
34 
37 
54 

S 

100 
47 
70 
68 
67 
37 
34 
30 
67 
48 
39 
37 
39 
57 

W 

75 
50 
61 
58 
60 
38 
37 
32 
54 
39 
31 
40 
50 
43 

6.32 The fabric wear data in Table 6.20 can be considered to be a growth curve 
model, with the three periods (y 1,1/2,2/3) representing repeated measurements 
on the same specimen. We thus have one within-subjects factor, to which we 
should assign polynomial contrasts (-1,0,1) and ( - 1 , 2 , - 1 ) , and a three-
way between-subjects classification. Test for period and the interaction of 
period with the between-subjects factors and interactions. 

6.33 Carry out a profile analysis on the fish data in Table 6.17, testing for paral-
lelism, equal levels, and flatness. 
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6.34 Rao (1948) measured the weight of cork borings taken from the north (N), 
east (E), south (S), and west (W) directions of 28 trees. The data are given in 
Table 6.21. It is of interest to compare the bark thickness (and hence weight) 
in the four directions. This can be done by analyzing the data as a one-sample 
repeated measures design. Since the primary comparison of interest is north 
and south vs. east and west, use the contrast matrix 

(a) Test H0: μ^ = με = Ms = ßw using the entire matrix C. 
(b) If the test in (a) rejects H0, test each row of C. 

6.35 Analyze the glucose data in Table 3.9 as a one-sample repeated measures de-
sign with two within-subjects factors. Factor A is a comparison of fasting test 
vs. 1 hour posttest. The three levels of factor B are y\ (and χχ), y2 (and x?), 
and y3 (and x3). 

6.36 Table 6.22 gives survival times for cancer patients (Cameron and Pauling 
1978; see also Andrews and Herzberg 1985, pp. 203-206). The factors in 
this two-way design are gender (1 = male, 2 = female) and type of can-
cer (1 — stomach, 2 = bronchus, 3 = colon, 4 — rectum, 5 = bladder, 
6 = kidney). The variables (repeated measures) are y\ = survival time 
(days) of patient treated with ascorbate measured from date of first hospi-
tal attendance, 1/2 = mean survival time for the patient's 10 matched con-
trols (untreated with ascorbate), 7/3 = survival time after ascorbate treatment 
ceased, and 2/4 = mean survival time after all treatment ceased for the pa-
tient's 10 matched controls. Analyze as a repeated measures design with one 
within-subjects factor (yi, y2> V3, Vi) and a two-way (unbalanced) design be-
tween subjects. Since the two-way classification of subjects is unbalanced, 
you will need to use a program that allows for this or delete some observations 
to achieve a balanced design. 

6.37 Analyze the ramus bone data of Table 3.9 as a one-sample growth curve de-
sign. 

(a) Using a matrix C of orthogonal polynomial contrasts, test the hypothesis 
of overall equality of means, H0: Ομ = 0. 

(b) If the overall hypothesis in (a) is rejected, find the degree of growth curve 
by testing each row of C. 

6.38 Table 6.23 contains the weights of 13 male mice measured every 3 days from 
birth to weaning. The data set was reported and analyzed by Williams and 
Izenman (1981) and by Izenman and Williams (1989) and has been further 
analyzed by Rao (1984, 1987) and by Lee (1988). Analyze as a one-sample 
growth curve design. 
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Table 6.22 Survival Times for Cancer Patients 

Type of 
Cancer Gender Age y\ 2/2 2/3 2/4 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

2 
1 
2 
2 

2 

2 
2 

2 
2 

61 
69 
62 
66 
63 
79 
76 
54 
62 
46 
57 
59 
74 
74 
66 
52 
48 
64 
70 
77 
71 
39 
70 
70 
55 
74 
69 
73 
76 
58 
49 
69 

124 
42 
25 
45 
412 
51 
1112 
46 
103 
146 
340 
396 
81 
461 
20 
450 
246 
166 
63 
64 
155 
151 
166 
37 
223 
138 
72 
245 
248 
377 
189 
1843 

264 
62 
149 
18 
180 
142 
35 
299 
85 
361 
269 
130 
72 
134 
84 
98 
48 
142 
113 
90 
30 
260 
116 
87 
69 
100 
315 
188 
292 
492 
462 
235 

124 
12 
19 
45 
257 
23 
128 
46 
90 
123 
310 
359 
74 
423 
16 
450 
87 
115 
50 
50 
113 
38 
156 
27 
218 
138 
39 
231 
135 
50 
189 
1267 

38 
18 
36 
12 
64 
20 
13 
51 
10 
52 
28 
55 
33 
18 
20 
58 
13 
49 
38 
24 
18 
34 
20 
27 
32 
27 
39 
65 
18 
30 
65 
17 

69 1685 1056 46 15 

(a) Using a matrix C of orthogonal polynomial contrasts, test the hypothesis 
of overall equality of means, H0: C/x = 0. 

(b) If the overall hypothesis in (a) is rejected, find the degree of growth curve 
by testing each row of C. 

6.39 In Table 6.24, we have measurements of proportions of albumin at four time 
points on three groups of trout (Beauchamp and Hoel 1973). 
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Table 6.23 Weights of 13 Male Mice Measured at Successive Intervals of 3 Days over 
21 Days from Birth to Weaning 

Mouse 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Day 3 

.190 

.218 

.211 

.209 

.193 

.201 

.202 

.190 

.219 

.225 

.224 

.187 

.278 

Day 6 

.388 

.393 

.394 

.419 

.362 

.361 

.370 

.350 

.399 

.400 

.381 

.329 

.471 

Day 9 

.621 

.568 

.549 

.645 

.520 

.502 

.498 

.510 

.578 

.545 

.577 

.441 

.606 

Day 12 

.823 

.729 

.700 

.850 

.530 

.530 

.650 

.666 

.699 

.690 

.756 

.525 

.770 

Day 15 

1.078 
.839 
.783 

1.001 
.641 
.657 
.795 
.819 
.709 
.796 
.869 
.589 
.888 

Day 18 

1.132 
.852 
.870 

1.026 
.640 
.762 
.858 
.879 
.822 
.825 
.929 
.621 

1.001 

Day 21 

1.191 
1.004 
.925 

1.069 
.751 
.888 
.910 
.929 
.953 
.836 
.999 
.796 

1.105 

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of over-
all equality of means, H0: Ομ. = 0, for the combined samples, as in 
Section 6.10.2. 

(b) If the overall hypothesis is rejected, find the degree of growth curve for 
the combined samples by testing each row of C. 

(c) Compare the three groups using the entire matrix C. 

(d) Compare the three groups using each row of C. 

Table 6.24 Measurements of Trout 

Time Point 
'oup 

1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

1 

.257 

.266 

.256 

.272 

.312 

.253 

.239 

.254 

.272 

.246 

.262 

.292 

2 

.288 

.282 

.303 

.456 

.300 

.220 

.261 

.243 

.279 

.292 

.311 

.261 

3 

.328 

.315 

.293 

.288 

.273 

.314 

.279 

.304 

.259 

.279 

.263 

.314 

4 

.358 

.464 

.261 

.261 

.253 

.261 

.224 

.254 

.295 

.302 

.264 

.244 
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Table 6.25 Weekly Gains in Weight for 27 Rats 

Rat 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Group 1 

2/i 

29 
33 
25 
18 
25 
24 
20 
28 
18 
25 

2/2 

28 
30 
34 
33 
23 
32 
23 
21 
23 
28 

2/3 

25 
23 
33 
29 
17 
29 
16 
18 
22 
29 

2/4 

33 
31 
41 
35 
30 
22 
31 
24 
28 
30 

Rat 

11 
12 
13 
14 
15 
16 
17 

Group ; 

2/i 

26 
17 
19 
26 
15 
21 
18 

2/2 

36 
19 
33 
31 
25 
24 
35 

2 

2/3 

35 
20 
43 
32 
23 
19 
33 

2/4 

35 
28 
38 
29 
24 
24 
33 

Rat 

18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Group 3 

2/1 

25 
21 
26 
29 
24 
24 
22 
11 
15 
19 

2/2 

23 
21 
21 
12 
26 
17 
17 
24 
17 
17 

2/3 

11 
10 
6 
11 
22 
8 
8 
21 
12 
15 

2/4 

9 
11 
27 
11 
17 
19 
5 
24 
17 
18 

6.40 Table 6.25 contains weight gains for three groups of rats (Box 1950). The 
variables are y; = gain in zth week, i — 1,2,3,4. The groups are 1 = controls, 
2 = thyroxin added to drinking water, and 3 = thiouracil added to drinking 
water. 

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of over-
all equality of means, HQ : Cjl. = 0, for the combined samples, as in 
Section 6.10.2. 

(b) If the overall hypothesis is rejected, find the degree of growth curve for 
the combined samples by testing each row of C. 

(c) Compare the three groups using the entire matrix C. 
(d) Compare the three groups using each row of C. 

6.41 Table 6.26 contains measurements of coronary sinus potassium at 2-minute 
intervals after coronary occlusion on four groups of dogs (Grizzle and Allen 
1969). The groups are 1 = control dogs, 2 = dogs with extrinsic cardiac den-
ervation 3 weeks prior to coronary occlusion, 3 = dogs with extrinsic cardiac 
denervation immediately prior to coronary occlusion, and 4 = dogs with bilat-
eral thoracic sympathectomy and stellectomy 3 weeks prior to coronary occlu-
sion. 

(a) Using a matrix C of orthogonal contrasts, test the hypothesis of over-
all equality of means, H0: Ομ = 0, for the combined samples, as in 
Section 6.10.2. 

(b) If the overall hypothesis is rejected, find the degree of growth curve for 
the combined samples by testing each row of C. 

(c) Compare the four groups using the entire matrix C. 
(d) Compare the four groups using each row of C. 
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Table 6.26 Coronary Sinus Potassium Measured at 2-Minute In-
tervals on Dogs 

Group 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 

1 

4.0 
4.2 
4.3 
4.2 
4.6 
3.1 
3.7 
4.3 
4.6 
3.4 
3.0 
3.0 
3.1 
3.8 
3.0 
3.3 
4.2 
4.1 
4.5 
3.2 
3.3 
3.1 
3.6 
4.5 
3.7 
3.5 
3.9 
3.1 
3.3 
3.5 
3.4 
3.7 
4.0 
4.2 
4.1 
3.5 

3 

4.0 
4.3 
4.2 
4.4 
4.4 
3.6 
3.9 
4.2 
4.6 
3.4 
3.2 
3.1 
3.2 
3.9 
3.6 
3.3 
4.0 
4.2 
4.4 
3.3 
3.4 
3.3 
3.4 
4.5 
4.0 
3.9 
4.0 
3.5 
3.2 
3.9 
3.4 
3.8 
4.6 
3.9 
4.1 
3.6 

5 

4.1 
3.7 
4.3 
4.6 
5.3 
4.9 
3.9 
4.4 
4.4 
3.5 
3.0 
3.2 
3.2 
4.0 
3.2 
3.3 
4.2 
4.3 
4.3 
3.8 
3.4 
3.2 
3.5 
5.4 
4.4 
5.8 
4.1 
3.5 
3.6 
4.7 
3.5 
4.2 
4.8 
4.5 
3.7 
3.6 

Time 

7 

3.6 
3.7 
4.3 
4.9 
5.6 
5.2 
4.8 
5.2 
4.6 
3.1 
3.0 
3.0 
3.2 
2.9 
3.1 
3.4 
4.1 
4.3 
4.5 
3.8 
3.7 
3.1 
4.6 
5.7 
4.2 
5.4 
5.0 
3.2 
3.7 
4.3 
3.3 
4.3 
4.9 
4.7 
4.0 
4.2 

9 

3.6 
4.8 
4.5 
5.3 
5.9 
5.3 
5.2 
5.6 
5.4 
3.1 
3.1 
3.3 
3.3 
3.5 
3.0 
3.6 
4.2 
4.2 
5.3 
4.4 
3.7 
3.2 
4.9 
4.9 
4.6 
4.9 
5.4 
3.0 
3.7 
3.9 
3.4 
3.6 
5.4 
3.9 
4.1 
4.8 

11 

3.8 
5.0 
5.8 
5.6 
5.9 
4.2 
5.4 
5.4 
5.9 
3.7 
3.2 
3.0 
3.1 
3.5 
3.0 
3.1 
4.0 
4.0 
4.4 
4.2 
3.6 
3.1 
5.2 
4.0 
4.8 
5.3 
4.4 
3.0 
4.2 
3.4 
3.2 
3.8 
5.6 
3.8 
4.6 
4.9 

13 

3.1 
5.2 
5.4 
4.9 
5.3 
4.1 
4.2 
4.7 
5.6 
3.3 
3.1 
3.0 
3.1 
3.4 
3.0 
3.1 
4.0 
4.2 
4.4 
3.7 
3.7 
3.1 
4.4 
4.0 
5.4 
5.6 
3.9 
3.2 
4.4 
3.5 
3.4 
3.7 
4.8 
3.7 
4.7 
5.0 



Table 6.27 Blood Pressure Data 

PROBLEMS 

Group 

2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 

1 

112.5 
92.5 

132.5 
102.5 
110.0 
97.5 
90.0 

115.0 
125.0 
95.0 
87.5 
90.0 
97.5 

107.5 
102.5 
107.5 
97.5 

100.0 
95.0 
85.0 
82.5 
62.5 
70.0 
45.0 
52.5 

100.0 
115.0 
97.5 
95.0 
72.5 

105.0 

Number of Minutes after Ligation 

5 

100.5 
102.5 
125.0 
107.5 
130.0 
97.5 
70.0 

115.0 
125.0 
90.0 
65.5 
87.5 
92.5 

107.5 
130.0 
107.5 
108.5 
105.0 
95.0 
92.5 
77.5 
75.0 
67.5 
37.5 
22.5 

100.0 
110.0 
97.5 

125.0 
87.5 

105.0 

10 

102.5 
105.0 
115.0 
107.5 
115.0 
80.0 
85.0 

107.5 
120.0 
95.0 
85.0 
97.5 
57.5 

145.0 
85.0 

102.5 
94.5 

105.0 
90.0 
92.5 
75.0 

115.0 
67.5 
45.0 
90.0 

100.0 
100.0 
97.5 

130.0 
65.0 

105.0 

15 

102.5 
100.0 
112.5 
102.5 
105.0 
82.5 
85.0 

107.5 
120.0 
90.0 
90.0 
95.0 
55.0 

110.0 
80.0 

102.5 
102.5 
105.0 
100.0 
92.5 
65.5 

110.0 
77.5 
45.0 
65.0 

100.0 
110.0 
105.0 
125.0 
57.5 

105.0 

30 

107.5 
110.0 
110.0 
90.0 

112.5 
82.5 
92.5 

112.5 
117.5 
100.0 
105.0 
100.0 
90.0 

105.0 
127.5 
102.5 
102.5 
110.0 
100.0 
90.0 
65.0 

100.0 
77.5 
47.5 
60.0 
97.5 

105.0 
95.0 

115.0 
92.5 

102.5 

60 

107.5 
117.5 
110.0 
112.5 
110.0 
102.5 
97.5 

107.5 
125.0 
107.5 
90.0 
95.0 
97.5 

112.5 
97.5 
97.5 

107.5 
110.0 
100.0 
110.0 
72.5 

100.0 
77.5 
45.0 
65.5 
92.5 

105.0 
92.5 

117.5 
82.5 

100.0 

6.42 Table 6.27 contains blood pressure measurements at intervals after inducing a 
heart attack for four groups of rats: group 1 is the controls and groups 2-A have 
been exposed to halothane concentrations of .25%, .50%, 1.0%, respectively 
(Crepeau et al. 1985). 

(a) Find the degree of growth curve for the combined sample using the meth-
ods in (6.112)-(6.117). 

(b) Repeat (a) for group 1. 
(c) Repeat (a) for groups 2-A combined. 
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Table 6.28 Plasma Inorganic Phosphate (mg/dl) 

Patient 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0 

4.3 
3.7 
4.0 
3.6 
4.1 
3.8 
3.8 
4.4 
5.0 

Hours after Glucose Challenge 
1 
2 

3.3 
2.6 
4.1 
3.0 
3.8 
2.2 
3.0 
3.9 
4.0 

1 

3.0 
2.6 
3.1 
2.2 
2.1 
2.0 
2.4 
2.8 
3.4 

n 2 

Control 
2.6 
1.9 
2.3 
2.8 
3.0 
2.6 
2.5 
2.1 
3.4 

2.2 
2.9 
2.9 
2.9 
3.6 
3.8 
3.1 
3.6 
3.3 

3 

2.5 
3.2 
3.1 
3.9 
3.4 
3.6 
3.4 
3.8 
3.6 

4 

3.4 
3.1 
3.9 
3.8 
3.6 
3.0 
3.5 
4.0 
4.0 

5 

4.4" 
3.9 
4.0 
4.0 
3.7 
3.5 
3.7 
3.9 
4.3 

13 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3 

Obese 
1 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4Q 

2 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9 
3 
4 
5 
6 
7 
8 

4.6 
4.3 
3.1 
4.8 
3.7 
5.4 

4.4 
3.9 
3.1 
5.0 
3.1 
4.7 

3.9 
3.1 
3.3 
2.9 
3.3 
3.9 

3.9 
3.1 
2.6 
2.8 
2.8 
4.1 

3.7 
3.1 
2.6 
2.2 
2.9 
2.8 

4.2 
3.1 
1.9 
3.1 
3.6 
3.7 

4.8 
3.6 
2.3 
3.5 
4.3 
3.5 

5.0 
4.0 
2.7 
3.6 
4.4 
3.7 

9 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5 

20 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8 
aThe similarity in the data for patient 1 in the control group 

and patient 1 in the obese group is coincidental. 

6.43 Table 6.28 from Zerbe (1979a) compares 13 control and 20 obese patients on 
a glucose tolerance test using plasma inorganic phosphate. Delete the obser-
vations corresponding to | and l | hours so that the time points are equally 
spaced. 

(a) For the control group, use orthogonal polynomials to find the degree of 
growth curve. 

(b) Repeat (a) for the obese group. 

(c) Find the degree of growth curve for the combined groups, and compare 
the growth curves of the two groups. 
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Table 6.29 Mandible Measurements 

Group Subject 

1 1 
2 
3 
4 
5 
6 
7 
8 
9 

2 1 
2 
3 
4 
5 
6 
7 
8 
9 

2/i 

117.0 
109.0 
117.0 
122.0 
116.0 
123.0 
130.5 
126.5 
113.0 

128.0 
116.5 
121.5 
109.5 
133.0 
120.0 
129.5 
122.0 
125.0 

1 
V2 

117.5 
110.5 
120.0 
126.0 
118.5 
126.0 
132.0 
128.5 
116.5 

129.0 
120.0 
125.5 
112.0 
136.0 
124.5 
133.5 
124.0 
127.0 

2/3 

118.5 
111.0 
120.5 
127.0 
119.5 
127.0 
134.5 
130.5 
118.0 

131.5 
121.5 
127.0 
114.0 
137.5 
126.0 
134.5 
125.5 
128.0 

Activator Treatment 

2/i 

59.0 
60.0 
60.0 
67.5 
61.5 
65.5 
68.5 
69.0 
58.0 

67.0 
63.5 
64.5 
54.0 
72.0 
62.5 
65.0 
64.5 
65.5 

2 
2/2 

59.0 
61.5 
61.5 
70.5 
62.5 
61.5 
69.5 
71.0 
59.0 

67.5 
65.0 
67.5 
55.5 
73.5 
65.0 
68.0 
65.5 
66.5 

2/3 

60.0 
61.5 
62.0 
71.5 
63.5 
67.5 
71.0 
73.0 
60.5 

69.0 
66.0 
69.0 
57.0 
75.5 
66.0 
69.0 
66.0 
67.0 

2/1 

10.5 
30.5 
23.5 
33.0 
24.5 
22.0 
33.0 
20.0 
25.0 

24.0 
28.5 
26.5 
18.0 
34.5 
26.0 
18.5 
18.5 
21.5 

3 
2/2 

16.5 
30.5 
23.5 
32.0 
24.5 
22.0 
32.5 
20.0 
25.0 

24.0 
29.5 
27.0 
18.5 
34.5 
26.0 
18.5 
18.5 
21.5 

2/3 

16.5 
30.5 
23.5 
32.5 
24.5 
22.0 
32.0 
20.0 
24.5 

24.0 
29.5 
27.0 
19.0 
34.5 
26.0 
18.5 
18.5 
21.6 

6.44 Consider the complete data from Table 6.28 including the observations corre-
sponding to \ and 1 \ hours. Use the methods in (6.112)-(6.117) for unequally 
spaced time points to analyze each group separately and the combined groups. 

6.45 Table 6.29 contains mandible measurements (Timm 1980). There were two 
groups of subjects. Each subject was measured at three time points y\, 1/2» 
and t/3 for each of three types of activator treatment. Analyze as a repeated 
measures design with two within-subjects factors and one between-subjects 
factor. Use linear and quadratic contrasts for time (growth curve). 



CHAPTER 7 

TESTS ON COVARIANCE MATRICES 

7.1 INTRODUCTION 

We now consider tests of hypotheses involving the variance-covariance structure. 
These tests are often carried out to check assumptions pertaining to other tests. In 
Sections 7.2-7.4, we cover three basic types of hypotheses: (1) the covariance ma-
trix has a particular structure, (2) two or more covariance matrices are equal, and 
(3) certain elements of the covariance matrix are zero, thus implying independence 
of the corresponding (multivariate normal) random variables. In most cases we use 
the likelihood ratio approach (Section 5.4.3). The resulting test statistics often in-
volve the ratio of the determinants of the sample covariance matrix under the null 
hypothesis and under the alternative hypothesis. 

7.2 TESTING A SPECIFIED PATTERN FOR Σ 

In this section, the discussion is in terms of a sample covariance matrix S from a 
single sample. However, the tests can be applied to a sample covariance matrix Spi = 
E / I / E obtained by pooling across several samples. To allow for either possibility, 
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the degrees-of-freedom parameter has been indicated by v. For a single sample, v — 
n — 1; for a pooled covariance matrix, v — X^i=1 (n% — 1) — J2i=i ni — k = N — k. 

7.2.1 Testing H0: Σ = Σ 0 

We begin with the basic hypothesis H0: Σ = Σ 0 versus H\: Σ φ Σ 0 . The hypoth-
esized covariance matrix Σο is a target value for Σ or a nominal value from previous 
experience. Note that Σο is completely specified in H0, whereas μ is not specified. 

To test Ho, we obtain a random sample of n observation vectors y i ,y2, · ■ · ,y n 
from Νρ(μ, Σ) and calculate S. To see if S is significantly different from Σο, we 
use the following test statistic, which is a modification of the likelihood ratio (Sec-
tion 5.4.3): 

u = i/[ln |Σ 0 | - In |S| + t r ^ 1 ) - p], (7.1) 

where v represents the degrees of freedom of S (see comments at the beginning 
of Section 7.2), In is the natural logarithm (base e), and tr is the trace of a matrix 
(Section 2.9). Note that if S = Σ 0 , then u — 0; otherwise u increases with the 
"distance" between S and Σ 0 [see (7.4) and the comment following]. 

When v is large, the statistic u in (7.1) is approximately distributed as χ2\\ρ(ρ + 
1)] if HQ is true. For moderate size v, 

6 i / -
2 p + l 

p + 1 
(7.2) 

is a better approximation to the χ2 [\ρ{ρ +1)] distribution. We reject H0 if u or v! is 
greater than χ2[α, \p{p + 1)]. Note that the degrees of freedom for the x2-statistic, 
\p{P + 1). is the number of distinct parameters in Σ . 

We can express u in terms of the eigenvalues λι, λ2, 
that trtSEö1) and In |Σ 0 | - In |S| become 

λρ of SY,0
 x by noting 

Ιτ(8Σο1) = £ λ ί 
i = l 

In |Σ 0 | - In |S| = - In |Σο | _ 1 - In |S| 

= -1η|8Σο1! 

=-In (fix) 

[by (2.107)], 

[by (2.89) and (2.91)] 

[by (2.108)], 

(7.3) 

from which (7.1) can be written as 

u — v 
i = l 

-ln(f[XA+ilXi-P 
p 

^ ( λ ί - ΐ η λ ί ) -ρ (7.4) 
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A plot of y = x — In x will show that x - In x > 1 for all x > 0, with equality 
holding only for x = 1. Thus Σί=ι (^i — In λ») > p and u > 0. 

The hypothesis that the variables are independent and have unit variance, 

can be tested by simply setting Σο = I in (7.1). 

7.2.2 Testing Sphericity 

The hypothesis that the variables 2/1,2/2, · · · ,yP in y are independent and have the 
same variance can be expressed as Ho : Σ = σ2Ι versus Η\·.Ί1φ σ2Ι, where σ2 is 
the unknown common variance. This hypothesis is of interest in repeated measures 
(see Section 6.9.1). Under H0, the ellipsoid (y — μ)'Έ~1(γ — μ) = c2 reduces to 
(γ—μ)'(γ—μ) = a2c2, the equation of a sphere; hence the term sphericity is applied 
to the covariance structure Σ = σ2Ι. Another sphericity hypothesis of interest in 
repeated measures is H0: C S C — σ2Ι, where C is any full-rank (p — 1) x p matrix 
of orthonormal contrasts (see Section 6.9.1). 

For a random sample yi , y2, ■ · ■, y« fr°m -^p(M) Σ) , the likelihood ratio for test-
ing H0: Σ = σ2Ι is 

lei i n / 2 

LR (7.5) (trS/p)P_ 
In some cases that we have considered previously, the likelihood ratio is a simple 
function of a test statistic such as F , T2 , Wilks' Λ, and so on. However, LR in 
(7.5) does not reduce to a standard statistic, and we resort to an approximation for its 
distribution. It has been shown that for a general likelihood ratio statistic LR, 

- 2 In (LR) is approximately χ2 (7.6) 

for large n, where v is the total number of parameters minus the number estimated 
under the restrictions imposed by H0. 

For the likelihood ratio statistic in (7.5), we obtain 

- 2 ln(LR) = -n In 

where 

L(trS/p)P 
-n\nu, 

,2/n _ P"|S| « = w n = ̂ · ^ 
By (2.107) and (2.108), u becomes 

U-(S^T (7'8) 

where λι, Ä2, . . . , λρ are the eigenvalues of S. An improvement over — n l n u is 
given by 

2 p 2 + p + 2 ^ 
6p 

lnti, (7.9) 
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where v is the degrees of freedom for S (see comments at the beginning of Section 
7.2). The statistic u' has an approximate χ2-distribution with \p{p + 1) — 1 degrees 
of freedom. We reject HQ if u' > χ2[α, \p{p + 1) — 1]. As noted above, the degrees 
of freedom in the χ2 approximation is equal to the total number of parameters minus 
the number of parameters estimated under H0. The number of parameters in Σ is 
P+ (2) = \P{P + 1) and the loss of one degree of freedom is due to estimation of 
a2. 

We see from (7.8) and (7.9) that if the sample A '̂s are all equal, u — 1 and 
u' = 0. Hence, this statistic also tests the hypothesis of equality of the population 
eigenvalues. 

To test H0: C S C — σ2Ι, use C S C in place of S in (7.7) and use p — 1 in place 
of p in (7.7)-(7.9) and in the degrees of freedom for χ2. 

The likelihood ratio (7.5) was first given by Mauchly (1940), and his name is often 
associated with this test. Nagarsenker and Pillai (1973) gave the exact distribution of 
u and provided a table for p = 4 , 5 , . . . , 10. Venables (1976) showed that u can be 
obtained by a union-intersection approach (Section 6.1.4). 

■ EXAMPLE 7.2.2 

We use the probe word data in Table 3.6 to illustrate tests of sphericity. The 
five variables appear to be commensurate, and the hypothesis H0: μ\ = μ2 = 
■ ■ ■ = μ$ may be of interest. We would expect the variables to be corre-
lated, and HQ would ordinarily be tested using a multivariate approach, as in 
Sections 5.9.1 and 6.9.2. However, if Σ = σ2Ι or C S C = σ2Ι, then the 
hypothesis H0: μι = μ2 = ■ · · = ßs can be tested with a univariate ANOVA 
F-test (see Section 6.9.1). 

We first test Ho: Σ = σ21. The sample covariance matrix S was obtained 
in Example 3.10.1. By (7.7), 

pPISI 55(27,236,586) 
(trS)P (292.891)5 

Then by (7.9), with n = 11 andp = 5, we have 

= .0395. 

2ρ2+ρ + 2\Λ 
n — \ In u = 26.177. 

6p 

The approximate %2-test has \p(p + 1) — 1 = 14 degrees of freedom. We 
therefore compare u' = 26.177 with χ2

05ιι4 = 23.68 and reject H0: Σ = σ2Ι. 
To test H0: CEC = σ2Ι, we use the following matrix of orthonormalized 

contrasts: 

/ 4 /^20 - l / \ / 2 Ö -I/V2Ö -1/V^Ö - Ι / Λ / 2 0 \ 
0 3 / Λ / Ϊ 2 -1/%/Ϊ2 -l/y/ΰ - 1 / Λ / Ϊ 2 
0 0 2/V6 - 1 / V 6 - 1 / V 6 ' 
0 0 0 1/\/2 - 1 / Α / 2 / 
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Then using C S C in place of S and with p — 1 = 4 for the four rows of C, we 
obtain 

_ ( p - l j P - ^ C S C ' j _ 44(144039.8) 
[triCSC')]?-1 

6.170. 
(93.6)4 .480, 

For degrees of freedom, we now have |(4)(5) - 1 = 9, and the critical value is 
χ 2

0 5 9 = 16.92. Hence, we do not reject H0: C S C = σ2Ι, and a univariate 
D .F-test of HQ : μ\ = μ2 μ5 may be justified. 

7.2.3 Testing H0: Σ = σ 2 [ ( 1 - p)l + pi] 

In Section 6.9.1, it was noted that univariate ANOVA remains valid if 

σ2 

A 

( 1 p p . . . 
p i p . . . 

\ p p p ... 

( l - p ) I + pJ], 

P\ 
P 

1 / 

(7.10) 

(7.11) 

where J is a square matrix of l's, as defined in (2.12), and p is the population cor-
relation between any two variables. This pattern of equal variances and equal co-
variances in Σ is variously referred to as uniformity, compound symmetry, or the 
intraclass correlation model. 

We now consider the hypothesis that (7.10) holds: 

/ ^2 

Ηη:Έ 

σ2ρ σ2ρ\ 
*2Ρ σ2

Ρ 

\ σ2Ρ σ2Ρ ) 

From a sample we obtain the sample co variance matrix S. Estimates of σ2 and σ2ρ 
under H0 are given by 

1 p 

and s2r 
1 

pip -1) / ;Sjkl (7.12) 
i#fc 

respectively, where Sjj and Sjk are from S. Thus s2 is an average of the variances 
on the diagonal of S and s2r is an average of the off-diagonal covariances in S. An 
estimate of p can be obtained as r = s2r/s2. Using s2 and s2r in (7.12), the estimate 
of Σ under H0 is then 

s2r \ I 
o 

s r 

s r s r 

= s 2 [ ( l - r ) I + rJ ] . (7.13) 
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To compare S and So, we use the following function of the likelihood ratio: 

ISo l ' 

which can be expressed in the alternative form 

ISI 
u = ( s 2 ) P ( l - r ) P - 1 [ l + ( p - l ) r ] ' 

By analogy with (7.9), the test statistic is given by 

p(p+l)2(2p-3) 
6 ( p - l ) ( p 2 + p - 4 ) lntt, 

(7.14) 

(7.15) 

(7.16) 

where v is the degrees of freedom of S (see comments at the beginning of Section 
7.2). The statistic u' is approximately χ2[\ρ{ρ + 1) — 2], and we reject H0 if u' > 
χ2[α, \p{p + 1) - 2]. Note that two degrees of freedom are lost due to estimation of 
σ2 and p. 

An alternative approximate test that is more precise when p is large and v is 
relatively small is given by 

"(72 72C1 -η\)ν 
7i72 

mit, 

where 

C\ 
p(p+l)2(2p-3) 

6 i / (p - l ) ( p 2 + p - 4 ) ' 
1 

7i = öP(P + 1) - 2, 

c2 

72 

p ( p 2 - l ) ( p + 2) 
6 ^ 2 ( p 2 + p - 4 ) ' 
7 1 + 2 
C2 - c\' 

We reject H0 : Σ = σ2[(1 - p)I + p3] if F > F a > 7 l ) 7 2 . 

■ EXAMPLE 7.2.3 

To illustrate this test, we use the cork data of Table 6.21. In Problem 6.34, 
a comparison is made of average thickness, and hence weight, in the four 
directions. A standard ANOVA approach to this repeated measures design 
would be valid if (7.10) holds. To check this assumption, we test H0: Σ = 
σ2[(1 - p)I + p3\. The sample covariance matrix is given by 

/ 290.41 223.75 288.44 226.27 \ 
223.75 219.93 229.06 171.37 
288.44 229.06 350.00 259.54 

\ 226.27 171.37 259.54 226.00 / 
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from which we obtain 

1 p 

|S| = 25,617,563.28, s2 = - ])Γ »a = 271.586, 

„ 2 „ 
Γ Γ Τ Ι Σ ^ = : s2r 233.072 

^ = ^ 3 1 ) λ , «* - 233.072, r = _ = _ ; _ = .858. 
3ψκ 

From (7.15) and (7.16), we now have 

25,617,563.28 
(271.586)4(1 - .858)3[1 + (3)(.858)] 

p ( p + l ) 2 ( 2 p - 3 ) 

.461, 

27 

6(p - l)(p2 + p - 4) 
(4)(25)(5) 
(6)(3)(16) 

lnw 

0.774 = 19.511. 

Since 19.511 > χ2
058 = 15.5, we reject H0 and conclude that Σ does not 

have the pattern in (7.10). Π 

7.3 TESTS COMPARING COVARIANCE MATRICES 

An assumption for T2 or MANOVA tests comparing two or more mean vectors is 
that the corresponding population covariance matrices are equal: Σ ι = Σ2 = · · · = 
Σ^. Under this assumption, the sample covariance matrices Si, S 2 , . . . , S^ reflect 
a common population Σ and are therefore pooled to obtain an estimate of Σ . If 
Σ ι = Σ2 = · · · = Σ*; is not true, large differences in Si, S2, ■ · . , S^ may possibly 
lead to rejection of Ho: μχ — μ2 = · · · = μ^- However, the T2 and MANOVA tests 
are fairly robust to heterogeneity of covariance matrices as long as the sample sizes 
are large and equal. For other cases it is useful to have available a test of equality of 
covariance matrices. We begin with a review of the univariate case. 

7.3.1 Univariate Tests of Equality of Variances 

The two-sample univariate hypothesis HQ : σ\ = σ\ versus Ηγ: σ\ ψ σ\ is tested 
with 

F = %, (7.17) 

where s\ and s2 are the variances of the two samples. If HQ is true, F is distributed 
as FVl ,1*2, where v\ and v2 are the degrees of freedom of s\ and s2 (typically, n\ — 1 
and «2 — 1). Note that s\ and s\ must be independent, which will hold if the two 
samples are independent. 

For the several-sample case, various procedures have been proposed. We present 
Bartlett's (1937) test of homogeneity of variances because it has been extended to 
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the multivariate case. To test 

H0 . σ1 = σ2 
2 

we calculate 

c = l + 3(ifc-l) 

k 

Ί Ϊ Σ Κ 

Σ Κ 

m= I ^ Vj 1 In s2 - ^ Vj In sf, 
\i=l ) i=l 

where s\, s2 , , . . . , s\ are independent sample variances with v\, i/2, · · ·, f̂e degrees 
of freedom, respectively. Then 

— is approximately χΊ-χ-

We reject if0 if m/c > χ2 _/,._! · 
For an F-approximation, we use c and m above and calculate in addition 

Then 

<zi = A; — 1, Ü2 

0,2171 

k+ 1 α·2 
2-c + 2/a2' 

is approximately F a i >a2. 
a\{b — m) 

We reject H0 if F > Fa. 
Note that an assumption for either form of the above test is independence of 

s\,s\,..., s2,, which will hold for random samples from k distinct populations. This 
test would therefore be inappropriate for comparing s n , s22, · · ·, spp from the diag-
onal of S, since the Sjj's are correlated. 

7.3.2 Multivariate Tests of Equality of Covariance Matrices 

For k multivariate populations, the hypothesis of equality of covariance matrices is 

Η 0 : Σ ι = Σ 2 = · · · = Σ*. (7.18) 

The test of H0: Σ ι — Σ 2 for two groups is easily obtained as a special case by 
setting k = 2. Thus there is no exact test as there is in the analogous univariate case 
[see (7.17)]. We assume independent samples of size ni , n 2 , . . . , η^ from multivari-
ate normal distributions, as in an unbalanced one-way MANOVA, for example. To 
make the test, we calculate 

M 
| S l | ^ / 2 | S 2 | ^ / 2 - - - | S f c | ^ / 2 

|8η,|Σ></2 
(7.19) 
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in which i/j = rii — 1, S; is the covariance matrix of the ith sample, and Spi is the 
pooled sample covariance matrix 

Spi = (7.20) 

where E is given by (6.32) and vE = Σ ί = ι νί = Σ ί ni ~ k. It is clear that we 
must have every ẑ  > p; otherwise M would be zero because |Sj| = 0 for some 
i. Exact upper percentage points of —21nM = i/(fcln |Spi| — £V In |S;|) for the 
special case of v\ = v2 = ■ ■ ■ = Vk = v are given in Table A. 14 for p = 2,3,4,5 
and fc = 2 , 3 , . . . , 10 (Lee et al. 1977). We can easily modify (7.19) and (7.20) to 
compare covariance matrices for the cells of a two-way model using ν^ = η ^ — 1. 

The statistic M is a modification of the likelihood ratio and varies between 0 and 
1, with values near 1 favoring H0 in (7.18) and values near 0 leading to rejection of 
Ho. It is not immediately obvious that M in (7.19) behaves in this way, and we offer 
the following heuristic argument. First we note that (7.19) can be expressed as 

M ■■ 
JSi] 
Spll 

vx/2 "2 /2 

»pll 

"fc/2 

(7.21) 

If Si = S2 = · · · = Sfc = Spi, then M = 1. As the disparity among Si, S 2 , . . . , S^ 
increases, M approaches zero. To see this, note that the determinant of the pooled 
covariance matrix, |Spi|, lies somewhere near the "middle" of the |S»|'s and that as 
a set of variables z\, z-i-, ■ ■ ■, zn increases in spread, 2(i)/z reduces the product more 
than Z(n)l"z increases it, where z^ and Z(n) are the minimum and maximum values, 
respectively. We illustrate this with the two sets of numbers 4, 5, 6 and 1, 5, 9, which 
have the same mean but different spread. If we assume vi = v2 = v-3 = v, then for 
the first set, 

M i = 

and for the second set, 

M 2 = | | 

i//2 

v/2 

[(.8)(l)(1.2)]v/2 = {.m)v'2 

[(.2)(1)(1.8)]"/2 = (.36)" /2. 

In M2, the smallest value, .2, reduces the product proportionally more than the largest 
value, 1.8, increases it. Another illustration is found in Problem 7.9. 

Box (1949, 1950) gave χ2- and F-approximations for the distribution of M. Ei-
ther of these approximate tests is referred to as Box's M-test. For the χ2-approximation, 
calculate 

c\ = 
1 Σ ^ 1 

,i=l 

2p2 + 3p - 1 

Then 

_ 6 ( p + l ) ( k - l ) . ' 

-2(1 - ci) InM is approximately x 2 [ | ( f c - l)p{p+ 1)], 

(7.22) 

(7.23) 
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where M is defined in (7.19), and 

InM 1 
k 

2 Σ
Vi ln I 

i= l 

(7.24) 

(7.25) 

We reject H0 if u > χ2 . If v\ = v2 = ■ ■ ■ = vk = v, then ci simplifies to 

= (fc+l)(2p2 + 3 p - l ) 
Cl ~~ 6kv(p + 1) 

To justify the degrees of freedom of the χ2-approximation, note that the total 
number of parameters estimated under Ηχ is k[^p(p + 1)], whereas under H0 we 
estimate only Σ , which has P + (ζ) — \v{p + 1) parameters. The difference is 
(k — l)[ |p(p + 1)]. The quantity k[^p(p + 1)] arises from the assumption that all 
Σ , , i = 1,2,. . . , k, are different. Technically, Hi can be stated as Σ , φ Σ^ for 
some i φ j . However, the most general case is all Ej different, and the distribution 
of M is derived accordingly. 

For the F-approximation, we use c\ from (7.22) and calculate, additionally, 

c2 

a-i 

(p-l)(p + 2) 

6(jfc-l) Σ 
2 = 1 •)J 

w 
bi = 

Cl 

l ) p ( p + l ) 

- ai/a2 

a2 

a\ 
b2 

(Σί 
_ α ι + 2 

I 21 ' 

\°2 -Cf| 
1 - Ci - 2/a2 

a2 

(7.26) 

Ifc2 > cf, 
F = -26i In M is approximately F a i i 

If c2 < cf, 

F = — 
a2i)2lnM 

a!(l + 262 lnM) 
In either case, we reject ί ί 0 if F > Fa 
simplifies as in (7.25) and c2 simplifies to 

( p - l ) ( p + 2)(fc2 

is approximately Fai jQ2 

If ui = v2 = ■ ■ ■ Vk 

c2 = 
k + 1) 

(7.27) 

(7.28) 

v, then ci 

6A;2i/2 

Box's M-test is calculated routinely in many computer programs for MANOVA. 
However, Olson (1974) showed that the M-test with equal v^ may detect some forms 
of heterogeneity that have only minor effects on the MANOVA tests. The test is also 
sensitive to some forms of nonnormality. For example, it is sensitive to kurtosis, for 
which the MANOVA tests are rather robust. Thus the M-test may signal covariance 
heterogeneity in some cases where it is not damaging to the MANOVA tests. Hence 
we may not wish to automatically rule out standard MANOVA tests if the M-test 
leads to rejection of H0. Olson showed that the skewness and kurtosis statistics &iiP 
and b2,P (see Section 4.4.2) have similar shortcomings. 
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EXAMPLE 7.3.2 

We test the hypothesis H0: Σ ι = Σ 2 for the psychological data of Table 5.1. 
The covariance matrices Si, S2, and Spi were given in Example 5.4.2. Using 
these, we obtain, by (7.24), 

l n M = i h l n | S i | + i / 2 l n | S 2 | ] - i ( ^ + ^ 2 ) l n | S p , | 
= |[(31)1η(7917.7) + (31)ln(58958.1)] 

- | (31 +31)ln(27325.2) = -7.2803. 

For an exact test, we compare 

- 2 1 n M = 14.561 

with 19.74, its critical value from Table A. 14. 
For the x2-approximation, we compute, by (7.25) and (7.23), 

_ (2 + l ) [ 2 ( 4 » ) + 3 ( 4 ) - l ] _ 
6(2)(31)(4+1) - • Ü Ö W 5 > 

u = -2 (1 - C l) l nM = 13.551 < χ2
0510 = 18.307. 

For an approximate F-test, we first calculate the following: 

( 4 - l ) ( 4 + 2) 
C2 6 ( 2 - 1 ) 

1 1 1 
+ 312 312 (31 + 31)2 = .005463 

ai = i ( 2 - l ) ( 4 ) ( 4 + l) = 10 

do = ; 7TT = ίθάΐ I.I 
2 |.005463-.0693521 

1 - .06935 - 10/18377.7 
61 = — = .0930 

= 1- .06935-2/18377.7 = 

18377.7 

Since c2 = .005463 > c\ = .00481, we use (7.27) to obtain 

F = -2&1 lnM = 1.354 < F05,io,oo = 1-83. 

Thus all three tests accept H0- □ 

7.4 TESTS OF INDEPENDENCE 

7.4.1 Independence of Two Subvectors 

Suppose the observation vector is partitioned into two subvectors of interest, which 
we label y and x, as in Section 3.9.1, where y is p x 1 and x is q x 1. By (3.46), the 
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corresponding partitioning of the population covariance matrix is 

Σ 

with analogous partitioning of S and R as in (3.42): 

S = ( ~yy ~yx I , R = R yx 
* V T ? / **<x 3xy ^xx / \ i l-xy 

The hypothesis of independence of y and x can be expressed as 

Η0:Έ ^yy 

O 
O 

v 
^-*XT. 

or H0: Έυχ — O. 

Thus independence of y and x means that every variable in y is independent of every 
variable in x. Note that there is no restriction on Hyy or Έχχ. 

The likelihood ratio test statistic for H0: Έυχ = O is given by 

Λ IRI 
|Sj/J/ll°o: i ̂ ^y y 11 ■***£ 

(7.30) 

which is distributed as ΛΡι(?ιη_ι_ς. We reject H0 if Λ < Λα. We thus have an exact 
test for Ho : Έυχ = O. Critical values for Wilks' Λ are given in Table A.9 using 
VH = q and VE = n — 1 - q. The test statistic in (7.30) is equivalent (when H0 

is true) to the Λ-statistic (10.64) in Section 10.5.1 for testing the significance of the 
regression of y on x. 

By the symmetry of 

This is equivalent to property 3 in Λ in (7.30) is also distributed as Λ9ιΡ>„_ι 
Section 6.1.3. 

Note that (S^HS^I in (7.30) is an estimate of |Ey j / | |Ex ; c | , which by (2.92) is 
the determinant of Σ when Y.yx = O. Thus Wilks' Λ compares an estimate of Σ 
without restrictions to an estimate of Σ under H0: Έυχ = O. We can see intuitively 
that |S| < ISyyIISzz by noting from (2.94) that |S| = IS^HS^j, - S ^ S ^ S ^ I , 
and since SyxS~^SX2/ is positive definite, \Syy — Sy xS~^Sx l / | < |STO | . This can be 
illustrated for the case p = q = 1: 

|S| = 

As syx increases, |S| decre 

Sy Syx 

Syx Sx 

ases. 

— SySx \Syx) ^ SySx' 

Wilks' Λ in (7.30) can be expressed in terms of eigenvalues: 

IK* ■r?), (7.31) 
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where s — min(p, q) and the rf's are the nonzero eigenvalues of Sx^SxySyySyx. 
O - l o C - l C 

yy ^yx^xx^xy 
We could also use since the (nonzero) eigenvalues of 
SyySyxSxxSxy are the same as those of S~^SxyS~ySyX (these two matrices are 
of the form A B and B A; see Section 2.11.5). The number of nonzero eigenvalues 
is s = min(p, q), since s is the rank of both S ^ S ^ S ^ S ^ and S~^SxyS~ySyx. 
The eigenvalues are designated rf because they are the squared canonical correla-
tions between y and x (see Chapter 11). In the special case p = 1, (7.31) becomes 

Λ = 1 1-R2 

where R2 is the square of the multiple correlation between y and (χι, Χ2, ■ ■ ■, xq). 
The other test statistics, U^s\ V^, and Roy's Θ, can also be defined in terms of 

the rf's (see Section 11.4.1). 

■ EXAMPLE 7.4.1 

Consider the diabetes data in Table 3.5. There is a natural partitioning in the 
variables, with y\ and 1/2 of minor interest and x\, Χ2, and £3 of major interest. 
We test independence of the y's and the x's, that is, HQ : 
Example 3.9.1, the partitioned covariance matrix is 

■lyx O. From 

Λ 

OJ/J/ &yX \ _ 

^xy &xx J 

/ .0162 .2160 
.2160 70.56 
.7872 26.23 

-.2138 -23.96 
\ 2.189 -20.84 

.7872 
26.23 
1106 

396.7 
108.4 

; the test, we compute 

|S| 3.108 x 109 
- 70/1 s 

-.2138 
-23.96 

396.7 
2382 
1143 

Λ „ „ „ . 

2.189 \ 
-20.84 

108.4 
1143 
2136 / 

TX(\ 
| S W | | S X I | (1.095)(3.920 x 109) 

Thus we reject the hypothesis of independence. Note the use of 40 in Λ.05,2,3,40 
in place of n - 1 - q — 46 - 1 - 3 — 42. This is a conservative approach that 
allows the use of a table value without interpolation. G 

7.4.2 Independence of Several Subvectors 

Let there be k sets of variates so that y and Σ are partitioned as 

/ y i \ 

V y* / 

and Σ 
Σ21 

Σΐ2 
Σ22 

\ Sfcj Σ fc2 

^2k 

with pi variables in y,, where pi + p2 + ■ ■ ■ + Pk = P- Note that yx, y 2 , . . . , yfc 
represents a partitioning of y, not a random sample of independent vectors. The 
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hypothesis that the subvectors y1 ; y 2 , . . . , y/c are mutually independent can be ex-
pressed as H0: S j j = O for all i φ j , or 

Ηη:Έ = 

The likelihood ratio statistic is 

/ Σ ι ι 
O 

V o 

o 
Σ22 

o 

o 

■'kk 

IS11IIS 22 >/cfc 
IRI 

IR-11IIR-22I · · ■ |R-/ kk\ 

(7.32) 

(7.33) 

(7.34) 

where S and R are obtained from a random sample of n observations and are par-
titioned as Σ above, conforming to yi ,y2, · · ·, y/t- Note that the denominator of 
(7.33) is the determinant of S restricted by Ho, that is, with S,j — O for all i φ j 
[see (2.92)]. The statistic u does not have Wilks' Λ-distribution as it does in (7.30) 
when k = 2, but a good χ2-approximation to its distribution is given by 

-vc In u, (7.35) 

where 

1 -
1 

-a2, a2=p 

12/1/ 
k 

ΈΡΙ 

(2α3 + 3α2), 

03 = P 
i=l 

Σ 
i = l 

ph 

(7.36) 

and v is the degrees of freedom of S or R (see comments at the beginning of Section 
7.2). We reject the independence hypothesis if u' > X^j-

The degrees of freedom, / = \a2, arises from the following consideration. The 
number of parameters in Σ unrestricted by the hypothesis is \p{p +1) - Under the 
hypothesis (7.32), the number of parameters in each Σ ^ is \pi(pi + 1), for a total of 
\ ΥΛ=\ PiiPi + !)· T h e difference is 

/ = ip (p + l ) - i ^p i (p i + l) = i U 2
+ i , - ^ p 2 _ ^ p . J 

i= l \ i i / 

p2 +p~Y^p2i -v Y.A'% 
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EXAMPLE 7.4.2 

For 30 brands of Japanese Seishu wine, Siotani et al. (1963) s tudied the rela-
t ionship be tween 

2/1 
2/2 

taste 

odor 

and 

x\ = pH 

X2 = acidity 1 

£3 = acidity 2 

X4 = sake meter 

£5 = direct reducing sugar 

XQ = total sugar 

x-j = a lcohol 

xg = formyl-ni t rogen. 

T h e data are in Table 7 .1 . 
We test independence of the following four subsets of variables: 

(2/1,2/2), (Xl,X2,X3), {X4,X5, X6), (X7, Xs)-

The sample covariance matrix is 

/ S n 
S21 

S31 
V s 4 i 
/ .16 

.10 

.01 
.006 

.02 
- .04 

.02 

.01 
- .02 

\ 1.44 

S12 
S22 
S32 
S42 

.10 

.19 
- . 01 
.009 

.02 
- .16 

.03 

.05 

.04 
1.03 

S13 
S23 
S33 
S43 

.01 
- . 01 

.03 
.004 

.03 
- . 1 1 
- .03 
- . 03 
- .01 
4.45 

s!4 \ 
S24 
S34 
S44 J 

.006 

.009 

.004 

.024 

.020 
-.012 
- .009 
.0004 

.038 
2.23 

.02 

.02 

.03 
.020 

.07 
- .18 
- . 03 
- . 03 

.05 
9.03 

- .04 
- .16 
- . 11 

- .012 
- .18 
5.02 

- .35 
- .67 
- .12 

-23.11 

.02 

.03 
- . 0 3 

- .009 
- . 0 3 
- . 35 

.13 

.15 

.05 
-4.26 

.01 

.05 
- . 0 3 
.0004 
- . 0 3 
- .67 

.15 

.26 

.13 
-3.47 

- . 02 
.04 

- . 01 
.038 

.05 
- .12 

.05 

.13 

.35 
6.73 

1.44\ 
1.03 
4.45 
2.23 
9.03 

-23.11 
-4.26 
-3 .47 

6.73 
1541/ 

where Siχ is 2 x 2, S22 is 3 x 3, S33 is 3 x 3, and S44 is 2 x 2. We first obtain 

|Sn||S22||S33||S44| 
2.925 x 10"7 

(.0210)(.0000158)(.0361)(496.04) 
= .01627. 
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Table 7.1 Seishu Measurements 

2/1 

1.0 
.1 
.5 
.7 

- . 1 
.4 
.2 
.3 
.7 
.5 

- . 1 
.5 
.5 
.6 
.0 

- . 2 
.0 
.2 

- . 1 
.6 

.8 

.5 

.4 

.6 
- . 7 
- . 2 

.3 

.1 

.4 
- . 6 

2/2 

.8 

.2 

.0 

.7 
-1.1 

.5 
- . 3 
- . 1 

.4 
- . 1 

.1 
- . 5 

.8 

.2 
- . 5 
- . 2 
- . 2 

.2 
- . 2 

.1 

.5 

.2 

.7 
- . 3 
- . 3 

.0 
- . 1 

.4 

.5 
- . 3 

Xl 

4.05 
3.81 
4.20 
4.35 
4.35 
4.05 
4.20 
4.32 
4.21 
4.17 

4.45 
4.45 
4.25 
4.25 
4.05 
4.22 
4.10 
4.28 
4.32 
4.12 

4.30 
4.55 
4.15 
4.15 
4.25 
3.95 
4.35 
4.15 
4.16 
3.85 

X2 

1.68 
1.39 
1.63 
1.43 
1.53 
1.84 
1.61 
1.43 
1.74 
1.72 

1.78 
1.48 
1.53 
1.49 
1.48 
1.64 
1.55 
1.52 
1.54 
1.68 

1.50 
1.50 
1.62 
1.32 
1.77 
1.36 
1.42 
1.17 
1.61 
1.32 

X3 

.85 

.30 

.92 

.97 

.87 

.95 
1.09 
.93 
.95 
.92 

1.19 
.86 
.83 
.86 
.30 
.90 
.85 
.75 
.83 
.84 

.92 
1.14 
.78 
.31 

1.12 
.25 
.96 

1.06 
.91 
.30 

Xi 

3.0 
.6 

-2.3 
-1 .6 
-2.0 
-2 .5 
-1.7 
-5 .0 
-1 .5 
-1 .2 

-2.0 
-2.0 
-3.0 

2.0 
.0 

-2 .2 
1.8 

-4.8 
-2.0 
-2.1 

-1 .5 
.9 

-7 .0 
.8 
.5 

1.0 
-2 .5 
-4.5 
-2 .1 

.7 

Xb 

3.97 
3.62 
3.48 
3.45 
3.67 
3.61 
3.25 
4.16 
3.40 
3.62 

3.09 
3.32 
3.48 
3.13 
3.67 
3.59 
3.02 
3.64 
3.17 
3.72 

2.98 
2.60 
4.11 
3.56 
2.84 
3.67 
3.40 
3.89 
3.93 
3.61 

X6 

5.00 
4.52 
4.46 
3.98 
4.22 
5.00 
4.15 
5.45 
4.25 
4.31 

3.92 
4.09 
4.54 
3.45 
4.52 
4.49 
3.62 
4.93 
4.62 
4.83 

3.92 
3.45 
5.55 
4.42 
4.15 
4.52 
4.12 
5.00 
4.35 
4.29 

X7 

16.90 
15.80 
15.80 
15.40 
15.40 
16.78 
15.81 
16.78 
16.62 
16.70 

16.50 
15.40 
15.55 
15.60 
15.38 
16.37 
15.31 
15.77 
16.60 
16.93 

15.10 
15.70 
15.50 
15.40 
16.65 
15.98 
15.30 
16.79 
15.70 
15.71 

xs 

122.0 
62.0 

139.0 
150.0 
138.0 
123.0 
172.0 
144.0 
153.0 
121.0 

176.0 
128.0 
126.0 
128.0 
99.0 

122.8 
114.0 
125.0 
119.0 
111.0 

68.0 
197.0 
106.0 
49.5 

164.0 
29.5 

131.0 
168.2 
118.0 
48.0 

For the χ2 -approximation, we calculate 

a2=p2-J2pl = 102 - (22 + 32 + 32 + 22) = 74, 
i = l 

4 l 
«3 = P3 ~ ΣΡ* = 930, / = -α2 = 37, 

i = l 
1 

c = 1 1 
12/^ 

(2n + ^ - i 2(930) + 3(74) _ 
(2a3 + 3a2) - 1 - 1 2 ( 3 7 ) ( 2 9 ) - -838. 
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Then, 
-vc\au = -(29)(.838)ln(.01627) = 100.122, 

which exceeds χ2
00ι,37 = 69.35, and we reject the hypothesis of independence 

of the four subsets. □ 
7.4.3 Test for Independence of All Variables 

If all Pi = 1 in the hypothesis (7.32) in Section 7.4.2, we have the special case in 
which all the variables are mutually independent, HQ : σ^ — 0 for j φ k, or 

Jin: Σ = 

/ σιι 
0 

V 0 

0 
0"22 

o \ 
0 

Jpp / 

There is no restriction on the ajj's. With ajk — 0 for all j φ k, the corresponding 
Pjfc's are also 0, and an equivalent form of the hypothesis is HQ:T?P = I, where P p 
is the population correlation matrix defined in (3.37). 

Since all p» = 1, the statistics (7.33) and (7.34) reduce to 

sns22---Sp 
IRI (7.37) 

and (7.35) becomes 
> - i ( 2 p + 5)]lnu, (7.38) 

which has an approximate χί-distribution, where v is the degrees of freedom of S 
or R (see comments at the beginning of Section 7.2) and / = \p{p — 1) is the 
degrees of freedom of χ2. We reject H0 if u' > X2

aj- Exact percentage points of 
u' for selected values of n and p are given in Table A. 15 (Mathai and Katiyar 1979). 
Percentage points for the limiting χ2-distribution are also given for comparison. 

Note that |R| in (7.37) varies between 0 and 1. If the variables were uncorrelated 
(in the sample), we would have R = I and |R| = 1. On the other hand, if two 
or more variables were linearly related, R would not be full rank and we would 
have |R| = 0. If the variables were highly correlated, |R| would be close to 0; if 
the correlations were all small, |R| would be close to 1. This can be illustrated for 
p = 2: 

1 
|R| = 1 

EXAMPLE 7.4.3 

To test the hypothesis H0: ajfc = 0, j φ k, for the probe word data from 
Table 3.6, we calculate 
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/ 1.000 .614 .757 .575 .413 \ 
.614 1.000 .547 .750 .548 

R = .757 .547 1.000 .605 .692 
.575 .750 .605 1.000 .524 

\ .413 .548 .692 .524 1.000 / 

Then by (7.37) and (7.38), 

u = |R| = .0409, 
u' = -[n-l- i (2p + 5)]lnu = 23.97. 

The exact .01 critical value for u' from Table A. 15 is 23.75, and we therefore 
reject H0. The approximate χ2 critical value for u' is χ2

01 10 = 23.21, with 
which we also reject H0. G 

PROBLEMS 

7.1 Show that if S = Σ 0 in (7.1), then u = 0. 

7.2 Verify (7.3); that is, show that In |Σ 0 | - In |S| = - In I S E ^ . 

7.3 Verify (7.4); that is, show that - HWLi λ*) + Σ*=ι λ* = Σ?=ι (λ* ~ln λ*)· 

7.4 Show that the likelihood ratio for H0: Σ — σ2Ι is given by (7.5), LR — 

[ |S | / ( t rS/p)T / 2 · 

7.5 Show that u — 1 and u' = 0 if all the A,'s are equal, as noted in Section 7.2.2, 
where u is given by (7.8) and u' by (7.9). 

7.6 Show that the covariance matrix in (7.10) can be written in the form σ2[(1 — 
p)\ + pJ], as given in (7.11). 

7.7 Obtain (7.15) from (7.14) as follows: 

(a) Show that the p x p matrix J has a single nonzero eigenvalue equal to p 
and corresponding eigenvector proportional to j . 

(b) Show that S0 = s2[(l - r)I + rJ] in (7.13) can be written in the form 
S0 = 5 2 ( l - r ) ( I + T ^ J ) . 

(c) Use Section 2.11.2 and (2.108) to obtain (7.15). 

7.8 Show that M in (7.19) can be expressed in the form given in (7.21). 

7.9 (a) Calculate M as given in (7.21) for 

S l = ( 1 4 J ' S2 = ( 3 6 

Assume v\—v-i = h. 
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(b) Calculate M for 

S l = ( 1 4 ) ' S 2 = ( 15 30 ) · 

Assume i/i = V2 — 5. 

In (b), Si and S2 differ more than in (a) and M is accordingly much smaller. 
This illustrates the comments following (7.21). 

7.10 Obtain (7.31), Λ = Π ^ ι ί 1 ~ ri?)' by u s i n S ( 2 · 9 4 ) t 0 w r i t e lSl i n t h e f o r m 

| ö | = \&xx\ \&yy ~ ^yx^xx^xy]-

7.11 Show that the forms of u in (7.33) and (7.34) reduce to (7.37) when all Pi — 1. 

7.12 Show that when all pi = 1, c in (7.36) reduces to 1 — (2p + 5)/6i/, so that 
(7.35) becomes (7.38). 

7.13 Give a justification for the degrees of freedom f = \ p(p — 1) for the approx-
imate x2 test statistic u' in (7.38). 

7.14 In Example 5.2.2, we assumed that for the height and weight data of Table 3.1, 
the population covariance matrix is 

/ 20 100 \ 
\ 100 1000 ) ' 

Test this as a hypothesis using (7.2). 

7.15 Test Ho: Σ = σ2Ι and H0: C E C = σ2Ι for the calculator speed data of 
Table 6.12. 

7.16 Test Η0:Σ = σ2Ι and H0: C E C = σ2Ι for the ramus bone data of Ta-
ble 3.7. 

7.17 Test H0: Σ = σ2Ι and H0: C E C = σ2Ι for the cork data of Table 6.21. 

7.18 Test H0: Σ = σ2[(1 - p)I + p3] for the probe word data in Table 3.6. Use 
both x2- and F-approximations. 

7.19 Test H0: Σ = σ2[(1 - p)\ + pJ] for the calculator speed data in Table 6.12. 
Use both x2- and F-approximations. 

7.20 Test H0: Σ = σ2[(1 - p)l + pJ] for the ramus bone data in Table 3.7. Use 
both χ2- and F-approximations. 

7.21 Test H0: Έι = Σ 2 for the beetles data of Table 5.5. Use an exact critical 
value from Table A. 14 as well as χ2- and F-approximations. 

7.22 Test H0: Έχ = Σ 2 for the engineer data of Table 5.6. Use an exact critical 
value from Table A. 14 as well as χ2- and F-approximations. 
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7.23 Test H0: Έι = Σ 2 for the dystrophy data of Table 5.7. Use an exact critical 
value from Table A. 14 as well as χ2- and F-approximations. 

7.24 Test i/o: Σχ = Σ2 for the cyclical data of Table 5.8. Use an exact critical 
value from Table A. 14 as well as χ2- and F-approximations. 

7.25 Test H0: Σχ = Σ 2 = Σ 3 for the fish data of Table 6.17. Use an exact critical 
value from Table A. 14 as well as χ2- and F-approximations. 

7.26 Test i/o: Σ ! = Σ 2 = · · · = Σβ for the rootstock data in Table 6.2. Use an 
exact critical value from Table A. 14 as well as χ2- and F-approximations. 

7.27 Test H0: S u = Σχ2 = · · · = Σ 4 3 for the snap bean data in Table 6.18. Use 
both x2- and F-approximations. 

7.28 Test independence of (y\, t/2) and (χι, x2) f° r the sons data in Table 3.8. 

7.29 Test independence of (yi ,2/2,2/3) a nd (xi, £2, £3) for the glucose data in Ta-
ble 3.9. 

7.30 Test independence of (j/i, t/2) and (x 1, x 2 , . . . , x$) for the Seishu data of Ta-
ble 7.1. 

7.31 The data in Table 7.2 relate temperature, humidity, and evaporation (courtesy 
of R. J. Freund). The variables are 

2/1 = maximum daily air temperature 
2/2 = minimum daily air temperature 
2/3 = integrated area under daily air temperature curve, that is, 

a measure of average air temperature 
2/4 = maximum daily soil temperature 
2/5 = minimum daily soil temperature 
2/6 = integrated area under soil temperature curve 
2/7 = maximum daily relative humidity 
2/8 = minimum daily relative humidity 
2/9 = integrated area under daily humidity curve 

2/10 = total wind, measured in miles per day 
2/11 = evaporation 

Test independence of the following five groups of variables: (2/1,2/2,2/3), (2/4, 
2/5, Ve), (2/7,2/8,2/9), 2/10, and yu. 

Test the independence of all the variables for the calcium data of Table 3.4. 

Test the independence of all the variables for the calculator speed data of Ta-
ble 6.12. 

7.32 

7.33 



yi 

84 
84 
79 
81 
84 
74 
73 
75 
84 
86 
88 
90 
88 
58 
81 
79 
84 
84 
84 
77 
87 
89 
89 
93 
93 
94 
93 
93 
96 
95 
84 
91 

96 

Table 7.2 

2/2 

65 
65 
66 
67 
68 
66 
66 
67 
68 
72 
73 
74 
72 
72 
69 
68 
69 
70 
70 
67 
67 
69 
72 
72 
74 
75 
74 
74 
75 
76 
73 
71 

76 

2/3 

147 
149 
142 
147 
167 
131 
131 
134 
161 
169 
176 
187 
171 
171 
154 
149 
160 
160 
168 
147 
166 
171 
180 
186 
188 
199 
193 
196 
198 
202 
173 
170 

202 

Temperati 

2/4 

85 
86 
83 
83 
88 
77 
78 
84 
89 
91 
91 
94 
94 
92 
87 
83 
87 
87 
88 
83 
92 
92 
94 
92 
93 
94 
95 
95 
95 
95 
96 
91 

96 

2/5 

59 
61 
64 
65 
69 
67 
69 
68 
71 
76 
76 
76 
75 
70 
68 
68 
66 
68 
70 
66 
67 
72 
72 
73 
72 
72 
73 
70 
71 
69 
69 
69 

71 

jre, Humidity, and 

ye 

151 
159 
152 
158 
180 
147 
159 
159 
195 
206 
206 
211 
211 
201 
167 
162 
173 
177 
169 
170 
196 
199 
204 
201 
206 
208 
214 
210 
207 
202 
173 
168 

208 

2/7 

95 
94 
94 
94 
93 
96 
96 
95 
95 
93 
94 
94 
96 
95 
95 
95 
95 
94 
95 
97 
96 
94 
95 
94 
95 
96 
95 
96 
93 
93 
94 
94 

94 

2/8 

40 
28 
41 
50 
46 
73 
72 
70 
63 
56 
55 
51 
54 
51 
61 
59 
42 
44 
48 
60 
44 
48 
48 
47 
47 
45 
50 
45 
40 
39 
58 
44 

40 

Evaporation 

ys 

398 
345 
368 
406 
379 
478 
462 
464 
430 
406 
393 
385 
405 
392 
448 
436 
392 
392 
396 
431 
379 
393 
394 
386 
389 
370 
396 
380 
365 
357 
418 
420 

368 

2/10 

273 
140 
318 
282 
311 
446 
294 
313 
455 
604 
610 
520 
663 
467 
184 
177 
173 
76 
72 
183 
76 

230 
193 
400 
339 
172 
238 
118 
93 
269 
128 
423 

139 

2/11 

30 
34 
33 
26 
41 
4 
5 

20 
31 
36 
43 
47 
45 
45 
11 
10 
30 
29 
23 
16 
37 
50 
36 
54 
44 
41 
45 
42 
50 
48 
17 
20 

50 
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7.34 Test the independence of all the variables for the ramus bone data of Table 3.7. 

7.35 Test the independence of all the variables for the cork data of Table 6.21. 



CHAPTER 8 

DISCRIMINANT ANALYSIS: 
DESCRIPTION OF GROUP 
SEPARATION 

8.1 INTRODUCTION 

We use the term group to represent either a population or a sample from the popula-
tion. There are two major objectives in separation of groups: 

1. Description of group separation, in which linear functions of the variables (dis-
criminant functions) are used to describe or elucidate the differences between 
two or more groups. The goals of descriptive discriminant analysis include 
identifying the relative contribution of the p variables to separation of the 
groups and finding the optimal plane on which the points can be projected 
to best illustrate the configuration of the groups. 

2. Prediction or allocation of observations to groups, in which linear or quadratic 
functions of the variables (classification functions) are employed to assign an 
individual sampling unit to one of the groups. The measured values in the 
observation vector for an individual or object are evaluated by the classification 
functions to find the group to which the individual most likely belongs. 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 281 
Copyright © 2012 John Wiley & Sons, Inc. 
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For consistency we will use the term discriminant analysis only in connection 
with objective 1. We will refer to all aspects of objective 2 as classification analy-
sis, which is the subject of Chapter 9. Unfortunately, there is no general agreement 
with regard to usage of the terms "discriminant analysis" and "discriminant func-
tions." Many writers, perhaps the majority, use the term "discriminant analysis" in 
connection with the second objective, prediction or allocation. The linear functions 
contributing to the first objective, description of group separation, are often referred 
to as canonical variates or discriminant coordinates. To avoid confusion, we prefer 
to reserve the term canonical for canonical correlation analysis in Chapter 11. 

Discriminant functions are linear combinations of variables that best separate 
groups. They were introduced in Section 5.5 for two groups and in Sections 6.1.4 
and 6.4 for several groups. In those sections, interest was centered on follow-up to 
Hotelling's T2-tests and MANOVA tests. In this chapter, we further develop these 
useful multivariate tools. 

8.2 THE DISCRIMINANT FUNCTION FOR TWO GROUPS 

We assume that the two populations to be compared have the same covariance matrix 
Σ but distinct mean vectors μι and μ2. We work with samples y n , yi2, · · · ,yim 
and y2i, y22 ,·■·, Y2n2 from the two populations. As usual, each vector yij consists 
of measurements on p variables. The discriminant function is the linear combination 
of these p variables that maximizes the distance between the two (transformed) group 
mean vectors. A linear combination z = a'y transforms each observation vector to 
a scalar: 

zu = »Viz = oi2/iii + a2yu2 + · ■ · + apyiiP, i-l,2,...,ni 

*2i = a'y2i = ai2/2ii + a2y2i2 + · · · + apy2iP, i = 1,2,... ,n2. 

Hence the τΐχ + n2 observation vectors in the two samples, 

are transformed to scalars, 

y n 
y i 2 

y i n i 

Z l l 

Z l2 

y2 i 
y22 

Y2n2, 

Z21 

Z22 

Z\ri\ Z2rl2. 

We find the means ζ~ι = Σ7=ι zu/ni = a ' y i a n d ^2 = a'y~2 bY (3-54), where 
yj = Σ™^ yii/πχ and y2 = ΣΓ=ι Ύ2ί/η2. We then wish to find the vector a that 
maximizes the standardized difference (ζχ - z2)/sz. Since (zi - ~z2)/sz can be 
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negative, we use the squared distance (z\ — z2)
2 js\, which, by (3.54) and (3.55), 

can be expressed as 

2 — 7E · (°A) 
s{ a'Spia 

The maximum of (8.1) occurs when 
a = s p i 1 ( y i - y 2 ) ! (8-2) 

or when a is any multiple of S^^y j — y 2) . Thus the maximizing vector a is not 
unique. However, its "direction" is unique; that is, the relative values or ratios of 
αι, θ 2 , . . . , αρ are unique, and z = a 'y projects points y onto the line on which 
(zi — J2)2/s2 is maximized. Note that in order for Slj1 to exist, we must have 
n\ + Π2 - 2 > p. 

The optimum direction given by a = S l " ) 1 ^ — y2) is effectively parallel to the 
line joining y1 and y2 , because the squared distance (z\ — Ί2)2/s2

z is equivalent to 
the standardized distance between y1 and y2 . This can be seen by substituting (8.2) 
into (8.1) to obtain 

{~Zl ~J2? - (Ϋι - y2)'s;,1(y1 - y2) (8.3) 

for z — a 'y with a = Sp,1 (yx - y 2 ) · Since a' = (y1 -y 2 ) 'S~ 1
1 , (8.3) can be written 

as (~z~i - Ί2)
2/s2

z — a ' ^ ! - y2) , and any direction other than that represented by 
a = S - , 1 ^ ! — y2) would yield a smaller difference between Ά'γλ and a'y2 (see 
Section 5.5). 

Figure 8.1 Two-group discriminant analysis. 
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Figure 8.2 Separation achieved by the discriminant function. 

Figure 8.1 illustrates the separation of two bivariate normal (p = 2) groups along 
the single dimension represented by the discriminant function z — a'y> where a is 
given by (8.2). In this illustration the population covariance matrices are equal. The 
linear combinations zH = a 'y H = aiym + a2yli2 and z2i = a'y2i = α^2ί1 + 
a2V2i2 project the points yu and y2i onto the line of optimum separation of the two 
groups. Since the two variables y\ and y2 are bivariate normal, a linear combination 
z — βι2/ι + α22/2 = a'y is univariate normal (see property la in Section 4.2). 
We have therefore indicated this by two univariate normal densities along the line 
representing z. 

The point where the line joining the points of intersection of the two ellipses inter-
sects the discriminant function line z is the point of maximum separation (minimum 
overlap) of points projected onto the line. If the two populations are multivariate nor-
mal with common covariance matrix Σ , as illustrated in Figure 8.1, it can be shown 
that all possible group separation is expressed in a single new dimension. 

In Figure 8.2, we illustrate the optimum separation achieved by the discriminant 
function. Projection in another direction denoted by z' gives a smaller standardized 
distance between the transformed means l[ and l'2 and also a larger overlap between 
the projected points. 

■ EXAMPLE 8.2 

Samples of steel produced at two different rolling temperatures are compared 
in Table 8.1 (Kramer and Jensen 1969a). The variables are y\ = yield point 
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Table 8.1 Yield Point and Ultimate 
Strength of Steel Produced at Two Rolling 
Temperatures 

Temperature 1 Temperature 2 
2/1 2/2 2/1 2/2 

33 60 35 57 
36 61 36 59 
35 64 38 59 
38 63 39 61 
40 65 41 63 

43 65 
41 59 

and ?/2 = ultimate strength. From the data, we calculate 

- _ ( 3 6 · 4 \ - _ ( 3 9 0 "\ _ ( 7 - 9 2 5 · 6 8 ^ 
y i ~~ ^ 62.6 ) ' Υ 2 ~ V 60.4 ) ' pl ~ \ 5.68 6.29 ) ' 

A plot of the data appears in Figure 8.3. We see that if the points were 
projected on either the y\ or the j/2 axis, there would be considerable overlap. 
In fact, when the two groups are compared by means of a ί-statistic for each 

Figure 8.3 Ultimate strength and yield point for steel rolled at two temperatures. 
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Table 8.2 Discriminant Function z = 
-1.633j/i +1.820j/2 Evaluated for Data in Ta-
ble 8.1 

Temperature 1 

55.29 
52.20 
59.30 
52.58 
52.95 

Temperature 2 

46.56 
48.57 
45.30 
47.30 
47.68 
48.05 
40.40 

variable separately, both i's are nonsignificant: 

Vw ~ 1/21 
h = 

*2 = 

sjsn{l/ni + l/n2) 
yi2 ~ 2/22 

\ / s 2 2 ( l / « l + l / " 2 ) 

-1.58, 

1.48. 

However, it is clear in Figure 8.3 that the two groups can be separated. If 
they are projected in an appropriate direction as in Figure 8.1, there will be no 
overlap. The single dimension onto which the points would be projected is the 
discriminant function 

z = a y = aiyi + a2j/2 

where a is obtained as 

sr,1(y1-y2) 

-1.633J/1 + 1.820jfc, 

-1.633 
1.820 

The values of the projected points are found by calculating z for each observa-
tion vector y in the two groups. The results are given in Table 8.2, where the 
separation provided by the discriminant function is clearly evident. D 

8.3 RELATIONSHIP BETWEEN TWO-GROUP DISCRIMINANT 
ANALYSIS AND MULTIPLE REGRESSION 

The mutual connection between multiple regression and two-group discriminant anal-
ysis was introduced as a computational device in Section 5.6.2. The roles of inde-
pendent and dependent variables are reversed in the two models. The dependent 
variables (j/'s) of discriminant analysis become the independent variables in regres-
sion. 



RELATIONSHIP BETWEEN TWO-GROUP DISCRIMINANT ANALYSIS AND MULTIPLE REGRESSION 2 8 7 

Let w be a grouping variable (identifying groups 1 and 2) such that w = 0 and 
define b = (b\, b2,..., bp)' as the vector of regression coefficients when w is fit to 
the y's. Then by (5.21), b is proportional to the discriminant function coefficient 
vectora = S~1

1(y1 - y2): 

(η1+η2)(η1+η2-2 + Τ2)^ {*A) 

where Γ 2 = [«ma/in! + n2)](y1 - y ^ ' S " 1 ^ - y2) as in (5.9). From (5.20) the 
squared multiple correlation R2 is related to T2 by 

R2 = (y1-y2)'b 
T2 

(8.5) 
n1+n2~2 + T2' 

The test statistic (5.29) for the hypothesis that q of the p + q variables are redundant 
for separating the groups can also be obtained in terms of regression by (5.31) as 

F 
n\ +n2 -p- q 1 Rp+q Rl 

l~R2
P+q 

(8.6) 

where Rp+q and R2 are from regressions with p + q and p variables, respectively. 
The link between two-group discriminant analysis and multiple regression was 

first noted by Fisher (1936). Flury and Riedwyl (1985) give further insights into the 
relationship. 

EXAMPLE 8.3 

In Example 5.6.2, the psychological data of Table 5.1 were used in an illustra-
tion of the regression approach to computation of a and T2. We use the same 
data to obtain b and R2 from a and T2. 

From the results of Examples 5.4.2 and 5.5, we have 

T2 = 97.6015, 
/ .5104 \ 

-.2033 
.4660 

\ -.3097 j 

To find b from a and T2 , we use (8.4): 

b = 
(32)(32) 

/ 

(32 + 32)(32 + 32 - 2 + 97.6015) 

To find R2, we use (8.5): 

.051 \ 

.020 

.047 
V - . 0 3 1 J 

R 2 _ /V7 ( y i - y 2 ) ' b = 

/ 3.625 \ 
2.000 

10.531 
.812 / V 

/ .051 \ 
- .020 

.047 
- .031 / V 

.611. 
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We can also use the relationship with T2 in (8.5): 

2 _ T2 _ 97.6105 
~ rit + n2 - 2 + T2 ~ 32 + 32 - 2 + 97.6015 

8.4 DISCRIMINANT ANALYSIS FOR SEVERAL GROUPS 

8.4.1 Discriminant Functions 

In discriminant analysis for several groups, we are concerned with finding linear 
combinations of variables that best separate the k groups of multivariate observa-
tions. Discriminant analysis for several groups may serve any one of various pur-
poses: 

1. Examine group separation in a two-dimensional plot. When there are more 
than two groups, it requires more than one discriminant function to describe 
group separation. If the points in the p-dimensional space are projected onto 
a 2-dimensional space represented by the first two discriminant functions, we 
obtain the best possible view of how the groups are separated. 

2. Find a subset of the original variables that separates the groups almost as well 
as the original set. This topic was introduced in Section 6.11.2. 

3. Rank the variables in terms of their relative contribution to group separation. 
This use for discriminant functions has been mentioned in Sections 5.5, 6.1.4, 
6.1.8, and 6.4. In Section 8.5, we discuss standardized discriminant function 
coefficients that provide a more valid comparison of the variables. 

4. Interpret the new dimensions represented by the discriminant functions. 

5. Follow up to fixed-effects MANOVA. 

Purposes 3 and 4 are closely related. Any of the first four goals can be used to ac-
complish purpose 5. Methods of achieving these five goals of discriminant analysis 
are discussed in subsequent sections. In the present section we review discriminant 
functions for the several-group case and discuss attendant assumptions. For alter-
native estimators of discriminant functions that may be useful in the presence of 
multicollinearity or outliers, see Rencher (1998, Section 5.11). 

For k groups (samples) with re, observations in the ith group, we transform each 
observation vector y^ to obtain z^ = a'y^, i = l,2,...,k;j — 1,2,. . . , n i5 and 
find the means Zi — a'y^, where y, = YTjLi yij/ni- As in the two-group case, 
we seek the vector a that maximally separates ~z\, z2, ■ ■ ■, ~Zk- To express separation 
among z i , z 2 , . . . ,~zk, we extend the separation criterion (8.1) to the fc-group case. 
Since a'(yj — y2) = (y1 — y^)'»» w e c a n express (8.1) in the form 

P i -z2f [a'(y! - y 2 ) ] 2 ^'{Ϋι - γ 2 ) ( Ϋ ι ~ Ϋ2) /&
 (Ά1Λ 

5 = 75 — 7ä · (°-') 
s% a'bpia a 'op ia 

= .611. 

D 
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To extend (8.7) to k groups, we use the H matrix from MANOVA in place of (yx 
y2)(Yi - y 2 ) ' [see (6.37)] and E in place of Spi to obtain 

which can also be expressed as 

λ a 'Ha 
A = ^ E a - < (8"8) 

A = ss i ) ' ( 8 · 9 ) 

where SSH(2) and SSE(,z) are the between and within sums of squares for z. 
We can write (8.8) in the form 

a 'Ha = Aa'Ea, 
a ' (Ha - AEa) = 0. (8.10) 

We examine values of λ and a that are solutions of (8.10) in a search for the value 
of a that results in maximum λ. The solution a' = 0' is not permissible because it 
gives λ = 0/0 in (8.8). Other solutions are found from 

H a - A E a = 0, (8.11) 

which can be written in the form 

( E _ 1 H - A I ) a = 0. (8.12) 

The solutions of (8.12) are the eigenvalues λ1; λ 2 , . . . , Xs and associated eigenvec-
tors a i , a2, ■ ■ ■, a s of E _ 1 H . As in previous discussions of eigenvalues, we consider 
them to be ranked λι > A2 > · · · > As. The number of (nonzero) eigenvalues s 
is the rank of H, which can be found as the smaller of k — 1 or p. Thus the largest 
eigenvalue λχ is the maximum value of λ = a ' H a / a ' E a in (8.8), and the coefficient 
vector that produces the maximum is the corresponding eigenvector a i . (This can 
be verified using calculus.) Hence the discriminant function that maximally sepa-
rates the means is z\ = a^y; that is, z\ represents the dimension or direction that 
maximally separates the means. 

From the s eigenvectors a i , a 2 , . . . , as of E ~x H corresponding to A i, A 2 , . . . , As, 
we obtain s discriminant functions z\ = a^y, z2 = a 2 y , . . . , zs = a^y, which show 
the dimensions or directions of differences among y 1 ; y 2 , . . . , yfc. These discrimi-
nant functions are uncorrelated but are not orthogonal [see Rencher (1998, pp. 203-
204)]. These discriminant functions are uncorrelated, but they are not orthogonal 
(a^aj = 0 for i φ j) because E " 1 ! ! is not symmetric. Note that the numbering 
z\,Z2,...,zs corresponds to the eigenvalues, not to the k groups as was done earlier 
in this section. 

The relative importance of each discriminant function z; can be assessed by con-
sidering its eigenvalue as a proportion of the total: 

λ?: (8.13) E;=1V 
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By this criterion, two or three discriminant functions will often suffice to describe the 
group differences. The discriminant functions associated with small eigenvalues can 
be neglected. A test of significance for each discriminant function is also available 
(see Section 8.6). 

The matrix E _ 1 H is not symmetric. Many algorithms for computation of eigen-
values and eigenvectors accept only symmetric matrices. In Section 6.1.4, it was 
shown that the eigenvalues of the symmetric matrix (U _ 1 ) 'HU~ are the same as 
those of E _ 1 H , where E = U 'U is the Cholesky factorization of E. However, an 
adjustment is needed for the eigenvectors. If b is an eigenvector of ( U _ 1 ) ' H U ~ , 
then a = U _ 1 b is an eigenvector of E _ 1 H . 

The discussion above was presented in terms of unequal sample sizes ηχ, η 2 , . . . , 
nk- In applications, this situation is common and can be handled with no difficulty. 
Ideally, the smallest n« should exceed the number of variables, p. This is not required 
mathematically, but will lead to more stable discriminant functions. 

■ EXAMPLE 8.4.1 

The data in Table 8.3 were collected by G. R. Bryce and R. M. Barker (Brigham 
Young University) as part of a preliminary study of a possible link between 
football helmet design and neck injuries. 

Six head measurements were made on each subject. There were 30 subjects 
in each of three groups: high school football players (group 1), college football 
players (group 2), and non-football players (group 3). The six variables are 

WDIM = head width at widest dimension 
CIRCUM = head circumference 

FBEYE = front-to-back measurement at eye level 
EYEHD = eye-to-top-of-head measurement 
EARHD = ear-to-top-of-head measurement 

JAW = jaw width 

The eigenvalues of E * H are λχ 
ing eigenvectors are 

/ 

a i 

1.9178 and λ2 = .1159. The correspond-

.948 \ 

.004 

.006 

.647 

.504 

.829 ) 

, a2 = 

/ 

V 

-1.407 \ 
.001 
.029 

-.540 
.384 

1.529 / \ 

The first eigenvalue accounts for a substantial proportion of the total: 

X1 1.9178 
λι + λ 2 1.9178 + .1159 

.94. 
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Table 8.3 Head Measurements for Three Groups 

Group WDIM 

1 13.5 
1 15.5 
1 14.5 
1 15.5 
1 14.5 
1 14.0 
1 15.0 
1 15.0 
1 15.5 
1 15.5 
1 15.0 
1 15.5 
1 16.0 
1 15.5 
1 15.5 
1 14.0 
1 14.5 
1 15.0 
1 15.5 
1 15.0 
1 15.0 
1 15.5 
1 17.5 
1 15.5 
1 15.5 
1 15.5 
1 15.5 
1 14.5 
1 15.5 
1 16.0 
2 15.5 
2 15.4 
2 15.1 
2 14.3 
2 14.8 

CIRCUM 

57.2 
58.4 
55.9 
58.4 
58.4 
61.0 
58.4 
58.4 
59.7 
59.7 
57.2 
59.7 
57.2 
62.2 
57.2 
61.0 
58.4 
56.9 
59.7 
57.2 
56.9 
56.9 
63.5 
57.2 
61.0 
61.0 
63.5 
58.4 
56.9 
61.0 
60.0 
59.7 
59.7 
56.9 
58.0 

FBEYE 

19.5 
21.0 
19.0 
20.0 
20.0 
21.0 
19.5 
21.0 
20.5 
20.5 
19.0 
21.0 
19.0 
21.5 
19.5 
20.0 
20.0 
19.0 
20.0 
19.5 
19.0 
19.5 
21.5 
19.0 
20.5 
21.0 
21.8 
20.5 
20.0 
20.0 
21.1 
20.0 
20.2 
18.9 
20.1 

EYEHD 

12.5 
12.0 
10.0 
13.5 
13.0 
12.0 
13.5 
13.0 
13.5 
13.0 
14.0 
13.0 
14.0 
14.0 
13.5 
15.0 
12.0 
13.0 
12.5 
12.0 
12.0 
14.5 
14.0 
13.0 
12.0 
14.5 
14.5 
13.0 
13.5 
12.5 
10.3 
12.8 
11.4 
11.0 
9.6 

EARHD 

14.0 
16.0 
13.0 
15.0 
15.5 
14.0 
15.5 
14.0 
14.5 
15.0 
14.5 
16.0 
14.5 
16.0 
15.0 
15.0 
14.5 
14.0 
14.0 
14.0 
13.0 
14.5 
15.5 
15.5 
13.0 
15.5 
16.5 
16.0 
14.0 
14.5 
13.4 
14.5 
14.1 
13.4 
11.1 

JAW 

11.0 
12.0 
12.0 
12.0 
12.0 
13.0 
13.0 
13.0 
12.5 
13.0 
11.5 
12.5 
12.0 
12.0 
12.0 
12.0 
12.0 
12.5 
12.5 
11.0 
12.0 
13.0 
13.5 
12.5 
12.5 
12.5 
13.5 
10.5 
12.0 
12.5 
12.4 
11.3 
12.1 
11.0 
11.7 

17.3 61.7 20.7 11.9 13.3 13.3 
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Thus the mean vectors lie largely in one dimension, and one discriminant func-
tion suffices to describe most of the separation among the three groups. D 

8.4.2 A Measure of Association for Discriminant Functions 

Measures of association between the dependent variables j / j , t /2 , . . . , yp and the in-
dependent grouping variable i associated with μί,ί = 1,2,...,/:, were presented 
in Section 6.1.8. These measures attempt to answer the question, How well do the 
variables separate the groups? It was noted that Roy's statistic Θ serves as an i?2-like 
measure of association, since it is the ratio of between sum of squares to total sum of 
squares for the first discriminant function, z\ = a'jv: 

„2 n , _ g _ Λι SSH(zQ 
w l + λι SSE(zi)+SSH(.zi) 

[see (6.41) and (8.9)]. Another interpretation of η% is the maximum squared cor-
relation between the first discriminant function and the best linear combination of 
the k — 1 (dummy) group membership variables [see comments following (6.39) in 
Section 6.1.8]. Dummy variables were defined in the first two paragraphs of Sec-
tion 6.1.8. The maximum correlation is called the (first) canonical correlation (see 
Chapter 11). The squared canonical correlation can be calculated for each discrimi-
nant function: 

r? = r ^ T , i = l,2,...,s. (8.14) 

The average squared canonical correlation was used as a measure of association in 
(6.48). 

■ EXAMPLE 8.4.2 

For the football data of Table 8.3, we obtain the squared canonical correlation 
between each of the two discriminant functions and the grouping variables, 

2 λι 1.9178 
"2 .657, 

1 + λι 1 + 1.9178 
λ2 .1159 

.104. 
1 + λ2 1 + .1159 

D 

8.5 STANDARDIZED DISCRIMINANT FUNCTIONS 

In Section 5.5, it was noted that in the two-group case the relative contribution of the 
y's to separation of the two groups can best be assessed by comparing the coefficients 
ar,r = 1,2, . . . ,p, in the discriminant function 

z = a 'y = aij/i + a2y2 + · ■ · + apyp. 
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Similar comments appeared in Section 6.1.4,6.1.8, and 6.4 concerning the use of dis-
criminant functions to assess contribution of the y's to separation of several groups. 
However, such comparisons are informative only if the y's are commensurate, that 
is, measured on the same scale and with comparable variances. If the y's are not 
commensurate, we need coefficients a* that are applicable to standardized variables. 

Consider the case of two groups. For the ith observation vector y ^ or y2i in group 
1 or 2, we can express the discriminant function in terms of standardized variables 
as 

, Η = α ί ^ ^ 1 ϋ + 4 ^ ^ ϋ + . . . + α ; ^ ^ ^ , (8.15) 
si s2

 μ sp 

i = 1 ,2 , . . . ,m, 

* V2il - y~21 , * Via ~ V22 , , * yiiP ~ V2p 

Si S2
 μ Sp 

i = 1,2,. ..,ra2, 

where y[ = (yu,y12, ■ ■ ■ ,j/ip) and y2 = (y21,y22, ■ ■ ■ ^2P) are the mean vectors 
for the two groups and sr is the within-sample standard deviation of the rth vari-
able, obtained as the square root of the rth diagonal element of Spi. Clearly, these 
standardized coefficients must be of the form 

a* = srar, r = 1,2,... ,p. (8.16) 

In vector form, this becomes 

a* = (diag S p O ^ a . (8.17) 

For the several-group case, we can standardize the discriminant functions in an 
analogous fashion. If we denote the rth coefficient in the mth discriminant function 
by amr, m — 1,2,..., s;r = 1,2,... ,p, then the standardized form is 

where sr is the within-group standard deviation obtained from the diagonal of Spi — 
E/i/ß. Note that a*mr has two subscripts because there are several discriminant func-
tions, while a* in (8.16) above has only the one subscript because there is one dis-
criminant function for two groups. 

Alternatively, since the mth eigenvector is unique only up to multiplication by a 
scalar, we can simplify the standardization by using 

^rr^mr 1 
1,2,...,p, 

where err is the rth diagonal element of E. For further discussion of the use of stan-
dardized discriminant function coefficients to gauge the relative contribution of the 
variables to group separation, see Section 8.7.1 [see also Rencher and Scott (1990) 
and Rencher (1998, Section 5.4)]. 
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EXAMPLE 8.5 

In Example 8.4.1, we obtained the discriminant function coefficient vectors 
ai and a2 for the football data of Table 8.3. Since λ ι / (λ ι + λ2) = -94, we 
concentrate on a i . To standardize a i , we need the within-sample standard 
deviations of the variables. The pooled covariance matrix is given by 

V 
E 
87 ~~ 

/ .428 .578 .158 
.578 3.161 1.020 
.158 1.020 .546 

.084 .125 

.653 .340 

.077 .129 
.084 .653 .077 1.232 .315 
.125 .340 .129 

\ .228 .505 .159 
.315 .618 
.024 .009 

.228 \ 

.505 

.159 

.024 

.009 

.376 / 

are roots of the diagonal elements of Spi, we obtain 

Ά* — 
a i — 

/ ν/·428(-.948) \ 
v/3.161(.004) 

\ V-376(.829) / 

( " · 6 2 1 ^ .007 
.005 
.719 
.397 

\ .508 j 

Thus the fourth, first, sixth, and fifth variables contribute most to separating 
the groups, in that order. The second and third variables are not useful (in the 
presence of the others) in distinguishing groups. D 

8.6 TESTS OF SIGNIFICANCE 

In order to test hypotheses, we need the assumption of multivariate normality. This 
was not explicitly required for the development of discriminant functions. 

8.6.1 Tests for the Two-Group Case 

By (8.3) we see that the separation of transformed means, (zi — z2)2/sz> achieved by 
the discriminant function z = a'y is equivalent to the standardized distance between 
the mean vectors yx and y2 . This standardized distance is proportional to the two-
group T2 in (5.9) in Section 5.4.2. Hence the discriminant function coefficient vector 
a is significantly different from 0 if T2 is significant. More formally, if the popu-
lation discriminant function coefficient vector is expressed as a = Σ~ 1 (μ 1 — μ2), 
then Ho : a = 0 is equivalent to i70

 : A*i — M2· 
To test the significance of a subset of the discriminant function coefficients, we 

can use the test of the corresponding subset of y's given in Section 5.9. To test the 
hypothesis that the population discriminant function has a specified form aoy, see 
Rencher (1998, Section 5.5.1). 
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8.6.2 Tests for the Several-Group Case 

In Section 8.4.1 we noted that the discriminant criterion λ = a ' H a / a ' E a is max-
imized by λι, the largest eigenvalue of E _ 1 H , and that the remaining eigenvalues 
\2,...,\s correspond to other discriminant dimensions. These eigenvalues are the 
same as those in the Wilks' Λ-test in (6.14) for significant differences among mean 
vectors, 

Λι = Πττν (8J8) 
2 = 1 

which is distributed as APik-i,N-k, where N = J2i i%i for an unbalanced design or 
N — kn'm the balanced case. Since Λι is small if one or more A,'s are large, Wilks' 
Λ will test for significance of the eigenvalues and thereby for the discriminant func-
tions. The s eigenvalues represent s dimensions of separation of the mean vectors 
Fi , Ϋ2> · · ·! Yk- We are interested in which, if any, of these dimensions are signifi-
cant. In the context of discriminant functions, Wilks' Λ is more useful than the other 
three MANOVA test statistics, because it can be used on a subset of eigenvalues, as 
we see below. 

In addition to the exact test provided by the critical values for Λ found in Table 
A.9, we can use the χ2-approximation for Λι given in (6.16), with VE = N - k — 
Σί rii — k and VH = k — 1: 

Vi = - [ i / B - £ ( p - i / j i + l)]lnAi 

= _ [ i V _ i _ i ( p + fc)]inTJ_i_ 

s 

= [N-l-i(p + k)]Y^\n(l + Xz), (8.19) 
i = l 

which is approximately χ2 with p(k - 1) degrees of freedom. The test statistic Aj 
and its approximation (8.19) test the significance of all of λι, λ 2 , . . . , Xs- If the test 
leads to rejection of Ho, we conclude that at least one of the A's is significantly 
different from zero, and therefore there is at least one dimension of separation of 
mean vectors. Since λι is the largest, we are only sure of its significance, along with 
that of z\ = a iy . 

To test the significance of \2, X3, ■ ■ ■, As, we delete λι from Wilks' A and the 
associated χ2 -approximation to obtain 

Λ2 = Π τ τ ν ( 8 · 2 0 ) 
i=2 * 

Vr
2 = - [ i V - l - | ( p - | - f c ) ] l n A 2 

S 

= [N~l-i(p + k)}^ln(l + Xi), (8.21) 
i=2 
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which is approximately χ2 with (p—1) (k—2) degrees of freedom. If this test leads to 
rejection of Ho, we conclude that at least A2 is significant along with the associated 
discriminant function Z2 = a2y. We can continue in this fashion, testing each Aj 
in turn until a test fails to reject HQ. (To compensate for making several tests, an 
adjustment to the a-level of each test could be made as in procedure 2, Section 5.5.) 
The test statistic at the mth step is 

Λ™=ΠΐΓλ;· < 8 · 2 2 ) 

which is distributed as Ap_m+i ;fc_m)jv-fe-m+i· The statistic 

Vm = -[N-l-\{j> + k)\\nKm 

S 

= [N-l-±(p + k)]J2\n(l + \i) (8.23) 

has an approximate ^-distribution with (p — m + l)(k — m) degrees of freedom. 
In some cases, more A's will be statistically significant than the researcher considers 
to be of practical importance. If A;/ £) · Aj is small, the associated discriminant 
function may not be of interest, even if it is significant. 

We can also use an F-approximation for each A;. For 

Α· = ΠϊΤν 
we use (6.15), with vE = N — k and vH = k — 1: 

-Ai/fdf2 

AjA dfx' F = ^ Ä (8.24) 

where 

d f ! = p ( f c - l ) , df2 = wt - ±\p(k - 1) - 2}. 

For 
s 1 

Am = Π T i \ ' m = 2 , 3 , . . . , s , 
1 + A» + . 

we use 
1 - Λ ^ ah 

Al/i dfi (8.25) 
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with p — m + 1 and k -min place of p and k - 1: 

/ (p — m + l)2(fc - m)2 — 4 
ί = \] (p-m+l^ + ik-m^-b' 

w = N-l-±(p+k), 

dfi = (p - TO + l)(fc - rn), 
df2 = u;i - | [ (p - m + 1)(& - m) - 2]. 

EXAMPLE 8.6.2 

We test the significance of the two discriminant functions obtained in Exam-
ple 8.4.1 for the football data. For the overall test we have, by (8.18), 

2 
1 _ 1 1 

+ Â  ~ 1 + 1.9178 1 + .1159 
Λι = Π r ^ = * : '-— = -307-

i= l 

With p = 6, k = 3, and N - k = 87, the critical value from Table A.9 is 
Λ.05,6,2,80 = -762. By (8.19), the χ2-approximation is 

Vi = - [ J V - l - ! ( p + fc)]lnAi 
= - [go - 1 - 1(6 + 3)] ln(.307) = 99.75, 

which exceeds the critical value χ2
01 12 = 26.217. Thus at least the first dis-

criminant function is significant. 
To test the second discriminant function, we have, by (8.20), 

A2 = = .896. 
1 + .1159 

With TO = 2, the (conservative) critical value is A.05,5,1,80 = -867. Since this 
is close to A = .896, we interpolate in Table A.9 to obtain A.05,5,1,86 = -875. 
By (8.21), the χ2-approximation is 

V2 = -[N-l-±(p + k)]ln\2 

= - [90 - 1 - | ( 6 + 3)] In 1 + \ m = 9.27 < χ2
05,5 = 11.070. 

For the F-approximation for Λχ, we obtain by (8.24) 

/ p 2 ( f c - l ) 2 - 4 _ / 6 2 2 2 - 4 
1 ~ y P2 + (k - l ) 2 - 5 ~ V 62 + 22 - 5 ~ ' 

w = N - 1 - \{p + k) = 9 0 - 1 - | ( 6 + 3) =84.5, 
dfi = p(k - 1) = 6(2) = 12, 
df2 = wt - \\p{k - 1) - 2] = (84.5)(2) - |[6(2) - 2] = 164, 

l ^ d ^ i - ^ 0 7 ^ 1 6 4 
~ Λ ; / 2 dfi -307V2 12 " U - y y 
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The p-value for F = 10.994 is less than .0001. For the F-approximation for 
Λ2, we reduce p and A; by 1 and obtain by (8.25) 

/ 5212 _ 4 
f = V 5 2 + l 2 - 5 = 1 ' ^ = 9 ° - 1 - έ ( 6 + 3) = 84.5, 

dfi = 5(1) = 5, df2 = 84.5(1) - |[5(1) - 2] = 83, 
F _ l - A 2 d f 2 1 - .89683 

Λ2 dfi .896 5 

The p-value for F — 1.924 is .099. Thus only the first discriminant function 
significantly separates groups. The exact test above using Λ2 appears to be 
somewhat closer to rejection than the approximate tests. D 

8.7 INTERPRETATION OF DISCRIMINANT FUNCTIONS 

There is a close correspondence between interpreting discriminant functions and de-
termining the contribution of each variable, and we shall not always make a dis-
tinction. In interpretation, the signs of the coefficients are taken into account; in 
ascertaining the contribution, the signs are ignored and the coefficients are ranked in 
absolute value. (We discuss this distinction further in Section 8.7.1.) We are more 
commonly interested in assessing the contribution of the variables than in interpret-
ing the function. 

In the next three sections, we cover three common approaches to assessing the 
contribution of each variable (in the presence of the other variables) to separating the 
groups. The three methods are (1) examine the standardized discriminant function 
coefficients, (2) calculate a partial F-test for each variable, and (3) calculate a corre-
lation between each variable and the discriminant function. The third method is the 
most widely recommended, but we note in Section 8.7.3 that it is the least useful. 

8.7.1 Standardized Coefficients 

To offset differing scales among the variables, the discriminant function coefficients 
can be standardized using (8.16) or (8.17), in which the coefficients have been ad-
justed so that they apply to standardized variables. For the observations in the first 
of two groups, for example, we have by (8.15), 

_ *Vin -Vn , *yii2 -a/12 , , *y^ip ~ Vip 
Si s2

 μ sp 

i = l ,2 , . . . , r a i . 

The standardized variables (yur — ylr)/sr are scale free, and the standardized co-
efficients a* = srar, r = 1, 2 , . . . ,p, therefore correctly reflect the joint contri-
bution of the variables to the discriminant function z as it maximally separates the 
groups. For the case of several groups, each discriminant function coefficient vector 
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a = (ai, a2,..., ap)' is an eigenvector of E _ 1 H , and as such, it takes into account 
the sample correlations among the variables as well as the influence of each variable 
in the presence of the others. 

As noted in Section 8.5, this standardization is carried out for each of the s dis-
criminant functions. Typically, each will have a different interpretation; that is, the 
pattern of the coefficients a* will vary from one function to another. 

The absolute values of the coefficients can be used to rank the variables in order 
of their contribution to separating the groups. If we wish to go further and interpret 
or "name" a discriminant function, the signs can be taken into account. Thus, for 
example, z\ = -8?/ι —.9ΐ/2+·5?/3 has a different meaning than z2 = -8yi+.9y2+.5ys, 
since z\ depends on the difference between y\ and y2, while z2 is related to the sum 
of 2/1 and ?/2· 

The discriminant function is subject to the same limitations as other linear combi-
nations such as a regression equation: for example, (1) the coefficient for a variable 
may change notably if variables are added or deleted and (2) the coefficients may not 
be stable from sample to sample unless the sample size is large relative to the num-
ber of variables. With regard to limitation 1, we note that the coefficients reflect the 
contribution of each variable in the presence of the particular variables at hand. This 
is, in fact, what we want the coefficients to do. As to limitation 2, the processing of a 
substantial number of variables is not "free." More stable estimates will be obtained 
from 50 observations on 2 variables than from 50 observations on 20 variables. In 
other words, if N/p is too small, the variables that rank high in one sample may 
emerge as less important in another sample. 

8.7.2 Partial F-Values 

For any variable yr we can calculate a partial F-test showing the significance of 
yr after adjusting for the other variables, that is, the separation provided by yr in 
addition to that due to the other variables. After computing the partial F for each 
variable, the variables can then be ranked. 

In the case of two groups, the partial F is given by (5.32) as 

j i2 _ y>2 

F=(u-p+l) I *~\ (8.26) 
ί / + -ίρ-1 

where T2 is the two-sample Hotelling T2 with all p variables, T2_x is the T2-statistic 
with all variables except yr, and v = n\ + n2 — 2. The F-statistic in (8.26) is 
distributed as F\fV-p+\. 

For the several-group case, the partial Λ for yr adjusted for the other p — 1 vari-
ables is given by (6.127) as 

Myr\yi, ■ ■ ■ ,yr-i,yr+i, ■ ■ ■ ,yP) = τ^~> ^ 8 · 2 7 ^ 
Λρ_ι 
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where Ap is Wilks' Λ for all p variables and Ap_i involves all variables except yr. 
The corresponding partial F is given by (6.128) as 

1 - Λ vE - p + 1 
F = — ^-^ , (8.28) 

Λ vH 

where Λ is defined in (8.27), vE = N - k, and vH = k - 1. The partial Λ-statistic 
in (8.27) is distributed as Ai jI / / / j iyjE_p+i, and the partial F in (8.28) is distributed as 

The partial F-values in (8.26) and (8.28) are not associated with a single dimen-
sion of group separation as are the standardized discriminant function coefficients. 
For example, y2 will have a different contribution in each of the s discriminant func-
tions, but the partial F for y2 constitutes an overall index of the contribution of y2 to 
group separation taking into account all dimensions. However, the partial F-values 
will often rank the variables in the same order as the standardized coefficients for 
the first discriminant function, especially if \\/ ^ Xj is very large so that the first 
function accounts for most of the available separation. 

A partial index of association for yr similar to the overall measure for all t/'s given 
in (6.40), η\ = 1 - A, can be defined by 

R2
r = l-Ar r = l,2,...,p, (8.29) 

where Ar is the partial A in (8.27) for yr. This partial R2 is a measure of association 
between the grouping variables and yi after adjusting for the other p — 1 y's. 

8.7.3 Correlations Between Variables and Discriminant Functions 

Many textbooks and research papers assert that the best measure of variable impor-
tance is the correlation between each variable and a discriminant function, rViZj. It 
is claimed that these correlations are more informative than standardized coefficients 
with respect to the joint contribution of the variables to the discriminant functions. 
The correlations are often referred to as loadings or structure coefficients and are 
routinely provided in many major programs. However, Rencher (1988; 1992b; 1998, 
Section 5.7) has shown that the correlations in question show the contribution of 
each variable in a univariate context rather than in a multivariate one. The corre-
lations actually reproduce the t or F for each variable, and consequently they only 
show how each variable by itself separates the groups, ignoring the presence of the 
other variables. Hence these correlations provide no information about how the vari-
ables contribute jointly to separation of the groups. They become misleading if used 
for interpretation of discriminant functions. 

Upon reflection, we could have anticipated this failure of the correlations to pro-
vide multivariate information. The objection to standardized coefficients is based 
on the argument that they are "unstable" because they change if some variables are 
deleted and others added. However, we actually want them to behave this way, so 
as to reflect the mutual influence of the variables on each other. In a multivariate 
analysis, interest is centered on the joint performance of the set of variables at hand. 
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To ask for the contribution of each variable independent of all other variables is to 
request a univariate index that ignores the other variables. The correlations rViZ are 
"stable" and do not change when variables are added or deleted; this should be a 
clear signal that they are univariate in nature. There is no middle ground between the 
univariate and multivariate realms. 

8.7.4 Rotation 

Rotation of the discriminant function coefficients is sometimes recommended. This 
is a procedure (see Section 13.5) that attempts to produce a pattern with (absolute 
values of) coefficients closer to 0 or 1. Discriminant functions with such coefficients 
might be easier to interpret, but they have two deficiencies: they no longer maximize 
group separation, and they are correlated. 

Accordingly, for interpretation of discriminant functions we recommend stan-
dardized coefficients rather than correlations or rotated coefficients. 

8.8 SCATTERPLOTS 

One benefit of the dimension reduction effected by discriminant analysis is the po-
tential for plotting. It was noted in Section 6.2 that the number of large eigenval-
ues of E _ 1 H reflects the dimensionality of the space occupied by the mean vec-
tors. In many data sets, the first two discriminant functions account for most of 
λι + λ2 + . . . + \ s , and consequently the pattern of the mean vectors can be effec-
tively portrayed in a two-dimensional plot. If the essential dimensionality is greater 
than 2, there may be some distortion in intergroup configuration in a two-dimensional 
plot; that is, some groups that overlap in two dimensions may be well separated in a 
third dimension. 

To plot the first two discriminant functions for the individual observation vectors 
yij, simply calculate zU] = a i y ^ and Z2;J = a2yjj f o r * = 1,2, .. . ,fc; j = 
1,2,. . . , rii, and plot a scatterplot of the TV = J2i ni values of 

The transformed mean vectors, 

* = ( £ ) = ( ! ! ! ) * = A y « ' ^ 1 ' 2 · · · · . * <8·31> 
should be plotted along with the individual values, Zj,·. In some cases, a plot would 
show only the transformed mean vectors z"i, z 2 , . . . , Zfc. For confidence regions for 
μζ_ — Αμί, see Rencher (1998, Section 5.8). 

We note that the eigenvalues of E _ 1 H reveal the dimensionality of the mean vec-
tors, not of the individual points. The dimensionality of the individual observations 
is p, although the essential dimensionality may be less because the variables are cor-
related. (The dimensionality of the observation vectors is the concern of principal 
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Figure 8.4 Scatterplot of discriminant function values for the football data of 
Table 8.3. 

components; see Chapter 12.) If s — 2, for example, so that the mean vectors oc-
cupy only two dimensions, the individual observation vectors ordinarily lie in more 
than two-dimensions, and their inclusion in a plot constitutes a projection onto the 
two-dimensional plane of the mean vectors. 

It was noted in Section 8.4.1 that the discriminant functions are uncorrelated but 
not orthogonal. Thus the angle between ai and a2 as given by (3.14) is not 90° 
(that is, a'^2 Φ 0). In practice, however, the usual procedure is to plot discriminant 
functions on a rectangular coordinate system. The resulting distortion is generally 
not serious. 

■ EXAMPLE 8.8 

Figure 8.4 contains a scatterplot of (z,,Z2) for the observations in the football 
data of Table 8.3. Each observation in group 1 is denoted by a circle, obser-
vations in group 2 are denoted by triangles, and observations in group 3 are 
indicated by + signs. We see that the first discriminant function z\ (the hori-
zontal direction) effectively separates group 1 from groups 2 and 3, while the 
second discriminant function 22 (the vertical direction) is less successful in 
separating group 2 from group 3. 

The group mean vectors are indicated by solid circles. They are almost 
collinear, as we would expect since λι = 1.92 dominates λ2 — .12. D 
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8.9 STEPWISE SELECTION OF VARIABLES 

In many applications, a large number of dependent variables are available and the 
experimenter would like to discard those that are redundant (in the presence of the 
other variables) for separating the groups. Our discussion is limited to procedures 
that delete or add variables one at a time. We emphasize that we are selecting de-
pendent variables (y's) and therefore the basic model (one-way MANOVA) does not 
change. In subset selection in regression, on the other hand, we select independent 
variables, with a consequent alteration of the model. 

A forward selection method was discussed in Section 6.11.2. We begin with 
a single variable, the one that maximally separates the groups by itself. Then the 
variable entered at each step is the one that maximizes the partial F-statistic based 
on Wilks' Λ, thus obtainig the maximal additional separation of groups above and 
beyond the separation already attained by the other variables. Since we choose the 
variable with maximum partial F at each step, the proportion of these maximum F's 
that exceed Fa is greater than a. This bias is discussed in Rencher and Larson (1980) 
and Rencher (1998, Section 5.10). 

Backward elimination is a similar operation in which we begin with all the vari-
ables and then at each step the variable that contributes least is deleted, as indicated 
by the partial F. 

Stepwise selection is a combination of the forward and backward approaches. 
Variables are added one at a time, and at each step the variables are reexamined 
to see if any variable that entered earlier has become redundant in the presence of 
recently added variables. The procedure stops when the largest partial F among the 
variables available for entry fails to exceed a preset threshold value. The stepwise 
procedure has long been popular with practitioners. Some detail about the steps in 
this procedure was given in Section 6.11.2. 

All the preceding procedures are commonly referred to as stepwise discrimi-
nant analysis. However, as noted in Section 6.11.2, we are actually doing stepwise 
MANOVA. No discriminant functions are calculated in the selection process. After 
the subset selection is completed, we can calculate discriminant functions for the 
selected variables. We could also use the variables in a classification analysis as 
described in Chapter 9. 

■ EXAMPLE 8.9 

We use the football data of Table 8.3 to illustrate the stepwise procedure out-
lined in this section and in Section 6.11.2. At the first step, we carry out a 
univariate F (using ordinary ANOVA) for each variable to determine which 
variable best separates the three groups by itself: 
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Variable F p- Value 

WDIM 
CIRCUM 
FBEYE 
EYEHD 
EARHD 
JAW 

2.550 
6.231 
1.668 

58.162 
22.427 
4.511 

.0839 

.0030 

.1947 
1.11 x 10~16 

1.40 x 10"8 

.0137 

Thus EYEHD is the first variable to "enter." The Wilks' Λ value equivalent 
t o F = 58.162isA(j/i) = .4279 (see Table 6.1 withp = 1). At the second step 
we calculate a partial Λ and accompanying partial F using (8.27) and (8.28): 

A{yi,yr) 
A(j/r|2/i) -

F = 

Λ(2/ι) ' 
i - HvAvi) vE - l 

A(2/r|i/l) VH 

where y\ indicates the variable selected at step 1 (EYEHD) and yr represents 
each of the five variables to be examined at step 2. The results are 

Variable Partial Λ Partial F p-Value 

WDIM 
CIRCUM 
FBEYE 
EARHD 
JAW 

.9355 

.9997 

.9946 

.9525 

.9540 

2.964 
.012 
.235 

2.143 
2.072 

.0569 

.9881 

.7911 

.1235 

.1322 

The variable WDIM would enter at this step, since it has the largest partial F. 
With a p-value of .0569, entering this variable may be questionable, but we 
will continue the procedure for illustrative purposes. We next check to see if 
EYEHD is still significant now that WDIM has entered. The partial Λ and F 
for EYEHD adjusted for WDIM are Λ = .424 and F = 58.47. Thus EYEHD 
stays "in." The overall Wilks' Λ for EYEHD and WDIM is A(j/i, y2) = .4003. 

At step 3 we check each of the four remaining variables for possible entry 
using 

A(2/l,2/2,J/r) 
Λ(2/Γ 12/1,2/2) 

F = 

A(yi,2/2) 
1 -Λ(2/Γ|2/ι,2/2) νΕ 

A(2/r |2/i,2/2) VH 

where yx = EYEHD, y2 = WDIM, and yr represents each of the other four 
variables. The results are 

Variable Partial Λ Partial F p-Value 

CIRCUM 
FBEYE 
EARHD 
JAW 

.9774 

.9748 

.9292 

.8451 

.981 
1.098 
3.239 
7.791 

.3793 

.3381 

.0441 

.0008 
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The indicated variable for entry at this step is JAW. To determine whether 
one of the first two variables should be removed after JAW has entered, we 
calculate the partial Λ and F for each, adjusted for the other two: 

Variable Partial Λ Partial F p- Value 

WDIM .8287 8.787 .0003 
EYEHD .4634 49.211 6.33 x 10"15 

Thus both previously entered variables remain in the model. The overall Wilks' 
Λ for EYEHD, WDIM, and JAW is A(yi ,y2,y3) = .3383. 

At step 4 there are three candidate variables for entry. The partial Λ- and 
F-statistics are 

Λ(ίΗ2/ι, 2/2,2/3) = 

F 

Λ(ί/ΐ,ϊ/2,2/3) 
i -Hyr\yi,V2,y3) VE-?> 

A(2/r|2/l,2/2,2/3) VH 

where 2/1,2/2 > and 2/3 are the three variables already entered and yr represents 
each of the other three remaining variables. The results are 

Variable Partial Λ Partial F p-Value 

CIRCUM 
FBEYE 
EARHD 

.9987 

.9955 

.9080 

.055 

.189 
4.257 

.9462 

.8282 

.0173 

Hence EARHD enters at this step, and we check to see if any of the three 
previously entered variables has now become redundant. The partial Λ and 
partial F for each of these three are 

Variable Partial Λ Partial F p-Value 

WDIM 
EYEHD 
JAW 

.7889 

.6719 

.8258 

11.237 
20.508 

8.861 

4.74 x 10"1 5 

5.59 x 1 0 - 8 

.0003 

Consequently, all three variables are retained. The overall Wilks' Λ for all four 
variables is now A(yi,y2, 2/3,2/4) = .3072. 

At step 5, the partial Λ- and F-values are 

Variable Partial Λ Partial F p-Value 

CIRCUM .9999 .003 .9971 
FBEYE .9999 .004 .9965 

Thus no more variables will enter. 
We summarize the selection process as follows: 
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Step 
1 
2 
3 
4 

Variable 
Entered 
EYEHD 
WDIM 
JAW 
EARHD 

Overall Λ 
.4279 
.4003 
.3383 
.3072 

Partial Λ 
.4279 
.9355 
.8451 
.9080 

Partial F 

58.162 
2.964 
7.791 
4.257 

p- Value 
1.11 x 10~16 

.0569 

.0008 

.0173 

D 

PROBLEMS 

8.1 Show that if a = S~^ (y1 - y2) is substituted into [ a ' ^ — y2)]2 /a 'Sp ia, the 
result is (8.3). 

8.2 Verify (8.4) for the relationship between b and a. 

8.3 Verify the relationship between R2 and T2 shown in (8.5). 

8.4 Show that [a ' fo - y2)]2 = a ' f ö - y ^ f o - y 2 ) 'a as in (8.7). 

8.5 Show that H a — AEa = 0 can be written in the form ( E _ 1 H — AI)a = 0, as 
in (8.12). 

8.6 Verify (8.16) by substituting a* = srar into (8.15) to obtain zu — aiym + 
a22/if2 H 1- aPyiip ~ a'yV 

8.7 For the psychological data in Table 5.1, the discriminant function coefficient 
vector was given in Example 5.5. 

(a) Find the standardized coefficients. 
(b) Calculate ί-tests for the individual variables. 
(c) Compare the results of (a) and (b) as to the contribution of the variables 

to separation of the two groups. 
(d) Find the partial F for each variable, as in (8.26), and compare with the 

standardized coefficients. 

8.8 Using the beetle data of Table 5.5, do the following: 

(a) Find the discriminant function coefficient vector. 
(b) Find the standardized coefficients. 
(c) Calculate ί-tests for individual variables. 
(d) Compare the results of (b) and (c) as to the contribution of each variable 

to separation of the groups. 
(e) Find the partial F for each variable, as in (8.26). Do the partial F's 

rank the variables in the same order of importance as the standardized 
coefficients? 
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8.9 Using the dystrophy data of Table 5.7, do the following: 

(a) Find the discriminant function coefficient vector. 
(b) Find the standardized coefficients. 
(c) Calculate ί-tests for individual variables. 
(d) Compare the results of (b) and (c) as to the contribution of each variable 

to separation of the groups. 
(e) Find the partial F for each variable, as in (8.26). Do the partial F's 

rank the variables in the same order of importance as the standardized 
coefficients? 

8.10 For the cyclical data of Table 5.8, do the following: 

(a) Find the discriminant function coefficient vector. 
(b) Find the standardized coefficients. 
(c) Calculate f-tests for individual variables. 
(d) Compare the results of (b) and (c) as to the contribution of each variable 

to separation of the groups. 
(e) Find the partial F for each variable, as in (8.26). Do the partial F 's 

rank the variables in the same order of importance as the standardized 
coefficients? 

8.11 Using the fish data in Table 6.17, do the following: 

(a) Find the eigenvectors of E _ 1 H . 
(b) Carry out tests of significance for the discriminant functions and find 

the relative importance of each as in (8.13), λ*/ ^ ■ λ^. Do these two 
procedures agree as to the number of important discriminant functions? 

(c) Find the standardized coefficients and comment on the contribution of 
the variables to separation of groups. 

(d) Find the partial F for each variable, as in (8.28). Do they rank the vari-
ables in the same order as the standardized coefficients for the first dis-
criminant function? 

(e) Plot the first two discriminant functions for each observation and for the 
mean vectors. 

8.12 For the rootstock data of Table 6.2, do the following: 

(a) Find the eigenvalues and eigenvectors of E _ 1 H . 
(b) Carry out tests of significance for the discriminant functions and find 

the relative importance of each as in (8.13), λ*/ ]Γ\· Xj. Do these two 
procedures agree as to the number of important discriminant functions? 
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(c) Find the standardized coefficients and comment on the contribution of 
the variables to separation of groups. 

(d) Find the partial F for each variable, as in (8.28). Do they rank the vari-
ables in the same order as the standardized coefficients for the first dis-
criminant function? 

(e) Plot the first two discriminant functions for each observation and for the 
mean vectors. 

8.13 Carry out a stepwise selection of variables on the rootstock data of Table 6.2. 

8.14 Carry out a stepwise selection of variables on the engineer data of Table 5.6. 

8.15 Carry out a stepwise selection of variables on the fish data of Table 6.17. 



CHAPTER 9 

CLASSIFICATION ANALYSIS: 
ALLOCATION OF OBSERVATIONS TO 
GROUPS 

9.1 INTRODUCTION 

The descriptive aspect of discriminant analysis, in which group separation is charac-
terized by means of discriminant functions, was covered in Chapter 8. We turn now 
to allocation of observations to groups, which is the predictive aspect of discriminant 
analysis. We prefer to call this classification analysis to clearly distinguish it from 
the descriptive aspect. However, classification is often referred to simply as discrim-
inant analysis. In engineering and computer science, classification is usually called 
pattern recognition. Some writers use the term "classification analysis" to describe 
cluster analysis, in which the observations are clustered according to variable values 
rather than into predefined groups (see Chapter 15). 

In classification, a sampling unit (subject or object) whose group membership is 
unknown is assigned to a group on the basis of the vector of p measured values, y, 
associated with the unit. To classify the unit, we must have available a previously 
obtained sample of observation vectors from each group. Then one approach is to 
compare y with the mean vectors y x, y 2 , . . . , yk of the k samples and assign the unit 
to the group whose y^ is closest to y. 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 3 0 9 
Copyright © 2012 John Wiley & Sons, Inc. 
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In this chapter, the term "groups" may refer to either the k samples or the k 
populations from which they were taken. It should be clear from the context which 
of the two uses is intended in every case. 

We give some examples to illustrate the classification technique: 

1. A university admissions committee wants to classify applicants as likely to 
succeed or likely to fail. The variables available are high school grades in 
various subject areas, standardized test scores, rating of high school, number 
of advanced placement courses, etc. 

2. A psychiatrist gives a battery of diagnostic tests in order to assign a patient to 
the appropriate mental illness category. 

3. A college student takes aptitude and interest tests in order to determine which 
vocational area his or her profile best matches. 

4. African, or "killer," bees cannot be distinguished visually from ordinary do-
mestic honey bees. Ten variables based on Chromatograph peaks can be used 
to readily identify them (Lavine and Carlson 1987). 

5. The Air Force wishes to classify each applicant into the training program 
where he or she has the most potential. 

6. Twelve of the Federalist Papers were claimed by both Madison and Hamil-
ton. Can we identify authorship by measuring frequencies of word usage 
(Mosteller and Wallace 1984)? 

7. Variables such as availability of fingerprints, availability of eyewitnesses, and 
time until police arrive can be used to classify burglaries into solvable and 
unsolvable. 

8. One approach to speech recognition by computer consists of an attempt to 
identify phonemes based on the energy levels in speech waves. 

9. A number of variables are measured at five weather stations. Based on these 
variables, we wish to predict the ceiling at a particular airport in 2 hours. The 
ceiling categories are closed, low instrument, high instrument, low open, and 
high open (Lachenbruch 1975, p. 2). 

9.2 CLASSIFICATION INTO TWO GROUPS 

In the case of two populations, we have a sampling unit (subject or object) to be 
classified into one of two populations. The information we have available consists 
of the p variables in the observation vector y measured on the sampling unit. In 
the first illustration in Section 9.1, for example, we have an applicant with high 
school grades and various test scores recorded in y. We do not know whether the 
applicant will succeed or fail at the university, but we have data on previous students 
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at the university for whom it is now known whether they succeeded or failed. By 
comparing y with yl for those who succeeded and y2 for those who failed, we 
attempt to predict the group the applicant will eventually belong to. 

When there are two populations, we can use a classification procedure due to 
Fisher (1936). The principal assumption for Fisher's procedure is that the two pop-
ulations have the same covariance matrix. Normality is not required. We obtain a 
sample from each of the two populations and compute y ^ y ^ , and Spi. A simple 
procedure for classification can be based on the discriminant function, 

^ a ' y = ( y 1 - y 2 ) ' S p l
1 y ^9·1) 

(see Sections 5.5, 5.6, 8.2, and 8.5), where y is the vector of measurements on a new 
sampling unit that we wish to classify into one of the two groups (populations). For 
convenience we speak of "classifying y" rather than classifying the subject or object 
associated with y. 

To determine whether y is closer to y1 or y2 , we check to see if z in (9.1) is 
closer to the transformed mean ~z\ or to ~z2. We evaluate (9.1) for each observation 
yij from the first sample and obtain zn , Z12, · · ·, z\ni, from which, by (3.54), ζχ = 
Σ?±ι W n i = a'y~i = (Ϋι - Y2)'Spi1yi· Similarly, z2 = a 'y2 . Denote the two 
groups by G\ and G2. Fisher's (1936) linear classification procedure assigns y to 
G\ if z — a 'y is closer to ~z\ than to z2 and assigns y to G2 if z is closer to z2. This 
is illustrated in Figure 9.1. 

For the configuration in Figure 9.1, we see that z is closer to ~z\ if 

z>\{z1 + z2). (9.2) 

This is true in general because zi is always greater than z2, which can easily be 
shown as follows: 

Z!-z2 = a ' f o - y2) = (yj - y ^ ' S ^ f o - y2) > 0, (9.3) 

because STj1 is positive definite. Thus ~2\ > ~z2. [If a were of the form a' = (y2 — 
y1)'Sp1

1, then ~z2 — ~z\ would be positive.] Since \{z\ + ~z2) is the midpoint, z > 
| ( z i + z2) implies that z is closer to ~z\. By (9.3) the distance from ~z~\ to z2 is the 
same as that from yx to y2 . 

To express the classification rule in terms of y, we first write \{z\ +z2) in the 
form 

f(*i +-Z2) = | (Ϋ! - y 2 ) ' S - , 1 ( y 1 + y 2 ) . (9.4) 

Then the classification rule becomes: Assign y to Gi if 

a'y = (yx - y2) 'S;,1y >^(y1- y a J ' S " , 1 ^ + y 2 ) , (9.5) 

and assign y to G2 if 

a'y - (y1 - y2ysjy < Uvi - y2)'Sp1
1(yi +y 2 ) . (9.6) 
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Figure 9.1 Fisher's procedure for classification into two groups. 

This linear classification rule employs the same discriminant function z = a 'y 
used in Section 8.2 in connection with descriptive separation of groups. Thus in the 
two-group case the discriminant function serves as a linear classification function 
as well. However, in the several-group case in Section 9.3, we use classification 
functions that are different from the descriptive discriminant functions in Section 8.4. 

Fisher's (1936) approach using (9.5) and (9.6) is essentially nonparametric be-
cause no distributional assumptions were made. However, if the two populations are 
normal with equal covariance matrices, then this method is (asymptotically) optimal; 
that is, the probability of misclassification is minimized [see comments following 
(9.9)]. 

If prior probabilities pi and P2 are known for the two populations, the classifica-
tion rule can be modified to exploit this additional information. We define the prior 
probabilities as follows: p\ is the proportion of observations in G\ and pi is the pro-
portion in G2, where P2 = 1 — pi- For example, suppose that at a certain university 
70% of entering freshmen ultimately graduate. Then p\ = .7 and P2 = .3. 

If relative costs of misclassification are known for the two populations, the clas-
sification rule can be further modified. Let C12 be the cost of misclassifying an ob-
servation from group G\ into group i72, and let C21 be the cost of misclassifying an 
observation from group G2 into group G\. In practice, all we need to know is the 
relative costs. For example, it would only be necessary for us to know that C21 is 
twice the value of C12 (i.e., C21/C12 = 2). 

In order to use the prior probabilities and misclassification costs, the density func-
tions for the two populations, / (y |Gi ) and /(y|G2), must also be known. Then the 
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optimal classification rule (Welch 1939) that minimizes the cost of misclassification 
is: Assign y to G\ if 

Pici2/(y|<n) > c2 1p2 /(y|G2) (9.7) 

and to G2 otherwise. If misclassification costs are unknown or equal, we can say that 
the rule assigning y to G\ when 

P i / ( y | G i ) > P 2 / ( y | G 2 ) (9.8) 

will minimize the probability of misclassification. Note that / (y |Gi ) is a convenient 
notation for the density when sampling from the population represented by Gi. It 
does not represent a conditional distribution in the usual sense (Section 4.2). 

Assuming that the two densities are multivariate normal with equal covariance 
matrices, namely, / (y |Gi ) = Νρ(μ1,Έ) and / (y |G 2 ) = Νρ(μ2,Έ), then from 
(9.7) we obtain the following rule (with estimates in place of μχ , μ2, and Σ): Assign 
y to Gi if 

a'y = (Ϋ! - y2)'sp-,V > |(yi - y2) V ^ i + ̂ ) + ι4ψΡ~) ( 9 ·9 ) 

\P\C\2 J 
and to G2 otherwise [see Rencher (1998, p. 231)]. Because we have substituted esti-
mates for the parameters, the rule in (9.9) is no longer optimal as is (9.7). However, 
it is asymptotically optimal (approaches optimality as the sample size increases). 

If p\ = p2 and ci2 = c2i, the normal-based classification rule in (9.9) becomes 
the same as Fisher's procedure given in (9.5) and (9.6). Thus Fisher's rule, which 
is not based on a normality assumption, has optimal properties when the data come 
from multivariate normal populations with Σ ι = Σ 2 , ρι — p2 , and ci2 = c2i- [For 
the case when Σ ι φ Σ 2 , see Rencher (1998, Section 6.2.2).] Hence, even though 
Fisher's method is nonparametric, it works better for normally distributed popula-
tions or other populations with linear trends. For example, suppose two populations 
have 95% contours, as in Figure 9.2. If the points are projected in any direction onto 
a straight line, there will be almost total overlap. A linear discriminant procedure 
will not successfully separate the two populations. 

■ EXAMPLE 9.2 

For the psychological data of Table 5.1, y^, y2 , and Spi were obtained in Ex-
ample 5.4.2. The discriminant function coefficients were obtained in Exam-
ple 5.5 as a' = (.5104, -.2032, .4660, -.3097). For Gx (the male group), we 
find 

zi = a'y-j = .5104(15.97) - .2032(15.91) + .4660(27.19) - .3097(22.75) 
= 10.5427. 

Similarly, for G2 (the female group), z2 = a 'y2 — 4.4426. Thus we assign an 
observation vector y to G\ if 

z = a ' y > \{zi+z2) = 7.4927 
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Figure 9.2 Two populations with nonlinear separation. 

and assign y to G2 if z < 7.4927. 
There are no new observations available, so we will illustrate the procedure 

by classifying two of the observations in G\. For y ^ = (15,17,24,14), the 
first observation in G\, we have zn = a ' y n = .5104(15) - .2032(17) + 
.4660(24) - .3097(14) = 11.0498, which is greater than 7.4927, and y n 
would be correctly classified as belonging to G\. For y'14 = (13,12,10,16), 
the fourth observation in G\, we find z\± = 3.9016, which would misclassify 
yi4 into G2. □ 

9.3 CLASSIFICATION INTO SEVERAL GROUPS 

In this section we discuss classification rules for several groups. As in the two-group 
case, we use a sample from each of the k groups to find the sample mean vectors 
y j , y 2 , . . . , yk. For a vector y whose group membership is unknown, one approach 
is to use a distance function to find the mean vector that y is closest to and assign y 
to the corresponding group. 

Note that for the fc-group case with k > 2, incorporating misclassification costs 
into classification rules becomes complicated because there are k{k — 1) different 
costs to consider. Hence, we assume equal misclassification costs for the discussion 
in this section. 
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9.3.1 Equal Population Covariance Matrices: Linear Classification 
Functions 

In this section we assume Σ ι = Σ 2 = · · · = Sfc. We can estimate the common 
population covariance matrix by a pooled sample covariance matrix 

1 -Λ, ,„ E 
»Pi 5 ^ ( n i - l ) S i 

N~k^y ' ' ' N-k' 

where n* and Sj are the sample size and covariance matrix of the ith group, E is 
the error matrix from one-way MANOVA, and N = J2i ™i- We compare y to each 
y"j, i = 1,2,.. . , k, by the distance function 

A?(y) = ( y - y i ) ' s - , 1 ( y - y i ) (9 1 0> 

and assign y to the group for which Df (y) is smallest. 
We can obtain a linear classification rule by expanding (9.10): 

A2(y) = y's^y - y's;,1^ - y ^ V + fß-fc 
= y ' S p - ]

1 y - 2 ^ S - 1 y + ^S- 1
1 y , . 

The term y 'Sr^y on the right can be neglected since it is not a function of i and, 
consequently, does not change from group to group. The second term is a linear 
function of y, and the third does not involve y. We thus delete y'S~[ y and obtain 
a linear classification function, which we denote by L»(y). If we multiply by — \ 
so as to agree with the rule based on the normal distribution and prior probabilities 
given in (9.13) below, our linear classification rule becomes: Assign y to the group 
for which 

£i(y) = y is - ,ν - l^s-,1^, i = i,2,...,fc (9.11) 
is a maximum (we reversed the sign when multiplying by —\)- To highlight the 
linearity of (9.11) as a function of y, we can express it as 

Li(y) = c-y + ci0 = CJI2/I + ci2y2 H l· cipyp + ci0, 

where ĉ  = y-S^ 1 and ci0 = -^γ'β^γ^ To assign y to a group using this 
procedure, we calculate Cj and ci0 for each of the k groups, evaluate Li(y),i = 
1, 2 , . . . , k, and allocate y to the group for which -Lj(y) is largest. This will be the 
same group for which Dj(y) in (9.10) is smallest, that is, the group whose mean 
vector yi is closest to y. 

For the case of several groups, the optimal rule in (9.8) extends to: 

Assign y to the group for which Pif(y\Gi) is maximum. (9.12) 

With this rule, the probability of misclassification is minimized. If we assume nor-
mality with equal covariance matrices and with prior probabilities of group mem-
bership, pi,P2, ■ ■ -,Pk, then f{y\Gi) — Νρ(μί,Έ), and the rule in (9.12) becomes 
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(with estimates in place of parameters): Calculate 

L'z(y)=lnPi+y'lSpl
1y-iy'iS;l

1yi, i = l,2,...,fc (9.13) 

and assign y to the group with maximum value of L'^y). Note that if pi = p2 — 
■ ■ ■ = Pk, then (9.13), which optimizes the classification rate for the normal distribu-
tion, reduces to (9.11), which was based on the heuristic approach of minimizing the 
distance of y toy^ 

The linear functions L{{y) defined in (9.11) are called linear classification func-
tions (many writers refer to them as linear discriminant functions). They are different 
from the linear discriminant functions in Sections 6.1.4,6.4, and 8.4.1, whose coeffi-
cients are eigenvectors of E~XH. In fact, there will be k classification functions and 
s = min(p, k — 1) discriminant functions, where k is the number of groups and p is 
the number of variables. In many cases we do not need all s discriminant functions 
to effectively describe group differences, whereas all k classification functions must 
be used in assigning observations to groups. 

■ EXAMPLE 9.3.1 

For the football data of Table 8.3, the mean vectors for the three groups are as 
follows: 

y'j = (15.2,58.9,20.1,13.1,14.7,12.3), 
y2 = (15.4,57.4,19.8,10.1,13.5,11.9), 
y 3 = (15.6,57.8,19.8,10.9,13.7,11.8). 

Using these values of yt and the pooled covariance matrix Sp!, given in Exam-
ple 8.5, the linear classification functions (9.11) become 

Li(y) = 7.6j/i + 13.3J/2 + 4.2y3 - l-2y4 + 14.6y6 + 8.2y6 - 641.1, 
L2(y) = 10.2yi + 13.3y2 + 4.2y3 - 3.4y4 + 13.2y5 + 6.1y6 - 608.0, 
L3(y) = 10.9t/! + 13.3y2 + 4.1j/3 - 2.7y4 + 13.1y6 + 5.2y6 - 614.6. 

We note that t/2 and j / 3 have essentially the same coefficients in all three func-
tions and hence do not contribute to classification of y. These same two vari-
ables were eliminated in the stepwise discriminant analysis in Example 8.9. 

We illustrate the use of these linear functions for the first and third observa-
tions in group 1. For the first observation, y n , we obtain 

i i ( y n ) = 7.6(13.5) + 13.3(57.2) +4.2(19.5) - 1.2(12.5) + 14.6(14.0) 
+ 8.2(11.0) - 641.1 = 582.124, 

L2{yn) = 10.2(13.5) + 13.3(57.2) + 4.2(19.5) - 3.4(12.5) + 13.2(14.0) 
+ 6.1(11.0) - 608.0 = 578.099, 

£ 3 ( y n ) = 10-9(13.5) + 13.3(57.2) + 4.1(19.5) - 2.7(12.5) + 13.1(14.0) 
+ 5.2(11.0) - 614.6 = 578.760. 
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We classify y n into group 1 since L i (yn ) = 582.1 exceeds Z ^ y n ) and 
-Myn)· 

For the third observation in group 1, y 13, we obtain 

i i (y i3) = 567.054, L2(y13) = 570.290, L3(yi3) = 569.137. 
This observation is misclassified into group 2 since £2(yi3) — 570.290 ex-
ceeds Li(yi3) and L3(y i 3) . D 

9.3.2 Unequal Population Covariance Matrices: Quadratic 
Classification Functions 

The linear classification functions in Section 9.3.1 are based on the assumption Σ ι = 
Σ 2 = · · · = Sfe. The resulting classification rules are sensitive to heterogeneity of 
covariance matrices. Observations tend to be classified too frequently into groups 
whose covariance matrices have smaller variances on the diagonal. 

As an example, consider a simple case with one y and two groups, where group 
G\ has a normal distribution with a mean of —1 with a large standard deviation 
(<7χ = 2) and group G2 has a normal distribution with a mean of 5 with a small 
standard deviation (σ2 = 0.8). The proper decision rule would utilize both the means 
and the standard deviations for the groups, assigning a new observation y to group 
G\ if y < 3.05 and to group G2 otherwise, where the cutoff at y — 3.05 corresponds 
to the location where f\ (y\G\) = /2(?/|ί?2). 

Figure 9.3 shows the distributions for the groups and illustrates the pitfall of er-
roneously assuming equality of covariance matrices in classification analysis. As il-
lustrated by the hatched areas in Figure 9.3, when using the proper cutoff of roughly 
y = 3.05, about 2.1% of the observations from group G\ will be misclassified with 
group G2 and 0.7% of the observations from group G2 will be misclassified with 
group G\. However, if the classification rules are calculated when erroneously as-
suming that the variances for the two groups are equal, the decision rule would as-
sign a new observation to Gi if y < 2 and to group G2 otherwise, where the cutoff 
at y — 2 corresponds to the midpoint between the two group means. Figure 9.3 il-
lustrates that this erroneous rule would result in 6.7% of the observations from group 
G\ being misclassified with group G2 and <0.1% of the observations from group 
G2 being misclassified with group G\. Thus, erroneously assuming equality for the 
population covariance matrices will often result in classification rules that perform 
relatively poorly. 

If Σ ι = Σ2 = · · · = Sfc does not hold, the classification rules can easily be 
altered to preserve optimality of classification rates. In place of (9.10), we can use 

A2(y) = ( y - y , ) ' s - 1 ( y - y i ) , i = i,2,...,k, (9.14) 

where Si is the sample covariance matrix for the rth group. As before, we would 
assign y to the group for which Df{y) is smallest. With Sj in place of Spi, (9.14) 
cannot be reduced to a linear function of y as in (9.11) but remains a quadratic 
function. Hence rules based on Sj are called quadratic classification rules. 
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Figure 9.3 Misclassification rates when correctly assuming variances are un-
equal (hatched area) and when incorrectly assuming variances are equal (gray 
area). 

If we assume normality with unequal covariance matrices and with prior proba-
bilities p\,P2, · · · ,Pfc, then /(y|G») = Νρ(μί, Σ*), and the optimal rule in (9.12) 
based on Pif{y\Gi) becomes: Assign y to the group for which 

Qi(y) = ln P i - i l n | S i | - ±(y - y J ' S ^ C y - Ϋ<) (9-15) 

is maximum. If ρχ — P2 = ■·· = Pk or if the pi's are unknown, the term In pi is 
deleted. 

In order to use a quadratic classification rule based on Sj, each n» must be greater 
than p so that S" 1 will exist. This restriction does not apply to linear classification 
rules based on Spi. Since more parameters are estimated with quadratic classification 
functions, larger values of the m's are needed for stability of estimates. Note the 
distinction between p, the number of variables, and pit the prior probability for the 
rth group. 

9.4 ESTIMATING MISCLASSIFICATION RATES 

In Chapter 8, we assessed the effectiveness of the discriminant functions in group 
separation by the use of significance tests or by examining Aj/ £ \ · Aj. To judge the 
ability of classification procedures to predict group membership, we usually use the 
probability of misclassification, which is known as the error rate. We could also use 
its complement, the correct classification rate. 

A simple estimate of the error rate can be obtained by trying out the classifica-
tion procedure on the same data set that has been used to compute the classification 
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functions. This method is commonly referred to as resubstitution. Each observation 
vector yij is submitted to the classification functions and assigned to a group. We 
then count the number of correct classifications and the number of misclassifications. 
The proportion of misclassifications resulting from resubstitution is called the appar-
ent error rate. The results can be conveniently displayed in a classification table or 
confusion matrix, such as Table 9.1 for two groups. 

Among the m observations in C?i,nii are correctly classified into G\ and ni 2 
are misclassified into G2, where nx = t in + n12. Similarly, of the n2 observations 
in G2, n-2i are misclassified into G\ and n22 are correctly classified into G2, where 
n2 =n2i + n 2 2 . Thus 

Λ , . n12 + «21 Apparent error rate = 
n\ + n2 

= n 12 + ^21 

nn + "12 +n2i + n22' 

Similarly, we can define 

(9.16) 

Apparent correct classification rate = . (9.17) 
n\ +n2 

Clearly, 

Apparent error rate = 1 — apparent correct classification rate. 

The method of resubstitution can be readily extended to the case of several groups. 
The apparent error rate is easily obtained and is routinely provided by most classi-

fication software programs. It is an estimate of the probability that our classification 
functions based on the present sample will misclassify a future observation. This 
probability is called the actual error rate. Unfortunately, the apparent error rate 
underestimates the actual error rate because the data set used to compute the clas-
sification functions is also used to evaluate them. The classification functions are 
optimized for the particular sample and may be capitalizing on chance to some de-
gree, especially for small samples. For other estimates of error rates, see Rencher 
(1998, Section 6.4). In Section 9.5 we consider some approaches to reducing the 
bias in the apparent error rate. 

Table 9.1 

Actual 
Group 

Classification Table for Two Groups 

Number of 
Observations 

Predicted Group 

1 2 

1 n\ n n «12 

2 Tl2 «21 «22 
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Table 9.2 Classification Table for the Psychological Data 
of Table 5.1 

Actual 
Group 

Male 
Female 

Number of 
Observations 

32 
32 

Predicted Group 

Male Female 

28 4 
4 28 

EXAMPLE 9.4(a) 

We use the psychological data of Table 5.1 to illustrate the apparent error 
rate obtained by the resubstitution method for two groups. The hypothesis 
HQ : Σχ — Y,2 was not rejected in Example 7.3.2, and we therefore classify 
each of the 64 observations using the linear classification procedure obtained 
in Example 9.2: Classify as G\ if a'y > 7.4927 and as G2 otherwise. The 
resulting classification table is given in Table 9.2. By (9.16), 

Apparent error rate »12 +Π21 
n\ +n2 

4 + 4 
32 + 32 

.125. 

D 

EXAMPLE 9.4(b) 

We use the football data of Table 8.3 to illustrate the use of the resubstitu-
tion method for estimating the error rate in the case of more than two groups. 
The sample covariance matrices for the three groups are almost significantly 
different, and we will use both linear and quadratic classification functions. 

The linear classification functions Li(y) from (9.11) were given in Exam-
ple 9.3.1 for the football data. Using these, we classify each of the 90 observa-
tions. The results are shown in Table 9.3. 

An examination of this data set in Example 8.8 showed that groups 2 and 
3 are harder to separate than 1 and 2 or 1 and 3. This pattern is reflected here 
in the misclassifications. Only 4 of the observation vectors in group 1 are mis-
classified, while 10 observations in each of groups 2 and 3 are misclassified. 

Using the quadratic classification functions Qi{y),i = 1, 2,3, in (9.15) and 
assuming p\ = p2 = pz, we obtain the classification results in Table 9.4. There 
is some improvement in the apparent error rate using quadratic classification 
functions. □ 

9.5 IMPROVED ESTIMATES OF ERROR RATES 

For large samples, the apparent error rate has only a small amount of bias for esti-
mating the actual error rate and can be used with little concern. For small samples, 
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Table 9.3 Classification Table for the Football Data of Ta-
ble 8.3 Using Linear Classification Functions 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

1 

26 
1 
2 

Predicted Group 

2 3 

1 3 
20 9 

8 20 

. -.c · 26 + 20 + 20 Apparent correct classification rate = — = .733 

Apparent error rate = 1 - .733 = .267 

Table 9.4 Classification Table for the Football Data of Ta-
ble 8.3 Using Quadratic Classification Functions 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

1 

27 
2 
1 

Predicted Group 

2 3 

1 2 
21 7 
4 25 

27 + 21 + 25 Apparent correct classification rate = — = .811 

Apparent error rate = 1 — .811 = .189 

however, it is overly optimistic (biased downward), as noted above. We discuss two 
techniques for reducing the bias in the apparent error rate, that is, increasing the 
apparent error rate to a more realistic level. 

9.5.1 Partitioning the Sample 

One way to avoid bias is to split the sample into two parts, a training sample used 
to construct the classification rule and a validation sample used to evaluate it. With 
the training sample, we calculate linear or quadratic classification functions. We then 
submit each observation vector in the validation sample to the classification functions 
obtained from the training sample. Since these observations are not used in calculat-
ing the classification functions, the resulting error rate is unbiased. To increase the 
information gained, we could also reverse the roles of the two samples so that the 
classification functions are obtained from the validation sample and evaluated on the 
training sample. The two estimates of error could then be averaged. 

Partitioning the sample has at least two disadvantages: 
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1. It requires large samples that may not be available. 

2. It does not evaluate the classification function we will use in practice. The 
estimate of error based on half the sample may vary considerably from that 
based on the entire sample. We prefer to use all or almost all of the data to 
construct the classification functions so as to minimize the variance of our 
error rate estimate. 

9.5.2 Holdout Method 

The holdout method is an improved version of the sample splitting procedure in Sec-
tion 9.5.1. In the holdout procedure, all but one observation is used to compute the 
classification rule, and this rule is then used to classify the omitted observation. We 
repeat this procedure for each observation, so that, in a sample of size N = ]T^ ni> 
each observation is classified by a function based on the other N — 1 observations. 
The computation load is increased because N distinct classification procedures have 
to be constructed. The holdout procedure is also referred to as the leaving-one-out 
method or as cross-validation. Note that this procedure is used to estimate error 
rates. The actual classification rule for future observations would be based on all N 
observations. 

■ EXAMPLE 9.5.2 

We use the football data of Table 8.3 to illustrate the holdout method for esti-
mating the error rate. Each of the 90 observations is classified by linear classi-
fication functions based on the other 89 observations. To begin the procedure, 
the first observation in group 1 (yn) is held out and the linear classification 
functions Li(y),i = 1,2,3, in (9.11) are calculated using the remaining 29 
observations in group 1 and the 60 observations in groups 2 and 3. The ob-
servation y n is now classified using Li(y), ^ ( y ) , and .^(y)- Then y n is 
reinserted in group 1, and y12 is held out. The functions Li(y),L2(y), and 
L3(y) are recomputed and y12 is then classified. This procedure is followed 
for each of the 90 observations, and the results are in Table 9.5. 

As expected, the holdout error rate has increased somewhat from the appar-
ent error rate based on resubstitution in Tables 9.3 and 9.4 in Example 9.4(b). 
An error rate of .300 is a less optimistic (more realistic) estimate of what the 
classification functions can do with future samples. D 

9.6 SUBSET SELECTION 

The experimenter often has available a large number of variables and wishes to keep 
any that might aid in predicting group membership, but at the same time to delete any 
superfluous variables that do not contribute to allocation. A reduction in the number 
of redundant variables may in fact lead to improved error rates. As an additional con-
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Table 9.5 Classification Table for the Football Data of Ta-
ble 8.3 Using the Holdout Method Based on Linear Classifi-
cation Functions 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

Correct classification rate = 

Error rate = 1 — 

Predicted Group 

1 

26 
1 
2 

2 6 + 1 8 + 19 
90 

.700 = .300 

2 3 

1 3 
18 11 
9 19 

= .700 

sideration, there is an increase in robustness to nonnormality of linear and quadratic 
classification functions as p (the number of variables) decreases. 

The majority of selection schemes for classification analysis are based on step-
wise discriminant analysis or a similar approach (Section 8.9). One finds the subset 
of variables that best separates groups using Wilks' Λ, for example, and then uses 
these variables to construct classification functions. Most of the major statistical soft-
ware packages offer this method. When the "best" subset is selected in this way, an 
optimistic bias in error rates is introduced. For a discussion of this bias, see Rencher 
(1992a; 1998, Section 6.7). 

Another link between separation and classification is the use of error rates in an 
informal stopping rule in a stepwise discriminant analysis. Thus, for example, if a 
subset of 5 variables out of 10 gives a misclassification rate of 33% compared to 
30% for the full set of variables, we may decide that the 5 variables are adequate for 
separating the groups. We could try several subsets of decreasing sizes to see when 
the error rate begins to escalate noticeably. 

■ EXAMPLE 9.6(a) 

In Example 8.9, a stepwise discriminant analysis based on a partial Wilks' Λ 
(or partial F) was carried out for the football data of Table 8.3. Four variables 
were selected: EYEHD, WDIM, JAW, and EARHD. These same four vari-
ables are indicated by the coefficients in the linear classification functions in 
Example 9.3.1. We now use these four variables to classify the observations 
using the method of resubstitution to obtain the apparent error rate. 

The linear classification functions (9.11) are 

Group 1 Lx (y) = y ^ y - \fx%^ 

= 18.67j/i + 4.13y2 + 17.67y3 + 20.4%4 - 425.50, 
Group 2 L2(y) = 21.13yi + 1.96y2 + 16.24y3 + 18.36y4 - 392.75, 
Group 3 L3(y) = 21.87yi + 2.67y2 + 16.13y3 + 17.46y4 - 399.63. 
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Table 9.6 Classification Table for the Football Data of Ta-
ble 8.3 Using Linear Classification Functions Based on Four 
Variables Chosen by Stepwise Selection 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

1 

26 
1 
2 

Predicted Group 

2 3 

1 3 
20 9 

8 20 

Correct classification rate = = .733 
90 

Error rate = 1 - .733 = .267 

When each observation vector is classified using these linear functions, we 
obtain the classification results in Table 9.6. 

Table 9.6 is identical to Table 9.3 in Example 9.4(b) where all six variables 
were used. Thus the four selected variables can classify the sample as well as 
all six variables classify it. D 

EXAMPLE 9.6(b) 

We illustrate the use of error rates as an informal stopping rule in a stepwise 
discriminant analysis. Fifteen teacher and pupil behaviors were observed dur-
ing 5-minute intervals of reading instruction in elementary school classrooms 
(Rencher, Wadham, and Young 1978). The observations were recorded in rate 
of occurrences per minute for each variable. The variables were the following: 

Teacher Behaviors 

1. Explains—Explains the task to learner. 

2. Models—Models the task response for the learner. 

3. Questions—Asks a question to elicit a task response. 

4. Directs—Gives a direct signal to elicit a task response. 

5. Controls—Controls management behavior with direction statements or ges-
tures. 

6. Positive—Gives a positive (affirmative) statement or gesture. 

7. Negative—Gives a negative statement or gesture. 

Pupil Behaviors 

8. Overt delayed—An overt learner response to task signals that cannot be 
judged correct or incorrect until later. 
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Table 9.7 Stepwise Selection Statistics for the 
Teacher Data 

Number of Overall Percentage of Correct 
iables 

15 
10 
9 
8 
7 
6 
5 
4 

Wilks' Λ 

.132 

.159 

.170 

.182 

.195 

.211 

.231 

.256 

Classification 

77.4 
72.4 
73.3 
70.6 
72.9 
70.1 
70.6 
65.6 

9. Correct—A correct learner response with relationship to task signals. 

10. Incorrect—An incorrect learner response with relationship to task signals. 

11. No response—Learner gives no response with relationship to task signals. 

12. Asks—Learner asks a question about the task. 

13. Statement—Learner gives a positive statement or gestures not related to 
the task. 

14. Inappropriate—Learner gives inappropriate management behavior. 

15. Other—Other learner than one being observed gives responses as teacher 
directs task signals. 

The teachers were grouped into four categories: 

Group 1: Outstanding teachers 

Group 2: Poor teachers 

Group 3: First-year teachers 

Group 4: Teacher aides 

The sample sizes in groups 1-4 were 62, 61, 57, and 41, respectively. Because 
of the large values of TV and p (N = 221, p = 15), the data are not given here. 

The stepwise discriminant analysis was run several times with different 
threshold F-to-enter values so as to select subsets with different sizes. A clas-
sification analysis based on resubstitution was carried out with each of the 
resulting subsets of variables. In Table 9.7, we compare the overall Wilks' Λ 
and the apparent correct classification rate. 



3 2 6 CLASSIFICATION ANALYSIS: ALLOCATION OF OBSERVATIONS TO GROUPS 

According to the correct classification rate, we would choose to stop at five 
variables because of the abrupt change from 5 to 4. On the other hand, the 
changes in Wilks' Λ are more gradual, and no clear stopping point is indicated. 

D 

9.7 NONPARAMETRIC PROCEDURES 

We have previously discussed both parametric and nonparametric classification pro-
cedures. Welch's optional rule in (9.8) and (9.12) is parametric, whereas Fisher's 
linear classification rule for two groups as given in (9.5) and (9.6) is essentially non-
parametric, since no distributional assumptions were involved in its derivation. How-
ever, Fisher's procedure also turns out to be equivalent to the optimal normal-based 
approach in (9.9). Nonparametric procedures for estimating error rate include the 
resubstitution and holdout methods. In the sections below, we discuss additional 
nonparametric classification procedures. 

9.7.1 Multinomial Data 

We now consider data in which an observation vector consists of responses on each 
of several categorical variables. The various combinations of categories constitute 
the possible outcomes of a multinomial random variable. For example, consider the 
following four categorical variables: gender (male or female), political party (Re-
publican, Democrat, other), size of city of residence (under 10,000, between 10,000 
and 100,000, over 100,000), and education (less than high school graduation, high 
school graduate, college graduate, advanced degree). An observation vector might 
be (2, 1, 3, 4), that is, a female Republican who lives in a city of over 100,000 and 
has an advanced degree. The total number of possible outcomes in this multino-
mial distribution is the product of the number of states of the individual variables: 
2 x 3 x 3 x 4 = 72. We will use this example to illustrate classification procedures 
for multinomial data. Suppose we are attempting to predict whether or not a person 
will vote. Then there are two groups, G\ and G2, and we assign a person to one of 
the groups after observing which of the 72 possible outcomes he or she gives. 

Welch's (1939) optimum rule given in (9.8) can be written as: Assign y to G\ if 

f^m > P2 ( 9 1 8 ) 
/ (y |G 2 ) P I 

and to G<i otherwise. In our categorical example, / (y |Gi ) is represented by <7ij, i = 
1,2,.. . , 72, and /(y|G2) becomes q-n, i = 1,2,.. . , 72, where qn is the probability 
that a person in group 1 will give the /th outcome, with an analogous definition 
for q-ii. In terms of these multinomial probabilities, the classification rule in (9.18) 
becomes: If a person gives the rth outcome, assign him or her to G\ if 

^ > ?* (9.19) 
<?2i Pi 



NONPARAMETRIC PROCEDURES 3 2 7 

and to G-i otherwise. If the probabilities qu and </2i were known, it would be easy to 
check (9.19) for each i and partition the 72 possible outcomes into two subsets, those 
for which the person would be assigned to G\ and those corresponding to G2. 

The values of qu and ς2ί are usually unknown and must be estimated from a 
sample. Let «i , and n2 , be the numbers of persons in groups 1 and 2 who give the 
i'th outcome, i — l,2,...,72. Then we estimate qu and g2; by 

4η = ψ a n d <72i = ^ , i = 1,2 72, (9.20) 
iVi 1\2 

where Ni — J2i nu ar)d N2 = Σί η2ί· However, a large sample size would be 
required for stable estimates; in any given example, some of the n's may be zero. 

Multinomial data can also be classified by ordinary linear classification functions. 
We must distinguish between ordered and unordered categories. If all of the variables 
have ordered categories, the data can be submitted directly to an ordinary classifica-
tion program. In the above example, city size and education are variables of this type. 
It is customary to assign ordered categories ranked values such as 1, 2, 3, 4. It has 
been shown that linear classification functions perform reasonably well on (ordered) 
discrete data of this type [see Lachenbruch (1975, p.45), Titterington et al. (1981), 
and Gilbert (1968)]. 

Unordered categorical variables cannot be handled this same way. Thus the po-
litical party variable in the example above should not be coded 1, 2, 3 and entered 
into the computation of the classification functions. However, an unordered cate-
gorical variable with k categories can be replaced by k — 1 dummy variables (see 
Sections 6.1.8 and 11.6.2) for use with linear classification functions. For exam-
ple, the political preference variable with three categories can be converted to two 
dummy variables as follows: 

_ J 1 if Republican _ J 1 if Democrat 
\ 0 otherwise ~ [ 0 otherwise. 

Thus the (2/1,2/2) pair takes the value (1,0) for a Republican, (0,1) for a Democrat, 
and (0,0) for other. Many software programs will create dummy variables automati-
cally. Note that if a subset selection program is used, the dummy variables for a given 
categorical variable must be kept together; that is, they must all be included in the 
chosen subset or all excluded, because all are necessary to describe the categorical 
variable. 

In some cases, such as in medical data collection, there is a mixture of continuous 
and categorical variables. Various approaches to classification with such data have 
been discussed by Krzanowski (1975, 1976, 1977, 1979, 1980), Lachenbruch and 
Goldstein (1979), Tu and Han (1982), and Bayne et al. (1983). See Rencher (1998, 
Section 6.8) for a discussion of logistic and probit classification, which are useful for 
certain types of continuous and discrete data that are not normally distributed. 

9.7.2 Classification Based on Density Estimators 

In (9.9), (9.13), and (9.15) we have linear and quadratic classification rules based 
on the multivariate normal density and prior probabilities. These normal-based rules 
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arose from Welch's optimal rule that assigns y to the group for which Pif(y\Gi) is 
maximum. If the form of /(y|Gj) is nonnormal and unknown, the density can be 
estimated directly from the data. The approach we describe is known as the kernel 
estimator. 

We first describe the kernel method for a univariate continuous random vari-
able y. Suppose y has density f(y), which we wish to estimate using a sample 
2/112/2 > · · ■, yn- A simple estimate of /(yo) for an arbitrary point y0 can be based 
on the proportion of points in the interval (yo - h, yo + h). If the number of points 
in the interval is denoted by N(y0), then the proportion N(y0)/n is an estimate of 
P(yo — h < y < y0 + h), which is approximately equal to 2hf(y0). Thus we 
estimate f(y0) by 

Λ » > - ^ -
We can express /(yo) a s a function of all y» in the sample by defining 

[ \ forlul < 1 
* u = { n f \ \Z i ' ( 9 ' 2 2 ) 

I 0 for|ti| > 1 

so that N(y0) = 2 £ " = 1 K[{yo ~ Vi)/h}, and (9.21) becomes 

The function K(u) is called the kernel. In (9.23), K[(yo - yi)/h] is \ for any point 
yi in the interval (y0 - h, yo + h) and is zero for points outside the interval. Points 
in the interval add 1/2/m to the density, and points outside the interval contribute 
nothing. 

Kernel estimators were first proposed by Rosenblatt (1956) and Parzen (1962). 
A good review of nonparametric density estimation including kernel estimators has 
been given by Silverman (1986), who noted that classification analysis provided the 
initial motivation for the development of density estimation. 

The kernel defined by (9.22) is rectangular and the graph of /(yo) plotted as a 
function of y0 will be a step function, since there will be a jump (or drop) whenever 
y0 is a distance h from one of the j/j's. (A moving average has a similar property.) 

To obtain a smooth estimator of f(y), we must choose a smooth kernel. Two 
possibilities are 

tf(U) = I ? ^ , (9.24) 

K(u) = -4=e-u2/2, (9.25) 
V2n 

which have the property that all n sample points yi,y2,- ■■ ,yn contribute to /(yo) 
with the closest points weighted heavier than the more distant points. Even though 
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K(u) in (9.25) has the form of the normal distribution, this does not imply any as-
sumption about the density f(y). We have used the normal density function because 
it is symmetric and unimodal. Other density functions could be used as kernels. 

Cacoullos (1966) provided kernel estimates for multivariate density functions; see 
also Scott (1992). If y0 = (ym, J/02, · ■ ·, UoP) is an arbitrary point whose density we 
wish to estimate, then the extension of (9.23) is 

/(yo)= hh
l . Σ ^ ί ^ ^ ) · (9"26) 

nhih2 ■ ■ ■ hp ~( \ hi hp j 

An estimate /(yo) based on a multivariate normal kernel is given by 

where hi = h2 = ■ ■ ■ = hp = h and Spi is the pooled covariance matrix from the k 
groups in the sample. The covariance matrix Spi could be replaced by other forms. 
Two examples are (1) S, for the ith group and (2) a diagonal matrix. 

The choice of the smoothing parameter h is critical in a kernel density estimator. 
The size of h determines how much each y, contributes to /(yo)· If h is too small, 
/ (y 0 ) has a peak at each y i ; and if h is too large, /(yo) is almost uniform (overly 
smoothed). Therefore, the value chosen for h must depend on the sample size n 
to avoid too much or too little smoothing; the larger the sample size, the smaller h 
should be. In practice, we could try several values of h and check the resulting error 
rates from the classification analysis. 

To use the kernel method of density estimation in classification, we can apply it to 
each group to obtain / (y 0 |G i ) , /(yo|G2) , ■ ■ · > f(yo\Gk), where y0 is the vector of 
measurements for an individual of unknown group membership. The classification 
rule then becomes: Assign y0 to the group Gi for which 

Pi /(yo I Gi) is maximum. (9.28) 

Habbema etal. (1974) proposed a forward selection method for classification 
based on density estimation. Wegman (1972) and Habbema et al. (1978) found that 
the size of the /ij's is more important than the shape of the kernel. The choice of h 
was investigated by Pfeiffer (1985) in a stepwise mode. Remme et al. (1980) com-
pared linear, quadratic, and kernel classification methods for two groups and reported 
that for multivariate normal data with equal covariance matrices, the linear classifica-
tions were clearly superior. For some cases with departures from these assumptions, 
the kernel methods gave better results. 

■ EXAMPLE 9.7.2 

We illustrate the density estimation method of classification for the football 
data of Table 8.3. We use the multivariate normal kernel estimator in (9.27) 
with h = 2 to obtain f(yo\Gi),i = 1,2,3, for the three groups. Using 
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Table 9.8 Classification Table for the Football Data of Ta-
ble 8.3 Using the Density Estimation Method of Classification 
with Multivariate Normal Kernel 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

1 

25 
0 
0 

Predicted Group 

2 3 

1 4 
12 18 
3 27 

, ■« · 25 + 12 + 27 Apparent correct classification rate = — = .711 

Apparent error rate = 1 — .711 = .289 

Table 9.9 Classification Table for the Football Data of Ta-
ble 8.3 Using the Holdout Method Based on Density Estimation 

Actual 
Group 

1 
2 
3 

Number of 
Observations 

30 
30 
30 

Correct classification rate = 

Error rate = 1 — 

Predicted Group 

1 

24 
0 
1 

24 + 10 + 26 
90 

.667 = .333 

2 3 

1 5 
10 20 
3 26 

= .667 

Pl = p2 = p3 , the rule in (9.28) becomes: Assign y0 to the group for which 
f(yo\Gi) is greatest. To obtain an apparent error rate, we follow this procedure 
for each of the 90 observations and obtain the classification results in Table 9.8. 

Applying a holdout method in which the observation y^· being classified 
is excluded from computation of / ( y ^ G i ) , f{yij\G2), and f(yij\G3), we 
obtain the classification results in Table 9.9. As expected, the holdout error 
rate has increased somewhat from the apparent error rate in Table 9.8. D 

9.7.3 Nearest Neighbor Classification Rule 

The earliest nonparametric classification method was the nearest neighbor rule of 
Fix and Hodges (1951), also known as the k nearest neighbor rule. The procedure 
is conceptually simple. We compute the distance from an observation y» to all other 
points yj using the distance function 

( y i - y j O ' S p ^ y i - y j ) j^i-
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To classify y^ into one of two groups, the k points nearest to y, are examined, and 
if the majority of the k points belong to G\, assign y» to G\\ otherwise assign y^ to 
G2. If we denote the number of points from G\ as k\, with the remaining k2 points 
from G2, where k = k\ + k2, then the rule can be expressed as: Assign yt to Gi if 

h > k2 (9.29) 

and to G2 otherwise. If the sample sizes n\ and n2 differ, we may wish to use 
proportions in place of counts: Assign y, to G\ if 

— > — ■ (9.30) 
n\ n2 

A further refinement can be made by taking into account prior probabilities: Assign 
yi to Gi if 

ψ~ > ΡΛ- (9-31) 
«2/^2 Pi 

These rules are easily extended to more than two groups. For example, (9.30) be-
comes: Assign the observation to the group that has the highest proportion ki/rii, 
where fcj is the number of observations from Gi among the k nearest neighbors of 
the observation in question. 

A decision must be made as to the value of k. Loftsgaarden and Quesenberry 
(1965) suggest choosing k near y/ni for a typical n«. In practice, one could try 
several values of k and use the one with the best error rate. 

Reviews and extensions of the nearest neighbor method have been given by Hart 
(1968), Gates (1972), Hand and Batchelor (1978), Chidananda Gowda and Krishna 
(1979), Rogers and Wagner (1978), and Brown and Koplowitz (1979). 

■ EXAMPLE 9.7.3 

We use the football data of Table 8.3 to illustrate the k nearest neighbor method 
of estimating error rate, with fc = 5. Since «i = n2 = 713 = 30 and them's are 
also assumed to be equal, we simply examine the five points closest to a point 
y and classify y into the group that has the most points among the five points. 
If there is a tie, we do not classify the point. For example, if the numbers from 
G\, G2, and G3 were 1,2, and 2, respectively, then we do not assign y to either 
G2 or G3. 

For each point yij,i = 1,2,3; j = 1,2,. . . , 30, we find the five nearest 
neighbors and classify the point accordingly. Table 9.10 gives the classification 
results. As can be seen, there were 3 observations in group 1 that were not 
classified because of ties, 1 in group 2, and 3 in group 3. This left a total of 83 
observations classified. □ 

9.7.4 Classification Trees 

Although the notion of using decision trees as a means for classification has been 
discussed for nearly fifty years, the methodology known as classification and regres-
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Table 9.10 Classification Table for the Football Data of Ta-
ble 8.3 Using the k Nearest Neighbor Method with k = 5 

Predicted Group 
Actual Number of 
Group Observations 1 2 3 

1 30 26 0 1 
2 30 1 19 9 
3 30 1 4 22 

26 + 19 + 22 Correct classification rate = — = .807 83 
Error rate = 1 - .807 = .193 

sion trees received its first complete development by Breiman, Friedman, Olshen, 
and Stone (1984). Classification trees are used to predict categorial responses, while 
regression trees are used to predict continuous responses. Because this chapter's fo-
cus is on classification of observations into discrete groups, we limit our discussion 
to a very simple type of classification tree. For a more complete discussion of this 
rich class of predictive tools, we refer the reader to the aforementioned landmark 
publication of Breiman, Friedman, Olshen, and Stone (1984), overviews of this class 
of methods including extensions and more recent developments (e.g., Hastie, Tib-
shirani, and Friedman, 2009), or documentation associated with the various software 
implementations of classification trees. We adopt much of our notation and termi-
nology from the primer on the RPART routines.by Therneau and Atkinson (1997). 
RPART comprises a collection of implementations of classification and regression 
trees within the R statistical computing environment (R Development Core Team, 
2010). 

We begin forming a classification tree with all n observations in one group or 
root node and seek to find a predictor variable x and an associated cutoff criterion 
such that splitting the n subjects into the two groups will minimize the impurity 
(diversity) within each of the two child nodes. This involves a consideration of all 
possible x variables at all possible split points. The process is then repeated for each 
of the child nodes. Thus the classification tree is formed by recursive binary splits 
of the observations in order to form an optimal partitioning of the observations into 
predictive groups. 

The tree grows with child nodes splitting to create new generations of nodes. Of 
course, the splitting could continue until each observation is its own terminal (fi-
nal) node, but such overfitting will generally lead to decision trees with poor out-of-
sample predictive properties. Various stopping and pruning rules exist for selecting 
the optimal tree, but most are based on cross-validation. When the final tree is con-
structed, each observation falls into exactly one terminal node that will be associated 
with a single predicted group. 

There are many ways in which we might split a parent node into two child nodes, 
and there are several criteria that could influence the way we define an optimal split. 
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The first criterion is the collection of prior probabilities p\,..., pk associated with 
each group. Allowing prior probabilities to influence the decision rules will lead 
to rules that tend to classify more observations into the more commonly observed 
groups. 

A second criterion is the misclassification cost for classifying an observation from 
group Gi into group Gj (for i, j = 1 , . . . , k). As stated previously, this can become 
extremely complicated for more than two groups, so misclassification costs will not 
be considered here. 

A third criterion affecting the definition of an optimal splitting rule is the measure 
of impurity chosen for the classification. Employing the oft-used Gini index, we can 
define the impurity associated with the node A as 

fc 
lA=YäPi\A^-Pi\A) (9.32) 

i=l 

where p^A is the probability that an observation is in group Gi given that it is clas-
sified into node A. Note that the impurity of node A is close to zero when each of 
PI\A>P2\AI ■ ■ ■ >Pk\A is either near zero or near 1—that is, when the observations in 
a node are predominantly from only one group. The probability p^A is calculated 
from the data using 

Pi\A = —k : — , (9-33) 
L i = i Pi(nlA/ni) 

where pi is the prior probability associated with group Gi, n» is the number of ob-
servations in Gi, and riiA is the number of observations from Gi that are in node A. 
Note that if we assume prior probabilities are proportional to the size of the group Gi 
in the training data (i.e., if pi/n-i = p2/n2 = ... = Pk/nk),tnen (9.33) simplifies 
to 

Pi\A = — , (9-34) 
nA 

where nA is the number of observations in node A. 
We quantify the probability of an observation being in node A using 

fc 
PA = ^2,Pi{niA/ni). (9.35) 

i = l 

For the case of prior probabilities proportional to the size of the group, (9.35) sim-
plifies to pA = nA/n. 

Finally, using the quantities defined above, we can define the quality for the split 
of a parent node A into two child nodes AL and AR (where L and R denote the left 
and right children from the split). The change in total impurity (Δ/) associated with 
the split is defined by 

Δ Ι = pAIA - {PAJAL +PARIAR), (9.36) 

with AI guaranteed to be greater than or equal to 0. After considering all possible 
choices for the split of node A into child nodes AL and AR, the split at node A that 
maximizes Δ7 is deemed the optimal split. 
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eyehd< 11.95 

eyehd«: 10.35 

College 

earhd>=13.8 

Non HS Non 

Figure 9.4 Classification tree for classifying subjects into one of 
three groups using the football data of Table 8.3 

EXAMPLE 9.7.4 

To explain the basic components of a classification tree, we use the football 
data in Table 8.3 to illustrate the use of classification trees for classification 
analysis. For this classification exercise, we use equal prior probabilities for 
the three groups (college players, high school players, and non-football play-
ers). For these data, this is equivalent to assuming priors proportional to size 
since the training data groups each have 30 subjects. Costs of misclassification 
are assumed to be equal, and the Gini index is used as the basis for the mea-
sure of impurity when selecting optimal splits for nodes. Optimal tree size is 
chosen based on cross-validation. 

In Figure 9.4, we begin with all 90 subjects in the root node and seek to find 
the head dimension variable and associated cutoff criterion that best separates 
the three types of football players (college players, high school players, and 
non-players) into two distinct groups. At the root node the optimal rule was 
to form groups based on whether or not the eye-to-top-of-head measurement 
(eyehd) is less than 11.95 cm. Those observations with eyehd < 11.95 cm are 
considered to be in the left child node (denoted Ai), and all others are in the 
right child node (AR). We say this is the optimal split because AR consists 
of mostly high school players (2 college, 29 high school, and 6 non-players) 
and the left node is predominantly college players and non-football players (28 
college, 1 high school, and 24 non-players). 
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Table 9.11 Comparison of Classification Error Rates for the 
Football Data of Table 8.3 Using Several Methods Including the 
Classification Tree 

Misclassification Rate 
Classification Method (based on cross-validation) 

Linear 0.300 
Quadratic 0.344 
Density Estimation 

normal density, h = 2 0.333 
normal density, h = 5 0.367 

Nearest Neighbor 
k = 5 0.278 
k = 9 0.367 

Classification Tree 0.256 

For each child node, the same process is recursively applied. For example, 
those observations with eyehd < 11.95 cm are then further split into groups 
based again on eyehd, but this time with a new cutoff of 10.35 cm. This serves 
to further split this group of 53 subjects into two terminal child nodes. The 
first contains all subjects with eyehd < 10.35 and includes 21 college, 1 high 
school, and 7 non-players. The second terminal child node formed by this split 
contains all subjects with eyehd measurements in the range [10.35,11.95) and 
includes 7 college, 0 high school, and 17 non-players. The set of subjects with 
eyehd > 11.95 cm are also further subdivided, with those having ear-to-top-
of-head (earhd) measurements greater than or equal to 13.8 cm placed in a 
terminal child node with 1 college, 27 high school, and 2 non-players. The 
complementary terminal node for those with eyehd > 11.95 and earhd <13.8 
cm contains 1 college, 2 high school, and 4 non-players. 

Thus there is one large terminal node associated with each of the college and 
high school player groups, and there are two smaller terminal nodes associated 
with the non-football-player group. For some future (unclassified) observation, 
the classification tree in Figure 9.4 illustrates how one would predict group 
membership based on the eyehd and earhd variables. 

Table 9.11 compares the misclassification rates for several different clas-
sification methods using the football data of Table 8.3. For this data set, the 
misclassification rate for the classification tree is lowest among the competing 
approaches, but the relative accuracy of the approaches will be different for 
different data sets. D 
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PROBLEMS 

9.1 Show that if zu = a 'y H , i = 1, 2 , . . . , m , and z2i = a 'y2 i , i = 1,2,... ,n2, 
where z is the discriminant function defined in (9.1), then ~z~\ — ~z2 = (Fi -
y 2 ) 'Sp 1

1 (y 1 -y 2 )as in(9 .3) . 

9.2 With z — a 'y as in (9.1), and zi = a 'y1 ; z2 = a'y2, show that | ( z i + z2) = 
| ( y i - y 2 ) ' S p 1

1 ( y i + y 2 ) a s i n ( 9 . 4 ) . 

9.3 Obtain the normal-based classification rule in (9.9). 

9.4 Derive the linear classification rule in (9.13). 

9.5 Derive the quadratic classification function in (9.15). 

9.6 Show that if we assume prior probabilities are proportional to the size of the 
group Gi in the training data, then (9.33) simplifies to (9.34). 

9.7 Do a classification analysis on the beetle data in Table 5.5 as follows: 

(a) Find the classification function z = (y1 — y~2)'Sp1
1y and the cutoff point 

\(Ίι + z2). 

(b) Find the classification table using the linear classification function in part 
(a). 

(c) Find the classification table using the nearest neighbor method. 

9.8 Do a classification analysis on the dystrophy data of Table 5.7 as follows: 

(a) Find the classification function z = (y1 — y2)'S~1
1y and the cutoff point 

| ( z i + z 2 ) · 
(b) Find the classification table using the linear classification function in part 

(a). 

(c) Repeat part (b) using pi and p2 proportional to sample sizes. 

9.9 Do a classification analysis on the cyclical data of Table 5.8 as follows: 

(a) Find the classification function z = (y1 —y2)'S~^y and the cutoff point 
\(ZX +Z2). 

(b) Find the classification table using the linear classification function in part 
(a). 

(c) Find the classification table using the holdout method. 
(d) Find the classification table using a kernel density estimator method. 

9.10 Using the engineer data of Table 5.6, carry out a classification analysis as 
follows: 
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(a) Find the classification table using the linear classification function. 
(b) Carry out a stepwise discriminant selection of variables (see Problem 

8.14). 
(c) Find the classification table for the variables selected in part (b). 

9.11 Do a classification analysis on the fish data in Table 6.17 as follows. Assume 
Pi =P2= P3-

(a) Find the linear classification functions. 
(b) Find the classification table using the linear classification functions in 

part (a) (assuming Σ ι = Σ2 = Σ3). 
(c) Find the classification table using quadratic classification functions (as-

suming population covariance matrices are not equal). 
(d) Find the classification table using linear classification functions and the 

holdout method. 

(e) Find the classification table using a nearest neighbor method. 

9.12 Do a classification analysis on the rootstock data of Table 6.2 as follows: 

(a) Find the linear classification functions. 
(b) Find the classification table using the linear classification functions in 

part (a) (assuming Σ ι = Σ2 = Σ3). 
(c) Find the classification table using quadratic classification functions (as-

suming population covariance matrices are not equal). 
(d) Find the classification table using the nearest neighbor method. 
(e) Find the classification table using a kernel density estimator method. 



CHAPTER 10 

MULTIVARIATE REGRESSION 

10.1 INTRODUCTION 

In this chapter, we consider the linear relationship between one or more ?/'s (the de-
pendent or response variables) and one or more x's (the independent or predictor 
variables). We will use a linear model to relate the y's to the x's and will be con-
cerned with estimation and testing of the parameters in the model. One aspect of 
interest will be choosing which variables to include in the model if this is not already 
known. 

We can distinguish three cases according to the number of variables: 
1. Simple linear regression: one y and one x. For example, suppose we wish to 

predict college grade point average (GPA) based on an applicant's high school 
GPA. 

2. Multiple linear regression: one y and several x's. We could attempt to improve 
our prediction of college GPA by using more than one independent variable, 
for example, high school GPA, standardized test scores (such as ACT or SAT), 
or rating of high school. 

3. Multivariate multiple linear regression: several y's and several x's. In the 
above illustration, we may wish to predict several y's (such as number of 
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years of college the person will complete or GPA in the sciences, arts, and 
humanities). As another example, suppose the Air Force wishes to predict sev-
eral measures of pilot efficiency. These response variables could be regressed 
against independent variables (such as math and science skills, reaction time, 
eyesight acuity, and manual dexterity). 

To further distinguish case 2 from case 3, we could designate case 2 as univari-
ate multiple regression because there is only one y. Thus in case 3, "multivariate" 
indicates that there are several y's and "multiple" implies several x's. The term mul-
tivariate regression usually refers to case 3. 

There are two basic types of independent variables, fixed and random. In the 
above illustrations, all x's are random variables and are therefore not under the con-
trol of the researcher. A person is chosen at random, and all of the y's and x's are 
measured, or observed, for that person. In some experimental situations, the x's are 
fixed, that is, under the control of the experimenter. For example, a researcher may 
wish to relate yield per acre and nutritional value to level of application of various 
chemical fertilizers. The experimenter can choose the amount of chemicals to be 
applied and then observe the changes in the yield and nutritional responses. 

In order to provide a solid base for multivariate multiple regression, we review 
several aspects of multiple regression with fixed x's in Section 10.2. The random-x 
case for multiple regression is discussed briefly in Section 10.3. 

10.2 MULTIPLE REGRESSION: FIXED x's 

10.2.1 Model for Fixed x's 

In the fixed-x regression model, we express each y in a sample of n observations as 
a linear function of the x's plus a random error, ε: 

yi = β0 + /?ιχιι + ß2xu -r - + ßqxiq + £\ 
2/2 = βθ + ß\X2\ + βΐ^Τλ + · · · + ßqX2q + £2 

. (10.1) 

Vn = βθ + ß\Xn\ + ß2Xn2 + " · + ßq 

The number of x's is denoted by q. The ß's in (10.1) are called regression coeffi-
cients. Additional assumptions that accompany the equations of the model are as 
follows: 

1. E(ei) = 0 f o r a l H = l , 2 , . . . , n . 
2. var(ei) = c 2 for alH = 1,2,.. . , n. 

3. cov(£i, Ej) = 0 for all i ψ j . 

Assumption 1 states that the model is linear and that no additional terms are needed 
to predict y; all remaining variation in y is purely random and unpredictable. Thus 
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if Ε{εΐ) = 0 and the x's are fixed, then E(yi) = ßo + ßixn + ßtXi2 H 1- ßqXiq, 
and the mean of y is expressible in terms of these q x's with no others needed. In 
assumption 2, the variance of each ε* is the same, which also implies that var(yj) = 
σ2, since the x's are fixed. Assumption 3 imposes the condition that the error terms 
be uncorrelated, from which it follows that the y's are also uncorrelated, that is, 
co\(yi,yj) = 0. 

Thus the three assumptions can be restated in terms of y as follows: 

1. E(yi) = ßo+ ßlXil + ß2Xi2 H h ßqXiq, i = 1, 2, . . . , 71. 
2. var(yi) = σ2,ί = 1,2,... ,η . 
3. cov(yi, yj) = 0, for all ιφ j . 

Using matrix notation, the models for the n observations in (10.1) can be written 
much more concisely in the form 

2/2 

V Vn ) 

I i 
1 

111 
X2\ 

X\2 

3^22 

Xnl Xn2 

X\q 

X2q 

Xnq 

ßl 

) 

+ 
\ßq I 

{ ει \ 
£2 

\ εη J 
or 

(10.2) 

(10.3) y - X/3 + ε. 

With this notation, the above three assumptions become 

1. E{e) = 0 

2. cov(e) = σ2Ι, 

which can be rewritten in terms of y as 

1. E(y) = X/3 
2. cov(y) = σ2Ι. 

Note that the second assumption in matrix form incorporates both the second and 
third assumptions in univariate form; that is, cov(y) = σ21 implies var(yj) = σ2 

andcov(yi,?/j) = 0 . 
For estimation and testing ρυφ08β8, we need to have n > q + 1. Therefore, the 

matrix expression (10.3) has the following typical pattern: 

= + 
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10.2.2 Least Squares Estimation in the Fixed-x Model 

If the first assumption holds, we have E(yt) = ß0 + ßxxix + ß2xi2 ~\ \- ßqxiq. 
We seek to estimate the ß's and thereby estimate E(yi). If the estimates are denoted 
by ßo, ßi, ■ ■ ■, ßq, then E(yz) = ß0 + ßxxiX + ß2xi2 + ■■■ + ßqxiq. However, E(Vi) 
is usually designated &. Thus j/j estimates E(yt), not yi. We now consider the least 
squares estimates of the ß's. 

The least squares estimates of β0, βχ,..., ßq minimize the sum of squares of 
deviations of the n observed t/'s from their "modeled" values, that is, from their 
values & predicted by the model. Thus we seek β0, βχ,..., ßq that minimize 

n n 

SSE = '£e2
i='£(yi-yl)

2 

i=l i=l 
n 

= ^2,i.Vi ~ ßo ~ ßlXil - ßlXi2 
i = l 

The value of ß — (ßo, ß\,..., ßq)' that minimizes SSE in (10.4) is given by 

ß = ( X ' X ^ X ' y - (10.5) 

In (10.5), we assume that X 'X is nonsingular. This will ordinarily hold if n > q + 1 
and no Xj is a linear combination of other x's. 

In expression (10.5), we see a characteristic pattern similar to that for ß\ in simple 
linear regression given in (3.11), ßi = Sxy/s2.. The product X 'y can be used to 
compute the covariances of the x's with y. The product X 'X can be used to obtain 
the covariance matrix of the x's, which includes the variances and covariances of the 
x's [see the comment following (10.16) about variances and covariances involving 
the fixed x's]. Since X 'X is typically not diagonal, each ßj depends on sXjV and s% 
as well as the relationship of Xj to the other x's. 

We now demonstrate algebraically that ß = ( X ' X ) - 1 X 'y in (10.5) minimizes 
SSE (this can also be done readily with calculus). If we designate the ith row of X 
asxj = (l,xn,Xi2, ■ ■ ■ ,Xiq), we can write (10.4) as 

n 

SSE = ^ ( y i - x ^ ) 2 . 
i= l 

The quantity yi - x^/3 is the ith element of the vector y - X/3. Hence, by (2.33), 

S S E = ( y - X j 8 ) ' ( y - X i 3 ) . (10.6) 

Let b be an alternative estimate that may lead to a smaller value of SSE than ß. We 
add X(/3 — b) to see if this reduces SSE. 

SSE = [(y - Xj9) + X()9 - b)]'[(y - X0) + X(ß - b)]. 

ßaxiq)
2- (10.4) 
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We now expand this using the two terms y - Xß and X{ß - b) to obtain 

SSE = (y-Xß)'(y-Xß) + {X(ß-b)}'X(ß-b) + 2[X(ß-b)}'(y-Xß) 

= (y-Xß)'(y-Xß) + (ß-b)'X'X(ß-b) + 2( /3-b)'X'(y-X /ä) 
= (y-Xß)'(y-Xß) + (ß~byX'X(ß-b) + 2(ß-bY(X'y-X'Xß). 

The third term vanishes if we substitute ß = (X 'X) _ 1 X'y into X'X/3. The second 
term is a positive definite quadratic form, and SSE is therefore minimized when 
b = ß. Thus no value of b can reduce SSE from the value given by ß. 

When E(y) = Xß and cov(y) = σ2Ι, it follows that the least squares estimator 
β = (X 'X) _ 1 X'y in (10.5) has three important properties. The first property is 
that β is an unbiased estimator for β. That is, Ε(β) = β. The second property 
is that cov(/3) = σ 2 (Χ 'Χ)" 1 . The third important property is characterized by the 
Gauss-Markov theorem. 

Gauss—Markov Theorem. If E(y) = Xß and cov(y) = σ2Ι, the least squares 
estimators β0, βι, ■ ■ ■, ßq have minimum variance among all linear unbiased esti-
mators. 

The Gauss-Markov theorem is often simplified to the following statement: If 
E(y) = Xß and cov(y) = σ2ϊ, the least squares estimators are "best linear un-
biased estimators" (BLUE), where "best" implies "minimum variance" and "linear" 
indicates that the estimators are linear functions of y. For a review of properties 
of β and an alternative derivation of β based on the assumption that y is normally 
distributed, see Rencher (1998, Chapter 7) or Rencher and Schaalje (2008, Chapter 
7). 

10.2.3 An Estimator for σ2 

It can be shown that 

£(SSE) = σ2[η - (q + 1)] - σ2(η - q - 1). (10.7) 

We can therefore obtain an unbiased estimator of σ2 as 

SSF 1 
s2 = *** = ί _ ( γ _ Χ / 3 ) ' ( γ - χ / 3 ) . (10.8) 

n — q — 1 n — q— 1 
We can also express SSE in the form 

SSE = y 'y - ß'X'y, (10.9) 

and we note that there are n terms in y 'y and q + 1 terms in ß'X'y. The difference 
is the denominator of s2 in (10.8). Thus the degrees of freedom (denominator) for 
SSE is reduced by q + 1. 

The need for an adjustment of q + 1 to the degrees of freedom of SSE can be 
illustrated with a simple random sample of a random variable y from a population 
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with mean μ and variance σ2. The sum of squares J2i(Vi ~ ß)2 n a s n degrees of 
freedom, while 5Z»(i/j ~~ V)2 has n - 1. It is intuitively clear that 

E Σ>< - ^)2 
i = l 

>E Y^ivi - y) »r\2 

Li=i 

because y fits the sample better than μ, which is the mean of the population but not of 
the sample. Thus (squared) deviations from y will tend to be smaller than deviations 
from μ. In fact, it is easily shown that 

^2(vi - l·)2 = ̂ 2(yi -y + y- μ)2 

i = l i = l 

= X](yi - yf + n(V ~ μ)2 (10.10) 

whence 
Y^iVi - y? = Y^iVi ~ M)2 - n(y ~ μγ 

Thus Σ%(ν* ~~ y)2 IS expressible as a sum of n squares minus one square, which 
corresponds to n — 1 degrees of freedom. More formally, we have 

E Σ(* = ησ — 
2 η σ I , s 2 
2 -— = (n - 1)σ . 

10.2.4 The Model Corrected for Means 

It is sometimes convenient to "center" the x's by subtracting their means, xx = 
ΣΓ=ι χα/η'%2 = ΣΓ=ι χί2/η> a n d s 0 o n [ä i ,ä 2 , · · · , z 9 are the means of the 
columns of X in (10.2)]. In terms of centered x's, the model for each j/» in (10.1) 
becomes 

yi =a + ß1(xii -xi) + ß2{xi2 -xi) + · ■ ■ + ßq(xiq -xq) + eu (10.11) 

where 
ß0 + βχΧχ + β2Χ2 + V ßqXq- (10.12) 

To estimate 

ßi = 
ß2 

\ß« / 
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we use the centered x's in the matrix 

X , = 

/ Xll -Xl Xl2 -X2 

X21 - Xl X21 ~ X2 

\ X„i - Xi Xn2 ~ X~2 

Xlq Xq ' 
X2q Xq 

vnq Xq ) 

/ ( x i - x ) ' \ 
X2 - X ) ' 

(10.13) 

where x£ = (xn ,xi2,...,xiq) and x' = (xj, x 2 , . . . , £<?)· Then by analogy to 
(10.5), the least squares estimate of ßx is 

ßl = ( X ^ X e ) " ^ ^ . (10.14) 

If .E(y) = po + ρΊ^ι H l· ßqxq is evaluated at x1 = xx, x2 — X2, ■ · ·, xg = xq, 
the result is the same as a in (10.12). Thus, we estimate a by y: 

a = y. 

In other words, if the origin of the x's is shifted to x = (x"i, x2 , ■ 
intercept of the fitted model is y. With & = y, we obtain 

β0 = ά- β\Χι - β2Χ2 ßqXq =y~ ßl* 

, xQ)', then the 

(10.15) 

as an estimate of ρΌ in (10.12). Together, the estimators po and ßx in (10.15) and 
(10.14) are the same as the usual least squares estimator ß in (10.5). 

We can express ß1 in (10.14) in terms of sample variances and covariances. The 
overall sample covariance matrix of y and the x's is 

S = 

( syy 

Sly 

\ Sqy 

Syl 

Sll 

Sql 

Sy2 ■ 

Sl2 ■ 

Sq2 ■ 

Syq \ 

■ Siq 

Sqq / 

*yx 

sy- (10.16) 

where syy is the variance of y, syj is the covariance of y and Xj, Sjj is the variance 
of Xj, Sjk is the covariance of Xj and Xk, and s'yx = (syi,sy2,..., syq). These sam-
ple variances and covariances are mathematically equivalent to analogous formulas 
(3.23) and (3.25) for random variables, where the sample variances and covariances 
were estimates of population variances and covariances. However, here the x's are 
considered to be constants that remain fixed from sample to sample, and a formula 
such as s n = ΣΓ=ι(α;»ι ~~ xi)2/(n ~ 1) summarizes the spread in the n values of 
Xi but does not estimate a population variance. 

To express ß1 in terms of S ^ and s ^ in (10.16), we note first that the diago-
nal elements of XgXc are corrected sums of squares. For example, in the second 
diagonal position, we have 

^ ( x i 2 - X2)2 = (n- l)s22-
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The off-diagonal elements of X^Xc are analogous corrected sums of products; for 
example, the element in the (1, 2) position is 

n 

^2(xzi - xi)(xi2 ~ X2) = (n - l)si . . . '12-
i=\ 

Thus 

Similarly, 

1 X.'CXC = SXX. (10.17) 
n - 1 

1 
n - 1 

X^y = syx, (10.18) 

even though y has not been centered. The second element of X^y, for example, is 
Σί(Χί2 -X2)Vi, which is equal to (n - l)s2y: 

(n - l)s2y = ̂ 2(xi2 ~ X2)(yi ~ y) 
i = l 

= Ύ^{χί2 - xi)yi - Σ(χί2 ~ ^y 
i i 

= Ύ^{Χί2 -X2)Vi, 
i 

since 
Σ(Χί2-Χ2)ϋ = 0. (10.19) 

i 

Now, multiplying and dividing by n — 1 in (10.14), we obtain 

. , 1 ? » fX'cX\-' X'cy A=I-»)-*HS) n — 1 \n — 1 / n — 1 
= S-xSyx [by (10.17) and (10.18)], (10.20) 

and substituting this in (10.15) gives 

ßo = & - β[κ = y - s' S j i x . (10.21) 

10.2.5 Hypothesis Tests 

In this section, we review two basic tests on the /3's. For other tests and confidence 
intervals, see Rencher (1998, Section 7.2.4) and Rencher and Schaalje (2008, Sec-
tions 8.4-8.7). In order to obtain F-tests, we assume that y is Νη(Κβ, σ2Ι). 



MULTIPLE REGRESSION: FIXED x's 3 4 7 

10.2.5a Test of Overall Regression 
The overall regression hypothesis that none of the x's predicts y can be expressed 
as H0: βγ = 0, since β[ = (βχ, β2, ■. ■, ßq). We do not include ß0 = 0 in the 
hypothesis so as not to restrict y to have an intercept of zero. 

We can write SSE = y 'y - /3'X'y in (10.9) in the form 

y'y = (y'y - /3'x'y) + /3'x'y, (10.22) 

which partitions y 'y into a part due to ß and a part due to deviations from the fitted 
model. 

To correct y for its mean and thereby avoid inclusion of ßo — 0, we subtract riy2 

from both sides to obtain 

y 'y " ηψ = (y'y - /3'X'y) + (ß'X'y - ny2) (10.23) 
= SSE + SSR, 

where y 'y — riy2 — ^ ( j / i ~~ v)2 ' s t n e tota^ s u m °f squares adjusted for the mean 
and SSR = /3'X'y — riy2 is the overall regression sum of squares adjusted for the 
intercept. 

We can test H0: ßx = 0 by means of 

F= fR/<? „ (10.24) 
SSE/(n -q-l) 

which is distributed as Fgin_q_i when H0: β1 — 0 is true. We reject H0 if F > 
" α,ϊι,η — q—1· 

10.2.5b Test on a Subset of the ß 's 
In an attempt to simplify the model, we may wish to test the hypothesis that some of 
the ß's are zero. For example, in the model 

y = ßo + /Si an + β2Χ2 + ßsx\ + ßix\ + ßbX\X2 + ε, 

we may be interested in the hypothesis i /o : ßs — ßi — ßb = 0. If i/o is t r u e - t n e 

model is linear in x\ and x2- In other cases, we may want to ascertain whether a 
single ßj can be deleted. 

For convenience of exposition, let the ß's that are candidates for deletion be re-
arranged to appear last in ß and denote this subset of ß's by ßd, where d reminds 
us that these ß's are to be deleted if H0: ßd = 0 is accepted. Let the subset to be 
retained in the reduced model be denoted by ßr. Thus ß is partitioned into 

Let h designate the number of parameters in ßd. Then there are q +1 — h parameters 
mßr. 
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To test the hypothesis H0: ßd = 0, we fit the full model containing all the ß's 
in ß and then fit the reduced model containing only the ß's in ßr. Let X r be the 
columns of X corresponding to ßr. Then the reduced model can be written as 

y - Xrßr + e, (10.25) 

and ßr = (X^.Xr)_1X^.y. To compare the fit of the full model and the reduced 
model, we calculate 

ρ-'X'y - P\-X;y, (10.26) 

where ß X'y is the regression sum of squares from the full model and ßrX'ry is the 
regression sum of squares for the reduced model. The difference in (10.26) shows 
what ßd contributes "above and beyond" ßr. We can test H0: ßd — 0 with an 
F-statistic: 

p _ (ßX'y-ßrX'ry)/h ( 1 0 2 ? ) 

(y'y - ß X 'y) / (n - g - 1) 
(SSR/ - SSRr)/h _ MSR 
SSE//(n - q - 1) ~~ MSE' 

(10.28) 

where SSR/ = ß X 'y and SSRr = ßrX'ry. T h e F-statistic in (10.27) and (10.28) 
is distributed as Fhin-q-i if H0 is true. We reject H0 if F > Fath^n_q_i. 

The test in (10.27) is easy to carry out in practice. We fit the full model and obtain 
the regression and error sums of squares ß X'y and y 'y — ß X'y, respectively. We 
then fit the reduced model and obtain its regression sum of squares ßrX'ry to be 
subtracted from ß X'y. If a software package gives the regression sum of squares in 
corrected form, this can readily be used to obtain ß X 'y — J3X'ry, since 

p- 'x'y - nf - {ß'rKy ~ ny2) = ß'x'y - ß'rKv· 

Alternatively, we can obtain ß X'y - /3rX'ry as the difference between error sums 
of squares for the two models: 

SSEr - SSE/ = y 'y - ßrX'ry - (y'y - ß'x'y) 

= ßX'y - ßrX'ry. 

A test for an individual ßj above and beyond the other ß's is readily obtained 
using (10.27). To test H0: ßj = 0, we arrange ßj last in ß, 

where ßr = (ß0, ß1,..., ßq-i)' contains all the ß's except ßj. By (10.27), the test 
statistic is 

f=4xV**?v (io-29> 
SSE//(n — q — 1) 
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which is Fi )Tl_q_i. Note that h — I. The test of H0: ßj = 0 made by the F -
statistic in (10.29) is called a partial F-test. A detailed breakdown of the effect of 
each variable in the presence of the others is given by Rencher (1993) and Rencher 
and Schaalje (2008, Section 10.6). 

Since the F-statistic in (10.29) has 1 and n — q — 1 degrees of freedom, it is the 
square of a i-statistic. The ί-statistic equivalent to (10.29) is 

SJ§33 

where gjj is the jth diagonal element of (X'X) 1 and s = y/SSEf/(n — q — 1) 
(Rencher and Schaalje 2008, Section 8.5.1). 

10.2.6 R2 in Fixed-cc Regression 

The proportion of the (corrected) total variation in the y's that can be attributed to 
regression on the x's is denoted by R2: 

2 regression sum of squares 
RA 

total sum ot squares 

(10.30) 
y 'y - ny2 

The ratio R2 is called the coefficient of multiple determination, or more commonly 
the squared multiple correlation. The multiple correlation R is defined as the posi-
tive square root of R2. 

The F-test for overall regression in (10.24) can be expressed in terms of R2 as 

F=n~q-\R2
m. (10.31) 

q 1 - R2 

For the reduced model (10.25), R2 can be written as 

R2
r = PrKy-f, (1032) 

y 'y - ny1 

Then in terms of R2 and R2, the full and reduced model test in (10.27) for 
HQ : ßd = 0 becomes 

(R2~R2
r)/h 

( l - 7 ? 2 ) / ( n - 9 - l ) 

[see (11.36)]. 

(10.33) 

We can express R2 in terms of sample variances, covariances, and correlations: 

— ^-yxiv-xx Lyx> R2= yX XX yX=r'K-Jryx, (10.34) 
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where syy, syx, and Sxx are defined in (10.16) and ryx and R x x are from an analo-
gous partitioning of the sample correlation matrix of y and the x's: 

R 

/ 1 

rlv 

\r, qy 

ryi ry2 

1 ri2 

rqi rq2 

' yi \ 

Πα 

iyx 

i / 

yx 

R i 
(10.35) 

10.2.7 Subset Selection 

In practice, one often has more x's than are needed for predicting y. Some of them 
may be redundant and could be discarded. In addition to logistical motivations for 
deleting variables, there are statistical incentives; for example, if an x is deleted 
from the fitted model, the variances of the ßj's and of the y^'s are reduced. Various 
aspects of model validation are reviewed by Rencher and Schaalje (2008, Section 7.9 
and Chapter 9). 

The two most popular approaches to subset selection are to (1) examine all pos-
sible subsets and (2) use a stepwise technique. We discuss these in the next two 
sections. 

10.2.7a All Possible Subsets 
The optimal approach to subset selection is to examine all possible subsets of the x's. 
This may not be computationally feasible if the sample size and number of variables 
are large. Some programs take advantage of algorithms that find the optimum subset 
of each size without examining all of the subsets [see, for example, Furnival and 
Wilson (1974)]. 

We discuss three criteria for comparing subsets when searching for the best subset. 
To conform with established notation in the literature, the number of variables in a 
subset is denoted by p — 1, so that with the inclusion of an intercept, there are p 
parameters in the model. The corresponding total number of available variables from 
which a subset is to be selected is denoted by k — 1, with k parameters in the model. 

1. Rp. By its definition in (10.30) as the proportion of total (corrected) sum 
of squares accounted for by regression, R2 is clearly a measure of model fit. The 
subscript p is an index of the subset size, since it indicates the number of parameters 
in the model, including an intercept. However, R2 does not reach a maximum for 
any value of p less than k because it cannot decrease when a variable is added to 
the model. The usual procedure is to find the subset with largest R2 for each of 
p = 2 , 3 , . . . , k and then choose a value of p beyond which the increases in R2 

appear to be unimportant. This judgment is, of course, subjective. 
2. s2. Another useful criterion is the variance estimator for each subset as defined 

in (10.8): 
(10.36) 
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For each of p = 2 , 3 , . . . , k, we find the subset with smallest sp. If k is fairly large, 
a typical pattern as p approaches k is for the minimal s2 to decrease to an overall 
minimum less than s\ and then increase. The minimum value of s2 can be less than 
s2 if the decrease in SSEP with an additional variable does not offset the loss of 
a degree of freedom in the denominator. It is often suggested that the researcher 
choose the subset with absolute minimum s2. However, as Hocking (1976, p. 19) 
notes, this procedure may fit some noise unique to the sample and thereby include 
one or more extraneous predictor variables. An alternative suggestion is to choose p 
such that minpsp — s | , or more precisely, choose the smallest value of p such that 
minpsp < s2., since there will not be ap < k such that minpsp is exactly equal to sf,. 

3. Cp. The Cp criterion is due to Mallows (1964, 1973). In the following de-
velopment, we follow Myers (1990, pp. 180-182). The expected squared error, 
E[yi — E{yi)}2, is used in formulating the Cp criterion because it incorporates a 
variance component and a bias component. The goal is to find a model that achieves 
a good balance between the bias and variance of the fitted values, yi. Bias arises 
when the y,· values are based on an incorrect model, in which E{yi) φ E(yi). If y^ 
were based on the correct model, so that E{yi) = E(yi), then E[yi — E(yi)]2 would 
be equal to var(^). In general, however, as we examine many competing models, for 
various values of p, y^ is not based on the correct model, and we have (see Problem 
10.4) 

E[yi - E(yt)}
2 = E[yi - E(yi) + E(yi) - E(yi)}

2 

= E[Vi - E{yt)}
2 + [E(yi) - E(yi)}

2 (10.37) 

= var(yi) + (bias in yxf'. (10.38) 

For a given value of p, the total expected squared error for the n observations in the 
sample, standardized by dividing by σ2, becomes 

^ f > - E(yi)}
2 = ± £ varifc) + ^ f > i a s in Vi)

2. (10.39) 
2 = 1 2 = 1 i=l 

Before defining Cp as an estimate of (10.39), we can achieve some simplification. 
We first show that J2i νΆΤ(ϋί)/σ2 *s equal to p. Let the model for all n observations 
be designated by 

y = XP/3P + ε. 

We assume that, in general, this prospective model is underspecified and that the true 
model (which produces σ2) contains additional /3's and additional columns of the X 
matrix. If we designate the zth row of X p by xp i , then the first term on the right side 
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of (10.39) becomes (see also Problem 10.5) 

1 n 1 n 

^2 Σ Va,"(^) = ^2 Σ Var(X^^P) 
i = l i = l 

= ^ Σ χ ^ [ σ 2 ( χ Ρ χ
Ρ ) _ 1 ] χ ^ [fey (3·70)] 

= t r rXpiXpC, , ) - 1 ^] [by (3.65)] (10.40) 
= t r[(X;X p)" 1X;X p] [by (2.97)] 
= t r ( I p ) = p . (10.41) 

It can be shown (Myers 1990, pp. 178-179) that 

n 

5](bias in Vif = {n- p)E(s2
p - σ2). (10.42) 

Using (10.41) and (10.42), the final simplified form of the (standardized) total ex-
pected squared error in (10.39) is 

1 n 

E(yi)}
2=p+T^E(s2

p-a
2). (10.43) 

In practice, σ2 is usually estimated by s | , the MSE from the full model. We thus 
estimate (10.43) by 

An alternative form is 

Cp=p+{n-p)-^r
!L. (10.44) 

SSF 
Cp = ^ψ- - (n - 2p). (10.45) 

In (10.44), we see that if the bias is small for a particular model, Cp will be close to 
p. For this reason, the line Cp = p is commonly plotted along with the Cp values of 
several candidate models. We look for small values of Cp that are near this line. 

In a Monte Carlo study, Hilton (1983) compared several subset selection criteria 
based on MSEP and Cp. The three best procedures were to choose (1) the subset with 
the smallest p such that Cp < p, (2) the subset with the smallest p such that sp < s\, 
and (3) the subset with minimum sp. The first of these was found to give best results 
overall, with the second method close behind. The third method performed best in 
some cases where k was small. 

10.2.7b Stepwise Selection 
For many data sets, it may be impractical to examine all possible subsets, even with 
an efficient algorithm such as that of Furnival and Wilson (1974). In such cases, we 
can use the familiar stepwise approach, which is widely available and has virtually 
no limit as to the number of variables Or observations. A related stepwise technique 
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was discussed in Sections 6.11.2 and 8.9 in connection with selection of dependent 
variables to separate groups in a MANOVA or discriminant analysis setting. In this 
section, we are concerned with selecting the independent variables (x's) that best 
predict the dependent variable (y) in regression. 

We first review the forward selection procedure, which typically uses an F-test at 
each step. At the first step, y is regressed on each Xj alone and the x with the largest 
F-value is "entered" into the model. At the second step, we search for the variable 
with the largest partial F-value for testing the significance of each variable in the 
presence of the variable first entered. Thus, if we denote the first variable to enter as 
xi, then at the second step we calculate the partial F-statistic 

F = MSR(XJ\XI) 

MSE(XJ,XI) 

for each j φ 1 and choose the variable that maximizes F , where MSR = (SSR/ — 
SSRT.)//iandMSE = SSE^/(ra—g—1) are the mean squares for regression and error, 
respectively, as in (10.28). In this case, SSR/ = SSR(xi, Xj) and SSRr = SSR(xi). 
Note also that h — 1 because only one variable is being added, and MSE is calculated 
using only the variable already entered plus the candidate variable. This procedure 
continues at each step until the largest partial F for an entering variable falls below 
a preselected threshold F-value or until the corresponding p-value exceeds some 
predetermined level. 

The stepwise selection procedure similarly seeks the best variable to enter at each 
step. Then after a variable has entered, each of the variables previously entered is 
examined by a partial F-test to see if it is no longer significant and can be dropped 
from the model. 

The backward elimination procedure begins with all x's in the model and deletes 
one at a time. The partial F-statistic for each variable in the presence of the others 
is calculated, and the variable with smallest F is eliminated. This continues until the 
smallest F at some step exceeds a preselected threshold value. 

Since these sequential methods do not examine all subsets, they will often fail 
to find the optimum subset, especially if k is large. However, Rp, s2, or Cp may 
not differ substantially between the optimum subset and the one found by stepwise 
selection. These sequential methods have been popular for at least a generation, 
and it is very likely they will continue to be used, even though increased computing 
power has put the optimal methods within reach for larger data sets. 

There are some possible risks in the use of stepwise methods. The stepwise proce-
dure may fail to detect a true predictor (an x3 for which ßj φ 0) because sp is biased 
upward in an underspecified model, thus artificially reducing the partial F-value. On 
the other hand, a variable that is not a true predictor of y (an Xj for which ßj = 0) 
may enter because of chance correlations in a particular sample. In the presence of 
such "noise" variables, the partial F-statistic for the entering variable does not have 
an F-distribution because it is maximized at each step. The calculated p-values be-
come optimistic. This problem intensifies when the sample size is relatively small 
compared to the number of variables. Rencher and Pun (1980) found that in such 
cases some surprisingly large values of R2 can occur, even when there is no relation-
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ship between y and the x's in the population. In a related study, Flack and Chang 
(1987) included x's that were authentic contributors as well as noise variables. They 
found that "for most samples, a large percentage of the selected variables is noise, 
particularly when the number of candidate variables is large relative to the number 
of observations. The adjusted R2 of the selected variables is highly inflated" (p. 84). 

10.3 MULTIPLE REGRESSION: RANDOM x's 

In Section 10.2, it was assumed that the x's were fixed and would have the same 
values if another sample were taken; that is, the same X matrix would be used each 
time a y vector was observed. However, many regression applications involve x's 
that are random variables. 

Thus in the random-x case, the values of xi, x2, ■ ■ ■, xq are not under the control 
of the experimenter. They occur randomly along with y. On each subject we observe 
y,Xl,X2:---,Xq. 

If we assume that (y, χ\, X2, . . . , xq) has a multivariate normal distribution, then 
ß, R2, and the F-tests have the same formulation as in the fixed-x case [for details, 
see Rencher (1998, Section 7.3) or Rencher and Schaalje (2008, Section 10.5)]. Thus 
with the multivariate normal assumption, we can proceed with estimation and testing 
the same way in the random-x case as with fixed x's. 

10.4 MULTIVARIATE MULTIPLE REGRESSION: ESTIMATION 

In this section we extend the estimation results of Sections 10.2.2-10.2.4 to the mul-
tivariate y case. We assume the x's are fixed. 

10.4.1 The Multivariate Linear Model 

We turn now to the multivariate multiple regression model, where multivariate refers 
to the dependent variables and multiple pertains to the independent variables. In this 
case, several y's are measured corresponding to each set of x's. Each of y\, y2,..., yp 

is to be predicted by all of 
The n observed values of the vector of y's can be listed as rows in the following 

matrix: 
/ s/n 2/12 · · · yip \ ( y'i \ 

2/21 2/22 · · · 2/2p 
Y = 

y2 

\ 2/nl 2/«2 · · · 2/np / \ Yn J 

Thus each row of Y contains the values of the p dependent variables measured on a 
subject. Each column of Y consists of the n observations on one of the p variables 
and therefore corresponds to the y vector in the (univariate) regression model (10.3). 
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The n values of x\, x2,..., xq can be placed in a matrix that turns out to be the 
same as the X matrix in the multiple regression formulation in Section 10.2.1: 

/ 1 # 1 1 
1 # 2 1 

# 1 2 

£ 2 2 

X\q \ 

# 2 9 

\ 1 # n l # n 2 unq ) 

We assume that X is fixed from sample to sample. 
Since each of the p y's will depend on the x's in its own way, each column of 

Y will need different ß's. Thus we have a column of ß's for each column of Y, 
and these columns form a matrix B = (ß1:ß2, ■ ■ ■, βρ). Our multivariate model is 
therefore 

Y = X B + Ξ, (10.46) 

where Y i s n x p , X i s n x (q + 1), and B is (q + 1) x p. The notation Ξ (the 
uppercase version of £) is adopted here because of its resemblance to e. 

We illustrate the multivariate model with p = 2, q = 3: 

/ 1/11 2/12 ^ 
2/21 2/22 

\ ym Vni ) 

( 1 XU # 1 2 # 1 3 \ 

1 £ 2 i # 2 2 # 2 3 

\ 1 Xnl Xn2 Xn3 j 

( A>1 A>2 \ 
Ä i 
021 

P12 
/ 3 2 2 

/332 / 

+ 

/ £ n £12 \ 

£21 ^22 

\ £ n l ε « 2 / The model for the first column of Y is 

/ y n \ 
2/21 

\ 2/nl / 

/ 1 1 1 1 # 1 2 # 1 3 \ 

1 X21 # 2 2 # 2 3 

\ 1 #ni #«2 xn3 / 

and for the second column, we have 

/ 2/12 \ / 1 # 1 1 # 1 2 # 1 3 \ 

2/22 1 #21 # 2 2 # 2 3 

\ 2/n2 / \ 1 # n l # n 2 # n 3 / 

/ A>1 \ 
/5ll 
021 

\ 0 3 1 / 

/ 002 \ 
012 
022 

V Ä2 y 

+ 

/ ε η \ 
^21 

\ εη1 / 

( el2 \ 

£22 

V £n2 j By analogy with the univariate case in Section 10.2.1, additional assumptions that 
lead to good estimates are as follows: 

1. E(Y) = X B or Ε(Ξ) = O. 

2. cov(yi) = Σ for alH = 1,2,.. . , n, where y^ is the ith row of Y. 

3. cov(yi,yj) = O for all i φ j . 
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Assumption 1 states that the linear model is correct and that no additional x's are 
needed to predict the y's. Assumption 2 asserts that each of the n observation vec-
tors (rows) in Y has the same covariance matrix. Assumption 3 declares that obser-
vation vectors (rows of Y) are uncorrelated with each other. Thus we assume that 
the y's within an observation vector (row of Y) are correlated with each other but 
independent of the Ϊ/'S in any other observation vector. 

The covariance matrix Σ in assumption 2 contains the variances and covariances 
of j/ii, 2/i2, · · · , J/ip in any y»: 

/ σιι σι2 · · · σχρ \ 
C21 θ 2 2 · · · &2p 

cov(yi) = Σ = 

\ Opl CTp2 · · ■ (Tpp / 

The covariance matrix O in assumption 3 contains the covariances of each of yn, 
2/»2, · · ·, Hip with each of yiX ,yj2,..., yjP: 

( cov(j/ii,j/ji) co\{yn,yj2) ■■■ co\(yn,yjp) \ / 0 0 · · · 0 \ 
cov(yi2,yji) cov(yi2,yj2) ··· cov(yi2,yjp) 0 0 · · · 0 

V cov(yip,yji) cov(yip,yj2) ■■■ cov(yip,yjp) ) \ 0 0 · · · 0 / 

To aid in the discussion of properties of multivariate multiple regression, we will 
often choose to consider the multivariate model (10.46) re-expressed in a form that 
is more directly analogous to the univariate model in (10.3). Using Kronecker and 
vec notation and property (2.122) discussed in Section 2.12, we re-write the model 
as 

vec Y = vec X B + vec Ξ 
= (Ip ® X) vec B + vec Ξ 
= Χ*/3* + ε*, (10.47) 

where X* = I p <8> X is a pn x p(q + 1) block-diagonal matrix, β* = vec B is a 
vector of length p(q + 1 ) , and ε* = vec Ξ is a vector of length pn. Note that model 
(10.47) resembles the univariate model presented in (10.3), with vec Y as our vector 
of responses, X* as our full-column-rank matrix of predictors, β* as our vector of 
regression coefficients, and ε* as our vector of random errors. 

10.4.2 Least Squares Estimation in the Multivariate Model 

By analogy with the univariate case in (10.5), we estimate B with 

B = ( X ' X ^ X ' Y . (10.48) 

We call B the least squares estimator for B because it "minimizes" E = Ξ Ξ, a 
matrix analogous to SSE: 

E = Ξ'Ξ = (Y - XB) ' (Y - XB) . 
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The matrix B minimizes E in the following sense. If we let B 0 be an estimate that 
may possibly be better than B and add X B - X B 0 to Y — XB, we find that this 
adds a positive definite matrix to E = (Y - XB)'( Y - XB) (Rencher 1998, Section 
7.4.2). Thus we cannot improve on B. The least squares estimate B also minimizes 
the scalar quantities t r ( Y - X B ) ' ( Y - X B ) and | ( Y - X B ) ' ( Y - X B ) | . Note that 
by (2.98) tr(Y - XB)'(Y - XB) = ΣΓ=ι Σ%=ι 4 · 

We noted earlier that in the model Y = X B + Ξ, there is a column of B cor-
responding to each column of Y; that is, each yj,j = 1,2,... ,p, is predicted dif-
ferently by xi,x2,. ■■ ,xq. (This is illustrated in Section 10.4.1 for p = 2). In 
the estimate B = (X 'X) _ 1 X'Y, we have a similar pattern. The matrix product 
(X 'X) _ 1 X' is multiplied by each column of Y [see (2.48)]. Thus the jth column of 
B is the usual least squares estimate β for the jth dependent variable yj. To give this 
a more precise expression, let us denote the p columns of Y by y^ ) , V(2), · · . , y(p) 
to distinguish them from the n rows y<, i = 1,2,. . . , n, Then 

B = ( X ' X ^ X ' Y = ( X ' X ) - 1 X ' ( y ( 1 ) , y ( 2 ) , . . . , y ( p )) 

= [ ( X ' X ^ X V d ) , (X 'X)- 1 X'y ( 2 ) , · · ·, (X 'XJ-^ 'y^) ] 

= [β{1),β{2),...,β{ρ)}. (10.49) 

■ EXAMPLE 10.4.2 

The results of a planned experiment involving a chemical reaction are given in 
Table 10.1 (Box and Youle 1955). 

The input (independent) variables are 

x\ = temperature, x2 — concentration, £3 = time. 

The yield (dependent) variables are 
y\ — percentage of unchanged starting material, 
i/2 = percentage converted to the desired product, 
?/3 = percentage of unwanted by-product. 

Using (10.48), the least squares estimator B for the regression of (yi ,2/2,2/3) 
on (xi, x2, X3) is given by 

B = ( X ' X ) - 1 X 'Y 
/ 332.11 -26.04 

-1.55 .40 
-1.42 .29 

^ -2.24 1.03 

-164.08 \ 
.91 
.90 

1.15 / 

Note that the first column of B gives β0, βι, β2, βζ for regression of y 1 on x 1, 
x2, £3; the second column of B gives ß0, ß\, ß2, ßz for regression of y2 on χλ, 
x2,X3, and soon. D 
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Table 10.1 Chemical Reaction Data 

Experiment 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2/i 

41.5 
33.8 
27.7 
21.7 
19.9 
15.0 
12.2 
4.3 

19.3 
6.4 

37.6 
18.0 
26.3 
9.9 

25.0 
14.1 
15.2 
15.9 
19.6 

Yield 
Variables 

2/2 

45.9 
53.3 
57.5 
58.8 
60.6 
58.0 
58.6 
52.4 
56.9 
55.4 
46.9 
57.3 
55.0 
58.9 
50.3 
61.1 
62.9 
60.0 
60.6 

2/3 

11.2 
11.2 
12.7 
16.0 
16.2 
22.6 
24.5 
38.0 
21.3 
30.8 
14.7 
22.2 
18.3 
28.0 
22.1 
23.0 
20.7 
22.1 
19.3 

Xl 

162 
162 
162 
162 
172 
172 
172 
172 
167 
177 
157 
167 
167 
167 
167 
177 
177 
160 
160 

Input 
Variables 

X2 

23 
23 
30 
30 
25 
25 
30 
30 
27.5 
27.5 
27.5 
32.5 
22.5 
27.5 
27.5 
20 
20 
34 
34 

X3 

3 
8 
5 
8 
5 
8 
5 
8 
6.5 
6.5 
6.5 
6.5 
6.5 
9.5 
3.5 
6.5 
6.5 
7.5 
7.5 

10.4.3 Properties of Least Squares Estimator B 

The least squares estimator B can be obtained without imposing the assumptions 
E(y) = XB, cov(yi) = Σ , and cov(yi,yj) = O. However, when these assump-
tions hold, B has the following properties: 

1. The estimator B is unbiased, that is, F(B) — B. This means that if we took 
repeated random samples from the same population, the average value of B 
would be B. 

2. All ßjk's in B are correlated with each other. This is due to the correlations 
among the x's and among the y's. The /3's within a given column of B are cor-
related because xi,X2, ■ ■ ■ ,xq are correlated. If x\,X2, ■ ■ ■,xq were orthog-
onal to each other, the /3's within each column of B would be uncorrelated. 
Thus the relationship of the x's to each other affects the relationship of the /3's 
within each column to each other. On the other hand, the /3's in each column 
are correlated with /3's in other columns because j/i, j/2, ■ · ■, ί/p are correlated. 

Because of the correlations among the columns of B, we need multivariate 
tests for hypotheses about B. We cannot use an F-test from Section 10.2.5 
on each column of B, because these F-tests would not take into account the 
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correlations or preserve the α-level. Some appropriate multivariate tests are 
given in Section 10.5. 

The least squares estimators ßjk in B have minimum variance among all pos-
sible linear unbiased estimators. In other words, B is the best linear unbiased 
estimator (BLUE) for B. This result is an extension of the Gauss-Markov 
theorem discussed in Section 10.2.2. The restriction to unbiased estimators is 
necessary to exclude trivial estimators such as a constant, which has variance 
equal to zero, but is of no interest. This minimum variance property of least 
squares estimators is remarkable for its distributional generality; normality of 
the j/'s is not required. Equally remarkable is the fact that the BLUE for B is 
not a function of Σ, the common covariance matrix for the observation vector 
Yi, i = l,2,...,n. 

To demonstrate that the least squares estimator B is the BLUE for B, we 
consider the multivariate multiple regression model (10.46) as written in the 
alternative form in (10.47). The least squares estimator of ß* in (10.47) is 
ß* = (X*'X*)~1X*'vec Y, but it is not readily apparent that ß* is the best 
linear unbiased estimator of ß* because one of the conditions for the Gauss-
Markov theorem does not hold for model (10.47). Specifically, the pn x pn 
covariance matrix for vec Y is not equal to σ21ρη, but rather 

cov(vec Y) = cov 

/ y(D 
y<2> 

\ / C l l ln 
021 I n 

^121« 
σ"22ΐ« 

V y(p) I \ σ ρ ΐ Ι η σρ2Ϊη 

Ι„ = Σ*. 

Clpln 
C2pln 

®ρρ*-η J 

The generalized least squares (GLS) estimator of β* can be obtained by noting 
that there exists a nonsingular pn x pn matrix P such that the positive definite 
covariance matrix Σ* is equal to P P ' . (One such matrix P is the square-
root matrix of Σ*, as described in Section 2.11.8.) Multiplying vec Y = 
X*/3* + ε* by P " \ we obtain the model 

Note that . E ^ P - V 

P _ 1vec Y = P_ 1X*/3* + P " V . 

= Ρ - Ι £ ( ε * ) = 0and 

C O V ( P - V ) = P ^ c o v ^ X P - 1 ) ' 
= p - ^ * ( p - x ) ' 
= p - i p p ' ( p - i ) ' = i 

(10.50) 

pn· 

Thus, the conditions for the Gauss-Markov theorem discussed in Section 10.2.2 
are satisfied for model (10.50), and the least squares estimator 

ß = [{p-1X")'(p-1X*)]-1(p-1X*)'p-1\ecY 
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is BLUE. This estimator can be reduced to the more commonly used form 

ß* = [ X ^ E ^ X ^ - ^ ' E ^ v e c Y (10.51) 

which is called the generalized least squares (GLS) estimator of ß*. However, 
using properties (2.121) - (2.124), we can show that the GLS estimator (10.51) 
can be simplified to the least squares estimator (10.48). That is, 

ß = ( Ι ρ ® Χ ) ' ( Σ ® Ι „ ) - 1 ( Ι ϊ ; 
- ι - l 

( I p ® X ) ' ( E ® I „ ) - 1 v e c Y 

= [ (Σ" 1 ® X') (Ip ® X ) ] _ 1 (Ip ® Χ') ( Σ " 1 ® I n) vec Y 

= [ Σ - 1 ® ( X ' X ) ] _ 1 ( Σ " 1 ® X') vec Y 
= (Σ ® ( X ' X ) ' 1 ) ( Σ - 1 ® X') vec Y 
= (Ip ® ( Χ ' Χ ^ Χ ' ) vecY, 

which implies that by (2.122), the GLS estimator is equivalent to the least 
squares estimator B = ( X ' X ) _ 1 X ' Y from (10.48). Thus, the ordinary least 
squares estimator—which is not a function of Σ—is in fact the BLUE for B . 

4. The covariances among the elements of B can be characterized using the al-
ternative form of the multivariate regression model given in (10.47). The co-
variance matrix for β = vec B is 

cov(/3*) = cov((X*'X*)-1X*'vecY) 

= cov ([(Ip ® X)'(IP ® X) ]" 1 (Ip ® X)'vec Y ) 

- i - « - / I p ® ( X ' X ) _ 1 X ' cov(vecY) Ip ® (X'X) X' 

Ip ® (X 'X)" 1 X'l (Σ ® I„) [ip ® X (X'X 

( X ' X ) _ 1 X ' I n X ( X ' X ) J 

Σ ® (X'X) - 1 (10.52) 

The variances and covariances in cov(/3 ) can be used to calculate standard 
errors for individual partial slopes in β or for linear combinations of the form 
a!ß\ 

10.4.4 An Estimator for Σ 

By analogy with (10.8) and (10.9), an unbiased estimator of cov(yj) = Σ is given 
by 
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E 
n — q — 1 

(Y - XB) ' (Y - XB) 
n — q — 1 

Y ' Y - B 'X 'Y 

(10.53) 

(10.54) 
n — q — 1 

To demonstrate the unbiasedness of Se, we first note that 

E(Y - XB) = E{[ln - X i X ' X j ^ X ' j Y } 

= [I„ - Χ ί Χ ' Χ ^ Χ ' ] Ε{ΧΒ + Ξ) 
= [X - Χ φ ' Χ ^ Χ ' Χ ] B + [I„ - X i X ' X ) - ^ ' ] E(S) 

= [In - X i X ' X ) " 1 ^ ] Ε(Ξ) = O. 

Then, denoting the columns of Y — X B with έ(χ) , . . . , έ(ρ), we can define the ex-
pectation of the (i,j) element of (n — q — l )S e as 

Ε(έ'{ί)έω) = E ({[I„ - X i X ' X ) - 1 ^ ^ ) } ' {[In - X i X ' X j - ^ V ü ) } ) 

= E ({[I„ - XiX'X)-1*^}' {[In - X i X ' X ^ X ' J e ü ) } ) 

= E (V( l)[In - Χ ί Χ ' Χ ) - 1 ^ ] ^ - X ^ ' X ^ X ' ] ^ ) ) 

= E ( £ ' ( i ) [ I n - X ( X ' X ) - 1 X ' ] £ ( i ) ) 

= £ ( t r { [ I f l - X ( X ' X ) - 1 X ' ] e ü ) e ' ( i ) } ) 

= t r{ [ I n -X(X'X)- 1 X']£ ; (e ü ) e ' ( i ) )} 
= ^ t r { [ I „ - X ( X ' X ) - 1 X ' ] } 
= a y [ t r { I „ } - t r { X ' X ( X ' X ) - 1 } ] 
= aij\n-{q+\)}. 

Thus, 

E(Se) = E 
1 (Y - XB) ' (Y - XB) 

n — q — 1 

10.4.5 Model Corrected for Means 

If the x's are centered by subtracting their means, we have the centered X matrix as 
in (10.13), 

X. 

f XU ~Xi X12 -XT. 

X21 - Xl Xl2 - %2 

\ Xn\ - X\ Xn2 - %2 

X2q ^q 

*£nq ^q / 
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The B matrix can be partitioned as 

/ An Ά 

0o 
B1 

02 βθρ \ 

ßu ß-12 

\ Ä7l ßq2 ■■■ 

By analogy with (10.14) and (10.15), the estimates are 

Βχ = ( X ^ X c ) - ^ ^ , 

ßlp 

ß,P ) 

ßo x'Ba, 

(10.55) 

(10.56) 

where y ' = (y1, y2, ■ ■ ■, yp) and x' = (x\, X2,..., xq). These estimates give the 
same results as B = ( X ' X ^ X ' Y in (10.48). 

As in (10.20), the estimate Bi in (10.55) can be expressed in terms of sample 
covariance matrices. We multiply and divide (10.55) by n — 1 to obtain 

B1 = (n-l)(X;xc)- - iXcY XCXC X^Y 
n 1 

c - i o (10.57) 

where S r a and Sxy are blocks from the overall sample covariance matrix of the 
vector (yi,y2,-..,yP,xi,X2,-·-, xqY-

(10.58) 

10.4.6 Estimation in the Seemingly Unrelated Regressions (SUR) 
Model 

In (10.47) we give an alternative version of the multivariate regression model (10.46). 
The alternative version can also be written 

vec Y 

/ y(i) \ 
y (2) 

( X 0 
0 X 

\ 0 0 

Χ*/3*+ε* 

0 \ / ^(D \ / £(D \ 
0 

x / 

ß(2) 

V ß(P) J 
+ 

£ (2) 

V £(P) J 

where β* = vec B. As noted in Section 10.4.2, the estimates of the ßu\ values are 
equivalent to those that would be obtained by running a separate regression for each 
y(j), without having to adjust the estimates with the covariance matrix Σ . That is, 
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even though cov(e*) = Σ®1, the ordinary least squares estimate B = ( X ' X ) " ' X Y 
is the best linear unbiased estimate (BLUE) for B. 

Suppose, however, that the model for each y^j has a potentially unique predictor 
variable matrix Xj of size n x (^ +1) . In this case, we have a set of p seemingly un-
related regressions, except that the responses y* = (yn,..., yipY are measurements 
of the same observational unit with covariance matrix Σ. The seemingly unrelated 
regressions (SUR) model is then: 

vec Y 

/ y(i) \ 

y(2) 

V y(P) J 

/ X i 
0 

0 

X 2 

0 0 
SURoSUR 

0 \ 
0 

ί ßw 

+ 

\ ßlp) ) 

( ε(ι) \ 

£(2) 

V £(Ρ) ) 
V Ö U f i i Q ö ^ i t _ι_ —^ 

In general, the ordinary least squares estimate 

0 
SUR 

/ (XjXO-JXjyd) \ 
(X2X2) X2Y(2) 

V (X^XpJ-^yc,,) ) 

(10.59) 

3SUR is not the BLUE for ß u t l . Following the argument in Section 10.4.3, the generalized 
least squares approach can be used to obtain the BLUE for ß : 

-SUR 
^ b U = [Χ 8 υ * ' (Σ ® ^ " ^ ^ - ^ ^ ( Σ ® I)-1vec Y. (10.60) 

If Σ is not known, an estimate Σ can be calculated by first obtaining the ordinary 
least squares estimate for each y(^: 

ß{l) = ( xpCi ) - 1 ^ ) . 
Next, the errors associated with each of the vectors y^) are estimated using 

έ ( 0 = γ « ) - Χ ^ ( ί ) . (10.61) 

Finally, let the (i,j) element of Σ equal 

(10.62) 1 
y/{n-qi){n-qj) Hi)£U)-

Using Σ, the estimate of ß in (10.60) can be obtained, from which a new estimate of 
Σ in (10.62) can be obtained. The calculations associated with equations (10.60) and 

-SUR 
(10.62) can then be repeated until the estimate β is not changing by a meaningful 
amount. Note that the BLUE in (10.60) reduces to the ordinary least squares estimate 
in (10.59) if (i) Xi = X2 = . . . = Xp , or (ii) the off-diagonal elements of Σ are all 
equal to 0 (i.e., σ^ = 0 for i φ j). 
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10.5 MULTIVARIATE MULTIPLE REGRESSION: HYPOTHESIS TESTS 

In this section we extend the two tests of Section 10.2.5 to the multivariate y case. 
We assume the x's are fixed and the y's are multivariate normal. For other tests and 
confidence intervals, see Rencher (1998, Chapter 7). 

10.5.1 Test of Overall Regression 

We first consider the hypothesis that none of the x's predicts any of the y's, which 
can be expressed as H0: B\ = O, where B x includes all rows of B except the first: 

/ Ä>i A 

B 0Ό 
B1 

Ό2 \ 

Ä1 ß: 12 

\ ßql ß^ 

ßlp 

β,Ρ ) 

We do not wish to include ß'0 = 0' in the hypothesis, because this would restrict 
all y's to have intercepts of zero. The alternative hypothesis is Hi: ϋχ φ 0, which 
implies that we want to know if even one ßjk Φ 0, j = 1,2,. . . , q; k = 1,2,... ,p. 

The numerator of (10.54) suggests a partitioning of the total sum of squares and 
products matrix Y 'Y, 

Y ' Y = (Y'Y - B 'X 'Y) + B 'X 'Y. 

By analogy to (10.23), we subtract ny y' from both sides to avoid inclusion of ß'0 = 
0': 

Y ' Y - ny y ' = (Y'Y - B 'X 'Y) + (B 'X'Y - ny y') 
= E + H. (10.63) 

The overall regression sum of squares and products matrix H = B ' X ' Y — ny y ' 
can be used to test H0: B j = O. The notation E = Y ' Y - B 'X 'Y and H = 
B 'X 'Y — ny y' conforms with usage of E and H in Chapter 6. 

As in Chapter 6, we can test H0 : Bi = O by means of 

Λ 

which is distributed as Λ„ 

IE! l Y ' Y - B ' X ' Y I 
IE + H ΙΥΎ- «yy 

(10.64) 

_q_i when H0: B x = O is true, where p is the number 
of y's and q is the number of x's. We reject Ho if Λ < h-a,p,q,n-q~i- The likelihood 
ratio approach leads to the same test statistic. If H is "large" because of large values 
of the ßjk's, then |E + H| would be expected to be sufficiently greater than |E| so 
that Λ would lead to rejection. By H "large," we mean that the regression sums of 
squares on the diagonal are large. Critical values for Λ are available in Table A.9 
using VH = Q and VE =n — q — \. Note that these degrees of freedom are the same 
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as in the univariate test for regression of y on x\, x2, ■ ■ ■, xq in (10.24). The F- and 
χ2-approximations for A in (6.15) and (6.16) can also be used, or the exact p-values 
described in Section 6.1.3 can be used to evaluate the significance of Λ. 

There are two alternative expressions for Wilks' Λ in (10.64). We can express Λ 
in terms of the eigenvalues λι, λ 2 , . . . , Xs of E _ 1 H : 

Λ = Πϊτν (ΐα65) 
ι=1 

where s = min(p, q). Wilks' Λ can also be written in the form 

A = jnU, (10-66) 
l^xa; || ^yy I 

where S is partitioned as in (10.58): 

S = öyy Oyx 

^xy ^xx 

The form of Λ in (10.66) is the same as in the test for independence of y and x 
given in (7.30), where y and x are both random vectors. In the present section, the 
y's are random variables and the x's are fixed. Thus Syy is the sample covariance 
matrix of the y's in the usual sense, while Sxx consists of an analogous mathematical 
expression involving the constant x's (see comments about Sxx in Section 10.2.4). 

By the symmetry of (10.66) in x and y, A is distributed as Aq,p<n-p-i as well as 
Ap,g,n-g-i· This is equivalent to property 3 in Section 6.1.3. Hence, if we regressed 
the x's on the y's, we would get a different B but would have the same value of Λ 
for the test. 

The union-intersection test of H0: Bi = O uses Roy's test statistic analogous to 
(6.20), 

ö = - r V ' (10.67) 

where λι is the largest eigenvalue of E _ 1 H . Upper percentage points θα are given 
in Table A. 10. The accompanying parameters are 

s = mm(p,q), m = \{\q - p\ - 1), N = \{n-q-p-2). 

The hypothesis is rejected if θ > θα. The exact p-value for Roy's test can also be 
obtained using the approach discussed in Section 10.2.4. 

As in Section 6.1.5, Pillai's test statistic is defined as 

and the Lawley-Hotelling test statistic is given by 
s 

U^ = J2Xi' (10.69) 
i=\ 
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where λι, λ 2 , . . . , As are the eigenvalues of E _ 1 H . For V^s\ upper percentage 
points are found in Table A. 11, indexed by s, m, and n as defined above in con-
nection with Roy's test. Upper percentage points for VEU^JVH (see Section 6.1.5) 
are provided in Table A. 12, where uH — q and vE = n - q — 1. Alternatively, we 
can use the F-approximations or exact tests for V^ and U^ in Section 6.1.5. 

When HQ is true, all four test statistics have probability a of rejecting; that is, 
they all have the same probability of a type I error. When H0 is false, the power 
ranking of the tests depends on the configuration of the population eigenvalues, as 
was noted in Section 6.2. (The sample eigenvalues λι, λ 2 , . . . , Xs from E _ 1 H are 
estimates of the population eigenvalues.) If the population eigenvalues are equal or 
nearly equal, the power ranking of the tests is V^ > Λ > U^ > Θ. If only one 
population eigenvalue is nonzero, the powers are reversed: Θ > U^ > Λ > V<-s\ 

In the case of a single nonzero population eigenvalue, the rank of Bi is 1. There 
are various ways this could occur; for example, Bi could have only one nonzero row, 
which would indicate that only one of the x's predicts the y's. On the other hand, 
a single nonzero column implies that only one of the y's is predicted by the x's. 
Alternatively, B i would have rank 1 if all rows were equal or linear combinations 
of each other, manifesting that all x's act alike in predicting the y's. Similarly, all 
columns equal to each other or linear functions of each other would signify only one 
dimension in the y's as they relate to the x's. 

■ EXAMPLE 10.5.1 

For the chemical data of Table 10.1, we test the overall regression hypothesis 
HQ : Bi = O. The E and H matrices are given by 

E 
80.174 

-21.704 
-65.923 

1707.158 
-492.532 
-996.584 

-21.704 
249.462 

-179.496 

-492.532 
151.002 
283.607 

-65.923 
-179.496 
231.197 

-996.584 
283.607 
583.688 

H = 

The eigenvalues of E _ 1 H are 26.3183, .1004, and .0033. The parameters for 
use in obtaining critical values of the four test statistics are 

VH = q = 3, VE = n - q — 1 — 19 — 3 — 1 = 15, 
s = min(3,3) = 3, m = §(|ς - p\ - 1) = - \ , 

1 N = | ( η - ς - ρ - 2 ) = 5.5. 

Using the eigenvalues, we obtain the test statistics 
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Λ _ Λ i i i i 

AJ-1 + λί 1 + 26.3183 1 + .1004 1 + .0033 

= .0332 < Λ.05,3,3,15 = -309, 
1 .963><9(.05,3,0,5) = .669, 

1 + λι 

V(S) =Έγ^ = L058 > ̂ ,3,0,5 = 1-040, 
i=l 

3 

£/(s) = V λ , = 26.422, UEU" ' = 132.11, 
uEU^ 

which exceeds the .05 critical value, 8.427 (interpolated), from Table A. 12 (see 
Section 6.1.5). Thus all four tests reject HQ. Note that the critical values given 
for Θ and V^ are conservative, since 0 was used in place of —.5 for m. 

In this case, the first eigenvalue, 26.3183, completely dominates the other 
two. In Example 10.4.2, we obtained 

/ -1.55 .40 .91 
Bi = -1.42 .29 .90 

\ -2.24 1.03 1.15 

The columns are approximately proportional to each other, indicating that there 
is essentially only one dimension in the y's as they are predicted by the x's. 
A similar statement can be made about the rows and the dimensionality of the 
x's as they predict the y's. D 

10.5.2 Test on a Subset of the x's 

We consider the hypothesis that the y's do not depend on the last h of the x's, 
xq-h+\,xq-h+2, ■ ■ ■ ,xq- By this we mean that none of the p y's is predicted by 
any of these h x's. To express this hypothesis, write the B matrix in partitioned 
form, 

B r 
B d 

where, as in Section 10.2.5b, the subscript r denotes the subset of ßjk's to be retained 
in the reduced model and d represents the subset of ßjk's to be deleted if they are 
not significant predictors of the y's. Thus B^ has h rows. The hypothesis can be 
expressed as 

H0:Bd = O. 

If X r contains the columns of X corresponding to B r , then the reduced model is 

Y = X r B r + 3 . (10.70) 
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To compare the fit of the full model and the reduced model, we use the differ-
ence between the regression sum of squares and products matrix for the full model, 
B 'X 'Y, and the regression sum of squares and products matrix for the reduced 
model, Β^.Χ'ΓΥ. By analogy to (10.26), this difference becomes our H matrix: 

H = B 'X 'Y - B ; X ; Y . (10.71) 

Thus the test of H0: B^ = O is a full and reduced model test of the significance of 
Xq-h+i,xq-h+2, ■■-,Χη above and beyond xi,x2,..., xg-h-

To make the test, we use the E matrix based on the full model, E = Y ' Y — 
B'X'Y. Then 

E + H = (Y 'Y - B 'X 'Y) + (B 'X 'Y - B ' rX;Y) 

= Y ' Y - B i X l Y , 

and Wilks' Λ-statistic is given by 

A(xq-h+1, . . .,Xq\Xl, . . . , Xq-h) 
|E + H| 
|Y'Y - B'X'Yj 
|Y'Y - B 'X iYI 

(10.72) 

which is distributed as Ap<h,n-q-i when H0: Bd — O is true. Critical values are 
available in Table A.9 with vH — h and vE = n - q - 1. Note that these degrees of 
freedom for the multivariate y case are the same as for the univariate y case (multiple 
regression) in Section 10.2.5b. The F- and χ2-approximations for Λ in (6.15) and 
(6.16) can also be used. 

As implied in the notation A(xq-h+i, ...,xq\x\,... ,xq-h), Wilks' A in (10.72) 
provides a full and reduced model test. We can express it in terms of Λ for the full 
model and a similar Λ for the reduced model. In the denominator of (10.72), we have 
Y ' Y - BJ.XJ.Y, which is the error matrix for the reduced model Y = X r B r + Ξ 
in (10.70). This error matrix could be used in a test for the significance of overall 
regression in the reduced model, as in (10.64), 

| Y ' Y - n y y ' | 

Since Ar in (10.73) has the same denominator as A in (10.64), we recognize (10.72) 
as the ratio of Wilks' A for the overall regression test in the full model to Wilks' A 
for the overall regression test in the reduced model, 
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A ( x 9 - f t + l , . ..,Xq\xi,...,Xq-h) 
]Y'Y - B'X'YI 
| Y ' Y -
|Y 'Y-
|Y'Y 

| Y ' Y -
|Y'Y 

A/ 
Ar' 

BJ.X;Y| 
- B'X'Y| 
- riyy'\ 
B r X r Y| 

- «y y'l 

(10.74) 

where Λ/ is given by (10.64). In (10.74), we have a convenient computational de-
vice. We run the overall regression test for the full model and again for the reduced 
model and take the ratio of the resulting Λ values. 

The Wilks' Λ in (10.74), comparing the full and reduced models, is similar in 
appearance to (6.126). However, in (6.126), the full and reduced models involve 
the dependent variables y\, y2, ■ ■ ■, yp in MANOVA, whereas in (10.74), the reduced 
model is obtained by deleting a subset of the independent variables χχ, x2, ■ ■ ·, xq in 
regression. The parameters of the Wilks' Λ distribution are different in the two cases. 
Note that in (6.126), some of the dependent variables were denoted by x\,..., xq for 
convenience. 

Test statistics due to Roy, Pillai, and Lawley-Hotelling can be obtained from the 
eigenvalues of Ε _ 1 Η = ( Y ' Y - B ' X ' Y ) - 1 ( B ' X ' Y - B ; X ; Y ) . Critical values or 
approximate tests for these three test statistics are based o n ^ = h, vg — n — q — 1, 
and 

s = min(p,h), m = \{\h ~ p\ - 1), N = \{n - p - h - 2). 

EXAMPLE 10.5.2 

The chemical data in Table 10.1 originated from a response surface experiment 
seeking to locate optimum operating conditions. Therefore, a second-order 
model is of interest, and we add x\, x\, x\, X\X2, x\Xz, X2X3 to the variables 
x\, X2, X3 considered in Example 10.5.1. There are now q = 9 independent 
variables, and we obtain an overall Wilks' Λ of 

Λ = .00145 < Λ.05,3,9,9 = -024, 

where VH — q — 9 and VE ~ n — q— 1 = 19 — 9 — 1 = 9 . To see whether the 
six second-order variables add a significant amount to x 1, X2, a;3 for predicting 
the y's, we calculate 

where VH = h = 6 and VE = n — q — 1 = 19 — 9 — 1 = 9 . In this case, 
Ar = .0332 is from Example 10.5.1, in which we considered the model with 
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xi, x2, and χΆ. Thus we reject H0: Bj, — O and conclude that the second-
order terms add significant predictability to the model. D 

10.6 MULTIVARIATE MULTIPLE REGRESSION: PREDICTION 

In this section we consider the problem of predicting the response variables yo asso-
ciated with a known vector of predictor variables xo- Assuming that model (10.46) 
holds, we first consider a confidence interval for the expected value of y 0 given xo 
and then we discuss a prediction interval for a future observation yo based on xo. 

10.6.1 Confidence Interval for E(y0) 

Under model (10.46), the expected value of yo given x 0 = (Ι,χοι,^οι, · · · >#0ς)' is 

E(y0) = £ ( B ' x 0 + e0) = B'x 0 + Ε(ε0) = B 'x 0 . 

To construct a confidence interval for i?(yo), we first need an estimate of the covari-
ance of the error associated with B'x 0 when estimating -E'(yo). Using (10.52) and 
properties (2.121) - (2.123) and (3.68), 

cov(B'x0 - B'x0) = cov(B'xo) 
= cov[(x0 ® Ip)vec B'] 
= ( χ ο ^ Κ Χ ' Χ Γ ^ Σ Κ χ ο Θ ΐ ρ ) 
= [xoCX'X^xo] ® Σ 

= [χ 0 (Χ 'Χ)- 1 χ 0 ]Σ , 

and a useful estimate of cov(B'x0) is 

cov(B'xo) = [xoCX'X^xoJSe, (10.75) 
with Se defined in (10.53). 

The estimated covariance matrix in (10.75) can be used to create a p-dimensional 
confidence region for -E(yo). More commonly, interest is in individual confidence 
intervals for the elements of E(y0). The (i, i) element of cov(B'x0) can be used to 
create a 100(1 — a)% confidence interval for the ith component of E(y0) with 

)9'(i)xo ± f«/2,„-9-i v /s i i[x0(X'X)-1xo] (10.76) 

where β,^ is the ith column of B and su is the ith diagonal element of Se . If 
100(1 — a)% simultaneous confidence intervals for all p components of E(yo) are 
desired without inflating the experimentwise Type I error rate [i.e., the probability 
of obtaining at least one confidence interval that does not contain E(y0i)], then the 
Hotelling's Γ2-based intervals can be used: 

# 0 χ ο ± / r a
2

i P i n _ g „ l S i i [ x 0 ( X ' X ) - i X o ] . (10.77) 
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Although the Γ2-intervals obtained using (10.77) are more conservative than the t-
intervals of (10.76), the probability that at least one of the p confidence intervals does 
not contain E(y0i) is bounded above by a. 

10.6.2 Prediction Interval for a Future Observation y0 

We are often interested in obtaining a range of reasonable values for a future ob-
servation yo associated with xo. Notice that we use the same point estimate for y0 
that we use for E(yo). However, the covariance of the error associated with B'xo 
in estimating yo is different from the error covariance (10.75) that is used when esti-
mating E(y0). Using (10.75) and the independence of εο and y», i = 1 , . . . , n, the 
covariance of the error associated with B'x 0 when predicting E(y0) = B 'x 0 + εο 
is 

cov(B'x0 - [B'xo + eo]) = cov(B'x0 - ε0) 
= cov(B'xo) + cov(e0) 
= [ χ ^ Χ ' Χ ^ χ ο Ι Σ + Σ , 

and a useful estimate of cov(B'x0 — £o) is 

cov(B'xo - ε0) = [1 + x ^ X ' X ^ x o l S e , (10.78) 

with Se defined in (10.53). 
The covariance matrix in (10.78) can be used to construct a p-dimensional pre-

diction region, but similar to inference associated with E(y0), the more common 
inferential procedure associated with the predicted observation yo is a prediction in-
terval for an individual element of y0 . The (i, i) element of c6v(B'x0 — £o) can be 
used to create a 100(1 - a)% prediction interval for the ith component of y0 with 

β'^χο ± ία / 2 ,η_,_ι ^ [ l + X o i X ' X ^ x o ] , (10.79) 

where β^ is the ith column of B and sa is the ith diagonal element of Se . Similar 
to the simultaneous confidence intervals in (10.77), the 100(1 - a)% simultaneous 
prediction intervals for all p components of yo are: 

% x o ± ^ „ . „ . , . ^ ϋ Ι Ι + χ ί , ί Χ ' Χ ) " 1 ^ ] . (10.80) 

■ EXAMPLE 10.6.2 

For the chemical data of Table 10.1, we obtain confidence intervals for the 
three elements of E(y0) and prediction intervals for the three elements of a 
new observation y0 when x0 = (1,160,25,5). The value χό(Χ'Χ) _ 1 χο is 
equal to 0.2386, B 'x 0 = (37.96,51.19,10.40)', the diagonal elements of Se 
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in (10.53) are (5.35,16.63,15.41)', and ta/2,i5 = 2.13. So, using (10.76), the 
confidence intervals for E(y0i), E(y02), and E(y03) are 

(35.55,40.36), 
(46.94,55.43), 

and (6.32,14.49). 

Using (10.79), the prediction intervals for yoi, yo2, and yo3 are 

(32.47,43.44), 
(41.51,60.86), 

and (1.09,19.72). 

D 

10.7 MEASURES OF ASSOCIATION BETWEEN THE y's AND THE x's 

The most widely used measures of association between two sets of variables are the 
canonical correlations, which are treated in Chapter 11. In this section, we review 
other measures of association that have been proposed. 

In (10.34), we have R2 = s'yxSxxsyx/syy for the univariate y case. By analogy, 
we define an i?2-like measure of association between y\, y2, · · ·, yP and x\, x2,..., xq 

as 

R*M = | S ^ . y S ^ 1 , (10.81) 

where S ^ , Sxy, Sxx, and Syy are defined in (10.58) and the subscript M indicates 
multivariate y's. 

By analogy to rxy = sxy/sxsy in (3.13), Robert and Escoufier (1976) suggested 

RV = ^ 8 * » 8 » * ) _ (10.82) 
^(SL) t r (Sy 

Kabe (1985) discussed the generalized correlation determinant 

|L'SXXL||M'SVSM| 

for various choices of the transformation matrices L and M. 
In Section 6.1.8, we introduced several measures of association that quantify 

the amount of relationship between the y's and the dummy grouping variables in 
a MANOVA context. These are even more appropriate here in the multivariate re-
gression setting, where both the x's and the y's are continuous variables. The ü2-like 
indices given in (6.40), (6.42), (6.45), (6.48), and (6.50) range between 0 and 1 and 
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will be briefly reviewed in the remainder of this section. For more complete com-
mentary, see Section 6.1.8. 

The two measures based on Wilks' Λ are 

vl 1 - Λ , 

where s = min(p, q). A measure based on Roy's Θ is provided by Θ itself, 

2 ^ 1 /, 
% = ΤΤλΤ 0 ' 

where λι is the largest eigenvalue of E _ 1 H . This was identified in Section 6.1.8 
as the square of the first canonical correlation (see Chapter 11) between the τ/'s and 
the grouping variables in MANOVA. In the multivariate regression setting, Θ is the 
square of the first canonical correlation, r\, between the τ/'s and the x's. 

Measures of association based on the Lawley-Hotelling and Pillai statistics are 
given by 

A LH — 

AP = 

l + f /W/s ' 

(10.83) 

By (6.47) and (6.48), Ap in (10.83) is the average of the s squared canonical corre-
lations, τ-1,7-2,... ,7-g. 

EXAMPLE 10.7 

We use the chemical data of Table 10.1 to illustrate some measures of associa-
tion. For the three dependent variables 7/1,2/2, and 7/3 and the three independent 
variables x\, x^, and £3, the partitioned covariance matrix is 

yy iJyx 

99.30 
-28.57 
-59.03 
-41.95 

-9.49 
-7.36 

-28.57 
22.25 

5.78 
11.85 
1.60 
3.03 

-59.03 
5.78 

45.27 
24 A4 

6.43 
3.97 

-41.95 
11.85 
24.14 
38.67 

-12.17 
-.22 

-9.49 
1.60 
6.43 

-12.17 
17.95 

1.22 

-7.37 \ 
3.03 
3.97 
-.22 
1.22 
2.67 / V 

from which we obtain R2
M and RV directly using (10.81) and (10.82), 

R2 
M 

RV 

I^Sia^xa; ^>xy\ = .00029, 
Jyy\ 

*-i\^xy &yx 
= .403. 

tr(S|x)tr(S2 ) 
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Using the results in Example 10.5.1, we obtain 

η\ = 1 - Λ = 1 - .0332 = .967, 

AA = 1- Λ1/5 = 1 - Λ1/3 = .679, 

_ U^/s _ 26.422/3 
LH " l + U(')/s ~ 1 + 26.422/3 ~ ' 

S ό 

We have general agreement among η\, A A , η2, and Am. But R2
M, RV, and Ap 

do not appear to be measuring the same level of association, especially R2
M. 

It appears that more study is needed before one or more of these measures can 
be universally recommended. D 

10.8 SUBSET SELECTION 

As in the univariate y case in Section 10.2.7, there may be more potential predictor 
variables (x's) than are useful in a given situation. Some of the x's may be redundant 
in the presence of the other x's. 

We may also be interested in deleting some of the y's if they are not well predicted 
by any of the x's. This would lead to further simplification of the model. 

We present two approaches to subset selection: stepwise procedures and methods 
involving all possible subsets. 

10.8.1 Stepwise Procedures 

Subset selection among the x's is discussed in Section 10.8.1a, followed by selection 
among the y's in Section 10.8.1b. 

10.8.1a Finding a Subset of the x's 
We begin with the forward selection procedure based on Wilks' Λ. At the first step, 
we test the regression of the p y 's on each Xj. There will be two rows in the B matrix, 
a row containing the intercepts and a row corresponding to Xj: 

An A '02 
3 l ßn ß32 · · · ß , 

We use the overall regression test statistic (10.64), 

_ |Y 'Y - Β^-Χ^Υ| 
A{X^ = |Y'Y-nyy'| 
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which is distributed as ΛΡ ι ι„_2 , since B , has two rows and X^ has two columns. 
After calculating A(XJ) for each j , we choose the variable with minimum A(XJ). 

Note that at the first step, we are not testing each variable in the presence of the 
others. We search for the variable Xj that best predicts the p y's by itself, not above 
and beyond the other x's. 

At the second step, we seek the variable yielding the smallest partial A for each x 
adjusted for the variable first entered, where the partial Λ-statistic is given by (10.74). 
After one variable has entered, (10.74) becomes 

A{XUXJ) 
A(xj\x1) = ^ ' \ J ' , (10.84) 

where x\ denotes the variable entered at the first step. We calculate (10.84) for each 
Xj φ x\ and choose the variable that minimizes A(XJ\X\). 

If we denote the second variable to enter by X2, then at the third step we seek the 
Xj that minimizes 

\i i Ϊ A{x1,x2,xi) / Ι Λ Ο < \ 
A(xj\x1,x2) = —- e*-. (10.85) 

A{xl,x2) 
By property 7 in Section 6.1.3, the partial Wilks' Λ-statistic transforms to an exact 
F since UH = h = 1 at each step. 

After m variables have been selected, the partial Λ would have the following form 
at the next step: 

A(xj\xi,x2,...,xm) = —rt Γ- . (10.86) 
A(x-i,x2,...,xm) 

where the first m variables to enter are denoted χχ,χ2,...,xm and Xj is a candi-
date variable from among the q — m remaining variables. At this step, we would 
choose the Xj that minimizes (10.86). The partial Wilks' Λ in (10.86) is distributed 
as A P i i i n _ m - i and, by Table 6.1, transforms to a partial F-statistic distributed as 
Fp,n-m-p- [These distributions hold for a variable Xj chosen before seeing the data 
but not for the Xj that minimizes (10.86) or maximizes the corresponding partial F.] 

The procedure continues, bringing in the "best" variable at each step, until a step is 
reached at which the minimum partial Λ exceeds a predetermined threshold value or, 
equivalently, the associated partial F falls below a preselected value. Alternatively, 
the stopping rule can be cast in terms of the p-value of the partial Λ or F. If the 
smallest p-value at some step exceeds a predetermined value, the procedure stops. 

For each Xj, there corresponds an entire row of the B matrix because Xj has a 
coefficient for each of the p y's. Thus if a certain x significantly predicts even one of 
the y's, it should be retained. 

The stepwise procedure is an extension of forward selection. Each time a variable 
enters, all the variables that have entered previously are checked by a partial Λ or F 
to see if the least "significant" one is now redundant and can be deleted. 

The backward elimination procedure begins with all x's (all rows of B) included 
in the model and deletes one at a time, using a partial Λ or F. At the first step, the 
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partial Λ for each Xj is 

A(XJ\XI, ... ,Xj-i,xj+i,... ,xq) = — q) -, (10.87) 
A(x1,...,xj-1,xj+1,...,xq) 

which is distributed as ΛΡ ι ι ι η- ς_! and can be converted to Fp<n_q_p by Table 6.1. 
The variable with largest Λ or smallest F is deleted. At the second step, a partial 
Λ or F is calculated for each of the q — 1 remaining variables, and again the least 
important variable in the presence of the others is eliminated. This process continues 
until a step is reached at which the largest Λ or smallest F is "significant," indicating 
that the corresponding variable is apparently not redundant in the presence of its 
fellows. Some preselected p-value or threshold value of Λ or F is used to determine 
a stopping rule. 

If no automated program is available for subset selection in the multivariate case, 
a forward selection or backward elimination procedure could be carried out by means 
of a rather simple set of commands based on (10.86) or (10.87). 

A sequential procedure such as stepwise selection will often fail to find the opti-
mum subset, especially if a large pool of predictor variables is involved. However, 
the value of Wilks' Λ found by stepwise selection may not be far from that for the 
optimum subset. 

The remarks in the final paragraph of Section 10.2.7b are pertinent in the mul-
tivariate context as well. True predictors of the y's in the population may be over-
looked because of inflated error variances, or, on the other hand, x's that are not true 
predictors may appear to be so in the sample. The latter problem can be severe for 
small sample sizes (Rencher and Pun 1980). 

10.8.1b Finding a Subset of they's 
After a subset of x's has been found, the researcher may wish to know if these x's, 
predict all p of the t/'s. If some of the y 's do not relate to any of the x's, they could be 
deleted from the model to achieve a further simplification. The y's can be checked for 
redundancy in a manner analogous to the stepwise discriminant approach presented 
in Sections 6.11.2 and 8.9, which finds subsets of dependent variables, using a full 
and reduced model Wilks' Λ for the y's. The partial Λ-statistic for adding or deleting 
a y is similar to (10.84), (10.85), or (10.86), except that dependent variables are 
involved rather than independent variables. Thus to add a y at the third step of 
a forward selection procedure, for example, where the first two variables already 
entered are denoted as y\ and y2, we use (6.127) to obtain 

Α(ϊ / , · |» ι ,»)= A{yum) (10-88) 

for each yj φ y\ or y2, and we choose the yj that minimizes A(yj |yi , y2). [In (6.127) 
the dependent variable of interest was denoted by x instead of yj as here.] 

Similarly, if three y's, designated as yi, y2, and y3, were "in the model" and we 
were checking the feasibility of adding yj, the partial Λ-statistic would be 

A(yM,m^)= A ( } , (10-89) 
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which is distributed as Λ1)9ι„_9_4, where q is the number of x's presently in the 
model and 4 is the number of y's presently in the model. The two Wilks' Λ val-
ues in the numerator and denominator of the right side of (10.89), A(yi, y2,2/3, j/,·) 
and A(y1,2/2,2/3). are obtained from (10.64). Since p = 1, Λιι(?ι„_ς_4 in (10.89) 
transforms to Fg i r a_q_4 (see Table 6.1). 

In the first step of a backward elimination procedure, we would delete the y^ that 
maximizes 

A(yj\yi,...,yj-i,Vj+1,---,VP) = T(
 A f o ' · " ■%>) (10.90) 

Hyi,---,yj-i,yj+i,---,yP) 

which is distributed as A1)t/Ji i i ,E_p+1 . In this case, VH = q and ^ = n — g — 1 so 
that the distribution of (10.90) is Ai i 5 ) n_g_p , which can be transformed to an exact 
F Note that q, the number of x's, may have been reduced in a subset selection on 
the x's as in Section 10.8.1a. Similarly, p is the number of y's and will decrease in 
subsequent steps. 

Stopping rules for either the forward or backward approach could be defined in 
terms of p-values or threshold values of A or the equivalent F. A stepwise procedure 
could be devised as a modification of the forward approach. 

If a software program is available that tests the significance of one x as in (10.87), 
it can be adapted to test one y as in (10.90) by use of property 3 of Section 6.1.3: 
The distribution of AP)1/Jf )1/E is the same as that of KVHtPil/E.+VH-p, which can also 
be seen from the symmetry of A in (10.66), 

I^XXII^TOI 

which is distributed as ΛΡις ι„_ς_ι or equivalently as Λς)Ρι„_ρ_ι. Thus we can re-
verse the y's and x's; we list the x's as dependent variables in the program and 
the y's as independent variables. Then the test of a single y in (10.89) or (10.90) 
can be carried out using (10.87) without any adjustment. The partial A-statistic 
in (10.87) is distributed as AP)i )n_q_i. If we interchange p and q, because the 
y's and x's are interchanged as dependent and independent variables, this becomes 
Λς,ι,η-ρ-ι· By property 3 of Section 6.1.3 (repeated above), this is equivalent to 
Λι,ς,η-p-i+i-g = h-i,q,n-P-q, which is the distribution of (10.90). 

10.8.2 All Possible Subsets 

In Section 10.2.7a, we discussed the criteria Rp, sp, and Cp for comparing all possi-
ble subsets of x's to predict a univariate y in multiple regression, where p—1 denotes 
the number of x's in a subset selected from a pool of k — 1 available independent vari-
ables. We now discuss some matrix analogues of these criteria for the multivariate y 
case, as suggested by Mallows (1973) and Sparks et al. (1983). 

In this section, in order to conform with notation in the literature, we will use p 
for the number of columns in X (and the number of rows in B), rather than for the 
number of y's. The number of y's will be indicated by m. 
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We now extend the three criteria R%, s2, and Cp to analogous matrix expressions 
Rp, Sp , and C p . These can be reduced to scalar form using trace or determinant. 

1. Rp. In the univariate y case, Rz for a (p 
by (10.32) as 

Ri 

Invariable subset of z's is defined 

ny 
y'y ny2 

A direct extension of R2 for the multivariate y case is given by the matrix 

ni ( Y ' Y - n y y T ' C B p X p Y - n y y ' (10.91) 

where p — 1 is the number of x's selected from the k — 1 available x's. To convert 
Rp to scalar form, we can use tr(Rp)/m, in which we divide by m, the number of 
t/'s, so that 0 < tr(Rp)/m < 1. As in the univariate case, we identify the subset 
that maximizes tr(Rp)/m for each value of p = 2 , 3 , . . . , k. The criterion tr(Rp)/m 
does not attain its maximum until p reaches k, but we look for the value of p at 
which further increases are deemed unimportant. We could also use |Rp| in place of 
tr(Rp)/m. 

2. Sp . A direct extension of the univariate criterion sp = MSEP = SSEp/(n — p) 
is provided by 

n — p 
(10.92) 

where E p = Y ' Y - BpXpY. To convert to a scalar, we can use tr(Sp) or |SP | , 
either of which will behave in an analogous fashion to s2 in the univariate case. The 
remarks in Section 10.2.7a apply here as well; one may wish to select the subset with 
minimum value of tr(Sp) or perhaps the subset with smallest p such that tr(Sp) < 
tr(Sfc). A similar application could be made with |SP | . 

3. Cp. To extend the Cp criterion to the multivariate y case, we write the model 
under consideration as 

Y = Χ,ρϋρ + a , 

where p — 1 is the number of z's in the subset and k — 1 is the number of x's in the 
"full model." The predicted values of the y's are given by 

Y = Λ ρ ϋ ρ . 

We are interested in predicted values of the observation vectors, y l 5 y 2 , . . . , y n . 
which are given by the rows of Y: 

/ y ' i \ 
Ύ2 

\y'n I 

/ 4 i \ 
<-p2 

B„ 

V4n / 

/ 4 l B p \ 
Kp2"p 

V XpnBp / 

In general, the predicted vectors y, are biased estimators of E(yi) in the correct 
model, because we are examining many competing models for which E(yi) φ 
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E(yi). In place of the univariate expected squared error in (10.37) and (10.38), 
we define a matrix of expected squares and products of errors, E\yi — E(yi)\ [y-j — 
E{yi)}'■ We then add and subtract E(yi) to obtain (see Problem 10.8) 

E[Yi - E(yz)}{yi - E(yx)}' 

= E[yi - E(yi) + Ε{Ύτ) - E(yi)}[yi - E(yi) + E(yi) - E(yi)}' 

= E[Yl - £?(*)]& - E(yi)]' + [E(yi) - E(yi)][E(yi) - E(yi)]' 

- cov(yi) + (bias in yi)(bias in y^'. (10.93) 

By analogy to (10.39), our C p matrix will be an estimate of the sum of (10.93), 
multiplied by Σ - 1 for standardization. 

We first find an expression for cov(yj), which for convenience we write in row 
form, 

COV(yi) = C O v ( x ^ B p ) = COv(xpißp{1),X.pißp(2), · · · - X p A ( m ) ) ' 

where B = {ßm,ß(2)i ■ ■ ■ iß(m))> a s m (10.49). This can be written as 

/ C l l x p i (XpXp) x pi ' " &lm'X-'pi(yL'pyLp) Xpi \ 
cov(yi) (10.94) 

\ c rmlXpi(XpXp) ~X-pi ·'■ σηχτηΧρί(ΧρΧρ) xpi / 

xpifä-p^-p) x p i ^ , 

where m is the number of y's and Σ = cov(yj) (see Problem 10.9). As in (10.41) 
(see also Problem 10.5), we can sum over the n observations and use (3.65) to obtain 

X>v(#) = ^ Γ χ ^ Χ ρ Γ ^ Σ 
1 = 1 2 = 1 

n 

= Σ Σ 4ί(χρχρ)"1 χρ* = ΡΈ- <1 0 ·9 5> 
i= l 

To sum the second term on the right of (10.93), we have, by analogy to (10.42), 
n 

Σ (bias in yj)(bias in y i ) ' = (n - p)E(Sp - Σ ) , (10.96) 
i= l 

where Sp is given by (10.92). 
Now by (10.95) and (10.96), we can sum (10.93) and multiply by Σ " 1 to obtain 

the matrix of total expected squares and products of error standardized by Σ - 1 , 

i = l 

= Σ - 1 [ ρ Σ + ( η - ρ ) £ ; ( 8 ρ - Σ ) ] 

= p H - ( n - p ) E _ 1 £ ; ( S p - E ) . (10.97) 
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Using Sfc = Efc/(n — k), the sample covariance matrix based on all /c — 1 variables, 
as an estimate of Σ, we can estimate (10.97) by 

C p = p I + ( n - p ) S f c 1 ( S p - S f c ) (10.98) 
= SAT1Ep + ( 2 p - n ) I [by (10.92)], (10.99) 

which is the form suggested by Mallows (1973). We can use tr(Cp) or |CP | to 
reduce this to a scalar. But if 2p — n is negative, |CP | can be negative, and Sparks 
et al. (1983) suggested a modification of |CP | , 

|CP | = | E ^ E P | , (10.100) 

which is always positive. 
To find the optimal subset of x's for each value of p, we could examine all possible 

subsets [or use a computational scheme such as that of Furnival and Wilson (1974)] 
and look for the "smallest" C p matrix for each p. In (10.97), we see that when the 
bias is O, the "population C p " is equal to pi. Thus we seek a C p that is "small" and 
near pi. In terms of trace, we seek tr(Cp) close to pm, where m is the number of y's 
in the vector of measurements; that is, tr(I) = m. 

To find a "target" value for (10.100), we write EAT1EP in terms of C p from 
(10.99), 

! C p + (n - 2p)l 
E * EP = ^Tfc 

When the bias is O, we have C p = pi, and (10.101) becomes 

- i E ~„ ■ v* - ^ ( i a ] 0 1 ) 
κ μ n-k 

Efc1EP = ^ r | l , (10-102) 

whence, by (2.85), 
n — p 

~k 
I E - % 1 = ( f ) . (10.103) 

Thus we seek subsets such that 

In summary, when examining all possible subsets, any or all of the following 
criteria may be useful in finding the single best subset or the best subset for each p: 

tr(R2)/m, \K% tr(Sp), |SP | , tr(Cp), | Ε ^ Ε Ρ | . 

10.9 MULTIVARIATE REGRESSION: RANDOM x's 

In Sections 10.4 and 10.5, it was assumed that the x's were fixed and would have 
the same values in repeated sampling. In many applications, the x's are random 
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variables. In such a case, the values of x\, x2,..., xq are not under the control of 
the experimenter but occur randomly along with y\, y2,..., yp. On each subject, we 
observe p + q values in the vector (t/i, y2, ■.., yp, χι, a;2,..., xq). 

If we assume that (t/i, y2, · ■ ·, yP, x\, %2, ■ ■ ■, xq) has a multivariate normal distri-
bution, then all estimates and tests have the same formulation as in the fixed-a; case 
[for details, see Rencher (1998, Section 7.7)]. Thus there is no essential difference 
in our procedures between the fixed-a; case and the random-a; case. 

PROBLEMS 

10.1 Show that ΣΓ=ι(ϊ& ~ x'iß)2 = (Υ " x ^ ) ' ( y - Xß) as in (10.6). 

10.2 Show that Y,ni=1{yi - μ)2 = ΣΓ=ι(ί/< " V? + <V ~ V? a s i n (10 ·10)· 

10.3 Show that Y™=l{xi2 - x2)y - 0 as in (10.19). 

10.4 Show that E[yi - E(yt)}
2 = E\yi - E(yi)}2 + [Ε{&) - E(yi)}

2 as in (10.37). 

10.5 Show that £ ? = 1 var(yi)/a2 = t r lXpiX^Xp)" 1 ^] as in (10.40). 

10.6 Show that the alternative form of Cp in (10.45) is equal to the original form in 
(10.44). 

10.7 Show that (10.53) is the same as (10.54), that is, (Y - XB) ' (Y - XB) = 
Y ' Y - B 'X 'Y. 

10.8 Show that 

= Efri - EiyMfi ~ E&i)]' + [E(yi) - E(yi)][E(yi) - E(yi)]% 

thus verifying (10.93). 

10.9 Show that cov(y^) has the form given in (10.94). 

10.10 Show that the two forms of C p in (10.98) and (10.99) are equal. 

10.11 Explain why |Ε^"1ΕΡ| > 0, as claimed following (10.100). 

10.12 Show that E^*EP = [Cp + (n - 2p)l]/(n - k), as in (10.101), where C p is 
given in (10.98). 

10.13 Show that if C p = pi, then E ^ E p = [(n - p)/(n - k)]I as in (10.102). 

10.14 One way to show that the ordinary least squares estimate is the best linear 
unbiased estimator (BLUE) is to verify that the condition of Zyskind (1967) 
applies. The Zyskind condition states that for a model y = X/3 + ε with 
Ε{ε) — 0 and cov(e) = V, the ordinary least squares estimate (X 'X)^ 1 X'y 
is BLUE if and only if there exists a matrix Q such that V X = XQ. 
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(a) Use the Zyskind condition to show that the ordinary least squares esti-
mate in (10.59) is BLUE when Xi = X 2 = . . . = X p . [Note that this is 
equivalent to showing that (10.48) is BLUE, because Xi = X 2 = . . . = 
X p implies that model (10.47) holds.] 

(b) Use the Zyskind condition to show that the ordinary least squares esti-
mate (10.59) is BLUE when the off-diagonal elements of Σ are all equal 
to 0 (i.e., ay- = 0 for i φ j). 

10.15 Use the diabetes data of Table 3.5. 

(a) Find the least squares estimate B for the regression of (y\, y2) on (χχ, 
X2, X3)-

(b) Test the significance of overall regression using all four test statistics. 
(c) Determine what the eigenvalues of E~ * H reveal about the essential rank 

of Βχ and the implications of this rank, such as the relative power of the 
four tests. 

(d) Test the significance of each of xi,x2 , and X3 adjusted for the other two 
x's. 

(e) Calculate simultaneous 95% confidence intervals for the elements of 
E(y0) given that x0 = (1,350,200,100)'. 

(f) Calculate simultaneous 95% prediction intervals for the elements of yo 
given that x0 = (1,350,200,100)'. Compare with part (e). 

10.16 Use the sons data of Table 3.8. 

(a) Find the least squares estimate B for the regression of (3/1, y2) on (xi, 
Xi)· 

(b) Test the significance of overall regression using all four test statistics. 
(c) Determine what the eigenvalues of E _ 1 H reveal about the essential rank 

of Bi and the implications of this rank, such as the relative power of the 
four tests. 

(d) Test the significance of xi adjusted for x2 and of x2 adjusted for x\. 

(e) Calculate simultaneous 95% confidence intervals for the elements of 
E(y0) given that x0 = (1,170,140)'. 

(f) Calculate simultaneous 95% prediction intervals for the elements of y 0 
given that x0 = (1,170,140)'. Compare with part (e). 

10.17 Use the glucose data of Table 3.9. 

(a) Find the least squares estimate B for the regression of (yly y2, 2/3) on 
( X l , X 2 , X 3 ) . 

(b) Test the significance of overall regression using all four test statistics. 
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(c) Determine what the eigenvalues of E " 1 ! ! reveal about the essential rank 
of Bi and the implications of this rank, such as the relative power of the 
four tests. 

(d) Test the significance of each of x\, x2, and X3 adjusted for the other two 
x's. 

(e) Test the significance of each y adjusted for the other two by using (10.90). 
(f) Calculate simultaneous 95% confidence intervals for the elements of 

E(y0) given that x 0 = (1,100,100,100)'. 
(g) Calculate simultaneous 95% prediction intervals for the elements of yo 

given that x0 = (1,100,100,100)'. Compare with part (f). 

10.18 Use the Seishu data of Table 7.1. 

(a) Find the least squares estimate B for the regression of (2/1, y2) on (χχ, 
x2, . . . , x%) and test for significance. 

(b) Test the significance of (χγ, x§) adjusted for the other x's. 
(c) Test the significance of (x±, X5, x%) adjusted for the other x's. 
(d) Test the significance of (xi, x2, xz) adjusted for the other x's. 

10.19 Use the Seishu data of Table 7.1. 

(a) Do a stepwise regression to select a subset of xi,X2, · · · ,xs that ade-
quately predicts (yi, y2). 

(b) After selecting a subset of x's, use the methods of Section 10.8.1b to 
check if either of the y's can be deleted. 

10.20 Use the temperature data of Table 7.2. 

(a) Find the least squares estimate B for the regression of (1/4,2/5, 2/e) on (y\, 
2/2,2/3) and test for significance. 

(b) Find the least squares estimate B for the regression of (y7, y8, 2/9) on 
(Hi j · · · > 2/e) and test for significance. 

(c) Find the least squares estimate B for the regression of (2/10, 2/11) on 
(2/1 > · · ·) ?/θ) a nd t e s t f° r significance. 

10.21 Using the temperature data of Table 7.2, carry out a stepwise regression to 
select a subset of 2/1, y2, ■ ■ ■, 2/9 that adequately predicts (2/10,2/11)· 



CHAPTER 11 

CANONICAL CORRELATION 

11.1 INTRODUCTION 

Canonical correlation analysis is concerned with the amount of (linear) relationship 
between two sets of variables. We often measure two types of variables on each 
research unit, for example, a set of aptitude variables and a set of achievement vari-
ables, a set of personality variables and a set of ability measures, a set of price indices 
and a set of production indices, a set of student behaviors and a set of teacher be-
haviors, a set of psychological attributes and a set of physiological attributes, a set of 
ecological variables and a set of environmental variables, a set of academic achieve-
ment variables and a set of measures of job success, a set of closed-book exam scores 
and a set of open-book exam scores, and a set of personality variables of freshmen 
students and the same variables on the same students as seniors. 

11.2 CANONICAL CORRELATIONS AND CANONICAL VARIATES 

We assume that two sets of variables y' = (2/1,2/2, · · · ,Vp) andx' = (si,X2, ■ · ■ ,xq) 
are measured on the same sampling unit. We denote the two sets of variables as y 
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and x to conform to notation in Chapters 3,7, and 10. In Section 7.4.1, we discussed 
the hypothesis that y and x were independent. In this chapter, we consider a measure 
of overall correlation between y and x. 

Canonical correlation is an extension of multiple correlation, which is the corre-
lation between one y and several x's. Canonical correlation analysis is often a useful 
complement to a multivariate regression analysis. 

We first review multiple correlation. The sample covariances and correlations 
among y, x\, X2, . . . , xq can be summarized in the matrices 

s2 s' \ 
7 "* , (11.1) 

where s' = (syi,sy2, ■ ■ ■ ,syq) contains the sample covariances of y with x\, 
x 2 , . . . ,xq and Sxx is the sample covariance matrix of the x's [see(10.16)]. The 
partitioned matrix R is defined analogously; τ' = (ryi,ry2, · · ·, ryq) contains the 
sample correlations of y with χχ,χ2,- ■ ■ ,xq, and R ^ is the sample correlation ma-
trix of the x's [see (10.35)]. 

By (10.34), the squared multiple correlation between y and the x's can be com-
puted from the partitioned covariance matrix (11.1) or correlation matrix (11.2) as 
follows: 

R2 = s^y± = r, B-i ( 1 L 3 ) 

In R2, the q covariances between y and the x's in syx or the q correlations between 
y and the x's in vyx are channeled into a single measure of linear relationship be-
tween y and the x's. The multiple correlation R can be defined alternatively as 
the maximum correlation between y and a linear combination of the x's; that is, 
R = maxbry jb'x· 

We now return to the case of several y's and several x's. The covariance struc-
ture associated with two subvectors y and x was first discussed in Section 3.9.1. 
By (3.42), the overall sample covariance matrix for (y i , . . . , y p , x\,...,xq) can be 
partitioned as 

where S w is the p x p sample covariance matrix of the y's, Syx is the p x q matrix 
of sample covariances between the y's and the x's, and S M is the q x q sample 
covariance matrix of the x's. 

In Section 10.7, we discussed several measures of association between the y's and 
the x's. The first of these is defined in (10.81) as R2

M = | S^^ S~J S^y | /1 Syj/1, which 
is analogous to R2 = s'yxSx^syx/s

2
y in (11.3). By (2.89) and (2.91), R2

M can be 
rewritten as R2

M = I S ^ S j ^ S ^ S z j J . By (2.108), R2
M can be expressed as 
s 

„2 
R-M — \SyySyxSxxSxy\ — 1 1 Ti 
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where s = min(p, q) and r\, r\,... ,r2 are the eigenvalues of S~ySyxS~xSXy. 
When written in this form, R2

M is seen to be a poor measure of association because 
0 < r2 < 1 for all i, and the product will usually be too small to meaningfully reflect 
the amount of association. (In Example 10.7, R2

M = .00029 was a tiny fraction of 
the other measures of association.) The eigenvalues themselves, on the other hand, 
provide meaningful measures of association between the y's and the a-'s. The square 
roots of the eigenvalues, r\, r<i,..., rs, are called canonical correlations. 

The best overall measure of association is the largest squared canonical cor-
relation (maximum eigenvalue) r\ of S~ySyxS~^Sxy, but the other eigenvalues 
(squared canonical correlations) of S~y

l SyxSxx Sxy provide measures of supplemen-
tal dimensions of (linear) relationship between y and x. As an alternative approach, 
it can be shown that r\ is the maximum squared correlation between a linear com-
bination of the y's, u = a'y, and a linear combination of the a;'s, v = b 'x; that 
is, 

r1 =maxr a / y i b ' x - (11.4) 
a,b 

We denote the coefficient vectors that yield the maximum correlation as SL\ and b i . 
Thus 7*1 (the positive square root of r2) is the correlation between U\ = a'jy and v\ = 
bjX. The coefficient vectors ai and bi can be found as eigenvectors, see (11.7) and 
(11.8) below. The linear functions u\ and v\ are called the first canonical variates. 
There are additional canonical variates Ui = a^y and Vi = b^x corresponding to 
r2,r3,...,rs. 

It was noted in Section 2.11.5 that the (nonzero) eigenvalues of A B are the same 
as those of BA as long as AB and BA are square, but that the eigenvectors of 
A B and BA are not the same. If we let A = SyySyX and B = S~^Sxy, then 
r\, r\,...,r2

s can also be obtained from B A = S ^ S ^ S ^ S ^ , as well as from 
A B — S~ySyxS~xSxy. Thus the eigenvalues can be obtained from either of the 
characteristic equations 

I S - J S ^ - j S ^ - r ^ O , (11.5) 
I S ^ S ^ S - ^ S ^ - r ^ l - O . (11.6) 

The coefficient vectors â  and b^ in the canonical variates Ui = a^y and i·, = b^x 
are the eigenvectors of these same two matrices: 

( S ^ S ^ S - J S ^ - T ^ I ^ O , (11.7) 

(S x - iS x y S- y
1 S y x - r 2 I )b = 0. (11.8) 

Thus the two matrices S ^ S ^ S J ^ S ^ and S~xSXyS~ySyx have the same (nonzero) 
eigenvalues, as indicated in (11.5) and (11.6), but different eigenvectors, as in (11.7) 
and (11.8). Since y is p x 1 and x is q x 1, the a^'s are p x 1 and the b, 's are 
q x 1. This can also be seen in the sizes of the matrices in (11.7) and (11.8); that 
is, S ^ S J ^ S ^ S X J , i s p x p and S ^ S ^ S ^ S ^ is q x q. Since p is typically not 
equal to q, the matrix that is larger in size will be singular, and the smaller one will 
be nonsingular. We illustrate forp < q. In this case S ^ S ^ S ^ S ^ has the form 
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xxSxyS ^Syx isp, because Sxaf has rank q and SXJ/S J S ^ Withp < 9, the rank of Sxx _*„_,,„ ~ ̂  ~,., x x , χ„~Βρ 
has rank p. In this case p eigenvalues are nonzero and the remaining q — p eigen-
values are equal to zero. In general, there are s = min(p, q) values of the squared 
canonical correlation r\ with s corresponding pairs of canonical variates Ui = a^y 
and Vi = b^x. For example, if p — 3 and q = 7, there will be three canonical 
correlations, r\, r2, and r3. 

Thus we have s canonical correlations ri,r2, ■ ■ ■ ,rs corresponding to the s pairs 
of canonical variates m and vr. 

n ui = a'jy vi 
r2 u2 = a2y v2 

b'jx 
b 2 x 

a s y = b'„: 

For each i,ri is the (sample) correlation between u^ and VÜ that is, r* = r u m · 
The pairs (it;, Vi), i = 1,2,. . . , s, provide the s dimensions of relationship. For 
simplicity, we would prefer only one dimension of relationship, but this occurs only 
when s = 1, that is, when p — 1 or q = 1. 

The s dimensions of relationship (ui,Vi),i = 1,2,. . . , s, are nonredundant. The 
information each pair provides is unavailable in the other pairs because ui,U2,...,u3 

are uncorrelated. They are not orthogonal because ai , a 2 , . . . , a s are eigenvectors 
of S~ySyXS~^Sxy, which is nonsymmetric. Similarly, each u, is uncorrelated with 
all Vj,j Φ i, except, of course, υ,. 

We examine the elements of the coefficient vectors a, and b^ for the information 
they provide about the contribution of the y's and x's to r;. These coefficients can 
be standardized, as noted in the last paragraph in the present section and in Sec-
tion 11.5.1. 

As noted, the matrix SyySyxS~^Sxy is not symmetric. Many algorithms for 
computation of eigenvalues and eigenvectors accept only symmetric matrices. Since 
S~i S„.T S~} Sxv is the product of the two symmetric matrices S~ 1 °" ' , C ! a _ l t yy a nd SyxSxxSxy 

we can proceed as in (6.23) and work with (U') ^ ^ S ^ S ^ Ü \ where U ' U 
Syy is the Cholesky factorization of Sy 

(u'r S j / z S ^ S . , 
(see Section 2.7). The symmetric matrix 

i« Q- ie buthaseigen-yU 1 has the same eigenvalues as S ySyxSx^Sxy 

vectors Ua^, where aj is given in (11.7). 
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In effect, the pq covariances between the y's and x's in S ^ have been replaced 
by s = min(p, q) canonical correlations. These succinctly summarize the relation-
ships between y and x. In fact, in a typical study, we do not need all s canonical 
correlations. The smallest eigenvalues can be disregarded to achieve even more sim-
plification. As in (8.13) for discriminant functions, we can judge the importance of 
each eigenvalue by its relative size: 

r2 

-a- (H.9) Ts 

The canonical correlations can also be obtained from the partitioned correlation 
matrix of the y's and x's, 

r> _ | "η/y "*yx 

where Hyy is the pxp sample correlation matrix of the y's, R y x is the p x q matrix 
of sample correlations between the y's and the x's, and Rxx is the q x q sample 
correlation matrix of the x's. The matrix R ^ R ^ R ^ R ^ is analogous to R2 — 
r'yxR~xTyX in the univariate y case. The characteristic equations corresponding to 
(11.5) and (11.6), 

I R ^ R ^ R - J R ^ - r 2 I | = 0, (11.10) 

I R ^ R ^ R - ^ R ^ - r 2 I | = 0, (11.11) 

yield the same eigenvalues r\, r | , . · -, r2 as (11.5) and (11.6) (the canonical correla-
tions are scale invariant; see property 1 in Section 11.3). 

If we use the partitioned correlation matrix in place of the covariance matrix in 
(11.7) and (11.8), we obtain the same eigenvalues (squared canonical correlations) 
but different eigenvectors: 

( R ^ R ^ R ^ R , , - r 2I)c = 0, (11.12) 

( R ^ R ^ R - J R ^ - r 2 I )d = 0. (11.13) 

The relationship between the eigenvectors c and d in (11.12) and (11.13) and the 
eigenvectors a and b in (11.7) and (11.8) is 

c = D y a and d = D^b, (11.14) 

where Oy = diag(syi,sy2,...,syp) a n d D x = ding(sXl,sX2,...,sXq). 
The eigenvectors c and d in (11.12), (11.13), and (11.14) are standardized coeffi-

cient vectors. By analogy to (8.15), they would be applied to standardized variables. 
To show this, note that in terms of centered variables y — y, we have 

« - a ' ( y - y ) = a ' D 1 / D ; 1 ( y - y ) 
= c ' D - 1 ( y - y ) [by (11.14)] 

2/1 - 2/i . 2/2 - 2/2 , . VP ~yP Π 1 , ςΛ 
c\ hc2 1 l· cp - . (11.15) 



3 9 0 CANONICAL CORRELATION 

Hence c and d are preferred to a and b for interpretation of the canonical variates u, 
and Vi. 

11.3 PROPERTIES OF CANONICAL CORRELATIONS 

Two interesting properties of canonical correlations are the following [for other prop-
erties, see Rencher (1998, Section 8.3)]: 

1. Canonical correlations are invariant to changes of scale on either the y's or the 
x's. For example, if the measurement scale is changed from inches to centime-
ters, the canonical correlations will not change (the corresponding eigenvec-
tors will change). This property holds for simple and multiple correlations as 
well. 

2. The first canonical correlation r\ is the maximum correlation between linear 
functions of y and x. Therefore, r\ exceeds (the absolute value of) the simple 
correlation between any y and any x or the multiple correlation between any y 
and all the x's or between any x and all the y's. 

■ EXAMPLE 11.3 

For the chemical data of Table 10.1, we obtain the canonical correlations and 
illustrate property 2 above. We consider the extended set of nine x's, as in 
Example 10.5.2. The matrix R ^ of correlations between the y's and the x's is 

2/i 
2/2 
2/3 

X\ 

- .68 
.40 
.58 

X2 

- .22 
.08 
.23 

X3 

- .45 
.39 
.36 

X\X2 

- .41 
.16 
.40 

XlX3 

- . 55 
.44 
.45 

» 2 ^ 3 

- . 45 
.33 
.39 

x\ 
- .68 

.40 

.58 

T2 

x2 - . 23 
.12 
.22 

x\ 
- .42 

.33 

.36 

The three canonical correlations and their squares are 

T-i = .9899 r\ = .9800 

r2 = .9528 r\ = .9078 
r3 = .4625 r\ = .2139. 

From the relative sizes of the squared canonical correlations, we would con-
sider only the first two to be important. A hypothesis test for the significance 
of each is carried out in Example 11.4.2. 

To confirm that property 2 holds in this case, we compare n = .9899 to the 
individual correlations and the multiple correlations. We first note that .9899 
is greater than individual correlations, since (the absolute value of) the largest 
correlation in Ryx is .68. The multiple correlation RVj\x of each jjj with the 
x's is given by 

Ryl]x = .987, i?y2 |x = .921, iZ„3|x = .906, 
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and for the multiple correlation of each x with the y's we have 

^xi|y — ·691> 

'Z ia^ ly ΆοΔ, 

Rxily = .690, 

-"-X-2|y 

" z i Z s l y = 

Rxl\y = 

.237, 

.585, 

.234, 

■^2:31 y 

H-X2X3 |y ~~ 

-R^ly = 

.507, 

.482, 

.466. 

The first canonical correlation rx = .9899 exceeds all multiple correlations, 
and property 2 is satisfied. D 

11.4 TESTS OF SIGNIFICANCE 

In the following two sections we discuss basic tests of significance associated with 
canonical correlations. For other aspects of model validation for canonical correla-
tions and variates, see Rencher (1998, Section 8.5). 

11.4.1 Tests of No Relationship Between the y's and the x's 

In Section 7.4.1, we considered the hypothesis of independence, H0: Έυχ = O. If 
Συχ = O, the covariance of every yi with every Xj is zero, and all corresponding 
correlations are likewise zero. Hence, under i /0 , there is no (linear) relationship 
between the y's and the x's, and HQ is equivalent to the statement that all canonical 
correlations r\, r 2 , . . . , rs are nonsignificant. Furthermore, Ho is equivalent to the 
overall regression hypothesis in Section 10.5.1, Ho: Bi — O, which also relates all 
the y's to all the x's. Thus by (7.30) or (10.66), the significance of r\, r 2 , . . . , rs can 
be tested by 

which is distributed as APtq^n^i^q. We reject H0 if Λι < Aa. Critical values Λα 
are available in Table A.9 using vn = q and vE = n — 1 — q. The statistic Λι in 
(11.16) is also distributed as Λ ς ι Ρ„_ι_ρ . As in (7.31), Λι is expressible in terms of 
the squared canonical correlations: 

s 

Λ ι = Π ( 1 - Γ ' ) - <1U7> 
i = l 

In this form, we can see that if one or more r\ is large, Λχ will be small. We have 
used the notation Λι in (11.16) and (11.17) because in Section 11.4.2 we will define 
Λ2, Λ3 and so on to test the significance of ri and succeeding r / s after the first. 

If the parameters exceed the range of critical values for Wilks' Λ in Table A.9, we 
can use the χ2-approximation in (6.16), 

χ2 = - [ η - | ( ρ + 9 + 3)]1ηΛ1, (11.18) 
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which is approximately distributed as χ2 with pq degrees of freedom. We reject i/o 
if X2 > Χα· Alternatively, we can use the F-approximation given in (6.15): 

Α\/<: dfi 

which has an approximate F-distribution with dfi and df2 degrees of freedom, 
where 

dfi = pq, df2 =wt- \pq + 1, 

w = n-\(p + q + 3), ί = \/ ρ^ςτ 
p2 + q2 — 5 

We reject H0 if F > Fa. When pq — 2,t is set equal to 1. If s = min(p, q) is equal 
to either 1 or 2, then the F-approximation in (11.19) has an exact F-distribution. 
For example, if one of the two sets consists of only two variables, an exact test is 
afforded by the F-approximation in (11.19). In contrast, the %2-approximation in 
(11.18) does not reduce to an exact test for any parameter values. 

The other three multivariate test statistics in Sections 6.1.4, 6.1.5, and 10.5.1 can 
also be used. Pillai's test statistic for the significance of canonical correlations is 

V ( " > = ^ r i
2 . (11.20) 

i = l 

Upper percentage points of V^ are found in Table A. 11, indexed by 

s = min(p,g), m = \{\q - p\ - 1), N = \{n - q - p - 2). 

For F-approximations for V^s\ see Section 6.1.5. 
The Lawley-Hotelling statistic for canonical correlations is 

^=έΑ· ( ΐ ι ·2 ΐ ) 
= 1 

Upper percentage points for vEU^ jvH (see Section 6.1.5) are given in Table A.12, 
which is entered with p, vH — q, and vE = n - q - 1. For F-approximations, see 
Section 6.1.5. 

Roy's largest root statistic is given by 

e = r\. (11.22) 

Upper percentage points are found in Table A. 10, with s, m, and N defined as above 
for Pillai's test. An "upper bound" on F for Roy's test is given in (6.21). Even 
though this "upper bound" is routinely calculated in many software packages, it is 
not a valid approximation. 
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As noted at the beginning of this section, the following three tests are equivalent: 

1. Test of Ho: Έυχ = O, independence of two sets of variables 

2. Test of i?o: Bi = O, significance of overall multivariate multiple regression 

3. Test of significance of the canonical correlations 

Even though these tests are equivalent, we have discussed them separately because 
each has an extension that is different from the others. The respective extensions are 

1. Test of independence of three or more sets of variables (Section 7.4.2) 

2. Test of full vs. reduced model in multivariate multiple regression (Section 
10.5.2) 

3. Test of significance of succeeding canonical correlations after the first (Sec-
tion 11.4.2) 

■ EXAMPLE 11.4.1 

For the chemical data of Table 10.1, with the extended set of nine x's, we 
obtained canonical correlations .9899, .9528, and .4625 in Example 11.3. To 
test the significance of these, we calculate the following four test statistics and 
associated approximate F's. 

Statistic 

Wilks' Λ = .00145 
Pillai's V{s) = 2.10 
Lawley-Hotelling t/ ( s ) 

Roy's Θ = .980 
= 59.03 

Approximate 
F 

6.537 
2.340 

12.388 
48.908 

dfi 

27 
27 
27 
9 

df2 

21.09 
27 
17 
9 

p- Value 
forF 

< .0001 
.0155 

< .0001 
< .0001 

The F-approximation for Roy's test is, of course, an "upper bound." Rejection 
of HQ in these tests implies that at least r\ is significantly different from zero. 
The question of how many rf's are significant is treated in the next section. D 

11.4.2 Test of Significance of Succeeding Canonical Correlations 
After the First 

If the test in (11.17) based on all s canonical correlations rejects H0, we are not sure 
if the canonical correlations beyond the first are significant. To test the significance 
of Γ2, . . . , rs, we delete r\ from Λχ in (11.17) to obtain 

s 

Λ2 = Π ( 1 - Γ ' ) · (1L23> 
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Table 11.1 Tests of Three Canonical Correlations of the Chemical Data 

k 

1 
2 
3 

Afc 

.00145 

.0725 

.786 

Λ.05 

.024 

.069 

.209 

Approximate F 

6.537 
2.714 

.350 

dfi 

27 
16 
7 

df2 

21.1 
16 
9 

p-Value for F 

< .0001 
.0269 
.91 

If this test rejects the hypothesis, we conclude that at least r2 is significantly different 
from zero. We can continue in this manner, testing each r; in turn, until a test fails to 
reject the hypothesis. At the fcth step, the test statistic is 

s 

*-k = Y[(l-r?), (1L24) 

i—k 

which is distributed as Ap„fc+i)<?_fc+in_fc_(? and tests the significance of rfc,rfc+i,..., 
rs. (These test statistics are analogous to those for discriminant functions in Section 
8.6.2.) Note that each parameter is reduced by k - 1 from the parameter values p, q, 
man- 1 - g f o r A i in (11.16) or (11.17). 

The usual χ2- and F-approximations can also be applied to Λ^. The ^-approx-
imation analogous to (11.18) is given by 

x
2 = - [ n - ± ( p + g + 3)]lnAfc, (11.25) 

which has (p - k + l)(q - k + 1) degrees of freedom. The F-approximation for Λ^ 
is a simple modification of (11.19) and the accompanying parameter definitions. In 
place of p, q, and n, we use p — k + l,q — fc+1, and n — k + 1 to obtain 

F l-AJ / fdf2 

AiXt d f l' 
where 

dfj = {p-k+l)(q-k + l), 

di2 = wt-±[(p-k+l)(q-k + l)] + l, 

w = n- l(p + q + 3), 

/ (p - fc+l ) 2 (g - fc + l ) 2 ^ T ~ 
l~ γ (p-k+l)2 + (q-k + l)2-5' 

■ EXAMPLE 11.4.2 

We continue our analysis of the canonical correlations for the chemical data in 
Table 10.1 with three y's and nine x's. The tests are summarized in Table 11.1. 
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In the case of Λ2, we have a discrepancy between the exact Wilks' Λ-test 
and the approximate F-test. The test based on Λ is not significant, while the 
F-test does reach significance. This illustrates the need to check critical values 
for exact tests whenever p-values for approximate tests are close to the nom-
inal value of a. From the test using Λ, we conclude that only n — .9899 is 
significant. The relative sizes of the squared canonical correlations, .980, .908, 
and .214, would indicate two dimensions of relationship, but this is not con-
firmed by the Wilks' test, perhaps because of the small sample size relative to 
the number of variables (p + q = 12 and n = 19). 

To illustrate the computations, we obtain the values in Table 11.1 for k = 2. 
Using (11.24), the computation for Λ2 is 

3 

Λ2 = J | ( l - r2) = (1 - .908)(1 - .214) = .0725. 
i=2 

With k = 2, p = 3, q — 9, and n = 19, the critical value for Λ2 is obtained 
from Table A.9 as 

A.05,p-fc+l,<z-fc-|-l,n-fc-g = Λ. 05,2,8,8 = -069. 

For the approximate F for Λ2, we have 

/ ( 3 - 2 + 1 ) ^ ( 9 - 2 + 1 ) 2 - 4 
Y ( 3 - 2 + 1)2 + (9 - 2 + l ) 2 - 5 ' 

w= 1 9 - | ( 3 + 9 + 3) = 11.5, 
dfi = ( 3 - 2 + l ) ( 9 - 2 + l) = 16, 
df2 = (11.5)(2) - i[(3 - 2 + 1)(9 - 2 + 1)] + 1 = 16, 

1 - ( .0725)^ 16 
(0.725)1/2 16 

D 

11.5 INTERPRETATION 

We now turn to an assessment of the information contained in the canonical correla-
tions and canonical variates. As was done for discriminant functions in Section 8.7, 
a distinction can be made between interpretation of the canonical variates and as-
sessing the contribution of each variable. In the former, the signs of the coefficients 
are considered; in the latter, the signs are ignored and the coefficients are ranked in 
order of absolute value. 

In Sections 11.5.1-11.5.3, we discuss three common tools for interpretation of 
canonical variates: (1) standardized coefficients, (2) the correlation between each 
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variable and the canonical variate, and (3) rotation of the canonical variate coeffi-
cients. The second of these is the most widely recommended, but we note in Sec-
tion 11.5.2 that it is the least useful. In fact, for reasons to be outlined, we recommend 
only the first, standardized coefficients. In Section 11.5.4, we describe redundancy 
analysis and discuss its shortcomings as a measure of association between two sets 
of variables. 

11.5.1 Standardized Coefficients 

The coefficients in the canonical variates m — a^y and vi = b^x reflect differences 
in scaling of the variables as well as differences in contribution of the variables to 
canonical correlation. To remove the effect of scaling, â  and b , can be standard-
ized by multiplying by the standard deviations of the corresponding variables as 
in (11.14): 

Cj = LJy&i, U.i = JJjjbi, 

where D y = diag(s2/1, s y 2 , . . . ,sVp) and Dx = diag{sXl,sX2,... ,sXq). Alterna-
tively, Cj and dj can be obtained directly from (11.12) and (11.13) as eigenvectors 
of R~y

1RyxR~:E
1R;!;y and R~^ R ^ R ^ R ^ , respectively. It was noted at the end 

of Section 11.2 that the coefficients in Cj are applied to standardized variables [see 
(11.15)]. Thus the effect of differences in size or scaling of the variables is removed, 
and the coefficients en, Cj2, · · ·, c,p in c* reflect the relative contribution of each of 
2/i. 2/2, · · ·, J/p to Uj. A similar statement can be made about d,. 

The standardized coefficients show the contribution of the variables in the pres-
ence of each other. Thus if some of the variables are deleted and others added, the 
coefficients will change. This is precisely the behavior we desire from the coeffi-
cients in a multivariate setting. 

■ EXAMPLE 11.5.1 

For the chemical data in Table 10.1 with the extended set of nine x's, we obtain 
the following standardized coefficients for the three canonical variates: 

Vi 

V2 

2/3 

Ci 

1.5360 
.2108 
.4676 

C2 

4.4704 
2.8291 
3.1309 

C3 

5.7961 
2.2280 
5.1442 

X\ 

X2 

X3 

X\X2 

X\X?, 

XlXi 

x\ 
xl 
x\ 

di 

5.0125 
5.8551 
1.6500 

-3.9209 
-2.2968 

.5316 
-2.6655 
-1.2346 

.5703 

d2 
-38.3053 
-17.7390 
-7.9699 
19.2937 
6.4001 
.8096 

32.7933 
-3.3641 

.8733 

d3 
-12.5072 
-24.2290 
-32.7392 
11.6420 
31.2189 
1.2988 
4.8454 
10.7979 
.9706 
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Thus 

U l = 1 . 5 4 ^ ^ 1 + . 2 1 ^ ^ + . 4 7 ^ ^ , 
syi SV2 SV3 

Vl = 5 -Ol^^ i + 5 .86^^^ + · · · + . 5 7 ^ M . 
SX, SX2

 SX% 

The variables that contribute most to the correlation between u\ and v\ are y\ 
and xi, χ-ι, χχχ-ι, x\x$, x\. The correlation between ω2 and υ2 is due largely 
to all three j/'s and xi, x2, x\Xi, x\- Π 

11.5.2 Correlations between Variables and Canonical Variates 

Many writers recommend the additional step of converting the standardized coeffi-
cients to correlations. Thus, for example, in c[ = (en, c i 2 , . . . , c\p), instead of the 
second coefficient c\2 we could examine ry2Ul, the correlation between y2 and the 
first canonical variate u\. Such correlations are sometimes referred to as loadings or 
structure coefficients, and it is widely claimed that they provide a more valid inter-
pretation of the canonical variates. Rencher (1988; 1992b; 1998, Section 8.6.3) has 
shown, however, that a weighted sum of the correlations between yj and the canoni-
cal variates ui,ii2, ■ ■ ■ ,usis equal to B? , , the squared multiple correlation between 
yj and the x's. There is no information about how the y's contribute jointly to canon-
ical correlation with the x's. Therefore, the correlations are useless in gauging the 
importance of a given variable in the context of the others. The researcher who uses 
these correlations for interpretation is unknowingly reducing the multivariate setting 
to a univariate one. 

11.5.3 Rotation 

In an attempt to improve interpretability, the canonical variate coefficients can be 
rotated (see Section 13.5) to increase the number of high and low coefficients and 
reduce the number of intermediate ones. 

We do not recommend rotation of the canonical variate coefficients for two rea-
sons [for proof and further discussion, see Rencher (1992b)]: 

1. Rotation destroys the optimality of the canonical correlations. For example, 
the first canonical correlation is reduced and is no longer equal to max r a ' y b ' x 

a,b 
as in (11.4). 

2. Rotation introduces correlations among succeeding canonical variates. Thus, 
for example, u\ and u2 are correlated after rotation. Hence even though the 
resulting coefficients may offer a subjectively more interpretable pattern, this 
gain is offset by the increased complexity due to interrelationships among the 
canonical variates. For example, U2 and V2 no longer offer a new dimension 
of relationship uncorrelated with ui and υχ. The dimensions now overlap, and 
some of the information in u2 and u2 is already available in u\ and v\. 
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11.5.4 Redundancy Analysis 

The redundancy is a measure of association between the y's and the x's based on the 
correlations between variables and canonical variates discussed in Section 11.5.2. 
Since these correlations provide only univariate information, the redundancy turns 
out to be a univariate rather than a multivariate measure of relationship. If the squared 
multiple correlation of y7- regressed on the x's is denoted by R2 . , then the redun-
dancy of the y's given the v's is the average squared multiple correlation: 

y^p fit 
Rd(y|v) = j = 1 yM. (11.26) 

Similarly, the redundancy of the x's given the u's is the average 

R d ( x | u ) = E j = 1 ^ | y , (11.27) 

where R2
X , is the squared multiple correlation of Xj regressed on the y's. Since 

Rd(y|v) in (11.26) is the average squared multiple correlation of each y, regressed 
on the x's, it does not take into account the correlations among the y's. It is thus 
an average univariate measure of relationship between the y's and the x's, not a 
multivariate measure at all. The two redundancy measures in (11.26) and (11.27) are 
not symmetric; that is, Rd(y|v) φ Rd(x|u). 

Thus the so-called redundancy does not really quantify the redundancy among the 
y's and x's and is, therefore, not a useful measure of association between two sets of 
variables. For a measure of association we recommend r\ itself. 

11.6 RELATIONSHIPS OF CANONICAL CORRELATION ANALYSIS TO 
OTHER MULTIVARIATE TECHNIQUES 

In Section 11.4.1, we noted the equivalence of the test for significance of the canon-
ical correlations and the test for significance of overall regression, Ho: Bj = O. 
Additional relationships between canonical correlation and multivariate regression 
are developed in Section 11.6.1. The relationship of canonical correlation analysis 
to MANOVA and discriminant analysis is discussed in Section 11.6.2. 

11.6.1 Regression 

There is a direct link between canonical variate coefficients and multivariate multiple 
regression coefficients. The matrix of regression coefficients of the y's regressed on 
the x's (corrected for their means) is given in (10.57) as Bi = S ^ S ^ . This matrix 
can be used to relate â  and bj: 

hi = B ^ . (11.28) 
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[Since at and bj are eigenvectors, (11.28) can be written as bj = cBia», where c 
is an arbitrary scale factor.] By (2.67) and (11.28), the canonical variate coefficient 
vector b , is expressible as a linear combination of the columns of B i . A similar 
expression for a; can be obtained from the regression of x on y: at — S~ySyxbi. 

In Section 11.2, canonical correlation was defined as an extension of multiple 
correlation. Correspondingly, canonical correlation reduces to multiple correlation 
when one of the two sets of variables has only one variable. When p = 1, for 
example, RTO becomes 1, and by (11.10), the single squared canonical correlation 
reduces to r2 = r'yxR~xryx, which we recognize from (10.34) as R2. 

The two Wilks test statistics in multivariate regression in Sections 10.5.1 and 
10.5.2, namely, the test for overall regression and the test on a subset of the x's, 
can both be expressed in terms of canonical correlations. By (10.64) and (11.17), the 
test statistic for the overall regression hypothesis Ho: Βχ = O can be written as 

l[(l-r2), (11.30) 
i = l 

where r2 is the zth squared canonical correlation. 
A test statistic for HQ : B^ = O, the hypothesis that the t/'s do not depend on the 

last h of the x's, is given by (10.74) as 

At 
A(xq-h+i,... ,xq\x!,..., Xg-h) = -jr-, (11.31) 

where Λ/ is given in (11.29) and Ar is given in (10.73) as 

| Y ' Y - n y y ' | 

By analogy with (11.30), ΛΓ can be expressed in terms of the squared canonical 
correlations c2, c 2 , . . . , c2 between yi, 1/2, · · · > 2/P and %i, %2, ■ ■ ■, xq-h'-

t 

Ar = I l ( 1 - C < ) ' ( 1 1 3 3 ) 

i = l 

where t = min(p, q — h). We have used the notation c2 instead of r2 to emphasize 
that the canonical correlations in the reduced model differ from those in the full 
model. By (11.30) and (11.33), the full and reduced model test of H0: Bd = O in 
(11.31) can now be expressed in terms of canonical correlations as 

A(xq-h+i,. · ·, xq\xi,. ■ ■,xq-h) = ^ ^ - y-. (11-34) 
n i=i(1-q) 
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If p = 1, as in multiple regression, then s = t = 1, and (11.34) reduces to 

1-R2
f 

Λ = Τ Ί Γ ^ , (11.35) 

where Ri and R2 are the squared multiple correlations for the full model and for 
the reduced model. The distribution of Λ in (11.35) is Aith,n-q-i when H0 is true. 
Since p = 1, there is an exact F-transformation from Table 6.1, 

( l - A ) ( n - g - l ) 
Ah 

which is distributed as Fh,n-q-i when HQ is true. Substitution of Λ = (1 —i??)/(l — 
R2) from (11.35) yields the F-statistic expressed in terms of R2, 

(R2-R2)(n~q-1) 
(1-R2)h 

(11.36) 

as given in (10.33). 
Subset selection in canonical correlation analysis can be handled by the methods 

for multivariate regression given in Section 10.8. A subset of x's can be found by 
the procedure of Section 10.8.1a. After a subset of x's is found, the approach in 
Section 10.8.1b can be used to select a subset of y's. 

Müller (1982) discussed the relationship of canonical correlation analysis to mul-
tivariate regression and principal components. (Principal components are treated in 
Chapter 12.) 

11.6.2 MANOVA and Discriminant Analysis 

In Sections 6.1.8 and 8.4.2, it was noted that in a one-way MANOVA or discriminant 
analysis setting, λ;/(1 + λ*) is equal to r2, where A, is the ith eigenvalue of E _ 1 H 
and r2 is the ith squared canonical correlation between the p dependent variables and 
the k — 1 grouping variables. We now give a justification of this assertion. 

Let the dependent variables be denoted by J/J, y2, ■ ■ ■, yp as usual. We represent 
the k groups by k — 1 dummy variables, x\, x2, · · . , xu-1 > defined for each member of 
the ith group, i < k — 1, as x\ = 0 , . . . , Xi-\ = 0,Xi = 1, Xi+ι = 0 , . . . , Xk-i = 0. 
For the kth group, all x's are zero. (See Section 6.1.8 for an introduction to dummy 
variables.) To illustrate with k = 4, the x's are defined as follows in each group: 

Group xi xi xz 

1 1 0 0 
2 0 1 0 
3 0 0 1 
4 0 0 0 

The MANOVA model is equivalent to multivariate regression of j/i, y2, ■ ■ ■, yp on 
the dummy grouping variables x\, x2, ■ ■ ■, Xk-i- The MANOVA test of H0: μχ = 
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μ2 = ■ · · = μ^ is equivalent to the multivariate regression test of H0: Bi = O, as 
given by (11.17), 

5 

A = l[(l-rf). (11.37) 
i=l 

When we compare this form of Λ to the MANOVA test statistic (6.14), 

*-M. (11.38) 

we obtain the relationships 

^2 = Ϊ Τ λ ? ( 1 L 3 9 ) 

λ ι = - ^ . (11.40) 
1-rf 

To establish this relationship more formally, we write (6.22) as 

H a = AEa, (11.41) 

and (11.7) as 
S - ^ S - i S ^ a = r 2a. (11.42) 

We multiply (11.42) on the left by Syy to obtain 

^yx^xx ^xy**- = r ^yya· (11.43) 

Using the centered matrix X c in (10.14), with an analogous definition for Y c , we 
can write Βχ in the form [see (10.57)] 

■D / XgXC \ X'QYC _ C-IO 
ö i — 1 r I r - ΛχχΆχν 

\n—lj n — 1 
In terms of centered matrices, E = Y ' Y - B 'X 'Y in (10.54) can be written as 

E _ Y c Y c 0 / X'cYc B'r 
n — 1 n — 1 n — 1 

= ^yy ~ SxySxxoxy = Oyj/ — •Syx^xx'^xys (11.44) 

since S'xy = Syx. Similarly, 

(11.45) H _ B i X e
Y c _ Q „ - I , 

n _ l " η _ ι - ^ χ ^ χ ^ -

Since MANOVA is equivalent to multivariate regression on dummy grouping vari-
ables, we can substitute these values of E and H into (11.41) to obtain 

^yX^XX >5xy&- = *[Oyy — JyXOxx 0Xy)3.. (1 1 .40) 
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Subtracting r2SyxSx^Sxya from both sides of (11.43) gives 

r2 

'syx"xx^'xya= T~2 2^W ~ yx xx xy)a· (H-47) 

A comparison of (11.46) and (11.47) shows that 

λ 
1 — r2 

as in (11.40). Lindsey et al. (1985) discussed some advantages of using canonical 
correlation analysis in place of discriminant analysis in the several-group case. 

PROBLEMS 

11.1 Show that the expression for canonical correlations in (11.12) can be obtained 
from the analogous expression in terms of variances and covariances in (11.7). 

11.2 Verify (11.28), b ; = B ^ . 

11.3 Verify (11.35) for Λ when p = s = t = 1. 

11.4 Verify the expression in (11.36) for F in terms of i?2 and i?2. 

11.5 Solve (11.39), r2 = λζ/(1 + A;), for A* to obtain (11.40). 

11.6 Verify (11.46), S^S^S^a - \(Syy - S^S'JS^a. 

11.7 Show that (11.47) can be obtained by subtracting r ^ S ^ S ^ S ^ a from both 
sides of (11.43). 

11.8 Use the diabetes data of Table 3.5. 

(a) Find the canonical correlations between (y\, y^) and [x\, X2, £3). 
(b) Find the standardized coefficients for the canonical variates. 
(c) Test the significance of each canonical correlation. 

11.9 Use the sons data of Table 3.8. 

(a) Find the canonical correlations between (3/1,2/2) ar>d (#i, £2)· 
(b) Find the standardized coefficients for the canonical variates. 
(c) Test the significance of each canonical correlation. 

11.10 Use the glucose data of Table 3.9. 

(a) Find the canonical correlations between [y\, j/2> 2/3) and {x\, x-i, £3). 
(b) Find the standardized coefficients for the canonical variates. 
(c) Test the significance of each canonical correlation. 
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11.11 Use the Seishu data of Table 7.1. 

(a) Find the canonical correlations between (2/1,3/2) and {%i, χ2, ■ ■ ■, xs)-

(b) Find the standardized coefficients for the canonical variates. 
(c) Test the significance of each canonical correlation. 

11.12 Use canonical correlation to carry out the tests in parts (b), (c), and (d) of 
Problem 10.17, using the Seishu data. You will need to find the canonical 
correlations between (2/1, y2) and the x's in the indicated reduced models and 
use (11.34). 

11.13 Using the temperature data of Table 7.2, find the canonical correlations and 
the standardized coefficients and carry out significance tests for the following: 

(a) (2/1,2/2,2/3) and (y4, y5, y6) 

(b) (2/1,2/2,---^e) and (2/7,2/8,2/9) 

(c) (2/1,2/2, •••,2/9) and (2/10,2/11) 
(d) (2/1,2/2, · · ·, ye) and (2/7,2/s, · ■ ·, 2/n)· 



CHAPTER 12 

PRINCIPAL COMPONENT ANALYSIS 

12.1 INTRODUCTION 

In principal component analysis, we seek to maximize the variance of a linear com-
bination of the variables. For example, we might want to rank students on the basis 
of their scores on achievement tests in English, mathematics, reading, and so on. An 
average score would provide a single scale on which to compare the students, but 
with unequal weights we can spread the students out further on the scale and obtain 
a better ranking. 

Essentially, principal component analysis is a one-sample technique applied to 
data with no groupings among the observations as in Chapters 8 and 9 and no parti-
tioning of the variables into subsets y and x as in Chapters 10 and 11. All the linear 
combinations that we have considered previously were related to other variables or 
to the data structure. In regression, we have linear combinations of the independent 
variables that best predict the dependent variable(s); in canonical correlation, we 
have linear combinations of a subset of variables that maximally correlate with lin-
ear combinations of another subset of variables; and discriminant analysis involves 
linear combinations that maximally separate groups of observations. Principal com-
ponents, on the other hand, are concerned only with the core structure of a single 
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sample of observations on p variables. None of the variables is designated as depen-
dent, and no grouping of observations is assumed. [For a discussion of the use of 
principal components with data consisting of several samples or groups, see Rencher 
(1998, Section 9.9)]. 

The first principal component is the linear combination with maximal variance; 
we are essentially searching for a dimension along which the observations are max-
imally separated or spread out. The second principal component is the linear com-
bination with maximal variance in a direction orthogonal to the first principal com-
ponent, and so on. In general, the principal components define dimensions that are 
different from those defined by discriminant functions or canonical variates. 

In some applications, the principal components are an end in themselves and may 
be amenable to interpretation. More often they are obtained for use as input to an-
other analysis. For example, two situations in regression where principal components 
may be useful are (1) if the number of independent variables is large relative to the 
number of observations, a test may be ineffective or even impossible; and (2) if the 
independent variables are highly correlated, the estimates of regression coefficients 
may be unstable. In such cases, the independent variables can be reduced to a smaller 
number of principal components that will yield a better test or more stable estimates 
of the regression coefficients. For details of this application, see Rencher (1998, 
Section 9.8). 

As another illustration, suppose that in a MANOVA application p is close to UE, so 
that a test has low power, or that p > UE, in which case we have so many dependent 
variables that a test cannot be made. In such cases, we can replace the dependent 
variables with a smaller set of principal components and then carry out the test. 

In these illustrations, principal components are used to reduce the number of di-
mensions. A useful dimension reduction device is to evaluate the first two principal 
components for each observation vector and construct a scatterplot to check for mul-
tivariate normality, outliers, and so on. 

Finally, we note that in the term principal components we use the adjective prin-
cipal, describing what kind of components—main, primary, fundamental, major, and 
so on. We do not use the noun principle as a modifier for components. 

12.2 GEOMETRIC AND ALGEBRAIC BASES OF PRINCIPAL 
COMPONENTS 

12.2.1 Geometric Approach 

As noted in Section 12.1, principal components analysis deals with a single sample of 
n observation vectors y i , y2, ■ ■ ·, yn that form a swarm of points in a p-dimensional 
space. Principal component analysis can be applied to any distribution of y, but it 
will be easier to visualize geometrically if the swarm of points is ellipsoidal. 

If the variables y\, t/2, · · ·, yP in y are correlated, the ellipsoidal swarm of points 
is not oriented parallel to any of the axes represented by t/i, t/2, · · ■, yP- We wish to 
find the natural axes of the swarm of points (the axes of the ellipsoid) with origin at 
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y, the mean vector of y i , y 2 , . . . , y„. This is done by translating the origin to y and 
then rotating the axes. After rotation so that the axes become the natural axes of the 
ellipsoid, the new variables (principal components) will be uncorrelated. 

We could indicate the translation of the origin to y by writing y; — y but will not 
usually do so for economy of notation. We will write y» — y when there is an explicit 
need; otherwise we assume that y» has been centered. 

The axes can be rotated by multiplying each y^ by an orthogonal matrix A [see 
(2.101), where the orthogonal matrix was denoted by C]: 

zt = Ay,. (12.1) 

Since A is orthogonal, A 'A = I, and the distance to the origin is unchanged: 

z'iZ.i = ( A y J ' t A y J = y-A'Ay s = y-y, 

[see (2.103)]. Thus an orthogonal matrix transforms y^ to a point z* that is the same 
distance from the origin, and the axes are effectively rotated. 

Finding the axes of the ellipsoid is equivalent to finding the orthogonal matrix A 
that rotates the axes to line up with the natural extensions of the swarm of points so 
that the new variables (principal components) ζχ, Z2,... ,zpinz = Ay are uncorre-
lated. Thus we want the sample covariance matrix of z, S2 = ASA' [see (3.64)], to 
be diagonal, 

/ 

ASA' 

«1 

0 

\ 0 0 

\ 

/ 

(12.2) 

where S is the sample covariance matrix of y i , y 2 , . . . , y n . By (2.111), C 'SC = 
D = diag(Ai, λ 2 , . . . , Ap), where the A,'s are eigenvalues of S and C is an orthog-
onal matrix whose columns are normalized eigenvectors of S. Thus the orthogonal 
matrix A that diagonalizes S is the transpose of the matrix C: 

A = C' 

/ a', \ 

u/ 
(12.3) 

where â  is the ith normalized (a^a^ = 1) eigenvector of S. The principal compo-
nents are the transformed variables z\ = a^y, z2 = a 2 y , . . . ,zp = a py in z = Ay. 
For example, z\ — anyi + aviVi Λ l· «lpj/p-

By (2.111), the diagonal elements of ASA' on the right side of (12.2) are eigen-
values of S. Hence the eigenvalues λι, λ 2 , . . . , Χρ of S are the (sample) variances of 
the principal components Ζχ = a^y: 

Ai (12.4) 
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Since the rotation lines up with the natural extensions of the swarm of points, z\ = 
a'jy has the largest (sample) variance and zp = a^y has the smallest variance. This 
also follows from (12.4), because the variance of z\ is λι, the largest eigenvalue, 
and the variance of zp is λρ, the smallest eigenvalue. If some of the eigenvalues 
are small, we can neglect them and represent the points fairly well with fewer than 
p dimensions. For example, if p = 3 and λ3 is small, then the swarm of points is 
an "elliptical pancake" and a two-dimensional representation will adequately portray 
the configuration of points. 

Because the eigenvalues are variances of the principal components, we can speak 
of "the proportion of variance explained" by the first k components: 

Proportion of variance = λι + λ2 + · · 
λι + λ2 + ■ 
λι +λ 2 + · 

•• + Afc 

ELi s. 
(12.5) 

j=i an 

since Χ^=ι Α« = t r(S) by (2.107). Thus we try to represent the p-dimensional 
points (j/ii,j/i2, · · ·, J/ip) with a few principal components (zn, za, ■ ■ ■, Zik) that ac-
count for a large proportion of the total variance. If a few variables have relatively 
large variances, they will figure disproportionately in V Sjj and in the principal 
components. For example, if s22 is strikingly larger than the other variances, then in 
zx — anyi + a 122/2 H 1" aipVpitne coefficient a i 2 will be large and all other a y 
will be small. 

When a ratio analogous to (12.5) is used for discriminant functions and canonical 
variates [see (8.13) and (11.9)], it is frequently referred to as percent of variance. 
However, in the case of discriminant functions and canonical variates, the eigenval-
ues are not variances, as they are in principal components. 

If the variables are highly correlated, the essential dimensionality is much smaller 
than p. In this case, the first few eigenvalues will be large, and (12.5) will be close to 
1 for a small value of k. On the other hand, if the correlations among the variables are 
all small, the dimensionality is close to p and the eigenvalues will be nearly equal. 
In this case, no useful reduction in dimension is achieved, because the principal 
components essentially duplicate the variables. 

Any two principal components Zi = a^y and Zj = a^y are orthogonal for i φ j , 
that is, a^aj = 0, because aj and a, are eigenvectors of the symmetric matrix S (see 
Section 2.11.6). Principal components also have the secondary property of being 
uncorrelated in the sample [see (12.2) and (3.63)]; that is, the covariance of Zi and 
Zj is zero: 

sZiZj = a-Saj = 0 for ιφ j . (12.6) 

Discriminant functions and canonical variates, on the other hand, have the weaker 
property of being uncorrelated but not the stronger property of orthogonality. Thus 
when we plot the first two discriminant functions or canonical variates on perpendic-
ular coordinate axes, there is some distortion of their true relationship because the 
actual angle between their axes is not 90°. 
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If we change the scale on one or more of the y's, the shape of the swarm of points 
will change, and we will need different components to represent the new points. 
Hence the principal components are not scale invariant. We therefore need to be 
concerned with the units in which the variables are measured. If possible, all vari-
ables should be expressed in the same units. If the variables have widely disparate 
variances, we could standardize them before extracting eigenvalues and eigenvec-
tors. This is equivalent to finding principal components of the correlation matrix R 
and is treated in Section 12.5. 

If one variable has a much greater variance than the other variables, the swarm of 
points will be elongated and will be nearly parallel to the axis corresponding to the 
variable with large variance. The first principal component will largely represent that 
variable, and the other principal components will have negligibly small variances. 
Such principal components (based on S) do not involve the other p—\ variables, and 
we may prefer to analyze the correlation matrix R. 

■ EXAMPLE 12.2.1 

To illustrate principal components as a rotation when p = 2, we use two vari-
ables from the sons data of Table 3.8: y\ is head length and y2 is head width 
for the first son. The mean vector and covariance matrix are 

_ _ / 185.7 \ / 95.29 52.87 \ 

Y~\ 151.1 J ' V 52.87 54.36 ) ' 

The eigenvalues and eigenvectors of S are 

λι = 131.52, λ2 = 18.14, 
ai - (au,a12) = (.825, .565), a2 = (α21,α22) = (-.565, .825). 

The symmetric pattern in the eigenvectors is due to their orthogonality: a'xa2 = 
an<i2i + α ι 2 ο 2 2 = 0. 

The observations are plotted in Figure 12.1, along with the (translated and) 
rotated axes. The major axis is the line passing through y' = (185.7,151.1) 
in the direction determined by a'j = (.825, .565); the slope is o i 2 / o n = 
.565/.825. Alternatively, the equation of the major axis can be obtained by 
setting z2 = 0: 

z2 = 0 = a2i(yi ~yx)+a22{y2 -y2) 

= -.565(yi - 185.7) + .825(y2 - 151.1). 

Note that the line formed by the major axis can be considered to be a regres-
sion line. It is fit to the points so that the perpendicular distance of the points to 
the line is minimized, rather than the usual vertical distance (see Section 12.3). 

D 
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Figure 12.1 Principal component transformation for the sons data. 

12.2.2 Algebraic Approach 

An algebraic approach to principal components can be briefly described as follows. 
As noted in Section 12.1, we seek a linear combination with maximal variance. By 
(3.55), the sample variance of z — a 'y is a'Sa. Since a 'Sa has no maximum if a is 
unrestricted, we seek the maximum of 

A = ? ? 5 . (.2.7, 
a 'a 

By an argument similar to that used in (8.8)—(8.12), the maximum value of λ is given 
by the largest eigenvalue in the expression 

(S - AI)a = 0 (12.8) 

(see Problem 12.1). The eigenvector a! corresponding to the largest eigenvalue λι is 
the coefficient vector in z\ = a^y, the linear combination with maximum variance. 

Unlike discriminant analysis or canonical correlation, there is no inverse involved 
before obtaining eigenvectors for principal components. Therefore, S can be singu-
lar, in which case some of the eigenvalues are zero and can be ignored. A singular S 
would arise, for example, when n < p, that is, when the sample size is less than the 
number of variables. 

This tolerance of principal component analysis for a singular S is important in 
certain research situations. For example, suppose that one has a one-way MANOVA 
with 10 observations in each of three groups and that p = 50, so that there are 50 
variables in each of these 30 observation vectors. A MANOVA test involving E _ 1 H 
cannot be carried out directly in this case because E is singular, but we could reduce 
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the 50 variables to a small number of principal components and then do a MANOVA 
test on the components. The principal components would be based on S obtained 
from the 30 observations (ignoring groups). For entry into the MANOVA program, 
we would evaluate the principal components for each observation vector. If we are 
retaining k components, we calculate 

Zli 
(12.9) 

zki — afcYi 

for i — 1,2,. . . , 30. These are sometimes referred to as component scores. In vector 
form, (12.9) can be rewritten as 

where 
( zu\ 21 

Z2 

Afeyi, 

and Afc 

(12.10) 

\ Zki / 

( ai \ 

\«W 
We then use zi , z 2 , . . . , z30 as input to the MANOVA program. 

Note that in this case with p > n, the k components would not likely be stable; 
that is, they would be different in a new sample. However, this is of no concern here 
because we are using the components only to extract information from the sample at 
hand in order to compare the three groups. 

■ EXAMPLE 12.2.2 

Consider the football data of Table 8.3. In Example 8.8, we saw that high 
school football players (group 1) differed from the other two groups, college 
football players and college-age non-football players. Therefore, to obtain a 
homogeneous group of observations, we delete group 1 and use groups 2 and 
3 combined. The covariance matrix is as follows: 

/ 

V 

.370 

.602 

.149 

.044 

.107 

.209 

.602 
2.629 

.801 

.666 

.103 

.377 

.149 

.801 

.458 

.011 
-.013 

.120 

.044 

.666 

.011 
1.474 
.252 

-.054 

.107 

.103 
- .013 

.252 

.488 
-.036 

.209 \ 

.377 

.120 
-.054 
-.036 

.324 / 

The total variance is 

Σ ^ = Σ Λ ' = 5-743· 
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The eigenvalues of S are as follows: 

Proportion Cumulative 
Eigenvalue of Variance Proportion 

3.323 
1.374 
.476 
.325 
.157 
.088 

.579 

.239 

.083 

.057 

.027 

.015 

.579 

.818 

.901 

.957 

.985 
1.000 

The first two principal components account for 81.8% of the total variance. 
The corresponding eigenvectors are as follows: 

WDIM 
CIRCUM 
FBEYE 
EYEHD 
EARHD 
JAW 

a i 

.207 

.873 

.261 

.326 

.066 

.128 

a2 

-.142 
-.219 
-.231 

.891 

.222 
-.187 

Thus the first two principal components are 

Zl = a iy = .207yi + .873y2 + -261y3 + -326y4 + -066y5 + .128ye, 
Z2 = a2y = -.142yi - .219y2 - .231y3 + -891y4 + -222y5 - .187j/6-

Notice that the large coefficient in z\ and the large coefficient in z2, .873 and 
.891, respectively, correspond to the two largest variances on the diagonal of 
S. The two variables with large variances, y2 and y4, have a notable influence 
on the first two principal components. However, z\ and z2 are still meaningful 
linear functions. If the six variances were closer in size, the six variables would 
enter more evenly into the first two principal components. On the other hand, 
if the variances of y2 and y4 were substantially larger, z\ and z2 would be 
essentially equal to y2 and τ/4, respectively. 

Note that y2 and y3 did not contribute at all when this data set was used to 
separate groups in Examples 8.5, 8.9, 9.3.1, and 9.6(a). However, these two 
variables are very useful here in the first two dimensions showing the spread 
of individual observations. □ 

12.3 PRINCIPAL COMPONENTS AND PERPENDICULAR 
REGRESSION 

It was noted in Section 12.2.1 that principal components constitute a rotation of axes. 
Another geometric property of the line formed by the first principal component is 
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Figure 12.2 
line. 

The first principal component as a perpendicular regression 

that it minimizes the total sum of squared perpendicular distances from the points 
to the line. This is easily demonstrated in the bivariate case. The first principal 
component line is plotted in Figure 12.2 for the first two variables of the sons data, 
as in Example 12.2.1. The perpendicular distance from each point to the line is 
simply z2, the second coordinate in the transformed coordinates (z\,zi). Hence the 
sum of squares of perpendicular distances is 

E 4 = E["i(y<-y)]s (12.11) 
i = l i=l 

where a2 is the second eigenvector of S and we use yi — y because the axes have 
been translated to the new origin y. Since a2(y, — y) = (yi - y) 'a2 , we can write 
(12.11) in the form 

Σz* = Σ&2(^ - y)(y* - y)'a2 

i = l i = l 

= a2 Σ&ί - y)(yi - y)' »2 
_ i 

= (n - l )a 2Sa 2 = (n - 1)λ2 

[by (2.44)] 

[by (3.27)], (12.12) 

which is a minimum [see remarks following (12.4)]. 
For the two variables j/i and 2/2 > as plotted in Figure 12.2, the ordinary regression 

line of y2 on y\ minimizes the sum of squares of vertical distances from the points 
to the line. Similarly, the regression of y\ on y2 minimizes the sum of squares of 
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Figure 12.3 Regression lines compared with first principal component 
(P.C.) line. 

horizontal distances from the points to the line. The first principal component line 
represents a "perpendicular" regression line that lies between the other two. The 
three lines are compared in Figure 12.3 for the partial sons data. The equation of the 
first principal component line is easily obtained by setting Z2 = 0: 

Z2 = a ' 2 ( y - y ) = 0 , 
«2i(yi - j / i ) + 022(2/2 - y2) = 0, 

- .565(yi-y1) + .825( i f t i-y2)=0. 

12.4 PLOTTING OF PRINCIPAL COMPONENTS 

The plots in Figures 12.1 and 12.2 were illustrations of principal components as a 
rotation of axes when p = 2. When p > 2, we can plot the first two components as a 
dimension reduction device. We simply evaluate the first two components (21,22) for 
each observation vector and plot these n points. The plot is equivalent to a projection 
of the p-dimensional data swarm onto the plane that shows the greatest spread of the 
points. 

The plot of the first two components may reveal some important features of the 
data set. In Example 12.4(a), we show a principal component plot that exhibits 
a pattern typical of a sample from a multivariate normal distribution. One of the 
objectives of plotting is to check for departures from normality, such as outliers or 
nonlinearity. In Examples 12.4(b) and 12.4(c), we illustrate principal component 
plots showing a nonnormal pattern characterized by the presence of outliers. Jackson 



PLOTTING OF PRINCIPAL COMPONENTS 4 1 5 

Table 12.1 Principal Components for the Ramus Bone 
Data of Table 3.7 

Eigenvalues 
Number 

1 
2 
3 
4 

Value 

25.05 
1.74 
.22 
.11 

First Two Eigenvectors 
Variable 

AGE 8 
AGE 8.5 
AGE 9 
AGE 9.5 

ai a2 

.474 .592 

.492 .406 

.515 -.304 

.517 -.627 

(1980) provided a test for adequacy of representation of observation vectors in terms 
of principal components. 

Gnanadesikan (1997, p. 308) pointed out that, in general, the first few principal 
components are sensitive to outliers that inflate variances or distort covariances, and 
the last few are sensitive to outliers that introduce artificial dimensions or mask sin-
gularities. We could examine the bivariate plots of at least the first two and the last 
two principal components in a search for outliers that may exert undue influence. 

Devlin et al. (1981) recommended the extraction of principal components from 
robust estimates of S or R that reduce the influence of outliers. Campbell (1980) 
and Ruymgaart (1981) discussed direct robust estimation of principal components. 
Critchley (1985) developed methods for detection of influential observations in prin-
cipal component analysis. 

Another feature of the data that a plot of the first two components may reveal is 
a tendency of the points to cluster. The plot may reveal groupings of points; this is 
illustrated in Example 12.4(d). 

■ EXAMPLE 12.4(a) 

For the modified football data in Example 12.2.2, the first two principal com-
ponents were given as follows: 

Z! = a i y = .207yi + .873y2 + .261y3 + -326y4 + .066y5 + .128ye, 
Z2 = a^y = -.142yi - .219y2 - .231y3 + .891 j / 4 + .222y6 - .187y6. 

These are evaluated for each observation vector and plotted in Figure 12.4. 
(For convenience in scaling, y — y was used in the computations.) The pattern 
is typical ofthat from a multivariate normal distribution. Note that the variance 
along the z\ axis is greater than the variance in the z^ direction, as expected. 

D 

■ EXAMPLE 12.4(b) 

In Figures 4.10 and 4.11, the Q — Q plot and bivariate scatterplots for the ramus 
bone data of Table 3.7 exhibit a nonnormal pattern. A principal component 
analysis using the covariance matrix is given in Table 12.1, and the first two 
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Figure 12.4 Plot of first two components for the modified football data. 

principal components are plotted in Figure 12.5. The presence of three outliers 
that cause a nonnormal pattern is evident. These outliers do not appear when 
the four variables are examined individually. D 

Figure 12.5 First two principal components for the ramus bone data in 
Table 3.7. 
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1st PRINCIPAL COMPONENT 

Figure 12.6 First two principal components for economics data. 

EXAMPLE 12.4(c) 

A rather extreme example of the effect of an outlier is given by Devlin et al. 
(1981). The data set involved p — 14 economic variables for n = 29 chemical 
companies. The first two principal components are plotted in Figure 12.6. 
The sample correlation is indeed zero for all 29 points, as it must be 
[see (12.6)], but if the apparent outlier is excluded from the computation, then 
Γζι22 — -99 for the remaining 28 points. If the outlier were deleted from the 
data set, the axes of the principal components would pass through the natural 
extensions of the data swarm. □ 

EXAMPLE 12.4(d) 

Jeffers (1967) applied principal component analysis to a sample of 40 alate 
adelges (winged aphids) on which the following 19 variables had been mea-
sured: 

LENGTH body length 
WIDTH body width 

FORWING forewing length 
HINWING hindwing length 

SPIRAC number of spiracles 
ANTSEG 1 length of antennal segment I 
ANTSEG 2 length of antennal segment II 
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ANTSEG 3 
ANTSEG 4 
ANTSEG 5 
ANTSPIN 

TARSUS 3 
TIBIA 3 

FEMUR 3 
ROSTRUM 

OVIPOS 
OVSPIN 

FOLD 
HOOKS 

length of antennal segment III 
length of antennal segment IV 
length of antennal segment V 
number of antennal spines 
leg length, tarsus III 
leg length, tibia III 
leg length, femur III 
rostrum 
ovipositor 
number of ovipositor spines 
anal fold 
number of hindwing hooks 

Table 12.2 Correlation Matrix for Winged Aphid Variables (Lower Triangle) 

3/1 
2/2 
2/3 
2/4 
2/5 
2/6 

2/7 
2/8 

2/9 
2/10 

2/u 
2/12 
2/13 
2/14 
2/15 
2/16 
2/17 
2/18 
2/19 

2/ii 
2/12 
2/13 
2/14 
2/15 
2/16 
2/17 
2/18 

2/19 

2/i 
1.000 
.934 
.927 
.909 
.524 
.799 
.854 
.789 
.835 
.845 

-.458 
.917 
.939 
.953 
.895 
.691 
.327 

-.676 
.702 
2/u 

1.000 
-.465 
-.447 
-.439 
-.405 
-.198 
-.032 

.492 
-.425 

2/2 
1.000 
.941 
.944 
.487 
.821 
.865 
.834 
.863 
.878 

-.496 
.942 
.961 
.954 
.899 
.652 
.305 

-.712 
.729 

2/12 
1.000 
.981 
.971 
.908 
.725 
.396 

-.657 
.696 

2/3 
1.000 
.933 
.543 
.856 
.886 
.846 
.862 
.863 

-.522 
.940 
.956 
.946 
.882 
.694 
.356 

-.667 
.746 

2/13 
1.000 
.991 
.920 
.714 
.360 

-.655 
.724 

2/4 
1.000 
.499 
.833 
.889 
.885 
.850 
.881 

-.488 
.945 
.952 
.949 
.908 
.623 
.272 

-.736 
.777 

2/14 
1.000 
.921 
.676 
.298 

-.678 
.731 

2/5 
1.000 
.703 
.719 
.253 
.462 
.567 

-.174 
.516 
.494 
.452 
.551 
.815 
.746 

-.233 
.285 

2/15 
1.000 
.720 
.378 

-.633 
.694 

2/6 
1.000 
.923 
.699 
.752 
.836 

-.317 
.846 
.849 
.823 
.831 
.812 
.553 

-.504 
.499 

2/16 
1.000 
.781 

-.186 
.287 

2/7 

1.000 y8 
.751 1.000 
.793 .745 
.913 .787 

-.383 -.497 
.907 .861 
.914 .876 
.886 .878 
.891 .794 
.855 .410 
.567 .067 

-.502 -.758 
.592 .793 

2/17 
1.000 j/i8 
.169 1.000 
.026 -.775 

2/9 
1.000 
.805 

-.356 
.848 
.877 
.883 
.818 
.620 
.300 

-.666 
.671 

2/io 
1.000 

-.371 
.902 
.901 
.891 
.848 
.712 
.384 

-.629 
.668 

2/19 
1.000 
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Table 12.3 Eigenvalues of the Correlation Matrix of the Winged Aphid 
Data 

Component 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Eigenvalue 

13.861 
2.370 

.748 

.502 

.278 

.266 

.193 

.157 

.140 

.123 

.092 

.074 

.060 

.042 

.036 

.024 

.020 

.011 
.003 

19.000 

Percent of Variance 

73.0 
12.5 
3.9 
2.6 
1.4 
1.4 
1.0 
.8 
.7 
.6 
.4 
.4 
.3 
.2 
.2 
.1 
.1 
.1 
.0 

Cumulative Percent 

73.0 
85.4 
89.4 
92.0 
93.5 
94.9 
95.9 
96.7 
97.4 
98.1 
98.6 
99.0 
99.3 
99.5 
99.7 
99.8 
99.9 

100.0 
100.0 

An objective in the study was to determine the number of distinct taxa 
present in the habitat where the sample was taken. Since adelges are diffi-
cult to identify by the usual taxonomic methods, principal component analysis 
was used to search for groupings among the 40 individuals in the sample. 

The correlation matrix is given in Table 12.2, and the eigenvalues and first 
four eigenvectors are in Tables 12.3 and 12.4, respectively. The eigenvectors 
are scaled so that the largest value in each is 1. The first principal component 
is largely an index of size. The second component is associated with SPIRAC, 
OVIPOS, OVSPIN, and FOLD. 

The first two components were computed for each of the 40 individuals and 
plotted in Figure 12.7. Since the first two components account for 85% of the 
total variance, the plot represents the data with very little distortion. There are 
four major groups, apparently corresponding to species. The groupings form 
an interesting S-shape. □ 

12.5 PRINCIPAL COMPONENTS FROM THE CORRELATION MATRIX 

Generally, extracting components from S rather than R remains closer to the spirit 
and intent of principal component analysis, especially if the components are to be 
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Table 12.4 Eigenvectors for the First Four Com-
ponents of the Winged Aphid Data 

Eigenvectors 

Variable 

LENGTH 
WIDTH 
FORWING 
HINWING 
SPIRAC 
ANTSEG 1 
ANTSEG 2 
ANTSEG 3 
ANTSEG 4 
ANTSEG 5 
ANTSPIN 
TARSUS 3 
TIBIA 3 
FEMUR 3 
ROSTRUM 
OVIPOS 
OVSPIN 
FOLD 
HOOKS 

1 

.96 

.98 

.99 

.98 

.61 

.91 

.96 

.88 

.90 

.94 
- .49 

.99 
1.00 
.99 
.96 
.76 
.41 

- .71 
.76 

2 

- .06 
- .12 
- .06 
- .16 

.74 

.33 

.30 
- .43 
- .08 

.05 

.37 
- .02 
- .05 
- .12 

.02 

.73 
1.00 
.64 

- .52 

3 

.03 

.01 
- .06 

.03 
- .20 

.04 

.00 

.06 

.18 

.11 
1.00 
.03 
.09 
.12 
.08 

- .03 
- .16 

.04 

.06 

4 

- .12 
- .16 
- .11 
- .00 
1.00 
.02 

- .04 
- .18 
- .01 

.03 

.27 
- .29 
- .31 
- .31 
- .06 
- .09 
- .06 
- .80 

.72 

used in further computations. However, in some cases, the principal components 
will be more interpretable if R is used. For example, if the variances differ widely 
or if the measurement units are not commensurate, the components of S will be 
dominated by the variables with large variances. The other variables will contribute 
very little. For a more balanced representation in such cases, components of R may 
be used (see, for example, Problem 12.9). 

As with any change of scale, when the variables are standardized in transforming 
from S to R, the shape of the swarm of points will change. Note, however, that 
after transforming to R, any further changes of scale on the variables would not 
affect the components because changes of scale do not change R. Thus the principal 
components from R are scale invariant. 

To illustrate how the eigenvalues and eigenvectors change when converting from 
S to R, we use a simple bivariate example in which one variance is substantially 
larger than the other. Suppose that S and the corresponding R have the values 

S = ( 4 25 ) ' R = ( .8 1 ) · 

The eigenvalues and eigenvectors from S are 
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Figure 12.7 Plotted values of the first two components for individual 
insects. 

λι = 25.65, ai = (.160, .987), 
λ2 = .35, a2 = (.987, -.160). 

The patterns we see in Äi,Ä2,ai, and a2 are quite predictable. The symmetry in 
a! and a2 is due to their orthogonality, a ia 2 = 0. The large variance of yi in S is 
reflected in the first principal component z\ = .160t/i + .987y2, where y2 is weighted 
heavily. Thus the first principal component z\ essentially duplicates y2 and does not 
show the mutual effect of y\ and y2. As expected, z\ accounts for virtually all of the 
total variance: 

λι 25.65 
λι + λ2 26 

The eigenvalues and eigenvectors of R are 

= .9865. 

\x = 1.8, ai = (.707,-707), 
λ2 = .2, a2 = (.707,-.707). 

The first principal component of R, 

2l = .707^ΖΪ! + . 707^A 
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accounts for a high proportion of variance, 

Ax 1. 
= .9, 

λι + λ2 2 
because the variables are fairly highly correlated (r = .8). But the standardized 
variables (j/i — j / i ) / l and (y2 — 2/2)/^ are equally weighted in zj, due to the equality 
of the diagonal elements ("variances") of R. 

We now list some general comparisons of principal components from R with 
those from S: 

1. The percent of variance in (12.5) accounted for by the components of R will 
differ from the percent for S, as illustrated above. 

2. The coefficients of the principal components from R differ from those ob-
tained from S, as illustrated above. 

3. If we express the components from R in terms of the original variables, they 
still will not agree with the components from S. By transforming the stan-
dardized variables back to the original variables in the above illustration, the 
components of R become 

1 5 
= .707yi + .141j/2 + const, 

z2 = .707^ ~Vl - , 7 0 7 y 2 ~ ^ 2 

1 5 
= .7072/1 - .141J/2 + const. 

As expected, these are very different from the components extracted directly 
from S. This problem arises, of course, because of the lack of scale invariance 
of the components of S. 

4. The principal components from R are scale invariant, because R itself is scale 
invariant. 

5. The components from a given matrix R are not unique to that R. For example, 
in the bivariate case, the eigenvalues of 

R = ( 1 : 
\ r 1 

are given by 
Ai = l + r , A2 = l - r , (12.13) 

and the eigenvectors are ai = (.707, .707) and a2 = (.707, -.707), which 
give principal components 

z-i = .707y i ~ Vl + , 7 0 7 y 2 ~ ^ 2 , 
S l _ S 2 _ (12.14) 

Sl S2 
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The components in (12.14) do not depend on r. For example, they serve 
equally well for r = .01 and for r = .99. For r = .01, the proportion of 
variance explained by z\ is λ ι / (λ ι + λ2) = (1 + ·01)/(1 + .01 + 1 - .01) = 
1.01/2 = .505. For r = .99, the ratio is 1.99/2 = .995. Thus the statement 
that the first component from a correlation matrix accounts for, say, 90% of 
the variance is not very meaningful. In general, for p > 2, the components 
from R depend only on the ratios (relative values) of the correlations, not on 
their actual values, and components of a given R matrix will serve for other 
R matrices [see Rencher (1998, Section 9.4)]. 

12.6 DECIDING HOW MANY COMPONENTS TO RETAIN 

In every application, a decision must be made on how many principal components 
should be retained in order to effectively summarize the data. The following guide-
lines have been proposed: 

1. Retain sufficient components to account for a specified percentage of the total 
variance, say 80%. 

2. Retain the components whose eigenvalues are greater than the average of the 
eigenvalues, 2~Zf=i ^i/P- F° r a correlation matrix, this average is 1. 

3. Use the scree graph, a plot of λ* versus i, and look for a natural break between 
the "large" eigenvalues and the "small" eigenvalues. 

4. Test the significance of the "larger" components, that is, the components cor-
responding to the larger eigenvalues. 

We now discuss the above four criteria for choosing the components to keep. 
Note, however, that the smallest components may carry valuable information that 
should not be routinely ignored (see Section 12.7). 

In method 1, the challenge lies in selecting an appropriate threshold percentage. 
If we aim too high, we run the risk of including components that are either sample 
specific or variable specific. By sample specific we mean that a component may 
not generalize to the population or to other samples. A variable specific component 
is dominated by a single variable and does not represent a composite summary of 
several variables. 

Method 2 is widely used and is the default in many software packages. By (2.107), 
Σί λί = tr(S), and the average eigenvalue is also the average variance of the indi-
vidual variables. Thus method 2 retains those components that account for more 
variance than the average variance of the variables. In cases where the data can be 
successfully summarized in a relatively small number of dimensions, there is often 
a wide gap between the two eigenvalues that fall on both sides of the average. In 
Example 12.2.2, the average eigenvalue (of S) for the football data is .957, which is 
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Figure 12.8 Scree graph for eigenvalues of modified football data. 

amply bracketed by \2 = 137 and X$ — .48. In the winged aphid data in Exam-
ple 12.4(d), the second and third eigenvalues (of R) are 2.370 and .748, leaving a 
comfortable margin on both sides of 1. In some cases, one may wish to move the 
cutoff point slightly to accommodate a visible gap in eigenvalues. 

The scree graph in method 3 is named for its similarity in appearance to a cliff 
with rocky debris at its bottom. The scree graph for the modified football data of 
Example 12.2.2 exhibits an ideal pattern, as shown in Figure 12.8. The first two 
eigenvalues form a steep curve, followed by a bend and then a straight-line trend 
with shallow slope. The recommendation is to retain those eigenvalues in the steep 
curve before the first one on the straight line. Thus in Figure 12.8, two components 
would be retained. In practice, the turning point between the steep curve and the 
straight line may not be as distinct as this or there may be more than one discernible 
bend. In such cases, this approach is not as conclusive. The scree graph for the 
winged aphid data in Example 12.4(d) is plotted in Figure 12.9. The plot would 
suggest that two components be retained (possibly four). 

The remainder of this section is devoted to method 4, tests of significance. The 
tests assume multivariate normality, which is not required for estimation of principal 
components. 

It may be useful to make a preliminary test of complete independence of the 
variables, as in Section 7.4.3: HQ: Σ = diag (an, a^, ■ ■ ■, σρρ), or equivalently, 
H0: P p = I. The test statistic is given in (7.37) and (7.38). If the results indicate that 
the variables are independent, there is no point in extracting principal components, 
since (except for sampling fluctuation) the variables themselves already form the 
principal components. 
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Figure 12.9 Scree graph for eigenvalues of winged aphid data. 

To test the significance of the "larger" components, we test the hypothesis that the 
last k population eigenvalues are small and equal, Η^'· 7P-fc+i = 7P-fc+2 = ■ ■ ■ = 
7P, where 71,72, · · · 5 7P denote the population eigenvalues, namely, the eigenvalues 
of Σ . The implication is that the first sample components capture all the essential 
dimensions, while the last components reflect noise. If HQ is true, the last k sample 
eigenvalues will tend to have the pattern shown by the straight line with small slope 
in the ideal scree graph, such as in Figure 12.8 or 12.9. 

To test Hok'· 7P-fe+i = · · · — 7P using a likelihood ratio approach, we calculate 
the average of the last k eigenvalues of S, 

p \ 
*- Σ xi 

i=p—fc+1 

and use the test statistic 

\ 
klnX- Σ In λ; , (12.15) 

i=p—k+l I 

which has an approximate ^-distribution. We reject H0 if u > \^av, where v = 
\{k-l){k + 2). 

To carry out this procedure, we could begin by testing Η02'· 7P- i = 7P- If this 
is accepted, we could then test H03: 7P-2 = 7P- i — 7P and continue testing in this 
fashion until HQ^ is rejected for some value of k. 

In practice, when the variables are fairly highly correlated and the data can be 
successfully represented by a small number of principal components, the first three 

2 ρ + ΐ Γ 
6 
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methods will typically agree on the number of components to retain, and the test in 
method 4 will often indicate a larger number of components. 

■ EXAMPLE 12.6 

We apply the above four criteria to the modified football data of Example 12.2.2. 
For method 1, we simply examine the eigenvalues and their proportion of 

variance explained, as obtained in Example 12.2.2: 

Proportion Cumulative 
Eigenvalue of Variance Proportion 

3.323 
1.374 
.476 
.325 
.157 
.088 

.579 

.239 

.083 

.057 

.027 

.015 

.579 

.818 

.901 

.957 

.985 
1.000 

To account for 82% of the variance, we would keep two components. This 
percent of variance is high enough for most descriptive purposes. For certain 
other applications, such as input to another analysis, we might wish to retain 
three components, which would account for 90% of the variance. 

To apply method 2, we find the average eigenvalue to be 

Ä = V ^ = ^ ^ = .957. 
^ 6 6 

Since only λι and λ2 exceed .957, we would retain two components. 
For method 3, the scree graph in Figure 12.8 indicates conclusively that two 

components should be retained. 
To implement method 4, we carry out the significance tests in (12.15). The 

values of the test statistic u for k = 2 , 3 , . . . , 6 are as follows: 

Eigenvalue 

3.32341 
1.37431 
.47607 
.32468 
.15650 
.08785 

k 

6 
5 
4 
3 
2 
1 

u 

245.57 
123.93 
44.10 
23.84 
4.62 

df 

20 
14 
9 
5 
2 

χ205 

31.41 
23.68 
16.92 
11.07 
5.99 

The tests indicate that only the last two (population) eigenvalues are equal and 
we should retain the first four. This differs from the results of the other three 
criteria, which are in close agreement that two components should be retained. 

D 
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12.7 INFORMATION IN THE LAST FEW PRINCIPAL COMPONENTS 

Up to this point, we have focused on using the first few principal components to 
summarize and simplify the data. However, the last few components may carry 
useful information in some applications. 

Since the eigenvalues serve as variances of the principal components, the last few 
principal components have smaller variances. If the variance of a component is zero 
or close to zero, the component represents a linear relationship among the variables 
that is essentially constant; that is, the relationship holds for all y-j's in the sample. 
Thus if the last eigenvalue is near zero, it signifies the presence of a collinearity that 
may provide new information for the researcher. Suppose, for example, that there are 
five variables and y5 — ]ζ = 1 %/4 . Then S is singular, and barring round-off error, 
As will be zero. Thus s2

Zh = 0, and z$ is constant. As noted early in Section 12.2, 
the y-j's are centered, because the origin of the principal components is translated to 
y. Hence the constant value of 25 is its mean, which is zero: 

z5 = a^y = α5ι2/ι + a52y2 H l· a55y5 = 0. 

Since this must reflect the dependency of 2/5 on j/i , i/2> J/3» ana" yi, the eigenvector a.'5 

will be proportional to (1, 1,1,1, —4). 

12.8 INTERPRETATION OF PRINCIPAL COMPONENTS 

In Section 12.5, we noted that principal components obtained from R are not com-
patible with those obtained from S. Because of this lack of scale invariance of prin-
cipal components from S, the coefficients cannot be converted to standardized form, 
as can be done with coefficients in discriminant functions in Chapter 8 and canon-
ical variates in Chapter 11. Hence interpretation of principal components is not as 
clear-cut as with previous linear functions that we have discussed. We must choose 
between components of S or R, knowing they will have a different interpretation. If 
the variables have widely disparate variances, we can use R instead of S to improve 
interpretation. 

For certain patterns of elements in S or R, the form of the principal components 
can be predicted. This aid to interpretation is discussed in Section 12.8.1. As with 
discriminant functions and canonical variates, some writers have advocated rotation 
and the use of correlations between the variables and the principal components. We 
argue against the use of these two approaches to interpretation in Sections 12.8.2 and 
12.8.3. 

12.8.1 Special Patterns in S or R 

In the covariance or correlation matrix, we may recognize a distinguishing pattern 
from which the structure of the principal components can be deduced. For exam-
ple, we noted in Section 12.2 that if one variable has a much larger variance than 
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the other variables, this variable will dominate the first component, which will ac-
count for most of the variance. Another case in which a component will duplicate 
a variable occurs when the variable is uncorrelated with the other variables. We 
now demonstrate this by showing that if all p variables are uncorrelated, the vari-
ables themselves are the principal components. If the variables were uncorrelated 
(orthogonal), S would have the form 

/ s i i 0 
0 S22 

0 \ 
0 (12.16) 

\ 0 0 · · · spp j 

and the characteristic equation would be 

p 

0 = |S - λΙ| = Π(β« - λ) [by (2.83)], 

which has solutions 
λ,; 1,2,. . . .p. (12.17) 

The corresponding normalized eigenvectors have a 1 in the ith position and O's else-
where: 

â  = ( 0 , . . . , 0 , l , 0 , . . . , 0 ) . (12.18) 

Thus the ith component is 
Zi a4y = yi 

In practice, the sample correlations (of continuous random variables) will not be zero, 
but if the correlations are all small, the principal components will largely duplicate 
the variables. 

By the Perron-Frobenius theroem in Section 2.11.4, if all correlations or covari-
ances are positive, all elements of the first eigenvector ai are positive. Since the 
remaining eigenvectors a2, a 3 , . . . , ap are orthogonal to a i , they must have both pos-
itive and negative elements. When all elements of ai are positive, the first component 
is a weighted average of the variables and is sometimes referred to as a measure of 
size. Likewise, the positive and negative coefficients in subsequent components may 
be regarded as defining shape. This pattern is often seen when the variables are 
various measurements of an organism. 

EXAMPLE 12.8.1 

In the modified football data of Example 12.2.2, there are a few negative co-
variances in S, but they are small, and all elements of the first eigenvector 
remain positive. The second eigenvector therefore has positive and negative 
elements: 
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WDIM 
CIRCUM 
FBEYE 
EYEHD 
EARHD 
JAW 

a i 

.207 

.873 

.261 

.326 

.066 

.128 

a2 

-.142 
-.219 
-.231 

.891 

.222 
-.187 

With all positive coefficients, the first component z\ is an overall measure of 
head size (z\ increases if all six variables increase). The second component 
Z2 is a shape component that contrasts the vertical measurements EYEHD and 
EARHD with the three lateral measurements and CIRCUM (z2 increases if 
EYEHD and EARHD increase and the other four variables decrease). D 

12.8.2 Rotation 

The principal components are initially obtained by rotating axes in order to line up 
with the natural extensions of the system, whereupon the new variables become un-
correlated and reflect the directions of maximum variance. If the resulting compo-
nents do not have a satisfactory interpretation, they can be further rotated, seeking 
dimensions in which many of the coefficients of the linear combinations are near 
zero to simplify interpretation. 

However, the new rotated components are correlated, and they do not successively 
account for maximum variance. They are therefore no longer principal components 
in the usual sense, and their routine use is questionable. For improved interpreta-
tion, one may wish to try factor analysis (Chapter 13), in which rotation does not 
destroy any properties. (In factor analysis, the rotation does not involve the variables 
2/1,2/2» · · ·) 2/p> but another space, that of the factor loadings.) 

12.8.3 Correlations Between Variables and Principal Components 

The use of correlations between variables and principal components is widely rec-
ommended as an aid to interpretation. It was noted in Sections 8.7.3 and 11.5.2 that 
analogous correlations for discriminant functions and canonical variates are not use-
ful in a multivariate context because they provide only univariate information about 
how each variable operates by itself, ignoring the other variables. Rencher (1992b) 
obtained a similar result for principal components. 

We denote the correlation between the ith variable yi and the jth principal com-
ponent Zj by ryiZ . Because of the orthogonality of the Zj's, we have the simple 
relationship 

^ + ^ + --- + rl,Zk=^l2l_Zk, (12.19) 

where k is the number of components retained and Ffi., z is the squared multi-
ple correlation of yi with the Zj's. Thus r^.z forms part of R? , z , which shows 
how yi relates to the z's by itself, not what it contributes in the presence of the other 
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Table 12.5 Eigenvectors Obtained from S, Correlations Between Vari-
ables anc 
ponents 
ables and Principal Components, and R2 for the First Two Principal Com-

Variable 

1 
2 
3 
4 
5 
6 

Ei 

a i 

.21 

.87 

.26 

.33 

.07 

.13 

genvectors 
from S 

a2 

- .14 
- .22 
- .23 

.89 

.22 
- .19 

Correlations 
rViZl 

.62 

.98 

.70 

.49 

.17 

.41 

r i / i Z 2 

- .27 
- .16 
- .40 

.86 

.37 
- .39 

RVi\*l,Z2 

.46 

.99 

.66 

.98 

.17 

.32 

y's. The correlations are therefore not informative about the joint contribution of the 
y's in a principal component. 

Note that the simple partitioning of R2 into the sum of squares of correlations in 
(12.19) does not happen in practice when the independent variables (x's) are corre-
lated. However, here the z's are principal components and are therefore orthogonal. 

Since we do not recommend rotation or correlations for interpretation, we are left 
with the coefficients themselves, obtained from the eigenvectors of either S or R. 

■ EXAMPLE 12.8.3 

In Example 12.8.1, the eigenvectors of S from the modified football data gave 
a satisfactory interpretation of the first two principal components as head size 
and shape. We give these in Table 12.5, along with the correlations between 
each of the variables yi,y2,---,Ve and the first two principal components z\ 
and z2. For comparison we also give Ry.\Zl Z2 for each variable. 

The correlations rank the variables somewhat differently in their contribu-
tion to the components, since they form part of the univariate information pro-
vided by R2 for each variable by itself. For example, for the first component, 
the correlations rank the variables in the order 2, 3, 1, 4, 6, 5, whereas the 
coefficients (eigenvectors) from S rank them in the order 2,4, 3, 1, 6, 5. D 

12.9 SELECTION OF VARIABLES 

We have previously discussed subset selection in connection with Wilks' Λ (Sec-
tion 6.11.2), discriminant analysis (Section 8.9), classification analysis (Section 9.6), 
and regression (Sections 10.2.7 and 10.8). In each case the criterion for selection of 
variables was the relationship of the variables to some external factor, such as depen-
dent variable(s), separation of groups, or correct classification rates. In the context 
of principal components, we have no dependent variable, as in regression, and no 
groupings among the observations, as in discriminant analysis. With no external in-
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fluence, we simply wish to find the subset that best captures the internal variation 
(and covariation) of the variables. 

Jolliffe (1972, 1973) discussed eight selection methods and referred to the process 
as discarding variables. The eight methods were based on three basic approaches: 
multiple correlation, clustering of variables, and principal components. One of the 
correlation methods, for example, proceeds in a stepwise fashion, deleting at each 
step the variable that has the largest multiple correlation with the other variables. 
The clustering methods partition the variables into groups or clusters and select a 
variable from each cluster. 

We describe Jolliffe's principal component methods in the context of selecting a 
subset of 10 variables out of 50 variables. One of his techniques associates a vari-
able with each of the first 10 principal components and retains these 10 variables. 
Another approach is to associate a variable with each of the last 40 principal compo-
nents and delete the 40 variables. To associate a variable with a principal component, 
we choose the variable corresponding to the largest coefficient (in absolute value) in 
the component, providing the variable has not previously been selected. We can use 
components extracted from either S or R . For example, in the two principal com-
ponents for the football data in Example 12.2.2, we would choose variables 2 and 4, 
which clearly have the largest coefficients in the two components. Jolliffe's methods 
could also be applied iteratively, with the principal components being recomputed 
after a variable is retained or deleted. 

Jolliffe (1972) compared the eight methods using both real and simulated data and 
found that the methods based on principal components performed well in comparison 
to the regression and cluster-based methods. But he concluded that no single method 
was uniformly best. 

McCabe (1984) suggested several criteria for selection, most of which are based 
on the conditional covariance matrix of the variables not selected, given those se-
lected. He denoted the selected variables as principal variables. Let y be partitioned 
as 

'-(£)· 
where yi contains the selected variables and y2 consists of the variables not selected. 
The corresponding covariance matrix is 

cov(y) = Σ = ( = " = » ) . 
\ ^21 i>22 / 

By (4.8), the conditional covariance matrix is given by (assuming normality) 

cov(y2 |yi) = Σ 2 2 - Σ 2 ιΣ^ 1
1 Σ 1 2 , 

which is estimated by S22 — S2iSj~1
1Si2- To find a subset yi of size m, two of 

McCabe's criteria are to choose the subset yi that 

1. Minimizes IS22 — S2iS^1
1Si2| and 
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2. Maximizes Σ™=1 r\, where r^i = 1,2, . . . ,m* = min(m,p - m) are the 
canonical correlations between the m selected variables in yi and the p — m 
deleted variables in y2 . 

Ideally, these criteria would be evaluated for all possible subsets so as to obtain 
the best subset of each size. McCabe suggested a regression approach for obtaining 
a percent of variance explained by a subset of variables to be compared with the 
percent of variance accounted for by the same number of principal components. 

PROBLEMS 

12.1 Show that the solutions to λ = a 'Sa /a ' a in (12.7) are given by the eigenvalues 
and eigenvectors in (12.8), so that λ in (12.7) is maximized by the largest 
eigenvalue of S. 

12.2 Show that the eigenvalues of 

' 1 r 
R , , 

r 1 

are 1 ± r, as in (12.13), and that the eigenvectors are as given in (12.14). 

12.3 (a) Give a justification based on the likelihood ratio for the test statistic u in 
(12.15). 

(b) Give a justification for the degrees of freedom v — | (k — l)(k + 2) for 
the test statistic in (12.15). 

12.4 Show that when S is diagonal as in (12.16), the eigenvectors have the form 
a'i = ( 0 , . . . , 0 , 1 , 0 , . . . , 0), as given in (12.18). 

12.5 Show that T £ Z I + r ^ + · · · + r2
yiZk = R2

yAzu_Zk, as in (12.19). 

12.6 Carry out a principal component analysis of the diabetes data of Table 3.5. 
Use all five variables, including y's and x's. Use both S and R. Which do 
you think is more appropriate here? Show the percent of variance explained. 
Based on the average eigenvalue or a scree plot, decide how many components 
to retain. Can you interpret the components of either S or R? 

12.7 Do a principal component analysis of the probe word data of Table 3.6. Use 
both S and R. Which do you think is more appropriate here? Show the percent 
of variance explained. Based on the average eigenvalue or a scree plot, decide 
how many components to retain. Can you interpret the components of either 
S o r R ? 

12.8 Carry out a principal component analysis on all six variables of the glucose 
data of Table 3.9. Use both S and R. Which do you think is more appro-
priate here? Show the percent of variance explained. Based on the average 
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eigenvalue or a scree plot, decide how many components to retain. Can you 
interpret the components of either S or R? 

12.9 Carry out a principal component analysis on the hematology data of Table 4.2. 
Use both S and R. Which do you think is more appropriate here? Show the 
percent of variance explained. Based on the average eigenvalue or a scree plot, 
decide how many components to retain. Can you interpret the components of 
either S or R? Does the large variance of yz affect the pattern of the compo-
nents of S? 

12.10 Carry out a principal component analysis separately for males and females in 
the psychological data of Table 5.1. Compare the results for the two groups. 
UseS. 

12.11 Carry out a principal component analysis separately for the two species in the 
beetle data of Table 5.5. Compare the results for the two groups. Use S. 

12.12 Carry out a principal component analysis on the engineer data of Table 5.6 as 
follows: 

(a) Use the pooled covariance matrix. 
(b) Ignore groups and use a covariance matrix based on all 40 observations. 
(c) Which of the approaches in (a) or (b) appears to be more successful? 

12.13 Repeat the previous problem for the dystrophy data of Table 5.7. 

12.14 Carry out a principal component analysis on all 10 variables of the Seishu data 
of Table 7.1. Use both S and R. Which do you think is more appropriate here? 
Show the percent of variance explained. Based on the average eigenvalue or 
a scree plot, decide how many components to retain. Can you interpret the 
components of either S or R? 

12.15 Carry out a principal component analysis on the temperature data of Table 7.2. 
Use both S and R. Which do you think is more appropriate here? Show the 
percent of variance explained. Based on the average eigenvalue or a scree plot, 
decide how many components to retain. Can you interpret the components of 
either S or R? 



CHAPTER 13 

EXPLORATORY FACTOR ANALYSIS 

13.1 INTRODUCTION 

In factor analysis we represent the variables yi, 2/2, · · ·, yP as linear combinations 
of a few random variables / 1 , / 2 , . . . , fm (m < p) called factors. The factors are 
underlying constructs or latent variables that "generate" the y's. Like the original 
variables, the factors vary from individual to individual; but unlike the variables, 
the factors cannot be measured or observed. The existence of these hypothetical 
variables is therefore open to question. 

If the original variables 2/1,2/2 > · ■ · J 2/p are at least moderately correlated, the basic 
dimensionality of the system is less than p. The goal of factor analysis is to reduce 
the redundancy among the variables by using a smaller number of factors. 

Suppose the pattern of the high and low correlations in the correlation matrix is 
such that the variables in a particular subset have high correlations among themselves 
but low correlations with all the other variables. Then there may be a single under-
lying factor that gave rise to the variables in the subset. If the other variables can be 
similarly grouped into subsets with a like pattern of correlations, then a few factors 
can represent these groups of variables. In this case the pattern in the correlation ma-

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 4 3 5 
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trix corresponds directly to the factors. For example, suppose the correlation matrix 
has the form 

/ 

V 

1 
.9 

.05 

.05 

.05 

.9 
1 

.05 

.05 

.05 

.05 

.05 
1 

.9 

.9 

.05 

.05 
.9 
1 

.9 

Then variables 1 and 2 correspond to a factor and variables 3, 4, and 5 correspond 
to another factor. In some cases where the correlation matrix does not have such a 
simple pattern, factor analysis will still partition the variables into clusters. 

Factor analysis is related to principal component analysis in that both seek a sim-
pler structure in a set of variables, but they differ in many respects (see Section 13.8). 
For example, two differences in basic approach are as follows: 

1. Principal components are defined as linear combinations of the original vari-
ables. In factor analysis, the original variables are expressed as linear combi-
nations of the factors. 

2. In principal component analysis, we explain a large part of the total variance of 
the variables, ^ sa. In factor analysis, we seek to account for the covariances 
or correlations among the variables. 

Although we have thus far compared principal component analysis with "factor 
analysis," we can draw further distinctions between the exploratory factor analysis 
described in this chapter and the confirmatory factor analysis that will be discussed 
in Chapter 14. Exploratory factor analysis (or EFA) is most often used to explore 
multivariate data to identify possible latent structure. In EFA, the number of latent 
factors is not determined before the analysis. In contrast, confirmatory factor analysis 
(or CFA) allows the researcher to hypothesize the number of latent factors and the 
specific nature of the latent structure in the data, and then test the hypotheses that 
have been formulated. Thus the objectives and methods of EFA are more closely 
related to those of principal component analysis, while CFA uses the more traditional 
statistical notions of model formulation, parameter estimation, model evaluation, and 
statistical inference. Because of the subjectivity and relative lack of formal statistical 
inference associated with EFA, it is considered by some to be controversial or of 
limited utility. Regardless, EFA has proven to be a useful tool in many settings, 
particularly as a technique for simplifying complex multivariate data and formulating 
hypotheses that can be later verified by using a CFA on an independently obtained 
data set (see Gerbing and Hamilton, 1996). 

For either type of factor analysis, there will be some data sets for which the factor 
analysis model does not provide a satisfactory fit. Sometimes a few easily inter-
pretable factors emerge, but for other data sets neither the number of factors nor 
the interpretation is clear. Some possible reasons for these failures are discussed in 
Section 13.7. 
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In this chapter, we describe the methods associated with exploratory factor anal-
ysis. Throughout this chapter, we will use "exploratory factor analysis" and "factor 
analysis" interchangeably. 

13.2 ORTHOGONAL FACTOR MODEL 

13.2.1 Model Definition and Assumptions 

Factor analysis is basically a one-sample procedure [for possible applications to 
data with groups, see Rencher (1998, Section 10.8)]. We assume a random sample 
yi) Y2, · · ·) yn from a homogeneous population with mean vector μ and covariance 
matrix Σ . 

The factor analysis model expresses each variable as a linear combination of un-
derlying common factors / i , /b, · · ■, /m. with an accompanying error term to ac-
count for that part of the variable that is unique (not in common with the other vari-
ables). For 2/1,2/2) ■ · · j 2/p in a n v observation vector y, the model is as follows: 

2/1 - μι = λ ι ι / ι + λΐ2 J2 + 1- A i m / m + ε1 

2/2 - M2 = λ2 ΐ / ι + λ22/2 Η 1" Mmfm + <?2 
. (13.1) 

Vp" βρ = λρΐ/ι + λΡ2/2 + · · · + A p m / m + ερ. 

Ideally, m should be substantially smaller than p; otherwise we have not achieved a 
parsimonious description of the variables as functions of a few underlying factors. 
We might regard the / ' s in (13.1) as random variables that engender the j/'s. The 
coefficients λ^ are called loadings and serve as weights, showing how each yi in-
dividually depends on the / ' s . (In this chapter, we defer to common usage in the 
factor analysis literature and use the notation λ^- for loadings rather than eigenval-
ues.) With appropriate assumptions, \j indicates the importance of the j'th factor fj 
to the zth variable yi and can be used in interpretation of fj. We describe or interpret 
/2, for example, by examining its coefficients, λΐ2, λ22, · · ·, λρ2. The larger loadings 
relate f<x to the corresponding j/'s. From these y's, we infer a meaning or description 
of /2. After estimating the Xij's (and rotating them, see Sections 13.2.2 and 13.5), 
they will hopefully partition the variables into groups corresponding to factors. 

The system of equations (13.1) bears a superficial resemblance to the multiple 
regression model (10.1), but there are fundamental differences. For example, (1) 
the / ' s are unobserved and (2) the model in (13.1) represents only one observation 
vector, while (10.1) depicts all n observations. 

It is assumed that for j — 1,2,... ,m, E{ff) = 0 , var(/j) = l,andcov(/j,/fc) = 
0, j ψ k. The assumptions for εί5 i = 1,2,... ,p, are similar, except that we must 
allow each e, to have a different variance, since it shows the residual part of t/, that is 
not in common with the other variables. Thus we assume that Ε(εΐ) = 0, var(ei) = 
ipi, and cov(5j, ε^) = 0, i φ k. In addition, we assume that cov(ei, fj) = 0 for all i 
and j . We refer to ipi as the specific variance. 
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These assumptions are natural consequences of the basic model (13.1) and the 
goals of factor analysis. Since E(yi - μι) = 0, we need E(fj) = 0, j — 1,2,. . . , m. 
The assumption cov(fj,fk) = 0 is made for parsimony in expressing the y's as 
functions of as few factors as possible. The assumptions var(/j) = 1, var(ei) = ψί, 
cov(fj, fk) = 0, and cov(e;, fj) = 0 yield a simple expression for the variance of y,, 

ν3τ(ι/ί) = λ? 1 +λ? 2 + · · . + λ? ■Φί, (13.2) 

which plays an important role in our development. The assumption cov(si, ε^) = 0 
implies that the factors account for all the correlations among the y's, that is, all that 
the y's have in common. Thus the emphasis in factor analysis is on modeling the 
covariances or correlations among the y's. 

Model (13.1) can be written in matrix notation as 

y - μ = Af + ε, (13.3) 

where y = (yi,y2, · · · ,yP)', μ = (μι,μ2, · ■ ■ ,μΡ) ' , f = (Λ, /2 , · · ·, Λη)', ε 
(ε1,ε2,...,ερ)', and 

Λ = 

/ λ ι ι λΐ2 
λ21 λ22 

\ λρι λ ρ2 

■ · · Ai T O \ 

(13.4) 

We illustrate the model in (13.1) and (13.3) with p — 5 and m — 2. The model for 
each variable in (13.1) becomes 

2/1 - μι = λ ι ι / ι + λι2 /2 + ει 

2/2 - μ2 = λ 2 ι / ι + λ 2 2 / 2 + £2 

2/3 — β3 = λ3ΐ / ΐ + λ32/2 + ^3 

y4 " μ-4 = λ 4 ι / ι + λ42/2 + £4 
2/5 - μ5 = λ 5 ι / ι + λ52/2 + ε5. 

In matrix notation as in (13.3), this becomes 

(13.5) 

or y — μ — Af + e. 
The assumptions described above between (13.1) and (13.2) can be expressed 

concisely using vector and matrix notation: 
E(fj) = 0, j = 1,2,. . . , m, becomes 

/ 2/1 - μ ι \ 
2/2 - M 2 
2/3 - μ 3 
2/4 - μ 4 

V 2/5 - μδ / 

= 

/ An 
λ21 
A31 
λ 4 1 

V λ 5 ι 

Al2 \ 
λ22 
λ32 
Α42 
λ52 ) 

( ί Υ 
(ε1 \ 

£2 

£ 3 

£4 

\ ε 5 ) 

Ε(ί) = 0, (13.6) 
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v a r ( / j ) = 1,.? = 1,2,.. . , m, and cov(fjJk) = 0, j ± k, become 

cov(f) = I, 

E{ei) = 0,i = 1,2,... ,p, becomes 

Ε{ε) = 0, 

var(ei) = ipi,i = 1,2,... ,p, andcov(ej,efe) = 0, i φ k, become 

(13.7) 

(13.8) 

cov(e) = Φ 

/ Φι 0 
0 φ2 

\ 0 0 

0 \ 
0 

Φρ ) 

(13.9) 

and cov(ei, fj)=0 for all i and j becomes 

cov(f, ε) = O. (13.10) 

The notation cov(f, ε) indicates a rectangular matrix containing the covariances of 
the / ' s with the e's: 

cov(f, ε) = 

/ σ / ι ε ι 
σ Λ ε ι 

σ / ι ε 2 
σ / 2 ε 2 

\ σ /„,ει σ Λ, 

σ / ι ε Ρ \ 
ahep 

afmep J 

It was noted following (13.2) that the emphasis in factor analysis is on modeling 
the covariances among the y's. We wish to express the \p(p— 1) covariances (and the 
p variances) of the variables y\, j/2, · · ·, yP in terms of a simplified structure involving 
the pm loadings Xij and the p specific variances tpf, that is, we wish to express Σ 
in terms of Λ and Φ. We can do this using the model (13.3) and the assumptions 
(13.7), (13.9), and (13.10). Since μ does not affect variances and covariances of y, 
we have from (13.3) 

Σ = cov(y) = cov(Af + e). 

By (13.10), Af and ε are uncorrelated; therefore, the covariance matrix of their 
sum is the sum of their covariance matrices: 

Σ = cov(Af) + cov(e) 
= Acov(f)A' + Φ [by (3.74) and (13.9)] 
= ΛΙΛ' + Φ [by (13.7)] 
= ΛΛ' + Φ. (13.11) 

If Λ has only a few columns, say two or three, then Σ = ΛΛ' + Φ in (13.11) 
represents a simplified structure for Σ , in which the covariances are modeled by the 
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Xij's alone since Φ is diagonal. For example, in the above illustration in (13.5) with 
m = 2 factors, σ\2 would be the product of the first two rows of Λ, that is, 

σ12 =COV(J/I ,J / 2) = λι ιλ 2 ι +λ ι 2 λ 2 2 , 

where (An, Ai2) is the first row of Λ and (λ2ι, λ22) is the second row of Λ. If t/i 
and y2 have a great deal in common, they will have similar loadings on the common 
factors / i and / 2 ; that is, (An, A12) will be similar to (A2i, A22). In this case, either 
Αηλ2ΐ or Ai2A22 is likely to be high. On the other hand, if yx and y2 have little in 
common, then their loadings An and A2i on f\ will be different and their loadings 
Ai2 and A22 on f2 will likewise differ. In this case, the products Αηλ2ΐ and Αι2λ22 
will tend to be small. 

We can also find the covariances of the y's with the / ' s in terms of the A's. Con-
sider, for example, cov(yi,/2)· By (13.1), y i - μ ι = A 1 1 / i+A 1 2 / 2 + · · ■ + Ximfm + 
Si. From (13.7), / 2 is uncorrelated with all other fj's, and by (13.10), f2 is uncorre-
lated withsi. Thus 

cov(j/i,/2) = E[(yi - μ ι ) ( / 2 - μ / J ] 
= E[(Xnh + A12/2 + · · · + A l m / m ) / 2 ] 
= E(\ufif2 + Ai2/2 + ■ ■ · + A l m / m / 2 ) 
= Aucov(/i , f2) + A12var(/2) H + Aimcov(/m , / 2 ) 
= λ χ 2 , 

since var(/2) = 1. Hence the loadings themselves represent covariances of the 
variables with the factors. In general, 

cov {yi Jj) = Xij, i = l ,2, . . . , p , j = l,2,...,m. (13.12) 

Since \j is the (ij)th element of Λ, we can write (13.12) in the form 

cov (y , f )=A. (13.13) 

If standardized variables are used, (13.11) is replaced by Pp = ΛΛ' + Φ, and the 
loadings become correlations: 

corr(j/i,/,·) = Xij. (13.14) 

In (13.2), we have a partitioning of the variance of j/» into a component due to the 
common factors, called the communality, and a component unique to yi, called the 
specific variance: 

σα = var(yi) = (A?x + X\2 + ■ ■ ■ + X2
im) + A 

= h2i+Tpi 

= communality + specific variance, 
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where 

Communality 
Specific variance 

hl 
Ψί-

Κι + Κ2 ' + *irr (13.15) 

The communality h\ is also referred to as common variance, and the specific vari-
ance i\>i has been called specificity, unique variance, or residual variance. 

Assumptions (13.6)—(13.10) lead to the simple covariance structure of (13.11), 
Σ = ΛΛ' + Φ, which is an essential part of the factor analysis model. In schematic 
form, Σ = ΛΛ' + Φ has the following appearance: 

The diagonal elements of Σ can be easily modeled by adjusting the diagonal 
elements of Φ, but ΛΛ' is a simplified configuration for the off-diagonal elements. 
Hence the critical aspect of the model involves the covariances, and this is the major 
emphasis of factor analysis, as noted in Section 13.1 and in comments following 
(13.2) and (13.10). 

It is a rare population covariance matrix Σ that can be expressed exactly as 
Σ = ΛΛ' + Φ, where Φ is diagonal and Λ is p x m, with m relatively small. 
In practice, many sample covariance matrices do not come satisfactorily close to 
this ideal pattern. However, we do not relax the assumptions because the structure 
Σ = ΛΛ' + Φ is essential for estimation of Λ. 

One advantage of the factor analysis model is that when it does not fit the data, the 
estimate of Λ clearly reflects this failure. In such cases, there are two problems in 
the estimates: (1) it is unclear how many factors there should be, and (2) it is unclear 
what the factors are. In other statistical procedures, failure of assumptions may not 
lead to such obvious consequences in the estimates or tests. In factor analysis, the 
assumptions are essentially self-checking, whereas in other procedures, we typically 
have to check the assumptions with residual plots, tests, and so on. 

13.2.2 Nonuniqueness of Factor Loadings 

The loadings in the model (13.3) can be multiplied by an orthogonal matrix without 
impairing their ability to reproduce the covariance matrix in Σ = ΛΛ' + Φ. To see 
this, let T be an arbitrary orthogonal matrix. Then by (2.102), T T ' = I, and we can 
insert T T ' into the basic model (13.3) to obtain 

ATT' f + e. 
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We then associate T with Λ and associate T ' with f so that the model becomes 

γ - μ = Λ * Γ + ε , (13.16) 

where 

Λ* = ΛΤ, (13.17) 
f* = T'f. (13.18) 

If Λ in Σ = ΛΛ' + Φ is replaced by Λ* = ΛΤ, we have 

Σ = Λ*Λ*' + Φ = ΛΤ(ΛΤ) ' + Φ 
= ΛΤΤ 'Λ ' + Ψ = ΛΛ' + Ψ, 

since Τ Τ ' = I. Thus the new loadings Λ* = ΛΤ in (13.17) reproduce the covari-
ance matrix, just as Λ does in (13.11): 

Σ = Λ*Λ*' + Ψ = ΛΛ' + Ψ. (13.19) 

The new factors f* = T'f in (13.18) satisfy the assumptions (13.6), (13.7), and 
(13.10); that is, E(t*) = 0,cov(f*) = I,andcov(f*,e) = O. 

The communalities hf = λ^ + Af2 + · · · + Afm, i = 1,2,... ,p, as defined in 
(13.15), are also unaffected by the transformation Λ* = ΛΤ. This can be seen as 
follows. The communality /if is the sum of squares of the ith row of Λ. If we denote 
the ith row of Λ by λ^, then the sum of squares in vector notation is hf — X\Xi. The 
ith row of Λ* — ΛΤ is A* = λ^Τ, and the corresponding communality is 

K. = \ \ — ·\ΤΤ λί = ÄjAi = hi. 

Thus the communalities remain the same for the new loadings. Note that hf = 
λ|χ + λ?2 + · · · + A?TO = λ^λί is the distance from the origin to the point λ^ = 
(Aii, AJ2, · · ·, Aim) in the m-dimensional space of the factor loadings. Since the 
distance X^Xi is the same as X* X*, the points λ* are rotated from the points Xi. 
[This also follows because A* = λ^Τ, where T is orthogonal. Multiplication of a 
vector by an orthogonal matrix is equivalent to a rotation of axes; see (2.103).] 

The inherent potential to rotate the loadings to a new frame of reference without 
affecting any assumptions or properties is very useful in interpretation of the factors 
and will be exploited in Section 13.5. 

Note that the coefficients (loadings) in (13.1) are applied to the factors, not to the 
variables, as they are in discriminant functions and principal components. Thus in 
factor analysis the observed variables are not involved in the rotation as they are in 
discriminant functions and principal components. 

13.3 ESTIMATION OF LOADINGS AND COMMUNALITIES 

In Sections 13.3.1-13.3.4, we discuss four approaches to estimation of loadings and 
communalities. 
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13.3.1 Principal Component Method 

The first technique we consider is commonly called the principal component method. 
This name is perhaps unfortunate in that it adds to the confusion between factor 
analysis and principal component analysis. In the principal component method for 
estimation of loadings, we do not actually calculate any principal components. The 
reason for the name is given following (13.25). 

From a random sample yi ,y2, · · ·, Yn. w e obtain the sample covariance matrix 
S and then attempt to find an estimator A that will approximate the fundamental 
expression (13.11) with S in place of Σ : 

ÄÄ' + Φ. (13.20) 

In the principal component approach, we neglect Φ and factor S into S — ΛΛ 
In order to factor S, we use the spectral decomposition in (2.109), 

S = CDC' , (13.21) 

where C is an orthogonal matrix constructed with normalized eigenvectors {c[ci — 
1) of S as columns and D is a diagonal matrix with the eigenvalues #i, #2> · · · > θρ of 
S on the diagonal: 

/ θι 0 ■ · ■ 0 \ 

D 
0 θ2 0 

(13.22) 

V 0 0 · · · θρ ) 

We use the notation 9i for eigenvalues instead of the usual Aj in order to avoid con-
fusion with the notation λ^ used for the loadings. 

To finish factoring C D C in (13.21) into the form ΛΛ , we observe that since the 
eigenvalues #, of the positive semidefinite matrix S are all positive or zero, we can 
factor D into 

D = D 1 / 2 D 1 / 2 , 

where 
/ 

D l / 2 
0 

\ 

\ 0 0 · · · y/9~p 

With this factoring of D, (13.21) becomes, 

S = C D C ' = C D 1 / 2 D 1 / 2 C 

= (CD 1 / 2 ) (CD 1 / 2 ) ' . (13.23) 

This is of the form S = ÄÄ', but we do not define A to be C D 1 / 2 because C D 1 / 2 

is p x p, and we are seeking a A that i s p x m with m < p. We therefore define 



4 4 4 EXPLORATORY FACTOR ANALYSIS 

Di = diag(#i, ö 2 , . . . , 9m) with the m largest eigenvalues θ\ > 02 > · · · > 0m and 
Ci = (ci, c 2 , . . . , cm) containing the corresponding eigenvectors. We then estimate 

1 In 

Λ by the first m columns of C D ' , 

A = d D j 7 2 = ( V ^ c i , v /^ca , . · ■, V ^ c m ) (13.24) 

1/2 
by (2.56), where Λ is p x m, Ci is p x m, and D / is m x m. 

We illustrate the structure of the λ^ in (13.24) forp = 5 and m = 2: 

An 
^ 2 1 

-^31 

^ 4 1 

A51 

Al2 

^ 2 2 

^ 3 2 

^ 4 2 

^ 5 2 

\ 

) 

We can see in (13.25) the source of the term principal component solution. The 
columns of Λ are proportional to the eigenvectors of S, so that the loadings on the jth 
factor are proportional to coefficients in the jth principal component. The factors are 
thus related to the first m principal components, and it would seem that interpretation 
would be the same as for principal components. But after rotation of the loadings, 
the interpretation of the factors is usually different. The researcher will ordinarily 
prefer the rotated factors for reasons to be treated in Section 13.5. 

By (2.52), the ith diagonal element of ΛΛ is the sum of squares of the ith row of 
Λ, or AjA, — Y^T=i Äfj. Hence to complete the approximation of S in (13.20), we 
define 

m 

^i = sil-Y/X
2

ij (13.26) 
J' = l 

and write 
S ^ Λ Λ ' + Ψ, (13.27) 

where Φ = diag(^i, Ψ2, ■ ■ ■, ψρ). Thus in (13.27) the variances on the diagonal of S 
are modeled exactly, but the off-diagonal covariances are only approximate. Again, 
this is the challenge of factor analysis. 

In this method of estimation, the sums of squares of the rows and columns of Λ 
are equal to communalities and eigenvalues, respectively. This is easily shown. By 
(13.26) and by analogy with (13.15), the ith communality is estimated by 

m 

Α? = Σ ^ <13·28) 

/ e n C12 \ 

C21 C22 

C31 c 3 2 

c4i c42 

\ C51 c 5 2 ) 

Then 

Ö1C31 

Ö1C41 

( 

\ 

Ö2C12 \ 

Ö2C22 

Ö2C32 

Ö2C42 

Ö2C52 / 

[by (2.56)]. (13.25) 
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which is the sum of squares of the ith row of A. The sum of squares of the jth 
column of A is the jth eigenvalue of S: 

p v 

[by (13.25)] Σ^ : 
i=l i = l 

= ̂ Σ4 
i = l 

= 6j, (13.29) 

since the normalized eigenvectors (columns of C) have length 1. 
By (13.26) and (13.28), the variance of the ith variable is partitioned into a part 

due to the factors and a part due uniquely to the variable: 

su = hi + 'ipi 

= λ? ι+λ? 2 + · · · + λ ? η + ^ . (13.30) 

Thus the jth factor contributes λ^ to su. The contribution of the jth factor to the 
total sample variance, tr(S) = sn + S22 + ■ ■ · + spp, is therefore 

p 

variance due to jth factor = ^ λ^ = λ^ + λ|,· Η h X2
pP (13.31) 

8 = 1 

which is the sum of squares of loadings in the jth column of A. By (13.29), this is 
equal to the jth eigenvalue, 9j. The proportion of total sample variance due to the 
jth factor is 

Σί=ι K3 _gj_ (13 32) 
tr(S) tr(S)· (U-iZ) 

If the variables are not commensurate, we can use standardized variables and work 
with the correlation matrix R. The eigenvalues and eigenvectors of R are then used 
in place of those of S in (13.24) to obtain estimates of the loadings. In practice, R 
is used more often than S and is the default in most software packages. Since the 
emphasis in factor analysis is on reproducing the covariances or correlations rather 
than the variances, use of R is more appropriate in factor analysis than in principal 
components. In applications, R often gives better results than S. 

If we are factoring R, the proportion corresponding to (13.32) is 

V p 3:2 

tr(R) p 

J3 (13.33) 

where p is the number of variables. 
We can assess the fit of the factor analysis model by comparing the left and right 

sides of (13.27). The error matrix 

E = S - (ΛΛ' + Φ) 
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Table 13.1 Perception Data: Ratings on Five Adjectives for Seven People 

People 

FSMla 

SISTER 
FSM2 
FATHER 
TEACHER 
MSM6 

FSM3 

Kind 

1 
8 
9 
9 
1 
9 
9 

Intelligent 

5 
9 
8 
9 
9 
7 
7 

Happy 

5 
7 
9 
9 
1 
7 
9 

Likeable 

1 
9 
9 
9 
1 
9 
9 

Just 

1 
8 
8 
9 
9 
9 
7 

"Female schoolmate 1. 
fcMale schoolmate. 

has zeros on the diagonal but nonzero off-diagonal elements. The following inequal-
ity gives a bound on the size of the elements in E = S — (ΛΛ' + Φ): 

Σ· ij — um+l + 
a2 
7 m + 2 + 9

2· (13.34) 

that is, the sum of squared entries in the matrix E = S — (ΛΛ' + Φ) is at most equal 
to the sum of squares of the deleted eigenvalues of S. If the eigenvalues are small, 
the residuals in the error matrix S — (ΛΛ' + Φ) are small and the fit is good. 

EXAMPLE 13.3.1 

To illustrate the principal component method of estimation, we use a simple 
data set collected by Brown et al. (1984). A 12-year-old girl made five ratings 
on a nine-point semantic differential scale for each of seven of her acquain-
tances. The ratings were based on the five adjectives "kind," "intelligent," 
"happy," "likeable," and "just." Her ratings are given in Table 13.1. 

The correlation matrix for the five variables (adjectives) is as follows, with 
the larger values bolded: 

R 

/ 

V 

1.000 
.296 

.881 

.995 
.545 

.296 
1.000 

- . 0 2 2 
.326 

.837 

.881 
- . 0 2 2 
1.000 
.867 
.130 

.995 
.326 
.867 

1.000 
.544 

.545 
.837 
.130 
.544 

1.000 

\ 

/ 

(13.35) 

The boldface values indicate two groups of variables: {1,3,4} and {2,5}. 
We would therefore expect that the correlations among the variables can be 
explained fairly well by two factors. 

The eigenvalues of R are 3.263, 1.538, .168, .031, and 0. Thus R is singu-
lar, which is possible in a situation such as this with only seven observations 
on five variables recorded in a single-digit scale. The multicollinearity among 
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Table 13.2 Factor Loadings by the Principal Component Method for the 
Perception Data of Table 13.1 

Variables 

Kind 
Intelligent 
Happy 
Likeable 
Just 

Variance 
accounted for 

Proportion of 
total variance 

Cumulative 
proportion 

Loadings 

Xlj 

.969 

.519 

.785 

.971 

.704 

3.263 

.653 

.653 

\2j 

-.231 
.807 

-.587 
-.210 

.667 

1.538 

.308 

.960 

Communalities, 

.993 

.921 

.960 

.987 

.940 

4.802 

.960 

.960 

Specific 
Variances, 

4>i 

.007 

.079 

.040 

.013 

.060 

the variables induced by the fifth eigenvalue, 0, could be ascertained from the 
corresponding eigenvector, as noted in Section 12.7 (see Problem 13.6). 

By (13.33), the first two factors account for (3.263 + 1.538)/5 = .96 of 
the total sample variance. We therefore extract two factors. The first two 
eigenvectors are 

Cl 

/ .537 \ 
.288 
.434 
.537 

\ .390 j 

and C2 = 

/ 

V 

- . 1 8 6 \ 
.651 

- . 4 7 3 
- . 1 6 9 

.538 / 

When these are multiplied by the square roots of the respective eigenvalues 
3.263 and 1.538 as in (13.25), we obtain the loadings in Table 13.2. 

The communalities in Table 13.2 are obtained from the sum of squares 
of the rows of the loadings, as in (13.28). The first one, for example, is 
(.969)2 + (-.231)2 = .993. The specific variances are obtained from (13.26) 
as tpi = 1 — n\ using 1 in place of su because we are factoring R rather 
than S. The variance accounted for by each factor is the sum of squares of the 
corresponding column of the loadings, as in (13.31). By (13.29), the variance 
accounted for is also equal to the eigenvalue in each case. Note that the vari-
ance accounted for by the two factors adds to the sum of the communalities, 
since the latter is the sum of all squared loadings. By (13.33), the proportion 
of total variance for each factor is the variance accounted for divided by 5. 
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The two factors account for 96% of the total variance and therefore repre-
sent the five variables very well. To see how well the two-factor model repro-
duces the correlation matrix, we examine 

/ .969 -.231 \ 

ΛΛ + Φ 

+ 

.519 

.785 -

.971 -

.704 
/ .007 

0 
0 
0 

V 0 
1.000 

.317 

.896 

.990 
\ .528 

.807 
-.587 
-.210 
.667 y 

0 
.079 

0 
0 
0 

.317 
1.000 

-.066 
.335 
.904 

.969 
-.231 

0 
0 

.040 
0 
0 

0 
0 
0 

.013 
0 

.519 

.807 

0 
0 
0 
0 

.060 

.896 
-.066 
1.000 

.885 

.990 

.335 

.885 
1.000 

.785 
-.587 

.971 .704 
- .210 .667 

/ 
.528 
.904 
.161 
.543 

.161 .543 1.000 / 

which is very close to the original R. We will not attempt to interpret the 
factors at this point but will wait until they have been rotated in Section 13.5.2. 

D 

13.3.2 Principal Factor Method 

In the principal component approach to estimation of the loadings, we neglected Φ 
and factored S or R. The principal factor method (also called the principal axis 
method) uses an initial estimate Φ and factors S - Ψ or R — Ψ to obtain 

S - Φ ^ ΛΛ 

R - Ψ ^ Λ Λ ' 

(13.36) 

(13.37) 

where Λ is p x m and is calculated as in (13.24) using eigenvalues and eigenvectors 
o f S - * o r R - * . 

The ith diagonal element of S - Ψ is given by su — ψί, which is the ith commu-
nality, hf = su - φί [see (13.30)]. Likewise, the diagonal elements of R - Φ are 
the communalities hf = 1 — ψί. (Obviously, i\>i and hf have different values for S 
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than for R.) With these diagonal values, S - Φ and R - Φ have the form 

S-* = 

R - Φ 

«21 

V Spi 

( Λ? 
»"21 

V rpl 

Sl2 

ft! 

Sp2 

h\ 

rvi 

Sip \ 

S2p 

k ) 
r i P \ 

»> 

k ) 

(13.38) 

(13.39) 

A popular initial estimate for a communality in R — Φ is h\ = Rf, the squared 
multiple correlation between y; and the other p — 1 variables. This can be found as 

hf = Rf 1 
1 (13.40) 

where rn is the ith diagonal element of R *. 
For S — Φ, an initial estimate of communality analogous to (13.40) is 

ft (13.41) 

where su is the ith diagonal element of S and sM is the ith diagonal element of S x. 
It can be shown that (13.41) is equivalent to 

hi iRii (13.42) 

which is a reasonable estimate of the amount of variance that j/j has in common with 
the other y's. 

To use (13.40) or (13.41), R or S must be nonsingular. If R is singular we can 
use the absolute value or the square of the largest correlation in the ith row of R as 
an estimate of communality. 

After obtaining communality estimates, we calculate eigenvalues and eigenvec-
tors of S — Φ or R - Φ and use (13.24) to obtain estimates of factor loadings, A. 
Then the columns and rows of A can be used to obtain new eigenvalues (variance 
explained) and communalities, respectively. The sum of squares of the jth column 
of A is the jth eigenvalue of S - Φ or R — Φ, and the sum of squares of the zth 
row of A is the communality of y .̂ The proportion of variance explained by the jth 
factor is 

^3 _ θί 

tr(S - Φ) Ei=i °i 

or 

tr(R-*) E L i ^ ' 
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where 6j is the jth eigenvalue of S - Φ or R — Φ. The matrices S — Φ and R — Φ 
are not necessarily positive semidefinite and will often have some small negative 
eigenvalues. In such a case, the cumulative proportion of variance will exceed 1 and 
then decline to 1 as the negative eigenvalues are added. [Note that loadings cannot 
be obtained by (13.24) for the negative eigenvalues.] 

■ EXAMPLE 13.3.2 

To illustrate the principal factor method, we use the perception data from Ta-
ble 13.1. The correlation matrix as given in Example 13.3.1 is singular. Hence 
in place of multiple correlations as communality estimates, we use the (abso-
lute value of) the largest correlation in each row of R. [The multiple correla-
tion of y with several variables is greater than the simple correlation of y with 
any of the individual variables; see, for example, Rencher and Schaalje (2008, 
p. 257).] The diagonal elements of R — Φ as given by (13.39) are therefore 
.995, .837, .881, .995, and .837, which are obtained from R in (13.35). The 
eigenvalues of R - Φ are 3.202, 1.395, .030, -.0002, and -.080, whose sum 
is 4.546. The first two eigenvectors of R Φ are 

Cl = 

/ 

V 

.548 \ 

.272 

.431 

.549 

.373 / 

and C2 

/ 

V 

-.178 \ 
.656 

-.460 
-.159 

.549 j 

When these are multiplied by the square roots of the respective eigenvalues, 
we obtain the principal factor loadings. In Table 13.3, these are compared with 
the loadings obtained by the principal component method in Example 13.3.1. 
The two sets of loadings are very similar, as we would have expected because 
of the large size of the communalities. The communalities in Table 13.3 are 
for the principal factor loadings, as noted above. The proportion of variance in 
each case for the principal factor loadings is obtained by dividing the variance 
accounted for (eigenvalue) by the sum of the eigenvalues, 4.546; for example, 
3.202/4.546 = .704. D 

13.3.3 Iterated Principal Factor Method 

The principal factor method can easily be iterated to improve the estimates of com-
munality. After obtaining Λ from S - Φ or R - Φ in (13.36) or (13.37) using initial 
communality estimates, we can obtain new communality estimates from the loadings 
in Λ using (13.28), 

hi Σ^ 
These values of hf are substituted into the diagonal of S — Φ or R — Φ, from 
which we obtain a new value of Λ using (13.24). This process is continued until the 
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Table 13.3 Loadings Obtained by Two Different Methods for Perception Data of 
Table 13.1 

Variables 

Kind 
Intelligent 
Happy 
Likeable 
Just 

Variance 
accounted for 

Proportion 
of total variance 

Cumulative 
proportion 

Principal 
Component 
Loadings 

h 
.969 
.519 
.785 
.971 
.704 

3.263 

.653 

.653 

h 
-.231 

.807 
-.587 
-.210 

.667 

1.538 

.308 

.960 

Principal 
Factor 

Loadings 

/ l 

.981 

.487 

.771 

.982 

.667 

3.202 

.704 

.704 

h 
-.210 

.774 
-.544 
-.188 

.648 

1.395 

.307 

1.01 

Communalities 

.995 

.837 

.881 

.995 

.837 

communality estimates converge. (For some data sets, the iterative procedure does 
not converge.) Then the eigenvalues and eigenvectors of the final version of S — Φ 
or R — Φ are used in (13.24) to obtain the loadings. 

The principal factor method and the iterated principal factor method will typically 
yield results very close to those from the principal component method when either 
of the following is true. 

1. The correlations are fairly large, with a resulting small value of m. 

2. The number of variables, p, is large. 

A shortcoming of the iterative approach is that sometimes it leads to a commu-
nality estimate ft? exceeding 1 (when factoring R). Such a result is known as a 
Heywood case (Heywood 1931). If ft2 > 1, then ^ < 0 by (13.26) and (13.28), 
which is clearly improper, since we cannot have a negative specific variance. Thus 
when a communality exceeds 1, the iterative process should stop, with the program 
reporting that a solution cannot be reached. Some software programs have an option 
of continuing the iterations by setting the communality equal to 1 in all subsequent 
iterations. The resulting solution with φι = 0 is somewhat questionable because it 
implies exact dependence of a variable on the factors, a possible but unlikely out-
come. 
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EXAMPLE 13.3.3 

We illustrate the iterated principal factor method using the Seishu data in Ta-
ble 7.1. The correlation matrix is given below: 

R 

/ 1.00 
.56 
.22 
.10 
.20 

- .04 
.13 
.03 

- . 07 
\ .09 

.56 
1.00 

- .09 
.13 
.20 

- . 17 
.17 
.24 
.16 
.06 

.22 
- .09 
1.00 

.16 

.70 
- .31 
- . 45 
- .34 
- .11 

.68 

.10 

.13 

.16 
1.00 

.49 
- . 03 
- .16 

.01 

.42 

.37 

.20 

.20 

.70 

.49 
1.00 

- .32 
- .34 
- .19 

.30 

.87 

- .04 
- . 17 
- . 31 
- . 03 
- .32 
1.00 

- .42 
- . 5 7 
- . 11 
- .26 

.13 

.17 
- .45 
- .16 
- .34 
- .42 
1.00 
.82 
.23 

- . 30 

.03 

.24 
- .34 

.01 
- .19 
- . 57 

.82 
1.00 

.45 
- . 17 

- . 07 
.16 

- . 1 1 
.42 
.30 

- . 11 
.23 
.45 

1.00 
.29 

.09 \ 

.06 

.68 

.37 

.87 
- .26 
- . 30 
- . 17 

.29 
1.00 / 

The eigenvalues of R are 3.17, 2.56, 1.43, 1.28, .54, .47, .25, .12, .10, and 
.06. There is a notable gap between 1.28 and .54, and we therefore extract four 
factors (see Section 13.4). The first four eigenvalues account for a proportion 

3.17 + 2.56 + 1.43+1.28 
10 .84 

oftr(R). 
For initial communality estimates, we use the squared multiple correlation 

between each variable and the other nine variables. These are given in Ta-
ble 13.4, along with the final communalities after iteration. We multiply the 
first four eigenvectors of the final iterated version of R — Φ by the square roots 
of the respective eigenvalues, as in (13.24), to obtain the factor loadings given 
in Table 13.4. We will not attempt to interpret the factors until after they have 
been rotated in Example 13.5.2b(b). D 

13.3.4 Maximum Likelihood Method 

If we assume that the observations yi , y2, · ■ ·, y n constitute a random sample from 
Νρ(μ, Σ ) , then Λ and Φ can be estimated by the method of maximum likelihood. 
It can be shown that the estimates Λ and Φ satisfy the following: 

S M = A(I + A * Λ), 

Φ = diag (S - ÄÄ'), 
- / ~ - i -

Λ Φ Λ is diagonal. 

(13.43) 

(13.44) 

(13.45) 

These equations must be solved iteratively, and in practice the procedure may fail to 
converge or may yield a Hey wood case (Section 13.3.3). 

We note that the proportion of variance accounted for by the factors, as given by 
(13.32) or (13.33), will not necessarily be in descending order for maximum likeli-
hood factors, as it is for factors obtained from the principal component or principal 
factor method. 
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Table 13.4 Iterated 

Variables 

Taste 
Odor 
pH 
Acidity 1 
Acidity 2 
Sake meter 
Reducing sugar 
Total sugar 
Alcohol 
Formyl-nitrogen 

Variance 
accounted for 

I Principal Factor Loadings 

/ l 

.22 

.07 

.80 

.41 

.94 
- .13 
- .55 
- .45 

.13 

.84 

3.00 

Loadings 

Λ 
.31 
.40 
.04 
.22 
.28 

- .67 
.66 
.88 
.54 
.21 

2.37 

h 
.92 
.43 -
.05 -

- .11 
- .07 

.10 

.03 -
- .14 -
- .37 
- .17 -

1.25 

and Communalities for the Seishu Data 

h 
.12 

-.20 
-.40 
.37 
.05 
.56 

-.11 
-.07 
.54 

-.02 

.96 

Initial 
Communalities 

.57 

.54 

.78 

.40 

.88 

.77 

.79 

.87 

.66 

.80 

7.06 

Final 
Communalities 

1.00 
.38 
.79 
.36 
.98 
.79 
.75 
.99 
.74 
.78 

7.57 

EXAMPLE 13.3.4 

We illustrate the maximum likelihood method with the Seishu data of Ta-
ble 7.1. The correlation matrix and its eigenvalues were given in Example 13.3.3. 
We extract four factors, as in Example 13.3.3. The iterative solution of (13.43), 
(13.44), and (13.45) yielded the loadings and communalities given in Table 13.5. 

The pattern of the loadings is different from that obtained using the iterated 
principal factor method in Example 13.3.3, but we will not compare them until 
after rotation in Example 13.5.2b(b). Note that the four values of variance 
accounted for are not in descending order. □ 

13.4 CHOOSING THE NUMBER OF FACTORS, m 

Several criteria have been proposed for choosing m, the number of factors. We 
consider four criteria, which are similar to those given in Section 12.6 for choosing 
the number of principal components to retain. 

1. Choose m equal to the number of factors necessary for the variance accounted 
for to achieve a predetermined percentage, say 80%, of the total variance tr(S) 
or tr(R). 

2. Choose m equal to the number of eigenvalues greater than the average eigen-
value. For R the average is 1; for S it is X)j=i @j/p-

3. Use the scree test based on a plot of the eigenvalues of S or R. If the graph 
drops sharply, followed by a straight line with much smaller slope, choose m 
equal to the number of eigenvalues before the straight line begins. 
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Table 13.5 Maximum Likelihood Loadings and Communalities for the 
Seishu Data 

Loadings 

iriables 

Taste 
Odor 
PH 
Acidity 1 
Acidity 2 
Sake meter 
Reducing sugar 
Total sugar 
Alcohol 
Formyl-nitrogen 

h 
1.00 
.45 
.22 
.10 
.20 

- .04 
.13 
.03 

- .07 
.02 

h 
0 

- .05 
.68 
.47 
.98 

- .31 
- .39 
- .22 

.31 

.79 

h 
0 

.22 
- .20 

.10 

.02 
- .68 

.76 

.96 

.52 
- .05 

h 
0 

.19 
- .40 

.37 

.00 

.55 
- .02 

.02 

.60 
- .10 

Communalities 

1.00 
.29 
.71 
.38 
1.00 
.86 
.75 
.98 
.72 
.63 

Variance 
accounted for 1.33 2.66 2.34 1.00 7.32 

4. Test the hypothesis that m is the correct number of factors, HQ : Σ — ΛΛ' + 
Φ, where Λ is p x m. 

Method 1 applies particularly to the principal component method. By (13.32), 
the proportion of total sample variance (variance accounted for) due to the jth factor 
from S is ^Zf=1 Ä?-/tr(S). The corresponding proportion from R is Σ ^ = 1 ^fj/p, as 
in (13.33). The contribution of all m factors to tr(S) orp is therefore Y%=1 Y^T=\ λ^·, 
which is the sum of squares of all elements of A. For the principal component 
method, we see by (13.28) and (13.29) that this sum is also equal to the sum of the 
first m eigenvalues or to the sum of all p communalities: 

p m p m 

i = l j = l i = l j = l 

Thus we choose m sufficiently large so that the sum of the communalities or the sum 
of the eigenvalues (variance accounted for) constitutes a relatively large portion of 
tr(S) or p. 

Method 1 can be extended to the principal factor method, where prior estimates 
of communalities are used to form S — Φ or R — Φ. However, S — Φ or R — Φ will 
often have some negative eigenvalues. Therefore, as values of m range from 1 to p, 
the cumulative proportion of eigenvalues, ΣΤ=ι ®il Σ?=ι ^?' W'N e x c e e ( l 1-0 a nd 
then reduce to 1.0 as the negative eigenvalues are added. Hence a percentage such as 
80% will be reached for a lower value of m than would be the case for S or R, and 
a better strategy might be to choose m equal to the value for which the percentage 
first exceeds 100%. 
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In the iterated principal factor method, m is specified before iteration, and ]TV h2 

is obtained after iteration as J2i h2 — tr(S — Φ). To choose m before iterating, one 
could use a priori considerations or the eigenvalues of S or R, as in the principal 
component method. 

Method 2 is a popular criterion of long standing and is the default in many soft-
ware packages. Although heuristically based, it often works well in practice. A 
variation to method 2 that has been suggested for use with R — Φ is to let m equal 
the number of positive eigenvalues. (There will typically be some negative eigenval-
ues of R — Φ.) However, this criterion will often result in too many factors, since 
the sum of the positive eigenvalues will exceed the sum of the communalities. 

The scree test in method 3 was named after the geological term scree, referring to 
the debris at the bottom of a rocky cliff. It also performs well in practice. 

In method 4 we wish to test 

H0: Σ = AA' + Φ vs. Ηλ: Σ φ ΛΛ' + Φ, 

where A is p x m. The test statistic, a function of the likelihood ratio, is 

[n j In \ —w— J , (13.47) 

which is approximately χ2 when HQ is true, where v = \[{p — m)2 — p — m] and 
A and Φ are the maximum likelihood estimators. Rejection of Ho implies that m is 
too small and more factors are needed. 

In practice, when n is large, the test in method 4 often shows more factors to be 
significant than do the other three methods. We may therefore consider the value of 
m indicated by the test to be an upper bound on the number of factors with practical 
importance. 

For many data sets, the choice of m will not be obvious. This indeterminacy 
leaves many statisticians skeptical as to the validity of factor analysis. A researcher 
may begin with one of the methods (say method 2) for an initial choice of m, will 
inspect the resulting percent of tr(R) or tr(S), and will then examine the rotated 
loadings for interpretability. If the percent of variance or interpretation does not 
seem satisfactory, the experimenter will try other values of m in a search for an 
acceptable compromise between percent of tr(R) and interpretability of the factors. 
Admittedly, this is a subjective procedure, and for such data sets one could well 
question the outcome (see Section 13.7). 

When a data set is successfully fitted by a factor analysis model, the first three 
methods will almost always give the same value of m, and there will be little question 
as to what this value should be. Thus for a "good" data set, the entire procedure 
becomes much more objective. 

■ EXAMPLE 13.4(a) 

We compare the four methods of choosing m for the perception data used in 
Examples 13.3.1 and 13.3.2. 
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Figure 13.1 Scree graph for the perception data. 

Method 1 gives m = 2, because one eigenvalue accounts for 65% of tr(R), 
while two eigenvalues account for 96%. 

Method 2 gives m — 2, since λ2 = 1.54 and λ^ — .17. 
For method 3, we examine the scree plot in Figure 13.1. It is clear that 

m — 2 is indicated. 
Method 4 is not available for the perception data because R is singular (fifth 

eigenvalue is zero), and the test involves |R|. 
Hence for the perception data, all three available methods agree on m = 2. 

D 

■ EXAMPLE 13.4(b) 

We compare the four methods of choosing m for the Seishu data used in Ex-
amples 13.3.3 and 13.3.4. 

Method 1 gives m = 4 for the principal component method, because four 
eigenvalues of R account for 82% of tr(R). For the principal factor method 
with initial communality estimates Rf, the eigenvalues of R — Ψ and corre-
sponding proportions are as follows: 

Eigenvalues 2.86 2.17 .94 .88 .12 .08 .01 -.06 -.13 -.22 
Proportions .43 .33 .14 .16 .02 .01 .00 -.01 -.02 -.03 

Cumulative 
proportions .43 .76 .90 1.03 1.05 1.06 1.06 1.06 1.03 1.00 
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Figure 13.2 Scree graph for the Seishu data. 

The proportions are obtained by dividing the eigenvalues by their sum, 6.63. 
Thus the cumulative proportion first exceeds 1.00 for m = 4. 

Method 2 gives m — 4, since λ4 = 1.31 and λ5 = .61, where Xi and λ5 
are eigenvalues of R. 

For method 3, we examine the scree plot in Figure 13.2. There is a dis-
cernible bend in slope at the fifth eigenvalue. 

For method 4, we use m = 4 in the approximate chi-squared statistic in 
(13.47) and obtain χ2 = 9.039, with degrees of freedom 

v= \[{p-mf -p-m\ = i [ ( 1 0 - 4 ) 2 - 1 0 - 4 ] = l l . 

Since 9.039 < χ2
05 η = 19.68, we do not reject the hypothesis that four 

factors are adequate. 
Thus for the Seishu data, all four methods agree on m = 4. □ 

13.5 ROTATION 

13.5.1 Introduction 

As noted in Section 13.2.2, the factor loadings (rows of Λ) in the population model 
are unique only up to multiplication by an orthogonal matrix that rotates the loadings. 
The rotated loadings preserve the essential properties of the original loadings; they 
reproduce the covariance matrix and satisfy all basic assumptions. The estimated 
loading matrix Λ can likewise be rotated to obtain Λ = ΛΤ, where T is orthogonal. 
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Since T T ' = I by (2.102), the rotated loadings provide the same estimate of the 
covariance matrix as before: 

S =* Λ*Λ*' + Φ = ΛΤΤ'Λ' + Ψ = ΛΛ' + Φ. (13.48) 

Geometrically, the loadings in the zth row of Λ constitute the coordinates of a 
point in the loading space corresponding to y,. Rotation of the p points gives their 
coordinates with respect to new axes (factors) but otherwise leaves their basic geo-
metric configuration intact. We hope to find a new frame of reference in which the 
factors are more interpretable. To this end, the goal of rotation is to place the axes 
close to as many points as possible. If there are clusters of points (corresponding 
to groupings of y's), we seek to move the axes so as to pass through or near these 
clusters. This would associate each group of variables with a factor (axis) and make 
interpretation more objective. The resulting axes then represent the natural factors. 

If we can achieve a rotation in which every point is close to an axis, then each 
variable loads highly on the factor corresponding to the axis and has small loadings 
on the remaining factors. In this case, there is no ambiguity. Such a happy state of 
affairs is called simple structure, and interpretation is greatly simplified. We merely 
observe which variables are associated with each factor, and the factor is defined or 
named accordingly. 

In order to identify the natural groupings of variables, we seek a rotation to an 
interpretable pattern for the loadings, in which the variables load highly on only one 
factor. The number of factors on which a variable has moderate or high loadings 
is called the complexity of the variable. In the ideal situation referred to above as 
simple structure, the variables all have a complexity of 1. In this case, the variables 
have been clearly clustered into groups corresponding to the factors. 

We consider two basic types of rotation: orthogonal and oblique. The rotation 
in (13.48) involving an orthogonal matrix is an orthogonal rotation; the original per-
pendicular axes are rotated rigidly and remain perpendicular. In an orthogonal rota-
tion, angles and distances are preserved, communalities are unchanged, and the basic 
configuration of the points remains the same. Only the reference axes differ. In an 
oblique "rotation" (transformation), the axes are not required to remain perpendicu-
lar and are thus free to pass closer to clusters of points. 

In Sections 13.5.2 and 13.5.3, we discuss orthogonal and oblique rotations, fol-
lowed by some guidelines for interpretation in Section 13.5.4. 

13.5.2 Orthogonal Rotation 

It was noted above in Section 13.5.1 that orthogonal rotations preserve communal-
ities. This is because the rows of Λ are rotated, and the distance to the origin is 
unchanged, which, by (13.28), is the communality. However, the variance accounted 
for by each factor as given in (13.31) will change, as will the corresponding pro-
portion in (13.32) or (13.33). The proportions due to the rotated loadings will not 
necessarily be in descending order. 

In Sections 13.5.2a and 13.5.2b, we consider two approaches to orthogonal rota-
tion. 
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13.5.2a Graphical Approach 
If there are only two factors (m = 2), we can use a graphical rotation based on a 
visual inspection of a plot of factor loadings. In this case, the rows of Λ are pairs of 
loadings, (Xn, Äi2), i = 1,2,. . . ,p, corresponding to y\, y2, ■ ■ ■, yp. We choose an 
angle φ through which the axes can be rotated to move them closer to groupings of 
points. The new rotated loadings (A*j, λ*2) can be measured directly on the graph as 
coordinates of the axes or calculated from Λ = ΛΤ using 

cost 
sin< 

-siru 
cost 

(13.49) 

EXAMPLE 13.5.2a 

In Example 13.3.1, the initial factor loadings for the perception data did not 
provide an interpretation consistent with the two groupings of variables appar-
ent in the pattern of correlations in R. The five pairs of loadings (Xn, λ^) 
corresponding to the five variables are plotted in Figure 13.3. An orthogonal 
rotation through —35° would bring the axes (factors) closer to the two clus-
ters of points (variables) identified in Example 13.3.1. With the rotation, each 
cluster of variables corresponds much more closely to a factor. Using Λ from 
Example 13.3.1 and —35° in T as given in (13.49), we obtain the following 
rotated loadings: 

Λ = Λ Τ 

/ .969 - .231 \ 
.519 .807 
.785 -.587 
.971 -.210 

\ .704 .667 ) 

.819 .574 
-.574 .819 

/ .927 
- .037 

.980 

.916 
\ .194 

.367 \ 

.959 
-.031 
.385 
.950 J 

In Table 13.6, we compare the rotated loadings in Λ with the original loadings 
in Λ. 

The interpretation of the rotated loadings is clear. As indicated by the bold-
face loadings in Table 13.6, the first factor is associated with variables 1, 3, and 
4: kind, happy, and likeable. The second factor is associated with the other two 
variables: intelligent and just. This same grouping of variables is indicated by 
the pattern in the correlation matrix in (13.35) and can also be seen in the two 
clusters of points in Figure 13.3. The first factor might be described as repre-
senting a person's perceived humanity or amiability, while the second involves 
more logical or rational practices. 
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Figure 13.3 Plot of the two loadings for each of the 
five variables in the perception data of Table 13.1. 

Note that if the angle between the rotated axes was allowed to be less than 
90° (an oblique rotation), the lower axis representing /x* could come closer to 
the points corresponding to variables 1 and 4 so that the coordinates on / | , 
.367 and .385, could be reduced. However, the basic interpretation would not 
change; variables 1 and 4 would still be associated with / j \ D 

13.5.2b Varimax Rotation 
The graphical approach to rotation is generally limited to m = 2. For m > 2, various 
analytical methods have been proposed. The most popular of these is the varimax 
technique, which seeks rotated loadings that maximize the variance of the squared 
loadings in each column of Λ . If the loadings in a column were nearly equal, the 
variance would be close to 0. As the squared loadings approach 0 and 1 (for factoring 
R), the variance will approach a maximum. Thus the varimax method attempts to 
make the loadings either large or small to facilitate interpretation. 

The varimax procedure cannot guarantee that all variables will load highly on 
only one factor. In fact, no procedure could do this for all possible data sets. The 
configuration of the points in the loading space remains fixed; we merely rotate the 
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Table 13.6 Graphically Rotated Loadings for the Perception Data of Table 13.1 

Variables 

Kind 
Intelligent 
Happy 
Likeable 
Just 

Variance 
accounted for 

Proportion 
of total variance 

Cumulative 
proportion 

Principal 
Component 
Loadings 

/ l 

.969 

.519 

.785 

.971 

.704 

3.263 

.653 

.653 

h 
-.231 

.807 
-.587 
-.210 

.667 

1.538 

.308 

.960 

Graphically 
Rotated 

Loadings 

h 
.927 

-.037 
.980 
.916 
.194 

2.696 

.539 

.539 

h 
.367 
.959 

-.031 
.385 
.950 

2.106 

.421 

.960 

Communahties, 
hi 
.993 
.921 
.960 
.987 
.940 

4.802 

.960 

.960 

axes to be as close to as many points as possible. In many cases, the points are not 
well clustered, and the axes simply cannot be rotated so as to be near all of them. This 
problem is compounded by having to choose m. If m is changed, the coordinates 
(Aii, Xj2, · · ·, Km) change, and the relative position of the points is altered. 

The varimax rotation is available in virtually all factor analysis software pro-
grams. The output typically includes the rotated loading matrix Λ , the variance 
accounted for (sum of squares of each column of Λ ), the communahties (sum of 
squares of each row of Λ ), and the orthogonal matrix T used to obtain Λ = ΛΤ. 

■ EXAMPLE 13.5.2b(a) 

In Example 13.5.2a, a graphical rotation was devised visually to achieve inter-
pretable loadings for the perception data of Table 13.1. As we would expect, 
the varimax method yields a similar result. The varimax rotated loadings are 
given in Table 13.7. For comparison, we have included the original unrotated 
loadings from Table 13.3 and the graphically rotated loadings from Table 13.6. 

The orthogonal matrix T for the varimax rotation is 

.859 .512 
-.512 .859 

By (13.49), -sin</> = .512, and the angle of rotation is φ = - s i n " 1 (.512) = 
-30.8°. Thus the varimax rotation chose an angle of rotation of -30.8° as 
compared to the —35° we selected visually, but the results are very close and 
the interpretation is exactly the same. D 
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Table 13.7 Varimax Rotated Factor Loadings for the Perception Data of Table 13.1 

Variables 

Kind 
Intelligent 
Happy 
Likeable 
Just 

Variance 
accounted for 

Proportion of 
total variance 

Cumulative 
proportion 

Principal 
Component 
Loadings 

/ l 

.969 

.519 

.785 

.971 

.704 

3.263 

.653 

.653 

h 
-.231 

.807 
-.587 
-.210 

.667 

1.538 

.308 

.960 

Graphically 
Rotated 

Loadings 
h 

.927 
-.037 

.980 

.916 

.194 

2.696 

.539 

.539 

h 
.367 
.959 

-.031 
.385 
.950 

2.106 

.421 

.960 

Varimax 
Rotated 

Loadings 
h h 

.951 

.033 

.975 

.941 

.263 

2.811 

.562 

.562 

.298 

.959 
- .103 

.317 

.933 

1.991 

.398 

.960 

Communalities, 
h\ 

.993 

.921 

.960 

.987 

.940 

4.802 

.960 

.960 

EXAMPLE 13.5.2b(b) 

In Examples 13.3.3 and 13.3.4, we obtained the iterated principal factor load-
ings and maximum likelihood loadings for the Seishu data. In Table 13.8, we 
show the varimax rotation of these two sets of loadings. The similarities in the 
two sets of rotated loadings are striking. The interpretation in each case is the 
same. The variances accounted for are virtually identical. 

The rotation in each case has achieved a satisfactory simple structure, and 
most variables show a complexity of 1. The boldface loadings indicate the 
variables associated with each factor for interpretation purposes. These may 
be meaningful to the researcher. For example, factor 2 is associated with sake 
meter, reducing sugar, and total sugar, while factor 3 is aligned with taste and 
odor. □ 

13.5.3 Oblique Rotation 

The term oblique rotation refers to a transformation in which the axes do not remain 
perpendicular. Technically, the term oblique rotation is a misnomer, since rotation 
implies an orthogonal transformation that preserves distances. A more accurate char-
acterization would be oblique transformation, but the term oblique rotation is well 
established in the literature. 

Instead of the orthogonal transformation matrix T used in (13.16), (13.17), and 
(13.18), an oblique rotation uses a general nonsingular transformation matrix Q to 
obtain f * = Q'f, and by (3.74), 

cov(P) = Q ' lQ = Q'Q Φ I. (13.50) 
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Table 13.8 Varimax Rotated Loadings for the Seishu Data 

Iterated Principal Factor Maximum Likelihood 
Rotated Loadings Rotated Loadings 

iriables 

Taste 
Odor 
pH 
Acidity 1 
Acidity 2 
Sake meter 
Reducing sugar 
Total sugar 
Alcohol 
Formyl-ni trogen 

h 
.16 

- .11 
.88 
.26 
.89 

- .43 
- .37 
- .26 
-.01 

.74 

h 
- .01 

.14 
- .12 
- .09 
- .06 
- . 7 6 

.76 

.92 

.25 
- .07 

h 
.99 
.48 
.02 
.09 
.10 
.01 
.18 
.10 
.00 

- .08 

h 
- .09 

.14 
- .13 

.54 

.43 

.07 

.03 

.25 

.80 

.20 

h 
.16 

- .07 
.82 
.29 
.91 

- .46 
- .37 
- .27 
- .00 

.76 

h 
- .00 

.14 
- .10 
- .08 
- .06 
- . 8 0 

.75 

.91 

.25 
- .07 

h 
.98 
.49 
.08 
.11 
.10 
.04 
.20 
.11 
.01 

- .08 

h 
- .10 

.17 
- .15 

.53 

.39 

.10 

.08 

.26 

.81 

.22 

Variance 
accounted for 2.62 2.12 1.27 1.27 2.61 2.14 1.29 1.28 

Thus the new factors are correlated. Since distances and angles are not preserved, the 
communalities for f * are different from those for f. Some program packages report 
communalities obtained from the original loadings, rather than the oblique loadings. 

When the axes are not required to be perpendicular, they can more easily pass 
through the major clusters of points in the loading space (assuming there are such 
clusters). For example, in Figure 13.4, we have plotted the varimax rotated loadings 
for two factors extracted from the sons data of Table 3.8 (see Example 13.5.3 at the 
end of this section). Oblique axes with an angle of 38° would pass much closer to the 
points, and the resulting loadings would be very close to 0 and 1. However, the in-
terpretation would not change, since the same points (variables) would be associated 
with the oblique axes as with the orthogonal axes. 

Various analytical methods for achieving oblique rotations have been proposed 
and are available in program packages. Typically, the output of one of these pro-
cedures includes a pattern matrix, a structure matrix, and a matrix of correlations 
among the oblique factors. For interpretation, we would usually prefer the pattern 
matrix rather than the structure matrix. The loadings in a row of the pattern matrix 
are the natural coordinates of the point (variable) on the oblique axes and serve as 
coefficients in the model relating the variable to the factors. 

One use for an oblique rotation is to check on the orthogonality of the factors. 
The orthogonality in the original factors is imposed by the model and maintained by 
an orthogonal rotation. If an oblique rotation produces a correlation matrix that is 
nearly diagonal, we can be more confident that the factors are indeed orthogonal. 
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Figure 13.4 Orthogonal and oblique rotations for the sons data. 

■ EXAMPLE 13.5.3 

The correlation matrix for the sons data of Table 3.8 is given below: 

.704 \ 

.709 

.839 ' 
1.000 / 

The varimax rotated loadings for two factors obtained by the principal compo-
nent method are given in Table 13.9 and plotted in Figure 13.4. An analytical 
oblique rotation (Harris-Kaiser orthoblique method in SAS) produced oblique 
axes with an angle of 38°, the same as obtained by a graphical approach. The 
correlation between the two factors is .79 [obtained from Q'Q in (13.50)], 
which is related to the angle by (3.15), .79 = cos 38°. The pattern loadings are 
given in Table 13.9. 

The oblique loadings give a much cleaner simple structure than the varimax 
loadings, but the interpretation is essentially the same if we neglect loadings 
below .45 on the varimax rotation. 

1.000 
.735 
.711 
.704 

.735 
1.000 
.693 
.709 

.711 

.693 
1.000 
.839 
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Table 13.9 Varimax and Orthoblique Loadings for 
the Sons Data 

Varimax Orthoblique 
Loadings Pattern Matrix 

Variable / i f2 / i /2 

1 .42 .82 .03 .90 
2 .40 .85 -.03 .96 
3 .87 .41 .97 -.01 
4 .86 .43 .95 .01 

In Figure 13.4, it is evident that a single factor would be adequate since 
the angle between axes is less than 45°. The suggestion to let m = 1 is also 
supported by the first three criteria in Section 13.4: the eigenvalues of R are 
3.20, .38, .27, and .16. The first accounts for 80%, the second for an additional 
9%. The large correlation, .79, between the two oblique factors constitutes 
additional evidence that a single factor model would suffice here. In fact, the 
pattern in R itself indicates the presence of only one factor. The four variables 
form only one cluster, since all are highly correlated. There are no small cor-
relations between groupings of variables. □ 

13.5.4 Interpretation 

In Sections 13.5.1, 13.5.2, and 13.5.3, we have discussed the usefulness of rotation 
as an aid to interpretation. Our goal is to achieve a simple structure in which each 
variable loads highly on only one factor, with small loadings on all other factors. In 
practice, we often fail to achieve this goal, but rotation usually produces loadings 
that are closer to the desired simple structure. 

We now suggest general guidelines for interpreting the factors by examination of 
the matrix of rotated factor loadings. Moving horizontally from left to right across 
the m loadings in each row, identify the highest loading (in absolute value). If the 
highest loading is of a significant size (a subjective determination, see the next para-
graph), circle or underline it. This is done for each of the p variables. There may be 
other significant loadings in a row besides the one circled. If these are considered, 
the interpretation is less simple. On the other hand, there may be variables with such 
small communalities that no significant loading appears on any factor. In this case, 
the researcher may wish to increase the number of factors and run the program again 
so that these variables might associate with a new factor. 

To assess significance of factor loadings Xij obtained from R, a threshold value of 
.3 has been advocated by many writers. For most successful applications, however, 
a critical value of .3 is too low and will result in variables of complexity greater than 
1. A target value of .5 or .6 is typically more useful. The .3 criterion is loosely 
based on the critical value for significance of an ordinary correlation coefficient, r. 
However, the distribution of the sample loadings is not the same as that of r arising 
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from the bivariate normal. In addition, the critical value should be increased because 
mp values of Ajj are being tested. On the other hand, if m is large, the critical value 
might possibly need to be reduced somewhat. Since hf = ΣΤ=1 λ?· is bounded by 
1, an increase in m reduces the average squared loading in a row. 

After identifying potentially significant loadings, the experimenter then attempts 
to discover some meaning in the factors and, ideally, to label or name them. This can 
readily be done if the group of variables associated with each factor makes sense to 
the researcher. But in many situations, the groupings are not so logical, and a revision 
can be tried, such as adjusting the size of loading deemed to be important, changing 
m, using a different method of estimating the loadings, or employing another type 
of rotation. 

13.6 FACTOR SCORES 

In many applications, the researcher wishes only to ascertain whether a factor anal-
ysis model fits the data and to identify the factors. In other applications, the ex-
perimenter wishes to obtain factor scores fj = (fa, fa, ■ ■ ■, fim)', i = 1,2,. . . , n, 
which are defined as estimates of the underlying factor values for each observation. 
There are two potential uses for such scores: (1) the behavior of the observations in 
terms of the factors may be of interest and (2) we may wish to use the factor scores 
as input to another analysis, such as MANOVA. The latter usage resembles a similar 
application of principal components. 

Since the / ' s are not observed, we must estimate them as functions of the observed 
y's. The most popular approach to estimating the factors is based on regression 
(Thompson 1951). We will discuss this method and also briefly describe an informal 
technique that can be used when R (or S) is singular. For other approaches see 
Harman (1976, Chapter 16). 

Since E{fi) = 0, we relate the / ' s to the y's by a centered regression model 

/ i = ßu{yi -Vi) + ßu(y2 -y2) +■■■ + ßiP(yP -yp) + ci 
h = ß2i{yi - Vi) + £22(2/2 -V2) + ■■■ + ß2P(yP - yp) + e2 

fm = ßmliVl - Vl) + ßm2{y2 ~ j / 2 ) + ^ ßmpiVp ~ Up) + «m, 

which can be written in matrix form as 

f = B i ( y - y ) + c. (13.52) 

We have used the notation e to distinguish this error from e in the original factor 
model y — μ = Λί* + ε given in (13.3). Our approach is to estimate Bi and use the 
predicted value f = B'j (y — y) to estimate f. 

The model (13.52) holds for each observation: 

fi = B'1(yi-y)+ei, i = l,2,...,n. 
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In transposed form, the model becomes 

f/ = ( y i - y ) ' B i + e < , i = l,2,...,n, 

and these n equations can be combined into a single model, 

/ f i \ 
r 2 

\ f W 

/ ( y i - y ) ' B ! \ 
(y2 - y)'B! 

V (y™-y)'B! J 

( (yi - y)' \ 
( y 2 - y ) ' 

+ 

/ e'i \ 

\<J 

Β , + Ξ 

V (y« - y)' I 
Y c B i + Ξ [by (10.11)]. (13.53) 

The model (13.53) has the appearance of a centered multivariate multiple regres-
sion model as in Section 10.4.5, with Y c in place of X c . By (10.55), the estimate for 
Bi would be 

B x = ( Y ^ - ^ F . (13.54) 

However, F is unobserved. To evaluate Bi in spite of this, we first use (10.57) to 
rewrite (13.54) in terms of covariance matrices, 

B i SyySyf- (13.55) 

In the notation of the present chapter, Syy is represented by S; for Syf we use Λ, 
since Λ estimates cov(y,f) = Λ in (13.13). Thus, based on the assumptions in 
Section 13.2.1, we can write (13.55) as 

Bi = S"1A. 

Then from model (13.53), the estimated (predicted) £ values are given by 

(13.56) 

/ fί \ 
YCB1 

= Y c S - 1 ! . 

If R is factored instead of S, (13.56) and (13.57) become 

Bj = R X A , 

F = Y s R " 1 ! , 

(13.57) 

(13.58) 

(13.59) 
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respectively, where Y s is the observed matrix of standardized variables, (y^ — 
Vj)/Sj· 

We would ordinarily obtain factor scores for the rotated factors rather than the 
original factors. Thus Λ in (13.57) or (13.59) would be replaced by Λ . 

In order to obtain factor scores by (13.57) or (13.59), S or R must be nonsin-
gular. When R (or S) is singular, we can obtain factor scores by a simple method 
based directly on the rotated loadings. We cluster the variables into groups (factors) 
according to the loadings and find a score for each factor by averaging the variables 
associated with the factor. If the variables are not commensurate, the variables should 
be standardized before averaging. An alternative approach would be to weight the 
variables by their loadings when averaging. 

■ EXAMPLE 13.6 

The speaking rate of four voices was artificially manipulated by means of a 
rate changer without altering the pitch (Brown, Strong, and Rencher 1973). 
There were five rates for each voice: 

FF = 45% faster 
F = 25% faster 
N = normal rate 
S = 22% slower 

SS = 42% slower. 

The resulting 20 voices were played to 30 judges who rated them on 15 
paired-opposite adjectives (variables) with a 14-point scale between poles. The 
following adjectives were used: intelligent, ambitious, polite, active, confident, 
happy, just, likeable, kind, sincere, dependable, religious, good-looking, socia-
ble, and strong. The results were averaged over the 30 judges to produce 20 
observation vectors of 15 variables each. The averaging produced very reliable 
data so that even though there were only 20 observations on 15 variables, the 
factor analysis model fit very well. The correlation matrix is as follows: 

R = 

/ l .OO 
.90 

- . 1 7 
.88 
.92 
.88 
.15 
.39 

- . 02 
- . 1 6 

.52 
- . 1 5 

.79 

.78 
V .73 

.90 
1.00 
- .46 

.93 

.87 

.79 
- .16 

.10 
- . 35 
- .42 

.25 
- . 40 

.68 

.60 

.62 

- .17 
- .46 
1.00 
- .56 
- . 1 3 

.07 

.85 

.75 

.88 

.91 

.67 

.88 

.21 

.31 

.25 

.88 

.93 
- . 56 
1.00 

.85 

.73 
- . 2 5 
- . 02 
- . 4 5 
- . 5 7 

.10 
- . 5 3 

.58 

.54 

.50 

.92 

.87 
- . 13 

.85 
1.00 

.91 

.20 

.39 
- .09 
- .16 

.49 
- .10 

.85 

.80 

.81 

.88 

.79 

.07 

.73 

.91 
1.00 

.27 

.53 

.12 

.06 

.66 

.08 

.90 

.85 

.78 

.15 
- .16 

.85 
- .25 

.20 

.27 
1.00 

.85 

.81 

.79 

.79 

.81 

.43 

.54 

.53 

.39 

.10 

.75 
- .02 

.39 

.53 

.85 
1.00 

.84 

.79 

.93 

.77 

.71 

.69 

.76 

- .02 
- .35 

.88 
- .45 
- .09 

.12 

.81 

.84 
1.00 

.91 

.76 

.85 

.28 

.36 

.35 

- .16 
- .42 

.91 
- . 5 7 
- .16 

.06 

.79 

.79 

.91 
1.00 

.72 

.96 

.26 

.28 

.29 

.52 

.25 

.68 

.10 

.49 

.66 

.79 

.93 

.76 

.72 
1.00 

.72 

.75 

.77 

.78 

- .15 
- .40 

.88 
- . 5 3 
- .10 

.08 

.81 

.77 

.85 

.96 

.72 
1.00 

.33 

.32 

.34 

- .79 
.68 
.21 
.58 
.85 
.90 
.43 
.71 
.28 
.26 
.75 
.33 

1.00 
.86 
.92 

- .78 
- .60 

.31 

.84 

.80 

.85 

.54 

.69 

.36 

.28 

.77 

.32 

.86 
1.00 

.82 

. 7 3 \ 

.62 

.25 

.50 

.81 

.78 

.53 

.76 

.35 

.29 

.78 

.34 

.92 

.82 
1.00 ) 
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Figure 13.5 Scree graph for voice data. 

The eigenvalues of R are 7.91,5.85, .31, .26, ■ · ■ , .002, with the scree plot in 
Figure 13.5. Clearly, by any criterion for choosing m, there are two factors. 

All four major methods of factor extraction discussed in Section 13.3 pro-
duced nearly identical results (after rotation). We give the initial and rotated 
loadings obtained from the principal component method in Table 13.10. 

The two rotated factors were labeled "competence" and "benevolence." The 
same two factors emerged consistently in similar studies with different voices 
and different judges. 

The two groupings of variables can also be seen in the correlation matrix. 
For example, in the first row, the large correlations correspond to the boldface 
rotated loadings for / i , while in the third row, the large correlations correspond 
to the boldface rotated loadings for f2. 

The factor scores were of primary interest in this study. The goal was to as-
certain the effect of the rate manipulations on the two factors, that is, to deter-
mine the perceived change in competence and benevolence when the speaking 
rate is increased or decreased. 

The two factor scores were obtained for each of the 20 voices; these are 
plotted in Figure 13.6, where a consistent effect of the manipulation of speak-
ing rate on all four voices can clearly be seen. Decreasing the speaking rate 
causes the speaker to be rated less competent; increasing the rate causes the 
speaker to be rated less benevolent. The mean vectors (centroids) are also 
given in Figure 13.6 for the four speakers. D 
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Table 13.10 Initial and Varimax Rotated Loadings for the Voice Data 

Variable 

Intelligent 
Ambitious 
Polite 
Active 
Confident 
Happy 
Just 
Likeable 
Kind 
Sincere 
Dependable 
Religious 
Good-looking 
Sociable 
Strong 

Variance 
accounted for 

Proportion of 
total variance 

Cumulative 
proportion 

Initial Loadings 

h 
.71 
.48 
.50 
.37 
.73 
.83 
.71 
.89 
.58 
.52 
.93 
.55 
.91 
.91 
.91 

7.91 

.53 

.53 

h 
- .65 
- .84 

.81 
- .91 
- .64 
- .47 

.58 

.39 

.75 

.82 

.27 

.79 
- .29 
- .22 
-.21 

5.85 

.39 

.92 

Rotated Loadings 

h 
.96 
.90 

- .12 
.86 
.97 
.94 
.20 
.45 

- .02 
- .11 

.56 
- .07 

.89 

.84 

.84 

7.11 

.47 

.47 

h 
- .06 
- .36 

.95 
- .48 
- .04 

.15 

.89 

.87 

.95 

.97 

.79 

.96 

.35 

.40 

.41 

6.65 

.44 

.92 

Communalities 

.93 

.94 

.92 

.97 

.95 

.91 

.84 

.95 

.89 

.95 

.94 

.92 

.91 

.87 

.86 

13.76 

.92 

.92 

13.7 VALIDITY OF THE FACTOR ANALYSIS MODEL 

For many statisticians, factor analysis is controversial and does not belong in a tool 
kit of legitimate multivariate techniques. The reasons for this mistrust include the 
following: the difficulty in choosing m, the many methods of extracting factors, the 
many rotation techniques, and the subjectivity in interpretation. Some statisticians 
also criticize factor analysis because of the indeterminacy of the factor loading matrix 
Λ or Λ, first noted in Section 13.2.2. However, it is the ability to rotate that gives 
factor analysis its utility, if not its charm. 

The basic question is whether the factors really exist. The model (13.11) for the 
covariance matrix is Σ = ΛΛ' + Φ or Σ - Φ = ΛΛ', where ΛΛ' is of rank m. 
Many populations have covariance matrices that do not approach this pattern unless 
m is large. Thus the model will not fit data from such a population when we try 
to impose a small value of m. On the other hand, for a population in which Σ is 
reasonably close to ΛΛ' + Φ for small m, the sampling procedure leading to S may 
obscure this pattern. The researcher may believe there are underlying factors but has 
difficulty collecting data that will reveal them. In many cases, the basic problem is 
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Figure 13.6 Factor scores of adjective rating of voices with five levels of ma-
nipulated rate. 

that S (or R) contains both structure and error, and the methods of factor analysis 
cannot separate the two. 

A statistical consultant in a university setting or elsewhere all too often sees the 
following scenario. A researcher designs a long questionnaire, with answers to be 
given in, say, a five-point semantic differential scale or Likert scale. The respondents, 
who vary in attitude from uninterested to resentful, hurriedly mark answers that in 
many cases are not even good subjective responses to the questions. Then the re-
searcher submits the results to a handy factor analysis program. Being disappointed 
in the results, he or she appeals to a statistician for help. They attempt to improve the 
results by trying different methods of extraction, different rotations, different values 
of m, and so on. But it is all to no avail. The scree plot looks more like foothills 
than a steep cliff with gently sloping debris at the bottom. There is no clear value of 
m. They have to extract 10 or 12 factors to account for, say, 60% of the variance, 
and interpretation of this large number of factors is hopeless. If a few underlying 
dimensions exist, they are totally obscured by both systematic and random errors in 
marking the questionnaire. A factor analysis model simply does not fit such a data 
set, unless a large value of m is used, which gives useless results. 

It is not necessarily the "discreteness" of the data that causes the problem, but the 
"noisiness" of the data. The specified variables are not measured accurately. In some 
cases, discrete variables yield satisfactory results, such as in Examples 13.3.1,13.3.2, 
13.5.2a, and 13.5.2b(a), where a 12-year-old girl, responding carefully to a semantic 
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differential scale, produced data leading to an unambiguous factor analysis. On the 
other hand, continuous variables do not guarantee good results [see Example 13.7(a) 
below]. 

In cases in which some factors are found that provide a satisfactory fit to the data, 
we should still be tentative in interpretation until we can independently establish the 
existence of the factors. If the same factors emerge in repeated sampling from the 
same population or a similar one, then we can have confidence that application of 
the model has uncovered some real factors. Thus it is good practice to repeat the 
experiment to check the stability of the factors. If the data set is large enough, it 
could be split in half and a factor analysis performed on each half. The two solutions 
could be compared with each other and with that for the complete set. 

If there is replication in the data set, it may be helpful to average over the repli-
cations. This was done to great advantage in Example 13.6, where several judges 
rated the same voices. Averaging over the judges produced variables that apparently 
possessed very low noise. Similar experimentation with different judges always pro-
duced the same factors. Unfortunately, replication of this type is unavailable in most 
situations. 

As with other techniques in this book, factor analysis assumes that the variables 
are at least approximately linearly related to each other. We could make bivariate 
scatterplots to check this assumption. 

A basic prerequisite for a factor analysis application is that the variables not be 
independent. To check this requirement, we could test HQ : P p = I by using the test 
in Section 7.4.3. 

Some writers have suggested that R - 1 should be a near-diagonal matrix in order 
to successfully fit a factor analysis model. To assess how close R _ 1 is to a diagonal 
matrix, Kaiser (1970) proposed a measure of sampling adequacy, 

MSA= g * ^ (13.60) 

where rf- is the square of an element from R and qf · is the square of an element 
from Q = D R _ 1 D , with D = [(diagR- 1) 1 / 2]" 1 . As R 1 approaches a diago-
nal matrix, MSA approaches 1. Kaiser and Rice (1974) suggest that MSA should 
exceed .8 for satisfactory results to be expected. We show some results for MSA in 
Example 13.7(b). 

In summary, there are many data sets to which factor analysis should not be ap-
plied. One indication that R is inappropriate for factoring is the failure of the meth-
ods in Section 13.4 to clearly and rather objectively choose a value for m. If the 
scree plot does not have a pronounced bend or the eigenvalues do not show a large 
gap around 1, then R is likely to be unsuitable for factoring. In addition, the com-
munality estimates after factoring should be fairly large. 

To balance the "good" examples in this chapter, we now give an example involv-
ing a data set that cannot be successfully modeled by factor analysis. Likewise, the 
problems at the end of the chapter include both "good" and "bad" data sets. 
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Figure 13.7 Scree graph for diabetes data. 

■ EXAMPLE 13.7(a) 

As an illustration of an application of factor analysis that is less successful than 
previous examples in this chapter, we consider the diabetes data of Table 3.4. 
The correlation matrix for the five variables is as follows: 

1.00 
.05 

- .13 
.07 
.21 

.05 
1.00 

- .01 
.01 

- .10 

- .13 
-0 .1 
1.00 
.29 
.05 

.07 

.01 

.29 
1.00 
.21 

.21 
- .10 

.05 

.21 
1.00 

The correlations are all small, and the variables do not appear to have much 
in common. The MSA value is .49. The eigenvalues are 1.40, 1.21, 1.04, .71, 
and .65. Three factors would be required to account for 73% of the variance 
and four factors to reach 87%. This is not a useful reduction in dimensionality. 
The eigenvalues are plotted in a scree graph in Figure 13.7. The lack of a clear 
value of m is apparent. 

It is evident from the small correlations in R that the communalities of the 
variables will not be large. The principal component method, which essentially 
estimates the initial communalities as 1, gave very different final communality 
estimates than did the iterated principal factor method: 

Communalities 

Principal component method .71 .91 .71 .67 .64 
Iterated principal factor method .31 .16 .35 .37 .33 
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Table 13.11 Varimax Rotated Factor Loadings for Iterated 
Principal Factors from the Diabetes Data 

Variable 

1 
2 
3 
4 
5 

Variance 
accounted for 

Rotated Loadings 

/ l 

- .08 
.01 
.57 
.57 
.19 

.69 

h 
.54 
.01 

- .15 
.22 
.47 

.59 

h 
.12 
.40 

- .03 
.02 

- .27 

.24 

Communalities 

.31 

.16 

.35 

.37 

.33 

1.52 

The communalities obtained by the iterated approach reflect more accurately 
the small correlations among the variables. 

The varimax rotated factor loadings for three factors extracted by the it-
erated principal factor method are given in Table 13.11. The first factor is 
associated with variables 3 and 4, the second factor with variables 1 and 5, and 
the third with variable 2. This clustering of variables can be seen in R, where 
variables 1 and 5 have a correlation of .21, variables 3 and 4 have a correlation 
of .29, and variable 2 has very low correlations with all other variables. How-
ever, these correlations (.21 and .29) are small, and in this case the collapsing 
of five variables to three factors is not a useful reduction in dimensionality, 
especially since the first three eigenvalues account for only 73% of tr(R). The 
73% is not convincingly greater than 60%, which we would expect from three 
original variables picked at random. This conclusion is borne out by a test of 
H0:PP = I. Using (7.37) and (7.38), we obtain 

u = |R| = .80276, i/ = 20 - 1 = 19, p = 5, 

„ ' = _ [ „ _ I(2p + 5)]lnu = - f l 9 - y ) ( - . 2 1 9 7 ) = 3.625. 

With \p(p — 1) = 10 degrees of freedom, the .05 critical value for this approx-
imate χ2 test is 18.31, and we have no basis to question the independence of 
the five variables. Thus the three factors we obtained are very likely an artifact 
of the present sample and would not reappear in another sample from the same 
population. □ 

EXAMPLE 13.7(b) 

For data sets used in previous examples in this chapter, the values of MSA 
from (13.60) are calculated as follows: 
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Seishu data: MSA = .53 
Sons data: MSA = .82 

Voice data: MSA = .73 
Diabetes data: MSA - .49. 

The MSA value cannot be computed for the perception data, because R is 
singular. 

These results do not suggest great confidence in the MSA index as a sole 
guide to the suitability of R for factoring. We see a wide disparity in the 
MSA values for the first three data sets. Yet all three yielded successful factor 
analyses. These three MSA values seem to be inversely related to the number 
of factors: In the sons data, there were indications that one factor would suffice; 
the voice data clearly had two factors; and for the Seishu data, there were four 
factors. 

The MSA for the diabetes data is close to that of the Seishu data. Yet the 
diabetes data are totally unsuitable for factor analysis, while the factor analysis 
of the Seishu data is very convincing. D 

13.8 RELATIONSHIP OF FACTOR ANALYSIS TO PRINCIPAL 
COMPONENT ANALYSIS 

Both factor analysis and principal component analysis have the goal of reducing 
dimensionality. Because the objectives are similar, many authors discuss principal 
component analysis as another type of factor analysis. This can be confusing, and 
we wish to underscore the distinguishing characteristics of the two techniques. 

Two of the differences between factor analysis and principal component analysis 
were mentioned in Section 13.1: (1) In factor analysis, the variables are expressed 
as linear combinations of the factors, whereas the principal components are linear 
functions of the variables, and (2) in principal component analysis, the emphasis is 
on explaining the total variance Σί s«> a s contrasted with the attempt to explain the 
covariances in factor analysis. 

Additional differences are that (3) principal component analysis requires essen-
tially no assumptions, while factor analysis makes several key assumptions; (4) the 
principal components are unique (assuming distinct eigenvalues of S), whereas the 
factors are subject to an arbitrary rotation; and (5) if we change the number of factors, 
the (estimated) factors change. This does not happen in principal components. 

The ability to rotate to improve interpretability is one of the advantages of factor 
analysis over principal components. If finding and describing some underlying fac-
tors is the goal, factor analysis may prove more useful than principal components; 
we would prefer factor analysis if the factor model fits the data well and we like 
the interpretation of the rotated factors. On the other hand, if we wish to define a 
smaller number of variables for input into another analysis, we would ordinarily pre-
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fer principal components, although this can sometimes be accomplished with factor 
scores. Occasionally, principal components are interpretable, as in the size and shape 
components in Example 12.8.1. 

PROBLEMS 

13.1 Show that the assumptions lead to (13.2), var(i/i) = Af1 + A 2̂ + - · ■ + λ2
ηι + ψί. 

13.2 Verify directly that cov(y, f) = Λ as in (13.13). 

13.3 Show that f* = T'f in (13.18) satisfies the assumptions (13.6) and (13.7), 
E{f*) =Oandcov(f*) = I. 

13.4 Show that ^ e\- < 92
m+l + 6>^+2 + · · · + θ2

ρ as in (13.34), where the etJ's 

are the elements of E = S - (ΛΛ' + Ψ) and the <Vs are eigenvalues of S. 

13.5 Show that Σ%=1 ΣΤ=ί λ? is equal to the sum of the first m eigenvalues and 
also equal to the sum of all p communalities, as in (13.46). 

13.6 In Example 13.3.2, the correlation matrix for the perception data was shown 
to have an eigenvalue equal to 0. Find the multicollinearity among the five 
variables that this implies. 

13.7 Use the words data of Table 5.9. 

(a) Obtain principal component loadings for two factors. 
(b) Do a graphical rotation of the two factors. 
(c) Do a varimax rotation and compare the results with those in part (b). 

13.8 Use the ramus bone data of Table 3.7. 

(a) Extract loadings by the principal component method and do a varimax 
rotation. Use two factors. 

(b) Do all variables have a complexity of 1 ? Carry out an oblique rotation to 
improve the loadings. 

(c) What is the angle between the oblique axes? Would a single factor (m = 
1) be more appropriate here? 

13.9 Carry out a factor analysis of the rootstock data of Table 6.2. Combine the six 
groups into a single sample. 

(a) Estimate the loadings for two factors by the principal component method 
and do a varimax rotation. 

(b) Did the rotation improve the loadings? 

13.10 Use the fish data of Table 6.17. Combine the three groups into a single sample. 
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(a) Obtain loadings on two factors by the principal component method and 
do a varimax rotation. 

(b) Note the similarity of loadings for t/i and y2. Is there any indication in 
the correlation matrix as to why this is so? 

(c) Compute factor scores. 
(d) Using the factor scores, carry out a MANOVA comparing the three groups. 

13.11 Carry out a factor analysis of the flea data in Table 5.5. Combine the two 
groups into a single sample. 

(a) From an examination of the eigenvalues greater than 1, the scree plot, 
and the percentages, is there a clear choice of TO? 

(b) Extract two factors by the principal component method and carry out a 
varimax rotation. 

(c) Is the rotation an improvement? Try an oblique rotation. 

13.12 Use the engineer data of Table 5.6. Combine the two groups into a single 
sample. 

(a) Using a scree plot, the number of eigenvalues greater than 1, and the 
percentages, is there a clear choice of TO? 

(b) Extract three factors by the principal component method and carry out a 
varimax rotation. 

(c) Extract three factors by the principal factor method and carry out a vari-
max rotation. 

(d) Compare the results of parts (b) and (c). 

13.13 Use the probe word data of Table 3.6. 

(a) Obtain loadings for two factors by the principal component method and 
carry out a varimax rotation. 

(b) Note the near duplication of loadings for y2 and y\. Is there any indica-
tion in the correlation matrix as to why this is so? 

(c) Is the rotation satisfactory? Try an oblique rotation. 



CHAPTER 14 

CONFIRMATORY FACTOR ANALYSIS 

14.1 INTRODUCTION 

In Chapter 13, we emphasized that exploratory factor analysis (EFA) is used to give a 
low-dimensional description of high-dimensional data, but is not based on a uniquely 
identifiable model. That is, no sample of data—regardless of how large—will yield 
a scenario in which the "true" values of the EFA model can be identified. This is due 
to the over-parameterized nature of the EFA model, as described in Sections 13.2.2 
and 13.7. Because of the nonuniqueness of the factor loadings and other model 
parameters, practitioners of EFA typically find a solution to the model and then rotate 
the factor loadings to find a more interpretable or convenient definition of the latent 
factors (see Section 13.5). 

As in the EFA model (13.1), the factors fj in the confirmatory factor analysis 
(CFA) model are used to represent underlying latent variables that are of princi-
pal interest but are difficult or impossible to measure. For example, an educational 
researcher may be interested in a students' attitudes about facets of their class expe-
rience, or a physician may be interested in assessing various dimensions of quality 
of life for patients being treated for cancer. In such cases where primary interest is in 
attitudes, ideas, or other hard-to-measure variables, the factor analysis approach will 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 479 
Copyright © 2012 John Wiley & Sons, Inc. 
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be of particular utility. Thus, along with item response theory, CFA is a frequently 
used tool in the development and analysis of assessment tests and questionnaires. 
In fact, many item response theory models are special cases of confirmatory factor 
analysis. 

What sets CFA apart from EFA (Chapter 13) is that constraints will be incorpo-
rated into the model to ensure a uniquely identifiable set of model parameters. Thus, 
CFA will follow the usual statistical paradigm—hypothesizing an identifiable model, 
fitting model parameters, assessing the goodness of model fit, and performing sta-
tistical inference for model parameters using conventional tools such as hypothesis 
tests and confidence intervals. CFA is often considered to be a subset or special case 
of structural equation modeling, wherein unobserved factors can have structural re-
lationships. For example, a structural equation model might posit that one factor is 
predicted by another factor in a manner analogous to the way a response (dependent) 
variable y is affected by a predictor (independent) variable x in the simple linear 
regression model: y ~ β0 + βχχ + ε. In contrast, CFA allows the estimation of 
multiple correlated factors but does not allow the factors to have predictor/response 
relationships. 

Throughout our discussion, we emphasize facets of CFA that are most directly 
useful to the practitioner. Readers interested in technical details, derivations, or ex-
tensions to structural equation modeling should refer to the excellent treatments of 
CFA found in Fuller (1987; Sections 1.5 and 4.3) and Bollen (1989). 

14.2 MODEL SPECIFICATION AND IDENTIFICATION 

14.2.1 Confirmatory Factor Analysis Model 

When employing confirmatory factor analysis, we use an alternative approach for 
fitting the general factor analysis model that was first introduced as (13.1): 

2/i = μι + λ π / ι + λι2 /2 Η + A i m / m + ει 
2/2 = M2 + λ 2 ι / ι + λ22/2 + · · · + A 2 m / m + ε2 

. (14.1) 

Up = βρ + λρΐ/ι + λρ2/2 + · · · + ^pmfm + Sp-

in matrix form, we write the model: 

γ = μ + Αΐ + ε. (14.2) 

As in the EFA setting, the factor loading λ^ in (14.1) quantifies the influence of 
the factor fj on the observed variable yi5 and the mean and specific factor (or error) 
components for yi are still defined as μι and ε*, respectively. The factor vector 
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f — (fi,..., f m ) ' has mean 0 and covariance matrix 

/ 

cov(f) = Φ = 

^11 

ί>21 

^ 1 2 

622 

hm \ 
t>2m 

(14.3) 

/ \ Φτηΐ Ψτη2 ■■· 4 

and the error vector ε — ( e i , . . . , ερ)' has mean 0 and diagonal covariance matrix 

cov(e) = Φ 

/ Φη 0 
0 1p22 

\ o 0 

0 \ 
0 

Φρρ ) 

(14.4) 

The vectors f and ε are independent. The diagonality assumption for Φ can be 
relaxed in more general forms of the model, but we focus here on the classical model, 
which assumes that all of the correlation among the observed variables is due to the 
factors. 

Note that model (14.2) implies a specific structure for the covariance matrix for 
y. When the model holds, we can define the population covariance matrix for y to 
be 

Σ(θ) = ΛΦΛ' + Φ, (14.5) 

where Λ, Φ, and Φ are defined in (14.2), (14.3), and (14.4), and Θ is the collection 
of the unique parameters in the model. For the unconstrained model (14.2), 

θ={\\φ',φ')' (14.6) 

where λ contains the pm factor loadings in Λ, φ contains the m(m + l ) /2 factor 
variances and covariances in the symmetric matrix Φ, and φ contains the p error 
variances in the diagonal matrix Φ. When model (14.2) holds, Σ(0) is completely 
specified by the parameter vector Θ. 

A model formulation such as (14.1) or (14.2) is one way of describing the re-
lationships between observed and latent variables. Equally popular is the use of 
the path diagram, wherein a latent variable model such as those described above is 
illustrated graphically. In a path diagram, observed variables are denoted with rect-
angles and latent variables (factors) are denoted with ovals. For example, Figure 14.1 
illustrates the path diagram for the multiple regression model y — β\Χ\ + βϊΧ-ι + ε, 
with var(e) Note that a one-headed arrow denotes a structural or unidirec-
tional relationship, while a two-headed arrow denotes a covariance among variables. 
A two-headed arrow pointing from one variable and back to itself is used to spec-
ify the variance of the variable, which is usually an error or "disturbance" variable. 
As CFA models become increasingly complex, the use of path diagrams becomes 
increasingly attractive for efficiently communicating the hypothesized model. 
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Figure 14.1 Path diagram for multiple regres-
sion model y = ß\x\ + /32̂ 2 + ε, with \ax(e) = 

14.2.2 Identified Models 

As discussed in Sections 13.2.2 and 14.1, the unconstrained factor analysis model 
(14.1) is (in general) underidentified. That is, there is no unique solution for the pa-
rameter vector Θ in (14.5). More specifically, we say that a model is underidentified 
if it is possible to find two different vectors θ\ and θ2 such that Σ(# ι ) = Σ(#2) · 
Identification problems often occur when there are so many free parameters in Θ that 
there are many different values for the vector Θ that provide a solution to the equa-
tions. Every two-factor EFA model is underidentified because the factor loadings 
can be rotated without affecting the implied covariance matrix Σ(ο). In the CFA 
setting, our intent is to impose phenomenologically based constraints on the model 
in order to ensure that the model is identified. That is, we wish to guarantee that there 
exists a unique solution for the parameter vector Θ. 

A necessary but not sufficient condition for a model to be identified is that the 
number of unique statistics in the sample covariance matrix is at least as large as 
the number of parameters needed to specify the population covariance matrix under 
the hypothesized model. This is sometimes called the order condition. Within a 
p x p covariance matrix S, there are p(p + l ) /2 unique statistics—the variances and 
covariances. Given the unconstrained model (14.2), the parameter vector Θ described 
in (14.5) has pm factor loadings, m(m+l)/2 factor variances and covariances, andp 
error variances. Thus, for the unconstrained model, the order condition is met when 

pip + 1) m(m + 1) 
FKF^ > pm+ v

 n
 ! + p. 

However, even when the order condition is met, say when p = 9 and m = 3 in 
model (14.1), we are still not guaranteed identifiability because of the way the model 
parameters interact. For example, the model will have equivalent goodness of fit (i) 
when φχι is large and the loadings A n , . . . , \ρχ are small and (ii) when φ\χ is small 
and the loadings A n , . . . , Xp\ are large. This indeterminacy associated with the scale 
of the latent factors is one cause of the nonidentifiability in the unconstrained model, 
even when the order condition is met. 
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There are many different ways that one can constrain model (14.1) to ensure that 
the parameters are uniquely identified. One widely used approach for obtaining an 
identified factor analysis model is to rewrite model (14.2) using the parameterization: 

( If ) - ( i' ) + ( i: V ( if )·<>«> 
\ ( p - m ) x l / \ ( p - m ) x l / \ (p-m)xm j \ ( p - m ) x l / 

Note that this reparameterization of (14.2) constrains the first TO rows of Λ in (14.2) 
to be equal to the identity matrix, and the first TO elements of μ to be 0. This implies 
that each of the first TO elements of y in (14.2) is equal to one of the TO factors 
plus error. Specifically, Vi = fi + £i, i = 1, ■ ■ ■, TO. Equation (14.7) is called the 
errors-in-variables or measurement error parameterization because it is analogous to 
the errors-in-variables regression problem where the linear model of interest is yi = 
μι +Α\ΐ+ει but the predictor variables f are only observable in their measurement-
error-contaminated form: y0 = f + £Q (see Fuller, 1987, Section 1.3.1). 

Although f is related to all p of the observed variables, (14.7) effectively con-
strains / i , . . . , / m

 t 0 have the same means as j / i , . . . , ym, respectively. Further, the 
variances of f\,..., / m are bounded above by the variances of yi,..., ym, respec-
tively. In practice, the modeler uses her a priori hypothesis about the nature of the 
multivariate structure in y to select which observed variables should be the indicator 
variables y0 that are most closely associated with the factors f. As we will show in 
Section 14.3, the validity of the hypothesis-driven model will be formally evaluated 
for goodness of fit before it is abandoned or tentatively accepted. 

The order condition for model (14.7) is satisfied when 

p(p+l) , , TO(TO+1) ,. . „N 

3 ' > {p-m)m+^-^ ;-+p (14.8) 

or, equivalently (see Problem 14.1), when 

(p — TO)2 > p + TO. 

For example, the errors-in-variables parameterization of the CFA model satisfies the 
order condition for one factor when p > 3, for two factors when p > 5, for three 
factors when p > 6, and so forth. However, an even more general criterion for 
satisfying the model's order condition [regardless of whether (14.7) is satisfied] is 
simply that 

^ > Q, (14.9) 

where q is the total number of unique parameters to be estimated in Λ, Φ, and Φ. 
That is, q is the dimension of the parameter vector Θ. 

The indeterminacy in the unconstrained version of (14.2) is eliminated in model 
(14.7) by (i) satisfying the order condition in (14.8) or (14.9) and (ii) replacing an 
m x TO submatrix of Λ with the rank m matrix I m . However, model (14.2) will in 
fact be identified as long as the order condition in (14.9) is satisfied and any TO rows 
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of Λ are replaced by any full-rank TO x m matrix of constants K. Assuming that 
inference on μ is not of direct interest (which is usually the case), a more general 
model is: 

y = M+( X 1 W e . (14.10) 
\ (p—m)xm I 

Additional constants can be included in Aj and still have an identified model. Fur-
ther, constraints such as setting some factor loadings equal to each other can often 
be accommodated in an identified model. A careful review of a variety of identi-
fiability conditions for CFA can be found in the latent variable modeling literature 
(e.g., Bollen, 1987, Chapter 7). For our present purposes, it suffices to conclude 
that the modeler can fix the physical meaning of the factors in any desired way that 
satisfies the order condition along with some other identifiability-inducing constraint 
of the model, with the parameterizations in models (14.7) and (14.10) being exam-
ples of such acceptable constraints. As with the modeling choices associated with 
model (14.7), the nature of the imposed constraints utilized in model (14.10) will 
depend on the phenomenology under consideration and the a priori hypothesis about 
the nature of the covariances among the observed variables. 

■ EXAMPLE 14.2.2 

To illustrate the formulation of a CFA model, we use the grade data given in 
Table 14.1, which were obtained from a university business statistics class. 
As shown in Table 14.1, each of the 94 students in the class received scores 
for laboratory assignments (Lab), homework assignments (HW), pop quizzes 
(PopQuiz), midterm exam #1 (Examl), midterm exam #2 (Exam2), and the fi-
nal exam (FinalExam). The instructor might hypothesize that the 6-dimensional 
measure of performance in the class is being driven by an underlying 2-dimen-
sional factor process, with the first factor associated with daily effort and the 
second factor associated with knowledge mastery. Consequently, we might 
express the model using the parameterization in (14.10): 

Lab — μι+ Xnfi + \12f2 + ει 
HW - μ2 + Λ + ε2 

PopQuiz = μ3 + λ 3 ι / ι + λ3 2 /2 + ε3 

Examl = μ4 + λ 4 ι / ι + λ4 2 /2 + £4 
Exam2 = μ5 + λ5 ι / ι + λ5 2 /2 + ε5 

FinalExam = μβ + / 2 + ε§ 

The order condition is satisfied for model (14.11) because the number of statis-
tics in the sample covariance matrix S [the left side of the inequality in (14.8) 
and (14.9)] is 21 and the number of parameters (q) in the model [the right 
side of the inequality in (14.8) and (14.9)] is 17. Additionally, the second and 
sixth rows of the model's A matrix form an identity matrix of rank 2. Thus, 

(14.11) 
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Table 14.1 Statistics Course Grade Measurements 

Lab 

9.95 
7.71 

10.00 
9.95 
9.95 

10.00 
10.00 
10.00 
10.00 
8.43 
7.38 
9.86 
9.86 
9.67 

10.00 
10.00 
10.00 
2.00 

10.00 
10.00 
9.00 
9.86 
8.43 

10.00 

HW 

9.40 
0.00 
9.50 
9.40 
9.20 
9.90 
9.25 
9.50 
9.15 
9.00 
7.35 
9.00 
9.60 
8.30 
9.40 
9.55 
8.10 
0.95 
7.65 
6.30 
6.75 
9.55 
9.25 
8.25 

PopQuiz 

8.13 
8.00 
8.13 
8.88 
8.50 
9.63 
9.25 
8.50 
8.13 
8.50 
8.50 
6.63 
7.63 
7.38 
8.13 
9.25 
6.88 
8.13 
8.88 
6.00 
9.63 
7.38 
7.00 
8.13 

Examl 

72 
63 
79 
89 
83 
96 
78 
71 
91 
76 
65 
58 
98 
89 
71 

100 
90 
62 
53 
77 
85 
85 
82 
80 

Exam2 

90 
26 
55 
77 
84 
94 
85 
83 
91 
61 
62 
21 
84 
62 
84 
72 
72 
45 
47 
74 
79 
61 
77 
75 

FinalExam 

62 
78 
80 
79 
67 
93 
86 
66 
91 
80 
42 
31 
87 
75 
78 
87 
85 
37 
61 
73 
65 
70 
83 
85 

10.00 9.85 10.00 100 100 100 
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Figure 14.2 Path diagram for the grade data model. 

model (14.11) is identified. The choice to constrain the HW and FinalExam 
variables as in model (14.11) was based on a priori expectations about the na-
ture of these measures roughly corresponding to the effort and mastery factors, 
respectively. While choices about how to specify model structure are largely 
subject to the discretion of the modeler, the choice of which variables are con-
strained in the model does not generally affect goodness-of-fit considerations 
(see Problem 14.4). 

In this study however, the theory we wish to test is that most variables load 
on only one of the two factors, with the pop quiz score being the only course 
component that is influenced by both daily effort and knowledge mastery. That 
is, the model we wish to test is 

Lab = μι + Xnfi + ελ 

HW - μ2 + h + £2 

PopQuiz = ^ 3 + λ 3 ι / ι + A32/2 + £3 . 
Examl = μ4 + λ4 2 /2 + £4 

Exam2 = μ5 + λ5 2 /2 + ε5 

FinalExam = μ% + / 2 + ε^ 

The path diagram associated with model (14.12) is shown in Figure 14.2. The 
number of statistics in the sample covariance matrix S is still 21 as it was 
for model (14.11), but there are fewer parameters in model (14.12). There 
are 5 unconstrained factor loadings in Λ, m{m + l ) /2 = 3 elements in the 
covariance matrix for f, and p — 6 diagonal elements in Φ, for a total of 
q = 14 parameters in the model. Because the order condition in (14.9) is 
satisfied, and because the second and sixth rows of the model's Λ matrix still 
form an identity matrix of rank 2, model (14.12) is also identified. D 

" d a i l y ^ 
effort" > 

^N 
knowledge 
mastery" 

λ η ^ Τ 

^^ \ i 

^ \ ^ 3 j 

s 4UP 

}~~—-~$L·^ 

Lab 

HW 

PopQuiz 

Examl 

Exam2 

FinalExam 
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14.3 PARAMETER ESTIMATION AND MODEL ASSESSMENT 

At an intuitive level, our approach for estimating the model parameters Θ is to find a Θ 
within a parameter space Θ such that the difference between S and Σ(#) from (14.5) 
is minimized. The parameter space Θ represents the collection of Θ values that yield 
matrices Σ(0) that are nonnegative definite. We note here that a careful definition 
of the parameter space θ is not merely a mathematical formality but an essential 
part of the parameter estimation and model assessment process. For example, proper 
parameter estimation will involve software that constrains factor and error variances 
to be nonnegative. In other settings, factor loadings or other parameters may be 
constrained to be equal. Such constraints will be illustrated in Example 14.3.3. 

We begin by assuming that y follows a multivariate normal distribution with a 
mean μ and a covariance matrix Σ(0) . We will then apply the results of Ander-
son and Amemiya (1988) and Amemiya and Anderson (1990) to argue that as the 
sample size becomes large, the normality-based parameter estimators and associated 
inferential tools are valid, even for nonnormal data. 

14.3.1 Maximum Likelihood Estimation 

In Sections 4.3.1 and 5.4.3 we introduced the notions of maximum likelihood estima-
tion and likelihood ratio tests, respectively. In this section, we introduce maximum 
likelihood estimates for the q factor analysis model parameters Θ. Throughout the 
discussion, we use the maximum likelihood estimate of the covariance matrix for y, 
denoted S„ = l/nj™=1(yi - y) '(y l - y). 

If we assume that the factor analysis model (14.2) holds and that y follows a 
multivariate normal distribution, then S n follows a Wishart distribution and it can be 
shown that the likelihood for Σ(0) given STi is 

Σ[Έ(Θ); Sn)=cx | Σ ( 0 ) Γ η / 2 exp (~b { n S ^ Ö ) ] " 1 } " ) , 

where c is a constant that is unaffected by Θ or Σ(0) . The value of Θ that maximizes 
Ι/(Σ(Θ); Sn) is called the maximum likelihood estimator for Θ and is denoted 0ML· 

The likelihood ratio statistic associated with the hypothesized factor analysis model 
is 

r Dio \ £[£(flML);Sn] 
LK{ÜML·) - rl„ „ , , 

where the numerator is the likelihood evaluated with Σ at its maximum under the 
hypothesized model and the denominator is the likelihood evaluated with Σ at its 
unrestricted maximum (i.e., Σ = S„). Taking —21ogLi?(ö), we obtain 

ί(θ- S„) = n (log |Σ(0) | + tr { s„ [Σ(ο)]"1} - log |S n | - p) . (14.13) 

It can be shown that #ML minimizes £(θ; S) over the parameter space Θ and that— 
regardless of the actual distribution of the data—the statistic ^ ( Ö M L ; S „ ) has an 
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asymptotic distribution of xp^p+1y2_q. Further, under some fairly tractable con-
ditions, the factor loading estimates AML converge to λ [as defined in (14.6)] when 
n —> oo. As we will discuss in Section 14.3.3, the statistic £(θ; Sn) plays a central 
role in the assessment of the factor analysis model's goodness of fit. 

14.3.2 Least Squares Estimation 

As an alternative to maximum likelihood estimation, we consider here a computa-
tional approach based on least squares estimation under the assumption that y in 
model (14.2) is distributed normally with mean μ and covariance matrix Σ[0]. In 
this scenario, in — 1)S ~ Wp(n — 1, Σ[0]), where Wp denotes the Wishart distri-
bution introduced in Section 4.3.2. Note that we are interested in the distribution of 
S because we wish to make inferences about the q elements of 0, which are func-
tions of second moments. Thus, just as carrying out inferences about means (first 
moments) requires information about second moments (variances and covariances), 
carrying out inferences associated with second moments will require fourth moments 
for the data. Although the normality assumption is not required for least squares esti-
mation, it is a substantial benefit to assume normality because higher-order moments 
will always be simple functions of first and second moments. We will later argue 
that normality-based approaches are asymptotically valid even when the normal as-
sumptions are violated. 

Given the assumption of normality of the data, we can show that the pip +1)/2 x 
p{j> + l ) /2 covariance matrix for the unique elements of S is: 

cov(vech S) = —?_Η+[Σ(Θ) ® Σ(0)]Η+'. 
n — 1 y v 

The matrices H p and H+ are defined as in (2.125) and (2.126), respectively, so that 
for any p x p matrix A, Hpvech A = vec A and H+vec A = vech A. Further, the 
normality assumption implies that if Σ(0) is positive definite, then 

n — 1 
[cov(vechS)]-1 = - ^ - H ^ p E i O ) ] - 1 ® [ Σ ^ ) ] " 1 } ^ . (14.14) 

In practice, we will estimate cov(vech S) with either 

V = ^ - H ^ ( S ® S ) H + ' (14.15) 

or 
V(ö) = ^ Η + [ Σ ( 0 ) ® Σ(0)]Η+'. (14.16) 

The least squares estimator 0LS is the value of Θ that minimizes the weighted sum 
of squares 

ς(θ; S) = [vech S - vech Σ ( θ ) ] ' ν _ 1 [vech S - vech Σ(0)] (14.17) 
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over the parameter space Θ, with V * defined using (14.14) and (14.15). Evaluating 
(14.17) at the value ÖLS yields the goodness-of-fit statistic q(0; S). Regardless of the 
actual distribution of the data, q(6; S) has an asymptotic distribution of χΐ,p+1y2-

and the factor loading estimates ALS converge to λ as defined in (14.6). 
Use of V(0) as an estimate of cov(vech S) implies an iteratively reweighted least 

squares procedure beginning with an initial estimate of Θ such as θ^0' = öLs- Then, 
in the ith iteration of the procedure (i = 1,2,...), θ^1' is the value of Θ that mini-
mizes 

w(0 ;0 ( i _ 1 ) ,S ) = 

[vech S - vech Σ(0)] ' Γν(β ( ί _ 1 ))] [vech S - vech Σ(0)], (14.18) 

with V(0 ( i~ ') defined using (14.14) and (14.16). The procedure is continued until 
θ^1' has converged, with the final estimate denoted ÖIRLS- Each of the estimates 0LS 
and 0IRLS has the same asymptotic distribution as #ML, although the procedure used 
to obtain #IRLS may require a simple modification in rare instances to achieve the 
desired result (see Fuller, 1987, Section 4.2.2). 

14.3.3 Model Assessment 

As noted in Sections 14.3.1 and 14.3.2, each of the statistics £(#ML; S), <?(ÖLS; S), 
and W(ÖIRLS; öiRLS, S) [described in (14.13), (14.17), and (14.18), respectively] has 
an asymptotic xir +1y2_a distribution. Thus, each can be used used as a goodness-
of-fit statistic where the degrees of freedom for the asymptotic χ2 distribution is the 
difference between the number of unique statistics in S [p(p+ l)/2] and the number 
of parameters in Θ (q). The hypotheses being compared are 

H0 : the hypothesized model is correct. 
Hi : the hypothesized model is incorrect (more factors are needed). 

For example, if maximum likelihood is used to estimate the model parameters, then 
a value of 1{0ML', S) that exceeds the 100(1 - a) percentile of the Xp/p+1w2_„ dis-
tribution would indicate that we reject H0 at level a and conclude that the hypothe-
sized model is incorrect. Obtaining a statistic whose value is less than said percentile 
would indicate the opposite conclusion—that is, we would fail to reject H0 and pro-
ceed with statistical inference for the model parameters under the presumption that 
the model is an adequate characterization of the phenomenology associated with the 
data. We note that the degrees of freedom for the χ2 test will usually be increased 
by 1 for every parameter that is constrained at the solution. For example, if we 
constrain an error variance to be nonnegative and that constraint is imposed on the 
solution (i.e., the error variance is set to 0), then q is decreased by 1 and the degrees 
of freedom is increased by 1. 

One of the commonly cited limitations of the χ2 goodness-of-fit test is that the 
probability of rejecting HQ (i.e., rejecting the proposed model) increases as the sam-
ple size gets larger. Additionally, the test may reject for slight deviations from 
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normality such as the presence of kurtosis. Consequently, there are many other 
goodness-of-fit criteria that have been proposed and evaluated (see Bollen, 1989, 
Chapter 7; Hu and Bentler, 1999). In this section, we discuss three additional 
goodness-of-fit assessment tools that have become widely used and recommended 
in the literature: the comparative fit index (CFI) of Bentler (1989), the root mean 
square error approximation (RMSEA) index of Steiger and Lind (1980), and the 
standardized root mean square residual (SRMR) of Jöreskog and Sörbom (1985). 
None of these supplementary goodness-of-fit statistics is associated with a formal 
statistical test [as are the χ2 statistics in (14.13), (14.17), and (14.18)], but each can 
be helpful for assessing model fit when used with an associated rule of thumb. 

Bentler's CFI is a measure of the scaled reduction of lack of fit when using the 
specified model instead of a baseline model such as the independence model: 

γ = μ + ε. (14.19) 

For a specified model, let χ2^ be one of the goodness-of-fit statistics described in 
(14.13), (14.17), or (14.18), with the degrees of freedom associated with the statistic 
denoted dfM ■ Further, let χ\ and dfs be the corresponding statistic and degrees of 
freedom when fitting a baseline model such as (14.19). Then, CFI is calculated using 

m a x ( x j f -dfM,0) 
m a x ( x | - dfB,X2

M ~ dfM,0)' 
CFI = 1 ; , ; ' ηλ- (14.20) 

Because the expected value of a χ2 random variable is equal to the degrees of free-
dom for the variable's distribution, the quantity χΜ — dfM represents excess lack of 
fit for the hypothesized model. The CFI statistic has range 0 < CFI < 1, with values 
near 1 indicating that the excess lack of fit associated with the hypothesized model is 
much smaller than that associated with the baseline model. Values of CFI near zero 
imply that the increased complexity of the proposed model (relative to the baseline 
model) yields no additional explanatory ability. Hu and Bentler (1999) recommend 
that CFI values greater than 0.95 indicate a good fit, although other authors argue 
that values greater than 0.90 are acceptable. 

The RMSEA index is another measure of excess lack of fit associated with the 
hypothesized model. It is calculated using 

RMSEA = J ^ m a x ( x 2 V d / M , 0 ) > (14-21) 
y n - 1 dfM 

where n is the sample size and the other quantities are as described in (14.20). Hu 
and Benter recommend that an RMSEA value less than 0.06 indicates a good fit. 

The final goodness-of-fit measure considered here, SRMR, is not a function of 
the χ2 statistic, but rather quantifies the difference between the sample covariance 
matrix for the data (S) and the model-constructed estimates of the covariance matrix 
[Σ(0)]. The SRMR value is calculated using 

SRMR: 
\ P(P + 'πΣΣ^Γ^' ( 1 4 · 2 2 ) 
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where Sij and σ^ are the (i, j) elements of S and Σ(θ) , respectively. Hu and Bentler 
(1999) recommend that SRMR values less than 0.08 indicate a good fit, although 
other authors argue that values less than 0.10 imply an adequate fit of the model. 

■ EXAMPLE 14.3.3 

We illustrate model fitting and model assessment using the business statistics 
class data given in Table 14.1 and the CFA model given in (14.12). In speci-
fying the model, we note that the factor variances and error variances must be 
constrained to be nonnegative. Using maximum likelihood ("method=ML" in 
SAS), the the parameter estimates in 0ML are: 

-^31 

λ42 
\ λ 5 2 / 

and 

/ 0.356 \ 
0.123 
0.061 
0.884 

\ 1.416 J 

( Φη \ 
■022 
^ 3 3 

3.162 
10.267 

123.947 

0.547 \ 
0 

1.667 
67.006 

139.496 
81.423 ) 

Note that ^22 is a parameter estimate that lies at a boundary of a specified 
parameter space. Consequently, statistical inference procedures typically treat 
this scenario as if ^22 were constrained to equal 0 a priori, with the number of 
free parameters reduced from 14 to 13 and the degrees of freedom increased 
from 7 to 8. We focus on #ML in this example, but the least squares estimates 
ÖLS found by minimizing (14.17) (using "method=GLS" in SAS) are very 
similar. 

To assess model fit, we consider the diagnostics discussed in Section 14.3.3. 
The χ2 statistic in (14.13) is equal to 12.371 with a degrees of freedom of 8, 
based on 21 unique elements in S with 13 unconstrained parameters fit in the 
model. Thus, the p-value associated with the hypothesis 

i/o : the hypothesized model is correct 

is 0.135, and we determine that we have insufficient evidence to declare lack 
of fit. The additional diagnostic metrics yield a mixed verdict about the good-
ness of fit for the proposed model. Bentler's CFI in (14.20) is 0.978 (greater 
than the recommended lower cutoff of 0.95) and the SRMR value in (14.22) 
is 0.039 (less than the recommended upper cutoff of 0.08). On the other hand, 
the RMSEA index in (14.21) is 0.0767 (greater than the recommended upper 
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cutoff of 0.06). In practice, the quality of fit of a latent variable model is de-
termined using an ensemble of fit indexes. On balance, it appears that model 
(14.12) has reasonably good fit. D 

14.4 INFERENCE FOR MODEL PARAMETERS 

We previously noted that normality-based methods for parameter estimation are still 
of practical value when data are not normally distributed. However, when conducting 
inference about the (^-dimensional parameter vector Θ using 0ML, ÖLS. or ÖIRLS, we 
need an estimate of the covariance matrix for the vector of parameter estimates that 
properly accounts for the potential nonnormality of the data. Because Θ is based 
on the second moments of the data found in the covariance matrix, inference about 
Θ requires a fourth-moment matrix. Thus, we first define an estimated covariance 
matrix for vech S. 

Let Zj be the vector of length p(p+1)/2 that is associated with the ith observation 
and defined by 

z; = v e c h ^ - y ) ( y i - y ) ' , 

so that 

vech S = 
1 n 

n 
i=l 

We can then define the covariance matrix for vech S as 

Γ = cov(vech S), 

which can be estimated using 
1 " 

(14.23) 

where "ί—\ £ ] " = 1 ζ,. When Θ is ÖML, #LS> or ÖIRLS, the covariance matrix for the 
estimated model parameters is 

<55v(0) = {F'[V(ö)]-1F}-1F'[V(ö)]~1f [V(0)]- 1 F{F' [V(0)]- 1 F}- 1 , 
(14.24) 

where V(ö) is defined in (14.16), F is the p(p+ l)/2xq matrix of partial derivatives 
defined by 

dvech Σ(0) 
W ' 

and F is the matrix F when evaluated at θ = Θ. 
As noted previously, Anderson and Amemiya (1988) and Amemiya and Anderson 

(1990) show that given general identification conditions and a large sample size, 
a wide array of statistical inferences about Θ can be carried out, regardless of the 
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actual distribution of y. Specifically, the parameter estimates ÖML, ÖLS, a nd ÖIRLS 
are asymptotically unbiased, and the subset of cov(Ö) corresponding to cov(X) (the 
variances and covariances among the factor loadings) are also unbiased. 

The square roots of the diagonal elements of (14.24) corresponding to the esti-
mated factor loadings (X^) are their associated standard errors [s.e.(Ay)]. Thus, 
the standard error s.e.(Ajj) can be used to construct the asymptotically normal test 
statistic 

zl3 = - y f — , (14.25) 

which is suitable for testing the hypothesis Ho : λ^ = 0. The Zij statistics associated 
with the various factor loadings can then be used to evaluate the relative statistical 
evidence for relationships among observed and latent variables. Using similar logic, 
a 100(1 — a)% confidence interval for λ^ can be constructed using 

Xij ± za/2 s.e.(Xij). (14.26) 

Because Θ and cov(Ö) are valid in large samples regardless of the distribution 
of the data, the associated hypothesis tests and confidence intervals for Θ are valu-
able tools for evaluating and refining the proposed factor analysis model. A typical 
process for model refinement first uses the model assessment tools discussed in Sec-
tion 14.3.3, then uses parameter assessment tools based on Θ and cov(ö) to fine-tune 
the model. For example, if a model exhibits adequate goodness of fit, we might 
then determine which if any of the model parameter estimates are nonsignificant, 
dropping any that are deemed extraneous and then refitting the model to ensure that 
the goodness of overall model fit has not been substantially reduced. As with any 
exploratory model-building exercise, there is a delicate balance between parsimony 
and goodness of fit. Further, such iterative model-selection procedures are subject 
to the overly optimistic assessments of model fit that are associated with the subset 
selection problem in regression analysis (see discussion in Section 10.2.7b). Thus, 
analyses that require several iterations of model refinement should be interpreted as 
exploratory in nature and used with caution. 

■ EXAMPLE 14.4 

In this example, we continue the analysis of the business statistics class data 
given in Table 14.1 with the intent of evaluating and refining the CFA model 
given in (14.12) and fitted in Example 14.3.3. Table 14.2 gives the test statistic 
z^ and other pertinent inferential quantities for each of the factor loadings in 
the model. Note that all but X$i appear to be significantly different from 0. In 
an effort to obtain a more parsimonious model with good fit, we consider the 



4 9 4 CONFIRMATORY FACTOR ANALYSIS 

Table 14.2 Factor Loading Estimates for Statistics Course Grade 
Data of Table 14.1 When Using Model (14.12) 

Parameter 

λ π 
λ31 
λ32 
λ-42 
λδ2 

Estimate 

0.356 
0.123 
0.061 
0.884 
1.416 

Standard Error 

0.043 
0.094 
0.017 
0.127 
0.197 

Zij 

8.254 
1.307 
3.487 
6.985 
7.185 

p-value 

< 0.0001 
0.0957 
0.0002 

< 0.0001 
< 0.0001 

Table 14.3 Factor Loading Estimates for Statistics Course Grade 
Data of Table 14.1 When Using Model (14.27) 

Parameter Estimate Standard Error p- value 

An 
A32 
A42 
Αδ2 

0.376 
0.073 
0.882 
1.435 

0.088 4.274 < 0.0001 
0.015 4.814 < 0.0001 
0.128 6.916 < 0.0001 
0.199 7.211 < 0.0001 

revised model for the data: 

Lab = /ii + λ ι ι / ι 
HW = μ2 + h 

PopQuiz = μ3 
Examl — μ\ 

Exam2 = μ$ 

FinalExam = μ§ 

+ ει 
+ ε2 

+ A32/2 + ε3 

+ λ42 j2 + £4 

+ ^52/2 + £5 

+ h + ε6 

(14.27) 

The goodness-of-fit statistics associated with the revised model given in (14.27) 
are: χ2 = 13.945 (de grees of freedom = 8 and p-value = 0.083), Bender's CFI 
= 0.970, RMSEA = 0.0894, and SRMR = 0.039. Thus, all measures indicate 
an adequate fit of the model to the data except for RMSEA, which exceeds the 
recommended upper cutoff of 0.06. We determine that the use of the revised 
model in (14.27) is an improvement over the use of (14.12). Table 14.3 gives 
the factor loading estimates and associated inferential statistics for the revised 
model, which now involves only factor loadings that are statistically signifi-
cant. The revised model indicates that Lab and HW load solely on the effort 
factor and PopQuiz, Examl, Exam2, and FinalExam load solely on the knowl-
edge mastery factor. Q 
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14.5 FACTOR SCORES 

As discussed in the EFA setting in Section 13.6, it is often the case that we wish to 
obtain factor scores—estimates of the underlying factor values for each observation. 
In this section, we introduce two common approaches for obtaining such estimates. 
Factor scores are often used after fitting the factor analysis model in order to under-
stand the underlying characteristics of the observational units. 

Using the parameter estimates A, Φ, and Φ, we can form factor score estimates 
for the ith observational unit using the so-called regression method formula 

ί; = ΦΛ(ΛΦΛ + * ) " 1 ( y , - y ) 

or the weighted least squares formula 

fi = ( A * " 1 A ) - 1 A * " 1 ( y i - y ) . 

(14.28) 

(14.29) 

Although the two approaches generally yield very similar estimates, the regression 
method formula in (14.28) is perhaps the most widely used (see Bollen 1989, Chapter 
7). 

EXAMPLE 14.5 

In this example, we use the regression method in (14.28) to obtain factor scores 
for each student in the statistics course grade data set. The data are found in 
Table 14.1, and the parameter estimates used are based on the revised model 
(14.27) fit to the data in Example 14.4. The matrices used to calculate the 
factor scores are: 

/ 0.376 
1 
0 
0 
0 

V o 

/ 0.524 
0 
0 
0 
0 

V o 

o\ 
0 

0.073 
0.882 
1.435 

,Φ = 

1 / 

0 0 
0.170 0 

0 1.664 
0 0 
0 0 
0 0 

/ 2.992 
" V 10.542 

0 
0 
0 

68.982 

10.542 N 
122.032 ) ' 

0 ON 
0 0 
0 0 
0 0 

0 136.699 0 
0 0 83.338 ) 

and Φ 

Values for / i (estimated effort score) and f2 (estimated knowledge mastery 
score) are calculated and plotted against each other in Figure 14.3. Although 
we can say nothing about causal influences between the factors, it does appear 
that the effort score can be used to provide a rough upper bound for the knowl-
edge mastery score. D 
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Figure 14.3 Estimated effort score (/i) vs. estimated knowledge mastery score (/2> for 
94 students in a business statistics course. 

PROBLEMS 

14.1 Show that the order condition given in (14.8) simplifies to (p — m)2 > p+m. 

14.2 Consider the confirmatory factor analysis model in (14.2). In the scenarios 
below, various constrained Λ matrices of dimension p x m are proposed. For 
each proposed model, use the rules presented in Section 14.2.2 to determine 
whether or not the model is identified. Assume that for each model, Φ = 
cov(f) is an m x m symmetric matrix containing m(m + l ) /2 unique factor 
variances and covariances to be estimated. Further, assume that Φ = cov(e) 
is a diagonal matrix with p unique error variances to be estimated. For each 
assessment of model identifiability, explain your reasoning. 

An 
-^21 

•^31 

0.5 
0 

λΐ2 
^22 

-^32 

0 
1 
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(b) Λ 

(c) Λ 

(d) Λ 

An 
0 
1 
0 
0 

An 
Ä2l 
^ 3 1 

^ 4 1 
1 
0 
0 

Au 
A21 

1 
0 

0 
A22 
0 
1 
0 

A12 
A22 
A32 
A42 
0 
1 
1 

0 
A22 
0 
1 

0 
A23 
0 
0 
1 

Al3 
A23 
A33 
A43 
0 

0.5 
0.5 

14.3 Consider the 1-factor confirmatory factor analysis model in (14.2) with 

1 
A2 

A3 

, var( / ) = φ, and cov(e) 
Ψη 

0 
0 

0 
Φ22 

0 

0 
0 

^ 3 3 

(a) Use the rules presented in Section 14.2.2 to determine whether or not the 
model is identified. Explain your reasoning. 

(b) How many degrees of freedom will be associated with the χ2 goodness-
of-fit statistic described in (14.13)? What does this imply about the na-
ture of the estimate Θ—that is, how close will Σ(0) be to the sample 
covariance matrix for the data S? 

(c) Find the model covariance matrix Σ(0) , with each element written as a 
function of λ2, λ3, φ, φη, ψ22, and ^33. 

(d) Let the sample covariance matrix for the data be denoted 

«11 

«21 

«31 

«12 

S22 

«32 

S l 3 

«23 

S33 

Set the six unique elements of S equal to the corresponding elements of 
Σ(0) . With six equations and six parameters to estimate, find estimates 
of A2, λ3, φ, ψιι, i/>22> and ^33 as functions of sample variances and 
covariances (sn, si2 , si3 , s22, S23, and s33). 
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14.4 Use the probe word data of Table 3.6. Conduct a confirmatory factor analysis 
of the covariance matrix for the five variables. Use maximum likelihood to 
determine if the five word probes can be adequately modeled using a single 
latent factor. In formulating the model, identifiability can be ensured by letting 
2/1 = / i + ε-ί and letting yt = \fi + ε» (i = 2,3,4, 5). 

(a) Assess goodness of fit with the criteria discussed in Section 14.3.3. 

(b) Which variables are most significantly related to the latent factor? Which 
are least significant? Can the model be further simplified? 

(c) Fit the model again, this time identifying the model by setting one of 
the other observed variables equal to f\ + ε$. For example, set j/2 = 
/ i + £2, with jji = Xifi + E{ for i = 1,3,4,5. Calculate the goodness 
of fit statistics discussed in Section 14.3.3 and compare with part (a). Is 
the goodness of fit for the one-factor model affected by which observed 
variable is set equal to / i + ε^? 

14.5 Use the Seishu data of Table 7.1. Conduct a confirmatory factor analysis of 
the covariance matrix for all 10 variables. Use maximum likelihood to fit the 
model and test the hypothesis that the observations are driven by four factors: 

/ i = "flavor" 
/ 2 — "acidity" 
f3 = "sweetness" 
/4 = "alcohol content" 

To fit an identifiable model, define the observed variable "Taste" to be equal 
to fi plus error, define the observed variable "pH" to be equal to f2 plus error, 
define the observed variable "Total Sugar" to be equal to f$ plus error, and 
define the observed variable "Alcohol" to be equal to f± plus error. In your 
initial model, allow the other 6 variables to be functions of all 4 factors, for a 
total of 24 factor loadings to be estimated, 

(a) Assess goodness of fit with the criteria discussed in Section 14.3.3. 

(b) Using goodness-of-fit statistics and hypothesis tests on each of the fac-
tor loadings, conduct an exploratory analysis using the iterative model-
selection process discussed at the end of Section 14.5 to identify a sim-
pler model. Specifically, determine whether a model can be specified 
with fewer factor loadings (i.e., simpler structure) and still exhibit a good 
fit. Propose a simpler model and appropriately justify your proposal us-
ing goodness-of-fit statistics and hypothesis tests. 

14.6 Use the football data of Table 8.3, combining the three groups into a single 
sample. Conduct a confirmatory factor analysis of the covariance matrix using 
maximum likelihood to fit the model. Test the hypothesis that the observations 
are driven by two factors related to head size: 

/ j = "horizontal dimension" 
f2 = "vertical dimension" 
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To fit an identifiable model, define the observed variable "head circumference" 
to be equal to / i plus error, and define the observed variable "eye-to-top-of-
head measurement" to be equal to f2 plus error. In your initial model, allow 
the other 4 variables to be functions of both factors, for a total of 8 factor 
loadings to be estimated. 

(a) Assess goodness of fit with the criteria discussed in Section 14.3.3. 
(b) For comparison, fit the 2-factor model with simple structure. That is, fit 

the model with head width, head circumference, front-to-back measure-
ment at eye level, and jaw width loading only on / i . Similarly, let eye-
to-top-of-head measurement and ear-to-top-of-head measurement load 
only on f2. Use goodness-of-fit criteria and hypothesis tests on factor 
loadings to compare the initial model with this simple-structure model. 
Which model is preferable? 

14.7 Use the engineer data of Table 5.6, combining the two groups into a single 
sample. Conduct a confirmatory factor analysis of the covariance matrix using 
maximum likelihood. Test the hypothesis that the observations are driven by 
two factors related to test performance: 

/ i = "aptitude" 
f2 = "effort" 

To fit an identifiable model, define the observed variable "intelligence" to be 
equal to / i plus error, and define the observed variable "perseveration" to be 
equal to f2 plus error. Allow the other 4 variables to be functions of both 
factors, for a total of 8 factor loadings to be estimated. 

(a) Assess goodness of fit with the criteria discussed in Section 14.3.3. 
(b) For each observed yi (performance test), quantify how much of the vari-

ability in j/i can be accounted for by the factors. This can be calculated 
using 

i _ tii 

Note that if the estimated error variance (ipu) is greater than the sample 
variance for the associated observed variable (su), the percent of vari-
ability explained by the factors is undefined and the quality of the model 
fit is compromised. 

(c) Interpret the results from parts (a) and (b). Does goodness of fit imply 
that the latent factors can be used as a lower-dimensional replacement for 
the observed variables? Would you expect that the variance explained by 
the factors for each yt would improve substantially with the addition of 
another factor in the model? 

14.8 Use the rootstock data of Table 6.2. Using the covariance matrix, fit a con-
firmatory factor analysis model using maximum likelihood to determine if the 
four tree measurements can be adequately modeled using a single latent factor. 
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To ensure model identifiability, let one of the four variables be modeled with 
Vi = fi+ €i and let yj = Xjfi + Sj for j φ i. Assess goodness of fit with 
the criteria discussed in Section 14.3.3. If the model exhibits adequate fit, ex-
plain whether or not the model can be further simplified. If the model does not 
exhibit adequate fit, explain why you would or would not recommend fitting a 
2-factor or 3-factor model. 



CHAPTER 15 

CLUSTER ANALYSIS 

15.1 INTRODUCTION 

In cluster analysis we search for patterns in a data set by grouping the (multivariate) 
observations into clusters. The goal is to find an optimal grouping for which the 
observations or objects within each cluster are similar but the clusters are dissimilar 
to each other. We hope to find the natural groupings in the data, groupings that make 
sense to the researcher. 

Cluster analysis differs fundamentally from classification analysis (Chapter 9). In 
classification analysis, we allocate the observations to a known number of predefined 
groups or populations. In cluster analysis, neither the number of groups nor the 
groups themselves are known in advance. 

To group the observations into clusters, many techniques begin with similarities 
between all pairs of observations. In many cases the similarities are based on some 
measure of distance. Other cluster methods use a preliminary choice for cluster cen-
ters or a comparison of within- and between-cluster variability. It is also possible 
to cluster the variables, in which case the similarity could be a correlation; see Sec-
tion 15.7. 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 501 
Copyright © 2012 John Wiley & Sons, Inc. 
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We can search for clusters graphically by plotting the observations. If there are 
only two variables (p = 2), this can be done in a scatterplot (see Section 3.3). 
For p > 2, we can plot the data in two dimensions using principal components 
(see Section 12.4) or biplots (see Section 16.3). For an example of a principal 
component plot, see Figure 12.7 in Section 12.4, in which four clear groupings of 
points can be observed. Another approach to plotting is provided by projection pur-
suit, which seeks two-dimensional projections that reveal clusters [see Friedman and 
Tukey (1974); Huber (1985); Sibson (1984); Jones and Sibson (1987); Yenyukov 
(1988); Posse (1990); Nason (1995); Ripley (1996, pp. 296-303)]. 

Cluster analysis has also been referred to as classification, pattern recognition 
(specifically, unsupervised learning), and numerical taxonomy. The techniques of 
cluster analysis have been extensively applied to data in many fields, such as medicine, 
psychiatry, sociology, criminology, anthropology, archaeology, geology, geography, 
remote sensing, market research, economics, and engineering. 

We shall concentrate largely on quantitative variables [for categorical variables, 
see Gordon (1999) or Everitt (1993)]. The data matrix [see (3.17)] can be written as 

= (y(i),y(2),··· ,y(P))> (15.1) 

V n / 

where y^ is a row (observation vector) and y^) is a column (corresponding to a 
variable). We generally wish to group the n y^'s (rows) into g clusters. We may also 
wish to cluster the columns y(j), j = 1,2,... ,p (see Section 15.7). 

Two common approaches to clustering the observation vectors are hierarchical 
clustering and partitioning. In hierarchical clustering we typically start with n clus-
ters, one for each observation, and end with a single cluster containing all n obser-
vations. At each step, an observation or a cluster of observations is absorbed into 
another cluster. We can also reverse this process, that is, start with a single cluster 
containing all n observations and end with n clusters of a single item each (see Sec-
tion 15.3,10). In partitioning, we simply divide the observations into g clusters. This 
can be done by starting with an initial partitioning or with cluster centers and then 
reallocating the observations according to some optimality criterion. Other cluster-
ing methods that we will discuss are based on fitting mixtures of multivariate normal 
distributions or searching for regions of high density sometimes called modes. 

There is an abundant literature on cluster analysis. Useful monographs and re-
views have been given by Gordon (1999), Everitt (1993), Khattree and Naik (2000, 
Chapter 6), Kaufman and Rousseuw (1990), Seber (1984, Chapter 7), Anderberg 
(1973), and Hartigan (1975a). 

15.2 MEASURES OF SIMILARITY OR DISSIMILARITY 

Since cluster analysis attempts to identify the observation vectors that are similar 
and group them into clusters, many techniques use an index of similarity or proximity 

I J 1 

yi* 
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between each pair of observations. A convenient measure of proximity is the distance 
between two observations. Since distance increases as two units become further 
apart, distance is actually a measure of dissimilarity. 

A common distance function is the Euclidean distance between two vectors x = 
(xi,a;2,...,Xp)'andy = (2/1,2/2, -,yP)', defined as 

d(x,y) = V(x -y ) ' (x -y ) (15.2) 

To adjust for differing variances and covariances among the p variables, we could 
use the statistical distance 

d(x,y) = V(x-y),s-1(x-y) (15.3) 

[see (3.79)], where S is the sample covariance matrix. After the clusters are formed, 
S could be computed as the pooled within-cluster covariance matrix, but we do not 
know beforehand what the clusters will be. If we compute S on the unpartitioned 
sample, there will be distortion of the variances and covariances because of the 
groups in the data (assuming there really are some natural clusters). We therefore 
usually use the Euclidean distance given by (15.2). In some clustering procedures, it 
is not necessary to take the square root in (15.2) or (15.3). 

Other distance measures have been suggested, for example, the Minkowski metric 

d(x,y) 

-1 l / r 

Vj\ (15.4) 

For r = 2, d(x, y) in (15.4) becomes the Euclidean distance given in (15.2). Forp = 
2 and r — 1, (15.4) measures the "city block" distance between two observations. 
There are distance measures for categorical data; see Gordon (1999, Chapter 2). 

For the n observation vectors yi ,y2, · · · ,yn, we can compute a n n x n matrix 
D = (dij) of distances (or dissimilarities) where d^ = d(yi,yj) is usually given by 
(15.2), d(yi,yj) = y V i -yj)'(yi -yj). We sometimes use D = (d?·)» where 
d% = d2(yi,yJ) = (y4 - y,) '(yj - y^) is the square of (15.2). The matrix D will 
typically be symmetric with diagonal elements equal to zero. 

The scale of measurement of the variables is an important consideration when 
using the Euclidean distance measure in (15.2). Changing the scale can affect the 
relative distances among the items. For example, suppose three items have the fol-
lowing bivariate measurements (2/1,2/2): (2, 5), (4, 2), (7, 9). Using d^ as given by 
(15.2), the matrix D = (dij) for these items is 

Dx 
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However, if we multiply j/i by 100 as, for example, in changing from meters to 
centimeters, the matrix becomes 

/ 0 200 500 \ 
D 2 = 2 0 0 0 300 , 

\ 500 300 0 / 

and the largest distance is now <i13 instead of d23. The distance rankings have been 
altered by scaling. 

To counter this problem, each variable could be standardized in the usual way by 
subtracting the mean and dividing by the standard deviation of the variable. How-
ever, such scaling would ordinarily be based on the entire data set, that is, on all 
n values in each column of Y in (15.1). In this case, the variables that best sepa-
rate clusters might no longer do so after division by standard deviations that include 
between-cluster variation. If we use standardized variables, the clusters could be 
less well separated. The question of scaling is therefore not an easy one. However, 
standardization of this type is recommended by many authors. 

By (15.2), the squared Euclidean distance between two observations x = (a;i, 
x2,...,xpy andy = (y1,y2,-.. ,yp)' is d2(x,y) = Yfj=1{xj - y,)2. This can be 
expressed as 

d2(x,y) = (vx - vy)
2 + p(x - y)2 + 2vxvy(l - rxy), (15.5) 

where v2
x — Y^=1(XJ —x)2 and x = Σ^-χ Xj/p, with similar expressions for v2 

and y. The correlation rxy in (15.5) is given by 

rxy = Eg=1(*,-*)(y,-y) _ ( 1 5 6 ) 

In Figure 15.1, we illustrate the profile (see Sections 5.9 and 6.8) for each of two 
observation vectors x and y. The squared Eulcidean distance in (15.5) can be used to 
compare the profiles of x and y in terms of levels, variation, and shape, where x and 
y are the levels of the two profiles, vx and vy are the variations of the profiles, and 
the correlation rxy is a measure of the closeness of the shapes of the two profiles. 
The closer rxy is to 1, the greater is the similarity in shape of the two profiles. Note 
that x and vx are the mean and variation of the p variables within the observation 
vector x, not over the n observations in the data set. A similar comment can be made 
about y and vy. Likewise, the correlation rxy is between the two observation vectors 
x and y, not between two variables. The use of rxy has been questioned by Jardine 
and Sibson (1971) and Wishart (1971), but Strauss et al. (1973) found the correlation 
to be superior to the Euclidean distance for finding the clusters in a particular data 
set. 
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Figure 15.1 Profiles for two observation vectors x and y. 

15.3 HIERARCHICAL CLUSTERING 

15.3.1 Introduction 

Hierarchical methods and other clustering algorithms represent an attempt to find 
"good" clusters in the data using a computationally efficient technique. It is not gen-
erally feasible to examine all possible clustering possibilities for a data set, especially 
a large one. The number of ways of partitioning a set of n items into g clusters is 
given by 

% i ) 4 t ( fc)(-l)9"fe^ (15.7) 
9' fe=i ^ ' 

[see Duran and Odell (1974, Chapter 4), Jensen (1969), Seber (1984, p. 379)]. This 
can be approximated by gn/g\, which is large even for moderate values of n and g. 
For example, iV(25,10) = 2.8 x 1018. The total possible number of clusters for a set 
of n items is ^ o = i N(n,g), which, for n = 25, is greater than 1019. Hence, hier-
archical methods and other approaches permit us to search for a reasonable solution 
without having to look at all possible arrangements. 

As noted in Section 15.1, hierarchical clustering algorithms involve a sequential 
process. In each step of the agglomerative hierarchical approach, an observation or 
a cluster of observations is merged into another cluster. In this process, the num-
ber of clusters shrinks and the clusters themselves grow larger. We start with n 
clusters (individual items) and end with one single cluster containing the entire data 
set. An alternative approach, called the divisive method, starts with a single cluster 
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containing all n items and partitions a cluster into two clusters at each step (see Sec-
tion 15.3.10). The end result of the divisive approach is n clusters of one item each. 
Agglomerative methods are more commonly used than divisive methods. In either 
type of hierarchical clustering, a decision must be made as to the "optimal" number 
of clusters (see Section 15.5). 

At each step of an agglomerative hierarchical approach, the two "closest" clusters 
are merged into a single new cluster. The process is therefore irreversible in the sense 
that any two items that are once lumped together in a cluster cannot be separated later 
in the procedure; any early mistakes cannot be corrected. Similarly, in a divisive 
hierarchical method, items cannot be moved to other clusters. An optional approach 
is to carry out a hierarchical procedure followed by a partitioning procedure in which 
items can be moved from one cluster to another (see Section 15.4.1). 

Since an agglomerative hierarchical procedure combines the two "closest" clus-
ters at each step, we must consider the question of measuring the similarity or dissim-
ilarity of two clusters. Different approaches to measuring distance between clusters 
give rise to different hierarchical methods. Agglomerative techniques are discussed 
in Sections 15.3.2-15.3.9, and the divisive approach is considered in Section 15.3.10. 

15.3.2 Single Linkage (Nearest Neighbor) 

In the single linkage method, the distance between two clusters A and B is defined 
as the minimum distance between a point in A and a point in B: 

D{A, B) = min {d(yu y^), for y4 in A and y.,· in B}, (15.8) 

where d(yi, y,·) is the Euclidean distance in (15.2) or some other distance between 
the vectors y» and y7 . This approach is also called the nearest neighbor method. 

At each step in the single linkage method, the distance (15.8) is found for every 
pair of clusters, and we merge the two clusters with smallest distance. The number 
of clusters is therefore reduced by one. After two clusters are merged, the procedure 
is repeated for the next step: the distances between all pairs of clusters are calculated 
again, and the pair with minimum distance is merged into a single cluster. 

The results of a hierarchical clustering procedure can be displayed graphically 
using a tree diagram, also known as a dendrogram, which shows all the steps in the 
hierarchical procedure, including the distances at which clusters are merged. Den-
drograms are shown in Figures 15.2 and 15.3 in Examples 15.3.2(a) and 15.3.2(b). 

■ EXAMPLE 15.3.2(a) 

Hartigan (1975a, p. 28) compared the crime rates per 100,000 population for 
various cities. The data are in Table 15.1 (taken from the 1970 US Statistical 
Abstract). In order to illustrate the use of the distance matrix in single linkage 
clustering, we use the first six observations in Table 15.1 (Atlanta through 
Detroit). 
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City 

Atlanta 
Boston 
Chicago 
Dallas 
Denver 
Detroit 
Hartford 
Honolulu 
Houston 
Kansas City 
Los Angeles 
New Orleans 
New York 
Portland 
Tucson 
Washington 

Table 15.1 City Crime Rates per 100,000 Population 

Murder 

16.5 
4.2 

11.6 
18.1 
6.9 

13.0 
2.5 
3.6 

16.8 
10.8 
9.7 

10.3 
9.4 
5.0 
5.1 

12.5 

Rape 

24.8 
13.3 
24.7 
34.2 
41.5 
35.7 
8.8 

12.7 
26.6 
43.2 
51.8 
39.7 
19.4 
23.0 
22.9 
27.6 

Robbery 

106 
122 
340 
184 
173 
477 
68 
42 

289 
255 
286 
266 
522 
157 
85 

524 

Assault 

147 
90 

242 
293 
191 
220 
103 
28 

186 
226 
355 
283 
267 
144 
148 
217 

Burglary 

1112 
982 
808 

1668 
1534 
1566 
1017 
1457 
1509 
1494 
1902 
1056 
1674 
1530 
1206 
1496 

Larceny 

905 
669 
609 
901 

1368 
1183 
724 

1102 
787 
955 

1386 
1036 
1392 
1281 
756 

1003 

AutoTheft 

494 
954 
645 
602 
780 
788 
468 
637 
697 
765 
862 
776 
848 
488 
483 
793 

The distance matrix D is given by 

CITY 
Atlanta 
Boston 
Chicago 
Dallas 
Denver 
Detroit 

DISTANCE BETWEEN CITIES 
0 

536.6 
516.4 
590.2 
693.6 
716.2 

536.6 
0 

447.4 
833.1 
915.0 
881.1 

516.4 
447.4 

0 
924.0 

1073.4 
971.5 

590.2 
833.1 
924.0 

0 
527.7 
464.5 

693.6 
915.0 

1073.4 
527.7 

0 
358.7 

716.2 
881.1 
971.5 
464.5 
358.7 

0 

The smallest distance is 358.7 between Denver and Detroit, and therefore these 
two cities are joined at the first step to form C\ = {Denver, Detroit}. In the next 
step, the distance matrix is calculated for Atlanta, Boston, Chicago, Dallas, and 

Atlanta 0 536.6 516.4 590.2 693.6 
Boston 
Chicago 
Dallas 
C l 

536.6 
516.4 
590.2 
693.6 

0 
447.4 
833.1 
881.1 

447.4 
0 

924.0 
971.5 

833.1 
924.0 

0 
464.5 

881.1 
971.5 
464.5 

0 

Note that all elements of this distance matrix are contained in the original dis-
tance matrix. This same pattern will hold in subsequent distance matrices 
below and is also characteristic of the complete linkage method [see Exam-
ple 15.3.3(a)]. The smallest distance is 447.4 between Boston and Chicago. 
Therefore C2 = {Boston, Chicago}. At the next step, the distance matrix is 
calculated for Atlanta, Dallas, C\, and C2: 
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Atlanta 

c2 Dallas 
Cl 

0 
516.4 
590.2 
693.6 

516.4 
0 

833.1 
881.1 

590.2 
833.1 

0 
464.5 

693.6 
881.1 
464.5 

0 

The smallest distance is 464.5 between Dallas and C\, so that C3 = {Dallas, 
Ci}. The distance matrix for Atlanta, Ci, and C3 is given by 

Atlanta 
c2 
c3 

0 
516.4 
590.2 

516.4 
0 

833.1 

590.2 
833.1 

0 

The smallest distance is 516.4, which defines C4 = {Atlanta, C2}. The distance 
matrix for C3 and C4 is 

C3 0 590.2 
CA 590.2 0 

The last cluster is given by C5 = {C3, C4}. The dendrogram for the steps in 
this example is given in Figure 15.2. The order in which the clusters were 
formed and the relative distances at which they formed can all be seen. Note 
that the distance scale runs from right to left. □ 

EXAMPLE 15.3.2(b) 

To further illustrate the single linkage method of clustering, we use the com-
plete city crime data from Table 15.1. The dendrogram in Figure 15.3 shows 
the cluster groupings attained by the single linkage method. D 

15.3.3 Complete Linkage (Farthest Neighbor) 

In the complete linkage approach, also called the farthest neighbor method, the dis-
tance between two clusters A and B is defined as the maximum distance between a 
point in A and a point in B: 

D(A, B) = max {d(yi, y.,) for y, in A and yj in B}. (15.9) 

At each step, the distance (15.9) is found for every pair of clusters, and we merge the 
two clusters with the smallest distance. 

■ EXAMPLE 15.3.3(a) 

As in Example 15.3.2(a) for single linkage clustering, we illustrate the use of 
the distance matrix in complete linkage clustering with the first six observa-
tions of the city crime data in Table 15.1. The initial distance matrix is exactly 
the same as in Example 15.3.2(a): 
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Figure 15.2 Dendrogram for single linkage of the first six observations in the city crime 
data in Table 15.1 [See Example 15.3.2(a)]. 

CITY 
Atlanta 
Boston 
Chicago 
Dallas 
Denver 
Detroit 

DISTANCE BETWEEN CITIES 
0 

536.6 
516.4 
590.2 
693.6 
716.2 

536.6 
0 

447.4 
833.1 
915.0 
881.1 

516.4 
447.4 

0 
924.0 

1073.4 
971.5 

590.2 
833.1 
924.0 

0 
527.7 
464.5 

693.6 
915.0 

1073.4 
527.7 

0 
358.7 

716.2 
881.1 
971.5 
464.5 
358.7 

0 

The smallest distance is 358.7 between Denver and Detroit, and these two 
therefore form the first cluster, C\ = {Denver, Detroit}. Note that since the first 
cluster is based on the initial distance matrix, it will be the same regardless of 
which hierarchical clustering method is used. 
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Figure 15.3 Dendrogram for single linkage of the complete city crime data from Table 
15.1 [see Example 15.3.2(b)]. 



HIERARCHICAL CLUSTERING 5 1 1 

In the next step, the distance matrix is calculated for Atlanta, Boston, Chicago, 
Dallas, and C\: 

Atlanta 
Boston 
Chicago 
Dallas 
Ci 

0 
536.6 
516.4 
590.2 
716.2 

536.6 
0 

447.4 
833.1 
915.0 

516.4 
447.4 

0 
924.0 

1073.4 

590.2 
833.1 
924.0 

0 
527.7 

716.2 
915.0 

1073.4 
527.7 

0 

Note that this distance matrix differs from its analog for the second step in 
Example 15.3.2(a) only in the distances between C\ and the other cities. All 
elements of this matrix and subsequent distance matrices below are contained 
in the original distance matrix for the six cities. The smallest distance is 447.4 
between Boston and Chicago. Therefore, C-i - {Boston, Chicago}. At the next 
step, distances are calculated for Atlanta, Dallas, C\, and C^-

Atlanta 
c2 Dallas 
Ci 

0 
536.6 
590.2 
693.6 

536.6 
0 

924.0 
881.1 

590.2 
924.0 

0 
527.7 

716.2 
833.1 
527.7 

0 

The smallest distance, 527.7, defines C3 = {Dallas, C\}. The distance matrix 
for Atlanta, Ci, and C3 is given by 

Atlanta 0 536.6 716.2 
Ci 536.6 0 1073.4 
C3 590.2 1073.4 0 

The smallest distance is 536.6 between Atlanta and C3, so that C4 = {Atlanta, 
C2}. The distance matrix for C3 and C4 is 

C3 0 1073.4 
C4 1073.4 0 

The last cluster is given by C5 = {C3,Ci}. The dendrogram in Figure 15.4 
shows the steps in this example. □ 

EXAMPLE 15.3.3(b) 

To further illustrate the complete linkage method, we use the complete crime 
data in Table 15.1. The dendrogram in Figure 15.5 shows the clusters found 
for this data set by the complete linkage approach. There are some differences 
between these groupings and the groupings from single linkage in Figure 15.3. 

□ 

15.3.4 Average Linkage 

In the average linkage approach, the distance between two clusters A and B is de-
fined as the average of the UATIB distances between the UA points in A and the riß 
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Figure 15.4 Dendrogram for complete linkage of the first six observations in the city 
crime data in Table 15.1 [see Example 15.3.3(a)]. 
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Figure 15.5 Dendrogram for complete linkage of the complete city crime data of Table 
15.1 [see Example 15.3.3(b)]. 
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points in B: 

where the sum is over all y* in A and all yj in S . At each step, we join the two 
clusters with the smallest distance, as measured by (15.10). 

■ EXAMPLE 15.3.4 

Figure 15.6 shows the dendrogram resulting from the average linkage method 
applied to the city crime data in Table 15.1. The solution is the same as the 
complete linkage solution for this data set as given in Example 15.3.3(b) and 
Figure 15.5. D 

15.3.5 Centroid 

In the centroid method, the distance between two clusters A and B is defined as the 
Euclidean distance between mean vectors (often called centroids) of the two clusters: 

D(A,B) = d(yA,yB), (15.11) 

where y^ and y B are the mean vectors for the observation vectors in A and the 
observation vectors in B, respectively, and d(yA,yB) is defined in (15.2). We define 
y^ and yB in the usual way, that is, yA — Σ"=ι Yi/nA- The two clusters with the 
smallest distance between centroids are merged at each step. 

After two clusters A and B are joined, the centroid of the new cluster AB is given 
by the weighted average 

= nAyA + nByB_ 
nA + nB 

■ EXAMPLE 15.3.5 

Figure 15.7 shows the dendrogram resulting from using the centroid clustering 
method on the complete city crime data in Table 15.1. 

Note the two crossovers in the dendrogram in Figure 15.7. Boston and 
Chicago join at a distance of 447.4. Then that cluster joins with {Atlanta, Tuc-
son, Hartford} at a distance of 441.1. Finally, all five join with New Orleans at 
a distance of 393.8. Crossovers are discussed in Section 15.3.9a. D 

15.3.6 Median 

If two clusters A and B are combined using the centroid method, and if A con-
tains a larger number of items than B, then the new centroid yAB = (n^y^ + 
nsy B ) / (n ,4 + nB) may be much closer to y^ than to y B . To avoid weighting the 
mean vectors according to cluster size, we can use the median (midpoint) of the line 
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Figure 15.6 Dendrogram for average linkage clustering of the data in Table 15.1 (see 
Example 15.3.4). 

joining A and B as the point for computing new distances to other clusters: 

mAB = ^{ΫΑ+ΫΒ)· (15.13) 

The two clusters with the smallest distance between medians are merged at each step. 
Note that the "median" in (15.13) is not the ordinary median in the statistical 

sense. The terminology arises from a median of a triangle, namely, the line from a 
vertex to the midpoint of the opposite side. 
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Figure 15.7 Dendrogram for the centroid clustering of the complete city crime data in 
Table 15.1 (see Example 15.3.5). 

EXAMPLE 15.3.6 

Figure 15.8 shows the dendrogram resulting from using the median distance 
clustering method on the complete city crime data in Table 15.1. In Figure 
15.8, we see the same two crossovers as in Figure 15.7. □ 
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Figure 15.8 Dendrogram for the median clustering method applied to the complete city 
crime data in Table 15.1 (see Example 15.3.6). 

15.3.7 Ward's Method 

Ward's method, also called the incremental sum of squares method, uses the within-
cluster (squared) distances and the between-cluster (squared) distances (Ward 1963, 
Wishart 1969a). If AB is the cluster obtained by combining clusters A and B, then 
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the sums of within-cluster distances (of the items from the cluster mean vectors) are 

n-A 

SSE^ = ]T(y, - yA) ' (y i - yA), (15.14) 
i=\ 
nB 

SSEB = £ ( y i - y B ) ' ( y i - yB), (15.15) 
i = l 

nAB 

SSEAB = Yt{yi- yAB)'{Yi - yAB), (15.16) 

where yAB = (nAyA + nByB)/(nA +nB) as in (15.12) and nA,nB, and nAB = 
nA + nB are the numbers of points in A, B, and AB respectively. Since these sums 
of distances are equivalent to within-cluster sums of squares, they are denoted by 
SSEA,SSEB,andSSE,iB. 

Ward's method joins the two clusters A and B that minimize the increase in SSE, 
defined as 

IAB = S S E ^ B - (SSEA + SSEB). (15.17) 

It can be shown that the increase IAB in (15.17) has the following two equivalent 
forms: 

IAB = nA(yA - y A B ) ' ( y^ - y^ B ) 
+ nB(yB-yAB)'{yB-yAB) (15.18) 

= ^Ψ-(ΫΑ-ΫΒ)'(ΫΑ-ΫΒ)· (15-19) 
nA + nB 

Thus by (15.19), minimizing the increase in SSE is equivalent to minimizing the 
between cluster distances. If A consists only of y* and B consists only of y^, then 
SSEA and SSEB are zero, and (15.17) and (15.19) reduce to 

Iij = SSE^s = i ( y i - yj)'(yi - y?) = |d 2 (y i ,y j ) · 

Ward's method is related to the centroid method in Section 15.3.5. If the distance 
d(yA,yB) in (15.11) is squared and compared to (15.19), the only difference is 
the coefficient nAnB/(nA + nB) for Ward's method. Thus the cluster sizes have an 
impact on Ward's method but not on the centroid method. Writing nAnB/{nA +nB) 
in (15.19) as 

nAnB _ 1 
nA+nB l/nA + l/nB' 

we see that as nA and nB increase, nAnB/(nA + nB) increases. Writing the coeffi-
cient as 

nAnB nA 
7iA +nB 1 + nA/nB ' 

we see that as nB increases with nA fixed, nAnB/{nA + nB) increases. There-
fore, compared to the centroid method, Ward's method is more likely to join smaller 
clusters or clusters of equal size. 
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Figure 15.9 Dendrogram for Ward's method applied to the complete city crime data in 
Table 15.1 (see Example 15.3.7). 

EXAMPLE 15.3.7 

Figure 15.9 shows the dendrogram resulting from using Ward's clustering 
method on the complete city crime data in Table 15.1. The vertical axis is 
lABI Σ"=ι (y* — y)'(yi ~~ y)> where y is the overall mean vector for the data. 

D 
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15.3.8 Flexible Beta Method 

Suppose clusters A and B have just been merged to form cluster AB. A general 
formula for the distance between AB and any other cluster C was given by Lance 
and Williams (1967): 

D(C, AB) = aAD(C, A) + aBD(C, B) + ßD(A, B) 

+ Ί\Ό(0,Α)-Ο(0,Β)\. (15.20) 

The distances D(C, A), D(C, B), and D{A, B) are from the distance matrix before 
joining A and B. The distances from AB to other clusters as given by (15.20) would 
be used (along with distances between other pairs of clusters) to form the next dis-
tance matrix for choosing the pair of clusters with smallest distance. This pair would 
then be joined at the next step. 

To simplify (15.20), Lance and Williams (1967) suggested the following con-
straints on the parameter values: 

a A + aB + ß = 1 
a A = aB 

7 = 0 
β<1. 

With a.A = otß and 7 = 0, we have 2aA = 1 — β or aA = 0.3 = (1 — /3)/2, and 
we need only choose a value of β. The resulting hierarchical clustering procedure is 
called the flexible beta method. 

The choice of β determines the characteristics of the flexible beta clustering pro-
cedure. Lance and Williams (1967) suggested the use of a small negative value of /?, 
such as β = —.25. If there are (or might be) outliers in the data, the use of a smaller 
value of β, such as β = —.5, may be more likely to isolate these outliers into simple 
clusters. 

The distances defined for the agglomerative hierarchical methods in Sections 
15.3.2-15.3.7 can all be expressed as special cases of (15.20). The requisite parame-
ter values are given in Table 15.2. For the centroid, median, and Ward's methods, the 
distances in (15.20) must be squared distances (assuming Euclidean distances). For 
the other methods in Table 15.2, the distances may be either squared or unsquared. 

We illustrate the choice of parameter values in Table 15.2 for the single linkage 
method. Using a A = Q-B = \, β = 0, and 7 = - \ as in the first row of Table 15.2, 
(15.20) becomes 

D{C,AB) = \D{C,A) + \D{C,B) - \\D{C,A) - D{C,B)\. (15.21) 

If D(C, A) > D{C,B), then \D(C,A) - D(C,B)\ = D(C,A) - D(C,B), and 
(15.21) reduces to 

D(C, AB) = D(C, B). (15.22) 
On the other hand, if D(C, A) < D(C,B), then \D(C,A)~D(C,B)\ = D(C,B)-
D{C, A), and (15.21) reduces to 

D{C,AB) = D(C,A). (15.23) 
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Table 15.2 Parameter Values for (15.20) 

Cluster Method 

Single linkage 

Complete linkage 

Average linkage 

Centroid 

Median 

Ward's method 

Flexible beta 

OtA 

1 
2 

1 
2 

UA 

ΠΑ +nB 

UA 

ΠΑ + nB 

1 
2 

UA + Tic 

riA+riB + nc 

( l - / ? ) / 2 

Q.B 

1 
2 

1 
2 

nB 

UA +UB 

UB 

n-A +nB 

1 
2 

nB +nc 
ΠΑ +nB + nc 

( l - / 8 ) / 2 

ß 

0 

0 

0 

-UATlB 

(nA + nB)2 

1 
4 

-nc 
riA + riB + nc 

0 « 1 ) 

7 

1 
2 

1 
2 

0 

0 

0 

0 

0 

Thus, (15.21) can be written as 

D{C, AB) = min[D(C, A), D(C, B)], (15.24) 

which is equivalent to (15.8), the definition of distance for the single linkage method. 

■ EXAMPLE 15.3.8 

Figures 15.10 and 15.11 show dendrograms produced when using the flexible 
beta clustering method on the complete city crime data in Table 15.1, with 
ß = - .25 and ß = —.75. The two results are similar. D 

15.3.9 Properties of Hierarchical Methods 

15.3.9a Monotonicity 
If an item or a cluster joins another cluster at a distance that is less than the distance 
for the previous merger of two clusters, we say that an inversion or a reversal has 
occurred. The reversal is represented by a crossover in the dendrogram. Examples 
of crossovers can be found in Figures 15.7 and 15.8. 

A hierarchical method in which reversals cannot occur is said to be monotonic, 
because the distance at each step is greater than the distance at the previous step. A 
distance measure or clustering method that is monotonic is also called ultrametric. 

We now show that the single linkage and complete linkage methods are mono-
tonic. Let dk be the distance at which two clusters are joined at the fcth step. We 
can describe steps k and k + 1 in terms of four clusters A, B, C, and D. Suppose 
D(A, B) is less than the distance between any other pair among these four clusters, 
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Figure 15.10 Dendrogram for the flexible beta method with ß = —.25 applied to the 
complete city crime data in Table 15. l(see Example 15.3.8). 
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Figure 15.11 Dendrogram for the flexible beta method with 
complete city crime data in Table 15.1 (see Example 15.3.8). 

New York 

Los Angeles 

Washington 

*— Detroit 

- Portland 

- Honolulu 

- Denver 

- Kansas City 

I— Houston 

I— Dallas 

— New Orleans 

I Chicago 

- Boston 

-Hartford 

. Tucson 

• Atlanta 

.75 applied to the 



5 2 4 CLUSTER ANALYSIS 

so that A and B are joined at step k to form AB. Then 

dk = D{A, B) < min{D(^, C),D(B,C),D(C, £>)}. (15.25) 

[If D(A, B) is less than these three distances, it is less than the other two possible 
distances, D(A, D) and D(B, D).] Suppose at step k + 1 we join AB and C or we 
join C and D. If we merge C and D, then by (15.25), dk = D(A, B) < D(C, D) = 
dk+i- If we join AB and C, then for single linkage (15.24) gives 

4 + i = D{C, AB) = ππη{£>(,4,C), D(B, C)} > dk = D(A, B). 

By (15.25), both of D(A,C) and D(B,C) exceed D(A,B), and this also holds 
for complete linkage. Thus, the single linkage and complete linkage methods are 
monotonic. 

For the methods in Table 15.2 other than single linkage and complete linkage, we 
have 7 = 0 and by (15.20) and (15.25), 

D(C,AB)>{aA+aB+ß)D(A,B). (15.26) 

Thus we need a A + OLB + ß > 1 for monotonicity. Using this criterion, we see that 
all methods in Table 15.1 (beyond the first two) are monotonic except the centroid 
and median methods. (These two methods showed crossovers in the dendrograms 
in Figures 15.7 and 15.8.) Because of lack of monotonicity, some authors do not 
recommend the centroid and median methods. 

15.3.9b Contraction or Dilation 
We now consider the characteristics of the distances or proximities between the orig-
inal points. As clusters form, the properties of this space of distances may be altered 
somewhat. A clustering method that does not alter the spatial properties is referred 
to by Lance and Williams (1967) as space-conserving. A method that is not space-
conserving may either contract or dilate the space. 

A method is space-contracting if newly formed clusters appear to move closer to 
individual observations, so that an individual item tends to join an existing cluster 
rather than join with another individual item to form a new cluster. This tendency is 
also called chaining. 

A method is space-dilating if newly formed clusters appear to move away from 
individual observations, so that individual items tend to form new clusters rather than 
join existing clusters. In this case, clusters appear to be more distinct than they are. 

Dubien and Warde (1979) described the spatial properties as follows. Suppose 
that the distances among three clusters satisfy 

D(A, B) < D(A, C) < D(B, C). 

Then a cluster method is space-conserving if 

D{A,C) < D(AB,C) < D(B,C). (15.27) 
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A method is space-contracting if the first inequality in (15.27) does not hold and 
space-dilating if the second inequality does not hold. 

The single linkage method is very space-contracting, with marked chaining ten-
dencies. For this reason, single linkage is not recommended by some authors. Com-
plete linkage on the other hand, is very space-dilating, with a tendency to artificially 
impose cluster boundaries. 

Other hierarchical methods fall in between the extremes represented by single 
linkage and complete linkage. The centroid and average linkage methods are largely 
space-conserving, while Ward's method is space-contracting. Whenever a method 
produces reversals for a particular data set, it can be considered to be space-contract-
ing. Thus the centroid method is space-conserving unless it has reversals, whereupon 
it becomes space-contracting. 

The flexible beta method is space-contracting for ß > 0, space-conserving for 
ß = 0, and space-dilating for ß < 0. A small degree of dilation may help define 
cluster boundaries, but too much dilation may lead to too many clusters in the early 
stages. Thus the recommended value of ß = —.25 may represent a good compro-
mise. 

Figure 15.12 Two distinct clusters with intervening individuals. 
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Figure 15.13 Single linkage clustering of the data in Figure 15.12. 

EXAMPLE 15.3.9b 

To illustrate chaining in the single linkage method, consider the data plotted in 
Figure 15.12 (see Everitt 1993, p. 68). Two distinct clusters, A and C, have 
points between them labeled B that do not belong to A or C. 

In Figure 15.13, the two-cluster solution for single linkage clustering places 
Ci and Cu into one cluster and all other points into another cluster. The three-
cluster solution has two clusters with C7's and a cluster with A's and 5's . 
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Average distance between clusters 

Figure 15.14 Average linkage clustering of the data in Figure 15.12. 

A dendrogram for average linkage clustering of the data in Figure 15.12 is 
given in Figure 15.14. For this data set, the average linkage method is more 
robust to chaining. The two-cluster solution separates the C's from the A's and 
B's. The three-cluster solution completely separates the three groups, A, B, 
and C. □ 

15.3.9c Other Properties 
The single linkage method has been criticized by many authors because of its chain-
ing tendencies and because it is sensitive to errors in distances between observations. 
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Figure 15.15 Clusters in a single dimension. 

On the other hand, the single linkage approach is better than the other methods at 
identifying clusters that have curvy shapes instead of spherical or elliptical shapes, 
and it is somewhat robust to outliers in the data. 

Ward's method and the average linkage method are also relatively insensitive to 
outliers. For example, in the average linkage method, outliers tend to remain isolated 
in the early stages and to join with other outliers rather than to join with large clusters 
or with less compact clusters. This is due to two properties of the average linkage 
method: (1) the average distance between two groups (squared Euclidean distance) 
increases as the points in the groups are more spread out, and (2) the average distance 
increases as the size of the groups increases. 

These two properties of the average linkage method are illustrated in one dimen-
sion in Figure 15.15 (see Jobson 1992, pp. 524-525), where cluster A has one point 
at z\ and cluster B has two points, b\ and b2, located at z2 — h and z2 + h. The 
average squared distance between A and B is 

d2 = I [ ( 2 l _ Z2 + h)2 + (Zl -Z2- hf) 

= ^[{zi ~ Z2)2 + h2 + 2h(zi - z2) + (zi - z2)
2 + h2 - 2h(Zl - z2)} 

= (*i - z2f + h2. 

Thus the average distance between A and B increases as the spread of 61 and b2 

increases (that is, as h increases). 
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To illustrate the second property of the average linkage method, suppose cluster 
B in Figure 15.15 consists of a single point located at z2- Then, the distance between 
A and B is (z\ — Z2)2, and A is closer to B than it is if B consists of two points. 

The centroid method is fairly robust to outliers. Complete linkage is somewhat 
sensitive to outliers and tends to produce clusters of the same size and shape. Ward's 
method tends to yield spherical clusters of the same size. 

Many studies conclude that the best overall performers are Ward's method and 
the average linkage method. However, there seems to be an "interaction" between 
methods and data sets; that is, some methods work better for certain data sets, and 
other methods work better for other data sets. 

A good strategy is to try several methods. If the results agree to some extent, the 
researcher may have found some natural clusters in the data. 

15.3.10 Divisive Methods 

In the agglomerative hierarchical methods covered in Sections 15.3.2-15.3.9, we 
begin with n items and end with a single cluster containing all n items. As noted 
in the second paragraph of Section 15.3.1, a divisive hierarchical method starts with 
a single cluster of n items and divides it into two groups. At each step thereafter, 
one of the groups is divided into two subgroups. The ultimate result of a divisive 
algorithm is n clusters of one item each. The results can be shown in a dendrogram. 

Divisive methods suffer from the same potential drawback as the agglomerative 
methods, namely, that once a partition is made, an item cannot be moved into another 
group it does not belong to at the time of the partitioning. However, if larger clus-
ters are of interest, then the divisive approach may sometimes be preferred over the 
agglomerative approach, in which the larger clusters are reached only after a large 
number of joinings of smaller groups. 

Divisive algorithms are generally of two classes: monothetic and polythetic. In a 
monothetic approach, the division of a group into two subgroups is based on a single 
variable, whereas the polythetic approach uses all p variables to make the split. 

If the variables are binary (quantitative variables can be converted to binary vari-
ables), the monothetic approach can easily be applied. Division into two groups 
is based on presence or absence of an attribute. The variable (attribute) is chosen 
which maximizes a chi-square statistic or an information statistic; see Everitt (1993, 
pp. 87-88) or Gordon (1999, pp. 130-134). 

For a monothetic approach using a quantitative variable y, we seek to maximize 
the between-group sum of squares, 

SSB = ni(j/! - y)2 + n2{y2 - y)2, 

where n\ and n2 are the two group sizes (with n\-\-n2 = n), y1 and y2 are the group 
means, and y is the overall mean based on all n observations. The sum of squares 
SSB would be calculated for all possible splits into two groups of sizes ηχ and n2 

and for each of the p variables. The final division would be based on the variable that 
maximizes SSB/ j™=1(yi - y)2-
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Table 15.3 Athletic Records for Eight Events in Eight Countries 

Country 

Australia 
Belgium 
Canada 
GDR 
GB 
Kenya 
USA 
USSR 

1 

10.31 
10.34 
10.17 
10.12 
10.11 
10.46 
9.93 
10.07 

2 

20.06 
20.68 
20.22 
20.33 
20.21 
20.66 
19.75 
20.00 

3 

44.84 
45.04 
45.68 
44.87 
44.93 
44.92 
43.86 
44.60 

4 

1.74 
1.73 
1.76 
1.73 
1.70 
1.73 
1.73 
1.75 

5 

3.57 
3.60 
3.63 
3.56 
3.51 
3.55 
3.53 
3.59 

6 

13.28 
13.22 
13.55 
13.17 
13.01 
13.10 
13.20 
13.20 

7 

27.66 
27.45 
28.09 
27.42 
27.51 
27.80 
27.43 
27.53 

8 

128.30 
129.95 
130.15 
129.92 
129.13 
129.75 
128.22 
130.55 

Event: (1) 100 m (s), (2) 200 m (s), (3) 400 m (s), (4) 800 m (min), (5) 1500 m (min), 
(6) 5000 m (min), (7) 10,000 m (min), (8) marathon (min). 

Table 15.4 Average Distance from Each Country to 
the Other Seven 

Country 

USA 
Aust 
GB 
GDR 

Average 
Distance 

2.068 
1.643 
1.164 
1.083 

Country 

USSR 
Canada 
Kenya 
Belgium 

Average 
Distance 

1.513 
1.594 
1.156 
1.16 

For a polythetic approach, we consider a technique proposed by MacNaughton-
Smith et al. (1964). To divide a group, we work with a splinter group and the 
remainder. We seek the item in the remainder whose average distance (dissimilar-
ity) from other items in the remainder, minus its average distance from items in the 
splinter group, is largest. If the largest difference is positive, the item is shifted to 
the splinter group. If the largest difference is negative, the procedure stops, and the 
division is complete. We can start the splinter group with the item that has the largest 
average distance from the other items in the group. 

■ EXAMPLE 15.3.10 

In Table 15.3 we have the track records of eight countries (Dawkins 1989). 
Based on the distance matrix for these eight observations, the average distance 
from each observation to the other seven observations is given in Table 15.4. 
Since USA has the greatest average distance to the other countries, USA be-
comes the first observation in the splinter group. Now, the average distance 
between each observation in the remainder to the other six observations in the 
remainder is calculated. Then the (average) distance between USA and each 
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Table 15.5 Average Distances to Remainder and Splinter Groups for 
Seven Countries 

Average Distance Average Distance Difference 
Country to Remainder (1) to Splinter Group (2) (1) - (2) 

Australia 
GB 
GDR 
USSR 
Canada 
Kenya 
Belgium 

1.729 
1.108 
.918 

1.355 
1.392 
.986 
.975 

1.126 
1.504 
2.070 
2.464 
2.808 
2.173 
2.329 

.603 
-.396 

-1.151 
-1.111 
-1.416 
-1.186 
-1.353 

Table 15.6 Average Distances to Remainder and Splinter Groups for 
Six Countries 

Average Distance Average Distance Difference 
Country to Remainder (1) to Splinter Group (2) (1) - (2) 

GB 
GDR 
USSR 
Canada 
Kenya 
Belgium 

1.144 
.767 

1.169 
1.249 
.865 
.813 

1.216 
1.872 
2.373 
2.457 
1.884 
2.058 

-.072 
-1.105 
-1.203 
-1.208 
-1.019 
-1.245 

item in the remainder is calculated. (This may be found using the distance 
matrix since there is only one observation in the splinter group.) Finally, we 
calculate the difference between the average distance to the remainder and the 
average distance to the splinter group. The results are in Table 15.5. Because 
Australia has a positive difference in Table 15.5, it is added to the splinter 
group with USA. This process is repeated for the six countries in the remain-
der, and the results are given in Table 15.6. Since no difference in Table 15.6 
is positive, the process stops, and we have the following clusters: C\ = {USA, 
Australia}, C2 = {GB, GDR, USSR, Canada, Kenya, Belgium}. We could 
continue and divide C2 into two groups in the same way. D 

15.4 NONHIERARCHICAL METHODS 

In this section, we discuss three nonhierarchical techniques: partitioning, mixtures 
of distributions, and density estimation. Among these three methods, partitioning is 
the most commonly used. 
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15.4.1 Partitioning 

In the partitioning approach, the observations are separated into g clusters without 
using a hierarchical approach based on a matrix of distances or similarities between 
all pairs of points. The methods described in this section are sometimes called opti-
mization methods rather than partitioning. 

An attractive strategy would be to examine all possible ways to partition n items 
into g clusters and find the optimal clustering according to some criterion. However, 
the number of possible partitions as given by (15.7) is prohibitively large for even 
moderate values of n and g. Thus we seek simpler techniques. 

15.4.1a k-Means 
We now consider an approach to partitioning that is usually called the k-means 
method. (We will continue to use the notation g rather than k for the number of 
clusters.) The method allows the items to be moved from one cluster to another, a 
reallocation that is not available in the hierarchical methods. 

We first select g items to serve as "seeds." These are later replaced by the centroids 
(mean vectors) of the clusters. There are various ways we can choose the seeds: 
select g items at random (perhaps separated by some minimum distance), choose the 
first g points in the data set (again subject to a minimum distance apart), select the 
g points that are mutually farthest apart, find the g points of maximum density, or 
specify g regularly spaced points in a grid-like pattern (these would not be actual 
data points). 

For these methods of selecting seeds, the number of clusters, g, must be specified. 
Alternatively, a minimum distance between seeds may be specified, and then all 
items that satisfy this criterion are chosen as seeds. 

After the seeds are chosen, each remaining point in the data set is assigned to the 
cluster with the nearest seed (based on Euclidean distance). As soon as a cluster has 
more than one member, the cluster seed is replaced by the centroid. 

After all items are assigned to clusters, each item is examined to see if it is closer 
to the centroid of another cluster than to the centroid of its own cluster. If so, the item 
is moved to the new cluster and the two cluster centroids are updated. This process 
is continued until no further improvement is possible. 

The fc-means procedure is somewhat sensitive to the initial choice of seeds. It 
might be advisable to try the procedure again with a new initial choice of seeds. If 
different initial choices of seeds produce widely different final clusters, or if conver-
gence is extremely slow, there may be no natural clusters in the data. 

The fc-means partitioning method can also be used as a possible improvement on 
hierarchical techniques. We first cluster the items using a hierarchical method and 
then use the centroids of these clusters as seeds for a fc-means approach, which will 
allow points to be reallocated from one cluster to another. 

■ EXAMPLE 15.4.1a 

Protein consumption in twenty-five European countries for nine food groups 
is given in Table 15.7 (Hand et al. 1994, p. 298). In order to illustrate the 
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Table 15.7 Protein Data 

Country 

Albania 
Austria 
Belgium 
Bulgaria 
Czech. 
Denmark 
E. Germany 
Finland 
France 
Greece 
Hungary 
Ireland 
Italy 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
UK 
USSR 
W. Germany 
Yugoslavia 

Red 
Meat 

10.1 
8.9 

13.5 
7.8 
9.7 

10.6 
8.4 
9.5 

18.0 
10.2 
5.3 

13.9 
9.0 
9.5 
9.4 
6.9 
6.2 
6.2 
7.1 
9.9 

13.1 
17.4 
9.3 

11.4 
4.4 

White 
Meat 

1.4 
14.0 
9.3 
6.0 

11.4 
10.8 
11.6 
4.9 
9.9 
3.0 

12.4 
10.0 
5.1 

13.6 
4.7 

10.2 
3.7 
6.3 
3.4 
7.8 

10.1 
5.7 
4.6 

12.5 
5.0 

Eggs 

.5 
4.3 
4.1 
1.6 
2.8 
3.7 
3.7 
2.7 
3.3 
2.8 
2.9 
4.7 
2.9 
3.6 
2.7 
2.7 
1.1 
1.5 
3.1 
3.5 
3.1 
4.7 
2.1 
4.1 
1.2 

Milk 

8.9 
19.9 
17.5 
8.3 

12.5 
25.0 
11.1 
33.7 
19.5 
17.6 
9.7 

25.8 
13.7 
23.4 
23.3 
19.3 
4.9 

11.1 
8.6 

24.7 
23.8 
20.6 
16.6 
18.8 
9.5 

Fish 

.2 
2.1 
4.5 
1.2 
2.0 
9.9 
5.4 
5.8 
5.7 
5.9 

.3 
2.2 
3.4 
2.5 
9.7 
3.0 

14.2 
1.0 
7.0 
7.5 
2.3 
4.3 
3.0 
3.4 

.6 

Cereals 

42.3 
28.0 
26.6 
56.7 
34.3 
21.9 
24.6 
26.3 
28.1 
41.7 
40.1 
24.0 
36.8 
22.4 
23.0 
36.1 
27.0 
49.6 
29.2 
19.5 
25.6 
24.3 
43.6 
18.6 
55.9 

Starchy 
Foods 

.6 
3.6 
5.7 
1.1 
5.0 
4.8 
6.5 
5.1 
4.8 
2.2 
4.0 
6.2 
2.1 
4.2 
4.6 
5.9 
5.9 
3.1 
5.7 
3.7 
2.8 
4.7 
6.4 
5.2 
3.0 

Nuts 

5.5 
1.3 
2.1 
3.7 
1.1 
.7 
.8 

1.0 
2.4 
7.8 
5.4 
1.6 
4.3 
1.8 
1.6 
2.0 
4.7 
5.3 
5.9 
1.4 
2.4 
3.4 
3.4 
1.5 
5.7 

Fruit/Veg 

1.7 
4.3 
4.0 
4.2 
4.0 
2.4 
3.6 
1.4 
6.5 
6.5 
4.2 
2.9 
6.7 
3.7 
2.7 
6.6 
7.9 
2.8 
7.2 
2.0 
4.9 
3.3 
2.9 
3.8 
3.2 

sensitivity of the fc-means clustering method to the initial choice of seeds we 
use the following four methods of choosing seeds: 

1. Select at random g observations that are at least a distance r apart. 

2. Select the first g observations that are at least a distance r apart. 

3. Select the g observations that are mutually farthest apart. 

4. Use the g centroids from the gr-cluster solution from the average linkage 
(hierarchical) clustering method. 

To help choose g, the number of clusters, we plot the first two principal 
components in Figure 15.16. It appears that there may be at least five clusters. 
For the first method, we select five observations at random that are at least a 
distance r = 1 from each other. The five chosen seeds are West Germany, 
Austria, Ireland, France, and Czechoslovakia. Using these seeds, the fc-means 
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Figure 15.16 First two principal components z\ and zi for the protein data in Table 15.7. 

method produced the clusters identified in Table 15.8 along with the distance 
of each observation from its cluster centroid. 

To view the clusters, we plot the first two discriminant functions (see Sec-
tion 8.4.1) in Figure 15.17. The first two discriminant functions show good 
separation among clusters 3, 4 and 5. However, clusters 1 and 2 appear to 
overlap with the other clusters. 

We now select the first five observations as cluster seeds. With these seeds, 
the fc-means clustering method produced the clusters in Table 15.9. The first 
two discriminant functions are plotted in Figure 15.18. Good separation of 
clusters is seen except for clusters 2 and 3. 

We next choose as cluster seeds the five observations that are mutually far-
thest apart. These seeds gave rise to the clusters in Table 15.10. The first two 
discriminant functions are plotted in Figure 15.19. Clusters 1, 3, and 4 seem 
very well separated, but clusters 2 and 5 show considerable overlap. 

Finally, we obtain a five-cluster solution from average linkage and use the 
centroids of these clusters as the new seeds. The clusters in Table 15.11 re-
sult. The first two discriminant functions are plotted in Figure 15.20. All five 
clusters are well separated in the first two discriminant functions. These clus-
ters show some resemblance to those in the principal components plot given in 
Figure 15.16. D 
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Table 15.8 «-Means Cluster Solution for Seeds Chosen at Random 

Country 

Denmark 
Sweden 
Norway 
Belgium 
E. Germany 
Netherlands 
Austria 
W. Germany 
Czech. 
Switzerland 
Poland 
Ireland 
UK 

Cluster 

2 
2 
2 
2 
2 
2 
3 
3 

Distance 
from Centroid 

1.227 
1.247 
1.629 
1.669 
1.987 
0.991 
1.160 
1.303 
1.433 
1.679 
2.052 
1.334 
1.821 

Country 

Finland 
France 
Greece 
Romania 
Italy 
Yugoslavia 
Bulgaria 
USSR 
Hungary 
Spain 
Albania 
Portugal 

Cluster 

3 
4 
4 
5 
5 
5 
5 
5 
5 
5 
5 
5 

Distance 
from Centroid 

2.261 
2.273 
2.273 
1.514 
1.981 
2.040 
2.225 
2.393 
2.435 
2.871 
3.180 
4.343 

Figure 15.17 First two discriminant functions z\ and 22 for the clusters in Table 15.8. 
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Table 15.9 fc-Means Cluster Solution Using the First Five Observations as Seeds 

Country 
Distance 

Cluster from Centroid Country Cluster 
Distance 

from Centroid 

Albania 
Netherlands 
Austria 
W. Germany 
Switzerland 
Belgium 
Sweden 
Denmark 
Ireland 
Norway 
UK 
Finland 
France 

1 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 

.000 

.648 
1.000 
1.087 
1.489 
1.368 
1.462 
1.666 
1.832 
1.927 
2.076 
2.341 
2.629 

Romania 
Bulgaria 
Yugoslavia 
Italy 
Greece 
Poland 
Czech. 
USSR 
E. Germany 
Spain 
Hungary 
Portugal 

4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
5 

1.415 
1.587 
1.784 
1.898 
2.450 
1.709 
1.956 
2.218 
2.285 
2.344 
2.558 
3.859 

Figure 15.18 First two discriminant functions z\ and 22 for the clusters in Table 15.9. 
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Table 15.10 fc-Means Cluster Solution Using as Seeds the Five Observations Furthest Apart 

Distance Distance 
Country Cluster from Centroid Country Cluster from Centroid 

Romania 
Yugoslavia 
Bulgaria 
Albania 
Hungary 
Belgium 
W. Germany 
Netherlands 
Austria 
Czech. 
Switzerland 
Ireland 
E. Germany 

2 
2 
2 
2 
2 
2 
2 
2 

.601 
1.159 
1.435 
2.421 
2.540 

.956 
1.012 
1.416 
1.663 
1.706 
1.713 
1.839 
2.042 

France 
Poland 
UK 
Greece 
Italy 
Portugal 
Spain 
Norway 
Sweden 
Finland 
Denmark 
USSR 

2 
2 
2 
3 
3 
4 
4 
5 
5 
5 
5 
5 

2.358 
2.405 
2.537 
1.075 
1.075 
1.466 
1.466 
1.054 
1.191 
1.545 
1.708 
2.780 

Figure 15.19 First two discriminant functions z\ and zi for the clusters in Table 15.10. 
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Table 15.11 fc-Means Cluster Solution Using Seeds from Average Linkage 

Country 

Romania 
Yugoslavia 
Bulgaria 
Albania 
Belgium 
W. Germany 
Netherlands 
Sweden 
Ireland 
Denmark 
Switzerland 
Austria 
E. Germany 

Cluster 

1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 

from Centroid 

.970 
1.182 
1.339 
1.970 
1.152 
1.245 
1.547 
1.604 
1.744 
1.766 
1.831 
2.037 
2.251 

Country 

Norway 
UK 
France 
Finland 
Greece 
Italy 
Portugal 
Spain 
Czech. 
Poland 
USSR 
Hungary 

Cluster 

2 
2 
2 
2 
3 
3 
4 
4 
5 
5 
5 
5 

from Centroid 

2.287 
2.354 
2.600 
2.683 
1.075 
1.075 
1.466 
1.466 
1.337 
1.579 
1.964 
2.023 

Figure 15.20 First two discriminant functions z\ and 2:2 for the clusters in Table 15.11. 
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15.4.1b Other Partitioning Criteria 
We now consider three partitioning methods that are not based directly on the dis-
tance from a point to the centroid of a cluster. These methods are based on the 
between-cluster and within-cluster sum of squares and products matrices H and E 
denned in (6.9) and (6.10) for one-way MANOVA. For well-defined clusters, we 
would like E to be "small" and H to be "large." 

The three criteria are as follows: 

1. Minimize tr(E) 

2. Minimize |E| 

3. Maximize t r (E _ 1H). 

Using criterion 1, for example, we would move an item with observation vector y to 
the cluster for which tr(E) is minimized after the move. 

We can express the first criterion in two alternative forms. By (6.10), we have 

tr(E) = tr ΣΣ^-^-)^-^-)' 
i = l j = l 

(15.28) 

Σ» ^(yij - yuiyij - Yi.Y : by (2.96)] 

= X>E')> (15.29) 

where Ei = Σ ? = ι ( ν ύ — Ϋί.ΧΥύ' —Yi.)'is the sum of squares and products matrix 
of deviations of observations from the mean vector for the zth cluster. In (15.28) 
we are using the notation of Section 6.1.2 for a balanced design, in which n is the 
number of observations in each cluster. 

We can write tr(Ej) in (15.29) in the form 

tr(E0 = t r ^ ( y y - y j f r y - y j 
j 

= Σ t r(yy - y*.)(y« - y*.)' [fey (2·96)] 
i 

= Σ > « - y<-)'(y« - y<·) [by (2·97)]· ( 1 5 · 3 0 ) 

Thus tr(Ei) is the sum of the (squared) Euclidean distances from the individual 
points to the centroid of the ith cluster. 

A second form of (15.28) was given by Seber (1984, p. 277) as 

tt(E) = - Σ Σ (yifc ~ yim)'(yik - Yim)- (15.31) 
i fc<m 
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Hence minimizing tr(E) is equivalent to minimizing the sum of squared Euclidean 
distances between all pairs of points in a cluster. 

The second criterion, minimizing |Ej, is related to Λ = |E | / |E + H | in (6.13). 
Minimizing |E| is equivalent to minimizing Wilks' Λ. 

Another way to look at minimizing |E| is to consider the effect of adding a point 
y to a cluster with centroid y. Let u = y - y. By (15.28), E is a sum of terms of the 
form uu ' — (y - y)(y - y)'- Thus (ignoring the change in centroid with the added 
observation y), the increase in |E| is 

|E + uu'l - |E| = |E|(1 + u ' E _ 1 u ) - |E| [by (2.95)] 

= |E |u 'E _ 1 u . 

Hence, the minimum increase in jE| is obtained by adding y to the cluster for which 
the standardized distance u ' E _ 1 u of y from y is the smallest. By comparison, the 
tr(E) criterion would add y to the cluster for which u 'u is minimum [see (15.30)]. 

The third criterion, maximizing t r (E _ 1 H), is related to the Lawley-Hotelling 
statistic U{s) = t r (E _ 1 H) = J2Ui λ * i n (6·27)> w h e r e λι, λ2,..., As are the eigen-
values of E _ 1 H and s = min(p, g — 1). Associated with each Aj is the eigenvector 
a; and the discriminant function Zi = a^y (see Section 8.4). The largest eigenvalue, 
Ai, and the accompanying first discriminant function, z\ = a^y, have the greatest 
influence on t r (E _ 1H). Maximizing t r (E _ 1H) has the inclination to produce el-
liptical clusters of the same size. These would tend to follow a straight-line trend, 
especially if the first eigenvalue dominates the others. If the initial clusters or seeds 
are lined up in a different direction than the "true clusters," maximizing t r (E _ 1H) 
may not correct the error in subsequent iterations. 

Since tr(E) involves only the diagonal elements, the first criterion ignores the 
correlations and tends to yield spherical clusters. The second criterion, minimizing 
|E|, takes correlations into account and tends to produce elliptical clusters. These 
clusters have a tendency to be of the same shape because Έ/VE is a pooled estimator 
of the covariance matrix. A modification that may be useful is Π?=ι 1̂ 1» where Ej 
is the error matrix for the ith cluster [see (15.29)]. 

Finally, we compare the three criteria in terms of invariance to nonsingular linear 
transformations Vy = Ayij + b , where A is a constant nonsingular matrix and 
b is a vector of constants. The first criterion, minimizing tr(E), is not invariant 
to such linear transformations, while the other two criteria are invariant to these 
transformations. Therefore, minimizing tr(E) will likely give different partitions for 
the raw data and standardized data. 

15.4.2 Other Methods 

We discuss mixtures of distributions in Section 15.4.2a and density estimation in 
Section 15.4.2b. 

15.4.2a Mixtures of Distributions 
In this method, we assume the existence of g distributions (usually multivariate nor-
mal), and we wish to assign each of the n items in the sample to the distribution 
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it most likely belongs to. Such an approach is related to classification analysis in 
Chapter 9. Along with partitioning in Section 15.4.1, this method has the property 
that points can be transferred from one cluster to another, but it requires more as-
sumptions than partitioning. 

We define the density of a mixture of g distributions as the weighted average 

a 

fc(y) = 5 > i / ( y , M i , E i ) , (15.32) 

where 0 < CCJ < l ,5Zf= 1«i = 1, and /(γ,μί,Έί) is the multivariate normal 
Ν^,Σί) given in (4.2). 

Clusters could be formed in two ways. The first approach is to assign an item with 
observation vector y to the cluster d with largest value of the estimated posterior 
probability 

miy) = äJiy
h£fl) (15-33) 

[see Rencher (1998, Sections 6.2.4 and 6.3.1)], where ά;, μέ, and Σ^ are maximum 
likelihood estimates and h(y) is given by (15.32) with estimates inserted for param-
eters. The posterior probability (15.33) is an estimate of the probability that an item 
with observation vector y belongs to the ith cluster, CV 

The second approach is to assign an item with observation vector y to the cluster 
with largest value of 

1ηά< - i t a l i c - §(y - ßi)'%~\Y - £ f) (15.34) 

[see (9.15)]. For either of these approaches [based on (15.33) or (15.34)], we need the 
estimates äi,ßit and Σ^. These estimates are obtained by maximizing the likelihood 
function L = Π" = 1 h{yj), where h(yj) is given by (15.32). The results are 

&i = -YlP(Ci\yj), i = 1,2,...,5-1 
n j=i 

1 " 
Ai = ^ : S y j ^ ( c , i l y i ) ' 1 = 1,2, ...,5 

1 
net X > i -AiXy,· -ßiYHCiWj), i = i ,2,. . . ,5 

3=1 

(Everitt 1993, p. I l l ) , where P(Ci\yj) is given by (15.33). These three equations 
must be solved iteratively. For a given value of g, we can begin with initial estimates 
or guesses for the parameters and adjust them by iteration (this approach is related to 
the EM algorithm mentioned in Section 3.11). If g is not known, we can begin with 
<7 = 1, then successively try g = 2, g = 3, and so on, until the results are satisfactory. 

The total number of parameters to be estimated is large. There are p parameters 
in each μί1 \p(p + 1) unique parameters in each S i ; and g — 1 values of oti (the 
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remaining ά» is found by £f = 1 &i = 1), for a total of 

i f f (p+l) (p + 2 ) - l (15.35) 

parameters. If the sample size n is not sufficiently large to estimate all of these 
parameters, we could assume a common covariance matrix Σ , which reduces the 
number of parameters by \{g — l)p(p + 1 ) . 

The method of mixtures is invariant to full-rank linear transformations and is 
somewhat robust to the assumption of normality. The technique works better if the g 
densities are well separated or the sample sizes are large. 

■ EXAMPLE 15.4.2a 

To illustrate the clustering method based on mixtures of distributions, we use 
the protein consumption data of Table 15.7. Because of the small number of 
countries in the data set, there are not enough degrees of freedom to estimate 
a different covariance matrix for each cluster. Hence we assume equal co-
variance matrices and estimate a pooled covariance matrix Σ . For illustration 
purposes, we choose g = 5 as in Example 15.4.1a. 

We use the five clusters found by Ward's method to obtain initial estimates 
of αι,μ^ and Σ. Then the maximum likelihood equations are solved itera-
tively to find the following estimates. 

άι = 0.2801, &2 = 0.3200, ά3 = 0.1199, ά4 = 0.1600, ά5 = 0.1200 

Mi 

/ 8.64 \ 
6.87 
2.39 
14.04 
2.54 

39.27 
3.74 
4.21 

\ 4.66 ) 

, A2 = 

/ 13.21 \ 
10.64 
3.99 
21.16 
3.38 

24.70 
4.65 
2.06 

V 4.18 ) 

, A3 = 

/ 6.13 \ 
5.77 
1.43 
9.63 
.93 

54.07 
2.40 
4.90 

V 3.40 / 

μ 4 

9.85 \ 
7.05 
3.15 
26.68 
8.22 
22.68 
4.55 
1.18 
2.12 j 

, A5 = 

/ 7.23 \ 
6.23 
2.63 
8.20 
8.87 
26.93 
6.03 
3.80 

V 6.23 / 
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.035\ 
-.319 
-.008 
.032 

Σ = 1.001 -1.934 -.296 -1.254 3.648 .167 .111 .839 1.653 
.137 

-.208 
.503 
1.808/ 

Then assigning each country to the cluster for which it has the highest posterior 
probability of membership as in (15.33) yields the following clusters: 

/ 4.250 
-2.952 

.021 
- . 047 
1.001 

.929 
- .157 

.287 
\ .035 

-2.952 
9.411 

.963 

.265 
-1.934 
-4.250 

1.245 
-2 .903 

- .319 

.021 

.963 

.471 

.552 
- .296 
- .699 

.301 
- .256 
- .008 

- .047 
.265 
.552 

9.706 
-1 .254 

- .011 
1.313 

- .801 
.032 

1.001 
-1.934 

- .296 
-1.254 

3.648 
.167 
.111 
.839 

1.653 

.929 
-4.250 

- . 699 
.011 
.167 

8.412 
- . 777 
1.708 

.137 

- .157 
1.245 

.301 
1.313 

.111 
- .777 
1.634 

- .845 
- .208 

.287 
-2 .903 

- .256 
- .801 

.839 
1.708 

- . 845 
2.053 

.503 

Cluster 1 

Albania, Czech., 
Greece, 
Hungary, Italy, 
Poland, USSR 

Cluster 2 

Austria, 
Belgium, France, 
Ireland, 
Netherlands, 
Switzerland, UK, 
W. Germany 

Cluster 3 

Bulgaria, 
Romania, 
Yugoslavia 

Cluster 4 

Denmark, 
Finland 
Norway, 
Sweden 

Cluster 5 

E. Germany, 
Portugal 
Spain 

D 

15.4.2b Density Estimation 
In the method of density estimation or density searching, we seek regions of high 
density sometimes called modes. No assumption is made about the form of the den-
sity, as was done in Section 15.4.2a. We could estimate the density using a kernel 
function as in Section 9.7.2. Alternatively, we simply attempt to separate regions 
with a high concentration of points from regions with a low density. 

To find regions of high density, we first choose a radius r and a value of k, the 
number of points in a /c-nearest neighbor scheme. For each of the n points in the 
data, the number of points within a sphere of radius r is found. A point is called a 
dense point if at least k other points are contained in its sphere. 

If a dense point is more than a distance r from all other dense points, it becomes 
the nucleus of a new cluster. If a dense point is within a distance r from at least one 
dense point that belongs to a cluster, it is added to the cluster. If the dense point is 
within a distance r of two or more clusters, these clusters are combined. Two clusters 
are also combined if the smallest distance between their dense points is less than the 
average of the 2k smallest distances between the original n points. The value of r 
can be gradually increased so that more points become dense. Another option is to 
begin with the specified value of r for each point and then gradually increase r until 
k observations are contained in its sphere. 

■ EXAMPLE 15.4.2b 

To illustrate the density estimation method, we use the protein data. For each 
pair of values of k and r, the value of r was allowed to increase if needed, as 
described above. For the following values of k and r, the number of clusters 
obtained are given. 
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Figure 15.21 First two discriminant functions for the clusters found in Example 15.4.2b. 

k/r 1.6 1.7 1.8 

2 5 5 5 
3 3 3 3 
4 3 3 3 

1.9 2.0 

4 4 
3 3 
3 3 

2.1 2.2 2.3 

4 4 4 
3 3 3 
3 3 3 

'he five-cluster solution found by setting r = 

Cluster 1 

Austria, Belgium 
France, Ireland, 
Netherlands, 
Switzerland, 
UK, W. Germany 

Cluster 2 

Denmark 
Finland, 
Norway, 
Sweden 

Cluster 3 

Albania, 
Bulgaria, 
Hungary, 
Romania, 
Yugoslavia 

2.4 2.5 2.6 

3 3 3 
2 2 2 
2 2 2 

= 1.8 and k = 

Cluster 4 

Czech., 
E. Germany, 
Poland, 
USSR 

2.7 2.8 

3 3 
2 2 
2 2 

2 is 

Cluster 5 

Greece, 
Italy, 
Portugal, 
Spain 

This partitioning into five clusters is perhaps more reasonable than any of those 
found in Example 15.4.2a. The first two discriminant functions for these five 
clusters are plotted in Figure 15.21. D 

15.5 CHOOSING THE NUMBER OF CLUSTERS 

In hierarchical clustering, we can select g clusters from the dendrogram by cutting 
across the branches at a given level of the distance measure used by one of the axes. 
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1000 600 400 
Average distance between clusters 

■ New York 

■ Los Angeles 

■ Honolulu 

• Denver 

• Washington 

• Kansas City 

■ Dalla: 

Hartford 

Figure 15.22 Cutting the dendrogram to choose the number of clusters. 

This is illustrated in Figure 15.22, which is the dendrogram for the average linkage 
method (Section 15.3.4) applied to the city crime data in Table 15.1. Cutting the 
dendrogram at a level of 700 yields two clusters. Cutting it at 535 gives three clusters. 

We wish to determine the value of g that provides the best fit to the data. One 
approach is to look for large changes in distances at which clusters are formed. For 
example, in Figure 15.22, the largest change in levels occurs in going from two 
clusters to a single cluster. The change in distance between the two-cluster solution 
and the three-cluster solution is 82 units-squared. The difference between the three-
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cluster solution and the four-cluster solution is 73 units-squared, and the change 
between the four- and five-cluster solutions is only 26 units-squared. In this case we 
would choose two clusters. 

A formalization of this procedure was proposed by Mojena (1977): Choose the 
number of groups given by the first stage in the dendrogram at which 

a>j>~ä + ksa, j = 1,2, ...,n, (15.36) 

where a i , a2, —, cnn are the distance values for stages with n, n — 1,..., 1 clusters, ä 
and sa are the mean and standard deviation of the a's, and k is a constant. Mojena 
(1977) suggested using a value of k in the range 2.75 to 3.5, but Milligan and Cooper 
(1985) recommended k = 1.25, based on a simulation study. 

An index that can be used with either hierarchical or partitioning methods is 

t r(H)/(g - 1) 
C = t r ( E ) / ( n - f i ) · ( 1 5 3 7 ) 

The value of g that maximizes c is chosen. A related approach is to choose the value 
of g that minimizes 

d = g2\E\. (15.38) 

To compare two cluster solutions with <?i and g2 clusters where g2 > gi, we can 
use the test statistic 

(15.39) 

tr(E2) 

tr(E,.)-tr(E2) 
~(n-gAfg2\

2/p 

\n-92J\g1J 
- 1 

which has an approximate F-distribution with p(g2 - gi) and p(n - g2) degrees of 
freedom [Beale (1969)]. The matrices E] and E2 are within-cluster sums of squares 
and products matrices corresponding to g\ and g2. The hypothesis is that the cluster 
solutions with g\ and g2 clusters are equally valid, and rejection implies that the 
cluster solution with g2 clusters is better than the solution with g\ clusters (g2 > g\). 
The F-approximation in (15.39) may not be sufficiently accurate to justify the use of 
p- values. 

15.6 CLUSTER VALIDITY 

To check the validity of a cluster solution, it may be possible to test the hypothesis 
that there are no clusters or groups in the population from which the sample at hand 
was taken. For example, the hypothesis could be that the population represents a 
single unimodal distribution such as the multivariate normal, or that the observations 
arose from a uniform distribution. Formal tests of hypotheses of this type concerning 
cluster validity are reviewed by Gordon (1999, Section 7.2). 

A cross-validation approach can also be used to check the validity or stability of a 
clustering result. The data are randomly divided into two subsets, say A and B, and 
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the cluster analysis is carried out separately on each of A and B. The results should 
be similar if the clusters are valid. An alternative approach is the following (Gordon 
1999, Section 7.1; Milligan 1996): 

1. Use some clustering method to partition subset A into g clusters. 

2. Partition subset B into g clusters in two ways: 

(a) Assign each item in B to the cluster in A that it is closest to by using, for 
example, the distance to cluster centroids. 

(b) Use the same clustering method on B that was used on A. 

3. Compare the results of (a) and (b) in step 2. 

15.7 CLUSTERING VARIABLES 

In some cases, it may be of interest to cluster the p variables rather than the n ob-
servations. For a similarity measure between each pair of variables, we would usu-
ally use the correlation. Since most clustering methods use dissimilarities (such as 
distances), we need to convert the correlation matrix R = (r^) to a dissimilarity 
matrix. This can conveniently be done by replacing each r„ by 1 — \τ^\ or 1 — rf ·. 
Using the resulting dissimilarity matrix, we can apply a clustering method such as a 
hierarchical technique to cluster the variables. 

Clustering of variables can sometimes be done successfully with factor analysis, 
which groups the variables corresponding to each factor; see Sections 13.1 and 13.5. 

■ EXAMPLE 15.7 

We illustrate clustering of variables using the city crime data in Table 15.1. 
We first calculate the correlation matrix R = (m) and then transform R to 
a dissimilarity matrix D = (1 - rf ·). The variables are then clustered using 
both average linkage and Ward's clustering methods, and the dendrograms are 
given in Figures 15.23 and 15.24, respectively. Both clustering methods yield 
the same solution. 

We next carry out a factor analysis of the data and compare the resulting 
groups of variables with the clusters obtained with the average linkage and 
Ward's methods. The factor loadings are estimated using the principal factor 
method (Section 13.3.2) with squared multiple correlations as initial commu-
nality estimates, and the loadings are then rotated with a varimax rotation (Sec-
tion 13.5.2b). The rotated factor pattern is given in Table 15.12. The highest 
loading in each row is bolded. The first factor deals with crimes associated 
with the home. The second factor involves crimes that are violent in nature. 
The third factor consists of crimes of theft outside the home. Note that the 
three-cluster solutions found by both average linkage and Ward's methods are 
identical to the grouping of variables in the factor analysis solution, which is 
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Larceny 

Burglary 

Robbery 

Rape 

0.8 0.6 0.4 
Average distance between clusters 

Figure 15.23 Dendrogram for clustering the variables of Table 15.1 using average linkage 
(see Example 15.7). 

(1) murder, rape, and assault, (2) robbery and auto theft, and (3) burglary and 
larceny. Since all three methods agree, we have some confidence in the validity 
of the solution. □ 

PROBLEMS 

15.1 Show that <i2(x,y) = ^ = 1 ( ^ · - % ) 2 from (15.2) is equal to (15.5), <i2(x,y) 
(vx - vy)

2 +p(x - y)2 + 2vxvy(l - rxy), where v2, 

Σ?=ι Xj/P, a n d ryx is defined in (15.6). 
Ζ^3 = ΛΧ3 X) ,X 
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Larceny 

Burglary 

Auto theft 

Robbery 

Assault 

Rape 

Murder 

0.8 0.6 0.4 
increase in SSE 

0.2 0.0 

Figure 15.24 Dendrogram for clustering the variables of Table 15.1 using Ward's method 
(see Example 15.7). 

15.2 (a) ShowthatIAB=nA(yA-yAB)'(yA-yAB) + nB(yB-yAB)'(yB-
yAB) as in (15.18). 

(b) Show that (15.18) is equal to (15.19); that is, 

nA(yA - YAB)'{YA ~ YAB) + nB(yB ~ ΥΛΒ)'{ΥΒ ~ YAB) 
nAnB 

nA +nB 
(YA-YB) (YA-YB)-

15.3 Using the hints provided below, show that the parameter values for (15.20) in 
Table 15.2 produce appropriate distances for the following cluster methods. 
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Table 15.12 Rotated Factor Loadings for City Crime Data 

Variables 

Murder 
Rape 
Robbery 
Burglary 
Larceny 
Auto theft 

Factor 1 

-.063 
.504 
.133 
.764 
.847 
.240 

Factor 2 

.734 

.659 

.355 

.221 
-.014 

.097 

Factor 3 

.142 

.160 

.726 

.181 

.244 

.584 

(a) Complete linkage. Use an approach analogous to that in Section 15.3.8 
for the single linkage method. 

(b) Average linkage. Write (15.20) in terms of parameter values for average 
linkage in Table 15.2. Then use (15.9). 

(c) Centroid method. Show that 

(ΫΟ-ΫΑΒ)'(ΎΟ--ΫΑΒ) = „ * (ΫΘ-ΫΑ)'(ΫΘ-ΫΑ) 
n-A + nB 

(yc-ys)'(yc-ys) 
nAnB 

ΛΎΑ-ΎΒ)'(ΎΑ-ΥΒ)> (nA + nB)2 

(15.40) 

where yAB = (nAyA + nByB)/(nA + nB). 

(d) Median method. Use nA = nB in (15.12) and (15.40) [see part (c)]. 
(e) Ward's method. Show that 

nA+nc T , nB + nc T 
*C(AB) — ; ; 1AC H ; ; 1BC 

v ' nA+nB + nc nA + nB + nc 

nc T 
*AB, nA+nB + nc 

where IAB is defined in (15.17). 

15.4 Show that for all methods in Table 15.2 for which 7 = 0, we have D(C, AB) > 
(aA +aB+ ß)D(A, B) as in (15.26). 

15.5 Verify the statement in the last paragraph of Section 15.4.1b, namely, that the 
first criterion in Section 15.4.1b is not invariant to nonsingular linear transfor-
mations Vij = Ay, · + b, where A is a p x p nonsingular matrix, and that 
the other two criteria are invariant to such transformations. Use the following 
approach: 

(a) Show that H„ = AH„A' and E„ = AEVA'. 
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(b) Show that minimizing tr(E) is not invariant. 
(c) Show that minimizing |E| is invariant. 
(d) Show that maximizing ίτ(Έ~1Ή) is invariant. 

15.6 Verify the statement in Section 15.4.2a that in μ^ί — 1,2,...,g; Σ», i = 
1,2,..., g; and oti,i = 1,2,..., g — 1; the total number of parameters is given 
by \g{p + l)(p + 2) - 1 as in (15.35). 

15.7 Use the ramus bone date of Table 3.7. Carry out the following cluster methods 
and compare to the principal component plot in Figure 12.5. 

(a) Find a two-cluster solution using the single linkage method. 
(b) Find a two-cluster solution using the average linkage method and com-

pare to the result in (a). Which seems better? 
(c) Carry out a cluster analysis using the Ward's, complete linkage, centroid, 

and median methods. 
(d) Use the flexible beta method with β = -0.25, β — -0 .5 , and β = 

-0.75. 

15.8 Use the hematology data of Table 4.2. 

(a) Carry out a cluster analysis using the centroid method and find the dis-
tance between the centroids of the two-cluster solution. 

(b) Carry out a cluster analysis using the average linkage method. How many 
clusters are indicated in the dendrogram? 

(c) Using the two-cluster solution from part (b), label observations from one 
cluster as group 1 and the observations from the other cluster as group 2. 
Calculate and plot the discriminant function, as in Example 8.2. Do the 
two clusters overlap? 

15.9 Use all of the variables of the Seishu data of Table 7.1. 

(a) Find the three-cluster solution using the single linkage, complete link-
age, average linkage, centroid, median, and Ward's methods. Which ob-
servation appears to be an outlier? Which cluster is the same in all six 
solutions? 

(b) Using the cluster found in part (a) to be common to all solutions as group 
1 and the rest of the observations as group 2, calculate and plot the dis-
criminant function, as in Problem 15.8(c). Do the two clusters overlap? 

15.10 Use the first 20 observations of the temperature data of Table 7.2. Standardize 
the variables (columns) before doing the following: 

(a) Carry out a fc-means cluster analysis using as initial seeds the five ob-
servations that are mutually farthest apart. Plot the first two discriminant 
functions using the five clusters as groups. 
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(b) Repeat part (a) using the first five observations as initial seeds. 
(c) Repeat part (a) using as initial seeds the centroids of the five-cluster so-

lution found using Ward's method. Plot the dendrogram resulting from 
Ward's method. 

(d) Repeat part (c) using average linkage instead of Ward's method. Com-
pare the results with those in part (c). 

(e) Plot the first and second principal components and the second and third 
components. Which cluster solutions found in parts (a)-(d) seem to agree 
most with the principal component plots? 

(f) Repeat parts (a) and (b) using three initial seeds instead of five. How do 
the cluster solutions compare? 

(g) Repeat part (c) using three initial seeds instead of five. How does the 
cluster solution compare to your answer in (f)? 

15.11 Table 15.13 contains air pollution data from 41 US cities (Sokal and Rohlf 
1981, p. 619). The variables are as follows: 
2/i = SO2 content of air in micrograms per cubic meter 
y2 — Average annual temperature in °F 
?/3 = Number of manufacturing enterprises employing 20 or more workers 
j/4 = Population size (1970 census) in thousands 
2/5 = Average annual wind speed in miles per hour 
2/6 — Average annual precipitation in inches 
2/7 = Average number of days with precipitation per year 
Standardize each variable to mean 0 and standard deviation 1. Carry out a 
cluster analysis using the density estimation method with k equal to 2, 3,4, 5, 
and values of r ranging from 0.2 to 2 by increments of 0.2 for each value of k. 
What is the maximum value of k that produces a two-cluster solution? 

15.12 Table 15.14 gives the yields of winter wheat in each of the years 1970-1973 
at twelve different sites in England (Hand et al. 1994, p. 31). 

(a) Carry out a cluster analysis using the density estimation method with 
k = 2,3,4, andr = .2, . 4 , . . . , 2.0. 

(b) Plot the first two discriminant functions from the three-cluster solution 
obtained with k — 2 and r — 1. 

(c) Plot the first two principal components and compare with the plot in part 
(b). 

(d) Repeat part (b) using a two-cluster solution obtained with k = 3 and 
r = 1. Which two clusters of the three-cluster solution found in part (b) 
merged into one cluster? 
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Table 15.13 Air Pollution Levels in US Cities 

Cities 

Phoenix 
Little Rock 
San Francisco 
Denver 
Hartford 
Wilmington 
Washington 
Jacksonville 
Miami 
Atlanta 
Chicago 
Indianapolis 
Des Moines 
Wichita 
Louisville 
New Orleans 
Baltimore 
Detroit 
Minneapolis-St. Paul 
Kansas City 
St. Louis 
Omaha 
Albuquerque 
Albany 
Buffalo 
Cincinnati 
Cleveland 
Columbus 
Philadelphia 
Pittsburgh 
Providence 
Memphis 
Nashville 
Dallas 
Houston 
Salt Lake City 
Norfolk 
Richmond 
Seattle 
Charleston 
Milwaukee 

2/1 

10 
13 
12 
17 
56 
36 
29 
14 
10 
24 

110 
28 
17 
8 

30 
9 

47 
35 
29 
14 
56 
14 
11 
46 
11 
23 
65 
26 
69 
61 
94 
10 
18 
9 

10 
28 
31 
26 
29 
31 
16 

2/2 

70.3 
61.0 
56.7 
51.9 
49.1 
54.0 
57.3 
68.4 
75.5 
61.5 
50.6 
52.3 
49.0 
56.6 
55.6 
68.3 
55.0 
49.9 
43.5 
54.5 
55.9 
51.5 
56.8 
47.6 
47.1 
54.0 
49.7 
51.5 
54.6 
50.4 
50.0 
61.6 
59.4 
66.2 
68.9 
51.0 
59.3 
57.8 
51.1 
55.2 
45.7 

2/3 

213 
91 

453 
454 
412 

80 
434 
136 
207 
368 

3344 
361 
104 
125 
291 
204 
625 

1064 
699 
381 
775 
181 
46 
44 

391 
462 

1007 
266 

1692 
347 
343 
337 
275 
641 
721 
137 
96 

197 
379 
35 

569 

2/4 

582 
132 
716 
515 
158 
80 

757 
529 
335 
497 

3369 
746 
201 
277 
593 
361 
905 

1513 
744 
507 
622 
347 
244 
116 
463 
453 
751 
540 

1950 
520 
179 
624 
448 
844 

1233 
176 
308 
299 
531 
71 

717 

2/5 

6.0 
8.2 
8.7 
9.0 
9.0 
9.0 
9.3 
8.8 
9.0 
9.1 

10.4 
9.7 

11.2 
12.7 
8.3 
8.4 
9.6 

10.1 
10.6 
10.0 
9.5 

10.9 
8.9 
8.8 

12.4 
7.1 

10.9 
8.6 
9.6 
9.4 

10.6 
9.2 
7.9 

10.9 
10.8 
8.7 

10.6 
7.6 
9.4 
6.5 

11.8 

2/6 

7.05 
48.52 
20.66 
12.95 
43.37 
40.25 
38.89 
54.47 
59.80 
48.34 
34.44 
38.74 
30.85 
30.58 
43.11 
56.77 
41.31 
30.96 
25.94 
37.00 
35.89 
30.18 
7.77 

33.36 
36.11 
39.04 
34.99 
37.01 
39.93 
36.22 
42.75 
49.10 
46.00 
35.94 
48.19 
15.17 
44.68 
42.59 
38.79 
40.75 
29.07 

2/7 

36 
100 
67 
86 

127 
114 
111 
116 
128 
115 
122 
121 
103 
82 

123 
113 
111 
129 
137 
99 

105 
98 
58 

135 
166 
132 
155 
134 
115 
147 
125 
105 
119 
78 

103 
89 

116 
115 
164 
148 
123 
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Table 15.14 Yields of Winter Wheat (kg per unit area 

Year 
Site 1970 1971 1972 1973 

Cambridge 
Cockle Park 
Harpers Adams 
Headley Hall 
Morley 
Myerscough 
Rosemaund 
Seale-Hayne 
Sparsholt 
Sutton Bonington 
Terrington 
Wye 

46.81 
46.49 
44.03 
52.24 
36.55 
34.88 
56.14 
45.67 
42.97 
54.44 
54.95 
48.94 

39.40 
34.07 
42.03 
36.19 
43.06 
49.72 
47.67 
27.30 
46.87 
49.34 
52.05 
48.63 

55.64 
45.06 
40.32 
47.03 
38.07 
40.86 
43.48 
45.48 
38.78 
24.48 
50.91 
31.69 

32.61 
41.02 
50.23 
34.56 
43.17 
50.08 
38.99 
50.32 
47.49 
46.94 
39.13 
59.72 



CHAPTER 16 

GRAPHICAL PROCEDURES 

In Sections 16.1, 16.2, and 16.3, we consider three graphical techniques: multidi-
mensional scaling, correspondence analysis, and biplots. These methods are de-
signed to reduce dimensionality and portray relationships among observations or 
variables. 

16.1 MULTIDIMENSIONAL SCALING 

16.1.1 Introduction 

In the dimension reduction technique called multidimensional scaling, we begin with 
the distances Sij between each pair of items. We wish to represent the n items in a 
low-dimensional coordinate system, in which the distances d^ between items closely 
match the original distances δ^, that is, 

d^ = Sij for all i, j . 

The final distances d^ are usually Euclidean. The original distances 6ij may be 
actual measured distances between observations y, and y^ in p dimensions, such as 

Methods of Multivariate Analysis, Third Edition. By Alvin C. Rencher and William F. Christensen 5 5 5 
Copyright © 2012 John Wiley & Sons, Inc. 
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<*i; = [ ( y i - y ; ) ' ( y i - y j ) ] 1 / 2 · (i6.i) 

On the other hand, the distances bij may be only a proximity or similarity based 
on human judgment, for example, the perceived degree of similarity between all 
pairs of brands of a certain type of appliance (for a discussion of similarities and 
dissimilarities, see Section 15.2). The goal of multidimensional scaling is a plot 
that exhibits information about how the items relate to each other or provides some 
other meaningful interpretation of the data. For example, the aim may be seriation 
or ranking; if the points lie close to a curve in two dimensions, then the ordering of 
points along the curve is used to rank the points. 

If the observation vectors y,, i = 1,2,. . . , n, are available and we calculate dis-
tances using (16.1) or a similar measure, or if the original y,'s are not available but 
we have actual distances between items, then the process of reduction to a lower-
dimensional geometric representation is called metric multidimensional scaling. If 
the original distances are only similarities based on judgment, the process is called 
nonmetric multidimensional scaling, and the final spatial representation preserves 
only the rank order among the similarities. We consider metric scaling in Section 
16.1.2 and nonmetric scaling in Section 16.1.3. For useful discussions of various as-
pects of multidimensional scaling, see Davidson (1983); Gordon (1999, Sections 6.2 
and 6.3); Kruskal and Wish (1978); Mardia, Kent, and Bibby (1979, Chapter 14); 
Seber (1984, Section 5.5); Young (1987); Jobson (1992, Section 10.3); Shepard, 
Romney, and Nerlove (1972); and Romney, Shepard, and Nerlove (1972). 

16.1.2 Metric Multidimensional Scaling 

In this section, we consider metric multidimensional scaling, which is also known as 
the classical solution and as principal coordinate analysis. We begin with a n n x n 
distance matrix D = (<%). Our goal is to find n points in k dimensions such that the 
interpoint distances dij in the k dimensions are approximately equal to the values of 
Sij in D. Typically, we use k = 2 for plotting purposes, but k — 1 or 3 may also be 
useful. 

The points are found as follows: 

1. Construct the n x n matrix A = (a^·) = ( - |<^ · ) , where δ^ is the ijth 
element of D. 

2. Construct the n x n matrix B = (bij), with elements bij = αί7· — δ». -ä.j +ä.., 
where ä». = Σ " = ι a^/n, ä.j = ΣΓ=ι a»j/n» ä·· = J2ij aij/n2. The matrix 
B can be written as 

B = ( I - - J J A ( I - - J ) . (16.2) 

It can be shown that there exists a ς-dimensional configuration zi , z2,..., z n 
with interpoint distances dij = (ZJ — ZJ) '(ZJ - Zj) such that d^ = δ^ if 
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3. 

and only if B is positive semidefinite of rank q (Schoenberg 1935; Young and 
Householder 1938; Gower 1966; Seber 1984, p. 236). 

Since B is a symmetric matrix, we can use the spectral decomposition in 
(2.109) to write B in the form 

B = V A V , (16.3) 

where V is the matrix of eigenvectors of B and Λ is the diagonal matrix of 
eigenvalues of B. If B is positive semidefinite of rank q, there are q pos-
itive eigenvalues, and the remaining n — q eigenvalues are zero. If Λι = 
diag(Ai, λ 2 , . . . , Xq) contains the positive eigenvalues and Vi = (v1 ; v 2 , . . . , 
vg) contains the corresponding eigenvectors, then we can express (16.3) in the 
form 

B = VjAjVi 

= ZZ' 

where 

V X A} / 2 = ( \ATvi, V/A^V2, ..., \f\qVq) = 

K\ 

VJ 

(16.4) 

4. The rows '\i "li ■ ,z'n of Z in (16.4) are the points whose interpoint dis-

5. 

6. 

tances d^ = (z* — ZJ) '(ZJ — Zj) match the Sij's in the original distance matrix 
D, as noted following (16.2). 

Since q in (16.4) will typically be too large to be of practical interest and 
we would prefer a smaller dimension fc for plotting, we can use the first k 
eigenvalues and corresponding eigenvectors in (16.4) to obtain n points whose 
interpoint distances d^ are approximately equal to the corresponding Si i s. 

If B is not positive semidefinite, but its first k eigenvalues are positive and 
relatively large, then these eigenvalues and associated eigenvectors may be 
used in (16.4) to construct points that give reasonably good approximations to 
the öij's. 

Note that the method used to obtain Z from B closely resembles principal com-
ponent analysis. Note also that the solution Z in (16.4) is not unique, since a shift in 
origin or a rotation will not change the distances d^. For example, if C is a q x q 
orthogonal matrix producing a rotation [see (2.101)], then 

(CZi - CZjYiCZi - CZj) = (Z; - ZjYC'CiZi - Zj) 

= ( z i - z j ) ' ( z i - z j ) [see (2.103)]. 

Thus the rotated points Cz, have the same interpoint distances d^. 
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EXAMPLE 16.1.2(a) 

To illustrate the first four steps of the above algorithm for metric multidimen-
sional scaling, consider the 5 x 5 distance matrix 

D = (Sij) = 
2Λ/2 0 4 
2^2 4 0 
2yß A^/2 4 

V 2N/2 4 Ay/2 

The matrix A = (—^6j'·) in step 1 is given by 

A = 

/0 4 4 4 
4 0 8 16 
4 8 0 8 
4 16 8 0 

\A 8 16 8 

ΑΛ/Ϊ 

A 
0 
4 

4 \ 
8 
16 
8 

! 4 
4v^ 

4 
0 

For the means, we have αι. = a.i = —16/5, a*. = a.j = —36/5, i = 
2 , . . . , 5, a,, — - 32 /5 . With n = 5, the matrix B in step 2 is given by 

B 

The rank of B is clearly 2. For step 3, the (nonzero) eigenvalues and corre-
sponding eigenvectors of B are given by λι = 16, λ2 = 16, 

V l 

5J)A( I-5 / V 1*) = 5 ) 

( ° 
0 
0 
0 

\o 

0 
8 
0 

- 8 
0 

0 
0 
8 
0 

- 8 

0 
- 8 

0 
8 
0 

o\ 
0 

- 8 
0 
8 / 

L — 

( °\ 
kV2 

0 
-hV2 

, v2 = 

V " o/ 
have by (16.4) 

( \ Ζ λ Γ ν ι , ν / λ 2 ν 2 ) = 

( °\ 0 
*vs 

0 
V - \ ^ ) 

/ 0 0 \ 
2 ^ 0 

0 2^2 
- 2 V2 C ) 

\ 0 - 2 ^ 2 / 

It can be shown (step 4) that the distance matrix for these five points is D. The 
five points constitute a square with each side of length 4 and a center point at 
the origin. The five points (rows of Z) are plotted in Figure 16.1. D 
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Figure 16.1 Plot of the five points found in Example 16.1.2(a). 

■ EXAMPLE 16.1.2(b) 

For another example of metric multidemensional scaling, we use airline dis-
tances between 10 US cities, as given in Table 16.1 (Kruskal and Wish 1978, 
pp. 7-9). 

Table 16.1 Airline Distances Between Ten US Cities 

City 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

0 
587 
1212 

701 
1936 

604 
748 
2139 

2182 

543 

2 

587 
0 
920 
940 
1745 

1188 

713 
1858 

1737 

597 

3 

1212 

920 
0 
879 
831 
1726 

1631 

949 
1021 

1494 

4 

701 
940 
879 
0 

1374 

968 
1420 

1645 

1891 

1220 

5 

1936 

1745 

831 
1374 

0 
2339 

2451 

347 
959 
2300 

6 

604 
1188 

1726 

968 
2339 

0 
1092 

2594 

2734 

923 

7 

748 
713 
1631 

1420 

2451 

1092 

0 
2571 

2408 

205 

8 

2139 

1858 

949 
1645 

347 
2594 

2571 

0 
678 
2442 

9 

2182 

1737 

1021 

1891 

959 
2734 

2408 

678 
0 

2329 

10 

543 
597 
1494 

1220 

2300 

923 
205 
2442 

2329 

0 

Cities: (1) Atlanta, (2) Chicago, (3) Denver, (4) Houston, (5) Los Angeles, (6) Miami, (7) New York, 
(8) San Francisco, (9) Seattle, (10) Washington, DC. 
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Figure 16.2 Plot of the points found in Example 16.1.2(b). 

The points given by metric multidimensional scaling are plotted in Figure 
16.2. Note that in the plot, dimensions 1 and 2 roughly correspond to easting 
and northing, but the sign for each of these dimensions is arbitrary. That is, 
the eigenvectors v» in (16.4) are normalized but are subject to multiplication 
b y - 1 . D 

16.1.3 Nonmetric Multidimensional Scaling 

Suppose the m = n(n — l ) /2 dissimilarities Sij cannot be measured as in (16.1) but 
can be ranked in order, 

<5n S l < f>r2s2 < ■■■ < SrmSm, (16.5) 

where riSi indicates the pair of items with the smallest dissimilarity and rmsm rep-
resents the pair with greatest dissimilarity. In nonmetric multidimensional scaling, 
we seek a low-dimensional representation of the points such that the rankings of the 
distances 

driSl < dr2S2 < ■■■ < drmSm (16.6) 

match exactly the ordering of dissimilarities in (16.5). Thus, while metric scaling 
uses the magnitudes of the öij 's, nonmetric scaling is based only on the rank order 
of the δ^ 's. 

For a given set of points with distances d^, a plot of d^ versus δ^ may not be 
monotonic; that is, the ordering in (16.6) may not match exactly the ordering in 
(16.5). Suitable tZ -̂'s can be estimated by monotonic regression, in which we seek 
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values of d,j to minimize the scaled sum of squared differences 

^2 Ei^dij dl3f ( i 6 7 ) 

subject to the constraint 

" r i S i „ ^*Γ2δ2 — ' * * — ^Τ 

where riSi,r2S2, ■. ■ ,rmsm are defined as in (16.5) and (16.6) (Kruskal 1964a, 
1964b). The minimum value of S2 for a given dimension, k, is called the STRESS. 
Note that the d^'s are not distances. They are merely numbers used as a reference 
to assess the monotonicity of the dij's. The d^'s are sometimes called disparities. 

The minimum value of the STRESS over all possible configurations of points can 
be found using the following algorithm. 

1. Rank the m = n(n — l ) /2 distances or dissimilarities δ^ as in (16.5). 

2. Choose a value of k and an initial configuration of points in k dimensions. 
The initial configuration could be n points chosen at random from a uniform 
or normal distribution, n evenly spaced points in fc-dimensional space, or the 
metric solution obtained by treating the ordinal measurements as continuous 
and using the algorithm in Section 16.1.2. 

3. For the initial configuration of points, find the interitem distances d^. Find the 
corresponding d^'s by monotonic regression as defined above using (16.7). 

4. Choose a new configuration of points whose distances dij minimize S2 in 
(16.7) with respect to the d^'s found in step 3. One approach is to use an iter-
ative gradient technique such as the method of steepest descent or the Newton-
Raphson method. 

5. Using monotonic regression, find new di/s for the d^'s found in step 4. This 
gives a new value of STRESS. 

6. Repeat steps 4 and 5 until STRESS converges to a minimum over all possible 
fc-dimensional configurations of points. 

7. Using the preceding six steps, calculate the minimum STRESS for values of k 
starting at k = 1 and plot these. As k increases, the curve will decrease, with 
occasional exceptions due to round off or numerical anomalies in the search 
procedure for minimum STRESS. We look for a discernible bend in the plot, 
following which the curve is low and relatively flat. An ideal plot is shown in 
Figure 16.3. The curve levels off after k = 2, which is convenient for plotting 
the resulting n points in 2 dimensions. 

There is a possibility that the minimum value of STRESS found by the above 
seven steps for a given value of k may be a local minimum rather than the global 
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Figure 16.3 Ideal plot of minimum STRESS versus k. 

minimum. Such an anomaly may show up in the plot of minimum STRESS versus 
k. The possibility of a local minimum can be checked by repeating the procedure, 
starting with a different initial configuration. 

As was the case with metric scaling, the final configuration of points from a non-
metric scaling is invariant to a rotation of axes. 

■ EXAMPLE 16.1.3 

The voting records for fifteen congressmen from New Jersey on nineteen en-
vironmental bills are given in Table 16.2 in the form of a dissimilarity matrix 
(Hand et al. 1994, p. 235). The congressmen are identified by party: R\ for Re-
publican 1, D<i for Democrat 2, etc. Each entry shows how often the indicated 
congressman voted differently from each of the other fourteen. 

Using an initial configuration of points from a multivariate normal distribu-
tion with mean vector μ = 0 and Σ = I, we find an "optimal" configuration 
of points for each of k = 1,2,. . . , 5. A plot of the STRESS is given in Figure 
16.4. 

From the plot of STRESS vs. number of dimensions, we see that either two 
or three dimensions will be sufficient. For plotting purposes, we choose two 
dimensions, which has a STRESS value of 0.113. The plot of the first two 
dimensions is given in Figure 16.5. It is apparent that the plot separates the 
Republicans from the Democrats except for Republican 6, who voted much 
the same as the Democrats. 
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Table 16.2 Dissimilarity Matrix for Voting Records of 15 Congressmen 

Ri R2 Di D2 R3 RA Äs D3 D4 Ds D6 Re Rv Rs D7 

Ri 

R2 

I>i 
D2 

Rs 
R4 

Rs 
D3 

£>4 
D5 

De 

Re 
Ri 
Rs 
D7 

0 
8 
15 
15 
10 
9 
7 
15 
16 
14 
15 
16 
7 
11 
13 

8 
0 
17 
12 
13 
13 
12 
16 
17 
15 
16 
17 
13 
12 
16 

15 
17 
0 
9 
16 
12 
15 
5 
5 
6 
5 
4 
11 
10 
7 

15 
12 
9 
0 
14 
12 
13 
10 
8 
8 
8 
6 
15 
10 
7 

10 
13 
16 
14 
0 
8 
9 
13 
14 
12 
12 
12 
10 
11 
11 

9 
13 
12 
12 
8 
0 
7 
12 
11 
10 
9 
10 
6 
6 
10 

7 
12 
15 
13 
9 
7 
0 
17 
16 
15 
14 
15 
10 
11 
13 

15 
16 
5 
10 
13 
12 
17 
0 
4 
5 
5 
3 
12 
7 
6 

16 
17 
5 
8 
14 
11 
16 
4 
0 
3 
2 
1 
13 
7 
5 

14 
15 
6 
8 
12 
10 
15 
5 
3 
0 
1 
2 
11 
4 
6 

15 
16 
5 
8 
12 
9 
14 
5 
2 
1 
0 
1 
12 
5 
5 

16 
17 
4 
6 
12 
10 
15 
3 
1 
2 
1 
0 
12 
6 
4 

7 
13 
11 
15 
10 
6 
10 
12 
13 
11 
12 
12 
0 
9 
13 

11 
12 
10 
10 
11 
6 
11 
7 
7 
4 
5 
6 
9 
0 
9 

13 
16 
7 
7 
11 
10 
13 
6 
5 
6 
5 
4 
13 
9 
0 

We now use a different initial configuration of points drawn from a uniform 
distribution. The resulting plot is given in Figure 16.6. The approximate orien-
tation of the points in the two-dimensional space is similar, with the exception 
of the locations of R2 and Λ5. 

Figure 16.4 Plot of STRESS for each value of k for the voting data in Table 16.2. 
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Figure 16.5 Plot of points found using initial points from a multivariate normal distribu-
tion. 

Figure 16.6 Plot of points found using initial points from a uniform distribution. 
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Figure 16.7 Plot of points found using initial points from a metric solution. 

We next use a third initial configuration of points resulting from the metric 
solution as described in Section 16.1.2. The resulting plot is given in Figure 
16.7. All three plots are very similar, indicating a good fit. D 

16.2 CORRESPONDENCE ANALYSIS 

16.2.1 Introduction 

Correspondence analysis is a graphical technique for representing the information 
in a two-way contingency table, which contains the counts (frequencies) of items 
for a cross-classification of two categorical variables. With correspondence analysis, 
we construct a plot that shows the interaction of the two categorical variables along 
with the relationship of the rows to each other and the columns to each other. In 
Sections 16.2.2-16.2.4, we consider correspondence analysis for ordinary two-way 
contingency tables. In Section 16.2.5 we consider multiple correspondence analysis 
for three-way and higher-order contingency tables. Useful treatments of correspon-
dence analysis have been given by Greenacre (1984), Jobson (1992, Section 9.4), 
Khattree and Naik (1999, Chapter 7), Gower and Hand (1996, Chapters 4 and 9), 
and Benzecri (1992). 

To test for significance of association of the two categorical variables in a con-
tingency table, we can use a chi-square test or a log-linear model, both of which 
represent an asymptotic approach. Since correspondence analysis is associated with 
the chi-square approach, we will review it in Section 16.2.3. If a contingency table 
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Table 16.3 Contingency Table with a Rows and b Columns 

Rows 

1 
2 

a 

Column Total 

1 

n n 
« 2 1 

rial 

n.i 

Columns 

2 

n i 2 

Π 2 2 

rial 

71.2 

b 

nib 

ri2b 

nab 

n.b 

Row Total 

ni. 

ri2. 

na. 

n 

has some cell frequencies that are small or zero, the chi-square approximation is not 
very satisfactory. In this case, some categories can be combined to increase the cell 
frequencies. Correspondence analysis may be useful in identifying the categories 
that are similar, which we may thereby wish to combine. 

In correspondence analysis, we plot a point for each row and a point for each 
column of the contingency table. These points are in effect projections of the rows 
and columns of the contingency table onto a two-dimensional Euclidean space. The 
goal is to preserve as far as possible the relationship of the rows (or columns) to 
each other in a two-dimensional space. If two row points are close together, the 
profiles of the two rows (across the columns) are similar. Likewise, two column 
points that are close together represent columns with similar profiles across the rows 
(see Section 16.2.2 for a definition of profiles). If a row point is close to a column 
point, this combination of categories of the two variables occurs more frequently 
than would occur by chance if the two variables were independent. Another output 
of a correspondence analysis is the inertia or amount of information in each of the 
two dimensions in the plot (see Section 16.2.4). 

16.2.2 Row and Column Profiles 

A contingency table with a rows and b columns is represented in Table 16.3. The 
entries n^ are the counts or frequencies for every two-way combination of row and 
column (every cell). The marginal totals are shown using the familiar "dot" notation: 
m. — Σ)=ι nij and n.3 = £)"= 1 nzj. The overall total frequency is denoted by n 
instead of n.. for simplicity: n = Σίί nij-

The frequencies n,j in a contingency table can be converted to relative frequencies 
Pij by dividing by n: p^ = n,j /η. The matrix of relative frequencies is called the 
correspondence matrix and is denoted by P : 

P = (Pa) = (nij/n). (16.8) 

In Table 16.4 we show the contingency table in Table 16.3 converted to a correspon-
dence matrix. 
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Table 16.4 Correspondence Matrix of Relative Frequencies 

567 

Rows 

1 
2 

a 

Column Total 

1 

p n 
P21 

Pal 

P-i 

Columns 

2 

Pl2 

P22 

Pa2 

P.2 

b 

Plb 

P2b 

Pab 

P.b 

Row Total 

Pi. 

P2. 

Pa. 

1 

The last column of Table 16.4 contains the row sums ρ,. — Σί=ιΡϋ- This 
column vector is denoted by r and can be obtained as 

r = P j = (pi.,P2.,---,Pa.Y = (ni./n,n2./n,...,na./n)', (16.9) 

where j is an a x 1 vector of l's. Similarly, the last row of Table 16.4 contains the 
column sums p.j = Σ"=1 Pij. This row vector is denoted by c' and can be obtained 
as 

c' = j ' P = (p.i,P.2,---,P.b) = {n.i/n,n.2/n,...,n.b/n), (16.10) 

where j ' is a 1 x b vector of l's. The elements of the vectors r and c are sometimes 
referred to as row and column masses. The correspondence matrix and marginal 
totals in Table 16.4 can be expressed as 

P r 
c' 1 

( Pn 
Pl\ 

Pal 

\ P.I 

Pl2 ■ 

P22 ■ 

Pa2 ■ 

P.2 ■ 

■ Plb 

■ P2b 

■ Pab 

■ P.b 

Pi. \ 
P2. 

Pa. 

1 / 

(16.11) 

We now convert each row and column of P to a profile. The zth row profile 
τ'ι,ϊ = 1,2,. . . , a, is defined by dividing the zth row of either Table 16.3 or Table 
16.4 by its marginal total: 

Pil Pi2 
Pi. ' Pi. ' 

Pib 

' Pi. 
nn ni2 
rii. ' Hi. ' 

n%b 
rii 

(16.12) 

The elements in each r\ are relative frequencies, and therefore they sum to 1: 

J = l 

(16.13) 
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By defining 

D r = diag(r) 

/ Pi. 0 
0 P2. 

0 \ 
0 

(16.14) 

\ 0 0 ■■■ Pa. J 

and using (2.55), the matrix R of row profiles can be expressed as 

R = D " 1 P 

/ r ' i \ 

\r'J 

/Pn 
Pi. 

P21 

P2. 

Pal 

\Pa. 

Pl2 

Pi. 

P22 

P2. 

Pa2 

Pa. 

Plb\ 

Pi. 

P2b 

P2. 

Pab 

Pa.) 

(16.15) 

Similarly, the jth column profile Cj, j — 1,2,. . . , b, is defined by dividing the jth 
column of either Table 16.3 or Table 16.4 by its marginal total: 

Ρΐ£ P21 Paj_ \ = / nil V*L V^L 
, Ρ . / P . i ' ' " ' P.j J \ n - i ' n-i''"' n-j 

The elements in each Cj are relative frequencies, and therefore they sum to 1: 

(16.16) 

u. 

*■—' T7 · 

n , 
i=i -J 

(16.17) 

By defining 

Or 

(p.i 0 
0 P.2 0 

diag(c) = 

\ 0 0 ··· p.bJ 
and using (2.56), the matrix C of column profiles can be expressed as 

/ P l l Pl2 Pia \ 

C ^ P D ^ 1 = ( c i , c 2 ) · · - ,cb) = 

(16.18) 

P.i 

P21 

P.i 

Pal 

V P.l 

P.2 

P22 

P.2 

Pa2 

P.2 

P.a 

P2a 

P.a 

Pab 

P.a J 

(16.19) 

The vector r is defined in (16.9) as the column vector of row sums of P . It can 
also be expressed as a weighted average of the column profiles: 

6 

r = ^P.jCj. (16.20) 
i=i 
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Table 16.5 Piston Ring Failures 

Compressor 

1 
2 
3 
4 

Total 

North 

17 
11 
11 
14 

53 

Leg 

Center 

17 
9 
8 
7 

41 

South 

12 
13 
19 
28 

72 

Row Total 

46 
33 
38 
49 

166 

Similarly, c' in (16.10) is the row vector of column sums of P and can be expressed 
as a weighted average of the row profiles: 

=' = Σ Pi*i-
i=\ 

Note that Σί=ι P-j = Σ"=ι Pi- = L o r 

j ' r c' j 

(16.21) 

(16.22) 

where the first j is a x 1 and the second is b x 1. Therefore thep.^'s andp,.'s serve 
as appropriate weights in the weighted averages (16.20) and (16.21). 

■ EXAMPLE 16.2.2 

In Table 16.5 (Hand et al. 1994, p. 12) we have the number of piston ring 
failures in each of three legs in four compressors found in the same building 
(the four compressors are oriented in the same direction). We obtain the cor-
respondence matrix in Table 16.6 by dividing each element of Table 16.5 by 
n = Σ,α ηυ = 1 6 6 · 

The vectors of row and column sums (marginal totals) in Table 16.6 are 
given by (16.9) and (16.10) as 

/ . 277 \ 
.199 
.229 

\ .295 / 

c' = (.319, .247, .434). 

The matrix of row profiles is given by (16.15) as 

/.370 .370 .26l \ 
333 .273 .394 
290 .211 .500 

\.286 .143 .571/ 

R = D~ 1 P 
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Table 16.6 Correspondence Matrix Obtained from Ta-
ble 16.5 

Compressor 

1 
2 
3 
4 

Total 

North 

.102 

.066 

.066 

.084 

.319 

Leg 

Center 

.102 

.054 

.048 

.042 

.247 

South 

.072 

.078 

.114 

.169 

.434 

Row Total 

.277 

.199 

.229 

.295 

1.000 

The matrix of column profiles is given by (16.19) as 

/.321 .415 .167\ 

PD: 
.208 
.208 

\.264 

.220 .181 

.195 .264 

.171 .389/ 

D 

16.2.3 Testing Independence 

In Section 16.2.1, we noted that the data in a contingency table are often used to 
check for association of two categorical variables. If the two variables are denoted 
by x and y, then the assumption of independence can be expressed in terms of prob-
abilities as 

1,2,. . . ,6, (16.23) P(xiyj) = P(xi)P(yj),i = l,2,...,a;j 

where Xi and yj correspond to the ith row and jth column of the contingency table. 
Using the notation in Table 16.4, we can estimate (16.23) as 

PH = Pi.P.j,i = 1,2,...a; j = 1,2,...,b. (16.24) 

The usual chi-square statistic for testing independence of x and y (comparing py 
with Pi.p.j for all i, j) is given by 

a b 

X 
t = l 3 = 1 

(Pi. Pi.P.j)2 

Pi.P.j 
(16.25) 

which is approximately (asymptotically) distributed as a chi-square random variable 
with (a — 1)(6 — 1) degrees of freedom. The statistic in (16.25) can also be written 
in terms of the frequencies n^ rather than the relative frequencies pij: 

Χ2 = ΈΈΚ η ^ } · (16-26) 
i = i j = i — -
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Two other alternative forms of (16.25) are 

a b 

χ2 = ΈηΡί-Έ 
3 = 1 L 

P-3 /P< 

3 = 1 i = l 

Pi j 

^■-Pi.) /Pi. 

(16.27) 

(16.28) 

(16.29) 

In vector and matrix form, (16.27) and (16.28) can be written as 
a 

X2 ^^2npi.(ri - cYO-^Ti - c), 

b 

X2 = Σ nPi(c, - rYO-^cj - r), (16.30) 
3 = 1 

where r, c, n, c i ; D r , and D c are defined in (16.9), (16.10), (16.12), (16.16), (16.14), 
and (16.18), respectively. Thus, in (16.29) we compare r, to c for each i, and in 
(16.30) we compare Cj to r for each j . Either of these is equivalent to testing in-
dependence by comparing p^ to Pi.p.j for all i,j, since the definitions of χ2 in 
(16.25)—(16.30) are all equal. Thus, the following three statements of independence 
are equivalent (for simplicity, we express the three statements in terms of sample 
quantities rather than their theoretical counterparts): 

1. pij = Pi.p.j for all i, j (or P = re')· 
2. All rows r̂  of R in (16.15) are equal (and equal to their weighted average, 

c')· 
3. All columns Cj of C in (16.19) are equal (and equal to their weighted 

average, r). 

Thus, if the variables x and y were independent, we would expect the rows of the 
contingency table to have similar profiles, or equivalently, the columns to have sim-
ilar profiles. We can compare the row profiles to each other by comparing each row 
profile r̂  to the weighted average c' of the row profiles defined in (16.21). This com-
parison is made in the χ2 statistic (16.29). Similarly, we compare column profiles in 
(16.30). 

The chi-square statistic in (16.25) can be expressed in vector and matrix terms as 

X n t r p - ^ P - r c O D - ^ P - re')'] 
k 

η ^ λ , 2 [by (2.107)], 

(16.31) 

(16.32) 
i=l 

where \\, λ | , ■ ■ ■, \\ are the nonzero eigenvalues of D r
 l (P — rc ' )D c

 1 (P — re ' ) ' 
and 

k = rankpD-^P - r c ' p J ^ P - re')'] = rank(P - re ') . (16.33) 
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The rank of P - re ' is ordinarily k = min[(a - 1), (6 - l)j. It is clear that the rank 
is less than min(a, b) since 

(P - rc')j = P j - rc'j = r - r = 0 (16.34) 

[see (16.9) and (16.22)]. 

■ EXAMPLE 16.2.3 

In order to test independence of the rows (compressors) and columns (legs) 
of Table 16.5 in Example 16.2.2, we perform a chi-square test. Using (16.25) 
or (16.26), we obtain χ2 = 11.722, with 6 degrees of freedom, for which the 
p-value is 0.0685. There is some evidence of lack of independence between 
leg and compressor. □ 

16.2.4 Coordinates for Plotting Row and Column Profiles 

We now obtain coordinates of the row points and column points for the best two-
dimensional representation of the data in a contingency table. As we will see, the 
metric for the row points and column points is the same, and the two sets of points 
can therefore be superimposed on the same plot. 

In multidimensional scaling in Section 16.1, we transformed the distance matrix 
and then factored it by a spectral decomposition to obtain coordinates for plotting. 
In correspondence analysis, the matrix P — re ' is not symmetric, and we therefore 
resort to a singular value decomposition to obtain coordinates. 

We first scale P - re ' to obtain 

Z = D ^ 1 / 2 ( P - r c ' ) D - 1 / 2 , (16.35) 

whose elements are 
Pij Pi.P.j ,Λί- is-·. 

zu = , (16.36) 

as in (16.25). The axb matrix Z has rank k — min(a - 1, b - 1), the assumed rank 
of P — re' . We then factor Z using the singular value decomposition (2.117): 

Z = U A V . (16.37) 

The columns of the a x k matrix U are (normalized) eigenvectors of ZZ'; the 
columns of the b x k matrix V are (normalized) eigenvectors of Z'Z ; and Λ = 
diag(Ai, λ 2 , . . . , Afe), where λ2, λ 2 , . . ·, λ | are the nonzero eigenvalues of Z'Z and 
of ZZ'. The eigenvectors in U and V correspond to the eigenvalues λ2, λ2,, · · ·, λ2.. 
Since, the columns of U and V are orthonormal, U'U = V ' V = I. The values 
λχ, λ2 , . · ·, λ^ in Λ are called the singular values of Z. Note that, by (16.35), 

ZZ' = D-V2(P - r c ' )D- 1 / 2 D- 1 / 2 (P - r c ' /D , " 1 / 2 

= D" 1 / 2 (P - rc 'JD-^P - rc ' ) 'D- 1 / 2 . (16.38) 
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The (nonzero) eigenvalues of ZZ' in (16.38) are the same as those of 

D - ^ D " 1 / 2 ^ - r c O D - ^ P - re ' ) ' (16.39) 

(see Section 2.11.5). The matrix expression in (16.39) is the same as that in (16.31). 
We have therefore denoted the eigenvalues as λ2, λ | , · ■ ·, λ2. as in (16.32). 

We can obtain a decomposition of P — re ' by equating the right-hand sides of 
(16.35) and (16.37) and solving for P - re ' : 

D - ^ i P - r c ' p j 1 / 2 = U A V , 

P - re ' = D y 2 U A V ' D y 2 

k 

= ΑΛΒ' = J2 XiSLib'i, (16.40) 
i=l 

where A = D* U , B = Oc< V, a; and b i are columns of A and B, and A = 
diag(Äi,Ä2,. . . ,A f c) . 

Since U 'U = V ' V = I, A and B in (16.40) are scaled so that A ' D ^ A = 
B 'D~ 1 B — I. With this scaling, the decomposition in (16.40) is often called the 
generalized singular value decomposition. 

In (16.40) the rows of P — re ' are expressed as linear combinations of the rows of 
B' , which are the columns of B = (bi, b 2 , . . . , bfc). The coordinates (coefficients) 
for the ith row of P — re ' are found in the ith row of ΑΛ. In like manner, the 
coordinates for the columns of P — re ' are given by the columns of ΛΒ' , since the 
columns of AB' provide coefficients for the columns of A = (ai, a 2 , . . . , a&) in 
(16.40). 

To find coordinates for the row deviations r[ — c' in R — jc ' and the column 
deviations σ,- — r in C — rj ' , we express the two matrices as functions of P — re ' 
(see Problem 16.8): 

R - j c ^ D ^ P - r c ' ) , (16.41) 
C - r j ^ D - ^ P - r c ' ) . (16.42) 

Thus the coordinates for the row deviations in R — jc ' with respect to the axes 
provided by b i , b 2 , . . . , b^ are given by the columns of 

X = D " 1 AA. (16.43) 

Similarly, the coordinates for the column deviations in C — r j ' with respect to the 
axes a i , a 2 , . . . , afc are given by the columns of 

Y = D- X BA. (16.44) 

Therefore, to plot the coordinates for the row profile deviations r'i — c',i = l,2,..., 
a, in two dimensions, we plot the rows of the first two columns of X: 

fxu £ i 2 \ 
£21 ^22 

X l 

\Xal Xa2/ 
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Similarly, to plot the coordinates for the column profile deviations c,· — r,j = 
1,2,. . . , b, in two dimensions, we plot the rows of the first two columns of Y: 

Y i 

/ 2/u 2/12 \ 

2/21 2/22 

\ 2/bl 2/62 / Both plots can be superimposed on the same graph because A and B in (16.40) 
share the same singular values λχ, λ 2 , . . . , λ^ in Λ. Distances between row points 
and distances between column points are meaningful. For example, the distance 
between two row points is related to the chi-square metric implicit in (16.29). The 
chi-square distance between two row profiles r* and r,· is given by 

^ ( r i - r ^ ' D - ^ - r , · ) . 

If two row points (or two column points) are close, the two rows (or two columns) 
could be combined into a single category if necessary to improve the chi-square 
approximation. 

The distance between a row point and a column point is not meaningful, but the 
proximity of a row point and a column point has meaning as noted in Section 16.2.1, 
namely that these two categories of the two variables occur more frequently than 
would be expected to happen by chance if the two variables were independent. 

The weighted average (weighted by pi) of the distances (rj - c) 'D~1(rj - c) 
between the row profiles r* and their mean c [see (16.21)] weighted by pi. is called 
the total inertia. By (16.29) this can be expressed as χ2/η: 

2 a 

Total inertia = — = V p i (r8 - c / D j 1 ^ - c). (16.45) 
n ^—' 

i=l 

As noted following (16.21), J2i Pi- = 1> a nd therefore the p^.'s serve as appropriate 
weights. 

By (16.32), we can write (16.45) as 

X2 

= £>? . ( 1 6 · 4 6 ) 

Therefore, the contribution of each of the first two dimensions (axes) of our plot to 
the total inertia in (16.45) is λ 2 / £V λ? and \\j £V Af. The combined contribution 
of the two dimensions is 

\ 2 4- X2 

Λ ι + λ2 . (16.47) 

If (16.47) is large, then the points in the plane of the first two dimensions account 
for nearly all the variation in the data, including the associations. The total inertia in 
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Figure 16.8 Row points (1, 2, 3, 4) and column points (Center, North, South). 

(16.45) and (16.46) can also be described in terms of the columns by using (16.30): 

2 6 k 

Total inertia = ^- = ^ p . j i c , · - r / D " 1 ^ · - r) = ] Γ A*. (16.48) 
i = l i = l 

Since the inertia associated with the axes for columns is the same as that for rows, 
the row and column points can be plotted on the same axes. 

Some computer programs use a singular value decomposition of P rather than of 
P — re' . The results are the same if the first singular value (which is 1) is discarded 
along with the first column of A (which is r) and the first column of B (which is c). 

■ EXAMPLE 16.2.4 

We continue the analysis of the piston ring data of Table 16.5. A correspon-
dence analysis is performed, and a plot of the row and column points is given 
in Figure 16.8. Row points do not lie near other row points and column points 
do not lie near column points. However, compressor 1 seems to be closely as-
sociated with the center leg, compressor 2 with the north leg, and compressor 
4 with the south leg. These associations illustrate the lack of independence 
between compressor and leg position. 

Singular values and inertias are given in Table 16.7. Most of the variation is 
due to the first dimension, and the first two dimensions explain all the variation 
because rank(Z) = min(a —1,6—1) = min(4 — 1, 3 — 1) = 2, where Z is 
defined in (16.35). D 
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Table 16.7 Singular Values (A;), Inertia (λ?), Chi-Square (nXJ), 
and Percent (\f/ £ \ \]) for the Data in Table 16.5 

Singular Value 

.26528 

.01560 

Total 

Inertia 

.07037 

.00024 

.07062 

Chi-Square 

11.6819 
.0404 

11.7223 

Percent 

99.66 
.34 

100.00 

16.2.5 Multiple Correspondence Analysis 

Correspondence analysis of a two-way contingency table can be extended to a three-
way or higher-order multi-way table. By the method of multiple correspondence 
analysis, we obtain a two-dimensional graphical display of the information in the 
multi-way contingency table. The method involves a correspondence analysis of an 
indicator matrix G. There is a row of G for each item; thus the number of rows of 
G is the total number of items in the sample. The number of columns of G is the 
total number of categories in all variables. The elements of G are 1 's and 0's. In 
each row, an element is 1 if the item belongs in the corresponding category of the 
variable; otherwise, the element is 0. Thus the number of 1 's in a row of G is the 
number of variables; for a four-way contingency table, for example, there would be 
four 1 's in each row of G. 

We illustrate a four-way classification with the (contrived) data in Table 16.8. 
There are n = 12 items (people) and p = 4 categorical variables. The four variables 
and their categories are listed in Table 16.9. The indicator matrix G for the data in 
Table 16.8 is given in Table 16.10. 

Table 16.8 A List of 12 People and Their Categories on Four Variables 

Person 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Gender 

Male 
Male 

Female 
Male 

Female 
Female 
Male 
Male 
Male 

Female 
Female 
Male 

Age 

Young 
Old 

Middle 
Old 

Middle 
Middle 
Young 

Old 
Middle 
Young 

Old 
Young 

Marital Status 

Single 
Single 

Married 
Single 

Married 
Single 

Married 
Married 
Single 

Married 
Single 

Married 

Hair Color 

Brown 
Red 

Blond 
Black 
Black 
Brown 

Red 
Blond 
Brown 
Black 
Brown 
Blond 
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Table 16.9 The Categories for the Four Variables in Table 16.8 

Variable Levels 

Gender Male, female 
Age Young, middle aged, old 
Marital status Single, married 
Hair color Blond, brown, black, red 

Table 16.10 Indicator Matrix G for the Data in Table 16.8 

Person 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Gender 

1 
1 
0 
1 
0 
0 
1 
1 
1 
0 
0 
1 

0 
0 
1 
0 
1 
1 
0 
0 
0 
1 
1 
0 

Age 

1 0 0 
0 0 1 
0 1 0 
0 0 1 
0 1 0 
0 1 0 
1 0 0 
0 0 1 
0 1 0 
1 0 0 
0 0 1 
1 0 0 

Marital Status 

1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 

0 
0 
1 
0 
1 
0 
1 
1 
0 
1 
0 
1 

Hair Color 

0 1 0 0 
0 0 0 1 
1 0 0 0 
0 0 1 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 
1 0 0 0 
1 0 0 0 
0 0 1 0 
0 1 0 0 
1 0 0 0 

A correspondence analysis on G is equivalent to a correspondence analysis on 
G'G, which is called the Burt matrix. This equivalence can be justified as follows. In 
the singular value decomposition G = U A V , the matrix V contains eigenvectors 
of G'G. The same matrix V would be used in the spectral decomposition of G 'G. 
Thus the columns of V are used in plotting coordinates for the columns of G or the 
columns of G'G. If G is n x p with p < n, then G 'G would be smaller in size than 
G. 

The Burt matrix G 'G has a square block on the diagonal for each variable and a 
rectangular block off-diagonal for each pair of variables. Each diagonal block is a 
diagonal matrix showing the frequencies for the categories in the corresponding vari-
able. Each off-diagonal block is a two-way contingency table for the corresponding 
pair of variables. In Table 16.11, we show the G 'G matrix for the G matrix in 
Table 16.10. 

A correspondence analysis of G 'G yields only column coordinates. A point is 
plotted for each column of G (or of G'G). Thus each point represents a category 
(attribute) of one of the variables. 

Distances between points are not as meaningful as in correspondence analysis, 
but points in the same quadrant or approximate vicinity indicate an association. If 
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Table 16.11 Burt Matrix G'G for the Matrix G in Table 16.10 

Gender 

7 0 
0 5 

3 1 
1 3 
3 1 

4 2 
3 3 

3 1 
1 2 
1 2 
2 0 

3 
1 

4 
0 
0 

1 
3 

1 
1 
1 
1 

Age 

1 
3 

0 
4 
0 

2 
2 

2 
1 
1 
0 

3 
1 

0 
0 
4 

3 
1 

1 
1 
1 
1 

Marital Status 

4 
2 

1 
2 
3 

6 
0 

1 
3 
1 
1 

3 
3 

3 
2 
1 

0 
6 

3 
0 
2 
1 

3 
1 

1 
2 
1 

1 
3 

4 
0 
0 
0 

Hair Color 

1 
2 

1 
1 
1 

3 
0 

0 
3 
0 
0 

1 
2 

1 
1 
1 

1 
2 

0 
0 
3 
0 

2 
0 

1 
0 
1 

1 
1 

0 
0 
0 
2 

Table 16.12 Singular Values (A*), Inertia (Xj), Chi-Square (n\f), 
and Percent (λ?/ £V \]) for the Burt Matrix G'G in Table 16.11 

Singular Value 

.68803 

.67451 

.51492 

.50000 

.41941 

.33278 

.14091 

Total 

Inertia 

.47338 

.45497 

.26515 

.25000 

.17590 

.11074 

.01986 

1.75000 

Chi-Square 

31.551 
30.324 
17.672 
16.663 
11.724 
7.381 
1.323 

116.638 

Percent 

27.05 
26.00 
15.15 
14.29 
10.05 
6.33 
1.13 

100.00 

two close points represent attributes of the same variable, the two attributes may be 
combined into a single attribute. 

Since the Burt matrix G'G has only two-way contingency tables, three-way and 
higher-order interactions are not represented in the plot. The various two-way tables 
are analyzed simultaneously, however. 

■ EXAMPLE 16.2.5(a) 

We continue the illustration in this section. A correspondence analysis of the 
Burt matrix G 'G in Table 16.11 yielded the singular values, inertia, and chi-
square values in Table 16.12. The first two singular values account for only 
53.05% of the total variation. A plot of the first two dimensions for the 11 
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Figure 16.9 Plot of Points Representing the 11 Columns of Table 16.10 or Table 16.11. 

columns in Table 16.10 or Table 16.11 is given in Figure 16.9. It appears that 
married and blond hair have a greater association than would be expected by 
chance alone. Another association is that between female and middle age. D 

■ EXAMPLE 16.2.5(b) 

Table 16.13 (Edwards and Kreiner 1983) is a five-way contingency table of 
employed men between the ages of 18 and 67 who were asked whether they 
themselves carried out repair work on their home, as opposed to hiring a crafts-
man to do the job. The five categorical variables are as follows: 

Work of respondent: Skilled, Unskilled, Office 

Tenure: Rent, Own 

Age: Up to 30, 31^45, over 45 

Accommodation type: Apartment, House 

Response to repair question: Yes, No 

A multiple correspondence analysis produced the inertia and singular values 
in Table 16.14. The plot of the first two dimensions is given in Figure 16.10. 

Unskilled employment has a high association with not doing ones own re-
pairs. Doing ones own repairs is associated with owning a house, age between 
31 and 45, and doing office work. Living in an apartment is associated with 
renting. D 
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Table 16.13 Do-It-Yourself Data 

Accommodation Type 

Apartment House 

Age Age 

Work Tenure Response <30 31-45 >46 <30 31-45 >46 

Skilled 

Unskilled 

Office 

Rent 

Own 

Rent 

Own 

Rent 

Own 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

Yes 
No 

18 
15 

5 
1 

17 
34 

2 
3 

30 
25 

8 
4 

15 
13 

3 
1 

10 
17 

0 
2 

23 
19 

5 
2 

6 
9 

1 
1 

15 
19 

3 
0 

21 
40 

1 
2 

34 
28 

56 
12 

29 
44 

23 
9 

22 
25 

54 
19 

10 
4 

56 
21 

3 
13 

52 
31 

13 
16 

191 
76 

2 
6 

35 
8 

7 
16 

49 
51 

21 
12 

102 
61 

Table 16.14 Singular Values (Χή, Inertia (λ?), Chi-Square (ηλ?), 
and Percent (λ? / £ \ X?) for the Do-It-Yourself Data in Table 16.13 

Singular Value 

.60707 

.49477 

.45591 

.42704 

.40516 

.39392 

.27771 

Total 

Inertia 

.36853 

.24480 

.20785 

.18237 

.16415 

.15517 

.07713 

1.40000 

Chi-Square 

3446.5 
2289.4 
1943.9 
1705.5 
1535.2 
1451.2 
721.3 

13092.9 

Percent 

26.32 
17.49 
14.85 
13.03 
11.73 
11.08 
5.51 

100 

16.3 BIPLOTS 

16.3.1 Introduction 

A biplot is a two-dimensional representation of a data matrix Y [see (3.17)] showing 
a point for each of the n observation vectors (rows of Y ) along with a point for each 
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Figure 16.10 Plot of points representing the 12 categories in Table 16.13. 

of the p variables (columns of Y). The prefix "bi" refers to the two kinds of points, 
not to the dimensionality of the plot. The method presented here could, in fact, be 
generalized to a three-dimensional (or higher-order) biplot. Biplots were introduced 
by Gabriel (1971) and have been discussed at length by Gower and Hand (1996); 
see also Khattree and Naik (2000), Jacoby (1998, Chapter 7), and Seber (1984, pp. 
204-212). 

If p — 2,a. simple scatterplot such as in Section 3.3 has both kinds of information, 
namely, a point for each observation and the two axes representing the variables. We 
can see at a glance the placement of the points relative to each other and relative to 
the variables. 

When p > 2, we can obtain a two-dimensional plot of the observations by plot-
ting the first two principal components of S as in Section 12.4. We can then add 
a representation of the p variables to the plot of principal components to obtain a 
biplot. The principal component approach is discussed in Section 16.3.2. A method 
based on the singular value decomposition is presented in Section 16.3.3, and other 
methods are reviewed in Section 16.3.5. 

16.3.2 Principal Component Plots 

A principal component is given by z = a'y, where a is an eigenvector of S, the 
sample covariance matrix, and y is a p x 1 observation vector (see Section 12.2). 
There are p eigenvectors a i , a 2 , . . . , ap, and thus there are p principal components 
zi,Z2,---,zp for each observation vector y*,i — 1,2,... ,n. Hence (using the 
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centered form) the observation vectors are transformed to 
(Yi - y) 'a j , i = 1,2, 

'%3 
a'j(yi - y ) 

,n;j l,2,...,p. Each p x l observation vector y, 
is transformed t o a p x 1 vector of principal components, 

z'i = [(Yi - y) 'a i , (y, - y ) ' a 2 , . . . , (y* - y)'ap] 
= (yi - y ) ' ( a i , a 2 , . . . , a p ) 
= ( y i - y ) ' A , i = l , 2 , . . . , n , (16.49) 

where A = (ai, a 2 , . . . , ap) is the p x p matrix whose columns are (normalized) 
eigenvectors of S. [Note that the matrix A in (16.49) is the transpose of A in (12.3)]. 
With Z and Y c defined as 

/ < \ / ( y i - y ) ' \ 
( y 2 - y ) ' 

(16.50) 

V < / \(yn- ?)' ) 

[see (10.13)], we can express the principal components in (16.49) as 

Z = Y r A. (16.51) 

Since the eigenvectors a,· of the symmetric matrix S are mutually orthogonal (see 
Section 2.11.6), A = (ai, a 2 , . . . , ap) is an orthogonal matrix and A A' = I. Multi-
plying (16.51) on the right by A', we obtain 

Yr. = ZA'. (16.52) 

The best two-dimensional representation of Y c is given by taking the first two col-
umns of Z and the first two columns of A. If the resulting matrices are denoted by 
Z2 and A2 , we have 

Y c 9* Z2A2 . (16.53) 

The fit in (16.53) is best in a least squares sense. If the left side of (16.53) is rep-
resented by Y c = B = (bij) and the right side by Z2A'2 = C = (cij), then 
ΣΓ=ι Y^=i(bij ~ Cij)2 is minimized (Seber 1984, p. 206). 

The coordinates for the n observations are the rows of Z2 and the coordinates for 
the p variables are the rows of A2 (columns of A2). The coordinates are discussed 
further in Section 16.3.4. 

The adequacy of the fit in (16.53) can be evaluated by examining the first two 
eigenvalues λι and λ2 of S. Thus a large value (close to 1) of 

Ai +A 2 

would indicate that Y c is represented well visually in the plot. 



BIPLOTS 583 

16.3.3 Singular Value Decomposition Plots 

We can obtain Y c = ZA' in (16.52) by means of the singular value decomposition 
ofY c . By (2.117), we have 

Y c = U A V , (16.54) 

where A = diag(Ai, λ 2 , . . . , λρ) is a diagonal matrix containing square roots of the 
nonzero eigenvalues Af, λ | , . . . ,λ^ ofY^.Yc(orofYcY£.), the columns of U are the 
corresponding eigenvectors of YCYO> ar,d the columns of V are the corresponding 
eigenvectors of YCYC-

The product UA in (16.54) is equal to Z, the matrix of principal component 
scores in (16.51). To see this we multiply (16.54) by V, which is orthogonal be-
cause it contains the (normalized) eigenvectors of the symmetric matrix Y£ Y c (see 
Section 2.11.6). This gives 

YCV = UAV'V = UA. (16.55) 

By (10.17), Y^YC is equal to ( n - 1)S. By (2.106), eigenvectors of (n- 1)S are also 
eigenvectors of S. Thus V is the same as A in (16.51), which contains eigenvectors 
of S. Hence, YCV in (16.55) becomes 

YCV = YCA 
= Z [by (16.51)] 
= UA [by (16.55)]. 

We can therefore write (16.54) as 

Y c = U A V = Z V = ZA'. (16.56) 

Thus the singular value decomposition of Y c gives the same factoring as the expres-
sion in (16.52) based on principal components. 

16.3.4 Coordinates 

In this section, we consider the coordinates for the methods of Sections 16.3.2 and 
16.3.3. Let us return to (16.53), the two-dimensional representation of Y c based on 
principal components (which is the same representation as that based on the singular 
value decomposition): 

λ . (16.57) Z2A; 

Z l l 

Z21 

Z\2 

Z22 an 
ai2 

«21 
<Z22 

\ Zn\ Zn2 ) 
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The elements of (16.57) are of the form 

Uij ~ Vj = ZnCLj-i + Zi2aj2, 1,2,...,n; j ~ 1,2,...,p. 

Thus each observation is represented as a linear combination, the coordinates (coef-
ficients) being the elements of the vector (ζα,ζ^) and the axes being the elements 
of the vector (α^, α^)· We therefore plot the points (zu, z^i), i = 1,2,... ,n, and 
the points (α,ι, α,-2), j = 1,2,... ,p. To distinguish them and to show relationship 
of the points to the axes, the points (α,-ι,α^) are connected to the origin with a 
straight line forming an arrow. If necessary, the scale of the points (α,ι, αρ) could 
be adjusted to be compatible with that of the principal components {ζη,ζ&). 

The Euclidean distance between two points {ζΆ,ζ^ and {ζ^ι,ζ^) is approxi-
mately equal to the distance between the corresponding points (rows) y^ and y'k in 
the data matrix Y. If all of the principal components were used, as in (16.51) and 
(16.52), the distance would be the same, but with only two principal components, 
the distance is an approximation. 

The cosine of the angle between the arrows (lines) drawn to each pair of axis 
points (dji, a,j2) and (a,ki, a-k2) shows the correlation between the two corresponding 
variables [see (3.14) and (3.15)]. Thus a small angle between two vectors indicates 
that the two variables are highly correlated, two variables whose vectors form a 90° 
angle are uncorrelated, and an angle greater than 90° indicates that the variables are 
negatively correlated. 

The values of the p variables in the ith observation vector y* (corrected for means) 
are related to the perpendicular projection of the point (zu,Z2i) on the p vectors from 
the origin to the points (α,-ι, ÜJ2) representing variables. The further from the origin 
a projection falls on an arrow, the larger the value of the observation on that variable. 
Hence the vectors will be oriented toward the observations that have larger values on 
the corresponding variables. 

■ EXAMPLE 16.3.4 

Using the city crime data of Table 15.1, we illustrate the principal components 
approach. The first two eigenvectors of the sample covariance matrix S are 
given by 

A2 = 

/ 

\ 

.002 

.017 

.182 

.104 

.747 

.612 

.153 

.008 \ 

.014 

.689 

.221 
-.240 
-.109 

.638 j 

The matrix of the first two principal components is given by 
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Y , A 2 

V 

317.2 
491.8 
650.0 
141.7 

342 
312.2 
514.7 

58.6 
-24.5 

75.7 
678.2 
192.4 
542.7 
233.1 
343.8 
150.4 

-156.1 
192.4 
227.6 

-133.8 
-69.3 
164.1 

-166.4 
-239.7 

25.9 
40.1 

7.1 
163.4 
194.8 

-266.8 
-184.3 

200.9 / 

The coordinates for the sixteen cities are found in Z2, and the coordinates 
for the seven variables are found in A2. The plot of the city and variable 
points could be given, but because of the different scaling for the observation 
points (spread out) and the variable points (clustered at the origin), the plot 
is not illuminating. Suitable scaling of the eigenvectors in A2 would enable 
the arrows representing the variables to pass through the points (see Example 
16.3.5). D 

16.3.5 Other Methods 

The singular value decomposition of Y c is given in (16.54) as 

Y r = U A V . (16.58) 

In Section 16.3.3, it was shown that UA = Z and V = A [see (16.56)], so that 
(16.58) can be written as 

Y c = (UA)V' = ZA', 

which is equivalent to the principal component solution Y c = ZA' in (16.52). Al-
ternative factorings may be of interest. Two that have been considered are 

Y c - U(AV') , 

Y c = ( U A ^ X A ^ V ) . 

(16.59) 

(16.60) 

If we denote the submatrices consisting of the first two columns of U and V as 
U2 and V2 , respectively, and define A2 = diag(Ai, Ä2), then the two-dimensional 
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representations of (16.59) and (16.60) are 

Y c Si U 2 (A 2V 2 ) 

/ I i U "12 \ 

«21 «22 / XiVn Xiv2i ■ 
\ X2Vi2 X2V22 · 

• λιυρι 
■ A2wP2 

\ unl un2 ) 

(16.61) 

U 2 A ^ ) ( A * ' V ) 

/ Λ/ÄTWII V^2«12 \ 

λΑ7«21 λΑ2«22 / ΛΑΓ^ΙΙ 

V λ / λ · ^ 
ΛΑ7«21 ' · 
\/Ä2"w22 · · 

• \A7«pl 
■ VX2Vp2 

\ \/%Uni \fX2Un2 J 
(16.62) 

For the biplot arising from (16.61), we plot the set of points (un, ui2), i = 1,2, . . . , 
n, and the set of points (XiVj\,X2Vj2),j — 1,2,... ,p, with the latter points con-
nected to the origin by an arrow to show the axes. For the biplot arising from (16.62), 
we plot the set of points (y/XiUn, \/X~2Ui2), i = 1,2,. . . , n, and the set of points 
{VMvji,VX2Vj2),j — 1,2,... ,p, with the latter points connected to the origin 
with an arrow. 

The presence of Χχ and X2 in (16.61) and (16.62) provides scaling that is absent 
in (16.57). For many data sets the scaling in (16.62) will be adequate with no further 
adjustment. 

If we write (16.59) in the form 

Y c = U(AV') = U(VA)' = UH' , 

then 
U U ' 1 Y c S - ^ , 

(16.63) 

(16.64) 

H H ' = (n - 1)S (16.65) 
(see Problem 16.10). With suitable scaling of the eigenvectors in U and V, we could 
eliminate the coefficients involving n — 1 from (16.64) and (16.65). 

By (16.64) (with scaling to eliminate n — 1), the (Euclidean) distance (UJ — 
Ufc)'(Uj — Ufc) between two points Uj and u^ is equal to the Mahalanobis distance 
(yi ~ yfe)'S_1(yi — y/t) between the corresponding points y* and y^ in the data 
matrix Y: 

(uj - ufc)'(ui - ufc) = (yi - y/c) 'S_ 1(y i - yfe) (16.66) 
(see Problem 16.11). By (16.65), the covariance Sjk between the jth and kth vari-
ables (columns of Y) is given by 

Sjk h;hfc, (16.67) 
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where h^ and hĵ . are rows of H. By (3.14) and (3.15), this can be converted to the 
correlation 

Tjk = COS I 
h > 

^(h^Xh'fchfc) ' 
(16.68) 

so that the angle between the two vectors hj and h/. is related to the correlation 
between the jth and fcth variables. 

The two-dimensional representation of u^ and hj in (16.61) has the approximate 
Mahalanobis distance and correlation properties discussed earlier. 

■ EXAMPLE 16.3.5 

Using the city crime data of Table 15.1, we illustrate the singular value de-
composition method with the factorings in (16.61) and (16.62). The matrices 
U 2 ,A 2 , and V2 are 

U2 = 

/ -.211 
-.327 
-.432 

.094 

.227 

.208 
-.342 

.039 
-.016 

.050 

.451 
-.128 

.361 

.155 

.229 
y .100 

-.230 \ 
.284 
.335 

-.197 
-.102 

.242 
-.245 
- .353 

.038 

.059 

.010 

.241 

.287 
-.393 
-.272 

.296 / 

Vo = 

/ .002 
.017 
.182 
.104 
.747 
.612 

V .153 

.008 \ 

.014 

.689 

.221 
-.240 
-.109 

.639 ) 

Λ2 = diag(1503.604,678.615). 

By (16.61), the two-dimensional representation is given by plotting the rows 
of U 2 and the rows of V 2 A 2 (or the columns of A 2V 2 ) . For V 2 A 2 we have 

V 2 A 2 

/ 3.0 
25.4 

273.6 
156.3 
123.4 
920.0 
229.3 

5.2 \ 
9.5 

467.5 
150.1 

-162.6 
-74.1 
432.9 / 
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As in Example 16.3.4, the plot of the observation points and variable points 
is not useful, again because the scale for the observation points differs greatly 
from the scale for the variable points. 

For (16.62), we obtain 

U2A2-1/2 

V 

-8.18 
12.68 
16.76 
3.65 
8.82 
8.05 

13.27 
1.51 

- .63 
1.95 

17.49 
-4.96 
13.99 
6.01 

-8.87 
3.88 

-5.99 \ 
7.39 
8.74 

-5.14 
-2.66 

6.30 
-6.39 
-9.20 

.99 
1.54 
.27 

6.27 
7.48 

-10.24 
-7.08 

7.71 / 

VoA, 1/2 

.08 

.66 
7.06 
4.03 

28.97 
23.73 

5.91 

.20 \ 

.37 
17.95 
5.76 

-6.24 
-2.85 
16.62 / 

The plot of the coordinates is given in Figure 16.11. For this data set, the 
factoring given by (16.62) and illustrated in Figure 16.11 is preferred because 
it plots both observation and variable points on the same scale. As previously 
noted, the factoring discussed in Example 16.3.4 and the factoring discussed 
at the beginning of this example would need adjustments in scaling in order to 
yield useful biplots. □ 

PROBLEMS 

16.1 In step 2 of the algorithm for metric scaling in Section 16.1.2, the matrix B 
(bij) is defined in terms of A = (aij) as b^ = a. 
ba in B 

%] ■a.i +a... Show that 
(I - £ J ) A ( I - \ J ) in (16.2) is equivalent to bi: 

16.2 Verify the result stated in step 2 of the algorithm in Section 16.1.2, namely, that 
there exists a ^-dimensional configuration z\, z 2 , . . . , zn such that ά^ = Sij if 
and only if B is positive semidefinite of rank q. Use the following approach. 

, zn such that d>? 4 (Zi (a) Assuming the existence of z1 ; z2 
Zj)'(zi — Zj), show that B is positive semidefinite. 

(b) Assuming B is positive semidefinite, show that there exist z\, z 2 , . . . , z„ 
such that dfn (zi-ZjYizi-Zj) Jiy 
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Figure 16.11 Plot of Ό2Α^2 and V2A2 /2 for the City Crime Data in Table 15.1. 

16.3 (a) Show that r — J2j=iP-jcj m (16.20) is the same as r = (pi., p2.,..., 
pa.Y in (16.9). 

(b) Show that c' = Σ " = 1 Pi.Y'i >n (16.21) is equivalent to c' = (ρΛ, p,2, ■ ■ ■, 
p.b) in (16.10). 

16.4 Show that j ' r = c'j = 1 as in (16.22). 

16.5 Show that the chi-square statistic in (16.26) is equal to that in (16.25). 

(a) 
(b) 

(a) 
(b) 

(a) 
(b) 

Show that the chi-square 
Show that the chi-square 

Show the chi-
Show the chi-

Show that R 
Show that C 

•square 
■square 

- j c = 

- r j = 

statistic in (16.27) is equal 
statistic in (16.28) is equal 

statistic in 
statistic in 

= D ; 

Dc 

- i ( P . 

HP-

to that in (16.25). 
to that in (16.25). 

(16.29) is equal to that in (16.27). 
(16.30) is equal to that in (16.28). 

- re') as in (16.41). 
- re') as in (16.42). 

16.9 Show that if all the principal components were used, the distance between Zj 
and Zfc would be the same as between yt and y^, as noted in Section 16.3.4. 
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16.10 (a) Show that U U ' = YcS" 1 Y'J(n - 1) as in (16.64). 

(b) Show that H H ' = (n - 1)S as in (16.65). 

16.11 Show that (u; - ufe)'(ui - ufc) = (y, - yk)'S~l(yi - Yk), as in (16.66). 

16.12 In Table 16.15, we have road distances between major UK towns (Hand et al. 
1994, p. 346). The towns are as follows: 

A = Aberdeen, B = Birmingham, C = Brighton, D = Bristol, E = Cardiff, F 
= Carlisle, G = Dover, H = Edinburgh, I = Fort William, J = Glasgow, K = 
Holyhead, L = Hull, M = Inverness, N = Leeds, O = Liverpool, P = London, Q 
= Manchester, R = Newcastle, S = Norwich, T = Nottingham, U = Penzance, 
V = Plymouth, W = Sheffield. 

(a) Find the matrix B as in (16.2). 

(b) Using the spectral decomposition, find the first two columns of the matrix 
Z as in (16.4). 

(c) Create a metric multidimensional scaling plot of the first two dimensions. 
What do you notice about the positions of the cities? 

16.13 Zhang, Helander, and Drury (1996) analyzed a 43 x 43 similarity matrix for 43 
descriptors of comfort, such as calm, tingling, restful, etc. For the similarity 
matrix, see the Wiley ftp site (Appendix C). 

(a) Carry out a metric multidimensional scaling analysis and plot the first 
two dimensions. What pattern is seen in the plot? 

(b) For an alternative approach, carry out a cluster analysis of the configura-
tion of points found in part (a), using Ward's method. Create a dendro-
gram of the cluster solution. How many clusters are indicated? 

16.14 Use the politics data of Table 16.16 (Everitt 1987, Table 6.7). Two subjects 
assessed the degree of dissimilarity between World War II politicians. The 
data matrix represents the sum of the dissimilarities between the two subjects. 

(a) For fc = 6, create an initial configuration of points by choosing twelve 
random observations taken from a multivariate normal distribution with 
mean vector 0 and covariance matrix I6 . 

(b) Carry out a nonmetric multidimensional scaling analysis using the seeds 
found in part (a). Find the value of the STRESS statistic. 

(c) Repeat parts (a) and (b) for fc = 1 , . . . , 5. Plot the STRESS values 
against the values of k. How many dimensions should be kept? Plot 
the final configuration of points with two dimensions. 
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(d) Repeat parts (a)-(c) using an initial configuration of points from a mul-
tivariate normal with different mean vector and covariance matrix from 
those in part (a). How many dimensions should be kept? Plot the fi-
nal configuration of points with two dimensions. How does this solution 
compare to that in part (c)? 

(e) Repeat parts (a)-(c) using an initial configuration of points from a uni-
form distribution over (0,1). How many dimensions should be kept? Plot 
the final configuration of points with two dimensions. 

(f) Repeat part (e) using as initial configuration of points the metric multi-
dimensional scaling solution found by treating the ordinal measurements 
as continuous. How many dimensions should be kept? Plot the final 
configuration of points with two dimensions. 

16.15 In Table 16.17 we have the months of birth and death for 1281 people (An-
drews and Herzberg 1985, Table 71.2). 

(a) Find the correspondence matrix P as in (16.8). 
(b) Find the matrices R and C, as in (16.15) and (16.19). 
(c) Perform a chi-square test for independence between birth month and 

death month. 
(d) Plot the row and column deviations as in Example 16.2.4. 

16.16 In Table 16.18, we have a cross-classification of crimes in Norway in 1984 
categorized by type and site (Clausen 1988, p. 9). 

Table 16.17 Birth and Death Months of 1281 People 

Death Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Birth 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

Total 

9 
13 
12 
7 
8 
14 
12 
7 
7 
16 
7 
6 

118 

14 
7 
14 
11 
6 
5 
10 
7 
12 
8 
9 
18 

121 

12 
6 
9 
10 
11 
5 
13 
11 
11 
11 
15 
9 

123 

14 
8 
7 
7 
7 
7 
4 
13 
10 
9 
10 
11 

107 

9 
9 
17 
9 
4 
13 
5 
10 
10 
7 
11 
14 

118 

11 
5 
10 
11 
12 
5 
11 
9 
11 
10 
10 
8 

113 

10 
4 
9 
4 
9 
7 
7 
3 
4 
12 
7 
9 

85 

15 
5 
10 
11 
9 
4 
6 
8 
8 
8 
10 
9 

103 

9 
7 
9 
4 
11 
8 
4 
8 
12 
9 
7 
10 

98 

11 
11 
2 
9 
6 
9 
10 
8 
6 
8 
10 
6 

96 

11 
1 
13 
8 
9 
7 
4 
8 
8 
7 
9 
10 

95 

13 
13 
9 
12 
4 
5 
8 
12 
7 
7 
6 
8 

104 

138 
89 
121 
103 
96 
89 
94 
104 
106 
112 
111 
118 

1281 
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Table 16.18 Crimes by Type and Site 

Part of Country 

Oslo area 
Mid-Norway 
North Norway 

Total 

Burglary 

395 
147 
694 

1236 

Fraud 

2456 
153 
327 

2936 

Vandalism 

1758 
916 

1347 

4021 

Total 

4609 
1216 
2368 

8193 

(a) Find the correspondence matrix P as in (16.8). 
(b) Find the matrices R and C as in (16.15) and (16.19). 
(c) Perform a chi-square test for independence between type of crime and 

site. 
(d) Plot the row and column deviations as in Example 16.2.4. 

16.17 In Table 16.19, we have a six-way contingency table (Andrews and Herzberg 
1985, Table 34.1). Carry out a multiple correspondence analysis. 

(a) Set up an indicator matrix G and find the Burt matrix G'G. 
(b) Perform a correspondence analysis on the Burt matrix found in part (a) 

and plot the coordinates. 
(c) What associations are present? 

16.18 Use the protein consumption data of Table 15.7. 

(a) Create a biplot using the principal components approach in (16.53) or 
(16.57). 

(b) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.61). 

(c) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.62). 

(d) Which of the three biplots best represents the data? 

16.19 Use the perception data of Table 13.1. 

(a) Create a biplot using the principal components approach in (16.53) or 
(16.57). 

(b) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.61). 

(c) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.62). 

(d) Which of the three biplots best represents the data? 



PROBLEMS 595 

Table 16. 

Suffer 
Years Byssi-

Smoking Gender in job nosis 

Non- Female < 10 No 
smoker Yes 

> 20 No 
Yes 

10-20 No 
Yes 

Male < 10 No 
Yes 

> 20 No 
Yes 

10-20 No 
Yes 

Smoker Female < 10 No 
Yes 

> 2 0 No 
Yes 

10-20 No 
Yes 

Male < 10 No 
Yes 

> 20 No 
Yes 

10-20 No 
Yes 

Byssinosis Data 

Race 
Other White 

dust 

24 
1 

0 
0 

0 
0 

75 
6 

15 
3 

9 
1 

dust 

301 
4 

3 
0 

4 
0 

122 
1 

23 
0 

7 
0 

dust 

142 
3 

2 
0 

4 
0 

47 
1 

1 
0 

0 
0 

dust 

4 
0 

2 
0 

0 
0 

16 
0 

47 
5 

8 
2 

dust 

169 
2 

340 
2 

90 
1 

134 
0 

182 
3 

58 
0 

dust 

54 
1 

187 
3 

30 
0 

35 
0 

39 
0 

16 
1 

22 
2 

1 
0 

0 
0 

139 
25 

31 
10 

30 
8 

260 
3 

2 
0 

3 
0 

242 
3 

45 
0 

33 
0 

145 
2 

0 
0 

4 
0 

88 
0 

1 
0 

5 
0 

5 
0 

1 
0 

0 
0 

37 
3 

77 
31 

21 
8 

180 
3 

176 
3 

94 
2 

258 
2 

495 
12 

187 
1 

93 
1 

91 
3 

33 
1 

74 
0 

141 
1 

50 
1 
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16.20 Use the cork data of Table 6.21. 

(a) Create a biplot using the principal components approach in (16.53) or 
(16.57). 

(b) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.61). 

(c) Create a biplot using the singular value decomposition approach with the 
factoring as in (16.62). 

(d) Which of the three biplots best represents the data? 
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Table A.l Upper Percentiles for \/b\ 

ν^ΣΓ=1(*-ϊ7)3 

[ΣΓ=1(ίκ-ν)2]3/2 

The sampling distribution of \/b\ is symmetric about zero, and the lower percentage points 
corresponding to negative skewness are given by the negative of the table values. Reject the 
hypothesis of normality if \fb[ is greater than the table value or less than the negative of the 
table value. 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

10 

.831 

.821 

.795 

.782 

.765 

.746 

.728 

.710 

.693 

.677 

.662 

.648 

.635 

.622 

.610 

.599 

.588 

.578 

.568 

.559 

.550 

.542 

5 

.987 
1.049 
1.042 
1.018 
.998 
.977 
.954 
.931 
.910 
.890 
.870 
.851 
.834 
.817 
.801 
.786 
.772 
.758 
.746 
.733 
.722 
.710 

Upper 

2.5 

1.070 
1.207 
1.239 
1.230 
1.208 
1.184 
1.159 
1.134 
1.109 
1.085 
1.061 
1.039 
1.018 
.997 
.978 
.960 
.942 
.925 
.909 
.894 
.880 
.866 

Percentiles 

1 

1.120 
1.337 
1.429 
1.457 
1.452 
1.433 
1.407 
1.381 
1.353 
1.325 
1.298 
1.272 
1.247 
1.222 
1.199 
1.176 
1.155 
1.134 
1.114 
1.096 
1.078 
1.060 

0.5 

1.137 
1.396 
1.531 
1.589 
1.605 
1.598 
1.578 
1.553 
1.526 
1.497 
1.468 
1.440 
1.412 
1.385 
1.359 
1.334 
1.310 
1.287 
1.265 
1.243 
1.223 
1.203 

0.1 

1.151 
1.464 
1.671 
1.797 
1.866 
1.898 
1.906 
1.899 
1.882 
1.859 
1.832 
1.803 
1.773 
1.744 
1.714 
1.685 
1.657 
1.628 
1.602 
1.575 
1.550 
1.526 
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Table A.2 Coefficients for Transforming y/b[ to a Standard Normal 

n 

8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

δ 

5.563 
4.260 
3.734 
3.447 
3.270 
3.151 
3.069 
3.010 
2.968 
2.937 
2.915 
2.900 
2.890 
2.884 
2.882 
2.882 
2.884 
2.889 
2.895 
2.902 
2.910 
2.920 
2.930 
2.941 
2.952 
2.964 
2.977 
2.990 
3.003 
3.016 
3.030 
3.044 
3.058 

1/λ 

0.3030 
0.4080 
0.4794 
0.5339 
0.5781 
0.6153 
0.6473 
0.6753 
0.7001 
0.7224 
0.7426 
0.7610 
0.7779 
0.7934 
0.8078 
0.8211 
0.8336 
0.8452 
0.8561 
0.8664 
0.8760 
0.8851 
0.8938 
0.9020 
0.9097 
0.9171 
0.9241 
0.9308 
0.9372 
0.9433 
0.9492 
0.9548 
0.9601 

n 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 

<5 

3.073 
3.087 
3.102 
3.117 
3.131 
3.146 
3.161 
3.176 
3.192 
3.207 
3.237 
3.268 
3.298 
3.329 
3.359 
3.389 
3.420 
3.450 
3.480 
3.510 
3.540 
3.569 
3.599 
3.628 
3.657 
3.686 
3.715 
3.744 
3.772 
3.801 
3.829 
3.857 
3.885 

1/A 

0.9653 
0.9702 
0.9750 
0.9795 
0.9840 
0.9882 
0.9923 
0.9963 
1.0001 
1.0038 
1.0108 
1.0174 
1.0235 
1.0293 
1.0348 
1.0400 
1.0449 
1.0495 
1.0540 
1.0581 
1.0621 
1.0659 
1.0695 
1.0730 
1.0763 
1.0795 
1.0825 
1.0854 
1.0882 
1.0909 
1.0934 
1.0959 
1.0983 

Values of 5 and l/λ are such that g(Vbi) — <5sinh-1(v1)7/A) 

n 

98 
100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 
185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 
240 
245 
250 

δ 

3.913 
3.940 
4.009 
4.076 
4.142 
4.207 
4.272 
4.336 
4.398 
4.460 
4.521 
4.582 
4.641 
4.700 
4.758 
4.816 
4.873 
4.929 
1.985 
5.040 
5.094 
5.148 
5.202 
5.255 
5.307 
5.359 
5.410 
5.461 
5.511 
5.561 
5.611 
5.660 

is approximately N(0, 1 ] 

1/λ 

1.1006 
1.1028 
1.1080 
1.1128 
1.1172 
1.1212 
1.1250 
1.1285 
1.1318 
1.1348 
1.1377 
1.1403 
1.1428 
1.1452 
1.1474 
1.1496 
1.1516 
1.1535 
1.1553 
1.1570 
1.1586 
1.1602 
1.1616 
1.1631 
1.1644 
1.1657 
1.1669 
1.1681 
1.1693 
1.1704 
1.1714 
1.1724 

). 
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Table A.3 Percentiles for 62 

Upper and lower percentiles for 

b2 

[ΣΓ=ι(»«-ϊ02]' 
the sample coefficient of kurtosis. Reject the hypothesis of normality if 62 is greater than an 
upper percentile or less than a lower percentile. 

Sample 
Size 

7 
8 
9 

10 
12 
15 
20 
25 
30 
35 
40 
45 
50 

1 

1.25 
1.31 
1.35 
1.39 
1.46 
1.55 
1.65 
1.72 
1.79 
1.84 
1.89 
1.93 
1.95 

2 

1.30 
1.37 
1.42 
1.45 
1.52 
1.61 
1.71 
1.79 
1.86 
1.91 
1.96 
2.00 
2.03 

2.5 

1.34 
1.40 
1.45 
1.49 
1.56 
1.64 
1.74 
1.83 
1.90 
1.95 
1.98 
2.03 
2.06 

5 

1.41 
1.46 
1.53 
1.56 
1.64 
1.72 
1.82 
1.91 
1.98 
2.03 
2.07 
2.11 
2.15 

10 

1.53 
1.58 
1.63 
1.68 
1.76 
1.84 
1.95 
2.03 
2.10 
2.14 
2.19 
2.22 
2.25 

Percentiles 

20 

1.70 
1.75 
1.80 
1.85 
1.93 
2.01 
2.13 
2.20 
2.26 
2.31 
2.34 
2.37 
2.41 

80 

2.78 
2.84 
2.98 
3.01 
3.06 
3.13 
3.21 
3.23 
3.25 
3.27 
3.28 
3.28 
3.28 

90 

3.20 
3.31 
3.43 
3.53 
3.55 
3.62 
3.68 
3.68 
3.68 
3.68 
3.67 
3.65 
3.62 

95 

3.55 
3.70 
3.86 
3.95 
4.05 
4.13 
4.17 
4.16 
4.11 
4.10 
4.06 
4.00 
3.99 

97.5 

3.85 
4.09 
4.28 
4.40 
4.56 
4.66 
4.68 
4.65 
4.59 
4.53 
4.46 
4.39 
4.33 

98 

3.93 
4.20 
4.41 
4.55 
4.73 
4.85 
4.87 
4.82 
4.75 
4.68 
4.61 
4.52 
4.45 

99 

4.23 
4.53 
4.82 
5.00 
5.20 
5.30 
5.36 
5.30 
5.21 
5.13 
5.04 
4.94 
4.88 



Table A.4 Percentiles for D'Agostino's Test for Normality 

Upper and lower percentiles for the statistic 

where 

and the observations y\ 
hypothesis of normality 

n 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
60 
70 
80 
90 

100 
150 
200 
250 

.5 

-4.66 
-4.63 
-4.57 
-4.52 
-4.47 
-4.41 
-4.36 
-4.32 
-4.27 
-4.23 
-4.19 
-4.16 
-4.12 
-4.09 
-4.06 
-4.03 
-4.00 
-3.98 
-3.95 
-3.93 
-3.91 
-3.81 
-3.73 
-3.67 
-3.61 
-3.57 
-3.409 
-3.302 
-3.227 

1.0 

-4.06 
-4.02 
-3.97 
-3.92 
-3.87 
-3.83 
-3.78 
-3.75 
-3.71 
-3.68 
-3.64 
-3.61 
-3.59 
-3.56 
-3.54 
-3.51 
-3.49 
-3.47 
-3.45 
-3.43 
-3.41 
-3.34 
-3.27 
-3.22 
-3.17 
-3.14 
-3.009 
-2.922 
-2.861 

D 

, 2 / 2 , · - · , 

γ _ V^[D - (2v^)"1] 

_ ΣΓ=ι [ 
v r ? 

.02998598 ϊ 

i - i ( n + l ) ]y ( i ) 

ΣΓ=ι(^· 
y„ are ordered as y^ 

if Y is greater than 

2.5 

-3.25 
-3.20 
-3.16 
-3.12 
-3.08 
-3.04 
-3.01 
-2.98 
-2.96 
-2.93 
-2.91 
-2.88 
-2.86 
-2.85 
-2.83 
-2.81 
-2.80 
-2.78 
-2.77 
-2.75 
-2.74 
-2.68 
-2.64 
-2.60 
-2.57 
-2.54 
-2.452 
-2.391 
-2.348 

-w 
i) < i !/(2) < . . . < 

an upper percentile or less than a 

Percentiles of Y 

5 

-2.62 
-2.58 
-2.53 
-2.50 
-2.47 
-2.44 
-2.41 
-2.39 
-2.37 
-2.35 
-2.33 
-2.32 
-2.30 
-2.29 
-2.28 
-2.26 
-2.25 
-2.24 
-2.23 
-2.22 
-2.21 
-2.17 
-2.14 
-2.11 
-2.09 
-2.07 
-2.004 
-1.960 
-1.926 

10 

-1.99 
-1.94 
-1.90 
-1.87 
-1.85 
-1.82 
-1.81 
-1.79 
-1.77 
-1.76 
-1.75 
-1.73 
-1.72 
-1.71 
-1.70 
-1.70 
-1.69 
-1.68 
-1.67 
-1.67 
-1.66 
-1.64 
-1.61 
-1.59 
-1.58 
-1.57 
-1.520 
-1.491 
-1.471 

90 

.149 

.237 

.308 

.367 

.417 

.460 

.497 

.530 

.559 

.586 

.610 

.631 

.651 

.669 

.686 

.702 

.716 

.730 

.742 

.754 

.765 

.812 

.849 

.878 

.902 

.923 

.990 
1.032 
1.060 

95 

.235 

.329 

.399 

.459 

.515 

.565 

.609 

.648 

.682 

.714 

.743 

.770 

.794 

.816 

.837 

.857 

.875 

.892 

.908 

.923 

.937 

.997 
1.05 
1.08 
1.12 
1.14 
1.233 
1.290 
1.328 

97.5 

.299 

.381 

.460 

.526 

.574 

.628 

.677 

.720 

.760 

.797 

.830 

.862 

.891 

.917 

.941 

.964 

.986 
1.01 
1.02 
1.04 
1.06 
1.13 
1.19 
1.24 
1.28 
1.31 
1.423 
1.496 
1.545 

3/(n)· Reject the 
lower percentile. 

99 

.356 

.440 

.515 

.587 

.636 

.690 

.744 

.783 

.827 

.868 

.906 

.942 

.975 
1.00 
1.03 
1.06 
1.09 
1.11 
1.13 
1.15 
1.18 
1.26 
1.33 
1.39 
1.44 
1.48 
1.623 
1.715 
1.779 

99.5 

.385 

.479 

.555 

.613 

.667 

.720 

.775 

.822 

.867 

.910 

.941 

.983 
1.02 
1.05 
1.08 
1.11 
1.14 
1.17 
1.19 
1.22 
1.24 
1.34 
1.42 
1.48 
1.54 
1.59 
1.746 
1.853 
1.927 



sanavi 309 

T
ab

le
 A

.5
 

U
pp

er
 P

er
ce

nt
ile

s 
fo

r 
6i

jf 

Re
je

ct
 th

e 
hy

po
th

es
is

 o
f m

ul
tiv

ar
ia

te
 n

or
m

al
ity

 if
 b

i 
lo

w
er

 

n 10
 

12
 

14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

pe
rc

en
tik

 

90
 

2.
99

4 
2.

68
1 

2.
41

9 
2.

21
9 

2.
05

0 
1.8

94
 

1.5
81

 
1.3

63
 

1.0
50

 
.8

62
 

.7
31

 
.6

31
 

.5
44

 
.4

87
 

.4
38

 
.2

81
 

.2
19

 
.1

44
 

.1
16

 
.0

77
 

:. 
Th

e 
sta

tis
tic

s 
&i

 ,p 
an

d 
&

2, ;
 

P 
= 

2,
 

U
pp

er
 P

er
ce

nt
ile

s 
fo

r &
i, r

 

92
.5

 

3.
26

3 
2.

94
4 

2.
66

9 
2.

44
4 

2.
25

6 
2.

08
1 

1.7
44

 
1.5

13
 

1.1
81

 
.9

69
 

.8
19

 
.7

25
 

.6
37

 
.5

69
 

.5
06

 
.3

44
 

.2
69

 
.1

69
 

.1
29

 
.0

85
 

Pe
rc

en
til

es
 

95
 

3.
69

4 
3.

31
9 

3.
03

1 
2.

77
5 

2.
55

6 
2.

35
6 

1.9
69

 
1.6

87
 

1.3
19

 
1.0

69
 

.9
06

 
.7

94
 

.6
94

 
.6

38
 

.5
81

 
.4

00
 

.3
00

 
.2

09
 

.1
41

 
.0

94
 

97
.5

 

4.
29

4 
3.

93
1 

3.
61

9 
3.

33
7 

3.
10

0 
2.

88
1 

2.
43

8 
2.

09
4 

1.
60

6 
1.

30
6 

1.0
94

 
.9

37
 

.8
12

 
.7

25
 

.6
56

 
.4

44
 

.3
31

 
.2

25
 

.1
66

 
.1

10
 

, a
nd

 U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r &

2, P
 

,p
 is

 g
re

at
er

 th
an

 ta
bl

e 
va

lu
e.

 R
ej

ec
t i

f &
2, P

 is
 g

re
at

er
 th

an
 

P 
ar

e 
de

fin
ed

 in
 S

ec
tio

n 
4.

4.
2.

 

> 

99
 

5.
19

4 
4.

93
8 

4.
58

1 
4.

23
1 

3.
96

2 
3.

66
9 

3.
10

6 
2.

68
1 

2.
08

7 
1.7

44
 

1.4
44

 
1.2

44
 

1.0
56

 
.9

19
 

.8
31

 
.5

31
 

.3
94

 
.2

56
 

.1
97

 
.1

31
 

99
.9

 

6.
99

4 
6.

74
4 

6.
41

9 
6.

06
2 

5.
73

7 
5.

42
5 

4.
71

9 
4.

23
8 

3.
36

9 
2.

70
6 

2.
20

0 
1.

86
3 

1.5
87

 
1.4

00
 

1.2
31

 
.7

94
 

.5
69

 
.3

69
 

.2
75

 
.1

83
 

n 10
 

12
 

14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

1 

4.
58

0 
4.

73
2 

4.
84

2 
4.

97
7 

5.
04

5 
5.

17
5 

5.
35

1 
5.

51
8 

5.
70

3 
5.

90
9 

6.
01

5 
6.

13
9 

6.
22

3 
6.

33
2 

6.
38

9 
6.

61
5 

6.
76

1 
6.

94
9 

7.
07

9 
7.

23
2 

i u
pp

er
 p

er
ce

nt
ile

 o
r 

P 
= 

2,
 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r &

2, P
 

2.
5 

4.
72

2 
4.

89
9 

5.
01

5 
5.

14
9 

5.
21

9 
5.

26
2 

5.
52

5 
5.

69
2 

5.
87

1 
6.

08
3 

6.
18

9 
6.

29
0 

6.
37

2 
6.

47
5 

6.
52

1 
6.

74
9 

6.
88

9 
7.

05
2 

7.
17

1 
7.

29
5 

5 

4.
88

7 
5.

05
3 

5.
17

9 
5.

31
8 

5.
38

2 
5.

53
3 

5.
68

9 
5.

85
5 

6.
13

9 
6.

23
9 

6.
33

5 
6.

43
7 

6.
53

9 
6.

62
2 

6.
66

5 
6.

85
8 

6.
97

9 
7.

14
2 

7.
25

2 
7.

36
9 

Pe
rc

en
til

es
 

10
 

5.
05

7 
5.

23
2 

5.
35

8 
5.

48
2 

5.
55

5 
5.

71
7 

5.
87

1 
6.

03
8 

6.
22

9 
6.

40
3 

6.
50

5 
6.

60
2 

6.
68

3 
6.

74
9 

6.
79

3 
6.

97
2 

7.
08

3 
7.

24
5 

7.
34

2 
7.

46
4 

90
 

8.
60

6 
8.

94
7 

9.
16

2 
9.

33
1 

9.
40

3 
9.

46
9 

9.
50

3 
9.

51
6 

9.
49

7 
9.

45
3 

9.
40

1 
9.

35
6 

9.
30

9 
9.

25
6 

9.
21

0 
9.

02
7 

8.
91

9 
8.

77
6 

8.
66

4 
8.

54
7 

95
 

9.
20

3 
9.

59
3 

9.
76

9 
9.

94
1 

10
.0

05
 

10
.1

14
 

10
.1

59
 

10
.1

56
 

10
.1

09
 

9.
98

7 
9.

88
9 

9.
78

1 
9.

69
4 

9.
68

8 
9.

55
6 

9.
30

0 
9.

14
1 

8.
91

6 
8.

78
7 

8.
64

7 

if 
&

2, Ρ
 is

 le
ss

 th
an

 

97
.5

 

9.
78

1 
10

.1
50

 
10

.3
75

 
10

.5
62

 
10

.6
28

 
10

.6
91

 
10

.5
84

 
10

.5
56

 
10

.5
63

 
10

.3
72

 
10

.2
50

 
10

.1
06

 
9.

98
1 

9.
88

5 
9.

80
6 

9.
47

5 
9.

26
9 

9.
03

1 
8.

91
7 

8.
74

9 

99
 

10
.3

78
 

10
.8

81
 

11
.1

59
 

11
.3

87
 

11
.4

78
 

11
.6

09
 

11
.6

28
 

11
.5

94
 

11
.4

53
 

11
.1

81
 

10
.9

94
 

10
.7

53
 

10
.5

37
 

10
.3

25
 

10
.1

88
 

10
.2

53
 

9.
50

6 
9.

21
9 

9.
06

1 
8.

87
4 

(c
on

tin
ue

d)
 



TABLES 6 0 3 

n 80
0 

10
00

 
15

00
 

25
00

 
30

00
 

40
00

 
50

00
 

n 10
 

12
 

14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

90
 

.0
58

 
.0

46
 

.0
31

 
.0

19
 

.0
16

 
.0

12
 

.0
09

 

90
 

6.
0 

5.
5 

5.
0 

4.
6 

4.
2 

3.
9 

3.
3 

2.
8 

2.
2 1.7
 

U
pp

er
 ] 

92
.5

 

.0
64

 
.0

51
 

.0
34

 
.0

21
 

.0
17

 
.0

13
 

.0
10

 

U
pp

er
 

92
.5

 

6.
5 

5.
9 

5.
4 

4.
9 

4.
6 

4.
2 

3.
5 

3.
0 

2.
4 1.9
 

P 
= 

2,
 

Pe
rc

en
til

es
 fo

r 
b\

tP
 

Pe
rc

en
til

es
 

95
 

.0
71

 
.0

57
 

.0
38

 
.0

23
 

.0
19

 
.0

14
 

.0
11

 

97
.5

 

.0
83

 
.0

66
 

.0
44

 
.0

27
 

.0
22

 
.0

17
 

.0
13

 

P 
= 

3,
 

Pe
rc

en
til

es
 fo

r 
6i

, p 
Pe

rc
en

til
es

 

95
 

6.
9 

6.
4 

5.
9 

5.
4 

5.
1 

4.
7 

3.
9 

3.
3 

2.
7 

2.
2 

97
.5

 

7.
7 

7.
1 

6.
5 

6.
1 

5.
6 

5.
3 

4.
5 

3.
9 

3.
0 

2.
4 

99
 

.0
99

 
.0

79
 

.0
53

 
.0

32
 

.0
27

 
.0

20
 

.0
16

 

99
 

8.
8 

8.
1 

7.
4 

6.
8 

6.
4 

6.
0 

5.
2 

4.
4 

3.
5 

2.
8 

99
.9

 

.1
37

 
.1

10
 

.0
74

 
.0

44
 

.0
37

 
.0

28
 

.0
22

 

99
.9

 

11
.5

 
10

.5
 

9.
7 

8.
9 

8.
3 

7.
7 

6.
5 

5.
6 

4.
2 

3.
4 

T
ab

le
 A

.5
 

n 80
0 

10
00

 
15

00
 

20
00

 
25

00
 

30
00

 
40

00
 

50
00

 

n 10
 

12
 

14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

(C
on

tin
ue

d)
 

1 

7.
30

4 
7.

36
7 

7.
46

0 
7.

53
5 

7.
58

8 
7.

62
4 

7.
67

4 
7.

70
9 

1 10
.0

 
10

.2
 

10
.4

 
10

.5
 

10
.7

 
10

.8
 

11
.1

 
11

.3
 

11
.7

 
11

.9
 

P
 =

 2
, 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r 6

2,
P

 

2.
5 

7.
37

2 
7.

43
3 

7.
53

7 
7.

59
9 

7.
64

1 
7.

67
3 

7.
71

6 
7.

74
6 

5 

7.
45

1 
7.

50
4 

7.
59

5 
7.

64
9 

7.
68

6 
7.

71
4 

7.
75

2 
7.

77
8 

Pe
rc

en
til

es
 

10
 

7.
53

6 
7.

58
5 

7.
66

1 
7.

70
7 

7.
73

8 
7.

76
0 

7.
79

3 
7.

71
4 

90
 

8.
47

2 
8.

41
9 

8.
33

9 
8.

29
3 

8.
26

2 
8.

24
0 

8.
20

7 
8.

18
6 

95
 

8.
56

2 
8.

49
7 

8.
40

5 
8.

35
1 

8.
31

4 
8.

28
6 

8.
24

8 
8.

22
2 

P 
= 

3,
 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r 6

2,
P

 

2.
5 

10
.2

 
10

.4
 

10
.6

 
10

.8
 

11
.0

 
11

.1
 

11
.4

 
11

.6
 

12
.0

 
12

.3
 

5 10
.4

 
10

.7
 

10
.9

 
11

.1
 

11
.3

 
11

.4
 

11
.8

 
12

.0
 

12
.4

 
12

.6
 

Pe
rc

en
til

es
 

10
 

10
.7

 
11

.0
 

11
.3

 
11

.5
 

11
.6

 
11

.8
 

12
.1

 
12

.3
 

12
.7

 
12

.9
 

90
 

14
.0

 
14

.7
 

15
.1

 
15

.4
 

15
.5

 
15

.7
 

15
.9

 
16

.0
 

16
.1

 
16

.1
 

95
 

14
.4

 
15

.2
 

15
.8

 
16

.1
 

16
.4

 
16

.5
 

16
.7

 
16

.7
 

16
.7

 
16

.7
 

97
.5

 

8.
64

1 
8.

56
9 

8.
46

3 
8.

40
1 

8.
35

9 
8.

32
7 

8.
28

4 
8.

25
4 

97
.5

 

15
.0

 
15

.9
 

16
.5

 
16

.8
 

17
.1

 
17

.2
 

17
.4

 
17

.5
 

17
.4

 
17

.3
 

99
 

8.
74

7 
8.

65
6 

8.
53

2 
8.

46
1 

8.
41

2 
8.

37
6 

8.
32

6 
8.

29
1 

99
 

15
.6

 
16

.4
 

17
.1

 
17

.5
 

17
.8

 
18

.0
 

18
.2

 
18

.3
 

18
.2

 
18

.0
 

(c
on

tin
ue

d)
 



(JI -Ι̂  υο to — H-

n 60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

80
0 

10
00

 
15

00
 

20
00

 
30

00
 

40
00

 
50

00
 

n 10
 

12
 

90
 

1.5
 

1.3
 

1.1
3 

1.0
1 .9
2 

.6
2 

.4
7 

.3
2 

.2
37

 
.1

59
 

.1
19

 
.0

95
 

.0
64

 
.0

48
 

.0
32

 
.0

24
 

.0
19

 

90
 

11
.1

 
10

.1
 

P 
= 

3,
 

U
pp

er
 P

er
ce

nt
ile

s 
fo

r 6
i >

p 

92
.5

 

1.6
 

1.4
 

1.2
 

1.0
8 .9
7 

.6
6 

.5
0 

.3
3 

.2
52

 
.1

68
 

.1
27

 
.0

10
 

.0
68

 
.0

51
 

.0
34

 
.0

25
 

.0
20

 

Pe
rc

en
til

es
 

95
 

1.8
 

1.5
 

1.3
 

1.1
6 

1.0
5 .7
1 

.5
4 

.3
6 

.2
72

 
.1

82
 

.1
37

 
.1

09
 

.0
73

 
.0

55
 

.0
37

 
.0

27
 

.0
22

 

97
.5

 

2.
0 1.7
 

1.5
 

1.3
 

1.1
8 .8
0 

.6
0 

.4
0 

.3
0 

.2
03

 
.1

53
 

.1
22

 
.0

82
 

.0
61

 
.0

41
 

.0
31

 
.0

25
 

P
 =

 4
, 

U
pp

er
 P

er
ce

nt
ile

s 
fo

r i
»i

iP
 

92
.5

 

11
.6

 
10

.6
 

Pe
rc

en
til

es
 

95
 

12
.2

 
11

.2
 

97
.5

 

13
.3

 
12

.2
 

99
 

2.
4 

2.
0 1.7
 

1.5
 

1.3
 .9
0 

.6
8 

.4
6 

.3
4 

.2
30

 
.1

73
 

.1
39

 
.0

93
 

.0
69

 
.0

46
 

.0
35

 
.0

28
 

99
 

15
.3

 
13

.9
 

99
.9

 

2.
9 

2.
5 

2.
2 1.9
 

1.7
 

1.1
5 .8
7 

.5
8 

.4
4 

.2
94

 
.2

21
 

.1
77

 
.1

18
 

.0
89

 
.0

59
 

.0
44

 
.0

35
 

99
.9

 

17
.9

 
16

.2
 T

ab
le

 A
.5

 

n 60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

80
0 

10
00

 
15

00
 

20
00

 
30

00
 

40
00

 
50

00
 

n 10
 

12
 (C

on
tin

ue
d)

 

1 

12
.1

 
12

.3
 

12
.4

 
12

.5
 

12
.6

 
13

.0
 

13
.2

 
13

.6
 

13
.7

 
13

.9
 

14
.1

 
14

.1
7 

14
.3

3 
14

.4
2 

14
.5

3 
14

.5
9 

14
.6

3 

1 

17
.0

 
17

.4
 

P 
= 

3,
 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r &

2, P
 

2.
5 

12
.5

 
12

.6
 

12
.8

 
12

.9
 

13
.0

 
13

.3
 

13
.5

 
13

.8
 

13
.9

 
14

.1
 

14
.2

 
14

.3
0 

14
.4

3 
14

.5
1 

14
.6

0 
14

.6
5 

14
.6

9 

5 

12
.8

 
13

.0
 

13
.1

 
13

.2
 

13
.3

 
13

.6
 

13
.8

 
14

.0
 

14
.1

 
14

.3
 

14
.3

 
14

.4
1 

14
.5

2 
14

.5
8 

14
.6

6 
14

.7
1 

14
.7

4 

Pe
rc

en
til

es
 

10
 

13
.1

 
13

.2
 

13
.3

 
13

.5
 

13
.5

 
13

.8
 

14
.0

 
14

.2
 

14
.3

 
14

.4
 

14
.5

 
14

.5
3 

14
.6

2 
14

.6
7 

14
.7

3 
14

.7
7 

14
.8

0 

90
 

16
.1

 
16

.1
 

16
.1

 
16

.0
 

16
.0

 
15

.9
 

15
.8

 
15

.7
 

15
.6

 
15

.5
1 

15
.4

5 
15

.4
1 

15
.3

4 
15

.3
0 

15
.2

5 
15

.2
1 

15
.1

9 

95
 

16
.6

 
16

.6
 

16
.5

 
16

.5
 

16
.4

 
16

.2
 

16
.1

 
15

.9
 

15
.8

 
15

.6
7 

15
.5

9 
15

.5
3 

15
.4

4 
15

.3
9 

15
.3

2 
15

.2
8 

15
.2

5 

P
 =

 4
, 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s 

fo
r &

2,j>
 

2.
5 

17
.3

 
17

.7
 

5 

17
.6

 
18

.0
 

Pe
rc

en
til

es
 

10
 

17
.8

 
18

.3
 

90
 

21
.5

 
22

.3
 

95
 

22
.4

 
23

.3
 

97
.5

 

17
.2

 
17

.1
 

17
.0

 
16

.9
 

16
.8

 
16

.5
 

16
.3

 
16

.1
 

16
.0

 
15

.8
1 

15
.7

1 
15

.6
4 

15
.5

3 
15

.4
6 

15
.3

8 
15

.3
3 

15
.3

0 

97
.5

 

23
.0

 
24

.2
 

99
 

17
.9

 
17

.7
 

17
.6

 
17

.5
 

17
.4

 
17

.0
 

16
.8

 
16

.5
 

16
.3

 
15

.9
7 

15
.8

5 
15

.7
7 

15
.6

3 
15

.5
5 

15
.4

5 
15

.3
9 

15
.3

5 

99
 

24
.0

 
25

.4
 

(c
on

tin
ue

d)
 



T
ab

le
 A

.5
 

(C
on

tin
ue

d)
 

n 14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

80
0 

10
00

 
15

00
 

20
00

 
30

00
 

40
00

 
50

00
 

90
 

9.
2 

8.
4 

7.
7 

7.
0 

5.
9 5.
0 

3.
9 

3.
1 

2.
7 

2.
3 

2.
0 1.8
1 

1.6
4 

1.1
1 .8
4 

.5
6 

.4
2 

.2
82

 
.2

12
 

.1
70

 
.1

13
 

.0
85

 
.0

57
 

.0
43

 
.0

34
 

V
 =

 4
, 

U
pp

er
 P

er
ce

nt
ile

s 
fo

r 
6i

, p 

92
.5

 

9.
7 8.
8 

8.
0 

7.
4 

6.
2 

5.
3 

4.
1 3.
3 

2.
8 

2.
4 

2.
1 1.8
9 

1.7
1 

1.1
6 .8
7 

.5
9 

.4
4 

.2
95

 
.2

22
 

.1
77

 
.1

18
 

.0
89

 
.0

59
 

.0
45

 
.0

39
 

Pe
rc

en
til

es
 

95
 

10
.2

 
9.

4 8.7
 

8.
0 

6.
6 5.
6 

4.
3 

3.
5 

2.
9 

2.
5 

2.
2 

2.
0 1.8
1 

1.2
2 .9
2 

.6
2 

.4
7 

.3
1 

.2
34

 
.1

88
 

.1
25

 
.0

94
 

.0
63

 
.0

47
 

.0
38

 

97
.5

 

11
.2

 
10

.3
 

9.
5 

8.
8 

7.
1 

6.
0 

4.
6 

3.
8 

3.
2 

2.
8 

2.
4 

2.
2 1.9
7 

1.3
3 

1.0
0 .6
7 

.5
1 

.3
4 

.2
55

 
.2

04
 

.1
36

 
.1

02
 

.0
68

 
.0

51
 

.0
41

 

99
 

12
.7

 
11

.6
 

10
.7

 
9.

9 
8.1

 
6.

8 
5.

2 
4.

2 
3.

5 
3.

0 
2.

7 
2.

4 
2.

2 1.4
6 

1.1
0 .7
4 

.5
6 

.3
7 

.2
80

 
.2

24
 

.1
50

 
.1

12
 

.0
75

 
.0

56
 

.0
45

 

99
.9

 

14
.8

 
13

.6
 

12
.6

 
11

.6
 

9.
7 8.1

 
6.

2 
5.

0 
4.

2 
3.

7 
3.

2 
2.

9 
2.

6 1.7
6 

1.3
3 .8
9 

.6
7 

.4
5 

.3
4 

.2
71

 
.1

81
 

.1
36

 
.0

91
 

.0
68

 
.0

54
 

n 14
 

16
 

18
 

20
 

25
 

30
 

40
 

50
 

60
 

70
 

80
 

90
 

10
0 

15
0 

20
0 

30
0 

40
0 

60
0 

80
0 

10
00

 
15

00
 

20
00

 
30

00
 

40
00

 
50

00
 

1 

17
.7

 
18

.0
 

18
.2

 
18

.4
 

18
.8

 
19

.1
 

19
.6

 
20

.0
 

20
.2

 
20

.4
 

20
.6

 
20

.8
 

20
.9

 
21

.4
 

21
.7

 
22

.1
 

22
.3

 
22

.6
3 

22
.8

2 
22

.9
4 

23
.1

4 
23

.2
6 

23
.4

0 
23

.4
8 

23
.5

4 

V
 =

 4
, 

U
pp

er
 a

nd
 L

ow
er

 P
er

ce
nt

ile
s f

or
 b

^,
p 

2.
5 

18
.0

 
18

.2
 

18
.4

 
18

.6
 

19
.1

 
19

.4
 

19
.9

 
20

.3
 

20
.5

 
20

.7
 

21
.0

 
21

.1
 

21
.2

 
21

.7
 

22
.0

 
22

.3
3 

22
.5

6 
22

.8
3 

22
.9

9 
23

.1
0 

23
.2

7 
23

.3
7 

23
.4

9 
23

.5
6 

23
.6

1 

5 

18
.3

 
18

.6
 

18
.8

 
19

.0
 

19
.5

 
19

.8
 

20
.3

 
20

.6
 

20
.9

 
21

.0
 

21
.2

 
21

.4
 

21
.5

 
22

.0
 

22
.2

 
22

.5
7 

22
.7

7 
23

.0
1 

23
.1

5 
23

.2
4 

23
.3

8 
23

.4
7 

23
.5

7 
23

.6
3 

23
.6

7 

Pe
rc

en
til

es
 

10
 

18
.6

 
18

.9
 

19
.2

 
19

.4
 

19
.8

 
20

.2
 

21
.0

 
21

.0
 

21
.3

 
21

.5
 

21
.7

 
21

.8
 

21
.9

 
22

.3
3 

22
.5

7 
22

.8
5 

23
.0

2 
23

.2
1 

23
.3

2 
23

.4
0 

23
.5

1 
23

.5
8 

23
.6

6 
23

.7
1 

23
.7

4 

90
 

23
.0

 
23

.4
 

23
.8

 
24

.0
 

24
.5

 
24

.7
 

25
.0

 
25

.1
 

25
.1

4 
25

.1
5 

25
.1

5 
25

.1
4 

25
.1

2 
25

.0
3 

24
.9

5 
24

.8
3 

24
.7

5 
24

.6
3 

24
.5

6 
24

.5
1 

24
.4

2 
24

.3
7 

24
.3

1 
24

.2
7 

24
.2

4 

95
 

24
.0

 
24

.4
 

24
.7

 
25

.0
 

25
.4

 
25

.5
 

25
.7

 
25

.7
 

25
.7

 
25

.7
 

25
.6

 
25

.6
 

25
.6

 
25

.4
2 

25
.2

9 
25

.1
1 

24
.9

9 
24

.8
3 

24
.7

4 
24

.6
7 

24
.5

5 
24

.4
8 

24
.4

0 
24

.3
5 

24
.3

1 

97
.5

 

25
.0

 
25

.4
 

25
.8

 
26

.1
 

26
.4

 
26

.6
 

26
.7

 
26

.6
 

26
.6

 
26

.5
 

26
.4

 
26

.3
 

26
.2

 
25

.9
 

25
.6

 
25

.3
 

25
.2

0 
25

.0
1 

24
.8

9 
24

.8
0 

24
.6

6 
24

.5
8 

24
.4

8 
24

.4
2 

24
.3

7 

99
 

26
.1

 
26

.6
 

26
.9

 
27

.1
 

27
.3

 
27

.4
 

27
.4

 
27

.3
 

27
.2

 
27

.0
 

26
.9

 
26

.8
 

26
.7

 
26

.3
 

26
.0

 
25

.7
 

25
.4

6 
25

.2
1 

25
.0

6 
24

.9
6 

24
.7

9 
24

.6
9 

24
.5

7 
24

.5
0 

24
.4

5 

σ>
 

o 



606 TABLES 

Table A.6 Upper Percentiles for Test of Single Multivariate Normal Outlier 

Upper percentage points for the test statistic 

D2
(n) = max (y4 - y ) 'S _ 1 (y i - y). 

l<i<n 

This tests for a single outlier in a sample of size n from a multivariate normal distribution. 
Reject and conclude that the outlier is significant if -D?n) exceeds the table value. 

p = 2 p = 3 p = 4 p=5 

n a = .05 a = .01 a = .05 a = .01 a = .05 a = .01 a = .05 a = .01 

5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
25 
30 
35 
40 
45 
50 

100 
200 
500 

3.17 
4.00 
4.71 
5.32 
5.85 
6.32 
7.10 
7.74 
8.27 
8.73 
9.13 
9.94 

10.58 
11.10 
11.53 
11.90 
12.23 
14.22 
15.99 
18.12 

3.19 
4.11 
4.95 
5.70 
6.37 
6.97 
8.00 
8.84 
9.54 

10.15 
10.67 
11.73 
12.54 
13.20 
13.74 
14.20 
14.60 
16.95 
18.94 
21.22 

4.14 
5.01 
5.77 
6.43 
7.01 
7.99 
8.78 
9.44 

10.00 
10.49 
11.48 
12.24 
12.85 
13.36 
13.80 
14.18 
16.45 
18.42 
20.75 

4.16 
5.10 
5.97 
6.76 
7.47 
8.70 
9.71 

10.56 
11.28 
11.91 
13.18 
14.14 
14.92 
15.56 
16.10 
16.56 
19.26 
21.47 
23.95 

5.12 
6.01 
6.80 
7.50 
8.67 
9.61 

10.39 
11.06 
11.63 
12.78 
13.67 
14.37 
14.96 
15.46 
15.89 
18.43 
20.59 
23.06 

5.14 
6.09 
6.97 
7.79 
9.20 

10.37 
11.36 
12.20 
12.93 
14.40 
15.51 
16.40 
17.13 
17.74 
18.27 
21.30 
23.72 
26.37 

6.11 
7.01 
7.82 
9.19 

10.29 
11.20 
11.96 
12.62 
13.94 
14.95 
15.75 
16.41 
16.97 
17.45 
20.26 
22.59 
25.21 

6.12 
7.08 
7.98 
9.57 

10.90 
12.02 
12.98 
13.81 
15.47 
16.73 
17.73 
18.55 
19.24 
19.83 
23.17 
25.82 
28.62 
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72
.8
82
 

58
.6
18
 

49
.7
39
 

43
.7
45
 

39
.4
54
 

36
.2
46
 

33
.6
72
 

31
.7
88
 

30
.1
82
 

28
.8
52
 

27
.7
34
 

26
.7
81
 

25
.9
59
 

25
.2
44
 

24
.6
16
 

24
.0
60
 

23
.5
65
 

p 
=
 6
 

20
85
.9
84
 

44
6.
57
1 

20
5.
29
3 

12
8.
06
7 

93
.1
27
 

73
.9
69
 

62
.1
14
 

54
.1
50
 

48
.4
72
 

44
.2
40
 

40
.9
75
 

38
.3
85
 

36
.2
83
 

34
.5
46
 

33
.0
88
 

31
.8
47
 

30
.7
79
 

29
.8
50
 

29
.0
36
 

28
.3
16
 

p 
=
 7
 

27
81
.9
78
 

58
1.
10
6 

26
2.
07
6 

16
1.
01
5 

11
5.
64
0 

90
.9
07
 

75
.6
76
 

65
.4
83
 

58
.2
41
 

52
.8
58
 

48
.7
15
 

45
.4
35
 

42
.7
79
 

40
.5
87
 

38
.7
50
 

37
.1
88
 

35
.8
46
 

34
.6
80
 

33
.6
59
 

p 
=
 8
 

35
77
.4
72
 

73
3.
04
5 

32
5.
57
6 

19
7.
55
5 

14
0.
42
9 

10
9.
44
1 

90
.4
33
 

77
.7
55
 

68
.7
71
 

62
.1
09
 

56
.9
92
 

52
.9
48
 

49
.6
79
 

46
.9
86
 

44
.7
30
 

42
.8
16
 

41
.1
71
 

39
.7
45
 

p 
=
 9
 

44
72
.4
64
 

90
2.
39
2 

39
5.
79
7 

23
7.
69
2 

16
7.
49
9 

12
9.
57
6 

10
6.
39
1 

90
.9
69
 

80
.0
67
 

71
.9
99
 

65
.8
13
 

60
.9
32
 

56
.9
91
 

53
.7
48
 

51
.0
36
 

48
.7
36
 

46
.7
62
 

p
= 
1
0
 

54
66
.9
56
 

10
89
.1
49
 

47
2.
74
2 

28
1.
42
8 

19
6.
85
3 

15
1.
31
6 

12
3.
55
4 

10
5.
13
1 

92
.1
34
 

82
.5
32
 

75
.1
81
 

69
.3
89
 

64
.7
19
 

60
.8
79
 

57
.6
71
 

54
.9
53
 

(c
on

tin
ue

d)
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De
gr
ee
s 
of
 

Fr
ee
do
m,

 v
 

27
 

28
 

29
 

30
 

35
 

40
 

45
 

50
 

55
 

60
 

70
 

80
 

90
 

10
0
 

11
0
 

12
0
 

15
0
 

20
0
 

40
0
 

10
00
 

oo
 

p
=
l
 

7.
67
7 

7.
63
6 

7.
59
8 

7.
56
2 

7.
41
9 

7.
31
4 

7.
23
4 

7.
17
1 

7.
11
9 

7.
07
7 

7.
01
1 

6.
96
3 

6.
92
5 

6.
89
5 

6.
87
1 

6.
85
1 

6.
80
7 

6.
76
3 

6.
69
9 

6.
66
0 

6.
63
5 

p 
=
 2
 

11
.4
78
 

11
.3
83
 

11
.2
95
 

11
.2
15
 

10
.8
90
 

10
.6
55
 

10
.4
78
 

10
.3
40
 

10
.2
28
 

10
.1
37
 

9.
99
6 

9.
89
2 

9.
81
3 

9.
75
0 

9.
69
9 

9.
65
7 

9.
56
5 

9.
47
4 

9.
34
1 

9.
26
2 

9.
21
0 

No
te
: 

p 
=
 n
um

be
r 
of
 v
ar
ia
bl
es
. 

p 
=
 3
 

15
.1
49
 

14
.9
80
 

14
.8
25
 

14
.6
83
 

14
.1
17
 

13
.7
15
 

13
.4
14
 

13
.1
81
 

12
.9
95
 

12
.8
43
 

12
.6
11
 

12
.4
40
 

12
.3
10
 

12
.2
08
 

12
.1
25
 

12
.0
57
 

11
.9
09
 

11
.7
64
 

11
.5
51
 

11
.4
26
 

11
.3
45
 

Ta
bl
e
 A
.7

 
(C

on
tin

ue
d)

 

p 
=
 4
 

18
.9
83
 

18
.7
15
 

18
.4
71
 

18
.2
47
 

17
.3
66
 

16
.7
50
 

16
.2
95
 

15
.9
45
 

15
.6
67
 

15
.4
42
 

15
.0
98
 

14
.8
49
 

14
.6
60
 

14
.5
11
 

14
.3
91
 

14
.2
92
 

14
.0
79
 

13
.8
71
 

13
.5
69
 

13
.3
92
 

13
.2
77
 

p 
=
 
5
 

a 
=
 0
.0
1 

23
.1
21
 

22
.7
21
 

22
.3
59
 

22
.0
29
 

20
.7
43
 

19
.8
58
 

19
.2
11
 

18
.7
18
 

18
.3
31
 

18
.0
18
 

17
.5
43
 

17
.2
01
 

16
.9
42
 

16
.7
40
 

16
.5
77
 

16
.4
44
 

16
.1
56
 

15
.8
77
 

15
.4
73
 

15
.2
39
 

15
.0
86
 

p 
=
 6
 

27
.6
75
 

27
.1
01
 

26
.5
84
 

26
.1
16
 

24
.3
14
 

23
.0
94
 

22
.2
14
 

21
.5
50
 

21
.0
30
 

20
.6
13
 

19
.9
86
 

19
.5
36
 

19
.1
97
 

18
.9
34
 

18
.7
22
 

18
.5
49
 

18
.1
78
 

17
.8
19
 

17
.3
03
 

17
.0
06
 

16
.8
12
 

p 
=
 7
 

32
.7
56
 

31
.9
54
 

31
.2
36
 

30
.5
89
 

28
.1
35
 

26
.5
02
 

25
.3
40
 

24
.4
70
 

23
.7
95
 

23
.2
57
 

22
.4
51
 

21
.8
77
 

21
.4
48
 

21
.1
15
 

20
.8
49
 

20
.6
32
 

20
.1
67
 

19
.7
20
 

19
.0
80
 

18
.7
43
 

18
.4
75
 

p 
=
 8
 

38
.4
96
 

37
.3
93
 

36
.4
14
 

35
.5
38
 

32
.2
59
 

30
.1
20
 

28
.6
17
 

27
.5
04
 

26
.6
47
 

25
.9
67
 

24
.9
57
 

24
.2
42
 

23
.7
10
 

23
.2
99
 

22
.9
72
 

22
.7
05
 

22
.1
37
 

21
.5
92
 

20
.8
18
 

20
.3
76
 

20
.0
90
 

p 
=
 9
 

45
.0
51
 

43
.5
54
 

42
.2
34
 

41
.0
62
 

36
.7
43
 

33
.9
84
 

32
.0
73
 

30
.6
73
 

29
.6
03
 

28
.7
60
 

27
.5
15
 

26
.6
42
 

25
.9
95
 

25
.4
96
 

25
.1
01
 

24
.7
79
 

24
.0
96
 

23
.4
46
 

22
.5
25
 

22
.0
03
 

21
.6
66
 

p=
 
10
 

52
.6
22
 

50
.6
04
 

48
.8
39
 

47
.2
83
 

41
.6
51
 

38
.1
35
 

35
.7
37
 

33
.9
98
 

32
.6
82
 

31
.6
50
 

30
.1
39
 

29
.0
85
 

28
.3
10
 

27
.7
14
 

27
.2
43
 

26
.8
62
 

26
.0
54
 

25
.2
87
 

24
.2
09
 

23
.6
00
 

23
.2
09
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Table A.8 Bonferroni ί-Values, ta/2k,v, ce = 0.05 

V 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
55 
60 
70 
80 
90 
100 
110 
120 
250 
500 
1000 
oo 

1 

5.0000 

4.3027 
3.1824 
2.7764 
2.5706 
2.4469 
2.3646 
2.3060 
2.2622 
2.2281 
2.2010 
2.1788 
2.1604 
2.1448 
2.1314 
2.1199 
2.1098 
2.1009 
2.0930 
2.0860 
2.0796 
2.0739 
2.0687 
2.0639 
2.0595 
2.0555 
2.0518 
2.0484 
2.0452 
2.0423 
2.0301 
2.0211 
2.0141 
2.0086 
2.0040 
2.0003 
1.9944 
1.9901 
1.9867 
1.9840 
1.9818 
1.9799 
1.9695 
1.9647 
1.9623 
1.9600 

2 

2.5000 

6.2053 
4.1765 
3.4954 
3.1634 
2.9687 
2.8412 
2.7515 
2.6850 
2.6338 
2.5931 
2.5600 
2.5326 
2.5096 
2.4899 
2.4729 
2.4581 
2.4450 
2.4334 
2.4231 
2.4138 
2.4055 
2.3979 
2.3909 
2.3846 
2.3788 
2.3734 
2.3685 
2.3638 
2.3596 
2.3420 
2.3289 
2.3189 
2.3109 
2.3044 
2.2990 
2.2906 
2.2844 
2.2795 
2.2757 
2.2725 
2.2699 
2.2550 
2.2482 
2.2448 
2.2414 

3 

1.6667 

7.6488 
4.8567 
3.9608 
3.5341 
3.2875 
3.1276 
3.0158 
2.9333 
2.8701 
2.8200 
2.7795 
2.7459 
2.7178 
2.6937 
2.6730 
2.6550 
2.6391 
2.6251 
2.6126 
2.6013 
2.5912 
2.5820 
2.5736 
2.5660 
2.5589 
2.5525 
2.5465 
2.5409 
2.5357 
2.5145 
2.4989 
2.4868 
2.4772 
2.4694 
2.4630 
2.4529 
2.4454 
2.4395 
2.4349 
2.4311 
2.4280 
2.4102 
2.4021 
2.3980 
2.3940 

4 

1.2500 

8.8602 
5.3919 
4.3147 
3.8100 
3.5212 
3.3353 
3.2060 
3.1109 
3.0382 
2.9809 
2.9345 
2.8961 
2.8640 
2.8366 
2.8131 
2.7925 
2.7745 
2.7586 
2.7444 
2.7316 
2.7201 
2.7097 
2.7002 
2.6916 
2.6836 
2.6763 
2.6695 
2.6632 
2.6574 
2.6334 
2.6157 
2.6021 
2.5913 
2.5825 
2.5752 
2.5639 
2.5554 
2.5489 
2.5437 
2.5394 
2.5359 
2.5159 
2.5068 
2.5022 
2.4977 

fc 
5 6 
ΙΟΟα/fc 

1.0000 

9.9248 
5.8409 
4.6041 
4.0321 
3.7074 
3.4995 
3.3554 
3.2498 
3.1693 
3.1058 
3.0545 
3.0123 
2.9768 
2.9467 
2.9208 
2.8982 
2.8784 
2.8609 
2.8453 
2.8314 
2.8188 
2.8073 
2.7969 
2.7874 
2.7787 
2.7707 
2.7633 
2.7564 
2.7500 
2.7238 
2.7045 
2.6896 
2.6778 
2.6682 
2.6603 
2.6479 
2.6387 
2.6316 
2.6259 
2.6213 
2.6174 
2.5956 
2.5857 
2.5808 
2.5758 

.8333 

10.8859 
6.2315 
4.8510 
4.2193 
2.8630 
3.6358 
3.4789 
3.3642 
3.2768 
3.2081 
3.1527 
3.1070 
3.0688 
3.0363 
3.0083 
2.9840 
2.9627 
2.9439 
2.9271 
2.9121 
2.8985 
2.8863 
2.8751 
2.8649 
2.8555 
2.8469 
2.8389 
2.8316 
2.8247 
2.7966 
2.7759 
2.7599 
2.7473 
2.7370 
2.7286 
2.7153 
2.7054 
2.6978 
2.6918 
2.6868 
2.6827 
2.6594 
2.6488 
2.6435 
2.6383 

7 

.7143 

11.7687 
6.5797 
5.0675 
4.3818 
3.9971 
3.7527 
3.5844 
3.4616 
3.3682 
3.2949 
3.2357 
3.1871 
3.1464 
3.1118 
3.0821 
3.0563 
3.0336 
3.0136 
2.9958 
2.9799 
2.9655 
2.9525 
2.9406 
2.9298 
2.9199 
2.9107 
2.9023 
2.8945 
2.8872 
2.8575 
2.8355 
2.8187 
2.8053 
2.7944 
2.7855 
2.7715 
2.7610 
2.7530 
2.7466 
2.7414 
2.7370 
2.7124 
2.7012 
2.6957 
2.6901 

8 

.6250 

12.5897 
6.8952 
5.2611 
4.5257 
4.1152 
3.8552 
3.6766 
3.5465 
3.4477 
3.3702 
3.3078 
3.2565 
3.2135 
3.1771 
3.1458 
3.1186 
3.0948 
3.0738 
3.0550 
3.0382 
3.0231 
3.0095 
2.9970 
2.9856 
2.9752 
2.9656 
2.9567 
2.9485 
2.9409 
2.9097 
2.8867 
2.8690 
2.8550 
2.8436 
2.8342 
2.8195 
2.8086 
2.8002 
2.7935 
2.7880 
2.7835 
2.7577 
2.7460 
2.7402 
2.7344 

9 

.5556 

13.3604 
7.1849 
5.4366 
4.6553 
4.2209 
3.9467 
3.7586 
3.6219 
3.5182 
3.4368 
3.3714 
3.3177 
3.2727 
3.2346 
3.2019 
3.1735 
3.1486 
3.1266 
3.1070 
3.0895 
3.0737 
3.0595 
3.0465 
3.0346 
3.0237 
3.0137 
3.0045 
2.9959 
2.9880 
2.9554 
2.9314 
2.9130 
2.8984 
2.8866 
2.8768 
2.8615 
2.8502 
2.8414 
2.8344 
2.8287 
2.8240 
2.7972 
2.7850 
2.7790 
2.7729 

10 

.5000 

14.0890 
7.4533 
5.5976 
4.7733 
4.3168 
4.0293 
3.8325 
3.6897 
3.5814 
3.4966 
3.4284 
3.3725 
3.3257 
3.2860 
3.2520 
3.2224 
3.1966 
3.1737 
3.1534 
3.1352 
3.1188 
3.1040 
3.0905 
3.0782 
3.0669 
3.0565 
3.0469 
3.0380 
3.0298 
2.9960 
2.9712 
2.9521 
2.9370 
2.9247 
2.9146 
2.8987 
2.8870 
2.8779 
2.8707 
2.8648 
2.8599 
2.8322 
2.8195 
2.8133 
2.8070 

{continued) 
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V 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
55 
60 
70 
80 
90 
100 
110 
120 
250 
500 
1000 
oo 

11 

.4545 

14.7818 
7.7041 
5.7465 
4.8819 
4.4047 
4.1048 
3.8999 
3.7513 
3.6388 
3.5508 
3.4801 
3.4221 
3.3736 
3.3325 
3.2973 
3.2667 
3.2399 
3.2163 
3.1952 
3.1764 
3.1595 
3.1441 
3.1302 
3.1175 
3.1058 
3.0951 
3.0852 
3.0760 
3.0675 
3.0326 
3.0069 
2.9872 
2.9716 
2.9589 
2.9485 
2.9321 
2.9200 
2.9106 
2.9032 
2.8971 
2.8921 
2.8635 
2.8505 
2.8440 
2.8376 

12 

.4167 

15.4435 
7.9398 
5.8853 
4.9825 
4.4858 
4.1743 
3.9618 
3.8079 
3.6915 
3.6004 
3.5274 
3.4674 
3.4173 
3.3749 
3.3386 
3.3070 
3.2794 
3.2550 
3.2333 
3.2139 
3.1965 
3.1807 
3.1663 
3.1532 
3.1412 
3.1301 
3.1199 
3.1105 
3.1017 
3.0658 
3.0393 
3.0191 
3.0030 
2.9900 
2.9792 
2.9624 
2.9500 
2.9403 
2.9327 
2.9264 
2.9212 
2.8919 
2.8785 
2.8719 
2.8653 

Table A.8 

13 

.3846 

16.0780 
8.1625 
6.0154 
5.0764 
4.5612 
4.2388 
4.0191 
3.8602 
3.7401 
3.6462 
3.5709 
3.5091 
3.4576 
3.4139 
3.3765 
3.3440 
3.3156 
3.2906 
3.2683 
3.2483 
3.2304 
3.2142 
3.1994 
3.1859 
3.1736 
3.1622 
3.1517 
3.1420 
3.1330 
3.0962 
3.0690 
3.0482 
3.0318 
3.0184 
3.0074 
2.9901 
2.9773 
2.9675 
2.9596 
2.9532 
2.9479 
2.9178 
2.9041 
2.8973 
2.8905 

14 

(Continued) 

k 

15 
WOa/k 

.3571 

16.6883 
8.3738 
6.1380 
5.1644 
4.6317 
4.2989 
4.0724 
3.9088 
3.7852 
3.6887 
3.6112 
3.5478 
3.4949 
3.4501 
3.4116 
3.3783 
3.3492 
3.3235 
3.3006 
3.2802 
3.2618 
3.2451 
3.2300 
3.2162 
3.2035 
3.1919 
3.1811 
3.1712 
3.1620 
3.1242 
3.0964 
3.0751 
3.0582 
3.0446 
3.0333 
3.0156 
3.0026 
2.9924 
2.9844 
2.9778 
2.9724 
2.9416 
2.9276 
2.9207 
2.9137 

.3333 

17.2772 
8.5752 
6.2541 
5.2474 
4.6979 
4.3553 
4.1224 
3.9542 
3.8273 
3.7283 
3.6489 
3.5838 
3.5296 
3.4837 
3.4443 
3.4102 
3.3804 
3.3540 
3.3306 
3.3097 
3.2909 
3.2739 
3.2584 
3.2443 
3.2313 
3.2194 
3.2084 
3.1982 
3.1888 
3.1502 
3.1218 
3.1000 
3.0828 
3.0688 
3.0573 
3.0393 
3.0259 
3.0156 
3.0073 
3.0007 
2.9951 
2.9637 
2.9494 
2.9423 
2.9352 

16 

.3125 

17.8466 
8.7676 
6.3643 
5.3259 
4.7604 
4.4084 
4.1693 
3.9969 
3.8669 
3.7654 
3.6842 
3.6176 
3.5621 
3.5151 
3.4749 
3.4400 
3.4095 
3.3826 
3.3587 
3.3373 
3.3181 
3.3007 
3.2849 
3.2705 
3.2572 
3.2451 
3.2339 
3.2235 
3.2138 
3.1744 
3.1455 
3.1232 
3.1057 
3.0914 
3.0796 
3.0613 
3.0476 
3.0371 
3.0287 
3.0219 
3.0162 
2.9842 
2.9696 
2.9624 
2.9552 

17 

.2941 

18.3984 
8.9521 
6.4693 
5.4005 
4.8196 
4.4586 
4.2137 
4.0371 
3.9041 
3.8004 
3.7173 
3.6493 
3.5926 
3.5447 
3.5036 
3.4680 
3.4369 
3.4094 
3.3850 
3.3632 
3.3436 
3.3259 
3.3097 
3.2950 
3.2815 
3.2691 
3.2577 
3.2471 
3.2373 
3.1971 
3.1676 
3.1450 
3.1271 
3.1125 
3.1005 
3.0818 
3.0679 
3.0572 
3.0487 
3.0417 
3.0360 
3.0034 
2.9885 
2.9812 
2.9738 

18 

.2778 

18.9341 
9.1294 
6.5697 
5.4715 
4.8759 
4.5062 
4.2556 
4.0752 
3.9394 
3.8335 
3.7487 
3.6793 
3.6214 
3.5725 
3.5306 
3.4944 
3.4626 
3.4347 
3.4098 
3.3876 
3.3676 
3.3495 
3.3331 
3.3181 
3.3044 
3.2918 
3.2801 
3.2694 
3.2594 
3.2185 
3.1884 
3.1654 
3.1472 
3.1324 
3.1202 
3.1012 
3.0870 
3.0761 
3.0674 
3.0604 
3.0545 
3.0213 
3.0063 
2.9988 
2.9913 

19 

.2632 

19.4551 
9.3001 
6.6659 
5.5393 
4.9295 
4.5514 
4.2955 
4.1114 
3.9728 
3.8648 
3.7783 
3.7076 
3.6487 
3.5989 
3.5562 
3.5193 
3.4870 
3.4585 
3.4332 
3.4106 
3.3903 
3.3719 
3.3552 
3.3400 
3.3260 
3.3132 
3.3013 
3.2904 
3.2802 
3.2386 
3.2081 
3.1846 
3.1661 
3.1511 
3.1387 
3.1194 
3.1050 
3.0939 
3.0851 
3.0779 
3.0720 
3.0383 
3.0230 
3.0154 
3.0078 
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Table A.9 Lower Critical Values of Wilks' Λ, a = 0.05 

A = I E I 

IE + H, . t -Άττζ-
where λχ, \2, ■ ■ ■, As are eigenvalues of E 1 H. Reject HQ if Λ < table value. 

"E 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 
100 
120 
140 
170 
200 
240 
320 
440 
600 
800 
1000 

1 

6.16a 

.098 

.229 

.342 

.431 

.501 

.556 

.601 

.638 

.668 

.694 

.717 

.736 

.753 

.768 

.781 

.792 

.803 

.813 

.821 

.829 

.836 

.843 

.849 

.855 

.860 

.865 

.870 

.874 

.878 

.907 

.938 

.953 

.962 

.968 

.973 

.978 

.981 

.984 

.988 

.991 

.994 

.995 

.996 

2 

2.50a 

.050 

.136 

.224 

.302 

.368 

.425 

.473 

.514 

.549 

.580 

.607 

.631 

.652 

.671 

.688 

.703 

.717 

.730 

.741 

.752 

.762 

.771 

.779 

.787 

.794 

.801 

.807 

.813 

.819 

.861 

.905 

.928 

.942 

.951 

.958 

.965 

.970 

.975 

.981 

.986 

.990 

.993 

.994 

3 

1.54« 
.034 
.097 
.168 
.236 
.296 
.349 
.396 
.437 
.473 
.505 
.534 
.560 
.583 
.603 
.622 
.639 
.655 
.669 
.683 
.695 
.706 
.717 
.727 
.736 
.744 
.752 
.760 
.767 
.774 
.824 
.879 
.907 
.925 
.937 
.946 
.955 
.962 
.968 
.976 
.982 
.987 
.990 
.992 

4 

1.11° 
.025 
.076 
.135 
.194 
.249 
.298 
.343 
.382 
.418 
.450 
.479 
.506 
.529 
.551 
.571 
.589 
.606 
.621 
.636 
.649 
.661 
.673 
.684 
.694 
.703 
.712 
.721 
.729 
.736 
.793 
.856 
.889 
.910 
.925 
.935 
.946 
.954 
.961 
.971 
.979 
.984 
.988 
.991 

5 

.868° 
.020 
.062 
.113 
.165 
.215 
.261 
.303 
.341 
.376 
.407 
.436 
.462 
.486 
.508 
.529 
.548 
.565 
.581 
.596 
.610 
.623 
.635 
.647 
.658 
.668 
.677 
.686 
.695 
.703 
.766 
.835 
.873 
.897 
.913 
.925 
.937 
.947 
.955 
.966 
.975 
.982 
.986 
.989 

VH 

6 

p = l 
.712a 

.017 

.053 

.098 

.144 

.189 

.232 

.271 

.308 

.341 

.372 

.400 

.426 

.450 

.473 

.493 

.512 

.530 

.546 

.562 

.576 

.590 

.603 

.615 

.626 

.637 

.647 

.656 

.665 

.674 

.741 

.816 

.858 

.884 

.902 

.915 

.929 

.940 

.949 

.962 

.972 

.979 

.984 

.988 

7 

.603° 
.015 
.046 
.086 
.128 
.169 
.209 
.246 
.281 
.313 
.343 
.370 
.396 
.420 
.442 
.462 
.482 
.499 
.516 
.532 
.547 
.561 
.574 
.586 
.598 
.609 
.619 
.629 
.638 
.647 
.718 
.798 
.843 
.872 
.891 
.906 
.922 
.933 
.944 
.957 
.969 
.977 
.983 
.986 

8 

.523a 

.013 

.041 

.076 

.115 

.153 

.190 

.225 

.258 

.289 

.318 

.345 

.370 

.393 

.415 

.436 

.455 

.473 

.490 

.505 

.520 

.534 

.548 

.560 

.572 

.583 

.594 

.604 

.614 

.623 

.696 

.781 

.829 

.860 

.882 

.897 

.914 

.926 

.938 

.953 

.966 

.975 

.981 

.985 

9 

.462° 
.011 
.036 
.069 
.104 
.140 
.175 
.208 
.239 
.269 
.297 
.323 
.347 
.370 
.392 
.412 
.431 
.449 
.466 
.482 
.497 
.511 
.524 
.537 
.549 
.560 
.571 
.582 
.592 
.601 
.677 
.766 
.816 
.849 
.872 
.889 
.907 
.920 
.933 
.949 
.963 
.972 
.979 
.983 

10 

.413° 
.010 
.033 
.063 
.096 
.129 
.161 
.193 
.223 
.251 
.278 
.304 
.327 
.350 
.371 
.391 
.410 
.427 
.444 
.460 
.475 
.489 
.503 
.516 
.528 
.539 
.551 
.561 
.571 
.581 
.658 
.751 
.804 
.838 
.863 
.881 
.900 
.914 
.928 
.945 
.960 
.970 
.977 
.982 

11 

.374a 

9.28a 

.030 

.058 

.088 

.119 

.150 

.180 

.209 

.236 

.262 

.286 

.310 

.332 

.352 

.372 

.390 

.408 

.425 

.440 

.455 

.470 

.483 

.496 

.508 

.520 

.531 

.542 

.552 

.562 

.641 

.736 

.792 

.828 

.854 

.873 

.893 

.908 

.923 

.941 

.957 

.968 

.976 

.981 

12 

.34 la 

8.51a 

.028 

.053 

.082 

.111 

.140 

.169 

.196 

.222 

.247 

.271 

.294 

.315 

.336 

.355 

.373 

.390 

.407 

.423 

.437 

.452 

.465 

.478 

.490 

.502 

.513 

.524 

.535 

.544 

.625 

.723 

.780 

.818 

.845 

.865 

.887 

.902 

.918 

.937 

.954 

.966 

.974 

.979 

"Multiply entry by 10 (continued) 
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Table A.9 (Continued) 

vE 1 2 3 4 5 6 7 8 9 10 11 12 

p = 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 
100 
120 
140 
170 
200 
240 
320 
440 
600 
800 
1000 

.000 
2.50° 
.050 
.136 
.224 
.302 
.368 

.4256 
.473 
.514 
.549 
.580 
.607 
.631 
.652 
.671 
.688 
.703 
.717 
.730 
.741 
.752 
.762 
.771 
.779 
.787 
.794 
.801 
.807 
.813 
.858 
.903 
.927 
.941 
.951 
.958 
.965 
.970 
.975 
.981 
.986 
.990 
.993 
.994 

.000 
.641" 
.018 
.062 
.117 
.175 
.230 
.280 
.326 
.367 
.404 
.437 
.467 
.495 
.519 
.542 
.562 
.581 
.598 
.614 
.629 
.643 
.656 
.668 
.679 
.689 
.699 
.708 
.717 
.725 
.786 
.853 
.888 
.909 
.924 
.934 
.946 
.954 
.961 
.971 
.979 
.984 
.988 
.991 

.000 
.287° 
9.53a 

.036 

.074 

.116 

.160 

.203 

.243 

.281 

.316 

.348 

.378 

.405 

.431 

.454 

.476 

.496 

.515 

.532 

.548 

.564 

.578 

.591 

.604 

.616 

.627 

.638 

.648 

.657 

.730 

.811 

.854 

.882 

.900 

.914 

.929 

.939 

.949 

.962 

.972 

.979 

.984 

.987 

.000 
.162" 
5.84° 
.023 
.051 
.084 
.119 
.155 
.190 
.223 
.255 
.286 
.314 
.340 
.365 
.389 
.410 
.431 
.450 
.468 
.485 
.501 
.516 
.530 
.544 
.556 
.568 
.580 
.591 
.601 
.682 
.774 
.825 
.857 
.879 
.895 
.913 
.926 
.938 
.953 
.965 
.975 
.981 
.985 

.000 
.104° 
3.95° 
.017 
.037 
.063 
.092 
.122 
.153 
.183 
.212 
.240 
.266 
.291 
.315 
.337 
.359 
.379 
.398 
.416 
.433 
.449 
.465 
.479 
.493 
.506 
.519 
.531 
.542 
.553 
.640 
.741 
.798 
.834 
.860 
.878 
.898 
.913 
.927 
.945 
.959 
.970 
.977 
.982 

.000 
.072° 
2.85a 

.012 

.028 

.049 

.074 

.099 

.126 

.152 

.179 

.204 

.229 

.252 

.275 

.296 

.317 

.337 

.355 

.373 

.390 

.406 

.422 

.436 

.450 

.464 

.477 

.489 

.501 

.512 

.602 

.710 

.772 

.813 

.841 

.862 

.885 

.901 

.917 

.937 

.953 

.966 

.974 

.979 

.000 
.053° 
2.15a 

9.56a 

.023 

.040 

.060 

.082 

.106 

.129 

.153 

.176 

.199 

.221 

.242 

.263 

.282 

.301 

.320 

.337 

.354 

.370 

.385 

.399 

.413 

.427 

.440 

.452 

.464 

.475 

.568 

.682 

.749 

.793 

.823 

.846 

.871 

.889 

.907 

.929 

.948 

.961 

.971 

.977 

.000 
.041" 
1.68a 

7.62a 

.018 

.033 

.050 

.069 

.090 

.111 

.133 

.154 

.175 

.195 

.215 

.235 

.254 

.272 

.289 

.306 

.322 

.338 

.353 

.367 

.381 

.395 

.407 

.420 

.432 

.443 

.537 

.656 

.727 

.774 

.807 

.831 

.859 

.878 

.897 

.922 

.942 

.957 

.968 

.974 

.000 
.032° 
1.35° 
6.21a 

.015 

.027 

.042 

.059 

.078 

.097 

.116 

.136 

.155 

.174 

.193 

.211 

.229 

.246 

.263 

.279 

.295 

.310 

.325 

.339 

.353 

.366 

.379 

.391 

.403 

.414 

.509 

.632 

.706 

.755 

.791 

.817 

.846 

.867 

.888 

.914 

.937 

.953 

.965 

.972 

.000 
.026° 
l.lla 

5.17° 
.013 
.023 
.036 
.051 
.068 
.085 
.102 
.120 
.138 
.156 
.174 
.191 
.208 
.225 
.241 
.256 
.271 
.286 
.300 
.314 
.328 
.341 
.353 
.365 
.377 
.388 
.484 
.609 
.686 
.738 
.775 
.803 
.834 
.857 
.879 
.907 
.932 
.949 
.962 
.969 

.000 
.022° 
.928a 

4.36° 
.011 
.020 
.032 
.045 
.060 
.075 
.091 
.108 
.124 
.141 
.157 
.174 
.190 
.206 
.221 
.236 
.251 
.265 
.279 
.292 
.305 
.318 
.330 
.342 
.354 
.365 
.460 
.588 
.667 
.721 
.760 
.790 
.823 
.847 
.870 
.901 
.926 
.945 
.959 
.967 

.000 
.018a 

.787a 

3.73a 

.009 

.017 

.028 

.040 

.053 

.067 

.082 

.097 

.112 

.128 

.143 

.159 

.174 

.189 

.204 

.218 

.232 

.246 

.259 

.272 

.285 

.297 

.309 

.321 

.332 

.344 

.439 

.568 

.649 

.705 

.746 

.777 

.812 

.837 

.862 

.894 

.921 

.942 

.956 

.964 

"Multiply entry by 10 {continued) 
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Table A.9 (Continued) 

vE 1 2 3 4 5 6 7 8 9 10 11 12 

p = 3 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 

100 
120 
140 
170 
200 
240 
320 
440 
600 
800 

1000 

.000 

.000 
1.70° 
.034 
.097 
.168 
.236 
.296 
.349 
.396 
.437 
.473 
.505 
.534 
.560 
.583 
.603 
.622 
.639 
.655 
.669 
.683 
.695 
.706 
.717 
.727 
.736 
.744 
.752 
.760 
.816 
.875 
.905 
.924 
.936 
.945 
.955 
.961 
.968 
.976 
.982 
.987 
.990 
.992 

.000 

.000 
.354" 

.010 

.036 

.074 

.116 

.160 

.203 

.243 

.281 

.316 

.348 

.378 

.405 

.431 

.454 

.476 

.496 

.515 

.532 

.548 

.564 

.578 

.591 

.604 

.616 

.627 

.638 

.648 

.724 

.808 

.853 

.881 

.900 

.913 

.928 

.939 

.949 

.961 

.972 

.979 

.984 

.987 

.000 

.000 
.179a 

.004 

.018 

.040 

.068 

.099 

.131 

.164 

.196 

.226 

.255 

.283 

.309 

.334 

.357 

.379 

.399 

.419 

.437 

.454 

.470 

.486 

.500 

.514 

.527 

.540 

.552 

.563 

.651 

.752 

.808 

.844 

.868 

.886 

.905 

.919 

.932 

.948 

.962 

.972 

.979 

.983 

.000 

.000 
.127° 

.002 

.010 

.024 

.043 

.066 

.091 

.117 

.143 

.169 

.194 

.219 

.243 

.266 

.288 

.309 

.329 

.348 

.366 

.383 

.399 

.415 

.430 

.444 

.458 

.471 

.483 

.495 

.591 

.704 

.769 

.810 

.839 

.861 

.884 

.900 

.916 

.936 

.953 

.966 

.974 

.979 

.000 

.000 
.105° 

.001 
6.36a 

.016 

.029 

.046 

.066 

.086 

.108 

.130 

.152 

.174 

.195 

.216 

.236 

.256 

.275 

.293 

.310 

.327 

.343 

.359 

.374 

.388 

.401 

.415 

.427 

.439 

.539 

.661 

.733 

.780 

.813 

.837 

.864 

.883 

.901 

.925 

.945 

.959 

.969 

.975 

.000 
.00 \a 

.095a 

.001 
4.37a 

.011 

.021 

.034 

.049 

.066 

.084 

.103 

.122 

.141 

.160 

.179 

.197 

.215 

.233 

.250 

.266 

.282 

.298 

.313 

.327 

.341 

.355 

.368 

.380 

.392 

.494 

.623 

.700 

.751 

.788 

.815 

.845 

.866 

.887 

.914 

.937 

.953 

.965 

.972 

.000 
.002a 

.09 l a 

.809a 

3.20a 

.008 

.016 

.026 

.038 

.052 

.067 

.083 

.099 

.116 

.133 

.149 

.166 

.183 

.199 

.215 

.230 

.246 

.260 

.275 

.289 

.302 

.315 

.328 

.340 

.352 

.454 

.587 

.670 

.725 

.764 

.794 

.827 

.850 

.873 

.903 

.929 

.947 

.960 

.968 

.000 
.004a 

.090a 

.659a 

2.46a 

.006 

.012 

.020 

.030 

.041 

.054 

.067 

.082 

.096 

.111 

.127 

.142 

.157 

.172 

.187 

.201 

.215 

.229 

.243 

.256 

.269 

.282 

.294 

.306 

.318 

.419 

.555 

.641 

.700 

.742 

.774 

.809 

.835 

.860 

.893 

.921 

.941 

.956 

.964 

.000 
.005° 
.09 l a 

.562° 
1.97a 

.004 
9.49° 

.016 

.024 

.034 

.044 

.056 

.068 

.081 

.095 

.108 

.122 

.136 

.149 

.163 

.177 

.190 

.203 

.216 

.229 

.241 

.253 

.265 

.277 

.288 

.387 

.526 

.615 

.676 

.721 

.755 

.792 

.820 

.848 

.883 

.913 

.936 

.951 

.961 

.000 
.008a 

.092° 

.496a 

1.64a 

3.94° 
7.67a 

.013 

.020 

.028 

.037 

.047 

.058 

.069 

.081 

.093 

.106 

.118 

.131 

.144 

.156 

.169 

.181 

.193 

.205 

.217 

.229 

.240 

.251 

.262 

.359 

.498 

.590 

.654 

.700 

.736 

.776 

.806 

.835 

.873 

.906 

.930 

.947 

.957 

.000 
.010a 

.095a 

.449a 

1.40a 

3.28° 
6.35a 

.011 

.016 

.023 

.031 

.040 

.049 

.059 

.070 

.081 

.092 

.104 

.115 

.127 

.139 

.150 

.162 

.173 

.185 

.196 

.207 

.218 

.229 

.239 

.334 

.473 

.566 

.632 

.681 

.719 

.761 

.792 

.823 

.864 

.899 

.924 

.943 

.954 

.000 
.013° 
,098a 

.416° 
1.22a 

2.79° 
5.35a 

9.00a 

.014 

.020 

.026 

.034 

.042 

.051 

.061 

.071 

.081 

.092 

.102 

.113 

.124 

.135 

.146 

.156 

.167 

.178 

.188 

.199 

.209 

.219 

.311 

.449 

.544 

.612 

.663 

.702 

.746 

.779 

.811 

.854 

.891 

.919 

.939 

.950 

"Multiply entry by 10 (continued) 



616 

VE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 

100 
120 
140 
170 
200 
240 
320 
440 
600 
800 

1000 

TABLES 

1 

.000 

.000 

.000 
1.38a 

.026 

.076 

.135 

.194 

.249 

.298 

.343 

.382 

.418 

.450 

.479 

.506 

.529 

.551 

.571 

.589 

.606 

.621 

.636 

.649 

.661 

.673 

.684 

.694 

.703 

.712 

.779 

.849 

.885 

.908 

.923 

.934 

.945 

.953 

.961 

.971 

.979 

.984 

.988 

.991 

2 

.000 

.000 

.000 
.292° 
6.09a 

.024 

.051 

.084 

.119 

.155 

.190 

.223 

.255 

.286 

.314 

.340 

.365 

.389 

.410 

.431 

.450 

.468 

.485 

.501 

.516 

.530 

.544 

.556 

.568 

.580 

.668 

.767 

.821 

.854 

.877 

.894 

.912 

.925 

.937 

.952 

.965 

.974 

.981 

.985 

"Multiply entry by 

3 

.000 

.000 

.000 
.127a 

2.31° 
.010 
.024 
.043 
.066 
.091 
.117 
.143 
.169 
.194 
.219 
.243 
.266 
.288 
.309 
.329 
.348 
.366 
.383 
.399 
.415 
.430 
.444 
.458 
.471 
.483 
.583 
.700 
.766 
.809 
.838 
.860 
.883 
.900 
.916 
.936 
.953 
.966 
.974 
.979 

1 0 - 3 

4 

.000 

.000 

.000 
.075° 
1.13° 
5.07a 

.013 

.025 

.040 

.057 

.077 

.097 

.117 

.138 

.159 

.180 

.200 

.219 

.239 

.257 

.275 

.292 

.309 

.325 

.340 

.355 

.369 

.383 

.396 

.409 

.513 

.643 

.718 

.768 

.802 

.828 

.856 

.876 

.896 

.921 

.942 

.957 

.968 

.974 

Table A.9 ι 

5 

.000 

.000 

.000 
.052° 
.647a 

2.90a 

7.74a 

.015 

.026 

.038 

.053 

.068 

.085 

.102 

.119 

.136 

.154 

.171 

.188 

.205 

.221 

.237 

.253 

.268 

.283 

.297 

.311 

.324 

.337 

.349 

.455 

.592 

.675 

.730 

.770 

.799 

.831 

.855 

.877 

.907 

.931 

.949 

.961 

.969 

[Continued) 

6 7 

p = 4 
.000 .000 
.000 

.001° 

.040a 

.416a 

1.82a 

4.94° 
.010 
.017 
.027 
.037 
.049 
.063 
.077 
.091 
.106 
.121 
.136 
.151 
.166 
.181 
.195 
.210 
.224 
.237 
.251 
.264 
.277 
.289 
.301 
.406 
.547 
.636 
.696 
.739 
.772 
.808 
.834 
.859 
.893 
.921 
.941 
.956 
.964 

.000 
.001° 
,033a 

.292° 
1.22° 
3.34° 
6.98a 

.012 

.019 

.027 

.037 

.047 

.059 

.071 

.083 

.096 

.109 

.123 

.136 

.149 

.162 

.175 

.188 

.201 

.214 

.226 

.238 

.250 

.261 

.364 

.507 

.600 

.664 

.711 

.746 

.785 

.814 

.842 

.879 

.911 

.934 

.950 

.960 

8 

.000 

.000 
.OOP 
.029a 

.218° 

.872a 

2.36a 

4.99a 

8.91° 
.014 
.021 
.028 
.037 
.046 
.056 
.067 
.078 
.089 
.101 
.113 
.124 
.136 
.148 
.160 
.172 
.183 
.195 
.206 
.217 
.228 
.327 
.471 
.567 
.634 
.684 
.721 
.764 
.795 
.826 
.866 
.901 
.926 
.944 
.955 

9 

.000 

.000 
.002a 

.026a 

.172a 

.652° 
1.74a 

3.70a 

6.66a 

.011 

.016 

.022 

.029 

.037 

.045 

.054 

.064 

.074 

.084 

.094 

.105 

.115 

.126 

.137 

.148 

.158 

.169 

.180 

.190 

.200 

.295 

.438 

.536 

.606 

.658 

.698 

.743 

.777 

.810 

.854 

.891 

.919 

.938 

.950 

10 

.000 

.000 
.002° 
.025° 
.141° 
.508° 
1.33° 
2.82° 
5.11° 
8.29a 

.012 

.017 

.023 

.030 

.037 

.044 

.053 

.061 

.070 

.079 

.089 

.098 

.108 

.118 

.128 

.138 

.147 

.157 

.167 

.177 

.267 

.409 

.508 

.580 

.634 

.676 

.724 

.759 

.795 

.841 

.882 

.912 

.933 

.946 

11 

.000 

.000 
.002a 

.023° 

.120a 

.409° 
1.05a 

2.21a 

4.01a 

6.54a 

9.84a 

.014 

.019 

.024 

.030 

.037 

.044 

.051 

.059 

.068 

.076 

.085 

.093 

.102 

.111 

.120 

.129 

.138 

.147 

.157 

.243 

.382 

.482 

.555 

.611 

.655 

.705 

.742 

.780 

.829 

.872 

.905 

.927 

.941 

12 

.000 

.000 
.003a 

,022a 

.105a 

.338° 

.848° 
1.77° 
3.21a 

5.25° 
7.95a 

.011 

.015 

.020 

.025 

.031 

.037 

.044 

.051 

.058 

.065 

.073 

.081 

.089 

.097 

.106 

.114 

.122 

.131 

.139 

.221 

.357 

.457 

.532 

.590 

.635 

.687 

.726 

.765 

.818 

.863 

.898 

.922 

.937 

(continued) 



TABLES 617 

Table A.9 (Continued) 

VE 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 
100 
120 
140 
170 
200 
240 
300 
440 
600 
800 
1000 

1 

.000 

.000 

.000 

.000 
1.60° 
.021 
.063 
.114 
.165 
.215 
.261 
.303 
.341 
.376 
.407 
.436 
.462 
.486 
.508 
.529 
.548 
.565 
.581 
.596 
.610 
.623 
.635 
.647 
.658 
.668 
.744 
.825 
.867 
.893 
.910 
.923 
.936 
.945 
.954 
.966 
.975 
.982 
.986 
.989 

2 

.000 

.000 

.000 

.000 
.291α 

4.39° 
.017 
.037 
.063 
.092 
.122 
.153 
.183 
.212 
.239 
.266 
.291 
.315 
.337 
.359 
.379 
.398 
.416 
.433 
.449 
.465 
.479 
.493 
.506 
.519 
.617 
.729 
.791 
.830 
.856 
.876 
.897 
.912 
.926 
.944 
.959 
.970 
.977 
.982 

3 

.000 

.000 

.000 

.000 
.105" 
1.48α 

6.36α 

.016 

.029 

.046 

.066 

.086 

.108 

.130 

.152 

.174 

.195 

.216 

.236 

.256 

.275 

.293 

.310 

.327 

.343 

.359 

.374 

.388 

.401 

.415 

.522 

.652 

.727 

.776 

.810 

.835 

.862 

.882 

.900 

.925 

.945 

.959 

.969 

.975 

4 

.000 

.000 

.000 

.000 
.052° 
.647" 
2.90α 

7.74α 

.015 

.026 

.038 

.053 

.068 

.085 

.102 

.119 

.136 

.154 

.171 

.188 

.205 

.221 

.237 

.253 

.268 

.283 

.297 

.311 

.324 

.337 

.446 

.587 

.672 

.728 

.768 

.798 

.830 

.854 

.877 

.906 

.931 

.949 

.961 

.969 

5 

.000 

.000 

.000 
.001" 
.031« 
.335° 
1.51° 
4.21" 
8.79α 

.015 

.024 

.034 

.045 

.057 

.070 

.084 

.098 

.113 

.127 

.142 

.156 

.171 

.185 

.199 

.213 

.226 

.239 

.252 

.265 

.277 

.384 

.531 

.623 

.685 

.730 

.763 

.801 

.828 

.855 

.889 

.918 

.939 

.954 

.963 

"Η 

6 

ρ = Ε 
.000 
.000 
.000 

.001° 

.021° 

.197" 

.872° 
2.48α 

5.35° 
9.64" 
.015 
.022 
.031 
.040 
.050 
.061 
.072 
.084 
.096 
.109 
.121 
.134 
.146 
.159 
.171 
.183 
.195 
.207 
.219 
.230 
.333 
.482 
.578 
.645 
.694 
.731 
.773 
.803 
.833 
.872 
.905 
.930 
.947 
.957 

7 

.000 

.000 

.000 
.001" 
.015° 
.126° 
.544° 
1.56° 
3.43" 
6.34" 
.010 
.015 
.022 
.029 
.037 
.045 
.054 
.064 
.074 
.085 
.095 
.106 
.117 
.128 
.139 
.150 
.161 
.172 
.182 
.193 
.291 
.438 
.538 
.609 
.661 
.701 
.747 
.780 
.813 
.856 
.893 
.920 
.940 
.951 

8 

.000 

.000 

.000 
.001° 
.012™ 
.087° 
.361" 
1.03α 

2.30α 

4.34α 

7.22° 
.011 
.016 
.021 
.027 
.034 
.042 
.050 
.058 
.067 
.076 
.085 
.095 
.104 
.114 
.124 
.134 
.143 
.153 
.163 
.255 
.400 
.502 
.576 
.631 
.673 
.722 
.758 
.793 
.841 
.881 
.911 
.933 
.946 

9 

.000 

.000 

.000 
.001" 
.010° 
.064° 
.253" 
.716α 

1.61° 
3.06° 
5.17° 
7.99α 

.012 

.016 

.021 

.026 

.032 

.039 

.046 

.053 

.061 

.069 

.077 

.086 

.094 

.103 

.112 

.121 

.130 

.138 

.224 

.366 

.469 

.544 

.602 

.647 

.698 

.736 

.775 

.825 

.870 

.903 

.926 

.940 

10 

.000 

.000 

.000 
.001α 

.008α 

.049α 

.185" 

.516° 
1.16° 
2.22" 
3.80° 
5.95" 
8.68° 
.012 
.016 
.020 
.025 
.031 
.037 
.043 
.050 
.057 
.064 
.071 
.079 
.087 
.094 
.102 
.110 
.118 
.198 
.336 
.438 
.516 
.575 
.621 
.675 
.716 
.757 
.811 
.858 
.894 
.919 
.935 

11 

.000 

.000 

.000 
.001° 
.007α 

.039° 

.141" 

.385° 

.861" 
1.66° 
2.86α 

4.51" 
6.66α 

9.31" 
.012 
.016 
.020 
.025 
.030 
.035 
.041 
.047 
.053 
.060 
.066 
.073 
.080 
.087 
.094 
.102 
.176 
.308 
.410 
.489 
.549 
.598 
.654 
.696 
.739 
.797 
.847 
.885 
.913 
.929 

12 

.000 

.000 

.000 
.001° 
.007" 
.032" 
.110" 
.296α 

.657α 

1.27α 

2.19α 

3.49" 
5.19° 
7.32° 
9.88" 
.013 
.016 
.020 
.024 
.029 
.034 
.039 
.044 
.050 
.056 
.062 
.068 
.075 
.081 
.088 
.156 
.284 
.385 
.464 
.525 
.575 
.633 
.677 
.722 
.783 
.836 
.877 
.906 
.924 

"Multiply entry by 10 3 . {continued) 
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Table A.9 (Continued) 

"E 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 

100 
120 
140 
170 
200 
240 
320 
440 
600 
800 

1000 

1 

.000 

.000 

.000 

.000 
.007° 
2.04a 

.019 

.054 

.098 

.144 

.189 

.232 

.271 

.308 

.341 

.372 

.400 

.426 

.450 

.473 

.493 

.512 

.530 

.546 

.562 

.576 

.590 

.603 

.615 

.626 

.711 

.802 

.849 

.878 

.898 

.912 

.927 

.938 

.948 

.961 

.972 

.979 

.984 

.987 

2 

.000 

.000 

.000 

.000 
.002" 
.315° 
3.48a 

.013 

.029 

.050 

.074 

.099 

.126 

.152 

.179 

.204 

.229 

.252 

.275 

.296 

.317 

.337 

.355 

.373 

.390 

.406 

.422 

.436 

.450 

.464 

.570 

.693 

.762 

.806 

.836 

.858 

.882 

.899 

.915 

.936 

.953 

.965 

.974 

.979 

3 

.000 

.000 

.000 

.000 
.001a 

.095° 
1.05° 
4.37a 

.011 

.021 

.034 

.049 

.066 

.084 

.103 

.122 

.141 

.160 

.179 

.197 

.215 

.233 

.250 

.266 

.282 

.298 

.313 

.327 

.341 

.355 

.467 

.608 

.690 

.745 

.783 

.811 

.842 

.864 

.886 

.913 

.936 

.953 

.964 

.971 

4 

.000 

.000 

.000 

.000 
.001° 
.040" 
.416a 

1.82° 
4.94" 

.010 

.017 

.027 

.037 

.049 

.063 

.077 

.091 

.106 

.121 

.136 

.151 

.166 

.181 

.195 

.210 

.224 

.237 

.251 

.264 

.277 

.387 

.536 

.629 

.691 

.735 

.769 

.806 

.832 

.858 

.892 

.920 

.941 

.955 

.964 

5 

.000 

.000 

.000 

.000 
.001a 

.021° 

.197° 

.872a 

2.48a 

5.35° 
9.64a 

.015 

.022 

.031 

.040 

.050 

.061 

.072 

.084 

.096 

.109 

.121 

.134 

.146 

.159 

.171 

.183 

.195 

.207 

.219 

.324 

.476 

.574 

.642 

.692 

.730 

.772 

.803 

.833 

.872 

.905 

.930 

.947 

.957 

"H 

6 7 

p = 6 
.000 .000 
.000 
.000 
.000 
.000 

.012° 

.106a 

.465a 

1.36a 

3.04a 

5.67° 
9.35° 

.014 

.020 

.026 

.034 

.042 

.051 

.060 

.070 

.080 

.090 

.101 

.111 

.122 

.133 

.143 

.154 

.165 

.175 

.273 

.424 

.526 

.599 

.652 

.694 

.740 

.774 

.808 

.852 

.890 

.918 

.938 

.950 

.000 

.000 

.000 

.000 
.008a 

.063a 

.270° 

.798a 

1.83a 

3.51° 
5.94° 
9.17a 

.013 

.018 

.024 

.030 

.037 

.044 

.052 

.060 

.068 

.077 

.086 

.095 

.104 

.113 

.123 

.132 

.142 

.232 

.379 

.483 

.559 

.616 

.660 

.710 

.748 

.785 

.834 

.876 

.908 

.930 

.944 

8 

.000 

.000 

.000 

.000 

.000 
.006° 
.040" 
.168° 
.497° 
1.16° 
2.26a 

3.92° 
6.17° 
9.07a 

.013 

.017 

.021 

.027 

.033 

.039 

.045 

.052 

.060 

.067 

.075 

.083 

.091 

.099 

.107 

.116 

.198 

.340 

.445 

.523 

.582 

.629 

.682 

.722 

.763 

.816 

.862 

.897 

.922 

.937 

9 

.000 

.000 

.000 

.000 

.000 
.004° 
.027° 
.111° 
.325° 
.762a 

1.51a 

2.66° 
4.27a 

6.38a 

90a 

.012 

.016 

.020 

.025 

.030 

.035 

.041 

.047 

.053 

.060 

.066 

.073 

.080 

.088 

.095 

.170 

.305 

.410 

.489 

.551 

.599 

.656 

.698 

.741 

.799 

.849 

.887 

.914 

.930 

10 

.000 

.000 

.000 

.000 

.000 
.003a 

.020a 

.076° 

.222° 

.521° 
1.05° 
1.86a 

3.03a 

4.59a 

6.57a 

8.97a 

.012 

.015 

.019 

.023 

.027 

.032 

.037 

.042 

.048 

.054 

.060 

.066 

.072 

.079 

.147 

.275 

.378 

.458 

.521 

.572 

.630 

.675 

.721 

.782 

.836 

.877 

.906 

.924 

11 

.000 

.000 

.000 

.000 

.000 
.003a 

.015° 

.055° 

.157" 

.369a 

.744a 

1.34° 
2.20a 

3.37° 
4.88a 

6.74a 

8.97a 

.012 

.015 

.018 

.021 

.025 

.030 

.034 

.039 

.044 

.049 

.054 

.060 

.066 

.127 

.249 

.350 

.430 

.494 

.546 

.607 

.653 

.701 

.766 

.823 

.867 

.898 

.918 

12 

.000 

.000 

.000 

.000 

.000 
.002° 
.011° 
.041a 

.115a 

.269° 

.543° 

.983° 
1.63a 

2.52a 

3.68° 
5.14a 

6.90a 

8.97a 

.011 

.014 

.017 

.020 

.024 

.028 

.032 

.036 

.040 

.045 

.050 

.055 

.110 

.225 

.324 

.404 

.468 

.521 

.584 

.632 

.682 

.750 

.811 

.857 

.891 

.912 

"Multiply entry by 10 (continued) 
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Table A.9 (Continued) 

VE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 

100 
120 
140 
170 
200 
240 
320 
440 
600 
800 

1000 

1 

.000 

.000 

.000 

.000 

.000 
.043a 

2.62Q 

.018 

.048 

.087 

.128 

.170 

.209 

.246 

.281 

.313 

.343 

.370 

.396 

.420 

.442 

.462 

.482 

.499 

.516 

.532 

.547 

.561 

.574 

.586 

.679 

.779 

.832 

.864 

.886 

.902 

.919 

.931 

.942 

.957 

.968 

.977 

.982 

.986 

2 

.000 

.000 

.000 

.000 

.000 
.006° 
.350° 
2.95° 

.010 

.023 

.040 

.060 

.083 

.106 

.129 

.153 

.176 

.199 

.221 

.242 

.263 

.283 

.301 

.320 

.337 

.354 

.370 

.385 

.399 

.413 

.526 

.660 

.735 

.783 

.817 

.841 

.868 

.887 

.905 

.928 

.947 

.961 

.971 

.977 

3 

.000 

.000 

.000 

.000 

.000 
.002° 
.09 l a 

.809° 
3.20a 

8.07a 

.016 

.026 

.038 

.052 

.067 

.083 

.099 

.116 

.133 

.149 

.166 

.183 

.199 

.215 

.230 

.246 

.260 

.275 

.289 

.302 

.417 

.566 

.656 

.715 

.757 

.788 

.823 

.848 

.871 

.902 

.928 

.947 

.960 

.968 

4 

.000 

.000 

.000 

.000 

.000 
.001° 
,033a 

.292a 

1.22a 

3.34a 

6.97a 

.012 

.019 

.027 

.037 

.047 

.059 

.071 

.083 

.096 

.109 

.123 

.136 

.149 

.162 

.175 

.188 

.201 

.214 

.226 

.335 

.490 

.588 

.656 

.704 

.741 

.782 

.812 

.841 

.878 

.910 

.933 

.950 

.959 

5 

.000 

.000 

.000 

.000 

.000 
.00 l a 

.015a 

.126a 

.543° 
1.56° 
3.43a 

6.34° 
.010 
.015 
.022 
.029 
.037 
.045 
.054 
.064 
.074 
.085 
.095 
.106 
.117 
.128 
.139 
.150 
.161 
.172 
.273 
.426 
.530 
.603 
.657 
.698 
.744 
.778 
.812 
.855 
.893 
.920 
.940 
.951 

VH 

6 7 

p = 7 
.000 
.000 
.000 
.000 
.000 
.000 

.008° 

.063° 

.270° 
,798a 

1.83a 

3.51Q 

5.94° 
9.17° 

.013 

.018 

.024 

.030 

.037 

.044 

.052 

.060 

.068 

.077 

.086 

.095 

.104 

.113 

.123 

.132 

.224 

.373 

.479 

.556 

.613 

.658 

.709 

.747 

.784 

.833 

.876 

.908 

.930 

.943 

.000 

.000 

.000 

.000 

.000 

.000 
.005a 

.034a 

.147° 

.440a 

1.04° 
2.05a 

3.57a 

5.67a 

8.37a 

.012 

.016 

.020 

.025 

.031 

.037 

.043 

.050 

.057 

.064 

.071 

.079 

.087 

.095 

.103 

.185 

.327 

.434 

.513 

.574 

.621 

.676 

.717 

.758 

.812 

.860 

.895 

.920 

.936 

8 

.000 

.000 

.000 

.000 

.000 

.000 
.003a 

.020a 

.086a 

.259a 

.619° 
1.25° 
2.23a 

3.63a 

5.48a 

7.80a 

.011 

.014 

.018 

.022 

.026 

.031 

.037 

.042 

.048 

.055 

.061 

.068 

.074 

.081 

.154 

.288 

.394 

.475 

.537 

.587 

.645 

.689 

.733 

.792 

.844 

.883 

.911 

.928 

9 

.000 

.000 

.000 

.000 

.000 

.000 
.002a 

.013a 

.053a 

.160a 

.387a 

.796a 

1.45a 

2.40° 
3.68° 
5.34a 

7.38° 
9.81a 

.013 

.016 

.019 

.023 

.028 

.032 

.037 

.042 

.047 

.053 

.059 

.064 

.128 

.254 

.358 

.439 

.504 

.556 

.616 

.662 

.709 

.773 

.829 

.872 

.902 

.921 

10 

.000 

.000 

.000 

.000 

.000 

.000 
.002° 
.009a 

.035° 

.104a 

.252a 

.525a 

.967° 
1.62a 

2.54a 

3.73° 
5.24a 

7.06a 

9.20° 
.012 
.014 
.018 
.021 
.025 
.029 
.033 
.037 
.042 
.047 
.052 
.108 
.225 
.326 
.408 
.473 
.526 
.589 
.637 
.687 
.754 
.814 
.860 
.893 
.914 

11 

.000 

.000 

.000 

.000 

.000 

.000 
.001° 
.006a 

.024a 

.070° 

.170° 

.357a 

.665a 

1.13a 

1.79a 

2.66a 

3.78° 
5.16a 

6.80a 

8.72a 

.011 

.013 

.016 

.019 

.022 

.026 

.029 

.033 

.037 

.042 

.091 

.200 

.298 

.378 

.444 

.498 

.563 

.613 

.665 

.736 

.800 

.849 

.884 

.906 

12 

.000 

.000 

.000 

.000 

.000 

.000 
.001a 

.005a 

.017a 

.049a 

.119a 

.249a 

.468° 

.804° 
1.28a 

1.94° 
2.78a 

3.83° 
5.10" 
6.60a 

8.34a 

.010 

.013 

.015 

.018 

.020 

.024 

.027 

.030 

.034 

.077 

.178 

.272 

.352 

.418 

.472 

.539 

.590 

.644 

.719 

.786 

.838 

.876 

.899 

"Multiply entry by 10 3 . (continued) 
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Table A.9 (Continued) 

vE 1 2 3 4 5 6 7 8 9 10 11 12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

.000 

.000 

.000 

.000 

.000 

.000 
.138° 
3.30° 

.017 

.044 

.078 

.116 

.154 

.000 

.000 

.000 

.000 

.000 

.000 
.015° 
.393° 
2.63a 

8.63° 
.019 
.033 
.051 

.000 

.000 

.000 

.000 

.000 

.000 
.004a 

.090° 

.659" 
2.46" 
6.15a 

.012 

.020 

.000 

.000 

.000 

.000 

.000 

.000 
.001" 
.029" 
.218" 
.872" 
2.36" 
4.99" 
8.91" 

.000 

.000 

.000 

.000 

.000 

.000 
.001" 
.012" 
.087° 
.361" 
1.03" 
2.30" 
4.34" 

P = 
.000 
.000 
.000 
.000 
.000 
.000 
.000 

.006" 

.040" 

.168" 

.497" 
1.16" 
2.26" 

8 
.000 
.000 
.000 
.000 
.000 
.000 
.000 

.003" 

.020" 

.086" 

.259" 

.619" 
1.25" 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.002" 
.011" 
.047" 
.144" 
.351" 
.727" 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.001" 
.007" 
.028" 
.085" 
.209" 
.441" 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.001" 
.004" 

4.017" 
.052" 
.130" 
.278" 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.001" 
.003" 
.011" 
.034" 
.084" 
.181" 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 
.002" 
.008" 
.023" 
.056" 
.122" 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
60 
80 

100 
120 
140 
170 
200 
240 
320 
440 
600 
800 

1000 

.190 

.225 

.258 

.289 

.318 

.345 

.370 

.393 

.415 

.436 

.455 

.473 

.490 

.505 

.520 

.534 

.548 

.649 

.758 

.815 

.851 

.875 

.892 

.911 

.924 

.936 

.952 

.965 

.974 

.981 

.985 

.070 

.090 

.111 

.133 

.154 

.175 

.195 

.215 

.235 

.254 

.272 

.289 

.306 

.322 

.338 

.353 

.367 

.485 

.627 

.709 

.761 

.798 

.825 

.854 

.875 

.895 

.920 

.942 

.957 

.968 

.974 

.030 

.041 

.054 

.067 

.082 

.096 

.111 

.127 

.142 

.157 

.172 

.187 

.201 

.215 

.229 

.243 

.256 

.372 

.527 

.623 

.687 

.732 

.767 

.804 

.831 

.858 

.891 

.920 

.941 

.955 

.964 

.014 

.021 

.028 

.037 

.046 

.056 

.067 

.078 

.089 

.101 

.113 

.124 

.136 

.148 

.160 

.172 

.183 

.290 

.447 

.551 

.622 

.675 

.715 

.759 

.791 

.823 

.865 

.900 

.926 

.944 

.955 

7.22" 
.011 
.016 
.021 
.027 
.034 
.042 
.050 
.058 
.067 
.076 
.085 
.095 
.104 
.114 
.124 
.134 
.229 
.381 
.489 
.566 
.623 
.667 
.717 
.755 
.791 
.839 
.880 
.911 
.933 
.946 

3.92" 
6.17" 
9.06" 

.013 

.017 

.021 

.027 

.033 

.039 

.045 

.052 

.060 

.067 

.075 

.083 

.091 

.099 

.182 

.327 

.435 

.516 

.577 

.625 

.679 

.720 

.761 

.815 

.862 

.897 

.922 

.937 

2.23" 
3.63" 
5.48" 
7.80" 

.011 

.014 

.018 

.022 

.026 

.031 

.037 

.042 

.048 

.055 

.061 

.068 

.074 

.146 

.282 

.389 

.471 

.535 

.585 

.644 

.688 

.732 

.792 

.844 

.883 

.911 

.928 

1.33" 
2.22" 
3.42" 
4.98" 
6.92" 
9.23" 

.012 

.015 

.018 

.022 

.026 

.031 

.035 

.040 

.045 

.051 

.056 

.118 

.244 

.348 

.431 

.496 

.549 

.610 

.657 

.705 

.770 

.827 

.870 

.901 

.920 

.824" 
1.40° 
2.20a 

3.27" 
4.62" 
6.26" 
8.22" 

.010 

.013 

.016 

.019 

.023 

.026 

.030 

.034 

.039 

.043 

.096 

.212 

.313 

.395 

.461 

.515 

.579 

.629 

.679 

.748 

.810 

.857 

.890 

.911 

.527" 

.910" 
1.46" 
2.20" 
3.15" 
4.34" 
5.77" 
7.46" 
9.40" 

.012 

.014 

.017 

.020 

.023 

.026 

.030 

.034 

.079 

.184 

.281 

.362 

.429 

.484 

.550 

.602 

.655 

.728 

.794 

.844 

.880 

.903 

.347" 

.608" 

.987" 
1.51" 
2.19" 
3.06" 
4.12" 
5.39" 
6.86" 
8.56" 

.010 

.013 

.015 

.017 

.020 

.023 

.026 

.065 

.161 

.253 

.333 

.399 

.455 

.523 

.576 

.631 

.708 

.778 

.831 

.871 

.895 

.235" 

.416" 

.683" 
1.06" 
1.56" 
2.19" 
2.99" 
3.95" 
5.08" 
6.39" 
7.88" 
9.56" 

.011 

.013 

.016 

.018 

.021 

.054 

.141 

.229 

.306 

.372 

.428 

.497 

.551 

.609 

.689 

.762 

.819 

.861 

.887 

"Multiply entry by 10~3. 
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Table A.10 Upper Critical Values for Roy's Test, a = .05 

Roy's test statistic is given by 
λι 

1 + λι 
where λι is the largest eigenvalue of E 1 H. The parameters are 

s -mia(uH,p), WH -p\ - 1 
N 

vE-p-l 

Reject H0 if Θ > table value. 

N 

5 
10 
15 
20 
25 
30 
40 
50 
60 
80 
120 
240 

5 
10 
15 
20 
25 
30 
40 
50 
60 
80 
120 
240 

5 
10 
15 
20 
25 
30 
40 
50 
60 
80 
120 
240 

0 

.565 

.374 

.278 

.221 

.184 

.157 

.122 

.099 

.084 

.064 

.043 

.022 

.669 

.472 

.362 

.293 

.246 

.212 

.166 

.136 

.116 

.089 

.061 

.031 

.739 

.547 

.431 

.354 

.301 

.261 

.207 

.171 

.145 

.112 

.077 

.040 

1 

.651 

.455 

.348 

.281 

.236 

.203 

.159 

.130 

.110 

.085 

.058 

.030 

.729 

.537 

.422 

.346 

.294 

.255 

.201 

.167 

.142 

.109 

.075 

.039 

.782 

.601 

.482 

.402 

.344 

.301 

.240 

.199 

.170 

.132 

.091 

.047 

2 

.706 

.514 

.402 

.329 

.278 

.241 

.190 

.157 

.133 

.103 

.070 

.036 

.770 

.586 

.469 

.390 

.333 

.291 

.232 

.192 

.164 

.127 

.088 

.046 

.813 

.641 

.523 

.441 

.380 

.334 

.269 

.224 

.193 

.150 

.104 

.054 

3 

s 
.746 

.561 

.446 

.369 

.314 

.274 

.218 

.180 

.154 

.119 

.082 

.042 

s 

.800 

.625 

.508 

.427 

.367 

.322 

.259 

.216 

.185 

.144 

.100 

.052 

s 
.836 
.674 

.558 

.474 

All 
.364 

.294 

.247 

.213 

.167 

.116 

.061 

m 

4 

= 2 

.776 

.598 

.483 

.404 

.346 

.303 

.243 

.202 

.173 

.135 

.093 

.048 

= 3 

.822 

.656 

.541 

.458 

.397 

.350 

.283 

.237 

.204 

.160 

.111 

.058 

= 4 

.854 

.700 

.587 

.503 

.440 

.390 

.318 

.268 

.232 

.182 

.127 

.067 

5 

.799 

.629 

.515 

.434 

.375 

.330 

.266 

.222 

.191 

.149 

.104 

.054 

.840 

.683 

.569 

.486 

.424 

.375 

.305 

.257 

.221 

.174 

.122 

.064 

.868 

.723 

.612 

.529 

.464 

.414 

.339 

.287 

.249 

.196 

.138 

.073 

7 

.834 

.679 

.567 

.486 

.424 

.376 

.306 

.259 

.223 

.176 

.123 

.065 

.867 

.725 

.616 

.533 

.470 

.419 

.345 

.292 

.254 

.201 

.142 

.075 

.889 

.759 

.654 

.572 

.507 

.455 

.377 

.322 

.280 

.223 

.158 

.084 

10 

.868 

.732 

.627 

.546 

.484 

.433 

.359 

.306 

.266 

.211 

.150 

.080 

.894 

.770 

.669 

.589 

.525 

.473 

.395 

.339 

.296 

.237 

.169 

.090 

.911 

.798 

.701 

.623 

.559 

.507 

.426 

.367 

.322 

.259 

.185 

.100 

15 

.901 

.789 

.696 

.620 

.558 

.507 

.428 

.370 

.326 

.263 

.190 

.103 

.920 

.819 

.730 

.656 

.594 

.543 

.462 

.402 

.355 

.288 

.209 

.114 

.933 

.840 

.756 

.684 

.624 

.572 

.490 

.428 

.380 

.309 

.226 

.124 

(continued) 
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Table A.10 (Continued) 

m 

N O 1 2 3 4 5 7 10 15 

s = 5 
5 
10 
15 
20 
25 
30 
40 
50 
60 
80 
120 
240 

.788 

.607 

.488 

.407 

.349 

.305 

.243 

.202 

.173 

.134 

.093 

.048 

.821 

.651 

.533 

.449 

.388 

.341 

.275 

.230 

.197 

.154 

.107 

.056 

.845 

.685 

.569 

.485 

.422 

.373 

.302 

.254 

.219 

.171 

.120 

.063 

.863 

.713 

.599 

.515 

.451 

.400 

.327 

.276 

.238 

.188 

.132 

.069 

.877 

.735 

.625 

.542 

.477 

.425 

.349 

.296 

.257 

.203 

.143 

.076 

.888 

.755 

.648 

.565 

.500 

.448 

.370 

.315 

.274 

.217 

.154 

.082 

.906 

.786 

.685 

.604 

.540 

.487 

.406 

.348 

.304 

.243 

.174 

.093 

.924 

.820 

.728 

.651 

.588 

.535 

.453 

.392 

.345 

.278 

.201 

.109 

.942 

.857 

.777 

.708 

.648 

.597 

.514 

.451 

.401 

.329 

.241 

.134 

s = 6 
5 
10 
15 
20 
25 
30 
40 
50 
60 
80 
120 
240 

.825 

.655 

.537 

.454 

.392 

.345 

.278 

.232 

.200 

.156 

.108 

.056 

.850 

.692 

.576 

.491 

.428 

.378 

.307 

.258 

.223 

.174 

.122 

.064 

.869 

.721 

.608 

.523 

.458 

.407 

.333 

.281 

.243 

.192 

.134 

.071 

.883 

.744 

.635 

.551 

.485 

.433 

.356 

.302 

.262 

.208 

.146 

.078 

.895 

.764 

.658 

.575 

.509 

.457 

.378 

.322 

.280 

.222 

.157 

.084 

.904 

.781 

.678 

.596 

.531 

.478 

.397 

.340 

.297 

.236 

.168 

.090 

.918 

.808 

.711 

.632 

.568 

.514 

.432 

.372 

.327 

.262 

.188 

.101 

.934 

.838 

.750 

.676 

.613 

.560 

.477 

.414 

.366 

.297 

.215 

.118 

.949 

.871 

.795 

.728 

.669 

.618 

.536 

.472 

.421 

.346 

.255 

.142 

8 = 7 
5 
10 
15 
20 
25 
30 
40 
60 
80 
100 
200 
300 
500 
1000 

.852 

.695 

.579 

.494 

.431 

.381 

.309 

.224 

.176 

.145 

.077 

.052 

.032 

.016 

.872 

.726 

.613 

.528 

.463 

.412 

.337 

.246 

.194 

.160 

.085 

.058 

.036 

.018 

.887 

.750 

.641 

.557 

.491 

.439 

.362 

.266 

.211 

.175 

.093 

.064 

.039 

.020 

.899 

.771 

.665 

.582 

.516 

.463 

.384 

.285 

.226 

.188 

.101 

.069 

.042 

.022 

.908 

.788 

.686 

.604 

.538 

.485 

.404 

.302 

.241 

.200 

.109 

.074 

.046 

.023 

.917 

.802 

.704 

.624 

.558 

.505 

.423 

.318 

.255 

.212 

.116 

.079 

.049 

.025 

(continued) 

.929 

.826 

.734 

.657 

.593 

.540 

.456 

.347 

.280 

.235 

.129 

.089 

.055 

.028 

.941 

.853 

.769 

.697 

.635 

.583 

.499 

.386 

.314 

.265 

.148 

.103 

.064 

.033 

.955 

.882 

.810 

.745 

.688 

.638 

.555 

.439 

.363 

.310 

.175 

.125 

.078 

.041 
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Table A.10 (Continued) 

m 

N O 1 2 3 4 5 7 10 15 

s = 8 
5 
10 
15 
20 
25 
30 
40 
60 
80 
100 
200 
300 
500 
1000 

.874 

.728 

.615 

.531 

.466 

.414 

.339 

.248 

.195 

.161 

.086 

.058 

.036 

.018 

.890 

.754 

.645 

.561 

.495 

.443 

.365 

.269 

.213 

.176 

.094 

.065 

.040 

.020 

.902 

.775 

.670 

.587 

.521 

.468 

.388 

.288 

.229 

.190 

.103 
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Table A. 13 Orthogonal Polynomial Contrasts 

V 

3 

4 

5 

6 

7 

8 

9 

10 

Polynomial 

Linear 
Quadratic 
Linear 
Quadratic 
Cubic 
Linear 
Quadratic 
Cubic 
Quartic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Sextic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Sextic 
Septic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Sextic 
Septic 
Octic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Sextic 
Septic 
Octic 
Novic 

1 

- 1 
1 

- 3 
1 

- 1 
- 2 

2 
- 1 

1 
- 5 

5 
- 5 

1 
- 1 
- 3 

5 
- 1 

3 
- 1 

1 
- 7 

7 
- 7 

7 
- 7 

1 
- 1 
- 4 
28 

- 1 4 
14 

- 4 
4 

- 1 
1 

- 9 
6 

- 4 2 
18 

- 6 
3 

- 9 
1 

- 1 

2 

0 
- 2 
- 1 
- 1 

3 
- 1 
- 1 

2 
- 4 
- 3 
- 1 

7 
- 3 

5 
- 2 

0 
1 

- 7 
4 

- 6 
- 5 

1 
5 

- 1 3 
23 
- 5 

7 
- 3 

7 
7 

- 2 1 
11 

-17 
6 

- 8 
- 7 

2 
14 

- 2 2 
14 

- 1 1 
47 
- 7 

9 

3 

1 
1 
1 

- 1 
- 3 

0 
- 2 

0 
6 

- 1 
- 4 

4 
2 

- 1 0 
- 1 
- 3 

1 
1 

- 5 
15 

- 3 
- 3 

7 
- 3 

- 1 7 
9 

-21 
- 2 
- 8 
13 

- 1 1 
- 4 
22 

- 1 4 
28 
- 5 
- 1 
35 

- 1 7 
- 1 
10 

- 8 6 
20 

- 3 6 

4 

3 
1 
1 
1 

- 1 
- 2 
- 4 

1 
- 4 
- 4 

2 
10 
0 

- 4 
0 
6 
0 

- 2 0 
- 1 
- 5 

3 
9 

- 1 5 
- 5 
35 
- 1 

- 1 7 
9 
9 

- 9 
1 

14 
- 5 6 

- 3 
- 3 
31 

3 
- 1 1 

6 
92 

- 2 8 
84 

Variable 

5 

2 
2 
1 
1 
3 

- 1 
- 7 
- 3 
- 5 

1 
- 3 
- 1 

1 
5 

15 
1 

- 5 
- 3 

9 
15 

- 5 
- 3 5 

0 
- 2 0 

0 
18 
0 

- 2 0 
0 

70 
- 1 
- 4 
12 
18 

- 6 
- 8 
56 
14 

-126 

6 

5 
5 
5 
1 
1 
2 
0 

- 1 
- 7 
- 4 
- 6 

3 
- 3 
- 7 
- 3 
17 
9 

21 
1 

-17 
- 9 

9 
9 
1 

- 1 4 
- 5 6 

1 
- 4 

- 1 2 
18 
6 

- 8 
- 5 6 

14 
126 

7 

3 
5 
1 
3 
1 
1 
5 
1 

- 5 
- 1 3 
- 2 3 

- 5 
- 7 

2 
- 8 

- 1 3 
- 1 1 

4 
22 
14 
28 

3 
- 3 

- 3 1 
3 

11 
6 

- 4 2 
- 2 8 
- 8 4 

8 

7 
7 
7 
7 
7 
1 
1 
3 
7 

- 7 
- 2 1 
- 1 1 
- 1 7 

- 6 
- 8 

5 
- 1 

- 3 5 
- 1 7 

1 
10 
86 
20 
36 

9 

4 
28 
14 
14 
4 
4 
1 
1 
7 
2 

- 1 4 
- 2 2 
- 1 4 

11 
- 4 7 

- 7 
- 9 

10 

9 
6 

42 
18 
6 
3 
9 
1 
1 

C^Ct 

2 
6 

20 
4 

20 
10 
14 
10 
70 
70 
84 

180 
28 

252 
28 
84 
6 

154 
84 

924 
168 
168 
264 
616 

2,184 
264 

3,432 
60 

2,772 
990 

2,002 
468 

1,980 
858 

12,870 
330 
132 

8,580 
2,860 

780 
660 

29,172 
2,860 

48,620 

Note: Entries are rows c'j of the (p - 1) x p matrix C illustrated in (6.90) in Section 6.10.1 
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Table A.14 Test for Equal Covariance Matrices, a = 0.05 

V 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

k = 2 

12.18 
10.70 
9.97 
9.53 
9.24 
9.04 
8.88 
8.76 
8.67 
8.59 
8.52 
8.47 
8.42 
8.38 
8.35 
8.32 
8.28 
8.26 
8.17 
8.11 

22.41 
19.19 
17.57 
16.59 
15.93 
15.46 
15.11 
14.83 
14.61 
14.43 
14.28 
14.15 
14.04 
13.94 
13.86 
13.79 
13.72 
13.48 
13.32 

jfc = 3 

18.70 
16.65 
15.63 
15.02 
14.62 
14.33 
14.11 
13.94 
13.81 
13.70 
13.60 
13.53 
13.46 
13.40 
13.35 
13.30 
13.26 
13.23 
13.10 
13.01 

35.00 
30.52 
28.24 
26.84 
25.90 
25.22 
24.71 
24.31 
23.99 
23.73 
23.50 
23.32 
23.16 
23.02 
22.89 
22.78 
22.69 
22.33 
22.10 

k = 4 

24.55 
22.00 
20.73 
19.97 
19.46 
19.10 
18.83 
18.61 
18.44 
18.30 
18.19 
18.10 
18.01 
17.94 
17.87 
17.82 
17.77 
17.72 
17.55 
17.44 

46.58 
40.95 
38.06 
36.29 
35.10 
34.24 
33.59 
33.08 
32.67 
32.33 
32.05 
31.81 
31.60 
31.43 
31.26 
31.13 
31.01 
30.55 
30.25 

k = 5 

30.09 
27.07 
25.57 
24.66 
24.05 
23.62 
23.30 
23.05 
22.85 
22.68 
22.54 
22.42 
22.33 
22.24 
22.17 
22.10 
22.04 
21.98 
21.79 
21.65 

57.68 
50.95 
47.49 
45.37 
43.93 
42.90 
42.11 
41.50 
41.00 
40.60 
40.26 
39.97 
39.72 
39.50 
39.31 
39.15 
39.00 
38.44 
38.09 

fe = 6 

p = 2 
35.45 
31.97 
30.23 
29.19 
28.49 
27.99 
27.62 
27.33 
27.10 
26.90 
26.75 
26.61 
26.50 
26.40 
26.31 
26.23 
26.16 
26.10 
25.87 
25.72 

p = 3 
68.50 
60.69 
56.67 
54.20 
52.54 
51.33 
50.42 
49.71 
49.13 
48.65 
48.26 
47.92 
47.63 
47.38 
47.16 
46.96 
46.79 
46.15 
45.73 

fc = 7 

40.68 
36.75 
34.79 
33.61 
32.83 
32.26 
31.84 
31.51 
31.25 
31.03 
30.85 
30.70 
30.57 
30.45 
30.35 
30.27 
30.19 
30.12 
29.86 
29.69 

79.11 
70.26 
65.69 
62.89 
60.99 
59.62 
58.57 
57.76 
57.11 
56.56 
56.11 
55.73 
55.40 
55.11 
54.86 
54.64 
54.44 
53.70 
53.22 

k = 8 

45.81 
41.45 
39.26 
37.95 
37.08 
36.44 
35.98 
35.61 
35.32 
35.08 
34.87 
34.71 
34.57 
34.43 
34.32 
34.23 
34.14 
34.07 
33.78 
33.59 

89.60 
79.69 
74.58 
71.44 
69.32 
67.78 
66.62 
65.71 
64.97 
64.36 
63.86 
63.43 
63.06 
62.73 
62.45 
62.21 
61.98 
61.16 
60.62 

fc = 9 

50.87 
46.07 
43.67 
42.22 
41.26 
40.57 
40.05 
39.65 
39.33 
39.07 
38.84 
38.66 
38.50 
38.36 
38.24 
38.13 
38.04 
37.95 
37.63 
37.42 

99.94 
89.03 
83.39 
79.90 
77.57 
75.86 
74.58 
73.57 
72.75 
72.09 
71.53 
71.05 
70.64 
70.27 
69.97 
69.69 
69.45 
68.54 
67.94 

k = 10 

55.86 
50.64 
48.02 
46.45 
45.40 
44.64 
44.08 
43.64 
43.29 
43.00 
42.76 
42.56 
42.38 
42.23 
42.10 
41.99 
41.88 
41.79 
41.44 
41.21 

110.21 
98.27 
92.09 
88.30 
85.73 
83.87 
82.46 
81.36 
80.45 
79.72 
79.11 
78.60 
78.14 
77.76 
77.41 
77.11 
76.84 
75.84 
75.18 

(continued) 
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V 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 

k = 2 

35.39 
30.06 
27.31 
25.61 
24.45 
23.62 
22.98 
22.48 
22.08 
21.75 
21.47 
21.24 
21.03 
20.86 
20.70 
20.56 
20.06 
19.74 

51.11 
43.40 
39.29 
36.71 
34.93 
33.62 
32.62 
31.83 
31.19 
30.66 
30.22 
29.83 
29.51 
29.22 
28.97 
28.05 
27.48 

fc = 3 

56.10 
48.62 
44.69 
42.24 
40.57 
39.34 
38.41 
37.67 
37.08 
36.59 
36.17 
35.82 
35.52 
35.26 
35.02 
34.82 
34.06 
33.59 

81.99 
71.06 
65.15 
61.39 
58.78 
56.85 
55.37 
54.19 
53.23 
52.44 
51.76 
51.19 
50.69 
50.26 
49.88 
48.48 
47.61 

fc = 4 

75.36 
65.90 
60.89 
57.77 
55.62 
54.04 
52.84 
51.90 
51.13 
50.50 
49.97 
49.51 
49.12 
48.78 
48.47 
48.21 
47.23 
46.61 

110.92 
97.03 
89.45 
84.62 
81.25 
78.75 
76.83 
75.30 
74.05 
73.01 
72.14 
71.39 
70.74 
70.17 
69.67 
67.86 
66.71 

Table A. 14 (Continued) 

k = 5 

93.97 
82.60 
76.56 
72.77 
70.17 
68.26 
66.81 
65.66 
64.73 
63.95 
63.30 
62.76 
62.28 
61.86 
61.50 
61.17 
59.98 
59.21 

138.98 
122.22 
113.03 
107.17 
103.06 
100.02 
97.68 
95.82 
94.29 
93.02 
91.94 
91.03 
90.23 
89.54 
88.93 
86.70 
85.29 

fe = 6 

p = 4 
112.17 
98.93 
91.88 
87.46 
84.42 
82.19 
80.48 
79.14 
78.04 
77.13 
76.37 
75.73 
75.16 
74.68 
74.25 
73.87 
72.47 
71.58 

p = 5 
166.54 
146.95 
136.18 
129.30 
124.48 
120.92 
118.15 
115.96 
114.16 
112.66 
111.41 
110.34 
109.39 
108.57 
107.85 
105.21 
103.56 

fc = 7 

130.11 
115.03 
106.98 
101.94 
98.46 
95.90 
93.95 
92.41 
91.15 
90.12 
89.26 
88.51 
87.87 
87.31 
86.82 
86.38 
84.78 
83.74 

193.71 
171.34 
159.04 
151.17 
145.64 
141.54 
138.38 
135.86 
133.80 
132.07 
130.61 
129.38 
128.29 
127.36 
126.52 
123.51 
121.60 

k = 8 

147.81 
130.94 
121.90 
116.23 
112.32 
109.46 
107.27 
105.54 
104.12 
102.97 
101.99 
101.14 
100.42 
99.80 
99.25 
98.75 
96.95 
95.79 

220.66 
195.49 
181.65 
172.80 
166.56 
161.98 
158.38 
155.54 
153.21 
151.29 
149.66 
148.25 
147.03 
145.97 
145.02 
141.62 
139.47 

λ = 9 

165.39 
146.69 
136.71 
130.43 
126.08 
122.91 
120.46 
118.55 
116.98 
115.69 
114.59 
113.67 
112.87 
112.17 
111.56 
111.02 
109.01 
107.71 

247.37 
219.47 
204.14 
194.27 
187.37 
182.24 
178.23 
175.10 
172.49 
170.36 
166.53 
166.99 
165.65 
164.45 
163.38 
159.60 
157.22 

k= 10 

182.80 
162.34 
151.39 
144.50 
139.74 
136.24 
133.57 
131.45 
129.74 
128.32 
127.14 
126.10 
125.22 
124.46 
123.79 
123.18 
120.99 
119.57 

273.88 
243.30 
226.48 
215.64 
208.02 
202.37 
198.03 
194.51 
191.68 
189.38 
187.32 
185.61 
184.10 
182.81 
181.65 
177.49 
174.87 

Note: Table contains upper percentage points for 

-2 In M = v ( k In |S| - ] T In |Sf| j 

for k samples, each with v degrees of freedom. Reject Ho : Σ ι = Σ2 = · · · = Σ^ if 
- 2 In M > table value. 
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Table A.15 Test for Independence of p Variables 

Upper percentage points for 

«'--("-*ί>(^)--('-*ίί)'-<Β<· 
where v is the degrees of freedom of S or R. Reject independence if u' is greater than table 
value. The χ„ values are shown for comparison, since v! is approximately χ2 distributed with 
/ = \P{P — 1) degrees of freedom. 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

p = 3 

8.020 
7.834 
7.814 
7.811 
7.811 
7.811 
7.812 
7.812 
7.813 
7.813 
7.813 
7.813 
7.814 
7.814 
7.814 
7.814 
7.814 
7.815 

p = 4 

15.22 
13.47 
13.03 
12.85 
12.76 
12.71 
12.68 
12.66 
12.65 
12.64 
12.63 
12.62 
12.62 
12.62 
12.61 
12.61 
12.59 

p = 5 

24.01 
20.44 
19.45 
19.02 
18.80 
18.67 
18.58 
18.52 
18.48 
18.45 
18.43 
18.41 
18.40 
18.38 
18.37 
18.31 

a 

p = 6 
= 0.05 

34.30 
28.75 
27.11 
26.37 
25.96 
25.71 
25.55 
25.44 
25.36 
25.30 
25.25 
25.21 
25.19 
25.16 
25.00 

= 0.01 

p = 7 

46.05 
38.41 
36.03 
34.91 
34.28 
33.89 
33.63 
33.44 
33.31 
33.20 
33.12 
33.06 
33.01 
32.67 

P = 8 

59.25 
49.42 
46.22 
44.67 
43.78 
43.21 
42.82 
42.55 
42.34 
42.19 
42.06 
41.97 
41.34 

p = 9 

73.79 
61.76 
57.68 
55.65 
54.46 
53.69 
53.15 
52.77 
52.48 
52.26 
52.08 
51.00 

p = 10 

89.92 
75.45 
70.43 
67.87 
66.34 
65.33 
64.63 
64.12 
63.73 
63.43 
61.66 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

11.79 
11.41 
11.36 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 
11.34 

21.18 
18.27 
17.54 
17.24 
17.10 
17.01 
16.96 
16.93 
16.90 
16.89 
16.87 
16.86 
16.86 
16.85 
16.85 
16.84 
16.81 

32.16 
26.50 
24.95 
24.29 
23.95 
23.75 
23.62 
23.53 
23.47 
23.42 
23.39 
23.36 
23.34 
23.32 
23.31 
23.21 

44.65 
36.09 
33.63 
32.54 
31.95 
31.60 
31.36 
31.20 
31.09 
31.00 
30.94 
30.88 
30.84 
30.81 
30.58 

58.61 
47.05 
43.59 
42.00 
41.13 
40.59 
40.23 
39.97 
39.79 
39.65 
39.54 
39.46 
39.39 
38.93 

74.01 
59.36 
54.83 
52.70 
51.49 
50.73 
50.22 
49.85 
49.59 
49.38 
49.22 
49.09 
48.28 

90.87 
73.03 
67.37 
64.64 
63.06 
62.05 
61.36 
60.86 
60.49 
60.21 
59.99 
58.57 

109.53 
88.05 
81.20 
77.83 
75.84 
74.56 
73.66 
73.01 
72.52 
72.15 
69.92 



Appendix B 

Answers and Hints to Problems 

CHAPTER 2 

2.1 (a)A + B=(13
7

 λ\ I), A - B = ( J _\ ~\ 

, 6 5 4 3 6 8 \ ( 29 62 
(b) A 'A = 4 3 29 46 , ΑΑ' ' 

68 46 73 62 138 

7 13 \ / 7 13 
2.2 (a) (A + B) ' = ( 0 14 , A' + B ' = 0 14 

7 3 / \ 7 3 

(b)A'=| 2 Π , (A')^(4
7 I I 
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Copyright © 2012 John Wiley & Sons, Inc. 



6 3 8 ANSWERS AND HINTS TO PROBLEMS 

U W A B - ( 5 » ) . «*-( ,; j 
(b) |AB| = -70 , |A| = - 7 , |B | = 10 

2.4 (a) A + B = (3
3
 3

4Y tr(A + B) = 7 

(b) tr(A) = 0, tr(B) = 7 

2.5 (a) AB = ( 3 _J V BA 

(b) tr(AB) = 1, tr(BA) = 1 

2.6 (b) x = ( l 1 - 1 ) ' 

2.7 (a) Bx = (13,6,9)' (b) y ' B = (25, -1 ,17) 
(d) x 'Ay = 43 (e) x 'x = 6 

1 - 1 2 
(g) xx ' = ( - 1 1 - 2 | (h) xy ' = 

2 - 2 4 
62 7 22 

(i) B 'B = | 7 14 7 
22 7 41 

2.8 (a) x + y = (4,1,3)', x - y = ( -2 , - 3 , 1 ) ' 

(b) (x - y) 'A(x - y) = - 3 1 

2.9 Bx = b i x 1 + b 2 X 2 + b3X3 = ( l ) | 7 | + ( - 1 

2.10 (a) (AB) ' = 8 4 , B 'A ' = 8 4 (c) |A 

2.11 (a) a 'b = 5, (a'b)2 = 25 (b) b b ' = 2 1 3 , a ' (bb ' )a = 25 

a 2a 3a \ / a 26 3c 
2.12 D A = | 46 56 66 , A D = 4a 56 6c 

7c 8c 9c / V 7o 86 9c 
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a2 2ab 3ac 
D A D = | iab 562 66c 

lac 86c 9c2 

2.13 A B = 

2.14 A B = 

/ 8 9 5 
7 5 5 

\ 3 4 2 | 2 

3 5 
1 4 

CB 

2.15 (a) tr(A) = 5, tr(B) = 5 

/ 6 4 5 
(b) A + B = ( 2 - 2 1 

\ 4 9 6 

(c) |A| = 0, |B| = 2 

9 12 17 
(d) A B = ( 3 - 1 5 

6 13 12 

2.16 (a) IAI = 36 (b) T 

2.17 (a) det(A) = 1 (b) T 

2.18 (a) C 

3 5 
1 4 

tr(A + B) = 10 

det(AB) = 0 

1.7321 2.3094 1.7321 
0 1.6330 1.2247 
0 0 2.1213 

1.7321 -2.8868 -.5774 
0 2.1602 -.7715 
0 0 .2673 

.4082 

.8165 

.4082 -.5774 -.7071 

5774 .7071 
5774 .0000 

2.19 (a) Eigenvalues: 2,1, - 1 
.3015 \ / .7999 \ / .7071 

Eigenvectors: j .9045 , .5368 , 0 
.3015 / \ .2684 / \ .7071 

(b) tr(A) = 2, |A 

2.20 (a) C = 
.0000 .5774 -.8165 
.7071 -.5774 -.4082 
.7071 -.5774 -.4082 

(b) C'AC 
-2 0 0 
0 1 0 
0 0 4 
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(c) C D C = 

2.21 Eigenvalues: 1,3, C = -.7071 
-.7071 

A1'2 = C D 1 / 2 C 

-.7071 
.7071 

1.3660 
-.3660 

-.3660 
1.3660 

2.22 (a) The spectral decomposition of A is given by A = CDC', where C — 
.455 -.580 .675 \ 
.846 .045 -.531 and D = diag(13.542,3.935, -2.477). 
.278 .813 .511 / 

(b) The spectral decomposition of A2 is given by A 2 = CDC', where C is 
the same as in part (a) and D = diag(183.378,15.486,6.135). Note that 
the diagonal elements of D are the squares of the diagonal elements of 
D in part (a). 

(c) The spectral decomposition of A - 1 is given by A - 1 = CDC' , where 
/ -.580 .455 .675 \ 

C = .045 .846 -.531 andD = diag(.254, .074,-.404). 
\ .813 .278 .511 / 

The diagonal elements of D are the reciprocals of those of D in part (a). 
The first two columns of C have been interchanged to match the inter-
change ofthe corresponding elements of D; that is, D = (1/λ2,1/λι , Ι/λβ). 

2.23 A = UDV', where D = diag(13.161,7,000,3.433), 

U = 
( 

{ 

.282 

.591 
-.225 

.721 

-.730 
-.146 

.404 

.531 

.424 \ 

.184 

.886 
-.040 / 

.856 -.015 .517 
V = | - .156 .946 .284 

.494 .324 - .807 

2.24 (a) j ' a = (l)ai + (l)o2 + · · · + (l)a„ = £ \ <*i = a'j 
(b) j ' A = [(l)an + (l)o2 1 + · · · + ( l ) a „ i , . . . , (l)alp 

+(l)a2p-\ h (l)anp] 
= (J2i a i l) Σ ί a»2, · ■ · , Σί aip) 

( ( l ) an + (l)ai2 + ■·■ + (l)alp \ 
(l)a2 i + (l)a22 + · · · + (l)a2 p 

(c) Aj 

\ (l)a„i -I- ( l )an 2 + + (l)a„p / 
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2.25 (x - y) '(x - y) = (χ' - y ')(x - y) = x 'x - x 'y - y 'x + y 'y 
= x 'x - 2x'y + y 'y 

2.26 By (2.27), (A'A) ' = A'(A') ' . By (2.6), (A') ' = A. Thus, (A'A) ' = A'A. 

2.27 (a) Σί a ' x i = a ' x i + a ' x 2 + H a'x„ 
= a ' ( x 1 + x 2 + - - . + x „ ) [by (2.21)] 
= a ' Σ< χ ί 

(b) Σί A x « = Α χ 1 + Α χ 2 Η 1" Α χ η 
= Α(χι + Χ2 + · · · + χ„) [by (2.21)] 
= Α Σ ί X» 

(c) E i ( a ' x i ) 2 = Σ< a'(xixi)a [by (2.40)] 
= a ' (EiXixi)a [by (2.29)] 

(d) E i AxiiAxi) ' = D i Λ Χ ^ Χ - Λ ' = Α ( Σ , Xixi)A ' [by (2.29)] 

2.28 (a) A x : 

(b) A S A ' = ( * | J S ( a i , a 2 ) = ( 5 )(Sai,Sa2) 

a'jSai a iSa 2 
a2Sai a2Sa2 

[by (2.48)] 

2.29 (a) If A 
M \ 

\<J 
, then by (2.68), A' = (ai, a 2 , . . . , a„) and 

/ a i \ 

A ' A = ( a i , a 2 , . . . , a „ ) 

U/ 
= a ia i + a2a2 + · · · + a„a^ 

2.30 A " 1 A = I 
(A" 1 A) ' = I' = I 
A ' i A - 1 ) ' ^ 
( A ' ^ A ^ A " 1 ) ' = ( A ' ) " 1 ! = (A ' )" 1 

( Α - γ ^ Α ' ) " 1 

[by (2.66)]. 
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2 31 - ( ^ π 1 + A n ^ i s a ' ^ A n 1 - A n * a i 2 V A n a i 2 
b V -»'^ΑΓι1 1 A a'i2 α22 , 
— I A l + A f / a ^ a ' ^ - A ^ a ^ a i a &A["1

1a12+An
1ai2a/i2Af1

1ai2-A^1
1ai2a22 

b I -a'12 + a'12 - a ' ^ A ^ a ^ + 022 
1 / bI> ° "\ u i. / A - i 

= r I Q, b I, where 6 = a22 - a ' 1 2A n aX2 
I 0 

0' 1 y 

B W B 1 

2.32 (B + cc') B " 1 - l + c'B-'cj 
c c ' B " 1

 /T ,_j c i c ' B ^ ^ c ' B " 1 

— = - + C C ' B - - i — ^ — 
' - ' " - 1 - l + c 'B- x c 

c c ' B " 1 = I 

2.33 IcA 

[by (2.26)] 

[by (2.89)] 
[by (2.84)] 

2.34 A A " 1 = I 
IAA"1! = |I| 
[AHA"1! = 1 [by (2.83)] 
l A I - |A| 

2.35 In (2.93) and (2.94), let A n = B, A1 2 = c, A2 1 = - c ' , and A2 2 = 1. Then 
equate the right-hand sides of (2.93) and (2.94) to obtain (2.95). 

2.36 By (2.52), tr(AA') = £ ? = 1 a ^ = Σ Γ = ι ( 4 +<& + ·■■ + <&) 
- T n V n a2 

2.37 Show that |C| Φ 0 by taking the determinant of both sides of C 'C = I. Thus 
C is nonsingular and C " 1 exists. Multiply C 'C = I on the right by C _ 1 and 
on the left by C. 

2.38 Multiply A B x = λχ on the left by B. Then λ is an eigenvalue of B A and 
Bx is an eigenvector. 

2.39 (a) (A1 /2)2 = ( C D 1 / 2 C ) 2 = C D 1 / 2 C ' C D 1 / 2 C 
= C D C [by (2.101)] 
= A [by (2.109)] 

(b) By (2.114), A 1 / 2 A 1 / 2 = A. By (2.89), 

|A 1 / 2A 1 / 2 | = |A| 

l A ^ j j A 1 / 2 ! = |A| 
IA1/2!2 = IAI 
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(c) Since A is positive definite, we have, from part (b), [A 1 / 2! = l A p / 2 . 

2.40 Use properties (2.123) and (2.124). Then use property (2.121) (twice). Finally, 
use property (2.124). 

CHAPTER 3 

3.1 ~z = Σ7=ι zi/n = Σί ανίΙη = (α2/ι + ■ · · + CLVn)/n. Now factor a out of the 
sum. 

3.2 The numerator of s 2 is Σ?=ι(ζί - z)2 — Σί(ανί ~ aVY - ΣΑαίύϋ ~ V)f 

3.3 x — 4, y — 4: 
X y x-x y-y (x-x)(y -y) 

2 
2 
2 
4 
4 
4 
6 
6 
6 

2 
4 
6 
2 
4 
6 
2 
4 
6 

- 2 
- 2 
- 2 

0 
0 
0 
2 
2 
2 

- 2 
0 
2 

- 2 
0 
2 

- 2 
0 
2 

4 
0 

- 4 
0 
0 
0 

- 4 
0 
4 

Sum = 0 

/ * ! \ 

3.4 x — xj 
X2 

\ Xn ) 

3.5 yi - y = | y i 2 

2/i3 

/ ! \ 

W 
2/i 
yj 

( Xi \ 

X2 

\ Xn J 

yn - Vi 
ya - y~2 
Vi3 - y3 

/ x \ 

\ x ) 

( Xi - X ^ 

X2 -X 

\ Xn X / 

yn - 2/i 
X ] ( y i - y ) ( y i - y ) ' = X ] I 2Λ2-2/2 ) (2/̂ 1 - 2 / 1 , ^ 2 - 2 / 2 , ^ 3 - 2/3) 

ί=ι \ 2/i3 - y 3 i = l 

« / (yn-Vi)2 {yii-yi){ya-y~2) (yn - Vi)(yi3 - ihT 
Σ (V*2 ~ V2)(yil - Vl) (Vi2 ~ 2V2)2 (Vi2 ~ 272)(2/i3 ~ V3) 
*=i \(2/i3 - y3)(yn - Vi) (yr3 - ys)(yi2 - 272) (yi3 - y3)

2 

3.6 z = Σ?=ι zi/n = Σί ΆΎζ/η = ( a 'y i + 
on the left. See also (2.42). 

a ' y n ) / n . Now factor out a ' 
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3.7 The numerator of s2 is ΣΓ= ι (* - zf = ^ ( a ' y , - a 'y)2 = E ^ ' y , -
a'y) (a'y j — a'y). The scalar a'y» is equal to its transpose, as in (2.39). Thus 
a'y* = ( a ' y j ' = y^a, and ^ ( a ' y ; - a 'y) (a ' y i - a'y) = ^ ( a ' y ^ -
a 'y ) (y^a-y ' a ) . By (2.22) and (2.24), this becomes £ \ a'(yi -y ) (y* - y ) ' a . 
Now factor out a' on the left and a on the right. See also (2.44). 

3.8 By (3.63) and (3.64), 

( a'jSai aiSa2 
a2Sai a2Sa2 

ASA' = 

\ a'fcSa! a'feSa2 

from which the result follows immediately. 

a'iSafc ^ 
a2Safc 

4Safe / 

3.9 cov(z) = c o v [ ( £ 1 / 2 ) - 1 y - ( E 1 / 2 ) " V ] 
= (S 1 / 2 ) - 1cov(y)[(E 1 / 2 ) - 1 ] ' [by (3.76)] 
= ( Σ 1 / 2 ) " 1 ( f ) ( Σ 1 / 2 ) " 1 

Ι ( Σ 1 / 2 ) - 1 ^ 1 / 2 Σ 1 / 2 ( Σ 1 / 2 ) - 1 [ b y ( 2 i U 4 ) ] 

= ii 
3.10 Answers are given in Examples 3.7 and 3.8. 

3.11 (a) |S| = 459.956 

3.12 (a) |S| = 27,236,586 

(b) tr(S) = 213.043 

(b) tr(S) = 292.891 

3.13 R = 

/ 1.000 
.614 
.757 
.575 

\ .413 

3.14 z = 83.298, ί 

J,1J Tzw -.6106 

.614 .757 
1.000 .547 
.547 1.000 
.750 .605 
.548 .692 

a
z = 1048.659 

.575 

.750 

.605 
1.000 
.524 

.413 \ 

.548 

.692 

.524 
1.000 / 

3.16 yi = (1,0,0)y = a'y, \{y2 + y3) = (0, §, ±)y = b 'y. Use (3.57) to 
obtain r, 

3.17 (a) z 

(b) R z = 

.4873. 

38.369 
40.838 

-51.727 

1.0000 .0441 -.9781 
.0441 1.0000 .1637 

-.9781 .1637 1.0000 

323.64 
19.25 

460.98 

19.25 
588.67 
104.07 

-460.98 
104.07 
686.27 
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3.18 (a) y 

R= 

/ 48.655 \ 
49.625 
50.570 

\ 51.445 / 

/ 6.3300 6.1891 5.7770 5.5348 \ 
6.1891 6.4493 6.1534 5.9057 
5.7770 6.1534 6.9180 6.9267 

\ 5.5348 5.9057 6.9267 7.4331 / 

/ 1.0000 .9687 .8730 .8069 \ 
.9687 1.0000 .9212 .8530 
.8730 .9212 1.0000 .9659 

\ .8069 .8530 .9659 1.0000 / 

(b) |S| = 1.0865, tr(S) = 27.1304 

3.19 (a) z = 44.1400, sz
2 = 21.2309, w = 103.8850, < = 30.8161 

(b) sz 6.5359, rz .2555 

3.20 z 
401.40 
-47.55 
150.48 

398.33 -44.35 148.35 
-44.35 12.36 -16.90 
148.35 -16.90 59.46 

R-z— 
1.00 

- .63 
.96 

.96 
- .62 
1.00 

3.21 (a) ( ί. 

(b) S 

/ 185.72 \ 
151.12 

183.84 
\ 149.24 / 

/ 95.29 52.87 
52.87 54.36 
69.6 51.31 

\ 46.11 35.05 

69.66 
51.31 
100.81 
56.54 

46.11 \ 
35.05 
56.54 
45.02 / 

3.22 
: ; ) -

/ 70.08 \ 
73.54 
75.10 

109.68 
104.24 

\ 109.98 / 
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/ 95.54 
17.61 
12.18 
60.52 
23.00 

V 62.84 

17.61 
73.19 
14.25 
5.73 

61.28 
-1.66 

12.18 
14.25 
76.17 
46.75 
32.77 
69.84 

60.52 
5.73 

46.75 
808.63 
320.59 
227.36 

23.00 
61.28 
32.77 

320.59 
505.86 
167.35 

62.84 \ 
-1.66 
69.84 

227.36 
167.35 
508.71 / 

CHAPTER 4 

4.1 |Σ ι | = 1, tr(Ei) = 20, |Σ 2 | = 4, ιτ(Σ2) = 15. Thus tr(Ei) > 
ΓΤ(Σ2) , but |Σ ι | < |Σ 2 | . When converted to correlations, we have 

*V = 
1 .96 .80 

.96 1 .89 

.80 .89 1 
P2 

1 .87 .41 
.87 1 .71 
.41 .71 1 

As noted at the end of Section 4.1.3, a decrease in intercorrelations or an in-
crease in the variances will lead to a larger |Σ| . In this case, the decrease 
in correlations from Σχ to Σ 2 outweighed the increase in the variances (the 
increase in trace). 

4.2 E(z) = (TT'iEiy) - μ] [by (3.75)] 
= (T')-V-^] = o, 

cov(z) = ( Τ Ο ^ Σ Κ Τ ' Γ 1 ] ' [by (3.76)] 
= ( T ' ) - 1 T T T - 1 [by (2.75) and (2.79)] 

4.3 By the last expression in Section 2.3.1, 

Π f=\ (ν2π)ρ\Έ\1/2 ( \ / 2^Γ>2> |Σ |« / 2 ' 

The sum in the exponent of (4.13) follows from the basic algebra of exponents. 

4.4 Since (y — μ ) ' Σ - 1 ^ - μ) is a scalar, we have E[(y - μ)'Έ~ι(γ - μ)] = 
£ { ΐ Γ [ ( Υ - μ ) ' Σ - 1 ( Υ - μ ) ] } = £ { ΐ Γ [ Σ - 1 ( Υ - μ ) ( Υ - μ ) ' ] } = t r p " 1 ^ -
μ ) ( γ - μ ) ' ] = Ι τ ( Σ - 1 Σ ) = ΐ Γ ( Ι ρ ) = ρ . 

4.5 The other two terms are of the form | ^™=1(y — μ ) ' Σ - 1 ^ ί — y), which is 
equal to | [ (y - μ ) ' Σ _ 1 ] X)"=1(yj - y). This vanishes because £)"=1(y» -

y) = ny - ny = 0. 
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4.6 We replace yi in \fb[ by Zi = ayi + b. By an extension of (3.3), z = ay + b. 
Then (4.18) becomes 

ν ^ Σ Γ = ι ( ^ - ^ ) 3 Vn^iayi + b - ay - b)3 

Ε Γ = ι ( * " ^ ) 2 1 3 / 2 K i t e + 6 - ay - 6)2]3/2 

[ « 2 E , ( ^ - y ) 2 ] 3 / 2 E i ( i / i - i / ) 2 ] 3 / 2 

Similarly, if (4.19) is expressed in terms of zi = ayi + b, it reduces to b2 in 
terms of yi. 

4.7 /32)P - E[(y - Α*)'Σ-1(γ - μ)}2 by (4.33). But when y is Np(μ, Σ ) , ν = 
(y _ μ ) ' Σ - 1 (y — μ) is distributed as χ2(ρ) by property 3 in Section 4.2. Then 
£(v2) = var(ü) + [E(v)}2. 

4.8 To show that b\tP and 62,P are invariant under the transformation z = Ayi + b , 
where A is nonsingular, it is sufficient to show that 5^ (z) = (y,—y)'S (yj — 
y). By (3.67) and (3.68), z = Ay + b and Σ ζ = ΑΣΑ'. Then gij for z be-
comes 

9ij(z) = (zi - ^ ' S ; 1 (ZJ - z) 
= (Ay, + b - Ay - b ) ' ( A S A ' ) - 1 ( A y i + b - Az - b) 

= ( y l - y ) ' A ' ( A ' ) - 1 E - 1 A - 1 A ( y , - y ) 

= (y» - y ) ' S _ 1 (yj - y) = ^ ( y ) 

4.9 Let i = (n) in (4.47); then solve for D2^ in (4.46) and substitute into (4.47) 
to obtain F(n) in terms of w, as in (4.48). 

4.10 (a) a ' = (2 , -1 ,3) , z = a 'y is iV(17,21) 

(b) A = ( j _ j 2 ) ' z = AyisA^2 

(c) By property 4b in Section 4.2, y2 is iV(l, 13). 

(d) By property 4a in Section 4.2, ' Vl 

(e) A 

4.11 (a) z 

10 
29 
- 1 

(b) z 

.408 
-.047 
.285 -
.465 -.070 

-.070 .326 
.170 -.166 
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(c) By (4.6), (y - μ ) ' Σ 1(y - μ) is distributed as χ§. 

4.12 (a) a' = (4, - 2 , 1 , - 3 ) , z = a 'y is JV(-30,153) 

(b ) A = ( - 2 3 1 -2 J - z = AyisJV2 

/ 3 1 - 4 - ] 
(c) A = 

z = Ay is iV3 

(d) By property 4b in Section 4.2, y3 is ΛΓ(-1,2). 

27 - 7 9 
-79 361 

(e) By property 4a in Section 4.2, 2/2 

2/4 
isiVo 

(f) A 

( 1 0 0 0 ^ 
I 5 ° 0 

0 I I I 
3 3 3 

\ I I I I / 
\ 4 4 4 4 / 

Ay is N4 

I - 2 \ 
.5 
0 1 

\ ! · 2 5 / 

/ .302 

4.13 (a) z = .408 
-.087 

\ - .858 

/ .810 

(b) z = .305 
.143 

V - 480 

0 
.561 
.261 

-.343 

.305 

.582 

.249 
-.Of 53 

( U 

1.5 
2 

\ 3.75 

0 
0 

1.015 
-.686 

.143 

.249 
1.153 

-.298 

1.5 2 3.75 V 
1 .67 .875 

.67 .67 1 
.875 1 1.688 / _ 

o\ 
0 
0 

.972 / 

- .480 > 
- .083 
-.298 

.787 j 

' 2/ + 2 \ 
» - 3 
y + 1 

v y ~ 5 J 
( y + 2 \ 

y - 3 
y + i 

V y - 5 / 
(c) (y - μ ) ' Σ ^ 1 ( Υ - μ) = (y - μ ) ' Σ - 1 / 2 Σ " 1 / 2 ( Υ - μ) = z'z, which is 

X2(P) = X2(4) 

4.14 The variables in (b), (c), and (d) are independent. 

4.15 The variables in (a), (c), (d), (f), (i), (j)> a nd (n) ^ ε independent. 

4.16 (a) E(y|x) = μυ + Σ ^ Σ ^ 1 (χ - μχ) 
-3 2 

5/ ■ — yx' 

2 
-1 + 0 4 - 2 

xi — 3 
X2 — 1 
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3.25 
-3.75 + 

(b) cov(y|x) Jyy 
V V" 1 V 

-.5 .25 \f Xl-i 
.5 1.25 ) \ x2 - 1 

-.5 .25 γ xi 
.5 1.25 ){ x2 

7 3 
3 6 

7 3 
3 6 

- 3 2 
0 4 

2 1 
1 5 

5 - 2 
- 2 4 

5 2 
2 1 

- 3 0 
2 4 

4.17 (a) £7(y|x) = μυ + Σ „ χ Σ ^ ( χ - μ χ ) 

15 0 3 3 
- 2 

3 
- 2 

-12 
22.5 

+ 8 6 

+ .67 .167 

(b) cov(y|x)= Σνυ - ΈυχΈχχΣχυ 

14 - 8 
- 8 18 

14 - 8 
-8 18 

4.18 (a) By the central limit theorem in Section 4.3.2, y/n(y — μ) is approxi-
mately Np(0, Σ) . 

(b) y is approximately Νρ(μ,Έ/η). 

4.19 (a) The plots show almost no deviation from normality. 

(b) Variable 

62 

2/1 V2 ys 2/4 

.3069 
1.932 

.3111 
2.107 

.0645 
1.792 

.0637 
1.570 

The values of \fb[ show a small amount of positive skewness, but none 
exceeds the upper 2.5% critical value for y/b\ given in Table A. 1 as .942. 
The values of 62 show negative kurtosis. For y\, the kurtosis is signifi-
cant, since b2 < 1.74, the lower 2.5 percentile in Table A.3. 
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4.22 

Variable 

D 
Y 

2/1 

.2848 

.4021 

2/2 

.2841 

.2934 

2/3 

.2866 

.6730 

2/4 

.2851 

.4491 

(c) 

From Table A.4, the lower 2.5 percentile for Y is —3.04 and the upper 
97.5 percentile is .628. We reject the hypothesis of normality only for 
S/3· 

(d) z defined in (4.24) is approximately N(0,3/n). To obtain a JV(0,1) 
statistic, we calculate z* — zj\j3/n. 

Variable 2/i 2/2 2/3 2/4 

4.20 (a) 

A2 

1 

-.3366 

2 

-.3095 

3 4 

.0737 

5 

-.0856 

6 7 10 
1.06 1.60 7.54 3.54 4.61 .63 .81 

2 
(10) 

2.47 .95 3.78 

= 7.54 > 7.01. (b) The .05 critical value from Table A.6 is 7.01. D2 

(c) 

The plot of (vi, U(j)) shows some evidence of nonlinearity and an outlier. 
(d) bitP = 7.255,62,p = 14.406. Both (barely) exceed upper .05 critical 

values in Table A.5. 

i 

u(i) 

Vi 

1 

.08 

.07 

2 

.10 

.13 

3 

.12 

.18 

4 

.13 

.23 

5 

.20 

.28 

6 

.30 

.34 

7 

.44 

.40 

8 

.47 

.47 

9 

.57 

.55 

10 

.93 

.68 

4.21 (b) Variable 

b2 

2/i 

.2176 
2.079 

2/2 

.5857 
1.681 

2/3 

.7461 
2.583 

2/4 

-.3327 
1.774 

2/5 

-.1772 
2.456 

None of the values of yTj^ exceeds 1.134 (from Table A. 1) or is less than 
— 1.134. None of the values of b2 is less than 1.53 (from Table A.3). 
Thus there is no significant departure from normality. 

(c) Variable 

D 
Y 

2/i 

.279 
-.305 

2/2 

.269 
-1.399 

2/3 

.275 
-.805 

2/4 

.281 
-.114 

2/5 

.276 
-.669 

(d) z* = z/^/3/n, where z is defined in (4.24). 
Variable yi y2 2/3 2/4 2/5 

(a) 

(c) 

D 

1 

.4848 -1.7183 -1.3627 

2 3 4 5 6 

.8091 .3686 

9 10 

5.20 2.15 7.63 5.34 5.54 1.73 5.21 5.90 2.72 6.02 2.56 

i 

M(i) 

Vi 

1 

.19 

.18 

2 

.24 

.27 

3 

.28 

.34 

4 

.30 

.39 

5 

.57 

.45 

6 

.57 

.50 

7 

.59 

.55 

8 

.61 

.61 

9 

.65 

.66 

10 

.66 

.73 

11 

.84 

.82 
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The plot shows a sharp break from the fourth to the fifth points. 

(d) bhp = 12.985, b2,p = 29.072 

4.23 (a) The Q — Q plots for y\ and y5 show little departure from normality. The 
Q — Q plots for y2 and j/3 show some evidence of heavier tails than the 
normal. The Q — Q plots for j/4 and ye show some evidence of positive 
skewness. 

(b) Variable 

h2 

2/1 

.5521 
3.160 

2/2 

.0302 
3.275 

2/3 

.7827 
2.772 

2/4 

1.4627 
6.675 

2/5 

.2219 
2.176 

2/6 

.9974 
4.528 

Variable 

D 
Y 

2/1 

.276 
-1.469 

2/2 

.274 
-1.845 

2/3 

.275 
-1.675 

2/4 

.260 
-5.249 

2/5 

.286 

.889 

2/6 

.271 
-2.741 

(d) Variable 2/1 2/2 2/3 2/4 2/5 

-1.640 -.062 -2.803 -2.961 -.870 -2.456 

4.24 (a) Df = 7.816,3.640,5.730,..., 6.433 

(b) £??51) = 25.628. By extrapolation in Table A.6, the .05 critical value for 
p = 6 is approximately 19. Thus we reject the hypothesis of multivanate 
normality. 

(c) (vi, u{i)) = (.021, .024), (.029, .028), . . . , (.306, .523). The plot shows 
nonlinearity for the last four points. 

(d) 6ljP = 16.287,62iP = 58.337. By extrapolation top = 6 in Table A.5, 
both appear to exceed their critical values. 

4.25 (a) Ai = 0.5, λ2 = -0 .3 , λ3 = 1.1 

(b) λ = (0.7,0,1.1)' 

4.26 (a) λι = - 0 . 1 , λ2 = -0.4, λ3 = 0.4 

(b) λ = (-0.2,-0.5,0.5) ' 

CHAPTER 5 

5.1 By (5.6), we have 

(y-μοϊ 

= n(y - ^ 0 ) ' S - 1 ( y - μ0) . 
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5.2 From (5.9), we have 

nin2 ,_ _ v c - i / - _ x 
^ T ^ ( y 1 - y 2 ) s p l ( y 1 - y 2 ) 

=<*-*>'(^)~w*> 

= ( y i - y 2 ) ' 

5.3 By (5.13) and (5.14), 

1 1 > 
— + — 
nx n2; 

\ „ 
| S p i 
1 

-1 

(Ϋι - Ϋ2) 

*2/ N _ [ a ' ( y i - y 2 ) ] 2 _ nm2 [(yi - y 2 ) ' S p l
1 ( y i - y 2 ) ] 2 

t [a) 
[(«l + n 2 ) /n in 2 ]a 'S p Ia nx + n2 (yx - y2) 'Sp l

1Sp iSp l
1(y1 - y 2 ) ' 

5.4 It is assumed that y and x have a bivariate normal distribution. Let y4 = 
1 I. Then di can be expressed as di = yi — Xi = a'y«, where a' = 

(1, - 1 ) . By property la in Section 4.2, di is Ν(&'μ, a 'Sa) . Show that a'y = 
y-x, a 'Sa = s2 ~ 2sj,x + s2 = s2

d, and that T2 = rc(a'y)'(a'Sa)_1(a'y) is 
the square of t = d/{sd/\/n). 

5.5 d = i ΣΓ=ι di = i E?=1(i/i " ^ ) = l Y^iVi ~ l Tu** = V - *> 

When this is expanded, we obtain s2, = s2 + s2 — 2s3/x. 

5.6 Similar to Problem 5.1. 

5.7 By (5.7), [(u - p + 1)/νρ]Ί%,ν = Fp^p+1. By (5.29), (u - q)(T*+q -
Tp)/{v + T2) is T2

u_p. Replacingpby q and u by ^ - p in (5.7), we obtain 

5.9 Under i/o3> we have Ομχ = 0 and Ομ2 = 0. Then 

E(Cy) = CE(y) = CEM^^A = " ιθ^+η,θμ, = V ; KJ' \ rn+n2 J m + n 2 

Since yx and y2 are independent, 

,_x /«1Ϋ1 + "2y2 \ nf S / n i + n | S / n 2 cov(y) = cov = ; Γ75 {yj V rn+n2 J ( m + n 2 ) 2 

_ (ni + n 2 ) S 
(ni + n 2 ) 2 ' 
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5.10 C S p i C ' / ( n i + n 2 ) is the sample covariance matrix of Cy. Hence the equation 
immediately above (5.39) exhibits the characteristic form of the T2 -distribution. 

5.11 T2 = .061 

5.12 (a) T2 = 85.3327 

(b) ii = 2.5039, t2 = .2665, i3 = -2.5157, U = .9510, i5 = .3161 

5.13 T2 = 30.2860 

5.14 (a) T2 = 1.8198 
(b) h = 1.1643, t2 = 1.1006, f3 = .9692, i4 = .7299. None of these 

is significant. In fact, ordinarily they would not have been examined 
because the T2-test in part (a) did not reject i/o· 

5.15 T2 = 79.5510 

5.16 (a) T2 = 133.4873 

(b) ii = 3.8879, h = -3.8652, i3 = -5.6911, U = -5.0426 

(c) a' = (.345, -.130, -.106, -.143) 

(d) i2(a) = 133.4873 

(e) R2 = .782975, T2 = 133.4873 

(I) By (5.32), t2{yi\y2,y3,y4) = 35.9336,i2(z/2|yi,VZ,VA) = 5.7994, 
i2(ys|yi,2/2,2/4) - 1.7749,i2(y4|yi,2/2,2/3) =8.2592 

(g) By(5.29),T2(y3,2/4|2/i,2/2) = 12.5206,F(y3,y4|2/i,2/2) = 6.0814 

5.17 By (5.34), the test for parallelism gives T2 = 132.6863. The discriminant 
function coefficient vector is given by (5.35) as a' = (—.362, —.223, —.137). 

5.18 (a) T2 = 66.6604 

(b) ii = -.6556,^2 = 2.6139,ί3-3-2884,ί4 = -4.6315,t5 = 1.8873,i6 = 
-3.2205 

(c) By (5.32), 

t2(yi 12/2,2/3,2/4,2/5,2/6) = -0758, i2(y2|2/i, 2/3,2/4,2/5,2/e) =6.4513, 
i2(2/3|2/i,2/2,2/4,2/5,2/e) = 6.9518, i2(j/4|2/i, 2/2,2/3,2/5,2/6) = 6.0309, 
i2(2/5|2/i,2/2,2/3,2/4,2/6) = 3.7052, ί2 (2/612/1,2/2,2/3,2/4,2/5) = 6.2619 

(d) By (5.29), T2(y4,y5,y6\yi,y2,y3) = 27.547 

5.19 (a) T2 = 70.5679 

(b) T2(t/5,2/6|2/3,2/4) = 13.1517 

(c) T2(i/i,i/2|2/3,2/4,2/5,2/e) = 8.5162 
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5.20 (a) T2 = 18.4625 
(b) a' = (-.057, -.010, -.242, -.071) 
(c) By (5.32), 

t2(yi 12/2,2/3,2/4) = 3.3315, t2(y2\yi, 2/3,2/4) = -0102, 

i2(2/3|2/i,2/2,2/4) = 1.4823, i2(2/4|2/i, 2/2,2/3) = -0013 

5.21 (a) T2 = 15.1912 

(b) a' = (-.036,.048) 

(c) h = -3.8371, t2 = -2.4362 

5.22 T 2 = 22.3238 

5.23 (a) T 2 = 206.1188 

(b) i2(di|d2 ,d3) = 59.0020,t2(d2\dud3) = 53.4507,t2(d3\dud2) = 
80.9349 

CHAPTER 6 

6.1 (a) Using yi = yi./n, we have 

k n 

Σ Σ ^ - &·)2 = Σ^« - 2»«i/i. + vl) 
z = l j = l i j 

I/!. Σ4-Σ^Σ^'+ηΣ 

Σ«δ-»Σ**+»Σ(£) 
-Σ«&-'Σ*+Σ* n ■'—' n 

|E-1HE| ΙΕ^Ε 
6.2 ΙΕ-^ΙΕ + ΗΙ |Ε-!(Ε + Η)| II + E^Hl ΓΠ=ι(1 + λ0' 

see Section 2.11.2. 

6.3 ( E ^ H - AI)a = 0 
[ (E 1 / 2 E 1 / 2 ) " 1 H-AI ]a = 0 
[ ( E 1 / 2 ) - 1 ( E 1 / 2 ) - i H - A I ] a = 0 
[ ( E V 2 ) - i H - A E 1 / 2 ] a = 0 
[ ( E i / 2 ) - i H - AE1 /2](E1 /2)-1E1 /2a = 0 
[ (E 1 /2 ) - i H (E 1 /2 ) - i _ A I J E ^ a = 0 
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6.4 We need to show that (2N + s+ I)/(2m + s + 1) = (vE - p + s)/d. Using 
the definitions N = \{VE — p - l),m = \(\VH —p\-l),d = max(p, νΗ), 
and s = min(p, vH), we have 2N + s + 1 = 2[^)(uE - p - 1) + s + 
1 = VE — P — 1 + s + l = VE — P + s. For the denominator, we have 
2m + s + 1 = 2(\)(\vH —p\ - 1) + s + 1 — \uH — p\ + s. Suppose vH > p. 
Then \VH — p\ + s = VH — p + p = VH = d. On the other hand, if UH < p, 
then \VH — p\ + s = p — VH + VH = P = d. 

6.5 If p < vH, we have s = p and \vH — p\ = VH — P- Then (6.29) becomes 

2{sN + l)U^ _ 2 [ p ( i ) ( t / g - p - l ) + l][A(«) 
s2(2m + s + l) ~p2[2(I ) ( l / f f _ p _ i ) + p + i ] 

_ WE~P-1) + 2]U{S) 

p2{vH -p-l+p+1) 

\p{vE-p-l) + 2]Ula) 

9 ' 

p 2 u H 

which is the same as (6.30) because p = s. If VH < p, then s = VH, \VH —p\ — 
p — VH, and (6.29) can be shown to equal (6.30) in a similar manner. 

6.6 When s = 1, we have V^ = λχ/(1 + Xi),UW = λ ι , Λ = 1/(1 + λ ι ) , and 
θ = λ ι / (1 + λι). Solving the last of these for λι gives λι = θ/(1 — Θ), and 
the results in (6.33), (6.34), and (6.35) follow immediately. 

6.7 With T2 = (ni + n2 - 2)U^ and U^ = 0/(1 - Θ), we obtain (5.19). We 
obtain (5.18) from (5.19) by F ( 1 ) = Θ. A similar argument leads to (5.16). 

6.8 (a) With y^ = yi./n» and y — y.JN, we obtain 

H = E L i ni(fi. - y..)(7i. - y..Y 
= Σίηί(Ϋτ.γ'ί. -Yi.y'.. -y.jy'i. +f..y'..) 

= E i niy~i.y'i. - ( E i η ^ > ' . - y„ E i ni%. + 7..Ϋ.. Σ * n* 
_ y ^ yi.yi, (E<yt-)y!. y.. y / , Wy.y. 
- 2 ^ n i

 n2 JV N ^Yi- N2 
i % i 

E yi.y'i. _ y..y[. _ y..y!. y..y!, 
«i ΛΓ N N ' 

i 

6.9 yx_ — y becomes 

- »iyi. + ^2y2, ^ "i7i. + n2yi. - ηιγι, - n2y2. = "2(7ι, - y2.) 
L ni + n2 ni + n2 ni + n2 

The first term in the sum is 
2 

nin2 ,_ _ λ . _ _ , , 
( n i + n a ) 2 ( y i . - y a . ) ( y i . - y a . ) · 
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The second term in the sum is 
2'- , 

(yi. - Y 2 . ) ( y i . - Y 2 . ) · 

n i n 2 I- _ W _ _ W 

6.10 Θ 

(ni + n 2 ) 2 

λι _ SSH(z)/SSE(z) _ SSH(^) 
1 + λι 1 + SSH(z)/SSE(z) SSE(z) + SSH(z) 

6.11 Fromr2 = λί/(1+λί) , obtain λ* = r 2 / ( l - r 2 ) . Substitute this into 1/(1+λ,) 
to obtain the result. 

6.12 Substitute Ap = V^/s into (6.49) to obtain (6.26). 

6.13 When s = 1, (6.50) becomes 

A™ = TTT7Ö) · 

By (6.33), C/W = λι. 

6.14 Substitute ^ L H = U{^/(s + Uis)) from (6.50) into (6.51) to obtain F3 in 
(6.30). 

6.15 To show cov(c iy i) = c?S/n, use (3.74), cov(Ay) = Α Σ Α ' , with A = c»I. 

6.16 By (6.9), 

H z = η Σ ί = ΐ ( ^ · -Ζ··)(Ζί· - Ζ · · ) ' 

= "Ei(Cy i .-Cy..)(Cy i .-Cy..) ' 
= "Ei[C(y i.-y..)][C(y i.-y..)]' 
= nc Ei(yi. - y..)(Yi. - y··)'] c M2.45)] 

6.17 C is not square. 

6.18 E(Cy..) = CE(y..) = CE^tiYi./k) 

= 0 [by H03 in (6.82)] 

cov(Cy..) = CEC'/fcn if there are no differences in the group means, Ο μ 1 , Ο μ 2 ι · · · > 
This condition is assured by H0i in (6.77). 

6.19 For our purposes, it will suffice to show that T2 has the characteristic form of 
the T2-distribution in (5.6). 

6.20 If Σ = σ2Ι, (6.88) becomes 

[tr(a2I - 3σ21/ρ)\2 _ [a2tr(I - 3/p)}2 

(p - l)tr(a2I - 3σ21/ρ)2 σ4(ρ - l)tr(I - 3/p)2 ' 
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Show that (I - 3/p)2 = I - J/p. Then 

σ4(ρ-ρ/ρ)2 ( P - 1 ) 2 

ε = 
* 4 ( P - I ) ( P - P / P ) (p- i ) 2 

6.21 The (univariate) expected mean square corresponding to μ. in a one-way 
ANOVA is σ2 + Νμ2. Thus the mean square for μ. is tested with MSE. 
The corresponding multivariate test therefore uses H* and E. 

6.22 From (6.104) we have 

ΙΑΕΑ'Ι ΙΑΕΑ'Ι 
Λ |A(E + H*)A'| |AEA' + AH*A'|" 

Substitute H* = kny..y'.. to obtain 

Λ I A E A / | 

|AEA' + >/fcnAy..(>/JfenAy..)'|' 

Now use (2.95) with B = AEA' and c = \/kn Ay.. to obtain 

Λ = 1 

1 + kn{Ky..)'(A.-EA.'yi{Ay..)' 

Multiply and divide by vE and use (6.100) to obtain (6.105). 

6.23 Solve for T2 in (6.105). 
6.24 In C i B ' the rows of Ci are multiplied by the rows of B. Show that C i B ' = 

O. 

6.25 As noted, the function (y - A/3)'S_ 1(y - Aß) is similar to SSE — (y -
x /3) ' (y - χ β ) i n (10.4) and (10.6). By an argument similar to that used in 
Section 10.2.2 to obtain β = ( X ' X ^ X ' y , it follows that β = ( A ' S ^ A ^ A ' S 
An alternative approach (for those familiar with differentiation with respect to 
a vector) is to expand (y — A/3)'S_ 1(y — Aß) to four terms, differentiate with 
respect to ß, and set the result equal to 0. 

6.26 Expand n(y — A/9)'S_ 1(y — Aß) to four terms and substitute 

ß = ( A ' S - ^ J - ^ ' S " ^ 

into the last one. 

/ 13.41 7.72 8.68 5.86 \ 

t n M F = 7 · 7 2 8 · 4 8 7 · 5 3 6 · 2 1 
w 8.68 7.53 11.61 7.04 

\ 5.86 6.21 7.04 10.57 / 
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/ 1.05 2.17 -1.38 - .76 \ 
2.17 4.88 -2.37 -1.26 

-1.38 -2.37 2.38 1.38 
\ - .76 -1.26 1.38 .81 / 

Λ = .224, V^ = .860, U^ = 3.08, and Θ = .747 All four are signifi-
cant. 

(b) η\ = 1 - Λ = .776 ,^ = θ = -747, AA = 1 - A1/* = .526, AhH = 
.606, Ap = V^/s = .430 

(c) The eigenvalues of E _ 1 H are 2.9515 and .1273. The essential dimen-
sionality of the space of the mean vectors is 1. 

(d) For 1, 2 vs. 3 we have A = .270, V^ = .730, U^ = 2.702, and Θ = 
.730. All four are significant. For 1 vs. 2 we obtain A — .726, V ( s ) = 
.274, f/(s) = .377, and Θ = .274. All four are significant. 

(e) Variable yx y2 y3 y4 

F 1.29 9.50 3.39 1.27 
The F's for y2 and y3 are significant. For the discriminant function 
z = a'y, where a is the first eigenvector of E _ 1 H , we have a' = 
(—.032, -.820, .533, .208). Again y2 and y3 contribute most to sepa-
ration of groups. 

(f) By(6.126), A(y3,y4\yi,y2) = A{yi,y2,y3,y4)/A(yuy2) = .224/.568 = 
.395 < Acs = -725 

(g) By (6.127), 

A(yi\y2,y3,y4) = A(yi,y2,y3,y4)/A(y2,y3,y4) 

= .224/.240 = .934 > A.05 = -819 
A(y2\yuy3,y4) = .224/.53S = .417 < .819 
A(y3\yi,y2,y4) = .224/.36Θ = .609 < .819 
A(y4\yi,y2,y3) = .224/.243 - .924 > .819 

6.28 (a) S effect: A = .00065, V^ = 2.357, U^s) = 142.304, Θ = .993. All are 
significant. 
V effect: A = .065, V^ = 1.107, U^ = 11.675,6» = .920. All are 
significant. 
SV interaction: A = .138,0S> = 1.321, C/W = 3.450,6» = .726. All 
are significant. 

(b) Contrast on V comparing 2 vs. 1, 3: A = .0804, V^ = .920,f/(s) = 
11.445,6» = .920. All are significant. 

(c) Linear contrast for S: A = .0073, V^ = .993, t/(s> = 135.273,6» = 
.993. All are significant. 
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Quadratic contrast for S: A = .168, 0 s ) = .832, U^ = 4.956,6» = 
.832. All are significant. 

Cubic contrast for S: A = .325, ̂ ( s ) = .675, i/W = 2.076, Θ = .675. 
All are significant. 

(d) The ANOVA F's for each variable are as follows: 
Source j/i y2 ys 2/4 

S 980.21 214.24 876.13 73.91 
V 251.22 9.47 14.77 27.12 

SV 20.37 2.84 3.44 2.08 

All F's are significant except the last one, 2.08. 

(e) Test of significance of y3 and y4 adjusted for yx and y2: 

S V SV 

A(y3,2/4|yi,2/2) .1226 .9336 .6402 

(f) Test of significance of each variable adjusted for the other three: 
S V SV 

A{yi\y2,y3,yi) .1158 .2099 .3082 
A(jö|yi,iö,y4) -5586 .8134 .7967 
A(lö|l/i,iö,V4) -2271 .9627 .7604 
A(y4|yi,y2,j/3) -6692 .9795 .8683 

6.29 V — velocity (fixed), L = lubricant (random) 

V effect (using HVL for error matrix): A = .0492, V^ = .951, U^ = 
19.315,6» = .951. With p = 2,vH = 1, and vE = 3,A.05 = -050, V^ = 
.950, U{QI = T%5/pE = 19.00,61.05 = .950. Thus all four test statistics are 
significant. 

L effect (using E for error matrix): A = .692, V^ = .314, U^ = .438, Θ = 
.295. None is significant. 

VL interaction (using E for error matrix): A = .932, V^ = .069, U^ = 
.073, Θ = .061. None is significant. 

6.30 Source Λ V(s) U(s) Θ Significant? 

(a) Reagent .0993 1.126 6.911 .868 Yes 
(b) Contrast 1 vs. 2,3,4 .146 .854 5.871 .854 Yes 

Subjects .00000082 2.847 1091.127 .999 Yes 

6.31 P = proportion of filler, T = surface treatment, F = filler: 
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Source 

P 
T 
PT 
F 
PF 
TF 
PTF 

A 

.138 

.080 

.712 

.019 

.179 

.355 

.752 

y(«> 

.977 

.920 

.295 

.980 

.958 

.645 

.264 

U(s) 

5.441 
11.503 

.396 
51.180 
3.835 
1.815 
.309 

Θ 

.841 

.920 

.271 

.981 

.784 

.645 

.172 

Significant? 

Yes 
Yes 
No 
Yes 
Yes 
Yes 
No 

6.32 A = period; P, T, and F are denned in Problem 6.31: 

Source 

A 
AP 
AT 
APT 
AF 
APF 
ATF 
APTF 

A 

.021 

.475 

.142 

.777 

.095 

.622 

.387 

.781 

v^ 
.979 
.545 
.858 
.228 
.905 
.387 
.613 
.229 

!/(·) 

47.099 
1.063 
6.049 

.282 
9.486 

.594 
1.586 
.267 

Θ 

.979 

.505 

.858 

.208 

.905 

.363 

.613 

.169 

Significant? 

Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 

For the between-subject factors and interactions, we have 

Source 

P 
T 
PT 
F 
PF 
TF 
PTF 
Error 

df 

2 
1 
2 
1 
2 
1 
2 

12 

F 

21.79 
78.34 

1.28 
345.04 

15.79 
5.36 

.48 

p- Value 

< .0001 
< .0001 

.3143 
< .0001 

.0004 

.0392 

.6294 

6.33 For parallelism, we use (6.78) to obtain Λ = .2397. For levels, we use (6.80) 
and (6.81) to obtain Λ = .9651 and F - .597. For flatness we use (6.83) to 
obtain T2 = 110.521. 

6.34 (a) By (6.89), T2 = 20.7420. By (6.104) or (6.105), Λ = .5655. 

(b) For each row c'{ of C, we use T2 = n(c^y)'(c^Scj)-1c^y, as in Exam-
ple 6.9.2: T2 = 17.0648, T2

2 = .3238, T | = .2714. This can also be 
done by Wilks' Λ using Λ* = c<Eci/c<(E + H*)ci: Λχ = .6127, Λ2 = 
.9882, Λ3 = .9900. 

6.35 The six variables represent two within-subjects factors: yi is A\B\,y2 is 
AiB2,y3 is ΑιΒ3,χι is A2Bi,x2 is A2B2, and x3 is A2B2. Using linear 
and quadratic effects (other orthogonal contrasts could be used), the matrices 
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A, B, and G in (6.97), (6.98), and (6.99) become 

( 1 1 1 - 1 - 1 - 1 ) 

/ 1 0 - 1 1 0 - 1 \ 
V 1 - 2 1 1 - 2 1 ) 

( 1 0 - 1 - 1 0 l \ 
V 1 - 2 1 - 1 2 - 1 ) ' 

Using these in T2 as given by (6.100), (6.101), and (6.102), we obtain T\ = 
193.0901, 1% = 2.8000, and T\B = 6.8676. Using MANOVA tests for the 
same within-subjects factors, we obtain 

Source Λ V(s) U(s) Θ Significant? 

A .202 .798 3.941 .798 Yes 
B .946 .054 .057 .054 No 
AB .877 .123 .140 .123 Yes 

6.36 MANOVA tests for the within-subjects effect T (time), and interactions of 
time with the between-subjects effects C (cancer) and G (gender): 

Source Λ V{s) U{s) Θ 

T .258 .742 2.874 .742 
TC .363 .809 1.299 .444 
TG .929 .071 .077 .071 
TCG .809 .201 .225 .130 

ANOVA F-tests for between-subjects factors and interactions: 
Source df F p-Value 

C 5 4.16 .003 
G 1 2.69 .107 
CG 5 .37 .869 

6.37 (a) T2 = 79.551 
(b) Using U = c ^ y / y ^ S c j / n , where c\ is the ith row of C, we obtain 

ii = 7.155, t2 = - .445, i3 = -.105. 

6.38 (a) T2 = 1712.2201 
(b) Using U = c'iy/^c'jSci/n, we obtain t1 = 332.358, t2 = 54.589, t3 = 

.056, U = 7.637,^5 = 4.344, i6 = 1.968. 

6.39 (a) Using T2 = 7AT(Cy ) ' (CS p iC ')~ 1(Cy .) in (6.121), we obtain T2 = 
17.582 < T2

05|3ig = 27.202. 
(b) ii = .951, <2 = 1.606, <3 = .127 [Since the T2-test in part (a) did not 

reject HQ, these would ordinarily not be calculated.] 
(c) Using Λ = |CEC' | / |C(E + H)C ' | in (6.123), we obtain Λ = .3107 > 

Λ. 05,3,2,9 = -203. 

A = 

B = 

G = 
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(d) To compare groups using each row of C, we use Λ* = c^Eci/c^(E + 
H)CJ to obtain Λι = .833, Λ2 = .988, Λ3 = .650. [Since the Λ-test in 
part (c) did not reject HQ, we would ordinarily not have calculated these.] 

6.40 (a) Using T2 = JV(Cy..) '(CSpiC')_1(Cy..) in (6.121), we obtain T2 = 
33.802 > T2

05A>24 = 12.983. 
(b) Using t2 = iV(c<y)2/c^Splci> we obtain t\ = .675, t\ = .393, if = 

32.626. Only the cubic effect is significant. 
(c) For an overall test comparing groups, we use (6.123), 

Λ = |CEC' | / |C(E + H)C ' | = .4361. 

(d) To compare groups using each row of C, we use Λ» = c^Ec^/c^ (E + H)CJ : 
Λι = .534, Λ2 = .764, Λ3 = .941. 

6.41 (a) Using T2 = N(Cy ) ' (CS p iC ')- 1(Cy. . ) in (6.121), we obtain T2 = 
45.500. 

(b) Using if = iV(c^y)2/c^SpiCi, we obtain t\ = 18.410, t\ = 8.385, t\ = 
3.446, it = .011, if = .098, t\ = 2.900. 

(c) For an overall test comparing groups, we use (6.123), 

Λ = |CEC' | / |C(E + H)C ' | = .304. 

(d) To compare groups using each row of C, weuseAj — c^Ecj/c^(E + H)CJ : 
Λι = .695, Λ2 = .925, Λ3 = .731, Λ4 = .814, Λ5 = .950, Λ6 = .894. 

6.42 (a) Combined groups (pooled covariance matrix). Using t = number of 
minutes —30, we obtain, by (6.114), 

β = (98.1, .981, .0418, -.00101, -.000048) 

By (6.115), we obtain T2 = .216. By (6.117), we have 

μ = (95.5,96.7,95.6,93.8,98.1,99.2) 

(b) Group 1: β[ = (100.7, .819, .040, -.00085, -.000038), T2 = .0113, 
μ[ = (105.2,104.4,101.5,98.6,100.6,108.1) 

(c) Groups 2-4: β2 = (97.4,1.010, .0403, -.00103, -.000049), T2 = 
.2554, μ2 = (92.6,94.4,93.8,92.4,97.4,96.6) 

6.43 (a) For the control group, the overall test is 

T2 = m t C y J ' t C S x C T ^ C y ! . ) = 554.749. 

For each row of C (linear, quadratic, etc.), we have 

i? = n1(c;y1 .)2/c{S1c<: 
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5.714, ti 50.111, i§ = 50.767, t\ = 8.011, t\ .508. 

(b) For the obese group, we obtain T2 = n 2(Cy 2 ) ' (CS2C')~1(Cy2 . ) = 
128.552. For the five rows of C, we obtain t\ = 4.978, t\ = 107.129, 
t\ = 5.225, if = 10.750, t\ = 3.572. 

(c) For the combined groups (Spi = pooled covariance matrix), we use 
T2 = JV(Cy..)'(CSpiC')_1(Cy..)in(6.121)tD obtain T2 = 247.0079. 
We test for linear, quadratic, etc., trends using the rows of C in t2 = 
iV(c^y. )2/c^Sci t\ = 1.162, t\ = 155.017, t§ = 30.540, t\ = 1.319, 
t\ = .506. To compare groups, we use Λ = |CEC ' | / |C (E + H)C ' | in 
(6.123) and Λ; = c^Eci/c^E + H)c; : Λ = .4902, Λι = .7947, Λ2 = 
.9940, Λ3 = .7987, Λ4 = .6228, Λ5 = .9172. 

6.44 Control group: By (6.114),/^ = (3.129, .656, - .283, -.334, .192, .037, -0.20). 
By(6.115),T2 = .7633. By(6.117),ΑΊ = (An,Ai2,-·-,Ais) =(4.11,3.29,2.71, 
2.71, 3.04, 3.39, 3.54, 3.95). 

Obese group: ß2 = (3.207,-.187, .463, .056,-.102,-.010, .010), T2 = 
.3943, μ2 = (4.51,4.12,3.81,3.48,3.24,3.37,3.70,4.02) 

Combined groups (pooled covariance matrix): ß = (3.15, .162, .183, —.115, 
.012, .010, -.002), T2 = .0158, μ = (4.36, 3.80, 3.36, 3.15, 3.13, 3.37, 
3.63, 3.98) 

6.45 A = activator, T = time, C = group. In (6.100), (6.101), and (6.102), we use 

2 2 2 
0 0 0 

V 

-1 
1 

-2 
2 
0 
0 

0 1 
-2 1 

0 2 
-4 2 

0 0 
0 0 

-1 0 1 - 1 

- 1 
- 1 

0 1 
1 - 2 1 

0 - 1 
2 - 1 
0 - 1 

-2 1 

1 - 2 1 
1 0 - 1 \ 

- 1 2 - 1 
- 1 0 1 
- 1 2 - 1 / 

T\ = 5072.579, T2 = 268.185, T\T = 143.491. The same within-sample 
factors and interaction can be tested with Wilks' Λ using (6.104) and the other 
three MANOVA tests: 

Source Λ V(s) U(s) Θ Significant? 

A 
T 
AT 

.003 

.056 

.100 

.997 

.944 

.900 

317.04 
16.76 
8.97 

.997 

.944 

.900 

Yes 
Yes 
Yes 

The interactions of the within factors with the between factor G are tested with 
Wilks' Λ (Section 6.9.5) and with the other three MANOVA tests: 
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Source 

AC 
TC 
ATC 

A 

.884 

.889 

.795 

v<«> 
.116 
.111 
.205 

[ / « 

.131 

.125 

.258 

Θ 

.116 

.111 

.205 

Significant? 

No 
No 
No 

The between-subjects factor C is tested with an ANOVA F-test: F = .47, p-value 
.504. 

CHAPTER 7 

7.1 If Σο is substituted for S in (7.1), we have 

Μ = ι / [1η!Σο | -1η |Σο |+ ΐΓ(Ι ) -ρ] = v[0 + p - p) = 0 

7.2 In |Σ:0| - In |S| = - In ΙΣΙοΙ"1 - In |Sj 
= - l n | E ö 1 | - l n | S | [by (2.91)] 
= - ( l n | S | +1η |Σ^ 1 | ) 
= - l n | S E ö 1 | [by (2.89)] 

7.3 - In (JXi λ<) + Σ2=ιλ4 = -EL· I" A, + ΣΐΛ 
= Σ?=ι(λ<-1ηλ<) 

7.4 As noted in Section 7.1, the likelihood ratio in this case involves the ratio of 
the determinants of the sample covariance matrices under HQ and Hi. Under 
Hi, which is essentially unrestricted, the maximum likelihood estimate of Σ 
(corrected for bias) is given by (4.12) as S. Under H0 it is assumed that each 
of the p j/j's in y has variance σ2 and that all y^'s are independent. Thus we 
estimate σ2 (unbiasedly) in each of the p columns of the Y matrix [see (3.17) 
and (3.23)] and pool the p estimates to obtain 

-2 _ Y ^ \ ^ (?/ij ~ Vj) 

Show that by (3.22) and (3.23) this is equal to 

^2 _ y ^ £jj _ t r(S) 

Thus the likelihood ratio is 
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Show that by (2.85) this becomes 

LR ( isi 
V(trS/p)P 

n / 2 

7.5 IfAi = A2 Xp = A, say, then by (7.5), 

„ _ ^ Π ^ ι Α , _ p"Xp _ 

7.6 [ ( l - p ) l + pj] = 

/ 1 - P 0 
0 1 - p 

\ 0 0 

/ 1 p . . . p \ 
p 1 ... p 

0 \ 

1 - P / 

( p p . . 

+ 
P P 

\ P P 1 / 

P 

\ P P ■■■ P ) 

7.7 (a) Substitute J = j j ' and x = j into J x = Ax to obtain j j ' j — Aj which 
gives pi = Aj. 

(b) S0 = s 2 [ ( l - r ) I + rJ] = s 2 ( l - r ) ( l + 
1 - r 

(c) By (2.85) and (2.108), we have 

ISol (s'ni-ry 1 + 1 - r S
2 ( l - r ) ( l + T ^ j ) 

(s2)p(l ~ r ) p n L i ( l + λ4) = (*2)p(l - r ) " ( l + ^ ) 

(s2)p(l - r ) p - x ( l -r + rp) = (s2)p(l - r ) p - x [ l + (P " l)r] 

7.8 M 

7.9 (a) M = .7015 

7.10 A= | S | 

|Si |^/2 |S2 |*^a / 2 — |Sfc|"fc/2 _ | S i | ^ / 2 [ S 2 | ^ / 2 - - - | S f c | ^ / 2 

~ i s i ^ / 2 ^ ! ^ / 2 ■ ■ · \s\^/2 

(b) M = .0797 

|S|E,^/2 

l̂ xccl \^yy ^yx^xx^xyl 
m im i m i m j 

\ yy\ \vjxx\ 
\ yy I I vv ^yx^xx ^xy\ [by (2.91)] 

= | S ^ ( S W - S ^ S ^ S ^ ) ! [by (2.89)] 
= | I — tSyy S p O j j >$xy)\ 
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= Π : = ι ( 1 - ^ 2 ) [by (2.108)], 
where the rf's are the nonzero eigenvalues of S~ySyxS~^Sxy. It was shown 
in Section 2.11.2 that 1—Aj is an eigenvalue of I—A, where λ̂  is an eigenvalue 
of A. 

7.11 When all pi = 1, we have k = p, and the submatrices in the denominators 
of (7.33) and (7.34) reduce to Sjj = Sjj,j — 1,2,... ,p, and Rjj = 1, j = 
1,2,. . . ,p. 

7.12 When all pi = 1, we have k = p and 

a-2 =P2 -Y7i=iP2i =P2 -P, a3=p3-p, 

« = 1 - 1 ^ ( 2 0 3 + 30,) 

= 1 - 6 ( ^ ; [ 2 ( p 2 - 1 ) + 3 ^ - 1 ) ] 

= 1 - 6 ( ^ ; [ 2 ( p - 1 ^ + 1 i + 3 ( p - 1 ^ 

= l - l [2 P + 5]. 

7.13 As noted below (7.6), the degrees of freedom for the χ2-approximation is the 
total number of parameters minus the number estimated under H0. The num-
ber of distinct parameters in Σ is p + (2) = \p{p +1) · The number of param-
eters estimated under H0 is p. The difference is | p(p + 1) — p — | p(p — 1). 

7.14 By (7.1) and (7.2), u = 11.094 and u' = 10.668. 

7.15 By (7.7), u = .0000594. By (7.9), u' = 23.519. For H0: C E C = σ2Ι, u = 
All and u' = 2.050. 

7.16 For H0: Σ = a2I,u = .00513 and u' = 131.922. For H0: C E C = 
σ2Ι, w = . 129 and u' = 36.278. 

7.17 For H0: Σ = σ 2 Ι ,υ = .00471 and w' = 136.190. For H0: C E C = 

7.18 By (7.16), u' = 6.3323 with 13 degrees of freedom. The F-approximation is 
F = .4802 with 13 and 1147 degrees of freedom. 

7.19 u' = 21.488, F = 2.511 with 8 and 217 degrees of freedom 

7.20 u' = 35.795, F = 4.466 with 8 and 4905 degrees of freedom 

7.21 u = 8.7457, F = .8730 with 10 and 6502 degrees of freedom 
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7.22 |Si | = 2.620 x 101 4 , |S2 | = 2.410 x 101 4 , |Sp l | = 4.368 x 1014,u = 
17.502, F= .829 

7.23 InM = -85.965, u = 156.434, ax = 21, a2 = 17,797, F = 7.4396 

7.24 In M = -7.082, u = 10.565, ax = 10, a2 = 1340, F = 1.046 

7.25 In M = -8.6062, u = 14.222, αλ = 20, a2 = 3909, F = .707 

7.26 In M = -28.917, u = 44.018, αλ = 50, a2 = 3238, F = .8625 

7.27 InM = -142.435,u = 174.285,ax = 110,a2 = 2084,F = 1.448 

7.28 |S| = 1,207,109.5, | S W | = 2385.1, |S I !E | = 1341.9, Λ = .3772 

7.29 |S| = 4.237 x 1013, |Sy i , | = 484,926.6, | S M | = 131,406,938, Λ = .6650 

7.30 |S| = 9.676 x 10~8, \Syy\ = .02097, \SXX\ = 9.94 x 10"6,Λ = .4642 

7.31 |S| = 1.7148 x 101 6 , |Sn| = 11,284.967, |S 2 2 | = 11,891.15, |S 3 3 | = 
25,951.605, s44 = 22,227.158, s55 = 214.06, u = .00103, u' = 274.787, v = 
46 

7.32 |S| = 459.96, sn = 140.54, s22 = 72.25, s33 = .250, u = .1811, u' = 
12.246, /= 3 

7.33 u = .0001379, u' = 16.297 

7.34 u = .0005176,«' = 127.367 

7.35 u = .005071, u' = 131.226 

CHAPTER 8 

8.1 Using a = S~1
1(y1 — y2) , we obtain 

[ ( Χ ι - Ϋ 2 ) ν ( Ϋ ι - Ϋ 2 ) ] 2 

( y i - y 2 ) ' S p i 1 S p i S ; 1
1 ( y 1 - y 2 ) 

[ (y 1 -y 2 )V(y 1 -y 2 ) ] 2 

8.2 You may wish to use the following steps: 

(i) In Section 5.6.2 the grouping variable w is defined as «2/(^1 + ^2) f° r 

each observation in group 1 and —n\/{n\ + η2) for group 2. Show that 
with this formulation, w — 0. 

W(yi-y2)}2 

a'Spia 
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(ii) Because w = 0, there is no intercept and the fitted model becomes 

Wi = bi(yn - yx) + 62(2ta - y2) H + bp{yip - yp), 

i = l,2,...,ni+n2. 

Denote the resulting matrix of y-values corrected for their means as 
Y c and the vector of w's as w. Then the least squares estimate b = 
(&i, 62,.. ·, bPY is obtained as 

b = ( Y ^ Y J - ^ w . 

Using (2.51), show that 

2 71; 

2 n; 

= Σ Σ ^ _ y<)(y«j~ y<)' + „ I. ?, fo ~ ^ ) ( Ϋ Ι - y2)'> 

where y = (n{y1 + n2y2)/(ni + n2)· It wiU be helpful to write the first 
sum above as 

X](y i j - y)(yij - y) ' + Σ ^ ' " y ^ 2 · ? ~ y) ' 

and add and subtract y 1 in the first term and y2 in the second. 
(iii) Show that 

2 71; 

Y > = Σ Σ > « - y>« = ^ ^ - (Fi - y2)· 
i = l j' = l 

Again it will be helpful to sum separately over the two groups. 
(iv) From (ii) and (iii) we have 

b = (vS + kdd!)-1kd, 

where S = Σίί&ϋ ~ Yi)(yij - Ϋϊ)'/(ηι + n2 - 2), v = nx + n2 - 2, 
k = nin2/{n\ + n2), and d = yx — y2 . Use (2.77) for the inverse of a 
patterned matrix of the type ι/S + kd d to obtain (8.4). 

8.3 You may want to use the following steps: 

(i) R2 is defined as [see (10.30)] 

b ' Y ' w - nw2 

Rz 

w'w — nw2 
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In this case the expression simplifies because w = 0. Using Y^w in 
Problem 8.2(iii) above, show that R2 = D ' ^ — y2) . 

(ii) Show that 
rp2 

b'(Yi - y 2 ) = ——— , , T 2 -

8.4 [a ' fo - y2)]2 = a'(y - y 2 )a ' (y! - y2) = a ' f o - y 2 ) (y! - y 2 ) 'a 

8.5 H a - AEa = 0 
E " 1 ( H a - A E a ) = E - 1 0 
E ^ u a - A E ^ E a ^ O 
( E " 1 H - A I ) a = 0 

8.6 Substituting a* = srar, r = 1,2,... ,p, into (8.15), we obtain 

yiil-Vll . 2/H2-2/12 , . Vlip-Vlp 
z\i — siai 1- s2a2 1 h spap 

si s2 sp 

= oij/iii + a2yli2 H h apyHp - aiyn - a2y12 apylp 

= aiVm + a2yu2 H l· apyHp - a'y1 

8.7 (a) a*' = (1.366,-.810,2.525,-1.463) 
(b) fi = 5.417, t2 = 2.007, t3 = 7.775, i4 = .688 
(c) The standardized coefficients rank the variables in the order 2/3,2/4,2/1,2/2· 

The ί-tests rank them in the order 2/3,2/1,2/2,2/4· 
(d) The partial F's calculated by (8.26) are F(yiI2/2,2/3,2/4) = 7.844, 

^2 |2/ι,2/3,2/4) =2.612, F(2/3|2/i,2/2,2/4) =40.513, and 
F(y4 |!/i,i/2,lfe)= 9.938. 

8.8 (a) a' = (.345, -.130, -.106, -.143) 
(b) a*' =(4.137,-2.501,-1.158,-2.068) 
(c) h = 3.888, t2 = -3.865, t3 = -5.691, t4 = -5.043 

(e) ^(2/112/2,2/3,2/4) = 35.934,F(2/2|2/!,2/3,2/4) = 5.799 
^(2/312/1,2/2,2/4) = 1-775, F(2/4|2/i, 2/2,2/3) = 8.259 

8.9 (a) a' = (-.145, .052, - .005, -.089, -.007, -.022) 
(b) a*' = (-1.016,.147,-.542,-1.035,-.107,-1.200) 
(c) ii = -4.655, t2 = -592, t3 = -4.354, t4 = -5.257, t5 = -4.032, t6 = 

-6.439 

(e) F(2/i|2/2,2/3,2/4,2/5,2/6) = 8.081,F(y2\yi,2/3,2/4,2/5,2/e) = -150, 
-F(2/3|2/i,2/2,2/4,2/5,2/6) = ·835^(2/4|2/ι,2/2,2/3,2/5,2/6) =8.503, 
F(y5\y1,y2,y3,y4,y6) = -028, F(y6\y1,y2,y3,y4,y5) =9.192 

8.10 (a) a' = (.057, .010, .242, .071) 
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(b) a* = (1.390, .083,1.025, .032) 

(c) ij = -3.713, t2 = .549, t3 = -3.262, tA = -.724 

(e) F(yi\y2,y3,y4) = 3.332, F(y2\yi,y3,y4) = .010 
F(V3\vuV2,Vi) = l-482,F(y4\y1,y2,y3) = .001 

8.11 (a) a[ = (.021, .533, -.347, -.135), a2 = (-.317, .298, .243, -.026) 

(b) λ ι / (λ ι + λ2) = .958,λ2/(λ! + λ2) = .042. Using the methods of 
Section 8.6.2, we have two tests, the first for significance of λι and λ2 
and the second for significance of λ2: 

Test Λ F p-Value for F 

1 .2245 8.3294 <.0001 
2 .8871 1.3157 .2869 

(c) a f = (.076,1.553,-1.182,-.439), a^' = (-1.162, .869, .828,-.085) 

(d) F(yi\y2,y3,y4) = 1.067, F(y2\yuy3,y4) = 20.975 
F(y3\yi,y2,y4) -9 .630,F{y 4 \ y i , y 2 , y 3 ) = 1.228 

(e) In the plot, the first discriminant function separates groups 1 and 2 from 
group 3, but the second is ineffective in separating group 1 from group 2. 

8.12 (a) Xi λί/Σ,4.=1\^ Eigenvector 

1.8757 .6421 a'x = (.470,-.263, .653,-.074) 
.7907 .2707 a'2 = (.176, .188, -1.058,1.778) 
.2290 .0784 a'3 = (-.155, .258, .470, -.850) 
.0260 .0089 a'4 = (-3.614, .475, .310, -.479) 

(b) Test of significance of each eigenvalue and those that follow it: 
Test Λ Approximate F p-Value for F 

1 .1540 4.937 <.0001 
2 .4429 3.188 .0006 
3 .7931 1.680 .1363 
4 .9747 .545 .5839 

(c) a f = (.266, -.915,1.353, -.097), a j ' = (.100, .654, -2.291,2.333), 
a*' = (-.087, .899, .973, -1.115), a{ = (-2.044,1.654, .643, -.628) 

(d) F(yi\y2,y3,y4) = .299,F(y2\yi,y3,y4) = 1.931 
F{y3\yuy2,yi) = 6.085, F(y4\yi,y2,y3) = 4.659 

(e) In the plot, the first discriminant function separates groups 1, 4, and 6 
from groups 2, 3, and 5. The second function achieves some separation 
of group 6 from groups 1 and 4 and some separation of group 3 from 
groups 2 and 5. 

8.13 Three variables entered the model in the stepwise selection. The summary 
table is as follows: 
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Variable 
Step Entered Overall Λ p-Value Partial Λ Partial F p-Value 

1 
2 
3 

2/4 

2/3 

2/2 

.4086 

.2655 

.1599 

<.0001 
<.0001 
•C0001 

.4086 

.6499 
6022 

12.158 
4.418 
5.284 

<.0001 
.0026 
.0008 

8.14 Summary table: 
Variable 

Step Entered Overall Λ p-Value Partial Λ Partial F p-Value 

1 
2 
3 
4 
5 

2/4 

2/3 

2/6 

2/2 

2/5 

.6392 

.5430 

.4594 

.4063 

.3639 

<.0001 
<.0001 
<.0001 
<.0001 
<.0001 

.6392 

.8495 

.8461 

.8843 

.8957 

21.451 
6.554 
6.549 
4.578 
3.959 

<.0001 
.0147 
.0148 
.0394 
.0547 

In this case, the fifth variable to enter, j / 5 , would not ordinarily be included in 
the subset. The p-value of .0547 is large in this setting, where several tests are 
run at each step and the variable with smallest p-value is selected. 

8.15 Summary table: 
Variable 

Step Entered Overall Λ p-Value Partial Λ Partial F p-Value 

1 
2 

CHAPTER 9 

2/2 

2/3 

.6347 

.2606 
.0006 

<.0001 
.6347 
.4106 

9.495 
22.975 

.0006 
<.0001 

9.1 zx- z2= a 'yi - a'y2 = a'(yx - y2) = (yx - y2)'SD,1(yi - y2) 

9.2 ±(zi+z2) i (a 'y i+a 'y 2 )_=5 a ' (y i+y2) 
- | (Ϋι-Ϋ 2)ν^ι+^) 

9.3 Write (9.8) in the form 
/ ( y l d ) P2 
/ (y |G 2 ) p, 

and substitute /(y|Gj) = Ν^μ^ Σ) from (4.2) to obtain 

/(y|Gl) = ρ(μ1-μ2)'-Σ-1γ-(μ1-μ2)'Σ-1(μ1+μ2)/2 > P2 

/ (y |G 2 ) Pl-

Substitute estimates for μ1, μ2, and Σ, and take the logarithm of both sides to 
obtain (9.9). Note that if a > b, then In a > In b. 

9.4 Maximizing p , / (y , Gj) is equivalent to maximizing ln[pi/(y|G,)]. Use / (y |Gi) 
Νρ(μί, Σ) from (4.2) and take the logarithm to obtain 

ln [p i / (y |G i ) ]= ln P i - ip ln (27 r ) h\n i (y- M J'E- 1 (y- /zJ . 
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Expand the last term, delete terms common to all groups (terms that do not 
involve i), and substitute estimators of μί and Σ to obtain (9.13). 

9.5 Use f(y\Gi) = ΛΓρ(μ,;, Σ<) in lnfo/frlGi)], delete -(p/2) 1η(2π), and sub-
stitute yi and Si for μ{ and Σ^. 

9.6 Substitute the constant c for each occurrence οϊρί/ηι to obtain the result. 

9.7 (a) a' = (yx - y ^ ' S " 1 = (.345, -.130, -.106, -.143), 
\{ζι+ζ·2) = -15.8054 

(b) Predicted Group 
Actual Number of 
Group Observations 1 2 

1 19 19 0 
2 20 1 19 

Error rate — ^ — .0256 
(c) Using the k nearest neighbor method with k — 5, we obtain the same 

classification table as in part (b). With k = 4, two observations are 
misclassified, and the error rate becomes 2/39 = .0513. 

-.089,-.007,-.022), 9.8 ( a ) a ' = ( y 1 - y 2 ) ' S " 1
1 = (-

| ( « i + « a ) = -17 .045 

(b) 
Actual Number of 
Group Observations 

1 39 
2 34 

- .145, . 052 , - .005 

Predicted Group 

1 2 

37 20 
8 26 

Error rate = (2 + 8)/73 = .1370 
(c) pi and p2 Proportional to Sample Sizes 

Actual 
Group 

1 
2 

Number of 
Observations 

39 
34 

Predicted Group 

1 2 

37 2 
8 26 

Error rate = (2 + 8)/73 = .1370 

9.9 (a) a' = (y1 - y ^ ' S " , 1 = (-.057, -.010, -.242, -.071), 
5(21 +z2) = -7.9686 
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(b) Linear Classification 

(c) 

Actual 
Group 

1 
2 

Error rate 

Actual 
Group 

1 
2 

Number of 
Observations 

Predicted Group 

1 2 

9 8 1 
10 1 9 

= y | = .1053 

Holdout Method 

Number of 
Observations 

9 
10 

Predicted Group 

1 2 

6 3 
3 7 

(d) 
Error rate = (3 + 3)/19 = .3158 

Kernel Density Estimator with h 

9.10 (a) 

Actual 
Group 

1 
2 

Error rate 

Actual 
Group 

1 
2 

Number of 
Observations 

9 
10 

= ϊδ = · 0 5 2 6 

Number of 
Observations 

20 
20 

Predicted Group 

1 2 

9 0 
1 9 

Predicted Group 

1 2 

18 2 
2 18 

Error rate = (2 + 2)/40 = .100. 
(b) Four variables were selected by the stepwise discriminant analysis: 2/2,2/3, 

2/4, and ye (see Problem 8.14). With these four variables we obtain the 
classification table in part (c). 

(c) 

Actual 
Group 

1 
2 

Number of 
Observations 

20 
20 

Predicted Group 

1 2 

18 2 
2 18 

Error rate = (2 + 2)/40 = .100. The four variables classified the sample 
as well as did all six variables in part (a). 
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9.11 (a) By (9.11), L,(y) - y ^ y - ^ S ^ y , 
/ COi \ 

Group 1 

-72.77 
.81 

15.15 
-1.03 
10.02 

« = 1,2,3, 

Group 2 

-65.18 
2.12 

10.11 
- .24 
11.06 

are 

Group 3 

-68.57 
.68 

2.79 
6.54 

13.09 

(b) Linear Classification 

Predicted Group 
Actual 
Group 

Number of 
Observations 

12 
12 
12 

(c) 
Error rate = (3 + 3 + 2 + l)/36 = .250 

Quadratic Classification 

Predicted Group 
Actual 
Group 

Number of 
Observations 

12 
12 
12 

10 
2 
0 1 

Error rate = (2 + 2 + 2 + l ) / 3 6 = .194 

(d) Linear Classification-Holdout Method 

Predicted Group 
Actual 
Group 

Number of 
Observations 

12 
12 
12 

Error rate = (5 + 4 + 3 + 1)/12 = .361 

<y 

0 
2 

11 

0 
2 

11 

0 
3 

11 

coi. The vectors 
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(e) : Nearest Neighbor with k = 5 

Predicted Group 

9.12 

Actual 
Group 

1 
2 
3 

Error rate 

(a) By (9.11), 

( coi \ 
{ « J' 
Group 1 

-300.0 
314.6 
-59.4 
149.6 

-161.2 

Number of 
Observations 1 

11 
11 
12 

9 
2 
0 

= (2 + 2 + 2 + l ) / 3 4 

. Hy) = 
* = 1,2, . . 

Group 2 

-353.2 
317.1 
-64.0 
168.2 

-172.6 

yjs^y -
. , 6, are 

Group 3 

-328.5 
324.6 
-65.2 
154.9 

-150.4 

2 

2 
7 
1 

: = .206 

2 y j s
P i 

Group 4 

-291.8 
307.3 
-59.4 
147.7 

-153.4 

3 

0 
2 

11 

Ύί = c i y + coi- T h e vectors 

Group 5 

-347.5 
316.8 
-65.8 
168.2 

-172.9 

Group 6 

-315.8 
311.3 

-63.1 
160.6 

-175.5 

(b) Linear Classification 

Predicted Group 
Actual 
Group 

Number of 
Observations 

(c) 

Correct classification rate = ( 5 + 3 + 6 + 4 + 3 + 4) /48 = .521 
Error rate = 1 - . 5 2 1 = .479 

Quadratic Classification 

Predicted Group 
Actual Number of 
Group Observations 

2 8 
3 8 
4 8 
5 8 
6 8 

Correct classification rate = (i 

Error rate = 1 - .771 = .229 

7 + 6 + 7 + 4 + 5) /48 = .771 
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(d) k Nearest Neighbor with k = 3 

Actual 
Group 

1 
2 
3 
4 
5 
6 

Number of 
Observations 

8 
8 
8 
8 
8 
8 

1 

5 
0 
1 
0 
0 
2 

2 

0 
4 
0 
0 
1 
0 

Predicted Group 

3 

0 
0 
6 
0 
0 
0 

4 

2 
0 
0 
5 
0 
0 

5 

0 
1 
1 
0 
6 
0 

6 

0 
0 
0 
0 
1 
5 

Ties 

1 
3 
0 
3 
0 
1 

(e) 

Correct classification rate = (5 + 4 + 6 + 5 + 6 + 5)/40 = .775 
Error rate = 1 - .775 = .225 

Normal Kernel with h = 1 
(For this data set, larger values of h do much worse.) 

Actual 
Group 

1 
2 
3 
4 
5 
6 

Number of 
Observations 

8 
8 
8 
8 
8 
8 

1 

8 
0 
1 
1 
0 
2 

2 

0 
8 
0 
0 
0 
0 

Predicted Group 

3 

0 
0 
6 
0 
0 
0 

4 

0 
0 
0 
7 
0 
0 

5 

0 
0 
1 
0 
7 
0 

6 

0 
0 
0 
0 
1 
6 

Correct classification rate = (8 + 8 ■ 
Error rate = 1 - .875 = .125 

6 + 7 + 7 + 6)/48 = .875 

CHAPTER 10 

(vA 
10.1 y - X/3 = 

\VnJ 

By(2.33),Er=i(l/« 

10.2ΣΓ=χ(2Λ-μ) 2 

M\ 
ß 

<ß? 

(vA 
2/2 

Kß\ 
*'2β 

(y 

W 
x£)'(y Xß). 

(yi 

V2 

x'i/3\ 
Aß 

\yn - x'nßj 

T,i(Vi 
Ei(2/i 

y + y - μ ) 2 

v? + zEiivi - v)(y -_μ) + Σάν - M)2 

y? + (y- μ) Σΐ(»< -y) + ™{y -_μ)2 

yf + n(y - μ)2 [since Σ , (^ ί - y) = 0] 

10.3 Σ"=ι( χ ί2 - ^2)y = 2/Σ«(^2 - £2) = y{J2iXi2 - nx2) = y{nx2 - nx2) 
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10.4 E[yi - E(yi)}
2 = E[yi - E(yi) + E(yi) - E(yi)}

2 

= E[yi - E{yi)Y + 2E[yi - E{yi)){E{yi) - E{y%)\ 
+E[E(vi) - E{yi)f 

The second term on the right vanishes because [E{yi) — E(yi)] is constant and 
E[j)i - E{yi)} = E{yi) - E(yi) = 0. For the third term, we have E[E{yi) -
E{yi))

2 = [E(yi) - E(yi)}
2, because [£(&) - E(yi)}

2 is constant. 

10.5 First show that cov(/3p) = σ 2 (Χ ρ Χ ρ ) _ 1 . This can be done by noting that 
βρ = ( X p X p ^ X ^ y = Ay, say. Then, by (3.74), cov(Ay) = Acov(y)A' = 
Α(σ2Ι)Α' = σ2ΑΑ'. By substituting A = (X p Xp) _ 1 X p , this becomes 
cov^p) = σ^ΧρΧρ)" 1 . Then by (3.70), var(Xp./3p) = xp.cov(/3p)xpi and 
the remaining steps follow as indicated. 

10.6 By (10.36), s2
p = SSEp/(n - p). Then by (10.44), 

Cp=p+(n-Pyi^=p + (n-p)(S4-l) 
sh \sk I 

= p + ( n - p ) % -(n-p) = (n-p) ^ p'^k -n + 2p Ik 
s% ■ ~' ■ - n - p 

s2 (n - 2p). 

10.7 (Y - XB)'(Y - XB) = Y'Y - Y'XB - B'X'Y - B'X'XB. Transpose 
B = (X 'X)" 1 X'Y from (10.48) and substitute into B'X'XB. 

10.8 E[yi - Ε{Υί)][Ύί - E(yi)]' = E[yx - E(Yi) + E(yz) - Ε(Υι)][Υί - E(Yi) 
+E(yl) - E(yi)]' 

= E\yi-E(yi)]\yi-E(yi)]' 
+E\yi - E(yi)][E(yi) - E(yi)]' 
+E[E(yi) - E(yi)]\yi - E(yi)]' 
+E[E(yi) - E(yi)][E(Si) - E(yi)]' 

The second and third terms are equal to O because [E(yi) — i?(y»)] is a con-
stant vector and E[fi - E(yi)] = E(yi) — £7(y») = 0. The fourth term is a 
constant matrix and the first E can be deleted. 

10.9 As in Problem 10.5, we have co\(ßp^-)) = σ ^ Χ ρ Χ ρ ) - 1 , where σ^ = 
var(i/j) is the jth diagonal element of Σ = cov(y). Similarly, ΰον(/3ρ(^, 
ßP(k)) = σ^(ΧρΧρ)" 1 , where ajk = co\{yhyk) is the (jfc)th element of Σ . 
The notation co\(ßp^-), ßp(k)) indicates a matrix containing the covariance of 
each element οϊβρ^ and each element of ßp(ky Now for the covariance ma-
trix, cov(y-) = cov(xp i /3p ( 1 ) , . . . ,x.'pißp(m)), we need the variance of each 
of the ra random variables and the covariance of each pair. By Problem 10.5 
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and (3.70), var(xp./3p(i)) = x^cov(/3p(1))xpi = σηχ'ρί(Χ.ρΧρ)
 1-xpi. Sim-

ilarly, cov(x'pißp{1),x'pißpi2)) = CTi2xpi(XpXp)"1Xpi. The other variances 
and covariances can be obtained in an analogous manner. 

10.10 By (10.92), Sp = E p / (n - p). Then by (10.98), 

Cp=pl + {n-p)S-1(Sp-Sk) 

= pI + ( n - p ) S ^ 1 - E ^ - - ( n - p ) I 
n — p 

S^iEp + (2p-n)l. 

10.11 |Efc
 1Ep| = |Efe

 1 | |EP | > 0, because both Efe * and E p are positive definite. 

10.12 By (10.99), C p = S^EP + (2p - n)l. Using Sfe = E fc/(n - k), we obtain 

1 
E t 

E„ Cp - (2p - n)l 

(n - k)E^Ep = Cp + (n - 2p)I. 

10.13 If Cp is replaced by pi in (10.101), we obtain 

Efe E P 
Cp + (n - 2p)I pl + nl- 2pl _ (n - p)l 

n — k n — k k 

10.14 (a) For this scenario, the Zyskind condition holds if (E<g>I)XSUR = X S U R Q . 
Use property (2.121) to find the matrix Q. 

(b) For this scenario, the Zyskind condition holds if (E®I)X S U R = X S U R Q . 
Use the diagonal property of Σ to find the matrix Q. 

10.15 (a) B = 

/ .6264 83.243 \ 
.0009 .029 

-.0010 -.013 
\ .0015 -.004 ) 

(b) Λ = .724, V^ = .280, U^ = .375, Θ = .264 
(c) λι = .3594, λ2 = .0160. The essential rank of Bi is 1, and the power 

ranking is Θ > U^ > Λ > V^. 

(d) The Wilks' Λ test of X2 adjusted for x\ and x^, for example, is given by 
(10.74) as 

k(xi,x2,xz) 
K(x2\xi,xz) 

A(X!,X3) 

which is distributed as ΛΡ;ι;„_4 and has an exact F-transformation. The 
tests for xi and x% are similar. For the three tests we obtain the following: 
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F p- Value 

X!\X2,X3 
X2\xi,X3 
X3\x\,X2 

.931 

.887 

.762 

1.519 
2.606 
6.417 

.231 

.086 

.004 
(e) Confidence intervals for the two elements of E(y0) are: (0.86,0.94) and 

(87.20, 93.39). 

(f) Prediction intervals for the two elements of yo are: (0.67, 1.13) and 
(72.63, 107.98). 

16 (a) B 

(b) Λ = .377, V^ = .625, U^ = 1.647, Θ = .622 

(c) 

(d) 

(e) 

(f) 

λι = 1.644, \2 = .0029. The essential rank of Βχ is 1, and the power 
ranking is Θ > U^ > Λ > V^. 

A F p- Value 

X\\X2 

x2\xi .875 
1.327 
1.506 

.287 

.245 

Confidence intervals for the two elements of E(y0) are: (170.31,180.44) 
and (139.51, 147.25). 

Prediction intervals for the two elements of yo are: (160.23, 190.52) and 
(131.82, 154.94). 

17 (a) B 

(b) 

(c) 

(d) 

/ 54.870 65.679 58.106 \ 
.054 -.048 .018 

-.024 .163 .012 
\ .107 -.036 .125 / 

Λ = .665, V^ = .365, U^ = .458, Θ = .240 

λι = .3159, λ2 = .1385, λ3 = .0037. The essential rank of Bi is 2, and 
the power ranking is V(s) > Λ > U^ > Θ. 

Λ F p-Value 

(e) 

(f) 

X\\X2,X3 

X2\X1,X3 

xz\xi,x2 

.942 

.847 

.829 

Λ 

.903 
2.653 
3.020 

F 

.447 

.060 

.040 

p- Value 

1. yi|j/2,3/3 .890 
3/2|j/i,2/3 -833 
3/3 |yi,y2 .872 

Confidence intervals for the three elements of E(y0) are: (65.55,71.62), 
(71.06, 76.27), and (70.96, 76.29). 

2.932 
2.159 

.160 

.044 

.106 
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(g) Prediction intervals for the three elements of y0 are: (49.07, 88.10), 
(56.92, 90.41), and (56.51, 90.74). 

10.18 (a) B = 

/ 

\ 

-4 .140 
1.103 

.231 
1.171 

.111 

.617 

.267 
- . 2 6 3 
- . 0 0 4 

4.935 
- . 9 5 5 
- . 2 2 2 
1.773 

.048 
- . 0 5 8 

.485 
- . 2 0 9 
- . 0 0 4 

\ 

/ 
Test of overall regression of (2/1,2/2) on (χι,χ^,. ■. ,χ»): Λ = .4642 
(withp = 2, exact F = 1.169,p-value = .332). Tests on subsets (the 
F's are exact because p = 2): 

Λ p- Value 

( b ) X7,Xg\xi,X2,- ■ ■ ,Χβ 

( c ) a ;4 ,X5 ,a :e | a ; i , a ;2 ,a ;3 ,X7 ,a ;8 
( d ) XI,X2,X3\X4,,X5,-- ■ ,X8 

.856 

.674 

.569 

.808 
1.457 
2.170 

.527 

.218 

.066 

10.19 (a) The overall test of (2/1,2/2) on (xj,x2, ■. ■ ,xs) gives Λ = .4642, with 
(exact) F — 1.169 (p-value = .332). Even though this test result is not 
significant, we give the results of a backward elimination for illustrative 
purposes: 

Partial Λ-Test on Each Xi Using (10.87) 
Step X\ X2 X3 XA X5 X6 %7 X8 

1 
2 
3 
4 
5 
6 
7 
8 

.723 

.741 

.737 

.675 

.680 

.701 

.855 

.891 

.969 .817 
.801 
.837 
.852 
.861 

.859 

.851 

.798 

.821 

.835 

.805 

.930 

.821 

.839 

.757 

.794 

.817 

.806 

.945 

.948 
.924 
.927 
.949 

.943 

.940 

.938 

.925 

At each step, the variable deleted was not significant. In fact, the variable 
remaining at the last step, x\, is not a significant predictor of 2/1 and 2/2· 

(b) There were no significant x's, but to illustrate, w e will use the three a;'s 
at step 6 above and test for each y: 

Λ F p - Value 

2/112/2 
2/212/1 

.701 

.808 
3.548 
1.984 

.029 

.142 
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10.20 (a) B 

(b) B = 

Λ 

(c) B 

/ 43.703 
.019 
.139 
.204 

167, V^ = 

( 99.817 
.008 
.097 
.049 
.022 
.159 
.054 

,110, F ( s ) = 
/ 710.236 

-1.625 
24.648 
-8.622 
-8.224 
23.626 

2.862 
-16.186 

-.268 
\ -1.160 

46.793 187.923 \ 
-.098 1.016 

.185 -4.953 

.107 1.606 / 
.883, i/W =4.709, Θ = .823 

-29.120 121.595 \ 
-.224 -.027 
1.252 5.775 

-.442 -1.768 
-.631 -.488 
2.128 4.387 
-.037 -.476 ) 

1.350, U^ =4.319,6» 

123.403 \ 
.055 
.094 

-.334 
.462 

-.110 
.427 

-.267 
.014 

-.336 ) 

.769 

Λ = .102, V^ = 1.236, t/W = 5.475, Θ = .827 

10.21 Using a backward elimination based on (10.87), we obtain the following par-
tial Λ-values: 

Step Xi X2 Xi X4 XS Χβ X7 XS Xg 

1 
2 
3 
4 
5 
6 

.993 

.994 
.962 
.962 
.951 
.948 
.953 

.916 

.916 

.883 

.884 

.862 

.830 

.958 

.956 

.954 

.955 

.919 

.909 

.912 

.861 

.840 

.781 

.879 

.874 

.873 

.867 

.803 

.783 

.981 

.980 

.981 

.999 .797 
.626 
.626 
.561 
.561 
.535 

At step 6, we stop and retain all four x's because each Λ has a p-value less 
than .05. 

CHAPTER 11 

11.1 By (3.38), S yy ΌυΈΙυυΌυ and Sx D T R T T D T , where D,, and D T are 
defined below (11.14). Similarly, Syx 

Substitute these into (11.7), replace I by D 
right. 

D y""yx*-* X andS xy D3 

y
 1 D y , and factor out D^ on the 
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11.2 Multiply (11.7) by S ^ S ^ on the left to obtain ( S - ^ S ^ S ^ S ^ S ^ S ^ -
r2S~^Sxy)a = 0. Factor out S~^SXi/ on the right to write this in the form 
(S~^SxySyySyX - r2l)S~^Sxya = 0. Upon comparing this to (11.8), we 
see that b = S ^ S ^ a . 

11.3 When p = 1, s is also 1, and there is only one canonical correlation, which 
is equal to R2 from multiple regression [see comments between (11.28) and 
(11.29)]. Thus 

1 - r? 1-R2, 

11.4 F 

l-c2 l-R2' 

(1 _ Λ ) (η - q - 1) = [1 - (1 - R})/(1 - R2)](n - g - 1) 
Ah [(1-R2)/(1-R2)}h 

[ l - ^ - ( l - 4 ) ] ( n - 9 - l ) 
(1 - R2)h 

(R2-R2)(n~q-1) 

(l-R))h 

11.5 By (11.39), 

2 _ ^i 
Ti 

1 + λ, 
r2+r2\i = \i, Xi(l-r2) = r2. 

11.6 Substitute E = (rc - l ) (S r a - SyxS~^SXy) and H = (n - ^ S ^ S ^ S ^ 
from (11.44) and (11.45) into (11.37): 

H a = AEa, 
(n — l j S j ^ S ^ S ^ a = (n — 1)A(STO — S ^ S , ^ S^ ja , 

SyxSxx&xya — *{Syy ~ Syx^xx °xy)a-

11.7 By (11.42), S ^ S ^ S ^ a = r2Syya. Subtracting ^ S ^ S ^ S ^ a from both 
sides gives 

°ya;°xa; °xya ~ r SyxSxx S x y a = Γ S y ^ a — T Syxbxx S ^ a , 

(1 — r jSy^S^.^S^^a = r (Syy — Sy^S^^Sxyja. 

11.8 (a) ri = .5142, r2 = .1255 
(b) ci c2 di d2 

yi 
y-2 

k 

1 
7 

1.020 
-.160 

Λ 

.7240 

.9843 

-.048 xi 
1.009 xi 

X3 

Approximate F 

2.395 
.336 

.436 
-.704 
1.081 

p- Value 

.035 

.716 

.823 
-.455 
-.401 
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11.9 (a) 

(b) 

(c) 

7Ί = 

yi 

2/2 

k 

.7885, r 2 = .0537 

Cl C 2 

.5522 -1.3664 

.5215 1.3784 

Λ Approximate 

Xl 

Xl 

F 

d i 

.5044 

.5383 

p- Value 

d2 

-1.7686 
1.7586 

.3772 6.5972 .0003 

.9971 0.0637 .8031 

11.10 (a) 

(b) 

(c) 

11.11 (a) 

(b) 

(c) 

r\ = 

yi 

V2 

2/3 

k 

1 
2 
3 

T-i — 

yi 

yi 

k 

1 
2 

.4900, r 2 = .3488, 

Cl C 2 

.633 .091 
-.624 816 

.643 .400 - . 

Λ Approximate 

.665 2.175 

.875 1.552 

.996 .171 

.6251, r 2 = .4135 

C l C 2 

1.120 -.007 
-.498 1.003 

Λ Approximat 

.4642 1.1692 

.7553 .9718 

?"3 = 

C3 

806 
147 
690 

.0609 

Xl 

Xl 

X3 

F p- Value 

X l 

Xl 

X3 

Xi 

Xb 

Χβ 

x7 

Xa 

eF 

.029 

.194 

.681 

d i 

1.091 
.184 
.842 
.944 

1.040 
.215 

-.603 
-.641 

p- Value 

.3321 

.4766 

d i 

.482 
-.578 

.865 

d2 

-.794 
-.288 
1.807 
.641 

-.154 
1.256 

-.528 
-.588 

d2 

-.262 
1.024 
.216 

d3 

1.054 
-.059 
-.626 

11.12 (b) By (11.34), 

A(x7,xs\xi,X2,---,xe) 
Π-=1(ΐ-^2) 

where r\ and r\ are the squared canonical correlations from the full 
model and c\ and c?2 are the squared canonical correlations from the re-
duced model: 

A, i N (1 ~ -62082)(1 - .49472) .4643 
Α ( χ 7 , * β | « ι , ^ , . . . , * β ) = ( 1 _ _ 2 6 5 0 2 ) ( 1 _ - 0 8 8 6 2 ) = ^ 2 5 = . 5 0 3 3 
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(C) A(x4,X5,X6\xl,X2,X3,X7,XS) 

(d) A(X1,X2,X3\X4,X5,---,X8) 

( l - . 6 2 0 8 2 ) ( l - . 4 9 4 7 2 ) 
(1 - .33012)(1 - .17072) 
•4643 „ n r , n 

= = .5367 
.8651 

(1 - .62082)(1 - .49472) 
(1 - .48312)(1 - .21852) 
.4643 .7300 

11.13 (a) ri = .9279, r2 = .5622, r3 = .1660, 
k Λ Approximate F p- Value 

= .6359 

(b) 

(c) 

(d) 

1 
2 
3 

n -
k 

1 
2 
3 

n = 
k 

1 
2 

n = 
k 

1 
2 
3 
4 
5 

CHAPTER 12 

.0925 

.6651 

.9725 
.8770, 

Λ 

.1097 

.4751 

.8783 
.9095, 

Λ 

.1022 

.5911 

.9029, 
Λ 

.0561 

.3037 

.7747 

.8898 

.9937 

17.9776 
4.6366 
1.1898 

r2 = .6776, r 3 -
Approximate F 

6.919 
3.427 
1.351 

r 2 = .6395, 
Approximate F 

8.2757 
3.1129 

r 2 = .7797, r 3 = 
Approximate F 

4.992 
2.601 

.829 

.761 

.124 

<.0001 
.0020 
.2816 

.3488, 
p- Value 

<.0001 
.001 
.269 

p- Value 

<.0001 
.0089 

.3597, r 4 

p- Value 

<.0001 
.0007 
.6210 
.6030 
.8840 

.0794, 

12.1 From λ = a 'Sa /a ' a in (12.7), we obtain Aa'a = aSa, which can be factored 
as a'(Sa — Aa) = 0. Since a = 0 is not a solution to A = a 'Sa/a 'a , we have 
Sa - Aa = 0. 

12.2 |R - AI| = 0, 1 - A r 
r 1 - A ( 1 - A ) 2 _ r2 0, 

( l - A + r ) ( l - A - r ) = 0, A = l ± r 

With Ai = 1 + r in (R - Ail)ai = 0, we obtain 

—r 
r 

an 
a-12 
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which gives a n = a\i for any r. Normalizing to a^ai = 1, yields o n = 
1/V2. 

12.3 (a) By (4.14) and a comment in Section 7.1, the likelihood ratio is given by 
LR = (|S|/ |So|)" / 2 , where S0 is the estimate of Σ under H0. By (2.108) 
and (7.6), the test statistic is 

-21nLR= - 2 In 

— — nln 

|Sol 

1/2 

Π i=p—fc+1 

= - 2 

λ 

(n\ IL=i Λ» nLp-fc+i ^i 

Πί=1 Ai rii=p-/c+l λ 

= nj Ηηλ — \_[ Λί I · 
i=p—k+1 

In (12.15), the coefficient n is modified to give an improved chi-square ap-
proximation. 

12.4 If S is diagonal, then A, = su, as in (12.17). Thus 

Ö&J A j ^ i SH& 

( su 0 
0 S22 

0 \ / an \ 
a,2 

/ siia»! \ / suan \ 
S22CH2 Siidi2 

\ w " ' Spp j y d̂ p y y Sppa^p j y saaip j 

From the first element, we obtain sna , i = s^aa or (su — su)an — 0. 
Since s n — s^ 7̂  0 (unless i = 1), we must have an = 0. Thus, a» = 
( 0 , . . . , 0, a**, 0 , . . . , 0)', and normalizing a; leads to an = 1. 

12.5 By (10.34) and (12.2), 

R: 
Sytz^zz sViZ 

; | z i , . . . ,Z f c 

~~ \syiZi 1 sViZi 1 · · · 1 sJ/i2fc ) 

ί < 0 

V 0 

0 \ V 5Vi*i \ 
0 

Show that this is equal to 

R 
k s2 

Vi\Z] , . . . , z / i 
_ V ^ aVi*j _ V ^ 2 

Ζ ^ s 2 ς 2 Ζ-^ι Vizi' 
j = \ S*j°yi j=l 
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12.6 The variances of yi,y2,%i,X2, and £3 on the diagonal of S are .016, 70.6, 
1106.4, 2381.9, and 2136.4. The eigenvalues of S and R are as follows: 

S R 

Xi 

3466.18 
1264.47 
895.27 
69.34 
.01 

νΣ,λ,-
.608607 
.222021 
.157195 
.012174 
.000002 

Cumulative 

.60861 

.83063 

.98782 

.99999 
1.00000 

Xi 

1.72 
1.23 
.96 
.79 
.30 

Xi/E3 

.34 

.25 

.19 

.16 

.06 

Xi Cumulative 

.34 

.59 

.78 

.94 
1.00 

Two principal components of S account for 83% of the variance, but it requires 
three principal components of R to reach 78%. For most purposes we would 
use two components of S, although with three we could account for 99% of the 
variance. However, we show all five eigenvectors below because of the inter-
esting pattern they exhibit. The first principal component is largely a weighted 
average of the last two variables, X2 and £3, which have the largest variances. 
The second and third components represent contrasts in the last three variables 
and could be described as "shape" components. The fourth and fifth compo-
nents are associated uniquely with y2 and y\, respectively. These components 
are "variable specific," as described in the discussion of method 1 in Section 
12.6. 

As expected, the principal components of R show an entirely different pattern. 
All five variables contribute to the first three components of R, whereas in S, 
y\ and y2 have small variances and contribute almost nothing to the first three 
components. The eigenvectors of S and R are as follows: 

S R 

3/1 
3/2 

Xl 

Xi 

Xz 

ai 

.0004 
-.0080 
.1547 
.7430 
.6511 

a2 

-.0008 
.0166 
.6382 
.4279 

-.6397 

a3 

.0018 

.0286 

.7535 
-.5145 
.4083 

a4 

.0029 

.9994 
-.0309 
.0136 
.0042 

as 

.9999 
-.0029 
-.0008 
.0009 

-.0015 

ai 

.42 

.07 

.36 

.54 

.63 

a2 

.53 

.68 

.20 
-.43 
-.18 

a3 

-.42 
.16 
.76 
.25 

-.40 

a4 

-.40 
.70 

-.44 
.39 
.10 

a5 

.46 
-.10 
-.24 
.56 

-.64 

12.7 S = 

/ 65.1 
33.6 
47.6 
36.8 

\ 25.4 

33.6 
46.1 
28.9 
40.3 
28.4 

47.6 
28.9 
60.7 
37.4 
41.1 

36.8 
40.3 
37.4 
62.8 
31.7 

25.4 \ 
28.4 
41.1 
31.7 
58.2 / 
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/ 1.00 .61 .76 .58 .41 \ 
.61 1.00 .55 .75 .55 

R = .76 .55 1.00 .61 .69 
.58 .75 .61 1.00 .52 

\ .41 .55 .69 .52 1.00 / 
The eigenvalues of S and R are as follows: 

\ i 

200.4 
36.1 
34.1 
15.0 
7.4 

S 
λ,/Σ,λ, 

.684 

.123 

.116 

.051 

.025 

Cumulative 

.684 

.807 

.924 

.975 
1.000 

\ i 

3.42 
.61 
.57 
.27 
.13 

The first three eigenvectors of S and R are as 

a i 

.47 -

.39 -

.49 

.47 -

.41 

s 
a2 

-.58 
-.11 

.10 
-.12 

.80 

a 3 

- .42 
.45 

- .48 
.62 

- .09 

a i 

.44 -

.45 -

.47 

.45 -

.41 

R 
a2 

.20 

.43 

.37 

.39 

.70 

a 3 

- .68 
.35 

- .38 
.33 
.41 

R 

λ ί / Σ , - λ ί 

.683 

.123 

.114 

.054 

.025 

follows: 

Cumulative 

.683 

.806 

.921 

.975 
1.000 

The variances in S are nearly identical, and the covariances are likewise sim-
ilar in magnitude. Consequently, the percent of variance explained by the 
eigenvalues of S and R are indistinguishable. The interpretation of the second 
principal component from S is slightly different from that of the second one 
from R, but otherwise there is little to choose between them. 

12.8 The variances on the diagonal of S are 95.5, 73.2, 76.2, 808.6, 505.9, and 
508.7. The eigenvalues of S and R are as follows: 

\ i 

1152.0 
394.1 
310.8 
97.8 
68.8 
44.6 

S 
V E j A i 

.557 

.191 

.150 

.047 

.033 

.022 

Cumulative 

.557 

.748 

.898 

.945 

.978 
1.000 

\ i 

2.17 
1.08 
.98 
.87 
.55 
.35 

R 

νΣ,-λ,-
.363 
.180 
.163 
.144 
.092 
.058 

Cumulative 

.363 

.543 

.706 

.850 

.942 
1.000 

We could keep either two or three components from S. The first three compo-
nents of S account for a larger percent of variance than do those from R. The 
first three eigenvectors of S and R are as follows: 
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ai 

.080 

.034 

.076 

.758 

.493 

.412 

S 
a2 

.092 
-.018 
.122 

-.446 
-.081 
.878 

ae 

-.069 
.202 

-.011 
-.469 
.844 

-.147 

ai 

.336 

.258 

.370 

.475 

.486 

.471 

R 
a2 

.176 

.843 

.049 
-.329 
.079 

-.376 

a3 

.497 
-.093 
.466 

-.358 
-.567 
.278 

As expected, the first three principal components from S are heavily influenced 
by the last three variables because of their relatively large variances. 

12.9 The variances on the diagonal of S are .69; 5.4; 2,006, 682.4; 90.3; 56.4; 18.1. 
With the large variance of y3, we would expect the first principal component 
from S to account for most of the variance, and yz would essentially constitute 
that single component. This is indeed the pattern that emerges in the eigen-
values and eigenvectors of S. The principal components from R, on the other 
hand, are not dominated by 2/3. The eigenvalues of S and R are as follows: 

\ i 

2,006,760 
65 
18 
7 
3 
0 

S 

νΣ,-λ,-
.999954 
.000033 
.000009 
.000003 
.000001 
.000000 

λί 

2.42 
1.40 
1.03 
.92 
.20 
.02 

R 

νΣ,Λ 
.404 
.234 
.171 
.153 
.033 
.004 

Cumulative 

.404 

.638 

.809 

.963 

.996 
1.000 

Most of the correlations in R are small (only three exceed .3), and its first 
three principal components account for only 72% of the variance. The first 
three eigenvectors of S and R are as follows: 

ai 

.00016 

.00051 

.99998 

.00529 

.00322 

.00020 

S 
a2 

.005 

.017 
-.001 
.698 

-.716 
.025 

a3 

-.0136 
.0787 

-.0002 
.0174 
.0195 
.9965 

ai 

.424 

.446 

.563 

.454 

.303 

.073 

R 
a2 

-.561 
-.528 
.387 
.267 
.425 
.069 

ae 

-.150 
.087 

-.051 
.166 

-.296 
.923 

12.10 Covariance matrix for males: 

'M 

( 5.19 4.55 6.52 5.25 \ 
4.55 13.18 6.76 6.27 
6.52 6.76 28.67 14.47 

\ 5.25 6.27 14.47 16.65 / 
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Covariance matrix for females: 

/ 9.14 
7.55 
4.86 

\ 4.15 

7.55 
18.60 
10.22 

5.45 

4.86 
10.22 
30.04 
13.49 

4.15 \ 
5.45 

13.49 
28.00 / 

The eigenvalues are as follows: 

Males Females 
\ i 

43.56 
11.14 
6.47 
2.52 

λ ί / Σ ^ -

.684 

.175 

.102 

.040 

Cumulative 

.684 

.858 

.960 
1.000 

\ t 

48.96 
18.46 
13.54 
4.82 

V E ^ j 
.571 
.215 
.158 
.056 

Cumulative 

.571 

.786 

.944 
1.000 

The first two eigenvectors are as follows: 

Males 
ai a2 

.24 .21 

.31 .85 

.76 - .48 

.52 .09 

Females 
ai a2 

.22 .27 

.39 .62 

.68 .17 

.58 - .72 

The variances in S M have a slightly wider range (5.19 to 28.67) than those 
in SF (9.14 to 30.04), and this is reflected in the eigenvalues. The first two 
components account for 86% of the variance from S M , whereas the first two 
account for 79% from S F · 

12.11 Covariance matrix for species 1: 

Si 

/ 187.6 176.9 48.4 113.6 \ 
176.9 345.4 76.0 118.8 
48.4 76.0 66.4 16.2 

\ 113.6 118.8 16.2 239.9 / 

Covariance matrix for species 2: 

/ 101.8 

s2 = 128.1 
37.0 

\ 32.6 

128.1 
389.0 
165.4 
94.4 

37.0 
165.4 
167.5 

66.5 

32.6 \ 
94.4 
66.5 

177.9 j 

The eigenvalues are as follows: 
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Species 1 Species 2 
Xi 

561.3 
169.0 
65.3 
43.7 

νΣ^ 
.669 
.201 
.078 
.057 

Cumulative 

.669 

.870 

.948 
1.000 

\ i 

555.7 
145.4 
93.5 
41.7 

λ4/Σ,Λ· 
.664 
.174 
.112 
.050 

Cumulative 

.664 

.838 

.950 
1.000 

The first two eigenvectors are as follows: 

Species 1 Species 2 
a i 

.50 

.72 

.17 

.45 

Ά2 

.01 
- .48 
- .22 

.85 

a i 

.28 

.81 

.42 

.30 

a2 

- .20 
- .34 

.14 

.91 

The variances in Si have a wider range than those in S2, and the first two 
components of Si account for a higher percent of variance. 

12.12 The variances on the diagonal of S in each case are: 

(a) Pooled: 536.0, 59.9, 116.0, 896.4, 248.1, 862.0 

(b) Unpooled: 528.2, 68.9, 145.2, 1366.4, 264.4, 1069.1 

The eigenvalues are as follows: 

Ai 

1050.6 
858.3 
398.9 
259.2 
108.1 
43.4 

Pooled 
V E , A , 

.386 

.316 

.147 

.095 

.040 

.016 

1 
Cumulative 

.386 

.702 

.849 

.944 

.984 
1.000 

Ai 

1722.0 
878.4 
401.4 
261.1 
128.9 
50.4 

The first three eigenvectors are as follows: 

a i 

.441 

.041 
-.039 

.450 
-.019 

.774 

Pooled 
Ά2 

-.190 
-.038 

.031 

.892 -
-.001 -
-.407 -

a 3 

.864 

.082 

.143 

.033 

.054 

.471 

a i 

.212 
-.039 

.080 

.776 
-.096 

.580 

Unpooled 
a2 

.389 

.064 
-.066 
-.608 

.010 

.686 

Unpooled 
λ < / Σ ^ 

.500 

.255 

.117 

.076 

.037 

.015 

a 3 

.888 

.096 

.081 

.081 

.015 
-.434 

Cumulative 

.500 

.755 

.872 

.948 

.985 
1.000 
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(c) The pattern in both eigenvalues and eigenvectors is similar for the pooled 
and unpooled cases. The first three principal components account for 
87.2% of the variance in the unpooled case compared to 84.9% for the 
pooled case. 

12.13 The variances on the diagonal of S in each case are: 

(a) Pooled: 49.1, 8.1, 12140.8, 136.2, 210.8, 2983.9 
(b) Unpooled: 63.2, 8.0, 15168.9, 186.6, 255.4,4660.7 

The eigenvalues are as follows: 

Pooled Unpooled 
\r 

12,809.0 
2,455.9 
137.1 
77.2 
42.2 
7.4 

VE,A-
.8249 
.1582 
.0088 
.0050 
.0027 
.0005 

Cumulative 

.8249 

.9830 

.9918 

.9968 

.9995 
1.0000 

Xi 

17,087.0 
2,958.0 
168.6 
77.1 
44.7 
7.3 

VE,·*,-
.8400 
.1454 
.0083 
.0038 
.0022 
.0004 

Cumulative 

.8400 

.9854 

.9937 

.9974 

.9996 
1.0000 

The eigenvectors are as follows: 

Pooled Unpooled 
ai a2 ai a2 

.004 -.000 .013 .027 

.005 .004 -.004 .004 

.968 -.233 .931 -.355 

.002 .023 .028 .069 

.103 .041 .103 .021 

.228 .971 .350 .932 

12.14 The variances on the diagonal of S are all less than 1 except s*4 = 5.02 
and s2

Xs = 1541.08. We therefore expect the last variable, xg, to dominate 
the principal components of S. This is the case for S but not for R. The 
eigenvalues of S and R are as follows: 
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S 
Ai 

1541.55 
4.83 

.44 

.27 

.10 

.07 

.02 

.02 

.01 

.00 

νΣ,Λ 
.996273 
.003123 
.000286 
.000174 
.000066 
.000043 
.000014 
.000011 
.000005 
.000003 

R 

Ai Xi/Zj 

3.174 .317 
2.565 .256 
1.432 .143 
1.277 .128 
.542 .054 
.473 .047 
.251 .025 
.118 .012 
.104 .010 
.064 .006 

The eigenvectors of S and R are as follows 

S 
a i 

.0009 

.0007 

.0029 

.0014 

.0059 
-.0150 
-.0028 
-.0022 

.0044 

.9998 

a2 

-.005 
-.034 
-.007 

.004 
-.009 

.982 
-.092 
-.158 
-.011 

.014 

R 
a i &2 

.12 .19 

.06 .32 

.46 - .06 

.29 .17 

.52 .14 
- .09 - .42 
- .31 .45 
- .23 .54 

.09 .36 

.50 .11 

Xj Cumulative 

a3 

.69 

.54 

.07 
-.18 
-.04 

.07 
-.01 
-.14 
-.38 
-.13 

.317 

.574 

.717 

.845 

.899 

.946 

.971 

.983 

.994 
1.000 

a4 

.10 

.26 
- .38 

.49 
- .01 

.55 
- .14 
- .10 

.44 
- .09 

12.15 The variances in the diagonal of S are: 55.7, 10.9, 402.7, 25.7, 13.4, 438.3, 
1.5, 106.2, 885.6,22227.2,214.1 

The eigenvalues of S and R are as follows 

\ t 

22,303.5 
1590.7 
358.0 
63.4 
29.3 
17.1 
12.7 
2.8 
1.9 
.9 
.7 

S 

νΣ,Λ-
.91479 
.06524 
.01469 
.00260 
.00120 
.00070 
.00052 
.00012 
.00008 
.00004 
.00003 

Cumulative 

.91479 

.98003 

.99471 

.99731 

.99852 

.99922 

.99974 

.99986 

.99994 

.99997 
1.00000 

\ i 

6.020 
2.119 
1.130 
.760 
.355 
.259 
.122 
.110 
.060 
.042 
.021 

R 

Xi/EjXj 

.54730 

.19267 

.10275 

.06909 

.03231 

.02358 

.01110 

.01004 

.00544 

.00384 

.00190 

Cumulative 

.54730 

.73996 

.84272 

.91181 

.94411 

.96769 

.97879 

.98883 

.99427 

.99810 
1.00000 
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The eigenvectors of S and R are as follows: 

2/i 

2/2 

2/3 

2/4 

2/5 

2/6 

2/7 

2/8 

2/9 

2/io 

2/H 

S 
ai 

-.0097 
.0006 

-.0141 
-.0033 
.0101 
.0167 

-.0012 
.0275 
.0456 
.9982 
.0034 

a2 

.1331 

.0608 

.4397 

.1078 

.0398 

.4290 
-.0072 
-.1844 
-.6657 
.0346 
.3311 

ai 

.3304 

.3542 

.3923 

.3820 

.2323 

.3621 
-.0884 
-.2501 
-.3111 
-.0243 
.3357 

R 
a2 

-.0787 
.1928 
.0518 
.0474 
.5303 
.2361 
.0213 
.5023 
.3595 
.4685 -

-.1153 -

a3 

.0880 

.1071 

.1105 

.1334 

.0154 

.1198 

.7946 

.0826 

.2136 
-.4669 
-.1853 

a4 

-.2807 
-.2301 
-.1413 
-.0104 
-.0710 
.1350 
.5414 

-.1506 
-.2278 
.5001 
.4550 

For most purposes, one or two principal components would suffice for S, with 
91% or 98% of the variance explained. For R, on the other hand, three com-
ponents are required to explain 84% of the variance, and seven components 
are necessary to reach 98%. The reduction to one or two components for S 
is due in part to the relatively large variances of y3, y6, t/9, and yw. In the 
eigenvectors of S, we see that these four variables figure prominently in the 
first two principal components. 

CHAPTER 13 

13.1 var(yi) — var(y, - μ») = var(Aa/i + \i2fi Η V Ximfm + £i) 
= ΣΤ=ι A?iv a r(/ i) + v a r f e ) + Ej^fc AyAifcCovC/j-, fk) 

The last equality follows by the assumptions var(fj) = l,var(£i) = V*> 
cov(/j, fk) = 0, and cov(/j, ε») = 0. 

13.2 cov(y, f) = cov(Af + e, f) [by (13.3)] 
= cov(Af,f) [by (13.10)] 
= E[Af - E(M)][f - E(f)]' [by analogy to (3.31)] 
= E[Af - AE({)}[f - E(f)}' 
= AE[f - E(f)]\f - E(i)}' 
= Acov(f) = Λ [by (13.7)] 

13.3 E{f*) = £7(T'f) - ΎΈ(ϊ) = T O = 0, 
cov(f) = cov(T'f) = T'cov(f)T = Τ Ί Τ = I 

13.4 LetE = S - ( A Ä ' + * ) . Then by (2.98), tr(E'E) = J^ij 4 · By (13.26), Φ = P2. 

diag(S — ΛΛ'), and E has zeros on the diagonal. This gives the inequality 
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Σφ elj ^ s u m °f squared elements of S - ΛΛ'. 
By (2.98), 

sum of squared elements of S - ΛΛ' = tr(S — ÄÄ')'(S - ΛΛ'). 

Since S - Λ Λ ' is symmetric, we have by (13.20), (13.23), and (13.24), 

S - ΛΛ' = C D C ' - C i D i ^ D j ^ C ' j 
= C D C ' - CiDiC' i , 

where C = (ci ,C2, . . . , cp) contains normalized eigenvectors of S,D = 
diag(öi, Θ2, ■ ■ ■, θρ) contains eigenvalues of S, Ci = (ci, C2, ■ · ■, c m ) , and 
D 1 = diag(ö1,Ö2,...,ö ro). 

Using the partitioned forms C = (Ci, C2) and D = I „ x _ ] , show that 

cid = i ^ e ^ = ο,σο, = ( ^ ) . ^ ) = (o1) >c(Oo 
CjDj, and CDC'CiDiC'j = CiDfC'^ Show similarly that 
CiDiC'jCDC = CiDfC'j and CiDiCjCiDjCj = CiDfCi· Now 
by (2.97) tr(CD2C) = tr(C'CD2) = tr(D2) = Y,L· θ1 Similarly, 
tr(C1D2C'1) = E™iö?.Then 

tr(S - ÄÄ')'(S - ΛΛ') = tr(CDC' - CiDiC'JiCDC' - CiDiCi) 
= triCDC'CDC'-CDC'CiDiC'j 

- CiDiC'iCDC' + CiDiCiCiDiC;) 

= Σ?=Ι n - τΖι n - Σ*=Ι «?+Σ£Ι η 
Σ Ρ fj2 

i=m+l ui ■ 

13.5 EL· ΣΓ=ι ̂  = TIL· [ΣΓ=ι Xl] = Σ?=ι H P* 03.28)] 
By interchanging the order of summation, we have 

ΣΓ=1 ΣΓ=ι *y = ΣΓ=ι Σ?=1 λ2, = ΣΓ=ι ei M13.29)]. 

13.6 We use the covariance matrix to avoid working with standardized variables. 
The eigenvalues of S are 39.16, 8.78, .66, .30, and 0. The eigenvector corre-
sponding to λ5 = 0 is 

a£ = ( - .75 , - .25 , .25, .50, .25). 

As noted in Section 12.7, s2
s = 0 implies z5 = 0. Thus 

z5 = a'5y = -.75yi - .25y2 + -25y3 + .50y4 + -25j/5 = 0, 
3yi +V2 = 2/3 + 2i/4 + 2/5· 
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13.7 Words data of Table 5.9: 

Variables 
Informal words 
Informal verbs 
Formal words 
Formal verbs 

Variance 

Proportion 

Principal 
Component 
Loadings 

h 

.802 

.856 

.883 

.714 

2.666 

.666 

h 

-.535 
-.326 

.270 

.658 

.899 

.225 

Varimax 
Rotated 

Loadings 
h h 

.956 

.858 

.484 

.101 

1.894 

.474 

.129 

.321 

.786 

.966 

1.671 

.418 

Communalities, 
ft? 

.930 

.839 

.853 

.943 

3.565 

.891 

The orthogonal matrix T for the varimax rotation as given by (13.49) is 

.750 .661 
-.661 .750 

Thus sin^ = —.661 and φ = —41.4°. A graphical rotation of —40° would 
produce results very close to the varimax rotation. 

13.8 Ramus bone data of Table 3.7: 

Variables 
8 years 
8 | years 
9 years 
9 | years 

Variance 

Proportion 

Principal 
Component 
Loadings 

/ l 

.949 

.974 

.978 

.943 

3.695 

.924 

h 

-.295 
-.193 

.171 

.319 

.255 

.064 

Varimax 
Rotated 

Loadings 
h h 

.884 

.830 

.578 

.449 

2.005 

.501 

.455 

.545 

.808 

.888 

1.946 

.486 

Communalities, 
ft? 

.988 

.986 

.986 

.991 

3.951 

.988 

Orthoblique 
Pattern 

Loadings 

h h 

-.108 1.087 
.106 .900 
.825 .188 

1.099 -.121 

The Harris-Kaiser orthoblique rotation produced loadings for which the 
variables have a complexity of 1. These oblique loadings provide a much 
cleaner simple structure than the varimax loadings. For interpretation, we see 
that one factor represents variables 1 and 2, and the other factor represents 
variables 3 and 4. This same clustering of variables can be deduced from the 
varimax loadings if we simply use the larger of the two loadings for each vari-
able. 

The correlation between the two oblique factors is .87. The angle between 
the oblique axes is cos - 1 (.87) = 29.5°. With such a small angle between the 
axes and a large correlation between the factors, it is clear that a single factor 
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would better represent the variables. This is also borne out by the eigenvalues 
of the correlation matrix: 3.695, .255, .033, and .017. The first accounts for 
92% of the variance and the second for only 6%. 

13.9 Rootstock data of Table 6.2: 

Variables 
Trunk 4 years 
Extension 4 years 
Trunk 15 years 
Weight 15 years 

Variance 

Proportion 

Principal 
Component 
Loadings 

h 

.787 

.849 

.875 

.824 

2.785 

.696 

h 

.575 

.467 
-.455 
-.547 

1.054 

.264 

Varimax 
Rotated 

Loadings 
h h 

.167 

.287 

.946 

.973 

1.951 

.488 

.960 

.925 

.280 

.179 

1.888 

.472 

Communalities, 
Λ? 

.949 

.939 

.973 

.978 

3.839 

.960 

The rotation was successful in producing variables with a complexity of 1, that 
is, partitioning the variables into two groups, each with two variables. 

13.10 Fish data of Table 6.17: 

Variables 
3/1 

2/2 

2/3 

2/4 

Variance 

Proportion 

Principal 
Component 
Loadings 

h 

.830 

.783 

.803 

.769 

2.537 

.634 

h 

-.403 
-.504 

.432 

.497 

.850 

.213 

Varimax 
Rotated 

Loadings 
/ i h 

.874 

.911 

.270 

.200 

1.709 

.427 

.294 

.189 

.871 

.893 

1.678 

.420 

Communalities, 
h\ 

.851 

.866 

.831 

.838 

3.386 

.847 

(b) The loadings for y\ and y2 are similar. In R below we see some indica-
tion of the reason for this; y\ and y2 are more highly correlated than any 
other pair of variables and their correlations with j/3 and 2/4 are similar: 

R 

/ 1.00 .71 .51 .40 \ 
.71 1.00 .38 .40 
.51 .38 1.00 .67 

\ .40 .40 .67 1.00 / 
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(c) By (13.58), the factor score coefficient matrix is 

566 -.109 \ 
636 -.207 
130 .584 ' 
194 .630 / 

where Λ is the matrix of rotated factor loadings given above in part (a). 
The factor scores are given by (13.59) as follows: 

Method 1 Method 2 Method 3 
h 
.544 

1.250 
1.017 

-.147 
.219 

1.007 
1.413 

-.666 
1.057 
.388 

1.328 
.694 

h 
1.151 

-.254 
1.120 

-1.583 
-.103 

.679 
-.186 

-2.279 
-1.870 
-.440 
-.298 
-.033 

h 
-.254 
-.309 

-1.865 
-.999 

.520 

.919 
-.443 
-.265 
1.449 
1.371 
1.260 

-.000 

h 
.309 

-1.534 
-1.558 
-.690 
-.343 
-.111 
-.018 

.676 
-.295 

.295 
-.027 

-1.452 

h 
-1.156 

-.321 
-.671 

.067 
-1.610 

.557 
-.454 
-.961 
-.230 

-1.309 
-1.766 
-1.636 

h 
2.104 

.878 

.947 
1.130 

-.458 
.491 

1.157 
.063 

1.721 
.054 

-.111 
-.048 

(d) A one-way MANOVA on the two factor scores comparing the three meth-
ods yielded the following values for E and H: 

( 21.8606 10.3073 \ f 13.1394 -10.3073 \ 
\ 10.3073 25.2081 J ' \ -10.3073 9.7919 J 

The four MANOVA test statistics are Λ = .3631, V(s) = .6552, U^ = 
1.7035, and Θ = .6259. All are highly significant. 

13.11 (a) For the flea data ofTable 5.5, the eigenvalues ofR are 2.273,1.081,.450, 
and .196. There is a noticeable gap between 1,081 and .450, and the first 
two factors account for 83.9% of the variance. Thus m = 2 factors seem 
to be indicated for this set of data. 

Bi = R 1 A 

V -■ 
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(b) 

13.12 

Variables 
2/1 

2/2 

2/3 

2/4 

Variance 

Proportion 

Principal 
Component 
Loadings 
h 

-.038 
.889 
.893 
.827 

2.273 

.568 

h 

.989 

.269 
-.157 
-.073 

1.081 

.270 

Varimax 
Rotated 

Loadings 
h h 

-.025 
.892 
.891 
.823 

2.273 

.568 

.990 

.256 
-.170 
-.084 

1.081 

.270 

Communalities, 
ft? 

.980 

.862 

.823 

.689 

3.354 

.839 

Orthoblique 
Pattern 

Loadings 
/ i h 

-.003 .990 
.898 .253 
.887 - .173 
.824 -.087 

(The variance explained by the varimax rotated factors remains the same 
as for the initial factors when rounded to three decimal places.) 

(c) In this case, neither of the rotations changes the initial loadings apprecia-
bly. The reason for this unusual outcome can be seen in the correlation 
matrix: 

.18 
1.00 
.73 
.59 

/ 

R 

1.00 
.18 

- .17 
- .07 

- . 17 
.73 

1.00 
.59 

- . 0 7 
.59 
.59 

1.00 

\ 

/ 

There are clearly two clusters of variables: {y\} and {2/2,2/3,2/4}· We 
would expect two factors corresponding to these groupings to emerge af-
ter rotation. That the same pattern surfaces in the initial factor loadings 
(based on eigenvectors) is due to their affiliation with principal compo-
nents. As noted in Section 12.8.1,ifavariable has small correlations with 
all other variables, the variable itself will essentially constitute a princi-
pal component. In this case, 2/1 has this property and makes up most of 
the second principal component. The first component is comprised of the 
other three variables. 

(a) For the engineer data of Table 5.6, the number of eigenvalues greater 
than 1 is three, but the three account for only 70% of the variance. It 
requires four eigenvalues to reach 84%. The scree plot also indicates 
four eigenvalues. 
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(b) 

Variables 
2/i 

2/2 

V3 

2/4 

2/5 

2/6 

Variance 

Proportion 

Principal 
Component 

/ l 

.536 
-.129 

.514 

.724 
-.416 

.715 

1.775 

.296 

Loadings 

h h 

.461 .478 

.870 -.182 
-.254 -.448 
-.366 -.110 
-.414 .649 

.124 .420 

1.354 1.073 

.226 .179 

h 

-.063 
-.357 

.724 

.739 
-.484 

.239 

1.493 

.249 

Varimax 
Rotated 

Loadings 
h 

.834 

.100 
-.026 

.295 -
-.013 -

.800 -

1.435 

.239 

h 

.170 

.818 

.068 
-.193 
-.729 
-.069 

1.275 

.212 

Commun-
alities, 

ft? 

.729 

.806 

.529 

.670 

.766 

.702 

4.202 

.700 

(c) The initial communality estimates for the six variables are given by (13.36) 
as .215, .225, .113, .255, .161, .248. With these substituted for the diago-
nal of R, the eigenvalues of R - Φ are 

Eigenvalue .994 .569 .255 
Proportion .816 .468 .209 
Cumulative .816 1.284 1.493 

- .025 
- .020 
1.473 

- . 2 3 7 
- . 1 9 5 
1.278 

- . 3 3 9 
- . 2 7 8 
1.000 

The principal factor loadings and varimax rotation are as follows: 

Variables 
2/i 

2/2 

2/3 

2/4 

2/5 

2/6 

Principal 
Component 
Loadings 

/i h fi 

.403 .312 .227 
-.106 .569 -.100 

.343 -.139 -.197 

.559 -.247 -.090 
-.286 -.246 .328 

.556 .089 .197 

/ l 

.030 
-.288 

.413 

.564 
-.262 

.258 

Varimax 
Rotated 

Loadings 
h 

.536 

.083 

.060 

.233 -
-.088 -

.537 

h 

.151 

.505 

.037 
-.094 
.417 
.003 

Commun-
alities, 

ft? 

.311 

.345 

.176 

.381 

.250 

.356 

(d) The pattern of loadings is similar in parts (b) and (c), and the interpreta-
tion of the three factors would be the same. 
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13.13 Probe word data of Table 3.6: 

Variables 
2/i 
2/2 
2/3 
2/4 
2/5 

Variance 

Proportion 

Principal 
Component 
Loadings 
h 

.817 

.838 

.874 

.838 

.762 

3.416 

.683 

h 

-.157 
-.336 

.288 
-.308 

.547 

.614 

.123 

Varimax 
Rotated 

Loadings 
h h 

.732 

.861 

.494 

.844 

.244 

2.294 

.459 

.395 

.271 

.776 

.292 

.905 

1.736 

.347 

Communalities, 
ft? 

.692 

.815 

.847 

.798 

.879 

4.031 

.806 

Orthoblique 
Pattern 

Load 
h 

.737 

.963 

.248 

.931 
-.134 

ings 
h 

.131 
-.092 

.734 
-.057 
1.023 

The loadings for y2 are similar to those for y4 in all three sets of loadings. The 
reason for this can be seen in the correlation matrix 

R 

The correlations of y2 with 2/1,2/3, and y5 are very similar to the correlations 
ofy4 with j/1,2/3, and 2/5. 

/ 

V 

1.00 
.61 
.76 
.58 
.41 

.61 
1.00 

.55 

.75 

.55 

.76 

.55 
1.00 

.61 

.69 

.58 

.75 

.61 
1.00 

.52 

.41 \ 

.55 

.69 

.52 
1.00 J 

CHAPTER 14 

14.1 Multiply both sides of the inequality by 2 to obtain: 

p2 + p > 2pm — 2m2 + m2 + m + 2p 

p2 — 2pm + m2 >p + m 

m) > p + m 

14.2 (a) Identified 
(b) Identified 
(c) Not identified 
(d) Identified 

14.3 (a) Identified 
(b) 0 
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(c) Find var(j/i),var(y2),var(j/3),cov(y1,y2),cov(j/i,i/3), and cov(j/2,2/3). 
For example, var(yi) — φ + φ\ and cov(y1; y2) = \2φ· 

(d) λ 2 = s 2 3 /s i3 , λ 3 = S23/S12, Φ = S12S13/S23, Ψη = s n - S12S13/S23, 

fe = S22 - S12S23/S13, and ^33 = S33 - S13S23/S12· 

14.4 (a) x2 = 6.5811, df = 5, p-value = 0.2537 
Bentler's CFI = 0.9280 
RMSEA = 0.1778 
SRMR = 0.0711 

(b) Using (14.25), z2\ = 2.5483, z3i = 2.8623, zA1 = 2.5851, and z5i = 
2.2674. Since all exceed za/2 = 1-96 in absolute value, all loadings are 
significant and the model cannot be simplified. 

(c) Same as part (a). 

14.5 (a) x2 = 14.8718, df = 12 (due to one error variance being constrained to 
equal zero), p-value = 0.2485 
Bentler's CFI = 0.9824 
RMSEA = 0.0908 
SRMR = 0.0308 

14.6 (a) x2 = 17.7127, df = 5 (due to one error variance being constrained to 
equal zero), p-value = 0.0033 
Bentler's CFI = 0.9401 
RMSEA = 0.1690 
SRMR = 0.0630 

(b) χ2 = 34.3303, df = 9 (due to one error variance being constrained to 
equal zero), p-value < 0.0001 
Bentler's CFI = 0.8806 
RMSEA = 0.1778 
SRMR = 0.0790 

14.7 (a) x2 = 4.1224, df = 4, p-value = 0.3897 
Bentler's CFI = 0.9895 
RMSEA = 0.0280 
SRMR = 0.0608 

(b) Variable Variance explained by the factors 

Intelligence 20.5% 
Form relations undefined 
Dynamometer 4.4% 
Dotting 18.8% 
Sensory motor coordination 2.3% 
Perseveration 53.8% 

14.8 x2 = 101.3717, df = 2,p-value < 0.0001 
Bentler's CFI = 0.9895 
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RMSEA= 1.0282 
SRMR = 0.2237 

CHAPTER 15 

15.1 Adding and subtracting x and y in (15.2) (squared), we obtain 

p 

d2(x,y) = J2[{xj -x)- (yj -y) + (x- y)]2 

3 = 1 

P P 

= Σ(χ3 - *)2 + Σ(»< - &2+ρ^ - ^2 

3 = 1 3=1 

Ρ 

-2Σ(.Χ3-Χ)(ν3-ν)-
3 = 1 

The other two terms vanish because V · (XJ —x) = ]P · (Vj ~v) — 0· Sub-
stituting v2

x = Y^^iixj — x)2 and v2
y = Y^=l{yj - y)2 and adding and 

subracting —2*/vxVy = —2vxvy, we obtain 

d2(x, y) = v2
x + v2

y - 2 φ % ή + p(x - y)2 + 2vxvy 

- 2ΦΙνν 7 = 
\lvlvl 

= (vx - vy)
2 + p(x - yf + 2vxvy(l - rxy) 

15.2 (a) Since yAB = £ ) £ » Ύί/ηΑΒ, we have by (15.16), 
■ΠΑΒ 

i = l 

ΠΑΒ rlAB riAB 

= Σ y^ - Σ y'^AB - Σ y W* 
i—1 i—1 i=l 

riAB 

+ Σ Ϋ'ΑΒΎΑΒ 
i = l 

nAB 

= Σ ^ y i " ηΑΒΫΑΒΫΑΒ - ηΑΒΫΑΒΫΑΒ 
i = l 

+ nABy'AByAB 

= Σ yiyi ~ ηΑΒΎΑΒΥΑΒ-
i = l 
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Similarly, SSE^ = Σ7=ι YiYi ~ ΠΑΫ'ΑΫΑ and SSEB = ΣΓ=ι YiYi ~ 
ηΒΥΒΥΒ- N o w 

, -t„ .„ ^ (ηΑΫΑ + ηΒΫΒΥ (ηΑΫΑ + ηΒΫΒ) 
ηΑΒΎΑΒΎΑΒ - \ηΑ + ΠΒ) j ; 

ηΑ +ηΒ ηΑ + ηΒ 

= n2
AfAyA + ΠΑΠΒΫΑΎΒ + ΠΑΠΒΫ'ΑΫΒ + ηΒΫΒΫ~Β 

ηΑ+ηΒ 

Thus 

ηΑΒ ηΑ ns 

SSE^B - (SSE^+SSEB) = Σ yai - Σ ^ * - Σ ^ 
i= l i=\ i=l 

+ ΠΑΫ'ΑΫΑ + ΠΒΫΒΫΒ ~ ηΑΒΎΑΒΫΑΒ 

= nAy'AyA + ΠΒΫ'ΒΫΒ ~ ηΑΒΫΆβΫΑΒ-

Show that when the right side of (15.16) is expanded, it reduces to this 
same expression [see Problem 15.3(b) below]. 

(b) Multiplying out the right side of (15.16), we have 

ηΑΫ'ΑΫΑ ~ ηΑΫ'ΑΫΑΒ ~ nAy'AByA + nAy'AByAB + nBy'ByB 

- nBy'ByAB - nByAByB + nBy'AByAB 

= ΠΑΫ'ΑΫΑ + ηΒΫ'ΒΫΒ ~ 2(ηΑΪ'Α+ηΒΫΒ)ΫΑΒ + (nA+ηΒ)ΫΑΒΎ AB 

= ΠΑΫΆΫΑ + ηΒΫ'ΒΫΒ - 2(nA+nB)y'AByAB + (nA+nB)y'AByAB 

= nAy'AyA + nBy'ByB - (nA+nB)y'AByAB. 

Substitute yAB = {nAyA + nByB)/(nA + nB). 

15.3 (a) Complete linkage. From Table 15.2, we have 

D(C, AB) = \D(C, A) + \D{C, B) + \\D{C, A) - D(C, B)\ (1) 

If D(C,A) > D(C,B), then \D(C,A) - D(C,B)\ = D{C,A) -
D(C,B), and (1) becomes D(C,AB) = D(C,A). If D(C,A) > 
D(C, B), then \D(C, A) - D(C, B)\ = D(C, B) - D(C, A) and equa-
tion (1) becomes D(C, AB) = D(C, B). Thus equation (1) can be writ-
ten as D{C,AB) = max[D(C, A), D(C, B)], which is equivalent to 
(15.9), the definition of distance for the complete linkage method. 

(b) Average linkage. From Table 15.2, we have 

D(C, AB) = " A D(C, A) + nf D(C, B). (2) 
nA + nB nA + nB 
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By (15.10) equation (2) can be written as 

D(C,AB) = — ^ ΣΣ^-yi) 
nA + nB ncnA f-f f-f 

i = l j = l 

nc n s 

+ —Γ Σ Σ ° ^ ^ ) 
1 = 1 J = l 

Σ 
= 1 

iic(«yt +nB) j = l i = l 

ncriAB . - , · - , 
i = l j = l 

which, by (15.10), is the definition of distance for the average linkage 
method. 

(c) Substitutey^B = {πΑΎΑ'^ηΒΎΒ)/{ηΑ+ηΒ) in the left side of (15.40) 
in the statement of Problem 15.3(c) and multiply to obtain 

-/ - ZnAYAYc , ΙηΑηΒΫΑΫΒ _ ^ΒΫ'ΒΫΟ 
C C nA + nB (nA + nB)2 nA + nB 

, n\YAyA ηΒΫΒΫΒ 
2 ' (nA + nB)2 (nA + nB) 

Similarly, multiply on the right side of (15.40) to obtain the same result. 

(d) Using nA = nB in yAB = {ΠΑΎΑ + "ΒΫβ)/( ί1Α + nB) in (15.12), 
we obtain ΥΆΑΒ = | ( Ϋ Λ + ΫΒ)

 m (15.13). Then (15.40) [see part (c)] 
becomes 

( y c - m j 4 B) ' (y c , - mAB) = \{yc - y A ) ' ( y c - yA) 

+ \{Yc ~ ΎΒ)\ΎΟ ~ ΫΒ) - \ ( Ϋ Α - ΎΒ)'{ΫΑ - ΫΒ), 

which matches the parameter values for the median method in Table 15.2. 
(e) By (15.19), 

,_ _ w _ _ x TlA + ΠΒ T 

ΚΎΑ ~ ΎΒ) ΚΎΑ - ΎΒ) = — — — Ι Α Β , 
ηΑηΒ 

and we have analogous expressions for ( y c -yAB)'(yc ~ΫΑΒ)^ (YC ~ 
ΫΑ)'(ΫΟ ~ ΫΑ)<

 a n d (Yc - ΫΒ)'(ΫΟ - ΫΒ)·
 T h e n (15.40) in part (c) 

becomes 
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nc + ΠΑΒ 

ncnAB 
LC(AB) 

nA 

+ 

nA + nB 

nB 

nc +nA 
CA 

ncnA 

nc + nB\T 

nA +nBJ\ ncnB ) 
nAnB 

(nA +nB)2 

nA +nB 

nA + nB 

IAC + 

nAnB 

nB +nc 

AB 

ICB -IAB-
ncnAB ncnAB nAB 

Solve for IC(AB)· 

15.4 If 7 = 0, then (15.20) becomes 

D(C, AB) = aAD(C, A) + aBD(C, B) + ßD(A, B). (1) 

By (15.25), we have D(A,C) > D(A,B) and D(B,C) > D(A,B). Thus, 
replacing D(C, A) and D(C, B) in equation (1) by D(A, B), we obtain 

D(C, AB) > aAD(A, B) + aBD(A, B) + ßD(A, B), 

which is equivalent to (15.26). 
g n 

15·5 (»>ν.. = - Σ Σ ν « = ™ΣΣ(Ατ«+ι») 
y i= l j = \ y i-l j=l 

= ^ [A5>+^b j = Α ^ Σ > ) + b = Ay..+b 
Show similarly that v». = AyY + b. Then by (6.9), we have 

9 

H„ = n ^ ( v j . - V..)(VJ. - v..)' 
i= l 

= nY^[Ay^ + b - (Ay.. +b)][Ay,. + b - (Ay.. + b)]' 
i 

= η Σ ( Α ^ , - Α γ . . ) ( Α ^ . - Α 7 . . ) ' 
i 

= » E A < y . . -y..)(y"i. - y . . ) ' A ' [by (2.27)] 

nA Σ ^ - _ y. . ) (y i . _ y . . ) ' A ' [by (2.45)] 

AHVA'. 

Show similarly that E„ — AE y A' . 
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(b) tr(E„) = tr(AE„A') - tr(A'AEy) φ tr(E„) 

(c) |E„| = IAE^A'1 = |A| |E y | |A'| = |A | 2 |E y | = c|Ey | , where c > 0. 
Thus minimizing |E„| is equivalent to minimizing |Ej,|. 

(d) ^ Ε " 1 ! ^ ) = \x\(KKyA!)-\ARyA!)\ 

= t r K A ' ) - ^ - 1 Α ^ Α Η , , Α ' ) ] 

= t r [ (A')- 1E- 1H„A'] 

= tr[A'(A')-1Ey ;1H,] 

= t r i E - 1 ^ ) 

15.6 There are p parameters in each μί: \p(p + 1) unique parameters in each Σ*, 
and g — 1 unique parameters a». Thus the total number is 

gp + g[\p{p + 1)] + g - 1 = g\p + \P{p + 1) + 1] - 1 
= y[2p + p2+p + 2}-l 

= y(3p + p2 + 2)-l 

= φ ( ρ + 1 ) ( ρ + 2 ) - 1 . 

The two-cluster solution from single linkage puts boy number 20 in one 
cluster and the other 19 boys in the other cluster. 

Based on the change in distance, average linkage and the other cluster so-
lutions in parts (c) and (d) clearly indicate two clusters. These solutions 
generally agree and also correspond to a division into two groups seen in 
the first principal component in Figure 12.5. The separation of the three 
apparent outliers from the other 17 observations is less pronounced in 
the cluster analyses than in Figure 12.5. Note that the scale of the second 
component in Figure 12.5 is much larger than that of the first component, 
so the separation of points 9, 12, and 20 from the rest is not as large as 
it appears in the figure. Of the methods in parts (b), (c), and (d), only 
flexible beta with β = - .50 and - .75 place points 9, 12, and 20 together 
in one cluster. All others place 9 and 12 in one of the clusters and 20 in 
the other. 

15.8 (a) The distance between centroids of the two clusters is v/2994~9 = 54.7. 

(b) From the dendrogram produced by the average linkage method, the largest 
change in distance corresponds to a two-cluster solution. 

(c) The discriminant function completely separates the two clusters, with no 
overlap. 

15.9 (a) Observation 22 seems to be an outlier, because it forms its own cluster 
in both the single linkage and average linkage methods. The cluster con-
sisting of observations 2,21,24,26 and 30 is the same in all six methods. 

15.7 (a) 

(b)-(d) 
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(b) The discriminant function completely separates the two clusters, with no 
overlap. 

15.10 (a) The following five clusters were found using as seeds the five observa-
tions that are mutually farthest apart. 

Cluster 

Observation(s) 

1 

9,15,16, 
18,19 

2 

1,2,3, 
4,5,17 

3 

6,7, 
8,20 

4 

10,11, 
12,13 

5 

14 

In the plot of the first two discriminant functions, observation 14 is rela-
tively far removed from the rest. Clusters 1,2, and 3 are somewhat closer 
to each other. 

(b) The following five clusters were found using as seeds the first five obser-
vations. 

Cluster 

Observation(s) 

1 

1,3,4 

2 

2 

3 

5,17, 
18,19 

4 

6,7,8, 
15,16,20 

5 

9,10,11, 
12,13,14 

The plot of the first two discriminant functions shows a pattern different 
from that in part (a). 

(c) The following five clusters were found using as seeds the centroids of the 
five-cluster solution resulting from Ward's method. 

Cluster 

Observation(s) 

1 

6,7,8,15, 
16,20 

2 

5,9,17, 
18,19 

3 

10,11, 
12,13 

4 

1,2, 
3,4 

5 

14 

The plot of the first two discriminant functions shows a pattern similar 
to that found in part (a), with observation 14 isolated.The dendrogram 
shows that Ward's method gives the same five-cluster solution as the k-
means result. 

(d) The following five clusters were found using the fc-means method with 
seeds equal to the centroids of the five clusters from average linkage. 

Cluster 

Observation(s) 

1 

6,7,8,15, 
16,20 

2 

1,2,3,4,5, 
17,18,19 

3 

10,11, 
12,13 

4 

9 

5 

14 

The plot of the first two discriminant functions shows a pattern somewhat 
similar to that in part (a). In the dendrogram for average linkage, obser-
vations 9 and 14 are isolated clusters in the five-cluster solution, which is 
identical to the five-cluster solution using fc-means clustering with these 
seeds. 

(e) Observation 14 does not appear as an outlier in the plot of the first two 
principal compoments, but it does show up as an outlier in the plot of the 
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second and third components. The solutions found in parts (a) and (c) 
seem to agree most with the principal component plots. This suggests 
that a different number of initial cluster seeds be used. 

(f) The two clustering solutions are identical. The results are given below. 

Cluster 1 2 3 

Observation(s) 6,7,8,15,16,20 9,10,11,12,13,14 1,2,3,4,5,17,18,19 

(g) The clustering solution is identical to that found in part (e), which indi-
cates that the three-cluster solution is appropriate. 

15.11 The numbers of clusters obtained from the indicated combinations of k and 
r are shown in the table below. Note that for each pair of values of k and r, 
the value of r was increased if necessary for each point until k points were 
included in the sphere. 

k/r 

2 
3 
4 
5 

.2 

10 
5 
2 
1 

.4 

10 
5 
2 
1 

.6 

10 
5 
2 
1 

.8 

10 
5 
2 
1 

1.0 

8 
5 
2 
1 

1.2 

6 
3 
2 
1 

1.4 

4 
2 
2 
1 

1.6 

3 
2 
2 
1 

1.8 

3 
2 
2 
1 

2.0 

2 
2 
2 
1 

The maximum value of k that yields a two-cluster solution is 4. 

15.12 (a) The numbers of clusters obtained from the initial combinations of k and 
r are shown in the table below. The value of r was variable, as noted in 
Problem 15.11 above. 

k/r 

2 
3 
4 

.2 

3 
2 
1 

.4 

3 
2 
1 

.6 

3 
2 
1 

.8 

3 
2 
1 

1.0 

3 
2 
1 

1.2 

3 
2 
1 

1.4 

3 
2 
1 

1.6 

3 
2 
1 

1.8 

3 
2 
1 

2.0 

3 
2 
1 

(b) The plot of the first two discriminant functions for k = 2 and r = 1 
shows the three clusters to be well separated. 

(c) The plot of the first two principal components shows the same groupings 
as in the plot in part (b). 

(d) The plot of the discriminant function shows wide separation of the two 
clusters. The clusters do not overlap. The three-cluster solution found in 
part (b) is given below 
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Cluster 1 

Harpers 
Morley 
Myerscough 
Sparsholt 
Sutton Bonington 
Wye 

Cluster 2 

Rosemaund 
Terrington 
Headley 
Seale-Hayne 

Cluster 3 

Cambridge 
Cockle Park 

The two-cluster solution found in part (d) merges clusters two and three 
of part (b). 

CHAPTER 16 

16.1 B = | I - - J )A( I - - J 
n I \ n 

A - -AJ - - JA + Λ JAJ 
n n 

By (2.38), 

Hence, 

Show that 

n n 

/ E j ß l i \ / Öi. \ 
Έ] a2j _ ä2. 

V Ej anj ) \ä„. J 

iAJ = IA(JJ , . . . J ) = (IAJ,...,IAJ) 

/ ai. 
02. 

a i . \ 
Ä2. 

\ an. ■■■ an. J 

J A 

/ α.ι a.2 
ä.i ä.2 

n 

a.n \ 

\ a.i a.2 ■■■ a.n j 

Using equation (2), we obtain 

4j 'Aj = -1(1,1,...,1) 
( E j O i j \ 

\ E , a n j / 

(1) 

(2) 

^Σ>ϋ=α. 
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By (3.63), 

4JAJ = 1 
/ j 'Aj ··· j 'Aj \ 

V j'Aj · · · j'Aj j 

I a.. ■ · ■ a.. \ 

\ a.. ' · · o.. / 

Hence the ijth element of equation (1) is 6^ = α^ — a;. — a.j + a... 

16.2 (a) (Seber 1984, pp. 236-237) The elements of B = (6^) are defined as 
■¥%. Thus bij = a,ij — a,i. — a.j + a.., where CLij 

Then 

- 2 a y = <S?· = (zi - zj)'(z< - zj) 
= Z^Z^ I ZAZJ ZZj^Zj. 

i " i 

~ 2 5 ί · = - Σ ( ~ 2 α ^ ' ) = - Σ( ζ ίΖ ί + ZJ'ZJ ~ 2ζίζί) 

= ζίζ* + - Σ ζ ^ - ^ ζ ί Σ ζ ^ 
= ζ^ζί + " Σ ζ ί ζ ί _ 2 ζ ί ζ · 

Similarly, show that 

-2a,j = z'jZj H— 22 zizi ~ 2z'zj, 

-25 ^ ζ ; Ζ ί - 2 ζ ' ζ . 

Solve for aij,äi.,ä.j,andä.. and substitute into b^ = α^·—äj. —ä.j+ö.. 
to obtain 6^ = ζ^ζ^ — z^z — Z'ZJ + z'z, which can be factored as b^ = 
(zj — Z) '(ZJ — z). Hence 

/ ( z i - z ) ' ( z i - z ) · · · ( z i - z ) ' ( z n - z ) 

\ (zn - z)'(zi - z) · · · (zn - z) '(zn - z) 

/ ( z i - z ) ' \ 
: (zi - z , . . . , z n - z ) 

\ K-Z)' 7 
ZCZ^ [see (10.13)]. 

Thus B is positive semidefinite (see Section 2.7). 
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(b) If B is positive semidefimte of rank q, then by (2.109) and Section 2.11.4, 
B can be expressed in the form B = V A V , where V = (vi, V2, . . . , v„) 
is an orthogonal matrix of eigenvectors of B, and Λ is a diagonal matrix 
of eigenvalues, q of which are positive, with the rest equal to zero. Let-
ting Ai be the q x q upper left hand block of A with positive eigenvalues 
and Vi = (vi, v 2 , . . . , ν ς ) be the n x q matrix with the corresponding 
eigenvectors, we can write B — VAV' as 

B - ( V ! , V 2 ) | Ai O 
o o 

vi 
v̂  

ViAiV; = V i A j ^ A i ^ v ; 
zz', (1) 

where the n x q matrix Z is 

ViA^ / 2 = (v/ÄTvi, v/Ä2V2,..., \f\qV, 

/ z ' i \ 

i"q) 

To show that (z* —Zj)'(zi—Zj) is equal to 5?·, we can proceed as follows: 

\Ζ% Zj) [Zi Zjj — ZjZj -\- ZjZj ZZjZj. 

By equation (1), we have 

(2) 

/ < \ 

B = ZZ' ( z i , z 2 , . . . , z n ) 

/ z'xZi Z'XZ2 

Z2Zi Z2Z2 

ZjZ r a 1 
z 2z n 

\ < z l ζ ή ζ 2 · · · z'nZn / 

Hence equation (2) becomes 

[Zi — Zjj (Zj Zjj = ZjZi + ZjZj ^ z i z j 

Oii τ Ojj J-iOij. (3) 

Show that substituting 6^ = α^ — a«. — a.j + a., into equation (3) leads 
to 

(ZJ — Zj)'(zj — Zj) = an + cijj — 2aij + ai. — a.i + a.j — aj 
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Show that the symmetry of A implies <Zj. = a.i and a ,· — a,·.. Hence, 

(ZJ - Zj)'(zi - Zj) — au + ajj - 2aij = -2a,ij = <£ JJ u i j ) 

since an = - ^ = 0 and - 2 α ^ = δ^. 

16.3(a) r = ^ p . j C j = ^ 
i = i 

/ P l j P2j Paj 
/_. y.j! i > · · · > — 
£ ί VPj P.j P.j 

= Ej=i(PijiP2j, · · · ,PajY [by (2.61)] 
= ( E j Pi j > E j P2j, · · · , E j Paj )' 
= (Pl.,P2.,---,Pa.Y 

,K\ / V^ ' V^ /'P*1 P i2 Pib\ 
(b) c = ^ p i . r i = 2 ^ P i . ( — . — . · · · . — ) 

i=i i=i Vp ' - Λ · P» · / 
O 

= 5^(Pii,Pi2,---,Pi6) [by (2.61)] 
i= l 
(Σ»ρ»ΐ )ΕίΑ2, · - · ,Ε ίΡ«6) 
(Ρ.1,Ρ.2,···,Ρ.έ,) 

16.4 j ' r = χ;"=ιft- = E t i E j = i Ρύ' = Σ ϋ
 ηϋΙη = n/n=l, 

c'j = E?= i P.j = Σ, · «. j /« = E j E i η ϋ / η = n / n 

16.5 By (16.8), (16.9), and (16.10), p^ = riij/n,Pi, = riijn, and p.j = n.j/n. 
Substituting these into (16.25), we obtain 

«7 

= Σ 

V n 
n, 

^2 ( « i j 
n 

rii n 
n2 

n j 

n2 

Tii.n 
n 

n j 

-)2 

- ) 2 

Σ [i(»«-^)]; 

Σ ( · η . . _ n ' " - j ) 2 

«J «J 

16.6 (a) Multiplying numerator and denominator of (16.25) by pi., we obtain 

^ = Σ η Σ ^ - ( Ρ ύ ' -Pi-P-jf 

η2 
* J 

pr.p.j 

Ση^·Σ-, Ρ·: 
1 

Pi. 
(i»ij -Pi.P.j) 

Σηρ*-Σ(^--ρ·ί) /^· 
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16.7 (a) By (16.29), (16.10), (16.12), and (16.18), we obtain 

x2 = Σηρί-(Τί ~ c)'D^1(r' - c ) 

Σ npi 

Pib Σ / Pn 
nPi.[ P . i , · · · , P.b 

\ Pi- Pi-

'*t-p.i jtzl± 
P.i ' ' " ' P.b 

- 1 Pi ·· · 0 \ * / %-p.i \ 

(ρ±-ρ-Λ 

\ **'-P.» ) 

Pb J \ ^-P-b j 

16.8 (a) By (16.9) r = P j . Then D " x r = D ^ P j = Rj by (16.15). By (16.13) 
r^j = 1, and therefore Rj = j . Now 

D - ^ P - re') = D ^ P - D ^ r c ' = R - Rjc' = R - jc ' . 

16.9 By (16.49), z\ = y^A (ignoring the centering on y,). Thus the squared Eu-
clidean distance can be written as 

(Zj - Zfc)'(Zi - Zfc) = (z'i - z'k)(Zi - Zfc) 

= (y^A-y^A)(A' y i -A 'y f c ) 
= ( y ; - y i ) A A ' ( y i - y f c ) 
= (y* -yfc) '(yi - y * ) , 

since A is orthogonal. 

16.10 (a) From YCV = UA in (16.55), we have Y C V A _ 1 = U. Then 

uu ' = Y C V A ^ A ^ V Y ; 

= YCV(A_ 1)2V'Y;. (1) 

S i n c e ^ " 1 ) 2 = diag (1/Af, 1/λ2,,..., l / λ 2 ) , where the A?'s are eiven-
values of Y£YC, the matrix ( A - 1 ) 2 contains eigenvalues of (Y^,YC)-1 = 
[(n - ^ S ] " 1 = S -V(n - 1) [see (2.115) and (2.116)]. The matrix V 
contains eigenvectors of Y^Yc and thereby of (Y£YC ) - 1 (see Section 
2.11.9). Hence we recognize V ( A _ 1 ) 2 V as the spectral decomposition 
of (Y^Yc)"1 [see (2.109), (2.115), and (2.116)]. Therefore, equation 
(1) can be written as 

U U ' = Y C V ( A " 1 ) 2 V X = Y ^ Y ^ Y « , ) - ^ 
= Y C S - 1 Y > - 1 ) . 
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(b) If H = VA, then HH' = V A A V = V A 2 V . The diagonal matrix 
A2 contains the eigenvalues λ2 of the matrix Y^Yc- Thus by (2.115), 
VA V is the spectral decomposition of Y'cYc, and 

HH' = V A 2 V = Y^Yr 1)S. 

16.11 By (16.64), (3.63), and (3.64) (ignoring n — 1 and assuming the y^'s are cen-
tered), 

(Ui - Ufe)'(Uj - Ufc) = U-Ui + ll'fcUfc - 2u^Ufe 

= y-S- 1 y i + y^S- 1y f e-2y^S- 1yfc 
= (y* -y fc ) 'S _ 1 (y i -y fc ) . 

.12 (a) The first ten rows and columns of the matrix B are as follows: 
/ 129849 
-26801 
-88750 
-53847 
-59118 
45383 

-73877 
81571 
112101 

\ 80909 

-26801 
2310 
17029 
11125 
14394 

-11076 
18149 

-18662 
-21852 
-16306 

-88750 
17029 
65973 
32378 
31044 

-31085 
68156 

-56671 
-79481 
-54135 

-53847 
11125 
32378 
27683 
31808 

-18550 
30003 

-34154 
-46882 
-32096 

-59118 
14394 
31044 
31808 
38141 

-19161 
27269 

-37147 
-51673 
-34687 

43583 
-11076 
-31085 
-18550 
-19161 
14741 

-33620 
27054 
45347 
29211 

-73877 
18149 
68156 
30003 
27269 

-33620 
76423 

-45782 
-86804 
-58650 

81571 
-18662 
-56671 
-34154 
-37147 
27054 

-45782 
49169 
75557 
50169 

112101 
-21852 
-79481 
-46882 
-51673 
45347 

-86804 
75557 
119634 
81258 

80909\ 
-16306 
-54135 
-32096 
-34687 
29211 

-58650 
50169 
81258 
53286/ 

(b) The first two columns of the matrix Z are given by: 

City Zl 22 City 21 22 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

354.1 

-77.1 

-238.2 

-154.9 

-163.2 

126.0 

-228.8 

223.9 

337.7 

226.7 

-33.4 

1.1 

-10.2 

25.0 

-75.7 

65.9 

72.2 

24.9 

-149.4 

1.5 
44.8 

34.7 

22.3 

-79.4 

M 
N 
O 
P 

Q 
R 
S 
T 

u 
V 

w 

391.6 

21.0 

9.8 
-173.8 

6.3 
117.0 

-102.3 

-53.2 

-315.2 

-255.7 

-19.3 

47.5 

-44.7 

30.9 

-78.5 

17.1 

-48.0 

-170.2 

-27.3 

190.9 

140.2 

-34.3 

(c) The metric multidimensional scaling plot shows the relative positions of 
the cities. 

16.13 (a) The multidimensional scaling plot shows two clusters, one for positive 
values of the first dimension, and one for negative values. The two clus-
ters can be interpreted as comfort (positive values) and discomfort (neg-
ative values). Hence, the axis of the first dimension can be interpreted as 
the level of comfort. 

(b) The dendrogram for Ward's method clearly shows two clusters, the same 
as in part (a). 
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16.14 (a) The initial configuration of points will vary. One example is as follows: 
2/1 2/2 2/3 2/4 2/5 2/6 

1.458 
- . 5 9 8 

- 1 . 7 7 7 
.071 

- . 0 6 0 
- . 7 5 7 

- 1 . 9 7 1 
- 1 . 5 6 0 

- . 5 9 7 
1.449 

- 1 . 8 0 9 
1.067 

.769 
-1 .069 

- . 4 0 9 
.361 

1.361 
- . 4 3 2 
- . 4 9 2 
- . 1 7 3 

.814 
-.942 

- . 0 9 3 
.199 

- 1 . 3 5 0 
-2 .667 

.369 
1.157 

.743 
- . 5 4 5 
- . 4 6 1 

.657 
- . 8 9 8 

.867 
-1 .762 

.978 

.456 

.458 

.655 
- . 1 5 4 
1.436 
.233 
.078 

-.528 
.283 

- . 9 2 2 
- . 5 3 3 

.884 

- 1 . 6 1 0 
.416 

- . 0 5 8 
.343 
.332 
.646 

1.441 
1.001 

- . 3 5 5 
.833 

- 1 . 1 3 6 
- 1 . 0 6 0 

1.827 
1.094 
1.177 

- . 4 1 7 
- . 8 9 4 
- . 1 0 2 

.039 
1.030 

- 1 . 1 1 5 
1.196 

- . 2 2 6 
- . 8 0 0 

(b) Answers will vary. For the seeds given in part (a), STRESS = 0.0266. 

(c) Answers will vary. The plot of STRESS versus k for one solution showed 
that two dimensions should be retained. The nonmetric MDS plot showed 
that Franco, Mussolini, and Hitler lie closely together, as well as Churchill 
and De Gaulle, and Eisenhower and Truman. 

(d) Answers will vary. One solution gave results similar to part (c). 

(e) Answers will vary. One solution showed three dimensions. A plot of two 
dimensions showed Mussolini and Franco together in the center with the 
others forming a circle around them almost equally spaced. 

(f) Answers will vary. One solution was similar to that in part (c). 

16.15 (a) The correspondence matrix P is found by dividing each element of Table 
16.16 by n = 1281 to obtain the following: 

Death 
Birth 

Jan 
Feb 
Mar 
Apr 
May 
Jun 
Jul 
Aug 
Sep 
Oct 
Nov 
Dec 

Jan 

.007 

.010 

.009 

.005 

.006 

.011 

.009 

.005 

.005 

.012 

.005 

.005 

Feb 

.011 

.005 

.011 

.009 

.005 

.004 

.008 

.005 

.009 

.006 

.007 

.014 

Mar 

.009 

.005 

.007 

.008 

.009 

.004 

.010 

.009 

.009 

.009 

.012 

.007 

Apr 

.011 

.006 

.005 

.005 

.005 

.005 

.003 

.010 

.008 

.007 

.008 

.009 

May 

.007 

.007 

.013 

.007 

.003 

.010 

.004 

.008 

.008 

.005 

.009 

.011 

Jun 

.009 

.004 

.008 

.009 

.009 

.004 

.009 

.007 

.009 

.008 

.008 

.006 

Jul 

.008 

.003 

.007 

.003 

.007 

.005 

.005 

.002 

.003 

.009 

.005 

.007 

Aug 

.012 

.004 

.008 

.009 

.007 

.003 

.005 

.006 

.006 

.006 

.008 

.007 

Sep 

.007 

.005 

.007 

.003 

.009 

.006 

.003 

.006 

.009 

.007 

.005 

.008 

Oct 

.009 

.009 

.002 

.007 

.005 

.007 

.008 

.006 

.005 

.006 

.008 

.005 

Nov 

.009 

.001 

.010 

.006 

.007 

.005 

.003 

.006 

.006 

.005 

.007 

.008 

Dec 

.010 

.010 

.007 

.009 

.003 

.004 

.006 

.009 

.005 

.005 

.005 

.006 

Total 

.108 

.069 

.094 

.080 

.075 

.069 

.073 

.081 

.083 

.087 

.087 

.092 

Total .092 .094 .096 .084 .092 .088 .066 .080 .077 .075 .074 .081 1.000 
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(b) The R matrix is given by 

R 

/.07 
.13 
.09 
.09 
.10 
.04 
.08 
.06 
.07 
.09 
.08 

\.09 

.11 

.08 

.08 

.06 

.11 

.06 

.04 

.08 

.09 

.09 

.07 

.08 

C matrix is 

/.07 
.12 
.10 
.07 
.13 
.04 
.07 
.07 
.07 
.08 

\.09 

.11 

.08 

.09 

.05 

.15 

.06 

.04 

.10 

.09 

.08 

.08 

.12 

.12 

.07 

.15 

.09 

.09 

.06 

.07 

.04 

.05 

.06 

.07 

.11 

.07 

.15 

.08 

.10 

.11 

.06 

.12 

.06 

.08 

.07 

.11 

, given by 

.12 

.12 

.08 

.13 

.13 

.08 

.05 

.09 

.04 

.07 

.07 

.09 

.06 

.15 

.06 

.12 

.08 

.04 

.12 

.05 

.07 

.10 

.07 

.07 

.05 

.15 

.07 

.13 

.16 

.10 

.08 

.06 

.14 

.07 

.06 

.04 

.05 

.11 

.08 

.10 

.12 

.10 

.07 

.14 

.06 

.04 

.03 

.08 

.04 

.07 

.07 

.08 

.07 

.09 

.06 

.11 

.04 

.05 

.08 

.11 

.05 

.12 

.08 

.08 

.11 

.11 

.14 

.05 

.11 

.09 

.07 

.06 

.08 

.12 

.06 

.08 

.13 

.09 

.09 

.10 

.10 

.09 

.07 

.04 

.10 

.10 

.04 

.09 

.11 

.09 

.10 

.10 

.11 

.08 

.07 

.09 

.14 

.06 

.07 

.11 

.14 

.10 

.10 

.08 

.08 

.07 

.05 

.10 

.11 

.04 

.07 

.09 

.09 

.09 

09 
10 
12 
10 
07 
05 
15 
14 
04 
10 
06 
09 

08 
08 
12 
08 
08 
04 
11 
14 
03 
06 
08 

.08 

.08 

.08 

.01 

.08 

.04 

.08 

.11 

.09 

.08 

.06 

.08 

.08 

.08 

.11 

.01 

.12 

.04 

.07 

.14 

.09 

.07 

.08 

.09 

.08 

.05 

.12 

.08 

.11 

.10 

.02 

.06 

.09 

.07 

.06 

.09 

.08 

.06 

.11 

.11 

.10 

.09 

.02 

.10 

.08 

.06 

.04\ 

.08 
08 
08 
07 
04 
09 
07 
11 
06 
08 
11/ 

04\ 
08 
10 
07 
09 
04 
08 
09 
07 
09 
12/ 

(c) The chi-square statistic is 117.7742 with 121 degrees of freedom, which 
gives a p-value of .5660. The two variables appear to be independent. 

(d) In the correspondence plot, the following associations are seen: 
{November births, June deaths}, {March deaths, April deaths, January 
births}, {September births, February deaths}, {August births, April births}, 
{May deaths, September deaths, May births}. 
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16.16 (a) The correspondence matrix P is found by dividing each element of Table 
16.17 by 8193 to obtain the following: 

Part of Country 

Oslo area 
Mid-Norway 
North Norway 

Total 

Burglary 

.048 

.018 

.085 

.151 

Fraud 

.300 

.019 

.040 

.358 

Vandalism 

.215 

.112 

.164 

.491 

Total 

.563 

.148 

.289 

1.000 

(b) The R matrix is given by 

Part of Country Burglary Fraud Vandalism 

Oslo area .086 .533 .381 
Mid-Norway .121 .126 .753 
North Norway .293 .138 .569 

and the C matrix is given by 

Part of Country Burglary Fraud Vandalism 

Oslo area .320 .837 .437 
Mid-Norway .119 .052 .228 
North Norway .561 .111 .335 

(c) The chi-square statistic is 1662.6 with 4 degrees of freedom, which gives 
a p-value less than .0001. The two variables are dependent. 

(d) In the correspondence plot, North Norway is associated with burglaries, 
Oslo is associated with fraud, and mid-Norway is associated with van-
dalism. 
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16.17 (a) The Burt matrix is given below. 
No 5254 0 
Yes 0 165 
High dust 564 105 
Low dust 3408 42 
Medium 

dust 1282 18 
Race- 1830 73 

other 
White 3424 92 
Female 2466 37 
Male 2788 128 
Nonsmoker 2190 40 
Smoker 3064 125 
10-20 686 26 
< 10 2666 63 
> 20 1902 76 

564 3408 1282 
105 42 18 
669 0 0 

0 3450 0 

0 0 1300 
402 1056 445 

267 2394 855 
62 1642 799 

607 1808 501 
218 1446 566 
451 2004 734 

87 480 145 
359 1684 686 
223 1286 469 

1830 3424 
73 92 

402 267 
1056 2394 

445 855 
1930 0 

0 3516 
932 1571 
971 1945 
799 1431 

1104 2085 
108 604 

1658 1071 
137 1841 

2466 2788 
37 128 
62 607 

1642 1808 

799 501 
932 971 

1571 1945 
2503 0 

0 2916 
1373 857 
1130 2059 
266 446 

1421 1308 
816 1162 

2190 3064 
4 125 

218 451 
1446 2004 

566 734 
799 1104 

1431 2085 
1373 1130 
857 2059 

2230 0 
0 3189 

231 481 
1142 1587 
857 1121 

686 2666 1902 
26 63 76 
87 359 223 

480 1684 1286 

145 686 469 
108 1658 137 

604 1071 1841 
266 1421 816 
446 1308 1162 
231 1142 857 
481 1587 1121 
712 0 0 

0 2729 0 
0 0 1978 

(b) The column coordinates for the plot are given by 

Variables 

No 
Yes 
High dust 
Low dust 
Medium dust 
Race-other 
White 
Female 
Male 
Nonsmoker 
Smoker 
10-20 
< 10 
> 2 0 

2/i 

- . 0 3 2 
1.013 
1.072 

- . 2 0 9 
.003 

1.184 
- . 6 4 1 

.007 
- . 0 0 6 
- . 0 3 6 

.025 
- . 6 0 5 

.789 
- . 8 7 1 

2/2 

- . 0 8 7 
2.761 
1.648 

- . 1 0 7 
- . 5 6 4 
- . 1 5 3 

.083 
- . 7 9 1 

.679 
- . 5 9 2 

.414 

.535 
- . 3 0 0 

.221 

(c) Some associations seen in the plot are {byssinosis-yes, high dust}, {female, 
nonsmoker, medium dust}, {smoker, male}. 
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16.18 (a) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

Albania 
Austria 
Belgium 
Bulgaria 
Czech. 
Denmark 
E. Germany 
Finland 
France 
Greece 
Hungary 
Ireland 
Italy 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
UK 
USSR 
W. Germany 
Yugoslavia 

Coordinate 1 

14.102 
-5.461 
-6.077 
26.116 

3.317 
-13.861 

-4.902 
-12.262 

-6.345 
9.036 

10.805 
-11.857 

6.309 
-11.809 
-11.005 

2.526 
.784 

19.067 
1.923 

-14.842 
-9.068 
-9.311 
10.586 

-13.514 
25.742 

Coordinate 2 

-1.322 
1.548 

-1.479 
3.319 

-2.092 
1.374 

-8.360 
11.290 

.672 
3.033 

-2.363 
5.312 

-1.314 
2.133 

-.077 
2.999 

-16.753 
2.591 

-10.483 
.726 

4.000 
.698 

4.355 
-3.353 

3.548 

Variable Points 

Name 

RMEAT 
WMEAT 
EGGS 
MILK 
FISH 
CEREALS 
STARCHY 
NUTS 
FRUIT VEG 

Coordinate 1 

-.151 
-.129 
-.067 
-.425 
-.127 

.861 
-.067 

.114 

.020 

Coordinate 2 

.133 

.043 

.021 

.831 
-.292 

.406 
-.076 
-.070 
-.169 

In the biplot, the arrows for variables are too short to pass through the 
points for observations. 
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(b) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

Albania 
Austria 
Belgium 
Bulgaria 
Czech. 
Denmark 
E. Germany 
Finland 
France 
Greece 
Hungary 
Ireland 
Italy 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
UK 
USSR 
W. Germany 
Yugoslavia 

Coordinate 1 

.231 
-.089 
-.100 

.428 

.054 
-.227 
-.080 
-.201 
-.104 

.148 

.177 
-.194 

.103 
-.193 
-.180 

.041 

.013 

.312 

.032 
-.243 
-.149 
-.153 

.173 
-.221 

.422 

Coordinate 2 

-.049 
.057 

-.055 
.122 

-.077 
.051 

-.308 
.416 
.025 
.112 

-.087 
.196 

-.048 
.079 

-.003 
.110 

-.617 
.095 

-.386 
.027 
.147 
.026 
.160 

-.124 
.131 

Variable Points 

Name 

RMEAT 
WMEAT 
EGGS 
MILK 
FISH 
CEREALS 
STARCHY 
NUTS 
FRUIT VEG 

Coordinate 1 

-9.196 
-7.904 
-4.106 

-25.964 
-7.750 
52.545 
-4.080 

6.953 
1.235 

Coordinate 2 

3.602 
1.179 
.569 

22.552 
-7.934 
11.025 

-2.064 
-1.902 
-4.593 

In the biplot, the observation points are tightly clustered around the point 
(0,0), making them difficult to distinguish, whereas variable points are 
easily discerned. Red meats, white meats, and milk are highly positively 
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correlated. These three variables are negatively correlated with nuts and 
fruit_veg. 

(c) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

Albania 
Austria 
Belgium 
Bulgaria 
Czech. 
Denmark 
E. Germany 
Finland 
France 
Greece 
Hungary 
Ireland 
Italy 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
UK 
USSR 
W. Germany 
Yugoslavia 

Coordinate 1 

1.805 
-.699 
-.778 
3.343 

.425 
-1.774 
-.627 

-1.570 
-.812 
1.157 
1.383 

-1.518 
.808 

-1.511 
-1.409 

.323 

.100 
2.441 

.246 
-1.900 
-1.161 
-1.192 

1.355 
-1.730 

3.295 

Coordinate 2 

-.254 
.297 

-.284 
.637 

-.402 
.264 

-1.605 
2.167 

.129 

.582 
-.454 
1.020 

-.252 
.409 

-.015 
.576 

-3.216 
.497 

-2.012 
.139 
.768 
.134 
.836 

-.644 
.681 

Variable Points 

Name 

RMEAT 
WMEAT 
EGGS 
MILK 
FISH 
CEREALS 
STARCHY 
NUTS 
FRUIT VEG 

Coordinate 1 

-1.177 
-1.012 

-.526 
-3.323 

-.992 
6.726 
-.522 

.890 

.158 

Coordinate 2 

.691 

.226 

.109 
4.329 

-1.523 
2.116 
-.396 
-.365 
-.882 
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In the biplot, the variable points and observation points are both well 
spaced. Finland scored high on the milk variable. Yugoslavia and Bul-
garia scored high on the cereal variable. Spain and Portugal scored high-
est on the fish and frut_veg variables. 

(d) The biplot from part (c) seems better because the scales on the variables 
and points are more evenly matched. 

16.19 (a) The two-dimensional coordinates of the observation points and variable 
points are as follows. 

Observation Points 

Name 

FSM1 
Sister 
FSM2 
Father 
Teacher 
MSM 
FSM3 

Coordinate 1 

-9.535 
2.705 
4.043 
4.392 

-8.708 
3.409 
3.694 

Coordinate 2 

-4.752 
.796 

-.584 
.614 

5.008 
.701 

-1.782 

Variable Points 

Name 

KIND 
INTEL 
HAPPY 
LIKE 
JUST 

Coordinate 1 

.610 

.085 

.407 

.621 

.264 

Coordinate 2 

-.054 
.413 

-.456 
-.039 

.785 

In the biplot, the arrows for the variables are too short to pass through 
the points for observations. 

(b) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

FSM1 
Sister 
FSM2 
Father 
Teacher 
MSM 
FSM3 

Coordinate 1 

-.622 
.176 
.264 
.287 

-.568 
.222 
.241 

Coordinate 2 

-.655 
.110 

-.080 
.085 
.690 
.097 

-.246 
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Variable Points 

Name 

KIND 
INTEL 
HAPPY 
LIKE 
JUST 

Coordinate 1 

9.345 
1.298 
6.235 
9.521 
4.054 

Coordinate 2 

-.391 
2.997 

-3.313 
-.282 
5.700 

In the biplot, the observation points are tightly clustered around the point 
(0,0) making them difficult to distinguish, whereas variable points are 
well spaced. Just and intelligent are highly positively correlated, as are 
kind and likeable. 

(c) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

FSM1 
Sister 
FSM2 
Father 
Teacher 
MSM 
FSM3 

Coordinate 1 

-2.435 
.691 

1.033 
1.122 

-2.224 
.871 
.943 

Coordinate 2 

-1.764 
.295 

-.217 
.228 

1.859 
.260 

-.662 

Variable Points 

Name 

KIND 
INTEL 
HAPPY 
LIKE 
JUST 

Coordinate 1 

2.387 
.331 

1.593 
2.432 
1.036 

Coordinate 2 

-.145 
1.113 

-1.230 
-.105 
2.116 

In the biplot, the variable points and observation points are both well 
spaced. Father, sister, FSM2 and FSM3 all scored high on the kind, like-
able, and happy variables, whereas teacher and FSM1 scored negatively 
on those variables. 

(d) The biplot from part (c) seems better because the scales on the variables 
and points are more evenly matched. 
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16.20 (a) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Coordinate 1 

49.410 
25.407 
21.600 

-23.545 
-28.477 
-33.341 
-28.176 
-25.786 
-29.703 
-33.868 
-33.529 

28.186 
10.804 

.566 
77.970 
12.859 
41.960 
46.930 
34.958 

-16.477 
-23.634 
-34.036 

20.632 
-15.873 
-23.023 
-15.183 
-11.903 

5.273 

Coordinate 2 

-5.832 
-7.658 
-2.340 
-6.367 
-4.773 

2.315 
7.992 

12.655 
9.275 

-3.776 
-1.977 

-16.031 
-6.608 

3.021 
.109 

16.294 
5.103 

19.064 
-1.018 

1.148 
-1.055 
-2.424 
-5.882 
-6.731 

.745 
-1.942 
-6.917 

3.610 

Variable Points 

Name 

North 
East 
South 
West 

Coordinate 1 

.526 

.429 

.579 

.452 

Coordinate 2 

.225 

.752 
-.379 
-.490 

In the biplot, the variable points are tightly grouped and the correspond-
ing arrows do not pass through the points for observations. 
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(b) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Coordinate 1 

.303 

.156 

.132 
-.144 
-.175 
-.205 
-.173 
-.158 
-.182 
-.208 
-.206 

.173 

.066 

.003 

.478 

.079 

.257 

.288 

.214 
-.101 
-.145 
-.209 

.127 
-.097 
-.141 
-.093 
-.073 

.032 

Coordinate 2 

-.145 
-.191 
-.058 
-.158 
-.119 

.058 

.199 

.315 

.231 
-.094 
-.049 
-.399 
-.164 

.075 

.003 

.406 

.127 

.474 
-.025 

.029 
-.026 
-.060 
-.146 
-.168 

.019 
-.048 
-.172 

.090 

Variable Points 

Name 

North 
East 
South 
West 

Coordinate 1 

85.779 
69.899 
94.377 
73.682 

Coordinate 2 

9.026 
30.223 

-15.213 
-19.694 

In the biplot, the observation points are tightly clustered around the point 
(0,0), making them difficult to distinguish, whereas variable points are 
well spaced. All the variables are positively correlated, with south and 
west showing the closest relationship. 
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(c) The two-dimensional coordinates of the observation points and variable 
points are given below. 

Observation Points 

Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

Coordinate 1 

3.870 
1.990 
1.692 

-1.844 
-2.230 
-2.611 
-2.207 
-2.020 
-2.326 
-2.652 
-2.626 

2.207 
.846 
.044 

6.106 
1.007 
3.286 
3.675 
2.738 

-1.290 
-1.851 
-2.666 

1.616 
-1.243 
-1.803 
-1.189 
-.932 

.413 

Coordinate 2 

-.920 
-1.208 

-.369 
-1.004 

-.753 
.365 

1.261 
1.996 
1.463 

-.596 
-.312 

-2.529 
-1.042 

.477 

.017 
2.571 

.805 
3.008 
-.161 

.181 
-.166 
-.382 
-.928 

-1.062 
.118 

-.306 
-1.091 

.569 

Variable Points 

Name 

North 
East 
South 
West 

Coordinate 1 

6.718 
5.474 
7.391 
5.771 

Coordinate 2 

1.424 
4.768 

-2.400 
-3.107 

In the biplot, the variable points and observation points are both well 
spaced. Tree 18 is associated with east, 17 with north, 1 and 3 with 
south, and 2 and 23 with west. 

(d) The biplot from part (c) seems better because the scales on the variables 
and points are more evenly matched. 



Appendix C 

Data Sets and SAS Files 

Two sets of files are located on the ftp server of John Wiley & Sons STM (Scientific, 
Technical, and Medical) Division. 

All data sets in the book 

SAS command files for nearly all numerical examples 

DOWNLOADING DATA SET FILES FROM FTP SERVER 

The new FTP site for the third edition can be found at: 
ftp://ftp.wiley.com/public/sci_tech_med/multivariate_analysis_3e 

The zipped files at this site can be downloaded and extracted. Additional information 
about the files can be found in the file named README.TXT. 
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Additional information, test for, 149-152, 241-
243 

Air pollution data, 553 
Airline distance data, 559 
Algebra, matrix, see Matrix, algebra 
Analysis of variance, multivariate (MANOVA): 

additional information, test for, 241-243 
association, measures of, 186-188 
assumptions, checking on, 210-211 
and canonical correlation, 400-402 
contrasts, 192-195 

orthogonal, 194 
discriminant function, 178, 197-198, 

203 
growth curves, 232-241, see also Growth 

curves; Repeated measures de-
signs 

H and E matrices, 173-174 
higher-order models, 207-208 
individual variables, tests on, 177-178, 

195-198 
discriminant function, 178, 197-198, 

203 
experimentwise error rate, 195-197 
protected tests, 196 

Lawley-Hotelling test, 180-181 

table of critical values, 627-636 
likelihood ratio test, 178 
mixed models, 208-210 

expected mean squares, 208 
multivariate association, measures of, 

186-188 
one-way, 171-174 

contrasts, 192-195 
model, 172 
unbalanced, 181 

Pillai's test, 179 
table of critical values, 624-626 

profile analysis, 211-213 
repeated measures, 215-232, see also 

Repeated measures designs; Growth 
curves 

Roy's test (union-intersection), 178-179 
table of critical values, 621-623 

stepwise discriminant analysis, 243-244 
stepwise selection of variables, 243-244 
test for additional information, 241-243 
test statistics, 174-186 

comparison of, 182-183, 189-190 
and eigenvalues, 182 
power of, 189-190 
and T 2 , 182 
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tests on a subvector, 241-243 
tests on individual variables, see indi-

vidual variables, tests on 
two-way, 201-207 

contrasts, 202-203 
discriminant function, 203 
interactions, 201-202 
main effects, 201-202 
model, 201 
test statistics, 202 
tests on individual variables, 203 

unbalanced one-way, 181 
union-intersection test, 178-179 
Wilks' Λ (likelihood ratio) test, 174-

178 
F approximation, 176 
chi-square approximation, 177 
partial Λ statistic, 242 
properties of, 175-178 
table of critical values, 613-636 
transformation to an exact F, 176 

Analysis of variance, univariate (ANOVA): 
one-way, 169-171 

contrasts, 191-192 
SSH, SSE, F-statistic, 171 

two-way, 198-200 
F-test, 200 
contrasts, 200 
interactions, 199 
main effects, 199-200 
model, 198 

ANOVA, see Analysis of variance, univariate 

(ANOVA) 
Assocation, measures of, 186-188 
Association, measures of, 372-374 
Athletic record data, 530 

Baker corn field data, 61 
Bar steel data, 204 
Beetles data, 162 
Bilinear form, 21 
Biplots, 580-588 

coordinates of points, 583-585 
correlation, 584 
cosine, 584, 587 

points for observations, 580-585 
points for variables, 580-585 
principal component approach, 581-582, 

585 
singular value decomposition, 583, 585 

Birth and death data, 593 
Bivariate normal distribution, 51, 93, 98-99, 

146 
Blood data, 248 

Blood pressure data, 255 
Bonferroni critical values, 140 

table, 611 
Box's M-test, 267-269 

table of exact critical values, 633-636 
Box-Cox transformations, 109-111 
Bronchus data, 167 
Burt matrix, 577-579 
Byssinosis data, 594, 595 

Calcium data, 66 
Calculator speed data, 222 
Canonical correlation(s), 187, 271, 385-402 

canonical variates, see Canonical vari-
ates 

definition of, 387 
and discriminant analysis, 400-402 
and eigenvalues, 387, 400-402 
and MANOVA, 400-402 

dummy variables, 400 
and measures of association, 386, 398 
and multiple correlation, 386, 390, 400 
properties of, 390-391 
redundancy analysis, 398 
and regression, 393, 398-400 
subset selection, 400 
tests of significance, 391-395 

subset of canonical correlations, 393-
395 

subset selection, 400 
test of a subset in regression, 399-

400 
and test of independence, 391-392 
and test of overall regression, 391— 

392 
with all canonical correlations, 391— 

393 
with grouping variables, 187 
with test for independence of two sub-

vectors, 271, 391-392 
Canonical variates: 

correlations among, 388 
definition of, 387 
interpretation, 395-398 

by correlations (structure coefficients), 
397 

by rotation, 397 
by standardized coefficients, 396-397 

redundancy analysis, 398 
and regression, 398-400 
standardized coefficients, 389, 396-397 

Categorical variables, see Dummy variables 
Central limit theorem (multivariate), 100, 109 
CFA, see Confirmatory factor analysis 
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Characteristic form: 
of T2-statistic, 131, 136 
of ί-statistic, 131, 135 

Characteristic roots, see Eigenvalues 
Chemical data, 358 
Chi-square distribution, 96, 101, 127 
Cholesky decomposition, 27 
City crime data, 507 
Classification analysis, 309-337 

assigning a sampling unit to a group, 
309 

asymptotic optimality, 313 
classification trees, 331-335 

impurity, 332 
prior probabilities, 333 

correct classification rates, 318-320 
error rates, 318-326, see also Error 

rate(s) 
as a stopping rule, 323-326 

fe-nearest neighbor rule, 330-331 
nonparametric classification procedures, 

312, 326-335 
classification trees, 331-335 
density estimators (kernel), 327-330 
multinomial data (categorical vari-

ables), 326 
nearest neighbor rule, 330-331 

several groups, 314-318 

linear classification functions, 315 
optimal classification rule (Welch), 

315 
quadratic classification functions, 317 

subset selection, 322-326 
stepwise discriminant analysis, 323 

two groups, 310-314 
Fisher's classification function, 311 
linear classification function, 311 
misclassification costs, 312 
optimal classification rule (Welch), 

313 
prior probabilities, 312 

Cluster analysis, 501-552 
average linkage method, 511 
centroid method, 514 
choosing the number of clusters, 544 
and classification, 501 
clustering observations, 501-547 
clustering variables, 501, 547 
comparison of methods, 527 
complete linkage method, 508 
definition, 501 
dendrogram, 506 

crossover, 521 

examples of, 509, 510, 512, 513, 
515-517, 519, 522, 523, 526, 527 

inversion, 521 
reversal, 521 

dissimilarity, 503 
distance, 502-504 

distance matrix, 503 
Euclidean distance, 503 
Minkowski metric, 503 
profile of observation vector, 504 
scale of measurement, 503 
statistical distance, 503 

farthest neighbor method, see complete 
linkage method 

flexible beta method, 520 
hierarchical clustering, 502, 505-531 

agglomerative method, 506-529 
comparison of methods, 527 
dendrogram, 506 
divisive method, 505, 529 
properties, 521-529 

incremental sum of squares method, see 

Ward's method 
median method, 514 
nearest neighbor method, see single link-

age method 
nonhierarchical methods, 531-544 

density estimation, 543 
mixtures of distributions, 540 
partitioning, 532-540 

optimization methods, see nonhierarchi-
cal methods, partitioning 

partitioning, 502, 532-540 
plotting of clusters: 

discriminant functions, 535-538, 544 
principal components, 502, 534 
projection pursuit, 502 

profile of observation vector, 504 
similarity, 502 
single linkage method, 506 
tree diagram, see dendrogram 
validity of a cluster solution, 546 

cross-validation, 546 
hypothesis test, 546 

variables, clustering of, 501, 547 
correlations, 547 
and factor analysis, 547 

Ward's method, 517 
Coated pipe data, 148 
Coefficient of determination, see B? 
Commensurate variables, see Variables, com-

mensurate 
Communality, see Confirmatory factor analy-

sis; Exploratory factor analysis 
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Confidence interval (reference), 132, 140 
Confirmatory factor analysis, 479-500 

covariance matrix under the model, 481 
errors-in-variables parameterization, 483 
estimation, 487-489 

least squares, 488^4-89 
likelihood ratio tests, 487^188 
maximum likelihood, 487-488 

and exploratory factor analysis, 479-
480, 482 

factor scores, 495 
regression method formula, 495 
weighted least squares formula, 495 

goodness-of-fit criteria, 489-492 
Bender's comparative fit index (CFI), 

490 
X2 test, 489-490 
root mean square error approxima-

tion (RMSEA), 490 
standardized root mean square resid-

ual (SRMR), 490 
hypotheses, 484, 489 
identified model, 479, 482^186, 496 

indeterminacy, 482, 483 
order condition, 482-484 
underidentified, 482 

indicator variable, 483 
inference, 492-494 

confidence intervals, 493 
hypothesis tests, 493 
model selection and refinement, 493 

and item response theory, 480 
measurement error parameterization, 483 
model, 480-481 
normality assumption, 487 
parameter space, 487 
parameters, 481 
path diagram, 481, 486 
and regression, 481, 493 
and structural equation modeling, 480 

Contingency table: 

graphical analysis of, see Correspon-
dence analysis 

higher-way table, 576 
two-way table, 565, 570, 572 

Contour plots, 93 
Contrasts: 

contrast matrices in growth curves, 233-
236, 239 

contrast matrices in repeated measures, 
218-232 

one-sample profile analysis, 152 
one-way ANOVA, 191 
one-way MANOVA, 192 

orthonormal, 218 
two-sample profile analysis, 154 
two-way ANOVA, 200 
two-way MANOVA, 202 

Cork data, 249 
Corn field data, 61 
Correct classification rate, 318-320 
Correlation matrix: 

and covariance matrix, 69 
factor analysis on, 445 
partitioned, 389 
population correlation matrix, 70 
principal components from, 409, 419-

423 
sample correlation matrix, 69 

Correlation: 
canonical, see Canonical correlation(s) 
and cosine of angle between two vec-

tors, 53 
intraclass correlation, 210 
and law of cosines, 53 
multiple, see Multiple correlation 
and orthogonality of two vectors, 54 
population correlation (p), 53 
sample correlation (r), 53 
of two linear combinations, 76, 81 

Correspondence analysis, 565-579 
contingency table, see Contingency ta-

ble 
coordinates for row and column points, 

572-575 
distances between column points, 574 
distances between row points, 574 
singular value decomposition, 572 

correspondence matrix, 566 
definition of (graph of contingency ta-

ble), 565 
independence of rows and columns, test-

ing, 570 
chi-square, 565, 570 

inertia, 566, 574 

multiple correspondence analysis, 576-
579 

Burt matrix, 577-579 
indicator matrix, 576 

profiles of rows and columns, 566-570 
rows and columns, 565-575 

inertia, 566, 574 
interaction, 565 
points for plotting, 572-575 
profiles, 566-570 

singular value decomposition, 572, 575 
generalized singular value decompo-

sition, 573 
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Covariance: 
and independence, 50 
and orthogonality, 52 
population covariance (axy), 49 
sample covariance (sxy), 51 

expected value of, 51 
and linear relationships, 51 

of two linear combinations, 76, 80 
Covariance matrix: 

compound symmetry, 217 
and correlation matrix, 69 
of linear combinations of variables, 78-

81 
partitioned, 71-75, 386 

dependence of y and x and cov(y, x) , 
72 

difference between cov(y) and cov(y, x) , 
72 

three or more subsets, 73 
pooled covariance matrix, 136 
population covariance matrix (Σ), 68 
sample covariance matrix (5), 66 

from data matrix, 67 
distribution of, 100 
from observations, 67 
positive definiteness of, 76 
and sample mean vector, indepen-

dence of, 101 
sphericity, 218, 261 
tests on, 259-280, see also Tests of 

hypothesis, covariance matrices 
unbiasedness of, 69 
uniformity, 217, 263 

Cross-validation, 322 
Cyclical data, 166 

Data matrix (Y), 64 
Data sets: 

air pollution data, 553 
airline distance data, 559 
athletic record data, 530 
Baker corn field, 61 
bar steel data, 204 
beetles data, 162 
birth and death data, 593 
blood data, 248 
blood pressure data, 255 
bronchus data, 167 
byssinosis data, 594, 595 
calcium data, 66 
calculator speed data, 222 
chemical data, 358 
city crime data, 507 
coated pipe data, 148 

cork data, 249 
cyclical data, 166 
dental data, 238 
diabetes data, 74 
do-it-yourself data, 580 
dogs data, 254 
dystrophy data, 165 
engineer data, 163 
fabric wear data, 249 
fish data, 246 
football data, 291-292 
glucose data, 90 
guinea pig data, 213 
height-weight data, 49 
hematology data, 121, 122 
mandible data, 257 
mice data, 252 
Norway crime data, 594 
people data, 576 
perception data, 446 
piston ring data, 569 
plasma data, 256 
politics data, 592 
probe word data, 79 
protein data, 533 
psychological data, 138 
ramus bone data, 87 
repeated data, 229 
Republican vote data, 58 
road distance data, 591 
rootstock data, 184 
Seishu data, 274 
snap bean data, 247 
sons data, 88 
statistics course grade data, 485 
steel data, 285 
survival data, 250, 251 
temperature data, 279 
trout data, 252 
voting data, 563 
weight gain data, 253 
wheat data, 554 
words data, 167 

Data, types of, 4, see also Multivariate data 
Density function, 47 
Dental data, 238 
Descriptive statistics, 2 
Determinant, 28-30 

definition of, 28 
of diagonal matrix, 29 
of inverse, 30 
of nonsingular matrix, 29 
of partitioned matrix, 30 
of positive definite matrix, 29 
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as product of eigenvalues, 34 
of product, 29 
of scalar multiple of a matrix, 29 
of singular matrix, 29 

Diabetes data, 74 
Diagonal matrix, 10 
Discriminant analysis (descriptive), 281-306 

and canonical correlation, 292, 400-402 
and classification analysis, 282 
discriminant functions: 

for several groups, 178, 197-198, 
203, 288-292 

for two groups, 139-145, 282-286 
and eigenvalues, 289-290 
interpretation of discriminant functions, 

298-301 
correlations (structure coefficients), 

300 
partial F-values, 299 
rotation, 301 
standardized coefficients, 298 

purposes of, 288 
scatterplots, 301-302 
selection of variables, 243, 303-306 
several groups, 288-290 
standardized discriminant functions, 292-

294 
stepwise discriminant analysis, 243, 303-

306 
tests of significance, 294-298 
two groups, 282-286 

and multiple regression, 144—145, 286-
288 

Discriminant analysis (predictive), see Classi-
fication analysis 

Dispersion matrix, see Covariance matrix 
Distance between vectors, 84-85, 93, 128, 

131, 136, 282 
Distribution: 

beta, 107 
bivariate normal, 49, 93, 98-99 
chi-square, 96 
elliptically symmetric, 115 
F, 132, 151, 171, 176, 192, 265-266 
multivariate normal, see Multivariate nor-

mal distribution; Multivariate nor-
mality, tests for 

univariate normal, 92, 95 
tests for, see Univariate normality, 

tests for 
Wishart, 100-101 

Do-it-yourself data, 580 
Dogs data, 254 
Dummy variables, 186, 292, 327, 400 

Dynamic graphics, 58-60 
grand tour, 58, 107 
linked brushing, 59 
parallel coordinates plot, 

Dystrophy data, 165 
59 

E matrix, 173, 356, 364-366 
EFA, see Exploratory factor analysis 
Eigenvalues, 32-37, 182, 387-390, 407^(09, 

423, 443 
Eigenvectors, 32-37, 387-390, 407-409, 444 
Elliptically symmetric distribution, 115 
EM algorithm, 83, 541 
Engineer data, 163 
Error rate(s), 318-322 

actual error rate, 319 
apparent error rate, 319 

bias in, 319, 320 
classification table, 319 
cross-validation, 322 
experimentwise error rate, 3, 141, 196 
holdout method, 322, 330 
leaving-one-out method, 322, 330 
partitioning the sample, 321 
resubstitution, 319 

Expected value: 
of random matrix, 68 
of random vector [E(y)], 65 
of sample covariance matrix [E(S)], 69 
of sample mean [E(y)], 48 
of sample mean vector [E(y)], 65 
of sample variance [E(s2)], 48 
of sum or product of random variables, 

50 
of univariate random variable [E(y)], 

48 
Experimental units, 1 
Exploratory factor analysis, 435^77, 479 

assumptions, 437^39 
failure of assumptions, consequences 

of, 441, 470 
common factors, 437 
communalities, 440, 444, 448-449, 454 

estimation of, 444, 449, 450, 454 
and confirmatory factor analysis, 479-

480, 482 
eigenvalues, 443^146, 448^t50, 453, 

469, 473 
eigenvectors, 443^145, 447, 449 
factor scores, 466-469 

averaging method, 468 
regression method, 466-468 

factors, 441 
common, 437 
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definition of, 435 
interpretation of, 436, 465 
number of, 453-457 

Hey wood case, 451 
loadings: 

definition of, 437 
estimation of, 442-453 

model, 437-442 
modeling covariances or correlations, 

435, 438, 440, 441, 444 
number of factors to retain, 453^57 

average eigenvalue, 453-455 
comparison of methods, 455-457 
hypothesis test, 454-455 
indeterminancy for certain data sets, 

455 
scree plot, 453^155 
variance accounted for, 453-455 

orthogonal factors, 437^142, 458-462 
and principal components, 436, 475-

476 
and regression, 437, 466-468 
rotation, 441^142, 444, 457^t66 

complexity of the variables, 458 
interpretation of factors, 436, 465 
oblique rotation, 458, 462^165 
orthogonal rotation, 457^162 
simple structure, 458 

scree plot, 453—455 
simple structure, 458 
singular matrix and, 449 
specific variance, 437, 444 
total variance, 445, 453 
validity of factor analysis model, 470-

475 
how well the model fits the data, 

445, 470 
measure of sampling adequacy, 472 

variance due to a factor, 445 

F-test(s): 
ANOVA, 171, 200 
between-subjects tests in repeated mea-

sures, 223, 227, 231 
comparing two variances, 265 
contrasts, 192 
equivalent to T 2 , 132, 137, 150 
in multiple regression, 150, 347 
partial F-test, 140, 151, 242, 303 
stepwise selection, 243, 303-306, 352-

354 
test for additional information, 149 
test for individual variables in MANOVA, 

195-198 

Wilks' Λ: 
exact F transformation for, 176 
F approximation for, 176 

Fabric wear data, 249 
Factor analysis, see Exploratory factor analy-

sis, Confirmatory factor analysis 
Fish data, 246 
Fisher's classification function, 311 
Football data, 291-292 

Gauss-Markov theorem, 343, 359 
Generalized population variance, 93, 118 
Generalized sample variance, 81 

total sample variance, 82, 408, 436, 
445, 453 

Generalized singular value decomposition, 573 
Geometric mean, 187 
Glucose data, 90 
Grade data, 485 
Grand tour, 58, 107 
Graphical display of multivanate data, 56-58 
Graphical procedures, 555-596 

biplots, see Biplots 
correspondence analysis, see Correspon-

dence analysis 
multidimensional scaling, see Multidi-

mensional scaling 
Growth curves, 232-241 

contrast matrices, 233-236, 238-241 
for one sample, 232-239 
orthogonal polynomials, 232-236 
polynomial function of t, 236-237 
several samples, 239-241 
unequally spaced time points, 236-237 

Guinea pig data, 213 

H matrix, 173, 364 
Height-weight data, 49 
Hematology data, 121, 122 
Hierarchical clustering, see Cluster analysis, 

hierarchical clustering 
Hotelling's T2-statistic, see T2-statistic 
Hotelling-Lawley test statistic, see Lawley-

Hotelling test statistic 
Hyperellipsoid, 82 
Hypothesis tests, see Tests of hypotheses 

Identity matrix, 10 
Imputation, 82-84 
Independence of variables, test for, 275-276 

table of exact critical values, 635 
Indicator variables, see Dummy variables 
Inferential statistics, 2 
Intraclass correlation, 210 
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Kernel density estimators, 327-330 
Kronecker and vec notation, 37-39, 45, 356 
Kurtosis, 103, 107, 115 

Largest root test, see Roy's test statistic 
Latent roots, see Eigenvalues 
Lawley-Hotelling test statistic: 

definition of, 188 
table of critical values, 627-631 

Length of vector, 16 
Likelihood function, 99 
Likelihood ratio tests: 

in confirmatory factor analysis, 487^188 
for covariance matrices, 260, 261, 264, 

267, 270, 272, 275 
in exploratory factor analysis, 455 
for mean vectors, 139, 178 

Linear classification functions, 311-317 
Linear combination of matrices, 21 
Linear combination of vectors, 21 
Linear combination(s) of variables, 2, 75-81, 

126 
correlation matrix for several linear com-

binations, 80 
correlation of two linear combinations, 

76, 80 
covariance matrix for several linear com-

binations, 78, 80 
covariance of two linear combinations, 

76, 80 
distribution of, 94 
mean of a single linear combination, 76, 

79 
mean vector for several linear combina-

tions, 77 
variance of a single linear combination, 

76, 79 
Linear hypotheses, 154-155, 211-213, 219-

241 
Linked brushing, 59 

Mahalanobis distance, 84-85, 93 
Mandible data, 257 
MANOVA, 143, 171, see also Analysis of 

variance, multivariate (MANOVA) 
Matrix (matrices): 

algebra of, 7-37 
bilinear form, 21 
Burt matrix, 577-579 
Cholesky decomposition, 27 
conformable, 13 
covariance matrix, 66-69 
definition, 8 

determinant, 28-30, see also Determi-
nant 

diagonal, 10 
eigenvalues, 32-37, see also Eigenval-

ues 
characteristic equation, 33 
and determinant, 34 
of I + A, 34 
of inverse matrix, 36 
of positive definite matrix, 35 
of product, 35 
singular value decomposition, 37 
spectral decomposition, 35 
of square matrix, 36 
of square root matrix, 36 
of symmetric matrix, 35 
and trace, 34 

eigenvectors, 32-37, see also Eigenvec-
tors 

equality, 9 
identity, 10 
indicator matrix, 576 
inverse, 25-26 

of partitioned matrix, 26 
of product, 25 
of transpose, 26 

J matrix, 11 
j vector, 11 
linear combination of, 21 
nonsingular matrix, 25 
notation for matrix and vector, 8 
O (zero matrix), 11 
operations with, 11-21 

distributive law, 14 
factoring, 17 
product, 13-21 
sum, 12 

orthogonal, 31 
rotation of axes, 32 

partitioned matrices, 22-23 
determinant of, 30 
inverse of, 26 
product of, 22 
transpose of, 23 

Perron-Frobenius theorem, 35, 428 
positive definite, 26, 35 
positive semidefinite, 26, 35 
quadratic form, 21 
rank, 23 

full rank, 24 
scalar, 8 

product of scalar and matrix, 21 
singular matrix, 25 
singular value decomposition, 37 
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size of a matrix, 8 
spectral decomposition, 35 
square root matrix, 36 
sum of products in vector notation, 16 
sum of squares in vector notation, 16 
symmetric, 10, 35 
trace, 31, 34, 78 

and eigenvalues, 34 
of product, 31 
of sum, 31 

transpose, 9 
of product, 14 
of sum, 12 

triangular, 11 
vectors, see Vector(s) 
zero matrix (O) and zero vector (0), 11 

Maximum likelihood estimation, 99-100 
and confirmatory factor analysis, 487-

488 
of correlation matrix, 100 
of covariance matrix, 99 
likelihood function, 99 
of mean vector, 99 
multivariate normal, 99 

Mean vector, 63-66, 92, 99 
notation, 64 
population mean vector (μ), 65 
sample mean vector (y), 64-66 

from data matrix, 65 
distribution of, 100 
and sample covariance matrix, inde-

pendence of, 101 
Mean: 

geometric, 187 
of linear function, 76 
population mean (μ), 48 
of product, 50 
sample mean (y), 48 
of sum, 50 

Measurement scale, 3 
interval scale, 3 
ordinal scale, 3 
ratio scale, 3 

Mice data, 252 
Misclassification rates, see Error rate(s) 
Missing values, 82-84 
Multicollinearity, 82, 93 
Multidimensional scaling, 555-565 

classical solution, see metric multidi-
mensional scaling 

definition, 555-556 
distances, 555 

seriation (ranking), 556 

metric multidimensional scaling, 556-
560 

algorithm for finding the points, 556 
and principal components analysis, 

557 
nonmetric multidimensional scaling, 560-

565 
monotonic regression, 560 
ranked dissimilarities, 560 
STRESS, 561-562 

principal coordinate analysis, see metric 
multidimensional scaling 

spectral decomposition, 557 
Multiple correlation, 349, 386, 450, see also 

B? 
Multiple correspondence analysis, 576-579 

Burt matrix, 577-579 
column coordinates, 577 
indicator matrix, 576 

Multiple regression, see Regression, multiple 
Multivariate analysis, 1 

descriptive statistics, 2 
inferential statistics, 2 

Multivariate analysis of variance (MANOVA), 
see Analysis of variance, multi-
variate (MANOVA) 

Multivariate data: 
basic types of, 4 
plotting of, 56 
sparseness of, 106 

Multivariate inference, 2 
Multivariate normal distribution, 91-117 

applicability of, 93 
conditional distribution, 97 
contour plots, 93 
density function, 92 
distribution of y and S, 100 
features of, 91 
independence of y and S, 101 
linear combinations of, 94 
marginal distribution, 96 
maximum likelihood estimates, 99-100, 

see also Maximum likelihood es-
timation 

properties of, 94-98 
quadratic form and chi-square distribu-

tion, 96 
standardized variables, 95 
zero covariance matrix implies indepen-

dence of subvectors, 97 
Multivariate normality, tests for, 101, 106-108 

Df, 106, 114 
and chi-square, 107 
table of critical values, 606 
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scatterplots, 107 
skewness and kurtosis, multivariate, 107, 

115 
table of critical values, 602-605 

Multivariate normality, transformations to, 110— 
111 

Multivariate regression, see Regression, mul-
tivariate 

Nonsingular matrix, 25 
Normal distribution: 

bivariate normal, 51, 93, 98-99, 146 
multivariate normal, see Multivariate nor-

mal distribution 
univariate normal, 92, 95 

Normality, tests for, see Multivariate normal-
ity; Univariate normality 

Normality, transformations to, see Multivari-
ate normality; Univariate normal-
ity 

Norway crime data, 594 
Numerical taxonomy, see Cluster analysis 

Objectives of this book, 3 
Observations, 1 
One-sample test for a mean vector, 130-134 
Orthogonal matrix, 31 
Orthogonal polynomials, 232-236 

table of, 632 
Orthogonal vectors, 54 
Outliers, multivariate 

kurtosis, 115-116 
elliptically symmetric distributions, 

115 
and principal components, 415 
slippage in mean, variance, and corre-

lation, 113 
Wilks' statistic, 114-115 

Outliers, univariate 
accomodation, 112 
block test, 113 
identification, 112 
masking, 113 
maximum studentized residual, 112 
skewness and kurtosis, 113 
slippage in mean and variance, 112 
swamping, 113 

Overall probability, 81-82 

Paired observation test, 145-149 
Parallel coordinates plot, 59 
Partial F-tests, 140, 151, 242, 303-306 
Partitioned matrices, see Matrix (matrices), 

partitioned matrices 
Partitioning, see Cluster analysis, partitioning 

Pattern recognition, see Cluster analysis 
People data, 576 
Perception data, 446 
Perron-Frobenius theorem, 35, 428 
Pillai's test statistic: 

definition of, 179 
table of critical values, 624—626 

Piston ring data, 569 
Plasma data, 256 
Plotting multivariate data, 56-58 
Politics data, 592 
Positive definite matrix, 26 

positive definite sample covariance ma-
trix, 76 

Prerequisites for this book, 3 
Principal components, 405-433 

algebra of, 410-412 
and biplots, 581-582 
and cluster analysis, 415, 417-419, 421, 

533, 534 
component scores, 411 
definition of, 405, 407 
dimension reduction, 406-412, 414 
eigenvalues and eigenvectors, 407—409, 

423 
major axis, 409, 414 

and factor analysis, 429, 436, 475^176 
geometry of, 406-409 
interpretation of, 427^130 

correlations, 429^130 
rotation, 429 
special patterns in S or R, 427^129 

large variance of a variable, effect of, 
409, 428 

last few principal components, 408, 415, 
427 

maximum variance, 405, 410 
minimum perpendicular distances to line, 

412^114 
number of components to retain, 423-

426 
orthogonality of, 406, 408 
percent of variance, 408, 423 
and perpendicular regression, 409, 412-

414 
plotting of, 414-419 

assessing normality, 414 
detection of outliers, 415 

properties of, 406-411 
proportion of variance, 408 
robust, 415 
as rotation of axes, 406^109 
from S or R, 408^109, 419^123 
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nonuniqueness of components from 
R, 422 

sample specific components, 423 
scale invariance, lack of, 408 
scree graph, 423^124 
selection of variables, 430-432 
singular matrix and, 410-411 
size and shape, 428 
smaller principal components, 408, 415, 

427 
tests of significance for, 423^26 
variable specific components, 423 
variances of, 408 

Probe word data, 79 
Product notation (Π), 12 
Profile, 152 

profile of observation vector, 504 
Profile analysis, 152-160, 211-215 

and contrasts, 155 
one-sample, 152-154 
and one-way ANOVA, 152 
profile, definition of, 152 
and repeated measures, 152 
several-sample, 211-215 
two-sample, 154-160 

and two-way ANOVA, 156 
Projection pursuit, 502 
Protein data, 533 
Psychological data, 138 

Q-Q plot, 101-103 
Quadratic classification functions, 317-318 
Quadratic form, 21 
Quantiles, 101-103, 107 

R2 (squared multiple correlation), 349-350, 
353, 372, 378, 386, 389, 399, 
400, 449 

Ramus bone data, 87 
Random variable(s): 

bivariate, 49 
bivariate normal distribution, 51, 93, 

98-99 
correlation of, 53-55 
covariance of, 49-52 
independent, 50 
orthogonal, 52 
scatterplot, 55-56 

linear combinations, see Linear combi-
nation^) of variables 

univariate, 47 
expected value of, 48 
mean of, 48 
variance of, 48 

vector, 63-66 
Random vector(s), 63-66 

distance between, 84-85, 93, 128, 131, 
136, 282 

linear functions of, 75-81, see also Lin-
ear combination(s) of variables 

mean of, 64-66 
partitioned random vector, 71-75 
standardized, 95 
subvectors, 71-75 

Rank of a matrix, 23 
Rao's paradox, 130 
Redundancy analysis, 398 
Regression, monotonic, 560 
Regression, multiple (one y and several x's), 

144-145, 340-354, see also Re-
gression, multivanate 

centered a;'s, 344-346 
estimation of ß: 

centered x's, 344-345 
covariances, 345-346 
least squares, 342-343 

estimation of σ2 , 343-344 
fixed x's, 340-354 
Gauss-Markov theorem, 343 
model, 340-341 

assumptions, 340-341 
corrected for means (centered), 344-

346 
multiple correlation, 349 
R2, see R2 (squared multiple correla-

tion) 
random x's, 340, 354 
regression coefficients, 340 
SSE, 342-343, 347-348, 350-353 
SSR, 347-348 
subset selection, 350-354 

all possible subsets, 350-352 
stepwise selection, 352-354 

tests of hypotheses, 346-349 

full and reduced model, 347-349 
overall regression test, 347 
partial F-test, 348-349 
subset of the ß's, 347-349 

variables: 
dependent (y), 339 
independent (x), 339 
predictor (x), 339 
response (y), 339 

Regression, multivariate (several y's and sev-
eral x's), 339-340, 354-381 

association, measures of, 372-374 
centered x's, 361-362 
estimation of Σ , 360 
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estimation of B (matrix of coefficients): 
centered x's, 361-362 
covariances, 362 
generalized least squares, 359-360, 

363 
least squares, 356-357 
properties of estimators, 358-360 
for seemingly unrelated regressions, 

362-363 
fixed x's, 354-370 
Gauss-Markov theorem, 359 
model, 354-356 

assumptions, 355 
corrected for means (centered), 361-

362 
prediction, 370-372 

confidence interval for E(yo), 370-
371 

prediction interval for yo, 371-372 
random x's, 380 
regression coefficients, matrix of (B), 

97, 355 
seemingly unrelated regressions, 362-

363 
subset selection, 374-380 

all possible subsets, 377-380 
stepwise procedures, 374-377 

tests of hypotheses, 364-370 
E matrix, 364-365 
full and reduced model, 367-370, 

376-377, 399-400 
H matrix, 364-365 
overall regression test, 364-367 
subset of the x's, 374-376, 399, 400 
subset of the j/'s, 376-377 

Zyskind condition, 381 
Repeated data set, 229 
Repeated measures designs, 230-232, see also 

Growth curves 
assumptions, 215-219 
computation of test statistics, 224 
contrast matrices, 218-232 
doubly multivariate data, 232 
higher-order designs, 224-232 
multivariate approach, advantages of, 

215-217 
one sample, 219-222 

likelihood ratio test, 221 
and randomized block designs, 219 

and profile analysis, 152 
several samples, 222-223 
univariate approach, 215-219 

Republican vote data, 58 
Research units, 1 

Road distance data, 591 
Rootstock data, 184 
Rotation, see Confirmatory factor analysis; 

Exploratory factor analysis 
Roy's test statistic: 

definition of, 178 
table of critical values, 621-623 

Sampling units, 1 
Scalar, 9 
Scale of measurement, 2 
Scatterplot, 55-56, 107, 117 
Seishu data, 274 
Selection of variables, 243, 350-354, 374-380 
Singular value decomposition, 37, 572, 575, 

583 
generalized singular value decomposi-

tion, 573 
Size and shape, 428 
Skewness, 103, 107, 116 
Snap bean data, 247 
Sons data, 88 
Specific variance, see Confirmatory factor anal-

ysis; Exploratory factor analysis 
Spectral decomposition, 35, 407, 443, 557 
Squared multiple correlation, see R2 

Standard deviation, 48 
Standardized vector, 95 
Statistics course grade data, 485 
Steel data, 285 
Stepwise selection of variables, 243, 352-354, 

374-377 
STRESS, 561 
Subvectors, 71-75 

conditional distribution of, 97 
covariance matrix of, 71-75 
distribution of sum of, 97 
independence of, 72, 97 
mean vector, 71, 75 
tests of, 149-152, 241-243, 367-370, 

376-377 
Summation notation (Σ)< U 
Survival data, 250, 251 

t-tests: 
characteristic form, 131, 135 
contrasts, 192 
equal levels in profile analysis, 157 
growth curves, 235, 238 
matched pairs, 145-146 
one sample, 130 
paired observations, 145-146 
repeated measures, 222 
two samples, 134, 140 
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T2-statistic: 
additional information, test for, 149-152 
assumptions for, 135 
characteristic form, 131, 136 
chi-square approximation for, 133 
computation of, 143-145 

by MANOVA, 143 
by regression, 144-145 

and F-distribution, 132, 137, 150 
full and reduced model test, 149 
likelihood ratio test, 139 
matched pairs, 147-149 
one-sample, 131-134 
paired observations, 147-149 
and profile analysis, 152-160 

one sample, 152-154 
two samples, 154-160 

properties of, 132-133, 136-137 
for a subvector, 149-152 
table of critical values for T 2 , 607-610 
two-sample, 135-139 

Taxonomy, numerical, see Cluster analysis 
Temperature data, 279 
Tests of hypotheses: 

accepting HQ, 131 
for additional information, 149-152, 241-

243, 367-370, 376-380 
partial F-tests, 140, 150, 242 

covariance matrices, 259-280 
one covariance matrix, 259-265 
several covariance matrices, 265-269 

on individual variables, 139-143 
Bonferroni critical values for, 140 
discriminant functions, 139-145 
experimentwise error rate, 141 
partial F-tests, 140, 242 
protected tests, 141 

likelihood ratio test, 139, see also Like-
lihood ratio tests 

for linear combinations: 
one sample (Ho: C/x = 0), 130, 

153, 219-222 
two samples (Ho: Ομχ = Ομ 2 ) , 

155 
mean vectors: 

likelihood ratio tests, 139 
one sample, Σ known, 127-130 
one sample, Σ unknown, 131-134 
several samples, 171-186 
two-sample T2-test, 135-139 

multivariate vs. univanate testing, 2-3, 
125-130, 140-143 

paired observations (matched pairs), 145— 
149 

multivariate, 147-149 
univariate, 145-146 

partial F-tests, 140, 150, 242 
power of a test, 126 
protected tests, 141 
on regression coefficients, 346-349, 364— 

370 
on a subvector, 149-152, 241-243, 367-

370, 376-381 
univariate tests: 

ANOVA F-test, 169-171, 198-200 
one-sample test on a mean, σ known, 

126 
one-sample test on a mean, σ un-

known, 130 
paired observation test, 145-146 
tests on variance, 265-266 
two-sample i-test, 134-135, 140 
variances, equality of, 265-266 

Total sample variance, 82, 408, 436, 445, 453 
Trace of a matrix, 31, 34, 78 
Trout data, 252 
Two-sample test for equal mean vectors, 135-

139 

Union-intersection test, 178-179 
Unit: 

experimental, 1 
research, 1 
sampling, 1 

Univariate normal distribution, 92, 95 
Univariate normality, tests for, 101-106 

D'Agostino's D-statistic, 105 
table of critical values, 601 

goodness-of-fit test, 106 
normal probability paper, 103 
Q-Q plot, 101-103 
quantiles, 101-103 
skewness and kurtosis, 103-104 

tables of critical values, 598-636 
transformation of correlation, 105 

Univariate normality, transformations to, 109-
110 

Variables, 1, see also Random variable(s) 
commensurate, 2 
dummy variables, 186, 292, 327, 400 
linear combinations of, 75-81 

Variance matrix, see Covariance matrix 
Variance-covariance matrix, see Covariance 

matrix 
Variance: 

generalized sample variance, 81 
pooled variance, 134 
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population variance (σ2), 48 
sample variance (s2), 48 
total sample variance, 82 

Varimax rotation, 460-462 
Vector(s): 

0 vector, 11 
definition of, 8 
distance: 

Mahalanobis, 85 
from origin to a point, 16 
between two vectors, 85 

geometry of, 9 
j vector, 11 
length of, 16 
linear combinations of, 21 
linear independence and dependence of, 

23 
normalized, 32 
notation for vector, 8 
observation vector, 64 
orthogonal, 31, 54 
perpendicular, 54 
product of, 16 
rows and columns of a matrix, 17 
standardized, 95 
subvectors, 71-75 
sum of products, 16 
sum of squares, 16 
transpose of, 8 
zero vector, 11 

Voting data, 563 

Weight gain data, 253 
Wheat data, 554 
Wilks' Λ test statistic: 

definition of, 174-178 
partial Λ statistic, 242 
table of critical values, 613-636 

Wishart distribution, 100-101 
Words data, 167 
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