

Value-Based Software Engineering

Stefan Biffl · Aybüke Aurum · Barry Boehm ·
Hakan Erdogmus · Paul Grünbacher (Eds.)

123

Value-Based
Software
Engineering
With 69 Figures and 41 Tables

Library of Congress Control Number: 2005930639

ACM Computing Classification (1998): D.2.1, D.2.8, D.2.9, D.2.10, K.6.1, K.6.3

ISBN-10 3-540-25993-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25993-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting,
reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in
any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer. Violations are liable for prosecution under
the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Cover design: KünkelLopka, Heidelberg
Typesetting: Camera ready by the editors
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig

Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Editors
Stefan Biffl
Institute for Software Technology
Vienna University of Technology
Karlsplatz 13
1040 Wien, Austria
stefan.biffl@tuwien.ac.at

Aybüke Aurum
School of Information Systems,
Technology and Management
University of New South Wales
Sydney, NSW 2052, Australia
aybuke@unsw.edu.au

Barry Boehm
Center for Software Engineering
University of Southern California
941 W 37th Place,
Los Angeles, CA 90089-0781, USA
boehm@sunset.usc.edu

Hakan Erdogmus
Software Engineering
NRC Institute for Information
Technology
National Research Council Canada
Building M50, 1200 Montreal Rd.
Ottawa, ON, Canada K1A 0R6
Hakan.Erdogmus@nrc-cnrc.gc.ca

Paul Grünbacher
Systems Engineering & Automation
Johannes Kepler University Linz
Altenbergerstr. 69
4040 Linz, Austria
paul.gruenbacher@jku.at

Foreword

Ross Jeffery

When, as a result of pressure from the CEO, the Chief Information Officer poses
the question “Just what is this information system worth to the organization?” the
IT staff members are typically at a loss. “That’s a difficult question,” they might
say; or “well it really depends” is another answer. Clearly, neither of these is very
satisfactory and yet both are correct. The IT community has struggled with ques-
tions concerning the value of an organization’s investment in software and hard-
ware ever since it became a significant item in organizational budgets. And like all
questions concerning value, the first step is the precise determination of the object
being assessed and the second step is the identification of the entity to which the
value is beneficial. In software engineering both of these can be difficult. The pre-
cise determination of the object can be complex. If it is an entire information sys-
tem in an organizational context that is the object of interest, then boundary defini-
tion becomes an issue. Is the hardware and middleware to be included? Can the
application exist without any other applications? If however the object of interest
is, say, a software engineering activity such as testing within a particular project,
then the boundary definition becomes a little easier. But the measure of benefit
may become a little harder.

In this book the issues related to the value of different software engineering ac-
tivities are addressed along with the benefits and opportunities in decision making
under conditions of conflict of decision criteria in uncertain contexts.

Because software has many stakeholders including developers, users, and man-
agers, it is essential that a comparative measure of the software be devised to sup-
port software decisions. This is the aim of value-based software engineering. If we
can develop models and measures of value which are of use to the manager, the
developer, and the user, then trade-off decisions can become possible, for example
between quality and cost or between functionality and schedule. Without the com-
parative measures, the comparisons are impossible and the decisions regarding
development alternatives can only address one criterion, such as defects or func-
tionality, at any point in time, since we need to measure defects or functionality
using the same yardstick. Value can be that yardstick.

If we were to divide the software engineering domain simplistically into the
production of shrink-wrapped and other products, we could start to divide the
problem. In the case of shrink-wrapped, the definition of the object of interest be-
comes quite clear. It is a product that is sold. The valuation of interventions in the
software engineering activities in this domain appears easier than in many other
domains. In this case the quality model work that has been carried out in software
engineering can provide some insights into the relative value of product character-
istics. It would then be possible to investigate the software engineering interven-
tions that give rise to changes in the quality characteristics that are valued by the
consumer of the software product. In this manner the link between software engi-

VI Ross Jeffery

neering process interventions and product characteristics allows for a value-based
measure for those interventions.

Another way of looking at value in this context might be the work that has been
carried out on product performance. It has been shown in many countries, for ex-
ample, that outstanding product success derives from product advantage (defined
as superior price/performance, customer benefits, and relative product quality),
pre-development assessments, cross-functional teams, focus on markets where in-
fluence exists, and other factors. Perhaps value-based software engineering needs
to understand some of these factors and then link them to substantive software
quality models if value-based decisions are to be made in the software engineering
context.

But how might we assess interventions in software engineering? Since software
engineering is a human-intensive activity that results in a logical product that is
often used as a part of a business process, the determination of value can draw
from many disciplines. Perhaps one issue of interest is the assessment of the value
of training of software engineers. In this case the value of human resource inter-
vention programs may be a part of the area of interest. Can we make use of work,
as given by the Brogden utility equation, for measuring the change in utility in
dollars after a training program when looking at the value of project training inter-
ventions in software engineering?

Another factor that seems clearly of concern in this area is the methods we use
to value information when we are making decisions under conditions of uncer-
tainty. Methods such as the use of the expected value of perfect information
(EVPI) can set the upper value bound in these conditions. The minimum can also
be determined using these techniques. In this way it might be possible to consider
the payoff maximization for software engineering interventions as well as the
minimization of regret or loss.

Clearly these are complex, multidisciplinary opportunities for the research
community, with significant potential economic impact across economies. In this
book the editors have collected the current state of the art in the application of
value-based approaches to software engineering activities and decisions. The book
sets a framework for value, the theoretical foundations, the practices, and the ap-
plication. The authors are drawn largely from the software engineering research
community that is involved in the areas of software engineering decision making,
measurement, and investment. This book presents an exciting collection of chap-
ters in an area of research that will develop over the ensuing years as the impor-
tance of this work gains recognition in the wider community.

Author Biography

Ross Jeffery is Professor of Software Engineering in the School of Computer Sci-
ence and Engineering at UNSW and Program Leader in Empirical Software Engi-
neering in National ICT Australia Ltd. (NICTA). Previously he was Director of
the Centre for Advanced Software Engineering Research (CAESER) at the Uni-

Foreword VII

versity of New South Wales. Professor Jeffery was the founding Head of the
School of Information Systems at UNSW from 1989 to 1995 and Associate Dean
(Technology) for the Faculty of Commerce and Economics from 1996 to 1999. He
was the founding Chairman the Australian Software Metrics Association (ASMA)
where he served as Chairman from its inception for a number of years. He is
Chairman of the IEAust/ACS Joint Board on Software Engineering. He has served
on the editorial board of the IEEE Transactions on Software Engineering, and the
Wiley International Series in Information Systems and he is Associate Editor of
the Journal of Empirical Software Engineering. He has also been on the steering
committee of the IEEE and ACM International Conference on Software Engineer-
ing and served as Program Co-Chair for the 1995 conference in Seattle. He is a
founding member of the International Software Engineering Research Network
(ISERN). He was elected Fellow of the Australian Computer Society for his con-
tribution to software engineering research. His current research interests are in
software engineering process and product modeling and improvement, electronic
process guides and software knowledge management, software quality, software
metrics, software technical and management reviews, and software resource mod-
eling and estimation. His research has involved over fifty government and industry
organizations over a period of 15 years and has been funded by industry, govern-
ment, and universities. He has co-authored four books and over one hundred and
twenty research papers.

Preface

Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, Paul Grünbacher

This book tackles software engineering decisions and their consequences from a
value-based perspective. The chapters of the book exploit this perspective to foster
• better evaluation of software products, services, processes, and projects from an

economic point of view;
• better identification of risks for software development projects and effective

decision support for them in a multicriteria and uncertain environment;
• better project management through a better understanding of the contribution of

the activities and practices involved, the techniques, artifacts, and methods
used, as well as the functionality, products, and systems delivered.

What Do We Mean by “Value”?

The goal of software engineering is to create products, services, and processes that
add value. People who contribute to the creation of these artifacts – analysts, proc-
ess engineers, software engineers, testers, managers, executives – strive in their
decisions and actions to maximize some simple or complex notion of value,
whether consciously or unconsciously, and whether with respect to shared goals or
to satisfy personal objectives. Alas, when value considerations remain implicit, the
overall effect may very well be negative. Examples of undesirable consequences
of implicit and clashing value perspectives abound. A good case in point is when
developers value superior design, the marketing of new, nifty functionality, qual-
ity assurance “zero defects” and the management of short time-to-market. Another
example is when product quality is pursued for quality’s sake with little regard to
shareholder value (Favaro, 1996). Yet another is when management tries to drive
development costs down by treating developers as a replaceable commodity or by
evaluating them using one-dimensional performance metrics, and the development
team reacts by creating knowledge silos or by “coding to rule” to protect its own
interests. If value perspectives are not explicated and reconciled, everybody loses
in the end.

Value-based software engineering (VBSE) brings such value considerations to
the foreground so that software engineering decisions at all levels can be opti-
mized to meet or reconcile explicit objectives of the involved stakeholders, from
marketing staff and business analysts to developers, architects, and quality ex-
perts, and from process and measurement experts to project managers and execu-
tives. In VBSE, decisions are not made in a setting blind to value perspectives,
whether common or differing, of these project participants.

Driven by both individual and collective goals, these stakeholders all hope to
derive some benefit, whether tangible or intangible, economic or social, monetary
or utilitarian, or even aesthetic or ethical. By the term value, we refer to this ulti-

X S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

mate benefit, which is often in the eye of the beholder and admits multiple charac-
terizations.

A Dictionary of Canadian Economics defines value as: “The quantity of one
product or service that will be given or accepted in exchange for another. It is
therefore a measure of the economic significance of a particular good or service.
This value in exchange depends on the scarcity of the good or service and the ex-
tent to which it is desired.”

While this certainly is a common definition of value and is addressed promi-
nently in the book, it represents only one dimension. A Modern Dictionary of So-
ciology defines value more abstractly as a “…generalized principle of behavior to
which the members of a group feel a strong commitment and which provides a
standard for judging specific acts and goals.”

In the same spirit, the Oxford Companion to Law (1980) points out that
“…value may consist of spiritual or aesthetic qualities, or in utility in use, or in
the amount of money or other goods which could be obtained in exchange for the
thing in question…” although the latter, monetary sense, by virtue of being the
most tangible, is the most relevant in legal contexts.

In this book, you will find many contributions that stress the more general,
group-oriented, and utilitarian aspect of value alongside those that focus on the
more traditional, economic and monetary aspect. Neither aspect takes precedence
over the other; both aspects are relevant to tackling the wide spectrum of software
engineering issues covered in this book.

A Historical Perspective

To our knowledge, the first significant text to address value considerations beyond
cost models in the software development context was Boehm’s Software Engi-
neering Economics (Boehm, 1981). Boehm later focused on the relationship be-
tween value and software process. The result was the spiral model of software de-
velopment, which brought to the foreground risk management as an integral
component in software process (Boehm, 1986).

The value-based management movement of the early 1990s (McTaggart, 1994)
inspired an IEEE Software essay entitled “When the Pursuit of Quality Destroys
Value” (Favaro, 1996). This essay made the controversial argument that superior
quality should not be a goal in itself in the absence of favorable economics.
Favaro et al. used the adjective “value-based” in the software development context
in a later article addressing the economics of software reuse (Favaro et al., 1998).
The same year the Economics-Driven Software Engineering Research (EDSER)
workshops debuted at the International Conference on Software Engineering
(ICSE) as a forum to share experiences and promote VBSE-related issues among
the research community. The EDSER workshops have since been collocated with
this annual conference with increasing popularity, and continue to be an important
source of information. Two years after EDSER’s debut, Boehm and Sullivan pro-
posed the first agenda for VBSE research at ICSE 2000.

Preface XI

Over time, the scope of VBSE research expanded to include aspects of value
other than economic and monetary. Of particular historical interest is the WinWin
model of requirements negotiation, introduced by Boehm and others in the mid-
1990s“ (Boehm et al., 1998). The WinWin model stressed the multi-stakeholder
perspective by incorporating into the spiral model an approach for reconciling dif-
fering value propositions of project stakeholders. During the late 1990s and early
2000s, the advent of empirical and evidence-based software engineering, value-
based management approaches, preference-based decision making, as well agile
software development and other risk-driven methods continued to push the VBSE
agenda forward and enlarge its scope. In 2003, Boehm proposed a formal VBSE
agenda that captures the expanding scope of this burgeoning field (Boehm, 2003).
The book both revisits and builds on this agenda.

Why Should You Care About Value-Based Software Engineering?

It is impossible to effectively address value considerations when software devel-
opment is treated as an ad hoc endeavor. Much like in conventional engineering,
the incorporation of value considerations requires treating software development
as a purposeful endeavor, which aims at the cost-effective and reliable construc-
tion and maintenance of products that meet specific, if not always static, goals.
Hence the title of the book: Value-Based Software Engineering.

Software admittedly has unique internal and external characteristics, in particu-
lar its highly flexible and volatile nature and its heavy dependence on collabora-
tion among creative and skilled people, that in many instances necessitate a con-
struction and management approach radically different from that of building a
bridge or a ship, and more akin to new product development. However, basic en-
gineering principles of discipline, economy, rigor, quality, and utility, and, to a
certain extent, repeatability and predictability, still very much apply. As in con-
ventional engineering, value considerations affect the trade-offs among these prin-
ciples, but probably with much more subtlety, severity, and variety than they do in
the engineering of hard products.

But why are these trade-offs so important? For no other reason than that they
ultimately determine the outcome of a software project. The message of those who
studied the characteristics of successful software organizations and projects is
pretty strong. Both prominent business school researchers, such as Alan McCor-
mack of the Harvard University and Michael Cusumano of the Massachusetts In-
stitute of Technology, and software engineering thought leaders, such as Tom
DeMarco, Larry Constantine, and Tim Lister, have repeatedly pointed out to the
importance of value factors and the underlying trade-offs in their writings. Since
the mid-1980s, the frequently cited CHAOS reports from the Standish Group have
consistently identified closely related issues, such as the misalignment of IT
spending with organizational objectives and user needs, as sources of failure in
software projects. Our main purpose in the production of this book was to draw at-
tention to these issues, which are impossible to reason about in a value-neutral and
ad hoc setting.

XII S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

The Scope of the Book

The International Organization for Standardization (ISO) defines software engi-
neering as “the systematic application of scientific and technological knowledge,
methods, and experience to the design, implementation, testing, and documenta-
tion of software to optimize its production, support, and quality” (Information
Technology: Vocabulary, Part 1, Fundamental Terms). While the ISO definition
might suffice in a value-neutral setting, we must extend the scope considerably to
address value considerations effectively. Three shortcomings of this definition are
remarkable from a value-oriented perspective.

First is its exclusion of economics, management science, cognitive sciences,
and humanities from the body of knowledge required to create successful software
systems. Value-based software engineering however cannot ignore this body of
knowledge because it considers software development as a purposeful activity car-
ried out by people for people.

The second shortcoming of the ISO definition is its delimitation of software
development by technical activities such as design, implementation, and testing.
VBSE in contrast must also consider, as part of the software engineering lifecycle,
management-oriented activities – such as business case development, project
evaluation, project planning, process selection, project management, risk man-
agement, process measurement, and monitoring – that have often been considered
peripheral. VBSE as such is a multifaceted, multidisciplinary approach that covers
all practices, activities, and phases involved in software development, addressing a
wide variety of decisions about technical issues, business models, software devel-
opment processes, software products and services, and related management prac-
tices.

The third shortcoming of the ISO definition is its failure to explicitly recognize
the ultimate goal: ensuring that software systems continue to meet and adapt to
evolving human and organizational needs to create value. VBSE must put these
needs foremost. According to VBSE, it is not enough, or at times not even critical,
for software projects to merely meet unilaterally preset schedule, budget, process,
and quality objectives. Rather, it is necessary that the resulting products and ser-
vices persist to increase the wealth of the stakeholders and optimize other relevant
value objectives of these projects.

Who Should Read This Book?

This book is intended for those who care about the impact of value considerations
in software development activities and decisions. And who should care about such
considerations? Well, just about everyone: academics, managers, practitioners,
and students of software engineering who recognize that software is not created in
a void, that software development involves many participants – executives, project
managers, business analysts, developers, quality assurance experts, users, the gen-
eral public, and so on – with varying roles and stakes in both the final products
and the processes used the create those products.

Preface XIII

The book appeals particularly to readers who are interested in high-level as-
pects of software engineering decision making because of its focus on organiza-
tional, project-, process-, and product-level issues rather than on low-level, purely
technical decisions. The target audience includes, but is not limited to:
• product managers, project managers, chief information officers who make high-

level decisions;
• process experts, measurement experts, requirements engineers, business ana-

lysts, quality assurance experts, usability experts, and technical leads who par-
ticipate in various lifecycle activities at key interface points and whose influ-
ence span multiple levels and phases;

• software engineering researchers, educators, and graduate students who teach
or study software process, evaluate existing and new practices, technologies,
methods, or products, or teach or investigate managerial, social, and economic
aspects of software development.

To benefit from this book, the reader should have at least taken advanced courses
or studied advanced texts on software engineering or software process, or worked
in the software industry long enough to acquire an appreciation of the many trade-
offs involved from beyond a purely technical perspective.

How Is the Book Organized?

We organized the book in three parts. Part 1 focuses on the foundations of VBSE
and provides examples of frameworks for reasoning about value considerations in
software development activities. Part 2 provides methods and techniques for
VBSE that build upon the foundations and frameworks presented in Part 1. Fi-
nally, Part 3 demonstrates the benefits of VBSE through concrete examples and
case studies.

While we believe that all chapters contain ideas applicable in a variety of situa-
tions, because the book addresses a wide spectrum of issues and activities, certain
chapters will inevitably be more relevant to some readers than others, depending
on the reader’s orientation. We recommend that all readers familiarize themselves
with Chapter 1 regardless of their interests, as this chapter sets the tone for the rest
of the book. There are many ways to dissect the content according to particular in-
terest areas. We hope that the following road map will help orient the reader who
wishes to quickly zoom in on a specific topic.

If you are interested in project-level decisions, economic valuation of software
projects and assets, and reasoning under uncertainty, make sure to read Chapters
3, 5, and 17. Readers interested in VBSE-related concepts and theories applicable
to a range of software engineering lifecycle activities should start with Chapters 2,
4, 6, and 8. Chapters 7, 9, and 12 are recommended reading for those with an in-
terest in product planning, and Chapters 6, 7, and 9 for those focusing on require-
ments gathering and negotiation. If the focus is on software process issues and tool
adoption, Chapters 6, 8, 13, 15, and 16 discuss approaches that aid in process im-
provement and measurement as well as impact evaluation. Chapters 4, 10, 11,

XIV S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

and 14 will appeal to the reader interested in product evaluation and testing-related
issues. Chapters 8, 14, and 15 will appeal to those who tackle knowledge man-
agement problems. Finally, Chapters 3, 5, 6, and 13 are relevant to readers who
are interested in risk management.

Whatever your orientation and interests, we hope that the book will inspire you
to incorporate value considerations to your own work, or, if you have already been
operating in a value-conscious setting, that you will find new insights and re-
sources to draw upon. Good reading!

Acknowledgements

This book would not have been possible without the efforts of many. We are
thankful to the authors who contributed the individual chapters and worked dili-
gently with the editors and external reviewers to enhance the quality of the book.
At least three reviewers evaluated each chapter and provided extensive feedback
to improve the clarity of presentation and ensure technical coherence. Their efforts
are much appreciated. We also thank Matthias Heindl, Stefan Kresnicka, Martina
Lettner, Muhammad Asim Noor, Barbara Schuhmacher, Norbert Seyff, Rick
Rabiser, and Markus Zeilinger for their help during this project. Finally, we thank
Springer, our publisher, for trusting our vision, and in particular Ralf Gerstner for
his support.

References

(Boehm, 1981) Boehm, B. W.: Software Engineering Economics (Prentice-Hall,
1981)

(Boehm, 1986) Boehm, B. W.: A Spiral Model of Software Development and En-
hancement. Software Engineering Notes, 11(4)

(Boehm et al., 1998) Boehm, B. W., Egyed, A., Kwan, J., Port, D., Shaw, A.,
Madachy, R.: Using the WinWin Spiral Model: A Case Study. IEEE Com-
puter, (July 1998)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes, 28(2):2003

(Favaro, 1996) Favaro, J.: When the Pursuit of Quality Destroys Value. IEEE
Software (May 1996)

(Favaro et al., 1998) Favaro, J., Favaro, K. R., Favaro, P. F.: Value-based Reuse
Investment, Annals of Software Engineering, 5 (1998)

(McTaggart, 1994) McTaggart, J.: The Value Imperative (The Free Press, 1994)

Table of Contents

Foreword ..V

Preface .. IX

Table of Contents..XV

List of Contributors.. XIX

Part 1 Foundations and Frameworks ... 1

1 Value-Based Software Engineering: Overview and Agenda 3

1.1 Overview and Rationale ..3
1.2 Background and Agenda ...7
1.3 A Global Road Map for Realizing VBSE Benefits10
1.4 Summary and Conclusions ..11

2 An Initial Theory of Value-Based Software Engineering 15

2.1 Introduction ...15
2.2 A “4+1” Theory of Value-Based Software Engineering18
2.3 Using and Testing the VBSE Theory: Process Framework and Example ...23
2.4 VBSE Theory Evaluation ..31
2.5 Conclusions and Areas for Further Research ..33

3 Valuation of Software Initiatives Under Uncertainty: Concepts,
Issues, and Techniques.. 39

3.1 Introduction ...39
3.2 Issues in Valuation ..40
3.3 Valuation of Uncertain Projects with Decision Trees..................................45
3.4 Real Options Theory..52
3.5 Summary and Discussion ..60

4 Preference-Based Decision Support in Software Engineering...................... 67

4.1 Introduction ...67
4.2 Decisions with Multiple Criteria and Software Engineering69
4.3 Multicriteria Decision Methods...71
4.4 Incomplete Information and Sensitivity Analysis..82
4.5 Summary and Conclusions ..84

5 Risk and the Economic Value of the Software Producer 91

5.1. Introduction ..91
5.2. The Value of the Firm ..92

XVI

5.3. The Time Value of Money ...92
5.4. Financial Risk...94
5.5. Prediction and the Value of the Firm..95
5.6. Multi-Project Firms and Economic Value..96
5.7. The Economic Cost of Extended Time-to-Market96
5.8. Financial Risk and Software Projects ...97
5.9 Predictability and Process Improvement ...99
5.10 Arriving at a Risk Premium for Software Projects100
5.11 Computing the Financial Value of Improved Predictability....................101
5.12 An Illustrative Example...102
5.13 Conclusions ...103

Part 2 Practices...107

6 Value-Based Software Engineering: Seven Key Elements and Ethical
Considerations ..109

6.1 Benefits Realization Analysis..109
6.2 Stakeholder Value Proposition Elicitation and Reconciliation..................111
6.3 Business Case Analysis ...113
6.4 Continuous Risk and Opportunity Management114
6.5 Concurrent System and Software Engineering..117
6.6 Value-Based Monitoring and Control ...119
6.7 Change as Opportunity ..122
6.8 Integrating Ethical Considerations into Software Engineering Practice....124
6.9 Getting Started Toward VBSE ..128

7 Stakeholder Value Proposition Elicitation and Reconciliation133

7.1 Introduction ...133
7.2 Negotiation Challenges ...134
7.3 The EasyWinWin Requirements Negotiation Support..............................138
7.4 Possible Extensions to the EasyWinWin Approach147
7.5 Conclusions ...151

8 Measurement and Decision Making ..155

8.1 Introduction ...155
8.2 Models of Measurement and Decision Making...156
8.3 Decision Making Behavior..162
8.4 Decision Making Behavior in Groups ...166
8.5 Measurement and Analysis for Decision Making......................................167
8.6 Decision Support in a VBSE Framework..170
8.7 Conclusion...173

9 Criteria for Selecting Software Requirements to Create Product
Value: An Industrial Empirical Study ...179

9.1 Introduction ...179
9.2 Background ...181

Table of Contents XVII

9.3 Research Approach..185
9.4 Survey Results and Analysis ...189
9.5 Conclusions and Further Work..196

10 Collaborative Usability Testing to Facilitate Stakeholder
Involvement.. 201

10.1 Introduction ...201
10.2 Usability Testing ...203
10.3 Collaboration Tools and Techniques for Usability Testing205
10.4 Research Approach..208
10.5. The e-CUP process ...210
10.6 Application of e-CUP ..213
10.7 Conclusion...217

11 Value-Based Management of Software Testing ... 225

11.1 Introduction ...225
11.2 Taking a Value-Based Perspective on Testing ..226
11.3 Practices Supporting Value-Based Testing..233
11.4 A Framework for Value-Based Test Management236
11.5 Conclusion and Outlook ..241

Part 3 Applications.. 245

12 Decision Support for Value-Based Software Release Planning 247

12.1 Introduction ...247
12.2 Background..248
12.3 Value-Based Release Planning ..251
12.4 Example...255
12.5 Conclusions and Future Work ...258

13 ProSim/RA – Software Process Simulation in Support of Risk
Assessment ... 263

13.1 Introduction ...263
13.2 Software Process Simulation ...266
13.3 SPS-Based Risk Analysis Procedure ...269
13.4 Case Example ..271
13.5 Discussion and Future Work ...278

14 Tailoring Software Traceability to Value-Based Needs 287

14.1 Introduction ...287
14.2 Video-on-Demand Case Study ..290
14.3 Testing-Based Trace Analysis ...293
14.4 Trace Analysis through Commonality...299
14.5 The Tailorable Factors...302
14.6 Conclusions ...306

XVIII

15 Value-Based Knowledge Management: the Contribution of Group
Processes..309

15.1 Introduction ...309
15.2 Managing Knowledge ...310
15.3 Example: Postmortem Review and Process Workshop...........................313
15.4 Discussion ...318
15.5 Conclusion and Further Work ...322

16 Quantifying the Value of New Technologies for Software
Development ...327

16.1 Introduction ...327
16.2 Background ...329
16.3 Applications ..330
16.4 Impact Assessment Methodology..335
16.5 Results ...338
16.6 Related Work...341
16.7 Discussion ...341

17 Valuing Software Intellectual Property...345

17.1 Introduction ...345
17.2 Software Intellectual Property Protection Mechanisms...........................346
17.3 Licensing ...349
17.4 Valuation Process ..350
17.5 Valuation Framework for Intellectual Property.......................................356
17.6 Potential Uses of the Valuation Framework..363
17.7 Future Shock ...363
17.8 Summary and Conclusions ..364

Glossary...367

List of Figures ...381

List of Tables ..383

Index..385

List of Contributors

David L. Atkins
Department of Computer Science
American University in Cairo
Cairo 11511, Egypt
Email: datkins@aucegypt.edu

Aybüke Aurum
School of Information Systems, Technology and Management
University of New South Wales
Sydney NSW 2052, Australia
Email: aybuke@unsw.edu.au

Michael Berry
University of New South Wales
School of Computer Science and Engineering
Sydney NSW 2052, Australia
Email: Michael.Berry@student.unsw.edu.au

Stefan Biffl
Institute of Software Technology and Interactive Systems
Technische Universität Wien
Karlsplatz 13, A-1040, Vienna, Austria
Email: Stefan.Biffl@tuwien.ac.at

Barry W. Boehm
University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL Room 328
Los Angeles, CA 90089-0781, USA
Email: boehm@cse.usc.edu

Torgeir Dingsøyr
SINTEF Information and communication technology
Department of Software Engineering
NO-7465 Trondheim, Norway
Email: Torgeir.dingsoyr@sintef.no

Alexander Egyed
Teknowledge Corporation
4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA
Email: aegyed@ieee.org

XX

Hakan Erdogmus
Institute for Information Technology,
National Research Council Canada
M50, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6
Email: Hakan.Erdogmus@nrc-cnrc.gc.ca

John Favaro
Consulenza Informatica
Via Gamerra 21
56123 Pisa, Italy
Email: john@favaro.net

Ann Fruhling
Department of Computer Science
College of Information Science & Technology
University of Nebraska at Omaha, USA
Email: afruhling@mail.unomaha.edu

Paul Grünbacher
Systems Engineering and Automation
Johannes Kepler University Linz
Altenbergerstr. 69, 4040 Linz, Austria
Email: paul.gruenbacher@jku.at

Michael Halling
Department of Finance
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: michael.halling@univie.ac.at

Warren Harrison
Portland State University
1825 SW Broadway
97207 Portland, OR, USA
Email: warren@cs.pdx.edu

Apurva Jain
University of Southern California
Center for Software Engineering
941 W. 37th Place, SAL Room 328
Los Angeles, CA 90089-0781, USA
Email: apurvaja@usc.edu

List of Contributors XXI

Sabine Köszegi
Department of Finance
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: Sabine.Koeszegi@univie.ac.at

Sebastian Maurice
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: smaurice@ucalgary.ca

Audris Mockus
Avaya Corporation
Email: audris@avaya.com

An Ngo-The
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: ango@cpsc.ucalgary.ca

Dietmar Pfahl
University of Calgary
Schulich School of Engineering
2500 University Drive NW
Calgary, Alberta Canada T2N 1N4
ICT Building
Email: dpfahl@ucalgary.ca

Rudolf Ramler
Software Competence Center Hagenberg GmbH
Hauptstrasse 99
4232 Hagenberg, Austria
Email: rudolf.ramler@scch.at

Donald J. Reifer
Reifer Consultants, Inc.
P.O. Box 4046
Torrance, CA 90510-4046
Email: d.reifer@ieee.org

XXII

Günther Ruhe
iCORE Professor and Industrial Research Chair Software Engineering
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: ruhe@ucalgary.ca

Omolade Saliu
Software Engineering Decision Support Lab
2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: saliu@cpsc.ucalgary.ca

Harvey Siy
Lucent Technologies
Email: hpsiy@lucent.com

Rudolf Vetschera
Department of Business Studies
University of Vienna
Brünnerstr. 72, 1210 Vienna, Austria
Email: rudolf.vetschera@univie.ac.at

Gert-Jan de Vreede
Department of Information Systems & Quantitative Analysis
College of Information Science & Technology
University of Nebraska at Omaha, USA
Email: gdevreede@mail.unomaha.edu

Claes Wohlin
Department of Systems and Software Engineering
Blekinge Institute of Technology Box 520
SE-372 25 Ronneby, Sweden
Email:Claes.Wohlin@bth.se

Part 1
Foundations and Frameworks

Software companies operating within the twenty-first century will have to cope
with accelerating rates of change in technology and increased levels of competi-
tion on a global scale. Within this changing business environment, in order to stay
competitive software companies will be forced to constantly pursue new strategies
to differentiate themselves from their competition. More than ever, software de-
velopers will need to rely upon enhanced professional and managerial capabilities
to meet these new challenges. To gain competitive leverage, software developers
seek to increase the efficiency and predictability of the software development
process. The continuously increasing complexity of software products, as well as
increasing market pressure, require a combination of carefully selected validation
and verification techniques to ensure value-added and high quality product devel-
opment.

The value perspective provides a good way of looking at the product develop-
ment process. The ultimate aim of value propositions in software engineering is to
create a strategy to achieve long-term profitable growth and sustainable competi-
tive advantage for software companies. The implication is that software develop-
ers need to consider the key elements of value in terms of how to create value for
current as well as future software products and how to deliver this value to a cus-
tomer in the most profitable way. In other words, software developers should have
a better understanding of the implications of the decisions they have made about
the software product, the software development process, and the resources that
they use.

The objective of Part 1 is to discuss the foundations of value creation for soft-
ware development. This part also provides frameworks that describe how value
can be added to software products through work on software project activities and
production of deliverables. It also explores the interdisciplinary nature of software
projects. Furthermore, it highlights existing problems of managing value proposi-
tions in software engineering, focusing on those problems that may potentially
help in managing software engineering knowledge.

There are five chapters in this part that cover to the following areas:
• Chapter 1: Value-Based Software Engineering: Overview and Agenda
• Chapter 2: An Initial Theory of Value-Based Software Engineering
• Chapter 3: Valuation of Software Initiatives under Uncertainty: Concepts,

Issues, and Techniques
• Chapter 4: Preference-based Decision Support in Software Engineering
• Chapter 5: Risk and the Economic Value of the Software Producer

Although it is simpler to work in value-neutral settings, the software engineering
community realizes that value-neutral approaches to software engineering are one
of the major causes of software project failure. In Chapter 1, Boehm discusses the
potential benefits of integrating a value-based approach into software development

2 S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, P. Grünbacher

engineering principles and presents a value-based software engineering agenda.
Following this, in Chapter 2 Boehm and Jain provide a value-based software engi-
neering theory which draws upon utility, decision, dependency, and control theo-
ries. Further, they discuss successful applications of this theory. Effective man-
agement of software product development contributes to competitive advantage
for software companies. In Chapter 3 Erdogmus, Favaro, and Halling discuss the
value-based approach from a management perspective, in the context of project-
level decision making, demonstrating how economic value can influence project-
level decisions through illustrative examples. Following this chapter, in Chapter 4
Vetschera presents the theoretical background for multicriteria decision making in
software development, and then reviews several multicriteria decision making
methods and discusses the applicability of these methods to decision problems in
software engineering. Finally, in Chapter 5 Harrison discusses the fundamental
aspects of valuation and the financial risk in the software development process,
and shows how software risk management can be valued by using well accepted
financial theory when assessing software project predictability.

1 Value-Based Software Engineering: Overview
and Agenda

Barry Boehm

Abstract: Much of current software engineering practice and research is done in a
value-neutral setting, in which every requirement, use case, object, test case, and
defect is equally important. However, most studies of the critical success factors
distinguishing successful from failed software projects find that the primary criti-
cal success factors lie in the value domain. The value-based software engineering
(VBSE) agenda discussed in this chapter and exemplified in the other chapters in-
volves integrating value considerations into the full range of existing and emerg-
ing software engineering principles and practices. The chapter then summarizes
the primary components of the agenda: value-based requirements engineering, ar-
chitecting, design and development, verification and validation, planning and con-
trol, risk management, quality management, people management, and an underly-
ing theory of VBSE. It concludes with a global road map for realizing the benefits
of VBSE.

Keywords: Benefits realization, business case analysis, cost-benefit analysis, in-
vestment analysis, return on investment, risk management, stakeholder values,
software economics, value-based software engineering.

1.1 Overview and Rationale

Much of current software engineering practice and research is done in a value-
neutral setting, in which:
• Every requirement, use case, object, test case, and defect is treated as equally

important;
• Methods are presented and practiced as largely logical activities involving

mappings and transformations (e.g., object-oriented development);
• “Earned value” systems track project cost and schedule, not stakeholder or

business value;
• A “separation of concerns” is practiced, in which the responsibility of software

engineers is confined to turning software requirements into verified code.

In earlier times, when software decisions had relatively minor influences on a sys-
tem’s cost, schedule, and value, the value-neutral approach was reasonably
workable. But today and, increasingly, in the future, software has and will have a
major influence on most systems’ cost, schedule, and value; and software deci-
sions are inextricably intertwined with system-level decisions.

4 Barry Boehm

Also, value-neutral software engineering principles and practices are unable to
deal with most of the sources of software project failure. Major studies such as the
Standish Group’s CHAOS reports1 find that most software project failures are
caused by value-oriented shortfalls such as lack of user input, incomplete require-
ments, changing requirements, lack of resources, unrealistic expectations, unclear
objectives, and unrealistic time frames.

Further, value-neutral methods are insufficient as a basis of an engineering dis-
cipline. The definition of “engineering” in (Webster, 2002) is “the application of
science and mathematics by which the properties of matter and sources of energy
in nature are made useful to people.” Most concerns expressed about the adequacy
of software engineering focus on the shortfalls in its underlying science. But it is
also hard for a value-neutral approach to provide guidance for making its products
useful to people, as this involves dealing with different people’s utility functions
or value propositions.

It is also hard to make financially responsible decisions using value-neutral
methods. Let us illustrate this with an example.

Example: Automated Test Generation (ATG)

Suppose you are the manager of a $2 million software project to develop a large
customer billing system. A vendor of an automated test generation (ATG) tool
comes to you with the following proposition:

“Our tool has been shown to cut software test costs in half. Your test costs typi-
cally consume 50% of your total development costs, or $1 million for your current
project. We’ll provide you the use of the tool for 30% of your test costs, or $300K.
After you’ve used the tool and saved 50% of your test costs, or $500K, you’ll be
$200K ahead”.

How would you react to this proposition? The usual response for traditionally
educated software engineers is to evaluate it from a technical and project man-
agement standpoint. An excellent literature review and experience paper (Persson
and Yilmazturk, 2004) compiled 34 good technical and project management rea-
sons why an ATG tool might not save you 50% of your test costs. The reasons in-
cluded unrepresentative test coverage; too much output data; lack of test validity
criteria; poor test design; instability due to rapid feature changes; lack of manage-
ment commitment; and lack of preparation and experience (“automated chaos
yields faster chaos”).

Often, though, a more serious concern lies outside traditional software engi-
neering technology and management considerations. It is that ATGs, like most
current software engineering methods and tools, are value-neutral. They assume
that every requirement, test case, and defect is equally important.

1http://www.standishgroup.com

1 Value-Based Software Engineering: Overview and Agenda 5

Fig. 1. Pareto 80:20 distribution of test case value

However, the more usual situation is a Pareto distribution in which 80% of the
mission value comes from 20% of the software components. The data in Figure 1
are a good illustration of this phenomenon. The Pareto curve in Figure 1 comes
from an experience report (Bullock, 2000) in which each customer billing type
tested led to improved initial billing revenues from 75% to 90% and much lower
customer complaint rates; and one of the 15 customer types accounted for 50% of
the billing revenues. The straight line curve in Figure 1 is the usual result of ATG-
driven testing, in which the next test is equally likely to have low or high business
value.

Table 1. Comparative business cases: ATG and Pareto testing

ATG Testing Pareto Testing % of
Tests
Run Cost Value Net

Value ROI Cost Value Net
Value ROI

0 1,300 0 -1,300 -1.00 1,000 0 -1,000 -1.00
10 1,350 400 -950 -0.70 1,100 2,560 1,460 +1.33
20 1,400 800 -600 -0.43 1,200 3,200 2,000 1.67
40 1,500 1,600 100 0.07 1,400 3,840 2,440 1.74
60 1,600 2,400 800 0.50 1,600 3,968 2,368 1.48
80 1,700 3,200 1,500 0.88 1,800 3,994 2,194 1.21

100 1,800 4,000 2,200 1.22 2,000 4,000 2,000 1.00

Table 1 shows the relative levels of investment costs, business benefits, and re-
turns on investment, ROI = (benefits – costs) / costs, for the value-neutral ATG
testing and value-based Pareto testing strategies. Figure 2 provides a graphical

6 Barry Boehm

comparison of the resulting ROIs. The analysis is based on the following assump-
tions.

• $1M of the development costs have been invested in the customer billing sys-
tem by the beginning of testing.

• The ATG tool will cost $300K and will reduce test costs by 50% as promised.
• The business case for the system will produce $4M in business value in return

for the $2M investment cost.
• The business case will provide a similar 80:20 distribution for the remaining 14

customer types.

- 1

- 0, 5

0

0, 5

1

1, 5

2

% Tests Run

R
et

ur
n

on
In

ve
st

m
en

t

Pareto testing

- 1

- 0, 5

0

0, 5

1

1, 5

2

0 20 40 60 80 100

% Tests Run

R
et

ur
n

on
In

ve
st

m
en

t

Pareto testing ATG testing

Fig. 2. ROI: Value-neutral ATG vs. Pareto Analysis

As seen in Table 1 and graphically in Figure 2, the value-neutral ATG approach
does achieve a cost reduction and a higher ROI of 1.22 at the 100% tested point.
But the value-based Pareto testing approach determines that a much higher ROI of
1.74 can be achieved by running only about 40% of the most valuable tests. Be-
yond that point, the remaining $600K of test investment will generate only $160K
in business value, and is a poor investment of scarce resources. Some further con-
siderations are:
• There may be qualitative reasons to test all 15 of the customer types. Fre-

quently, however, the lessons learned in testing type 1 will identify a more cost-
effective subset of tests to be run on the remaining 14 customer types.

• A pure focus on cost reduction can produce a poor ROI profile.

1 Value-Based Software Engineering: Overview and Agenda 7

• From a cost of money standpoint, much of the benefit from the ATG strategy
comes in less valuable future cash flows.

• However, appropriate combinations of Pareto-based and ATG-based testing
may produce even higher ROIs.

From a global standpoint, it appears that finding out which 60% of an organiza-
tion’s testing budget actually produces a negative ROI would be highly worth-
while. Estimates of global software costs are approaching $1 trillion per year. If
half of this is spent on testing, and 60% of the test effort can be profitably elimi-
nated, this creates a $300 billion per year cost savings potential for such value-
based testing investments.

1.2 Background and Agenda

Some VBSE Definitions and Background: Some of the dictionary definitions of
“value” (Webster, 2002) are in purely financial terms, such as “the monetary
worth of something: marketable price.” However, in the context of this book, we
use the broader dictionary definition of “value” as “relative worth, utility, or im-
portance.” This adds complications in requiring VBSE to address less rigorously
analyzable situations, but enables it to provide help in addressing software engi-
neering decisions involving personal, interpersonal, or ethical considerations, as
discussed in many of the chapters.

Given that the definition of “engineering” above includes the goal of making
things useful to people, it would seem that value considerations are already built
into the definition of “software engineering.” But since so much of current soft-
ware engineering is done in a value-neutral context, we offer the following defini-
tion of VBSE: “the explicit concern with value concerns in the application of sci-
ence and mathematics by which the properties of computer software are made
useful to people.” The resulting science includes the social sciences as well as the
physical sciences, and the mathematics includes utility theory, game theory, statis-
tical decision theory, and real options theory as well as logic, complexity theory,
and category theory.

The book treats the terms “value proposition,” utility function,” and “win con-
dition” basically as synonyms. “Win condition” is primarily used in the context of
stakeholders negotiating mutually satisfactory or win-win agreements, as in Chap-
ters 2 and 7. “Utility function” is primarily used in trying to characterize the na-
ture of a function relating a stakeholder’s degree of preference for alternative (of-
ten multidimensional) outcomes. “Value proposition” is primarily used as a
generic term encompassing both win conditions and utility functions.

The treatment of information as having economic value (Marschak, 1974) and
the economics of computers, software, and information technology have been top-
ics of study for some time (Sharpe, 1969; Phister, 1979; Kleijnen, 1980; Boehm,
1981). A community of interest in Economics-Driven Software Engineering Re-

8 Barry Boehm

search (EDSER) has been holding annual workshops since 19992. Special issues
on Return on Investment have appeared in journals such as IEEE Software (Er-
dogmus et al., 2004), and books have been increasingly appearing on topics such
as software business case analysis (Reifer, 2002), customer value-oriented agile
methods (Cockburn, 2002; Highsmith, 2002; Schwaber and Beedle, 2002), and in-
vestment-oriented software feature prioritization and analysis (Denne and Cleland-
Huang, 2004; Tockey, 2004).

A VBSE Agenda: A resulting value-based software engineering (VBSE) agenda
has emerged, with the objective of integrating value considerations into the full
range of existing and emerging software engineering principles and practices, and
of developing an overall framework in which they compatibly reinforce each
other. Some of the major elements of this agenda and example results in this
book’s chapters and elsewhere are discussed next.

Value-based requirements engineering includes principles and practices for
identifying a system’s success-critical stakeholders; eliciting their value proposi-
tions with respect to the system; and reconciling these value propositions into a
mutually satisfactory set of objectives for the system. Example results include the
release prioritization techniques in Chapter 12 and in (Denne and Cleland-Huang,
2004); the requirements prioritization techniques in Chapter 9 and (Karlsson and
Ryan, 1997); the business case analysis techniques in (Reifer, 2002) and Chap-
ter 6; and the stakeholder identification and requirements negotiation techniques in
Chapters 6, 7, and 10.

Value-based architecting involves the further reconciliation of the system ob-
jectives with achievable architectural solutions. Example results include the multi-
attribute decision support and negotiation techniques in Chapters 4 and 7; the
Software Engineering Institute’s Architecture Trade-off Analysis work in
(Kazman et al., 2002) and (Clements et al., 2002); the concurrent system and
software engineering approach in Chapter 6 and (Grünbacher et al., 2004); the
software traceability techniques in Chapter 14; and the value-based software prod-
uct line analyses in (Favaro, 1996) and (Faulk et al., 2000).

Value-based design and development involves techniques for ensuring that the
system’s objectives and value considerations are inherited by the software’s de-
sign and development practices. Example results include the software traceability
techniques in Chapter 14; the development tool analysis methods in Chapter 16;
the process improvement ROI analysis in (van Solingen, 2004); and the customer-
oriented design and development techniques in agile methods.

Value-based verification and validation involves techniques for verifying and
validating that a software solution satisfies its value objectives; and processes for
sequencing and prioritizing V&V tasks operating as an investing activity. Exam-
ple results include the value-based testing techniques and tool investments in
Chapters 10, 11, and 16; and the risk-based testing techniques in (Gerrard and
Thompson, 2002).

Value-based planning and control includes principles and practices for extend-
ing traditional cost, schedule, and product planning and control techniques to in-

2http://www.cs.virginia.edu/~sullivan/EDSER-7/

1 Value-Based Software Engineering: Overview and Agenda 9

clude planning and control of the value delivered to stakeholders. Example results
include the value-based planning and control techniques in Chapters 6 and 8, and
in (Boehm and Huang, 2003); the multi-attribute planning and decision support
techniques in Chapter 4; and the release planning techniques in Chapter 12 and
(Denne and Cleland-Huang, 2004).

Value-based risk management includes principles and practices for risk identi-
fication, analysis, prioritization, and mitigation. Example results include the soft-
ware risk management techniques in (Boehm, 1989; Charette, 1989; DeMarco-
Lister, 2003); the risk-based “how much is enough” techniques in Chapter 6; the
risk-based analysis of the value of project predictability in Chapter 5; the risk-
based simulation profiles in Chapter 13; the risk-based testing techniques in (Ger-
rard and Thompson, 2002); the insurance approach to risk management in (Raz
and Shaw, 2001); and the real options analyses of intellectual property protection
in Chapter 17, of modular design in (Sullivan et al., 2001), and of agile methods in
(Erdogmus and Favaro, 2002).

Value-based quality management includes the prioritization of desired quality
factors with respect to stakeholders’ value propositions. Example results include
the multi-attribute decision support techniques in Chapter 4, the quality as stake-
holder value approach in (Boehm and In, 1996), the soft goal approach in
(Chung et al., 1999), and the value-based approach to computer security in (But-
ler, 2002).

Value-based people management includes stakeholder team building and ex-
pectations management; managing the project’s accommodation of all stake-
holders’ value propositions throughout the life cycle; and integrating ethical con-
siderations into daily project practice. Example results include the value-based
personal preferences work in Chapter 15, the approaches to developing shared
tacit knowledge in agile methods, and the use of Rawls’ Theory of Justice (Rawls,
1971) as a stakeholder value-based approach to software engineering ethics in
(Collins et al., 1994) and Chapter 6.

A theory of value-based software engineering that connects software engineer-
ing’s value-neutral computer science theory with major value-based theories such
as utility theory, decision theory, dependency theory, and control theory; and that
provides a process framework for guiding VBSE activities. An initial formulation
of such a theory is provided in Chapter 2.

Chapter 6 summarizes seven key elements which provide further context and
starting points for realizing the value-based software engineering agenda. They
are:

1. Benefits Realization Analysis
2. Stakeholder Value Proposition Elicitation and Reconciliation
3. Business Case Analysis
4. Continuous Risk and Opportunity Management
5. Concurrent System and Software Engineering
6. Value-Based Monitoring and Control
7. Change as Opportunity

10 Barry Boehm

1.3 A Global Road Map for Realizing VBSE Benefits

Figure 3 shows a road map for making progress toward Value-Based Software
Engineering and its benefits on a national or global level (Boehm and Sullivan,
2000). In the spirit of concurrent software and system engineering, it focuses its
initiatives, contributions, and outcomes at the combined software and information
technology (SW/IT) level. Its overall goals are to develop fundamental knowledge
and practical techniques that will enable significant, measurable increase in the
value created over time by software and information technology projects, prod-
ucts, portfolios, and the industry.

Working backward from the end objective, the road map in Figure 3 identifies a
network of important intermediate outcomes. It illustrates these intermediate out-
comes, dependence relationships among them, and important feedback paths by
which models and analysis methods will be improved over time. The lower left
part of the diagram captures tactical concerns, such as improving cost and benefit
estimation for software projects, while the upper part captures strategic concerns,
such as reasoning about real options and synergies between project and program
elements of larger portfolios, and using the results to improve software engineer-
ing and information technology policy, research, and education.

Fig. 3. Road map for realizing benefits of value-based software engineering

1 Value-Based Software Engineering: Overview and Agenda 11

Making Decisions That Are Better for Value Creation
The goal of the road map is supported by a key intermediate outcome: designers
and managers at all levels must make decisions that are better for value added than
those they make today. Value-based decisions are of the essence in product and
process design, the structure and dynamic management of larger programs, the
distribution of programs in a portfolio of strategic initiatives, and national soft-
ware policy. Better decision making is the key enabler of greater value added.

Value-based decision making depends in turn on a set of other advances. First,
the option space within which managers and designers operate needs to be suffi-
ciently rich. To some extent, the option space is determined by the technology
market structure: which firms exist and what they produce. That structure is influ-
enced, in turn, by a number of factors, including but not limited to national level
strategic decision making, e.g., on long-term R&D investment policy, on anti-
trust, and so forth. The market structure determines the materials that are produced
that managers and designers can then employ, and their properties.

Second, as a field we need to understand better the links between technical de-
sign mechanisms (e.g., architecture), context, and value creation to enable both
better education and decision making in any given situation. An improved under-
standing of these links depends on developing better models of sources of value
that are available to be exploited by software managers and designers in the first
place (e.g., real options).

Third, people involved in decision making have to be educated in how to em-
ploy technical means more effectively to create value. In particular, they person-
ally need to have a better understanding of the sources of value to be exploited and
the links between technical decisions and the capture of value.

Fourth, dynamic monitoring and control mechanisms are needed to better guide
decision makers through the option space in search of value added over time.
These mechanisms have to be based on models of links between technical design
and value and on system-specific models and databases that capture system status,
valuation, risk, and so on: not solely as functions of software engineering parame-
ters, such as software development cost drivers, but also of any relevant external
parameters, such as the price of memory, competitor behavior, macroeconomic
conditions, etc., as discussed in Section 6.6.

These system-specific models are based on better cost and payoff models and
estimation and tracking capabilities, at the center of which is a business case
model for a given project, program, or portfolio. Further elements of this road map
are discussed in more detail in (Boehm and Sullivan, 2000).

1.4 Summary and Conclusions

As indicated in the automated test generator (ATG) example in Section 1.1, the
use of value-neutral software engineering methods often causes software projects
to expend significant amounts of scarce resources on activities with negative re-

12 Barry Boehm

turns on investment. Just in the area of software testing, the magnitude of this
wasted effort could be as high as $300 billion per year worldwide.

As indicated by the chapters in this book and related literature in the Refer-
ences, substantial progress is being made towards realizing the value-based soft-
ware engineering (VBSE) agenda of integrating value considerations into the full
range of existing and emerging software engineering practices, and of developing
an overall framework in which they compatibly reinforce each other.

The seven key VBSE elements in Chapter 6 – benefits realization; stakeholder
value proposition elicitation and reconciliation; business case analysis; continuous
risk and opportunity management; concurrent system and software engineering;
value-based monitoring and control; and change as opportunity – provide a start-
ing point for realizing the VBSE agenda, along with the initial theory and VBSE
process framework presented in Chapter 2. Evolutionary approaches for going to-
ward VBSE practices at project, organization, national, and global levels are pro-
vided in Section 1.3.

The transition to value-based software engineering is necessarily evolutionary
because it hasn’t all been invented yet. There are no mature packages available on
the shelf for performing software benefits analysis or value-based earned value
tracking. As with everything else in information technology, VBSE is undergoing
considerable change. And those who embrace this source of change as opportunity
will be the first and fastest to reap its rewards.

Acknowledgements

This paper is based on research supported by the National Science Foundation, the
DoD Software Intensive Systems Directorate, and the affiliates of the University
of Southern California’s Center for Software Engineering (USC-CSE). It owes a
great deal to discussions with the USC-CSE principals, with participants in the
Economics-Driven Software Engineering Research (EDSER) workshops, and with
participants in the International Software Engineering Research Network (ISERN)
workshops, and with the authors of the other chapters in this book. Much of Sec-
tion 1.3 was co-authored by Kevin Sullivan in (Boehm and Sullivan, 2000).

References

(Boehm, 1981) Boehm, B. W.: Software Engineering Economics (Prentice Hall,
1981)

(Boehm, 1989) Boehm, B. W.: Software Risk Management (IEEE-CS Press,
1989)

(Boehm and In, 1996) Boehm, B. W. and In H.: Identifying Quality-Requirement
Conflicts. IEEE Software (March 1996), pp 25–35

(Boehm and Huang, 2003) Boehm, B. W. and Huang, L.: Value-Based Software
Engineering: A Case Study. IEEE Computer (March 2003), pp 33–41

1 Value-Based Software Engineering: Overview and Agenda 13

(Boehm and Sullivan, 2000) Boehm, B. W., Sullivan, K., Software Economics: A
Roadmap. In: The Future of Software Economics, ed by Finkelstein, A. (ACM
Press, 2000), pp 319–343

(Bullock, 2000) Bullock, J.: Calculating the Value of Testing. Software Testing
and Quality Engineering (May/June 2000), pp 56–62

(Butler, 2002) Butler, S.: Security Attribute Evaluation Method: A Cost-Benefit
Approach. Proceedings ICSE 2002 (ACM/IEEE, May 2002), pp 232–240

(Charette, 1989) Charette, R.: Software Engineering Risk Analysis and Manage-
ment (McGraw Hill, 1989)

(Chung et al., 1999) Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional
Requirements in Software Engineering (Kluwer, 1999)

(Clements et al.,2003) Clements, P., Kazman, R., Klein, M.: Evaluating Software
Architecture: Methods and Case Studies (Addison Wesley, 2002)

(Cockburn, 2002) Cockburn, A.: Agile Software Development (Addison Wesley,
2002)

(Collins et al., 1994) Collins, W., Miller, K., Spielman, B., Wherry, J.: How Good
is Good Enough? Communications of the ACM (January 1994), pp 81–91

(DeMarco and Lister, 2003) DeMarco, T., Lister, T.: Waltzing with Bears (Dorset
House, 2003)

(Denne and Cleland-Huang, 2003) Denne, M., Cleland-Huang, J.: Software by
Numbers (Prentice Hall, 2003)

(Erdogmus et al., 2004) Erdogmus, H., Favaro, J., Strigel, W. (eds.): Special Issue:
Return on Investment. IEEE Software, (May/June 2004)

(Erdogmus and Favaro, 2002) Erdogmus, H., Favaro, J.: Keep your Options Open:
Extreme Programming and the Economics of Flexibility. In: Extreme Pro-
gramming Perspectives, ed by G. Succi et al. (Addison Wesley, 2002),
pp 503–552

(Favaro, 1996) Favaro, J.: A Comparison of Approaches to Reuse Investment
Analysis. Proceedings, ICSR 4, (IEEE, 1996)

(Faulk et al., 2000) Faulk, S., Harmon, D., Raffo, D.: Value-Based Software Engi-
neering (VBSE): A Value-Driven Approach to Product-Line Engineering.
Proceedings, First International Conference on Software Product Line Engi-
neering, (August 2000)

(Gerrard and Thompson, 2002) Gerrard, P., Thompson, N.: Risk-Based E-
Business Testing (Artech House, 2002)

(Grünbacher et al., 2004) Grünbacher, P., Egyed, A. F., Medvidovic, N.: Reconcil-
ing software requirements and architectures with intermediate models. In:
Software and System Modeling (SoSyM), Vol. 3, No 3, (Springer, 2004), pp
235–253

(Highsmith, 2002) Highsmith, J.: Agile Software Development Ecosystems (Ad-
dison Wesley, 2002)

(Karlsson and Ryan, 1997) Karlsson, J., Ryan, K.: A Cost-Value Approach for
Prioritizing Requirements. IEEE Software (September–October, 1997),
pp 67–74

14 Barry Boehm

(Kazman et al., 2001) Kazman, R., Asundi J., Klein, M.: Quantifying the Costs
and Benefits of Architectural Decisions. Proceedings, ICSE, (ACM/IEEE,
2001), pp 297–306

(Kleijnen 1980) Kleijnen, J.: Computers and Profits: Quantifying Financial Bene-
fits of Information (Addison Wesley, 1980)

(Marschak, 1974) Marschak, J.: Economic Information, Decision, and Prediction
(3 volumes), 1974

(Persson and Yilmazturk, 2004) Persson, C., Yilmazturk, N.: Establishment of
Automated Regression Testing at ABB: Industrial Experience Report on
‘Avoiding the Pitfalls.’ Proc. ISESE 2004, IEEE, August 2004, pp 112–121

(Phister, 1979) Phister, M.: Data Processing Technology and Economics (Digital
Press, 1979)

(Rawls, 1971) Rawls, J.: A Theory of Justice. (Belknap/Harvard U. Press, 1971,
1999)

(Raz and Shaw, 2001) Raz, O., Shaw, M.: Software Risk Management and Insur-
ance. Proceedings, EDSER-3, IEEE-CS Press, 2001

(Reifer, 2002) Reifer, D.: Making the Software Business Case (Addison Wesley,
2002)

(Schwaber and Beedle, 2002) Schwaber, K., Beedle, M.: Agile Software Devel-
opment with Scrum (Prentice Hall, 2002)

(Sharpe, 1969) Sharpe, W.: The Economics of Computers (Columbia U. Press,
1969)

(Sullivan et al., 2001) Sullivan, K., Cai, Y., Hallen B., Griswold, W.: The Struc-
ture and Value of Modularity in Software Design. Proceedings, ESEC/FSE,
2001, ACM Press, pp 99–108

(Tockey, 2004) Tockey, S.: Return on Software (Addison Wesley, 2004)
(van Solingen, 2004) van Solingen, R.: Measuring the ROI of Software Process

Improvement. IEEE Software, May/June 2004, pp 32–38
(Webster, 2002) Webster’s Collegiate Dictionary, Merriam-Webster, 2002

Author Biography

Barry Boehm is the TRW Professor of Software Engineering and Director of the
Center for Software Engineering at the University of Southern California (USC).
His current research interests include software process modeling, software re-
quirements engineering, software architectures, software metrics and cost models,
software engineering environments, and value-based software engineering. His
contributions to the field include the Constructive Cost Model (COCOMO), the
Spiral Model of the software process, and the Theory W (win-win) approach to
software management and requirements determination. He is a Fellow of the pri-
mary professional societies in computing (ACM), aerospace (AIAA), electronics
(IEEE), and systems engineering (INCOSE), and a member of the US National
Academy of Engineering.

2 An Initial Theory of Value-Based Software
Engineering

Barry Boehm and Apurva Jain

Abstract: This chapter presents an initial “4+1” theory of value-based software
engineering (VBSE). The engine in the center is the stakeholder win-win The-
ory W, which addresses the questions of “which values are important?” and “how
is success assured?” for a given software engineering enterprise. The four addi-
tional theories that it draws upon are utility theory (how important are the val-
ues?), decision theory (how do stakeholders’ values determine decisions?), de-
pendency theory (how do dependencies affect value realization?), and control
theory (how to adapt to change and control value realization?). After discussing
the motivation and context for developing a VBSE theory and the criteria for a
good theory, the chapter discusses how the theories work together into a process
for defining, developing, and evolving software-intensive systems. It also illus-
trates the application of the theory to a supply chain system example, discusses
how well the theory meets the criteria for a good theory, and identifies an agenda
for further research.

Keywords: adaptive control, benefits realization, control theory, decision theory,
dependency theory, domain theories, game theory, risk/opportunity management,
stakeholder win-win, Theory of Justice, Theory W, utility theory, value-based
software engineering.

2.1 Introduction

The Preface and Chapter 1 provide general motivation for a value-based approach
to software engineering. The particular motivation for developing and evolving a
VBSE theory includes the following considerations:
• Understanding the “whys” of VBSE, as well as the “whats” and the “hows.”
• Serving as an evaluation framework for VBSE practices.
• Providing principles for dealing with new software engineering situations

(emergent requirements, rapid unpredictable change, commercial-off-the-shelf
products (COTS), systems of systems “coopetition,” global cross-cultural soft-
ware development).

• Providing a unifying framework for stakeholders to reason about software in-
vestments in terms of value created.

• Helping to assess the maturity of the VBSE field (and its theory).
• Managing expectations about the universality and formality of theories involv-

ing people and unpredictable change.
• Serving as a basis for continuing improvement of VBSE and its theory.

16 Barry Boehm, Apurva Jain

VBSE Theory Context

A VBSE theory needs to address all of the considerations of computer science
theory, plus considerations involved in the managerial aspects of software engi-
neering, plus considerations involved in the personal, cultural, and economic val-
ues involved in developing and evolving successful software-intensive systems.
Although this sounds considerably more complex, we have found that the use of
success-critical stakeholder values to situate and guide technical and managerial
decisions has actually made the job easier.

However, the need to deal with people considerations comes at a price with re-
spect to the highly formalized theories of mathematics and science. These are able
to be both formal and predictive because they rest on strong universal and timeless
assumptions. Chances are that the flow of electricity through a conductor, the flow
of air around an airfoil, or the flow of chemicals through a reactor will be the same
ten years from now as they are now. However, basing a theory of software engi-
neering on such assumptions as the flow of adoptions for a new software engineer-
ing product or the flow of data through an evolving software product being the
same ten years from now will lead to theories with very short lifetimes. As a re-
sult, a VBSE theory will be less formal and, as we will see, will not be universal
or timeless across a wide range of software situations, stakeholders, and products.

On the other hand, formalized theories of software engineering attempting to
abstract out the people factors (e.g., programming calculi (Jones, 1980)) have tre-
mendous difficulties in dealing with situations that are not universal (e.g., skill
factors (Juristo et al., 2005)) or timeless (e.g., Maslow need hierarchies (Maslow,
1954)). A good treatment of these tensions between modernist (written, universal,
general, timeless) and postmodern (oral, particular, local, timely) approaches to
explanatory theories is provided in Cosmopolis (Toulmin, 1992).

Chapter Objectives, Approach, and Definitions

In this context, the objectives of this chapter are to: (1) present an initial theory of
VBSE; (2) illustrate it via an example; (3) evaluate it with respect to criteria for a
good theory; and (4) identify an agenda for further research.

The rest of this section will provide working definitions for “theory” and “crite-
ria for a good theory,” based on candidate definitions in the literature and our ex-
periences in applying and evolving the stakeholder win-win Theory W (Boehm
and Ross, 1989) since 1989.

A Working Definition of “Theory”

There are numerous definitions of “theory” to consider. They range from highly
formal definitions such as, “A theory is a system of general laws that are spatially
and temporally unrestricted and nonaccidental” (Hempel and Oppenheim, 1960;
Danto and Morgenbesser, 1960), to relatively informal definitions such as “A the-
ory is any coherent description or explanation of observed or experienced phe-

2 An Initial Theory of Value-Based Software Engineering 17

nomena” (Gioia and Pitre, 1990). Our working definition of “theory” here follows
(Torraco, 1997) from attempting to capture the strengths of both formal and in-
formal approaches:

“A theory is a system for explaining a set of phenomena that specifies the key
concepts that are operative in the phenomena and the laws that relate the con-
cepts to each other.”

Our theorems about success criteria for software-intensive enterprises will not
be “spatially and temporally unrestricted and nonaccidental.” This is because
software-intensive enterprises and their success are subject to multiple concurrent
influences, some of which are unpredictable. For example, a project that is poorly
requirements-engineered and architected, poorly managed, behind schedule, and
over budget can still turn into a great success with the appearance of just the right
new COTS product to satisfy stakeholder needs. The reverse is true as well: “The
best laid plans o’ mice an’ men Gang aft agley” through unforeseeable external
circumstances (Burns, 1785).

Criteria for a Good Theory

Besides the references on “theory” above, we found good sets of criteria for a
good theory in (Patterson, 1983) (importance, preciseness and clarity, parsimony
or simplicity, comprehensiveness, operationality, empirical validity or verifiabil-
ity, fruitfulness, practicality) and (Bacharach, 1989) (falsifiability, utility for ex-
planation, and prediction). In comparing these with our previous criteria for evalu-
ating Theory W (simple, general, specific, accurate, analytic, predictive,
diagnostic, synthetic, generative), we converged on the following composite list of
major criteria:
1. Utility. Particularly in a value-based context, does the theory favor addressing

critical success factors rather than trivia?
2. Generality. Does the theory cover a wide range of situations and concerns (pro-

cedural, technical, economic, human)?
3. Practicality. Does the theory help address users’ practical needs with respect to

prediction, diagnosis, synthesis of solutions, generation of good practices, and
explanation?

4. Preciseness. Does the theory provide situation-specific and accurate guidance?
5. Parsimony. Does the theory avoid excess complexity? Is it simple to under-

stand, learn, and apply?
6. Falsifiability. Is the theory coherent enough to be empirically refuted?

We will address these criteria as we explain the VBSE theory in Section 2.2. After
applying it to an example in Section 2.3, we will review how well the criteria were
satisfied in Section 2.4. Section 2.5 will summarize our conclusions, and identify
areas for further research.

18 Barry Boehm, Apurva Jain

2.2 A “4+1” Theory of Value-Based Software Engineering

Figure 4 summarizes the “4+1” theory of VBSE. Credit is due to Philippe Kruch-
ten for originating this model form in the area of software architecture (Kruchten,
1999). The engine in the center is the success-critical stakeholder (SCS) win-win
Theory W, which addresses the questions of “what values are important?” and
“how is success assured?” for a given software engineering enterprise. The four
additional theories that it draws upon are utility theory (how important are the val-
ues?), decision theory (how do stakeholders’ values determine decisions?), de-
pendency theory (how do dependencies affect value realization?), and control the-
ory (how to adapt to change and control value realization?).

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

How do dependencies
affect value realization?

How to adapt to change and
control value realization?

How do values determine
decision choices?

How important are the
values?

What values are important?
How is success assured?

Fig. 4. The “4+1” Theory of VBSE: overall structure

The Central Engine: Theory W

The core of Theory W is the Enterprise Success Theorem: Your enterprise will
succeed if and only if it makes winners of your success-critical stakeholders.

An informal proof follows. As discussed in Section 2.1, VBSE theorems and
proofs are less formal than those in such areas as mathematics and physics.
1. Proof of “if”:
2. Everyone significant is a winner.
3. Nobody significant is left to complain.
4. Proof of “only if”:
5. Nobody wants to lose.
6. Prospective losers will refuse to participate, or will counterattack.
7. The usual result is lose-lose.

2 An Initial Theory of Value-Based Software Engineering 19

The proof of “if” is reasonably clear. The proof of “only if” may not be so clear,
so we illustrate it in three frequently occurring examples of the primary stake-
holders in an enterprise involving a customer contracting with a developer for a
software system that will benefit a community of users, as shown in Figure 5.

Proposed Solution Winner Loser
1. Quick, cheap, sloppy Product Developer and Customer User
2. Lots of “bells and whistles” Developer and User Customer
3. Driving too hard a bargain Customer and User Developer

Fig. 5. Win-Lose generally becomes Lose-Lose

In Case 1, the customer and developer attempt to win at the expense of the user by
skimping on effort and quality. When presented with the product, the user refuses
to use it, leaving everyone a loser with respect to their expectations.

In Case 2, the developer and user attempt to win at the expense of the customer
(usually on a cost-plus contract) by adding numerous low value “bells and whis-
tles” to the product. When the customer’s budget is exhausted without a resulting
value adding product, again everyone is a loser with respect to their expectations.

In Case 3, the user and customer compile an ambitious set of features to be de-
veloped and pressure competing developers to bid low or lose the competition.
Once on contract, the surviving bidder will usually counterattack by colluding
with the user or customer to convert the project into Case 2 (adding user bells and
whistles with funded Engineering Change Proposals) or Case 1 (saying, for exam-
ple, “The contract specifies user-friendly error messages. For my programmers, a
memory dump is a user-friendly error message and thus is a contractually compli-
ant deliverable”). Again, everyone is a loser with respect to their expectations.

Achieving and Maintaining a Win-Win State: the Four Supporting
Theories

However, the Enterprise Success Theorem does not tell us how to achieve and
maintain a win-win state. This requires the Win-Win Achievement Theorem:
Making winners of your success-critical stakeholders requires (1) Identifying all
of the success-critical stakeholders (SCSs); (2) Understanding how the SCSs want
to win; (3) Having the SCSs negotiate a win-win set of product and process plans;
(4) Controlling progress toward SCS win-win realization, including adaptation to
change.

Identifying All of the SCSs: Dependency Theory

Identifying all of the SCSs is in the province of dependency theory. A key tech-
nique is the Results Chain (Thorp, 1998).

Figure 6 shows a simple results chain provided as an example in The Informa-
tion Paradox (Thorp, 1998). It establishes a framework linking Initiatives that

20 Barry Boehm, Apurva Jain

consume resources (e.g., implement a new order entry system for sales) to Contri-
butions (not delivered systems, but their effects on existing operations) and Out-
comes, which may lead either to further contributions or to added value (e.g., in-
creased sales). A particularly important contribution of the Results Chain is the
link to Assumptions, which condition the realization of the Outcomes.

Initiative

Assumption

Contribution

Intermediate
outcome

Outcome

Implement a new
order entry system

Reduced order
processing

cycle
Increase sales

Order to delivery
time is an important

buying criterion

Reduce time to
process order

Reduce time to
deliver product

Fig. 6. Results Chain

Thus, in Figure 6, if order to delivery time turns out not to be an important buying
criterion for the product being sold (e.g., stockable commodities such as soap or
pencils), the reduced time to deliver the product will not result in increased sales.
The Results Chain provides a valuable framework by which software project
members can work with clients to identify additional non-software initiatives that
may be needed to realize the potential benefits enabled by the software/IT system
initiative. These may also identify some additional success-critical stakeholders
who need to be represented and “bought into” the shared vision.

For example, the initiative to implement a new order entry system may reduce
the time required to process orders only if an additional initiative to convince the
salespeople that the new system will be good for their careers and to train them in
how to use the system effectively is pursued. If the order entry system is so effi-
ciency optimized that it does not keep track of sales credits, the salespeople will
fight using it, so increased sales may also require adding capabilities to keep track
of sales credits so salespeople will want to use the new system.

Further, the reduced order processing cycle will reduce the time to deliver
products only if additional initiatives are pursued to coordinate the order entry sys-
tem with the order fulfillment system. Some classic cases where this did not hap-
pen were the late deliveries of Hershey’s Halloween candy (Carr, 2002) and Toys
R US Christmas toys.

Such additional initiatives need to be added to the Results Chain. Besides in-
creasing its realism, this also identifies additional success-critical stakeholders

2 An Initial Theory of Value-Based Software Engineering 21

(salespeople and order fulfillment people) who need to be involved in the system
definition and development process. The expanded Results Chain involves these
stakeholders not just in a stovepipe software project to satisfy some requirements,
but also in a program of related software and non-software initiatives focused on
value-producing end results.

The Hershey’s and Toys R US examples show that failing to identify an SCS
such as the order fulfillment organization generally leads to failure. This makes
identifying all of the SCSs essentially a necessary condition for win-win achieve-
ment. Here also, however, our informal theorems do not guarantee failure; ne-
glectful projects can still “get lucky” and succeed if the developer or COTS ven-
dor happens to have the additional features needed at hand. But betting on luck is
not a recommended strategy.

Actually, dependency theory covers the full range of theories that help reason
about how dependencies affect value realization. These include theories about
product dependencies such as physics, computer science, and architectural theo-
ries (Alexander, 1979; Rechtin, 1991); theories about process dependencies, such
as scheduling and concurrency theories; theories about stakeholder interdependen-
cies, such as sociology and organization theories (Parsons, 1977; March and
Simon, 1958; Argyris, 1978; Rifkin, 2004); and theories about product, process,
and stakeholder interdependencies, such as economic, management, and system
engineering theories (Simon, 1969; Cyert and March, 1963; Marschak and Rad-
ner, 1972; Churchman et al., 1957; Wymore, 1967; Checkland, 1981). Other ex-
amples will be provided in Section 2.4.

Understanding How the SCSs Want to Win: Utility Theory

Understanding how the SCSs want to win is in the province of utility theory (Du-
puit, 1952; Debreu 1959; Fishburn, 1982). Misunderstanding SCS utility functions
does not guarantee failure if an enterprise happens to get lucky. But again, under-
standing how the SCSs want to win is essentially a necessary condition for win-
win achievement. Utility theory also has several branches such as the satisficing
theory of bounded rationality (Simon, 1957), multi-attribute utility theory (Keeney
and Raiffa, 1976), and its situation-dependent aspects such as the Maslow need hi-
erarchy (Maslow, 1954) stating that lower level needs (food and drink; safety and
security) have dominant utilities when unsatisfied and negligible utilities when
satisfied.

Having the SCSs Negotiate Win-Win Plans: Decision Theory

Having the SCSs negotiate win-win plans is in the province of decision theory.
Decision theory also has many aspects such as negotiation theory (Raiffa, 1982;
Fisher and Ury, 1981), game theory (von Neumann and Morgenstern, 1944; Luce
and Raiffa, 1957), multi-attribute decision theory (Keeney and Raiffa, 1976), sta-
tistical decision theory and the buying of information to reduce risk (Blackwell
and Girshick, 1954), real options theory as discussed in Chapters 3 and 17, and the
Theory of Justice (Rawls, 1971) discussed in Chapter 15.

22 Barry Boehm, Apurva Jain

Getting to a win-win decision. Navigating through all of these decision options
is rather complex. One aid in the stakeholder win-win negotiation context is the
win-win equilibrium theory in (Boehm and Bose, 1994) and (Lee, 1996). As illus-
trated in Figure 7, the win-win negotiation model begins with the success-critical
stakeholders (SCSs) identifying their win conditions (or value propositions) about
the system to be developed and evolved. The SCSs can include considerably more
classes than users, customers, and developers. Additional SCS classes can include
maintainers, administrators, interoperators of co-dependent systems, testers, mar-
keters, venture capitalists, and, as in Section 6.8 on software engineering ethics,
representatives of the least advantaged people whose health, lives, or quality of
life may be affected by the system.

Win ConditionWin Condition

AgreementAgreement OptionOption

IssueIssue
involves

addresses

adopts

covers

WinWin Equilibrium State
- All Win Conditions covered by Agreements
- No outstanding Issues

Win ConditionWin Condition

AgreementAgreement OptionOption

IssueIssue
involves

addresses

adopts

covers

WinWin Equilibrium State
- All Win Conditions covered by Agreements
- No outstanding Issues

Fig. 7. WinWin Negotiation Model

Besides Win Conditions, the win-win negotiation model in Figure 7 involves
Agreements (in which all the SCSs agree to adopt a win condition or an option),
Issues (in which an SCS can identify a conflict between its and others’ win condi-
tions), and Options (proposals for resolving issues by expanding the option space).
Agreements can also be reached by having the SCSs agree to adopt an option to
resolve an issue.

The WinWin equilibrium state in Figure 7 holds when all the win conditions
are covered by agreements, and there are no outstanding issues. At the beginning
of a negotiation, this is true by default. As soon as a stakeholder enters a win con-
dition, the other stakeholders can all accept it via an agreement, in which case the
WinWin equilibrium state still holds, or some stakeholder enters an issue and an
associated conflicting win condition. The negotiation then leaves the WinWin
equilibrium state, and the stakeholders attempt to formulate options to resolve the
issue. For example, if the conflicting win conditions are to have the system run on
a Windows platform and a Unix platform, an acceptable option might be to build
the system to run on Java Virtual Machine (JVM). The negotiation proceeds until
all of the stakeholders’ win conditions are entered and the WinWin equilibrium
state is achieved, or until the stakeholders agree that the project should be dis-
banded because some issues are irresolvable. In such situations, it is much prefer-
able to determine this before rather than after developing the system. And in terms

2 An Initial Theory of Value-Based Software Engineering 23

of the WinWin Achievement Theorem, this also makes negotiating win-win plans
a necessary condition for win-win achievement.

Controlling Progress Toward SCS Win-Win Realization: Control
Theory

Controlling progress toward SCS win-win realization is in the province of control
theory. As summarized in (Brogan, 1974) the necessary conditions for successful
enterprise control are observability (the ability to observe the current enterprise
state), predictability (the ability to predict whether the enterprise is heading to-
ward an unacceptable state), controllability (the ability to redirect the enterprise
toward an acceptable near-term state and a successful end state), and stability (the
avoidance of positive feedback cycles that cause control systems to overcompen-
sate and become unstable).

The application of these necessary conditions to people-intensive software en-
terprises does not permit the use of observability and controllability equations as
precise as those in aerospace and electrical engineering, but they capture most of
the wisdom provided by software management thought leaders. Examples are
“You can’t control what you can’t measure” (DeMarco, 1982); “If you don’t
know where you’re going, a map won’t help” (Humphrey, 1989); and “Giving
people rewards for finding bugs is more likely to increase bug production than to
increase software quality” (Adams, 1995).

Particularly for VBSE, it is more important to apply control theory principles to
the expected value being realized by the project rather than just to project progress
with respect to plans. Traditional “earned value” systems have their uses, but they
need to be complemented by business value and mission value achievement moni-
toring and control systems as discussed in Chapter 8 and (Boehm and Huang,
2003). These involve the use of risk management; adaptive control functions such
as market watch and plan renegotiation; and multicriteria control mechanisms
such as BTOPP (Morton, 1991; Thorp, 1998) and balanced scorecards (Kaplan
and Norton, 1996). Particularly in an era of increasing rates of change, this makes
both traditional and adaptive control (Highsmith, 2000) necessary conditions for
software enterprise success in terms of the WinWin Achievement Theorem.

2.3 Using and Testing the VBSE Theory: Process
Framework and Example

In this section, we present in Figure 8 a seven step process-oriented expansion of
the 4+1 VBSE theory framework shown in Figure 4, and then apply it to a supply
chain management system development example. In Section 2.4, we will use the
results to evaluate how well it addresses the criteria for a good theory presented in
Section 2.1.3.

24 Barry Boehm, Apurva Jain

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

6a, 7c. State measurement,
prediction, correction;
Milestone synchronization

5a. Investment analysis,
Risk analysis

1. Protagonist goals
3a. Solution exploration
7. Risk, opportunity, change
management

5a, 7b. Prototyping

2a. Results Chains
3b, 5a, 7b. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b, 7a. Solution Analysis

5a, 7b. Option, solution
development & analysis

4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

6, 7c. Refine, Execute,
Monitor & Control Plans

5. SCS Win-Win
Negotiation

Fig. 8. Process-oriented expansion of 4+1 VBSE Theory framework

Step 1 of the process starts with a protagonist or change agent who provides the
motivating force to get a new project, initiative, or enterprise started. As shown in
Table 2, protagonists can be organization leaders with goals, authority, and re-
sources, entrepreneurs with goals and resources, inventors with goals and ideas, or
consortia with shared goals and distributed leadership and resources.

Table 2. Frequent protagonist classes

Protagonist Class Goals Authority Ideas Resources
Leader with Goals, Baseline
Agenda X X X X

Leader with Goals, Open Agenda X X X
Entrepreneur with Goals, Baseline
Agenda X X X

Entrepreneur with Goals, Open
Agenda X X

Inventor with Goals, Ideas X X
Consortium with Shared Goals X (X) (X)

Each class of protagonist will take a somewhat different approach in visiting the
seven main steps in Figure 8 to create and sustain a win-win combination of SCSs
to achieve their goals. In this section, we will trace the approach taken by a leader
whose goals involve a combination of opportunities and problems, who has the
authority and resources to address the goals, and who is open to different ideas for
addressing them. She is Susan Swanson, an experienced MBA executive, former
bicycling champion, and newly hired CEO of Sierra Mountainbikes, Inc. (a ficti-

2 An Initial Theory of Value-Based Software Engineering 25

tious company representative of two similar companies with less successful pro-
jects).

Sierra Mountainbikes Opportunities and Problems

Susan began by convening her management and technology leaders, along with a
couple of external consultants, to develop a constructive shared vision of Sierra
Mountainbikes’ primary opportunities and problems. The results determined a
significant opportunity for growth, as Sierra’s bicycles were considered top qual-
ity and competitively priced. The major problem area was in Sierra’s old manual
order processing system. Distributors, retailers, and customers were very frus-
trated with the high rates of late or wrong deliveries; poor synchronization be-
tween order entry, confirmation, and fulfillment; and disorganized responses to
problem situations. As sales volumes increased, the problems and overhead ex-
penses continued to escalate.

In considering solution options, Susan and her Sierra team concluded that since
their primary core competence was in bicycles rather than software, their best
strategy would be to outsource the development of a new order processing system,
but to do it in a way that gave the external developers a share in the system’s suc-
cess. As a result, to address these problems, Sierra entered into a strategic partner-
ship with eServices Inc. for joint development of a new order processing and ful-
fillment system. eServices was a growing innovator in the development of supply
chain management systems (in terms of Table 2, an inventor with ideas looking
for leaders with compatible goals and resources to apply their ideas).

Step 2: Identifying the Success-Critical Stakeholders (SCSs)

Step 2 in the process version of the VBSE theory shown in Figure 8 involves iden-
tifying all of the success-critical stakeholders involved in achieving the project’s
goals. As seen in Figure 9, the Step 2a Results Chain jointly determined by Sierra
and eServices, this includes not only the sales personnel, distributors, retailers, and
customers involved in order processing, but also the suppliers involved in timely
delivery of Sierra’s bicycle components.

The Results Chain includes initiatives to integrate the new system with an up-
grade of Sierra’s supplier, financial, production, and human resource management
information systems. The Sierra-eServices strategic partnership is organized
around both the system’s results chain and business case, so that both parties share
in the responsibilities and rewards of realizing the system’s benefits. Thus, both
parties share a motivation to understand and accommodate each other’s value
propositions or win conditions and to use value-based feedback control to manage
the program of initiatives. This illustrates the “only if” part of the Enterprise Suc-
cess Theorem. If Susan had been a traditional cost-cutting, short horizon execu-
tive, Sierra would have contracted for a lowest bidder order processing system us-
ing Case 3 in Figure 5, and would have ended up with a buggy, unmaintainable

26 Barry Boehm, Apurva Jain

stovepipe order processing system and many downstream order fulfillment and
supplier problems to plague its future.

New order entry
system

New order
fulfillment system

New order
fulfillment

processes,
outreach, training

Improved supplier
coordination

Less time,
fewer errors in

order
processing

Increased
customer

satisfaction,
decreased
operations

costs

Increased
profits, growth

New order entry
processes,

outreach, training

Faster order entry steps, errors

Safety, fairness
 inputs

Faster,
better
order

fulfillment
system

Interoperability
inputs

On-time assembly

Increased
sales,

profitability,
customer

satisfaction

Less time,
fewer

errors per
order

fulfillment
system

Distributors, retailers,
customers

SuppliersSales personnel,
distributors

Developers

 Assumptions
 - Increasing market size
 - Continuing consumer satisfaction with product
 - Relatively stable e-commerce infrastructure
 - Continued high staff performance

Fig. 9. Results Chain for Sierra supply chain management

In terms of the VBSE process in Figure 8, however, Sierra and eServices used the
Results Chain form of Dependency Theory to identify additional SCSs (sales per-
sonnel, distributors, retailers, customers, suppliers) who also need to be brought
into the SCS WinWin equilibrium state (fortunately, pollution and public safety
are not major issues with bicycles, so a representative of the general public is not
necessary).

Steps 3 and 4: Understanding SCS Value Propositions; Managing
Expectations

As shown in Figure 10 (the first four steps in Figure 8), Step 3 (understanding all
of the SCSs’ value propositions or win conditions) primarily involves utility the-
ory. But it also involves Theory W in reconciling SCS win conditions with
achievable solutions (Step 3a), and various forms of dependency theory in con-
ducting cost/schedule/performance solution trade-off, and sensitivity analyses
(Step 3b).

2 An Initial Theory of Value-Based Software Engineering 27

Utility Theory

Theory W:
SCS Win-Win

Decision Theory

Dependency
Theory

Control Theory

1. Protagonist goals
3a. Solution exploration

2a. Results Chains
3b. Cost/schedule/
performance tradeoffs

2. Identify SCSs

3b. Solution Analysis4. SCS expectations
management

3. SCS Value
 Propositions
(Win conditions)

SCS: Success-Critical Stakeholder

Fig. 10. Steps 1-4 in the VBSE theory framework

For example, the suppliers and distributors may identify some complex excep-
tion reporting, trend analysis, and customer relations management features they
would like to have in the system’s Initial Operational Capability (IOC) in early
2006. However, the use of forms of dependency theory such as software cost and
schedule estimation models may show that the dependency of IOC delivery
schedule on IOC software size makes it unrealistic to try to develop the full de-
sired feature set by the IOC date. In such a case, Sierra and eServices will have to
revisit the SCSs’ utility functions in Step 4 by showing them the cost and schedule
model credentials and results, and asking them to expand their utility functions by
prioritizing their desired features and participating in further solution exploration
(a go-back to Step 3a) to achieve a win-win consensus on the top priority subset of
features to include in the IOC.

It may be in some cases that the SCSs’ IOC needs are irreconcilable with the
IOC schedule. If so, the SCSs may need to live with a later IOC, or to declare that
a SCS win-win state is unachievable and abort the project. Again, it is better to do
this earlier rather than later. The particular considerations are discussed in more
detail in a paper on the Schedule as Independent Variable (SAIV) process (Boehm
et al., 2002).

Step 5: SCSs Negotiate a Win-Win Decision

Actually, the previous paragraph anticipates the content of Step 5, in which the
SCSs negotiate a win-win decision to commit themselves to go forward. Once the
SCSs have identified and calibrated their win conditions in Steps 3 and 4, the

28 Barry Boehm, Apurva Jain

process of identifying conflicts or Issues among win conditions; inventing and ex-
ploring Options to resolve Issues; and converging on Agreements to adopt win
conditions or Options proceeds as described in Section 2.2 and Chapter 7.

In a situation such as the Sierra supply chain project, the number of SCSs and
the variety of their win conditions (cost, schedule, personnel, functionality, per-
formance, usability, interoperability, etc.) means that multi-attribute decision the-
ory will be involved as well as negotiation theory. Susan will also be concerned
with investment theory or business case analysis to assure her stakeholders that the
supply chain initiative will generate a strong return on investment. As many of the
decisions will involve uncertainties (market trends, COTS product compatibilities,
user interface choices), forms of statistical decision theory such as buying infor-
mation to reduce risk will be involved as well.

User interface prototypes are actually ways of better understanding SCS utility
functions, as indicated in Figure 8 by the arrow between decision theory and util-
ity theory. The other components of Step 5a in Figure 8 involve other aspects of
dependency theory, such as performance analysis, business case analysis, or criti-
cal-path schedule analysis. As also shown in Figure 8, these analyses will often
proceed at increasing levels of detail in supporting steps 3a, 5a, and 7a as the pro-
ject proceeds into detailed design, development, integration, and testing. Chap-
ters 5, 10, 11, 12, 14, and 16 provide further detailed examples.

Fig. 11. Expected benefits and business case

New System Current
System Financial Customers

 Date M
ar

ke
t S

iz
e

($
M

)

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

M
ar

ke
t S

ha
re

 %

Sa
le

s

Pr
of

its

C
os

t S
av

in
gs

C
ha

ng
e

in
 P

ro
fit

s

C
um

ul
at

iv
e

C
ha

ng
e

in
 P

ro
fit

s

C
um

ul
at

iv
e

C
os

t

R
O

I

La
te

 D
el

iv
er

y
%

C
us

to
m

er
 S

at
is

fa
ct

io
n

(0
-5

)

In
-T

ra
ns

it
V

is
ib

ili
ty

 (0
-5

)

Ea
se

 o
f U

se
 (0

-5
)

12/31/03 360 20 72 7 20 72 7 0 0 0 0 0 12.4 1.7 1.0 1.8

12/31/04 400 20 80 8 20 80 8 0 0 0 4 -1 11.4 3.0 2.5 3.0

12/31/05 440 20 88 9 22 97 10 2.2 3.2 3.2 6 -.47 7.0 4.0 3.5 4.0

12/31/06 480 20 96 10 25 120 13 3.2 6.2 9.4 6.5 .45 4.0 4.3 4.0 4.3

12/31/07 520 20 104 11 28 146 16 4.0 9.0 18.4 7 1.63 3.0 4.5 4.3 4.5

12/31/08 560 20 112 12 30 168 19 4.4 11.4 29.8 7.5 2.97 2.5 4.6 4.6 4.6

2 An Initial Theory of Value-Based Software Engineering 29

Figure 11 summarizes the business case analysis for the Sierra project; dollar val-
ues are all in millions of 2004 dollars ($M) for simplicity. The analysis compares
the expected sales and profits for the current system (columns 4, 5) and the new
system (columns 7, 8) between 2004 and 2008, the cumulative increase in profits,
investment cost, and resulting return on investment (columns 11-13), and expected
improvements in other dimensions such as late delivery and customer satisfaction
(columns 14-17). The bottom line is a strong 2.97 ROI, plus good expected out-
comes in the customer satisfaction dimensions. More detail can be found in Chap-
ter 12 and (Boehm and Huang, 2003).

The negotiations converge on a number of win-win agreements, such as involv-
ing the suppliers and distributors in reviews, prototype exercising, and beta test-
ing; having Sierra provide eServices with two of its staff members to work on the
software development team; and agreeing on compatible data definitions for prod-
uct and monetary exchange. At one point in the negotiation, an unfortunate go-
back is necessary when an Agreement on a product definition standard is reversed
by the management of one of the distributors, who discloses that it is now commit-
ted to an emerging international standard. After some renegotiation, the other
SCSs agree to this at some additional cost. But it brings up another necessary con-
dition for successful win-win negotiations (and other collaborative vestures such
as agile methods): that the stakeholder representatives be CRACK (collaborative,
representative, authorized, committed, and knowledgeable) participants (Boehm
and Turner, 2004). Some other perspectives on win-win management are in
(Waitley, 1985) and (Covey, 1989).

Steps 6 and 7: Planning, Executing, Monitoring, Adapting, and
Controlling

As with the dependency analyses, project planning, executing, monitoring, adapt-
ing, and controlling proceed incrementally in increasing amounts of details, gener-
ally following a risk-driven spiral process. Questions such as “how much is
enough planning, specifying, prototyping, COTS evaluation, business case analy-
sis, architecting, documenting, verifying, validating, etc.?” are best resolved by
balancing the risk exposures of doing too little or too much. As Risk Exposure =
Probability (Loss) * Value (Loss) is a value-based concept, risk balancing is inte-
gral to VBSE. See (Boehm and Turner, 2004) and (Port and Chen, 2004), for ex-
ample, “how much is enough?’ analyses.

Value-based planning and control differs most significantly from traditional
project planning and control in its emphasis on monitoring progress toward value
realization rather than toward project completion. Particularly in an era of increas-
ing rates of change in market, technology, organizational, and environmental con-
ditions, there is an increasing probability that managing to a fixed initial set of
plans and specifications will produce systems that are out of step and non-
competitive with projects managing adaptively toward evolving value realization.

Perhaps the most provocative example is the traditional technique of “earned
value management.” It assigns “value” to the completion of project tasks and

30 Barry Boehm, Apurva Jain

helps track progress with respect to planned budgets and schedules, but has no
way of telling whether completing these tasks will add to or subtract from the
business value or mission value of the enterprise. Example failure modes from this
approach are systems that had to be 95% redeveloped on delivery because they
failed to track evolving requirements (Boehm, 1973), and startup companies that
failed to track closure of market windows.

If an organization has used steps 1-5 to identify SCSs, determine their value
propositions, and develop business cases, it has developed the framework to moni-
tor expected value realization, adjust plans, and control progress toward real SCS
value achievement. Figure 12 shows how this is done for the Sierra project, based
on the initial budgets, schedules, and business case in Figure 11. Value-based
monitoring and control for Sierra requires additional effort in terms of technology
watch and market watch, but these help Sierra to discover early that their in-
transit-visibility (ITV) COTS vendor was changing direction away from Sierra’s
needs.

1. Increased COTS ITV risk, fallback identified.
2. Using COTS ITV fallback; new HW competitor; renegotiating HW
3. $200,000 savings from renegotiated HW.
4. New COTS ITV source identified, being prototyped.
5. New COTS ITV source initially integrated.
* Interim ratings based on trial use

Fig. 12. Value-based expected/actual outcome tracking

Milestone

 S
ch

ed
ul

e

 C
os

t (
$K

)

 O
p’

l C
os

t S
av

in
gs

 M
ar

ke
t S

ha
re

 %

 A
nn

ua
l S

al
es

 ($
M

)

 A
nn

ua
l P

ro
fit

s (
$M

)

 C
um

. P
ro

fit
s

 R
O

I

 L
at

e
D

el
iv

er
y

%

 C
us

to
m

er
 S

at
is

fa
ct

io
n

 IT
V

 E
as

e
of

 U
se

 R
is

ks
/O

pp
or

tu
ni

tie
s

Life Cycle 3/31/04 400 20 72 7.0 12.4 1.7 1.0 1.8
Architecture 3/31/04 427 20 72 7.0 12.4 1.7 1.0 1.8

(1)

Core 7/31/04 1,050
Capability 7/20/04 1,096 2.4* 1.0* 2.7*

Demo (CCD)
(2)

Software Init. 9/30/04 1,400
Op. Cap. (IOC) 9/30/04 1,532 2.7* 1.4* 2.8*

Hardware 9/30/04 3,500
IOC 10/11/04 3,432

(3)

Deployed 12/31/04 4,000 20 80 8.0 0.0 -1.0 11.4 3.0 2.5 3.0
IOC 12/20/04 4,041 22 88 8.6 0.6 -.85 10.8 2.8 1.6 3.2

(4)

Responsive 3/31/05 4,500 300 9.0 3.5 3.0 3.5
IOC 3/30/05 4,604 324 7.4 3.3 1.6 3.8

Full Op. 7/31/05 5,200 1,000 3.5* 2.5* 3.8*
Cap. CCD 7/28/05 5,328 946

(5)

Full Op. 9/30/05 5,600 1,700 3.8* 3.1* 4.1*
Cap. Beta 9/30/05 5,689 1,851
Full Op. 12/31/05 6,000 2,200 22 106 12.2 3.2 -.47 7.0 4.0 3.5 4.0

Cap. Deployed 12/20/05 5,977 2,483 24 115 13.5 5.1 -.15 4.8 4.1 3.3 4.2
Release 2.1 6/30/06 6,250

2 An Initial Theory of Value-Based Software Engineering 31

This enabled Sierra to adapt by producing a timely fallback plan, and to proac-
tively identify and approach other likely ITV COTS vendors. The results, as
shown in the ITV column and explained in the Risks/Opportunities column of
Figure 12, was an initial dip in achieved ITV rating relative to plans, but a recov-
ery to close to the originally planned value. The Risks/Opportunities column also
shows a “new hardware competitor” opportunity found by market watch activities
that results in a $200,000 hardware cost savings that mostly compensated for the
added software costs of the ITV fallback. The use of prioritized requirements to
drive value-based Pareto- and risk-based inspection and testing, as discussed in
Chapter 1 and (Gerrard and Thompson, 2002), is another source of software cost
savings.

The bottom-line results are a good example of multi-attribute quantita-
tive/qualitative balanced scorecard methods of value-based monitoring, adapta-
tion, and control. They are also a good example of use of the necessary conditions
for value-based control based on control theory. A traditional value-neutral
“earned value” management system would fail on the criteria of business value
observability, predictability, and controllability, because its plans, measurements,
and controls deal only with internal-project progress and not with external busi-
ness value observables and controllables. They also show the value of adaptive
control in changing plans to address new risks and opportunities, along with the
associated go-backs to revisit previous analyses and revise previous plans in Steps
7a, 7b, and 7c.

2.4 VBSE Theory Evaluation

The Sierra example in Section 2.3 provides an opportunity to evaluate the VBSE
theory with respect to the criteria for a good theory presented in Section 2.1.

Utility: Addressing Critical Success Factors. The Results Chain method in
Step 2 identified missing success-critical initiatives and stakeholders that were the
downfall of supply chain initiatives at Hershey’s and Toys R US. The risk-driven
inspection and test approaches in Step 6 avoid wasting inspection and test time on
trivial-value aspects of the system.

Generality: Covering procedural, technical, economic, and human concerns;
covering small and large systems. The seven-step process with its ability to ac-
commodate parallel activities and go-backs was sufficient to cover the Sierra pro-
ject’s procedural needs. Technical and economic concerns are addressed in the use
of dependency theory for cost, schedule, performance, and business case analyses
in Steps 3a, 5a, and 7b. Human concerns are the essence of Theory W and utility
theory, and of the SCS negotiations in Step 5. The steps in the VBSE theory have
worked well for several midsized supply chain and customer relations manage-
ment systems similar to Sierra; for over 100 small real-client e-services projects at
USC; and as a framework for addressing very large systems of systems in such ar-
eas as defense and air traffic control.

32 Barry Boehm, Apurva Jain

Practicality: Supporting practical needs for prediction, diagnosis, solution syn-
thesis, good practice generation, and explanation. The theory draws on a wide va-
riety of dependency models (e.g., cost, schedule, performance, quality) to predict
outcomes. In a stable, well-understood environment, managing to the predictions
usually produces a self-fulfilling prophecy. In less stable and less familiar situa-
tions such as the Sierra case study, dependency theory was able to diagnose risks
such as missing stakeholders in Step 2, Theory W was able to support synthesis of
SCS win-win solutions in Steps 3-5, and adaptive control theory was able to gen-
erate good value-achievement monitoring practices to support in-process diagnosis
and resynthesis in Steps 6-7. The control theory necessary conditions of ob-
servability and controllability were able to explain why traditional earned value
systems would not have addressed and resolved these value domain problems.

Preciseness: Providing situation-specific and accurate guidance. The theory is
no more (and no less) accurate than its constituent theories in predicting outcomes
of unprecedented situations, but it is able to provide situation-specific guidance, as
shown in its application to the Sierra supply chain project. Also, several examples
were provided in Section 2.3 of how the theory would have generated different
guidance in different situations, such as with the distributor management’s rever-
sal of a win-win agreement on a product definition standard in Step 5, and with the
ITV COTS vendor’s change of direction in Steps 6 and 7.

Parsimony: Avoiding excess complexity; ease of learning and application. The
theory’s use of risk management to determine “how much is enough” planning,
specifying, testing, etc. helps avoid excess complexity and to make “everything as
simple as possible, but no simpler” (Albert Einstein). Its ease of learning and use
has been tested mainly on USC’s over 100 e-services projects. These are devel-
oped by teams of five or six MS students who learn the technologies as they go,
and have a 92% success rate of on-time, satisfied customer delivery (Boehm et al.,
1998).

Flexibility: Ability to be empirically refuted. The case study identified a par-
ticular situation in which application of the theory could not produce a win-win
solution, leading to a timely decision to cancel the project. This involved incom-
patible and nonnegotiable SCS win conditions about Initial Operational Capability
content and schedule in Steps 3 and 4. A similar outcome could have resulted
from the distributor management change of direction in Step 5.

Actually, there are several other classes of situations in which our experience
has shown that the win-win approach may not succeed. These are:
• People may disguise their true win conditions. In one situation, a stakeholder

rejected a COTS product for being too expensive. When the price was lowered,
the stakeholder said that some essential features were missing. When the ven-
dor offered to supply the features at no extra cost, the true reason came out: the
stakeholder had had bad dealings with the COTS vendor in the past.

• Some people like to win by making others losers. It is best to seek other partners
when you encounter such people.

• You can’t make omelets without breaking eggs. Many large-scale dams that
benefited millions of people had to drown some other people’s homes and vil-
lages. Generous payment can reduce the loss, but generally not eliminate it.

2 An Initial Theory of Value-Based Software Engineering 33

• Some situations have only one winner. A good example involves political elec-
tions, in which political parties are motivated to discredit and demonize candi-
dates and platforms of other parties.

However, many apparent only-one-winner or zero-sum-game situations can be
turned into win-win situations by expanding the option space. A good example is
provided in Getting to Yes (Fisher and Ury, 1981), in which a boundary-line loca-
tion stalemate on ownership of the Sinai Desert between Egypt and Israel was re-
solved by creating a new option: the land was given back to Egypt, satisfying its
territorial win condition, but it was turned into a demilitarized zone, satisfying Is-
rael’s security win condition. Other examples are provided in (Boehm and Ross,
1989).

2.5 Conclusions and Areas for Further Research

The VBSE theory presented above has been shown to apply well to a reasonably
complex supply chain application. In other situations, versions of the theory have
been successfully applied to over 100 small e-services applications, and to some
very large software-intensive systems of systems.

The VBSE theory satisfies the main criteria for a good theory (utility, general-
ity, practicality, preciseness, parsimony, and falsifiability) reasonably well, par-
ticularly when compared to other theories involving explanations of human behav-
ior.

The theory identifies several fruitful areas for further research, some, such as
elaborations of aspects of utility theory, decision theory, and dependency theory to
address particular VBSE issues, are discussed in other chapters in this book. Oth-
ers are identified in the VBSE agenda but not covered in the book, such as exten-
sions of the theory to cover areas like programming methodology, agile methods,
quality assurance, COTS-based applications, software maintenance, and combina-
tions of these and the other areas covered.

Another area we are exploring is the extension of the current theory to provide
a theory of value-based systems engineering. The systems engineering field is in-
herently value-based, and shares many of the same challenges as software engi-
neering, but also brings additional considerations of hardware phenomenology and
hardware-software-peopleware trade-offs into the arena.

Finally, as with all theories, the initial VBSE theory needs many more tests.
The easiest tests to start with are those of its ability to explain differences between
success and failure on completed projects. Other tests that can be done right away
are those of its ability to generate good software engineering practices; an early
example is in (Boehm and Ross, 1989).

Further analyses can be performed on its consistency with other theories, such
as the chaos theories underlying agile and adaptive software development
(Highsmith, 2002) or the theories underlying formal software development (Jones,
1980) and generative programming approaches (Czarnecki and Eisenecker, 2000).

34 Barry Boehm, Apurva Jain

Tests of utility, generality, practicality, preciseness, and parsimony basically
involve trying to apply the theory in different situations, observing its successes
and shortfalls, and generating improvements in the theory that enhance its capabil-
ity in different situations or uncover unstated assumptions that should be made ex-
plicit to limit its domain of dependable applicability. We hope that this initial
presentation of the theory will be sufficiently attractive for people to give this op-
tion a try.

Acknowledgments

The research on this Chapter has been supported by a National Science Founda-
tion grant, “Value-Based Science of Design,” and by the Affiliates of the USC
Center for Software Engineering.

References

(Adams, 1995) Adams, S.: Dilbert Comic Strips, 1995
(Alexander, 1979) Alexander, C.: The Timeless Way of Building (Oxford Univer-

sity Press, 1979)
(Argyris, 1978) Argyris, C.: Organizational Learning (Addison-Wesley, 1978)
(Bacharach, 1989) Bacharach, S. B.: Organizational theories: Some criteria for

evaluation. Academy of management review, 14 (4), pp 496–515
(Boehm, 1973) Boehm, B. W.: Software and Its Impact: A Quantitative Assess-

ment. Datamation, May 1973, pp 48–59
(Boehm and Bose, 1994) Boehm, B. W., Bose P.: A Collaborative Spiral Software

Process Model Based on Theory W. Proceedings, ICSP 3, IEEE, Oct. 1994
(Boehm and Huang, 2003) Boehm B., Huang L.: Value-Based Software Engineer-

ing: A Case Study. IEEE Computer, March 2003, pp 21–29
(Boehm and Turner, 2004) Boehm, B. W., Turner R.: Balancing Agility and Dis-

cipline (Addison Wesley, 2004)
(Boehm and Ross, 1989) Boehm, B. W., Ross, R.: Theory-W Software Project

Management: Principles and Examples. IEEE Transactions Software Engi-
neering, July 1989, pp 902–916

(Boehm et al., 2002) Boehm, B. W., Port, D., Huang, L., Brown, W.: Using the
Spiral Model and MBASE to Generate New Acquisition Process Models:
SAIV, CAIV, and SCQAIV. CrossTalk, January 2002, pp 20–25

(Boehm et al., 1998) Boehm, B. W., Egyed, A., Kwan, J., Port, D., Shah, A.,
Madachy, R.: Using the WinWin Spiral Model: A Case Study. IEEE Com-
puter, July 1998, pp 33–44

(Blackwell and Girshick, 1954) Blackwell, D., Girshick, M.: Theory of Games
and Statistical Decisions (Wiley, 1954)

(Brogan, 1974) Brogan W.: Modern Control Theory, 3rd edition (Prentice Hall,
1991)

2 An Initial Theory of Value-Based Software Engineering 35

(Burns, 1785) Burns, R.: To a Mouse, November 1785
(Carr, 2002) Carr, D.: Sweet Victory (Baseline, December 2002)
(Checkland, 1981) Checkland, P.: Systems Thinking, Systems Practice (Wiley,

1981)
(Churchman et al., 1957) Churchman, C. W., Ackoff, R., Arnoff, E.: An Introduc-

tion to Operations Research (Wiley, 1957)
(Covey, 1989) Covey, S.: The Seven Habits of Highly Successful People (Fire-

side/Simon & Schuster, 1989)
(Cyert and March, 1963) Cyert, R. M., March, J.G.: A Behavioral Theory of the

Firm (Prentice Hall, 1963)
(Czarnecki and Eisenecker, 2002) Czarnecki K., Eisenecker, U.: Generative Pro-

gramming: Methods, Tools, and Applications (Addison-Wesley, 2000)
(Danto and Morgenbesser, 1960) Danto A., Morgenbesser S. (eds.): Philosophy of

Science (Meridian Books, 1960)
(Debreu, 1959) Debreu, G.: Theory of Value (Wiley, 1959)
(DeMarco, 1982) DeMarco T.: Controlling Software Projects (Yourdon Press,

1982)
(Dupuit, 1952) Dupuit, J.: On the Measurement of the Utility of Public Works,

Translated by R. H. Barback, International Economic Papers 2:83–110, 1844
(1952)

(Fishburn, 1982) Fishburn, P. C.: The Foundations of Expected Utility (Dordrecht,
1982)

(Fisher and Ury, 1981) Fisher, R., Ury, W.: Getting To Yes: Negotiating Agree-
ment Without Giving In (Houghton Mifflin, 1981)

(Gerrard and Thompson, 2002) Gerrard, P., Thompson, N.: Risk-Based E-
Business Testing (Artech House, 2002)

(Gioia and Pitre, 1990) Gioia, D. A., Pitre, E.: Multi-paradigm perspectives on
theory building. Academy of Management Review. 15, pp 584–602

(Hempel and Oppenheimer, 1960) Hempel, C. G., Oppenheim, P.: Problems of the
Concept of General Law. In: Danto, A., Mogenbesser, S. (eds.): Philosophy of
Science (Meridian Books, 1960)

(Highsmith, 2000) Highsmith, J.: Adaptive Software Development (Dorset House,
2000)

(Highsmith, 2002) Highsmith, J.: Agile Software Development Ecosystems (Ad-
dison Wesley, 2002)

(Humphrey, 1989) Humphrey, W. S.: Managing the Software Process (Addison
Wesley, 1989)

(Jones, 1980) Jones, C. B.: Software development: A rigorous approach (Prentice
Hall, 1980)

(Juristo et al., 2005) Juristo, N., Moreno, A., Acuna, S.: A Software Process
Model Handbook for Incorporating People's Capabilities (Kluwer, 2005)

(Kaplan and Norton, 1996) Kaplan, R., Norton, D.: The Balanced Scorecard:
Translating Strategy into Action (Harvard Business School Press, Cambridge
1996)

36 Barry Boehm, Apurva Jain

(Keeney and Raiffa, 1976) Keeney, R. L., Raiffa, H.: Decisions with Multiple Ob-
jectives: Preferences and Value Tradeoffs (Cambridge University Press, Cam-
bridge 1976)

(Kruchten, 1999) Kruchten, P.: The Rational Unified Process: An Introduction
(Addison Wesley, 1999)

(Lee, 1996) Lee, M. J.: Foundations of the WinWin Requirements Negotiation
System PhD dissertation (University of Southern California, 1996)

(Luce and Raiffa, 1957) Luce, R. D., Raiffa, H.: Games and Decisions (Wiley,
1957)

(March and Simon, 1958) March, J., Simon, H.: Organizations (Wiley, 1958)
(Marschak and Radner, 1972) Marschak, J., Radner, R.: Economic Theory of

Teams (Yale University Press, 1972)
(Maslow, 1954) Maslow, A.: Motivation and Personality (Harper, 1954)
(Parsons, 1977) Parsons, T.: Social Systems and the Evolution of Action Theory

(The Free Press, 1977)
(Patterson, 1983) Patterson, C. H.: Theories of counseling and psychotherapy

(Harper and Row, 1983)
(Port and Chen, 2004) Port, D., Chen, A.: Assessing COTS Assessment: How

Much Is Enough? ICCBSS 2004 Proceedings (Springer, 2004)
(Raiffa, 1982) Raiffa, H.: The Art and Science of Negotiation (Belknap/Harvard

U. Press, 1982)
(Rawls, 1971, 1999) Rawls, J.: A Theory of Justice (Belknap/Harvard U. Press,

1971, 1999)
(Rechtin, 1991) Rechtin, E.: Systems Architecting: Creating and Building Com-

plex Systems (Prentice-Hall, 1991)
(Rifkin, 2004) Rifkin, S.: The Parsons Game: The First Simulation of Talcott Par-

sons’ Theory of Action PhD dissertation (George Washington University,
2004)

(Morton, 1991) Morton, M. S.: The Corporation of the 1990s: Information Tech-
nology and Organization Transformation (Oxford University Press, Oxford
1991)

(Simon, 1969) Simon, H.: The Science of the Artificial (MIT Press, 1969)
(Simon, 1957) Simon, H.: Models of Man (Wiley, 1957)
(Thorp et al., 1998) Thorp, J., DMR’s Center for Strategic Leadership: The Infor-

mation Paradox: Realizing the Benefits of Information Technology (McGraw-
Hill, 1998)

(Torraco, 1997) Torraco, R. J.: Theory-building research methods. In: Swanson,
R. A., Holton III, E. F. (eds.): Human resource development handbook: Link-
ing research and practice (Berrett-Koehler, 1997), pp 114–137

(Toulmin, 1992) Toulmin, S.: Cosmopolis: The Hidden Agenda of Modernity (U.
of Chicago Press, 1992 reprint edition)

(von Neumann and Morgenstern, 1944) von Neumann, J., Morgenstern, O.: The-
ory of Games and Economic Behavior (Princeton University Press, 1944)

(Waitley, 1985) Waitley, D.: The Double Win (Berkley, 1985)
(Wymore, 1967) Wymore, A. W.: A Mathematical Theory of Systems Engineer-

ing: The Elements (Wiley, New York 1967)

2 An Initial Theory of Value-Based Software Engineering 37

Author Biographies

Barry Boehm is the TRW Professor of Software Engineering and Director of the
Center for Software Engineering at the University of Southern California (USC).
His current research interests include software process modeling, software re-
quirements engineering, software architectures, software metrics and cost models,
software engineering environments, and value-based software engineering. His
contributions to the field include the Constructive Cost Model (COCOMO), the
Spiral Model of the software process, and the Theory W (win-win) approach to
software management and requirements determination. He is a Fellow of the pri-
mary professional societies in computing (ACM), aerospace (AIAA), electronics
(IEEE), and systems engineering (INCOSE), and a member of the US National
Academy of Engineering.

Apurva Jain is a PhD candidate student in the Computer Science department at the
University of Southern California. His research interests include software man-
agement and economics, software architecture, and value-based software engi-
neering.

3 Valuation of Software Initiatives Under
Uncertainty: Concepts, Issues, and Techniques

Hakan Erdogmus, John Favaro and Michael Halling

Abstract: State of the practice in software engineering economics often focuses
exclusively on cost issues and technical considerations for decision making.
Value-based software engineering (VBSE) expands the cost focus by also consid-
ering benefits, opportunities, and risks. Of central importance in this context is
valuation, the process for determining the economic value of a product, service, or
a process. Uncertainty is a major challenge in the valuation of software assets and
projects. This chapter first introduces uncertainty along with other significant is-
sues and concepts in valuation, and surveys the relevant literature. Then it dis-
cusses decision tree and options-based techniques to demonstrate how valuation
can help with dynamic decision making under uncertainty in software develop-
ment projects.

Keywords: Software economics, valuation, net present value, discounted cash
flow, uncertainty, decision tree, real options.

3.1 Introduction

Technological and economic factors put enormous competitive pressures on or-
ganizations producing software and providing services and products that rely on
software. As a result, software professionals and managers at all levels have to
make decisions in complex situations under uncertainty and conflicting goals.
They have to take many variables into consideration. Academic research and in-
dustrial practice have by and large tackled decision making in software develop-
ment by focusing on the cost side, for example, by looking for more efficient ways
to develop software or by evaluating new software initiatives only in terms of de-
velopment effort. However, determining the value of a new initiative requires
other important dimensions, benefits, and uncertainty, to be accounted for as well.
Without these dimensions, the consequences of product or process decisions can-
not be properly evaluated.

Several authors have explicitly promoted value, as opposed to cost alone, as a
basis for decision making in software engineering (Favaro, 1996; Favaro et al.,
1998; Favaro, 1999; Biffl and Halling, 2001; Boehm and Sullivan, 1999; Port et
al., 2002; Boehm 2003). In Chapter 1 Boehm identifies seven key elements for
value-based software engineering (VBSE). Among these elements, valuation spe-
cifically addresses Business Case Analysis, Continuous Risk and Opportunity
Management, and Change as Opportunity. Focusing on these elements naturally
positions valuation more as a management activity than as a tool for technical de-

40 Hakan Erdogmus, John Favaro, Michael Halling

cision making, although valuation concepts are relevant and have been applied to
technical decisions in software engineering as well (Sullivan et al., 1999). This
chapter addresses valuation from a management perspective in terms of its ability
to help with decisions at the project level. The aim is to orient the reader and illus-
trate how economic value can be leveraged to make project-level decisions, rather
than describe a specific valuation process or provide a self-contained exposition of
the topic.

The chapter is organized as follows. Section 3.2 draws attention to the main is-
sues that make valuation difficult and provides pointers to the relevant literature.
Sections 3.3 and 3.4 focus on the treatment of uncertainty and dynamic decisions.
Section 3.3 first discusses a decision-theoretic approach through an illustrative ex-
ample and introduces the notion of an option. Section 3.4 then builds on this ap-
proach to explain how projects with growth opportunities and abandonment
strategies can be analyzed using real options theory.

It is impossible to cover a topic as diverse as valuation with its rich theoretical
foundations and multiplicity of underlying techniques in a single chapter. How-
ever we hope to provide a glimpse by focusing on the most thorny issues and on
the techniques that we deem most illustrative and promising. For the reader who
desires a deeper investigation, Section 3.4 provides many references for further
reading. Finally, Section 3.5 gives a summary and discusses the difficulties re-
garding the adoption of the various techniques mentioned.

3.2 Issues in Valuation

Valuation is the process of determining the economic value of an asset, be it a
product, a service, or a process. In simple terms, value is defined as the net worth,
or the difference between the benefits and the costs of the asset, all adjusted ap-
propriately for risk, at a given point in time. When the costs are disregarded, are
implicit, or have been incurred before the point at which an asset is evaluated, the
value may refer to future benefits or the remaining worth of the asset at that point.
Several factors make valuation a difficult endeavor:
• Costs and benefits might occur at different points in time and need to be

downward adjusted, or discounted, to account for time value of money: the fun-
damental principle that money is worth more today than in the future under or-
dinary economic conditions. Discounted Cash Flow and related techniques
handle time value of money. These are illustrated in the earlier parts of Section
3.3.

• Not all determinants of value are known at the time of the valuation due to un-
certainty inherent in the environment. Modeling uncertainty is more often an art
than a science. Section 3.3 shows how decision tree and options-based ap-
proaches can help address uncertainty.

• The appropriate discount rate to use depends on the risk carried by a project
and the return expected on alternative initiatives. These factors must be ana-
lyzed to determine the discount rate. Chapter 5 tackles this topic.

3 Valuation of Software Initiatives under Uncertainty 41

• Sometimes intangible benefits such as learning, growth opportunities, and em-
bedded flexibility are the dominant sources of value under uncertainty. These
benefits are hard to quantify and require more advanced techniques such as de-
cision trees and real options analysis that are designed to deal with uncertainty.
While later parts of Section 3.3 introduce decision trees, Section 3.4 discusses
real options.

• Value is to a certain extent in the eye of the beholder: risk preferences of stake-
holders who make resource decisions influence it. Section 3.2 briefly talks
about the techniques for taking into account risk preferences in valuation.

• When assets are interdependent, it may be more appropriate to treat them as
parts of a whole. This calls for a portfolio-based approach. Section 3.2 provides
a short discussion on project portfolios.

• When stakeholders have clashing incentives and different information, value
can be destroyed or become hard to judge. While these effects are unavoidable,
incorporating them into valuation may lead to more objective results. Section
3.2 touches upon how they can affect value creation.

The remainder of this section draws attention to these issues and provides pointers
for tackling them. It is impossible to do justice to all of these issues in the space
allocated. Therefore, Sections 3.3 and 3.4 focus on the basic valuation concepts as
well as the treatment of uncertainty, covered by the first four bullets above. The
treatment of uncertainty is especially important from the VBSE perspective be-
cause uncertainty is prevalent in software development and can be a significant
source of value creation or destruction depending on how it is managed. The dif-
ferent techniques and approaches discussed in the chapter are summarized in Ta-
ble 3 at the end of the chapter.

Beyond Cost-Benefit Analysis

The valuation of software assets and projects depends on a detailed analysis of
underlying costs and benefits. A prerequisite for cost-benefit analysis is the identi-
fication of the relevant value and cost drivers. While models for software devel-
opment costs are well-established, comprehensive definitions of individual value
drivers (e.g., performance variables that support decision making and prioritiza-
tion) and frameworks for value creation in software engineering have been miss-
ing.

Models exist in economic theory for the analysis of value creation. The most
prominent is the model of Porter (Porter, 1985; Porter and Millar, 1985), based on
value chain analysis. The core idea behind this model is the definition of value as
“the amount buyers are willing to pay for what a supplier provides them.” The ap-
plication of Porter’s model to software projects would involve definition of strate-
gic goals, identification of critical activities, definition of product properties, and
analysis of the value of these activities and properties. The buyer perspective of
value gives rise to a single-dimensional, external measure, which is more objec-

42 Hakan Erdogmus, John Favaro, Michael Halling

tive and easier to reason about than those given rise by multidimensional, internal
perspectives.

A special challenge for cost-benefit analysis in software engineering is the as-
sessment of intangible or soft benefits, the influence of time on the value of these
benefits and costs, and the consideration of uncertainty. However these situations
are not unique to software development. Comparable situations can be found in
the valuation of public goods and social investments; see (Layard and Glaister,
1994) for an example.

Intangible benefits should in the long run lead to an improvement in monetary
terms (Powell, 1992). These benefits include flexibility and learning, which can
generate significant long-term value in software development. Traditional cost-
oriented techniques (Boehm, 1984; Boehm, 2000) address only tangible benefits
such as direct savings due to reduced effort. Real options analysis is a promising
approach that can address this gap. Sections 3.3 and 3.4 will discuss this approach
and the underlying theory.

Modeling Uncertainty

In addition to benefits and costs, the valuation process must consider uncertainty.
Uncertainty arises from different sources. Natural uncertainty directly relates to
variations in the environment variables (e.g., the variation in the number of defects
in a software product). Parameter uncertainty relates to the estimation of parame-
ters (e.g., the reliability of the average number of defects). Model uncertainty re-
lates to the validity of specific models used (e.g., the suitability of a certain distri-
bution to model the defects). Kitchenham and Linkman (1997) provide a
taxonomy of uncertainty for software engineering that includes additional sources
such as scope error and assumption error.

The traditional approach of handling uncertainty is by defining probability dis-
tributions for the underlying quantities, allowing the application of standard calcu-
lus. Other approaches based on fuzzy measures or Bayesian networks (Klir and
Wiermann, 1998) consider different types of prior knowledge. Srivastava and
Mock (2002) have successfully applied these approaches to analyze business deci-
sions.

Main financial theories, such as the traditional portfolio theory (Markowitz,
1952, Lintner, 1965) and the Capital Asset Pricing Model (CAPM) (Sharpe, 1964,
Mossin, 1966), consider both expected returns and borne risks in order to value al-
ternative trading strategies. This means that uncertainty and resulting risks can
also be seen from an opportunistic perspective. If appropriately rewarded, risks are
warranted depending on the investors’ risk attitudes, but an appropriate risk pre-
mium is expected for additional risk borne when uncertainty increases. The reason
behind this argument is that risk, as measured by the standard deviation of ex-
pected returns, includes both positive and negative variability. The determination
of this risk premium and the resulting risk-adjusted discount rate are central to
valuation, especially in discounted cash flow models (Myers, 1974, Black, 1988).

3 Valuation of Software Initiatives under Uncertainty 43

These are briefly discussed in the beginning of Section 3.3, but elaborated in more
detail in Chapter 5.

Attitudes of Decision Makers

When stakeholders take on decision making roles about allocation of limited re-
sources, their decisions are to an extent driven by their attitudes toward risk and
how they tend to respond to uncertainty. These attitudes are reflected in the deci-
sion maker’s assessment of value derived from the underlying resource allocation
activity. The main modeling concept here is utility. Although in software engi-
neering economics, utility functions are often introduced to avoid assigning mone-
tary value to benefits and costs, the concept of utility in finance has a different
foundation.

Utility functions in finance mainly model investors’ risk aversion. While ac-
cording to traditional portfolio theory, investors directly care about the mean (ex-
pected returns) and variance (risk or volatility) of asset returns, utility functions
defined over wealth offer more flexibility to account for risk. The shape of the
utility function determines the intensity of the investor’s risk aversion, that is, how
the decision maker’s attitude toward risk distorts the losses and gains of varying
amounts. For example, the magnitude of the negative utility a risk-averse person
would assign to a loss of a certain amount would be higher than the magnitude of
the positive utility he would assign to a gain of an equivalent amount.

Furthermore, one can distinguish between absolute and relative risk aversion.
Absolute risk aversion is a measure of an investor’s reaction to uncertainty relat-
ing to absolute changes in wealth. Absolute risk aversion decreases with wealth,
implying that a billionaire would be relatively unconcerned with a risk that might
worry a poor person. Absolute risk aversion is measured by the relative change in
the slope of the utility function at a particular level of wealth. Relative risk aver-
sion in contrast is a measure of an investor’s reaction to uncertainty relating to
percentage changes in wealth. Absolute and relative risk aversion are connected.
For example, constant relative risk aversion, a common assumption, implies di-
minishing absolute risk aversion (i.e., investors become less risk averse as their
wealth increases).

Utility functions can be employed in a similar way to model organizational and
individual attitudes toward risk in the valuation of non-financial assets as they are
used in finance to model investors’ risk aversion. They have also proven to be a
key factor in the integration of the decision tree and real options approaches de-
scribed later in this chapter (Smith and Nau, 1995).

Chapter 4 discusses the use of utility in the context of multi-attribute decision
making. While Chapter 4 also surveys several other techniques that address value
from a multidimensional perspective, in this chapter, we consider value only from
a single-dimensional, economic perspective. Economics are considered most im-
portant in making business decisions, and as such form the basis of valuation. The
multi-attribute perspective is of interest when aspects of value that cannot be re-

44 Hakan Erdogmus, John Favaro, Michael Halling

duced to monetary terms are important for the underlying decisions, but valuation
is not concerned with nonmonetary definitions of value.

Project Portfolios

Interactions among multiple projects often affect value. For accurate reasoning,
the valuation model must consider these interactions. This implies the use of a
portfolio-based approach. In a portfolio-based approach, assets are not valued in
isolation. The value of a portfolio of assets is not simply the sum of its parts.

An important concept here is diversification. Diversification refers to an inves-
tor’s ability to limit the net effect of uncertainty on the value of an investment by
spreading the investment over multiple risky assets. The resulting reduction in
overall risk impacts the value of the portfolio. In order to quantify the risk reduc-
tion, one must know the correlation between the investment opportunities. The
impact of diversification is largest if the different investment opportunities are
negatively correlated and it is smallest if they are positively correlated.

While calculating correlations is straightforward for financial assets with ob-
servable prices, it is not so for a group of software projects. Projects in a portfolio
can have different types of dependencies, due to shared infrastructure and re-
sources that are hard to identify and measure. The type of dependency determines
applicable valuation methods. This represents an important difference from finan-
cial portfolio theory where one-dimensional correlation structures with respect to
observed prices are sufficient. Therefore existing financial methods (Markowitz,
1952) must be adapted to the software engineering context before they can be ap-
plied to relevant decision problems. Böckle et al. (2004) discuss the economics of
software product lines from a portfolio perspective based on shared costs and in-
frastructure, but do not address the risk implications.

Seemingly disparate projects may also have structural dependencies that are de-
liberate or accidental. For example, successful completion of a pilot project can
trigger a much larger project. Conversely, a failed project in an unproven technol-
ogy can impede parallel initiatives. In these cases, again, the individual compo-
nents cannot be valued in isolation. Such interactions can sometimes be modeled
as a portfolio of options, and analyzed using real options techniques discussed in
Sections 3.3 and 3.4.

Agency Conflicts and Information Asymmetries

It is also important to be aware of the factors that negatively affect value. Agency
conflicts are concerned with misalignment of stakeholder interests, and are a po-
tential source of value destruction at the organizational level. Measures of value at
the organizational level are agreed upon by the principal stakeholders, such as the
private owners, public shareholders, or the community served by the organization.
Information asymmetries lead to differing stakeholder perspectives, which in turn
may cause undesirable behavior that negatively affects these measures.

3 Valuation of Software Initiatives under Uncertainty 45

Problems of agency conflicts and closely related information asymmetries play
a dominant role in areas such as corporate finance and microeconomics. In corpo-
rate finance, corporate governance (Shleifer and Vishny, 1997; Hirschey et al.,
2003) addresses resolution of agency conflicts that arise due to the separation of
ownership and management. Adam Smith more than 200 years ago concluded that
“people tend to look after their own affairs with more care than they use in look-
ing after the affairs of others.” Generally speaking, agency conflicts occur if pro-
ject stakeholders have private incentives that differ from the common project
goals. These conflicts are exacerbated by information asymmetries, where certain
stakeholders have superior or private information, that is, information more accu-
rate than that available to others or information not available to others at all.

If different stakeholders in a software project (e.g., developers, managers,
tester, clients) have different incentives and different access to information, the as-
sessment of value on a department or company level becomes more difficult. In
valuation, game theoretic techniques can be used to model these effects and high-
light their impact. Sang-Pok et al. (2004) use such a technique to analyze the deci-
sion to collect data from software developers given that it takes additional effort
and the data might be used to evaluate the same stakeholders who provide the
data. They define different strategies and find that if every developer strives to
maximize his own utility, the result of the group will not be Pareto-optimal (the
best that could be achieved without disadvantaging at least one stakeholder) al-
though a Pareto-optimal solution exists.

An example of agency effects in real options analysis concerns the exercise of
abandonment options. Abandonment options that are supposed to kill non-
performing projects midstream are sometimes not optimally exercised due to con-
flicts between short-term interests of managers and long-term corporate goals.
These conflicts can be taken into account in valuation through simulation, game-
theoretic techniques, and augmenting the uncertainty models.

Chapter 7 addresses agency conflicts and information asymmetries in the con-
text of requirements negotiation.

3.3 Valuation of Uncertain Projects with Decision Trees

When information on benefits, costs and the future states of the world is available,
valuation techniques of varying sophistication can exploit the information in dif-
ferent ways. However, most techniques rely on a foundational method called Dis-
counted Cash Flow (DCF) and the fundamental concept of Net Present Value
(NPV) to which this method gives rise.

The premise of DCF valuation is to render costs and benefits that occur at dif-
ferent points in the future by adjusting them with an appropriate discount rate. The
discount rate captures the risk borne the cash flow associated with the future bene-
fit or cost. It is applied to the cash flow just like a compound interest rate, but in
reverse, to express the cash flow in present value terms. Then an NPV can be

46 Hakan Erdogmus, John Favaro, Michael Halling

computed by summing the present value of all estimated cash flows. The NPV
tells us the project’s net worth in today’s currency.

We assume that the appropriate discount rates are provided since their determi-
nation is beyond the scope of this chapter. Chapter 5 discusses this topic and pro-
vides a specific technique that can be used in software projects. Further resources
are mentioned in Section 3.4.

In spite of the universal acceptance of DCF and NPV, managers have often
hesitated to use them in practice, citing an inability to integrate the techniques into
the strategic planning process. Whereas these techniques are essentially static in
nature, reflecting their origins in the valuation of financial instruments, strategic
planning is a dynamic process, whereby management must constantly evaluate al-
ternatives and make decisions that condition future scenarios under uncertainty.
The need to bring techniques for modeling active management into the valuation
process has motivated the recent interest in the discipline of real options, which
aims to create such a bridge between finance and strategy. We will exploit this re-
lationship by a progression of models of increasing complexity, starting with static
NPV and gradually expanding it to handle dynamic decisions and flexibility, first
through a decision theoretic approach in this section and then through real options
theory in the next.

An Uncertain Project with no Flexibility

As a means of getting acquainted with the principal concepts underlying the real
options approach, let us consider the economic analysis of the prospects for a
software research and development (R&D) project. R&D projects, by their very
nature, have very uncertain prospects. Uncertainty makes the prospects vary over
possible states of nature. It is not unusual to have to consider a wide spectrum of
such states, or outcomes, ranging from spectacular success to spectacular failure.
A value then must be attached to each possible outcome and an expected worth
computed by aggregating over all the outcomes. It is not unusual to have to con-
sider a wide spectrum of possible outcomes, ranging from spectacular success to
spectacular failure.

Suppose that we are considering an investment of $200,000 in a software R&D
project lasting five years. As a first step in an NPV analysis we might characterize
the possible economic outcomes of the project as being Best, Normal, or Worst,
and associate a best estimate and probability with each of them. This effectively
models uncertainty.
• 30% probability of a Best economic outcome of $1 million
• 40% probability of a Normal economic outcome of $500,000
• 30% probability of a Worst economic outcome of 0

We assume that the discount rate associated with the firm’s projects is 20% per
year (radr = 0.2) and that the risk-free rate of return is 2% per year (rf = 0.02). The
rate radr is referred to as a risk-adjusted discount rate; it represents the minimum
annual return expected of initiatives of comparable risk. This is the discount rate

3 Valuation of Software Initiatives under Uncertainty 47

we use for calculating the present value of the project’s future benefits. The rate rf
represents the return expected from an initiative with no systematic risk. This rate
can be observed in the markets and given by the return on short-term government
bonds. The risk-free rate is used to calculate the present value of future costs that
are either certain or whose uncertainty only depends on factors internal or unique
to the project.

The NPV of the economic prospects for this project is straightforward to calcu-
late. However, before we proceed, the possible benefits are first weighted by their
respective probabilities. Then the weighted benefits are added over all outcomes to
calculate an expected worth. Having reduced the future benefits to a single cash
flow, we are now ready to discount the result. Since the benefits will be realized
after five years, the expected worth of the benefits is discounted back five years
using the risk-adjusted rate as a compound interest rate applied in reverse to calcu-
late a present value. The cost of $200,000 is committed upfront; therefore it does
not need to be discounted. Finally the undiscounted cost is deducted from the dis-
counted expected benefit to arrive at an NPV:

094$
) 1(

%300%40500%301000200NPV 5 =
+

×+×+×+−=
adrr

At NPV of less than $1,000, we should be indifferent about the investment.

Accounting for Staged Outlays

Now we will begin to add some more realism to the scenario. A first step is to be
more realistic about the timing of the expenses. Unlike a stock or bond, where the
entire investment is made up-front, a project’s resources are generally allocated in
stages. For example, instead of allocating the entire investment of $200,000 in one
lump sum, we might allocate progressively larger amounts such as:
• $20,000 in a first stage to develop a nonfunctional prototype to gauge concept

feasibility, allocated immediately;
• $80,000 in a second stage to produce a first release to be beta tested by users,

allocated after one year; and
• $100,000 in a third stage for full development, allocated after two years.

Not only is this a more realistic allocation scenario, but it also confers an extra ad-
vantage: the money for the second and third stages can sit in the bank and earn in-
terest while waiting to be invested in the project. In fact, it would not even be nec-
essary to have all of it available at the beginning of the project. For example, in
order to have the $100,000 dollars available for the second-year investment, it
would only be necessary to have 100/(1 + rf)2 = $96,120 available at the beginning
– the rest would come from the interest earned while waiting. This brings us to a
first important observation: an expense incurred later has an economic advantage
over the same expense incurred earlier, and the degree of that advantage is linked

48 Hakan Erdogmus, John Favaro, Michael Halling

directly to the risk-free interest rate. With this insight, the new NPV calculation
for the example is given below, where the staged costs are discounted by the risk-
free rate, and the benefits at the end are discounted at the firm’s risk-adjusted rate
as before. Again, the expected worth is computed for the benefits by aggregating
over possible outcomes before proceeding with the NPV calculation. The NPV
calculation itself involves discounting the resulting cash flows and summing them.

() () ()521 1
%300%40500%301000

1
100

1
8020NPV

adrff rrr +
×+×+×+

+
−+

+
−+−= = $6,390

At this point, we can make another observation, concerning the nature of the NPV
calculation. Notice that the calculated NPV would have been the same if the corre-
sponding Best, Normal, and Worst values had been 600, 500, and 400; or 700,
500, and 300; or even 800, 500, and 200. Why is this? NPV here calculates a sin-
gle, expected net worth; it throws away any information about how much the dif-
ferent estimates vary from this expected worth. In statistical terms, one could say
that NPV calculated based on expected worth of the cash flows preserves the
mean, but not the variance. Yet intuitively it seems that a decision maker might
want to know something about how far the estimated values vary – if only to have
an idea of how uncertain we are about those estimates: if the estimates vary
widely, then intuitively this large variation must reflect our degree of uncertainty
in our estimates.

One way in which we could retain this information about how far the estimates
vary is by switching to a tree-like representation, as in Figure 13. The nodes mark
the different funding stages, milestones, or outcomes of the project. The branches
denote the state changes.

$1,000

$500K

$0

Best

Normal

Worst

30%

40%

30%

$-20K $-80K $-100K

Year 5 Year 2 Year 1 Now

Fig. 13. Representation of uncertainty in the R&D project

3 Valuation of Software Initiatives under Uncertainty 49

This tree-like representation captures and records visually the differing estimates
about the outcome, and so is more useful as an aid to understanding the uncer-
tainty underlying the scenario.

Resolution of Uncertainty

We can further improve the realism of the R&D project scenario. After working
for a while on the project – for example, after the end of a first stage – we are
more likely to have a better idea of its prospects. By the end of the first stage, we
may already be able to judge the prospects as being either bright or dim. In the op-
timistic scenario, the probabilities will have remained as we judged in the begin-
ning; whereas in the pessimistic scenario, the probability of a Worst outcome will
have increased considerably, at the expense of the probabilities of the Best and
Normal outcomes.

The more refined representation in Figure 14 helps us to portray this situation
visually, where we have assumed equal probabilities of the future scenario being
either bright or dim after the first stage.

$1,000

$500K

$0

Best

Normal

Worst

30%

40%

30%

$-100K

$1,000

$500K

$0

Best

Normal

Worst

10%

30%

60%

$-100K

$-20K $-80K

50%

50%

Bright

Dim

Fig. 14. Refined scenario for the R&D project

Assuming that bright and dim outlooks are equally probable at the end of the first
stage, the NPV of the refined scenario now declines significantly below zero, to -

50 Hakan Erdogmus, John Favaro, Michael Halling

$43,450, due to the effects of the dim scenario. Yet here again, the NPV calcula-
tion does not preserve the extra information we have gained from the passage of
time, captured in our improved estimates of the relative probabilities of the vari-
ous outcomes and their variance from the expected worth. Although the passage of
time delivers valuable information, traditional NPV still does not incorporate this
information in the appropriate way, although our tree-like representation does ex-
press it. As a result the NPV now looks worse than ever. More importantly, with
the tree-like representation, we can handle the most important element that is still
missing from a realistic scenario: the ability to act upon new information. As time
passes we do not only acquire information, but we can also act on it: that is, we
can make decisions.

Incorporating Flexibility through Options

What kind of decision might we take in this scenario? The most obvious would be
the decision after each stage concerning whether to continue the project or not.
R&D projects notoriously rarely make it to full funding; they are canceled long
before, often after the first stage. That is, management has an option to abandon
the project. We can reflect this decision making process through a small modifica-
tion to our tree-like representation, transforming it into a decision tree.

Decision trees go beyond NPV by not only representing the occurrence of costs
and benefits over time, but by also representing the decisions taken by manage-
ment in response to these occurrences. Our original, simple tree-like representa-
tion is refined by distinguishing different kinds of nodes:
• Outcome and state change nodes – similar to those in our original representa-

tion, they represent possible outcomes or state changes, with associated prob-
abilities, as we have seen before;

• Decision nodes – these nodes represent decision points in the tree, where man-
agement can actively intervene;

• Action nodes – represent the actions possibly associated with a decision, such
as making a further investment outlay.

We now elaborate our scenario further by making explicit the decisions that will
be available to management at various stages of project execution. To begin, man-
agement has an option to either continue or stop the project after the first stage de-
pending on the evaluation of the nonfunctional prototype. At that point, manage-
ment is likely to continue the project only if the prospects are looking bright; if the
prospects have turned dim, then the project could be canceled.

Furthermore, we assume that after completion of the second stage, where an
initial release of the product is available, we will have accumulated enough infor-
mation to have a clear idea of what the final outcome of a fully funded project
would be – that is, either Best, Normal, or Worst – and be able to put a number on
it. At that point, management has another option available to either continue or
stop the project. Clearly, the decision will be based on whether the expectation of
the final outcome, revealed after the second stage and following the beta testing on

3 Valuation of Software Initiatives under Uncertainty 51

the initial release, will justify the last investment outlay necessary to carry out the
project to completion.

Now Year 1 Year 2 Year 5

Seed
Funding

Prototype
Evaluation

Stage 2
Funding

Beta
Testing

Stage 3
Funding

Complete
Project

-100 1000
-96 402

306

0 0
0.3

-100 500
-96 201

-80
-78 134 0.4 105

0 0

0.3 -100
-96 0

55
0

0 0

0.5 0 0
8 -100 1000

-96 402

306
-20 28

0 0
0.1

-100 500
-96 201

-80
0.5 -78 62 0.3 105

0 0

Action 0.6 -100
-96 0

Outcome or 0
State change 0

0.3 Probability 0 0

Decision 0 0

Dim

Bright

Fund

Stop

Fund

Stop

Best

Worst

Normal

Best

Normal

Worst

Fund

Fund

Fund

Fund

Fund

Fund

Stop

Stop

Stop

Stop

Stop

Stop

Fig. 15. Full decision tree of the R&D project

The full decision tree capturing this scenario, including all its possible decisions,
actions, state changes, and outcomes together with their probabilities, is shown in
Figure 15. The leaf nodes represent the final outcomes. The figures inside these
nodes represent the associated benefits in present value (already discounted)
terms. The corresponding future values (before discounting) are indicated above
the nodes. The figures inside the action nodes represent the costs, again in present

52 Hakan Erdogmus, John Favaro, Michael Halling

value terms, associated with the corresponding actions − in this case the additional
funding required. The future values of the investment costs are indicated above the
action nodes. The bold figures inside the state change and decision nodes are
computed as we fold the tree back starting from the leaf nodes.

The fact that the decision tree now includes options for decision making neces-
sitates a change in the way it is evaluated. We must start at the end, and work
backward through time. At each decision point in the tree, the alternative with the
higher assigned worth is chosen as the worth of the project at that decision point.

As an example, consider the $100,000 funding decision right after the beta test-
ing in Year 2, following an optimistic (bright) evaluation in Year 1. Let us focus
on the case where the outlook review in Year 2 after the beta testing predicts a
Normal outcome, represented by a benefit estimate of $500,000. If the project is
fully funded, the remaining net worth of the project after the beta testing will be
$201,000 − $96,000 = $105,000 in present value terms. If the project is abandoned
at that point, it will be $0. The optimal decision is therefore to proceed, effectively
exercising the continuation option. The worth of the project at the decision node
consequently equals Max ($0, $105,000) = $105,000.

The net worth of the whole decision tree is given by the computed worth of the
state change node under Stage 2, minus the seed funding of $20,000. The result,
$28,000 − $20,000 = $8,000, represents the dynamic project NPV with the exit
options. The project looks much more attractive than it did without the options.

Remarkably, only in the worst-case scenarios is the project abandoned by exer-
cising the exit option at Stage 3. With the given uncertainty model, the exit option
at Stage 2 is never exercised. However a slight increase in the conditional prob-
ability of a Worst outcome after a pessimistic (dim) evaluation would trigger the
exit option in Stage 2 because the present value of a positive funding decision
would be negative.

Here what accounts for the more than $50,000 difference between the static
NPV of -$43,000 and the dynamic NPV of $8,000 is the presence of the options
and the ability to exercise them under the right conditions. The exercise of the op-
tions prevents the otherwise negative values from propagating toward the root of
the decision tree. Consequently, the downside risk is limited, but the upside poten-
tial is not affected. The difference between the static and dynamic NPVs is re-
ferred to as the option premium. This premium represents the additional value, un-
der uncertainty, attributed to managerial flexibility.

3.4 Real Options Theory

The example of the R&D project has highlighted a number of significant points:
• Options for decision making can be analyzed economically when they are mod-

eled explicitly, as they are in decision trees.
• The passage of time resolves uncertainty and adds more information.
• Less money is needed for the same investment made later in time because of

the possibility of earning interest.

3 Valuation of Software Initiatives under Uncertainty 53

• Large variations in possible outcomes make options even more valuable, be-
cause the decision maker can choose to exploit the best outcomes and discard
the worst outcomes. In contrast, a small variation in possible outcomes makes
the decision making process less important.

We will now see how these points relate to the discipline of real options.

Significance of Options

In an environment where uncertainty is high, it is important to have as many op-
tions for decision making as possible, either to exploit opportunities with good
prospects or to limit the damage when prospects turn sour. Many of the activities
carried out by IT organizations today are in fact targeted at acquiring and exercis-
ing strategic flexibility in various forms:
• A firm may have developed or acquired valuable infrastructure technology,

such as a set of financial business objects and frameworks giving it the option
to enter a new, potentially profitable market of electronic banking (Favaro and
Favaro, 1999).

• The human and organizational capabilities developed by a firm may yield stra-
tegic options. If it has invested heavily in the recruitment of talented personnel,
and invested heavily in training them in component-based development proc-
esses, then it may have acquired a strategic option to switch course rapidly in
response to changing requirements, improving competitive advantage (Favaro
et al., 1998).

• The firm may have created an equally valuable option to get out of an unprofit-
able market or project by employing IT resources that retain their value even if
a project must be stopped. An example would be basing a development project
on COTS software that could still be used in another context if the project is
halted prematurely. Indeed, using COTS components may give rise to a variety
of other options of which the firm can take advantage to increase the value of
its IT portfolio. COTS components are not only potentially reusable assets, but
they also allow upgrading to new technologies at low switching costs
(Erdogmus and Vandergraaf, 1999; Erdogmus, 2001).

• When a new technology arrives on the market a firm may decide to wait and
see whether the technology matures and is successful in the marketplace before
investing its resources in participating in that market (Favaro, 1999; Erdogmus,
2000).

Each of the scenarios, with its various embedded options, could be modeled with
the decision-tree techniques illustrated, but an alternative theory from the financial
community has become available in recent years that more directly supports the
analysis of strategic options and their associated flexibility: option pricing theory.
One advantage over decision trees of using option pricing theory to analyze dy-
namically managed decisions is that the analysis can often be represented in a
compact, explicit, and more easily understandable form (albeit sometimes at the

54 Hakan Erdogmus, John Favaro, Michael Halling

expense of loss of detail). The theory makes it both possible to classify such deci-
sions conceptually and more straightforward to reason about their behavior. Mod-
eling a dynamic decision explicitly as a specific type of an option improves our
understanding of the nature of that decision and how different factors affect its
value.

Option Pricing Theory and Real Options

Financial options are special forms of derivative securities – that is, their value
depends on the value of an underlying asset. A call option gives the owner the
right, but not the obligation, to buy an asset on a specified future expiration date,
at a specified strike or exercise price. Similarly, a put option gives the owner the
right (but not the obligation) to sell an asset for a specified price on an expiration
date in the future. The asset on which an option is defined is called the underlying
asset of the option.

Options have been used for nearly three centuries both for speculation and for
hedging. Despite their popularity, however, their usefulness was limited by the
lack of a rigorous theory of pricing. Such a theory was developed in 1973 by
Fisher Black, Myron Scholes, and Robert Merton (winning them the 1997 Nobel
Prize in Economics), and led to a new science of financial engineering, whereby
derivative instruments are used in many inventive ways to manage risk in invest-
ments.

Fig. 16. Financial and real option correspondence

3 Valuation of Software Initiatives under Uncertainty 55

Option pricing theory was first developed for the valuation of income streams
from traded financial assets (e.g., stocks). In contrast, real options are intended for
the valuation of income streams from projects and other real assets. Figure 16
summarizes the parameters associated with financial options, and their mapping to
real-world project parameters. Two of the parameters (1 and 4) are familiar from
NPV techniques: the estimated present value of the investment’s payoffs and the
cost of investment.

The remaining three parameters were not as readily identifiable in the decision
tree example although they had implicit counterparts:
• The level of uncertainty of the underlying asset, commonly represented by the

standard deviation of the asset’s return (Parameter 2) – the more the variation
in an investment’s return, the more valuable becomes the option to make deci-
sions concerning that investment.

• The time of the investment decision (Parameter 3) – the passage of time affects
the value of an option; the more distant the investment decision from the pre-
sent time, the higher the uncertainty and the lower the impact of the future in-
vestment cost.

• The interest rate (Parameter 5) – the ability to make an investment later in time
is like money in the bank, literally, because interest can be earned in the mean-
time.

Thus, option pricing theory does not replace NPV, which remains the point of de-
parture for any serious financial insight, but augments it with new reasoning capa-
bilities. The time parameter permits reasoning about when an investment can be
made. (NPV implicitly assumes immediate investment.) The standard deviation
parameter permits reasoning about the magnitude of the uncertainty of the future
evolution of the investment’s worth. (NPV permits only calculation of the ex-
pected worth of an investment, providing no insight on its variance.) Finally, there
is another important characteristic of an option not directly reflected in the pa-
rameters: the fact that it is a contingent investment, whereby a decision point is in-
cluded.

Growth Options

Consider the growth option, which is closely related to the option in the decision
tree example, where a smaller investment may yield an option to make a larger,
profitable investment at a later time. Growth has become the principal preoccupa-
tion of many IT companies today. Indeed, the high stock prices of many Internet
companies such as Google have been linked to investor expectations of nonlinear
growth opportunities (translating into greatly increased future revenues).

Yet many of these same companies are subject to the danger of value-
destroying growth. How can a firm pursue aggressive growth strategies while re-
taining the financial discipline to be sure that its strategy is increasing value rather
than destroying it?

56 Hakan Erdogmus, John Favaro, Michael Halling

A typical scenario in the provision of Web-based personalized services helps il-
lustrate the point. A major retail investment advisor believes that there may be an
enormous future market for customized Web-based investment services, including
a variety of personalized functionalities that can be configured for each individual
client. To prepare for entry into this new market, the company will have to create
the infrastructure that permits such rapid configuration. The infrastructure consists
of comprehensive object-oriented frameworks, components, and trained personnel,
and will be created by an internal project under the code name of StockFrame.

We assume it will take two years and an investment of $800 million to create
the infrastructure. At the end of two years, the decision will be made whether to
enter the market with a new venture called myStocks, depending on current mar-
ket conditions. Market entry would involve an investment of $800 million, with a
total expected present value of revenues of $600 million. However, a high level of
uncertainty is associated with this market assessment: the revenue estimates have
historically been subject to an annual percentage fluctuation with a standard devia-
tion of 40%.

This scenario is similar to the one in the decision tree example. Suppose that
the StockFrame investment is a pure loss leader, that is, with no cash inflows.
Then the NPV of that investment is –$80 million. To calculate the NPV of the
myStocks venture, we discount the $800 million investment in two years back to
the present using the risk-free interest rate (let us assume 4% for this example) to
obtain about $740 million. Thus the NPV of myStocks is about $600 – $740 =
−$140 million.

No value-conscious manager would even begin the StockFrame project based
upon these figures. However, a standard deviation of 40% in its possible revenues
means that the payoffs to myStock might be much higher than the expected worth
predicted by the plain NPV. The StockFrame investment, even with its negative
NPV, provides the opportunity to capture those nonlinear payoffs, and that oppor-
tunity has value that is not reflected in the NPV figure. Furthermore, the ability to
block all further investment if the outlook dims for myStock is not reflected in the
NPV calculation. These ideas are familiar from the decision tree example, but real
options provides the opportunity for a compact representation of the scenario and
calculation of the value of the option created by StockFrame.

We can make the following correspondence between the key parameters of the
scenario and the parameters of the Black-Scholes formula for evaluating a call op-
tion:
• The $600 million present value of expected cash flows from the myStock ven-

ture corresponds to the current price of the underlying asset in the call option
calculation (S). This represents the payoff from the venture.

• The $800 million investment required to undertake the myStock venture corre-
sponds to the exercise price (X).

• The decision point at 2 years corresponds to the expiration date of the call op-
tion (t).

3 Valuation of Software Initiatives under Uncertainty 57

• The estimated 40% standard deviation of the payoff’s annual percentage fluc-
tuations has a direct correspondence in the standard deviation of the underlying
stock’s returns (σ).

• The risk-free rate of 4% at which all future costs are discounted also finds a di-
rect correspondence in the Black-Scholes formula (rf).

Assume for this discussion that we have a calculator available for the Black-
Scholes formula for a call option that must be exercised on or before the expira-
tion date of the option. Then:

BS_CALL(S = 600, X = 800, t = 2, σ = 40%, rf = 4%) = $89 million

The call option formula is given by:

)),,
),(

((),,,,(_ 1 σσ t
rXPV

SdNSrtXSCALLBS
f

f ×=

)),,
),(

((),(2 σt
rXPV

SdNrXPV
f

f ×− ,

where:

2
1ln

) ,,(
2

1 t

tx
txd

σ

σ
σ

+
= ,

ttxdtxd σσσ −=) ,,() ,,(12 ,
PV(X, rf) denotes the present value of X discounted using rf, and
N denotes the cumulative standardized normal distribution function.

Thus, the execution of the StockFrame project provides the option to decide
whether to invest in the myFrame venture after two years. Since the option corre-
sponds to an opportunity to delay a decision for two years in the hopes of exploit-
ing the upside scenario of myFrame’s future cash flows (this situation is analogous
to the best-case scenario in the decision-tree example), it has value – and the
Black-Scholes calculation puts a number on that value, at $89 million.

Adding that value to the present value of its own cash flows, we arrive at an
augmented NPV of (−$80) + $89 = $9 million. This figure only refers to the value
of the StockFrame investment, and is linked to the fact that it is part of an overall
contingent investment strategy. Nevertheless it provides the necessary justification
to undertake the StockFrame investment in order to have the strategic option to
contemplate the myStock venture two years later. Based upon this analysis, a
value-conscious manager can proceed with the initial, strategic investment with
the confidence that financial discipline has been respected.

The call option value is most sensitive to the present value of the payoff S, the
future investment cost X, and the uncertainty measure σ. For example, increasing
the present value of the payoff by 25% from $600 million to $750 million in-
creases the option value by over 90%, from $89 to $172 million; decreasing the
future investment cost by 25% from $800 to $600 million increases the option

58 Hakan Erdogmus, John Favaro, Michael Halling

value by over 70% to $153 million; and increasing the uncertainty measure by
25% from 40% to 50% increases the option value by close to 40% to $123 million.
The least sensitive parameters are time to investment decision t and the risk-free
interest rate rf. For example, extending the time to investment decision 25% from
2 to 2.5 years increases the option value by about 22% to $109 million, and in-
creasing the risk-free interest rate by 25% from 4% to 5% increases the option
value by only about 5% to $93 million.

Abandonment Options

The growth option represents an important class of real option involving the ex-
pansion of an investment. Another important class of real option involves the
abandonment of investment. We saw one case in the decision tree example, in-
volving staged projects. In another important case, strategic investment is oriented
toward the conservation of business value if the current course must be aban-
doned.

One such case is COTS-based development, embodied in the notorious “build
or buy” decision. The use of COTS in a project is often costlier in the initial outlay
than custom development, including cost of purchase or licensing and the associ-
ated learning curve and customization issues. But these outlays also bring flexibil-
ity: the COTS-based technology can be put to other uses if the venture does not
turn out to be as valuable as originally estimated. The extra investment buys a
kind of insurance, an opportunity to bail out of a project if its fortunes begin to
dim, without losing all of the investment.

As an example, suppose a venture is being contemplated that involves the con-
struction of a specialized database. The present value of all future payoffs from
this venture is originally estimated at $40 million, but with high uncertainty, rep-
resented by a standard deviation of 50%. Management plans to revise the ven-
ture’s outlook in 18 months of operation, and decide what to do based upon the
revised outlook. A current dilemma concerns whether to develop the database
from scratch, specifically for the venture, or whether to purchase a license for a
COTS database, and train the personnel to customize it to specifications.

If all goes well with the venture, the cheaper, custom-built solution will provide
the maximum economic value; but if the market sours, management will have no
choice with a custom solution but to stay the course or lose the entire investment.
The cost outlays for the COTS-based solution would be higher by $3 million, a
considerable amount; but management believes that the COTS technology and
personnel could be redeployed to other uses worth $30 million if the decision to
cancel the venture were taken. Although that is still much less than the estimated
$40 million payoff of the contemplated venture, it does provide an escape route.
The management dilemma essentially boils down to a trade-off between the extra
expense of the COTS-based solution and the value of the option to change the
course that the COTS solution makes available.

Whereas the growth option could be modeled as a call option, this type of sce-
nario corresponds to a put option – an option that provides insurance. Assuming

3 Valuation of Software Initiatives under Uncertainty 59

the availability of a calculator for the Black-Scholes formula for a put option, we
have:

BS_PUT(S = 40, X = 30, t = 1.5, σ = 50%, rf = 4%) = 3.5M ,

where

BS_PUT (S , X, t, σ, rf) = BS_CALL(S , X, t, σ, rf) + PV(X, rf) – S.

Thus, the value of the option to decide after 18 months to abandon the project and
put the COTS-based technology to another use rather than stay the course is $3.5
million. In this case, the value of that option just exceeds the extra investment
necessary to provide it. In another, less uncertain scenario, we might have found
that it was better to simply build the system from scratch in the most cost-effective
way possible.

Further Reading

The reader can refer to Chapter 4 for more comprehensive discussions of the basic
financial concepts that underlie valuation, such as Discounted Cash Flow, Net
Present Value, and the relationship between risk and return. These concepts are
also discussed under the general topics of capital budgeting and risk in Brealey
and Myers (1996). Steve Tockey’s text on Return on Software (Tockey, 2004) is
also a good resource that is accessible to software professionals. For a specific fo-
cus on cost-benefit analysis, see Layard and Glaister (1994).

The discussion of real options in this chapter has only skimmed the surface of
the vast literature on both theory and practice. The seminal paper on option pricing
is by Black and Scholes (1973), providing the original rationale for and derivation
of the option pricing model. A few years later, an important alternative approach
to option pricing, known as the binomial model, was developed by Cox, Ross, and
Rubenstein (Cox et al., 1979). The binomial model, together with its risk-neutral
approach to option pricing, is not only simpler than the Black-Scholes derivation,
but also more flexible with wider application. Both the Black-Scholes and bino-
mial models are expounded with software process examples in a chapter of Ex-
treme Programming Perspectives (Erdogmus and Favaro, 2002).

Options can be modeled and valued using classical decision-tree techniques, as
we have illustrated in this chapter. While this approach allows for richness in
terms of handling multiple interdependent options and arbitrary, discrete models
of uncertainty, the size of the underlying decision trees increase exponentially
with the model complexity. Steve Tockey’s text (Tockey, 2004) includes a chapter
that provides an overview of decision tree analysis in the context of software en-
gineering.

Going beyond the simplified exposition of decision trees and options, Smith
and Nau (1995) explain the precise relationship between option pricing and deci-
sion trees, and demonstrate how the two models together can account for both

60 Hakan Erdogmus, John Favaro, Michael Halling

market and private risk. This hybrid technique is exploited in an article by Erdog-
mus (2002) to value software projects with multiple sources of uncertainty.

On the one hand, in spite of its analytic power, real options has proved chal-
lenging to use in the context of software engineering projects. The original deriva-
tion of the Black-Scholes formula was based upon the assumption of being able to
trade assets continuously – an assumption already considered by some to be ques-
tionable for financial assets, and considered by many to be untenable for real as-
sets (such as software projects). The ensuing controversy has prompted the devel-
opment of option pricing techniques, such as by (Dixit and Pindyck, 1995), which
do not appeal to market-related arguments in their derivation. Techniques based
on Monte Carlo simulation (Mun, 2002) later gained popularity for the same rea-
son and for their practicality in valuing options on real assets.

On the other hand, there is a significant community that accepts the essential
validity of the Black-Scholes and binomial approaches as a way to determine ide-
alized value and points out the considerable advantages of these approaches, such
as the avoidance of the need to specify subjective probabilities and enumerate dif-
ferent outcomes. The Black-Scholes model may be used in a compact fashion,
with few key parameters that can often be estimated using market or historical
data. The reader can consult the Extreme Programming Perspectives chapter (Er-
dogmus and Favaro, 2002) for a comparison of real and financial options and a
discussion of the portability of the financial option pricing assumptions.

For a high-level treatment of real options outside the software engineering con-
text, we recommend (Amram and Kulatalika, 1999) and (Copeland and Antikarov,
2001). (Mun, 2002) is an excellent technical resource for real options analysis that
exploits numeric techniques, such as Monte Carlo simulation and optimization,
that do not appeal to market-related arguments. Additional references can be
found in the “Further Reading” sidebar of the IEEE Software magazine’s
May/June 2004 focus issue on Return on Investment (Erdogmus et al., 2004).

3.5 Summary and Discussion

A structured valuation process that accounts for costs, benefits, and uncertainty is
required to support software professionals and project managers in making value-
oriented decisions. Software projects are subject to multiple sources of uncertainty
and incorporate additional complexities, such as intangible benefits, flexibility, in-
teractions among projects, and conflicting stakeholder interests that may impact
value to various extents. Different techniques including game theory, real options
analysis, utility functions, and portfolio-based approaches, exist for dealing with
these factors in valuation. These techniques, when appropriately used, can aug-
ment traditional methods to help assess the effects when their consequences are
deemed significant.

This chapter focused on the natural tension in software projects between the
cost of investment in flexibility and the value of the opportunities such flexibility
provides. Much of software development is colored by this tension. Multitiered

3 Valuation of Software Initiatives under Uncertainty 61

system architectures, application frameworks, modular development, and compo-
nents are examples of providing insurance, of protecting that which does not
change from that which does change. The value of that protection is proportional
to the probability that change will occur. The real options approach to valuation
reveals the underlying drivers – the costs, the benefits, the time frame of the in-
vestment, and above all, the uncertainty surrounding the investment. In doing so, it
brings a rational analysis regime to a difficult problem in software engineering:
gauging the benefits of flexibility and dynamic decisions in process, product, and
project decisions.

This chapter tried to bridge the gap between theory and application by provid-
ing both a survey on theory related to valuation and discussing examples using se-
lected valuation techniques beyond the traditional approaches. The chapter illus-
trates that value-based software engineering faces interesting challenges. Expertise
already exists in selected areas, but various promising concepts from finance and
economics are waiting to be tailored, integrated, and applied to the area of soft-
ware development.

The challenges regarding the use of financial and economic methods, such as
option pricing theory and portfolio theory, in the VBSE context are their reliance
on objective historical data on observed prices of assets and the ability to buy or
sell assets in arbitrary quantities. Such objective data is unfortunately often un-
available for software projects. Neither are software projects and software-based
assets liquid or tradable in arbitrary proportions. Strategies to cope with these dif-
ficulties include using proxies (data on related activities or assets, thought to be
correlated with the actual activity or asset of interest) where possible, using simu-
lation-based and other numeric techniques that don not assume tradability (Mun,
2002), relying on subjective estimates where necessary, tailoring the methods to
have less demanding data requirements, focusing on sensitivity analysis where re-
liable data is unavailable, and most importantly, understanding the implications of
violating assumptions. The last point means treating the valuations obtained as re-
flecting idealized rather than fair values and focusing on the insights gained rather
than the numbers churned.

Data availability and reliability problems however are not unique to software
projects and should not be viewed as an obstacle. Table 3 summarizes the difficul-
ties involved with different techniques and the common strategies used to address
these difficulties. Examples of the use of available market or project data as prox-
ies in software project valuation can be found in work by Erdogmus (2000, 2001,
2002).

62 Hakan Erdogmus, John Favaro, Michael Halling

Table 3. Applying financial and economic techniques in VBSE

When to use? Theory or
technique

Main challenges with application in
VBSE

How challenges alleviated?

Static decisions; no flexibility; no em-
bedded options.

DCF and traditional
NPV

1. Estimation of cash flows.
2. Determination of proper discount
rate.

1. Consider multiple scenarios
and aggregate. Use subjective
estimates. Use sensitivity
analysis for unknown cash
flows.
2. See Chapter 5.

Dynamic decisions; flexibility; multiple
embedded options; complex structuring
of decisions; able to identify discrete
outcomes and associated probabilities;
focus on understanding dynamics of
multiple nested decisions; multiple in-
terdependent projects with transparent
interactions.

Decision trees

1. Same as NPV/DCF.
2. Modeling uncertainty.

1. Same as NPV/DCF.
2. Simplify by considering
only most relevant scenarios.
Use sensitivity analysis.

Dynamic decisions; flexibility; single or
few embedded options; simple decision
structure conforming to known tem-
plates; probability distribution of out-
comes unidentifiable; able to represent
uncertainty as percentage variation;
quick results; focus on understanding
impact of valuation parameters.

Real options and op-
tion
pricing theory

1. Estimation of uncertainty due to lack
of objective data.
2. Non-tradability of software assets and
projects when using models with ana-
lytic, closed-form solutions such as the
Black-Scholes model.
3. Mapping projects to option pricing
problems.

1. Use market proxies and pri-
vate data from past projects
when available. Use industry
benchmarks. Use sensitivity
analysis.
2. Interpret results as “ideal-
ized values.” Model options
using simple decision trees if
necessary. Use simulation-
based or other numeric tech-
niques that do not assume trad-
ability (Mun, 2002).
3. Simplify scenarios by con-
sidering only the most signifi-
cant options (earliest, with
largest and most uncertain
payoffs). Consider most impor-
tant milestones only and fit
into existing templates when
possible.

Need to factor in decision maker prefer-
ences and attitudes for risk.

Utility theory

Identification of utility functions.

Use known techniques for elic-
iting utility of stakeholders
when practical. Use standard-
ized functions when necessary.
See Chapter 4.

3 Valuation of Software Initiatives under Uncertainty 63

When to use? Theory or
technique

Main challenges with application in
VBSE

How challenges alleviated?

Multiple interdependent projects whose
interactions are generally identifiable as
positive or negative correlations among
project returns; focus on optimal alloca-
tion of resources among alternative ac-
tivities.

Portfolio theory

1. Determination correlations among
projects due to lack of objective data.
2. Projects resources cannot be allo-
cated in arbitrary quantities.

1. Use proxies when possible.
2. Tailor to handle “all or
none”-type resource allocation;
use optimization techniques
(Mun, 2002).

References

(Amram and Kulatilaka, 1999) (Amram and Kulatilaka, 1999) Amram, M., Kula-
tilaka, N.: Real options: managing strategic investment in an uncertain world
(Harvard Business School Press, 1999)

(Biffl and Halling, 2001) Biffl, S., Halling, M.: A Framework for Economic Plan-
ning and Evaluation of Software Inspection Processes. In: Proc. of the Work-
shop on Inspection in Software Engineering (July 2001)

(Black, 1988) Black, F.: A Simple Discounting Rule. Financial Management, 17,
pp 7–11 (1988)

(Black and Scholes, 1973) Black, F., Scholes, M.: The pricing of options and cor-
porate liabilities. Journal of Political Economy, 81, pp 637–659 (1973)

(Boehm, 1984) Boehm, B. W.: Software Engineering Economics (Prentice Hall,
1984)

(Boehm, 2000) Boehm, B. W.: Software Cost Estimation with Cocomo II (Pren-
tice Hall, 2000)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes, 28(2), (2003)

(Boehm and Sullivan, 1999) Boehm, B. W., Sullivan, K.: Software Economics:
status and prospects. Information and Software Technology, 41, pp 937–946
(1999)

(Böckle et al., 2004) Böckle, G., Clements, P., McGregor, J.D., Muthig, D.,
Schmid, K.: Calculating ROI for Software Product Lines. IEEE Software, pp
23–31 (May 2004)

(Brealey and Myers, 1996) Brealey, R.A., Myers, S.C.: Principles of Corporate
Finance, 5th Edition (McGraw Hill, 1996)

(Copeland and Antikarov, 2001) Copeland, T., Antikarov, V.: Real Options: A
Practitioner's Guide (Texere, New York 2001)

64 Hakan Erdogmus, John Favaro, Michael Halling

(Cox et al., 1979) Cox, J., Ross, S., Rubinstein, M.: Option pricing: a simplified
approach. Journal of Financial Economics, 7(3), pp 229–263 (1979)

(Dixit and Pindyck, 1995) Dixit, A.K., Pindyck, R.S.: The options approach to
capital investment. Harvard Business Review, 73, pp 105–115 (1995)

(Erdogmus, 2000) Erdogmus, H.: Value of Commercial Software Development
under Technology Risk. The Financier, 7, pp 1–4 (2000)

(Erdogmus, 2001) Erdogmus, H.: Management of license cost uncertainty in soft-
ware development: a real options approach. In: Proc. 5th Annual Conference
on Real Options: Theory Meets Practice, UCLA, Los Angeles, CA (2001)

(Erdogmus, 2002) Erdogmus, H.: Valuation of Learning Options in Software De-
velopment Under Private and Market Risk. The Engineering Economist,
47(13), pp 304–353 (2002)

(Erdogmus and Favaro, 2002) Erdogmus, H., Favaro, J.: Keep Your Options
Open: Extreme Programming and the Economics of Flexibility. In: Extreme
Programming Perspectives, ed by L. Williams, D. Wells, M. Marchesi and G.
Succi (Addison-Wesley, 2002)

(Erdogmus and Vandergraaf, 1999) Erdogmus, H., Vandergraaf, J.: Quantitative
approaches for assessing the value of COTS-centric development. In: Proc.
Sixth International Software Metrics Symposium, Boca Raton, Florida, (IEEE
Computer Society, 1999)

(Erdogmus et al., 2004) Erdogmus, H., Favaro, J., Striegel, W.: Return on Invest-
ment: Guest Editors' Introduction. IEEE Software, pp 18–24 (May/Jun. 2004)

(Favaro, 1996) Favaro J.: When the Pursuit of Quality Destroys Value. IEEE
Software, pp 93–95 (May 1996)

(Favaro, 1999) Favaro, J.: Managing IT for Value. In: Proc. National Polish Soft.
Eng. Conference, Warsaw (May 1999)

(Favaro and Favaro, 1999) Favaro, J.M., Favaro, K.R.: Strategic Analysis of Ap-
plication Framework Investments. In: Building Application Frameworks: Ob-
ject Oriented Foundations of Framework Design, ed by M. Fayad and R.
Johnson (John Wiley and Sons, 1999)

(Favaro et al., 1998) Favaro, J.M., Favaro, P., Favaro, K.R.: Value-based software
reuse investment. Annals of Software Engineering, 5, pp 5–52 (1998)

(Hirschey et al., 2003) Hirschey, M., John, K., Makhija, A. K.: Corporate Govern-
ance and Finance. Advances in Financial Economics, Vol. 8 (Elsevier, 2003)

(Kitchenham and Linkman, 1997) Kitchenham, B., Linkman, S.: Estimates, Un-
certainty and Risk. IEEE Software, pp 69–74 (May 1997)

(Klir and Wiermann, 1998) Klir, G.J., Wiermann, M.J.: Uncertainty-Based Infor-
mation. Studies in Fuzziness and Soft Computing, Vol. 15 (Physica-Verlag,
Heidelberg 1998)

(Layard and Glaister, 1994) Layard, R., Glaister, S.: Cost-Benefit Analysis,
2nd Edition (Cambridge University Press, 1994)

(Lintner, 1965) Lintner, J.: The Valuation of Risk Assets and the Selection of
Risky Investments in Stock Portfolios and Capital Budgets. Review of Eco-
nomics and Statistics, 47, pp 13–37 (1965)

(Markowitz, 1952) Markowitz, H.: Portfolio Selection. Journal of Finance, 7,
pp 77–91 (1952)

3 Valuation of Software Initiatives under Uncertainty 65

(Mossin, 1966) Mossin, J.: Equilibrium in a Capital Asset Market. Econometrica,
34, pp 768–783 (1966)

(Mun, 2002) Mun, J.: Real Options Analysis: Tools and Techniques for Valuing
Strategic Investments and Decisions (John Wiley & Sons, 2002)

(Myers, 1974) Myers, S.C.: Interactions of Corporate Financing and Investment
Decisions: Implications for Capital Budgeting. Journal of Finance, 29, pp 1–
25 (1974)

(Port et al., 2002) Port, D., Halling, M., Kazman, R., Biffl, S.: Strategic Quality
Assurance Planning. In: Proc. 4th Int. Workshop on Economics-Driven Soft-
ware Engineering Research (EDSER-4) (2002)

(Porter, 1985) Porter, M.E.: Competitive Advantage: Creating and Sustaining Su-
perior Performance (Free Press, New York 1985)

(Porter and Millar, 1985) Porter, M. E., Millar, V. E.: How Information Gives You
Competitive Advantage. Harvard Business Review, 63, pp 140–160 (1985)

(Powell, 1992) Powell, P.: Information Technology Evaluation: Is It Different?
Journal of the Operational Research Society. 43(1), pp 29–42 (1992)

(Sang-Pok et al., 2004) Sang-Pok, K., Hak-Kyung, S., Kyung-Whan, L.: Study to
Secure Reliability of Measurement Data through Application of Game The-
ory. In: Proc. EUROMICRO Conference (2004)

(Sharpe, 1964) Sharpe, W.F.: Capital Asset Prices: A Theory of Market Equilib-
rium under Conditions of Risk. Journal of Finance, 19, pp 425–442 (1964)

(Shleifer and Vishny, 1997) Shleifer, A. Vishny, R. W.: A Survey of Corporate
Governance. Journal of Finance, 52(2), pp 737–783 (1997)

(Smith and Nau, 1995) Smith, J.E., Nau, R.F.: Valuing risky projects: option pric-
ing theory and decision analysis. Management Science, 41(5)

(Srivastava and Mock, 2002) Srivastava, R.P., Mock, T.J.: Belief Functions in
Business Decisions. In: Studies in Fuzziness and Soft Computing Vol. 88
(Physica-Verlag, Heidelberg 2002)

(Sullivan et al., 1999) Sullivan, K.J., Chalasani, P., Jha, S., Sazawal, S.V.: Soft-
ware Design as an Investment Activity: A Real Options Perspective. In: Real
Options and Business Strategy: Applications to Decision Making, ed by L.
Trigeorgis (Risk Books, 1999)

(Tockey, 2004) Tockey, S: Return on Software: Maximizing the Return on Your
Software Investment (Addison-Wesley, 2004)

Author Biographies

Hakan Erdogmus is a senior research officer with the software engineering group
at the National Research Council’s Institute for Information Technology in Ot-
tawa, Canada. His current research interests are centered on agile software devel-
opment and software engineering economics. Mr. Erdogmus holds a doctoral de-
gree in Telecommunications from Université du Québec’s Institut national de la
recherche scientifique and a Master's degree in Computer Science from McGill
University, Montréal.

66 Hakan Erdogmus, John Favaro, Michael Halling

John Favaro is the founder of Consulenza Informatica in Pisa, Italy. In 1996 he in-
troduced the principles of Value-based Management in software engineering in an
article in IEEE Software on the relationship between quality management and
value creation. In 1998 he introduced Value-based Software Reuse Investment,
applying the ideas of Value-based Management and option pricing theory to the
analysis of investments in software reuse. Recently he has investigated the rela-
tionship of Value-based Management to agile development processes. He is a
founding member of the International Society for the Advancement of Software
Education (ISASE) and is on the permanent steering committee of the Interna-
tional Conference on Software Reuse. He was guest editor of the May/June 2004
special issue of IEEE Software on “Return on Investment in the Software Indus-
try.” He took his degrees in computer science at Yale University and the Univer-
sity of California at Berkeley.

Michael Halling is an Assistant Professor at the University of Vienna. He studied
Computer Science at the Vienna University of Technology and Business Admini-
stration at the University of Vienna. He holds a PhD from the Vienna University
of Technology in Computer Science and completed the CCEFM Postgraduate
Program in Finance. Michael Halling is currently doing research in the area of in-
ternational equity markets, portfolio management, default risk modeling, and cor-
porate finance. His industrial experience includes an employment with a leading
consulting company and projects with the Austrian government, the Austrian cen-
tral bank, and several Austrian banks.

4 Preference-Based Decision Support in Software
Engineering

Rudolf Vetschera

Abstract: Throughout the lifecycle of a software system, complex decisions have
to be made. One major source of complexity in decision problems is the need to
simultaneously consider different, and sometimes conflicting, criteria. When a de-
cision involves multiple criteria, it cannot be made in a purely objective way, but
requires subjective judgement to evaluate the trade-offs between criteria. In the
field of decision analysis, several methods have been developed to help decision
makers to specify their preferences and apply them to a decision problem in a con-
sistent way. In this chapter, we review several methods for multicriteria decision
making, in particular additive weighting methods, methods based on aspiration
levels, and outranking methods. We present the theoretical background of these
methods, their specific ways of evaluating alternatives, and discuss their applica-
bility to decision problems in software engineering. A concluding section dis-
cusses issues related to sensitivity analysis and the use of incomplete information.

Keywords: Decision analysis, subjective preferences, multiple criteria, additive
weighting, aspiration levels, outranking methods, sensitivity analysis.

4.1 Introduction

The field of decision analysis is concerned with supporting people to make better,
or even optimal, decisions. A decision involves the selection of one out of several
possible alternatives, which are evaluated according to their outcomes. In many
decision problems, finding the optimal alternative is far from trivial, because their
outcomes involve several dimensions and thus cannot be compared directly. This
multidimensionality of outcomes can arise for different reasons.

One possibility, on which we will focus in this chapter, is that the decision al-
ternatives have an impact on several different attributes, which all are relevant for
the decision maker. For example, a consumer chooses a particular car not only be-
cause of its price, but takes into account different attributes like performance, fuel
consumption, or comfort.

Another situation, in which it is necessary to consider multidimensional out-
comes, arises when alternatives lead to different outcomes in different states of the
environment, and the decision maker is uncertain which state will arise. The same
outcome, e.g., the same amount of profit, will have a different impact on the deci-
sion depending on whether it occurs in a likely or unlikely state of the environ-
ment. Other factors which lead to a multidimensionality of outcomes are multiple
stakeholders or outcomes which occur at different points in time.

68 Rudolf Vetschera

When the consequences of a decision are multidimensional, alternative courses
of action can often not be compared in an entirely objective way. Whether one
prefers a comfortable, but expensive car over a cheaper, but less comfortable one,
or whether one is willing to accept higher risks instead of a small, but safe profit,
is a matter of subjective preferences.

However, the fact that such complex decision problems necessarily involve
subjective judgment does not imply that such decisions must be based on pure in-
tuition. The aim of decision analysis is to develop methods that allow decision
makers to apply their preferences to a decision problem in a logical and consistent
manner. Often the sheer complexity of a decision problem is overwhelming.
Methods of decision analysis help to break down such problems into small, cogni-
tively manageable tasks, and integrate their results back into a coherent and, given
the decision maker’s subjective preferences, optimal decision.

All four sources of multidimensionality mentioned above are potentially rele-
vant for decisions in software engineering. Different evaluation criteria like per-
formance, reliability, functionality, as well as costs must be taken into account, so
most decisions involve multiple criteria. Software development projects are char-
acterized by high levels of uncertainty concerning resources required, possible
technical obstacles during the development process, and so on, so they are deci-
sion problems under risk. Decisions also affect various stakeholders like users,
developers, or project managers. And finally, consequences of decisions can be
spread over the entire lifecycle of a software system and thus are clearly
multitemporal.

Although all branches of decision analysis are therefore relevant for software
engineering, this chapter will focus on multicriteria decision problems. The first
reason for this focus is that multicriteria decisions are a very general class of deci-
sion problems. Decisions under risk and intertemporal decisions both involve di-
mensions which are more comparable to each other than entirely different attrib-
utes. While one Euro of profit in a very unlikely state is not the same as one Euro
of profit in a more likely state, and one Euro of profit tomorrow is not the same as
ten years from now, there is still a natural relationship between these dimensions,
which can be exploited in decision making. But there is no natural and objective
way of comparing additional features in a software system to shorter completion
time. Thus the role of subjective preferences is most evident in multicriteria deci-
sion problems, and methods developed for this class of problems are best suited to
explain fundamental concepts of decision support.

On the other hand, group decisions involve not only potential trade-offs be-
tween the different interests of stakeholders, but also “meta-criteria” like fairness,
which further complicate the problem. Methods of multicriteria decision making,
although they do no explicitly deal with issues like fairness, nevertheless can pro-
vide considerable support also for group decision problems. They allow us to inte-
grate different perspectives of the problem, which can come from different stake-
holders, into one consistent view. Thereby, they provide a general framework
which can also assist the solution of group decision problems.

Although this chapter is focused on the field of multicriteria decision analysis,
it still is not possible to give a comprehensive review of this area within one book

4 Preference-Based Decision Support in Software Engineering 69

chapter. The main objective of this chapter is therefore to provide an introduction
into several methodologies, which have been developed in this field, their funda-
mental assumptions, and their particular strengths and problems. While it is not
possible within the restricted space of one chapter to provide in-depth descriptions
of the methods or their application in different areas of software engineering,
some references to such applications and short illustrative examples will be pro-
vided.

The remainder of this chapter is structured as follows: Section 4.2 provides the
motivation for considering multiple criteria in software engineering decisions.
Section 4.3 reviews three fundamental approaches to multicriteria decision making
by discussing methods based on additive weighting, on aspiration levels, and on
outranking relations. Section 4.4 addresses issues of incomplete information and
sensitivity analysis. Section 4.5 concludes the chapter with a short discussion on
selection criteria for identifying the appropriate method for a specific decision
situation.

4.2 Decisions with Multiple Criteria and Software
Engineering

One important argument in several chapters of this book is that decisions in and
about software engineering should focus on the value which is created by develop-
ing a software system. One might presume that value is a single, unique criterion
to be considered and therefore it is not necessary to focus on multiple criteria
when making decisions in software engineering. However, even when we focus on
value creation as the guiding principle in software engineering, multicriteria deci-
sion methods are of considerable importance.

Firstly, the value which a software systems generates is a multidimensional
concept by itself, which involves different attributes, time periods and stake-
holders (see Chapter 7). The literature on information systems evaluation has de-
veloped a multitude of measures for the success of an information system
(DeLone and McLean, 1992). While ultimately the impact of an information sys-
tem on the organization in which it is used is the main indicator of its success,
DeLone and McLean (1992) further distinguish the levels of system quality, in-
formation quality, system use, user satisfaction, and individual impact as alterna-
tive, and mostly complementary, measures of the success of an information sys-
tem.

Even when impact at the level of the entire organization is considered as the
main criterion for evaluating an information system, different attributes can be
used to measure its value. The impact on organizational performance can range
from short-run, easy to quantify cost savings to “soft” strategic advantages, which
can hardly be expressed directly in monetary terms (Farbey et al., 1995). Further-
more, the direct influence of information systems on the performance of firms is
difficult to determine (Boehm, 2003). Thus, it might be more appropriate to evalu-
ate information systems using intermediate variables like inventory turnover or

70 Rudolf Vetschera

capacity utilization, which in turn influence profit (Barua et al., 1995). These in-
termediate variables can be considered as separate criteria when determining the
value of an information system.

Thus the value provided by an information system is a multidimensional con-
cept and consequently information systems should be evaluated using multicriteria
methodologies. Furthermore, the concepts of value discussed so far evaluate an in-
formation system only from the perspective of the organization in which it is used.
But the organization is just one stakeholder in the process of software develop-
ment (Boehm, 2003).

The entity developing a software system can be part of a larger organization,
which will eventually reap the benefits of the system developed, as in the case of
an in-house software department. But it might as well be an entirely different or-
ganization, for example, in the development of commercial software products. Of
course, a developer of commercial software also needs to take the benefits to cus-
tomers into account, since they will only be willing to invest in software if they
can expect a positive return. But the perceptions of benefits are still quite differ-
ent. For a commercial developer, the possibility to sell a software system to a
wider set of potential customers can be an important criterion, which is less rele-
vant in an in-house development effort.

The organization introducing an information system must be distinguished from
the actual users who interact with the system, and whose interests and demands on
the system might be quite different (Boehm, 2003). A similar distinction can be
made on the development side, where the interests of individual developers (like
becoming familiar with some new technology) might be different from those of
the company employing them (which could, for example, be interested in lowering
development costs). Considering the diverse interests of various stakeholder
groups increases the number of criteria to be used.

The criteria mentioned so far can only be evaluated after the development proc-
ess is completed. But for many decisions to be made during the process, the im-
pact of decision alternatives on attributes of the finished product or the whole
process is not clear. In such cases, intermediary attributes, which can more easily
be related to the decision alternatives at hand, and which serve as proxies for the
desired attributes, must be used. For example, portability to future platforms might
be a desirable attribute of a finished system. In selecting an off-the-shelf compo-
nent, this attribute could be replaced by an attribute describing the likelihood that
the supplier of the component will be available to perform the necessary adjust-
ments several years in the future.

To summarize our arguments so far, multiple criteria should be considered in
decisions during a software development process for the following reasons:
• Because the value of an information system itself is a multidimensional con-

cept.
• Because multiple criteria make it possible to accommodate for the interests of

different stakeholder groups in the development process.
• Several criteria can be used jointly as proxies for higher level goals, when the

relationship between decision alternatives and those higher level goals cannot
directly be established.

4 Preference-Based Decision Support in Software Engineering 71

In all these cases, the aggregation between the different attributes is not com-
pletely subjective, but also has some objective aspects. This is different from deci-
sion problems which are typically discussed in multicriteria analysis, where the
importance of attributes is determined only by the subjective preferences of the
decision maker. Whether one prefers a sunny, but small apartment over a bigger
and darker one, or how much space one is willing to give up for an extra hour of
sunshine in the living room, is entirely a matter of personal taste.

In contrast to these personal preferences, the tradeoff between designing the
feature set of a new system to closely fit the requirements of an important, long-
standing customer or to open the potential for conquering new markets is a busi-
ness decision. It requires subjective judgment and cannot be solved using purely
objective data. But in this case, the subjective component of the decision is to a
certain extent a substitute of objective information rather than a characteristic fea-
ture of the problem. In the next section, in which we discuss various approaches to
solve multicriteria decision problems, we will therefore specifically focus on the
question of how well these methods are able to integrate objective and subjective
information when evaluating trade-offs between different attributes.

4.3 Multicriteria Decision Methods

In this section, we provide an overview of different methods which have been de-
veloped in the theory of multicriteria decision analysis. These methods differ not
only in their formal mechanisms used to represent preferences and aggregate in-
formation about different attributes, but also in their fundamental concepts of the
origin of preferences and the role which methods for decision support should play
in the decision process. Nevertheless, they still rely on a quite common concept of
what constitutes a multicriteria decision problem.

Structure and forms of multicriteria decision problems

A multicriteria decision problem can be characterized by (Keeney and Raiffa,
1976):
• a (finite or infinite) set of decision alternatives, among which exactly one is to

be chosen,
• a set of criteria or attributes in which the alternatives are to be evaluated, and
• the performance of alternatives in the criteria.

An infinite set of decision alternatives can be described by continuous decision
variables and constraints which are imposed on their values. A finite set of deci-
sion alternatives can be enumerated; for example, different GUI toolkits which
could be used in a project can be listed as decision alternatives. Multicriteria deci-
sion problems in which alternatives are described via decision variables and con-
straints are often called multiobjective programming problems (Hwang and Ma-

72 Rudolf Vetschera

sud, 1979), while problems in which the alternatives are explicitly given are called
multi-attribute decision problems (Hwang and Yoon, 1981).

Multiple criteria are often associated with a strict conflict between criteria,
where one goal cannot be achieved without sacrificing another goal. But most
methods of multicriteria decision making take a more general perspective and are
not restricted to this type of situation. They can also deal with other relations be-
tween criteria like mutual support, when improvement in one criterion (some-
times) leads also to improvements in other criteria. While some methods require
that decision makers are able to conceptually distinguish between the impacts of
different criteria on the overall evaluation of an alternative, there are also methods
to avoid this condition of preferential independence.

Methods of multicriteria decision making can be classified according to differ-
ent dimensions. One possibility is to consider the time at which preference infor-
mation is elicited from the decision maker. This can take place before or after the
main calculations of the algorithm are performed, or interactively, when prefer-
ence elicitation and calculation phases are interspersed (Hwang and Masud, 1979).

Another classification, which we will use for the remainder of this chapter, is
based on the different forms in which preferences are represented and distin-
guishes between weights, aspiration levels, and outranking methods. All methods
for multicriteria decision making require some parameters to represent the prefer-
ences of the decision maker. In methods based on aspiration levels, these parame-
ters are levels of the attributes themselves. Weights are more abstract parameters,
which are multiplied with attribute values to obtain an evaluation. Outranking
methods use yet another type of parameters.

The following notation will be used in the remainder of this chapter: we con-
sider a multi-attribute decision problem in which alternatives are explicitly given
(for example, different technologies available for a component of a software sys-
tem). There are N different alternatives, an individual alternative is referred to as
Ai. The alternatives are evaluated in K attributes, so each alternative can be charac-
terized by a vector of K components:

),,,,,(21 iKikiii aaaaA = (1)

where aik represents the evaluation of alternative Ai in attribute k. For simplicity,
we will assume that the decision maker wants to maximize all the attributes. If
necessary, the sign of an attribute can be changed to fulfill this assumption. We
also assume that attributes are standardized so that the best possible value is repre-
sented by one, and the worst value by zero.

An important concept in multicriteria decision making is dominance. An alter-
native Ai dominates another alternative Aj if it is at least as good as Aj in all attrib-
utes and strictly better in at least one attribute. Formally Ai dominates Aj if the fol-
lowing two conditions hold:

jkik

jkik

aak
aak

>∃

≥∀

:
:

(2)

4 Preference-Based Decision Support in Software Engineering 73

Alternatives which are not dominated by other alternatives are called efficient or
Pareto-optimal.

Additive weighting methods

Additive weighting methods are probably the most widely used approach to deal
with multicriteria decision problems. In their simplest form, weights are directly
applied to the (standardized) attribute values and alternatives are evaluated accord-
ing to

=
k

ikki awAu)((3)

The alternative with the highest value of u(Ai) is chosen. While (3) is conceptually
simple and seems to be an intuitive approach to handle multiple criteria, it leads to
considerable problems, from both a theoretical and a practical point of view.

A major practical problem in employing (3) is the selection of the weights wk.
Intuitively, the weights reflect the “importance” of different attributes, so a deci-
sion maker might feel that if attribute k is “twice as important” to him than attrib-
ute m, then wk should also be two times as big as wm. But equation (3) combines
weights with attribute values. When wk = 2wm, this means that going from the
worst to the best possible value in attribute k contributes twice as much to the
evaluation of an alternative than going from the worst to the best value in attribute
m. Thus weights always refer to the importance of attributes relative to their pos-
sible range of values. Failure to take this into account might lead to an improper
specification of weights, which do not reflect the true preferences of the decision
maker.

Another important property of the simple additive weighting model (3) is the
assumption of constant rates of substitution between attributes. This means that
the decision maker is always willing to trade in a certain amount of attribute k for
a constant amount of attribute m, independently of the values achieved in the two
attributes. Consider, for example, the decision between several options for a crash
program, in which additional resources are committed to shorten the development
time for a project. The assumption of constant tradeoff rates implies that the deci-
sion maker is willing to spend just the same amount for the first week of reduction
as for the fifteenth week. In many instances, preferences of decision makers do not
fulfill this assumption.

Another problem of (3) is that some efficient alternatives might never be found
using this approach. While this seems to be a rather abstract, technical argument, it
has considerable practical consequences as illustrated in Figure 17.

74 Rudolf Vetschera

A
1

A
2

A
3

Z
1

Z
2

U

Fig. 17. Problems of additive weighting

Figure 17 shows three alternatives, which are evaluated in two attributes Z1 and Z2.
All three alternatives are efficient, and A3 seems to be a well-balanced compro-
mise. But A3 can never be selected as the best alternative in an additive weighting
scheme. When the weights are chosen as in the line U in Figure 17, then A1 and A2
are evaluated as equal and better than A3. Weight changes will cause either A1 or
A2 to become the optimal alternative, but never A3. Thus a simple additive weight-
ing approach eliminates alternatives which are dominated by a linear combination
of other alternatives, although not by any existing alternative (Chankong and
Haimes, 1983).

This problem can be overcome when attribute values in (3) are transformed
and (3) is modified to

)()(ikk
k

ki avwAu = (4)

where vk is a partial utility function for attribute k. When vk is a concave function,
(4) represents decreasing marginal benefits, and additional improvements in an at-
tribute which already has a high value would be valued less. In Figure 17, using
concave marginal utility functions would cause A1 to shift downward and A2 to the
left, so for some ranges of weights, A3 could become the optimal alternative.

Equation (4) describes the basic form of multi-attribute utility functions used in
Multi-Attribute Utility Theory (MAUT) (Keeney and Raiffa, 1976). MAUT pro-
vides an axiomatically founded theory of multicriteria decision making. An addi-
tive function (4) is an appropriate model of preferences when the attributes fulfill
the requirement of preferential independence, i.e., when the contribution of each
attribute to the overall evaluation of an alternative does not depend on the values
in other attributes. This assumption is violated if an attribute requires a high value
in another attribute to be useful. For example, a high resolution display is useless
without adequate processing power to generate graphics within reasonable time.
Thus the attributes “graphics resolution” and “processing power” of a workstation
do not fulfill the assumption of preferential independence.

4 Preference-Based Decision Support in Software Engineering 75

Interdependencies between attributes can be handled by other forms of multi-
attibute utility functions, like product or multilinear functions, which contain
multiplicative terms between two or more attributes.

While MAUT can overcome most of the problems of the simple additive
weighting approach (3), it also considerably increases the cognitive requirements
on the decision maker, who must specify the weights as well as the partial utility
functions. Several methods have been developed for the elicitation of these pa-
rameters. But empirical research has shown that although these methods should
theoretically lead to identical results, the results are often quite different due to
various bias phenomena (Schoemaker and Waid, 1982; Weber et al., 1988). We
therefore will not present the individual methods in detail here, but refer to the
relevant literature (von Winterfeldt and Edwards, 1986).

A popular variant of the additive weighting model is the Analytic Hierarchy
Process (AHP) developed by Saaty (1980). Instead of using a partial utility func-
tion vk, this method directly evaluates alternatives in each attribute and then per-
forms an additive aggregation similar to (4). The AHP also allows for a hierarchi-
cal structure of attributes: The ultimate goal of selecting a best decision alternative
is first broken up into top-level goals, each of which can consist of multiple sub-
goals at the second level and so on until one reaches subgoals in which the alterna-
tives under consideration can easily be evaluated. Attributes thus form a tree, to
which the alternatives are added at the lowest level to provide a consistent repre-
sentation of the decision problem.

The weights used to aggregate across the levels of this hierarchy are derived
from pairwise comparisons of all lower level attributes with respect to the higher
level. The elements are compared on a ratio scale, the comparison of elements Ai
and Aj is represented by a factor cij indicating how many times alternatives Ai is
considered to be better than alternative Aj. The factors cij form a comparison ma-
trix C. By definition of the comparison factors, matrix C is reciprocal, i.e.,
cij = 1/ cji.

Assume that the true performance (“priority”) of alternative Ai is given by wi.
When all comparisons are performed consistently,

cij = wi/wj (5)

and, since it is easy to verify that

NWWC =⋅ (6)

the true priority vector W = (w1,…,wN) is an eigenvector of the comparison ma-
trix C. Since the eigenvector is robust against small disturbances of the matrix C,
the eigenvector is also used to estimate the vector of priorities from a comparison
matrix if the matrix is not entirely consistent.

By comparing all elements of the lower level to each other, the AHP provides
for a certain level of redundancy, which is used to level out possible inconsisten-
cies in the decision maker’s judgments. There are also measures for the consis-
tency of a comparison matrix and rules indicating when a comparison matrix can
be considered as sufficiently consistent or when the comparisons should be re-
vised.

76 Rudolf Vetschera

The AHP has been proposed by several authors as a decision making tool in
software engineering problems, especially concerning the selection of IS projects
(Muralidhar et al., 1990; Schniederjans and Wilson, 1991; Lee and Kwak, 1999),
of development tools (Kim and Yoon, 1992; Lai et al., 1999; Lai et al., 2002), of
system software (Roper-Lowe and Sharp, 1990; Mamaghani, 2002), and of enter-
prise-wide information technologies (Sarkis and Sundarraj, 2003). It has also been
used to measure the quality of information systems as a multidimensional con-
struct (Santhanam and Guimaraes, 1995; Kim, 1998; Forgionne, 1999; Phillips-
Wren et al., 2004).

A typical evaluation hierarchy for software selection problems can be found in
(Lai et al., 1999, p. 225). Their hierarchy consists of four levels of attributes. The
top level is formed by the single goal of selecting the optimal system, in the par-
ticular case analyzed there, of selecting an optimal multimedia authoring system.
The second level consists of two still rather broad attributes, technical considera-
tions on one hand and managerial considerations on the other hand. Technical
considerations are broken up at the third level into the attributes development sup-
port, graphic support, multimedia support, and data file support. For managerial
considerations, only two attributes are considered at level three, cost-effectiveness
and vendor support. Each attribute at level three of the hierarchy is then repre-
sented by between six and nine rather specific and easily measurable attributes at
level four, for example, the ability to import text, spreadsheet, MIDI, or other data
file types are used for the level three attribute “data file support.”

This example shows the important benefit of a hierarchical structure of attrib-
utes: by systematically decomposing attributes and identifying lower level attrib-
utes which contribute to the achievement of the higher level attributes, it is possi-
ble to move from rather abstract concepts like managerial considerations to easily
measurable attributes like the ability to import different file types. It also shows
that one indeed needs to consider all levels of attributes: without the specific at-
tributes, it would not be possible to evaluate the alternatives in the abstract, high-
level attributes, while on the other hand, decision makers would probably be
overwhelmed by the task of judging the importance of a large number of specific
attributes without being able to relate them to higher level concepts.

But the example also shows that in creating an attribute hierarchy, one needs to
carefully consider the relationships between attributes, especially if an additive
weighting approach like the AHP is used. One might question whether attributes
like multimedia support and data file support really fulfill the assumption of pref-
erential independence required by this method. The value of program features to
process, for example, video data is probably not independent of the possibility to
read and write video data files.

A major advantage of additive weighting methods like MAUT or the AHP is
their ability to handle both quantitative and qualitative attributes. To assign a par-
tial utility value, it is not necessary that the underlying attributes have numerical
values. For example, a component technology can be rated as “innovative,” “state
of the art,” or “outdated,” and a utility value assigned to each level. At the same
time, numerical attributes (for example, estimates of effort expressed in man-

4 Preference-Based Decision Support in Software Engineering 77

months) can also be accommodated in these methods, either by direct linear trans-
formations or by using nonlinear partial utility functions vk.

While it might be difficult for decision makers to express their preferences in
the form of weights, additive weighting methods are rather well suited to accom-
modate objective information on the importance of attributes. Formally (assuming
that the partial utility functions vk are linear), weights correspond to the partial de-
rivatives of the upper level goals with respect to the lower level goals. When em-
pirical data on both levels is available, the weights could be estimated by statisti-
cal methods.

Aspiration-level Methods

Weights are abstract quantities, which do not directly relate to the decision prob-
lem at hand, making it difficult for decision makers to specify them. Methods
based on aspiration levels try to avoid those difficulties and allow the decision
maker to articulate preferences in a more natural way. Aspiration levels are levels
of the attributes themselves, which a decision maker wants to achieve. For exam-
ple, in acquiring COTS components, one could try to find components which
combine a certain level of functionality, do not exceed certain resource require-
ments at execution time, and cost less than a certain amount of money. Such aspi-
ration levels for attributes can be used to specify the decision maker’s preferences
toward the attributes, even if no alternative exists which at the same time fulfills
the aspiration levels in all attributes.

The concept of aspiration levels was first used in goal programming introduced
by Charnes and Cooper in the 1950s (Charnes et al., 1955; Charnes and Cooper,
1961). Goal programming was originally developed to solve multiobjective linear
programming problems where alternatives are represented by continuous decision
variables (xj).

The goal programming model finds a solution in which the values of the objec-
tive functions are as close as possible to a prespecified goal vector G = (g1, ...,gK).
By introducing deviation variables +

kd and −
kd , the problem can be formulated as

a linear programming problem with a single objective function:

()

Nibx

Kkgddx

dd

ij

kkkj

k
kk

,,1a

,,1c

min

j
ij

j
kj

=≤

==−+

+

+−

−+

(7)

In model (7), there are the K linear objective functions with coefficients ckj. The
parameters aij and bi represent the coefficients and limiting values of N con-
straints. The two deviation variables +

kd and −
kd are used to measure the over-

78 Rudolf Vetschera

achievement and underachievement of goal k. Thus any kind of deviation from the
goal level in any objective is considered to be equally undesirable.

This assumption of equal importance of goals can be relaxed by weighting the
deviation variables. An important variant is hierarchical goal programming,
where the weights differ by several orders of magnitude. Thus, it is ensured that
goals with higher priority are completely satisfied before the model attempts to
optimize the less important goals.

While model (7) is a linear programming model with continuous decision vari-
ables, the basic framework of goal programming is applicable to any type of
multi-objective optimization problem. Goal programming models have been pro-
posed for several decision problems in software engineering, like requirement
analysis (Jain et al., 1991). Most models were developed for project selection
(Lawrence et al., 1983; Schniederjans and Wilson, 1991; Lee and Kim, 2000).
These models use binary (0/1) variables to represent potential projects. Setting
variable xj to 1 indicates that the project is carried out.

As an example for a project selection model, we consider a simplified version
of the model in (Schniederjans and Wilson, 1991). The model uses six goals,
which are grouped into three hierarchical levels. Goals at the highest (most impor-
tant) level are considered as obligatory goals, like avoiding to exceed the maxi-
mum available manpower or budget. The remaining two levels are formed by
flexible goals, like avoiding deviations from the expected (rather than the maxi-
mum) budget or balancing the workload on clerical staff. The entire model is for-
mulated as follows:

}1,0{

1

s.t.
)(

)(

)(Min

66

55

42

33

22

11

663

552

43211

∈

=−+

=−+

=+

=−+

=−+

=−+

+

++

++++

+−

+−

−

+−

+−

+−

−+

−+

++++

j

j
jj

j
jj

j
jj

j
jj

j
jj

x

HCddxhc

BEddxb

dx

BMddxb

HAddxha

HPddxhp

ddP

ddP

ddddP

(8)

The objective function of the model consists of three parts, which are weighted by
factors P1, P2, and P3. When P1 is chosen much greater than P2, and P2 much

4 Preference-Based Decision Support in Software Engineering 79

greater than P3 , the model will first attempt to satisfy the goals represented by the
first four constraints, then the fifth goal and the last goal will only be optimized
when the other goals are satisfied.

The first constraint represents the obligatory goal to keep the number of total
programmer hours used within the maximum available capacity denoted by HP.
Here hpj represents the number of programmer hours used for project j. The con-
straint contains both a lower deviation variable −

1d , which takes on a positive
value if the number of hours actually used is less than the maximum HP, and an
upper deviation variable +

1d , which takes a positive value if the capacity used ex-

ceeds the maximum. Only +
1d is included in the objective function, since under-

utilization of the maximum capacity is not considered a violation of this goal.
Similarly, the second constraint relates analyst time used to the available maxi-
mum analyst hours HA and the third constraint relates total expenditures to the
maximum budget BM. The coefficients haj and bj represent the usage of analysts’
time and budget for project j. The fourth constraint represents the fact that one
particular project, x2, must definitely be undertaken. The deviational variable

+
4d becomes 1 when project x2 is not included in the solution, and by including it

in the objective function, this requirement becomes an obligatory goal.
The fifth constraint, like the third constraint, refers to the total expenditures for

the projects undertaken. But it compares this amount not to the overall maximum,
but to the overall expected budget BE, which should be attained as closely as pos-
sible. Thus for this constraint, both the positive and the negative deviational vari-
ables are included in the objective function. The same holds for the last constraint,
which models the number of clerical hours used and relates their total to the target
value HC.

The standard goal programming model (7) implies that the goal vector is the
most attractive solution for the decision maker and that any deviation from it is
considered as harmful. Thus, when the chosen goal vector is feasible, the model
will select it, even when it is dominated by other solutions.

Other methods for aspiration-based decision support try to overcome this prob-
lem and always provide an efficient solution. This is achieved by using a scalariz-
ing function (Wierzbicki, 1986), which provides a parameterized representation of
the set of efficient solutions. In this approach, a reference point defined in terms of
goal levels serves as control parameter of the scalarizing function and determines
the efficient solution selected. One commonly used scalarizing function is the ex-
tended Tchebycheff distance to the reference point given by

() ()−+−=
k

kkkkk
gzgzs ρmin (9)

where = jkjk xcz is the level of goal k achieved by a solution, gk is the refer-

ence level for goal k specified by the decision maker, and ρ is a (typically small)
technical parameter. By adding the second term in equation (9) with just a small
weight, the generation of dominated solutions is avoided.

80 Rudolf Vetschera

The main advantage of this approach is that the reference point (g1, ..., gK) can
be a feasible as well as an infeasible point. When the reference point itself is not
feasible, maximization of (9) will generate an efficient solution to the problem
which is as close to the reference point as possible. When the reference point is
feasible, a solution which dominates the reference point will be found, or the ref-
erence point itself is returned when it is efficient. The decision maker can control
the structure of the efficient solution by changing the reference values gk: increas-
ing gk for an objective k will also lead to a solution which is better in that objec-
tive.

Different functions could be used as scalarizing functions in this approach. The
main advantage of the Tchebycheff norm used in (9) is that unlike an additive
weighting function, it also allows the selection of a solution which is efficient, but
dominated by a linear combination of other feasible goal vectors. Thus the prob-
lem illustrated in Figure 17 is avoided. This feature makes the reference point ap-
proach particularly attractive for problems with discrete alternatives (or alterna-
tives described by binary or integer decision variables).

Aspiration levels are often seen as a more natural way for decision makers to
specify their preferences than weights (Lewandowski and Wierzbicki, 1989). A
reference point approach is particularly attractive for interactive decision support
systems, because it allows the decision maker to freely search the set of efficient
solutions. This concept has been implemented in several systems for the interac-
tive solution of multi-objective optimization problems (Grauer et al., 1984; Kor-
honen and Wallenius, 1988).

But the fact that aspiration-based methods work directly with goal levels also
means that for these methods, all goals must be measured on a numerical scale.
Thus it is not possible to take into account qualitative goals as easily as in weight-
ing methods. Furthermore, while there are methods to estimate reference points
from empirical data (Vetschera, 1994), their application is not straightforward.
Therefore, aspiration-based methods have some disadvantages for the specific
context of software engineering, where qualitative criteria and the ability to incor-
porate objective, rather than subjective, information are important.

Outranking Methods

Additive weighting methods and aspiration-based methods differ not only in tech-
nical terms. They are also based on rather different views about the decision
maker’s preferences. Additive weighting methods implicitly assume that the deci-
sion maker’s preferences exist ex ante and can be elicited independently of the de-
cision problem at hand. Aspiration-based methods take a more dynamic perspec-
tive. The reference point is constantly changed to search the set of efficient
solutions. Thus preferences are seen as evolving while the decision maker finds
out more about the problem, the goal levels which can be achieved, and the trade-
offs between goals inherent to the problem. Clear preferences toward the different
goals need not even exist at the beginning of this process.

4 Preference-Based Decision Support in Software Engineering 81

Outranking methods take this constructivist view of preferences one step fur-
ther. Their main goal is to construct preferences, based on objective information
on the decision alternatives, rather than to elicit and apply preexisting preferences.

Outranking methods are used only for multi-attribute decision problems, in
which a set of discrete alternatives is explicitly given. The central concept (and the
main output) of these methods is the outranking relation. This is a binary relation
between alternatives indicating that one alternative should be considered to be bet-
ter than another.

As a typical example of this type of methods, we consider the ELECTRE fam-
ily of methods developed by B. Roy (Crama and Hansen, 1983; Roy and Vincke,
1984; Roy, 1991), specifically the ELECTRE I method. For other types of out-
ranking methods like the PROMETHEE family of methods (Brans et al., 1984),
we refer to the literature (Roy and Vanderpooten, 1996; Pomerol and Barba-
Romero, 2000).

The dominance relation between alternatives is based on objective information
and thus could be used as an objective instrument to rank alternatives. The main
problem of the dominance relation is its lack of discriminatory power. Since
dominance is based on rather strict requirements, the dominance relation contains
few elements and consequently, the set of efficient alternatives can still be quite
large. The main aim of outranking methods is to provide a relation which is richer
than the dominance relation, and thus eliminates more alternatives.

An alternative has to fulfill two requirements to dominate another one:
• It must not be worse than the other alternative in any attribute, and
• it must be strictly better in at least one attribute.

The main obstacle to achieving dominance is the first requirement. If this re-
quirement is weakened, a richer relation can be established. The ELECTRE
method relaxes this requirement to the condition that an alternative should not be
much worse than another alternative in any attribute. This concept is formalized
by the discordance index, which synthesizes all the evidence against establishing
an outranking.

The discordance index dij between alternatives Ai and Aj is computed as:

jkikk

ikjkaak
ij aa

aa
d jkik

−

−
= <

max

max
:

(10)

i.e., the ratio of the maximum difference in those attributes where alternative Ai is
worse than Aj to the maximum difference in all attributes. If this ratio is low, the
differences in favor of Aj are small compared to the differences in favor of Ai, and
an outranking of Ai over Aj can be established.

82 Rudolf Vetschera

The second requirement of dominance is replaced in ELECTRE by the concept
of concordance, which represents all the facts confirming that alternative Ai is bet-
ter than alternative Aj. The concordance index cij between two alternatives is cal-
culated as

>
=

jkik aak
kij wc

:
(11)

i.e., the sum of weights of all the attributes in which Ai is better than Aj. By intro-
ducing weights, ELECTRE also enables the decision maker to specify the impor-
tance of attributes. But unlike in additive weighting, in this method the weights are
not multiplied with the attribute values, so the weights are independent of the at-
tribute ranges.

The significance of the concordance and discordance indices is determined by
comparing them to a concordance threshold sc and a discordance threshold sd, re-
spectively. An outranking is established between Ai and Aj if and only if cij > sc
and dij < sd, that is if there is sufficient evidence to consider Ai better than Aj and
no sufficient evidence against this proposition. By increasing the discordance
threshold or lowering the concordance threshold, the number of outrankings can
be increased. This effect can be used to develop an interactive algorithm, in which
alternatives are successively eliminated until only one optimal alternative remains
(Vetschera, 1988).

Since outranking methods operate mainly on objective data, they seem to be
quite well suited for decision problems in software engineering. Calculation of the
concordance index requires only a comparison between attribute values, which is
possible for qualitative attributes, too. The discordance index requires the calcula-
tion of differences and thus can be determined only for numerical attributes. For
qualitative attributes, other methods would be needed to determine discordance,
although this issue has not yet been discussed intensively in the literature. Al-
though these methods seem to be quite well suited for decision problems in soft-
ware development and engineering, only few documented applications exist so far
(Paschetta and Tsoukias, 2000; Stamelos et al., 2000; Blin and Tsoukias, 2001).

4.4 Incomplete Information and Sensitivity Analysis

All decision methods presented so far require various types of (numerical) infor-
mation describing the performance of alternatives in the attributes as well as the
preferences of the decision maker. In practical applications, it is often difficult to
provide this information precisely. Therefore, techniques to deal with imprecise or
incomplete information were developed in the context of all the approaches dis-
cussed. These methods can broadly be classified into two main groups:
• Approaches based on sensitivity analysis first determine the optimal alternative

assuming that no uncertainty exists. In a second step, the sensitivity of the deci-
sion with respect to data changes is analyzed. When small changes in the inputs

4 Preference-Based Decision Support in Software Engineering 83

would change the decision, it is considered to be sensitive and additional in-
formation is sought.

• The second class of approaches seeks to extend the decision methods to deal di-
rectly with incomplete or imprecise information.

Both types of approaches exist for additive weighting methods. In sensitivity
analysis for this type of methods, one typically studies the effects of weight
changes on the selection of the optimal alternative. The impact of changes of a
single weight can be analyzed by interpreting the evaluation of each alternative as
a function of that weight. A plot of this function provides the decision maker with
a convenient overview about how weight changes would influence the decision.

Simultaneous sensitivity analyses for several weights can be performed using
distance-based approaches (Evans, 1984; Rios Insua and French, 1991), which
measure the total change in parameter space leading to a different decision, or by
considering the size (volume) of the region in parameter space in which the cho-
sen alternative remains optimal (Charnetski and Soland, 1978; Vetschera, 1997).

Decision methods based on incomplete information (Weber, 1987) typically as-
sume that instead of one precise numerical value, the information available de-
scribes a set of possible values, for example, an interval or a relationship between
parameters. A decision maker could, for example, state that the weight for attrib-
ute “costs” should be larger than the weight for the attribute “performance,” but
not be able to give precise values for the two weights.

Methods for decision making under incomplete information determine whether,
given the information available, an alternative can definitely be considered as bet-
ter than another alternative and find the set of alternatives which are optimal for at
least some possible parameter values.

We denote the utility of alternative Ai given some weight vector w by u(Ai | w)
and the set of weight vectors which are compatible with the information provided
by the decision maker by W. To determine whether alternative Ai can ever be con-
sidered as better than alternative Aj, the following optimization model is solved:

W

AuAu ji

∈

−

w

ww)|()|(max
(12)

When the optimal objective value of (12) is negative, no parameter vector w ∈ W
exists for which alternative Ai has higher utility than alternative Aj. If only infor-
mation on the weights is incomplete, model (12) is a linear programming model,
which can be solved easily. For the case of incomplete information on both the
weights and the performance of alternatives, transformations have been developed
which allow us to represent this problem also as a linear programming problem
(Park and Kim, 1997).

The problem of incomplete information on parameters has also been studied ex-
tensively in the context of aspiration level methods, mainly goal programming.
Here uncertain parameters are often represented by fuzzy numbers, leading to the
method of fuzzy goal programming (Zimmermann, 1978; Carlsson and Fullér,
2002), which deals with uncertainty in the goal values as well as the constraints.

84 Rudolf Vetschera

For outranking methods, similar techniques for dealing with incomplete and
imprecise information are available. Sensitivity analysis methods (Vetschera,
1986; Mareschal, 1988; Wolters and Mareschal, 1995; Miettinen and Salminen,
1999) allow us to calculate bounds for model parameters like weights or concor-
dance and discordance thresholds within which the outranking relation remains
unchanged. There are also outranking methods which use incomplete and fuzzy
information. On one hand, outranking relations themselves can be considered as
fuzzy (Roubens, 1996); on the other hand, specific methods were developed to use
imprecise data on the various model parameters (Roy and Vanderpooten, 1996; Le
Teno and Mareschal, 1998; Dias and Climaco, 1999; Dias et al., 2002).

4.5 Summary and Conclusions

In this chapter, we have surveyed a spectrum of different methods for solving mul-
ticriteria decision problems and discussed their applicability to decisions in soft-
ware engineering. Obviously, the problem of selecting a multicriteria decision
method is a multicriteria problem by itself, so it is not surprising that no single
best method exists, which can be applied by all decision makers for all problems.

One important criterion for the selection of a method is the structure of the de-
cision problem: the distinction between multi-attribute problems with a given set
of alternatives and multi-objective optimization problems, in which alternatives
are described via decision variables, provides a useful guideline. However, this
distinction is not as clear-cut as it might seem on first sight. The choice of a prob-
lem representation is to some extent arbitrary. A set of constraints and discrete de-
cision variables of a multi-objective problem can be mapped into an exhaustive
list of alternatives, thus transforming the problem into a multi-attribute problem.

Apart from the representation of decision alternatives, the scale on which their
outcomes are measured plays an important role. Both additive weighting methods
and outranking methods are rather well suited to deal with qualitative attributes as
well as with quantitative data. This factor could be important for many applica-
tions in software engineering.

Another important component in a multicriteria decision problem is the user’s
preferences. Here decision problems in software engineering are specific, because
preferences are not purely subjective, but objective facts about the importance of
criteria have to be taken into account. This can be accomplished quite easily in
additive weighting models, while for the other methods techniques still need to be
developed.

Thus, for different problems, different methods are most appropriate. The field
of multicriteria decision making offers a large toolbox, which can help to make
more rational and consistent decisions even in complex situations, as they fre-
quently occur during the lifecycle of a software project.

4 Preference-Based Decision Support in Software Engineering 85

References

(Barua et al., 1995) Barua, A., Kriebel, C. H., Mukhopadhyay, T.: Information
Technologies and Business Value: An Analytic and Empirical Investigation.
Inf Sys Research 6(1), pp 3–51

(Blin and Tsoukias, 2001) Blin, M.-J., Tsoukias, A.: Multi-Criteria Methodology
Contribution to the Software Quality Evaluation. Software Quality Journal
9(2), pp 113–132

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes 28(2), p 4

(Brans et al., 1984) Brans, J. P., Mareschal, B., Vincke, P.: Promethee: A New
Family of Outranking Methods in Multicriteria Analysis. In: Operational Re-
search '84, ed by Brans, J. P. (North Holland, Amsterdam, 1984), pp 477–490

(Carlsson and Fullér, 2002) Carlsson, C., Fullér, R.: Fuzzy Reasoning in Decision
Making and Optimization (Physica, Heidelberg 2002)

(Chankong and Haimes, 1983) Chankong, V., Haimes, Y. Y.: Multiobjective De-
cision Making: Theory and Methodology (North Holland, Amsterdam 1983)

(Charnes and Cooper, 1961) Charnes, A., Cooper, W. W.: Management Models
and Industrial Applications of Linear Programming (J. Wiley & Sons, New
York 1961)

(Charnes et al., 1955) Charnes, A., Cooper, W. W., Ferguson, R. O.: Optimal Es-
timation of Executive Compensation by Linear Programming. Manage. Sci.
1(2), pp 138–151

(Charnetski and Soland, 1978) Charnetski, J. R., Soland, R. M.: Multiple-Attribute
Decision Making With Partial Information: The Comparative Hypervolume
Criterion. Nav. Res. Logist. Q 25, pp 279–288

(Crama and Hansen, 1983) Crama, Y., Hansen, P.: An Introduction to the
ELECTRE Research Programme. In: Essays and Surveys on Multiple Criteria
Decision Making, ed by Hansen, P. (Springer, Berlin, 1983), pp 31–42

(DeLone and McLean, 1992) DeLone, W. H., McLean, E. R.: Information Sys-
tems Success: The Quest for the Dependent Variable. Inf Sys Research 3(1),
pp 60–95

(Dias and Climaco, 1999) Dias, L. C., Climaco, J. C.: On Computing ELECTRE's
Credibility Indices under Partial Information. J. Multi-Criteria Dec. Anal.
8(2), pp 74–92

(Dias et al., 2002) Dias, L. C., Mousseau, V., Figueira, J., Climaco, J. C.: An Ag-
gregation/Disaggregation Approach to obtain Robust Conclusions with
ELECTRE TRI. Eur. J. Oper. Res 138(2), pp 332–348

(Evans, 1984) Evans, J. R.: Sensitivity Analysis in Decision Theory. Decis Sci
15(2), pp 239–247

(Farbey et al., 1995) Farbey, B., Land, F. F., Targett, D.: A Taxonomy of Informa-
tion Systems Applications: The Benefits' Evaluation Ladder. Eur. J. Inf. Systs.
4(1), pp 41–50

(Forgionne, 1999) Forgionne, G.: An AHP model of DSS effectiveness. Eur. J.
Inf. Systs. 8(2), pp 95–106

86 Rudolf Vetschera

(Grauer et al., 1984) Grauer, M., Lewandowski, A., Wierzbicki, A. P.: DIDASS –
Theory, Implementation and Experiences. In: Interactive Decision Analysis,
ed by Wierzbicki, A. P. (Springer, Berlin, 1984), pp 22–30

(Hwang and Masud, 1979) Hwang, C.-L., Masud, A. S.: Multiple Objective Deci-
sion Making – Methods and Applications A State-of-the-Art Survey
(Springer, Berlin 1979)

(Hwang and Yoon, 1981) Hwang, C.-L., Yoon, K.: Multiple Attribute Decision
Making – Methods and Applications: A State of the Art Survey (Springer,
Berlin 1981)

(Jain et al., 1991) Jain, H. K., Tanniru, M. R., Fazlollahi, B.: MCDM Approach
for Generating and Evaluating Alternatives in Requirement Analysis. Inf Sys
Research 2(3), pp 223–239

(Keeney and Raiffa, 1976) Keeney, R. L., Raiffa, H.: Decisions with Multiple Ob-
jectives: Preferences and Value Tradeoffs (J. Wiley & Sons, New York 1976)

(Kim and Yoon, 1992) Kim, C. S., Yoon, Y.: Selection of a Good Expert System
Shell for Instructional Purposes in Business. Inf Manage 23(5), pp 249–262

(Kim, 1998) Kim, J.: Hierarchical Structure of Intranet Functions and Their Rela-
tive Importance: Using the Analytic Hierarchy Process for Virtual Organiza-
tions. Decis. Support Syst. 23(1), pp 59–74

(Korhonen and Wallenius, 1988) Korhonen, P., Wallenius, J.: A Pareto Race. Nav.
Res. Logist. 35(6), pp 615–623

(Lai et al., 1999) Lai, V. S., Trueblood, R. P., Wong, B. K.: Software Selection: A
Case Study of the Application of the Analytical Hierarchical Process to the
Selection of a Multimedia Authoring System. Inf Manage 36(4), pp 221–232

(Lai et al., 2002) Lai, V. S., Wong, B. K., Cheung, W.: Group Decision Making in
a Multiple Criteria Environment: A Case using the AHP in Software Selec-
tion. Eur. J. Oper. Res 137(1), pp 134–144

(Lawrence et al., 1983) Lawrence, K. D., Marose, R. A., Lawrence, S. M.: Multi-
ple Goal Portfolio Analysis Model for the Selection of MIS Projects. In: Es-
says and Surveys on Multiple Criteria Decision Making, ed by Hansen, P.
(Springer, Berlin, 1983), pp 229–237

(Le Teno and Mareschal, 1998) Le Teno, J. F., Mareschal, B.: An Interval Version
of PROMETHEE for the Comparison of Building Products' Design with Ill-
defined Data on Environmental Quality. Eur. J. Oper. Res 109(2), pp 522–529

(Lee and Kwak, 1999) Lee, C. W., Kwak, N. K.: Information Resource Planning
for a Health-Care System Using an AHP-based Goal Programming Method. J.
Opl Res. Soc. 50(12), pp 1191–1198

(Lee and Kim, 2000) Lee, J., Kim, S.: Using Analytic Network Process and Goal
Programming for Interdependent Information System Project Selection. Com-
put. and Ops. Res. 27(4), pp 367–382

(Lewandowski and Wierzbicki, 1989) Lewandowski, A., Wierzbicki, A. P.: Deci-
sion Support Systems Using Reference Point Optimization. In: Aspiration
Based Decision Support Systems, ed by Lewandowski, A. and Wierzbicki, A.
P. (Springer, Berlin, 1989), pp 3–20

4 Preference-Based Decision Support in Software Engineering 87

(Mamaghani, 2002) Mamaghani, F.: Evaluation and Selection of an Antivirus and
Content Filtering Software. Information Management and Computer Security
10(1), pp 28–32

(Mareschal, 1988) Mareschal, B.: Weight Stability Intervals in Multicriteria Deci-
sion Aid. Eur. J. Oper. Res 33(1), pp 54–64

(Miettinen and Salminen, 1999) Miettinen, K., Salminen, P.: Decision-aid for Dis-
crete Multiple Criteria Decision Making Problems with Imprecise Data. Eur.
J. Oper. Res 119(1), pp 50–60

(Muralidhar et al., 1990) Muralidhar, K., Santhanam, R., Wilson, R. L.: Using the
Analytic Hierarchy Process for Information System Project Selection. Inf
Manage 18(2), pp 87–95

(Park and Kim, 1997) Park, K. S., Kim, S. H.: Tools for Interactive Multiattribute
Decisionmaking with Incompletely Identified Information. Eur. J. Oper. Res
98(1), pp 111–123

(Paschetta and Tsoukias, 2000) Paschetta, E. and Tsoukias, A.: A Real-World
MCDA Application: Evaluating Software. J. Multi-Criteria Dec. Anal. 9(5),
pp 205–225

(Phillips-Wren et al., 2004) Phillips-Wren, G. E., Hahn, E. D., Forgionne, G. A.:
A Multiple-Criteria Framework for Evaluation of Decision Support Systems.
Omega 32(4), pp 323–332

(Pomerol and Barba-Romero, 2000) Pomerol, J.-C., Barba-Romero, S.: Multicrite-
rion Decision in Management: Principles and Practice (Kluwer, 2000)

(Rios Insua and French, 1991) Rios Insua, D., French, S.: A Framework for Sensi-
tivity Analysis in Discrete Multi-Objective Decision-Making. Eur. J. Oper.
Res 54(2), pp 176–190

(Roper-Lowe and Sharp, 1990) Roper-Lowe, G. C., Sharp, J. A.: The Analytic Hi-
erarchy Process and Its Application to an Information Technology Decision. J.
Opl Res. Soc. 41(1), pp 49–59

(Roubens, 1996) Roubens, M.: Choice Procedures in Fuzzy Multicriteria Decision
Analysis based on Pairwise Comparisons. Fuzzy Sets Syst. 84(2), pp 135–142

(Roy, 1991) Roy, B.: The Outranking Approach and the Foundations of
ELECTRE Methods. Theory Decis. 31, pp 49–73

(Roy and Vanderpooten, 1996) Roy, B., Vanderpooten, D.: The European School
of MCDA: Emergence, Basic Features and Current Works. J. Multi-Criteria
Dec. Anal. 5(1), pp 22–36

(Roy and Vincke, 1984) Roy, B., Vincke, P.: Relational Systems of Preference
with One or More Pseudo-Criteria: Some New Concepts and Results. Man-
age. Sci. 30(11), pp 1323–1335

(Saaty, 1980) Saaty, T. L.: The Analytic Hierarchy Process (McGraw-Hill, New
York 1980)

(Santhanam and Guimaraes, 1995) Santhanam, R., Guimaraes, T.: Assessing the
Quality of Institutional DSS. Eur. J. Inf. Systs. 4(3), pp 159–170

(Sarkis and Sundarraj, 2003) Sarkis, J., Sundarraj, R. P.: Evaluating Componen-
tized Enterprise Information Technologies: A Multiattribute Modeling Ap-
proach. Inf Sys Frontiers 5(3), pp 303–320

88 Rudolf Vetschera

(Schniederjans and Wilson, 1991) Schniederjans, M. J., Wilson, R. L.: Using the
Analytic Hierarchy Process and Goal Programming for Information System
Project Selection. Inf Manage 20(5), pp 333–342

(Schoemaker and Waid, 1982) Schoemaker, P. J. H., Waid, C. C.: An Experimen-
tal Comparison of Different Approaches to Determining Weights in Additive
Utility Models. Manage. Sci. 28, pp 182–196

(Stamelos et al., 2000) Stamelos, I., Vlahavas, I., Refanidis, I., Tsoukias, A.:
Knowledge Based Evaluation of Software Systems: A Case Study. Informa-
tion and Software Technology 42(5), pp 333–345

(Vetschera, 1986) Vetschera, R.: Sensitivity Analysis for the ELECTRE Multicri-
teria Method. Z. Oper. Res. 30, pp B 99–B 117

(Vetschera, 1988) Vetschera, R.: An Interactive Outranking System for Multi-
Attribute Decision Making. Comput. and Ops. Res. 15(4), pp 311–322

(Vetschera, 1994) Vetschera, R.: Estimating Aspiration Levels from Discrete
Choices – Computational Techniques and Experiences. Eur. J. Oper. Res
76(3), pp 455–465

(Vetschera, 1997) Vetschera, R.: A Recursive Algorithm for Volume-Based Sensi-
tivity Analysis of Linear Decision Models. Comput. and Ops. Res. 24(5),
pp 477–491

(von Winterfeldt and Edwards, 1986) von Winterfeldt, D., Edwards, W.: Decision
Analysis and Behavioral Research (Cambridge University Press, 1986)

(Weber, 1987) Weber, M.: Decision Making with Incomplete Information. Eur. J.
Oper. Res 28(1), pp 44–57

(Weber et al., 1988) Weber, M., Eisenführ, F., von Winterfeldt, D.: The Effects of
Splitting Attributes on Weights in Multiattribute Utility Measurement. Man-
age. Sci. 34, pp 431–445

(Wierzbicki, 1986) Wierzbicki, A. P.: On the Completeness and Constructiveness
of Parametric Characterizations to Vector Optimization Problems. OR Spek-
trum 8, pp 73–87

(Wolters and Mareschal, 1995) Wolters, W. T. M., Mareschal, B.: Novel Types of
Sensitivity Analysis for Additive MCDM Methods. Eur. J. Oper. Res 81(2),
pp 281–290

(Zimmermann, 1978) Zimmermann, H.-J.: Fuzzy Programming and Linear Pro-
gramming with Several Objective Functions. Fuzzy Sets Syst. 1(1), pp 45–55

Author Biography

Rudolf Vetschera is full professor of Organization and Planning at the school of
Business, Economics and Statistics, University of Vienna, Austria. He holds a
PhD in Economics and Social Sciences from the University of Vienna, Austria.
Before his current position, he was full professor of Business Administration at
the University of Konstanz, Germany. He has published three books and over 60
papers in reviewed journals and collective volumes. His research interests are at

4 Preference-Based Decision Support in Software Engineering 89

the intersection of organization theory, decision analysis, and information systems,
especially in the mutual influence of these areas on each other.

5 Risk and the Economic Value of the Software
Producer

Warren Harrison

Abstract: The economic worth of a commercial organization is a function of the
present value of its future profits, discounted for both time and risk. Consequently,
the economic value of a software firm is greatly affected by the predictability of
the organization’s software development projects, since unpredictable projects
warrant large risk premiums. We can quantitatively approximate the value of in-
creased predictability, and evaluate the effectiveness of efforts, such as process
improvement, to improve the predictability of software development projects.

Keywords: Financial Risk, Return on Investment, Process Improvement, Capital
Budgeting.

5.1. Introduction

As pointed out by Berry and Aurum in Chapter 8, “decision making within a
value-based software engineering framework requires the inclusion of indicators
of value.” Since the primary obligation of a business organization is to increase
the wealth of its shareholders, establishing a well-accepted measure of the eco-
nomic worth of an organization (and consequently, its contribution to the wealth
of its shareholders) is central to any discussion of valuation of the artifacts that
lead to that worth.

In this chapter, we explore the components of economic value, and the effect of
financial risk upon valuation, particularly within the context of commercial soft-
ware producers. We divide the discussion into three parts. Sections 5.2 through 5.5
provide the fundamental concepts necessary to discussion valuation and financial
risk. Sections 5.6 through 5.9 extend the concepts to the measurement of the pre-
dictability of software projects, with particular application focused on software
process improvement and its effects on predictability. Sections 5.10 through 5.12
introduce the concept of “relative risk” with respect to predicting the economic
contribution of software projects to the economic value of the firm and illustrate
how this concept may be used to assign value to risk mitigation efforts such as
process improvement efforts.

92 Warren Harrison

5.2. The Value of the Firm

The economic worth of a commercial organization is a function of the total profit
it can generate over its remaining lifetime (Brealey and Myers, 2000). For a soft-
ware company, this translates into the profits derived from its software products.
Obviously, if a firm has a finite lifetime, as it ages its economic worth decreases,
all other things being constant, since fewer years remain over which it can gener-
ate profits.

Because firms are usually established with the intention of perpetual operation,
this concept is difficult to realize in practice. However, if we consider a somewhat
contrived example we can illustrate this concept very easily.

Assume the date is January 1, 1999. We have just established a consultancy to
mitigate the effect of the Y2K problem. We have contracted to provide services to
a single customer for our actual costs, plus $1,000,000, payable on December 31,
1999, at the end of the contract period. These funds are in an escrow account,
guaranteeing that they will be paid at the end of twelve months. Sadly, we have no
plans or prospects for additional business after December 31, 1999. Our solution
must be deployed before January 1, 2000, and once deployed we can claim no fur-
ther revenue from the technology.

The economic value of the firm is therefore $1,000,000. Certainly, a rational
businessperson would pay no more than $1,000,000 (and in fact would probably
refuse to pay even that much) for our consultancy since they could expect to re-
ceive only $1,000,000 in return.

5.3. The Time Value of Money

The economic value of a firm is less if the expected profits accrue later in time
rather than earlier. We call this phenomenon the time value of money.

For the sake of argument, let us say that we have found a wealthy entrepreneur
with a desire to enter the Y2K market. Just as our investor gets ready to purchase
our consultancy, he announces his intention to instead purchase our competitor
who has a very similar arrangement with another customer.

Why the change of heart? We are puzzled to learn that his decision was based
on the fact that while our payment was due on December 31, 1999 at the end of
the contract period, our competitor had shrewdly specified that their payment was
due at the beginning of their contract period on January 1, 1999.

In this case, a million dollars a year in the future is not the same as a million
dollars today. Our wealthy investor cleverly noted that with our competitor, he
would immediately receive his million dollars upon purchasing the company, al-
lowing him to reinvest the proceeds at 5% interest for a year, yielding $1,050,000
at the end of the year as opposed to the $1,000,000 he would receive had he
bought our company.

So how much is our company really worth, if the purchaser has to wait 12
months to receive the proceeds of the contract? Obviously if the spoiler in our ear-

5 Risk and the Economic Value of the Software Producer 93

lier deal was the extra interest our investor would have forgone had he purchased
our company rather than the competitor, then we would need to discount our ask-
ing price to make ourselves competitive.3

By how much should we discount our price? A good starting point would be to
reduce our asking price by enough so the investor could buy our company, plus
have enough left over to invest so at the end of the year the investment plus inter-
est would total $50,000 (when added to our end of period return of $1,000,000,
this would yield $1,050,000).

Assuming a 5% rate of return4, the asking price for our firm could be no more
than $952,380 on January 1, 1999. This would yield $1,050,000 in revenue at the
end of the year. $1,000,000 would come from the contracted payment, and the
$47,620 difference between $1,000,000 and the asking price of $952,380 would
grow to $50,000 after being invested for one year at 5%. This is also known as our
firm’s Present Value.

In the present circumstance, all other things being equal, a rational investor
would be indifferent to which investment choice – purchase our company or our
competitor’s – he selected. In both cases, he would invest $1,000,000 on Janu-
ary 1, 1999 and receive $1,050,000 on December 31, 1999.

We can compute the Present Value (PV) of an asset worth FV dollars n years in
the future assuming an annual interest rate (cost of capital) of k:

PV = FV/(1+k)n

Therefore, in our previous example, the Future Value of our consultancy is
$1,000,000 payable in one year (n), and we assume an opportunity to invest the
initial outlay at 5% per year (k). Then:

PV = 1,000,000/1.051
PV = 952,380

In Chapter 17, Reifer discusses using this mechanism, among others, to value in-
tellectual property, and Maurice, Ruhe, Saliu, and Ngo-The maximize the Net Pre-
sent Value (NPV) of a software investment by sequencing feature delivery in
Chapter 12.

3In actuality, the availability of our competitor’s firm for purchase is irrelevant, since our
hypothetical investor could simply invest his $1,000,000 in a bond or certificate of deposit
at 5% interest and still end up with $1,050,000 at the end of the year.
4The reader should note a 5% return is unrealistically small for modern companies that of-
ten demand double digit ROI from their investments.

94 Warren Harrison

5.4. Financial Risk

In our earlier example, we assumed the $1,000,000 payment was certain. There-
fore, we could determine the investment necessary at a particular cost of capital to
yield the future value we wish to receive at the end of the investment period.

Risk, in a financial context, is a measure of likelihood of the receipt of a par-
ticular sum of money in the future. Notably, financial risk does not consider just
the likelihood of receiving less than a certain sum of money, but also the likeli-
hood of receiving more than a certain sum of money. In financial circles, investors
want to know exactly what they’re going to receive, since underestimating can re-
sult in a misapplication of funds just as easily as can overestimating.

Risk reflects the uncertainty of a given expected return. This may be due to an
uncertain business environment, unresolved technical challenges, inconsistent
worker performance, unknown customer needs or simply poor prediction due to
inadequate effort devoted to, or incompetence at performing predictions.

Two different types of financial risk are recognized. One type of risk is shared
by most, if not all, other investments. This sort of risk is known as systematic risk,
or undiversifiable risk, because it cannot be mitigated by diversifying investments
since all the players are affected by the same factors.

On the other hand, unsystematic risk, or sometimes specific risk, is the risk spe-
cific to a single investment. The classical approach to mitigating unsystematic risk
is by diversifying investments or, as it is often advised, “avoid putting all of your
eggs into one basket” (Harrison, 2002).

Just as investors insist on discounting a future asset or revenue to account for
the time period between the investment and the payout, they likewise insist on dis-
counts to reflect how risky a given investment may be.

Ordinarily this is accomplished by adding a risk premium Φ to the discount rate
to obtain a risk-adjusted discount rate:

k = rf + Φ

where rf reflects the risk-free discount rate and Φ is the risk premium.
The risk-free rate represents the interest investors are willing to accept when an

investment is “risk free,” such as in the case of U.S. Treasury Bills, where default
is simply not an option. This is obviously much lower than a rate that reflects
some measure of risk, such as that represented by a dot-com investment that may
have a high probability of default. The difference between the returns investors
expect from a Treasury Bill and the returns investors expect from the dot-com in-
vestment is reflected by the risk premium.

Adding the risk premium Φ to the risk-free rate causes a higher overall discount
rate, and consequently a lower present value. This means a risky project must gen-
erate greater expected returns in order to compete (i.e., provide comparable pre-
sent value) with a less risky project. An alternative approach to risk premiums is
further explored in Chapter 3.

5 Risk and the Economic Value of the Software Producer 95

5.5. Prediction and the Value of the Firm

In the case of the Y2K Company described earlier, the contracted profit, the date
of its receipt and the termination date of the firm are all known in advance. More
commonly, we only have predictions: predictions of the profit, predictions of
when the profit will be received, and an assumption that the organization will con-
tinue in business indefinitely.

Luckily, we can dispense with the issue of how long a firm will be in business.
It is simply not feasible to compute the returns of every individual project out to
infinity. Therefore, in practice, we usually select a valuation horizon of 5-10
years.

With a modest amount of computation, we can see that there is little point in
considering a lengthy valuation horizon since the present value contributed by
projects far in the future is negligible, especially as the discount rate begins to re-
flect more realistic returns on investment demanded by modern companies and
even modest risk premiums. Table 4 illustrates the Present Value of $100,000 dis-
counted at several different rates received in the future over a number of possible
valuation horizons.

As can be seen from Table 4, if a company demands a 20% return on its capital,
the present value of a project that does not provide a return for ten years has
shrunk to a fraction (16%) of its future returns. This effectively removes projects
that do not provide returns for several years from consideration.

Table 4. Discounted value of $100,000 received n years in the future

Years in
Future

Present
Value at

5%

Present
Value at

10%

Present
Value at

15%

Present
Value at

20%

Present
Value at

25%
1 95,238 90,909 86,957 83,333 80,000
2 90,703 82,645 75,614 69,444 64,000
3 86,384 75,131 65,752 57,870 51,200
4 82,270 68,301 57,175 48,225 40,960
5 78,353 62,092 49,718 40,188 32,768

10 61,391 38,554 24,718 16,151 10,737
15 48,102 23,939 12,289 6,491 3,518
20 37,689 14,864 6,110 2,608 1,153
25 29,530 9,230 3,038 1,048 378
30 23,138 5,731 1,510 421 124
40 14,205 2,209 373 68 13
50 8,720 852 92 11 1

Since we can safely omit an analysis of revenues received more than ten years in
the future using realistic discount rates, we are left with the value of the firm being
a function of the returns it will realize over the next few years, discounted for time
and risk.

96 Warren Harrison

5.6. Multi-Project Firms and Economic Value

To recap, an organization derives its economic value from its combined future
profits, discounted for the delay until the specific revenue is realized and the un-
certainty (risk) of receiving this revenue.

Software development organizations derive the bulk of their profits from the
completion and sale of software products. Consequently, we can approximate the
economic value of a software organization that has n projects underway as (Harri-
son et al., 1999b):

 n
Σ PV(future revenue from projecti)
i=1

where the PV includes discounting for both time and risk.
For example, consider an organization that has four concurrent projects under-

way with certain returns at the end of each project, and an annual cost of capital of
5% (Table 5)5.

Table 5. Four projects, returns, schedules, and present value

Project Profit Upon
Delivery

Months to
Delivery

Present Value

A $100,000 12 $95,133
B $250,000 24 $226,256
C $25,000 12 $23,783
D $750,000 36 $645,732
Value of
the Firm

$990,905

The value of the firm under these assumptions is $990,905. By adjusting the dis-
count rate, we can explore the effects of lengthening schedule and adjusting the
risk characteristics of individual projects.

5.7. The Economic Cost of Extended Time-to-Market

These concepts can be applied to the problem of “time-to-market” faced by most
software project managers. While the impact of delayed entry into a market is of-

5While we are accustomed to speaking about annual cost of capital, it is more common to
factor in periodic interest compounding. This is usually done on a monthly basis, so the an-
nual cost of capital is divided by 12 to arrive at a monthly cost of capital, and the computa-
tion of Present Value PV=FV/(1+r)n is interpreted such that r reflects the periodic cost of
capital and n is the number of periods (12 in the case of monthly compounding).

5 Risk and the Economic Value of the Software Producer 97

ten explained in vague terms of market share, one measurable result of releasing a
product later rather than earlier is a delay in the receipt of revenue. Given the im-
pact of time discounted cash flows on the value of the firm, we can quite easily
determine the impact of extended time-to-market.

Table 6 shows that by simply extending the schedule by 10% on the four pro-
jects shown in Table 5, the economic value of the firm decreases by $13,019 from
$990,905 to $977,886.

Table 6. Four projects from Table 5 delayed by 10%

Project Profit Upon
Delivery

Months to
Delivery

Present Value

A $100,000 13 $94,738
B $250,000 26 $224,383
C $25,000 13 $23,685
D $750,000 40 $635,081

Value of
the Firm $977,886

The significance of the quantified cost of schedule extension to the organization is
that it provides an economic measure of avoiding extending these schedules.
Taken another way, it tells us the point at which expenditures to avoid schedule
extension on these four projects are no longer economically feasible.

5.8. Financial Risk and Software Projects

Profits from a software development project are the function of two primary fac-
tors: Benefits received and resources expended. To some extent, virtually every
organization exists to derive the maximum benefit for its stakeholders while ex-
pending the smallest number of resources.

We might associate “benefits received” with sales, and “resources expended”
with expenses when dealing with a for-profit commercial organization. However,
we could just as easily associate “benefits received” with the number of clients
served, and “resources expended” with the number of person hours spent servicing
these clients for a social service organization that has no interest in making a
monetary profit. While the details may differ somewhat between contexts, the
concepts of “revenue” and “expenses” generalizes quite well.

Earlier examples assumed that the profits from a project were certain. However,
experience tells us that both the projected revenue from a project and the projected
costs to develop it are usually in error, often by a great amount.

Some software development organizations can avoid revenue uncertainties be-
cause they work under negotiated contracts, as did the company in our Y2K ex-
ample. However, even in the case of “shrink-wrap” software companies, the accu-
racy of revenue forecasts is not a software engineering issue, but rather one of

98 Warren Harrison

marketing. Therefore, we will not consider the effect of uncertain revenue in our
analysis, and assume for the purpose of our discussion, that the amount of future
revenue is known.

However, the heart of software engineering project management is cost and
schedule. Any time the projected costs or schedule of a software development pro-
ject are in question, it introduces financial risk into the project. This financial risk
is subsequently reflected in the economic value of the organization through risk-
based discounting – essentially with an ad hoc risk premium.

Pfahl provides a more involved discussion of assessing project risk through
software process simulation in Chapter 13.

Uncertainty in project cost prediction comes from many sources. It could be
that the requirements of the project are poorly defined, or the customer may be
prone to requesting numerous changes along the way. There may be flaws in the
cost projection process itself – through either inexperienced personnel or lack of
historical data. Regardless of the source, the net effect is that we are uncertain of
the cost of the project, and therefore, we are uncertain of the profit that the firm
will realize from it.

Projects for which the projected costs bear very little uncertainty may have the
present value of their future profits affected only minimally in terms of their con-
tribution to the overall economic value of the firm. On the other hand, projects for
which there is great uncertainty involving their future profits may see their contri-
bution to the economic value of the firm greatly discounted to account for their fi-
nancial risk.

This is illustrated in Table 7, in which the four projects shown in Table 5 are re-
evaluated using risk premiums. In this example, we assume Projects A and C
demonstrate very little financial risk, and consequently are assigned risk premiums
of 0. On the other hand, Project B is assigned a risk premium of 5% and Project D
is assigned a risk premium of 10%. As can be seen, the economic value of the firm
decreases by $187,580 from $990,905 to $803,325. This is a huge effect indeed,
and dwarfs the impact of extending the time-to-market by 10% that we saw in Ta-
ble 6.

Table 7. Effect of financial risk on projects from Table 5

Project Profit Upon
Delivery

Months to
Delivery

Risk
Premium

Present
Value

A $100,000 12 0% $95.133
B $250,000 24 5% $204,852
C $25,000 12 0% $23,783
D $750,000 36 10% $479,557

Value of
the Firm

$803,325

5 Risk and the Economic Value of the Software Producer 99

5.9 Predictability and Process Improvement

The key to reducing financial risk is predictability – the ability accurately forecast
the resources necessary to carry out a job. Predictability is not increased produc-
tivity. For instance, delivering a project under budget may very well indicate in-
creased productivity. However, from the perspective of predictability, delivering a
project under budget is no more desirable than exceeding the predicted budget.
Poor predictability may very well mean that projects are mistakenly undertaken
(i.e., the predicted costs are less than what is actually incurred) or are mistakenly
rejected (i.e., the predicted costs are more than actually required).

Software producers have attempted to increase the predictability of their pro-
jects through process improvement (Harrison et al., 1999a) first goals of the Soft-
ware Engineering Institute’s Capability Maturity Model (CMM) is to gain predict-
ability (Bamberger, 1997) – organizations that have scored at the CMM Level-2
process maturity are said to have “repeatable” processes.

Indeed, there have been many reports on the impact of higher levels of process
maturity on predictability (Herbsleb et al., 1994; Brodman and Johnson, 1995).
Several studies have been able to actually quantify the improvements:
• Raytheon reported that predictability of budget and schedule was “reduced”

from an average 40% overrun to +/- 3% after advancing to a CMM Level-4
(Haley et al., 1995).

• Motorola reported that estimation accuracy on project schedule and effort im-
proved to better than 90% in the process of qualifying for a CMM Level-5 rat-
ing (Diaz and Sligo, 1997).

• Hughes published predictability improvement data indicating that the Cost-
Performance Index (CPI) went from 0.94 to 0.97 in response to SEI Maturity
improvements (Humphrey et al., 1991).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4

Maturity Level

A
ct

ua
l:B

ud
ge

t

Fig. 18. Maturity level and actual budget

100 Warren Harrison

In particular, a study by Lawlis et al. (1995) suggests that U.S. Department of De-
fense contractors assessed at higher SEI Maturity Levels did a better job of meet-
ing their target costs. In particular, the ratio of Actual to Budgeted Costs for 17
CMM Level-1 and 17 CMM Level-3 projects suggested that the Level-1 projects
exhibited a mean Actual to Budgeted cost ratio of 1.25 while Level-3 projects ex-
hibited a mean Actual to Budgeted cost ratio of 1.01.

However, even more importantly, the variability improved greatly between the
Level-1 and Level-3 projects. As can be seen from Figure 18, CMM Level-1 pro-
jects exhibited a wide spread of Actual to Budgeted cost ratio outcomes with a
standard deviation of 0.63. On the other hand, CMM Level-3 organizations exhib-
ited a much tighter set of outcomes with a standard deviation of only 0.18. This
reduction in variability suggests significant improvements in predictability be-
tween the maturity levels.

Of course, predictability is not the only benefit that accrues from process ma-
turity. There are certainly many other benefits from investing in process improve-
ment. For example, improved productivity, reduced time-to-market, increased
quality, etc. (van Solingen, 2004). However, in this chapter, our focus is solely on
the value enhancement that comes from better predictability when process matur-
ity increases.

5.10 Arriving at a Risk Premium for Software Projects

The risk premium Φ reflects the “cost per unit of risk” and is based upon the vari-
ability of the expected returns. This is usually reflected as the β coefficient of the
Capital Asset Pricing Model (Brealey and Myers, 2000), or “CAPM” as it is often
called. However, CAPM assumes certain market structures that are not available
at the level of a software project. Therefore, the specific techniques are not di-
rectly transferable. Nevertheless, improved predictability of costs reduces the
variability of expected profits and the concepts used in CAPM are equally valid
for collections of software projects.

The expected cost of a project can be expressed as a distribution with a mean
(µ) and standard deviation (σ). We use this to establish relative risk among com-
peting projects (Harrison, 2001). The relative financial risk λ between two pro-
jects, P and Q can be approximated by the ratio of the coefficients of variation
(σ/µ) of their distribution of expected returns: For example, we can arrive at the
relative risk of Project P with respect to Q via:

λP wrt Q = (σP/µP)/(σQ/µQ)

The relative risk of a collection of projects can be used to establish an appropriate
discount rate k for Project P, relative to Project Q:

kP wrt Q = rf + ΦQ × λP wrt Q

5 Risk and the Economic Value of the Software Producer 101

Based on the Lawlis, Flowe, and Thordahl data, CMM Level-1 projects with a
relative risk of 0.504 appear to be 280% more financially risky than CMM Level-3
projects with a relative risk of 0.178 (Table 8).

Table 8. Relative risks of CMM Level-1 and Level-3 projects

Actual-
to-

Budget

Mean Standard
Deviation

Relative
Risk

Level-1 1.25 0.63 0.504
Level-3 1.01 0.18 0.178

This is reflected by the relative risk premium for Level-1 projects (L1) and Level-
3 projects (L3):

kL1 wrt L3 = rf + ΦL3 × 2.83
kL3 wrt L1 = rf + ΦL1 × 0.35

This technique provides a method by which an appropriate risk-adjusted discount
rate can be derived for a CMM Level-3 project, given the appropriate risk pre-
mium Φ for a CMM Level-1 project (or vice versa).

While the firm’s theoretical risk premium may not be directly available, an ap-
proximation can be made by observing past decision making behavior.

The Internal Rate of Return (IRR) is the discount rate at which the net present
value (discounted returns – costs) of an investment is zero (Brealey and Myers,
2000). By computing the Internal Rate of Return for past CMM Level-1 projects
and subtracting the risk free rate rf, we can readily obtain the risk premium that is
considered acceptable by decision makers (or at least the risk premium the firm is
currently paying whether it likes it or not). Once this “baseline risk premium” is
established, it is a simple matter to obtain the appropriate risk premium for the less
variable CMM Level-3 projects.

5.11 Computing the Financial Value of Improved
Predictability

A firm in the business of building software increases its value by building new
products that will provide future returns. Since the inherent value of the firm is de-
fined as the risk-adjusted present value of all its future profits, all other things be-
ing equal, a firm with a riskier future profit stream will suffer from an increased
risk premium, and consequently will possess a lower inherent value.

The value of process improvement can be derived by projecting the contribu-
tion of a given project (or portfolio of projects) to the value of the firm should it
be developed using either a CMM Level-1 or a CMM Level-3 process. Given the

102 Warren Harrison

Level-3 process will result in a more predictable cost, and subsequently a less
variable profit stream, we should expect that the anticipated contribution to the
value of the firm would be subject to a lower risk premium, and consequently of-
fer a higher risk-adjusted present value.

The difference between the discounted profit projections using the Level-1 and
Level-3 processes is the added value obtained from the increased maturity. The
process for establishing the economic value of increased predictability is:
1. Compute NPV for Level-1 effort
2. Compute NPV for Level-3 effort
3. The difference is the added value of increased predictability

This provides a real, measurable, financial benefit that can be recognized and un-
derstood within the context of major capital budgeting decisions.

5.12 An Illustrative Example

In this section, the techniques outlined so far are applied to a hypothetical example
in order to illustrate their use. The example is based upon several simplifying as-
sumptions to improve discourse. However, these assumptions do not reduce the
general applicability of the approach.

We assume a $7,500,000 fixed-price software development contract in which
all revenue is realized upon delivery in Year 3. Further, we assume a predicted
cost to develop of $5,000,000 million, which is all encumbered at the beginning of
the project. This provides a simplified model in which all cost is incurred at the
beginning of the project, and all revenue is realized at the end. We also assume a
5% risk-free cost of capital and a 5% risk premium on past Level-1 projects.6

The first step is to obtain the Net Profit to be received in Year 3 (in “Year 3
dollars”). In order to do this, the $5,000,000 encumbered at the beginning of
Year 1 must be adjusted to reflect what the $5,000,000 would be worth after three
years of being invested at the given discount rate. This consists of compounding,
which is essentially the inverse of discounting:

FV($5,000,000) in 3 years @ 5% =
PV(1+r)n = $5,000,000 (1.05)3 = $5,800,000

which yields a profit in Year 3 dollars of $7,500,000 – $5,800,000, or $1,700,000.
Given no risk at all (i.e., a risk premium of zero), we can discount the

$1,700,000 profit in three years at 5% to arrive at a Net Present Value for the pro-
ject:

NPV w/certainty = $1,700,000 /(1.05)3 = $1,500,000

6The choice of 5% for both the risk-free cost of capital and the risk premium was arbitrarily
selected for ease of computation.

5 Risk and the Economic Value of the Software Producer 103

Given our assumption of a 5% risk premium on past CMM Level-1 projects (i.e.,
5% (rf) + 5% (Φ) = 10%), the Net Present Value for a Level-1 process will be:

NPV = $1,700,000/(1.10)3 = $1,300,000

Using the Lawlis, Flowe, and Thordahl data to derive a relative risk premium we
arrive at a Net Present Value for a CMM Level-3 process of:

Φ = 5% × 0.35
Φ = 1.75%

NPV = $1.7M/(1.0675)3 = $1,400,000

The hypothetical CMM Level-3 process contributes $1,400,000 to the economic
value of the firm, compared to a contribution of $1,300,000 by the hypothetical
Level-1 process. Consequently, the difference of approximately $100,000 reflects
the value of increased predictability in this specific case. Naturally, most software
development firms will have portfolios of many development projects, so the ac-
tual contribution of increased maturity would no doubt far exceed this amount.
These results can facilitate the construction of business cases for process im-
provement since they are able to articulate the benefits of improved predictability
in financially quantifiable terms that can be used in computations of return on in-
vestment and payback periods.

It is important to note that this discussion reflects only the value added by in-
creased predictability. Improvements in productivity and reduced rework are not
considered in this analysis. Obviously, they also play significant roles in any busi-
ness cases used to justify investments in process improvement.

5.13 Conclusions

In this chapter, we have proposed the use of well-accepted financial theory to as-
sess the financial benefit of increased predictability. While our discussion ad-
dressed process improvement, the underlying concepts can be used in any situa-
tion that is subject uncertain returns.

For example, the basic concept could be used to evaluate the costs of obtaining
improved information for cost estimation purposes. One could compare the en-
hanced estimation cost vs. the value of the improved predictability. The use of
these techniques can lead to better business cases for investing in any initiative in-
tended to reduce uncertainty.

Alternately, improvements in gathering software requirements can also be
viewed as reducing uncertainty. There are few things that can improve a cost or
schedule estimation better than obtaining a clear idea of what you are supposed to
build. Consequently, this technique can be used to financially evaluate efforts in-
tended to pin down requirements. Naturally, other properties are also important –
perhaps even more important – such as out-of-pocket expenses for rework, im-

104 Warren Harrison

proved market share by releasing a product before your competitors, etc. How-
ever, it would be a mistake to focus on local expenses without noting the overall
effect on the economic value of the organization.

This approach to evaluating investments is fairly mature within the financial
and capital budgeting communities. However, it has had little exposure to date
within the software engineering industry.

References

(Bamberger, 1997) Bamberger, J.: Essence of the Capability Maturity Model,
IEEE Computer 30 (6), pp 112–114

(Brealey and Myers, 2000) Brealey, S., and R. Myers: Principles of Corporate Fi-
nance, 6th Edition, (Irwin/McGraw-Hill, Boston, 2000)

(Brodman and Johnson, 1995) Brodman, J.G., and D.L. Johnson: Return on In-
vestment (ROI) from Software Process Improvement Measure by U.S. Indus-
try, Software Process – Improvement and Practice 1 (1), pp 35–47

(Diaz and Sligo, 1997) Diaz, M. and J. Sligo: How Software Process Improvement
Helped Motorola, IEEE Software 14 (5), pp 75–81

(Haley et al., 1995) Haley, T., B. Ireland, E. Wojtaszek, D. Nash and R. Dion:
Raytheon Electronic Systems Experience in Software Process Improvement,
SEI Technical Report CMU/SEI-95-TR017

(Harrison, 2001) Harrison, W.: Using the Economic Value of the Firm as a Basis
for Assessing the Value of Process Improvements, Proc 2001 NASA/IEEE
Software Engineering Workshop, College Park Maryland, November 2001,
pp 123–127

(Harrison, 2002) Harrison, W.: “Mitigating Risk Using Portfolios in Software De-
velopment Projects”, Fourth International Economics Driven Software Engi-
neering Workshop, (EDSER-4). Orlando, Florida, May 2002

(Harrison et al., 1999a) Harrison, W., D. Raffo, and J. Settle: Process Improve-
ment as a Capital Investment: Risks and Deferred Paybacks, Pacific North-
west Software Quality Conference, Portland, Oregon, Oct. 1999, pp 241–250

(Harrison et al., 1999b) Harrison, W., D. Raffo, J. Settle, and N. Eickelmann:
Adapting Financial Measures: Making a Business Case for Software Process
Improvement, Software Quality Journal 8 (3), pp 211–231

(Herbsleb et al., 1994) Herbsleb, J. A. Carleton, J. Rozum, J. Siegel and D.
Zubrow: Benefits of CMM-Based Software Process Improvement, SEI Tech-
nical Report CMU/SEI-94-TR-013

(Humphrey et al., 1991) Humphrey, W. and W.S. Snyder, and T.R. Willis: Soft-
ware Process Improvement at Hughes Aircraft, IEEE Softw. 8 (4), pp 11–23

(Lawlis et al., 1995) Lawlis, P.K., R.M. Flowe, and J.B. Thordahl: A Correlational
Study of the CMM and Software Development Performance, Crosstalk, Sep-
tember 1995, pp 21–25

(van Solingen, 2004) van Solingen, R, Measuring the ROI of Software Process
Improvement, IEEE Software 21 (3), pp 32–38

5 Risk and the Economic Value of the Software Producer 105

Author Biography

Warren Harrison is a professor of computer science at Portland State University in
Portland, Oregon, and a member of the Oregon Master of Software Engineering
faculty. He is currently Editor-in-Chief of IEEE Software magazine. Warren has
been the North American Editor and the Editor in Chief of the Software Quality
Journal, and he was co-founder and Editor in Chief of the Empirical Software En-
gineering journal. He serves on Motorola's Software Development Tools and Pro-
ductivity Research Visionary Board and is a member of the NSF Software Engi-
neering Research Center, an academic-industry consortium. Warren's interests
include measurement and decision making, software quality, software engineering
economics, and project management, as well as mobile Internet technologies and
digital forensics. His academic research has involved diverse industrial partner-
ships, and he maintains a strong practical focus on the useful application of new
techniques and technologies.

Part 2
Practices

Part 2 provides methods and techniques for VBSE that build up on the foundations
and frameworks presented in Part 1. The chapters in this part present practices that
help to enhance professional and managerial capabilities in applying VSBE con-
cepts in concrete SE processes and projects.

The objective of Part 2 is to show how key practices of VBSE can help in fos-
tering ethical behavior, managing decision making, eliciting and reconciling
stakeholder value propositions, improving usability, and software testing.

The presented methods and techniques aim at improving the predictability of
SE processes, such as improving the efficiency of requirements collection, struc-
tured/methodical data-driven decisions, and sharing value concepts in a work
group, e.g., through knowledge management and negotiation.

There are six Chapters in this part that cover the following areas:
• Chapter 6: Value-Based Software Engineering: Seven Key Practices and Ethi-

cal Considerations
• Chapter 7: Stakeholder Value Proposition Elicitation and Reconciliation
• Chapter 8: Measurement and Decision Making
• Chapter 9: Criteria for Selecting Software Requirements to Create Product

Value: An Industrial Empirical Study
• Chapter 10: Collaborative Usability Testing to Facilitate Stakeholder Involve-

ment
• Chapter 11: Value-Based Management of Software Testing

In Chapter 6, Boehm presents seven key elements that provide foundations for
value-based software engineering, such as: Benefits Realization Analysis, Stake-
holder Value Proposition Elicitation and Reconciliation, and Value-Based Moni-
toring and Control. A case study outlines VBSE elements can be used to incorpo-
rate ethical considerations into software engineering practice. Following this, in
Chapter 8 Berry and Aurum present a behavioral decision making model that iden-
tifies the impact of measurement products on decision making behavior to aug-
ment strictly rational decision making frameworks. In Chapter 7 Grünbacher,
Köszegi, and Biffl motivate the need of methods and tools for understanding and
reconciling stakeholder value propositions in software engineering. They present
an example of a groupware-supported negotiation method that provides process
structure and mediation to stakeholders, identify challenges of stakeholder value
proposition elicitation and negotiation, and discuss possible method improvements
to address these challenges. Following this chapter, in Chapter 9 Wohlin and Au-
rum provide an overview of the product value concept to quantify the importance
of different decision making criteria when deciding whether to include a require-
ment in a project or release and present an industrial survey. In Chapter 10, Fruh-
ling and de Vreede present a repeatable collaborative usability testing process

108

supported by a Group Support System to facilitate stakeholder involvement
through stakeholder expectation management, visualization, and trade off analysis,
prioritization of usability action items, and a simple business case analysis. Fi-
nally, in Chapter 11 Ramler, Biffl, and Grünbacher motivate the need for value-
based testing, describe practices supporting the management of value-based test-
ing, outline a framework for value-based test management, and illustrate the
framework with an example.

6 Value-Based Software Engineering: Seven Key
Elements and Ethical Considerations

Barry Boehm

Abstract: This chapter presents seven key elements that provide candidate foun-
dations for value-based software engineering:
1. Benefits Realization Analysis
2. Stakeholder Value Proposition Elicitation and Reconciliation
3. Business Case Analysis
4. Continuous Risk and Opportunity Management
5. Concurrent System and Software Engineering
6. Value-Based Monitoring and Control
7. Change as Opportunity
Using a case study we show how some of these elements can be used to incorpo-
rate ethical considerations into daily software engineering practice.

Keywords: Benefits realization, business case analysis, cost-benefit analysis, in-
vestment analysis, return on investment, risk management, stakeholder values,
software economics, software engineering ethics, value-based software engineer-
ing.

6.1 Benefits Realization Analysis

Many software projects fail by succumbing to the “Field of Dreams” syndrome.
This refers to the American movie in which a Midwestern farmer has a dream that
if he builds a baseball field on his farm, the legendary players of the past will ap-
pear and play on it (“Build the field and the players will come”).

In The Information Paradox (Thorp, 1998), John Thorp discusses the paradox
that organizations’ success in profitability or market capitalization do not correlate
with their level of investment in information technology (IT). He traces this para-
dox to an IT and software analogy of the “Field of Dreams” syndrome: “Build the
software and the benefits will come.”

To counter this syndrome, Thorp and his company, the DMR Consulting
Group, developed a Benefits Realization Approach (BRA) for determining and
coordinating the other initiatives besides software and IT system development that
are needed in order for the organization to realize the potential IT system benefits.
The most significant of these features, the Results Chain, is discussed next.

110 Barry Boehm

Results Chain

Figure 19 shows a simple Results Chain provided as an example in The Informa-
tion Paradox. It establishes a framework linking Initiatives that consume re-
sources (e.g., implement a new order entry system for sales) to Contributions (not
delivered systems, but their effects on existing operations) and Outcomes, which
may lead either to further contributions or to added value (e.g., increased sales). A
particularly important contribution of the Results Chain is the link to Assump-
tions, which condition the realization of the Outcomes. Thus, in Figure 19, if or-
der-to-delivery time turns out not to be an important buying criterion for the prod-
uct being sold, (e.g., for stockable commodities such as soap and pencils), the
reduced time to deliver the product will not result in increased sales.

The Results Chain is a valuable framework by which software project members
can work with their clients to identify additional non-software initiatives that may
be needed to realize the potential benefits enabled by the software/IT system ini-
tiative. These may also identify some additional success-critical stakeholders who
need to be represented and “bought into” the shared vision.

Fig. 19. Benefits Realization Approach Results Chain

For example, the initiative to implement a new order entry system may reduce the
time required to process orders only if some additional initiatives or system fea-
tures are pursued to convince the salespeople that the new system will be good for
their careers and to train them in how to use the system effectively. For example,
if the order entry system is so efficiency optimized that it does not keep track of
sales credits, the salespeople will fight using it.

Further, the reduced order processing cycle will reduce the time to deliver
products only if additional initiatives are pursued to coordinate the order entry sys-
tem with the order fulfillment system. Some classic cases where this did not hap-
pen were the late deliveries of Hershey’s Halloween candy (Carr, 2002) and Toys
R Us’ Christmas toys.

Such additional initiatives need to be added to the Results Chain. Besides in-
creasing its realism, this also identifies additional success-critical stakeholders
(salespeople and order fulfillment people) who need to be involved in the system
definition and development process. The expanded Results Chain involves these
stakeholders not just in a stovepipe software project to satisfy some requirements,

6 VBSE: Seven Key Elements and Ethical Considerations 111

but in a program of related software and non-software initiatives focused on value-
producing end results.

6.2 Stakeholder Value Proposition Elicitation and
Reconciliation

It would be convenient if all the success-critical stakeholders had readily expressi-
ble and compatible value propositions that could easily be turned into a set of ob-
jectives for each initiative and for the overall program of initiatives. “Readily ex-
pressible” is often unachievable because the specifics of stakeholders’ value
propositions tend to be emergent through experience rather than obtainable
through surveys. In such cases, synthetic experience techniques such as proto-
types, scenarios, and stories can accelerate elicitation.

Readily compatible stakeholder value propositions can be achievable in situa-
tions of long-term stakeholder mutual understanding and trust. However, in new
situations, just considering the most frequent value propositions or success models
of the most frequent project stakeholders (users, acquirers, developers, maintain-
ers) shows that these are frequently in conflict and must be reconciled.

For example, Figure 20 shows a “spider web” of the most frequent “model
clashes” among these stakeholders’ success models that can cause projects to fail.
The left- and right-hand sides of Figure 20 show these most frequent success
models. For example, users want many features, freedom to redefine the feature
set at any time, compatibility between the new system and their existing systems,
and so on.

However, the spiderweb diagram shows that these user success models can
clash with other stakeholders’ success models. For example, the users’ “many fea-
tures” product-oriented success model clashes with the acquirers’ “limited devel-
opment budget and schedule” property-oriented success model, and with the de-
veloper’s success model, “ease of meeting budget and schedule.”

The developer has a success model, “freedom of choice: COTS/reuse” that can
often resolve budget and schedule problems. But the developer’s choice of COTS
or reused components may be incompatible with the users’ and maintainers’ other
applications, causing two further model clashes. Further, the developer’s reused
software may not be easy to maintain, causing an additional model clash with the
maintainers.

The gray lines in Figure 20 show the results of one of the analyses performed in
constructing and refining the major model clash relationships. It determined the
major model clashes in the Bank of America Master Net development, one of sev-
eral major project failures analyzed. Further explanations are in (Boehm et al.,
2000) and (Al-Said, 2003).

112 Barry Boehm

Fig. 20. Value Proposition Model-Clash spiderweb diagram

Given the goodly number of model clashes in Figure 20 (and there are potentially
many more), the task of reconciling them may appear formidable. However, there
are several effective approaches for stakeholder value proposition reconciliation,
such as:
• Expectations management. Often, just becoming aware of the number of poten-

tial stakeholder value proposition conflicts that need to be resolved will cause
stakeholders to relax their less critical levels of desire. Other techniques such as
lessons learned retrospectives, well-calibrated cost models, and “simplifier and
complicator” lists help stakeholders better understand which of their desired
capabilities are infeasible with respect to budget, schedule, and technology con-
straints. Good examples are in Chapter 15 of this book.

• Visualization and trade-off analysis techniques. Frequently, prototypes, scenar-
ios, and estimation models enable stakeholders to obtain a better mutual under-
standing of which aspects of an application are most important and achievable.
Good examples are in Chapters 4, 8, and 10.

• Prioritization. Having stakeholders rank/order or categorize the relative priori-
ties of their desired capabilities will help determine which combination of ca-
pabilities will best satisfy stakeholders’ most critical needs within available re-
source constraints. Various techniques such as pairwise comparison and scale-
of-ten ratings of relative importance and difficulty are helpful aids to prioritiza-
tion. Good examples are in Chapters 7 and 12.

• Groupware. Some of those prioritization aids are available in groupware tools,
along with collaboration-oriented support for brainstorming, discussion, and
win-win negotiation of conflict situations. Good examples are in Chapters 7
and 10.

6 VBSE: Seven Key Elements and Ethical Considerations 113

• Business case analysis. Determining which capabilities provide the best return
on investment can help stakeholders prioritize and reconcile their value propo-
sitions. Business case analysis is summarized next, and discussed in more detail
in Chapter 3.

6.3 Business Case Analysis

In its simplest form, business case analysis involves determining the relative fi-
nancial costs, benefits, and return on investment (ROI) across a system’s life cycle
as ROI = (Benefits – Costs) / Costs. Since costs and benefits may occur at differ-
ent times, the business case analysis will usually discount future cash flows based
on likely rates of interest, so that all of the cash flows are referenced to a single
point in time (usually the present, as in Present Value).

Fig. 21. Example of business case analysis results

One can then compare two decision options A and B in terms of their ROI profiles
versus time. In Figure 21, for example, Option A’s ROI becomes positive sooner
than Option B’s ROI, but its longer term ROI is lower. The stakeholders can then
decide whether the longer wait for a higher ROI in Option B is preferable to the
shorter wait for a lower ROI in Option A. Option Rapid-B illustrates why stake-
holders are interested in rapid application development. If Rapid-B can be devel-
oped in half the time, it will be much preferable to either of Options A or origi-
nal-B.

Unquantifiable Benefits, Uncertainties, and Risk

Two additional factors may be important in business case analysis. One involves
unquantifiable benefits; the other involves uncertainties and risk.

114 Barry Boehm

In some cases, Option A might be preferred to Option B or even Rapid-B if it
provided additional benefits that may be difficult to quantify, such as controllabil-
ity, political benefits, or stakeholder goodwill. These can sometimes be addressed
by such techniques as multiple criterion decision making or utility functions in-
volving stakeholders’ preferences for financial or non-financial returns.

In other cases, the benefit flows in Figure 21 may be predicated on uncertain
assumptions. They might assume, for example, that the Option B product will be
the first of its kind to enter the marketplace and will capture a large market share.
However, if two similar products enter the marketplace first, then the payoff for
Option B may be even less than that for Option A.

If the profitability of early competitor marketplace entry can be quantified, it
can then be used to determine the relative value of the rapid development Option
Rapid-B. This value can then be used to determine the advisability of adopting
practices that shorten schedule at some additional cost. An example is pair pro-
gramming: empirical studies indicate that paired programmers will develop soft-
ware in 60-70% of the calendar time required for an individual programmer, but
thereby requiring 120-140% of the cost of the individual programmer.

If the profitability of early competitor marketplace entry is unknown, this
means that making a decision between the cheaper Option B and the faster Option
Rapid-B involves considerable uncertainty and risk. It also means that there is a
value in performing competitor analysis to determine the probability of early
competitor marketplace entry, or of buying information to reduce risk. This kind
of value-of-information analysis can be performed via statistical decision theory; a
discussion and examples of its applicability to software decision making are pro-
vided in Chapter 1. An excellent overall introduction to software business case
analysis is (Reifer, 2002). Good examples in this book are in Chapters 3, 5, 12, 16,
and 17.

6.4 Continuous Risk and Opportunity Management

Risk analysis and risk management are not just early business case analysis tech-
niques; they pervade the entire information system life cycle. Risk analysis also
reintroduces the people factor into economic decision making. Different people
may be more or less risk averse, and will make different decisions in similar situa-
tions, particularly when confronted with an uncertain mix of positive and negative
outcomes.

For example, consider a programmer who is given four weeks to complete the
development of a software module. The programmer is given two choices. One is
to develop a new version of the module, which he is sure he can do in four weeks.
The other is to reuse a previously developed module, for which there is an 80%
chance of finishing in one week and a 20% chance of finishing in six weeks. The
expected duration of this option is (.8)(1) + (.2)(6) = 2 weeks. This represents an
expected time savings of two weeks and a corresponding savings in expected ef-
fort or cost.

6 VBSE: Seven Key Elements and Ethical Considerations 115

Understanding and Addressing People’s Utility Functions

In this situation, though, many risk-averse programmers would reject the reuse op-
tion. They do not want to be known as people who overrun schedules. Their utility
function would assign a much larger negative utility to overrunning the four-week
schedule than the positive utility of finishing ahead of schedule. In terms of ex-
pected utility, then, they would prefer the assured four-week develop a new mod-
ule approach.

However, their boss may have preferred the reuse option, particularly if she had
invested resources in creating the reusable components, and if she could organize
the project to compensate for the uncertainties in module delivery schedules (e.g.,
via modular architectures and daily builds rather than a pre-planned module inte-
gration schedule). If so, she could revise the programmers’ incentive structure
(rewarding reuse independent of actual completion time) in a way that realigned
their utility functions and success models to be consistent with hers.

Thus, understanding and addressing people’s utility functions becomes a pow-
erful tool in reducing the risk of the overall project’s failure – or, from a comple-
mentary perspective, in improving the opportunity for the overall project’s suc-
cess. It means that value-based software engineering is not a dry “manage by the
numbers” approach, but a highly people-oriented set of practices. And its treat-
ment of uncertainty balances negative risk considerations with positive opportu-
nity considerations. Reconciling stakeholders’ utility functions involves essen-
tially the same approaches for stakeholder value proposition elicitation and
reconciliation as we discussed in Section 6.2.

Using Risk to Determine “How Much Is Enough”

A current highly debated issue is the use of plan-driven methods versus use of ag-
ile methods such as Extreme Programming, Crystal Methods, Adaptive Software
Development, and Scrum (Highsmith, 2002). Recent workshop results involving
plan-driven and agile methods experts have indicated that hybrid plan-driven
methods are feasible, and that risk analysis can be used to determine how much
planning or agility is enough for a given situation.

A central concept in risk management is the Risk Exposure (RE) involved in a
given course of action. It is determined by accessing the probability of loss P(L)
involved in a course of action and the corresponding size of loss S(L), and com-
puting the risk exposure as the expected loss: RE=P(L)*S(L). “Loss” can include
profits, reputation, quality of life, or other value-related attributes.

Figure 22 shows risk exposure profiles for an example e-services company with
a sizable installed base and desire for high assurance; a rapidly changing market-
place and desire for agility and rapid value; and an internationally distributed de-
velopment team with a mix of skill levels and a need for some level of docu-
mented plans.

116 Barry Boehm

Fig. 22. Risk Exposure (RE) profile: planning detail

The downward curve in Figure 22 shows the variation in RE due to inadequate
plans, as a function of the level of investment the company puts into its projects’
process and product plans. At the left, a minimal investment corresponds to a high
probability P(L) that the plans will have loss causing gaps, ambiguities, and incon-
sistencies. It also corresponds to a high S(L) that these deficiencies will cause ma-
jor project oversights, delays, and rework costs. At the right, the more thorough
the plans, the less P(L) that plan inadequacies will cause problems, and the smaller
the S(L) of the associated losses.

The upward curve in Figure 22 shows the variation in RE due to market share
erosion through delays in product introduction. Spending little time in planning
will get at least a demo product into the marketplace early, enabling early value
capture. Spending too much time in planning will have a high P(L) due both to the
planning time spent, and to rapid changes causing delays via plan breakage. It will
also cause a high S(L), as the delays will enable others to capture most of the mar-
ket share.

The upper curve in Figure 22 shows the sum of the risk exposures due to inade-
quate plans and market share erosion. It shows that very low and very high in-
vestments in plans have high overall risk exposures, and that there is a “sweet
spot” in the middle where overall risk exposure is minimized, indicating “how
much planning is enough?” for this company’s operating profile.

With the example company situation as a reference point, we can run compara-
tive risk exposure profiles of companies having different risk profiles. For exam-
ple, consider an e-services company with a small installed base and less need for
high assurance, a rapidly changing marketplace, and a collocated team of highly

6 VBSE: Seven Key Elements and Ethical Considerations 117

capable and collaborative developers and customers. With this profile, the major
change in risk exposure from Figure 22 is that the size of rework loss from mini-
mal plans is much smaller due to the ability of the team to rapidly replan and
refactor, and thus the company’s sweet spot moves to the left toward agile meth-
ods.

As another example, consider a company in the plan-driven home ground, with
a more stable product line of larger, more safety-critical systems. Here, the major
difference from Figure 22 is a much higher size of rework loss from minimal
plans, and a resulting shift of the company’s sweet spot toward higher investments
in plans. Further discussion and illustration of these issues and more quantitative
analyses are provided in (Boehm and Turner, 2004).

Similar analyses have shown that such risk analysis techniques can be used to
determine “how much is enough” for other key software engineering levels of ac-
tivity, such as testing, specification, prototyping, COTS evaluation, formal meth-
ods, or documentation. Other good treatments of risk considerations are in Chap-
ters 5, 13, and 17.

6.5 Concurrent System and Software Engineering

As we discussed in Chapter 1, the increasing pace of change in the information
technology marketplace is driving organizations toward increasing levels of agility
in their software development methods, while their products and services are con-
currently becoming more and more software intensive. These trends also mean
that the traditional sequential approach to software development, in which systems
engineers determined software requirements and passed them to software engi-
neers for development, is increasingly risky to use.

Increasingly, then, it is much more preferable to have systems engineers and
software engineers concurrently engineering the product’s or service’s operational
concept, requirements, architecture, life cycle plans, and key sections of code.
Concurrent engineering is also preferable when system requirements are more
emergent from usage or prototyping than prespecifiable. It is further preferable
when the relative costs, benefits, and risks of commercial off-the-shelf (COTS)
software or outsourcing decisions will simultaneously affect requirements, archi-
tectures, code, plans, costs, and schedules. It is also essential in determining cost-
value trade-off relationships in developing software product lines (Faulk et al.,
2000).

Relevant Process Models

For the future, then, concurrent spiral-type process models will increasingly be
preferred over sequential “waterfall”-type process models. Several are available,
such as the Evolutionary Spiral Process (SPC, 1992), the Rational Unified Process
(RUP) (Royce, 1998; Jacobson et al., 1999; Kruchten, 2001), and the

118 Barry Boehm

MBASE/CeBASE models (Boehm and Port, 2001; Boehm et al., 2002a). Some
agile process models such as Lean Software Development and Adaptive Software
Development (Highsmith, 2002) also emphasize concurrent system and software
engineering.

An important feature of concurrent process models is that their milestone pass-
fail criteria involve demonstrations of consistency and feasibility across a set of
concurrently-developed artifacts. For example, Table 9 shows the pass/fail criteria
for the anchor point milestones used in MBASE and RUP: Life Cycle Objectives
(LCO), Life Cycle Architecture (LCA), and Initial Operational Capability (IOC)
(Boehm and Port, 2001).

Table 9. LCO, LCA, and IOC Pass/Fail Criteria

These milestones work well as common commitment points across a variety of
process model variants because they reflect similar commitment points during
one’s lifetime. The LCO milestone is the equivalent of getting engaged, and the
LCA milestone is the equivalent of getting married. As in life, if you marry your
architecture in haste, you and your stakeholders will repent at leisure (if, in Inter-
net time, any leisure time is available). The third anchor point milestone, IOC,

LCO
(Life Cycle Objectives)

LCA
(Life Cycle Architecture)

IOC
(Initial Op. Capability)

For at least one
architectture, a system
built to that architecture
will:

• Support the core
operational concept

• Satisfy the core
requirements

• Be faithful to the
prototype(s)

• Be buildable within
the budgets and
schedules in the plan

• Show a viable business
case

• Have its key stake-
holders committed to
support the
Elaboration Phase (to
LCA)

For a specific detailed
architecture, a system
built to that architecture
will:

• Support the elaborated
operational concept

• Satisfy the elaborated
requirements

• Be faithful to the
prototype(s)

• Be buildable within
the budgets and
schedules in the plan

• Show a viable business
case

• Have all major risks
resolved or covered by
a risk management
plan

• Have its key stake-
holders committed to
support the full life
cycle

An implemented
architecture, an
operational system that
has:

• Realized the
operational concept

• Implemented the initial
operational
requirements

• Prepared a system
operation and support
plan

• Prepared the initial
site(s) in which the
system will be
deployed for transition

• Prepared the users,
operators, and
maintainers to assume
their operational roles

6 VBSE: Seven Key Elements and Ethical Considerations 119

constitutes an even larger commitment: It is the equivalent of having your first
child, with all the associated commitments of care and feeding of a legacy system.

Another important development in this area is the Capability Maturity Model-
Integrated (CMMI) (SEI, 2002; Ahern et. al, 2001). It integrates the previous
software-centric Software CMM (Paulk et al., 1994) with CMMs for System En-
gineering and for Integrated Product and Process Development. The CMMI (and
its predecessor iCMM (FAA, 1997) provides a process maturity assessment and
improvement framework, which organizations can use to evolve from sequential
to concurrent systems and software engineering approaches, in ways which em-
phasize integrated stakeholders teaming and reconciliation of stakeholder value
propositions. Further good examples of concurrent system and software engineer-
ing are in Chapters 4, 7, 8, 9, 10, 12, and 14.

6.6 Value-Based Monitoring and Control

A technique often used to implement project monitoring and control functions in
the software CMM or the CMMI is Earned Value Management. It works as shown
in Figure 23.

Fig. 23. “Earned Value” feedback process

The Earned Value Management process is generally good for tracking whether the
project is meeting its original plan. However, it becomes difficult to administer if
the project’s plan changes rapidly. More significantly, it has absolutely nothing to
say about the actual value being earned for the organization by the project’s re-
sults. A project can be tremendously successful with respect to its cost-oriented
“earned value,” but an absolute disaster in terms of actual organizational value
earned. This frequently happens when the resulting product has flaws with respect

120 Barry Boehm

to user acceptability, operational cost-effectiveness, or timely market entry. Thus,
it would be preferable to have techniques which support monitoring and control of
the actual value to be earned by the project’s results.

Business Case and Benefits Realized Monitoring and Control

A first step is to use the project’s business case (discussed in Section 6.3) as a
means of monitoring the actual business value of the capabilities to be delivered
by the project. This involves continuing update of the business case to reflect
changes in business model assumptions, market conditions, organizational priori-
ties, and progress with respect to enabling initiatives. Monitoring the delivered
value of undelivered capabilities is difficult; therefore, this approach works best
when the project is organized to produce relatively frequent increments of deliv-
ered capability.

A related next step is to monitor assumptions and progress with respect to all of
the Initiatives and Outcomes involved in the project’s Results Chain discussed in
Section 6.1 and shown in Figure 19. The suggested monitoring approach in
(Thorp, 1998) involves coloring in the degree to which Initiatives and Outcomes
have been realized. This can be extended to monitor Contributions and validity of
Assumptions as well. For example, monitoring the Contribution, “Reduce time to
deliver product” in Figure 19 could uncover the problem that speeding up order
entry will create more order fulfillment delays unless a complementary order ful-
fillment Initiative is established.

Develop / update
business case; time-
phased cost, benefit

flows; plans

Perform to
plans

Value being
realized?

Assumptions
still valid?

Determine corrective actions

Yes

Yes

No
No

Fig. 24. Value realization feedback process

The resulting value realization feedback process is shown in Figure 24. With re-
spect to the order entry example just above, finding out that value was not being
realized via reduced delivery times would lead to some corrective action, most
likely the establishment of an order fulfillment speedup Initiative. This would re-
quire updates of the overall plans and business case, and new time-phased cost and
benefit flows to monitor.

6 VBSE: Seven Key Elements and Ethical Considerations 121

A further option in the value realization feedback process involves adjusting the
value function to reflect progress with respect to the product’s production function
as illustrated in Figure 25. The usual economic production function is an S-shaped
curve in which the early “Investment” segment involves development of infra-
structure and architecture which does not directly generate benefits, but which is
necessary for realization of the benefits in the High-payoff and Diminishing re-
turns segment of the curve. This means that tracking direct benefits realized usu-
ally produces pessimistic results during the Investment segment of the curve. One
can either manage stakeholders’ expectations to accept low early benefit flows (as
with the ROI profiles in Figure 21), or use an alternative value function (the dotted
line in Figure 25), which ascribes additional indirect value to the early investments
in infrastructure and architecture. (Actually, the real options techniques in (Sulli-
van et al., 2001) and Chapters 3, 5, and 17 can estimate such values). The pre-
ferred approach will depend on the project’s stakeholders and their expectations.

V
al

ue
 o

f s
of

tw
ar

e
pr

od
uc

t t
o

or
ga

ni
za

tio
n

Investment High-payoff Diminishing returns

Operating
system

Middleware

Basic application functions

Main application functions

Operational support functions

Secondary application functions

Animated graphics Natural speech input

Level of
investment

Adjusted
infrastructure
value function

Fig. 25. Example production function for software product features

Of course, the actual and potential benefit values realized by each increment of
capability need to be monitored and adjusted for changes. For example, a low-cost
and user-friendly animated graphics package may increase the net value of ani-
mated graphics for certain classes of applications (e.g., education and training),
and limited-domain speech understanding systems have shown considerable labor-
saving value.

122 Barry Boehm

Value-Based Monitoring and Control at the Organization Level

Several useful techniques are available for organizing and managing multi-
dimensional improvement strategies. The Balanced Scorecard technique (Kaplan
and Norton, 1996) organizes goals, strategies, and initiatives into four perspec-
tives: financial; customer; internal business process; and learning and growth. The
BTOPP business system (Morton, 1991; Thorp, 1998) uses five perspectives:
business, technology, organization, process, and people. Both are similar; organi-
zations can choose the one that best fits or develop an alternative as appropriate.
Chapters 8 and 12 provide good examples of value-based monitoring and control.

6.7 Change as Opportunity

Expending resources to adapt to change is frequently lumped into “rework costs”
and treated as a negative factor to avoid. Software change tracking systems often
treat changes as defects in the original requirements. Quality cost systems often
treat change adaptations as a quality cost to be minimized. These criteria tend to
push projects and organizations toward change aversion.

Nowadays, changes are continually going on in technology, in the marketplace,
in organizations, and in stakeholders’ value propositions and priorities. And the
rate of change is increasing. Organizations that can adapt to change more rapidly
than their competition will succeed better at their mission or in the marketplace.
Thus the ability to adapt to change has business value.

Software is the premier technology for adaptation to change. It can be organ-
ized to make the cost of changes small as compared to hardware. It can be updated
electronically, in ways that preserve continuity of service as the change is being
made. Thus, change as opportunity for competitive success is a key economic and
architectural driver for software projects and organizations.

Examples of Change as Opportunity

The main sources of change as opportunity come from changes in technology or in
the marketplace that open up new opportunities to create value. There are of
course other opportunity sources such as changes in legislation, organizational
alignments, and international relations.

An excellent example of technology change as opportunity has been the Inter-
net and the Web and their effect on electronic commerce. Organizations that
learned early how to capitalize on this technology made significant competitive
gains. Other good examples of technology change as opportunity have been agent
technology, mobile computing, and the Global Positioning System (GPS).

A good example of marketplace change as opportunity is the existence of GPS
and mobile computing in automobiles as an opportunity to provide mobile loca-
tion-based services. Another is the opportunity to add mobile electronic collect-

6 VBSE: Seven Key Elements and Ethical Considerations 123

on-delivery billing and collection systems at the delivery point of rapid delivery
services such as Federal Express and United Parcel Service.

Techniques for Enhancing Adaptability to Change

As documented in Microsoft Secrets (Cusumano and Selby, 1995), the world’s
leading software business uses a number of techniques for enhancing its adaptabil-
ity to change. Its synchronize-and-stabilize approach focuses on concurrent evolu-
tionary development, in which each feature team has the flexibility to adapt to
change, while buffer periods are built into each increment to enable the teams to
synchronize their results. Nightly build techniques also accommodate flexibility in
the integration schedule and adaptability to change. Also, Microsoft uses a number
of techniques to enhance organizational learning and adaptation, such as customer
feedback analysis, project postmortems, and technology watch and marketplace
watch activities.

Project techniques for enhancing adaptability to change tend to fall into two
categories: architecture-based and refactoring-based. Architecture-based tech-
niques focus on identifying the product’s most likely sources of change, or evolu-
tion requirements, and using information hiding modularity techniques to hide the
sources of change within architectural modules (Parnas, 1979). Then, when the
changes come, they can be accommodated within modules rather than causing rip-
ple effects across the entire product. A related technique is schedule-as-
independent-variable (SAIV), which uses prioritized requirements as potential
sources of change to ensure delivery of the highest priority requirements within a
fixed schedule (Boehm et al., 2002b).

Refactoring-based change focuses on keeping the product as simple as possible,
and reorganizing the product to accommodate the next set of desired changes. A
number of the agile methods discussed in Section 6.4 rely on refactoring to ac-
commodate change, while the plan-driven methods rely on architecture. Which
one is more likely to succeed for a given project is largely based on the validity of
the Extreme Programming slogan, “You Aren’t Going to Need It (YAGNI).” If the
evolution requirements are knowable in advance and stable, the architecture-based
approach will easily accommodate them, while the YAGNI approach will incur a
steady stream of excess refactorings. On the other hand, if the requirements
changes are frequent and highly unpredictable, pre-architected frameworks will
continually break, and refactoring simpler designs will be preferable. Traceability
tools such as those in Chapter 14 can help with change impact analysis. The value-
based release prioritization approach in Chapter 12 is another good approach for
addressing change as opportunity.

Economic Value of Adaptability to Change

Developing a change-anticipatory modular design can be considered as an invest-
ment in real options which can be exercised in the future to execute changes

124 Barry Boehm

which enhance the system’s value (Amram and Kulatilaka, 1999; Baldwin and
Clark, 2000). More specifically, (Sullivan et al., 2001) uses the options pricing
approach to analyze the economic value of Parnas’ information-hiding technique
to modularization around anticipated sources of change. This approach can also be
combined with other economic approaches, such as buying information to reduce
the risk of anticipating the wrong set of changes (e.g., via prototypes, user surveys,
marketplace watch, or technology watch activities).

Another perspective on the value of adaptability to change comes from studies
of complex adaptive systems (Kauffman, 1995). These studies show that for vari-
ous “fitness landscapes” or value functions, one can tune a set of adaptation pa-
rameters so that a high value operational solution will emerge over time via the in-
teraction of a set of adaptive agents. A too rigid set of adaptation parameters will
lead to gridlock; a too flexible set will lead to chaos. (Highsmith, 2000) shows
numerous parallels between software development and complex adaptive systems,
including the value of relatively agile over highly rigorous approaches to software
development in domains undergoing rapid change.

6.8 Integrating Ethical Considerations into Software
Engineering Practice

Software engineers have increasingly many and significant opportunities to influ-
ence the outcome of software projects in ways that produce harmful or positive re-
sults for some of the stakeholders involved. The field has produced some good
codes of ethics such as the ACM/IEEE Software Engineering Code of Ethics and
Professional Practice (ACM/IEEE, 1998). Its content covers a number of value-
intensive topics such as intellectual property, privacy, confidentiality, quality of
work, fairness, liability, risk disclosure, conflict of interest, and unauthorized ac-
cess (Anderson et al., 1993).

However, the codes provide only general guidelines, and it has been difficult to
integrate their value-oriented objectives into the value-neutral techniques and
practices constituting traditional software engineering. One of the major benefits
of the value-based software engineering approaches presented in this book is the
opportunity to naturally integrate value-oriented ethical considerations into daily
software engineering practice.

The approach presented in this chapter follows the principles in John Rawls’
seminal book, A Theory of Justice (Rawls, 1971). The socioeconomic aspect of
this theory is based on the following principle: Social and economic inequalities
are to be arranged so that they are both (1) to the greatest benefit of the least ad-
vantaged; and (2) attached to offices and positions open to all under conditions of
fair equality of opportunity.

This principle recognizes the fact that some individuals are better able to in-
crease everyone’s benefits than are others. It holds that it is fair for such individu-
als to operate with more resources than others, to the extent that they thereby gen-

6 VBSE: Seven Key Elements and Ethical Considerations 125

erate benefits for others, and particularly maximize the benefits of least advan-
taged people.

The Theory W or stakeholder win-win approach (Boehm and Ross, 1989) to
value-based software engineering presented in Section 6.2 and Chapter 7 provides
a way to apply Rawls’ Theory of Justice to daily software engineering practice, by
recognizing the class of least advantaged people as one of the success-critical
stakeholders in a software project.

A good start toward this approach was provided by Collins et al. (1994). They
developed an interpretation of the Theory of Justice that identifies the least advan-
taged class or penumbra as an essential stakeholder in software engineering deci-
sions, along with the providers, buyers, and users of a prospective software sys-
tem. They provide and exemplify a matrix of obligations of each of the
stakeholder classes to the others, and identify techniques for addressing other as-
pects of the Theory of Justice. These include the concept of risking harm and the
publicity test for ethical appropriateness (how would you like it if your software
engineering decision were discussed on the evening news?).

Fire Dispatching Case Study

This synthesized case study includes ethical problems encountered in several ur-
ban emergency services software projects.

Several years ago, the city of Zenith suffered a major fire disaster in its central
business district, causing over $300 million in property damage. An investigation
concluded that much of the loss could have been avoided with a modern auto-
mated fire dispatching system instead of the current largely manual system origi-
nally developed for Zenith in the 1920s.

The Mayor of Zenith then pledged to ensure that Zenith would have a modern
automated fire dispatching system in two years (just before the next election). His
staff chose a consultant company to rapidly prepare specifications and a competi-
tive procurement package for the system. In three months, the company prepared
the package, including an algorithm that would dispatch fire equipment based on
minimizing property damage and an $8 million cost estimate. Bidding was opened
for a fixed-price contract to develop the system to the specifications, and three
months later, the contract was awarded to Integrated Logistics, Inc. (ILI), for their
bid price of $4.4 million. ILI was new to urban emergency services but planned to
reuse an extensive library of reusable logistics software. They also indicated that
their automated system would reduce Zenith’s annual operating costs for fire dis-
patching by 50%.

ILI delivered an automated system on schedule, and demonstrated its impres-
sive user interface to city leaders and the press with much fanfare. However, three
months later, the Fire Department had discovered several problems:
• There were major delays and shortfalls in the cutover from the old system to

the new system due to inadequate budgeting, planning, and preparation for
conversion, installation, and training for users, administrators, and maintainers.

126 Barry Boehm

• The automated algorithm would send equipment to false alarms in rich people’s
neighborhoods while poor people’s houses burned, which did not look good in
the newspapers.

• The labor savings were not realized after the Firemen’s Union went on a one
day sick-out in protest over the potential loss of dispatchers’ jobs.

• The delivered system had weak “off-nominal” capabilities that resulted in nu-
merous dispatching delays and work-arounds (at least, these provided the extra
dispatchers with things to do). The system was contractually compliant, but
gave signs of being very risky to use in a crisis, requiring expensive post-
delivery rework to improve safety.

• The reused logistics software was weak not only on safety but on privacy safe-
guards, putting confidential identity and financial information at risk.

• The English-only user interface caused numerous usage problems with the gen-
eral public and multilingual hot line operators.

Clearly, these problems raise ethical concerns in such areas as fairness, quality of
work, liability, risk disclosure, privacy, confidentiality, and unauthorized access.
Let us see how the seven key elements of VBSE presented above can be applied to
integrate ethical considerations into software engineering considerations:

1. Benefits Realization Analysis. The Results Chain approach can be used to
identify missing success-critical stakeholders, particularly if maximizing benefits
to the least advantaged is added to the desired outcomes.

Develop fast,
reliable Fire
Dispatching

software

Outreach to at-risk
communities

Ensure integration
with emergency
medical, police

systems

Prepare, execute
conversion, training,

cutover plans

Fast, reliable,
safe, fair, usable,

maintainable
software

Well-prepared
operational

system

Reduce loss of
life, health,

property fairly

Involve dispatchers,
administrators,

maintainers

Maintainability, usability inputs

safety, fairness inputs

effective
software

Interoperability inputs

cost-effective cutover

fair,
cost-effective
operational

system

fast,
reliable
software

Fig. 26. Results Chain for fire dispatching system

Figure 26 provides an example Results Chain that could have been used to iden-
tify missing stakeholders and avoid the problems that happened with the Zenith
Fire Dispatching System. It would start with a simple beginning Initiative to de-
velop software on the left and a desired Outcome on the right that might initially

6 VBSE: Seven Key Elements and Ethical Considerations 127

focus on reducing property loss. By considering potential risks and pitfalls (and by
considering problems lists like the one above), the customers and developers could
identify and incorporate missing Initiatives and success-critical stakeholders into
the system definition, development, and deployment process. As seen in Fig-
ure 26, these would include not only penumbra stakeholders, but also administra-
tors, maintainers, and interoperators such as police and emergency medical sys-
tems.

2. Stakeholder Value Proposition Elicitation and Reconciliation. The stake-
holder win-win approach to negotiating system objectives, constraints, and alter-
natives can be enhanced by adding representatives of the least advantaged class or
penumbra, and by expanding the checklist of negotiation topics to identify the
most critical system attributes for each class of stakeholder.

Table 10 shows a modification of one of the obligation matrices in (Collins
et al., 1994) that provides guidance on negotiation topics. The table extends the
“buyer” stakeholder to an “owner” stakeholder including not only system acquisi-
tion but also system transition, operations, and maintenance. It also adds a number
of initiatives identified in the Results Chain. As with many systems, a full obliga-
tion matrix would include an additional column for interoperator stakeholders, and
perhaps others such as upper management and insurance providers. The negotia-
tion might include arrangements for Zenith software engineers to work on the de-
veloper’s team, to enhance visibility and maintainability.

Table 10. Obligations of the software owner

To the provider To the owner To the user To the penumbra
• Negotiate in

good faith, rec-
ognizing the
importance of
provider’s fair
profit

• Learn enough
about the soft-
ware to make
informed deci-
sions

• Facilitate ade-
quate communi-
cation with us-
ers,
administrators,
maintainers, and
the penumbra

• Involve admin-
istrators, main-
tainers in sys-
tem definition,
development,
and transition
planning

• Proactively ad-
dress risks of
delivery short-
falls and over-
runs

• Provide quality
software appro-
priate to user’s
needs within
reasonable
budget con-
straints

• Prudent intro-
duction of
automation

• Informed con-
sent to using
software

• Involve user
representatives
in system defi-
nition, review,
and prototype
exercise

• Buy software
only with rea-
sonable safe-
guards for the
public

• Open about
software capa-
bilities and limi-
tations

• Involve penum-
bra representa-
tives in system
definition, re-
view, and proto-
type exercise

128 Barry Boehm

Similar example artifacts can be provided for the remaining five key elements, but
space limitations constrain their description to the short summaries below.

3. Business Case Analysis. Return on investment techniques can be applied for
each class of stakeholder to validate that the developed system will deliver cost-
effective results, particularly for the penumbra.

4. Continuous Risk and Opportunity Management. The concept of risking harm
can be expanded into a full set of risk and opportunity management techniques in-
cluding risk identification, risk assessment, risk prioritization, risk planning and
control, and the use of risk analysis to determine “how much is enough” of each
software engineering activity.

5. Concurrent System and Software Engineering. The anchor point milestones
in the WinWin Spiral Model provide a framework for controlled concurrent engi-
neering, feasibility validation, and stakeholder concurrence on in-process software
decisions and plans.

6. Value-Based Monitoring and Control. Techniques such as the Balanced
Scorecard and Earned Stakeholder Value can be applied to monitor and control
progress toward meeting ethical as well as product and financial goals.

7. Change as Opportunity. The pace of change in technology, organizations,
environments, and stakeholder value propositions will continue to increase. Tech-
niques such as evolution requirements, architectural encapsulation of sources of
change, and agile methods can help ensure fair accommodation to change.

This partial single-thread application of the seven key elements provides an exam-
ple of how VBSE techniques can integrate ethical considerations into a software
engineer’s daily practice. Clearly, there are many other ethical considerations for
which VBSE can provide similar assistance. Besides the references (ACM/IEEE,
1998; Anderson et al., 1993; Boehm and Ross, 1989; Collins et al., 1994, Rawls,
1971), some further good treatments of software engineering ethics considerations
are the books (Ermann and Shauf, 2003; Johnson and Nissenbaum, 1995; and
Baird et al., 2000).

6.9 Getting Started Toward VBSE

Below are a set of steps you can take to get started toward VBSE by using the
seven key elements of value-based software engineering and the VBSE guidelines
for integrating ethical considerations. They are fairly compatible, and can be pur-
sued in various combinations. The theory-driven process in Chapter 2 provides a
more definitive process framework for determining when and how to invoke the
seven key elements. As with most changes, it is best to start small with a receptive
pilot project with good chances of demonstrating early value.

1. Benefits-Realization Analysis. Write down the name of your software initia-
tive and its specific deliverables as its contribution as the left hand end of a Re-
sults Chain, and your stakeholders’ desired outcome(s) as the right hand end. Then
try to fill out the Results Chain with any success-critical assumptions, intermediate

6 VBSE: Seven Key Elements and Ethical Considerations 129

outcomes and contributions, and additional initiatives needed to fully realize the
desired outcome(s). There usually will be some added initiatives, and they will of-
ten identify some missing success-critical stakeholders, such as operators, main-
tainers, owners of complementary systems, additional classes of users, and the
general public if issues of safety, privacy, or fairness are involved.

2. Stakeholder Value Proposition Elicitation and Reconciliation. Use the Re-
sults Chain to interview your success-critical stakeholders to validate it and iden-
tify their additional high priority assumptions, initiatives, and outcomes. Use the
Model Clash Spiderweb as a top-level checklist, and as a source for identifying
model clashes that need to be reconciled among the stakeholders into a mutually
satisfactory or win-win set of agreements. Summarize the results and coordinate
them with the stakeholders via a Shared Vision document or its equivalent. A sim-
ple Shared Vision document would include an “elevator description” of the project
and its desired outcome(s), the corresponding Results Chain, a list of the success-
critical stakeholders and their roles, a System Block Diagram indicating the de-
sired scope and boundary of the system to be developed and a list of the major
project constraints. More detailed guidelines are in Section 2 of the MBASE Op-
erational Concept Description Guidelines7. Other good approaches to this activity
are Participatory Design (Ehn, 1990), Quality Function Deployment (Cohen,
1995), and agile methods (Highsmith, 2002).

3. Business Case Analysis. Do a simple (e.g., analogy-based) estimate of the
costs of developing, installing, and operating your proposed system over your
chosen benefits period. Do a similarly simple estimate of the resulting benefits
across the benefits period. For an order processing system, for example, these
could be both cost savings and increased sales and profits. Construct a chart simi-
lar to Figure 21 showing the cumulative return on investment, ROI = (benefits-
costs)/costs. Also list the qualitative benefits, such as improved order fulfillment
predictability and control and improved customer satisfaction. Iterate the business
case with your stakeholders and ensure that they agree that it is worthwhile to pro-
ceed. Don Reifer’s book, Making the Software Business Case (Reifer, 2002) pro-
vides further guidelines and case study examples. An example order processing
case study is provided in (Boehm and Huang, 2003) and Chapter 8. Both the spiral
model and its Rational Unified Process implementation are good approaches for
steps 3, 4, and 5.

4. Continuous Risk and Opportunity Management. Any uncertainties in your
business case analysis, or in your ability to realize the outcomes in your Results
Chain, are sources of risk that you should eliminate early (via prototyping, user
surveys, COTS evaluation, etc.), or develop plans and fallbacks for managing their
future elimination. Also identify a focal point person for doing technology watch
or marketplace watch activities to identify potential new risks or opportunities.

5. Concurrent System and Software Engineering. Rather than sequentially de-
veloping operational concepts, software requirements, prototypes, COTS and plat-
form choices, architectures, and life cycle plans, perform these concurrently. Use
the equivalent of the MBASE and Rational Unified Process Life Cycle Objectives

7http://sunset.usc.edu/research/MBASE

130 Barry Boehm

(LCO) and Life Cycle Architecture (LCA) milestones discussed in Section 6.5 as
stakeholder review and commitment points.

6. Value-Based Monitoring and Control. Use the Results Chain in step 1 to
monitor the validity of assumptions, actual vs. expected contributions, and out-
comes. Similarly, monitor the actual vs. estimated costs and benefits in the busi-
ness case, and update the estimates at major milestones such as LCO and LCA.
Also, continuously monitor the status of project risks and opportunities, and bal-
anced-scorecard results such as customer satisfaction or fair treatment of least ad-
vantaged stakeholders. Determine appropriate corrective actions for any pro-
gress/plan/goal mismatches. Set up a simple pilot experience base for
accumulating lessons learned and key metrics data (software productivity and
quality metrics; balanced scorecard results) at the organizational level.

7. Change as Opportunity. For small, noncritical projects with rapidly changing
or highly emergent requirements, experiment with using one of the agile methods,
enhanced where appropriate by the value-based steps above. For larger, more
critical projects, determine the most likely sources of requirements change and
modularize the system to accommodate these sources of change. Again, continu-
ously monitor technology and the marketplace to identify and reorient the project
to address unanticipated risks and opportunities. Where these are rapidly chang-
ing, experiment with hybrid plan-driven and agile methods within an architectural
framework addressing the most critical and stable requirements. Process frame-
works for medium and large size hybrid plan-driven and agile methods are pro-
vided in (Boehm and Turner, 2004).

The subsequent chapters in Part 2 provide more detailed guidelines on these and
related VBSE techniques such as value-based requirements prioritization, release
planning, usability testing, and system testing.

References

(ACM/IEEE, 1998) ACM/IEEE: The Software Engineering Code of Ethics and
Professional Practice. http://www.acm.org, http://www.computer.org (1998)

(Ahern et al., 2001) Ahern, D., Clouse, A., Turner, R.: CMMI Distilled (Addison
Wesley, 2001)

(Al-Said, 2003) Al-Said, M.: Identifying, Analyzing, and Avoiding Software
Model Clashes PhD Dissertation (USC, 2003)

(Amram and Kulatilaka, 1999) Amram, M., Kulatilaka, N.: Real Options (Harvard
Business School Press, 1999)

(Anderson et al., 1993) Anderson, R., Johnson, D., Gotterbarn, D., Perolle, J.: Us-
ing the New ACM Code of Ethics in Decision Making (Comm. ACM, Febru-
ary 1993), pp 98–105

(Baird et al., 2000) Baird, R., Ramsower, R., Rosenbaum, S.: Cyberethics (Prome-
theus Books, 2000)

6 VBSE: Seven Key Elements and Ethical Considerations 131

(Baldwin and Clark, 2000) Baldwin, C., Clark, K.: Design Rules: The Power of
Modularity (MIT Press, 2000)

(Boehm and Turner, 2004) Boehm, B. W., Turner, R.: Balancing Agility and Dis-
cipline (Addison Wesley, 2004)

(Boehm et al., 2000) Boehm, B. W., Port, D., Al-Said, M.: Avoiding the Software
Model-Clash Spiderweb (Computer, 2000), pp 120–122

(Boehm et al., 2002a) Boehm, B. W., Port, D., Jain, A., Basili, V.: Achieving
CMMI Level 5 Improvements with MBASE and the CeBASE Method (Cross
Talk, 2002)

(Boehm et al., 2002b) Boehm, B. W., Port, D., Huang, L., Brown, A. W.: Using
the Spiral Model and MBASE to Generate New Acquisition Process Models:
SAIV, CAIV, and SCQAIV (Cross Talk, 2002)

(Boehm and Huang, 2003) Boehm, B. W. and Huang, L.G.: Value-based Software
Engineering: A Case Study, IEEE Computer, March 2003 pp 33–41

(Boehm and Port, 2001) Boehm, B. W., Port, D.: Balancing Discipline and Flexi-
bility with the Spiral Model and MBASE (Cross Talk, 2001)

(Boehm and Ross, 1989) Boehm, B. W., Ross, R.: Theory-W Software Project
Management: Principles and Examples (IEEE Transactions on Software En-
gineering, 1989), pp 902–916

(Carr, 2002) Carr, D.: Sweet Victory (Baseline, 2002)
(Cohen, 1995) Cohen, L.: Quality Function Deployment (Prentice Hall, 1995)
(Collins et al., 1994) Collins, W., Miller, K., Spielman, B., Wherry, J.: How Good

is Good Enough? (Comm. ACM, 1994), pp 81–91
(Cusumano and Selby, 1995) Cusumano, M., Selby, R.: Microsoft Secrets, How

the World's Most Powerful Software Company Creates Technology, Shapes
Markets, and Manages People (The Free Press, 1995)

(Ehn, 1990) Ehn P. (ed): Work-Oriented Design of Computer Artifacts (Lawrence
Erlbaum Assoc., 1990)

(Ermann and Shauf, 2003) Ermann, M. D., Shauf, M.: Computers, Ethics, and So-
ciety 3 (Oxford U. Press, 2003)

(FAA, 1997) Federal Aviation Administration (FAA): The Integrated Capability
Maturity Model (1997)

(Faulk et al., 2000) Faulk, S., Harmon, D., Raffo, D.: Value-Based Software Engi-
neering (VBSE): A Value-Driven Approach to Product-Line Engineering.
Proceedings, First International Conference on Software Product Line Engi-
neering (August 2000)

(Highsmith, 2000) Highsmith, J.: Adaptive Software Development (Dorset House,
2000)

(Highsmith, 2002) Highsmith, J.: Agile Software Development Ecosystems, (Ad-
dison Wesley, 2002)

(Jacobson et al., 1999) Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Soft-
ware Development Process (Addison Wesley, 1999)

(Johnson and Nissenbaum, 1995) Johnson, D., Nissenbaum, H.: Computers, Eth-
ics, and Social Values (Prentice Hall, 1995)

(Kaplan and Norton, 1996) Kaplan, R., Norton, D.: The Balanced Scorecard:
Translating Strategy into Action (Harvard Business School Press, 1996)

132 Barry Boehm

(Kauffman, 1995) Kauffman, S.: At Home in the Universe (Oxford University
Press, 1995)

(Kruchten, 2001) Kruchten, P.: The Rational Unified Process 3 (Addison Wesley,
2001)

(Paulk et al., 1994) Paulk, M., Weber, C., Curtis, B., Chrissis, M.: The Capability
Maturity Model (Addison Wesley, 1994)

(Parnas, 1979) Parnas, D.: Designing Software for Ease of Extension and Contrac-
tion (IEEE Transactions on Software Engineering, 1979), pp 128–137

(Rawls, 1971) Rawls, J.: A Theory of Justice (Belknap/Harvard U. Press, 1971)
(Reifer, 2002) Reifer, D.: Making the Software Business Case (Addison Wesley,

2002)
(Royce, 1998) Royce, W. E.: Software Project Management (Addison-Wesley,

1998)
(Morton, 1991) Morton, M. S.: The Corporation of the 1990s: Information Tech-

nology and Organization Transformation (Oxford University Press, 1991)
(SEI, 2002) Software Engineering Institute (SEI): Capability Maturity Model In-

tegration (CMMI), Version 1.1 (CMU/SEI-2002-TR-012, 2002)
(SPC, 1992) Software Productivity Consortium (SPC): The Evolutionary Spiral

Process. SPC Technical Report (Herndon, VA, 1992)
(Sullivan et al., 2001) Sullivan, K., Cai, Y., Hallen, B., Griswold, W.: The Struc-

ture and Value of Modularity in Software Design. Proceedings, ESEC/FSE,
2001 (ACM Press, 2001), pp 99–108

(Thorp and DMR) Thorp, J., DMR: The Information Paradox (McGraw Hill,
1998)

Author Biography

Barry Boehm is the TRW Professor of Software Engineering and Director of the
Center for Software Engineering at University of Southern California (USC). His
current research interests include software process modeling, software require-
ments engineering, software architectures, software metrics and cost models,
software engineering environments, and value-based software engineering. His
contributions to the field include the Constructive Cost Model (COCOMO), the
Spiral Model of the software process, and the Theory W (win-win) approach to
software management and requirements determination. He is a Fellow of the pri-
mary professional societies in computing (ACM), aerospace (AIAA), electronics
(IEEE), and systems engineering (INCOSE), and a member of the US National
Academy of Engineering.

7 Stakeholder Value Proposition Elicitation and
Reconciliation

Paul Grünbacher, Sabine Köszegi and Stefan Biffl

Abstract: This chapter motivates the need of methods and tools for understanding
and reconciling stakeholder value propositions in software engineering. We pre-
sent EasyWinWin, an example of a groupware-supported negotiation method that
provides process structure and mediation to stakeholders. We identify challenges
of stakeholder value proposition elicitation and negotiation and discuss possible
extensions to EasyWinWin that address these challenges.

Keywords: Stakeholder value proposition, requirements negotiation, groupware,
negotiation analysis.

7.1 Introduction

Eliciting and reconciling stakeholder value propositions is an integral element of
value-based software engineering. Dealing with different people’s utility functions
or value propositions is fundamental to overcome the limitations of a value-neutral
approach and for making software products useful to people (see Chapter 1).
Software engineering is highly collaborative and relies on involving different peo-
ple in many project situations such as project planning, risk management, re-
quirements definition, testing (see Chapter 11), or COTS selection.

In particular, the success or failure of system development efforts rests on re-
quirements elicitation and negotiation. Many of the failures, delays, and budget
overruns in software engineering can be traced directly to shortfalls in the re-
quirements process (StandishGroup, 2001). Hence, eliciting stakeholder interests,
understanding conflicting positions, and negotiating mutually satisfactory agree-
ments are integral elements of value-based software engineering (VBSE, see
Chapter 1). Facilitating the active participation of stakeholders in requirements
negotiations is crucial for project success as it helps to understand the organiza-
tional and social context of the system to be developed (Macaulay, 1993). Re-
quirements emerge from a process of cooperative learning in which they are ex-
plored, prioritized, negotiated, evaluated, and documented to achieve mutually
satisfactory agreements that accommodate different stakeholder interests and ex-
pectations. During a requirements negotiation, developers learn more about the
customers’ and users’ worlds, while customers and users learn more about what is
technically possible and feasible. In this complex process, negotiation techniques
and support tools for identifying, analyzing and resolving conflicting requirements
play a critical role. Shortcomings in eliciting and reconciling stakeholder value
propositions can lead to severe problems (Halling et al., 2003):

134 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

• Missing or ill-defined capabilities leading to unusable systems, unreliable esti-
mates, or infeasible architectures;

• Ill-defined interfaces to other systems or to the user making integration into the
target environment infeasible;

• Miscommunication caused by language problems due to missing, unclear, or
wrong terms;

• Hidden conflicts among stakeholders leading to mistrust;
• Misunderstood project constraints such as staffing, required technology,

budget, and schedules causing project delays, frustration, and confusion; or
• Inconsistent or infeasible quality objectives negatively impacting the choice of

feasible architecture and unnecessarily increasing development costs.

Numerous methods and tools have been developed by researchers and practitio-
ners for eliciting, negotiating, documenting, and validating requirements (Antón
and Potts, 1998; Sutcliffe et al., 1998; Robertson and Robertson, 1999). Negotia-
tion is seen as particularly important in software engineering for analyzing and re-
solving conflicting positions.

The objectives of this chapter are to discuss challenges in eliciting and reconcil-
ing stakeholder value propositions, to show how the EasyWinWin requirements
negotiation method deals with these challenges, and to discuss possible and neces-
sary extensions to EasyWinWin that address these challenges.

Our research method was to first survey literature from requirements engineer-
ing and negotiation theory to gather frequent challenges in requirements elicitation
and negotiation. We then evaluated the strengths and limitations of EasyWinWin.
EasyWinWin has been chosen as it combines several approaches that have been
reported as useful in stakeholder value proposition elicitation and negotiation. The
theory behind EasyWinWin is Theory W, which plays a central role in VBSE the-
ory (see Chapter 2, Figure 4). EasyWinWin supports expectations management,
adopts prioritization techniques, and is supported with groupware tools. Based on
the results from the literature review and our experience with teams using Easy-
WinWin we suggest useful extensions. In Section 7.2, we discuss negotiation chal-
lenges in general. Section 7.3 discusses EasyWinWin, a groupware-supported ap-
proach based on the win-win negotiation model. Section 7.4 discusses
EasyWinWin with respect to the negotiation challenges and outlines how it can be
complemented by integrating concepts, theories, and tools from negotiation the-
ory. The chapter closes with conclusions and research directions in Section 7.5.

7.2 Negotiation Challenges

Negotiation is vital to support the reconciliation of stakeholder value propositions.
Negotiation can be viewed as a process of interaction where debate about conflict-
ing interests, needs, or values is the central activity. Negotiation starts when par-
ticipants begin communicating their goals, and ends (successfully) when all con-
cur on a specified set of agreements. Providing effective negotiation support is

7 Stakeholder Value Proposition Elicitation and Reconciliation 135

challenging. We have identified four types of potential threats for successful re-
quirements negotiations: (1) conflicting stakeholder interests; (2) constraints with
respect to stakeholders such as ability, availability, or reduced willingness to co-
operate; (3) uncertainties about stakeholder preferences; and (4) the complexity of
the problem at hand (e.g., the high number and interdependencies of require-
ments).

Conflicting Stakeholder Interests

Major system stakeholders are typically users, acquirers, developers, and main-
tainers, who have role-specific needs and preferences. For example, users are typi-
cally interested in many features, high level of service, and availability; acquirers
generally look at cost-effectiveness, compliance with standards, or
budget/schedule; developers often want flexible contracts and stable requirements.
It is obvious that such value conflicts are present in most real-world projects. The
key is thus to help determine how these conflicts can be reconciled.

Many approaches in software engineering can be characterized as “consensus-
based,” i.e., they are implicitly based on the assumption that stakeholders pursue
the same principal goals and emerging conflicts can be resolved through facilita-
tion of information and know-how exchange. Thus, existing tools for requirements
negotiations are based on cooperative group support systems, which aim at facili-
tating group processes and reduce communication barriers. Examples are Theory-
W (Boehm and Ross, 1989) and various generations of win-win negotiation sup-
port environments (Boehm et al., 2001).

However, the assumption that conflict in requirements negotiations can be re-
solved using a consensus-based approach may not always hold. In many instances,
it is more reasonable to assume that stakeholders are facing actual conflicts of in-
terests and needs which cannot simply be resolved through information exchange.
In such cases, it is a promising strategy to complement the consensus-based ap-
proach with methods from negotiation theory (Pruitt and Carnevale, 1993). Typi-
cally, the preferences of different stakeholders vary considerably; it is important to
understand these differences and how they can be reconciled for optimizing the
overall value among stakeholders.

Negotiation theory differentiates between two types of conflicts in terms of
conflict representation and potential outcomes (Pruitt and Carnevale, 1993): dis-
tributive (non-cooperative) and integrative (cooperative) conflicts. The former
type of conflict can be classified as zero-sum game, where the gain of one party
represents a loss of the other party. The simplest case is a negotiation where in-
volved parties are concerned with the division of a single asset. The interest of
parties is to get a bigger share of the disputed value. Distributive negotiations are
the opposite of integrative negotiations, where the parties’ interest is ‘enlarging
the pie’ instead of ‘dividing the pie’. They engage in a problem solving processes
by integrating the parties’ capabilities and resources to generate more value. In re-
ality, many situations comprise both types of conflicts, i.e., they include integra-
tive and distributive elements and, hence, represent mixed-motive conflicts (Pruitt

136 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

and Carnevale, 1993). Facing such conflicts, stakeholders of requirements negotia-
tions may not use exclusively a problem solving approach but also apply distribu-
tive strategies and tactics to increase their share of the disputed values. This in
turn may lead to inefficient solutions for software projects. In such a setting, a
mere process facilitation to encourage open information sharing can hardly be
successful.

What is more, the valuable knowledge of the different stakeholders and their
individual evaluation of tradeoffs between alternatives and options should not be
ignored. For effective requirements negotiation support, there is not only a need to
facilitate information exchange but also to guide stakeholders through difficult
phases of interest consolidation with a normative negotiation support.

Stakeholder-Related Difficulties

In an ideal world, stakeholders involved in requirements negotiation would be col-
laborative, representative, authorized, committed, and knowledgeable to avoid a
negative impact on the quality and sustainability of the negotiation outcome.
However, there might be situations where one or several of these criteria are not
fulfilled.

For example, stakeholder might not always be as collaborative as expected. In
the literature, there are several basic strategies identified, depending on the nego-
tiator’s focus on his own, the opponent’s, or joint interests (Pruitt and Rubin,
1986). The most important distinction is made between competing and problem
solving strategies. By applying a competing strategy, negotiators pursue their own
goals and try to persuade the other party to concede. The problem solving strategy
involves a joint effort in which the parties work together, exchange information
about needs and priorities, and try to find solutions, which consider needs and in-
terests of all involved parties (see also Chapter 4 for tradeoff examples). Again,
framing requirements negotiations as a collaborative group task requires that
stakeholders always pursue problem solving strategies. As discussed before, con-
flicts can give rise to strategic or even opportunistic behavior of stakeholders. Ac-
tors could, for instance, withhold important information to gain advantages during
negotiations.

Apart from potential strategic (or opportunistic) behavior of stakeholders, there
are several other risks affecting the outcome of requirements negotiations. Typi-
cally, stakeholders are embedded in a social and political network within organiza-
tions. This may cause socio-emotionally motivated dysfunctional behavior when
stakeholders abuse their role in the project to pursue personal goals.

Another challenge of software engineering negotiations constitutes the fact that
stakeholders often represent a large body of individuals (e.g., governmental sys-
tems). They might not have the power to make commitments to other stake-
holders, or they might not be able to integrate diverse preferences within a stake-
holder group. What is more, in some instances, personal relationships, personal
sympathies and antipathies, or the demonstration of power could receive more at-
tention than the substance of the underlying tasks. Additionally, cognitive limita-

7 Stakeholder Value Proposition Elicitation and Reconciliation 137

tions and biases (Tversky and Kahnemann, 1978; Bazerman and Carroll, 1987)
can impose a considerable threat to the success of software development associ-
ated with high complexity and uncertainty.

Additionally, the number of stakeholders may challenge communication be-
cause often stakeholders come from very different cultures, education, and experi-
ence with varying understanding of competence in the project content, and differ-
ent interpretations of project terminology. In international projects there is the risk
of misunderstandings and conflicts due to cultural differences . Additionally, the
diversity of stakeholders often causes ill-defined semantic precision in negotia-
tions. Hence, there is a need to reduce communication barriers between members
of different groups by developing a project-specific discourse (e.g., shared glossa-
ries).

A further important issue is the availability of stakeholders. At negotiation
time, critical stakeholders may not yet be known or available to the project. In any
negotiation process that needs face-to-face meetings, there are time constraints to
be considered to get important stakeholders together (often no more than one full
day in a quarter year).

Uncertainties about Stakeholder Preferences

Stakeholders are typically unsure about their own needs and even more unsure
about the needs of others. For a long time, researchers have tried to cope with the
IKIWISI problem (“I Know It When I See It”), and have proposed iterative ap-
proaches and prototyping to detect uncertainties about stakeholder preferences
early on. Chapter 10 presents a collaborative approach addressing this problem.
Uncertainties about preferences however do not affect only GUI characteristics.
Other examples are COTS capabilities, technology maturity, and degree of
achievability within cost and schedule constraints.

These introduce the need for concurrent negotiation of requirements and explo-
ration of the solution space, with the attendant challenges of synchronizing re-
quirements negotiations and solutions explorations, and determining how much
solution exploration is enough.

Preference elicitation and the analysis of negotiators’ needs and interests are
crucial phases of requirements negotiations. Furthermore, a thorough discussion of
potential conflicts in the differentiation phase allows preventing negative conse-
quences in later stages of software development.

Existing support tools for software requirements negotiation such as Easy-
WinWin are focused on the elicitation and consolidation of preferences through
facilitation of stakeholder discussions. However, there are other negotiation tools
available that also support evaluation of tradeoffs among options as well as the
reconciliation of conflicting interests and consensus building (Grünbacher and
Seyff, 2005). Kersten discusses several levels of tool support ranging from passive
support systems that only provide an infrastructure for negotiation to proactive in-
terventive support systems that are capable of coordinating the activities of stake-
holders and critiquing their actions (Kersten, 2004). The implementation of mul-

138 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

ticriteria decision making methods, as discussed in Chapter 4, could also enhance
the identification of possible areas of bargaining and efficient group solutions
(Vetschera, 1990). Furthermore, such techniques can also be used to provide tech-
nical mediating facilities (Jarke et al., 1987).

Problem Complexity

Many software development projects face enormous complexity in decision mak-
ing and negotiation. Even moderate projects have to deal with many interdepend-
ent requirements and with conflicting stakeholders interests. Limited information
processing abilities and cognitive biases of involved parties are considerable ob-
stacles for developing efficient solutions in software projects. Additionally, any
substantial software project has to deal with changing requirements, stakeholders,
and their preferences, resulting in iterative refinement of negotiation results in a
project life cycle.

Effective negotiation support therefore has to not only enhance cognitive and
information processing capabilities of stakeholders but also provide enough flexi-
bility to deal with changing requirements. Although existing decision support sys-
tems (DSSs) offer opportunities to facilitate complex decisions, there is still only
limited software-specific decision making support available. There is a wide vari-
ety in support features such as simulation models for prediction or choice models
for aggregation of multiple criteria through knowledge-based systems and quanti-
fication techniques that could be adapted to specific contexts in requirements ne-
gotiations.

Requirements negotiations involve many different stakeholders with diverse in-
terests and a variety of complex tasks, both challenging the successful course of a
project. Therefore, these negotiations need a thorough understanding of the soft-
ware process to focus on the right issues, and to structure the negotiation process
in an efficient way.

7.3 The EasyWinWin Requirements Negotiation Support

This section presents the EasyWinWin approach which combines several ap-
proaches that have been reported as useful in stakeholder value proposition elicita-
tion and negotiation (see also Chapter 2 for theory foundation). It supports expec-
tations management, adopts prioritization techniques, and is supported with
groupware tools.

EasyWinWin (Boehm et al., 2001) is a requirements negotiation methodology
that builds on the win-win negotiation approach and leverages a Group Support
System (GSS) to improve the involvement and interaction of key stakeholders.
Using EasyWinWin, stakeholders are guided through a step-by-step win-win ne-
gotiation where they collect, elaborate, and prioritize their requirements, and sur-
face and resolve issues to come up with mutually satisfactory agreements.

7 Stakeholder Value Proposition Elicitation and Reconciliation 139

The major area of application for EasyWinWin are software requirements ne-
gotiations although experiences have also been gained in other domains (e.g., ne-
gotiation of company strategies, negotiation of innovative business processes).
According to the spiral model of software development, teams can use EasyWin-
Win throughout the development cycle, e.g., to develop a shared project vision, to
negotiate more detailed requirements about capabilities, desired properties, or re-
quirements concerning the development process. The elicitation of stakeholder
preferences is strongly supported with brainstorming and electronic voting tools.
The actual negotiation of agreements relies on a facilitator. EasyWinWin assumes
a collaboration-oriented conflict resolution. It does not limit the number of stake-
holders, typical groups using the approach have between seven and 15 partici-
pants. Most groups have used EasyWinWin in same time (synchronous or asyn-
chronous) settings.

Negotiation Model

The foundation for the WinWin approach is the Management Theory-W (Boehm
and Ross, 1989). According to its fundamental principle a necessary and sufficient
condition for a successful enterprise is that the enterprise makes winners of all its
success-critical stakeholders. Key activities include (1) the identification of suc-
cess-critical stakeholders; (2) the elicitation of the success-critical stakeholders'
primary Win conditions; (3) the negotiation of mutually satisfactory win-win solu-
tion packages (requirements, architectures, plans, critical components, etc.); and
(4) value-based monitoring and control of the WinWin equilibrium throughout the
development process.

WinWin is based on a negotiation model for converging to a WinWin agree-
ment, and defines a WinWin equilibrium condition to test whether the negotiation
process has converged. The negotiation model (see Chapter 2, Figure 7, “WinWin
negotiation model”) guides success-critical stakeholders in elaborating mutually
satisfactory agreements. Stakeholders express their goals as Win conditions. If
everyone concurs, the Win conditions become agreements. When stakeholders do
not concur, they identify their conflicted Win conditions and register their con-
flicts as issues. In this case, stakeholders invent options for mutual gain and ex-
plore the option tradeoffs. Options are iterated and turned into agreements when
all stakeholders concur. Unresolved issues represent potential project risks that
need to be addressed. Additionally, a domain taxonomy is used to organize win-
win artifacts. Important terms of the domain are captured in a glossary. The Win-
Win equilibrium condition tests if all Win conditions are covered by agreements
or if there are any unresolved issues.

The context of a requirements negotiation is defined by the spiral model of
software development (Boehm, 1988; Boehm 1996). The spiral model is a life-
cycle model that repeatedly iterates a set of key development processes and em-
phasizes risk management. The WinWin Spiral Model (Boehm et al., 1998) em-
phasizes stakeholder involvement and complements the original Spiral Model with
negotiation activities that are performed in each spiral cycle.

140 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

The input to a WinWin workshop is typically a mission statement describing
the objectives of a project and a negotiation purpose statement specifying the ob-
jectives of a negotiation within a project. A WinWin negotiation is often carried
out in a series of workshops (collocated or dispersed), involving all identified suc-
cess-critical stakeholders. A facilitator follows detailed guidelines as described in
the EasyWinWin process guidebook and moderates the negotiation process.

Before entering a negotiation, the facilitator has to identify and engage the suc-
cess-critical stakeholders. A success-critical stakeholder is any individual whose
interests must be accommodated in order for the project to succeed (Kotonya and
Sommerville, 1998), i.e., the people who can make agreements about the require-
ments. Involving the right people is critical: If low-level representatives negotiate
requirements, the success-critical stakeholder may subsequently disallow any
agreements they reach. Such repudiation means more negotiations, which may
again end with the repudiation of agreements by superiors. Involving only suc-
cess-critical stakeholders can short-circuit the negotiate-repudiate-renegotiate cy-
cle. The WinWin spiral model demands the identification of success-critical
stakeholders whenever a new cycle is entered. The set of success-critical stake-
holders therefore typically changes throughout a project. For example, stake-
holders negotiating a contract are different from stakeholders planning and per-
forming the deployment of a system to the target environment.

EasyWinWin Process

EasyWinWin provides a repeatable and tool supported process for requirements
negotiations (Boehm et al., 2001) and helps a team of stakeholders to attain con-
sensus by jointly discovering, elaborating, prioritizing, and negotiating their value
propositions. EasyWinWin uses a Group Support System (GSS), a collection of
collaborative software tools stakeholders use to focus and structure their mental
effort as they work together toward a goal (Nunamaker et al., 1997). Briggs et al.
(2003) show how a GSS can be used to create repeatable patterns of group interac-
tion and to create collaborative methodologies that produce deliverables of consis-
tent quality and detail. Extensive research in the lab and in the field reveals that,
under certain circumstances, teams can use GSSs to become substantially more
productive than would otherwise be possible (Fjermestad and Hiltz, 2001). Be-
cause a GSS allows a team to focus and structure their interactions in predictable
ways, a GSS can become the foundation for developing and refining a repeatable,
efficient requirements process.

Figure 27 (adapted from (Grünbacher et al., 2004a)) gives an overview about
EasyWinWin activities and deliverables with relationships to important work
products in the life cycle. Major deliverables of an EasyWinWin negotiation are
(1) negotiation topics organized in a domain taxonomy, (2) definitions of key pro-
ject terms, (3) agreements providing the foundation for further plans, (4) open is-
sues addressing constraints, conflicts, and known problems, as well as (5) further
decision rationale showing the negotiation history (such as associated comments,
Win conditions, issues, and options).

7 Stakeholder Value Proposition Elicitation and Reconciliation 141

Converge on win
conditions

Refine & expand
negotiation topics Negotiation

Topics

Negotiation
Glossary

EasyWinWin
Activities

Reveal issues
and constraints

Define a glossary
of key terms

Prioritize win
conditions

Identify issues
and options

Glossary of
Terms

Project Plan

Requirements
Specification

Contract

Work Products
Derived from Work

Deliverables
(Examples)

Work
Deliverables

Collect
stakeholder win

conditions

Negotiate
agreements

WinWinTree

Issues

Win conditions

Options

Agreements

Fig. 27. EasyWinWin activities and deliverables

EasyWinWin aims at reducing the cognitive load associated with the sources and
causes of complexity in requirements definition without losing or overlooking any
of the richness of interrelationships among the many concepts incorporated in the
requirements deliverables. According to our experience typical negotiations mod-
els created by 10+ stakeholders result in 300+ brainstorming ideas, 100+ Win
conditions, 50+ issues, 50+ options, and 100+ agreements.

The following sections summarize each step of the methodology and describe
how conflicting interests, stakeholder-related challenges, and task complexity are
addressed during those steps.

Refine and Expand Negotiation Topics

Requirements deal with various stakeholder concerns including the system‘s ca-
pabilities, interfaces, properties, development, and evolution. Stakeholders are
typically unaware of all the different aspects for which requirements must be writ-
ten and thus tend to arrive with a narrow understanding of what they want and
need from the proposed system. By reviewing and revising a shared taxonomy of
negotiation topics, they often come to understand that the scope of project is much

142 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

bigger than they had originally expected. In this step, the stakeholders collabora-
tively elaborate a shared outline containing a taxonomy of system requirements
such as functional requirements, quality aspects, or evolution requirements
(Robertson and Robertson, 1999). Participants review this outline and make sug-
gestions on how to tailor it to the specifics of their project.

Collect Stakeholder Win Conditions

Stakeholders often arrive with, at least, a vague understanding of what they want
from the system for themselves and their constituents. However, they often have
only little knowledge of what other stakeholders expect from the system. Com-
plexities of preferences can only be addressed when stakeholders understand one
another’s interests. This step accomplishes three main purposes: (1) stakeholders
record first-draft statements of what they want from the proposed system,
(2) stakeholders learn what others want from the system, and (3) stakeholders ex-
pand and clarify what they want from the system by reading what others want.
The GSS provides an electronic brainstorming tool to surface as many different
Win conditions as possible in a short period of time. Rather than interviewing
stakeholders one-on-one or in small groups, many stakeholders can be brought to-
gether to contribute simultaneously, thus reducing the frequency and intensity of
interactions required.

In an iterative life cycle the source of Win conditions can also be negotiation
results from earlier cycles that are to be refined and elaborated. This includes un-
resolved issues needing attention.

Converge on Win Conditions

The contents of the brainstorming session in the previous step tend to be free rang-
ing, wordy, partially redundant, and occasionally irrelevant. In this step, the team
tries to converge on a concisely worded, nonredundant, unambiguous list of Win
conditions by using an oral conversation supported by two GSS tools. There is
typically about one third to half as many Win conditions as there are brainstorm-
ing comments. One tool divides the brainstorming comments among the partici-
pants so each sees a different set. This reduces complexity for stakeholders by
enabling them to work in parallel on smaller chunks of their data. The other tool
provides participants with a shared list which all can see on their screens. Drawing
from the brainstorming comments on the screen, each participant in turn proposes
orally a clear, concise statement of a Win condition to be posted on the shared list.
Stakeholders continue to swap raw brainstorming comments and post new Win
conditions to the shared list until nobody can find anything new to add. The group
discusses each Win condition aloud to create a shared understanding of its mean-
ing. At this time, participants may argue about the meaning of any Win condition,
but they may not object to or raise issues about any Win condition. Key terms sur-
face during these conversations which may take on special meaning for the pro-

7 Stakeholder Value Proposition Elicitation and Reconciliation 143

ject, or which the team may find vague or confusing. These terms are captured to a
keyword list for further processing in the next step.

Define a Glossary of Key Terms

In any system development project, there are key terms that become insider jargon
for project members. This step helps to develop a mutual understanding of lan-
guage and to eliminate ambiguous concepts and terms. Insider jargon can simplify
communication among those who know the jargon, but it can hinder communica-
tion with others. This step captures knowledge about project-specific terms: all
key terms derived from the brainstorming session are posted to a shared list. The
team breaks into pairs and each pair works out a definition of several key terms
and posts the definitions to the shared list. Then the pairs report their definitions to
the group orally, which usually provokes spirited debate. The team negotiates an
agreed meaning for each term and usually finds there are other key terms, which
should be added to the list and defined. The captured definitions are valuable
throughout the project, especially as the composition of the team changes over
time. There is, however, additional value in the spirited debate. As people negoti-
ate the meanings of words, key project constraints emerge, assumptions surface,
and the team frequently identifies new stakeholders who should be included in the
requirements process. This step may be repeated several times throughout the pro-
ject as the team collects new terms. Once the terms have been defined, the team
goes back and restates the Win conditions more precisely.

Prioritize Win Conditions

A key to value-based software engineering is to better understand the preferences
and value propositions of stakeholders. Prioritizing the Win conditions are there-
fore an important step in EasyWinWin. During brainstorming, convergence, and
definitions of key terms, the stakeholders can post any Win condition that comes
to mind, regardless of its potential impact on other Win conditions. Stakeholders
learn about one another’s interests, but not necessarily about how important one
Win condition is compared to another, nor about what a given Win condition
might cost in time, effort, and aggravation. This is the first step where participants
are allowed to express their opinion about the merits of the Win conditions. Par-
ticipants rate each Win condition along two criteria:
• Value (Business Importance), the degree to which the success of the project de-

pends on this Win condition being realized, and
• Feasibility (Ease of Realization), the degree to which a Win condition is tech-

nologically, socially, politically, or economically feasible.

During this assessment, the participants are instructed, “If you do not know, do not
vote.” Customers and users often decide not to render opinions about the ease of
realization. For example, programmers frequently choose not to rate the business

144 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

importance of a given Win condition. Some people offer no assessment of Win
conditions in which they have no stake, focusing instead on the ones about which
they care.

Forget Them

Low Hanging FruitsMaybe Later

Low Value
H

ig
h

F
ea

si
bi

lit
y

Lo
w

 F
ea

si
bi

lit
y

High Value

Important With Hurdles

Fig. 28. Portfolio of Win conditions

Aggregated voting results can be displayed in a simple portfolio that organizes the
Win conditions in the four categories as shown in Figure 28.

Reveal Issues and Constraints

The voting results are not used to drop any Win conditions. Rather they are used
to provoke a well structured, tightly contained exploration in the next step. More-
over, the step allows the individuals to see how their own opinion compares to that
of the group, and this in turn helps them to learn about expectations and perhaps to
identify unreasonable expectations of their own.

Any given Win condition may, on its own, raise issues for any given stake-
holder. The purpose of the previous step was not to eliminate low rated Win con-
ditions, but rather to surface differences of opinion about individual Win condi-
tions. Different stakeholders often have different reasons for the opinions they
register, and those reasons originate in their differences of experience, interest,
and purpose. Those differences often relate to unarticulated and unexamined pro-
ject constraints. This step focuses exclusively on the areas of highest disagreement
among the ballots cast in the previous step. When the results are displayed, items
with high consensus display with a green background, while items with low con-
sensus display with a red background.

7 Stakeholder Value Proposition Elicitation and Reconciliation 145

This step focuses on situations where consensus is low. Stakeholders use this
graph as a stimulus to explore the reasons behind their differences in opinion
about a Win condition. The group holds a structured oral conversation and tries to
explore possible reasons for high or low item ratings. Key information cues about
the project emerge from these discussions, such as project constraints, assump-
tions, unshared information, or hidden agendas.

Identify Issues and Options

In this step, the team posts a shared outline with all Win conditions as main head-
ings. The team makes two passes through this outline. On the first pass, each per-
son reads each Win condition. If the Win condition raises any issue with a stake-
holder, the stakeholder may write the issue as a subheading to the Win condition.
This step also allows stakeholders to argue their case against any given Win con-
dition, should they have an issue with something proposed by someone else. Any
Win condition may have interdependencies with other Win conditions. One key
purpose of this step is to identify and deal with those issues. The participants may
not discuss the issues aloud at this time. Stakeholders can report risks and uncer-
tainties as comments to a Win condition. The facilitator then helps the team to
converge on the key issues for each Win condition in an oral discussion. On the
next pass, each participant reads each issue. If a participant can think of any option
for resolving the issue, the participant may write the option as a comment to the
issue. The facilitator then helps the team to converge on the key options for each
Win condition in an oral discussion. Once the issues and options have been articu-
lated, the group is ready to begin negotiating agreements.

Negotiate Agreements

There are usually no issues on about one third of the Win conditions. After a quick
review, the group usually declares these items to be agreements. They become
commitments the team must fulfill. Then the group addresses each issue in turn
with a traditional oral negotiation. Sometimes one or more of the options posted
with an issue turn out to be the basis for an agreement. Other times the stake-
holders engage in protracted discussions of an issue. During that conversation,
more assumptions and constraints, key terms, options, issues, and Win conditions
emerge. Each of these is captured in the tool. Every time a team member proposes
an agreement out loud, somebody types it as an option on the tree. As people ar-
gue for and against options, someone captures pros and cons as electronic annota-
tions to the options. Eventually, the group fashions an agreement with which they
can live. They write the agreement on the WinWin Tree. When every Win condi-
tion and every option has an agreement, the state of WinWin equilibrium has been
achieved. In an iterative development process unresolved issues are treated in a
subsequent negotiation if the WinWin equilibrium cannot be reached.

146 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

Keeping Negotiations on Track

In practice, precision is traded off against speed in most negotiation situations. A
major challenge for the facilitator is to watch the trade-off between generating
many ideas and delivering consistent high quality negotiation results. It is also im-
portant to keep the participants focused on the right level of detail according to the
negotiation purpose in order to elicit as complete and consistent information as
possible in a given negotiation situation.

Negotiation artefacts are statements written in natural language and therefore
error prone. Some typical examples of defects that we have identified in individual
statements are unclear statements or missing information, ambiguous terms, incor-
rect statements, and unverifiable statements. Defects in a requirements negotiation
can appear on the statement level or on the negotiation level. Typical faults we
have experienced are vague or ambiguous statements, missing information, wrong
level of detail, or inconsistencies. An ill-defined capability defect that can be eas-
ily fixed during requirements elicitation and negotiation can become a major prob-
lem if it cannot be realized with the chosen system architecture. Consequently, be-
fore refining the negotiation results to other life cycle artifacts like contracts,
specification, project plans, or architectural models, defects should be eliminated
to reduce both the effort and probability of rework stemming from undetected de-
fects.

EasyWinWin relies on several quality checks in the stages of pre-negotiation,
actual conduct of the negotiation, and post-negotiation (Grünbacher et al., 2004a).

Pre-Negotiation: The facilitator has the responsibility to ensure that the pre-
conditions of a negotiation are satisfied. It is crucial to develop a statement sum-
marizing the major purpose of the negotiation, context information, and major ob-
jectives of the system to be developed. The second central issue is to get all
success-critical stakeholders to attend and contribute. There are some additional
success factors for selecting stakeholders for a negotiation. They should be em-
powered and have the official authority or legal power to negotiate agreements.
They should be committed to the decisions that are jointly developed. Stake-
holders should be representative when serving as a delegate or agent for a team or
organization. They should be collaborative and have the willingness and percep-
tiveness required for developing mutually satisfactory solutions in a team process.
Stakeholders should also be knowledgeable and well informed about the negotia-
tion domain.

Conduct of Negotiation: We have developed joint and rapid checking activities
to be performed by a team to spot and resolve defects during a negotiation. At cer-
tain points in the process, all participants step back from the negotiation and check
the quality of the products to eliminate defects that have been identified. Fixing
defects in the process is typically straightforward as it is possible to clarify issues
with the author. The process is not an inspection as the participants (and authors)
themselves review the products.

Post-Negotiation: In addition to the joint and rapid checks performed by the
stakeholders described in the preceding section, a more formal inspection process
can be applied. This process involves (1) Inspection preparation to check the entry

7 Stakeholder Value Proposition Elicitation and Reconciliation 147

criteria of completeness and sufficient quality for understanding the inspection
context; (2) Individual reading supported with reading techniques optimized for
negotiation results; (3) Meeting of inspectors or some other form of defect collec-
tion; as well as (4) Report and rework to clarify the issues raised with the author if
possible, or to document the problem and the resolution in a traceable way.

7.4 Possible Extensions to the EasyWinWin Approach

In this section, we assess strengths and weaknesses of the EasyWinWin approach
and derive important directions for possible extensions to the EasyWinWin ap-
proach. The goal is to assess the maturity of EasyWinWin in a more general nego-
tiation context.

Conflicting Stakeholder Interests

The most important assumption currently underlying the EasyWinWin methodol-
ogy is that requirements negotiation is a collaborative group task where stake-
holders – in principle – pursue the same goal. The major strength of the Easy-
WinWin technique can therefore be seen in its attempt to guide various
stakeholders through the difficult phases of preference elicitation and discussion
of possible points of contention in order to consolidate different perspectives.
From a negotiation analysis approach, this assumption is, however, risky. It is
more plausible to assume that stakeholders envision real conflicts of interests:
while users, for instance, are interested in high functionality and performance of
the software, constituents want to minimize costs. Hence, stakeholders participate
in requirements negotiations in order to defend their own interests rather than to
pursue a shared goal. The following suggestions to extend the EasyWinWin ap-
proach could facilitate efficient conflict resolution in software engineering nego-
tiations.

Individual Preference Elicitation

There are numerous approaches available for the elicitation and modeling of goals
in requirements engineering (Lamsweerde et al., 1998). Preferences and objectives
of individual stakeholders, however, often differ considerably and the reconcilia-
tion of diverging interests and expectations is not considered adequately so far.
Tools for documenting, modeling, and managing requirements implicitly assume
that stakeholders are in consensus in the trade-offs of different alternatives and
hence the individual objectives and preferences of stakeholders can be aggregated
to a joint problem representation. In contrast, it is more reasonable to assume that,
because of the valuable knowledge of the different stakeholders, the evaluation of
trade-offs between decision attributes will differ considerably and should not sim-
ply be ignored (see also Chapter 4). Existing techniques for eliciting requirements

148 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

do not provide support important negotiation concepts such as ‘Best Alternative
To Negotiated Agreement’8 (BATNA), aspiration levels, or reservation levels.
Such concepts, however, are crucial in order to determine efficient negotiation re-
sults (Fisher and Ury, 1999).

This would require tools that enable stakeholders (a) to elicit their individual
preferences in a more systematic way (e.g., by defining utility functions), and (b)
to assess subjective judgments of trade-offs between decision alternatives in the
pre-negotiation phase as suggested in Chapter 4. While this information can be
generated by each negotiator individually and kept privately, the EasyWinWin
GSS should also support the process of stakeholder identification, agenda setting,
and the definition of the set of issues to be negotiated for the whole team.

Integrative Negotiations and Efficiency Analysis of Results

As indicated above, stakeholders of software projects may face actual conflicts of
interests and needs. Theoretically, such situations can be framed as mixed-motive
negotiations, where parties experience partly common ground (joint goals and ob-
jectives of the project) but also face considerable differences in preferences for
specific issues. To resolve these differences, an integrative negotiation approach
(i.e., strategy) is most promising. Integrative negotiations involve
• problem solving behavior instead of competitive behavior,
• the discussion of holistic decision alternatives, reflecting trade-offs among is-

sues, instead of single issues
• the development of new decision alternatives (enlarging the pie),
• the reframing of the negotiation problem,
• logrolling and concession making.

Unsupported negotiators tend to negotiate sequentially, one issue at a time, ne-
glecting the integrative potential of ‘package deals’ (i.e., the formulation of com-
plete decision alternatives). The main disadvantage of sequential issue negotiation,
as also proposed in the EasyWinWin framework, is that tradeoffs among issues
cannot be considered adequately. A user may for instance be prepared to abandon
some features of a software for a higher speed and at the same time value-specific
features of the software more than others. Or a user may feel strongly about user
interface and indifferent to technology alternatives, while a developer is (in the
design phase) indifferent to user interface, but has a strong opinion on the techni-
cal implementation issues. This situation helps to find win-win opportunities for
both stakeholders. Negotiation Support Systems (NSSs) are capable of managing
the complexity of multi-issue negotiation problems and are therefore superior to
mere face-to-face negotiation settings (Rangaswamy and Shell, 1997). Further-
more, systems based on multicriteria decision methods consider economic deci-

8This is the baseline, the best alternative a stakeholder could obtain in case the current ne-
gotiation terminates without agreement (i.e., breakdown of negotiations). Any alternative
that is higher than the BATNA is better than an impasse and no alternative should be ac-
cepted that is worse than the BATNA.

7 Stakeholder Value Proposition Elicitation and Reconciliation 149

sion concepts such as efficient frontier and Pareto efficiency (Raiffa et al., 2002).
Hence, it seems useful to extend EasyWinWin with a combination of economic
theory and practical negotiation processes to support requirements negotiation.

The convergence of individual preferences to a joint group decision during the
actual negotiation phase can again be facilitated through specific support features.
On the individual level, the system should assist negotiators to assess and formu-
late negotiation packages (decision alternatives). The system could suggest for in-
stance different decision alternatives, which have similar aggregated utility values.
This enables negotiators to compare different alternatives easily and in turn can
encourage concession making and logrolling while considering tradeoffs between
decision attributes. Joint improvements can be achieved by considering interests
of all stakeholders and seeking for alternatives ‘enlarging the pie’ instead of ‘di-
viding the pie’ (Kersten and Noronha, 1999). Graphical support for the negotiation
helps the stakeholders to identify their actual positions and possible solutions. Ex-
amples are described in (Beroggi, 2000) and (Kersten and Noronha, 1999).

Process-Related Challenges

Effective negotiation support has to define a process, which enhances the cogni-
tive and information processing capabilities of stakeholders. This represents a va-
riety of challenges to the applied negotiation processes including the representa-
tion and handling of complexity, the precision of project language, the
management of negotiation history and information, and the organization of dis-
tributed negotiations in order to involve all relevant stakeholders.

Complexity and Identification of Goal Hierarchies and Dependencies

Even in small to moderate projects, problem complexity can be hard to handle and
reaching consensus becomes difficult and time consuming. The implementation of
multicriteria decision analysis could assist stakeholders in software projects in
omitting inefficient decision alternatives and moving collectively towards the effi-
cient frontier.

Due to high complexity of decision attributes and interdependencies between
decision attributes and between objectives, methods need to be developed to re-
duce and to manage complexity in software projects. For instance, the analytic hi-
erarchy process (AHP), discussed in Chapter 4, and similar techniques could help
to construct appropriate goal hierarchies and to preselect promising decision alter-
natives (Saaty, 1980; Maiden, 1998).

The EasyWinWin process and current implementations offer only basic facili-
ties to handle the complexity of a number of stakeholders, preferences, and Win
conditions, options, and issues. The evaluation of constraints as well as of hierar-
chical relationships between criteria, however, has to be resolved through heuris-
tics and intuition. The development of algorithms and powerful heuristics to rank
and converge different criteria to a manageable problem could further enhance re-
quirement negotiations. For example, by defining goal hierarchies, stakeholder

150 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

negotiations could be restrained to main goals and agreement on details could be
delegated to experts.

Precision of the Project Language

In software engineering negotiations, semantic precision is typically insufficient.
Users are, for instance, often impatient with detailed wordsmithing and leave de-
velopers with the job of converting informal negotiation results into more formal
requirements. In turn, developers often use lingo not easy to understand by outsid-
ers. Before all stakeholders can assess different options, they need to precisely un-
derstand the meaning of the terms used. Currently no or only simple approaches
such as electronic shared glossaries are in place. The glossary implemented in
EasyWinWin is, for example, useful to avoid misunderstandings. It is important,
however, to develop practical means to further improve the semantic precision in
software engineering negotiations by considering mechanisms such as semantic
modeling. Additionally, a precise and clear definition of key terms constitutes a
crucial prerequisite for knowledge management.

Negotiation History and Iterative Negotiations

Today’s software development projects have to deal with a dynamically changing
environment. Preferences and alternatives of stakeholders are constantly influ-
enced by environmental changes such as new requirements, changing technolo-
gies, etc. Appropriate management of these changes requires that the stakeholders
have traceability from their initial negotiation to the project requirements, designs,
and final deliverables to support impact analysis. Therefore, an important chal-
lenge for negotiation processes and support tools is the appropriate management
of negotiation histories and iterative refinement of negotiation in a project life-
cycle (e.g., the impact of change requests at a certain project stage). Currently,
there is only weak support for refining and tracing negotiation results in iterative
life cycles (Medvidovic et al., 2003).

We therefore suggest extensions negotiation support to the post-negotiation
phase and to develop ways that will allow the consistent evolution of negotiation
results and the management of multiple related negotiations in a project or across
projects. In this context, approaches for consistently evolving requirements and
architectures are needed (Grünbacher et al., 2004b). Further support is needed to
allow the effective/efficient generation of packages for optimal negotiation results,
and development of models that enable effective/efficient elicitation of negotiation
input information from the project context.

Distributed Negotiations

The current EasyWinWin solution is optimized for face-to-face meetings. Organi-
zations might be, however, unable to involve all system stakeholders during criti-
cal negotiation and collaboration activities in distributed systems engineering
processes. These economic constraints call for the development of tools for dis-

7 Stakeholder Value Proposition Elicitation and Reconciliation 151

tributed requirements negotiations. In this case, possible negative effects of elec-
tronic communication have to be taken into account: Lack of immediate feedback,
the absence of social cues, or discipline problems may complicate the negotiation
process. It is therefore an important further research direction to enhance the
EasyWinWin methodology with appropriate tools to support distributed negotia-
tions. Initial steps are presented in (Grünbacher and Braunsberger, 2003).

7.5 Conclusions

In this chapter, we propose an integrated approach to software engineering nego-
tiation support by considering ideas of existing software engineering support phi-
losophies (Theory W), economic theory and concepts from conflict resolution, and
negotiation research. We discussed the EasyWinWin approach for eliciting and
reconciling stakeholder value propositions. EasyWinWin is a consensus-based ap-
proach and assumes that stakeholders are willing to jointly solve problems and
gain agreements. In this chapter we challenged this assumption and contend that
stakeholders’ value propositions can often not be resolved by simply facilitating
information exchange. Negotiation techniques to reconcile conflicting value
propositions are therefore necessary to VBSE. After analyzing strengths and
weaknesses of EasyWinWin we come to the conclusion that while the system sup-
ports large parts of stakeholder preference elicitation it lacks features to systemati-
cally evaluate, compare, and negotiate decision alternatives – all prerequisites for
efficient negotiation outcomes. We believe that the suggested extensions to
EasyWinWin would improve negotiations in software engineering substantially.

References

(Antón and Potts, 1998) Antón, A.I. and Potts, C.: The Use of Goals to Surface
Requirements for Evolving Systems. In: International Conference on Software
Engineering, Colorado Springs, Colorado, USA, 1998 (IEEE Computer Soci-
ety, 1998), pp 157–166

(Bazerman and Carroll, 1987) Bazerman, M.H. and Carroll, J.S.: Negotiator Cog-
nition. Research in Organizational Behavior 9, pp 247–288

(Beroggi, 2000) Beroggi, G.E.G.: An Experimental Investigation of Virtual Nego-
tiations with Dynamic Plots. Group Decision and Negotiation 9, pp 415–429

(Boehm, 1988) Boehm, B. W.: A spiral model of software development and en-
hancement. IEEE Computer 21(5), pp 61–72

(Boehm, 1996) Boehm, B. W.: Anchoring the software process. IEEE Software
13(4), pp 73–82

(Boehm and Ross, 1989) Boehm, B. W. and Ross, R.: Theory-W Software Project
Management: Principles and Examples. IEEE Transactions on Software Engi-
neering 15(7), pp 902–916

152 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

(Boehm et al., 1998) Boehm, B. W., Egyed, A.F., Kwan, J., Port, D., Shah, A. and
Madachy, R.: Using the WinWin Spiral Model: A Case Study. IEEE Com-
puter (7), pp 33–44

(Boehm et al., 2001) Boehm, B. W., Grünbacher, P. and Briggs, R.O.: Developing
Groupware for Requirements Negotiation: Lessons Learned. IEEE Software
18(3), pp 46–55

(Briggs et al., 2003) Briggs, R.O., de Vreede, G.J. and Nunamaker, J.F.: Collabo-
ration Engineering with ThinkLets to Pursue Sustained Success with Group
Support Systems. J. of Management Information Systems 19(4), pp 31–63

(Fisher and Ury, 1999) Fisher, R. and Ury, W.: Getting to YES (Random House,
Sydney 1999)

(Fjermestad and Hiltz, 2001) Fjermestad, J. and Hiltz, R.: Group Support Systems:
A Descriptive Evaluation of Case and Field Studies. Journal of Management
Information Systems 17(3), pp 115–160

(Grünbacher and Braunsberger, 2003) Grünbacher, P. and Braunsberger, P.: Tool
Support for Distributed Requirements Negotiation. In: Cooperative methods
and tools for distributed software processes. ed by A. Cimititle, De Lucia, A.
and Gall, H. (FrancoAngeli, Milano, Italy 2003): pp 56–66

(Grünbacher et al., 2004a) Grünbacher, P., Halling, M., Biffl, S., Kitapci, H. and
Boehm, B. W.: Integrating Collaborative Processes and Quality Assurance
Techniques: Experiences from Requirements Negotiation. Journal of Man-
agement Information Systems 20(4), pp 9–29

(Grünbacher et al., 2004b) Grünbacher, P., Medvicovic, N. and Egyed, A.F.: Rec-
onciling Software Requirements and Architectures with Intermediate Models.
Journal on Software and System Modeling 3(3), pp 235–253

(Grünbacher and Seyff, 2005) Grünbacher, P. and Seyff, N.: Requirements Nego-
tiation. In: to appear: Engineering and Managing Software Requirements,. ed
by A. Aurum and Wohlin, C. (Springer Verlag, 2005)

(Halling et al., 2003) Halling, M., Biffl, S. and Grünbacher, P.: An Economic Ap-
proach for Improving Requirements Negotiation Models with Inspection. Re-
quirements Engineering Journal, Springer(8), pp 236–247

(Jarke et al., 1987) Jarke, M., Jelassi, M.T. and Shakun, M.F.: Mediator: Toward a
Negotiation Support System. European Journal of Operational Research 31,
pp 314–334

(Kersten, 2004) Kersten, G.: E-negotiation Systems: Interaction of People and
Technologies to Resolve Conflicts. InterNeg Research Papers INR 08/04

(Kersten and Noronha, 1999) Kersten, G.E. and Noronha, S.J.: WWW-based Ne-
gotiation Support: Design, Implementation, and Use. Decision Support Sys-
tems 25(2), pp 135–154

(Kotonya and Sommerville, 1998) Kotonya, G. and Sommerville, I.: Requirements
Engineering: Processes and Techniques (Wiley, 1998)

(Lamsweerde et al., 1998) Lamsweerde, A.v., Darimont, R. and Letier, E.: Manag-
ing Conflicts in Goal-Driven Requirements Engineering. IEEE Transactions
on Software Engineering 24(11):1998

7 Stakeholder Value Proposition Elicitation and Reconciliation 153

(Macaulay, 1993) Macaulay, L.: Requirements Capture as a Cooperative Activity.
In: First Intl. Symp. On Requirements Engineering, San Diego, 1993 (IEEE
Press, 1993), pp 174–181

(Maiden, 1998) Maiden, N. A. and Ncube, C.: Acquiring COTS Software Selec-
tion Requirements. IEEE Software Vol. 15, No. 2(2):1998

(Medvidovic et al., 2003) Medvidovic, N., Grünbacher, P., Egyed, A.F. and
Boehm, B. W.: Bridging Models across the Software Lifecycle. Journal of
Systems and Software 68(3), pp 199–215

(Nunamaker et al., 1997) Nunamaker, J.F., Briggs, R.O., Mittleman, D.D., Vogel,
D.R. and Balthazard, P.A.: Lessons from a Dozen Years of Group Support
Systems Research: A Discussion of Lab and Field Findings. Journal of Man-
agement Information Systems 13(3), pp 163–207

(Pruitt and Carnevale, 1993) Pruitt, D.G. and Carnevale, P.J.: Negotiation in So-
cial Conflict (Open University Press, Buckingham 1993)

(Pruitt and Rubin, 1986) Pruitt, D.G. and Rubin, J.Z.: Social Conflict. Escalation,
Stalemate, and Settlement (Random House, New York 1986)

(Raiffa et al., 2002) Raiffa, H., Richardson, J. and Metcalfe, D.: Negotiation
Analysis, The Science and Art of Collaborative Decision Making (Belknap
Harvard, 2002)

(Rangaswamy and Shell, 1997) Rangaswamy, A. and Shell, G.R.: Using Com-
puters to Realize Joint Gains in Negotiations: Towards an “Electronic Bar-
gaining Table". Management Science 8, pp 1147–1163

(Robertson and Robertson, 1999) Robertson, S. and Robertson, J.: Mastering the
Requirements Process (Addison-Wesley, 1999)

(Saaty, 1980) Saaty, T.L.: The Analytic Hierarchy Process. (McGraw-Hill, New
York 1980)

(StandishGroup, 2001) StandishGroup: Extreme CHAOS Report. The Standish
Group, 196 Old Townhouse Road, West Yarmouth, MA 02673 –
http://www.standishgroup.com, 2001

(Sutcliffe et al., 1998) Sutcliffe, A.G., Maiden, N.A.M., Minocha, S. and Manuel,
D.: Supporting Scenario-Based Requirements Engineering. IEEE Transactions
on Software Engineering 24(12), pp 1072–1088

(Tversky and Kahnemann, 1978) Tversky, A. and Kahnemann, D.: Judgment un-
der Uncertainty: Heuristics and Biases. In: Uncertainty in Economics. ed by P.
Diamond and Rothschild, M. (Academic Press, New York 1978), pp 17–34

(Vetschera, 1990) Vetschera, R.: Group Decision and Negotiation Support – A
Methodological Survey. OR Sprektrum 12, pp 67–77

Author Biographies

Paul Grünbacher is an Associate Professor at Johannes Kepler University Linz and
a research associate at the Center for Software Engineering (University of South-
ern California, Los Angeles). He received his MSc (1992) and PhD Degrees
(1996) from the University of Linz. In 1999 Paul received the Erwin-Schrödinger

154 Paul Grünbacher, Sabine Köszegi, Stefan Biffl

research scholarship and worked as a visiting professor at University of Southern
California in Los Angeles. In 2001 Paul received his Habilitation degree (Venia
Docendi in Angewandte Informatik) for this work on software requirements nego-
tiation. His research focuses on applying collaborative technologies to support and
automate complex software and system engineering activities such as require-
ments negotiation or software inspections. He is a member of ACM, ACM
SIGSOFT, IEEE, and the Austrian Computer Society.

Sabine Köszegi is an Assistant Professor at the School of Business, Economics,
and Statistics at the University of Vienna. In 2000 she received her PhD in Eco-
nomics and Social Sciences at the University of Vienna for her work on the trust
building process in a virtual context. Sabine’s current research focuses on proc-
esses of electronic negotiations. Since 1999 she is member of the InterNeg re-
search team (http://www.interneg.org) where she is involved in the research on the
humanistic, social and technical aspects of negotiations of people and people-
software systems as well as the design and implementation of resources (learning
objects) for negotiation teaching, training, and self-learning. The research team
aims to develop and test systems capable of negotiation support, interpretation of
interactions, and participation.

Stefan Biffl is an Associate Professor at the Technische Universität Wien. He
studied Computer Science and Business Informatics and holds a PhD from the TU
Wien in Computer Science. His research focuses on empirical software engineer-
ing applied for project and quality management in software engineering. Stefan
Biffl was a visiting scientist at the Fraunhofer Institute for Experimental Software
Engineering (IESE, Head Prof. Dr. Dieter Rombach) where he gained further ex-
perience with empirical software engineering, in particular with survey planning.
Ongoing projects with the IESE are simulation of software product lines and the
distributed ISERN inspection experiment. Stefan Biffl was the principal investiga-
tor of Erwin-Schrödinger J1948 (Software Inspection Techniques to Support Pro-
ject and Quality Management) project supported by the Austrian Science Fund. He
is a member of ACM, ACM SIGSOFT, IEEE, the Austrian Computer Society, and
the IFIP Technical Committee on Software Engineering.

8 Measurement and Decision Making

Michael Berry and Aybüke Aurum

Abstract: Value-Based Software Engineering requires the capability to measure
and analyze value in order to make informed decisions. The difficulty experienced
by many organizations in measuring concepts that are even simpler than value
suggests that this requirement will be hard to meet. The goal of this chapter is to
build an understanding of measurement and decision making and the relationship
between them. A multi-view model of measurement is presented as a way to cope
with the complexity of measuring concepts such as value. A behavioral decision
making model is presented that identifies the points at which measurement prod-
ucts impact the decision making behavior of a manager or software engineer. This
model attempts to satisfactorily account for the idiosyncrasies of human behavior,
while preserving some elements of the rational model of decision making. The
chapter concludes with an application of these models to a case study in which
achieving value is a key goal.

Keywords: Decision making, decision support system, image theory, measure-
ment and analysis.

8.1 Introduction

This chapter is intended to be of interest to people involved in software engineer-
ing, from programmer to project manager, needing an introduction to measure-
ment and decision making. As the reader progresses through the chapters of this
book, we suggest that he examines the nature of the decisions made in a VBSE
framework and thinks about the role of measurement in those decisions. Whether
the chapter is describing VBSE best practice or detailing useful techniques, con-
sider the measures that will need to be collected and analyzed in order to carry out
the practice or be used in the technique. From our perspective, if you can not
measure value, you can not manage it.

Value-Based Software Engineering (VBSE) is a framework for improving the
systems delivered to the clients by incorporating value considerations into the
technical and managerial decisions that are made during system development and
maintenance. The term, “incorporating value considerations,” is managerial jargon
for measuring (or estimating) value-related attributes and producing information
from those measures that can aid decision makers. Adopting VBSE will present
challenges for both software engineers and software measurement specialists. It is
simpler to measure and make decisions in a client-value neutral setting, especially
when technical and project issues fully consume management attention. It is sim-
pler to assume that the specifications of functional and nonfunctional system re-
quirements constitute all the client’s expectations. Unfortunately this simplicity is

156 Michael Berry, Aybüke Aurum

gained at the client’s expense in that the delivered systems cannot provide the best
possible outcome to the stakeholders. Of course, the best system developers are
never client-value neutral; but such developers are in short supply and we must
turn to frameworks that enable ordinary people to achieve equivalent outcomes.
VBSE provides such a framework by informing software engineering decisions
with considerations of value.

In this chapter, we will focus on decision making and measurement within a
VBSE framework. Because informed decision making is based on information, we
will discuss the relationship between decision making and software measurement
and analysis. We will use two models for the discussion that cope well with the in-
tangible, multi-attributed nature of value. The decision making model provides a
non-deterministic, behavioral model for the way managers make decisions with
the help of indicators of value, quality, satisfaction, motivation, productivity, and
effectiveness. The common element in these models is the metaphor of mental im-
ages as ill-defined, ephemeral, and highly personal constructs. The goal of meas-
urement and analysis is to create these images in the mind of the decision maker;
the goal of the decision maker is to process these images in order to arrive at an
optimal course of action. These models are not specifically concerned with the
measurement of value and decision making based on value. However, throughout
this chapter, issues relating to value will be addressed.

In the next Section (8.2) these models are discussed in detail. Because software
engineering typically occurs in an organizational context and the discussion to this
point has been concerned with individual decision makers, the following Section
(8.3) discusses the applicability of the model to group decision making. Section
8.4 presents a descriptive model of the process by which a person is stimulated to
make a decision as a result of receiving a set of indicators derived through meas-
urement and analysis. Section 8.5 explores the relationship between measurement
and decision making. The concepts are brought together in Section 8.6 by a practi-
cal example of a decision making support system with associated measurement
and analysis.

8.2 Models of Measurement and Decision Making

Software engineers often build systems that address the information needs of peo-
ple in other business units but they pay less attention to their own information
needs. A framework for software measurement and analysis has the characteristics
of an information system, the goal of which is to deliver information products that
satisfy the information needs of a software engineer. Information needs arise from
the managerial and engineering tasks that people routinely carry out in order to de-
liver and maintain software-based systems. Decision making within a VBSE
framework requires the inclusion of indicators of value in the information prod-
ucts on which software decisions are made. In the jargon of measurement special-
ists, Value is a measurable concept, that is: something that is not tangible but can
still be measured using an appropriate scale. Some measurable concepts are sim-

8 Measurement and Decision Making 157

ple: for example, productivity is a concept that is measured by evaluating the
amount of product for a given amount of resource using a well-defined algorithm.
Other measurable concepts such as value, quality, and risk are multi-attributed and
the algorithms for combining the attributes are rarely well defined. The ISO/IEC
standard 15939: Software Measurement Process (ISO/IEC 15939, 2002) provides
definitions for some of the terms used above:

3.10 indicator: a measure that provides an estimate or evaluation of specified
attributes derived from a model with respect to defined information needs

3.11 indicator value: numerical or categorical result assigned to an indicator
3.12 information need: insight necessary to manage objectives, goals, risks, and

problems
3.13 information product: one or more indicators and their associated interpre-

tations that address an information need (for example, a comparison of a measured
defect rate to planned defect rate along with an assessment of whether or not the
difference indicates a problem)

3.16 measurable concept: abstract relationship between attributes of entities
and information needs

The difficulty for measurement and analysis is that value cannot be directly
measured in the way that mass, volume, and time can be measured. This is partly
because it is a multi-attributed, but more importantly because it is context depend-
ent and because each person has his own concept of value for a particular context.
Measuring value is clearly, therefore, about changing its nature from a personal
construct to a group construct (often called a stakeholder value proposition)
through a process of elicitation, discussion, and consensus. Once that is done, base
measures can be collected using agreed upon methods and scales and combined
with other base measures according to an agreed upon algorithm to produce de-
rived measures that, by agreement, act as indicators of value.

In Figure 29 we illustrate the relationship between measurement and decision
making with a conceptual model. To make it less abstract, imagine that a software
process engineer (the brain in Figure 29) is interested in improving the Project
Monitoring and Control Process (PMCP).9 The principal object of interest is
PCMP and other objects of interest might be Project Planning and Requirements
Management. The Measurement and Analysis process (M&A, shown as a pair of
scales) has two main activities: evaluating the objects of interest and evaluating (a)
the improvement actions stemming from a decision and (b) the outcome of those
improvements. Decision making is shown as a single process that consists of three
activities: stimulating a decision, making a choice from a set of alternatives, and
monitoring and controlling the choice.

9The terms used are taken from the Capability Maturity Model® Integration (CMMISM),
Version 1.1 Copyright 2002 by Carnegie Mellon University.

158 Michael Berry, Aybüke Aurum

Understanding of the
Object of Interest

Measurement

Decision

OUTCOME

Action

Stimulus

Decision-making
Process

Understanding of
Other Objects of

Interest

Choices
Characterisation of

Actions & Outcomes

Feedback

Information
Need

Object of
Interest

Other
Objects of
Interest

Fig. 29. Overview of measurement and decision making

In our example, stimulating the decision to improve PMCP might be measures
showing the number of projects being delivered late because of failure to update
the size of work products following revisions to requirements. The process engi-
neer obtains additional information from M&A in order to understand his choices.
A decision is made to revise PMCP and the appropriate actions are carried out
(e.g., making more time available for PMCP, changing the process definition, re-
vising interfaces with other processes). The revisions have outcomes for the ob-
jects of interest that are measured by M&A, providing the process engineer with
feedback that may stimulate further changes.

A Model of Measurement

The process of characterizing an object of interest with respect to a chosen model
consists of collecting and analyzing measures to understand the object at the cho-
sen level of abstraction (Fenton and Pfleeger, 1997). The object of interest is
whatever you are interested in measuring. Common objects of interest in software
engineering are systems, projects, processes, and work products (e.g., software,
specifications, designs). The term chosen model highlights that it is a matter of
choice which properties of the object of interest will be evaluated and how those
properties will be evaluated. Characterization occurs when values are assigned to
the properties of the object of interest through an act of measurement that maps
empirical observations of each significant property onto the chosen model. The
term chosen level of abstraction is used to emphasize that people select the appro-
priate level of understanding of the object of interest based on their need for in-

8 Measurement and Decision Making 159

formation, their background knowledge, and their degree of interest in the object.
That is, the user of the model must determine a level of detail that suits his pur-
poses.

In VBSE, the chosen model is referred to as the stakeholder value proposition
and it is the guiding principle for decision makers who want to ensure that their
chosen courses of action are aligned with generating value for the stakeholders.
Chapter 3 of this book presents processes drawn from financial management that
can assist with the definition and instantiation of a model of project based on
stakeholder value propositions. Chapter 4 offers methods for evaluating stake-
holder value propositions in situations where there are multiple stakeholders or
many possible outcomes. Chapter 12 provides an industrial case study in which a
decision support system assists the choice of the most promising software product
release plans by integrating the various stakeholder value propositions. The cho-
sen model of value is derived through a process of consultation and negotiation;
Chapter 7 presents a method for negotiating the value model in the context of the
software requirements process.

The evaluation of measurable concepts such as value, project risk, and product
quality requires multiple views into the object of interest. These views are then
synthesized into an overall characterization of the object of interest. For example,
software quality is a familiar concept for which there are many views that need to
be considered. A software quality model might state, for example, that:

Quality is a function of:
quality in use, process quality, product quality,
benefits obtained, resources consumed, context of use

If the object of interest is defined as project value, then the chosen model would
show how value is a function of a particular subset of the project’s attributes. This
model might be expressed, for example, as:

Project value is a function of:
acceptance of technology * w1, exploitation of technology * w2,
cost of technology * w3, benefit of technology * w4,
strategic impact of technology * w5

The terms w1-w5 express the weights that are to be applied to each attribute to de-
rive a number for the indicator of project value based on their relative impact.
There are many models of project value that could be chosen since there are many
individual stakeholder value propositions. In this example, the chosen model of
project value states that there are five important factors that collectively produce a
particular value for the project:
1. Probability of users accepting the technology provided by the object of interest.
2. Probability of users being able to use the technology.
3. Cost of constructing and deploying the technology in the organization
4. Economic benefits for the organization from using the technology.
5. Impact the technology will have on the way the organization does business in

the future.

160 Michael Berry, Aybüke Aurum

Each of these factors must therefore be measured (or estimated) using an appro-
priate scale, and these measures then used to derive an understanding of the pro-
ject’s value based on the relative impact of each factor and the nature of the
cause/effect relationship between the factor and value. Having developed the cho-
sen model, it needs to be instantiated by assigning values to the factors in the
model. The measurement and analysis process (ISO/IEC 15939, 2002) begins with
a measurement plan that states how these values are obtained. Planning includes
specifying the measurement models that enable empirical observations of each
factor in the chosen model to be mapped onto a framework that enables charac-
terization of the object of interest. There are standards that specify the measure-
ment model for certain attributes (e.g., time, cost, functional size); but for many
other attributes (e.g., technology acceptance, strategic impact), the measurement
models must also be defined through a process of research and negotiation with
stakeholders.

The analysis of project value requires multiple views that are painted using
multiple measurement models. Each measurement model is like a lens where each
lens is used by an observer in order to make inferences about the properties of an
object of interest. These inferencing rules enable the observer to develop a suffi-
cient, although incomplete, view of the object of interest based on incomplete in-
formation. Observers may construct the rules through personal experience or they
may use rules that are formalized in standards. A key property of each lens is the
ability to filter the properties of the object of interest that are believed to be irrele-
vant. This enables people to avoid being overwhelmed by the volume of data be-
ing presented. This filtering is defined in the chosen model for measurement
which controls the filter. Each lens constructs a view of the object of interest by
capturing and interpreting some properties of the object. The chosen model and
the chosen level of abstraction determine which views are constructed, which
properties, how the properties are evaluated, and how the property values are in-
terpreted.

Views provide the ability to structure measurable concepts such as value, qual-
ity, and risk and help people to focus on different aspects of the object of interest
at a time. They provide a way to summarize the impact of a large number of fac-
tors and to highlight areas for improvement. Some models will include a social
view of the object of interest. The social view is created by the decision maker ex-
amining each of the other views for its ethical, legal, and political implications.
These implications are then mapped onto the ethical, legal, and political norms for
one or more social groups. Differences between the social view and the norms
present opportunities for improving the object of interest.

A Model of Decision Making

Having introduced a model of measurement in the preceding section that was con-
cerned with developing views, we continue with the visual metaphor and describe
a behavioral model of decision making based on Image Theory. Two types of de-
cision making models may be distinguished: A) prescriptive models which assert

8 Measurement and Decision Making 161

that, on balance over a period of time, if one follows the procedure then the deci-
sion outcomes are more likely to be successful, B) behavioral models which seek
only to describe the behavior without specifying any particularly desirable pattern
of behavior. Our behavioral model is based on Image Theory (Beach and Mitchell,
1990; Beach, 1990; Beach, 1996) developed by the psychologists Beach and
Mitchell in response to a pattern of criticism of rational decision making begin-
ning with Allais in 1953 (Edwards, 1967). In his Nobel Memorial Lecture in 1979
(Simon, 1979), Simon concludes that assumptions of rational decision making
“are contrary to fact” and offers Bounded Rationality as a “superior alternative.”
Beach and Mitchell state that Image Theory is a broad theory accommodating
elements of classical theory such as self-interest while integrating other attempts
to develop an adequate theory of decision making. As such it is just one of many
empirically based theories within the genre of Bounded Rationality.

The Image Theory model is based on the notion that a person simultaneously
holds multiple discrete mental images of various abstract and concrete objects.
These images are the means by which that person understands and responds to the
world around him. The words, mental image, convey the idea that the image is a
unique model of the object constructed by the decision maker for his own cogni-
tive purposes. As a mental model, it is inaccessible to other people; however, to a
limited extent, others may influence the development of the images. For example,
the role of a specialist in software measurement is to assist the managers and soft-
ware engineers to develop clear, well-formed, and valid images of the objects of
interest typically found in software engineering. In a VBSE framework, the scope
of the objects of interest is enlarged to include objects of interest from the client’s
domain. In the Beach and Mitchell model (Beach and Mitchell, 1990), there are
three basic images based on: (1) The decision maker’s values, ethics, beliefs, etc.,
(2) A projection into some desirable future, and (3) Plans made by the decision
maker. In the model used here, these three images are expanded for completeness
to include: (4) An image of what happened in the past, (5) An image of the current
situation, and (6) a probable future that is distinct from the desirable future.

Table 11. Components in the Image Model of decision making

View of the World Image Component
How things are. Reality
How things are expected to be. Expectation
How things were. Experience
How things will be unless someone acts. Probable Future
How things could be if something is done to
change the situation.

Desirable Future

How things should be. Beliefs and Values

The model proposes that a decision maker’s view of the world is the result of six
interacting and complementary images, each of which is unique to that individual.
Table 11 shows the components of the model, and the particular view of the world

162 Michael Berry, Aybüke Aurum

that the component supports. The component images are discussed in more detail
below.
• Reality is the image that the decision maker has of his present situation. Reality

is constantly changing as new data is acquired, items of data are re-weighted in
importance, and previously acquired data is found to be invalid.

• Expectation is an image of the future that sets bounds on the projections of the
likely and desirable futures. This image is a function of the current reality, ex-
perience, and the values and beliefs and the personality of the decision maker.

• Experience is the decision maker's perception of how things were. It is a blend
of data, selective memory, and wishful thinking. However, it strongly influ-
ences the formation of the other images.

• Probable Future is the image of the outcome if the current situation persists
and the current plan is adhered to. This is the most volatile image as reality
continually forces changes to the probable future and changes are made to the
plans underlying the image.

• Desirable Future is the image of the preferred outcome and is an expression of
the goals of the person. Note that in a team or organizational setting, it is ex-
pected that the personal goals and values of the decision maker and the goals
and culture of the enterprise and stakeholders will be congruent, but that may
not always be true.

• Beliefs and Values provide the framework within which the other images are
constructed and constantly acts as a standard against which the other images are
evaluated.

The challenge in Value-Based Software Engineering is to ensure that the concept
of value is a dominant factor in the construction of these images. Indicators of
value must be provided to the decision maker to construct reality. Project objec-
tives need to be measurable in terms of value to build expectations. Post-
implementation reviews need to be held to provide evidence of the value gener-
ated in order to develop experience. Simulators that produce projections of prob-
able and desirable futures should include value as a dependent variable. And, fi-
nally, organizations need to inculcate the notion of delivering value as a primary
belief and value for software engineers.

8.3 Decision Making Behavior

In this section, using the Image model, we describe the process by which a person
is stimulated to make a decision as a result of receiving a set of indicators derived
through measurement and analysis that characterize a particular object of interest.
Figure 30 shows the decision maker combining his understanding of the object of
interest with other cues and sensations to develop his perception of reality. This
perception is influenced by the person's beliefs and values, his expectations and
his experience. The image of reality is then extrapolated to create an image of a
probable future. This forms the stimulus for the decision making process shown in

8 Measurement and Decision Making 163

Figure 31 where the decision making process is highlighted to illustrate how the
person’s decision making process arrives at a response to the original decision
stimulus.

Fig. 30. Stimulating a decision

In Figure 30 the starting point is the Decision stimulus, which stems from meas-
urement of an object of interest being filtered by the recipient. After filtering, the
measures are combined to create an image of the current reality. Drawing on his
experience, and often aided by predictive models, the person creates his image of
what the future situation will be. Predictive models draw on evidence, rules, and
policy to estimate the values of dependent variables given the state of the inde-
pendent variables. This image of the future is then considered through a decision
making process, the outcome of which is likely to be a Decision response (see
Figure 3). The filtering of information about the object of interest is referred to as
decision framing and is an essential element of decision making. Framing, accord-
ing to Beach and Mitchell, is an attempt to endow a particular situation with
meaning. The decision maker identifies which elements of an image are relevant
in the situation and attempts to place the situation in a historical context. This,
then, involves selecting aspects of the situation that are perceived to be relevant
with respect to Expectation and Beliefs and Values; and with searching Experience
to find previous goals and previous plans. If the decision framing is inappropriate,
then the consequences will be an impaired control process, since the resulting Re-
ality will be flawed. Note that an additional filter is involved in the development
of experience: people selectively incorporate elements of their reality into their
experience image. This suggests that the filtering and the mental modeling of the
future based on their experience may be unreliable.

164 Michael Berry, Aybüke Aurum

Models of decision making based on Image Theory state that a decision must
be made when there is a significant dissonance between the multiple images of the
decision maker. The decision maker is stimulated to act to remove the tension cre-
ated by that dissonance. In effect, decision makers are continuously deciding
whether they need to make a decision. Their decision may be to simply revise one
of their images. And/or they decide to choose a course of action that will bring the
images back into alignment over time. To do this, they must first form a new im-
age of Desirable Future and the difference between this image and the current im-
age of Probable Future forms the starting point for the decision. Often, a decision
maker may have only a vague image of his desirable future and it is the shock of
the difference between the reality and his expectations that triggers the strengthen-
ing up of the image of the desirable future. Each possible decision must change
one or more of the images to be considered. This is an iterative process in which
new images are tested against each other and which terminates when a course of
action is chosen that delivers a satisfactory alignment of the various images.

Fig. 31. Decision making process

Once a decision is made, the decision maker will need to monitor and control the
chosen course of action. In contrast to other models of decision making, this
model includes monitoring and control as part of the decision making process be-
cause of the need to analyze feedback and make adjustments to the chosen course
of action. The decision maker must constantly monitor the difference between the
previously defined Desirable Future and Probable Future. When the initial deci-
sion is made, the difference would be accounted for by the lead time to implement
the plans. However, over time, additional information is received and, when

8 Measurement and Decision Making 165

viewed through experience, a new image of Probable Future is created. This then
stimulates a new round of decision making in which the initial aim is to realign the
desirable and probable futures through adjustments to the chosen course of action,
but which may also lead to a revision of the desirable future.

To give an example of a decision that might need to be made, assume a soft-
ware development project is being managed in a VBSE framework according to
the following model:

Project value is a function of:
acceptance of technology, exploitation of technology, cost of technology,
benefit of technology, strategic impact of technology.

The software process group (SPG) advises the project manager that there is an op-
portunity to improve the processes for building the technology being developed
for the client. The SPG asks him to participate in a pilot study that will involve
process appraisals, new process definitions, and developer training. The SPG pre-
sents some data collected by the Software Engineering Institute (SEI) of the bene-
fits that could be achieved.10 The opportunity to reduce the cost of technology to
the client stimulates the project manager to consider this advice and decide if he
wants to act on it. He first filters the advice based on their previous experience of
process improvement, his beliefs about the SPG and the SEI, his values with re-
spect to being involved in advanced technology, and his expectations with respect
to what is possible on their particular project. From integrating all these factors,
the project manager has a revised sense of the reality facing him. He has to ex-
trapolate from this state to a set of desirable futures that will depend on whether
which, if any, of the management, infrastructure, and engineering processes are
improved. To do this, the project manager will use his own mental models based
on their experience and explicit models that enable them to simulate various sce-
narios. This is where the model of project value is used. As long as the model in-
cludes views of the stakeholder value propositions, the manager can consider the
impact of the recommendation of the SPG. It is even better if these views are
framed in measurable terms so that each scenario is evaluated. The project man-
ager is now in a state of tension: he has evaluated desirable scenarios that are con-
trasted with the image of the future that probably faces him if he does nothing. He
has his beliefs and values and his expectations which contrast with the other im-
ages and he must make a choice. His skill lies in being able to choose the action
that will have the best outcome in terms of the model of project value. In all but
the most trivial decisions there will be multiple factors impacting the outcome, de-
livering many possible futures of varying degrees of desirability. Alternative
courses of action can often not be compared in an entirely objective way. Refer to
Chapter 4 for an example of how the project manager may choose a course of ac-
tion.

Using the Image model, we have discussed the behavior of decision makers.
The model is also consistent with the reality that many decisions must be made

10http://seir.sei.cmu.edu/seir/

166 Michael Berry, Aybüke Aurum

collaboratively with two or more decision makers. This is discussed in the follow-
ing section.

8.4 Decision Making Behavior in Groups

A group decision is expected to be an optimum course of action that is determined
through collaborative activities involving idea generation, information exchange,
argument and decision making. It may be argued that there is no such thing as a
group decision: instead there are a set of individual decisions to accept a course of
action that is arrived at through a group process. However, it is clear that when an
individual participates in a group decision, he may behave differently as a group
member than he would if they were acting as an individual. For example, groups
have been consistently found to induce attitude polarization (Isenberg, 1986). Of
particular interest are the studies that demonstrate that group decisions tend to be
riskier than individual decisions. Furthermore, there is evidence that computer
mediated groups will make riskier decisions than individual members (Valacich et
al., 2002). Two coexisting and concurrent mechanisms are believed to be active in
group decision making that result in attitude polarization (Isenberg, 1986): social
comparison processes and persuasive argument.

Social comparison suggests that people are strongly motivated to perceive and
to present themselves to others in the group in a “socially desirable light.” When
an individual detects a socially desirable group norm, he will attempt to exceed the
group norm. When everyone in the group is behaving in a similar fashion, the
group norm is pushed to levels higher than its members would have maintained
individually. In terms of the Image behavioral model, the individual enters the
group setting with his beliefs and values, his expectations, his desirable future, and
his probable future. In the group setting there is a new tension in that one element
of values and beliefs; that the individuals see themselves, and want to be seen by
others, in a socially desirable light, is now important. The beliefs and values must
change so that the individual does not care about what the group thinks
(unlikely!), or the desirable future must change. Democratic civilizations ac-
knowledge that while many core values will be held in common, voting and refer-
enda will be necessary to resolve decisions when beliefs and values differ. Mili-
tary and commercial organizations tend not to be democratic in their operation but
both recognize the power of shared values and beliefs and attempt to foster them
in order to make clear the socially approved direction that group decisions should
follow. The other explanatory mechanism, persuasive arguments theory, suggests
that the “perceived validity and perceived novelty of an argument determine how
influential that particular argument will be in causing a choice shift” (Isenberg,
1986). In terms of the Image behavioral model, the individual must revise his im-
ages of his expectations, the probable future, and the desirable future based on the
argument presented.

Group decisions are easier where individual members share images based on
shared information. Organizations spend much effort on attempting to develop

8 Measurement and Decision Making 167

shared situational awareness, expectations, and visions of the future through
shared information systems and knowledge bases. As hierarchies are the dominant
structure for organizations, most group decision making is conducted in a context
where the group of individuals each with specific knowledge advises a single per-
son who has the power to authorize the chosen course of action. In this context, in-
formation exchange is seen to be the key element of group decision making (Den-
nis, 1996; Winquist, 1998). In terms of the Image behavioral model, a tension is
created when the decision makers revise their images of their expectations, the
probable future and the desirable future based on the information presented. This
tension is resolved by the recommendation of a course of action. Unfortunately,
information exchange in group decision making is often incomplete leading to
suboptimal decisions (Dennis, 1996; Winquist, 1998). This is another example of
irrational behavior in decision making and serves to emphasize the utility of be-
havioral decision making models.

Negotiation is a form of group decision making in which an optimal course of
action is required that will benefit a number of stakeholders whose interests are of-
ten in conflict. They may have quite different values and beliefs and have conflict-
ing images of a desirable future. Information hiding may be more frequent than in-
formation exchange and the socially desirable norm of the subgroups may be to
win at the expense of other subgroups. A critical negotiation is the development of
the stakeholder value propositions that will guide future decision makers. In this
case the participants in the group decision making process are choosing the value
model to be used during the project. For a discussion of how to facilitate the active
participation of stakeholders in negotiations refer to Chapter 7.

8.5 Measurement and Analysis for Decision Making

In this section we make recommendations to improve the relationship between
software measurement and decision making. The section is particularly aimed at
assisting those people who specialize in software measurement to become more
aware of how their information products impinge on their clients’ decision making
processes.

Strive to Build Images

The goal of the measurement specialist is to deliver measures to decision makers
that stimulate clear images in the mind of the decision maker. The Image model of
decision making provides an insight into optimizing the impact of measurement
products. Visual representations are often the most powerful way of communicat-
ing a message. Modes of presentation that are effective in image-building range
from presentations employing graphics (in preference to numbers or words), to
simulations and role-playing. Edward Tufte’s book (Tufte, 1983) is recommended
for readers who may want to follow this topic further. Assimilation of the message

168 Michael Berry, Aybüke Aurum

is also easier if it fits into a familiar framework that has meaning for the person re-
ceiving the message. For example, in a society where most adults drive a car, the
dashboard is a familiar concept for assembling the key performance indicators for
controlling the vehicle. Transferring the dashboard model into corporate manage-
ment within a car driving culture required little new learning for managers.

Match Information to the Level of Decision Making

To identify information needs, it is useful to distinguish between three classes of
decisions, i.e., operational, tactical, and strategic. There is a diminishing degree of
structure between operational and tactical decision making and between tactical
and strategic decision making. A high degree of structure means that the nature of
the decision and its information needs are predictable. A low degree of structure
means that it is difficult to predict what decisions will need to be made. The impli-
cations of this with regard to measures, benchmarks, and performance indicators
are that they must be appropriate for the class of decisions that must be made. Fur-
thermore the clarity of the images declines as the decisions to be made change
from operational to strategic and the information to support the decision changes
from quantitative to qualitative. As the image of reality becomes more obscure
and the futures become confused, the decision maker may compensate by relying
more on Beliefs and Values when confronted with the need to choose a course of
action, thus introducing greater subjectivity.

Match Information to Goals

It is necessary to provide the appropriate information for the decision makers'
goals. In terms of the decision making model presented above, the decision
maker's desirable future is the starting point for identifying the information needs.
Unless this is done, any mismatches between reality, probable future, and desir-
able future are unlikely to be apparent. Software process assessment is measure-
ment where the measurable concept is process capability. The popularity of proc-
ess assessment based on the Software Capability Maturity Model may be
explained by its ability to provide a simple summative evaluation on an ordinal
scale of 1 to 5 that meets the goals. For a software acquirer it provides a clear im-
age of what the capability of the organization is likely to be and thereby provides a
means for reducing acquisition risk. For the IT manager, it provides a clear and
easily communicated goal – if the organisation is now rated as a Two, it needs to
become a Three on the Maturity scale.

Use Performance Indicators

A performance indicator is a measure of some relevant aspect of past performance
where there is an implicit or explicit model of performance which holds that one

8 Measurement and Decision Making 169

value for the indicator is to be preferred over another value. Each performance in-
dicator provides insight into one aspect of performance and together they contrib-
ute to the image of performance. Indicators are selected for their relevance and
contribution to the image and also for their ability to help predict some future out-
come. By itself, an indicator merely draws attention to a particular aspect of per-
formance. However, that particular aspect of performance is chosen because it is
believed to be associated with the outcome. The concept of Key Performance In-
dicators (KPIs) provides a structure for a set of indicators. The Balanced Score
Card (Kaplan and Norton, 1993; Kaplan and Norton, 1992) encourages the selec-
tion of performance indicators from frames of reference covering financial as-
pects, customer satisfaction, process effectiveness, and innovation and learning in
order to produce a more holistic view for the decision maker at various levels of
the organization. There have been a number of publications dealing with adopting
the Balanced Scorecard within information technology (Becker, 1999; Edberg,
1997; van Grembergen and Saull, 2001).

Performance indicators are often used to set benchmarks which are points of
reference with respect to an attribute of an object of interest. For an IT manager,
the choice of benchmark depends on its validity for the purpose to which it is to be
applied and the quality of the data used to calculate the benchmark. Using the
wrong benchmark may lead to inappropriate comparisons being made and invalid
choices being made. The data set of IT measures from which the benchmarks are
calculated may be internal or external with respect to an enterprise.

Improve Information Quality

Information of higher quality produces better images in terms of relevance, com-
pleteness, persistence, clarity, and contrast. The better the images, the better
should be the quality of the decision. Characteristics of information used by re-
searchers to assess information quality have included content, availability, accu-
racy, timeliness, reliability, completeness, appearance, conciseness, convenience,
and relevance (Garrity and Sanders, 1998). However, objective assessment of in-
formation quality is problematic as the most important outcome of information
quality is its impact on the individual. If the information fails to affect the indi-
viduals in an organization, then there can be few beneficial outcomes for the or-
ganization. This underlines the importance of selecting and providing measures
that are found to have the most individual impact. The image theory model pro-
vides an explanation for how individual impact may be achieved. The ability to re-
late two or more measures to each other (e.g., number of defects compared to size
of product) provides a richer view of the object of interest and can increase the
impact on the decision maker. However, a balance needs to be struck – attempts to
instrument every software process and to characterize every product have been
failures, generating large numbers of measures, overloading the decision maker,
and imposing excessive costs of data collection and analysis (Hall and Fenton,
1994).

170 Michael Berry, Aybüke Aurum

8.6 Decision Support in a VBSE Framework

In this section we outline the components of a decision support system (DSS) that
operates in a value-based framework. At this stage in the development of VBSE
there is insufficient evidence to allow us to make firm recommendations on how
to establish decision support in a VBSE framework. However, it is possible to take
a case study and use it as the basis for an example of what the DSS might be like.
The goal is to demonstrate the practical feasibility of the VBSE approach. We dis-
cuss the requirements for the DSS and suggest a measurement plan and associated
algorithms that will provide the information for the DSS. The DSS and measure-
ment plan are based on a case study published in IEEE Computer (Boehm and
Huang, 2003).

Summary of the Case. A manufacturer of mountain bikes has a failing order-
processing system. The symptoms are (a) delivery delays and mistakes, and
(b) poor synchronization between order entry, confirmation and order fulfill-
ment. A new order-processing system is to be developed and integrated with
the company’s financial, production and human-resource information systems.
The new system is to be developed in partnership with an external systems de-
veloper. The partnership is structured so that both parties share in the responsi-
bilities and rewards flowing from the new system. This provides a powerful
motivation for the systems developer to practice value-based software engineer-
ing in order to understand, and satisfy, their partner’s value propositions. In ad-
dition to the partnership, the company’s leading distributors are participating in
definition and testing of the new system.

To operate in a VBSE framework, the project team requires a decision support
system (DSS) that will help them to incorporate a value perspective with other
more traditional perspectives such as product quality, process efficiency and pro-
ject risk. The DSS will assist understanding of the project, the work products, the
processes and the value that are produced. The required information for the value
perspective will consist of indicators of the extent to which the client’s and the de-
veloper’s goals are being met. The design of the DSS must provide significant dis-
sonance between the multiple images of the decision maker so that decisions are
stimulated and informed. The challenge is to ensure that the developer’s images
are sufficiently coloured by the client’s values. This will be achieved by choosing
a model of value that incorporates both the developer’s and the client’s value
models. This model will then be used to construct the images through indicators
that characterise the system under development.

Requirements for the DSS

Key issues for the DSS: These must be satisfactorily addressed in the design of
DSS as follows:

8 Measurement and Decision Making 171

• Decisions made by developers must not be client-value neutral,
• Hundreds of tasks may progress concurrently during development,
• The client and the developer will have some conflicting goals and will therefore

have some conflicting value propositions.

Goals to be incorporated: These goals of the developer’s principal stakeholder for
the case study must be incorporated into the project DSS in order to promote
value-based software engineering management:
• Sense, evaluate, and adapt to changing value propositions in a competitive

market-place,
• Avoid wasteful misuse of the organization’s scarce resources.

These goals that developers traditionally have used to drive their decision making
must also be incorporated:
• Deliver a software product that assists the client to achieve their goals,
• Avoid wasteful misuse of the developer’s scarce resources,
• Be available to provide a service to other clients,
• Improve the capability of their software processes in order to increase effi-

ciency and software product quality.

Scope of the DSS: The range of software development activities that need to be
supported by the project’s DSS are requirements engineering, architecting, design
and development, verification and validation, planning and control, risk manage-
ment, quality management, and people management.
Requirements for a value-based approach: This highlights the expectations for a
DSS that is designed for the needs of VBSE.
• Be sensitive to return on investment factors
• Monitor the cost, schedule and progress of a complex project
• Focus on the real stakeholder value being earned
• Elicit and reconcile value propositions from stakeholders
• Reconcile value propositions with architectural solutions
• Propagate value propositions into design and development.

Chosen model of Value: Table 12 shows the model of value that will be adopted
for this project and incorporated into the DSS. Once the value model is adopted, it
means that every significant decision within the scope of the DSS needs to be con-
sidered with reference to the value model. The attributes of value in the model are
identified from the value propositions of the client, the other stakeholders and the
goals of the system developer.

172 Michael Berry, Aybüke Aurum

Table 12. The model of value

Proposition of Objects of Interest Attributes
Manufacturer
(Client)

Order processing, or-
der delivery, sales

Current time and effort to process
order, current delivery time, sales
for the current period

Sales Staff
(User)

Salesperson credits for
commission

Sales credits for the current period

Distributors
(User)

Order fulfillment Filled and unfilled orders

System devel-
oper

Client service, project,
processes, work prod-
ucts

Client satisfaction, software pro-
duction, resource use, work back-
log, process improvements

Required images: Multiple images based on indicators of value need to be gener-
ated in order to stimulate and inform the decision making process.
1. How things are (reality): For each of the attributes in the Value model, meas-

ures need to be provided of the current state.
2. How things are expected to be (expectation): For each of the attributes in the

Value model, targets need to be established for the client’s new system and for
the developer’s business.

3. How things were (experience): Where possible, it is important for the decision
maker to have a sense of the historical state of each of the attributes in the
Value model.

4. How things will be unless someone acts to change the situation (probable fu-
ture): Predictions are required for each of the attributes in the Value model. The
prediction is based on extrapolating the current state into the future by using the
current knowledge: that is, the value propositions, the project plan, the budget,
the system architecture, the requirements and the design. Predictions are quali-
fied by expressions of confidence that will depend on such factors as the dis-
tance into the future for which the prediction is required, the variability of the
development process and the quality of current knowledge.

5. How things could be if something is done to change the situation (desirable fu-
ture): This image of future value is constructed through simulation. The most
rational future image is the result of systematically varying the independent
variables that determine the values of the attributes in the chosen Value model.
For example, the value propositions, the project plan, the budget, the system ar-
chitecture, the requirements and the design may be changed and the impact on
the Value model attributes evaluated and optimized.

6. How things should be (beliefs and values): This image is the most subjective,
being constructed by and for each individual involved in the acquisition, devel-
opment and operation of the system. This image might be constructed from the
following attributes:
• Client organisation values and beliefs: Customer satisfaction, corporate

reputation, personal reputation, environmental impact, community percep-
tions, stakeholder recognition.

8 Measurement and Decision Making 173

• User values and beliefs: Satisfaction, staff remuneration, staff development.
• System developer’s values and beliefs: Client satisfaction, staff satisfaction,

staff remuneration, staff development, progress, challenge, technology, peer
recognition.

Measurement Plan

The measurement plan describes how the information required for the DSS is con-
structed through the process of measurement and analysis. For each component in
each model, how that component will be measured or estimated must be specified.
In software measurement (ISO/IEC 15939, 2002), we distinguish between base
measures, derived measures and indicators. For a base measure, for example,
functional size, we need to specify only the method and scale. For a derived meas-
ure, for example, productivity, we must also specify the algorithm that is used to
combine two or more measures. For an indicator, for example, earned value, we
also need to state the model that attaches significance to the value of the indicator.

In Table 13 we have suggested some indicators of a measurement plan that
might be appropriate for this case study. In Table 14, we have suggested the algo-
rithms to produce these indicators for the measurement plan. Depending on the
image being created, the values of the indicators will depend on estimation and
will be associated with error. Even measures of existing processes, artifacts and
sentiments will be associated with measurement error. We also remind measure-
ment specialists that, because of the nature of the information needs they are try-
ing to satisfy, formal and frequent assessment of software measurement and analy-
sis is required to ensure that the measurement framework is meeting the
requirements of its clients’ information needs (Berry and Jeffery, 2000; Berry and
Vandenbroek, 2001).

8.7 Conclusion

In this chapter we have presented a model of measurement and a behavioral model
of decision making that we believe are appropriate for measurement and decision
making in a VBSE framework. We have used these models to show how the prod-
ucts of measurement (measures, benchmarks and performance indicators) are ap-
plied to generate images in the mind of the decision maker and stimulate and sup-
port the decision making process. We have demonstrated how measures can be
used to better inform the decision maker. Measurement in the software engineer-
ing domain has been an active topic for the last twenty years. During this time the
main debate has been about the technology – for example: How to measure func-
tional size? How to measure program complexity? How to assess product quality?
The authors contend that we have yet to focus adequately on the application of the
measures to achieve optimal outcomes for organisations.

174 Michael Berry, Aybüke Aurum

Finally, we have demonstrated, through the illustration of a DSS based on a
case study, that VBSE is practical although decision making is more complex in a
value-based management context and the requirement for performance indicators
is necessarily wider in scope. This will have major implications for people who
specialize in software measurement who may have been chosen for their technical
and numeracy skills. They will need to also have skills in business performance
measurement if they are to adequately service the information requirements of
software engineers and managers in a value-based software engineering world.

Table 13. Measurement plan

Indicator Significance of the Indicator
Change in order
processing costs

The added value to the client of the new system is a
function of the decrease in the order processing costs.

Change in the order
processing
efficiency ratio

The added value to the client of the new system is a
function of the increase in the order processing ratio (Cost
of processing the order / Revenue earned from the order).
The rate of change in the ratio over time would indicate
whether the organisation had received all the benefits
available from the new order processing system.

Change in sales
commissions rate

The added value to the user of the new system is a function
of the increase in sales commissions.

Change in mean
and variance for
time to fulfill an
order

The value to the organisation of the new system is
dependent on the capacity of the order fulfillment process.
An increase in the mean suggests that the order fulfillment
process is not coping. An increase in the variance suggests
that the order fulfillment process is moving out of control.

Change in
satisfaction

The job satisfaction of the manufacturer and distributors is
directly related to the satisfaction of their customers.

Change in satis-
faction indicators

The future of the organisation is directly related to the
satisfaction of their customers.

Degree of stake-
holder recognition

Organisation morale and rewards are functions of the extent
to which stakeholders recognize the quality of the service
provided.

Change in resource
productivity rate

The value to the system developer of the new system is a
function of productivity achieved on the development
project.

Work backlog The value to the system developer of the new system is
reduced by the opportunity value of the backlog.

Development
improvements

The value to the system developer of the new system is
increased by the extent to which improvements can be
introduced.

Challenge The job satisfaction of the system developers is increased
by the extent to which the new system represents a
challenge.

8 Measurement and Decision Making 175

Table 14. Measurement algorithms

Indicator Measurement Algorithm
Change in the
order processing
efficiency rate

1) Measure duration of each order transaction
2) Measure dollar value of each order
3) Derive measure as ratio of sum of order values and sum

of transaction duration
4) Derive indicator as the percentage change from one

period to the next.
Change in sales
commissions

1) Measure sales commission paid, by sales member
2) Measure hours worked by sales member
3) Derive measure as ratio of sales commission and hours

worked
4) Derive indicator as the percentage change from one

period to the next.
Change in mean
and variance for
time to fulfill an
order

1) Measure duration of time in hours to fulfill each order
2) Calculate mean duration and variance for all orders by

priority category
3) Derive indicators as the percentage change from one

period to the next.
Change in
customer
satisfaction

Measure customer satisfaction by a) survey b) number of
complaints and c) amount of repeat business

Stakeholder
recognition

Measure the number of positive and negative comments
made about the organisation in external publications

Change in
productivity rate
by period

1) Measure resource effort expended on the system
2) Measure resource effort expended on rework
3) Measure lost effort due to client-induced delays
4) Measure production during the period in function points
5) Derive productivity rate and express as a rate of change

over previous period
Work backlog Measure the number and potential value of service requests

by other clients
Development
improvements

Measure the improvements in processes, tools, technologies
and staff skills

Challenge Measure the degree of challenge in meeting the client’s
requirement and the amount of innovation required.

References

(Beach and Mitchell, 1990) Beach, L.R. and Mitchell, T.R., Image Theory: A Be-
havioral Theory of Decision Making in Organizations, Research in Organiza-
tional Behavior, 1990, 12, pp 1–41

176 Michael Berry, Aybüke Aurum

(Beach, 1990) Beach, LR. Image Theory: Decision-making in Personal and Or-
ganizational Contexts. (Wiley Chichester 1990)

(Beach, 1996) Beach, LR. (ed), Decision Making in the Workplace – a Unified
Perspective (Lawrence Erlbaum Associates, Mahwah, New Jersey 1996)

(Becker, 1999) Becker, S. A., Aligning Strategic and Project Measurement Sys-
tems. IEEE Software. May/June 1999

(Berry and Jeffery, 2000) Berry, M. and Jeffery, R. An Instrument for Assessing
Software Measurement Programs. Empirical Software Engineering. An Inter-
national Journal, 2000; 5(3), pp 183–200

(Berry and Vandenbroek, 2001) Berry, M. and Vandenbroek, M.: A Targeted As-
sessment of the Software Measurement Process. Proc. 7th International Soft-
ware Metrics Symposium; London.(IEEE Computer Society Los Alamos,
California 2001)

(Boehm and Huang, 2003) Boehm, B. W. and Huang, L.G.: Value-based Software
Engineering: A Case Study, IEEE Computer, March 2003, pp 33–41

(Dennis, 1996) Dennis, A. R., Information Exchange and Use in Group Decision
Making: You Can Lead a Group to Information, but You Can’t Make It
Think. MIS Quarterly December 1996

(Edberg, 1997) Edberg, D. T.: Creating a balanced IS measurement program. In-
formation Systems Management; 14 (2), p. 32

(Edwards, 1967) Edwards, W.: The Theory of Decision-making, Decision Making
ed by Edwards and Tversky, Penguin Modern Psychology 1967

(Fenton and Pfleeger, 1997) Fenton, N. and Pfleeger, S. L., Software Metrics – A
Rigorous and Practical Approach. 2nd Edition (International Thomson Com-
puter Press ; PWS Publishing Co; London, Boston, Mass.1997)

(Garrity and Sanders, 1998) Garrity, EJ and Sanders, GL (eds.). Information Sys-
tems Success Measurement (Idea Group, Hershey, 1998)

(Hall and Fenton, 1994) Hall, T. and Fenton, N., Implementing Software Metrics –
the Critical Success Factors, Software Quality Journal, 3 (4), pp 195–208,
(1994)

(Isenberg, 1986) Isenberg, D.J., Group Polarization: A Critical Review and Meta-
Analysis. Journal of Personality and Social Psychology. 1986, 50(6), pp
1141–1151

(ISO/IEC 15939:2002) ISO/IEC 15939:2002 Information Technology – Software
Measurement Process (Int. Organization for Standardization, Geneva, 2002)

(Kaplan and Norton, 1992) Kaplan, R. S. and Norton, D. P. “The Balanced Score-
card – Measures that Drive Performance”, Harvard Business Review, Jan
1992, pp 71–79

(Kaplan and Norton, 1993) Kaplan, R. S. and Norton, D. P. “Putting the Balanced
Scorecard to Work”, Harvard Business Review, September-October 1993,
pp 134–149

(Simon, 1979) Simon, H. A.: Rational Decision Making in Business Organization.
American Economic Review, Sept. 1979, 69(4), p. 493

(Tufte, 1983) Tufte, E. R.: The visual display of quantitative information, (Graph-
ics Press, Cheshire, Conn. 1983)

8 Measurement and Decision Making 177

(Valacich et al., 2002) Valacich, J.S., Sarker, S. and Pratt, J., Computer-Mediated
and Face-to-Face Groups: Who Makes Riskier Decisions? Proceedings of the
35th Hawaii International Conference on System Sciences (IEEE, 2002)

(van Grembergen and Saull, 2001) Van Grembergen, W. Saull, R. Aligning busi-
ness and information technology through the balanced scorecard. System Sci-
ences. Proceedings of the 34th Annual Hawaii International Conference.
(IEEE, Jan. 2001)

(Winquist, 1998) Winquist, J.R. Information Pooling: When it Impacts Group De-
cision Making. Journal of Personality and Social Psychology. 1998, 74(2),
pp 371–377

Author Biographies

Michael Berry is a PhD candidate at the University of New South Wales, Australia
and is located at National ICT Australia (NICTA). He has a bachelor’s degree in
Business Administration. He is in final stages of completing his thesis on the as-
sessment of software measurement. He has experience as a practitioner (1967-
1991), as an academic (UNSW 1992-1996), and as a researcher (CSIRO 1996-
2001). His interests are in software process in general and software measurement
in particular. He was a member of the working group that wrote the international
standard, ISO/IEC 15939:2002 “Software Measurement Process”.

Aybüke Aurum is a senior lecturer at the School of Information Systems, Tech-
nology and Management, University of New South Wales. She received her BSc
and MSc in Geological Engineering, and MEngSc and PhD in Computer Science.
She is the founder and group leader of the Requirements Engineering Research
Group (ReqEng) at the University of New South Wales. She also works as a visit-
ing researcher in National ICT, Australia (NICTA). Her research interests include
management of software development process, software inspection, requirements
engineering, decision making and knowledge management.

9 Criteria for Selecting Software Requirements to
Create Product Value: An Industrial Empirical
Study

Claes Wohlin and Aybüke Aurum

Abstract: Product value is based on which requirements are included in a specific
release of a software product. This chapter provides an overview of the value con-
cept and presents an empirical study conducted as an industrial survey. The objec-
tive of the survey was to quantify the importance of different decision making cri-
teria when deciding whether to include a requirement in a project or release. The
results reported from the survey are based on responses from two companies. It
was discovered that there were similarities in responses at a company level, al-
though major differences existed between individual respondents to the survey.
The most important criteria were found to be those related to specific customers or
markets and criteria, such as development cost-benefit, delivery date, and re-
sources. The least important criteria were those related to development and main-
tenance. The results also indicate that a better balance between the most important
and least important criteria ought to be achieved in the future.

Keywords: Decision support, decision making, requirements selection, product
management, empirical software engineering.

9.1 Introduction

Organizations operating in a knowledge-based economy are facing new chal-
lenges. There is incredible pressure on software companies to achieve and sustain
competitive advantage. To remain competitive in an era of increasing uncertainty
and market globalization it is important to focus on the value of different custom-
ers and markets when developing products. Software companies, like many other
organizations, are forced to adapt to the strategic challenges and opportunities pre-
sented by the new economy where technological advances cause dramatic changes
in business processes, products, and services.

According to economics and management science, an organization’s ability to
create value (in relation to its goals) depends on the utilization of intellectual capi-
tal (Drucker, 1998; Prahalad and Hamel, 1990). Intellectual capital is the sum of
organizational knowledge which includes ideas, inventions, technologies, software
programs, designs, processes, and creativity – which all can be converted to profit,
create value, and give organizations a competitive edge (Alwis et al., 2003; Sulli-
van, 1998). Alwis et al. (2003) list several potential approaches that enable or-
ganizations to create value from intellectual capital, e.g., profit generation from
products through sale, strategic positioning through market share, and innovation

180 Claes Wohlin, Aybüke Aurum

technology, customer loyalty, cost reductions, and improved productivity. Effec-
tive management of the product development process contributes to sustainable
competitive advantage for software companies. This requires that software devel-
opers firstly consider customers’ requirements, business requirements, and techno-
logical opportunities when making decisions. Secondly, they need to have a sound
understanding of both technical and business implications of decisions that have
been made throughout the development process. Thirdly, it is essential to under-
stand the business dynamics that drive software development in terms of cost,
time, and product quality as well as how software processes and products inter-
connect.

The real challenge for software developers is to understand factors that drive
organizational value creation and how to influence them. Value depends on the re-
lationship between customer needs and the benefits of products that satisfy those
needs. Value is created when software developers provide products that satisfy
customer needs (Alwis et al., 2003). However, focusing on value to a specific cus-
tomer may lead to the exclusion of considering value to other stakeholders, includ-
ing other customers, different markets, software developers, and project managers.
This may jeopardize the long-term viability of the software company. Since cus-
tomers have different needs and desires that vary with time, software companies
are forced to create value along many dimensions, including economical, physical,
emotional, social, cognitive and political dimensions (Nunamaker et al., 2001).
There is a vast amount of literature in the management, economics, and marketing
fields that has recognized the need to make product development decisions in light
of their overall effect on value (Browning et al., 2002; Deaton and Muellbauer,
1980; Park, 1998; Urban and Hauser 1993).

Software developers need to know early on what the economic implications of
their decisions will be in the development process, particularly when developing
new products with attributes that are complex and difficult to characterize during
the initial development process (Faulk et al., 2000; Harmon et al., 2003). Analyz-
ing the economic value of a software product is complex. As such, analysis cannot
be carried out simply by understanding the functionality and characteristics of
software technology alone. An appreciation of the connection of this technology to
business as well as to all aspects of the national and international economy is also
desirable. Such an analysis must portray the future demand for software product
usage accurately. This requires estimation of productivity increases from technical
changes as well as estimation of economic growth and cost of software technol-
ogy. Chillarege (2002) argues that in the last two decades several software product
businesses announced gross profit margins of around 80%, however, there is no
guarantee that this will continue into the next 20-30 years. During a software
product’s life cycle, market values change and different characteristics become
dominant and drive business. If we can understand how market values vary during
the life cycle, it would be easier to identify process models with attributes that
highlight market values in a particular stage.

There has been progress made over the years in integrating value-oriented per-
spectives into the software engineering discipline; a discipline which includes re-
quirements engineering, architecture, design and development, verification and

9 Criteria for Selecting Software Requirements to Create Product Value 181

validation, planning and control, risk management, quality management, people
management, and principles and practices (Boehm, 2003; Boehm and Huang,
2003). A detailed discussion of the value concept in software engineering is also
provided in Chapters 1, 2, and 3. A value-based approach aims to align software
development with customer requirements and strategic business objectives (Faulk
et al., 2000). Understanding the customer value aspects brings together domain
and application engineering within a common framework.

This chapter incorporates the concept of a value-based approach in require-
ments engineering. It is written based on the understanding that software require-
ments need to be bundled together such that they are aligned with business and
product objectives to create value for the user of the software product. This chap-
ter addresses criteria for how to decide which product requirements will be in-
cluded in specific software projects. In particular, the chapter presents an empiri-
cal survey into two companies where the criteria for including a specific
requirement in the next project or release are prioritized. The main research ques-
tion addressed is: “What defines whether a requirement will be included in a spe-
cific release/project?”

The chapter is outlined as follows. Section 9.2 describes the background and
context of the value concept from three different perspectives: management, soft-
ware engineering, and requirements engineering, and also presents some related
works. Section 9.3 describes the design of the empirical study aimed at identifying
which criteria are important when deciding whether to include a specific require-
ment in the next project or release. The results of the study are presented in Sec-
tion 9.4. Finally some conclusions and further work is discussed in Section 9.5.

9.2 Background

This section presents the value concept for products from three different perspec-
tives: management, software engineering, and requirements engineering. Note that
a detailed discussion on valuation can be found in Chapters 1, 2, and 3. It also po-
sitions the chapter in relation to research conducted in software requirements en-
gineering related areas, in particular release planning and prioritization.

Value Concept in Management

The Oxford English Dictionary defines value as “the ability of a thing to serve a
purpose or cause and effect.” Value creation is related to achieving desired out-
comes. Thus, value can be defined as anything that one might consider useful,
convenient, or essential (Nunamaker et al., 2001).

In the context of product development, value includes both product and process
attributes. Browning et al. (2002) argue that product value is affected not only by
the presence of necessary activities in the product development process, but also
by the way those activities work together to ensure that they use and produce the

182 Claes Wohlin, Aybüke Aurum

right information. The value of a product to a customer depends on customer pref-
erences and alternatives, as addressed in economics, marketing, and value engi-
neering literature (Browning, 2003; Deaton and Muellbauer, 1980; Park, 1998;
Urban and Hauser, 1993).

Customer value has two aspects (Browning, 2003): (a) Absolute value, which
illustrates how well the attributes of a product address customer needs and (b)
Relative value, which implies that the change in a product’s value depends on al-
ternative solutions to customer needs. There are a vast amount of studies in mar-
keting literature that determine the vector of product values and specify the opti-
mum level of each attribute. For example, Weinstein and Johnson (1999) define
absolute value as Value = perceived benefits/perceived price, where perceived
benefits and price are both measured relative to competing products. Browning
(2003) points out that product value is essentially equal to benefit / cost. The au-
thor argues that a change in any of these factors can cause a change in the value of
product. The question is how to balance these with the preferences of customer or
market. Although companies put a great amount of effort into increasing customer
value in their product development process, determining how and when value is
added is still a challenge even in marketing and management science. Some of the
strategies include focusing effort on eliminating the critical risk in a project, where
the removal of the critical risk assists in adding value into product development, or
using methods such as multi-attribute utility theory, where a change in
value/utility typically implies a change in demand for a product (Browning et al.,
2002).

Value Concept in Software Engineering

Keller (1995) argues that value of software is viewed very differently from most
other kinds of objects. Thus, it is difficult to define the concept of value in soft-
ware engineering, as the development process involves many stakeholders where
each defines value from his own point of view. The author points out that “Soft-
ware is not something that you can hold it, yet it can be duplicated very quickly. …
As more and more software becomes “available” on public networks, the range of
value will be extended even more.” An interesting fact is that, the value of a prod-
uct for a customer is expressed in terms of benefit and cost, whereas to a software
company it is expressed in terms of the profit (return) from the product sold. This
profit promotes economic value, determined by the net present value of future
benefits that ownership of an item brings to its owner (Browning et al., 2002; Al-
wis et al., 2003).

In the context of software engineering, value creation involves gaining new in-
sights or discovering new patterns of knowledge at the process level, product
level, or resources level. Information and knowledge transfer to stakeholders fa-
cilitates value creation. The ability to assess the impact of changes in a software
product, process, or resources during the development life cycle is an important
aspect in software product management. Alwis et al. (2003) point out that the
value of a product increases in proportion to its advantages over competitive prod-

9 Criteria for Selecting Software Requirements to Create Product Value 183

ucts, and decreases in proportion to its disadvantage. Thus the value of any prod-
uct to a customer is a function of its performance and price, relative to other prod-
ucts in the market.

The notion of integrating insights from customer value analysis into the soft-
ware development process and the difficulties that are associated with the practical
application of this have been addressed in software engineering literature. Accord-
ing to Harrison (2001) the software engineering community lacks the ability to
quantitatively measure the benefits of reduced uncertainty in a software develop-
ment project. He proposes evaluating investments in software engineering infra-
structure using well-accepted economic and financial models. These models are
based on a theory that the inherent value of the organization is defined as the value
of all its future profits. The author argues that usage of these techniques can lead
to better business cases for investing in software process improvement.

Tanaka et al. (1998) emphasize that there are various existing analysis tools and
techniques for quality measurement of software product value throughout the life
cycle, however many of them are not fully utilized by software developers. Firstly,
it is not easy for managers to understand and utilize analyzed results. Secondly, it
is time consuming to evaluate the tools and prepare the environment needed to ap-
ply them practically. Thirdly, it is important to acquire the know-how for using
tools and measurement data effectively and to incorporate this into the software
development process in a timely fashion. Erdogmus et al. (2004) attack the prob-
lem from an education point of view. The authors point out that, although the
software engineering community has put in an enormous amount of work in the
areas of metrics and cost-benefit analysis, they have failed to cover valuation and
competitive strategy in a business context. According to the authors, the problem
starts from the software engineering education, which ignores the need to investi-
gate the role of technical projects in the context of overall business requirements

Faulk et al. (2000) emphasize the importance of communication between the
business and technical sides of an organization, so that decision makers with dif-
ferent roles can have a better understanding of the software engineering implica-
tions of their decisions. The authors point out that current software development
models do not support such communication. Furthermore, value creating units
such as product management, marketing, and development are separated by cul-
ture, language, and perception of overall goals. Since the software development
process does not link business objectives with software design decisions, the out-
come is often a mismatch between technical capabilities and business goals. The
authors provide a process framework that links strategic business goals, process
improvement, and the application of domain engineering to software product lines
and refer to this approach as a “Value-Based Software Engineering” approach. A
value-based approach to software engineering is further discussed in Chapter 1

The fact that software is different than other types of products only serves to
complicate matters. Software is easily changed (in many cases, too easily) and re-
leased in several releases. Thus, it is not only a matter of looking at the short-term
value of the next release. The long-term evolution of a software product has to be
taken into account. There is a constant tradeoff between short-term business goals

184 Claes Wohlin, Aybüke Aurum

to satisfy customers and different markets, and long-term evolution of the software
to ensure that the software product is competitive in both the short- and long-term.

Value Concept in Requirements Engineering (RE)

It is critical that software developers integrate insights from customer value analy-
sis into the requirements process. Several researchers emphasize how important it
is for managers to understand the implications of their decisions in relation to a
cost-benefit analysis, in particular during early life cycle activities (Boehm, 2003,
Faulk et al., 2000). Furthermore, it is crucial to ensure that the requirements meet
business goals. System engineering and management, and in particular risk man-
agement literature, stress the importance of including effort, schedule, cost, and
risk assessment as part of project planning. Goal modeling techniques in require-
ments engineering is another approach that serves as a mechanism by which to
link requirements to strategic objectives anchored in the context of an overall
model of business strategy.

Gordijn and Akkerman (2003) argue that requirements engineering approaches
neglect the value proposition of information systems, despite an understanding of
this value proposition being key to the development of e-commerce applications.
The authors focus on the use of RE and a conceptual modeling approach to articu-
late, analyze, and validate Internet enabled value propositions in an e-business
context. They also develop an economic value perspective (called e3-value) by
representing an e-commerce idea using principles and techniques which stem
from RE.

Favaro (2002) points out that a full cost-benefit analysis of requirements re-
quires investment in time and resources and is more difficult than design and im-
plementation, as there are more unknown factors in the early stages of the life cy-
cle. Thus it takes a full development cycle before the complete economic impact
of a requirement is known. Favaro argues that software developers may add value
to requirements in several ways, such as by learning to create reusable require-
ments that enclose cost-benefit analysis or by studying the new generation of agile
development processes to enable them to understand strategic possibilities for add-
ing value to the requirements process over the full product cycle. Furthermore, by
learning more about the new tools and financial analysis, they can better under-
stand how strategic flexibility in the requirements process adds value.

The bottom line is that software development companies are faced with the
challenge of deciding which requirements to include in a specific project or re-
lease, and which requirements to reject or postpone to later releases. Thus, an em-
pirical study was conducted to increase our understanding of which criteria are in
fact the most important to include in the next project or release. It was assumed
that each project handles one release. The study was conducted as a survey and re-
sults are presented from two companies.

9 Criteria for Selecting Software Requirements to Create Product Value 185

Related Work in Release Planning and Prioritization

Market-driven (as opposed to customized) incremental product development and
delivery (release) is becoming increasingly commonplace in the software industry
(Ruhe and Greer, 2003; Greer and Ruhe, 2004; Carlshamre 2002). Incremental
product development is planned and executed with the goal of delivering an opti-
mal subset of requirements in a certain release (version of a product that is distrib-
uted to customers). The idea is to select what a release should contain (require-
ments), when it should be released (time), and at what cost (effort) this should be
achieved. Decisions about which customers get which features, at what level of
quality, and at what point in time, have to be made, making these activities a ma-
jor determinant of the success of a product. All of these activities are vitally de-
pendent on product requirements and are elicited/captured, analyzed, and specified
before any planning and development activity can commence. Decision support in
a release planning context is further discussed in Chapter 12.

The contributions in this area include addressing different aspects of require-
ments management, such as prioritization (Karlsson et al., 1998; Regnell et al.,
2001a; Ruhe et al., 2003) and dependencies between requirements (Dahlstedt and
Persson, 2003; Carlshamre et al., 2001). Moreover, researchers have worked on
connecting the requirements engineering process to decision making (Regnell et
al., 2001b; Aurum and Wohlin, 2002; Aurum and Wohlin 2003). Some work has
also been done on release planning. In (Ruhe and Greer, 2003; Greer and Ruhe
2004), a genetic algorithm approach has been used to plan for different releases,
while the work in (Carlshamre, 2002) is focused on understanding release plan-
ning.

Thus, work has been conducted on release planning and, as such, there are in-
vestigations into prioritization of requirements and dependencies between them.
However, to the best of our knowledge no studies have actually looked into the
criteria used in decision making about whether to incorporate a specific require-
ment into a software project or release. The study presented below is the first step
towards filling this gap, and is needed to understand how value is created for
software products.

9.3 Research Approach

This section provides an overview of the design of the survey and, in particular,
the questionnaire used. The main objective is to provide insight into the following
research question: “What defines whether a requirement will be included in a spe-
cific release/project?” This is closely related to understanding the underlying deci-
sion process related to requirements. Decision support is further discussed in
Chapters 2 and 4. Another related issue is negotiation, which is further discussed
in Chapter 7. Situations where it must be decided whether to include a specific re-
quirement in a project or release are often not straightforward and may even in-
volve negotiations. Negotiations are not further discussed here.

186 Claes Wohlin, Aybüke Aurum

Development of the Survey Questionnaire

A survey was designed to understand and evaluate the importance of different de-
cision making criteria when determining whether or not to include a specific re-
quirement in a project or release. Industry representatives were asked to prioritize
the importance of the different criteria in their decision making process. The fol-
lowing procedure was chosen to design the survey instrument, i.e., a question-
naire:
• A brainstorming session was held to identify suitable criteria to include in the

survey. The session included three researchers involved in requirements engi-
neering research. All three have close industrial contacts.

• Based on the outcome of the brainstorming session, a questionnaire was de-
signed by the main author of this chapter.

• The questionnaire was reviewed by the participants of the brainstorming ses-
sion, and one additional independent researcher, to further improve the selec-
tion of criteria.

• The questionnaire was updated based on feedback from the reviewers, and then
sent to a contact person at different companies.

The brainstorming session and the review process included some in-depth discus-
sion about whether it was possible to identify orthogonal criteria. It was concluded
that it would only be possible if the criteria were kept at a high level of abstrac-
tion. This would mean that very few criteria would be evaluated and prioritized by
the subjects in the study. The discussions led to a removal of some all embracing
criteria, such as risk, that are related to basically all other criteria; however it also
was decided to retain a number of criteria despite dependencies, since it is basi-
cally impossible to avoid all dependencies. The intention was for subjects to pri-
oritize without thinking too much about dependencies, and instead focusing on
what they viewed as the main criteria. In summary, the objective was that impor-
tance should be judged from the individual importance of the criteria and not as
consequences of other criteria. The actual outcome points to three different behav-
iors with respect to this issue. This is further elaborated in Section 9.1.

Criteria Covered in the Questionnaire

After several iterations the questionnaire was narrowed to include 13 criteria for
assessment by subjects. Many of the criteria were general in the sense that they
were not solely factors relevant for selecting requirements. They were often re-
ferred to in literature discussing software success more generally (Wohlin et al.,
2000). Moreover, it was also stated clearly that additional criteria could be added
by the subjects. This was done to avoid subjects feeling that missing criteria hin-
dered their completion of the questionnaire. Moreover, the questionnaire was de-
signed this way to capture any additional criteria that were missed in the brain-
storming session. It was agreed among the researchers that the 13 criteria covered
three important dimensions or stakeholder groups, although this grouping was not

9 Criteria for Selecting Software Requirements to Create Product Value 187

communicated to the subjects (respondents). The three groups were: external mar-
ket/customer, company management, and development/maintenance personnel.
The 13 criteria included in the study are as follows. The text is exactly as commu-
nicated to the subjects in the questionnaire, including a short explanation and mo-
tivation for each criterion.

External market/customer

1. Competitors
Explanation: The status of the competitors with respect to the requirement. In
other words, it is taken into account whether a competitor has the implied func-
tionality implemented or not.
Motivation: We may feel forced to include a requirement if our competitors
have the functionality, or we may want to implement something that is consid-
ered to be leading edge functionality (functionality competitors do not have).

2. Requirement’s issuer
Explanation: The actual issuer of the requirement is taken into account, i.e.,
which stakeholder (internal or external) generated the requirement.
Motivation: We may judge some issuers as more important than others, for ex-
ample, a very important customer or representative for an important market.

3. Stakeholder priority of requirement
Explanation: The priority of the requirement is taken into account.
Motivation: We may want to prioritize the requirements that our customers or
markets think are of particular importance.

4. Requirement’s volatility
Explanation: This criterion is related to whether the requirement is likely to
change or not.
Motivation: We may want to handle highly volatile requirements differently.

Company management

5. Support for Education/Training
Explanation: The ability and possibility to provide technical support, education,
and training to customers, markets, and so forth with respect to the requirement.
Motivation: We may not want to implement functionality unless we could pro-
vide the appropriate technical support, education, and training in relation to the
requirement.

6. Development cost-benefit
Explanation: The actual cost-benefit for implementing the requirement.
Motivation: We may not want to include a requirement if the implementation
cost is judged to be high in relation to the expected benefit.

7. Resources/competencies
Explanation: The availability of resources with the right competencies to im-
plement the requirement.
Motivation: We may not want to implement a requirement unless we are sure
that we have the right people available for the job.

188 Claes Wohlin, Aybüke Aurum

8. Delivery date/Calendar time
Explanation: The ability to meet the project deadline.
Motivation: We may not want to introduce a requirement that may affect the
deadline of the project negatively.

Development / maintenance personnel

9. System impact
Explanation: The impact of the requirement on the existing system.
Motivation: We may not want to implement a requirement if we judge that the
actual impact in terms of changes to the existing system is too large.

10. Complexity
Explanation: The estimated complexity of the requirement and the associated
challenges in implementing it.
Motivation: We may not want to include a requirement that is judged to be
very complex to implement and as a consequence the risk of failure as too
high.

11. Requirements dependencies
Explanation: The dependencies between this specific requirement and other
requirements, either already implemented or other posed requirements.
Motivation: The dependency to other requirements (already implemented,
scheduled to be implemented, or deferred to later release) may affect our deci-
sion regarding the current requirement.

12. Evolution
Explanation: The impact on the future evolution of the system.
Motivation: We may not want to implement a requirement if it is believed to
make long-term evolution of the system more complicated.

13. Maintenance
Explanation: The impact on the maintenance of the current system.
Motivation: We may not want to implement a requirement if it is believed that
the requirement may cause many problems in terms of maintenance.

Conducting the Survey

The above 13 criteria were included in the questionnaire as follows. First, the sub-
jects were given a short introduction. This included positioning the survey within
a larger industry-academia collaborative research project and highlighting the
value of participating in the survey, the target audience for the survey (important
since the communication was done through a contact person at each company), the
main research question, and the estimated time for the questionnaire; and finally
the subjects were also guaranteed anonymity. It was clearly stated both in the
questionnaire and in an e-mail that the target audience was personnel included in
the decision making process. It was expected to include the following types of
management personnel: product management, project management, and line man-
agement.

9 Criteria for Selecting Software Requirements to Create Product Value 189

The second part contained an introduction to the 13 criteria as listed in Section
9.2. The third part included a characterization of the context in which the subject
responded. This included company name, unit within company, type of applica-
tion, whether development was market- or customer-oriented, type of product, and
the role of the subject within the organization. Contact details were also asked to
ensure that each subject could be contacted for clarification purposes, although no
data in the analysis will be connected to specific individuals.

The third and final part was the actual survey. The 13 criteria were listed in a
table and the subjects were asked to fill out three columns with respect to the crite-
ria. First, the subjects were asked to answer yes or no regarding whether each cri-
terion was relevant when deciding to include a requirement in a project or release.
For the other two columns the subjects were asked to provide relative weights re-
garding the importance of the criteria. The subjects had 1,000 points to spend
among the 13 criteria (or more if they chose to add some criterion). A higher
number of points meant that a criterion was relatively more important. For exam-
ple, a criterion obtaining twice as many points as another criterion was viewed to
be twice as important. The subjects were allowed to distribute the points as they
wished, i.e., there were no requirement that each criterion should be allocated a
weighting. In other words, a subject could have given all 1,000 points to one crite-
rion.

The second column was concerned with the way different criteria are valued
today, and the third column was focused on how the criteria ought to be valued in
the future. The objective was to capture both the current state of practice and any
changes that industry would like to make in the future. The latter may be viewed
as a more ideal situation.

9.4 Survey Results and Analysis

The questionnaire was initially sent to two companies, although the intention was
to send the survey to more companies. This approach was chosen for two reasons.
First, it provided a means of validating that the survey was understandable and
that no major problems existed with the questionnaire. Secondly, conducting the
study these particular companies became a priority because they had scheduled
requirements engineering-related workshops, presenting the perfect opportunity to
present and discuss the survey. Later, six more companies responded to the sur-
vey, however this data has still not been analyzed and hence the results presented
here are based on the two first companies only.

Unfortunately, both companies compressed their workshop schedules, which
meant that the presentation and survey discussion was removed from the agenda.
Feedback has hence only been sent via e-mail.

The two companies are referred to as Company A and Company B respectively.
Company A is a major international company, and the responses are provided by
one part of the business. This part develops hardware and software solutions for
process control systems. Products from the company are sold to a world market.

190 Claes Wohlin, Aybüke Aurum

Company B is part of an international enterprise. The company develops hardware
and software products for automatic guided vehicles. Their products are also sold
on a world market.

In total, 13 subjects responded from these two companies, i.e., seven subjects
represent Company A and six subjects work at Company B. The observations, re-
sults, and analysis presented in this section are based on an analysis of the re-
sponses of these 13 subjects. This may be viewed as few respondents; however, it
should be remembered that the number of responses was naturally limited by vir-
tue of the fact that the survey targeted key personnel and roles in each organiza-
tion. Given that company workshops were planned in advance, it was known that
only 15 responses could be expected if all relevant people responded. Thus, 13 re-
sponses must be viewed as a very positive outcome, given the workload of the
people targeted with the survey.

In this section, some general observations from the survey are presented to-
gether with the results and analysis of the data collected with respect to the criteria
used in relation to the main research question.

Observations from the Questionnaire

The issue identified earlier, i.e., that the criteria were not fully orthogonal, was
also identified by some of the subjects, and mentioned in their e-mail communica-
tions when submitting the questionnaire. As mentioned above, it resulted in three
different approaches. One subject took a rather extreme standpoint and only gave
points to two criteria, including assigning a high weighting to development cost-
benefit, which is arguably related to many of the other criteria. Some subjects di-
vided the criteria into subgroups, either based on judged importance or as a way of
handling the inevitable dependencies between some of the criteria. They then as-
signed the criteria in a subgroup the same number of points. Finally, a third group
approached the criteria without really taking the dependencies into account too
much. Basically, they filled out the questionnaire from a “main criteria point of
view” as was intended by the research design. In other words, they focused on
each criterion’s own value rather than considering its connection to other criteria.

It was also observed that one subject allocated more than 1,000 points to the
criteria (1,020 points), thus the points given by the subject were rescaled so that
their sum became 1,000. Four of the thirteen subjects suggested new criteria for
the decision. These four subjects also provided points for the new criteria. The
new criteria are further discussed in the following subsection; however it should
be noted, given that only 25% of the subjects suggested new criteria, and that there
was only a minor overlap between their suggestions, it was hard to include these
new criteria when comparing how subjects allocated points to the same criteria.
Thus it was decided that, in the case of the subjects who suggested new criteria,
the points for the 13 criteria should also be rescaled to ensure comparability. The
proposed new criteria are handled separately below.

9 Criteria for Selecting Software Requirements to Create Product Value 191

Relevant Criteria

The responses provided by the subjects were related to whether the 13 criteria
were relevant for this type of decisions or not. Most subjects regarded the criteria
as relevant. More precisely, all subjects regarded seven of the criteria as relevant.
For the remaining six criteria, the following results were obtained:
• Requirement’s issuer: 12 subjects out of 13 viewed this criterion as relevant
• Requirement’s volatility: 10
• Support for training/education: 10
• System impact: 12
• Complexity: 12
• Maintenance: 12

We have not further explored the above four situations in which only one person
has felt that a particular criterion has no relevance, because we feel that more re-
sponses to the survey are needed before any further conclusions can be drawn. It is
more interesting to look at the two criteria where three subjects state that the crite-
ria are not relevant. While this is not a definitive answer in general, it should be
noted that it probably is easier to say “yes” than “no.” The subjects know that the
researchers regard these criteria as relevant since the criteria appear in the list, and
hence it is easier to agree that they are relevant than to object. Thus, it is interest-
ing when three subjects disagree with the researchers.

The volatility of a requirement is not a relevant criterion according to three of
the subjects. This may seem surprising. On the other hand, it may show that re-
quirements are included for other reasons and that volatility has to instead be han-
dled as part of the development project, for example, by postponing the implemen-
tation as long as possible until more is known about the requirement.

It is probably not as surprising that the support for education/training is de-
picted as a criterion that may not be relevant. The inclusion of a requirement is de-
cided based on other criteria and if education/training is needed then this can be
provided later.

The other interesting issue is that four subjects proposed new criteria. In total,
five new criteria were proposed. One of them obtained two votes. The subjects
only provided the names of the criteria and hence comments with respect to the
criteria are based on interpretations of the researchers. The comments are not
meant to imply that the newly proposed criteria should not be used, for example,
in future surveys, although the criteria have relations to the criteria used in the
survey as indicated below. The following five new criteria were proposed:
• Strategic importance/alignment (it is assumed that the subjects meant the same

criterion, although one used importance and the other alignment)
Comment: This criterion seems to be related to competitors (criterion 1), i.e.,
strategic positioning in relation to other competing products on the market.

• Customer value
Comment: This value is probably partially related to stakeholders’ priorities of

192 Claes Wohlin, Aybüke Aurum

a requirement (criterion 3), since if a requirement is highly prioritized by a
stakeholder, then it ought to have a high value for that stakeholder.

• Product cost
 Comment: This cost is most likely closely related to the development cost-

benefit (criterion 6), although there may be differences.
• Market technology trends
 Comment: This is related to competitors (criterion 1), and in particular the text

in the motivation above regarding criterion 1 where it is stated that the criterion
may be important in relation to leading edge functionality.

• Function is promised/sold
 Comment: This criterion is partially related to the requirement’s issuer (crite-

rion 2). It may be viewed as more important to keep a promise to some issuers
than others.

The above list of proposed new criteria illustrates that it is very difficult to formu-
late an exhaustive set of criteria, particularly if criteria should be reasonably inde-
pendent. For future studies, it must be decided whether any of the 13 criteria in-
cluded in this study should be removed and if any of the above five new criteria
should be incorporated into the list.

Importance of Criteria Today

The assignment of points for the criteria was divided into two parts: ‘today’ and
‘future’. In this section, the outcome regarding the situation ‘today’ is reported.
The results are presented for the two companies separately. A comparison between
the companies is provided in Section 9.6.

8,6

12,2
15,2

0,5 0,6

21,8

10,5
13,3

4,1
7,6

1,9 1,1
2,7

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 32. Importance of current criteria at Company A

The results for each company were aggregated by taking the sum of the points
provided by each subject. The sum was then normalized to a percentage figure,
which makes it possible to, for example, state which criteria contribute more than
X% to the decision. The results for Company A are shown in Figure 32. The list of
the criteria can be found in Section 9.2.

9 Criteria for Selecting Software Requirements to Create Product Value 193

It is worth noting that five criteria have percentage values above 10% and six
criteria have values below 5%. The results from Company A indicate that some
criteria are clearly more important than others. The five most important criteria are
(in order): Development cost-benefit, customer/market priority of requirement, de-
livery date/calendar time, requirement’s issuer, and resources/competencies. This
indicates that issues related to specific customers/markets are important, as are
traditional management aspects such as cost-benefit, delivery date, and resources.
The development/maintenance aspects have low influence on the decision. It is
worth noting that for both companies, it has not been possible to identify any rela-
tionship between the actual job role of the respondents and their views on which
criteria should be taken into consideration.

The outcome for Company B is presented in Figure 33. The results are similar
from an ordering point of view, although the actual percentage figures differ
slightly. For Company B, four criteria have a value above 10% and five criteria
have a value lower than 5%. The values are slightly more evenly distributed for
Company B, which may be explained by the fact that one of the subjects for Com-
pany A gave almost all points to “Development cost-benefit.”

6,5

13,4 13,5

4,4
1,3

16,2

9,7

14,2

5,8 6,1
3,2 3,7

1,9

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 33. Importance of current criteria at Company B

The figures for the two companies become even more similar when this subject
was removed from the data set. The four criteria with a value above 10% for
Company B are (in order): Development cost-benefit, delivery date/calendar time,
customer/market priority of requirement, and requirement’s issuer. Basically, the
only difference between the top five (except for smaller differences in the percent-
age values) was that criteria 2 and 3 were swapped in order of importance. How-
ever, the actual difference in percentage value is small. The patterns are very simi-
lar for the two companies when it comes to the least important criteria.

In summary, it is quite clear that the two companies have very similar opinions
regarding what is important when deciding whether or not to include a specific re-
quirement in the next project or release. This makes the results even more interest-
ing than if the companies had differing opinions, because it points to the possibil-
ity of a pattern, or common trend in views, across the software development
industry. This could be a first step towards identifying key criteria in the decision
making process with respect to including requirements in software projects or new
releases.

194 Claes Wohlin, Aybüke Aurum

As a final note, it is worth stressing that this is the picture that emerges when
aggregating the prioritization from the subjects. However, at an individual level
the subjects actually have quite different opinions, which are further discussed in
Section 9.6.

Importance of Criteria in the Future

A similar analysis for Company A and Company B was conducted to examine
how the subjects wanted to see the use of the criteria in the future. The objective
was to capture what the subjects believed would be a better balance between the
criteria than the situation today. The results for Company A are presented in Fig-
ure 34, where it can be seen that only three criteria had a percentage value at or
above 10%. The three criteria are among the five ranked the highest in the previ-
ous section. The development cost-benefit is still viewed as most important, and
the customer/market priority of a requirement is second. However, the gap be-
tween the two top criteria is smaller. The development/maintenance criteria (crite-
ria 9-13) still have low values, but they are higher than in the previous section. In
general, it seems like the patterns of today will remain in the future, although other
criteria will be valued slightly more than today.

7,5 6,6

18,4

1,8 2,7

19

9,3

13,6

5,1 4,4
2,8

5,5
3,4

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 34. Importance of future criteria at Company A

The results with respect to the future judgment of the criteria at Company B are
shown in Figure 35.

The trends found for Company A are also visible for Company B, although four
criteria have a value of 10% or higher. In addition to the three found for Company
A, the first criterion has a high score. The first criterion is related to competitors.
Moreover, the order between the two highest ranked criteria has changed. Com-
pany B would like to have the main focus to lie on the customer/market priority of
a requirement rather than focusing on development cost-benefit, although the lat-
ter is still very important. At the lower end, it is also possible to see for Company
B that the percentages are closer to each other. In other words, more criteria ought
to be used in the future than are used today. There are differences, but the patterns
are similar and the differences may very well be the results of having few subjects
after all.

9 Criteria for Selecting Software Requirements to Create Product Value 195

10

7,5

13,7

3,9 3,8

12,6

6,6

11

7,6

4,3 4,8
6,4

7,9

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 35. Importance of future criteria at Company B

Analysis of Stakeholder Groups

The 13 criteria were divided into three groups in Section 9.2. It is interesting to
see how the balance is between these groups and if there are any differences be-
tween the situation today and how the subjects say that it ought to be in the future.

In total, 13000 points have been awarded by the 13 subjects (1,000 each). The
division of these points is shown in Table 15. In this case, the main interest is to
study how the importance of the different areas was judged in relation to each
other.

Table 15. Division of points between different dimensions of criteria

 Today Future
External market / customer 4,824.0 4,503.5
Company management 5,722.0 5,157.0
Development / maintenance 2,454.0 3,339.5

The results presented in the table show that the criteria related to company
management issues are, and will continue to be, most important. The main differ-
ence observable from Table 15 is that there is a general opinion that the develop-
ment/maintenance-oriented criteria should be valued higher than it is today when
it comes to decisions regarding which requirements to include in a project or re-
lease.

Individual and Company Comparison

An analysis at an individual level also has been conducted. The analysis points to
the fact that there are large differences in opinions between individuals. This is
supported both by a visual inspection of the collected data and a statistical analy-
sis. The latter analysis included both a principal component analysis (PCA) and

196 Claes Wohlin, Aybüke Aurum

correlation analysis for one company at a time. The PCA showed three groups at
each company, which indicates that the subjects represent different views. A cor-
relation analysis yielded similar findings. Correlations between some individuals
are rather high (and positive). However, some correlations between individuals are
negative, although not high, which shows that there are quite different opinions
among the individuals.

Based on the analysis of the opinions and views of the individuals, it is rather
surprising to see common patterns at both companies as discussed in relation to
Figure 32 to Figure 35. A possible explanation is that there are quite different
opinions between individuals but, when aggregating the different views, a com-
mon pattern becomes visible on a company level. The results on an individual
level point to a need to align the opinions of what is important when deciding
what to include in a specific project or release.

Validity Threats

As for any empirical study, there are some threats to the validity of the findings.
The first threat is related to what the two companies represent in terms of popula-
tion. The two companies have several things in common, such as development of
real-time systems for control purposes on an international market. This means that
the companies may not be representative of all types of companies, and hence the
results must be interpreted with some caution when moving away from the charac-
teristics of the two studied companies.

On an individual level, there is a risk that it is easier to agree on relevance of
the criteria than to disagree. However, this is partially taken care of by allowing
the subjects to assign zero points to some criteria if they so wish. Moreover, it is
easier to stick to the stated criteria than propose new criteria. This means that im-
portant criteria may be missing, for example, the criteria mentioned by two sub-
jects related to strategic importance/alignment.

Another potential threat is related to the questionnaire. It is always difficult to
know whether the respondents have understood the questions as intended and in a
similar fashion to one another. This threat is somewhat addressed by providing the
outcome of the survey to the respondents so that the results can be discussed both
at the respective companies and with the researchers.

The threats point to the need to analyze the other companies included in the
study, although the number of subjects for the other companies vary considerably.
Moreover, the threats also highlight the need for replication of this type of study.

9.5 Conclusions and Further Work

In this chapter, the value-based concept has been discussed and studied from the
viewpoint of decision making in requirements engineering. We have analyzed the
determinants of whether or not a specific requirement should be included in a spe-

9 Criteria for Selecting Software Requirements to Create Product Value 197

cific project/release. The inclusion or exclusion of specific requirements affects
the value of the final product and hence the actual criteria for making these deci-
sions are important to understand when discussing value-based software engineer-
ing.

The results from a survey conducted at two companies with 13 subjects repre-
senting roles such as product managers, project managers, and line managers are
reported. It is demonstrated that the patterns from both companies were quite simi-
lar in terms of the judged importance of different criteria, although individuals had
quite different opinions of what is most important. Overall, it is agreed that who
states a requirement is important, as is his and their priority of that requirement.
Moreover, issues such as development cost-benefit, delivery date, and resources
available are also important. Criteria related to development and maintenance as-
pects, such as complexity and system impact, have lower importance. When com-
paring the situation today with a judgment of how it ought to be in the future, sub-
jects expressed the desire to weight the criteria slightly differently in the future,
although the general pattern remains the same. Subjects felt that criteria related to
development and maintenance ought to be more important in the future than they
are today.

Future work should include improving the set of criteria based on the feedback
from this study or similar studies. Replications are also needed to uncover whether
the findings provide a general picture of how decisions are made in the software
industry with respect to which requirements to include in a project or release.

Acknowledgments

We would like to extend our thanks to Patrik Berander, Tony Gorschek, and Per
Jönsson for their contribution to the brainstorming session and for reviewing the
survey material. We are also grateful to the companies that have shared their ex-
periences with us. We are particularly grateful to the contact champions and the
respondents at the companies. Finally, we would like to express our gratitude to
Irem Sevinc for helping us improve the English.

References

(Alwis et al., 2003) Alwis, D., Hlupic, V., Fitzgerald G.: Intellectual capital fac-
tors that impact of value creation. 25th Int. Conf Information Technology In-
terfaces, ITI, Cavtat, Croatia, pp 411–416, June 16–19, (2003)

(Aurum and Wohlin, 2002) Aurum, A., Wohlin, C.: Applying decision-making
models in requirements engineering. Proceedings of Requirements Engineer-
ing for Software Quality, Essen Germany, December 9–10, (2002)

(Aurum and Wohlin, 2003) Aurum, A., Wohlin, C.: The fundamental nature of re-
quirements engineering activities as a decision-making process. Information
and Software Technology, 45(14), pp 945–954, (2003)

198 Claes Wohlin, Aybüke Aurum

(Boehm, 2003) Boehm, B. W.: Value-based software engineering. ACM
SIGSOFT, Software Eng. Notes, 28(2), pp 1–12, March, (2003)

(Boehm and Huang, 2003) Boehm, B. W., Huang L.G.: Value-based software en-
gineering: A case study. IEEE Computer Society, Computer, pp 33–41,
March, (2003)

(Browning, 2003) Browning T.R.: On customer value and improvement in product
development processes. Systems Engineering, 6(1), pp 49–61 (2003)

(Browning et al., 2002) Browning, T.R., Deyst, J.J., Eppinger S.D., Whitney,
D.E.: Adding value in product development by creating information and re-
ducing risk. IEEE Transactions on Engineering Management, 49(4), pp 428–
442, (2002)

(Carlshamre, 2002) Carlshamre, P.: Release planning in market-driven software
product development: Provoking an understanding. Requirements Engineering
7, pp 139–151, (2002)

(Carlshamre et al., 2001) Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B.,
Natt och Dag, J.: An industrial survey of requirements interdependencies in
software product release planning. Proceedings Fifth IEEE International Sym-
posium on Requirements Engineering, IEEE, Los Alamitos CA, pp 84–92,
(2001)

(Chillarege, 2002) Chillarege, R.: The marriage of business dynamics and soft-
ware engineering. IEEE, Software, November, pp 43–49, (2002)

(Dahlstedt and Persson 2003) Dahlstedt, Å., Persson, A.: Requirements interde-
pendencies – Moulding the state of research into a research agenda. Proceed-
ings Ninth International Workshop on Requirements Engineering
(REFSQ’03), Klagenfurt/Velden, Austria, pp 71–80, (2003)

(Deaton and Muellbauer, 1980) Deaton, A., Muellbauer J.: Economics and con-
sumer behavior. New York, Cambridge University Press, (1980)

(Drucker, 1998) Drucker, P.F.: Management’s new paradigm. Forbes, 162(7),
pp 152–177, (1998)

(Erdogmus et al., 2004) Erdogmus, H., Favaro, J., Strigel, W.: Return on invest-
ment. IEEE Software, pp 18–22, (2004)

(Faulk et al., 2000) Faulk, S.R., Harmon, R.R., Raffo D.M.: Value-base software
engineering: A value-driven approach to product-line engineering. 1st Int.
Conf on Software Product-Line Engineering, Colorado, August, (2000)

(Favaro, 2002) Favaro, J.: Managing requirements for business value. IEEE Soft-
ware, 19(2), pp 15–17, March/April, (2002)

(Gordijn and Akkerman 2003) Gordijn, J., Akkerman H.: Value-based require-
ments engineering: Exploring innovative e-Commerce ideas. Requirements
Engineering, 8(2), pp 114–134, July (2003)

(Greer and Ruhe, 2004) Greer, D., Ruhe, G.: Software release planning: An evolu-
tionary and iterative approach. Information and Software Technology 46,
pp 243–253, (2004)

(Harmon et al., 2003) Harmon, R., Raffo, D., Faulk, S.: Incorporating price sensi-
tivity measurement into the software engineering process. IEEE, Portland In-
ternational Conference on Technology Management for Reshaping the World,
PICMET’03, pp 316–323, 20–24 July, (2003)

9 Criteria for Selecting Software Requirements to Create Product Value 199

(Harrison, 2001) Harrison, W.: Using economic value of the firm as a basis for as-
sessing the value of process improvements. Proceedings of 26th Annual
NASA Goddard Software Engineering Workshop, pp 123–127, (2001)

(Karlsson et al., 1998) Karlsson, J. Wohlin, C., Regnell, B.: An evaluation of
methods for prioritizing software requirements. Information and Software
Technology, 39(14–15), pp 939–947, (1998)

(Keller, 1995) Keller, E.: The value of software. Manufacturing Systems,
ABI/INFORM Global, 13(1), 16, January, (1995)

(Nunamaker et al., 2001) Nunamaker J.F, Briggs R.O., De Vreede G.J., Sprague
R.H.: Enhancing organization’s intellectual bandwidth: The quest for fast and
effective value creation. Special issue: Journal of Management Information
Systems, 17(3), pp 3–8, (2001)

(Park, 1998) Park, R.J.: A plan for invention. New York, St Lucie Press, USA,
(1998)

(Prahalad and Hamel, 1990) Prahalad C.K., Hamel G.: The core competence of
the corporation. Harvard Business Review 68(3), pp 79–81, (1990)

(Regnell et al., 2001a) Regnell, B. Höst, M. Natt och Dag, J., Hjelm, T.: Case
study on distributed prioritisation in market-driven requirements engineering
for packaged software. Requirements Engineering 6, pp 51–62, (2001)

(Regnell et al., 2001b) Regnell, B. Paech, B., Aurum, A. Wohlin, C., Dutoit, A.,
Natt och Dag, J.: Requirements mean decisions! – Research issues for under-
standing and supporting decision-making in requirements engineering. Pro-
ceedings of First Swedish Conference on Software Engineering Research and
Practice, Ronneby, Sweden, pp 49–52, (2001)

(Ruhe and Greer 2003) Ruhe G., Greer D.: Quantitative studies in software release
planning under risk and resource constraints. Proceedings of International
Symposium on Empirical Software Engineering (ISESE), IEEE, Los Alamitos
CA, pp 262–271, (2003)

(Ruhe et al., 2003) Ruhe, G., Eberlein, A., Pfahl D.: Trade-off analysis for re-
quirements selection. International Journal of Software Engineering and
Knowledge Engineering, 13(4), pp 345–366, (2003)

(Sullivan, 1998) Sullivan P.H.: Profiting from intellectual capital: Extracting value
from innovation. New York: John Wiley and Sons, (1998)

(Tanaka et al., 1998) Tanaka, T., Aizawa, M., Ogasaware H., Yamada, A.: Soft-
ware quality analysis and measurement service activity in the company. IEEE
Proceedings of the 20th International Conference on Software Engineering,
pp 426–429, 19–25 April, (1998)

(Urban and Hauser, 1993) Urban, GL., Hauser, J.: Design and marketing of new
products. Englewood Cliffs NH: Prentice Hall, (1993)

(Weinstein and Johnson, 1999) Weinstein A., Johnson, W. C.: Designing and de-
livering superior customer value: concepts, cases, and applications. St. Lucie
Press, Boca Raton, FL, USA, (1999)

(Wohlin et al., 2000) Wohlin, C., von Mayrhauser, A., Höst, M. and Regnell, B.:
Subjective evaluation as a tool for learning from software project success. In-
formation and Software Technology, 42(14), pp 983–992, (2000)

200 Claes Wohlin, Aybüke Aurum

Author Biographies

Claes Wohlin is a professor in Software Engineering at the School of Engineering
at Blekinge Institute of Technology in Sweden. Prior to this, he has held professor
chairs in software engineering at Lund University and Linköping University. He
has an MSc in Electrical Engineering and a PhD in Communication Systems both
from Lund University, and he has five years of industrial experience. Dr. Wohlin
is co-Editor-in-Chief of the journal of Information and Software Technology pub-
lished by Elsevier. He is on the editorial boards of Empirical Software Engineer-
ing: An International Journal, and Software Quality Journal. Dr. Wohlin is the re-
cipient of the Telenor Nordic Research Prize in 2004 for his achievements in
software engineering and improvement of software reliability for telecommunica-
tion systems.

Aybüke Aurum is a senior lecturer at the School of Information Systems, Tech-
nology and Management, University of New South Wales. She received her BSc
and MSc in Geological Engineering, and MEngSc and PhD in Computer Science.
She is the founder and group leader of the Requirements Engineering Research
Group (ReqEng) at the University of New South Wales. She also works as a visit-
ing researcher in National ICT, Australia (NICTA). Her research interests include
management of software development process, software inspection, requirements
engineering, decision making and knowledge management.

10 Collaborative Usability Testing to Facilitate
Stakeholder Involvement

Ann L. Fruhling and Gert-Jan de Vreede

Abstract: Stakeholder involvement is an essential part of Value-Based Software
Engineering. A critical part of the software engineering life cycle concerns usabil-
ity testing. System usability refers to the effectiveness, efficiency, and satisfaction
with which users can use the system for their relevant tasks. Unfortunately stake-
holder involvement in usability testing is costly and challenging to organize. This
chapter presents a repeatable collaborative usability testing process supported by a
Group Support System that was developed and evaluated in a series of workshops
involving a real system. The results show that the collaborative usability testing
process facilitates stakeholder involvement through stakeholder expectation man-
agement, visualization and tradeoff analysis, prioritization of usability action
items, the use of advanced groupware tools, and a simple business case analysis.
Furthermore, the process can be considered productive and stakeholders reported
substantial levels of satisfaction with it.

Keywords: Usability, usability evaluation, usability testing, collaboration, Group
Support System, stakeholder value proposition elicitation, thinkLet, facilitation.

10.1 Introduction

Today, one of the major influencers of most systems’ cost, schedule, and value are
software decisions that are inextricably intertwined with system-level decisions
(Boehm, 2003). Among these system-level decisions is the system’s usability.
System usability is the extent to which a system can be used by specified users to
achieve specified goals with effectiveness, efficiency, and satisfaction in a speci-
fied context of use. System usability is linked to all stages of the software engi-
neering process (Mayhew, 1999). The Usability Engineering Lifecycle, proposed
by Mayhew (1999), is a holistic view of usability engineering and illustrates how
various usability tasks such as user profile, task analysis, prototyping, and usabil-
ity evaluation, are integrated into traditional software engineering approaches, ag-
ile methods, and object-oriented software engineering (Jacobson et al., 1992).

Systems with a high level of perceived usability are easy to learn and to use
(Nielsen and Mack, 1994). System usability concerns various aspects such as the
consistency and ease with which users can manipulate and navigate a Web site,
the clarity of the interaction, ease of reading, arrangement of information, speed,
and layout. Prior research overwhelmingly suggests that system usability is asso-
ciated with many positive outcomes, such as a reduction in the number of errors,
enhanced accuracy, a more positive user attitude toward the system, increased sys-

202 Ann L. Fruhling, Gert-Jan de Vreede

tem use, and increased user productivity, see e.g., (Lecerof and Paterno, 1998;
Nielsen, 1993). Furthermore, a recent study also found that system usability fac-
tors are essential elements in conveying the trustworthiness of a Web-based sys-
tem and do affect users’ perception of trust in personal relationship-based infor-
mation exchanges (Fruhling and Lee, 2004). In summary, system usability is a key
indicator for software engineering success.

A system’s perceived usability level is determined using usability evaluations.
Usability evaluations consider the users, the tasks, the equipment, the environ-
ment, and the relationships among them (Bevan and Macleod, 1994). Examples of
usability evaluation methods include observations, cognitive walk-throughs, inter-
views and surveys, heuristic evaluations, focus groups, usability testing, and labo-
ratory testing (Nielsen and Mack, 1994). These methods are not mutually exclu-
sive. In fact, using more than one method provides richer analysis and results. As
pointed out earlier, usability evaluation can occur throughout the software engi-
neering cycle (Nielsen, 1993). For example, Rubin (1994) classifies three types of
usability testing according to the point in the software engineering process:
1. Exploratory testing occurs early in the software engineering process. Its main

objective is to evaluate the preliminary design concepts.
2. Assessment testing occurs after the high-level system design has been estab-

lished. It seeks to evaluate how effectively the system functions have been im-
plemented.

3. Validation testing occurs prior to the release of the system. It compares system
performance to benchmark standards in time and effort required to complete a
task.

A common reason why system usability breaks down is lack of user input (i.e., a
value-oriented shortfall). Collaborative software engineering methods are one way
to increase the solicitation of user input in a cost-effective and efficient manner
(Dean et al., 1998). System developers often execute usability evaluation methods
in a group setting as this may increase stakeholder input and reduce bias; a single
stakeholder’s own behavior in using the system may not be representative of that
of the general user population. Collaborative usability evaluation can involve dif-
ferent types of stakeholders, often simultaneously – current and target users, us-
ability experts, system designers, and system owners – and, thus, capture valuable
insights from all stakeholders throughout the software engineering process.

The purpose of this research was to design a collaborative usability testing
process, called e-CUP, and evaluate it in the field. The e-CUP process enables us-
ability practitioners to actively involve different stakeholders and solicit their in-
put and build consensus through synthetic experience techniques, i.e., use scenar-
ios and prototypes. The collaborative usability testing process is an example of
how usability practitioners can begin to operationalize stakeholder value proposi-
tion elicitation and reconciliation, one of the value-based software engineering ap-
proach elements (Boehm, 2003), and in this case, also improve the likelihood that
the usability value of the system is considered throughout the software engineer-
ing cycle. Boehm suggests five approaches that are most effective for stakeholder
value proposition reconciliation which include 1) expectation management, 2)

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 203

visualization and trade-off analysis techniques, 3) prioritization, 4) groupware, and
5) business case analysis. As we will demonstrate, the collaborative usability test-
ing process that we present in this chapter aligns well with these five approaches
and successfully accommodates stakeholder value proposition elicitation.

The remainder of this chapter is structured as follows. The next two sections
provide an overview on usability testing and collaboration tools and techniques
that support collaborative usability testing. Section 10.4 discusses the research ap-
proach. Section 10.5 presents detailed information on e-CUP, the collaborative us-
ability testing process, followed by Section 10.6 which discusses the application
of the e-CUP process. Lastly, Section 10.7 concludes with a discussion on key in-
sights from this research that relate to value-based software engineering.

10.2 Usability Testing

Whitefield et al. (1991) classify different usability evaluation methods based on
how the user and system components are presented in the evaluation process (Fig-
ure 36). The system components can be real or representational. A real system
concerns the physical presence of the computer and software system or an ap-
proximation of it, such as a prototype. Thus a system, prototype, or simulation all
count as a real presence in the evaluation. A representational system refers to the
specifications of the user’s mental representation. For example, in questionnaires,
interviews, or during code inspection, users work with their symbolic mental rep-
resentations of the system. Users can also be real or representational. Real users
refer to actual users or approximations of them, such as student subjects. Repre-
sentational users concern descriptions or models of the user, such as a usability
expert.

Fig. 36. Different usability evaluation methods

Based on these two dimensions, Whitefield et al. (1991) distinguish four catego-
ries of usability evaluation methods:

204 Ann L. Fruhling, Gert-Jan de Vreede

1. Analytical methods, where both system and user are representational. An ex-
ample of an analytical method is a cognitive walk-through.

2. Specialist reports, which involves one or more people who are not real users as-
sessing a version of the real system. It could be Human Computer Interaction
(HCI) specialists who evaluate the design of a prototype using relevant hand-
books, guidelines, or their own experiences. Typical methods include check-
lists, guidelines, walk-throughs, or heuristic evaluations by specialists.

3. User reports involve real users and their mental representations of the system.
Methods typically involve questionnaires, interviews, or ranking methods.

4. Observational methods involve real users interacting with a real system. There
are many such methods, ranging from informal observation of a single user to
full-scale experimentation with appropriate numbers of subjects and control
variables. Observations can be conducted in a real working environment
(Newman and Lamming, 1995) or in usability laboratories (Nielsen, 1993).
Other examples of observational methods include “thinking aloud logging”
measuring actual user usage, and scenario-based usability evaluations.

The usability of many systems predominantly depends on the usability of the user
interface. This is the part of the system through which the user interacts with the
system either physically, perceptually, or conceptually (Nielsen and Mack, 1994).
User interfaces are most commonly critiqued using the following four usability
evaluation methods: heuristic evaluation, usability testing, software guidelines,
and cognitive walk-throughs (Jeffries et al., 1991). In the HCI field, heuristic
evaluation is one of the most commonly used methods. Compared to other meth-
ods, the heuristic evaluation method is a relatively low-cost quick method. Usabil-
ity heuristic factors are a common set of criteria used to evaluate software usabil-
ity. Heuristic evaluation involves having a user interface expert or a group of
experts with internalized knowledge of good user interface design principles study
an interface and, based on experience and training, identify potential areas of dif-
ficulty (Jeffries et al., 1991). Research has found that heuristic evaluation is the
most effective among several evaluation methods in identifying large numbers of
usability problems and serious problems, especially when conducted by usability
specialists (Jeffries et al., 1991). However, heuristic evaluation can also be con-
ducted by various stakeholders themselves after receiving a brief training (Lowry
and Robert, 2003; Nielsen, 1993).

A number of researchers have addressed collaborative aspects of usability
evaluation methods, especially with respect to heuristic evaluation. For example,
Muller et al. (1998) propose a ‘participatory’ extension to Nielsen’s heuristic
evaluation technique. They argue that users (work domain experts) should be in-
volved in the usability evaluation team. Nielsen and Molich (1990) found that a
more comprehensive list of heuristic usability problems is identified when the
number of evaluators consists of three to five people, rather than individuals work-
ing in isolation, who find significantly fewer usability problems. Lowry and Rob-
erts (2003) illustrated how collaborative software can support heuristic evaluation
in groups. They found that a group supported with collaborative software shared
more information, generated fewer duplicate heuristic usability problems, and

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 205

achieved consensus earlier. In addition, the usability evaluation results were in a
format from which system developers could identify and respond to the more im-
portant problems sooner. However, Lowry and Roberts (2003) also note that it ap-
pears that the use of collaborative software does not reduce the number of heuris-
tic evaluation errors or improve heuristic error categorization.

Like heuristic evaluation, it appears that usability testing could also benefit
from a collaborative perspective. Usability testing aims to identify and correct sys-
tem usability deficiencies prior to release to ensure that the systems are easy to
learn and to use, that they are satisfying to use, and that they provide utility and
functionality that are highly valued by the target user (Rubin, 1994). During us-
ability testing, various stakeholders in a software engineering project such as fu-
ture end users, usability experts, or developers may identify and plan to resolve
usability problems collaboratively. Although several authors present general out-
lines and practical tips on collaborative usability testing, see e.g., (Hammontree et
al., 1994; Lockwood, 2004), there appears to be a paucity of research in this area.
In particular, the literature offers very few concrete guidelines or step-by-step di-
rections on how to perform a collaborative usability evaluation workshop. What
does the agenda of a usability evaluation workshop look like? Which meeting
tools would be useful? How does one moderate such a workshop? Which brain-
storming and discussion techniques are expected to yield useful feedback? In this
chapter, we attempt to answer these and other questions by providing a detailed
description of a collaborative usability testing process that enables usability ex-
perts to actively involve different stakeholders during usability testing workshops
using state-of-the-art collaboration tools and techniques. Before presenting the ac-
tual process, we first discuss the collaboration technologies and techniques we
used as a basis as well as the way in which the process was developed.

10.3 Collaboration Tools and Techniques for Usability
Testing

Collaboration is the joint effort toward a goal (Kolfschoten et al., 2004). Collabo-
ration is a fundamental part of organizational life. Organizations face problems so
complex that no individual has the information and experience to solve a problem
alone. Individuals form teams and work groups to share information, solve prob-
lems, make decisions, and monitor actions. Unfortunately, group work is often
fraught with challenges that can lead to unproductive processes and failed efforts
(Nunamaker et al., 1991). The difficulties of teamwork are many, from poor
preparations to vague follow-through, from inarticulate goals to conflicting goals
among the team members, from loud talkers to free riders.

To address such challenges, many organizations and work groups turn to
groupware, technologies that support collaborative work (Ellis et al., 1991). Such
technologies range from e-mail to video conferencing and workflow management
systems. Group Support Systems (GSSs) are a special type of groupware. A GSS
is a suite of collaborative software tools that can be used to focus and structure a

206 Ann L. Fruhling, Gert-Jan de Vreede

team’s deliberation, while reducing cognitive costs of communication and infor-
mation access and minimizing distraction among teams that may consist of vari-
ous stakeholders working collaboratively towards a goal (Davison and Briggs,
2000). GSSs are designed to improve the efficiency and effectiveness of meetings
by offering a variety of tools to assist the group in the structuring of activities,
generating ideas, and improving group communications (Nunamaker et al., 1991;
Nunamaker et al., 1997). Although many commercial GSSs support distributed,
anytime anyplace collaboration, most groups use the technology to support face-
to-face workshops guided by a facilitator.

Groups can reap many potential benefits from using GSSs, for example broader
and more equal participation, faster input to discussions, and less individual inhi-
bitions to participate. Such benefits are often attributed to specific GSS functional-
ities: anonymity, parallel input, and group memory (Fjermestad and Hiltz, 1998):
1. Parallel communication: By using their own keyboard, participants can enter

ideas in parallel. In other words, every participant can talk at the same time.
2. Anonymous communication: A GSS does not indicate which participant submit-

ted which ideas or votes. In other words, participants communicate anony-
mously.

3. Group memory: During the meeting, the GSS stores all ideas and votes elec-
tronically.

There is a large body of research that shows that when used under the right condi-
tions, work groups can translate the potential benefits of GSSs into real organiza-
tional value. For overviews of this research see (Fjermestad and Hiltz, 1998;
Nunamaker et al., 1997). Previous studies on GSSs in general have reported labor
cost reductions averaging 50% and reductions of project calendar days averaging
90% (Grohowski et al., 1990; Post, 1993; Vreede et al., 2003b). Within the do-
main of software engineering, GSSs have demonstrated their value to support such
activities as requirements negotiation (Boehm et al., 2001; Grünbacher et al.,
2004), prototype evaluation (Dean et al., 1998; Vreede and Dickson, 2000), soft-
ware code inspection (Grünbacher et al., 2003, Genuchten et al., 2001), heuristic
evaluation (Lowry and Roberts, 2003), and data modeling (Dean et al., 1998).

However, successful applications of GSSs are not a given. GSS represent a
complex technology to assure success (Briggs et al., 2003a). There are many is-
sues that may undermine the success of a GSS intervention (Vreede et al., 2003a;
Vreede and Bruijn, 1999). The technology by itself is not the answer. What is
needed is the purposeful design of effective collaboration processes followed by
the selection or design of appropriate collaboration technologies to support these
processes (Vreede and Briggs, 2005). To this end, many groups rely on experi-
enced facilitators to design and conduct a GSS-supported collaboration process
(Griffith et al., 1998; Niederman et al., 1996).

When people collaborate, they move from one group activity to another, and
they accomplish the activity by moving through some combination of patterns of
collaboration (Briggs et al., 2003a). Therefore, the design of an effective collabo-
ration process should be based on the specific patterns of collaboration that one

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 207

wants a group to go through so that it completes a particular group activity. We
distinguish between five general patterns of collaboration (Briggs et al., 2003a):
1. Diverge: To move from a state of having fewer concepts to a state of having

more concepts. The goal of divergence is for a group to create concepts that
have not yet been considered. Brainstorming is an example of a divergence
process.

2. Converge: To move from a state of having many concepts to a state of having a
focus on, and understanding of, fewer concepts worthy of further attention. The
goal of convergence is for a group to reduce their cognitive load by reducing
the number of concepts they must address. A convergence process has at least
two components. The first concerns filtering – eliminating some concepts from
consideration. Filtering may be accomplished by eliminating concepts from
consideration or by abstracting multiple specific concepts into a more general
concept. The second concerns understanding – establishing shared meaning for
the concepts under consideration. This is important as different people fre-
quently understand the same term to represent different concepts.

3. Organize: To move from less to more understanding of the relationships among
the concepts. The goal of organization is to reduce the effort of a follow-on ac-
tivity. The group might, for example, organize a mixed list of ideas into a num-
ber of categories or arrange them into a hierarchical structure.

4. Evaluate: To move from less to more understanding of the benefit of concepts
toward attaining a goal relative to one or more criteria. The goal of evaluation
is to focus a discussion or inform a group’s choice based on a judgment of the
worth of a set of concepts with respect to a set of task-relevant criteria. For ex-
ample, an evaluation process may involve having a team use a five-point scale
to rate the merits of a set of alternatives.

5. Build Consensus: To move from having less to having more agreement among
stakeholders on courses of action. The goal of consensus building is to let a
group of mission-critical stakeholders arrive at mutually acceptable commit-
ments. For example, a consensus building process may allow a group to ex-
change arguments on a disputed issue leading to an outcome that all members
subscribe to.

When recording a design of a collaboration process that invokes a sequence of
these patterns of collaboration, the specific facilitation interventions to create
these patterns should be packaged such that they can be successfully recreated.
This can be achieved by recording the collaboration process as a sequence of thin-
kLets (Vreede and Briggs, 2005). ThinkLets are the smallest unit of intellectual
capital required to create a single repeatable, predictable pattern of collaboration
among people working toward a goal (Briggs et al., 2003a). Each thinkLet cap-
tures everything a facilitator has to prepare and do to invoke a particular pattern of
collaboration. A thinkLet frames a facilitation intervention in terms of three com-
ponents: a tool, a configuration of that tool, and a script (Briggs et al., 2003a). The
tool concerns the specific technology used to create the pattern of collaboration –
this can range from “post-it” notes and pencils to sophisticated collaboration tech-
nologies such as GSSs. The configuration defines how the tool is prepared (e.g.,

208 Ann L. Fruhling, Gert-Jan de Vreede

projected on a public screen), set up (e.g., configured so all contributions are
anonymous), and loaded with data before the start of the thinkLet (e.g., a set of
questions to which people must respond). The script concerns everything a facili-
tator would have to do and say to a group to move it through the thinkLet.

Table 16. Examples of thinkLets

Pattern ThinkLet Purpose

DealersChoice To have a group generate ideas on assigned topics.

LeafHopper To have a group brainstorm ideas regarding a
number of topics simultaneously. Diverge

TheLobbyist To let people briefly advocate their position on
complex issues before casting their vote.

Converge FastFocus

To have the group members extract a list of key is-
sues from a broad set of brainstorming results and
assure that they agree on the meaning and phrasing
of the items on the resulting list.

Organize RichRelations
To have a group uncover possible categories in
which a number of existing concepts can be organ-
ized.

Evaluate StrawPoll To have a group evaluate a number of concepts
with respect to a single criterion.

MoodRing To continuously track the level of consensus within
the group regarding a certain issue. Build

Consensus
CrowBar To have the group identify and discuss the reasons

for a lack of consensus on certain issues.

ThinkLets can be used as building blocks in the design of collaboration processes
(Kolfschoten et al., 2004). A sequence of thinkLets represents a design for a col-
laboration process. The collaborative usability testing process was developed us-
ing a limited set of thinkLets (see Table 16 for some examples). Before presenting
this process in detail, the next section describes the way in which we designed and
fine-tuned it.

10.4 Research Approach

The development and fine-tuning of our collaborative usability testing process was
executed following an action research strategy. Action research has the dual inten-
tion of improving practice and contributing to theory and knowledge (Argyris et
al., 2004; Checkland, 1981). We followed the action research process proposed by
Zuber-Skerritt (1991) that states that an action research study may consist of four
activities that can be carried out over several iterations. The first activity, ‘Plan’,

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 209

concerns exploration of the research site and the preparation of the intervention.
Next, ‘Act’ refers to the actual intervention made by the researcher. The ‘Observe’
activity concerns the collection of data during and after the actual intervention to
enable evaluation. Finally, the ‘Reflect’ activity analyzes the collected data and in-
fers conclusions regarding the intervention that may feed into the ‘Plan’ activity of
a new iteration.

Action research was employed for several reasons. First, action research is es-
pecially appropriate to address ‘how to’ research questions. Our research aimed to
explore and develop ways in which collaboration techniques and tools could sup-
port collaborative usability testing. We wanted to develop a collaboration process
and evaluate its application in practice. Second, the continuous design and evalua-
tion of a collaboration process was considered too complex to be studied in a con-
structed setting. Third, action research is very well suited for continuous learning.
It allows researchers to evaluate and improve their problem solving techniques or
theories during a series of interventions. In our research, we ran a number of us-
ability testing workshops using the repeatable collaboration process. The experi-
ences from each workshop resulted in minor and major changes to the collabora-
tion process that were effectuated immediately. Finally, as far as we knew at the
initiation of the project, very little work had been conducted on the use of GSS,
thinkLets, and designing a repeatable collaboration process in the context of us-
ability testing.

To allow for analysis and reflection on our research activities, we collected data
from a number of quantitative and qualitative sources:
• Direct observation. The researchers notes of incidents, participants’ remarks,

and events that conveyed critical information.
• Interviews. The researchers held short open-ended interviews with a number of

workshop participants.
• Questionnaires. Each workshop participant was asked to fill out a questionnaire

afterward in order to measure this perception on a number of issues.
• Session data. The results of each group session were stored electronically.

These files were used to trace the flow of information exchange during the ses-
sions, typical meeting behavior, and other events.

Observation notes, interview results, and questionnaire data were kept in a re-
search diary. Both researchers contributed personal insights to this diary as well.
The variety of data sources gave a rich representation and enabled an in-depth re-
flection on our experiences with the collaboration process. The role of the re-
searchers was that of observer and facilitator. Both researchers worked together in
designing and refining the collaborative usability process. One researcher facili-
tated each of the workshops. This included preparing an agenda for each work-
shop and moderating it. The other researcher provided content expertise on the
application that was the topic of the usability test. This researcher guided the ap-
plication’s development and could therefore readily answer any application-
related questions during the workshops.

210 Ann L. Fruhling, Gert-Jan de Vreede

10.5. The e-CUP process

The collaborative usability testing process we developed is called e-CUP (elec-
tronic-Collaboration Usability Process). E-CUP is a repeatable process that a us-
ability practitioner can execute to perform and facilitate collaborative usability
testing. The process is executed in two steps: Preparation and workshops. During
the preparation, the usability practitioner has to determine two issues (see Fig-
ure 37):
• Determination of relevant usability aspects. The usability practitioner has to

decide which usability aspects to include in the usability testing process, e.g.,
ease of use, user control and freedom, consistency and standards, or help and
documentation (Nielsen, 1993). This decision is informed by literature on us-
ability and the characteristics of the system under investigation.

• Determination of use scenarios. The usability practitioner has to develop one or
more use scenarios that the stakeholders will execute during the usability test-
ing. Their execution of these scenarios will trigger the stakeholders’ usability
feedback.

Fig. 37. The collaborative usability testing process

The workshop part of e-CUP consists of a series of thinkLets that lead the group
of stakeholders through a structured sequence of activities in which the stake-
holders test the system’s usability and provide detailed feedback. The process is
depicted in Figure 38. Each activity is represented by a rectangle that identifies the
activity (bottom-right part), the thinkLet used (top part), and the pattern of col-
laboration that is created (left part). Arrows represent the direction of the process
flow.

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 211

Fig. 38. The e-CUP workshop process

An e-CUP workshop consists of two phases. The problem phase starts with the
stakeholders executing a use scenario (i.e., testing the system) with the system un-
der investigation. Next their feedback is solicited with respect to relevant usability
aspects that the usability practitioner has determined in advance. To this end, the
stakeholders are presented with a sequence of brainstorming questions, each ad-
dressing a particular usability aspect. Each time they enter a response, a new ques-
tion is presented to them. During the course of this activity, earlier responses are
visible for stakeholders for ideas.

During the next activity, stakeholders identify the key usability problems based
on the brainstorming results. This is done by having individual stakeholders distill
the key usability problems from a subset of the brainstorming results. The descrip-
tion of each usability problem is discussed and fine-tuned resulting in a meaning-
ful, concise statement of the problem that all stakeholders understand. The result-
ing list of usability problems is then prepared for prioritization. To this end, two
activities take place. First, the stakeholders get the opportunity to share their
thoughts through the GSS on the urgency with which these problems have to be
addressed. Second, each stakeholder is allowed to briefly and verbally lobby for

212 Ann L. Fruhling, Gert-Jan de Vreede

one of the usability problems. Then the group prioritizes the identified key prob-
lems by selecting the most urgent ones. The results are displayed for the group to
review.

Based on the results, differences of opinion among the participants are addres-
sed during two consensus building activities. First, the stakeholders are triggered
to explore reasons for disagreements without revealing how they voted them-
selves. Second, based on an increased understanding of the (urgency of) a particu-
lar usability problem, the group takes a new vote on it. Finally, the problem phase
is concluded by having the participants fill out a usability questionnaire that col-
lects the stakeholders’ assessment of the system’s usability in a number of relevant
areas. This provides the usability practitioner with a high-level quantitative as-
sessment of the key usability focus areas identified during the preparation of e-
CUP.

In the problem phase of e-CUP stakeholders can identify which usability prob-
lems have to be fixed. Often there are different solutions available to resolve these
problems. The purpose of the solution phase of e-CUP is to engage the group of
stakeholders in identifying the key directions for improving the usability of the
system under investigation. The phase starts by asking the stakeholders to identify
possible usability improvements in a number of relevant areas. These may be di-
rectly related to the usability problems identified in the previous phase. From the
brainstorming results, the stakeholders converge on the key improvement sugges-
tions and work on establishing shared understanding. The brainstorming and con-
vergence procedures are the same as at the start of the problem phase.

Next, the stakeholders’ feedback is solicited regarding the expected costs and
benefits of implementing each improvement – to the extent that the stakeholders
are capable of making such an assessment. They give their feedback by entering it
as comments to the individual improvements. Before they actually prioritize the
improvements in terms of expected effectiveness and ease of implementation,
each stakeholder has the opportunity to verbally highlight the improvement he fa-
vors most. The results are displayed for all stakeholders to see. Differences of
opinion are addressed using the same two consensus building activities as in the
problem phase. The solution phase is concluded by having the stakeholders iden-
tify a number of further action items for the top priority improvements. They do
this by entering the action items as comments to the particular improvements.

Overall, e-CUP has three distinct features. First, it moves the stakeholders from
identifying problems to thinking about solutions. Yet, a usability practitioner can
also decide to start the process in the solution phase if certain usability problems
are defined beforehand. Second, both phases move the stakeholders from diver-
gence (brainstorming) to convergence (clearly defining key contributions). The
reason for this is allowing stakeholders to share all the information they wish to,
yet at the same time making sure that the usability practitioner will leave the
workshop with a clear understanding of what the group as a whole thinks are the
key issues. Finally, in both phases, the usability practitioner has the possibility to
let the group not only identify key issues, but also prioritize them. This enables the
usability practitioner to walk away with a prioritized ‘to-do’ list.

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 213

10.6 Application of e-CUP

In this section we first introduce the application that was evaluated using the e-
CUP process. Then we present background information on the series of workshops
that were executed following the e-CUP process. Finally we reflect on the experi-
ences and findings from these workshops.

The Application: STATPack

The e-CUP process was evaluated in the field by testing the usability of STAT-
Pack: the Secure Telecommunications Application Terminal Package. STATPack
is an ongoing effort to address critical health communication and biosecurity
needs in Nebraska. STATPack is a secure, dedicated, HIPPA-compliant, Web-
based network system that supports telecommunication connectivity of clinical
health laboratories in Nebraska to the Nebraska Public Health Lab (NPHL). Based
on client/server technology, the system operates in a distributed environment con-
necting state-wide health laboratories. This connectivity allows for immediate
communication and data transfer of urgent health information by transmitting im-
ages and text. For example, when a rural laboratory is processing a “suspicious”
organism growing from a culture, STATPack allows for immediate consultation
with the NPHL. The system was intended to help clinical laboratories in Nebraska
become more prepared for a bioterrorism event or other public health emergen-
cies.

Fig. 39. STATPack can transmit images of cultures

STATPack consists of a computer terminal which includes a flat screen, a virtu-
ally indestructible and sanitizable keyboard, speakers and a high-resolution digital
camera that can capture images of specimen. Along with descriptive text, these

214 Ann L. Fruhling, Gert-Jan de Vreede

images can be sent to the NPHL for consultation (Figure 39). Should a serious
situation need to be communicated to the labs, STATPack enables NPHL to send
notices to each lab including an audible computer alarm. It was critical that
STATPack provide an easy to learn user interface for the health laboratorians and
the NPHL staff. Currently, STATPack has been deployed to six Nebraska health
laboratories.

The STATPack Usability Workshops

A series of three workshops was organized to evaluate various usability aspects of
STATPack using e-CUP (Table 17). Each workshop had its own agenda and pur-
pose, but all three followed a continuous part of the e-CUP process. Each work-
shop was facilitated by the same facilitator (one of the researchers).

Table 17. Background information on the workshops

Workshop Stakeholders Focus Number of
stakeholders

Length
(hrs)

1 Usability analysts Problems 12 1.25
2 System Advocates and Developers Solutions 6 2.00
3 End Users Solutions 4 1.50

The three workshops involved different types of stakeholders. Stakeholders in the
first workshop were undergraduate students enrolled in an HCI class. They repre-
sented usability analysts as they had received considerable training in usability
guidelines and evaluation techniques and had completed four usability assess-
ments before looking at STATPack. Given the stakeholders’ expertise, the first
workshop focused on the identification of key usability problems with STATPack,
based on the execution of three use scenarios. Therefore, only the first phase of e-
CUP was executed.

Stakeholders in the second workshop consisted of people working at the NPHL
and people responsible for the development of STATPack. The goal of the second
workshop was to identify functional and presentation enhancements from a high-
level perspective. At the beginning of the workshop, the stakeholders went
through a general use scenario as most of them were familiar with the application.
Given time constraints and the technical and domain expertise of this group of
stakeholders, only the second phase of the e-CUP process was executed.

The stakeholders in the third workshop were lab technicians in a regional hos-
pital health lab who had some knowledge of STATPack. The goal of this work-
shop was to identify functional and presentation enhancements from an end user
perspective. At the beginning of the workshop, stakeholders went through a short
general use scenario to refresh their memory of using the application. As we felt
that the end users were better equipped to provide solutions in their own language
and terminology that would fit their work environment best, only the second phase
of the e-CUP process was executed.

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 215

Fig. 40. STATPack e-CUP workshops

The first two workshops were executed at the University of Nebraska at Omaha
(Figure 40). A meeting room with a horseshoe-shaped table was equipped with ten
networked laptops running a GSS (GroupSystems Workgroup Edition 3.4) and
with four STATPack clients. An additional laptop was attached to a projector, dis-
playing aggregated information from the group. Stakeholders were seated one per
laptop for GSS use and approximately two per STATPack client for scenario exe-
cution. The third workshop was conducted in an actual lab environment (Figure
40). The stakeholders shared the single STATPack client that was present in the
lab. Each stakeholder had a laptop for GSS use. There was no projector to display
group results, as the workspace where the STATPack client is located was too
small.

Experiences from the Workshops

During the execution of the workshops, a number of observations were made with
respect to the structure of the process and specific thinkLets that were chosen.
Some of these insights led to minor modifications in the process after the first and
second workshop. Thus, we stayed true to the action research cycle: observation
and reflection occurred before a new intervention was planned and executed.

From the stakeholders’ perspective the e-CUP workshops appeared to be suc-
cessful. Their feedback indicated that they were satisfied and considered the work-
shops to be very useful. The stakeholders in all workshops liked working with the
GSS, although in some instances there was some (initial) apprehension. For ex-
ample, the stakeholders in the third workshop were a little hesitant at first. How-
ever, after a few minutes of exposure they appeared to enjoy working with the
GSS. We used a validated meeting satisfaction questionnaire (Briggs et al., 2003b)
to measure the stakeholders’ perceived satisfaction in each workshop on a scale of
1-7, 7 most positive. The reported values in Table 18 are compound values for
four questions per satisfaction construct.

216 Ann L. Fruhling, Gert-Jan de Vreede

Table 18. Satisfaction in the e-CUP workshops

 Workshop
 1 2 3

Avg 5.3 5.8 6.6 Satisfaction with process Std 1.2 1.0 0.5
Avg 4.7 5.5 6.3 Satisfaction with outcomes Std 1.1 0.8 0.6

As the results show, the stakeholders had rather positive levels of satisfaction. Es-
pecially the end users in the final workshop were very satisfied with the process
and outcomes of their meeting. They felt empowered as they had been able to
share all feedback that they considered relevant and crucial. The results further
show that satisfaction levels, both with process and outcomes, are higher for
stakeholders that have a personal interest in the application, i.e., stakeholders in
workshops 2 and 3. Stakeholders in the second workshop especially applauded the
efficiency of the process and their ability to address all issues they felt strongly
about.

From the developers’ perspective, the workshops yielded valuable feedback
that was both detailed and actionable. Table 19 gives an overview of the produc-
tivity in each of the three workshops in terms of the number of usability contribu-
tions that were generated by the stakeholders.

Overall, the stakeholders provided a fair number of contributions in the rela-
tively short time that was provided during the workshops. Especially the number
of unique contributions is encouraging. Upon closer examination of the productiv-
ity figures, it appeared that there is a relatively small difference between the total
number of contributions and the number of unique contributions. Our observations
and stakeholders’ feedback suggest that this was probably due to the fact that the
stakeholders brought different perspectives and opinions to the workshop. Stake-
holders indicated that they had had sufficient time to share their feedback. It also
appeared that the stakeholders’ productivity increased with increased familiarity
with the application. The stakeholders in the second workshop had been involved
most directly in the development of the STATPack and hence had the most thor-
ough understanding of it.

Table 19. Productivity in the e-CUP workshops

 Workshop
 1 2 3
Total contributions 84 88 33
Total per stakeholder 7.0 14.7 8.3
Unique contributions 76 79 27
Total unique per stakeholder 6.3 13.2 6.8
Converged contributions 16 22 5
Converged per stakeholder 1.3 3.7 1.3

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 217

It was also interesting to see that the number of converged contributions represents
a considerable reduction compared to the number of unique contributions. Stake-
holders’ feedback and analysis of the workshop data suggest that this was due to a
number of reasons. First, some converged ideas were formulated on a higher level
of abstraction, thereby encompassing several unique brainstorming contributions.
Second, the converged contributions did not cover the complete range of unique
contributions caused by the somewhat limited time for the convergence activity
during the workshops (especially workshop 1). Third, the stakeholders indicated
that they did not find each unique contribution important enough to become part
of the set of ‘key’ (converged) contributions. Yet from the experiences in the three
workshops, it appears that the convergence activities are the most crucial part of
the process with respect to creating high quality results. Although most of the
brainstorming contributions were very useful, they were also often very sketchy
and somewhat hard to understand. The convergence activities took care of these
shortcomings by allowing the group to arrive at a joint focus and joint understand-
ing of key usability issues or suggestions. It may not be surprising that the conver-
gence activities took the most time in the process. Also, it was felt that it required
the most ‘facilitation skill’ as it often involved animated discussions between
stakeholders.

Finally, in terms of the applicability of the e-CUP process it was interesting to
find confirmation that the process can accommodate different usability perspec-
tives. The first two STATPack workshops focused on different usability aspects:
the first dealt with more general usability aspects, whereas the second focused
more on a number of detailed issues. The general structure of the e-CUP process
allows for a set of relevant usability aspects to be selected during the preparation
step for a particular workshop and ‘inserted’ into the process flow by the usability
practitioner. In other words, the e-CUP process appears to be useful in collabora-
tive settings to test a broad range of usability aspects. However, we also found that
the usability practitioner has to exercise considerable care in this part of the prepa-
ration: Analysis of the brainstorming contributions revealed that stakeholders’
feedback on specific (detailed) usability questions appeared to be more actionable
for the STATPack development team than feedback on more general issues. This
implies that usability practitioners have to pay sufficient attention to formulating
detailed or descriptive questions during the preparation of the workshop.

10.7 Conclusion

Evaluating a new application’s usability is crucial in systems development. It is
often done collaboratively, involving groups of current or future users, usability
experts, systems designers, and/or system owners. This presents an interesting
challenge: what should a repeatable collaborative usability testing process look
like? The goal of our research was to design such a collaborative usability testing
process, called e-CUP, and evaluate it in the field. We did so in the context of a
series of usability workshops focused on the evaluation of a particular application,

218 Ann L. Fruhling, Gert-Jan de Vreede

STATPack. The results indicate that e-CUP is promising in terms of workshop
productivity, stakeholder satisfaction, and applicability for a broad range of usabil-
ity aspects.

Moreover, e-CUP substantiates Boehm’s (2003) five approaches for effective
stakeholder value proposition elicitation in different ways:
• Expectation Management: During the e-CUP workshops, various stakeholders

have the opportunity to get acquainted with other stakeholders’ suggestions and
requests. E-CUP facilitates awareness of each stakeholder’s desired usability
capabilities of the system. This awareness is further enhanced by allowing
stakeholders to lobby for and debate over the priority with which certain usabil-
ity problem statements and improvements should be dealt with. The results of
the collaborative prioritization of the usability problems and improvements
helps the stakeholders to understand which action items will receive precedence
over others.

• Visualization and Trade-off Analysis: e-CUP is executed using scenarios and
prototype of the system under usability investigation. This way, comments and
issues regarding the system that are raised by the stakeholders can immediately
be corroborated. For example, the STATPack prototype’s presence during the
workshop allowed stakeholders to obtain a mutual understanding of which as-
pects of the application were the most important and achievable. One illustra-
tion concerns the need for improvement of the images captured by the camera.
This was clearly visible to all. This improvement need ‘bubbled up’ during the
discussion and ended up as one of the top improvement priorities. Using a
common scenario and the stakeholders’ possibility to actively interact with the
tested system provides a foundation for discussing the key usability problems
and more achievable usability improvements. With e-CUP this is further sup-
ported by allowing the stakeholders to vote on prioritizing improvements in
terms of necessity (effectiveness) and ease of implementation (cost). This al-
lows stakeholders to identify the ‘low hanging fruits’ (Boehm et al., 2001).

• Prioritization: e-CUP, as stated above, accommodates the expression of prefer-
ences by stakeholders. The individual preferences are combined so that all
stakeholders can observe areas of sufficient or insufficient consensus. This in-
sight facilitates clarification and consensus building through discussion. The
process results in an agreed upon priority list of usability action items.

• Groupware: The workshop part of e-CUP is completely supported with GSS.
The thinkLets that together make up the process specify exactly which GSS
tools have to be used and how they have to be configured. The use of a GSS
enables productive brainstorming, discussion, and win-win negotiation of con-
flict situations during the session. This is consistent with earlier research on
GSS in value-based software engineering; see, e.g., (Boehm et al., 2001; Dean
et al., 1998).

• Business Case Analysis: As stated above, e-CUP accommodates the stake-
holders to take both expected effectiveness and ease of implementation into ac-
count when stating their preferences. The results provide stakeholders with a
quick and efficient way to consider the best return on investment of proposed
action items.

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 219

Notwithstanding the promising results, there are a number of limitations that have
to be considered when interpreting our findings. First, the e-CUP process was de-
signed in an evolutionary fashion. After each workshop, slight changes were made
that were effectuated in the next workshop. Therefore, the process presented
should be considered to be a first release. Future modifications and enhancements
are expected. Second, we were only able to evaluate e-CUP in a limited number of
workshops and with a limited number of end users (workshop 3). It may well be
that future evaluation with more end users will lead to additional insights and
changes to the process. Third, we have only been able to test the process with a
single system, STATPack. Usability tests of other systems will have to be per-
formed to allow for a more substantial evaluation of the process. Finally, the e-
CUP process itself should not be considered to be without limitations. The quality
of the process depends on the quality of the workshop participants. It is recom-
mended to combine e-CUP with other, complimentary, usability testing ap-
proaches to accomplish a thorough evaluation of a system’s usability.

We envision the following directions for future research. First, we are planning
to explore the applicability of the e-CUP process for other applications and sys-
tems. Second, it would be interesting to study the e-CUP process’ outcome quality
compared to ‘traditional’ usability testing approaches. This could, for example,
focus on content analysis of the results of a usability test of the same application
using e-CUP and other approaches.

References

(Argyris et al., 2004) Argyris, C., Putnam, R., MacLain Smith, D.: Action science.
(Jossey-Bass, San Francisco 2004)

(Bevan and Macleod, 1994) Bevan, N., Macleod, M.: Usability measurement in
context. Behavior and Information Technology. 13(1&2), pp 132–145 (1994)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes. 28(2), pp 1–12 (2003)

(Boehm et al., 2001) Boehm, B. W., Grünbacher, P., Briggs, R.O.: Developing
Groupware for Requirements Negotiation: Lessons Learned. IEEE Software.
18(3), pp 46–55 (2001)

(Briggs et al., 2003a) Briggs, R.O, Vreede, G.J. de, Nunamaker, J.F. Jr.: Collabo-
ration engineering with thinkLets to pursue sustained success with Group Sup-
port Systems. Journal of MIS. 19(4), pp 31–63 (2003)

(Briggs et al., 2003b) Briggs, R.O., Vreede, G.J. de, Reinig, B.A.: A Theory and
Measurement of Meeting Satisfaction. In: Proceedings of the 37th Hawaiian
International Conference on System Sciences, ed by Sprague, R.H. Jr. (IEEE
Computer Society Press, Los Alamitos 2003), pp 25–32

(Checkland, 1981) Checkland, P.B.: Systems thinking, systems practice. (Wiley,
Chichester 1981)

220 Ann L. Fruhling, Gert-Jan de Vreede

(Davison and Briggs, 2000) Davison, R.M., Briggs, R.O.: GSS for Presentation
Support. Communications of the ACM. 43(9), pp 91–97 (2000)

(Dean et al., 1998) Dean, D.L., Lee, J.D., Pendergast, M.O., Hickey, A.M.,
Nunamaker, J.F. Jr.: Enabling the effective involvement of multiple users:
methods and tools for collaborative software engineering. Journal of Manage-
ment Information Systems. 14(3), pp 179–222 (1998)

(Ellis et al., 1991) Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware: Some issues
and experiences. Communications of the ACM. 34(1), pp 38–58 (1991)

(Fjermestad and Hiltz, 1998) Fjermestad, J., Hiltz, S.R.: An assessment of group
support systems experimental research: Methodology and results. Journal of
Management Information Systems. 15(3), pp 7–149 (1998)

(Fruhling and Lee, 2004) Fruhling, A., Lee, S.: Examining HCI usability factors
affecting consumers’ trust in e-health services. In: Proceedings of the Hawaii
International Conferences on Computer Sciences, ed by Gregson, T., Yang,
D., Burg, E. (Hawaii International Conferences on Computer Sciences, ISSN
#1545–6722 2004), pp 141–158

(Genuchten et al., 2001) Genuchten, M. van, Dijk, C. van, Scholten, H., Vogel, D.:
Using group support systems for software inspections. IEEE Software. 18(3),
pp 60–65 (2001)

(Griffith et al., 1998) Griffith, T., Fuller, M., Northcraft, G.: Facilitator Influence
in GSS. Information Systems Research. 9(1), pp 20–36 (1998)

(Grohowski et al., 1990) Grohowski, R., McGoff, C., Vogel, D., Martz, B., and
Nunamaker, J.F. Jr.: Implementing electronic meeting systems at IBM: Les-
sons learned and success factors. MIS Quarterly. 14(4), pp 327–345 (1990)

(Grünbacher et al., 2004) Grünbacher, P., Halling, M., Biffl, S., Kitapci, H.,
Boehm, B. W.: Integrating Collaborative Processes and Quality Assurance
Techniques: Experiences from Requirements Negotiation. Journal of Man-
agement Information Systems. 20(4), pp 9–29 (2004)

(Grünbacher et al., 2003) Grünbacher, P., Halling, M., and Biffl, S.: An empirical
study on groupware support for software inspection meetings. In: Proceedings
of 18th IEEE International Conference on Automated Software Engineering,
Montreal, Canada, (IEEE CS Press, Los Alamitos 2003), pp 4–11

(Hammontree et al., 1994) Hammontree, M., Weiler, P., Nayak, N.: Remote Us-
ability Testing. Interactions. July. 1(3), pp 21–25 (1994)

(Jacobson et al., 1992) Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.:
Object-Oriented Software Engineering – A Use Case Driven Approach. (Addi-
son-Wesley, Harlow, UK 1992)

(Jeffries et al., 1991) Jeffries, R., Miller, J.R., Wharton, C., Uyeda, K.M.: User in-
terface evaluation in the real world. Communications of the ACM. 44(3),
pp 199–124 (1991)

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 221

(Kolfschoten et al., 2004) Kolfschoten, G.L, Briggs, R.O., Appelman, J.H.,
Vreede, G.J. de: ThinkLets as Building Blocks for Collaboration Processes: A
Further Conceptualization. In: Proceedings of CRIWG2004, ed by Vreede, G.J.
de, Guerrero, L., Marin, G., Costa Rica, Lecture Notes in Computer Science
vol 3198 (Springer, Berlin Heidelberg New York 2004)

(Lecerof and Paterno, 1998) Lecerof, A., Paterno, F.: Automatic support for us-
ability evaluation. IEEE Transactions on Software Engineering. 24: pp 863–
887 (1998)

(Lockwood, 2004) Lockwood, L.: Collaborative Usability Inspections: Finding
Usability Defects Efficiently and Cost-Effectively. In: Proceedings of the 2004
Usability Professionals’ Association Conf. (2004)

(Lowry and Roberts, 2003) Lowry, P., Roberts, T.: Improving the usability eval-
uation technique, heuristic evaluation, through the use of collaborative soft-
ware. In: Proceedings of the 9th Americas Conference on Information Systems
(AMCIS). 2203–2211 (2003)

(Mayhew, 1999) Mayhew, D.J.: The Usability Engineering Lifecycle (Morgan
Kaufman, San Francisco 1999)

(Muller et al., 1998) Muller, M., Matheson, L., Page, C., Gallup, R.: Participatory
Heuristic Evaluation. Interactions. September–October, pp 13–18 (1998)

(Newman and Lamming, 1995) Newman, W.M., Lamming, M.G.: Interactive sys-
tem design (Addison-Wesley, Cambridge, MA 1995)

(Niederman et al., 1996) Niederman, F., Beise, C.M., Beranek, P.M.: Issues and
Concerns about Computer-Supported Meetings: The Facilitator’s Perspective.
MIS Quarterly. 20(1), pp 1–22 (1996)

(Nielsen, 1993) Nielsen, J.: Usability Engineering (Academic Press, New York
1993)

(Nielsen and Mack, 1994) Nielsen, J., Mack, R.: Usability inspection methods
(Wiley, New York 1994)

(Nielsen and Molich, 1990) Nielsen, J., Molich, R.: Teaching user interface design
based on usability engineering. ACM SIGCHI Bulletin. 21(1), pp 45–48
(1990)

(Nunamaker et al., 1991) Nunamaker, J., Dennis, A., Valacich, J., Vogel, D.,
George, J.: Electronic Meeting Systems to Support Group Work. Communica-
tions of the ACM. 34(7), pp 40–61 (1991)

(Nunamaker et al., 1997) Nunamaker, J.F. Jr., Briggs, R.O., Mittleman, D., Vogel,
D., Balthazard, P.A.: Lessons from a Dozen Years of Group Support Systems
Research: A Discussion of Lab and Field Findings. Journal of MIS. 13(3),
pp 163–207 (1997)

(Post, 1993) Post, B.Q.: A Business Case Framework for Group Support Technol-
ogy. Journal of MIS. 9(3), pp 7–26 (1993)

(Rubin, 1994) Rubin, J.: Handbook of Usability Testing (Wiley, New York 1994)

222 Ann L. Fruhling, Gert-Jan de Vreede

(Vreede and Briggs, 2005) Vreede, G.J. de, Briggs, R.O.: Collaboration Engineer-
ing: Designing Repeatable Processes for High-Value Collaborative Tasks. In:
Proceedings of the 38th Hawaiian International Conference on System Sci-
ences, ed by Sprague, R.H. Jr. (IEEE CS Press, Los Alamitos 2005) p 17c

(Vreede and Bruijn, 1999) Vreede, G.J. de, Bruijn, H. de: Exploring the Bounda-
ries of Successful GSS Application: Supporting Inter-Organizational Policy
Networks. DataBase. 30(3–4), pp 111–131 (1999)

(Vreede and Dickson, 2000) Vreede, G.J. de, G.W. Dickson: Using GSS to Sup-
port Designing Organizational Processes and Information Systems: An Action
Research Study on Collaborative Business Engineering. Group Decision and
Negotiation. 9(2), pp 161–183 (2000)

(Vreede et al., 2003a) Vreede, G.J. de, Davison, R., Briggs, R.O.: How A Silver
Bullet May Lose Its Shine – Learning from Failures with Group Support Sys-
tems. Communications of the ACM. 46(8), pp 96–101 (2003)

(Vreede et al., 2003b) Vreede, G.J. de, Vogel, D.R., Kolfschoten, G., Wien, J.S.:
Fifteen years of in-situ GSS use: A comparison across time and national
boundaries. In: Proceedings of the 36th Hawaiian International Conference on
System Sciences, ed by Sprague, R.H. Jr. (IEEE Computer Society Press, Los
Alamitos 2003), pp 9–17

(Whitefield et al., 1991) Whitefield, A., Wilson, F., Dowell, J.: A framework for
human factors evaluation. Behavior and Information Technology. 10(1),
pp 65–79 (1991)

(Zuber-Skerritt, 1991) Zuber-Skerritt, O.: Action research for change and devel-
opment (Gower Publishing, Aldershot 1991)

Author Biographies

Ann L. Fruhling is an Assistant Professor in the Computer Science department in
the College of Information Science and Technology at the University of Nebraska
at Omaha (UNO). Dr. Fruhling’s research includes human-computer interaction
usability, user interface design, software engineering methodologies, e-health trust
issues, and software engineering solutions for biosecurity decision support appli-
cations. Previously, she was the Director of the Computer Information Manage-
ment and Telecommunications Systems Management programs at College of Saint
Mary (CSM). Prior to her academic career, Dr. Fruhling was an information tech-
nology professional at Texas Instruments, Mutual of Omaha, Commercial Federal
Savings Bank, and AT&T.

Gert-Jan de Vreede is a Professor at the Department of Information Systems &
Quantitative Analysis at the University of Nebraska at Omaha where he is director
of the Peter Kiewit Institute’s Consortium for Collaboration Engineering. He is
also affiliated with the Faculty of Technology, Policy and Management of Delft
University of Technology in the Netherlands from where he received his PhD. His

10 Collaborative Usability Testing to Facilitate Stakeholder Involvement 223

research focuses on the application, adoption, and diffusion of collaboration tech-
nology in organizations, the development of repeatable collaboration processes,
facilitation of group meetings, and the application of collaboration technology in
different socio-cultural environments.

11 Value-Based Management of Software Testing

Rudolf Ramler, Stefan Biffl and Paul Grünbacher

Abstract: Testing is one of the most resource-intensive activities in software de-
velopment and consumes between 30 and 50% of total development costs accord-
ing to many studies. Testing is however often not organized to maximize business
value and not aligned with a project’s mission. Path, branch, instruction, mutation,
scenario, or requirement testing usually treat all aspects of software as equally im-
portant, while in practice 80% of the value often comes from 20% of the software.
In order to maximize the return of investment gained from software testing, the
management of testing needs to maximize its value contribution. In this chapter
we motivate the need for value-based testing, describe practices supporting the
management of value-based testing, outline a framework for value-based test
management, and illustrate the framework with an example.

Keywords: Value-based software engineering, value-based testing, cost of testing,
benefits of testing, test management.

11.1 Introduction

Testing is one of the most important and most widely used approaches for valida-
tion and verification (V&V). V&V aims at comprehensively analyzing and testing
software to determine that it performs the intended functions correctly, to ensure
that it performs no unintended functions, and to measure its quality and reliability
(Wallace and Fujii, 1989). According to IEEE 610.12 (1990) testing is defined as
“an activity in which a system or component is executed under specified condi-
tions, the results are observed or recorded, and an evaluation is made of some as-
pect of the system or component.”

Testing is widely used in practice and plays a central role in the quality assur-
ance strategies of many organizations. As software pervades more and more criti-
cal tasks and affects everyday life, security, and well being of millions of people
(Ferscha and Mattern, 2004), the importance of testing will increase in the future.
Studies show that testing already consumes between 30 and 50% of software de-
velopment costs (Beizer, 1990). Even higher percentages are not uncommon for
safety-critical systems. Finding more efficient ways to perform effective testing is
therefore a key challenge in testing (Harrold, 2000).

Managing software testing based on value considerations promises to tackle in-
creasing testing costs and required effort. Value-based test management could also
provide guidance to better align testing investments with project objectives and
business value. In Chapter 1, Boehm presents an impressive example of potential
test cost savings (on project level as well as on global scale) by focusing testing on
the most valuable aspects. The example illustrates that with an investment-

226 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

oriented focus on testing 7% of the customer billing types (1 in 15) achieved 50%
of the benefits of testing the software. Completely testing the system requires a
constantly increasing effort and, due to decreasing marginal benefits, results in a
negative return on investment. Although a “100% tested” status is not a practical
goal, there is still room for a considerable amount of improvement and savings by
better adjusting testing to its value contribution.

The motivation for value-based software engineering comes from the fact that
“much of current software engineering practice and research is done in a value-
neutral setting, in which every requirement, use case, object, and defect is treated
as equally important” (Boehm, 2003). This is especially true for testing, where its
indirect contribution to product value leads to a value-neutral perception of test-
ing. The common separation of concerns between development and testing exac-
erbates the problem. Testing is often reduced to a purely technical issue leaving
the close relationship between testing and business decisions unlinked and the po-
tential value contribution of testing unexploited.

The objectives of this chapter are to motivate the need for value-based man-
agement of testing, to explain its underlying elements, to discuss existing practices
that support value-based testing, and to outline a general framework for value-
based test management. The remainder of this chapter is thus structured as fol-
lows. In Section 11.2 we discuss test management under the light of its value con-
tribution. In Section 11.3 we describe existing practices that support value-based
testing. Section 11.4 depicts a value-based test management framework using an
example for illustration. An outlook on further research directions closes the chap-
ter.

11.2 Taking a Value-Based Perspective on Testing

The objectives of value-based verification and validation are defined as “ensur-
ing that a software solution satisfies its value objectives” and “organizing V&V
tasks to operate as an investment activity” (Boehm and Huang, 2003). What are
the contributions of testing if we look at it from a value-based perspective? Fun-
damentally, we can consider two dimensions: The internal dimension of testing
covers costs and benefits of testing. The external dimension emphasizes the oppor-
tunities and risks of the future system that have to be addressed. The key challenge
in value-based testing is to integrate these two dimensions, i.e., align the internal
test process with the value objectives coming from the customers and the market.

It becomes clear that a pure focus on the technical aspects of testing (e.g., the
testing methods and tools) is inappropriate to align the internal and external di-
mensions. Instead, test management activities need to adopt a value-based per-
spective.

Figure 41 illustrates the external and internal dimensions of test management
and their interdependencies. The internal dimension is similar to the scope of con-
trol of the test manager in the project. This dimension addresses costs from soft-
ware testing practice as well as short-term and long-term benefits of testing. The

11 Value-Based Management of Software Testing 227

external dimension considers stakeholders and parameters outside the scope of
control of the test manager. Value-based test management organizes testing to sat-
isfy value propositions of the stakeholders and to focus the team on the most
worthwhile testing targets.

Fig. 41. Balancing external and internal stakeholder value propositions

The key question coming from the external view of software testing is: “How can
we ensure the value objectives of the software system?” The goal is to reconcile
stakeholder value propositions by focusing testing efforts on the most worthwhile
parts of the software, the most important quality characteristics, and the most ur-
gent symptoms of risks that threaten the value contribution of the project. Answer-
ing this question involves market opportunities and threats, project-specific cus-
tomer value propositions, as well as costs and benefits. Please refer to Chapter 1
for details about opportunities and risks and to Chapter 7 for elicitation and recon-
ciliation of stakeholder value propositions.

The internal view builds on the stakeholder value propositions and the test
budget that represents the possible level of testing effort in a project. The key
question in this view is: “How can we organize testing as an investment activity?”
The goal is to achieve effective and efficient testing considering changes in devel-
opment and budget reductions. Internal project stakeholders consider how plans
for software development and associated testing activities can contribute to stake-
holder value propositions by supplying system functionality and performance, but
also by limiting the impact of project-relevant risks.

Appropriate communication is necessary to balance the external and internal
dimensions of testing to assure the consistency of testing objectives with stake-
holder value propositions.

Value Contribution of Testing

Compared to other development activities such as coding or user interface design,
testing does not create immediate product value. Instead, testing informs and sup-
ports other value generating tasks in software development. A key to understand-
ing the value contribution of testing is the contribution chain of testing (see the
benefits realization approach described in Chapter 1). The contribution chain es-
tablishes the relation of testing to the final product that ultimately creates value for
the stakeholders. Usually, the contribution chain of testing is complex and in-
volves several different “clients,” who benefit from testing.

228 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

Direct clients of testing are developers and project managers, who directly in-
teract with the testing team (representing the internal dimension). However, in the
spirit of value-based software engineering important parties for testing are cus-
tomers and users (representing the external view). Customers and users are the
source of value objectives (see Chapter 7), which set the context and scope of test-
ing. Within this context testing informs developers and project managers to what
extent value objectives are met and where improvement is required.

Clients of Testing

Developers, project managers, quality managers, customers, analysts, end users, or
maintenance staff benefit from a thorough analysis of the software system and rely
on feedback for detecting problems, reducing uncertainty, making decisions, or
improving products and processes. The following examples show the kind of
feedback from testing required by different groups:

• Customers and users get information as to what extent mutually agreed re-
quirements are satisfied and to what extent the software meets their value
propositions. Testing also provides visibility and insights about project pro-
gress. Passed tests reduce the odds of misbehavior and acceptance decisions are
thus frequently based on the results of tests. When acceptance tests are imprac-
tical or fail to reveal hidden problems that become visible only in real-world
conditions, alpha and beta testing provide a more solid foundation for accep-
tance decisions.

• Marketing and product managers require information from testing for planning
releases, pricing, promotion, and distribution. A gap between the actual quality
and the quality expected by customers and users most certainly leads to mis-
leading expectations and wrong assumptions that diminish or prevent value re-
alization (Boehm, 2000b). In order to successfully manage these expectations
and to satisfy individual and organizational objectives, reconciling customer
needs with product design has to consider quality in addition to functionality.

• For project managers testing supports risk management and progress estima-
tion. The focus is on identifying and eliminating risks that are potential value
breakers and inhibit value achievements. Early detection of severe defects that
significantly reduce project performance is a major objective. Ideally, testing
reduces uncertainty and helps project managers to take better, more informed
decisions, e.g., for defect removal, system stabilization, and release decisions.

• Quality managers are interested in the identification of problems and in particu-
lar problem trends. Results from testing are the input for the assessment of de-
velopment performance and provide the basis for quality assurance strategies
and process improvement. Rosenberg (2003) discusses how testing contributes
to quality assurance and shows that problems need to be documented, cor-
rected, and can then be used for process improvement; after assessing problem
reports for their validity corrective actions are implemented in accordance with
customer-approved solutions; developers and users are informed about the

11 Value-Based Management of Software Testing 229

problem status; and data for measuring and predicting software quality and reli-
ability is provided.

• Developers require feedback from testing to gain confidence that the imple-
mentation is complete and correct, conforming to standards, and satisfying
quality requirements. For stabilization, testing provides details about defects
and their estimated severity, information for reproducing defects, and support
for revealing the cause of the failures. Besides, testing provides feedback for
improvement and learning from defects. For example, throughout maintenance
a detailed and reproducible description of problems contributes to the efficient
implementation of changes and regression tests ensuring that these changes do
not break existing functionality.

• For requirements engineers, testing is valuable to validate and verify require-
ments. Gause and Weinberg (1989) point out that “… one of the most effective
ways of testing requirements is with test cases very much like those for testing
a complete system.” Deriving black-box tests from requirements helps to assure
their completeness, accuracy, clarity, and conciseness early on. Tests thus en-
hance requirements and enable development in a test-driven manner.

To summarize, testing helps to realize benefits by reducing planning uncertainty,
mitigating risks, making more informed decisions, controlling efforts, and mini-
mizing downstream costs (the internal dimension). More importantly, it helps to
realize the expected stakeholder value propositions (the external dimension).

These benefits, however, do not come for free and the costs of testing are often
significant. Testing can be perceived as buying information and can be considered
as an investment activity as it reduces the costs of risks, uncertainties, and the re-
ward of taking risks. Making sound decisions about the investment in testing re-
quires understanding their implications on both costs and benefits. The underlying
questions therefore are: What are the costs of testing, and what are the benefits of
testing for value generating activities?

Costs of Testing

Evaluating test cost-benefit ratio of testing activities is difficult in most organiza-
tions as only little is known about the actual costs of testing, and similarly about
the costs of inadequate testing (Burnstein, 2003). The “Cost of Quality” model
(Gryna, 1998; Slaughter et al., 1998) helps to analyze testing costs. The model dis-
tinguishes costs of conformance incurred in achieving quality and costs of noncon-
formance incurred because of a lack of quality. Costs of conformance are

• prevention costs for preventing errors, e.g., through extended prototyping, use
of modeling tools, process inspection, and training and

• appraisal costs for assessing the product through verification and validation ac-
tivities like test planning and setup, test data generation, test execution, results
analysis, and reporting.

230 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

Costs of nonconformance are

• internal failure costs associated with defects found prior to release, e.g., cause
analysis and debugging, development of temporary workarounds, defect fixing,
inspection of rework, retesting and regression testing, and

• external failure costs as a direct or indirect result of defects found after the
product is released, e.g., technical and field support, maintenance due to de-
fects, service releases and upgrades, reimbursements for returned products,
warranty expenses, liability claims, penalties, lost sales, or market shares.

The costs of testing comprise appraisal costs and internal failure costs. Appraisal
costs, such as test planning, test design and implementation, setup of the test envi-
ronment, and (initial) test execution occur independently from actual defects since
tests need to be run at least once to assess the state of the product. All testing costs
that are a consequence of defects, such as retesting and regression testing, are in-
ternal failure costs.

Approaches to estimate the costs of testing are discussed by Burnstein (2003)
and Pinkster et al. (2004). These approaches are based on cost estimation models,
testing tasks, tester/developer ratios, or expert judgment. Estimations of actual
costs such as the nature of the software product under test, the level of tester abil-
ity, or the level of tool support depend on test cost impact items (Burnstein, 2003).

Benefits of Testing

We structure this discussion by distinguishing between short-term benefits mostly
dealing with one project and long-term benefits affecting multiple projects in an
organization. The assessment of benefits and applicable valuation models (see also
Chapters 3, 4, and 5) depend on stakeholder role and project context. The book
provides a number of models to describe stakeholder value propositions. It re-
mains challenging to reconcile the different stakeholder views and to negotiate
priorities for testing (see Chapter 7).

Short-term benefits

Within a project, the groups requesting information from testing are mainly con-
cerned about short-term effects and, hence, testing is usually treated as a short-
term investment. Cost, schedule, scope, and quality are usually the boundaries of
planning and control within a project. An analysis of testing costs and (short-term)
benefits has to weigh the influences of testing on overall project costs, schedule,
scope, and quality to determine an optimal investment. Commonly reported bene-
fits of testing include:
• Reduction of planning uncertainty: Testing provides feedback on the quality of

key deliverables early in the development process and helps project manage-
ment to assess risks and to increase project predictability.

• Saved rework: Finding major defects often avoids costly rework and reduces
the size and frequency of risks which negatively affect value achievement. An

11 Value-Based Management of Software Testing 231

investment in testing can considerably speed up development by reducing
downstream efforts for debugging and fixing defects (internal failure costs).
“Getting the product right the first time so that you don't waste time reworking
design and code” is one of the fundamentals for rapid development (McCon-
nell, 1996).

While quality assurance costs are usually measured in person hours (Biffl et al.,
2001) or their monetary equivalent (Reifer, 2002), benefits address different as-
pects of software projects and are harder to quantify. For cost-benefit evaluation,
test costs must be compared to benefits. This gets complicated, particularly if test
costs are measured in different units. Typically short-term benefits come from risk
reduction, a lower the variance of quality, and from performance indicators allow-
ing more informed decisions.

Long-term benefits

The “Cost of Quality” model proposes an inverse relationship between confor-
mance costs and nonconformance costs. Increasing prevention and appraisal (con-
formance costs) lead to reduced costs of failure (nonconformance costs). Typi-
cally, finding and fixing defects after delivery is often 100 times more expensive
than during early phases (Boehm and Basili, 2001). Black (2002) illustrates the re-
turn on investment in testing through savings in cost of nonconformance, in par-
ticular, cost of external failure. He argues that “… the costs of conformance plus
the costs of nonconformance related to internal failures will be less than the costs
of nonconformance related to external failures” if investment in testing and quality
assurance is budgeted wisely.

Furthermore, testing leads to insights in the strengths and weaknesses of the
development process and fosters learning from previous errors. Increasing knowl-
edge and improved processes help to prevent defects and reduce further appraisal
costs. The cost of quality is minimal in a situation of zero defects. At the point
where savings from reduced nonconformance costs outweigh conformance costs,
quality is considered “free” (Crosby, 1979), at least in the long run. Quality initia-
tives that aim to improve the development process build on this thought (Slaughter
et al., 1998; Hauston, 2002).

Testing contributes to the achievement of the “quality is free” idea by providing
information and services in each stage of improvement. Hence, the view of testing
changes over time as people better understand its role. Beizer (1990) describes the
“phases in a tester's mental life” and argues that the attitude toward testing ma-
tures along the following line of thinking: (0) testing is debugging, (1) testing
demonstrates that the software works, (2) testing demonstrates that the software
does not work, (3) testing reduces the perceived risk of not working to an accept-
able value, and – ultimately – (4) testing is the mental discipline that results in
testable, low-risk software without much testing effort.

Expected long-term benefits of testing can make it reasonable to increase the
test budget beyond the project’s short-term needs (see also Chapter 5 on financial
benefits of risk reduction and improved process ratings). Long-term benefits are

232 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

realized later and therefore need to be discounted when compared to current costs
(see Chapter 3 on valuation).

Balancing Testing for Value Contribution

Our discussion of short-term and long-term costs and benefits emphasized the in-
ternal dimension of testing. In order to be “value-based,” testing has to be aligned
with the external dimension and show how it supports stakeholder value proposi-
tions and how it considers arising opportunities and perceived risks.

Risk can be used to answer a central question in making these investment deci-
sions (Boehm, 2003): How much testing is enough? Projects that are under heavy
time-to-market pressure, e.g., when exploiting the first-mover advantage of im-
plementing a new standard, working against fixed drop-dead dates, or coping with
constantly eroding market shares all bear the risk of not completing in time and
failing to realize benefits. This risk has to be balanced with the risk of delivering a
product that fails to meet customer expectations.

The level of effort driven by risk considerations has been illustrated by Boehm
(2000a) for pre-ship testing (see also Chapter 1). Take, for instance, the risk expo-
sure profile for a project developing a new, improved version of an established
shrink-wrapped product, e.g., an accounting application. Failing to meet quality
expectations or time-to-market goals may result in losses of profits or reputation.
On the one hand, shipping the product early allows only minimal investments in
testing and severe defects may remain undetected. Spending more on testing re-
duces the risk exposure, as fewer and less critical defects remain in the product.
On the other hand, the risk exposure increases due to market share erosion caused
by delayed shipping. Customers waiting for promised new features might switch
to the products of competitors. In order to minimizing overall risk exposure one
has to optimize the investment in testing.

Investment decisions, however, should not only consider the total testing effort.
They also have to distribute the testing efforts across the different clients of testing
to improve the value contribution of testing. In a project dealing with medical de-
vices the highest value may be earned through high reliability. Time-to-market
will be the main focus for a consumer electronics product where testing would
mainly support the release planning decision.

Optimal distribution of testing also has to consider budget, schedule, or re-
sources constraints. The range of time and resources allocated for testing depends
on the project type and the desired level of quality. Compare, for example, the dif-
ferent quality requirements for a flight control system, an electronic banking ap-
plication, or a movie player. Despite the huge impact of system-specific require-
ments, the actual budget of testing often depends on the negotiation skills of the
test manager (Bullock, 2000). Inadequate budgets for quality assurance and testing
are reported throughout the software industry, ranging from local small companies
to large-scale NASA initiatives (Rosenberg, 2003).

Furthermore, the dynamic environment of many projects renders test strategies
based on an initial, optimal cost-benefit analysis invalid. As complex projects take

11 Value-Based Management of Software Testing 233

complex paths, “the goal is often not to achieve what you said you would at the
beginning of the project, but to achieve the maximum possible within the time and
resources available” (McConnell, 1996). Continuously monitoring and replanning
of testing activities are vital to consider changing opportunities and risks, as are
new findings from earlier test results (Boehm, 1988).

11.3 Practices Supporting Value-Based Testing

Although the concept of value is often neglected as guiding principle to manage
software testing, several practices and approaches are available for testing that al-
ready support value-based software engineering. In this section we discuss se-
lected practices, which we consider as essential for value-based testing. These
practices can be used as a starting point to endorse the value contribution of test-
ing and to implement testing as an integral part of a value-based software engi-
neering strategy:
• Requirements-based testing: As requirements capture mutually agreed stake-

holder value propositions it is essential to organize testing based on the re-
quirements of the software system.

• Risk-based testing: Risks need to be constantly monitored and considered when
organizing testing activities and allocating resources.

• Iterative and concurrent testing: The ability to adapt to changing requirements
and risks is vital for testing to provide timely and accurate information.

• Stakeholder involvement in testing: To overcome the separation of concerns
key stakeholders need to contribute to the testing effort.

• Testing managed as investment: This practice comprises value-based test plan-
ning, monitoring, and control.

Requirements-Based Testing

Value-based testing has to be anchored in the requirements. Requirements capture
mutually agreed upon stakeholder needs. Requirements-based testing helps to as-
sure that the system satisfies these needs and realizes the intended value for the
stakeholders. Requirements-based testing usually traces tests to requirements.
Usually there is at least one test for every requirement. This traceability helps to
demonstrate that the system conforms with the requirements and to infer whether
the stakeholders’ needs are satisfied (see also Chapter 14).

An important aspect is requirements prioritization. Changes in the urgency of
needs result in different priorities for testing. Requirements implementing high
priority needs need to be tested earlier and with higher intensity. As a result, re-
quirements-based testing typically shows some degree of risk orientation. Also,
requirements-based testing encourages a test design that can be used early to ver-
ify requirements (Gause and Weinberg, 1989) and to uncover defects even before
implementation has started. This can lead to considerable time and effort savings,

234 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

given that “current software projects spend about 40 to 50% of their effort on
avoidable rework” (Boehm and Basili, 2001).

Risk-Based Testing

The risk orientation of requirements-based testing should be extended beyond pri-
orities and also consider the probability of failure and the resulting loss. Risk Ex-
posure = (Probability of Loss) * (Size of Loss) can be used to focus testing on the
highest value capabilities and on the most critical types of failures. Risk exposure
takes into account the estimated intensity of usage (e.g., the frequency of execu-
tion), the probability of a failure, the priority of the affected requirement, and the
severity of a failure (not every failure will cause a total loss of functionality).

Bach (1999) criticizes a common pitfall in requirements-based testing: “We in-
cur risk to the extent that we deliver a product that has important problems in it.
The true mission of testing is to bring that risk to light, not merely to demonstrate
conformance to stated requirements.” The ability of risk-based testing goes be-
yond mere prioritization of testing according to required functionality. Risk con-
siderations are also essential to identify areas potentially containing errors. Exam-
ples are components implemented with a new programming language, by
inexperienced personnel, or without adequate tool support. Exploring the sources
of risk identifies defects more directly and more likely than by basing tests on re-
quirements solely. A risk-based approach should therefore be taken in all aspects
of testing, from test planning and test management (Redmill, 2004; Amland, 1999)
to test design (Kaner et al., 2002).

Iterative and Concurrent Testing

Risks as well as requirements and business needs are typically volatile and evolve
over time. Changes become necessary either because new insights arise from de-
velopment and testing, or because shifts occur in the business environment. The
ability to quickly respond to changes and to easily accommodate the consequences
provides a competitive advantage (Chapter 1). Most modern development proc-
esses are therefore highly iterative to better handle changing requirements and
risks. Testing needs the flexibility to promptly support changes. With require-
ments and quality attributes becoming moving targets, instant feedback from test-
ing is a prerequisite for making well-timed and well-informed decisions.

An illustrative example of how testing supports change in agile development is
given by Wells (2002). He describes the contribution of testing as a continuous
change monitoring and control activity as follows: “Acceptance tests define the
functionality to be implemented during an iteration. A unit test is just a plan for
what code you will write next. Tests give feedback by defining exactly when a
task is done. Tests give feedback by announcing when a requirement has been vio-
lated. Tests watch over all integration activities and give feedback on integration

11 Value-Based Management of Software Testing 235

problems. Altogether, tests form a concrete and decisive form of planning and
give enormous amounts of feedback …."

Stakeholder Involvement in Testing

The traditional separation of concerns in testing – “A programmer should avoid at-
tempting to test his or her own program” (Myers, 1979) – has obfuscated the con-
tribution of testing to value generation. Developers throw their code “over the
wall” to testers who throw back bug reports. Direct interaction is discouraged and
leads to communication overhead, misunderstandings, organizational gaps, infor-
mation loss, and conflicts (Cohen et al., 2004; Weinberg, 2003). Testers become
the messengers of bad news. The organizational distance between technical groups
(e.g., development or testing) and business-centered groups (e.g., product man-
agement or marketing) also impedes effective communication. In many organiza-
tions, these groups are not only separated organizationally, they are separated by
culture, language, and perception of goals.

Value-based software engineering requires that testing fosters cooperation and
efficient communication between all involved parties (see Section 11.2 on clients
of testing). Testing has to gather and negotiate value propositions from all in-
volved stakeholders to assure a balanced testing focus. For example, customers
and users have to be integrated in testing activities as they are the primary source
of value objectives. Testing should be working hand in hand with development to
provide information for cost-effective defect location, while development has to
design for testability to ensure cost-effective testing. Involving people in testing
who are also involved in related activities, (e.g., requirements engineering or de-
velopment) provides a great potential to link testing more closely with value creat-
ing activities. In emphasizing people and communication, agile methods have
demonstrated that these synergies, which currently often lie idle, can be activated.

Testing Managed as Investment

Testing supports monitoring and control of projects and should also apply the con-
cepts of value-based monitoring and control to guide the testing effort. The goal of
managing testing is to perform testing effectively and efficiently from a value-
based perspective. However, decisions in testing are often made from a purely
technical viewpoint. As a result, testing does not provide the information that is
valued most and the return of the investment in testing is not satisfactory.

An interesting example that illustrates the need for balancing investments in
testing is the decision to automate tests. Test automation has the potential to re-
duce time and costs, especially in highly iterative processes. However, automated
tests require a fairly high initial effort, the time for developing the test scripts.
Thus, test automation pays off only if the costs of automatically running the tests
plus the initial effort are lower than the costs of running the tests manually. Tests
have to be run a number of times to break even. The exact number depends on fac-

236 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

tors such as how easy it is to implement the tests or how often tests can be exe-
cuted until they have to be adapted or re-implemented.

Nevertheless, this example shows the investment in test automation in a value-
neutral context, taking only technical considerations into account. Such a value-
neutral investment may reduce the ability of testing to efficiently adapt to changes
in the design of the system under test (Kaner et al., 1999). Furthermore, the initial
effort for automating tests may be better invested in manually running different
tests, e.g., by increasing the diversification of tests or focusing tests on the most
critical parts of the system. Boehm and Basili (2001) report: “About 80% of the
defects come from 20% of the modules, and about half the modules are defect
free” and “About 90% of the downtime comes from, at most, 10% of the defects. ”
Value-based test management therefore provides a great potential to optimize test-
ing by focusing the effort of testing on the 20% of high-risk modules instead of
testing everything automatically.

Test management frequently has to make investment decisions, e.g., when se-
lecting appropriate test design methods, defining coverage criteria, prioritizing
tests, or deciding on test automation. All of these decisions should be guided by
the concept of value in order to optimize the overall testing performance.

11.4 A Framework for Value-Based Test Management

Existing development standards define the core activities of testing. According to
ESA’s PSS-05 (1991) and IEEE 610.12 (1990), for example, the testing process
consists of test planning, test design, test case specification, test procedure defini-
tion, test procedure execution, and analysis of the results. While these activities
provide a pragmatic framework for a systematic test process, they are not focused
on delivering optimal value for the involved stakeholders.

The purpose of the framework presented in this section is to integrate our dis-
cussion of the value contribution of testing in Section 11.2 and the presentation of
practices supporting value-based testing in Section 11.3. The proposed framework
emphasizes test planning activities, considers testing as an investment, and covers
decision making and test prioritization. The test framework is compatible with it-
erative development processes, such as the Rational Unified Process (Kruchten,
2003), in which iterations drive recurring test planning and builds are suggested as
frames for test cycles. The proposed framework draws on concepts from software
requirements negotiation (Boehm et al., 2001) and release planning (Ruhe and
Ngo-The, 2004). While requirements negotiation and release planning approaches
aim at delivering the most efficiently realizable and sufficiently important re-
quirements first, value-based test planning focuses tests based on desired system
parts, quality attributes, and project risks.

11 Value-Based Management of Software Testing 237

Framework Overview

The framework relies on three main tasks: Eliciting and reconciling stakeholder
value propositions, test priority negotiation, and propagating stakeholder value
propositions to the technical domain. It consists of three consecutive stages that
propagate the value objectives to operational testing activities. The framework
aims at strengthening the ties between testing and stakeholder value propositions,
the transformation of value objectives to testing priorities, and their application in
test construction and execution.

The stages also represent different levels in decision making, ranging from de-
cisions on general objectives of testing linked to business value down to detailed
decisions on optimizing test execution sequences. Throughout all stages, the scope
of the decisions is defined by the previous stage and continually narrows down on
technical issues. The link back to business value is established by basing decisions
on the input from the previous stage. Testing generates information for its internal
and external clients. This information can also be used as feedback for managing
testing activities. The feedback from test execution to the previous stages of test
management establishes a control loop.

In more detail, the three stages of the framework, as depicted in Figure 42, are:
• Initial overall planning: The purpose of the first stage is to bring the stake-

holders together to consolidate their value models and to negotiate testing ob-
jectives.

• Test cycle construction: The purpose of the second stage is to elaborate the test-
ing objectives defined in Stage I into a sequence of test cycles.

• Test cycle execution optimization: The purpose of the third stage is to optimize
and schedule the execution of the planned tests within the current test cycle.

Fig. 42. Stages in test framework

Stage I – Initial overall planning. At first, a road map for testing the future system
is developed. Success-critical stakeholders participate in deriving test objectives
from their value propositions and negotiate priorities for testing. Test objectives
are risks, requirements, and quality attributes that should be addressed. Further-
more, as testing is usually restricted in terms of time and resources, the stake-
holders define the scope and intensity of testing, often involving cost-benefit
analysis and trade-off negotiations.

The selection of stakeholders determines the scope of test benefits to be ad-
dressed. Clients of testing that are closely involved in development will emphasize
short-term benefits within the project; stakeholders that are responsible beyond a
single project will focus on long-term benefits of testing (e.g., understanding prob-

238 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

lem trends). Stakeholders translate more general benefit models (e.g., assumptions
on “good practice for software development") into testing priorities for the more
specific project context.

Key decisions that have to be made in this stage include:
• Testing priorities for key features, quality attributes, and system parts
• Budget and resources invested in testing aligned to value objectives
• Timeline and major milestones coordinated with development

The first stage incorporates many of the practices considered important for value-
based testing (see Section 11.3): It relies on the involvement of stakeholders, it es-
tablishes a link from testing to high-level requirements and risk as proposed in re-
quirements-based and risk-based testing, and it manages testing as an investment.

Stage II – Test cycle construction. The practice of iterative and concurrent test-
ing is emphasized in the second stage. The testing objectives defined in the previ-
ous stage are evolved into a sequence of test cycles and the available test budget is
allocated to the test cycles according to cost-benefit considerations. The corre-
sponding test cycles are then constructed based on stakeholder value propositions
from Stage I and on test cycles successfully passed previously. Each test cycle
moves testing progress forward one step on the road planned in stage I. Within a
cycle all effort is put in accomplishing the test objectives. After the cycle has fin-
ished, testing returns to Stage II. The test manager evaluates the situation in the
light of the results and plans the next cycle.

Release planning approaches as described in Chapter 12 and (Ruhe and Ngo-
The, 2004) aim at delivering the key requirements or the most efficiently realiz-
able and sufficiently important requirements first. Similarly, value-based testing
focuses the effort of testing on requirements, quality attributes, and system parts
with a high-risk exposure. Optimizing the sequence of test cycles (e.g., by running
the cycles addressing the most valuable testing objectives first) makes the value
contribution of testing less sensitive to a reduction of the test budget. The end of a
test cycle results in a checkpoint with consolidated results. Thus, whenever the
testing budget is cut back and no further cycles are possible, the status of the last
finished cycle is the final result of testing. Long cycles, therefore, also bear the
risk that testing has to be stopped without a value-supporting result. The uncer-
tainty of assumptions made about project attributes (independent from the validity
of the assumptions) mainly drives the need for revisions of the test cycle sequence.

Key decisions that have to be made in this stage include:
• Test targets for the test cycle. What specifically will be tested in order to gain a

high return on investment. Examples are untested new capabilities, fixes that
have to be re-tested, or existing capabilities that have to be regression tested to
reveal possible side effects.

• The length of the test cycle. From the viewpoint of testing, a test cycle should
be long enough to provide sufficient new data indicating testing progress (e.g.,
old errors corrected, new errors found, and new functionality implemented). A
small number of long test cycles requires less planning overhead but sacrifices
more frequent adaptation of the testing strategy to changes.

11 Value-Based Management of Software Testing 239

Stage III – Test cycle execution optimization. In this stage the execution of the
planned tests is scheduled to maximize testing effectiveness, i.e., to accommodate
the planned work within the fixed time frame. Thereby, the fixed test cycles create
time boxes for testing, which provide a simplified and temporarily static context
for optimizing the execution schedule. Besides, time boxes help to keep test exe-
cution focused on the objectives and the rigid time limit ensures prompt feedback
for the clients of testing. Scheduling in Stage III is usually an optimization prob-
lem of maximizing the number of tests to be executed within the available time of
the current test cycle. Part-time resources and test equipment availability are often
the major optimization constraints and require a careful alignment of testing work
on parallel tracks.

The key decision that has to be made in this stage is the scheduling of the tests
for execution.

The result of Stage III is that all work is scheduled without further need for op-
timization at execution time. However, as practical experience shows, it is often
not possible to anticipate all influence factors at the beginning of a test cycle.
Therefore in-process monitoring is necessary to improve the output of testing
through short-term adaptations of test sequencing. At the end of the fixed-length
cycle all planned but unfinished work will be planned in the next cycle.

Figure 42 depicts the two feedback loops in the planning process. While feed-
back to Stage II is routine to plan the next test cycle based on the results of previ-
ous testing, a step back to Stage I shows major changes in design and requirement
directions, which influence overall test planning. Allowing changes at project
level often enables exploiting new opportunities to realize additional value. An it-
erative adaptation of the test strategy is therefore a crucial practice to reflect these
changes in the value contribution of testing.

An Illustrative Example

A bank intends to introduce a new online service for its customers offering Web
access to several legacy capabilities such as trading of stocks, selection of stocks,
performance measures of stock options, risk analysis and portfolios, and the simu-
lation of portfolios.

First, stakeholders get together to discuss their value models and to agree on
objectives for testing. The stakeholders jointly identify transaction security, per-
formance, and scalability, as well as usability as the most important quality attrib-
utes of the system. A risk analysis reveals that a long response time to user com-
mands represents a major risk. Stakeholders also rate the importance of
capabilities by considering their business value. Similar to a requirements negotia-
tion workshop (Chapter 7) the stakeholders negotiate testing priorities. Prioritiza-
tion plays an important role: for each test objective stakeholders need to consider
the value of a particular test objective and its feasibility. The prioritization done by
the stakeholders ensures that the focus of testing is laid according to the decisions
made by the selected stakeholders and appropriately reflects their value proposi-

240 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

tions. The prioritization allows first budget estimates, which can be compared to
the available resources in the project context.

Secondly, the test manager plans several test cycles to propagate the testing ob-
jectives from the previous stage. A test cycle focuses testing on a specific release
of the system under test, e.g., a build, runs all or a subset of the tests on this re-
lease, and completes with reporting the gained insights (Kaner et al., 2002). In our
example the test manager defines a test cycle that puts emphasis on transaction se-
curity and he plans to focus on performance for “buy and sell options” in the next
cycle. Altogether, ten test cycles are planned to cover all testing objectives.

The third step is to detail the test objectives to a test plan for the current test cy-
cle. As the planning uncertainty is high for the first test cycle, the test manager de-
cides to schedule the most valuable tests first so less important ones can easily be
deferred if running out of time at the end of the cycle.

While executing the tests of the first cycle, an external change triggers the
planned sequence of the cycles. A competing bank announces a graphical visuali-
zation to comfortably manage and view portfolios. This new situation leads to a
rearrangement of testing cycles in the next step. Instead of performance testing,
the next cycle is dedicated to usability tests of the simulation of portfolios to re-
flect the shift in the business strategy.

Furthermore, when the schedule for the next cycle is planned, different restric-
tions become dominant. In contrast to the previous testing cycle, this time the
scheduling is mainly determined by the availability of the usability test lab and a
further optimization of the test execution sequence is not worthwhile.

Finally, after the eighth test cycle, the testing budget is unexpectedly cut back.
Instead of the initially planned ten cycles only eight can be accomplished. How-
ever, those test objectives that yielded the highest return on investment were suc-
cessfully covered by the earlier test cycles.

Discussion

The proposed framework emphasizes the value-contributing activities of testing. It
encourages decision making based on value considerations and incorporates the
practices considered important for value-based testing (see Section 11.3):
• Requirements-based testing. Key functions or functional areas and key qualities

of the system are determined from stakeholder value propositions (see Stage I
and Chapter 7).

• Risk-based testing. Based on an initial risk analysis stakeholders determine key
potential problems of system operation, risk events, and risk symptoms with
significant correlation to the problems and risk events.

• Iterative and concurrent testing. The process aims at iterative testing to incor-
porate changes in the testing context (see overall feedback loops and test cycle
planning in Stage II).

• Stakeholder involvement in testing. In Stage I stakeholder value propositions
are elicited and reconciled. Stakeholders are involved in defining testing objec-
tives and test budget negotiation. Thereby the value objectives are transformed

11 Value-Based Management of Software Testing 241

to testing priorities, which are propagated through Stages II and III to test exe-
cution.

• Testing managed as investment activity. Stakeholders determine a joint value
proposition and also estimate costs of testing for different testing options. This
usually includes some form of cost-benefit analysis and trade-off negotiations
among the stakeholders similar to investments activities. The process optimizes
the deployment of testing effort available from the test budget according to test
planning criteria, such as most effective or most efficient approaches first.

11.5 Conclusion and Outlook

Software testing is a very resource-intensive activity in software development. A
value-based approach to software testing could help to improve the return on in-
vestment of testing and to align testing with stakeholder value contributions. In
this chapter we discussed the value contribution of testing by considering soft
benefits such as reduced planning uncertainty or lower project risks. We have pre-
sented testing from the perspective of buying information. We regarded it as an
investment decision to trade off the costs of testing against project risks based on
cost-benefit analysis. Hence, to make informed value-based decisions on project
planning, a project manager needs to consider not only the cost but also the bene-
fits of testing. Cost-benefit analysis involves estimating tangible and intangible
costs (outlays) and benefits (returns) of various project alternatives, and then using
financial measures such as return on investment or payback period to assess the
relative desirability of the identified alternatives (see also Chapters 1, 2, and 17).

Our approach aims at maximizing the value of testing from the available test
budget and at making the value contribution robust to test budget cuts. Therefore,
it is rooted in the principles of value-based V&V that were further detailed in
characteristic practices of value-based testing: requirements-based testing, risk-
based testing, iterative and concurrent testing, stakeholder involvement in testing,
and testing managed as investment.

The proposed test management framework comprises following stages: (a) fo-
cus of testing value proposition by stakeholders, (b) iterative test cycle construc-
tion, and (c) test sequence optimization in a test cycle.

We identified areas that need further research in order to better understand and
control the value contribution of testing: Release planning and test planning has to
be integrated more tightly; test budget planning and negotiation has to become an
integral part of the replanning activities in iterative development; finally, optimiz-
ing the test effort needs to better integrated with other quality assurance measures.

Future work includes the validation of concepts described in this chapter in an
industrial case study. Based on the case study we will refine our framework to bet-
ter support rapid and informed decision making in test management.

242 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

References

(Amland, 1999) Amland, S.: Risk Based Testing and Metrics. In: EuroSTAR'99:
5th European International Conference on Software Testing Analysis and Re-
view, Barcelona, Spain, November 1999

(Bach, 1999) Bach, J.: Risk and Requirements-Based Testing. IEEE Computer,
32(6), pp 113–114 (June 1999)

(Beizer, 1990) Beizer, B.: Software Testing Techniques, 2nd ed (Van Nostrand
Reinhold, New York 1990)

(Biffl et al., 2001) Biffl, S., Freimut, B., and Laitenberger, O.: Investigating the
Cost-Effectiveness of Reinspections in Software Development. In: ACM/IEEE
International Conference on Software Engineering, Toronto, Canada, IEEE
Comp. Soc. Press, May 2001

(Black, 2002) Black, R.: Managing the Testing Process: Practical Tools and
Techniques for Managing Hardware and Software Testing (Wiley, New York
2002)

(Boehm, 1988) Boehm, B. W.: A Spiral Model of Software Development and En-
hancement. IEEE Computer, 21(5), pp 61–72 (May 1988)

(Boehm, 2000a) Boehm, B. W.: Spiral Development: Experience, Principles, and
Refinements, CMU/SEI-2000-SR-008. Spiral Development Workshop, July
2000

(Boehm, 2000b) Boehm, B. W.: The Art of Expectations Management. IEEE
Computer, 33(1), pp 122–124 (January 2000)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes, 28(2), (March 2003)

(Boehm and Basili, 2001) Boehm, B. W., and Basili, V.R.: Software Defect Re-
duction Top 10 List. IEEE Computer, 34(1), pp 135–137 (January 2001)

(Boehm and Huang, 2003) Boehm, B. W., and Huang, L.G.: Value-Based Soft-
ware Engineering: A Case Study. IEEE Computer, 36(3), pp 33–41 (March
2003)

(Boehm et al., 2001) Boehm, B. W., Grünbacher, P., and Briggs, R.O.: Develop-
ing Groupware for Requirements Negotiation: Lessons Learned. IEEE Soft-
ware, 18(3), pp 46–55 (May/June 2001)

(Bullock, 2000) Bullock, J.: Calculating the Value of Testing. Software Testing
and Quality Engineering, 2(3), pp 56–61 (May/June 2000)

(Burnstein, 2003) Burnstein, I: Practical Software Testing: A Process-oriented
Approach (Springer, Berlin Heidelberg New York 2002)

(Cohen et al., 2004) Cohen, C.F., Birkin, S.J., Garfield, M.J., and Webb, H.W.:
Managing Conflict in Software Testing. CACM, 47(1), pp 76–81 (January
2004)

(Crosby, 1979) Crosby, P.B.: Quality Is Free: The Art of Making Quality Certain
(McGraw-Hill, 1979)

(Ferscha and Mattern, 2004) Ferscha, A., Mattern, F. (eds.): PERVASIVE 2004:
Pervasive Computing, Second International Conference, Vienna, Austria, Lec-

11 Value-Based Management of Software Testing 243

ture Notes in Computer Science, vol 3001 (Springer, Berlin Heidelberg New
York 2004)

(Gause and Weinberg, 1989) Gause, D.C., Weinberg, G.M.: Exploring Require-
ments: Quality before Design (Dorset House Publishing, New York 1989)

(Gryna, 1998) Gryna, F.M.: Quality and Costs. In: Juran's Quality Handbook, 5th

edition, ed by Juran, J.M., Godfrey, A.B. (McGraw-Hill, New York 1998), pp
8.1–8.26

(Harrold, 2000) Harrold, M.J.: Testing: A Roadmap. In: The Future of Software
Engineering, ed by Finkelstein, A., 22th International Conference on Software
Engineering, Limerick, Ireland, June 2000, pp 63–72

(Hauston, 2002) Hauston, D.: Cost of Software Quality: Justifying Software Proc-
ess Improvement to Managers. In: Daughtrey, T.: Fundamental Concepts for
the Software Quality Engineer (ASQ Quality Press, Milwaukee 2001), pp 85–
94

(IEEE 610.12, 1990) IEEE Standard Glossary of Software Engineering Terminol-
ogy, IEEE Std 610.12-1990. (IEEE Computer Society, 1990)

(Kaner et al., 1999) Kaner, C., Falk, J., and Nguyen, H.Q.: Testing Computer
Software, 2nd edition (Wiley, New York 1999)

(Kaner at al., 2002) Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Soft-
ware Testing: A Context-Driven Approach (Wiley, New York 2002)

(Kruchten, 2003) Kruchten, P.: The Rational Unified Process: An Introduction, 3rd

edition (Addison-Wesley, Boston 2003)
(McConnell, 1996) McConnell, S.: Rapid Development: Taming Wild Software

Schedules (Microsoft Press, Redmond 1996)
(Myers, 1979) Myers, G.J.: The Art of Software Testing (Wiley, New York 1979)
(Pinkster et al., 2004) Pinkster, I., Burgt, B.v.d., Janssen, D., Veenendaal, E.v.:

Successful Test Management: An Integral Approach (Springer, Berlin Heidel-
berg New York 2004)

(PSS-05, 1991) ESA Board for Software Standardisation and Control (BSSC):
ESA Software Engineering Standards PSS-05-0 (European Space Agency
(ESA), ESTEC, Noordwijk, The Netherlands, February 1991)

(Redmill, 2004) Redmill, F.: Exploring risk-based testing and its implications.
Software Testing, Verification and Reliability. 14, pp 3–15 (2004)

(Reifer, 2002) Reifer D.: Making the Software Business Case: Improvement by the
Numbers. (Addison Wesley, New York 2002)

(Rosenberg, 2003) Rosenberg, L.H.: Lessons Learned in Software Quality Assur-
ance. In: Managing Software Engineering Knowledge. ed by Aurum, A.,
Jeffery, R., Wohlin, C., Handzic, M. (Springer, Berlin Heidelberg New York
2003), pp 251–268

(Ruhe and Ngo-The, 2004) Ruhe, G., Ngo-The, A.: Hybrid Intelligence in Soft-
ware Release Planning. International Journal of Hybrid Intelligent Systems.
1(2), pp 99–110 (2004)

(Slaughter et al., 1998) Slaughter, S.A., Harter, D.E., Krishnan, M.S.: Evaluating
the Cost of Software Quality. CACM, 41(8), pp 67–73 (August 1998)

(Wallace and Fujii, 1989) Wallace, D.R., Fujii, R.U.: Software Verification and
Validation: An Overview. IEEE Software, 6(3), pp 10–17 (May 1989)

244 Rudolf Ramler, Stefan Biffl, Paul Grünbacher

(Weinberg, 2003) Weinberg, G.M.: Destroying Communication and Control in
Software Development. CrossTalk, pp 4–8 (April 2003)

(Wells, 2002) Wells, D.: An Introduction to Testing, XP-Style. In: Marchesi, M.,
Succi, G., Wells, D., Williams, L.: Extreme Programming Perspectives. (Ad-
dison Wesley, 2002)

Author Biographies

Rudolf Ramler is a senior software engineer and a member of the scientific staff at
the Software Competence Center Hagenberg, Austria. His research interests in-
clude software testing, quality management, and requirements engineering. He has
led research projects on testing of Web-based systems and test management. His
experience in software development comprises development of tools for test man-
agement, project portfolio management, and engineering of Web-based solutions.
Rudolf works as a consultant in industry projects and is a lecturer at the Hagen-
berg Polytechnic University. He studied Business Informatics and holds a MSc
(2001) from the Johannes Kepler University of Linz.

Stefan Biffl is an Associate Professor at the Technische Universität Wien. He
studied Computer Science and Business Informatics and holds a PhD from the TU
Wien in Computer Science. His research focuses on empirical software engineer-
ing applied for project and quality management in software engineering. Stefan
Biffl was a visiting scientist at the Fraunhofer Institute for Experimental Software
Engineering (IESE, Head Prof. Dr. Dieter Rombach) where he gained further ex-
perience with empirical software engineering, in particular with survey planning.
Stefan Biffl was the principal investigator of Erwin-Schrödinger J1948 (Software
Inspection Techniques to Support Project and Quality Management) project sup-
ported by the Austrian Science Fund. He is a member of ACM, ACM SIGSOFT,
IEEE, the Austrian Computer Society, and the IFIP Technical Committee on
Software Engineering.

Paul Grünbacher is an Associate Professor at Johannes Kepler University Linz and
a research associate at the Center for Software Engineering (University of South-
ern California, Los Angeles). He received his MSc (1992) and PhD degrees (1996)
from the University of Linz. In 1999 Paul received the Erwin-Schrödinger re-
search scholarship and worked as a visiting professor at University of Southern
California in Los Angeles. In 2001 Paul received his Habilitation degree (Venia
Docendi in Angewandte Informatik) for this work on software requirements nego-
tiation. His research focuses on applying collaborative technologies to support and
automate complex software and system engineering activities such as require-
ments negotiation or software inspections. He is a member of ACM, ACM
SIGSOFT, IEEE, and the Austrian Computer Society.

Part 3
Applications

VBSE is a fairly new concept and there are not many documented experiences of
applying VBSE approaches. The aim of Part 3 is to demonstrate the benefits of
VBSE through concrete examples and case studies and to illustrate selected prac-
tices presented in Parts 1 and 2 in a more tangible way. Part 3 portrays specific
applications of VBSE principles and provides firsthand insights into the applica-
bility of VBSE.

The selected chapters cover different areas of software engineering such as re-
lease planning, risk management, software traceability, and the introduction of
new technology. The presented examples also show the use of VBSE in different
domains and discuss perspectives from different organizations applying elements
of VBSE. The chapters in this part form a source of information and inspiration
for practitioners and researchers interested in applying value-based software engi-
neering. The chapters also help to better understand current limitations of VBSE
approaches.

There are six chapters in this part that cover to the following areas:
• Chapter 12: Decision Support for Value-Based Software Release Planning
• Chapter 13: ProSim/RA – Software Process Simulation in Support of Risk As-

sessment
• Chapter 14: Tailoring Software Traceability to Value-Based Needs
• Chapter 15: Value-Based Knowledge Management – the Contribution of Group

Processes
• Chapter 16: Quantifying the Value of New Technologies for Software Devel-

opment
• Chapter 17: Valuing Software Intellectual Property

In Chapter 12, Maurice, Ruhe, Saliu, and Ngo-The present the F-EVOLVE*
method that uses net present value estimates of proposed features to support the
decision making process in release planning. Following this, in Chapter 13 Pfahl
presents a simulation-based method to risk assessment, which allows calculating
potential losses to the delivered product value. In Chapter 14 Egyed discusses how
precision, completeness, correctness, and timeliness of software traceability can be
tailored to value-based needs supported by an approach to automated software
traceability. In Chapter 15, Dingsøyr addresses the important issue of how to as-
sign value to the knowledge involved in software development in the context of
team building and process improvement. In Chapter 16 Atkins, Mockus, and Siy
describe a method for precise quantitative measurement of the value of software
technologies and presents a detailed case study. Finally, in Chapter 17 Reifer dis-
cusses approaches used to value intellectual property of software assets and a
framework allowing software experts to value different forms of intangible assets.

12 Decision Support for Value-Based Software
Release Planning

Sebastian Maurice, Guenther Ruhe, Omolade Saliu, and An Ngo-The

Abstract: Incremental software development replaces monolithic-type develop-
ment by offering a series of releases with additive functionality. To create optimal
value under existing project constraints, the question is what should be done
when? Release planning (RP) provides the answer by assigning features to a se-
quence of releases in the most beneficial way within the resources available.

In this chapter, we extend the existing hybrid intelligence-based release plan-
ning method called EVOLVE* to accommodate financial value in the form of net
present value estimates of proposed features. This extension enables us to perform
financial value-based software release planning. The new approach called F-
EVOLVE* is illustrated by an example. The results show that the F-EVOLVE*
model may be used to decide which features to produce and when based on their
financial contributions. Specifically, F-EVOLVE* may be used to determine
which features generate the highest returns, with the shortest development time.

Keywords: Value-Based Software Release Planning, F-EVOLVE*, Decision
Support, Hybrid Intelligence.

12.1 Introduction

In today’s world with rapidly changing consumer demands, informational tech-
nology, and competitive marketplaces, the requirements are changing rapidly re-
quiring quicker adaptability by market participants. The critical success factor for
vendors is responding to changing requirements quickly while maintaining a focus
on their value proposition, which may be a quicker return on investments or an
improvement in a public service like health, education, and defense (Boehm,
2003). A value-based approach to software engineering is closely aligned with the
business goals and objectives of the organization, and seeks to ensure that every
step in the software development process is a value-making step. Meeting the
needs of customers is as important as justifying the development efforts needed to
meet those needs (Poladian et al., 2003).

The need for a value-based approach to software release planning can be justi-
fied by the need for a faster time to market, while maximizing stakeholder satis-
faction. Stakeholders are defined to be anyone that influences or is influenced by
the project plan (Farbey and Finkelstein, 1999), and this includes customers, users,
developers, project managers (decision makers), etc. For project success, within a
value-based context, it makes more sense that traceability back to the value propo-
sitions become more important than traceability back to requirements (Boehm,

248 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

2003). Decisions support for release planning plays a key role in identifying value
propositions through a careful analysis of the release options and how these op-
tions impact value, financial, and human resources.

This chapter will contribute to an understanding of software release planning
from a financial perspective with the objective of incorporating a more fine-
grained measure of financial value to the original EVOLVE* model, thus creating
a new model called F-EVOLVE*. Specifically, this financial measure of value
will help to choose among competing features as well as choosing among release
plan alternatives when integrated into the F-EVOLVE* model. Currently, value is
considered based on a nine-point ordinal scale where the assigned stakeholder per-
forms priority evaluations.

The chapter is organized as follows. Section 12.2 presents background informa-
tion on release planning, which includes the discussion of existing approaches.
Section 12.3 provides information on financially based release planning and the
development of the F-EVOLVE* method. Section 12.4 presents an example to il-
lustrate the new method. Section 12.5 concludes the chapter and provides direc-
tions for future work.

12.2 Background

A software release is a collection of features that form a new product. Without
good release planning ‘critical’ features are jammed into the release late in the cy-
cle without removing features or adjusting dates. This situation might result in un-
satisfied customers, time and budget overruns, and a loss in market share (Penny,
2002). “Developing and releasing small increments of requirements, in order for
customers to give feedback early, is a good way of finding out exactly what cus-
tomers want, while assigning a low development effort” (Carlshamre et al., 2001).

Release planning is an integral part of incremental software development meth-
ods. These methods promote faster delivery of small components of the overall
software product, where shorter time frames result in an iterative process of de-
sign, code, test, and deployment of these components (Larman and Basili, 2003).

Difficulties with Software Release Planning

Release planning is a very complex problem including different stakeholder per-
spectives, competing objectives, and different types of constraints (Ruhe and Ngo-
The, 2004). Release planning is impacted by a large number of inherent con-
straints. Most of the features are not independent of each other. They typically
have precedence or coupling constraints between them that need to be satisfied.
Precedence constraint requires that specific features must be implemented before
other features, while coupling constraints requires that some features must be im-
plemented together. Furthermore, resource constraints such as effort and budget
need to be fulfilled for each release.

12 Decision Support for VBS Release Planning 249

The overall goal of release planning is to find a relatively small set of “most
promising” release plans so the overall value and the degree of satisfaction of all
the different stakeholders are maximized. In essence, the objective is to maximize
benefit (or value), but there is difficulty in giving a measurable definition of bene-
fit. This difficulty results in the characterization of release planning as a “wicked”
problem (Carlshamre et al., 2001).

The Need for Software Engineering Decision Support in Release
Planning

Release planning decisions are not always straightforward as they exhibit difficul-
ties that characterize decision making in natural settings. The inability of humans
to cope well with complex decisions involving competing and conflicting goals in
software engineering suggests the need for supplementary decision support (Ruhe,
2003). It becomes very hard to find appropriate solutions without intelligent deci-
sion support systems when one considers problems involving several hundreds of
features and large numbers of widely distributed stakeholders.

Because of the inherent difficulties in planning releases, we cannot expect any
solution procedure to offer something like “the best” solution. Instead, there are
always implicit or subjective factors that are not reflected in the current model.
What is proposed in (Ngo-The and Ruhe, 2004) is to generate a set of alternative
solutions from which the human decision maker can select his or her most favored
plan.

Existing Value-Based Planning Approaches

Various planning approaches have been adopted in industry with academic re-
search proposing equally as many formal approaches. We focus our discussion on
existing planning approaches and also on formal approaches that consider the fi-
nancial value of features in planning.

Ad hoc Release Planning

Some organizations do not see release planning as a separate activity during the
development process. Many release plans focus only on the target release con-
tents, rather than on defining incrementally releasable products. Many organiza-
tions have an ad hoc plan that relies solely on the judgment of the project manager
who equally acts as the decision maker. An ad hoc approach may be suitable for a
relatively small in-house project involving few tens of features, few stakeholders,
and relaxed constraints but becomes unsuitable for larger projects with many re-
quirements. In any case, value is addressed therein only implicitly as part of the
general stakeholder evaluation.

250 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

Cost-Value Based Requirements Prioritization and Release Planning

The cost-value approach for prioritizing requirements proposed by (Karlsson and
Ryan, 1997) ranks requirements in two dimensions: according to their relative
value to the customer and their estimated cost of implementation. Relative value
and cost of requirements to the customers are determined by using the pairwise
comparison of the Analytic Hierarchy Process (AHP) (Saaty, 1980). Once these
values are computed, the project manager can visualize and inspect these values to
prioritize and select requirements.

As an extension of the work in (Karlsson and Ryan, 1997), Jung (1998) argued
that the inspection of costs and values in the xy plane, in relation to other require-
ments, become very complicated when the number of requirements is consider-
able. It is not a simple matter to determine those requirements that have the high-
est value and the lowest cost simply by visualization and inspection. Also, this
inspection method does not guarantee an optimal solution that simultaneously
achieves maximum value and minimum cost because the inspection, as he argues,
depends on intuition of the cost-value points in the xy plane. Therefore, inspecting
costs and values to decide which requirements to implement first should be re-
placed by optimization techniques.

Hybrid Intelligence (EVOLVE*)

The driving force behind the hybrid approach, EVOLVE* (Ruhe and Ngo-The,
2004), is the belief that computational intelligence cannot replace the human deci-
sion maker and vice versa. Hybrid intelligence explores the synergies between
computational intelligence and the human decision maker. The hybrid approach
for RP, proposed by (Ruhe and Ngo-The, 2004), is a special application of
EVOLVE*. It is designed as an iterative and evolutionary procedure, which facili-
tates the real world problem of software RP, and the available tools of computa-
tional intelligence for handling explicit knowledge and crisp data, and the in-
volvement of human intelligence for tackling tacit knowledge and fuzzy data.

EVOLVE* facilitates the involvement of stakeholders to achieve increments
that result in the highest degree of satisfaction among different stakeholders. Two
of the prioritization schemas used in EVOLVE* are value-based and urgency-
based. For the value-related part, a nine-point scale is given to express the stake-
holder priorities; for details the reader is referred to (Ruhe and Ngo-The, 2004).

Incremental Funding Method

The incremental funding Method (IFM) introduced by (Denne and Cleland-
Huang, 2004) is a data-driven, financially informed approach to software devel-
opment. This development approach maximizes Net Present Value (NPV) of
software investment by carefully analyzing and sequencing feature delivery. To
maximize returns, and NPV, functionality is delivered in carefully sequenced
‘chunks’ of valued customer features.

12 Decision Support for VBS Release Planning 251

The main idea behind IFM is the prioritization of features by their (customer)
value called minimum marketable features (MMFs) defined as a set of small self-
contained features that can be delivered quickly and that provide market value to
the customer (Denne and Cleland-Huang, 2004). The authors also introduce the
term architectural element (AE). AEs are the foundation that supports the MMFs.
AEs do not generate revenue; they must be in place to support the MMFs: they fa-
cilitate the revenue generation from the MMFs. In many cases, MMFs cannot be
deployed unless the AEs are in place.

12.3 Value-Based Release Planning

Release planning, as proposed in EVOLVE*, is one way to ensure that software is
developed with important business metrics such as effort and budget in mind. The
methodology followed in EVOLVE* for release planning already considers value
as an ordinal measure provided by stakeholders. However, EVOLVE* does not
consider value in financial terms where ratio-scale measures are taken into consid-
eration when choosing among plans. We propose to add a financial component to
EVOLVE* resulting in a modified approach called F-EVOLVE*.

F-EVOLVE* Process Model

Figure 43 shows the F-EVOLVE* process model. The model is an adaptation of
the EVOLVE* process model introduced in (Ruhe and Saliu, 2005). The shaded
area shows the modification to the EVOLVE* model: instead of being asked to
vote, the stakeholders are asked to specify the financial estimates for the features.
Three roles that contribute to the process and products of resource planning (RP)
are identified – project managers, stakeholders, and support environment. Activi-
ties occur directly under the roles that are actively involved. For example, project
managers and stakeholders’ roles are involved in feature elicitation, while a sup-
port environment maintains the group of features elicited.

The support environment can vary from a simple spreadsheet to an intelligent
tool support, depending on the sophistication of the RP methodology. Major ac-
tivities of the process model are described by rounded rectangles, while intermedi-
ate results of each activity are shown in ovals. The key functions of the model are:
feature elicitation, problem specification, resource estimation, stakeholder finan-
cial estimation, release plan generation, and evaluation of plan alternatives. These
functions work seamlessly together to provide release plan alternatives for the de-
cision maker.

252 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

Project Manager Support EnvironmentStakeholders

Problem Specification

Group Features
to be Planned

Objectives &
Constraints

Cost, effort,
revenue estimates

Stakeholder
Financial

Estimation

Assign NPV
estimates to

features

Evaluation of Plan
Alternatives

Most attractive/
appropriate release
plans, explanation

and reporting

Implementation

Generation of
qualified release
plan alternatives

Release plan
alternatives

Scenarios for
replanning

Feature Elicitation

Resource Estimation

Fig. 43. F-EVOLVE* Process Model

The F-EVOLVE* Method

F-EVOLVE* provides decision support in the generation and selection of release
plan alternatives. The model aids in aligning the software development process
with the goals of the business: to achieve greater profit in the shortest time possi-
ble. It should be noted that F-EVOLVE* does not account for the maintenance of
features after they have been developed – it only suggests what should be devel-
oped and when. The model can be specified as follows. Let Γ = {F1,…, Fn} be the

12 Decision Support for VBS Release Planning 253

set of features11 to be assigned to releases. We consider planning for K releases
ahead of time. As decision variables, we use the Boolean decision vectors x(i) =
(x(i,1), x(i,2), ,…,x(i,K)) where x(i,k) = 1 if feature i is implemented in release k.
By definition each feature can be assigned at most once, these variables must sat-
isfy the following constraints

k=1..K x(i,k) ≤ 1 for all i = 1..n (1)

Developing a feature consumes different types of resources. We assume R types of
resource. Development of feature i consumes resource(i,r) units of resource type
r. The problem is to offer a most profitable sequence of features under the given
resource capacity constraints for each time interval k = 1,..,K.

i resource(i,r) x(i,k) Cap(k,r) for k=1..K and r=1..R (2)

We distinguish two types of dependencies between features. Coupling between
two features i1 and i2 means that they have to be released at the same time period.
Correspondingly, precedence between i1 and i2 means that i2 is not allowed to be
released before i1. Coupling can be easily formulated by the coupling constraints

x(i1,k) = x(i2,k) for k=1..K and coupled features i1, i2. (3)

Precedence constraints can be formulated by

k (K+1 - k) (x(i1,k) - x(i2,k)) ≥ 0 if feature i1 has to precede feature i2. (4)

This constraint assures that if the vector x(i1,k) = 1 then x(i2,j), j=1..k-1, cannot be
1, i.e., i2 cannot be implemented before i1.

The question of what actually constitutes a good release plan needs careful con-
sideration. The user is expecting features that he or she would need first to get
started. But there are different types of stakeholders having different types of ex-
pectations and preferences. In our approach, we will consider the net present
values from the perspectives of different stakeholders as the basis of the formula-
tion of the problem, i.e., the problem is stated as maximization of NPV within the
resource and technical constraints (1)-(4).

For this purpose, we assume the existence of q different stakeholders abbrevi-
ated by S1, S2,…,Sq. Each stakeholder Sp is assigned a relative importance
λp ∈ (0, 1). The project or product manager typically assigns the relative impor-
tance of all involved stakeholders. If it is difficult to actually determine these
weights, pair-wise comparison using the analytic hierarchy process (Saaty, 1980)
can be used as a support. We assume that stakeholder weights are normalized to 1,
i.e.,

11Without loss of generality we use the concept of features to refer to ‘self-contained fea-
tures’ whose financial value stakeholders can elicit.

254 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

Σ p=1,…,q λp = 1 (5)

We further assume that stakeholder Sp estimates the implementation cost and an-
nual revenues generated by the feature i over a certain period of time after its re-
lease. Implementation cost estimates are made by technical experts like developers
based on their previous experiences with implementing similar features in the past,
while customers or marketers (or other personnel with market forecast experience)
should be able to use their experiences in similar situations to study the market
trend and estimate projected revenues over a period of time. From these data, we
can compute the net present values NPV(i,k,p), which is interpreted as “the net
present value of the revenues generated by feature i if it is made available in re-
lease k as perceived by stakeholder Sp.”

Given a feature i, each stakeholder gives his own estimations assuming that
only the revenues generated in the first four years (after the launch of a release to
the market) are significant, with the additional assumption that feature i can be in
release 1, 2, or 3. We emphasize that the time frame of the generated revenues de-
pends on the life cycle of the product and has no relation to the number of releases
in consideration.

Feature i should be of appropriate size to provide this estimation. NPV(i,k) de-
notes the (weighted) average NPV (generated by the implementation of feature i in
release k), which reflects the aggregation of all stakeholders’ estimates.

=
p p pkiNPVkiNPV),,(),(λ for i=1..n and k=1..K (6)

Once these NPVs have been computed, the NPV generated by a plan x can be
computed by

G(x, K) = Σ i Σ k NPV(i,k)·x(i,k) (7)

Denote X as the set of all release plan alternatives fulfilling (1)-(7), the finan-
cially based release planning problem becomes

Maximize G(x, K) subject to x ∈ X. (8)

Equation (8) represents a specialized integer programming problem. As de-
scribed in (Ngo-The and Ruhe, 2004), we will generate a set of alternative solu-
tions from which the stakeholder can finally choose his or her most preferred solu-
tion that has financial justification.

Providing alternatives for decision makers is a crucial area in decision support.
It recognizes that every decision has implications and risk; by providing alterna-
tives a decision maker can choose an option that best fits his preferences in an ef-
fort to mitigate the risk, and implications of a bad decision. Chapter 4 also consid-
ers decision alternatives as different courses of action that could lead to different
consequences while allowing for a dispersion of risk or consequences over the en-
tire life cycle of the project, thereby minimizing the impact of a bad decision. The

12 Decision Support for VBS Release Planning 255

above method is next applied to an illustrative example to show how features are
assigned to release plan alternatives based on their financial value.

12.4 Example

To illustrate the F-EVOLVE* method we present an illustrative example inspired
from the Web portal project at EPCOR Utilities Inc., one of Canada’s top inte-
grated utilities company The objective of the Web portal is to allow energy cus-
tomers in Canada to view and manage their billing data online on a Web site.

Background

Currently, EPCOR does not have any formally accepted way of performing its re-
lease planning. While it uses incremental development methods to better react on
changing customer requirements, there exist several issues:
• Size and complexity of the problem: The number of requirements in some pro-

jects may go up to hundreds or even thousands. The situation gets worse by
the fact that there are usually a large number of stakeholders involved in the
project who are either not consulted at all or are not given appropriate relative
weights.

• Changing requirements and other parameters: If a large number of require-
ments increase the complexity of the project, their dynamic nature poses an-
other challenge.

• Requirements are not well specified and understood: There is usually no for-
mal way to describe the requirements. Nonstandard format of requirement
specification often leads to incomplete description and makes it harder for
stakeholders to understand the requirements properly.

• Other constraints: The project manager has to consider various constraints
while allocating the requirements to various increments. The resources may
act as a bottleneck for the allocation of some requirements in the same incre-
ment.

Application of F-EVOLVE*

This study is performed for three release periods (i.e., K = 3). We consider self-
contained features as a market deliverable chunk of software similar to what
(Denne and Cleland-Huang, 2004) refer to as a minimum marketable feature. This
study has two stakeholders and 30 requirements. Stakeholder S1 is the manager of
information technology, and stakeholder S2 is the project manager. Stakeholder S1

has a weight of λ1=0.7 and stakeholder S2 has a weight of λ2=0.3. Each release oc-
curs on an annual basis. There are three resource types to create the different fea-
tures: systems analyst (SA), programmer (P), and database administrator (DBA).

256 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

Table 20 shows the resource capacities and the effort in person-days for each re-
source (SA, P, DBA). Table 21 shows the features and their estimated resource
consumption.

Table 20. Resource capacities (in person-days for release k)

Release k Cap(k, SA) Cap(k, P) Cap(k, DBA)
1 200 100 60
2 200 80 10
3 80 100 10

Table 21. F-Evolve* data12

Description SA P DBA NPV(i, 1) NPV(i, 2) NPV(i, 3)
F1 ARC billing

interface
80 50 0 36,500 20,750 17,250

F2 MV-PBS billing
interface

90 55 0 40,200 19,100 11,800

F3 UIS billing
interface

110 90 0 33,000 12,900 9,600

F4 Customer account
setup

24 48 0 11,500 16,500 13,000

F5 Web site
enhancement

0 20 0 6,500 3,700 2,300

F6 Administration
options

52 16 0 2,700 6,100 4,700

F7 Reporting
functionality

52 132 0 10,200 5,700 5,700

To ensure that the estimates are “good,” all, or most, of the information that im-
pact revenues should be taken into consideration to determine the degree of influ-
ence on the estimates. We can minimize the variability in the estimates by ensur-
ing that we have accounted for all relevant information in an effort to minimize
variability in the estimates. For example, stakeholders may involve other depart-
ments or sources within the organization, such as marketing, accounting, and
sales, to determine these numbers, and understand the general trend in the market
for the features. A seasoned stakeholder who can exploit information in these
sources will generally have a good idea of the value of the feature. The results of
applying the proposed F-EVOLVE* method are discussed next.

12We assume ceteris paribus when generating the estimates in Table 21.

12 Decision Support for VBS Release Planning 257

Results

It is inappropriate to argue that one plan is better than another if the difference in
terms of revenue is insignificant. The reason for that is the fact that preferences
are typically not based on just one criterion. Therefore, we consider a small set of
solutions that are close enough in terms of NPV. The project manager uses
his/own experience and judgment to compare these solutions and makes the final
choice (Ruhe and Ngo-The, 2004). In this example, four alternative solutions have
been calculated of which the NPVs are within 5% of the optimal value (Table 22).
The postponed option means that this feature should not be considered for the next
three releases.

Table 22. F-Evolve* example results

Alternative 1 Alternative 2 Alternative 3 Alternative 4

G(x,K) G(1, K)=84,680 G(2, K)=84,680 G(3, K)=80,480 G(4, K)=80,480
F1 3 2 3 2
F2 1 1 1 1
F3 Postponed Postponed Postponed Postponed
F4 2 3 2 3
F5 1 1 3 3
F6 2 2 2 2
F7 Postponed Postponed Postponed Postponed

In Table 22, each column corresponds to an alternative qualified solution, i.e., a
plan generating NPV, which is within 5% of the optimality. The first row repre-
sents the NPV generated by each solution. The numbers 1, 2, and 3 represent the
release to which the feature is assigned in the corresponding plan. For example, at
the intersection of column “alternative 1” and row “F1” we see 3; this means that
feature A will be in release 3 according to the plan 1. Due to the lack of resources,
certain features cannot be implemented in the horizon of the three releases in con-
sideration; they are marked as “postponed” in Table 22.

Although G(3, K) and G(4, K) have lower NPV, the difference is too small to
exclude them from the consideration. We now proceed with the analysis of these
alternatives to make the final choice. We observe that among these four alterna-
tives, only three features are assigned differently: F1 (release 2 or 3), F4 (release 2
or 4), and F5 (release 1 or 3). A discussion with the stakeholders shows that F5 is
important and should be included in release 1, i.e., alternatives 3 and 4 are ex-
cluded.

Now, the question becomes how to decide between alternative 1 and alterna-
tive 2? We look for a criterion to help us making this decision.13 Here, the only

13The decision to choose the best plan will be context-specific. Our analysis in no way sug-
gests that there is one-way to choose the best plan.

258 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

difference relates to the schedule release for F4 and F1. The question is then which
of F4 and F1 should be implemented first. The effort needed to implement F1 is 130
person-hours, which is higher than the effort required implementing F4, which is
72 person-hours. But the value generated by F1 is greater than that generated by
F4. Looking at the risk factor, such as the effort, the project manager realizes that
F1 requires much more effort and is associated with a higher risk of being delayed.
To mitigate the risk, it is decided that F1 should be implemented sooner in order to
have more time to deal with this risk. Finally, alternative 2 is chosen for imple-
mentation.

Contributions of the F-EVOLVE* Model

The meaningfulness of the results depends on the accuracy of the estimates of cost
and revenue that are needed for the net present value calculations.14 The implicit
assumption is that the stakeholders have some market knowledge about the costs
and returns for the features so their consolidated input on the estimates could lead
to better estimates. Furthermore, the cost of readjustment of estimates, in terms of
generating new release plans, would be minimal in this model because the num-
bers are simply inputs into an integer programming algorithm that can immedi-
ately generate new release plans.

The F-EVOLVE* model has several benefits for companies. If there is a lim-
ited project budget the F-EVOLVE* model can help to prioritize features that are
less costly to develop. Or it can prioritize features based on the value generated in
the form of net present value. The F-EVOLVE* model can also show features that
generate value earlier rather than later. For example, in the discussion of the re-
sults above, we chose alternative 2 for the reason that we wanted to realize value
sooner rather than later. For many companies it is a prudent business decision to
develop features that deliver value sooner rather than later – this is even truer for
highly competitive industries, like the software industry.

12.5 Conclusions and Future Work

In the 1995 CHAOS Report (Standish, 1995), the main causes of project failure
are the lack of user involvement, lack of resources, incomplete requirements, un-
realistic expectations, lack of executive support, and changing requirements. The
F-EVOLVE* model is one way to address these critical issues. Specifically, by es-
tablishing a financially informed approach to software release planning the model
tries to mitigate the risk of project failure by ensuring that ROI is an explicit part
of the decision process.

14Changes in market condition can of course change estimates but there is an implicit as-
sumption of ceteris paribus: all market conditions are held constant at time of estimation.

12 Decision Support for VBS Release Planning 259

Software release planning is a critical component of the software development
life cycle. Introducing value and financial planning into software release planning
is one way to bring the value-based component into release planning. These ideas
heighten the awareness that financial considerations must go hand in hand with
meeting customer requirements.

The focus of this chapter has been to highlight current value-based approaches
to software release planning. The main goal of the chapter was to enhance the ex-
isting EVOLVE* approach to accommodate financial value-driven analysis of re-
lease planning.

In future, we plan to further investigate the financial planning aspects of F-
EVOLVE* and determine how this could mitigate some of the risk involved in
software development. Another area to improve is the project management aspect
of software development from a value-based perspective. How can project control
and monitoring be improved or incorporated in the F-EVOLVE* model? F-
EVOLVE* could also be extended to consider the selection of architectures,
COTS, etc. Developing software from a financial planning perspective may be one
way to improve the way we develop software and may also improve the business
of software development. Finally, we suggest a comprehensive empirical evalua-
tion of the proposed method. We need more industrial feedback on the meaning-
fulness of the proposed research. This will be facilitated by tool support, as is cur-
rently available for EVOLVE*.

Acknowledgements

The authors would like to thank the Alberta Informatics Circle of Research Excel-
lence (iCORE) for its financial support of this research.

References

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes 28(2), pp 1–12 (May 2003)

(Carlshamre et al., 2001) Carlshamre, P., Sandahk, K., Lindvall, M., Regnell, B.,
and Nattoch Dag, J., An industrial survey of requirements interdependencies
in software release planning. In: Proceeding of the 5th IEEE International
Symposium on Requirements Engineering, pp 84–91, 2001

(Denne and Cleland-Huang, 2004) Denne, M. and Cleland-Huang, J., The Incre-
mental Funding Method – A Data Driven Approach to Software Develop-
ment, IEEE Software, May/June, 2004

(Farbey and Finkelstein, 1999) Farbey, B. and Finkelstein, A. Exploiting Software
Supply Chain Business Architecture: A Research Agenda, In Proceedings of
the 1st Workshop on Economics-Driven Software Engineering Research
(EDSER-1), 21st International Conference on Software Engineering, 1999

260 S. Maurice, G. Ruhe, O. Saliu, A. Ngo-The

(Jung, 1998) Jung, H.-W., Optimizing Value and Cost in Requirements Analysis,
IEEE Software, pp 74–78, 1998

(Karlsson and Ryan, 1997) Karlsson, J. and Ryan, K., Prioritizing Requirements
using a Cost-Value Approach, IEEE Software 14(5), pp 67–74, 1997

(Larman and Basili, 2003) Larman, C., and Basili, V., Iterative and Incremental
Development: A Brief History, IEEE Computer Society, pp 47–56, 2003

(Ngo-The and Ruhe, 2004) Ngo-The, A. and Ruhe, G., Optimization Algorithms
for Generating Largely Diversified Release Plans, University of Calgary,
Laboratory for Software Engineering Decision Support, TR 014/04, 22p.,
2004

(Penny, 2002) Penny, D. A., An Estimation-Based Management Framework for
Enhancive Maintenance in Commercial Software Products, In Proceedings of
International Conference on Software Maintenance (ICSM), pp 122–130,
2002

(Poladian et al., 2003) Poladian, V., Butler, S.A., Shaw, M., and Garlan, D., Time
is Not Money: The Case for Multi-dimensional Accounting in Value-based
Software Engineering, Position paper for the Fifth Workshop on Economics-
Driven Software Research (EDSER-5), affiliated with the 25th International
Conference on Software Engineering (ICSE'03), May 2003

(Ruhe, 2003) Ruhe, G., Software Engineering Decision Support – A New Para-
digm for Learning Software Organizations, Advances in Learning Software
Organization, Lecture Notes in Computer Science, 2640, Springer, pp 104–
115, 2003

(Ruhe and Ngo-The, 2004) Ruhe, G. and Ngo-The, A., Hybrid Intelligence in
Software Release Planning. International Journal of Hybrid Intelligent Sys-
tems, 1(2004), pp 99–110, 2004

(Ruhe and Saliu, 2005) Ruhe, G. and Saliu, M.O., The Science and Practice of
Software Release Planning, 2005, Technical Report TR-SEDS 23/2004

(Saaty, 1980) Saaty, T.L., The Analytic Hierarchy Process, Planning, Priority Set-
ting, Resource Allocation, McGraw-Hill, New York, 1980

(Standish 1995) Standish Group, CHAOS, http://www.standishgroup.com, 1995

Author Biographies

Sebastian Maurice is a Project Manager at M-Tech Information Technology, Inc.,
a member of the laboratory for Software Engineering Decision Support at the
University of Calgary, and also a member of the Project Management Institute.
His general area of research and interest is value-based software engineering. He
is the founder and chair of the Software Engineering Consulting Consortium
(SECCO) at the University of Calgary, has over ten years of combined profes-
sional experience as a researcher, software developer and project manager, and
has several publications in International Journals; one of these publications has
been recognized as landmark work. Sebastian has a Bachelor of Social Science
degree in Economics from the University of Ottawa (1993), a Bachelor of Science

12 Decision Support for VBS Release Planning 261

degree in Pure Mathematics from the University of Calgary (1997), a Master of
Science degree in Agricultural Economics from the University of Alberta (1997),
and is completing a Master of Science in Software Engineering from the Univer-
sity of Calgary. He can be reached at smaurice@ucalgary.ca.

Günther Ruhe holds an Industrial Research Chair in Software Engineering at Uni-
versity of Calgary and is an iCORE Professor since July 2001 (see
http://www.seng-decisionsupport.ucalgary.ca/). His laboratory comprises 20 re-
searchers focusing on Intelligent Decision Support in Software Engineering. His
main results and publications are in software release planning, requirements and
COTS selection, knowledge management, measurement, simulation and empirical
research. From 1996 to 2001 he was deputy director of the Fraunhofer Institute for
Experimental Software Engineering Fh IESE. He is the author of two books, sev-
eral book chapters, and more than 120 publications. Ruhe is a member of the
ACM, the IEEE Computer Society, and the German Computer Society GI.

Omolade Saliu is a PhD candidate and an iCORE scholar in Computer Science
Department at the University of Calgary, Canada. He holds a Bachelor of Tech-
nology (BTech) degree in Mathematics/Computer Science from the Federal Uni-
versity of Technology, Minna, Nigeria (1998). He obtained his Master of Science
(MS) degree in Computer Science from King Fahd University of Petroleum and
Minerals, Saudi Arabia (2003). His research interests include Software Metrics
and Measurement, Software Engineering Decision Support, Software Process-
related issues and Soft Computing. He is a member of the IEEE Comp. Society.

An Ngo-The received his BSc in Mathematics and Computer Science at the Uni-
versity of Ho-Chi-Minh City, Vietnam in 1985 and his MBA at the French-
Vietnamese Center for Management Education (CFVG), Vietnam in 1997. He re-
ceived his DEA (equivalent to MSc) in Decision Support at the LAMSADE labo-
ratory, University Paris Dauphine, France in 1998. He got his PhD in Computer
Science (Decision Support in Operational Research) at the LAMSADE laboratory,
France and the ESSEC Doctoral Program. Since October 2002, he is post-doc fel-
low at the Laboratory Software Engineering Decision Support, University of Cal-
gary, Canada.

13 ProSim/RA – Software Process Simulation in
Support of Risk Assessment

Dietmar Pfahl

Abstract: In the past decade, several authors have pointed out the potential of
simulation as an analysis and decision support tool for software managers. In this
chapter, we present a five step simulation-based method to risk assessment,
ProSim/RA, which combines software process simulation with stochastic simula-
tion. Although the proposed method is not new as such, it is the first time that it is
described systematically and in detail based on an illustrative case example that
can serve as a model for similar scenarios. By applying cost functions to the risk
probabilities generated by ProSim/RA, the potential losses to the delivered prod-
uct value can be calculated.

Keywords: ProSim/RA, simulation model, software process simulation, system
dynamics, risk assessment, risk management.

13.1 Introduction

Software development projects can become highly risky endeavors and thus need
good risk management processes in order to avoid or mitigate events that poten-
tially cause monetary losses due to late product delivery, insufficient product qual-
ity, damaged reputation, or any other negative effect.

Prominent software risk management processes typically comprise several
phases. The well-known risk management process proposed by Boehm (1991), for
example, consists of two phases, i.e., risk assessment and risk control, comprising
six tasks: risk identification, risk analysis, risk prioritization, risk management
planning, risk resolution, and risk monitoring. These tasks are further subdivided
into specific activities. More recent risk management processes are extensions of
Boehm’s original proposal, for example, Kontio’s Riskit model (Kontio, 2001)
which puts particular focus on the important role of stakeholders, or Wallmüller’s
risk management model (Wallmüller, 2004) which advocates an integration of
project and risk management.

While software engineering practice and research frequently lacks a value-
oriented perspective, Value-Based Software Engineering (VBSE) seeks to inte-
grate value considerations into current and emerging software engineering princi-
ples and practices (Chapter 2; Boehm, 2003; Boehm and Huang, 2003). Software-
related decisions cannot be extricated from business value concerns in a commer-
cial software development context. A value-oriented approach provides explicit
guidance for making products useful to people by considering different people’s

264 Dietmar Pfahl

utility functions or value propositions. The value propositions are used to deter-
mine relevant measures for given scenarios.

This chapter addresses the planning and control aspect of VBSE to manage the
risk of failing to deliver planned project value to customers. Specifically, simula-
tion techniques are combined and applied to complex project situations in order to
account for business value loss due to the combined materialization of typical pro-
ject risks, such as time and budget overruns or lack of product quality. A some-
what similar approach has recently been proposed by DeMarco and Lister (2003)
in the form of their Riskology. The main difference between Riskology and our
approach to simulation-based risk assessment is that we propose to use Software
Process Simulation (SPS) to adequately represent the complex project reality in-
stead of using more limited static predictive models.

SPS can be used to reason about software value decisions. Simulation can ana-
lyze the impact of multivariate risk factors on those project parameters that are of
particular interest to the project manager and/or its customers. This approach can
be combined with a VBSE decision framework by involving expert opinion. This
can happen either on the input side by eliciting expert estimates on the potential
variation of risk factors, or on the output side by using expert estimates for con-
structing loss functions that are applied to the output probability distributions
characterizing the risks of late product delivery, low product quality, and project
effort overrun. Examples of compatible VBSE frameworks can be found in Part 2
of this book.

In the following sections of this chapter, we present a simulation-based ap-
proach to risk assessment, ProSim/RA, which combines SPS with stochastic simu-
lation.

In the past decade, several authors have pointed out the potential of simulation
as an analysis and decision support tool for software managers (Christie, 1999a;
Pfahl and Ruhe, 2001; Raffo and Kellner, 1999). Kellner and Hansen (1989), and
Abdel-Hamid and Madnick were the first to apply simulation modeling in the con-
text of software process and project management (Abdel-Hamid and Madnick,
1991; Lin et al., 1997). The most influential SPS model, the one by Abdel-Hamid
et al., comprised:
• Generic project variables, such as workforce level, budget, scheduled comple-

tion date, number of errors produced, number of errors detected;
• Managerial-related functions, e.g., staffing, planning, and controlling;
• Production-related functions, e.g., design, development, verification, rework;
• Human-related functions, e.g., productivity, motivation, error rate, whose val-

ues are affected by the project's perceived status (schedule pressure) and the
penalty-reward structure of the organization.

Typical applications of the Abdel-Hamid model focus on project estimation and
the effects of project planning on product quality and project performance.

Since 1991 many new SPS applications in software engineering have been pub-
lished, focusing on more specific topics within software project and process man-
agement, such as multi-project management (Lee and Miller, 2004), concurrent
engineering (Powell et al., 1999), requirements engineering (Christie and Staley,

13 Software Process Simulation in Support of Risk Assessment 265

2002; Ferreira et al., 2003; Höst et al., 2000; Pfahl and Lebsanft, 2000a; Stallinger
and Grünbacher, 2001), software process improvement (Bandinelli et al., 1995;
Birk and Pfahl, 2002; Birkhölzer et al., 2004; Christie, 1999b; Pfahl and Birk,
2000; Raffo et al., 1999; Ruiz et al., 2002; Tvedt and Collofello, 1995), strategic
planning (Pfahl et al., 2004; Williford and Chang, 1999), software verification and
validation (Aranda et al., 1993; Madachy, 1996; Neu et al., 2003; Raffo and Kell-
ner, 2000; Raffo et al., 2004), software reliability management (Rus et al., 1999),
software maintenance (Cartwright and Shepperd, 1999), software evolution (Smith
and Ramil, 2002; Wernick and Hall, 2004), COTS software development (Ruiz et
al., 2004), global software development (Raffo et al., 2003), software outsourcing
(Roehling et al., 2000), open source development (Jensen and Scacchi, 2003), ag-
ile software development (Mišic et al., 2004), and software engineering training
(Drappa and Ludewig, 1999; Madachy and Tarbet, 2000; Pfahl et al., 2001).

The potential application domain of software risk management, however, has
not yet been explored deeply and described in terms of a generally applicable pro-
cedure. Apart from an early paper by Weil and Dalton (1992), in which the idea of
using SPS for risk analysis was suggested in a very generic way, and two more re-
cent application-specific case examples published by Houston et al. (2001) and
Neu et al. (2002), there exists only one comprehensive and detailed description of
an approach to simulation-based risk assessment published in the form of a disser-
tation by Bröckers (1995). Although the work by Bröckers is very useful from the
conceptual point of view, the proposed approach has the disadvantage that the
SPS-based risk assessment procedures are strongly tool dependent as they are in-
herently linked to a specific software process modeling language (MVP-L)
(Bröckers et al., 1995) and a specific software process enactment environment
(MVP-S) (Lott et al., 1995).

 The lack of research into the application of SPS for the purpose of risk man-
agement tasks is surprising as there are very obvious possibilities to apply SPS
models particularly in the area of software project risk assessment.

Regarding risk identification, systematic sensitivity analysis offers a powerful
means to explore unwanted levers in the project, which may be considered poten-
tial risk factors. Subsequently, sensitivity analysis combined with stochastic
analysis can be used to further investigate into the effects of individual risk factors
or combinations of risk factors on project performance. Finally, based on the
probability distributions constructed upon the simulation results generated for the
purpose of risk analysis, risk prioritization can be done by ranking the effects on
project performance according to probability of the occurrence of unwanted ef-
fects multiplied by the associated estimated loss.

The organization of the chapter is as follows. First, we give a brief introduction
into SPS in general and with particular focus on its applicability in the context of
software risk management. Then we present the main ideas of ProSim/RA; in par-
ticular, its five step procedure to simulation-based risk analysis will be described
in detail. The main part of this chapter will be used to illustrate the application of
ProSim/RA in a case example and to explain how ProSim/RA can be used to sup-
port informed decision making within a VBSE framework. A discussion of the

266 Dietmar Pfahl

strengths and weaknesses of ProSim/RA and an outlook to future research con-
cludes the chapter.

13.2 Software Process Simulation

Because it is partly based on statistical analyses of data which is produced by a se-
ries of simulations, the proposed risk assessment procedure ProSim/RA depends
on the availability of a valid project simulation model. Currently, there exists a
wide range of SPS modeling techniques. The interested reader can find a concise
introduction into the most popular paradigms in (Kellner et al., 1999). In principle,
the choice of the simulation modeling technique does not restrict the applicability
of ProSim/AR. Nevertheless, some thought should be spent on the selection of an
appropriate simulation modeling technique. Due to several positive characteristics,
which will be sketched below, we recommend using System Dynamics process
simulation models.

System Dynamics (SD) is a continuous time simulation modeling approach
(Forrester, 1961; Madachy, 2005) which models the continuous change of system
states over time with the help of material flows that are controlled by a causal
network of information links. SD simulation models of software development
processes are a particularly suited and easy to use means for adequately capturing
mental models of software managers about software projects and processes. They
are holistic in the sense that they easily combine the three main dimensions that
characterize software development: processes, products, and people. Moreover,
SD models allow for capturing nonlinear behavior, multi-causality, and feedback
phenomena.

SD simulation modeling has the following positive characteristics:
• Top-down approach: SD facilitates quick delivery of an initial SPS model com-

prising the complete software development process; subsequent refinements
help improve validity of the model by stepwise inclusion of necessary detail in
a controlled manner; an instructive example of a top-down SPS modeling exer-
cise using SD can be found in (Pfahl and Ruhe, 2003).

• Detailed guidance with particular focus on applying SD in software develop-
ment organizations (Pfahl and Lebsanft, 2000b; Pfahl and Ruhe, 2003).

• Mature tool support, e.g., Vensim15, Ithink16, and Powersim17 offering a graphi-
cal modeling language, mathematical functionality with high analytic power,
and comprehensive data import/export interfaces.

Although only the availability of an SPS model and not the choice of the simula-
tion modeling technique with which the SPS model was created is essential for the

15http://www.vensim.com
16http://www.iseesystems.com
17http://www.powersim.com

13 Software Process Simulation in Support of Risk Assessment 267

applicability of ProSim/AR, we will rely exclusively on an SD-based SPS model
in the remainder of this chapter.

The SD-based SPS model GENSIM (GENeric SIMulator) will be used in a
case example in Section 13.4 to illustrate the application of ProSim/RA. GENSIM
is a generic SD model representing a waterfall-like software development process.
It is a research prototype that was developed for demonstration purposes in the
context of project management training (Pfahl et al., 2001). The GENSIM model
simulates the software development process from the end of the requirement
analysis step through to the end of system testing. A detailed description of
GENSIM can be found in (Pfahl, 2001). Although the model is only a research
prototype it can be easily calibrated to product and process measures of a specific
software organization. For producing the simulation results used in the case exam-
ple, GENSIM was calibrated to the development process of a “typical” software
organization.

The GENSIM model has a modular structure. It consists of five interrelated
sub-models:
• Production: This sub-model represents a typical software development cycle

consisting of the following sequence of transitions (see Figure 44): set of re-
quirements design documents code tested code. Note that the detec-
tion of defects during testing only causes reworking of the code (and not of the
design documents).

• Quality: In this sub-model, the defect co-flow is modeled, i.e.: defect injection
(into design or code) defect propagation (from design to code) defect de-
tection (in the code during testing) defect correction (only in the code).

• Effort: In this sub-model, the total effort consumption for design development,
code development, code testing, and defect correction (rework) is calculated.

• Initial Calculations: In this sub-view, the normal value of the central process
parameter “productivity” is calculated. The “normal productivity” represents
the productivity that can be observed in standard projects, i.e., in projects of
typical size and complexity, and with typical (not extreme) constraints. The
normal productivity varies with assumptions about the product complexity
(e.g., simple stand-alone software, complex software system without significant
hardware interaction, embedded software with complex hardware interaction)
and characteristics of the personnel resources available (e.g., developer skill).

• Productivity, Quality & Manpower Adjustment: In this sub-model, project-
specific process parameters, like (actual) productivity, defect generation, effec-
tiveness of QA activities, etc., are determined based on a) planned target values
for manpower, project duration, product quality, etc., and b) time pressure
caused by unexpected rework or changes in the requirements.

268 Dietmar Pfahl

Set of
Requirements

Design
Documents

Inspected
Des. Docs

(Re-)
Design

Design
Inspection

Software
Code

Inspected
SW Code

(Re-)
Implementation

Code
Inspection

Tested
SW Code

Software
Test

rework

rework

rework

Fig. 44. Product flow captured by the GENSIM production sub-model

The most important input and output parameters and their use in the context of
predicting effort, quality, and duration are listed in Tables 23 and 24. The input
parameters of the simulation define the project goals (parameters Product_size,
Planned_completion_time, and Goal_field_defect_density) and constraints (pa-
rameters Average_complexity, Planned_manpower, and Manpower_skill), as well
as the process, e.g., the degree to which design and code inspections are applied
(parameters Inspection_intensity_design and Inspection_intensity_code).

Table 23. GENSIM input parameters with units

Input Parameters Unit
Product_size Total number of size units

(e.g., Function Points)
Average_complexity Values: (0.5=low, 1=default, 1.5=high)

[no unit]
Manpower_skill Values: (0.5=low, 1=default, 1.5=high)

[no unit]
Planned_manpower (optional) Number of persons
Planned_completion_time
(optional)

Days

Goal_field_defect_density
(optional)

Defects per implemented size unit

Inspection_intensity_design Fixed percentage of
total number of size units

Inspection_intensity_code Fixed percentage of
total number of size units

13 Software Process Simulation in Support of Risk Assessment 269

The output parameters represent the simulation results, e.g., size of the work and
end products (parameters Design_size, Code_size and Product_size), project dura-
tion (parameter Project_duration), effort consumption (parameter Project_effort),
and product quality (parameter Field_defect_density).

Actually, the detailed cause-effect structure that underlies each of the sub-
models, and in particular each of the process stages (design, implementation, test)
of the production sub-model, would make it possible to monitor any detail of the
project status at any point in time during the project execution, e.g., effort con-
sumption per phase and activity (design production, design analysis, design cor-
rection, number of inspections conducted, etc.). For the sake of simplicity, in the
following, only a small subset of the analytic potential of the GENSIM model will
be exploited.

Table 24. GENSIM output parameters with units

Output Parameters Unit
Design_size Total number of designed and

inspected size units
Code_size Total number of implemented and

inspected size units
Product_size Total number of implemented and

tested size units
Project_duration Project total and per phase [days]
Project_effort Project total and per phase

[person-days]
Product_field_defect_density defects per implemented

size units after test

13.3 SPS-Based Risk Analysis Procedure

The proposed simulation-based risk analysis procedure ProSim/RA requires the
availability of a simulation model that represents the overall software development
process on an adequate level of granularity. Having such a model at hand,
ProSim/RA consists of the following five steps.

STEP 1: Define risk factors. Risk factors are attributes of project entities that
are supposed to cause losses of a certain amount with a certain probability. In the
related project simulation model, such attributes are represented by model parame-
ters.

STEP 2: Define impact factors. Impact factors are attributes of project entities
that are supposed to be affected by variations of risk factors and need to be con-
trolled. In the related project simulation model, such attributes correspond with
model output variables. Typically, variables representing the dimensions of the
“magic triangle” (see Figure 45) are of particular interest. The dimensions of the
“magic triangle” are requirements coverage (referring to both functional and non-

270 Dietmar Pfahl

functional requirements), effort (or cost), and time (either time-to-market or pro-
ject duration).

STEP 3: Define variation of risk factors. In particular, this implies the construc-
tion of a distribution function describing the probability of assuming a particular
value. One way of constructing such a distribution function is to fit generic prob-
ability functions (e.g., triangle distribution, normal distribution) to available data
from (similar) past projects, for example, extracted from an Experience Data Base
(EDB) (see Figure 46). The fitting can be performed automatically by using tools
that employ test statistics such as Chi-Square, Kolmogoroff-Smirnoff, or Ander-
son-Darling (D’Agostino and Stephens, 1986). If empirical data is not available,
expert interviews can be used to construct triangular distributions by asking for es-
timates of the most probable value (peak), the minimal (min) value, and the
maximal (max) value (see Figure 47). If more than one expert is available, the
easiest way to define the min, max, and peak values per risk factor is to take the
averages of the experts’ estimates. Alternatively, group consensus techniques such
as Delphi can be used to combine expert judgment values (see also Chapter 5 for
hints about related group negotiation support techniques).

SW
Product

Requirements Coverage
(Functional & Nonfunctional Requirements)

Effort / Cost Time
(Project Duration)

SW
Product

Requirements Coverage
(Functional & Nonfunctional Requirements)

Effort / Cost Time
(Project Duration)

SW
Product

Requirements Coverage
(Functional & Nonfunctional Requirements)

Effort / Cost Time
(Project Duration)

Fig. 45. The magic triangle

STEP 4: Conduct sensitivity analyses. Sensitivity analyses are conducted by re-
peatedly running the SPS model with values of the risk factor attributes randomly
sampled from the probability functions constructed in STEP 3. As a result, the
sensitivity analyses generate SPS output distributions reflecting the induced varia-
tion of the impact factors.

13 Software Process Simulation in Support of Risk Assessment 271

Fig. 46. Data-based construction of probability distribution

STEP 5: Analyze simulation results. This means in particular to check the prob-
abilities of those value ranges that are worse than expected. By combining the
probabilities of the occurrence of unwanted attribute values of impact factors with
their associated estimated losses, rankings can be constructed that may serve as an
input for risk prioritization. Typically, potential losses are associated with late
product delivery (contract penalty), lacking product quality (rework cost), and ef-
fort overrun (personnel cost).

Experts

min peak max

min peak max

Triangular Distribution(s)

min peak max

Cumulated Probability Risk
Factor

x

(x-min)2

(max-min)(peak-min)

peak-min
(max-min)

Prob =
1-P(X≤peak)

Experts

min peak max

min peak max

Triangular Distribution(s)

min peak max

Cumulated Probability Risk
Factor

x

(x-min)2

(max-min)(peak-min)

peak-min
(max-min)
peak-min
(max-min)

Prob =
1-P(X≤peak)

Fig. 47. Expert-based construction of probability distribution

In the following section, we show with the help of a case example, how the
ProSim/RA five-step procedure can be applied in the context of an SE technology
adoption risk assessment.

13.4 Case Example

In software development, we can identify two main sources of project risks:
• Lack of data in early phases (i.e., planning) causing the risk of incorrect project

estimates (i.e., related to time, effort, quality, functionality)
• High variability of project over time causing the risks of insufficient project

control and unsatisfactory achievement of project goals (i.e., related to time, ef-
fort, quality, functionality)

272 Dietmar Pfahl

Having a valid SPS model at hand that accurately represents the important cause-
effect relationships between actors in a process, and artifacts produced and con-
sumed in the various process steps, the above identified risks can be analyzed.

In the following case example, we show how one can analyze the risks related
to the actual impact of verification (or quality assurance; QA) and validation (or
quality control; QC) activities (i.e., inspections and tests) on product quality, pro-
ject duration, and project effort consumption simultaneously. Using the SD-based
SPS model GENSIM, each step of the simulation-based risk analysis procedure
ProSim/RA is described in detail.

Define Risk Factors (STEP 1)

As QA-related risk factors, the following SPS model variables can be identified:
• Nominal_design_error_density [defects per size unit]: represents the average

number of defects per size unit of design documentation generated during de-
sign, given that the standard development process is followed and the average
skills of the workforce (captured by variable Manpower_skill) are adequate for
the project to be performed.

• Nominal_implementation_error_density [defects per size unit]: represents the
average number of defects per size unit of program code generated during im-
plementation, given that the standard development process is followed and the
average skills of the workforce are adequate for the expected project complex-
ity.

• Design_error_amplification [no unit]: a multiplier that represents the average
number of defects generated during implementation per undetected defect in
the design documents; the number of defects resulting from design error ampli-
fication is added to the number of defects resulting from nominal defect genera-
tion during design.

• Nominal_inspection_effectiveness [%]: represents the average percentage of de-
fects that are detected during design and code inspections.

• Inspection_effort_per_task [person-days per size unit]: represents the average
effort that is needed to inspect one size unit of design documents or program
code.

• Design_rework_effort_per_error [person-days per defect]: represents the aver-
age effort needed to rework defect in a design document detected during design
inspection.

• Implementation_rework_effort_per_error [person-days per defect]: represents
the average effort needed to rework a defect in the program code detected dur-
ing code inspection.

As QC-related risk factors, the following SPS model variables were identified:
• Nominal_test_effectiveness [%]: represents the average percentage of defects

that are detected during testing.

13 Software Process Simulation in Support of Risk Assessment 273

• Test_error_fix_effort [person-days per defect]: represents the average effort
needed to rework a defect in the program code detected during testing.

Table 25. QA/QC-related risk factors

QA/QC-related Risk Factor Unit
Nominal_design_error_density defects per size unit
Nominal_implementation_error_density defects per size unit
Design_error_amplification - no unit -
Nominal_inspection_effectiveness %
Inspection_effort_per_task person-days per size unit
Design_rework_effort_per_error person-days per defect
Implementation_rework_effort_per_error person-days per defect
Nominal_test_effectiveness %
Test_error_fix_effort person-days per defect
Manpower_skill - no unit -

Finally, the SPS model variable Manpower_skill [no unit] can be identified as a
risk factor related to the performance of both QA and QC activities. Man-
power_skill represents the adequacy of the average skills of the workforce in rela-
tion to the difficulty of the project to be performed. If Manpower_skill is adequate
(i.e., Manpower_skill = 1 [“medium”]), then the nominal productivity and defect
generation rates apply. If Manpower_skill is unbalanced, e.g., too small (i.e.,
Manpower_skill = 0.5 [“low”]), then design, inspection, and test productivity de-
crease below the nominal values, while defect generation during design and cod-
ing increases above the nominal values. The summary list of all QA/QC-related
risk factors with their associated units is shown in Table 25.

Define Impact Factors (STEP 2)

The following impact factors are of interest in the case example (see Figure 48):
• Project_duration [days]: represents the duration of the project in calendar days

from begin of design to end of system test. One calendar day is equivalent to
eight hours elapsed working time.

• Project_effort [person-days]: represents the effort consumption in person-days
from begin of design to end of system test.

• Product_field_defect_density [defects per implemented size units]: represents
the number of defects per code size unit that remain undetected in the program
code after system test.

274 Dietmar Pfahl

Product

Assumption:
– Functionality fixed

Impact Factors:
– Quality = field defect density

[defects per size unit]
– Time = project duration

[calendar days]
– Effort [person-days]

RC

E T

Product

Assumption:
– Functionality fixed

Impact Factors:
– Quality = field defect density

[defects per size unit]
– Time = project duration

[calendar days]
– Effort [person-days]

RC

E T

Fig. 48. Impact factors of the case example

It should be noted that in the case example, as indicated in Figure 48, the
achievement of the specified functionality is not expected to vary, and thus is not
considered an impact factor in the risk analysis.

Define Variation of Risk Factors (STEP 3)

Table 26 below shows the variation of risk factors in terms of fictitious expert es-
timates for minimum, maximum, and most probable (peak) value.

Table 26. QA/QC-related risk factor variation

QA/QC-related Risk Factors Expert Estimates for
Min Peak Max

Nominal_design_error_density 1.30 1.50 1.80
Nominal_implementation_error_density 0.70 1.00 1.20
Design_error_amplification 1.50 2.50 3.00
Nominal_inspection_effectiveness 0.60 0.70 0.85
Inspection_effort_per_task 0.18 0.20 0.25
Design_rework_effort_per_error 0.07 0.08 0.10
Implementation_rework_effort_per_error 0.20 0.24 0.30
Nominal_test_effectiveness 0.75 0.80 0.90
Test_error_fix_effort 0.50 0.60 0.80
Manpower_skill 0.80 1.00 1.10

The most negative expected outcome with regard to its impact on project perform-
ance is formatted in italics. For example, in the case of De-
sign_error_amplification, the minimal and maximal possible values are estimated
to be 1.5 and 3.0, respectively, while the most probable (peak) value is estimated
to be 2.5. Obviously, the maximal value 3.0 will cause more quality problems, ef-
fort consumption due to defect identification, and rework than the minimal or peak
values.

13 Software Process Simulation in Support of Risk Assessment 275

Conduct Sensitivity Analyses (STEP 4)

Figures 49 to 51 below show the variation of the impact factors “project duration”
(GENSIM variable Project_duration), “product quality” (GENSIM variable
Product_field_defect_density), and “total project effort” (GENSIM variable Pro-
ject_effort) when using multivariate Latin hypercube18 sampling.

Project_duration all min. all peak all max.Project_duration all min. all peak all max.

Fig. 49. Simulation output for project duration

The solid line (“peak line”) represents the simulation result when assuming the
peak value for each risk factor, while the intervals around the peak line represent
the areas in which 50% (light gray), 75% (gray), 95% (dark gray), and 100%
(black) of all simulation outcomes are located. The dotted and dashed lines repre-
sent simulation outcomes for the best and worst cases, i.e., those cases in which ei-
ther all risk factors are concurrently either most favorable or most unfavorable
with regards to project performance.

18Advice on selecting adequate random sampling techniques can be found in (Vose, 1996).
Latin hypercube sampling is generally more precise for producing random samples than
conventional Monte Carlo sampling, because the full range of the distribution is sampled
more evenly and consistently.

276 Dietmar Pfahl

Product_field_defect_density

all max.

all peak
all min.

Product_field_defect_density

all max.

all peak
all min.

Product_field_defect_density

all max.

all peak
all min.

Product_field_defect_density

all max.

all peak
all min.

Fig. 50. Simulation output for product quality

As the case example does not represent a specific real-world case, the exact values
are not of importance. What is interesting, though, is the fact that the extreme
cases, i.e., the combinations of either exclusively best or exclusively worst cases
(dashed and dotted lines), are clearly outside the 100% ranges. Obviously, due to
the large number of risk factors, the sampling mechanism yields more balanced
combinations of favorable and unfavorable risk factor values than the combina-
tions of extremes.

Project_effort

all max.

all peak
all min.

Project_effort

all max.

all peak
all min.

Fig. 51. Simulation output for total project effort consumption

13 Software Process Simulation in Support of Risk Assessment 277

On the other hand, there is still some variation of the impact factors that needs to
be considered when estimating potential loss of value of the delivered product.
Furthermore, it can be seen that the simulated averages of project duration and
project effort overrun the all-peak outcomes, while the simulated average of prod-
uct quality is below the value of the all-peak outcome. This is interesting, because
it implies that the risk of loss of business value – or, in other words: the risk of
missing the planned product value (i.e., the all-peak values) – is unbalanced.

Analyze Simulation Results (STEP 5)

The simulation results produced in STEP 4 can be used to prioritize risks, to focus
investments into risk prevention, risk control, and risk mitigation activities, and to
calculate potential losses of product value in the cases of lower than planned pro-
ject performance.

Losses only occur when at least one impact factor yields a result that is worse
than its planned value19. Typical examples of costs that induce value losses are
cost of late delivery (e.g., contract penalties), cost of lacking quality (e.g., unbud-
geted rework cost), and cost of effort overrun (e.g., unbudgeted labor cost). In or-
der to calculate the potential losses for each individual cost category it is neces-
sary to establish a cost function and to combine this cost function with the
probability of risk realization.

50% 75% 95% 100%
Product_field_defect_density

4

3

2

1

0
0 250 500 750 1000

Time (Days)

Tests:
- Chi-Square
- Kolmogoroff-Smirnoff
- Anderson-Darling

Normal(0.40, 0.085)

0

100

200

0.10 0.24 0.38 0.52 0.66 0.80

Normal(0.40, 0.085)

0

100

200

0.10 0.24 0.38 0.52 0.66 0.80

50% 75% 95% 100%
Product_field_defect_density

4

3

2

1

0
0 250 500 750 1000

Time (Days)

Tests:
- Chi-Square
- Kolmogoroff-Smirnoff
- Anderson-Darling

Normal(0.40, 0.085)

0

100

200

0.10 0.24 0.38 0.52 0.66 0.80

Normal(0.40, 0.085)

0

100

200

0.10 0.24 0.38 0.52 0.66 0.80

Fig. 52. Construction of the impact factor probability distribution

The probability of risk realization is defined as 1 – P(X planned quality) or 1 –
F(planned quality) where X is the value of the impact factor and F is the associated

19The planned values are equal to the peak line, if the project planning is done based on the
experts’ peak estimates and the SPS model is valid.

278 Dietmar Pfahl

probability distribution of X. F can be identified with the help of standard good-
ness-of-fit tests (D’Agostino and Stephens, 1986) based on the simulation results.
Figure 52 shows the fitted probability distribution of impact factor Prod-
uct_field_defect_density which, in the case example, can be approximated by the
normal distribution N(0.40, 0.085).

As an example, for impact factor Product_field_defect_density, the potential
loss due to lower than planned product quality can be calculated as follows:

()()QCSPualityssProductQExpectedLo F1
%100

−⋅⋅⋅= , where

P denotes the percentage of undetected defects that will surface after delivery,
S denotes the size of the delivered functionality, e.g., in Function Points (FP)
C denotes the correction cost per defect after test,
Q denotes the planned quality after test (e.g., undetected defects per FP), and
F denotes the fitted probability distribution N(0.40, 0.085)

In the case example, the planned (or at least expected) value of impact factor
Product_field_defect_density, Q, equals 0.45 undetected defects per FP. There-
fore, 1 – F(Q), i.e., the cumulative probability of missing this threshold
equals 0.28. Similar calculations can be conducted for impact factors Pro-
ject_duration and Project_effort. For these factors, however, the cumulative prob-
abilities of missing the related thresholds are less favorable. For example, in the
case of impact factor Project_effort, the cumulative probability is 0.72. The sum
of the associated potential losses per impact factor gives the potential total loss of
product value for the software organization in relation to the expected effective-
ness of QA and QC activities. For a comprehensive discussion of the relation be-
tween risk and the economic value of a software product, see Chapter 5, or refer to
the excellent book by DeMarco and Lister (2003).

13.5 Discussion and Future Work

In the previous section, we have shown how one can analyze with the help of
ProSim/RA the risks related to the actual impact of QA and QC activities (i.e., in-
spections and tests) on product quality, project duration, and project effort simul-
taneously. We have also shown how the potential losses to the delivered product
value can be calculated by applying cost functions to the risk probabilities gener-
ated by ProSim/RA.

It should be noted that many other scenarios than the one presented in the case
example are possible. In particular, the risk of making a wrong decision with re-
gards to technology selection can be assessed by applying ProSim/RA, including
the calculation of potential loss of product value. A typical scenario is related to
making the right decision on selecting the most effective inspection technique
with regards to overall project performance (project duration, project effort, prod-
uct quality). In a ProSim/RA-based analysis representing this scenario, we com-

13 Software Process Simulation in Support of Risk Assessment 279

pared type-A design and code inspections to type-B design and code inspections,
where type-A inspections are supposed to find on average about 60% of all defects
with a defect type distribution that is proportional to the distribution of defect
types contained in the design and code, while type-B inspections are supposed to
find on average only about 50% of the defects contained in the design and code
but with a higher proportion of defects difficult to correct (if found in later
phases). While type-A inspections can be considered a value-neutral neutral defect
detection technique (as they are blind towards the variation of defect types with
regards to their difficulty of correction), type-B inspections are value-based be-
cause they focus on detection of defects difficult to correct (and thus expensive).

The result of the ProSim/RA-based analysis showed that there was no signifi-
cant difference between inspection types A and B if they are only applied to 50%
of the design and code documentation, while type-B inspections have a more posi-
tive effect on overall project performance than type-A inspections if they are both
applied to 100% of the documentation. In the latter case, type-B inspections re-
duce the number of remaining defects (of all types) in the code after test by about
20% and save about 10% effort and time as compared to type-A inspections. As a
byproduct the analysis also reconfirmed the claim that using inspections (no mat-
ter which type they are) is better than not using inspections as a QA technique in
software development. The product value gained by applying inspections can be
calculated in a similar way as shown in Section 13.5.

The strengths of the proposed risk analysis procedure ProSim/RA can be sum-
marized as follows:
• Multi-causality: The procedure offers the possibility to assess the impact of risk

factors not only individually but concurrently. In other words, it is a holistic
approach which does not limit itself to monocausal dependencies but facilitates
the consideration of complex interdependencies among risk factors.

• Comprehensiveness: Similarly, the procedure offers the possibility to asses the
impact of risk factors not only on one impact factor but on several impact fac-
tors simultaneously, thus allowing for tradeoff analyses and holistic assessment
of potential loss to product value.

• Flexibility: The procedure offers the possibility to combine statistical analysis
with expert knowledge.

• Adaptability: The procedure offers the possibility to assess and compare the
impact of different SE methods, techniques, and tools by adapting the underly-
ing SPS model. For example, the SPS model GENSIM could be changed to
have three defect co-flows for high, medium, and low businesspriority defects,
and then be used in combination with ProSim/RA to explore the differences be-
tween value-neutral inspection and test strategies versus strategies focusing ef-
fort on the detection of high businesspriority defects. Examples of value-based
methods of defect reduction can be found in this book, e.g., value-based inspec-
tion and testing based on prioritized requirements is discussed in Chapter 7, 9,
and 12.

280 Dietmar Pfahl

• The weaknesses and limitations of the proposed risk analysis procedure
ProSim/RA can be summarized as follows:
- The costs for SPS model development and maintenance are high.
- It is difficult to achieve sufficient validity of the SPS model.

In order to overcome the weaknesses and limitations of ProSim/RA even more ef-
ficient and effective simulation modeling approaches than the existing ones are
needed. Two promising research directions have been identified, i.e., improving
reusability of SPS models by offering sets of model patterns, and increasing mod-
eling efficiency by introducing agile development principles into existing SPS
model development practice (Angkasaputra and Pfahl, 2004). In addition, to im-
prove validity and maintainability of SPS models, opportunities to better integrate
the SPS model with existing organizational experience bases need to be pursued.
Initial work in this direction has been done by Münch and Armbrust (2003), and
Rus et al. (2002).

In order to better exploit the benefits of ProSim/RA for business planning, a
more systematic integration of simulation-based risk assessment with the VBSE
framework is still required. The seven key elements of VBSE are (Chapter 2;
Boehm, 2003; Boehm and Huang, 2003): benefits realization analysis, stake-
holders’ value proposition elicitation and reconciliation, business case analysis,
continuous risk and opportunity management, concurrent system and software en-
gineering, value-based monitoring and control, change as opportunity. The poten-
tial usefulness of SPS for VBSE has been demonstrated by Madachy (2004) who
investigated the application of SPS models to assess product quality options and
their impact on business value. His work shows how software business decision
making can improve with value information gained from simulation experiments.
In general, SPS can be used to reason about software value decisions, i.e., it can
help find the right balance of activities that contribute to stakeholder value with
other constraints such as quality, cost, and schedule.

In contrast to Madachy’s research, which focuses on business case analysis, we
have been focusing on risk management. So far, however, we have only been able
to demonstrate the usefulness of SPS to assess the sensitivity of certain risk factors
on important dimensions of project performance and product quality (impact fac-
tors). More research is needed to find ways for mapping simulated impact factor
values onto generally accepted business value scales. The framework proposed in
Chapter 5 might be a good starting point in this regard. In addition, more work
will be done to further exploit the analytic power of ProSim/RA. We see two dif-
ferent promising research directions.

Firstly, due to the very generic nature of its five step approach, ProSim/RA
could be combined with more specialized techniques that were developed to solve
very specific software engineering problems. For example, the F-EVOLVE*
method for value-based software release planning proposed in Chapter 12, which
is based on comprehensive stakeholder involvement and the execution of genetic
algorithms for problem solving, could possibly be connected to ProSim/RA, e.g.,
by providing a distribution of feasible release plans as one input to a more com-
prehensive risk assessment task.

13 Software Process Simulation in Support of Risk Assessment 281

Secondly, the five step procedure of ProSim/RA is not necessarily restricted to
risk assessment. It could also be interpreted as a procedure that helps explore the
opportunities for change, e.g., by analyzing the negative impacts (risks) and posi-
tive impacts (opportunities) that the introduction of a new technique or the change
of an activity in a process may have. If we find ways to smoothly integrate such an
impact exploration tool into regular software development, the seventh key ele-
ment in Boehm’s VBSE framework (“change as opportunity”) will move closer to
reality.

In conclusion, we see the main benefit of ProSim/RA – and SPS in general – in
using simulation outcomes to support informed decision making in VBSE. This
may happen either by stand-alone application for risk assessment and improve-
ment opportunity exploration or by synergetic combination with specialized
analysis and decision support techniques.

References

(Abdel-Hamid and Madnick, 1991) Abdel-Hamid, T. K., Madnick, S. E.: Software
Project Dynamics – an Integrated Approach (Prentice-Hall, 1991)

(Angkasaputra and Pfahl, 2004) Angkasaputra, N., Pfahl, D.: Making Software
Process Simulation Modeling Agile and Pattern-based. In: Proc. of 5th Interna-
tional Workshop on Software Process Simulation Modeling, Edinburgh, Scot-
land (IEE, Stevenage 2004), pp 222–227

(Aranda et al., 1993) Aranda, R. R., Fiddaman, T., Oliva, R.: Quality Mi-
croworlds: modeling the impact of quality initiatives over the software prod-
uct life cycle. American Programmer, May, pp 52–61 (1993)

(Bandinelli et al., 1995) Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M., Picco,
G. P.: Modeling and Improving an Industrial Software Process. TSE 21(5),
pp 440–453 (1995)

(Birk and Pfahl, 2002) Birk, A., Pfahl, D.: A Systems Perspective on Software
Process Improvement. In: Proc. of 4th International Conference on Product
Focused Software Process Improvement, Rovaniemi, Finland (2002), pp 4–18

(Birkhölzer et al., 2004) Birkhölzer, T., Dantas, L., Dickmann, C., Vaupel, J.: In-
teractive Simulation of Software Producing Organization’s Operations based
on Concepts of CMMI and Balanced Scorecards. In: Proc. of 5th International
Workshop on Software Process Simulation Modeling, Edinburgh, Scotland
(IEE, Stevenage 2004), pp 123–132

(Boehm, 1991) Boehm, B. W.: Software Risk Management: Principles and Prac-
tices. IEEE Software, pp 32–41 (January 1991)

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering. Software En-
gineering Notes 28(2), pp 1–12 (May 2003)

(Boehm and Huang, 2003) Boehm, B. W., Huang, L.: Value-Based Software En-
gineering: A Case Study. IEEE Software, pp 33–41 (March 2003)

(Bröckers, 1995) Bröckers, A.: Process-based software risk assessment. In: Proc.
of 4th European Workshop on Software Process Technology (1995), pp 9–29

282 Dietmar Pfahl

(Bröckers et al., 1995) Bröckers, A., Lott, C. M., Rombach, H. D., Verlage, M.:
MVP–L language report version 2. Technical Report 265/95, Department of
Computer Science, University of Kaiserslautern, Germany (1995)

(Cartwright and Shepperd, 1999) Cartwright, M., Shepperd, M.: On building dy-
namic models of maintenance behavior. In: Project Control for Software
Quality, ed by Kusters, R., Cowderoy, A., Heemstra, F., van Veenendaal, E.
(Shaker Publishing, 1999)

(Christie, 1999a) Christie, A. M.: Simulation: An Enabling Technology in Soft-
ware Engineering. CROSSTALK, pp 2–7 (1999)

(Christie, 1999b) Christie, A. M.: Simulation in support of CMM-based process
improvement. JSS 46(2/3), pp 107–112 (1999)

(Christie and Staley, 2002) Christie, A. M., Staley, M. J.: Organizational and So-
cial Simulation of a Requirements Development Process. SPIP 5, pp 103–110
(2002)

(D’Agostino and Stephens, 1986) D'Agostino, R. B., Stephens, M. A.: Goodness-
of-Fit Techniques (Marcel Dekker, New York 1986)

(DeMarco and Lister, 2003) DeMarco, T., Lister, T.: Waltzing with Bears (Dorset
House Publishing, New York 2003)

(Drappa and Ludewig, 1999) Drappa, A., Ludewig, J.: Quantitative modeling for
the interactive simulation of software projects. JSS 46(2/3), pp 113–122
(1999)

(Ferreira et al., 2003) Ferreira, S., Collofello, J., Shunk, D., Mackulak, G., Wolfe,
P.: Utilization of Process Modeling and Simulation in Understanding the Ef-
fects of Requirements Volatility in Software Development. In: Proc. of 4th

Process Simulation Modelling Workshop, Portland, USA, 3–4 May (2003)
(Forrester, 1961) Forrester, J.W.: Industrial Dynamics, (Productivity Press, Cam-

bridge 1961)
(Höst et al., 2000) Höst, M., Regnell, B., Dag, J., Nedstam, J., Nyberg, C.: Explor-

ing Bootlenecks in Market-Driven Requirements Management Processes with
Discrete Event Simulation. In: Proc. of 3rd Process Simulation Modeling
Workshop, London, United Kingdom, 12–14 July (2000)

(Houston et al., 2001) Houston, D. X., Mackulak, G. T., Collofello, J. S.: Stochas-
tic simulation of risk factor potential effects for software development risk
management. JSS 59(3), pp 247–257 (2001)

(Jensen and Scacchi, 2003) Jensen, C., Scacchi, W.: Simulating an Automated
Approach to Discovery and Modeling of Open Source Software Development
Processes. In: Proc. of 4th Process Simulation Modeling Workshop, Portland,
USA, 3–4 May (2003)

(Kellner and Hansen, 1989) Kellner, M. I., Hansen, G. A.: Software Process Mod-
eling: A Case Study. In: Proc. of 22nd Annual Hawaii International Confer-
ence on System Sciences, Vol. II – Software Track (1989), pp 175–188

(Kellner et al., 1999) Kellner M. I., Madachy, R. J., Raffo, D. M.: Software proc-
ess simulation modeling: Why? What? How? JSS 46(2/3), pp 91–105 (1999)

(Kontio, 2001) Kontio, J.: Software Engineering Risk Management – A Method,
Improvement Framework and Empirical Evaluation, Doctoral Dissertation
(Helsinki University of Technology, 2001)

13 Software Process Simulation in Support of Risk Assessment 283

(Lin et al., 1997) Lin, C. Y., Abdel-Hamid, T. K., Sherif, J. S.: Software-
Engineering Process Simulation Model (SEPS). JSS 38, pp 263–277 (1997)

(Lee and Miller, 2004) Lee, B., Miller, J.: Multi-Project Management in Software
Engineering Using Simulation Modeling. Software Quality J. 12, pp 59–82
(2004)

(Lott et al., 1995) Lott, C. M., Hoisl, B., Rombach, H. D.: The use of roles and
measurement to enact project plans in MVP-S. In: Proc. of 4th European
Workshop on Software Process Technology, Noordwijkerhout, The Nether-
lands, LNCS, vol. 913 (Springer, 1995), pp 30–48

(Madachy, 1996) Madachy, R. J.: System Dynamics Modeling of an Inspection-
Based Process. In: Proc. of 18th International Conference on Software Engi-
neering, Berlin, Germany (IEEE Computer Society, 1996), pp 376–386

(Madachy, 2004) Madachy, R. J.: A Software Product Business Case Model. In:
Proc. of 5th International Workshop on Software Process Simulation Model-
ing, Edinburgh, Scotland (IEE, Stevenage 2004), pp 232–236

(Madachy, 2005) Madachy, R. J.: Software Process Dynamics, in press (IEEE
Computer Society, 2005)

(Madachy and Tarbet, 2000) Madachy, R. J., Tarbet, D.: Case Studies in Software
Process Modeling with System Dynamics. SPIP 5, pp 133–146 (2000)

(Mišic et al., 2004) Mišic, V. B., Gevaert, H., Rennie, M.: Extreme Dynamics:
Towards a System Dynamics Model of the Extreme Programming Software
Development Process. In: Proc. of 5th International Workshop on Software
Process Simulation Modeling, Edinburgh, Scotland (IEE, Stevenage 2004),
pp 237–242

(Münch and Armbrust, 2003) Münch, J., Armbrust, O.: Using Empirical Knowl-
edge from Replicated Experiments for Software Process Simulation: A Practi-
cal Example. In: Proc. of the 2003 International Symposium on Empirical
Software Engineering (IEEE Computer Society, 2003), pp 18–27

(Neu et al., 2002) Neu, H., Hanne, T., Münch, J., Nickel, S., Wirsen, A.: Simula-
tion-Based Risk Reduction for Planning Inspections. In: Proc. of 4th Interna-
tional Conference on Product Focused Software Process Improvement, Ro-
vaniemi, Finland (2002), pp 78–93

(Neu et al., 2003) Neu, H., Hanne, T., Münch, J., Nickel, S., Wirsen, A.: Creating
a Code Inspection Model for Simulation-based Decision Support. In: Proc. of
4th Process Simulation Modeling Workshop, Portland, USA, 3–4 May (2003)

(Pfahl, 2001) Pfahl D.: An Integrated Approach to Simulation-Based Learning in
Support of Strategic and Project Management in Software Organisations, The-
ses in Experimental Software Engineering, vol. 8 (Fraunhofer IRB, Stuttgart
2001)

(Pfahl and Birk, 2000) Pfahl, D., Birk, A.: Using Simulation to Visualise and Ana-
lyse Product-Process Dependencies in Software Development Projects. In:
Proc. of 2nd International Conference on Product Focused Software Process
Improvement, Oulu, Finland (2000), pp 88–102

(Pfahl and Lebsanft, 2000a) Pfahl, D., Lebsanft, K.: Using Simulation to Analyse
the Impact of Software Requirement Volatility on Project Performance. IST
42(14), pp 1001–1008 (2000)

284 Dietmar Pfahl

(Pfahl and Lebsanft, 2000b) Pfahl, D., Lebsanft, K.: Knowledge Acquisition and
Process Guidance for Building System Dynamics Simulation Models: An Ex-
perience Report from Software Industry. IJSEKE 10(4), pp 487–510 (2000)

(Pfahl and Ruhe, 2001) Pfahl, D., Ruhe, G.: System Dynamics as an Enabling
Technology for Learning in Software Organisations. In: Proc. of 13th Interna-
tional Conference on Software Engineering and Knowledge Engineering
(Knowledge Systems Institute, Skokie 2001), pp 355–362

(Pfahl and Ruhe, 2002) Pfahl, D., Ruhe, G.: IMMoS – A Methodology for Inte-
grated Measurement, Modelling, and Simulation. SPIP 7, pp 189–210 (2002)

(Pfahl and Ruhe, 2003) Pfahl, D., Ruhe, G.: Goal-Oriented Measurement plus
System Dynamics. A Hybrid and Evolutionary Approach. In: Proc. of 4th

Process Simulation Modeling Workshop, Portland, USA, 3–4 May (2003)
(Pfahl et al., 2001) Pfahl, D., Klemm, M., Ruhe, G.: A CBT module with inte-

grated simulation component for software project management education and
training. JSS 59 (3), pp 283–298 (2001)

(Pfahl et al., 2004) Pfahl, D., Stupperich, M., Krivobokova, T.: PL-SIM: A Ge-
neric Simulation Model for Studying Strategic SPI in the Automotive Indus-
try. In: Proc. of 5th International Workshop on Software Process Simulation
Modeling, Edinburgh, Scotland (IEE, Stevenage 2004), pp 149–158

(Powell et al., 1999) Powell, A., Mander, K., Brown, D.: Strategies for lifecycle
concurrency and iteration: A system dynamics approach. JSS 46(2/3), pp 151–
162 (1999)

(Raffo and Kellner, 1999) Raffo, D. M., Kellner, I. K.: Modeling Software Proc-
esses Quantitatively and Assessing the Impact of Potential Process Changes of
Process Performance. In: Elements of Software Process assessment and Im-
provement, ed by El Emam K, Madhavji N. H. (IEEE Computer Society,
1999), pp 297–341

(Raffo and Kellner, 2000) Raffo, D. M., Kellner, M. I.: Analyzing the Unit Test
Process Using Software Process Simulation Models: A Case Study. In: Proc.
of 3rd Process Simulation Modeling Workshop, London, United Kingdom,
12–14 July (2000)

(Raffo et al., 1999) Raffo, D. M,. Vandeville, J. V., Martin, R. H.: Software proc-
ess simulation to achieve higher CMM levels. JSS 46(2/3), pp 163–172 (1999)

(Raffo et al., 2003) Raffo, D., Setamanit, S., Wakeland, W.: Towards a Software
Process Simulation Model of Globally Distributed Software Development
Projects. In: Proc. of 4th Process Simulation Modeling Workshop, Portland,
USA, 3–4 May (2003)

(Raffo et al., 2004) Raffo, D., Nayak, U., Setamanit, S., Sullivan, P., Wakeland,
W.: Using Software Process Simulation to Assess the Impact of IV&V Activi-
ties. In: Proc. of 5th International Workshop on Software Process Simulation
Modeling, Edinburgh, Scotland (IEE, Stevenage 2004), pp 197–205

(Roehling et al., 2000) Roehling, S. T., Collofello, J. S., Hermann, B. G., Smith-
Daniels, D. E.: System Dynamics Modeling Applied to Software Outsourcing
Decision Support. SPIP 5, pp 169–182 (2000)

(Ruiz et al., 2002) Ruiz, M., Ramos, I., Toro, M.: Integrating Dynamic Models for
CMM-Based Software Process Improvement. In: Proc. of 4th International

13 Software Process Simulation in Support of Risk Assessment 285

Conference on Product Focused Software Process Improvement, Rovaniemi,
Finland (2002), pp 63–77

(Ruiz et al., 2004) Ruiz, M., Ramos, I., Toro, M.: Using Dynamic Modeling and
Simulation to Improve the COTS Software Process. In: Proc. of 5th Interna-
tional Conference on Product Focused Software Process Improvement, Kyoto,
Japan (2004), pp 568–581

(Rus et al., 2002) Rus, I., Biffl, S., Halling, M.: Systematically Combining Process
Simulation and Empirical Data in Support of Decision Analysis in Software
Development. In: Proc. of 14th International Conference on Software Engi-
neering and Knowledge Engineering, Ischia, Italy (2002)

(Rus et al., 1999) Rus, I., Collofello, J., Lakey, P.: Software process simulation for
reliability management. JSS 46(2/3), pp 173–182 (1999)

(Smith and Ramil, 2002) Smith, N., Ramil, J. F.: Qualitative Simulation of Soft-
ware Evolution Processes. In: Proc. of WESS’02, Montreal, Canada (2002),
pp 41–47

(Stallinger and Grünbacher, 2001) Stallinger, F., Grünbacher, P.: System dynam-
ics modelling and simulation of collaborative requirements engineering. JSS
59, pp 311–321 (2001)

(Tvedt and Collofello, 1995) Tvedt, J. D., Collofello, J. S.: Evaluating the Effec-
tiveness of Process Improvements on Development Cycle Time via System
Dynamics Modelling. In: Proc. of Computer Science and Application Confer-
ence (1995), pp 318–325

(Vose, 1996) Vose, D.: Quantitative Risk Analysis: A Guide to Monte Carlo
Simulation Modelling (Wiley, 1996)

(Wallmüller, 2004) Wallmüller, E.: Risikomanagement für IT- und Software-
Projekte (Hanser, 2004)

(Weil and Dalton, 1992) Weil, H. B., Dalton, W. J.: Risk Management in Com-
plex Projects. In: Proc. of System Dynamics Conference, Utrecht, The Nether-
lands (1992), pp 39–49

(Wernick and Hall, 2004) Wernick, P., Hall, T.: A Policy Investigation Model for
Long-term Software Evolution Processes. In: Proc. of 5th International Work-
shop on Software Process Simulation Modeling, Edinburgh, Scotland (IEE,
Stevenage 2004), pp 149–158

(Williford and Chang, 1999) Williford, J., Chang, A.: Modelling the FedEx IT Di-
vision: A System Dynamics Approach to Strategic IT Planning. JSS 46(2/3),
pp 203–211 (1999)

Author Biography

Dietmar Pfahl is a professor at University of Calgary, Canada. He previously held
a position as department head at the Fraunhofer Institute for Experimental Soft-
ware Engineering (IESE) in Kaiserslautern, Germany. He has more than 15 years
of experience in conducting and leading national and international research and
transfer projects with the software industry, including organizations such as

286 Dietmar Pfahl

Bosch, DaimlerChrysler, Dräger, Ericsson, and Siemens. He has more than 50
refereed publications. He is a regular reviewer and program committee member of
scientific journals, conferences, and workshops. His current research interests in-
clude quantitative software project management, software process analysis and
improvement, and simulation-based learning and decision support.

14 Tailoring Software Traceability to Value-Based
Needs

Alexander Egyed

Abstract: Software development generates and maintains a wide range of arti-
facts, such as documentation, requirements, design models, and test scenarios; all
of which add value to the understanding of the software system. Trace dependen-
cies identify the relationships among these artifacts. They contribute to the better
understanding of a software system as they link its distributed knowledge. Trace
dependencies are also vital for many automated analyses including the impact of
change and consistency checking. This chapter compares the problem of manual
traceability versus automated traceability with the Trace/Analyzer approach. This
chapter also explores how to tailor precision, completeness, correctness, and time-
liness to adjust the trace analysis to value-based needs.

Keywords: Traceability, software modeling, trace analysis, trade-off analysis,
consistency, impact of change, change propagation, traceability uncertainties.

14.1 Introduction

Software development is a process that involves many stakeholders and generates
a range of development artifacts. For example, the requirements are typically cap-
tured independently from the design/implementation although it has been recog-
nized that there is a strong, intertwined relationship between them (Nuseibeh,
2001). The design, in turn, is often refined stepwise over several layers to explore
the complexity of subsystems. Each such subsystem or layer may be the explored
structurally (i.e., class diagrams) and/or behaviorally (i.e., sequence or statechart
diagrams) (Rumbaugh et al., 1999).

Handling artifacts independently benefits the concurrent software development
(Boehm, 2003) because it separates concerns, reduces complexity, and allows en-
gineers to work independently. However, these artifacts (e.g., requirements, de-
sign) must to be linked together to understand their combined impact on the soft-
ware system. Trace dependencies explicitly describe the relationships among such
separately recorded artifacts.

In some form, every software artifact has “some relationship” to every other ar-
tifact. We thus define a trace dependency to specifically identify whether two,
separately recorded artifacts have the same/similar meaning (i.e., since traces tend
to bridge artifacts of different modeling notations it is typically not possible to
capture the same/similar artifacts in a uniform manner). However, there are many
potential trace dependencies and value-based software engineering (Boehm, 2003;
Boehm and Huang, 2003) recognizes that it is not always meaningful to capture all

288 Alexander Egyed

of them without understanding their value. While this chapter does not discuss
how artifacts differ in their value, it does stipulate that the quality of trace depend-
encies should reflect the value of the artifacts they bridge (better quality traces for
higher value artifacts). It is thus beneficial to customize traces in terms of their
precision, completeness, correctness, and timeliness.

Trace analysis is the process of finding and validating trace dependencies
among artifacts. While finding trace dependencies alone is not sufficient to recon-
cile multiple perspectives, they are the foundation for any such mechanism. Trace
dependencies are vital for documentation, program understanding, impact analy-
sis, consistency checking, reuse, quality assurance, user acceptance, error reduc-
tion, cost estimation, and customer satisfaction (Antoniol et al., 2002; Biffl and
Halling, 2003; Pohl, 1996; Gotel and Finkelstein, 1994; Ramesh, 1993). Their ab-
sence usually inhibits automation. This chapter discusses how to generate and
validate trace dependencies and how to customize this process to value-based
needs. That is, not all traces are equally important and this chapter demonstrates
how the trace analysis can be tailored to the importance of the artifacts they
bridge. It must be noted that this chapter does not discuss the many uses of trace
dependencies (besides some examples).

Not understanding trace dependencies has many negative side effects. Most
significantly, it increases the risk that changes are not propagated correctly. And it
causes errors in that engineers, ignorant or unaware of the inconsistencies, make
decisions on inaccurate information.

Trace analysis is well motivated in value-based software engineering (Boehm,
2003) due to the need to evolve the system and software concurrently. Concurrent
engineering implies that changes can happen anytime and anywhere and traces
help the engineer in identifying the impact of those changes across all develop-
ment artifacts (e.g., requirements, design, and implementation). Traces are also vi-
tal for value-based monitoring and control (Boehm, 2003) because the engineer
needs to understand the mapping between goals and solution. This value benefit
has been recognized in the past as there are many standards that mandate trace
analysis as a required activity (e.g., DOD Std 2167A, IEEE Std. 1219, ISO 15504,
and SEI CMM).

On the downside, trace analysis is a complex activity. Standards encourage
trace analysis but they generally do not tell how to do it (Lindvall, 1994; Lindvall
and Sandahl, 1996). Also, existing tool support is typically limited to the re-
cording of trace dependencies but not to their identification (Antoniol et al., 2002)
(i.e., traceability matrix). As a result, thorough trace analysis is a predominantly
manual activity (Card, 1992) that has to cope with many complexities:
• Non-scalable growth: up to n2 trace dependencies for n artifacts (Antoniol et

al., 2002; Card, 1992)
• Syntactic and semantic differences: hard to identify traces exactly (Övergaard,

1998; Jacobson, 1987).
• Informal/semiformal languages (e.g., requirements, UML design): artifacts are

described imprecisely (Finkelstein et al., 1991) and cause trace uncertainties
(Egyed, 2004).

14 Tailoring Software Traceability to Value-Based Needs 289

• Many-to-many mappings (Tilbury, 1989): a requirement is often implemented
by multiple design elements but these design elements may also implement
other requirements.

• Incompleteness and inconsistencies (Lindvall and Sandahl, 1996).
• Different stakeholders in charge of different software artifacts (Boehm et al.,

1998) where no single stakeholder understands them all.
• Increasingly rapid pace of change (Moore, 1995): traces change as their arti-

facts evolve.
• Nonlinear increase in the number of software artifacts during the course of the

software lifecycle (Cross, 1991) (this feeds to the n2 complexity)

In summary, no simple, accurate, and automated approach to trace analysis exists
to date. The few approaches that support the automatic detection of trace depend-
encies usually require precise and complete models, i.e., if you make the models
precise enough then trace analysis becomes implicit (Jacobson, 1987). However,
informal requirements and popular design models (e.g., UML) are not nearly pre-
cise enough to benefit from this automation. Therefore, comprehensive trace
analysis is largely a manual activity resulting in high cost, incompleteness, and
even incorrectness (Cross, 1991). The predominant way of dealing with this com-
plexity is by limiting trace analysis to some necessary minimum. Unfortunately,
engineers rarely predict accurately which trace dependencies are more important
than others.

This chapter introduces a testing-based approach to trace analysis that reduces
or avoids all of the complexities discussed above. This chapter also emphasizes
value-based tradeoffs during trace analysis. These trade-offs explore:
• what traces are needed (i.e., not all traces are equally important)
• when those traces are needed (i.e., not all traces are needed at the same time)
• what level of precision (detail), correctness, and completeness these traces are

needed (i.e., to concentrate on traces that have a higher value)

That is, we demonstrate how to tailor trace analysis to the needs of value-based
software engineering by producing better quality traces for higher value artifacts.
This saves cost and effort in that unnecessary trace analysis is avoided (or re-
duced). It must be noted that this chapter does not discuss how to identify high
value artifacts (e.g., see Chapters 9 and 12 for information on requirements priori-
tization techniques) and it does not identify what quality of traces are needed for
certain uses (e.g., see Chapter 11 on using traces for value-based testing). This in-
formation is expected as input and it is used to guide (tailor) the trace analysis.

In the following, we will demonstrate how to compute traces through transitive
observations and, in doing so, how to reduce the quadratic traceability problem to
a linear one (where n inputs compute up to n2 results). Precision, completeness,
and correctness are tailorable variables during the trace analysis to reduce cost and
increase (or maintain) quality. These variables are customizable to individual arti-
facts to cater to the needs of value-based software engineering (i.e., to support the
prioritization of artifacts). That is, since value-based software engineering decides

290 Alexander Egyed

on the importance of artifacts, we will demonstrate how to customize trace analy-
sis to match traceability quality accordingly.

Section 14.2 introduces an illustrative example to discuss the complexities of
trace analysis and Section 14.3 presents our testing-based approach. Section 14.4
then generalizes our approach and Section 14.5 discusses various factors that in-
fluence the results of the trace analysis.

14.2 Video-on-Demand Case Study

We will demonstrate our approach on a Video-on-Demand (VoD) system20 that
provides capabilities for searching, selecting, and playing movies. The “on-
demand feature” supports the playing of a movie concurrently while downloading
its data from a remote site.

Software Artifacts (Requirements, Design, and Code)

The VoD system consists of 21 Java classes and uses a large number of off-the-
shelf library classes. The VoD system was modeled using various diagrams (e.g.,
class and statechart diagrams) and textual views (e.g., requirements) (Egyed and
Grünbacher, 2002). The purpose of the trace analysis is to uncover the relation-
ships among these requirements, design, and code artifacts.

Table 27. List of VoD requirements

r0 Download movie data on-demand while playing a movie
r1 Play movie automatically after selection from list
r2 User should be able to display textual information about a selected movie
r3 User should be able to pause a movie
r4 Three seconds max to load movie list
r5 Three seconds max to load textual information about a movie
r6 One second max to start playing a movie
r7 Novices should be able to use the major system functions (selecting

movie, playing/pausing/stopping movie) without training
r8 User should be able to stop a movie
r9 User should be able to (re) start a movie

Table 27 depicts a subset of the VoD requirements. For instance, requirement r7
defines the need for an intuitive user interface modeled after a VCR player. Re-
quirement r6 defines a maximum delay of one second to start playing a movie
once it has been selected. These requirements are written in an informal prose and
it is generally infeasible to identify trace dependencies among them automatically.

20Java MPEG Player available at http://peace.snu.ac.kr/dhkim/java/MPEG/

14 Tailoring Software Traceability to Value-Based Needs 291

Main Window

playing
video

pausing
video

stopped
video

playing
video

streaming video

pausing
video

stopped
video

Pause

Stop

Play

Stop

Play
Play

Quit

Select

[s1]

[s2]

[s3]

[s8]

[s9]

[s10][s11]

[s11]

[s12][s12]

StreamerMovie Display

Main Window Server Selection

Movie Selection

Server Access

select
movie

[c4] [c2]

[c3]

[c1]

[c6]

[c5]

Fig. 53. Class and statechart diagram of the VoD system

The VoD system was modeled in UML and Figure 53 depicts two UML diagrams
(perspectives) of its structure and behavior. The statechart diagram (top) describes
the behavior of the VoD. A user may select individual movies for playing. During
playing, a selected movie may be paused, stopped, and played again. The transi-
tions between these states correspond to buttons a user may press in the VoD’s
user interface. The class diagram (bottom) shows the coarse structural decomposi-
tion of the VoD system. In the following, the model elements are often referred to
by their short identifiers. Note that the presented model is a subset of the actual
UML model for brevity.

Trace Dependencies and their Complexity

The goal of the trace analysis is to understand how the software artifacts in Ta-
ble 27 and Figure 53 relate to one another and to the source code. As such, trace
analysis should reveal how the statechart elements relate to the classes or how the
requirements relate to the statechart and class elements. After all, every state tran-
sition describes a distinct behavior and every class describes a different part of the
structure that implements that behavior. Thus, they represent two separate per-
spectives of the VoD system. The goal of the trace analysis is to identify the
commonality between them. For example, what state transition requires the
Streamer class? Or what classes implement the “Play” transition? While it might
be easy to guess some of these trace dependencies, the semiformal nature of the
UML diagrams and the informal nature of the requirements make it hard to iden-
tify them completely and virtually impossible to do so automatically.

292 Alexander Egyed

While the VoD system appears rather small and uncomplicated, it may surprise
one that it exhibits many of the complexities we discussed earlier:
• It has factually, 1,012 possible trace dependencies among the ten requirements,

six classes, eight state transitions, and 21 Java classes (i.e., (6+10+8+21)2/2).
• The requirements, statechart, and class diagrams exhibit strong syntactic and

semantic differences; in fact, the requirements are not even defined formally
and the UML diagrams are defined semiformally at best.

• There is no guarantee of consistency and completeness among these artifacts as
different stakeholders created them.

How could any trace analysis tool ever understand these development artifacts?
And if no such tool can understand the development artifacts, how could they ever
identify trace dependencies among them automatically? It is clear that no fully
automated approach could do that. This chapter will demonstrate what guidance is
required by the engineer and how it is possible to reduce these many complexities.

A Few Samples How Trace Dependencies are Used

Trace analysis does not solve issues such as requirements conflict analysis, impact
of changes, or consistency checking. However, trace analysis provides a necessary
foundation for doing these and other activities. The following illustrates the use of
trace dependencies during some of these activities.

Table 27 exhibits a conflict between two requirements that is not obvious to see
at first. Requirement r6 is a performance requirement that requires at most a one
second delay in starting a selected movie. What is not obvious is that in order to
start the movie, the player needs to know about the movie details (i.e., location of
file for streaming). We find that the requirement r5 allows for a three second re-
sponse time for downloading the movie info. This is a potential conflict as the
downloading of the movie details may take more time than the starting of the
movie is allowed to take altogether. Trace analysis should identify a trace depend-
ency among the two requirements. While knowing about this trace dependency, in
itself, does not identify the conflict among the two requirements, it nevertheless
implies the close relationship between the two requirements which is important for
conflict analysis (Egyed and Grünbacher, 2004).

Trace analysis should also identify a trace dependency between requirement r1
and the statechart elements s3 and s8. This trace dependency implies that the se-
lecting and automated playing of a movie is implemented in the “select” and
“play” transitions of the statechart diagram. If this requirement changes (i.e., no
longer start the playing of a movie automatically after selection) then the transi-
tions s3 and s8 are affected and may need to be changed also. While trace depend-
encies alone are not sufficient to describe the impact of changes, it is obvious that
they play a vital role during the “impact of a change” analysis.

And trace analysis should identify trace dependencies between the class dia-
gram and the source code. This information is important for consistency checking
to, say, validate whether the calling dependencies in the design are implemented

14 Tailoring Software Traceability to Value-Based Needs 293

correctly. For example, the class diagram defines a calling dependency (arrow) be-
tween c2 and c3. Therefore, the Java classes that implement c2 must call at least
one of the Java classes that implement c3. As before, trace dependencies do not
guarantee consistency but consistency checking relies on trace dependencies to
understand what to compare.

14.3 Testing-Based Trace Analysis

Trace analysis is the process of identifying trace dependencies among software ar-
tifacts. The following discusses a strongly iterative, testing-based approach to
trace analysis. We will show that it is possible to largely automate the generation
and maintenance of trace dependencies. And we will show that it is possible to re-
duce and even eliminate all of the complexities associated with trace analysis dis-
cussed previously.

Our approach simplifies the trace analysis by using and observing test execu-
tions (Egyed, 2002). Testing is a natural process during software development. It
is not difficult for an engineer to supply a set of test scenarios (Lindvall, 1994). Of
course, an executable software system is needed to test the scenarios but such a
(partial) system typically exists early in modern, iterative software development.
In addition, the engineer must provide input hypotheses on how these test scenar-
ios relate to the software artifacts. The essential trick is then to observe the run-
time behavior of these test scenarios during their execution and to translate this
behavior into a graph structure to indicate commonalities. Trace dependencies are
then computed on the bases of their degrees of commonality. Note that testing is a
validation form that does not have a completeness guarantee (i.e., missing test
cases). This naturally affects the trace analysis and thus our approach provides an
input language that lets the engineer express these uncertainties (if known).

Our approach requires only a small set of input hypotheses (i.e., the input are
essentially trace dependencies between test scenarios and software artifacts but are
allowed to be incomplete or incorrect; ergo hypotheses) to generate new trace de-
pendencies. Our approach also validates existing trace dependencies and it identi-
fies incorrect input in some cases. For the engineer, this translates into confidence
that the results of the trace analysis are correct. Our approach strongly encourages
iterative trace analysis. The following discusses how testing helps in the identifi-
cation of trace dependencies between:
• Requirements/design and code
• Requirements and requirements
• Requirements and design
• Design and design

294 Alexander Egyed

Trace Dependencies between Requirements/Design/Code

In order to identify trace dependencies, the approach requires test scenarios that
are executable on the source code. Table 28 lists some test scenarios we defined
for the VoD system. For example, test scenario 1 uses the VoD system to display a
list of movies. The details on how to test this scenario on the system are omitted
here for brevity but the test scenario describes how to configure the VoD system
and what user interface actions to perform (e.g., which buttons to press) in order to
achieve the desired results. We then used the commercial tool IBM Rational
PureCoverage to monitor the VoD system while it was executing the test scenario.
It detected that the Java classes BorderPanel (C), ListFrame (J), ServerReq (R),
and VoDClient (U) were executed while testing the scenario. In the following, we
use the single letter acronyms for the 21 Java classes for brevity.

Table 28 also depicts the hypotheses on how the test scenarios relate to the pre-
viously mentioned software artifacts (classes, state transitions, and requirements)
and Table 29 resolves the footprint acronyms in terms of the Java classes used.
For instance, test scenario 1 is about viewing a movie list and it was hypothesized
to relate to the state transition [s3] “Movies Button” in the statechart diagram (see
Figure 53). This implies that test scenario 1 is a test case for the state transition
[s3] and, while executing it on the real system, it was observed to execute the Java
classes (code) [C,J,R,U]. Due to the transitivity of trace dependencies, one may
conclude that the state transition [s3] is implemented in the source code classes
[C,J,R,U]. This is a trace dependency between a design element (e.g., state transi-
tion s3) and the source code (e.g., classes BorderPanel (C), ListFrame (J), Server-
Req (R), and VoDClient (U)).

Table 28. Scenarios and observed footprints

Test Scenario Artifact Observed Java Classes
 1. view movie list [s3] [C,J,R,U]
 2. view textual movie info [s4,s6][r2] [C,E,J,N,R]
 3. select/play movie [s8,s9][r6] [A,C,D,F,G,I,J,K,N,O,R,T,U]
 4. press stop button [s9,s12][r8] [A,C,D,F,G,I,K,O,T,U]
 5. press play button [s9,s11][r9] [A,C,D,F,G,I,K,N,O,T,R,U]
 6. change server [s5,s7] [C,R,J,S]
 7. playing [s9] [A,C,D,F,G,I,K,O]
 8. get textual movie info [r5] [N,R]
 9. movie list [r4] [R]
10. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U]
11. select movie [r0] [C,J,N,R,T,U]
12. select/play movie [r1] [A,C,D,F,G,I,J,K,N,O,R,T,U]
13. press pause [s9,s10][r3] [A,C,D,F,G,I,K,O,U]

Table 28 defines 12 additional scenarios including one test scenario for every re-
quirement (although multiple may exist). A trace dependency is ambiguous if it
does not precisely define relationships between artifacts and code. For instance,

14 Tailoring Software Traceability to Value-Based Needs 295

test scenario 2 defines the state transitions [s4] and [s6] relating to the code
[C,E,J,N,R]. This statement is ambiguous in that it is unclear which subset of
[C,E,J,N,R] actually belongs to [s4] and which subset belongs to [s6].

Our approach relies on the abilities of the engineers to relate the test scenarios
to the requirements and design elements. Three error types are possible that im-
pact the trace analysis in different ways: (1) the engineer omits a link between a
test scenario and a requirement, (2) the engineer creates a wrong link, or (3) there
is a mismatch between a requirement and the specified tests (for example, a test
case exercises a wrong or a partially wrong functionality). Although the technique
has means of detecting inconsistencies among its input (Egyed, 2004), it can be
fooled this way and engineers need to be careful when providing their specifica-
tions.

Table 29. VoD Java classes and their unique identifiers

A BitInputStream H GOPHeader O Picture
B Block I IDCT P PictureHeader
C BorderPanel J ListFrame Q SequenceHeader
D DataStore K Macroblock R ServerReq
E Detail L MacroblockNew S ServerSelect
F FrameImage M MacroHeader T Video
G GOP N Movie U VODClient

The advantage of this approach is that it reveals trace dependencies between any
software artifact and source code provided that the engineer is able to define and
execute a corresponding test scenario. We will discuss in Section 14.5 why this
avoids the many complexities discussed earlier.

Trace Dependencies among Requirements

Pfleeger and Bohner (1990) distinguish between vertical and horizontal trace de-
pendencies where the former identify traces among artifacts belonging to the same
level of abstraction (same layer) and the latter identify traces among artifacts of
different levels of abstractions. Trace dependencies among requirements fall into
the first category.

Our approach identifies trace dependencies among requirements by investigat-
ing the requirements to code dependencies identified above. Figure 54 depicts the
execution of three requirements schematically with arrows to represent their exe-
cution paths (i.e., arrows correspond to the sequence of method executions). For
example, the efficiency requirement r6 that the playing of a movie has to start
within one second is testable by clicking on the “start movie” button of the VoD
player and monitoring its execution path (i.e., path in the upper left). The other
two requirements follow their own execution paths during testing. We are not ac-
tually interested in what sequence classes/methods where executed but only in
whether they were executed or not.

296 Alexander Egyed

Fig. 54. Execution paths (footprints) of three VoD requirements

Once testing is complete, we infer trace dependencies among the three require-
ments through their overlapping execution paths (called “footprints”). For exam-
ple, we can observe in Figure 54 that the footprints of requirements r1 and r6
overlap. This implies some trace dependency between the efficiency requirement
r6 and the functionality requirement r1 because they execute similar lines of code
during testing and thus their implementation is interwoven (i.e., they share a
common part of the code). Since there is no overlap between the footprints for r6
and r2 we conclude that there is no trace dependency between those two require-
ments as they are implemented in different parts of the system. Note that r6 and r2
may still affect one another in other ways (i.e., calling or data dependencies) but
these relationships are not of interest here. If more than one test scenario exists for
a requirement then its footprint is simply the union of all individual paths.

The three weaknesses of this approach are: (1) lack of test scenarios which
leads to a footprint that is a subset of the true one, (2) shared utility classes that are
used by different artifacts but do not imply commonality, and (3) code duplication
which leads to fewer overlaps. All three problems have to be dealt with manually
but the engineer is supported by the trace analyzer in terms of the input language
and results generated. For example, an engineer may state that an artifact has “at
least” some footprint if only a subset of test scenarios are available. Or if an engi-
neer provides input that states that two artifacts are unrelated but an overlap is
eventually identified then either the input was incorrect or the overlap is shared
utility code (the choice is presented by the approach but has to be decided upon by
the engineer).

Trace Dependencies between Requirements and Design

Pfleeger and Bohner (1990) define horizontal trace dependencies as linking arti-
facts of different lifecycle activities. Trace dependencies between the requirements
and the design fall into this category and they are computed in the same fashion as
the ones above. For example, we know that the requirement r2 (the ability to get

14 Tailoring Software Traceability to Value-Based Needs 297

textual information about a movie) executes the Java classes N and R (see Table
28). We also know from Table 28 that the state transition “Play Button” (s9 and
s11) executes the Java classes [A,C,D,F,G,I,K,N,O,T,R,U]. Thus, there is a trace
dependency between [s9,s11] and r2 because the latter is a subset of the execution
of the former. In other words, it appears as if the pressing of the play button results
in the downloading of textual information about the movie (among other things).

Trace Dependencies within Design and Issues of Uncertainties

Trace dependencies within the design (i.e., between the statechart and the class
diagram) are identified on the same principle. However, while investigating the
input hypotheses in Table 28 in more detail, we find that there are several exam-
ples where the input hypotheses include multiple software artifacts. For example,
test scenario 3 is about selecting and playing a movie which was correctly hy-
pothesized as relating to the state transitions s8 and s9 (selecting and playing).
This implies that both state transitions relate to the Java classes
[A,C,D,F,G,I,J,K,N,O,R,T,U] but it remains unknown (uncertain) which Java
classes relate to s8 and which ones relate to s9. This uncertainty is a problem as is
illustrated in Figure 55 (Egyed, 2004).

(a)

s8

s9

(b)

s8,s9

where am I? where am I?

Fig. 55. Grouping uncertainty causes trace dependency uncertainty

Figure 55.a depicts the execution path of test scenario 3 schematically. Since test
scenario 3 was hypothesized to relate to both s8 and s9, we may wonder how ex-
actly this region is divided up between them. Imagine we have another design
element that overlaps with s8 and s9 at the triangle in the middle. We know that
this overlap implies a trace dependency but it is incorrect to say that this triangle
overlaps with both s8 and s9. The grouping of software artifacts is a problem be-
cause we only understand the meaning of the elements as a group but not its indi-
vidual elements. For example, Figure 55.b expands the illustration of the execu-
tion path and separates the execution s8 from the execution s9. It is now obvious
that the triangle in the middle factually overlaps with s9 but not s8.

We support grouping uncertainty to ease the task of the engineer in providing
input hypotheses because there are cases where it is hard to break down a single
test scenario into separate pieces as in the case of test scenario 3. Recall that the
selection of the movie automatically starts the movie which makes it hard to test

298 Alexander Egyed

the hypotheses separately. Our approach is capable of resolving grouping uncer-
tainties by taking other input hypotheses under consideration. The details are dis-
cussed in (Egyed, 2004).

Benefits of Test-Based Trace Analysis

As input, our approach requires (1) software artifacts (i.e., model elements) with
unknown trace dependencies; (2) an executable software system; (3) test scenar-
ios; and (4) hypotheses on how the artifacts relate to the test scenarios. By moni-
toring the lines of code executed during the testing of the scenarios, overlaps are
identified. These overlaps imply trace dependencies among the test scenarios and
subsequently among the artifacts that are hypothesized to relate to those scenarios.

Clearly, all of the input items are reasonable during software development.
Software artifacts and the executable software system are the products of software
development. So are test scenarios. Even the relationships between software arti-
facts and test scenarios are defined by engineers as they are needed during valida-
tion and verification. If this input is available then the benefits are extensive:
1. Only n input hypotheses are required to infer n2 trace dependencies: a model

element has trace dependencies with potentially every other model element (n2)
but a model element has only one trace dependency to the system (n).

2. Collaboration among engineers is reduced: engineers only need to investigate
their own artifacts and how they relate to the source code. There is no need to
understand any other engineer’s artifacts. Also there is no need to understand
the semantic and syntactic differences among artifacts because the artifact to
code mappings can be done independently for all artifacts.

3. The use of informal, partial, nonstandardized notations is less of a problem be-
cause these differences do not have to be understood in the context of other
models or by other engineers.

The key benefit of our approach is that the engineer only needs to understand the
individual relationships between any artifact and the system (i.e., source code).
These relationships can be investigated fully independently for every artifact.

Another benefit of our approach is that it measures the completeness and cor-
rectness of the generated trace dependencies (this is discussed in detailed later).
That is, incomplete and (potentially) incorrect input also produces incomplete and
(potentially) incorrect trace dependencies as a result. By being able to measure
completeness and correctness, we can guide the engineer in what additional input
is needed to make the result more complete or more correct. This fits well with
value-based software engineering where software artifacts have different levels of
importance. Thus, by simply prioritizing our guidance according to the importance
of the artifacts, it is possible to customize our approach in producing more com-
plete/correct trace dependencies for more important artifacts. It must be under-
stood that generating complete/correct traceability is very expensive. Even with
the improvements of our approach, the trace analysis is still hard. Being able to

14 Tailoring Software Traceability to Value-Based Needs 299

tailor the trace analysis to the high value artifacts is thus an effective way of deal-
ing with this problem.

However, there is also an issue of timeliness. The software system and corre-
sponding test scenarios are not available early on during the software lifecycle.
Thus, the value-based benefits outlined above are not applicable to the entire
software lifecycle. Furthermore, our approach detects trace dependencies only
among artifacts that can be mapped to source code. Thus, the approach is only ap-
plicable to product models that describe software systems. This includes require-
ments, design models, and architecture models but excludes process or decision
models.

This trade-off is not unreasonable during software development but may not be
acceptable always. It has been argued that trace dependencies are not that impor-
tant early on during the software lifecycle because the complexities are still man-
ageable and few stakeholders are involved (Lindvall, 1994). Since the approach is
applicable to implementation, testing, and maintenance, it is actually applicable to
most of the software lifecycle because these stages consume more than two thirds
of all development cost (Boehm et al., 2000). However, if trace dependencies are
needed early on, a pure testing-based approach to trace analysis will not suffice.
To get around this problem, the following investigates value-based trade-offs of a
variation of this approach.

14.4 Trace Analysis through Commonality

Our approach works on the commonality principle. That is, if model element A
traces to some source code and model element B traces to the same source code
then A and B are similar elements because both A and B are interwoven in the im-
plementation. We thus use overlaps among lines of code during test execution to
infer commonality and subsequently trace dependencies. This results in a signifi-
cant reduction of the complexity of the trace analysis because instead of having to
define trace dependencies among all software artifacts (Figure 56.a), one only has
to define them between the software artifacts and the source code (Figure 56.b).
As output, the approach then generates the traces in Figure 56.a based on their
overlaps in Figure 56.b. In other words, the linear input generates a quadratic
number of trace dependencies as its output.

(a)

Requirements

Statechart
Diagram

Class
Diagram

Source
Code???

Requirements
Class

Diagram

Source Code

(b)

Requirements

Statechart
Diagram

(c)

Class
Diagram

Statechart
Diagram ???

Fig. 56. Trace analysis based on commonality

300 Alexander Egyed

It is important to observe that there are really two factors that contribute to the
simplification of the trace analysis problem: (1) the use of the source code as a
common ground and (2) the use of testing to ease the artifact to code mapping of
the input hypotheses.

In other words, the source code is a common ground for identifying commonal-
ities among artifacts and it is a testable item. Both factors contribute to the simpli-
fication of the trace analysis but it is its use as a common ground that has the more
significant effect in this equation. The use of a common ground changes the net-
work (many-to-many) structure in Figure 56.a to a simple, linear star (many-to-
one) structure in Figure 56.b. The use of the common ground thus simplifies trace
analysis to a linear problem instead of a quadratic one.

Testing is an added benefit in providing the linear input. Instead of requiring
the engineer to guess the artifact-to-code mapping directly, we allow the engineer
to break down this task into (a) finding test scenarios for artifacts and (b) testing
these artifacts.

Testing is thus an aid to the trace analysis but not a requirement. This opens our
approach to other possibilities. For example, could we use the class diagram (in-
stead of the source code) as a common representation for the trace analysis? Fig-
ure 56.c depicts this case. If it were possible to use the class diagram as a common
representation then engineers would need to define their input in terms of artifact
to class diagram mappings (e.g., requirements to class diagram and statechart dia-
gram to class diagram). While this alternative sacrifices the use of testing as a
simplification, it benefits from the use of the common representation. The follow-
ing explores the trade-offs of this option.

Table 30. Artifact to class mapping

Artifact Classes
r0 c2
r1 c2,c3,c4,c5
r6 c2,c3
r5 c3
s3 c3,c5
s8 c2,c3
s9 c2,c3,c4
s2 c1
s1 c1,c4

Trace Dependencies between Requirements/Statechart and Class

If the class diagram is used as a common representation then the engineer must
hypothesize about the artifact to class diagram mapping. Table 30 identifies such
hypotheses for some requirements and statechart elements. For example, require-
ment r0 (download movie data on demand while playing a movie) is a functional-
ity that has to be implemented inside the class Streamer (c2). Or the statechart

14 Tailoring Software Traceability to Value-Based Needs 301

transition s3 (select movie) is likely about the classes Server Access and Movie Se-
lection (c3 and c5).

Trace Dependencies between Requirements/Statecharts

Trace dependencies can now be established on the basis of their commonality in
the class diagram. For example, there is no trace dependency between the re-
quirement r0 and the state transition s3 because they are implemented in different
classes in the class diagram. On the other hand, there is a very strong overlap be-
tween the classes of requirement r6 and the state transition s8 which implies that
there is a trace dependency between the “one second max to start playing a movie”
and the state transition “play” implying that the state transition has to implement
the performance requirement. The class diagram also serves as a good common
representation for trace dependencies among requirements. For example, we see
that requirement r6 is realized in a subset of the classes that requirement r1 is real-
ized with. This implies that the “one second max to start playing a movie” is still a
sub-requirement to the “play movie automatically after selection.”

Trade-Offs During Class-Based Trace Analysis

Using the class diagram instead of the source code as a common representation
brings with it another set of trade-offs. On one hand, we lose testing as a simplifi-
cation on how to provide input hypotheses (mapping between artifacts and class
diagram). On the other hand, we gain in two ways:
1. it is easier to define input hypotheses in terms of six classes in the class dia-

gram than 21 classes in the source code. This shifts the granularity of the trace
analysis in favor of fewer elements to consider (i.e., less complexity).

2. the class diagram is available earlier in the software lifecycle than the source
code. This shifts the timeliness of the trace analysis in favor of early risk as-
sessment.

On the surface, the use of the class diagram is thus a trade-off in less automation
(i.e., no testing) and also less complexity and earlier availability. The reduction in
complexity may well offset the loss of automation but it has the added advantage
of its earlier availability in the software lifecycle.

Even better, the results of this earlier trace analysis also benefits the finding of
input hypotheses for later phases when source code is available. As such, we then
only need to find test scenarios for the classes in the class diagram and, through
transitivity, get the traces from requirements/statechart to source code for free. For
example, if the class c3 maps to the Java classes [A,D,G,I,K,R] (i.e., we may find
out through testing at a later time) then we may conclude that requirement r5 must
also trace to [A,D,G,I,K,R] because the Table 30 defined r5 to trace to c3.

Unfortunately, there is another drawback that must be considered. The use of
the class diagram changed the granularity of the trace analysis. Overlaps are now

302 Alexander Egyed

determined based on the commonality of the six classes in the class diagram in-
stead of the 21 Java classes in the source code. This shift in granularity may result
in false trace dependencies. Consider the following example: the requirement r5
(three seconds max to load textual information about a movie) overlaps with the
state transition s9 (playing) which is rather odd (see Table 30). Of course, it is
necessary to load textual information to start playing but, once the movie is play-
ing, it is no longer necessary to load textual information about the movie. On
closer investigation, we find that the class c3 implements interfaces for two differ-
ent servers: the first interface deals with the movie server that handles movie lists
and textual details and the second interface deals with the http server that handles
the streaming media. The requirement r5 uses a different server than the state tran-
sition s9 but both servers were packaged into the one class c3.

Therefore, the downside of less granularity during trace analysis is that distinct
concerns are packaged together although they may not always be used together.
Because c3 now packages two kinds of servers, it is no longer possible to identify
which server, in particular, is being used. During trace analysis this implies that
artifacts are related even if they use different servers. We refer to the effects of
changing granularity during trace analysis as precision. The use of the class dia-
gram instead of the source code lowered precision.

For a stakeholder, lower precision means a higher likelihood of false positives
(wrong trace dependencies) but not false negatives (missing trace dependencies).
This is acceptable in cases where errors happen because of the lack of traces but
not their abundance. However, if there are many more false trace dependencies
than correct ones, then this is a problem also.

14.5 The Tailorable Factors

The required quality of traces is determined by their usage. For example, during
impact analysis it may be acceptable to have a trace with false positives whereas
during consistency checking they may be inappropriate. It is thus vital for trace
analysis to be guidable and our approach can be guided in terms of the complete-
ness, precision, timeliness, and even correctness of the resulting trace dependen-
cies; on both a global level affecting all results and a local level affecting the
traces among particular software artifacts. This ability to guide the trace analysis
is vital for value-based software development as it allows the engineer to mini-
mize the cost/effort of trace analysis.

This chapter discussed trace analysis as a trade-off among four contributing
factors: precision, completeness, correctness, and timeliness. As we find often, it
is hard (and expensive) to get the best of all four factors at the same time. The fol-
lowing thus discusses the value trade-offs among some variations.

14 Tailoring Software Traceability to Value-Based Needs 303

Precision, Completeness, Correctness, and Timeliness

Precision (introduced in the previous chapter) is a tailorable factor that depends on
the granularity of the common representation. The more granular the common rep-
resentation the more precise is the trace analysis. We demonstrated that the use of
the 21 Java classes results in a more precise trace analysis than the use of the six-
class diagram. It is even significant whether we perform trace analysis on the 21
Java classes or its hundreds of individual methods as, sometimes, classes merge
methods that are not always used together. The lack of precision has the negative
side effect of false positives in that the trace analysis will identify more trace de-
pendencies than factually exist. In an extreme case, where the common representa-
tion exists of a single element only (e.g., the system), all artifacts will map to this
single element and thus there would be trace dependencies among all artifacts.

Completeness (i.e., an input is complete if we know the artifacts relationship to
every code element) is a tailorable factor that depends on the input hypotheses.
The fewer the hypotheses, the less complete is the trace analysis. We demon-
strated this effect on the grouping uncertainty where it made a difference not
knowing exactly what artifact traces to what part of the common representation
(i.e., if a and b trace to 1 and 2 then we do not know whether a traces to 1 or 2 or
both). The lack of completeness has the negative side effect of incomplete results.
Thus, the trace analysis will not be able to define exactly how two artifacts relate
to one another if it does not know exactly how these artifacts relate to the common
representation. In an extreme case, where there is only one input that states that all
artifacts map to the entire common representation, the trace analysis could not de-
fine any trace dependencies.

Correctness is a tailorable factor that also depends on the input hypotheses. It
was not much emphasized in this chapter as its effects should be obvious: the less
correct the input, the less correct the resulting trace dependencies. The lack of cor-
rectness may result in both false positives and false negatives (i.e., wrong trace
dependencies and missing trace dependencies). However, our approach is capable
of detecting incorrect input as a trade-off among multiple inputs. This capability
was not discussed here for brevity (Egyed, 2004). Correctness is affected by test-
ing (i.e., testing is a halfway automation of the input hypotheses which positively
affects correctness) and by granularity (i.e., the complexity is reduced with less
granularity).

Finally, timeliness is a tailorable factor that depends on both the input hypothe-
ses and the common representation. Timeliness is affected indirectly in that a test-
able, common representation (i.e., source code) may be substituted by another
common representation that, typically, benefits timeliness but not precision (be-
cause of granularity) and not completeness (because of lack of testing).

Trade-Offs among the Tailorable Factors

To understand the effects of precision, completeness, and correctness, we have to
investigate them in relationship to the common representation. Figure 57 depicts

304 Alexander Egyed

the common representation and its relationships to individual artifacts (e.g., re-
quirements, class, and statechart). Since the trace analysis determines overlaps
among artifacts in terms of their effects on the common representation (CR), it fol-
lows that the tailorable factors of the individual inputs have to be combined to un-
derstand their effects on the results. For example, the trace analyzer generates
trace dependencies between artifact 1 (A1) and artifact 2 (A2) by investigating the
overlap among the trace dependencies between A1 and the common representation
(A1-CR) and A2 and the common representation (A2-CR). The following ex-
plores how the quality of the individual input hypotheses affects the value of the
output trace dependencies.

Common Representation (CR)

Artifact 1 (A1) Artifact 2 (A2) Artifact 3 (A3)

- completeness
- correctness

- completeness
- correctness

- completeness
- correctness

- precision

Fig. 57. The effects of the input on the trace analysis

Precision is a property of the common representation (directly) as input hypothe-
ses are defined in a level of granularity that matches the common representation.
Since all artifacts share the same common representation, it affects all resulting
trace dependencies among all artifacts (A1-A2, A1-A3, and A2-A3). Complete-
ness and correctness are properties of the input hypotheses of individual artifacts
(e.g., A1 to common representation). Since these two factors belong to individual
artifacts, they only affect those resulting trace dependencies that include these arti-
facts (e.g., A1 to A2 trace dependencies are affected by A1-CR and A2-CR quali-
ties but not by A3-CR qualities).

The output trace dependencies are only as good as the product of the quality of
the input trace dependencies. For example, if the A1-CR mapping is 100% com-
plete and the A2-CR mapping is only 50% complete then the resulting A1 to A2
trace dependencies will be 50% complete only (i.e., the output cannot be more
complete than its individual inputs). The correctness factor exhibits the same ef-
fect. Not surprisingly, 100% complete and precise output requires 100% complete
and precise input (see Table 31). Note that the values are averages in that a 50%
input mixed with another 50% input is 25% complete on average.

Table 31. Effect of input completeness/correctness on output

Completeness/Correctness
A1 A2 A1 A2 A1 A2
100 100 100 50 50 50

A1-A2 100 50 25 on average

14 Tailoring Software Traceability to Value-Based Needs 305

For example, the input of the VoD system was defined with an unknown level of
completeness and correctness. However, after the trace analysis (based on the in-
put in Table 28), we learn that we have almost complete knowledge of the map-
ping from state s9 to the code (>90%) but still rather incomplete knowledge of the
mapping from s8 to the code (<50%). If an engineer values s9 higher than s8 then
the engineer also values the traces derived from s9 higher than those from s8. As-
sume that we have complete knowledge of the footprints of the requirements
(100%). The trace analyzer thus generates output traces between the requirements
and s9 that are 90% complete while the ones between the requirement and s8 are
less than 50% complete.

This property has several benefits. First, we can predict the quality of the result
based on the quality of the input. Second, not all input must be defined 100%
complete if the output is not required to be 100% complete also. Value-based
software engineering places different levels of importance onto different artifacts.
Our approach can thus be guided by the required level of importance.

While completeness and correctness are independent value factors, we ob-
served that the more complete the input the more likely our approach detects in-
correctness. In essence, our approach uses constraint-based reasoning to identify
incorrectness, and the more the input the more constraints.

Table 32. Effect of precision on completeness and correctness

Completeness or Correctness
x 100 75 50 25

x/2 100 87 75 62 Precision
x/4 100 94 88 81

In principle, the effects of precision are independent from the effects of complete-
ness and correctness. This is because we measure completeness and correctness
relative to the granularity of the common representation. However, doing so ig-
nores a side effect: if an input is 50% complete for a given precision then the same
input becomes 75% complete (on average) if the precision is cut in half (i.e., com-
pleteness gets grouped with incompleteness which gives the wrong appearance of
more completeness). That is, correctness and completeness evolve relative to the
precision of the common representation as is illustrated in Table 32. It must be
noted that Table 32 depicts the relative effects of completeness and correctness
within a single application only. This table cannot be used to predict complete-
ness/correctness for other applications.

306 Alexander Egyed

Table 33. Input vs. output trade-off during trace analysis

Output (Results of the Trace Analysis)
Input and Output Trade-Off False

positives
False

negatives
Incomplete-

ness
Precision Yes Yes

Completeness Yes Yes Input
Correctness Yes Yes

Table 33 summarizes the effects of the tailorable input factors on the output. More
input precision reduces false positives and incompleteness. The same is true about
more input completeness. More correctness reduces both false positives and false
negatives but does not affect completeness. Our approach can measure the level of
input/output completeness and it can indicate input incorrectness.

14.6 Conclusions

Value-based software engineering places different values on different software ar-
tifacts. It is important for cost-effectiveness to adapt the quality of trace depend-
encies among these artifacts according to their importance. This paper discussed
the complexity of trace analysis and the many benefits of a testing-based approach
to trace analysis (e.g., quadratic reduction in trace input, irrelevance of syntactic
and semantic differences among artifacts). Furthermore, this paper discussed the
factors that affect the quality of the trace dependencies (output) generated by the
trace analysis (e.g., precision, completeness, correctness, and timeliness).

The engineer can influence these factors to accommodate the needs of value-
based software engineering in terms of what traces are needed, when traces are
needed, and of what level of quality traces are needed. It is future work to cali-
brate the quality trade-offs discussed in this chapter on other case studies. Also, it
is future work to investigate the effects of using different kinds of common repre-
sentations (e.g., the class diagram) as our findings are limited to date.

References

(Antoniol et al., 2002) Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and
Merlo, E.: Recovering Traceability Links between Code and Documentation,
IEEE Transactions on Software Engineering, 28(10), pp 970–983

(Biffl and Halling, 2003) Biffl, S. and Halling M.: Investigating the Defect Detec-
tion Effectiveness and Cost-Benefit of Nominal Inspection Teams, IEEE
Transactions on Software Engineering, 29(5), pp 385–397

(Boehm, 2003) Boehm, B. W.: Value-Based Software Engineering, Software En-
gineering Notes, 28(2), pp 1–12

14 Tailoring Software Traceability to Value-Based Needs 307

(Boehm and Huang, 2003) Boehm, B. W. and Huang, L.G.: Value-Based Software
Engineering: A Case Study, IEEE Computer, 36(3), pp 33–41

(Boehm et al., 1998) Boehm, B. W., Egyed, A., Kwan, J., and Madachy, R.: Using
the WinWin Spiral Model: A Case Study, IEEE Computer, pp 33–44

(Boehm et al., 2000) Boehm, B. W., Abts, C., Brown, A.W., Chulani, W., Clark,
B.K., Horowitz, E., Madacy, R., Reifer, D., and Steece, B.: Software Cost Es-
timation with COCOMO II, (Prentice Hall, New Jersey, 2000)

(Card, 1992) Card, D.N.: Designing Software for Producibility, Journal of Sys-
tems and Software, 17(3), pp 219–225

(Cross, 1991) Cross, G.M.: Requirements and Traceability Management, Proceed-
ings of the International Conference on Software for Guidance and Control,
pp 4/1–4/4

(Egyed, 2002) Egyed, A.: A Scenario-Driven Approach to Trace Dependency
Analysis, IEEE Transactions on Software Engineering (TSE), Volume 29,
Number 2, pp 116–132

(Egyed, 2004) Egyed, A.: Resolving Uncertainties during Trace Analysis, Pro-
ceedings of the 12th ACM SIGSOFT Symposium on Foundations of Software
Engineering (FSE), 3–12

(Egyed and Grünbacher, 2002) Egyed, A. and Grünbacher, P.: Automating Re-
quirements Traceability – Beyond the Record and Replay Paradigm, Proceed-
ings of the 17th International Conference on Automated Software Engineering
(ASE), pp 163–171

(Egyed and Grünbacher, 2004) Egyed, A. and Grünbacher, P.: Identifying Re-
quirements Conflicts and Cooperation: How Quality Attributes and Auto-
mated Traceability Can Help, IEEE Software, 21(6), pp 50–58

(Finkelstein et al., 1991) Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L.,
and Goedicke, M.: Viewpoints: A Framework for Integrating Multiple Per-
spectives in System Development, International Journal on Software Engi-
neering and Knowledge Engineering, pp 31–58

(Gotel and Finkelstein, 1994) Gotel, O.C.Z. and Finkelstein, A.C.W.: An Analysis
of the Requirements Traceability Problem, Proceedings of the First Interna-
tional Conference on Requirements Engineering, pp 94–101

(Jacobson, 1987) Jacobson, I.: Object Oriented Development in an Industrial En-
vironment, Proceedings of the International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pp 183–191

(Lindvall, 1994) Lindvall: A Study of Traceability in Object-Oriented Systems
Development, PhD Thesis Tech Report No 462, Linköping University, Insti-
tute of Technology, Sweden

(Lindvall and Sandahl, 1996) Lindvall, M. and Sandahl, K.: Practical Implications
of Traceability, Journal on Software – Practice and Experience (SPE), 26(10),
pp 1161–1180

(Moore, 1995) Moore, G.: Inside the Tornado, (, Harper Collins Publishers, 1995)
(Nuseibeh, 2001) Nuseibeh, B.: Weaving Together Requirements and Architec-

tures, IEEE Computer, 34(2), pp 115–117

308 Alexander Egyed

(Övergaard, 1998) Övergaard, G.: A Formal Approach to Relationships in the
Unified Modeling Language, Proceedings of the Workshop on Precise Seman-
tics for Software Modeling Techniques (PSMT’98), pp 91–108

(Pfleeger and Bohner, 1990) Pfleeger, S.L. and Bohner, S.A.: A Framework for
Software Maintenance Metrics, IEEE Transactions on Software Engineering,
16(5), pp 320–327

(Pohl, 1996) Pohl, K.: PRO-ART: Enabling Requirements Pre-Traceability, Pro-
ceedings of the 2nd International Conference on Requirements Engineering
(ICRE), pp 76–85

(Ramesh, 1993) Ramesh: A Model of Requirements Traceability for Systems De-
velopment, Technical Report, Naval Postgraduate School, Monterey

(Rumbaugh et al., 1999) Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified
Modeling Language Reference Manual, (Addison Wesley1999)

(Tilbury, 1989) Tilbury, A.M.: Enabling Software Traceability, In IEE Collo-
quium on the Application of Computer Aided Software Engineering Tool,
London, UK

Author Biography

Alexander Egyed is a research scientist at Teknowledge Corp. His research inter-
ests include requirements engineering, incremental and iterative software model-
ing (transformation and analysis), traceability, and simulation. He received his
PhD in Computer Science from the University of Southern California. He is a
member of IEEE, IEEE Computer Society, ACM, and ACM SIGSOFT.

15 Value-Based Knowledge Management:
the Contribution of Group Processes

Torgeir Dingsøyr

Abstract: Knowledge management has recently received much attention in soft-
ware engineering, but the main focus has been on information systems to support
learning. For most software companies, the most valuable knowledge remains in
the people, and this knowledge needs different methods to be managed. In this
chapter, we discuss the learning contribution of two people-oriented methods:
postmortem reviews and process workshops.

Keywords: Postmortem reviews, process workshop, knowledge management,
learning software organization, group process, software engineering.

15.1 Introduction

Software development has a history of cost and time overruns. Knowledge man-
agement has been proposed as an approach for solving these problems recently
(Aurum et al., 2003; Lindvall and Rus, 2002). Developing software is a typical
example of what Peter Drucker has called “knowledge work”; where “value is ...
created by ‘productivity’ and ‘innovation’” (Drucker, 1999). Knowledge is a
scarce resource in software development – much more than other “means of pro-
duction” like computer hardware and software, office buildings, or capital.

There has been much work on knowledge management in software engineering,
or learning software organizations. However, much of the work has concentrated
on information technology to support knowledge sharing, where few studies indi-
cate impact on software development practice (Dingsøyr and Conradi, 2002). One
reason for this might be that the knowledge represented in the tools has not had
sufficient value to the users. In this chapter, we discuss two techniques that rely on
group processes to share knowledge, are lightweight, and focus mainly on docu-
menting only the knowledge that the contributors see as having the greatest value.

Software development is usually performed in projects. Projects are time lim-
ited, producing one time outputs that are “non-repetitive in nature and involve
considerable application of knowledge, judgment and expertise” (Cohen and Bai-
ley, 1997). There are, however, similarities between projects, and learning from
one project has the potential of improving the next. A company’s own portfolio of
projects is more likely to be the source of relevant knowledge than what can be
provided in courses and bought in competence. To better manage knowledge in
projects we will present and discuss postmortem reviews (Dingsøyr, 2005) as a
method for analyzing past projects for the benefit of future projects.

310 Torgeir Dingsøyr

Software development processes are another important concept. These proc-
esses are often quite general and need to be tailored to suit either specific projects
or types of projects. We will discuss a method for defining work processes for
software companies, called process work-shops (Dingsøyr et al., 2005). The out-
put of such workshops are usually electronic process guides (Scott et al., 2002)
available on a company intranet which provides a “how to” reference manual for
people involved in projects.

The common denominator for these two techniques is that they rely on group
processes using some of the same brainstorming techniques. We will later discuss
the impact of brainstorming techniques on group effectiveness.

We believe good techniques for developing the knowledge required in projects
through postmortems and developing the cross-project knowledge in processes
can add substantial value to a software company – what some call increasing the
intellectual capital of the company.

A major leverage point in value-based software engineering is to stimulate
stakeholders to achieve more compatible and improvement-oriented utility func-
tions via team building, participation in decision making, and development of
shared goals and mutual trust; what Boehm (Boehm, 2003; Chapter 1) calls
“value-based people management.” Both collaborative processes in this chapter
and the stakeholder win-win processes in Chapter 7 (also discussed in Chapter 2)
address this leverage point in complementary ways. Additional complementary
strategies include prototyping team-oriented versus individual rewards and group-
oriented collaboration tool support as discussed in Chapter 10.

The methods presented in this chapter are also alternatives to the Experience
Factory (Basili et al., 1994), which is suggested as a tool for value-based monitor-
ing and control of projects and organizations. Postmortem reviews and process
workshops are lightweight, or agile, methods that rely much on sharing knowledge
orally, and consume little time to carry out. In small companies, a postmortem can
be carried out in four hours, and running a workshop on a process such as “blast-
off” can be carried out in less.

The rest of this chapter is organized as follows: In the next section we define
knowledge and discuss broad issues in how knowledge can be managed. We in-
troduce postmortem reviews and process workshops as group processes to work
on project and process knowledge from software companies. We then present an
action research study from a company where we used postmortem reviews and
from another company where we used a process workshop. In the discussion sec-
tion, we discuss how these techniques can assist in learning and eliciting knowl-
edge. We conclude with what we see as implications for practice for software
companies.

15.2 Managing Knowledge

Davenport and Prusak (1998) define knowledge as: “a fluid mix of framed experi-
ence, values, contextual information, and expert insight that provides a framework

15 Value-Based Knowledge Management 311

for evaluating and incorporating new experiences and information. It originates
and is applied in the minds of knowers. In organizations, it often becomes embed-
ded not only in documents or repositories but also in organizational routines,
processes, practices, and norms.”

We often divide knowledge into two types, tacit and explicit knowledge. By
tacit knowledge (Polanyi, 1967) we mean knowledge that a human is unable to
express, but is guiding the behavior of the human, like much of the organizational
routines, norms, practices, and inner beliefs. Webster’s dictionary defines tacit as
“under-stood without being openly expressed” (Webster's, 1989). Explicit knowl-
edge is knowledge that we can represent, or “codify,” for example, in documents
and repositories.

Nonaka and Takeuchi claim that tacit knowledge can be transferred between
people through a process called socialization, which can involve observation and
discussion (Nonaka and Takeuchi, 1995). Newcomers will typically need to spend
time with others in an organization to get into the routines, norms, and practices
that exist.

When knowledge is articulated so that it can be represented in text or pictures,
we say that knowledge is externalized. Brainstorming can be one technique to fa-
cilitate articulation of knowledge in order to share how “things are done.”

Important assets for software companies are the employee’s knowledge, and the
routines that exist in the company. Often, little of this knowledge is codified, but
exists in the heads of the employees and in work practices.

In order to spread knowledge in an organization from individuals to groups, we
depend on what has been called “organizational learning”. This differs from indi-
vidual learning in two respects (Stata, 1996): First, it occurs through shared in-
sight, knowledge, and shared models. Second: it is not only based on the memory
of the participants in the organization, but also on “institutional mechanisms” like
policies, strategies, explicit models, and defined processes.

Hansen et al. (1999) define two strategies for knowledge management. “Codifi-
cation” is to depend on explicit, codified knowledge, typically in databases –
which require heavy investments in information technology. The competitive
strategy for companies choosing codification is to “provide high-quality, reliable
and fast information systems implementation by reusing codified knowledge.” The
other strategy is referred to as “personalization,” which depends on the tacit
knowledge in the company – the strategy involves developing networks to link
people to share tacit knowledge. The competitive strategy for companies choosing
personalization is to “provide creative, analytically rigorous advice on high-level
strategic problems by channeling individual experience.”

The stimulation of shared goals and tacit knowledge is also critical to coping
with increasingly rapid rates of unpredictable change in software projects. This is
a major theme in the use of agile methods (Abrahamsson et al., 2003; Cohen et al.,
2004).

Both these strategies apply to software companies, but the research on knowl-
edge management in software engineering has mainly been concentrated on in-
formation technology support for codification (Dingsøyr and Conradi, 2002). We
will now present two group processes to promote sharing of knowledge, which

312 Torgeir Dingsøyr

mainly support the personalization strategy, namely postmortem reviews and
process workshops. Note that the processes could also support a codification strat-
egy if more emphasis is made on the resulting documentation.

Postmortem Reviews

Postmortem reviews are processes organized when projects are completed in order
to discuss what can be learned from the project (Dingsøyr, 2005). One way to or-
ganize postmortems (Birk et al., 2002) is to invite all project participants, and or-
ganize a postmortem meeting where a facilitator uses two techniques for first iden-
tifying issues, and then for analyzing the causes of the issues with the highest
priority.

For a focused brainstorm on what happened in the project, a technique named
after a Japanese ethnologist, Jiro Kawakita, can be used (Scupin, 1997), called
“the KJ Method.” The technique involves giving participants a set of “post-it”
notes, and asking them to write one “issue” on each. After some minutes, the first
participant presents a note by attaching it to a whiteboard and saying why this is-
sue was important. Then the next person presents a note and so on until all the
notes are on the whiteboard. The notes are then grouped and renamed. This is
done for “what went well” in the project, and for “what did not go well.” This
technique leaves a set of issues in both categories, and usually the most important
ones are selected by allowing all participants to vote. One way of organizing this
is to give each participant two votes, which can be placed on the categories the
voter thinks were most important in this project, or the categories the voter thinks
the team is most likely to influence in the next project. The most important issues
are then analyzed using the next technique.

Root Cause Analysis (also called Ishikawa or fishbone diagrams) (Straker,
1995) can be used to analyze the causes of an important issue. We draw an arrow
on a whiteboard indicating the issue being discussed. We then attach arrows to this
arrow. These represent issues perceived by the participants as causes for the main
issue. Sometimes, we also explore the subcauses for some of the causes and attach
arrows for those as well.

As a group process, the postmortem allows everyone participating in a project
to know what other participants thought were important issues. It also allows for
both positive and negative criticism of actions taken, processes followed, and
products delivered from the project.

Process Workshops

Process workshops (Ahonen et al., 2002; Dingsøyr et al., 2005) are made in order
to discuss how work is to be carried out in the organization. The output is descrip-
tions of “best practice” in an area, for example, in software development. A typi-
cal process workshop consists of the following five steps:

15 Value-Based Knowledge Management 313

1. Identify activities. Find the main activities of the process using a group brain-
storm (KJ process).

2. Define the sequence of activities. Take the activities from the previous phase
and make a sticker for each. Place them on the activities field of the process
worksheet (see Figure 59 for an example worksheet), where time goes from left
to right. Find a suitable workflow between the activities.

3. Define input and output. Find the documents or artifacts that must be available
(and possible preconditions that exist) to start the process, and the documents
(and possible postconditions) that mark the end of the process. Use stickers
with other colors than for the activities to mark input and output, and attach
them to the process worksheet on the wall alongside the activities. Conditions
that must be satisfied to begin or exit the process can be described in checklists.

4. Define roles. Find the roles (developer, project leader, manager, etc.) that
should contribute to each activity – and define responsibilities.

5. Find related documents. Identify documents that already exist in the company,
and new documents that could be helpful in carrying out the activities. Such
documents can be templates, checklists, and good examples of input or output
documents.

The result of a process workshop is a draft process guide based on a minute of the
workshop. The next step would be to assign someone the task of preparing a more
readable process guide based on the first draft. In the end, the process guide is a
workflow-oriented document available on the company intranet. This is usually a
tool which can be used voluntarily, and is intended to assist people in developing
software effectively.

15.3 Example: Postmortem Review and
Process Workshop

We present an example postmortem review from a company we will refer to as
“Delta,” and a process workshop in another company “Gamma.” Both techniques
were used in an action research (Greenwood and Levin, 1998) project where re-
searchers and company representatives tried out techniques, and together reflected
on the results.

An Example Postmortem

This postmortem was done on a project to develop a Web-based ticket ordering
system for a major transport company in Norway. The project was critical for the
transport company, as it introduced fundamental changes to their revenue man-
agement process. The project team from Delta at the end of the project consisted
of eight people, who all took part in the postmortem meeting (the project had in-
volved three more people earlier, but they were removed from the project because

314 Torgeir Dingsøyr

of costs). The company that was running the software project is a large software
house with approximately 500 employees.

The postmortem analysis followed the approach described earlier (Birk et al.,
2002) except for starting with a timeline-exercise (Kerth, 2001), as the project had
lasted for almost two years. This exercise was done by asking all participants to
remember key events, and write down the names of the events on stickers and at-
tach them to grey paper on a wall, rectangular stickers for events and round stick-
ers for dates. Important events in this project were tasks like: choosing platform,
deciding on coding standard, choosing the database, intense work period, etc. Par-
ticipants were asked to write down up to four positive and negative experiences
they faced during the project. These notes were then put on a whiteboard and
grouped into categories or themes. Issues that went well were: team spirit, compe-
tence development, human competence, will and ability to solve problems, cus-
tomer responsibility, good products and improved customer relation. Issues that
were problematic were: testing, technical investments, lack of knowledge, and
immature technology.

We will now analyze two of the issues that went well and two that did not work
out well more in detail. We will show excerpts of what people said about the is-
sues, and what we found to be possible causes for these issues in this project.

Team spirit: “If you look at the people involved in this project, you see that we
are very different, but are anyway able to work well together. I think that has been
unbelievable, I see so many other places that this does not work,” “I would also
like to emphasize that it has been very nice socially in the project, although there
have not been much [activities] after working hours ... professionally there have
been people whom you could ask [any relevant question], ... people have not had
enough with their own problems.”

Testing: “The greatest mistake we made is that we said ‘no’ to more load test-
ing before we went to production.” “I think we ought to have done more automatic
testing earlier, and should have done load testing earlier. We also should have had
a better understanding of what load testing means – we have at least two different
views of it.”

To determine the contributing factors for critical issues, we did root cause
analysis, using fishbone diagrams (Straker, 1995). In the root cause analysis, main
causes for team spirit were found to be good mix of people, solution-oriented peo-
ple, collocation of the project team, ownership to solutions, and that it was easy to
have a good overview of the group. Similarly, we found the following reasons for
problems with testing: lack of automated tests, difference in development and pro-
duction environment, test process was not followed, and testing did not measure
the right features. Upon completion of the postmortem analysis, two facilitators
wrote an 18 page report, which was organized with an introduction giving back-
ground on the project and the purpose of the postmortem, which was to share ex-
perience from the project in a structured manner. Then, the report explains how
the work was done, which activities were performed during the postmortem meet-
ing. The results are presented as seven issues that went well, and then the most
important (after voting) were described in more detail with quotes from transcripts
of the postmortem meeting. In this report we used mind maps to document root

15 Value-Based Knowledge Management 315

causes for the main issues as in Figure 58 (fishbone diagrams were used during the
postmortem meeting).

Fig. 58. Mind map showing reasons for issue “competence development”

The seven issues that did not work out well are described in the same manner as
the issues that went well.

The company invested 32 hours in this postmortem in addition to approxi-
mately 20 hours used by the facilitators, in total 52 hours. A further discussion of
this postmortem can be found in (Desouza et al., 2005).

An Example Process Workshop

The satellite software company Gamma, where a series of process workshops
were performed (Dingsøyr et al., 2005) delivers turnkey ground station systems,
consultancy, feasibility studies, system engineering, training, and support. The
company has been working with large development projects, both as a prime con-
tractor and as a subcontractor.

Customers range from universities to companies like Lockheed Martin and Al-
catel to governmental institutions like the European Space Agency and the Nor-
wegian Meteorological institute.

Most of the software systems that are developed are running on Unix, many on
the Linux operating system.

The company possesses a stable and highly skilled staff, many with Master’s
degrees in computer science, mathematics, or physics, and have what we can de-
scribe as an “engineering culture.” Approximately 60 people are working in the
company, and the majority is working with software development. Projects are
managed in accordance with quality routines fulfilling the European Space
Agency PSS-05 (European Space Agency, 1991) standards and ISO 9001-2000
(Cianfrani et al., 2001).

The company had an extensive quality system, but the system was cumbersome
to use because of the size – and because it existed partly on file and partly on pa-
per. As a part of being certified according to ISO 9001-2000, the company de-
cided to document all main processes in the company.

In a process workshop on the initiation phase of projects, we identified three
subprocesses: “offer,” “follow up,” and “blast off.”

316 Torgeir Dingsøyr

As the initiation of projects is an interface between different parts of the or-
ganization, it was important to bring together people from marketing, quality as-
surance, and the development department. We started the workshop by giving a 15
minute presentation of what we were going to do, and put a large sheet with a fig-
ure of the process worksheet (as in Figure 59) on the wall – one for each process
that would be discussed in the meeting.

For each subprocess we wanted to define, “offer,” “follow up,” and “blast-off,”
we went through the steps mentioned earlier, to identify activities, define the se-
quence, and define input/output, roles, and related documents. The main activities
identified in this step for the “blast-off” subprocess were:
• Appoint project manager
• Organize “hand over” meeting
• First project analysis
• Allocate resources
• Prepare for kickoff meeting
• Internal kickoff

Fig. 59. Process worksheet example

We brainstormed on which roles should contribute in each activity and found the
following roles for the “blast off” phase: project manager, quality assurance, de-

15 Value-Based Knowledge Management 317

velopment leader, technical leader, product committee, bid manager, purchasing
manager, and logistics expert.

We identified related documents that either already existed in the company, or
new documents that would be helpful in carrying out the activities. Such docu-
ments were templates, checklists, and good examples of input or output docu-
ments.

We found it helpful to ask the people who participated in the process workshop
to read the result and comment on it (see (Shull et al., 2000) for an example of
such a technique in requirements inspection). We assigned the most typical roles
that were involved in the processes to people – and asked them to find if there was
information that was lacking or irrelevant for this role in the description. This
reading resulted in a number of modifications and clarifications on the process de-
scription.

Fig. 60. A screenshot of a part of the resulting electronic process guide

Finally, two people in the company were responsible for making a draft process
guide, based on the overall description of the processes which were developed in
the workshop. Each activity was then described in much more detail than what ap-
peared in the workshop minutes – the participants gave feedback on these before
the processes were implemented in the process guide, as shown in Figure 60. The
main part of the final process guide is the description of the activities. For the ex-

318 Torgeir Dingsøyr

ample shown in Figure 60, the subprocess for system integration lists the follow-
ing initial activities: “1. Finalize system integration (install scripts, finalize system
configuration), 2. Perform dry-run loop (build and test installation, log and correct
bugs, raise requirement changes, update architecture design if necessary) …”.

The company invested 168 hours in seven process workshops, another 40 hours
in preparation and afterwork, and 208 hours in developing the process guide tool
based on the minutes from the workshops, in total 416 hours. The company in-
tends to develop several tailored versions of the process guide, for ad hoc projects
to large development projects. The project manager is always responsible for tai-
loring an original process description to the needs of the project.

15.4 Discussion

We have described two methods for conducting postmortem reviews and process
workshops, both relying on group processes as a central element. The methods
produce discussions which should lead to reflections among participants, and
some of the main discussion points are documented in minutes. It is the partici-
pants who decide what are the most important issues to concentrate on in analysis
and in documentation.

In software engineering, the critical elements are how many hours it takes to
develop the software, that the customer gets the right functionality, and that the
software system has the desired quality. Deciding to invest in knowledge man-
agement should be because of a belief that the investment will lead to better effi-
ciency and effectiveness in software development; better understanding of cus-
tomer requirements, greater insight in factors that lead to high or low quality of
software. In the context of value-based software engineering, this is to extend the
traditional focus on cost, schedule, and product to also involve issues that are of
value to the software development organization.

In this context we ask, what is the effect of managing knowledge through group
processes? We will investigate this question by examining studies of project work
and group processes, and use examples from the cases of Delta and Gamma.

Group Processes and Group Effectiveness

To what extent can management of knowledge influence the effectiveness of
software development? From studies of team effectiveness we find that team
members rate the performance of the team high if the team has “healthy internal
processes, such as collaboration and resolution conflict” (Cohen and Bailey,
1997). We also find that group cohesiveness – how united the team is – is related
to performance (Cohen and Bailey, 1997). A survey article on brainstorming re-
search (Faure, 2004) cites several brainstorming studies that report satisfaction
with the group (increased cohesiveness) as an outcome of a brainstorming session.
Also, the survey reports that there is “abundant evidence that nominal groups (i.e.,

15 Value-Based Knowledge Management 319

groups of individuals working together independently, but in the presence of an-
other) outperform interactive groups (i.e., groups where ideas are generated
through face to face discussions) in both the quality and the quantity of ideas gen-
erated in brainstorming sessions.” Reasons why nominal groups outperform inter-
active groups are that in interactive groups, having to state ideas orally makes it
possible for only one person to present an idea at a time; also, fear of negative
evaluation from group members and “free riding” – reducing effort when individ-
ual contribution is not identifiable – has been suggested. Note that when using
electronic tools in the brainstorming process, the picture changes: interactive
groups outperform nominal groups (Dennis and Valacich, 1993; Nunamaker et al.,
1991). For an overview of experiments on computer-supported decision making
see (Fjermestad and Hiltz, 1999).

In the example from Delta, the group agreed on seven categories of issues that
went well, and four categories of issues that did not work out well.

The results from the fields of research above indicate that group processes us-
ing brainstorming techniques such as the KJ process used in postmortems and
process workshops has a positive effect on the performance of the participants.
Also, we think that techniques for postmortem reviews can be seen as a “healthy
internal process” that can lead to conflict resolution and better collaboration be-
cause team members get better insight into other team members’ views. Having a
postmortem process can then lead to a perception of better effectiveness in the
team.

The postmortem at Delta led to a praise of the project team in the session on is-
sues that went well. Also, agreeing on the four issues that did not work out well
and their importance is something we can see as a “healthy” internal process
where criticism is allowed, and critical opinions are discussed.

In the process workshop at Gamma, the discussion on the blast-off phase in-
volved people from different parts of the company: from the marked and software
development departments. Sharing views on the interface between the departments
is likely to lead to better understanding of others’ work, and a lower risk of coop-
eration problems later.

Studies of group performance do, however, state that team effectiveness is per-
ceived differently by internal project members and external stakeholders such as
managers: “Team members tend to rate the team’s performance high if the team
has engaged in healthy internal processes, such as collaboration and resolution
conflict. Managers … rate a team highly according to more external factors like
the amount of communication the group has with external agents” (Cohen and
Bailey, 1997). However, a high perception of effectiveness is likely to lead to bet-
ter motivation within the team.

There are, however, some problems that are often referred to in group work,
those of group bias (“group think”), group pressure, and political preferences. An
indication of these problems is if people express other opinions in the group than
individually after the group work. As for group bias, the KJ process is a method
that makes everyone prepare their work individually – and then present it to the
rest of the group. It could happen that individuals focus their brainstorm in a way
they think is politically correct in the organization, and into issues that they also

320 Torgeir Dingsøyr

think their group peers will agree to. In order to remove this effect, one solution is
to present the ideas of each person anonymously – so that a facilitator collects all
stickers, and presents them in random order. Such a procedure would make sorting
of ideas afterward a bit more cumbersome, because they would have to be rewrit-
ten on new stickers in order not to reveal the source from the handwriting. You
would also lose the context behind each idea on a sticker, as the facilitator usually
is someone who is not intimately familiar with the project. We have not done any
tests to check if the result of the postmortem given in the example from Delta dif-
fers from personal opinions. But some of the issues presented were provoking to
the project manager, which could indicate limited self-censorship. Also, people
knew that the final report would not relate opinions to individuals.

An argument for the suggested group processes are findings on the importance
of conducting work in the project according to tailored processes. The survey on
team effectiveness reports that “projects where the coordination mechanism fit the
newness of the project resulted in products that were higher in quality, were more
likely to achieve sales objectives, and reached their break-even point sooner than
those projects whose coordination mechanisms were too bureaucratic or too in-
formal given the newness of the product.” Also, the survey report that “when team
design and processes are properly fit to product characteristics, performance can
be high, but when they are not so, performance will suffer.” Organizing process
workshops in a company is a way to make the work processes adapt more to the
real problems in the company than using a more general available model. But we
could also easily imagine that using the process described at Gamma, which, for
example, prescribes eight roles to be present in the blast-off meeting, would be a
far too high burden on very small projects.

In addition to the implications on effectiveness we have discussed, we have a
possible effect of sharing the knowledge with other projects in the company that
might be in similar situations and could benefit from avoiding mistakes or reusing
work products. The example postmortem from Delta reports on problems with
testing: “I think we ought to have done more automatic testing earlier, and should
have done load testing earlier” was a statement from one participant. This was
probably not something that was new to the project team. But it was stated and
generally agreed on that it should have been handled differently in this project
which would have increased the probability of better testing in the next project.

As value-based software engineering techniques, postmortem reviews and
process workshops focus on the development team, and can contribute to team-
building and the management of expectations.

Group Processes to Improve Product Quality

In order to improve product quality, there are two possible effects from postmor-
tems and process workshops. There have been many claims in software engineer-
ing about the relationship between development process and product quality. In
order to ensure that the process influences quality, the development process of
course needs to take place in action – not only be described. Process workshops

15 Value-Based Knowledge Management 321

are a method to discuss the work processes, which could then influence how the
processes are used in practice. We have not found evidence for this claim in the
software engineering literature, but we are currently working with research on the
hypothesis that process workshops – which means user involvement – leads to a
higher degree of process conformance.

Another possibility to improve quality comes from the postmortem – to ensure
that problems that happened in producing one product do not happen again when
producing something similar. In the example from Delta, testing is one issue
which is likely to be dealt with differently after the project postmortem.

An experiment on group processes for software effort estimation reports that
groups outperform individuals in making less optimistic and more realistic estima-
tions of required effort (Moløkken-Østvold and Jørgensen, 2004).

Benefits and Limitations

What was the value delivered from the postmortem and process workshop meth-
ods at Delta and Gamma? Do they justify the cost of performing the methods? At
Delta the outcome of the postmortem for the company as a whole was an 18 page
report. For the group it also meant better insight into what other people in the pro-
ject thought about it, and a chance to reflect on the project. The cost was 52 work
hours, which is less than 1% of the total cost of the project. Taking, for example,
the issue on testing, we could imagine that a more optimal test process could save
52 hours of debugging after release in a future project. As for the organization as a
whole, the total result depends on how they are able to use what they learned in
this project for the benefit of the whole organization. We will return to this point
in the next section.

At Gamma, the benefit was a documented development process, as well as a
better understanding of other people’s tasks which were leveraged in the work-
shops. It is too early to say if this investment of 416 work hours has paid back, but
this effort is also less than 1% of the total staff time in the company. One positive
indicator was that the company had zero deviations in an ISO revision after the
process guide was introduced thus satisfying the company goal of having less than
four deviations. We describe what we will do to follow the introduction of the
process guide in this company in Section 15.5.

We have described what we see as the benefits of the methods. What about the
limitations? As for the postmortem review, doing it in a four hours session as de-
scribed at Delta makes it focus on the broad picture rather than the details. If a
company has specific problems then this method is not something that can provide
a good solution. The postmortem can rather uncover issues, which usually have to
be analyzed better in order to make corrective actions for the company as a whole.
A postmortem is also heavily dependent on a good atmosphere in the project and a
willingness to share experience. Internal competition for positions is a factor that
might reduce this willingness, as seen in software consulting companies
(Orlikowski, 1992). As for the process workshop, this is a method that only docu-
ments what the participants think is the best way to carry out a series of tasks. To

322 Torgeir Dingsøyr

optimize a process or to make innovative processes tailored to solving completely
new problems would require other approaches.

As group processes, both process workshops and postmortems require a skilled
facilitator who can make sure that all participants are able to contribute, and that
the issues agreed on reflect the attitudes of the whole group.

Organizational Learning

In the introduction, we defined knowledge management and what we called organ-
izational learning. We defined the latter term as having two conditions: “shared
insight, knowledge, and shared models” and based on the “institutional mecha-
nisms” like policies, strategies, explicit models, and defined processes.

We think group processes is a good mechanism to achieve shared insight,
knowledge, and shared models, and it can also be a good starting point for docu-
menting experience and defining processes. However, achieving organizational
learning also requires the methods to have an impact on the organization as a
whole, which is something we have not discussed here. Following up on the re-
sults of a postmortem and introducing a process guide in a company are natural fu-
ture activities.

15.5 Conclusion and Further Work

We have discussed two methods to facilitate learning in software companies,
namely postmortem reviews and process workshops. We have argued on the value
of the group processes in the methods by examining work on project team effec-
tiveness and brainstorming research. We have found support for claims that such
processes can lead to more efficient project work and more satisfied project teams.
There are also indications that such activities influence the product quality. We
have further shown how the methods contribute to important goals in value-based
software engineering by achieving consensus on experience and work processes,
and focusing on improvement. Such techniques can be an important foundation for
organizational learning, which require little of a project or company’s resources.

In the future, we plan to do more studies of both postmortem reviews and proc-
ess workshops. The focus for postmortem reviews will be to study the effect of the
postmortems on an organization – does it lead to organizational learning, and what
critical factors needs to be in place to ensure it. Another interesting topic in post-
mortem research would be to use group support systems in order to make the
brainstorming process more effective. As for process workshops, we are currently
studying the infusion of the resulting electronic process guide in the company
Gamma, through surveys, semi-structured interviews, analysis of usage logs, and
revision of projects.

15 Value-Based Knowledge Management 323

Acknowledgements

I am very grateful to colleagues at the SINTEF ICT software engineering group
for discussions about postmortem reviews and process workshops: Tore Dybå, Tor
Erlend Fægri, Geir Kjetil Hanssen, Nils Brede Moe, and Hans Westerheim. This
work was supported by the SPIKE project, partially funded by the Research
Council of Norway.

References

(Abrahamsson et al., 2003) Abrahamsson, P., Warsta, J., Siponen, M.T., and Ron-
kainen, J., New Directions on Agile Methods: A Comparative Analysis, in
Proceedings of the 25th International Conference on Software Engineering
ICSE'03: (IEEE Press, 2003)

(Ahonen et al., 2002) Ahonen, J.J., Forsell, M., and Taskinen, S.-K., A Modest but
Practical Software Process Modeling Technique for Software Process Im-
provement, Software Process Improvement and Practice. 7(1), pp 33–44

(Aurum et al., 2003) Aurum, A., Jeffery, R., Wohlin, C., and Handzic, M., Manag-
ing Software Engineering Knowledge. (Springer, Berlin 2003)

(Basili et al., 1994) Basili, V.R., Caldiera, G., and Rombach, H.D., The Experi-
ence Factory, in Encyclopedia of Software Engineering, vol. 1, ed by Mar-
ciniak, J.J. (John Wiley, 1994), pp 469–476

(Birk et al., 2002) Birk, A., Dingsøyr, T., and Stålhane, T., Postmortem: Never
leave a project without it, IEEE Software, special issue on knowledge man-
agement in software engineering. 19(3), pp 43–45

(Boehm, 2003) Boehm, B. W., Value-Based Software Engineering, ACM
SIGSOFT Software Engineering Notes. 28(2)

(Cianfrani et al., 2001) Cianfrani, C.A., Tsiakals, J.J., West, J.E., and West, J., Iso
9001: 2000 Explained: (ASQ Quality Press, 2001)

(Cohen and Bailey, 1997) Cohen, S.G. and Bailey, D.E., What Makes Teams
Work: Group Effectiveness Research from the Shop Floor to the Executive
Suite, Journal of Management. 23(3), pp 239–290

(Cohen et al., 2004) Cohen, D., Lindvall, M., and Costa, P., An Introduction to
Agile Methods, vol. 62. (Elsevier, Amsterdam 2004)

(Davenport and Prusak, 1998) Davenport, T.H. and Prusak, L., Working Knowl-
edge: How Organizations Manage What They Know: (Harvard Business
School Press, 1998)

(Dennis and Valacich, 1993) Dennis, A. and Valacich, J., Computer Brainstorms –
More Heads are Better than One, Journal of Applied Psychology. 78(4),
pp 531–537

(Desouza et al., 2005) Desouza, K., Dingsøyr, T., and Awazu, Y., Experiences
with Conducting Project Postmortems: Reports vs. Stories and Practitioner
Perspectives, Hawaii International Conference on System Sciences (HICSS
38), 2005

324 Torgeir Dingsøyr

(Dingsøyr, 2005) Dingsøyr, T., Post Mortem: Purpose and Approaches in Soft-
ware Engineering, Information and Software Technology. 47 (to appear)

(Dingsøyr and Conradi, 2002) Dingsøyr, T. and Conradi, R., A Survey of Case
Studies of the Use of Knowledge Management in Software Engineering, In-
ternational Journal of Software Engineering and Knowledge Engineering.
12(4), pp 391–414

(Dingsøyr et al., 2005) Dingsøyr, T., Moe, N.B., Dybå, T., and Conradi, R., A
workshop-oriented approach for defining electronic process guides – A case
study, in Software Process Modelling, Kluwer International Series on Soft-
ware Engineering, ed by Acuña, S.T., Juristo, N. (Kluwer Academic Publish-
ers, Boston, 2005), pp 187–205

(Drucker, 1999) Drucker, P.F., The coming of the New Organization, in Harvard
Business Review on Knowledge Management: (Harvard Business School
Press, 1999)

(European Space Agency, 1991) European Space Agency, PSS-05-0 Issue 2, ESA
Software Engineering Standards 1991

(Faure, 2004) Faure, C., Beyond Brainstorming: Effects of Different Group Pro-
cedures on Selection of Ideas and Satisfaction with the Process, Journal of
Creative Behavior. 38(1), pp 13–34

(Fjermestad and Hilz, 1999) Fjermestad, J. and Hiltz, S.R., An assessment of
group support systems experimental research: Methodology and results, Jour-
nal of Management Information Systems. 15(3), pp 7–149

(Greenwood and Levin, 1998) Greenwood, D.J. and Levin, M., Introduction to
Action Research: (Sage Publications, 1998)

(Hansen et al., 1999) Hansen, M.T., Nohria, N., and Tierney, T., What is your
strategy for managing knowledge? Harvard Business Review. 77(2), pp 106–
116

(Kerth, 2001) Kerth, N.L., Project retrospectives: a handbook for team reviews.
(Dorset House Publishing, New York, 2001)

(Lindvall and Rus, 2002) Lindvall, M. and Rus, I., Knowledge Management in
Software Engineering, IEEE Software. 19(3), pp 26–38

(Moløkken-Østvold and Jørgensen, 2004) Moløkken-Østvold, K.J. and Jørgensen,
M., Group Processes in Software Effort Estimation, Journal of Empirical
Software Engineering. 9(4), pp 315–334

(Nonaka and Takeuchi, 1995) Nonaka, I. and Takeuchi, H., The Knowledge-
Creating Company: (Oxford University Press, 1995)

(Nunamaker et al., 1991) Nunamaker, J., Dennis, A., Valacich, J., Vogel, D., and
George, J., Electronic Meeting Systems to support Group Work, Communica-
tions of the ACM. 34(7), pp 40–61

(Orkikowski, 1992) Orlikowski, W.J., Learning from Notes: Organizational Issues
in Groupware Implementation, Proceedings of the Conference on Computer-
Supported Cooperative Work, Portland, Orgeon, USA, 1992

(Polanyi, 1967) Polanyi, M., The Tacit Dimension, vol. 540. Garden City, (Dou-
bleday, New York, 1967)

15 Value-Based Knowledge Management 325

(Scott et al., 2002) Scott, L., Carvalho, L., Jeffery, R., D'Ambra, J., and Becker-
Koernstaedt, U., Understanding the use of an electronic process guide, Infor-
mation and Software Technology. 44(10), pp 601–616

(Scupin, 1997) Scupin, R., The KJ Method: A Technique for Analyzing Data De-
rived from Japanese ethnology, Human Organization. 56(2), pp 233–237

(Shull et al., 2000) Shull, F., Rus, I., and Basili, V.R., How Perspective-Based
Reading Can Improve Requirements Inspections, IEEE Computer. 33(7),
pp 73–79

(Stata, 1996) Stata, R., Organizational learning: The key to management innova-
tion, in How organizations learn, ed by Starkey, K. (Thomson Business Press,
London, 1996), pp 316–334

(Straker, 1995) Straker, D., A Toolbook for Quality Improvement and Problem
Solving: (Prentice hall International (UK) Limited, 1995)

(Webster, 1989) Webster's, Encyclopedic Unabridged Dictionary of the English
Language. (Gramercy Books, New York, 1989).

Author Biography

Torgeir Dingsøyr is a research scientist at the Department of Software Engineer-
ing at SINTEF in Trondheim, Norway. He wrote his doctoral thesis on “Knowl-
edge Management in Medium-Sized Software Consulting Companies” at the De-
partment of Computer and Information Science, Norwegian University of Science
and Technology. He has worked on several large software process improvement
and knowledge management in national and international projects as a researcher
and consultant. He has published papers on knowledge management in software
engineering, case-based reasoning, and software engineering education. He is a
co-author of the book “Process Improvement in Practice – A Hand-book for IT
Companies,” published by Kluwer Academic Publishers.

16 Quantifying the Value of New Technologies for
Software Development

D. L. Atkins, A. Mockus and H. P. Siy

Abstract: Introducing relevant software technologies may provide significant ad-
vantages to a software organization. Unfortunately, the value the technology may
provide is almost never quantified. We describe a methodology for precise quanti-
tative measurement of the value a software technology may add to the project in
terms of the impact on quality and lead time. The methodology employs measures
derived from version control and problem tracking repositories to determine the
value of technology. We illustrate this approach in a detailed case study on the
impact of using two particular technologies – a version-sensitive source code edi-
tor and a domain engineered application environment – in a telecommunications
product. In both cases use of technology had a strong positive impact on the con-
sidered quality measures. The methodology relies on information commonly
available in project version control and problem tracking systems and, therefore,
can be widely and easily applied.

Keywords: Statistical models, empirical studies, case studies, software change
database, software metrics, software quality, development lead time, version-
sensitive editing, domain engineering, large-scale software development,
technology transfer, technology evaluation.

16.1 Introduction

New technologies – languages, tools, methodologies – are constantly being intro-
duced in the hopes of improving quality, decreasing lead time, or increasing pro-
ductivity. While they have the potential to greatly improve the quality and main-
tainability of software, deploying and maintaining a new technology in a large
organization can be an expensive proposition. We explore how to quantify the ef-
fects of assimilating software engineering technologies into ongoing large-scale
software projects, presenting a simple methodology that correlates technology us-
age with field defects and lead time based on analysis of the change history of a
software project.

Quantifying the impact of a technology on software development is particularly
important in making a case for transferring new technology to the mainstream de-
velopment process. Technology transfer involves significant effort spent in train-
ing developers and integrating the technology with the existing development proc-
ess. It also carries the risk of decreasing developer productivity due to the
inevitable learning curve. (Rogers, 1995) cites observability of impact as a key
factor in successful technology transfer. Observability usually implies that the im-

328 D.L. Atkins, A. Mockus, H.P. Siy

pact of the new technology can be measured in some way. Most of the time, the
usefulness of a new technology is demonstrated through the best subjective judg-
ment. This may not be persuasive enough to convince managers and developers to
try the new technology. By having a methodology for quantifying the value added
by the new technology, early adopters can be assured that an objective evaluation
can be performed after trying it out. Furthermore, having quantified results from
other projects gives interested practitioners an opportunity to gauge whether the
new technology has potential for a positive return on investment in their environ-
ment.

Previously we have reported on a methodology to estimate the savings in terms
of effort to perform a software change provided by new technologies in (Atkins et
al., 2000; Atkins et al., 2002). We now extend this methodology to also estimate
the impact of the new technology on defect and lead time reduction – two qualities
that are likely to prove more valuable (Boehm, 2003) to a software organization
than developer effort savings. Furthermore, instead of estimating these two quali-
ties for individual software changes, we estimate these for units that add business
value. In our case, these are called features – customers buy products or upgrade
to new software releases contingent on the on-time delivery of certain features that
have passed their rigorous acceptance tests.

While still focusing on the analysis of changes to the software, our estimation
methodology is modified accordingly to deal with features. First, we obtain a
number of change measures, such as size, lead time, and technology usage, from
the change history of the source code. Then we add a new step where we aggre-
gate changes into their associated features. Finally, we fit statistical models that
relate defects and lead time in the considered units to the predictor that indicates
usage or non-usage of the technology. We also have an additional four years of
data to verify the trends observed in previous reports.

As we will see, the methodology is largely automatic, inexpensive, non-
intrusive, and applicable to most software projects using version control systems.
Furthermore, it can be applied to an entire software project in its actual setting as
we do here to measure the effects of a version-sensitive source code editor and of
a domain engineered application environment. Despite fairly simple general fea-
tures, there are a number of differences between the ways the methodology is ap-
plied to estimate the impact of various technologies. The goal of this paper is to
highlight and summarize these differences to make the methodology easier to use
in practice.

We start by briefly describing the software project under study, software
changes, and data sources in Section 16.2. Section 16.3 describes the two tech-
nologies under consideration. Section 16.4 describes the step-by-step application
of our methodology. Finally, we conclude with a relevant work section and a
summary.

16 Quantifying the Value of New Technologies for Software Development 329

16.2 Background

The case study here revolves around a large telephone switching software system
developed over more than two decades. Lucent Technologies’ 5ESS® switch is
used to connect local and long distance calls involving voice, data, and video
communications. The 5ESS source code is organized into subsystems with each
subsystem further subdivided into a set of modules. Each module contains a num-
ber of source code files. The change history of the files is maintained using the
Extended Change Management System (ECMS) (Midha, 1997), for initiating and
tracking changes, and the Source Code Control System (SCCS) (Rochkind, 1975),
for managing different versions of the files.

We present a simplified description of the data collected by SCCS and ECMS
that are relevant to our study. ECMS, like most version control systems, operates
over a set of source code files. An atomic change, or delta, to the program text
consists of the lines that were deleted and those that were added in order to make
the change. Deltas are usually computed by a file differencing algorithm (such as
the Unix diff), invoked by SCCS, which compares an older version of a file with
the current version.

ECMS records the following attributes for each change: the file with which it is
associated; the date and time the change was “checked in”; and the name and User
ID of the developer who made it. Additionally, the SCCS database records each
delta as a tuple including the actual source code that was changed (lines deleted
and lines added), login of the developer, MR number (see below), and the date and
time of change.

In order to make a change to a software system, a developer may have to mod-
ify many files. ECMS groups atomic changes to the source code recorded by
SCCS (over potentially many files) into logical changes referred to as Modifica-
tion Requests (MRs). There is one developer per MR. An MR has an English lan-
guage abstract associated with it, provided by the developer, describing the pur-
pose of the change. A timestamp of when the MR was opened is also recorded in
ECMS.

We also obtained a complete list of identifiers of MRs that were done using the
domain engineered application environment and/or using the version-sensitive edi-
tor. Thus, for each MR, we were able to obtain the following information:
• who made the change (developer login)
• size of the change (number of lines added and deleted)
• number of deltas
• duration (dates of first and last deltas)
• indicator if the change was done to fix a problem in a released version of the

software
• number of files touched
• whether the change was done using the technology under consideration.

330 D.L. Atkins, A. Mockus, H.P. Siy

16.3 Applications

In this section we describe two technologies we evaluate. The first one represents
a source code editor that is designed to show a desired version of the source code.
The second example describes a domain engineered application environment in-
cluding a special language and a GUI-based code generator.

VE: A Version-sensitive Editor

The Version Editor (VE) is used by 5ESS developers to simplify the view of
source code as they make changes. The software project for these programmers
requires the concurrent development and maintenance of many sequential versions
as well as two main variants for domestic and international configurations of the
product (Perry et al., 2001). The 5ESS source code may be common to more than
two dozen distinct releases of the code, which may be deployed products in main-
tenance mode, or new product versions under active development.

As described in (Atkins et al., 2002), the software releases form a complex ver-
sion hierarchy with the often conflicting project management goals of isolating
deployed releases from current development changes yet maximizing commonal-
ity to promote the automatic flow of software fixes to future releases.

Fig. 61. Example: Before and after a Release 5A change (in bold)

The implication is that, at any given time, several releases of the software are in
the field and are actively being supported. Several versions of the source code
needed to be maintained. Since the industrial source code management technology

Before . . .
 routing = getRoute(routing);
 #version (4A)
 dest = getDest(routing);
if (dest.port == 0)

 return (ConnectLocal(routing));
 #endversion (4A)
 Connect(routing);

After . . .
 routing = getRoute(routing);
 #version (4A)
 dest = getDest(routing);
 #version (!5A)
if (dest.port == 0)
#endversion (!5A)

 #version (5A)
 if (dest.port == 0) || dest.module == 0)
 #endversion (5A)
 return (ConnectLocal(routing));
 #endversion (4A)
 Connect(routing);

16 Quantifying the Value of New Technologies for Software Development 331

of the early 1980s did not have good support for branching and merging, source
code was kept common among many releases with release-specific differences de-
lineated by a special embedded #version directive. This directive is similar to a
C preprocessor #if where a symbol (corresponding to the release) is used for
control and the symbol may be negated.

This system permits a single source file to be extracted to produce a different
version for each software release. Software development environment tools verify
the consistent use of these constructs according to a release hierarchy maintained
by the system and perform the extraction of the source code for building each
software release. For example, the first frame in Figure 61 shows a source file
where three lines of code are specific to the 4A release. The system guarantees
that these lines will not appear in earlier releases but will appear in later releases.
Also, the lines will not appear in isolated releases (the domestic and international
configurations are all isolated from each other).

A developer adding new code must target the change for a specific release and
then bracket it by the appropriate #version constructs. When existing code is
changed, it must be logically deleted with a #version construct using the nega-
tion of the target release. Figure 61 shows how these constructs are used to change
the expression in an if-then statement for Release 5A. The original if-then state-
ment was inserted for Release 4A.

This simple example shows how even a one line code change requires the de-
veloper to add five lines to the file (four control lines and the changed code line).
In addition to this extra overhead for a logical one line code change, the version
control lines make the source file more difficult to read and understand. In the pro-
ject being studied there are several dozen distinct releases and some core source
files may contain #version directives for most of these releases. In worst-case
files, only 10% of the lines of the file are the extractable source code for a release,
with 50% of the lines being #version/#endversion lines and the other 40%
being source that extracts for other releases.

Fig. 62. Release 5A view in VE with change in bold

The version-sensitive editor VE (Coplien et al., 1987; Pal and Thompson, 1989;
Atkins, 1998) was made available to make this situation more manageable for the
developer. This tool allows the developer to edit in a view that shows only the
code that will be extracted for the release being changed and performs the auto-
matic insertion of any necessary control lines.

routing = getRoute(routing);
dest = getDest(routing);
if (dest.port == 0 || dest.module == 0)
 return (ConnectLocal(routing));
Connect(routing);

MR 12467 by dla,97/9/21 [Local routing]
"route.c" [modified] line 67 of 241

332 D.L. Atkins, A. Mockus, H.P. Siy

The developer’s view is of normal editing in the extracted code; VE manages
the changes to the #version constructs according to the described constraints.
Figure 62 shows the view presented by VE for the file from Figure 61. The devel-
oper only has to use standard vi or emacs editing commands, and VE inserts the
required #version directives (behind the scenes).

The use of VE by developers is entirely optional. The usage of VE may be de-
tected, because VE leaves a signature on all of the #version/#endversion con-
trol lines that it generates (see (Atkins et al., 2002) for more details.) Thus we can
distinguish when VE was used to make a change involving #version lines from
when the change was made using an ordinary editor.

Fig. 63. VE usage over time

Figure 63 shows the history of VE usage in the considered project, which consists
of approximately 1.2M MRs. The three lines show the fraction of MRs that were
done with VE (V: MRs such that at least one delta of the MR contained #version
lines with the VE signature), that involved #version line (F: MRs such that some
delta of the MR contained a #version line), and fraction of #version MRs
that involved VE (%: V/F). The usage of VE increased dramatically over time.

Figure 64 shows the history of VE usage in terms of the fraction of developers
that use it. The three lines show the fraction of developers that used VE (V: devel-
opers such that at least one delta within a year contained #version lines with the
VE signature), that made changes with #version line (F: developers such that
some delta within a year contained a #version line), and ratio of the quantities
above (%). The figure indicates that 60% of developers make changes involving
#version lines and 70% of them use VE.

16 Quantifying the Value of New Technologies for Software Development 333

Fig. 64. VE usage over time

Domain Engineering

Traditional software engineering deals with the design and development of indi-
vidual software products. In practice, an organization often develops a set of simi-
lar products, called a family or product line (Weiss and Lai, 1999). Traditional
methods of design and development do not provide formalisms or methods for
taking advantage of these similarities. As a result the developers practice some in-
formal means of reusing designs, code, and other artifacts, massaging the reused
artifact to fit into new requirements. This can lead to software that is fragile and
hard to maintain because the reused components were not meant for reuse.

Domain Engineering (DE) (Weiss and Lai, 1999; Coplien et al., 1998; Cuka
and Weiss, 1998) approaches this problem by defining and facilitating the devel-
opment of software product lines rather than individual software products. This is
accomplished by considering all of the products together as one set, analyzing
their characteristics, and building an application engineering environment to sup-
port their production. In doing so, development of individual products (henceforth
called Application Engineering) can be done rapidly at the cost of some significant
up-front investment in analyzing the domain and creating the environment.

The process is summarized in Figure 65. In this figure, DE is further divided
into domain analysis and domain implementation and integration. Domain analy-
sis identifies the commonalities among members of the product line as well as the
possible ways in which they may vary. Usually, several domain experts assist in
this activity. Also, the application engineering environment is designed and built.
This usually involves creation of a domain-specific language, a graphical user in-
terface front end, and a source code generator back end. Domain implementation
and integration deploys the DE-based process, making necessary adjustments to

334 D.L. Atkins, A. Mockus, H.P. Siy

product construction tools (makefiles, version control systems, etc.) and to the
overall development process.

Several teams have used the DE-based process to reengineer specific domain
areas within the 5ESS software (Ardis and Green, 1998). We conducted a study to
evaluate the impact of the AIM project, a DE effort to reengineer the software and
the process for developing the multiplicity of screen interfaces to the 5ESS switch
database.

Fig. 65. Domain engineering and application engineering

The problem faced by the screen developers was that most clients who purchased
the 5ESS switch required customization of their screen interfaces. In the old proc-
ess, screens were customized by inserting #ifdef-like compiler directives into
existing screen specification files. Over time, the specification files have become
difficult to maintain and modify.

The AIM project used DE to identify commonalities and variabilities in differ-
ent clients’ interface requirements. These results provided input to the develop-
ment of a GUI tool for assisting in the design of and keeping track of the custom-
ized screens. Information gathered through the GUI was saved in files whose
format was specified by a domain-specific language. During the product build
process, a code generator would then take these files and generate the screen
specification files.

More details on the AIM study is published in an earlier paper (Siy and
Mockus, 1999). In some sense, the problem here is not unlike the problem ad-
dressed by VE which facilitates the maintenance of multiple versions of code.
However, the creators of AIM undertook a higher level, domain-specific solution
in an attempt to achieve even higher productivity.

16 Quantifying the Value of New Technologies for Software Development 335

16.4 Impact Assessment Methodology

We outline here a general framework for analyzing the impact of a software tech-
nology. We have previously investigated effects on effort spent on individual
changes (Atkins et al., 2000; Atkins, at al., 2002). Because the technology may af-
fect the definition or granularity of changes and also quality and lead time, here
we focus on modeling the lead time and quality impact on software features, the
units that provide added value to software by providing additional functionality
that may be compelling to the customer and provide revenue to the software pro-
vider. More specifically, features add value to the software because they generate
revenue and enhance competitiveness of the product. We assume that on average,
all features implement a similar amount of value. This is a reasonable assumption
since we have a large number of features under both conditions and we do not
have any reason to believe that the definition of a feature changed over the consid-
ered period. Consequently, even a substantial variation of functionality among fea-
tures should not bias the results. A more precise measure of impact could be ob-
tained by assigning weights corresponding to the actual or projected revenue
corresponding to each feature. To approximate such revenue we used the size or
complexity of the feature.
The analysis framework consists of the following steps:
1. Obtain measures of changes. Identify the changes made to the software entity

of interest and whether or not the technology was used.
2. Group changes into software features or other relevant units that add value. The

grouping also involves rolling up the measures of individual changes to the fea-
ture level.

3. Select a subset of these rolled-up measures to predict feature quality and lead
time. The minimal subset typically includes the size of the change and an indi-
cator as to whether the technology was used or not. Verify independence of
predictors.

4. Fit and validate a set of candidate models. Models that explain more variation
in the data and have fewer parameters are preferred. Our goal is to select simple
models with predictive power rather than complicated models that account for
all the variations of the response variable but are difficult to interpret. The fitted
models are used to test the significance of the effect of technology.

The following sections explain each step in detail.

Change Measures and Technology Use

The basic characteristic measures of software changes include: identity of the per-
son performing the change; the files, modules, and actual lines of code involved in
the change; when the change was made; the size of the change measured both by
the number of lines added or changed, the number of deltas, and the number of
files touched; and the purpose of the change including whether the purpose of the

336 D.L. Atkins, A. Mockus, H.P. Siy

change was to fix a field defect. Many change management systems record data
from which such measures can be collected.

The information on files, modules, and lines changed is usually sufficient to de-
termine if the software entity of interest was touched by the change. The determi-
nation of technology involvement in the change might be more complicated. We
first discuss how to determine if the technology was used and then if it was not
used.

In real life situations developers work on several projects over the course of a
year and it is important to identify which changes they performed using the tech-
nology of interest. There may be several ways to identify these changes. In our VE
example the tool left a trace in the SCCS files. In the AIM example the domain
engineered features were implemented in a specific set of code modules (we refer
to them as AIM paths).

Finally, to perform the comparison, we need to identify changes to a software
entity that were done without the use of the technology. In the case of VE the in-
formation was available directly from SCCS except for a subset of changes that
had no #version lines. Consequently we had two types of MRs: changes done us-
ing VE and changes done without VE. In the AIM example, the source code to the
previously used screen specification files had a specific set of directory paths. We
refer to those paths as pre-AIM paths. Based on AIM and pre-AIM sets of paths
we classified all AIM MRs into two classes: MRs that touch at least one file in the
AIM path and MRs that do not touch files in the AIM path, but touch at least one
file in the pre-AIM path. In both cases there are two categories of changes that we
label:
• TECH: MRs on the software entity that involve use of technology
• no-TECH: MRs on the software entity not involving the use of technology

We excluded features where technology could not be used (code not relevant to
AIM functionality) or could not provide benefit (changes with no #version lines).

Aggregating Change Measures

Since our primary concern is to assess the technology impact on software value,
we need to combine software changes into groups, each of which is providing
comparable value. In the considered organization such groups were referred to as
software features. Each feature was designed to provide functionality that could be
sold. While the software code was common to all customers, only the licensed fea-
tures were enabled.

Therefore, we wanted to measure technology impact on defect and lead time
reduction on each feature. Because larger and more complex features may take
more time and have more defects, we may need to adjust for their size and com-
plexity better to discern the effects of a technology.

16 Quantifying the Value of New Technologies for Software Development 337

To measure feature size and complexity we aggregate the MR measures to the
feature level:
1. NMR – number of MRs
2. NDelta – number of delta
3. NLOC – number of lines added
4. NDEV – number of developers who participated
5. NFILES – number files modified
6. whether or not there were changes involving technology use
7. interval from first to last delta
8. if there were MRs fixing field problems

The last two measures were our response variables measuring lead time and pres-
ence of field problems.

Variable Selection

Naturally, the size and complexity of a change may have a strong effect on the
lead time or probability of a fault. In the case of VE, such covariates were in-
cluded because there is no reason to assume that the use or nonuse of VE affects
the number or complexity of the changes needed to implement a feature. Thus, we
chose the number of developers, the number of MRs and the number of added
lines as the covariates for predicting feature lead time and quality. We used
Spearman correlations due to the highly skewed nature of the observed data. Other
measures we collected had correlations above .8 with the number of developers
making interpretation of the regression results difficult. The correlation between
these three measures and the indicator of VE usage ranged from .2 to .3.

In the AIM case, the programming language was different. Additionally, the
changes involving technology were done using a special GUI environment instead
of editing the source code in individual files. These reasons suggest that the num-
ber, size, or complexity of changes to implement a feature would vary depending
on whether or not AIM technology was used. Furthermore, due to previously re-
ported dramatic effort savings, fewer developers may be needed to implement a
feature. Therefore, inclusion of change size and complexity covariates may not be
applicable when measuring the impact of AIM. After all, AIM was designed to
simplify and streamline the changes. Thus, we did not include any covariates in
the AIM models.

Models, Interpretation, and Validation

In this step, we are ready to fit the models and interpret the results. Due to the
highly skewed nature of the software change data it is important to transform all
three predictor measures and the lead time response variable via logarithms. The
presence of the fault is such a rare event that we modeled it as a boolean variable

338 D.L. Atkins, A. Mockus, H.P. Siy

(zero or not). For the lead time we use multiple linear regression and for the faults
we use logistic regression suitable for the binary response variable.

It is essential to validate software repository data. See, for example, (Atkins et
al., 2002; Herbsleb and Mockus, 2003; Mockus et al., 2003; Mockus and Votta,
2000; Mockus and Weiss, 2000) for more details. The key is to understand and
validate how the derived attributes of changes relate to the actual software process
and exclude computer generated or data collection artifacts. It is important to have
several operationalizations of a measure and check for consistency among them.

The statistical aspects involve using appropriate transformation of the variables,
excluding strongly correlated predictors, and using appropriate statistical models
and procedures.

Other aspects of validation include realization that some technologies may im-
pact the change measures directly, in addition to affecting the outcome variables
as happens to be the case with AIM. Finally, the external validation of measures
and estimates is performed by presenting and discussing the results with the or-
ganization and individuals involved in the study.

16.5 Results

We present the technology impact on feature lead time and quality. We start with
the lead time, then investigate quality, and, finally, inspect the hypothesised AIM
impact on the number of individuals that are needed to implement a change.

Feature Lead-time

Our response variable is the natural logarithm21 of calendar time between the
first and last delta in a software feature. We exclude infrastructure features that are
not “sellable” to customers but are an integral part of the system because they add
a different type of value that may be impossible directly to express in terms of ad-
ditional revenue.

This response variable represents development lead-time, which can be auto-
matically collected from system repositories. We chose this part of the total inter-
val because development lead-time is most likely to be affected by the technolo-
gies we are evaluating. To validate such measure of lead time, in previous
investigations of the same product we compared a sample of such automatically
derived development lead times with the total lead times reported in project man-
agement records and found strong and consistent relationship where the total lead
time was a constant multiple of the automatically derived development lead time
measure.

The predictor variables are the use of technology and the applicable covariates
in case of VE application. The regression formulas are as follows:

21All logarithms in this chapter use the natural logarithm function.

16 Quantifying the Value of New Technologies for Software Development 339

VENLOCNMRNDevtimeE θβββα ++++= logloglog)(log 321 (1)

AIMtimeE θα +=)(log (2)
In these formulas, we use θTECH (where TECH is AIM or VE) as a shorthand

for I(TECH)θ TECH, where I(TECH) is 1 if the feature involves the use of technol-
ogy and 0 otherwise. Table 34 presents the results of the regression using for-
mula (1).

Table 34. Feature lead time regression, VE impact
15,953 features, R2 = 0.4

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.54 0.04 303.76 0.00
log(NDEV) 0.46 0.02 19.68 0.00
Log(NMR) 0.21 0.02 12.54 0.00
log(NLOC) 0.23 0.01 30.50 0.00
VE -0.10 0.03 -3.64 0.00

These estimates indicate that the lead time for a feature with median number of
developers (3), median number of MRs (3), and median number of lines (725) is
11% longer when VE was not used. Not surprisingly, larger features with more
developers, MRs, and lines added consume longer lead times. Table 35 presents
the results of the regression using formula (2).

Table 35. Feature lead time regression, AIM impact

2,908 features, R2 = 0.02
 Estimate Std. Error t-value Pr(>|t|)
(Intercept) 14.04 0.04 350.87 0.00
AIM -0.65 0.09 -7.64 0.00

The R2 value in Table 35 is very low due to large variability in the size of a fea-
ture. The estimate indicates that lead times for features not using AIM are 92%
longer.

Feature Defects

The response variable is a binary indicator on whether the feature had any field
problem-related MRs. The logistic regression formulas were as follows:

VENLOCNMRNDeve
FaultPE θβββα −−−−−+

= logloglog 3211
1))(((3)

AIMe
FaultPE θα −−+

=
1

1))(((4)

340 D.L. Atkins, A. Mockus, H.P. Siy

Table 36 shows the result of regression using formula (3).

Table 36. Feature quality logistic regression, VE impact

15,953 features, null deviance 9,778, residual deviance 7,812
 Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.53 0.12 -20.61 0.00
Log(NDEV) 1.01 0.07 15.11 0.00
Log(NMR) 0.50 0.05 10.92 0.00
log(NLOC) -0.30 0.02 -12.08 0.00

VE -0.23 0.09 -2.67 0.01

These estimates indicate that, for features with median number of logins (3), me-
dian number of MRs (3), and median number of lines (725), the probability of
having field faults is 25% higher when VE was not used. While, as expected, fea-
tures with more developers and MRs have an increased probability of having field
faults, the number of lines (after adjusting for other factors) appears to decrease
that probability. The large number of lines may be an indication of features that
are implemented mostly outside the legacy code base where changes are easier to
make and, therefore, more code is typically added.

Table 37. Feature quality logistic regression, AIM impact
2,908 features, null deviance 962, residual deviance 955

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.08 0.10 -30.08 0.00

AIM -0.72 0.29 -2.50 0.01

To interpret the estimate, the features not using AIM were twice as likely to have a
fault.

Impact on Change Properties

The introduction of AIM was believed to have another value affecting impact: the
reduction of developers. We investigate this hypothesis in this section. The regres-
sion formula is:

AIMNLOCNMRNDEVE θββα +++= loglog)(log 21
 (5)

Only the number of files had correlation less than .8 with the number of MRs for
the AIM related features. The results are in Table 38.

16 Quantifying the Value of New Technologies for Software Development 341

Table 38. Number of developers in a feature, AIM impact
2,908 features, R2 = 0.59

 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01 0.01 -0.97 0.33
log(NMR) 0.46 0.01 39.88 0.00
log(NFILE) 0.10 0.01 15.62 0.00
AIM -0.10 0.02 -6.02 0.00

We can see that even adjusting for the size of feature, the usage of AIM does ap-
pear to significantly decrease the number of developers involved in a feature.
Thus, the technology enabled the production of features with fewer developers.

16.6 Related Work

The framework to evaluate the effects of a tool on development effort is described
in (Atkins et al., 2002). The methodology to assess the impact of Domain Engi-
neering application environments is given in (Siy and Mockus, 1999). In this pa-
per we extend and unify both frameworks to create a general approach for evaluat-
ing the impact of any software technology on lead time and quality. We focus on
practical applications of the approach by performing a detailed step-by-step analy-
sis of two types of new technology.

This technique is very different in approach and purpose from other quality es-
timation techniques such as COQUALMO (Chulani, 1999), which make use of al-
gorithmic or experiential models to estimate total project defects. Our approach is
to estimate impact after actual development work has been done, using data pri-
marily from change management systems. In addition, our approach is well-suited
for quantifying the impact of introducing new technology to existing development
processes.

We have previously investigated effects of these two technologies on effort
spent on individual changes (Atkins et al., 2000; Atkins et al., 2002). Here we fo-
cus on modeling the lead time and quality impact on software features, the units
that provide added value to software by providing additional functionality.

16.7 Discussion

We present a methodology to quantify the impact from use of a software technol-
ogy exemplified by a case study of a tool and an application engineering environ-
ment. We calculate the beneficial effects on the development of features, units that
add business value. We find that by not using VE the lead time increased by ap-
proximately 10% and the probability of field defect in a typical change increased
by 25%. This is consistent with the design goals of the tool to make code more
clear by hiding irrelevant code.

342 D.L. Atkins, A. Mockus, H.P. Siy

The use of the AIM application engineering environment resulted in halving the
probability of a field defect in a feature. It also roughly halved the lead time of the
feature. Furthermore, the use of the environment was associated with the reduction
of the number of people that work on a feature, consistent with previous results
indicating significant effort savings and with the design goals of the technology.

Presently, the impacts are quantified in terms of reduction in the lead time and
the probability of finding field faults. It would be useful to calculate the return-on-
investment from introducing such technologies. We cannot obtain revenue data
from features due to its proprietary nature, but we can estimate the savings to the
organization. Reduction in lead time translates to savings in staffing costs due to
the need for fewer developers and the expectation of freeing them up sooner to
work on other features. Reduction in the probability of finding field faults trans-
lates to savings from fixing fewer faults. These savings offset the investment cost
of introducing new technologies into the development process, and will be quanti-
fied in future work.

The described methodology is based on automatically extractable measures of
software changes and should be easily applicable to other software projects that
use source code version control systems. Since most of the change measures are
kept in any version control system, there is no need to collect additional data.

This methodology is subject to a few limitations. Data to assess the impact of
technological changes is only available after a few years of use. It is also difficult
to identify predictors that leave little if no imprint in the change database, for in-
stance, technologies aimed at improving software testing.

We described in detail all steps of the methodology to encourage replication.
We expect that this methodology will lead to more widespread quantitative as-
sessment of software productivity improvement techniques. We believe that most
software practitioners will save substantial effort from trials and usage of ineffec-
tive technology, once they have the ability to screen new technologies based on a
quantitative evaluation of their use on other projects. Tool developers and other
proponents of new (and existing) technology should be responsible for performing
such quantitative evaluation. It will ultimately benefit software practitioners who
will be able to evaluate appropriate productivity improvement techniques based on
quantitative information.

Acknowledgements

For all statistical modeling and graphics we used the R package that is maintained
and enhanced by a large group of volunteers worldwide. We also thank the
anonymous reviewers for their helpful comments.

16 Quantifying the Value of New Technologies for Software Development 343

References

(Ardis and Green, 1998) Ardis, M. A. and Green, J. A. Successful introduction of
domain engineering into software development. Bell Labs Technical Journal,
3(3):10–20 (September 1998)

(Atkins, 1998) Atkins, D. L.: Version sensitive editing: Change history as a pro-
gramming tool. In: Proceedings of the 8th Conference on Software Configura-
tion Management (SCM-8), pp 146–157. Springer-Verlag, LNCS 1439 (1998)

(Atkins et al., 2000) Atkins, D., Mockus, A., and Siy, H.: Measuring technology
effects on software change cost. Bell Labs Technical Journal, 5(2):7–18,
(April–June 2000)

(Atkins et al., 2002) Atkins, D., Ball, T., Graves, T., and Mockus, A. Using ver-
sion control data to evaluate the impact of software tools: A case study of the
version editor. IEEE Transactions on Software Engineering, 28(7):625–637
(July 2002)

(Boehm, 2003) Boehm, B.W.: Value-based software engineering. ACM SIGSOFT
Software Engineering Notes, (2003)

(Chulani, 1999) Chulani, S. COQUALMO (constructive quality model) a software
defect density prediction model. Project Control for Software Quality, (1999)

(Coplien et al., 1987) Coplien, J. O., DeBruler, D. L and Thompson, M. B: The
delta system: A nontraditional approach to software version management. In
International Switching Symposium (March 1987)

(Coplien et al., 1998) Coplien, J., Hoffman, D., and Weiss, D.: Commonality and
variability in software engineering. IEEE Software, 15(6):37–45 (November
1998)

(Cuka and Weiss, 1998) Cuka, D.A. and Weiss, D.M.: Engineering domains: ex-
ecutable commands as an example. In Proc. 5th Intl. Conf. on Software Reuse,
pp 26–34, Victoria, Canada, June 2–6 1998

(Herbsleb and Mockus, 2003) Herbsleb, J. D. and Mockus, A. An empirical study
of speed and communication in globally-distributed software development.
IEEE Transactions on Software Engineering, 29(6):481–494, June 2003

(Midha, 1997) Midha, A. K.: Software configuration management for the 21st cen-
tury. Bell Labs Technical Journal, 2(1):1997

(Mockus and Votta, 2000) Mockus, A. and Lawrence, G. Votta. Identifying rea-
sons for software change using historic databases. In International Conference
on Software Maintenance, pp 120–130, San Jose, California, October 11–14
(2000)

(Mockus and Weiss, 2000) Mockus, A. and Weiss, D. M.: Predicting risk of soft-
ware changes. Bell Labs Technical Journal, 5(2):169–180 (April–June 2000)

(Mockus et al., 2003) Mockus, A., Weiss, D. M. and Zhang, P.: Understanding
and predicting effort in software projects. In: 2003 International Conference
on Software Engineering, pp 274–284, Portland, Oregon (ACM Press, May 3–
10, 2003)

(Pal and Thompson, 1989) Pal, A. and Thompson, M.: An advanced interface to a
switching software version management system. In: Seventh International

344 D.L. Atkins, A. Mockus, H.P. Siy

Conference on Software Engineering for Telecommunications Switching Sys-
tems, (July 1989)

(Perry et al., 2001) Perry, D., Siy, H. and Votta, L. Parallel Changes in Large
Scale Software Development: An Observational Case Study. ACM Transac-
tions on Software Engineering and Methodology, 10(3):308–337, (July 2001)

(Rochkind, 1975) Rochkind, M.J.: The source code control system. IEEE Transac-
tions on Software Engineering, 1(4):364–370:1975

(Rogers, 1995) Rogers, E. M. Diffusion of Innovation (Free Press, New York,
1995)

(Siy and Mockus, 1999) Siy, H. and Mockus, A.: Measuring domain engineering
effects on software coding cost. In Metrics 99: Sixth International Symposium
on Software Metrics, pp 304–311, Boca Raton, Florida, (November 1999)

(Weiss and Lai, 1999) Weiss, D. and Lai, R. Software Product Line Engineering:
A Family-Based Software Development Process (Addison-Wesley, 1999)

Author Biographies

David Atkins is an assistant professor in Computer Science at the American Uni-
versity in Cairo. He came to Egypt from the University of Oregon, and for most of
his career, he was a member of technical staff in the Software Production Re-
search Department at Bell Labs in Naperville, Illinois. His research interests in-
clude programming languages and software version management. He received a
B.A. in mathematics from the College of Wooster in Ohio and a PhD in mathe-
matics from the University of Kansas in Lawrence.

Audris Mockus conducts research on quantifying, modeling, and improving soft-
ware development. He designs data mining methods to summarize and augment
software change data, interactive visualization techniques to inspect, present, and
control the development process, and statistical models and optimization tech-
niques to understand the relationships between people, organizations, and charac-
teristics of a software product. Audris Mockus received B.S. and M.S. in Applied
Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991
he received M.S. and in 1994 he received PhD in Statistics from Carnegie Mellon
University. He works in the Software Technology Research Department of Avaya
Labs. Previously he worked in the Software Production Research Department of
Bell Labs.

Harvey Siy received the B.S. degree in Computer Science from University of the
Philippines in 1989, and the M.S. and PhD degrees in Computer Science from
University of Maryland at College Park in 1994 and 1996, respectively. He is a
Member of Technical Staff at Lucent Technologies doing capacity and perform-
ance engineering for the 5ESS product. He was previously with the Software Pro-
duction Research Department of Bell Labs, where he conducted empirical studies
of large-scale, industrial software engineering processes.

17 Valuing Software Intellectual Property

Donald J. Reifer

Abstract: In this chapter, we discuss approaches used to value software intellec-
tual property. We start by outlining current intellectual property valuation prac-
tices. Next, we outline a valuation framework that permits software experts to
value all forms of intangible assets when involved in acquisitions, litigations, and
disputes. The framework takes advantage of current theory and best practice to de-
rive a fair value for use in valuing intellectual property utilizing the currently ac-
cepted cost, income, or market approaches. We conclude by focusing on the barri-
ers that software experts will have to overcome when presenting their findings to
non-software participants (executives, venture capitalists, judges, attorneys, ju-
ries, etc.).

Keywords: Valuation framework, real options theory, intellectual property valua-
tion.

17.1 Introduction

As firms have used more and more information technology to run their businesses,
valuing software and other forms of intellectual property has become more of an
issue. That’s because such property represents large expenditures that may not be
accurately represented in the company’s books (i.e., according to the American In-
stitute of Certified Public Accountants (AICPA, 1998), software may have been
expensed instead of capitalized and therefore appears as a liability instead of an
asset on the firm’s income statement). For example, take a firm that has developed
software that fuses customer satisfaction data together to provide executives with
a true and accurate picture of how well their support processes are viewed as
working in the field. Because this software helped the firm improve its level of
customer satisfaction, it is viewed by management positively as a marketplace dis-
criminator. However, the same software package may be viewed by the financial
community as an unnecessary expense due to the fact that management has elected
not to derive income by selling the software commercially because it provided
them with a competitive advantage. Undoubtedly, management may want to value
the software so that its true value appears on the books. They may also try to pro-
tect the intellectual aspects of this software using licenses, patents, copyrights, and
trade secrets. Management’s goal is to keep the algorithms and other unique prop-
erties of this software out of the hands of their competitors.

As license, patent, copyright, and trade secret terms and conditions have been
violated, attorneys have become involved in software litigation. While license
breaches have proved relatively easy to value (ASB, 2002), determining the worth
of patents, copyrights, and trade secrets has been much more difficult (Damiano,

346 Donald J. Reifer

2002). Some of the many issues that make valuation difficult include, but are not
limited to, the following:
• Traditional approaches to determine value focus on market price and do not in-

clude adequate allowances for appreciation of assets, market growth or tech-
nology, and functional, physical, and economic obsolescence (Cole et al.,
2002).

• The “fair value,” “fair market value,” “market value,” “acquisition value,” or
“use value” of an intangible asset is difficult to determine especially in light of
current economic conditions. Fair value is defined as the amount in terms of
dollars that a willing and able buyer would pay for these assets under current
market conditions (Reilly and Schweihs, 1998).

• Determination of value under the “highest and best use” principle is hard to de-
termine as legal, physical, financial and maximum profitability conditions vary
greatly depending on premises of value (e.g., value in place, value in exchange,
value in continued use, etc.) (Reilly and Schweihs, 1998).

• The range and profitability of the use of intangible assets are difficult to deter-
mine in light of future competition and market conditions (Mard, 2001).

• States treat valuation of intangible assets like software trade secrets differently
and the case law is nonuniform (Loud and Reilly, 2000).

• Few cases involving valuing intangible assets like software trade secrets are
available to establish precedence in a court of law (Goldenberg and Tenen,
2001).

In light of these issues, a framework is needed to help experts develop reasonable
value estimates for software intangible assets, especially trade secrets. This
framework needs to portray value in a manner that communicates the software’s
true worth to the many communities trying to assess either the assets’ market po-
tential or potential to the firm (e.g., for the case of the software that acts as a mar-
ketplace discriminator).

17.2 Software Intellectual Property Protection
Mechanisms

The primary ways for owners to protect their software as intellectual property are
copyrights, patents, and trade secrets. These safeguards are used to protect the
software owner’s property rights relative to the ownership, transfer, and use of al-
gorithms, data, designs, and processes used in the design, development, and pro-
duction of software masters (i.e., configuration managed master copies of the
software). Because software managers tend not to understand the advantages and
disadvantages associated with the use of each of these protection approaches, we
will briefly summarize them at this point in the chapter.

17 Valuing Software Intellectual Property 347

Copyrights

Copyrights are the most frequent form of intellectual property protection for soft-
ware. They enjoy the advantages that they are easy to use and have an unlimited
life. In general, they grant the owner of the copyright with the following exclusive
rights for the work being protected:
• The right to reproduce the copyrighted work.
• The right to create derivative works from the copyrighted work.
• The right to distribute and display the copyrighted work.
• The right to display the work publicly, directly, or by means of film, TV,

slides, etc.

These rights are violated when anyone copies, excerpts, adapts, or publishes the
copyrighted works without permission. Although federal registration is not needed
to obtain copyright protection, it is required if the owner decides to litigate be-
cause of infringement.

Copyrights provide limited protection because their scope is limited to the tan-
gible expression of an idea and not to the idea itself. In other words, copyrights
can be used to prevent the unauthorized copying of source code. They cannot be
used to protect either the design concepts or algorithms used in that source code
from improper use.

Patents

Unlike copyrights, patents provide their owners the exclusive right for a period of
20 years from the date of the patent application to make, use, offer to sell, and sell
the invention covered by the claims of the patent. In general, patents protect the
technological “application” of an “idea.” A patent precludes “practice” of an in-
vention by others, even if they develop the idea independently. However, the re-
quirements for patents are very stringent. The invention must be useful, novel, and
non-obvious compared to prior discoveries (the “prior art”) that are patented, in
the public domain, or otherwise widely known. While publication is not required
for copyright, a patent is granted in exchange for “full disclosure” of what the in-
ventor considers to be the best way of implementing or practicing the invention
(OTA, 1990).

The advantage of patent protection for a software invention is that the patent
will protect all the claims for the invention, taken as a whole, so long as they are
taken in scope. This is an important consideration because many of the processes
involved in the patent may not be protected under a copyright as they would be
considered part of an unprotected idea.

Patents have not been commonly used in the past for protecting rights in com-
puter software because they are complicated, time consuming, expensive to pre-
pare, and difficult to obtain. One of the major drawbacks of securing patents is
that you must prove that your invention is novel and not obvious to the U.S. Patent
and Trademark Office (PTO). Another drawback is that you must carefully word

348 Donald J. Reifer

your “claim” so that the scope is appropriate; e.g., neither too broad nor too nar-
row.

Trade Secrets

The final form of intellectual property protection is trade secrets. The Uniform
Trade Secrets Act defines trade secrets as information, including formulas, pat-
terns, complications, devices, methods, techniques, or processes, that: (1) derive
independent economic value, actual or potential, from not being generally known
to the public or to other persons who can obtain economic value from their disclo-
sure or use; and (2) are the subject of efforts that are reasonable under the circum-
stances to maintain their secrecy. As an example, Coca Cola’s formula is protected
as a trade secret because its secrecy is protected in all of their dealings with third
parties. The claimed secret is indeed kept secret. An idea need not be patentable in
order to receive trade secret protection. Its disclosure needs to controlled and lim-
ited.

Trade secrets have significant advantage over patents because they can be pro-
tected indefinitely as long as the subject mater of the trade secret is kept confiden-
tial. The disadvantage of trade secret rights revolves around maintaining confiden-
tiality. Disclosures to outside parties must be limited and procedures must be
implemented within the firm to protect proprietary information from inadvertent
disclosure.

In determining trade secrets, courts focus on the value of the information and
the efforts maintained to keep them confidential. Courts typically consider the fol-
lowing questions when deciding whether information qualifies as a trade secret:
• How extensively is the information known outside of your company?
• How extensively is the information known within the company?
• How easily can the information be independently acquired?
• How novel is the secret?
• Have you made a conscientious effort to protect the information from inadver-

tent disclosure both inside and outside of your company?

The best way to distinguish between patents and trade secrets is to understand that
patents require an “invention” while trade secrets require a “discovery.” The other
major differences between patents and trade secrets are summarized as follows:
• Patents require disclosure while trade secrets are kept secret.
• Patents award monopoly rights for 17 years while trade secrets provide protec-

tion for an unlimited duration.
• Courts have shown more willingness to enjoin patent infringement than a trade

secret violation. The reason for this tendency is that patents are well defined
while what constitutes a trade secret may not be so precise.

17 Valuing Software Intellectual Property 349

Selecting Protection Mechanism for Software

Because intellectual property usually signifies something tangible, the legal sys-
tem has had difficulty in applying laws to software. While copyrights, patents, and
trade secrets have been used for protection, the courts have had a difficult time
administering the law. The reason for this is simple; software is an intangible
commodity and its value principally as a product and an enabling technology is
hard to put a price on. To establish value, technologists must be able to teach
judges and juries software economics. To do this, most practitioners resort to
analogies because lay people typically do not understand what it takes to make,
market, and manufacture software products. To come up with the numbers, these
practitioners must eliminate the magic and mystery.

17.3 Licensing

Licenses are used to spell out the terms and conditions under which software
products and services are sold in most industries. In addition, licenses spell out
ownership rights along with the terms and conditions of use. For example, they
explain things like whether you can transfer a license or if you can copy the soft-
ware (e.g., for backup purposes). They also specify in detail how litigation will
proceed should you violate any of the intellectual property protection statutes cited
in the license agreement. Finally, they limit the owner’s liability for damages in-
curred due to use and misuse of the software typically to replacement of the soft-
ware.

A software license grants a user the right to employ a software program typi-
cally on one or a group of machines for a specified time period. Licenses can be
granted to individuals, groups, organizations, and enterprises. They can be issued
on an annual, semiannual, or indefinite period. They can be issued for one or mul-
tiple copies. Their issuance sometimes comes with (although often without) user
support bundled with the price. Licensing computer software is like leasing a car
in the sense that there are ongoing requirements that determine how and under
what conditions the software can be used. These requirements include such things
as deployment eligibility, distribution, transferring software to other users, and
downgrading to earlier versions of the software.

As an example, Microsoft software licenses generally come with one of two
kinds of agreements which specify how you may use the software. The first kind,
and the one most users are familiar with, is an End User License Agreement
(EULA). If you have ever acquired a license for software from a retailer or pur-
chased a new computer with software already installed, then you have probably
seen a EULA. The EULA generally either comes in the box on paper or cardstock
or pops up on the screen when you install new software. You typically must ac-
cept the terms and conditions before installing the software. Often, the agreement
limits damages to replacement of the software. It does not provide any allowances
for damages that the software may inflict through error on the user’s data, equip-

350 Donald J. Reifer

ment, or other software. The second agreement type, Product Use Rights (PUR) is
similar to the EULA except that it pertains to software licensed through Micro-
soft’s Volume Licensing program. The PUR, together with the Microsoft Volume
Licensing program agreement under which the license is acquired, governs the use
of the licensed software.

The point of this section is that licenses are mechanisms used to provide intel-
lectual property protection. They do this by specifying the terms and conditions of
use of this property including the legal liabilities of all parties to the agreement.
Licenses are important because they spell out the rights and obligations of all the
parties to the agreement. And, if these agreements are breached, they spell out
what either party can do legally to correct the situation. Licenses also provide the
basis for valuing what the breach is worth. For a simple breach, the payment terms
of the license could be used to compute value using lost income as the basis. But,
things get more complicated when intellectual property is pilfered. Valuation in
the case of intellectual property like software must be accomplished using prac-
tices and frameworks that have been shown to work in the courts, not the laborato-
ries.

17.4 Valuation Process

Erdogmus, Favaro, and Halling provide an excellent introduction to the concept of
value for software in Chapter 3 of the book. They argue that one must take uncer-
tainty into account and go well beyond cost-benefit analysis to determine the true
value of software. They also discuss how to incorporate flexibility as decisions are
made by assessing options using risk management techniques (Boehm, 1991) and
real options theory (see (Favaro, 1999; Erdogmus, 2001) for examples).

The eight step process that many non-software valuation experts use to deter-
mine the worth of software intellectual property is shown in Figure 66. It starts
with answering the questions “why” are you conducting the appraisal and “what”
are you going to do with it. It then goes through a number of selection steps aimed
at deciding which practices to use in the appraisal. As expected, the process ends
by producing a value for the intellectual property. Unlike work in software valua-
tion, the process neither explicitly takes uncertainty into account nor does it inves-
tigate options.

Let us now look at what is involved in successfully completing each of these
steps in the process. The first step is

Step 1 – Define the Appraisal’s Purpose and Scope

The first step is taken to establish the objective of the appraisal. To determine
value, the appraiser needs to answer the following basic questions:

17 Valuing Software Intellectual Property 351

• What specific intangible assets are being appraised and why? For example, you
might be appraising the value of a software patent because you may be inter-
ested in acquiring the firm that developed it and its intellectual property.

• Who is going to use the appraisal and for what purpose? For example, the ap-
praisal might be used in a litigation to establish a fair value for breach of an in-
tellectual property agreement.

Fig. 66. Valuation process

You should write down the purpose of the valuation exercise once it has been es-
tablished so that there is no confusion over what you are trying to accomplish and
why.

Step 2 – Define Standards of Value

The second step is taken to define exactly what value is represented by the particu-
lar asset being valued. Some of the more common standards of value that exist in-
clude:
• Fair value: The amount that would compensate the owner when involuntarily

deprived of the use of the asset. The appraisal here is aimed at estimating a fair
and reasonable amount to compensate the buyer for loss of the use of the asset
or for inappropriate use.

• Market value: The probable amount that a willing buyer would pay to purchase
a like asset on the open software marketplace. This can often be determined by
researching what similar products cost on the marketplace.

• Acquisition value: The amount that a buyer would pay to acquire the rights to
use, sell, or distribute the asset on the open marketplace. Appraisers must be
able to estimate the costs/benefits associated with use, sale, or distribution of

352 Donald J. Reifer

the property in order to come up with a number. For example, determination of
whether the use of a highly efficient software search algorithm would enable a
buyer to capture a larger share of the Internet market would have to use fore-
casts of any additional service revenue to determine whether the costs associ-
ated with the acquisition were justified by this added income and increased
market share.

• Insurable value: The amount of insurance you would need to replace the asset
with similar functionality and income producing capability. Appraisers often
find it difficult to come up with a value in such cases because just replacing
software does not produce like capabilities. The appraiser must be able to value
the customization and added work that the firm seeking insurance had done to
adapt these software products to their work processes and operational environ-
ment in order to derive a fair value.

• Collateral value: The amount that a creditor would advance with the asset serv-
ing as collateral for the loan. Appraisers again frequently have difficulty with
this task because software is an enabling technology whose book value is not
always a true indicator of its overall worth to a firm. For example, when an or-
der entry system goes down for a day, the value of the lost sales should count,
not the replacement costs for the software.

The selection of the standard then has a direct effect on the estimate of value de-
rived. For example, insurable value for an asset is typically higher than collateral
value. The reason for this is that banks are reluctant to highly value an asset when
it is used for collateral purposes.

Step 3 – Describe Asset and Assumptions

The third step is taken to fully describe the intangible asset being appraised. This
description should completely describe the intellectual property in question.
Should proprietary information be involved, all parties to the valuation should sign
nondisclosure agreements that allow the property to be described so that there is
no question about what is and what isn’t being valued by the appraisal. For exam-
ple, if market value is in question, the owner should identify existing marketing
channels, their value, current sales, anticipated sales, market penetration and
growth statistics, and other pertinent but proprietary facts. The appraiser will need
this data to understand what the true value of the asset is along with any assump-
tions that have a direct influence on the appraisal. Such assumptions should in-
clude items like the date of valuation (start of the license year, etc.), cost of money
as of that date (assumed discount rate), the legal rights associated with use of the
asset (license privileges, etc.), and the premises of value. The premises of value
describe the conditions under which the value of the asset will be determined. The
most popular such premise taken into account in appraisals is “highest and best
usage” because it represents the best case under which the asset can be valued.
Other premises of value include value in place, value in exchange upon disposi-
tion, and value in continued use.

17 Valuing Software Intellectual Property 353

Step 4 – Gather Data and Analyze It

The fourth step is taken to gather the data needed to value the asset. The typical
valuation information is available from a wide variety of sources. These include
the owner of the asset, trade publications, scholarly journals, and court cases.
Some of the types of information that you would need to glean from these sources
are as follows:
• License terms including limitations on use of the software and any copyrighted,

patented, or trade secret protected item.
• Financial terms associated with the license and the sale or disposition of any

competitive products or like assets on the open marketplace (including the
firms themselves when an acquisition is being contemplated).

• A compilation of practices used to protect trade secrets should they be the sub-
ject of the valuation (procedures used, copies of nondisclosure agreements
signed, etc.).

• Detailed accounting records that identify the costs involved in the development
and the sales records for the asset in question.

• Detailed financial forecasts related to future sales of the asset and associated li-
censing rights.

• Copies of relevant marketing, training, and purchasing information.

Relevant history should be assessed over the last five year period to identify trends
and to be considered relevant.

As part of this collection and analysis step, you will want to interview key
management, marketing, engineering, support, and customer personnel to validate
that the information you have collected and the results you have developed are
reasonable and proper. You will want to make sure that these personnel do not in-
fluence your opinions. What you are looking for is independent confirmation that
you haven’t misunderstood or misconstrued the facts.

Step 5 – Select Valuation Approach

The fifth step is taken to select one of the following three primary approaches for
valuing the intangible assets and intellectual property associated with software:
• Cost approach: Uses the principle of substitutions to predict how much a pru-

dent investor would pay to either replace or reproduce the asset. For example,
an appraiser might estimate the cost to develop a functionally equivalent piece
of software when developing a replacement cost for a package that was appro-
priated by a litigant using nefarious means.

• Income approach: Measures the future economic benefits associated with the
asset according to the selected premise of value (“highest and best” use, etc.)
discounted using present value. For example, an appraiser might use a litigant’s
public growth data to forecast the income lost due to inappropriate use of the

354 Donald J. Reifer

asset under value in place premises (e.g., the software may have been installed
and used on 50 seats in addition to the ten that were licensed).

• Market approach: Compares the asset with similar items that have been sold or
listed for sale in the appropriate primary and secondary markets using the se-
lected premise of value. For example, the appraiser might use empirical market-
ing data from a public source to develop future revenue forecast assuming best-
case conditions to develop a projected income stream for use in determining the
value of a firm being considered for acquisition.

There are many factors to consider when making a choice between these three al-
ternatives. Selection is a function of what is being appraised, why, and for what
purpose (see Step 1). For valuing software, the cost approach is often chosen be-
cause it focuses on either replacement or reproduction costs. For valuing a busi-
ness, the income and/or market approaches are often used because they forecast
the earning potential of the firm both in the present and future. For valuing a li-
cense, the lost income approach would be preferred. In all cases, the present worth
of the investment needs to be computed. Obsolescence and salvage values need to
be considered along with the tax implications of the investments (using accounting
conventions blessed by the appropriate tax agency; e.g., the Internal Revenue Ser-
vice (IRS) in the United States).

Of course, the devil is in the details when it comes to valuing software (Tockey,
2004). For example, you might use actual salary and overhead information to
compute cost to ensure that your estimates are reasonable. You might also factor
in an obsolescence factor into your cost computation to ensure that your replace-
ment cost estimate isn’t overly optimistic. You might have to assume some useful
life for the asset and compute the life cycle costs or market value.

Step 6 – Prepare the Valuation

The sixth step, preparing the valuation, can be taken once all of the preparatory
steps have been completed. The framework is established and now the numbers
have to be generated. The valuation should consider the uncertainty associated
with the decision variables (interest rates, etc.), asset value uncertainty and the
available options when framing the alternatives to be considered using any of
these three approaches. Performing such a valuation can be achieved using classi-
cal approaches (Reifer, 2001) or may take option pricing into account (Smith and
Nau, 1995).

There are numerous tools that could be used to assist in developing the finan-
cials associated with the alternatives being considered. The most useful of these
provided as a function of the software valuation approach selected are summarized
in Table 39.

17 Valuing Software Intellectual Property 355

Step 7 – Validate Results

The seventh step is taken to validate the results. This step is normally accom-
plished by comparing the results derived using several methods for reasonable-
ness. If benchmarks (Reifer, 2004), they can also be used to cross-check the num-
bers to establish their validity. If they do not, most experts would compare the
alternatives to some base financial option to determine the reasonableness of the
analysis. For example, they would immediately suspect the results of a purchase
versus lease analysis if the payback period of the lease were either six months or
12 years (e.g., the normal payback period is three to four years when initial pay-
ments and buyout options are considered as part of the study).

Table 39. Tools by software valuation method

Valuation
Method

Tools Discussion

Cost - Analogy Models
- Cost Estimating Models
- Productivity Models
- Trend Lines & Graphs

There are mature estimating models
like COCOMO II that can be used to
estimate the replacement costs for
software across the full life cycle.

Income - Discounted Cash Flows
- Depreciation Models
- Net present value

Discounted cash flows that compute
the net present or future value of dis-
counted cash flows are the primary
tools used here.

Market - Analogy Models
- Balanced Scorecard
- Forecasting Models
- Market Growth Models

Lots of models that take current sales
and predict future growth can be used
along with a balanced scorecard
(Kaplan and Norton, 1996) for pre-
senting the results understandably.

Step 8 – Report Results

The eighth and final step is taken to generate the valuation report. This document
summarizes the results of the other steps and puts a value on the intellectual prop-
erty in financial terms (dollars and cents in the United States). It states the value
and discusses the approach used to develop it.

There is an established format for such reports when working with the legal
valuation community (Reilly and Schweihs, 1998). The reason for this is simple;
i.e., such reports are used by the courts to establish the value of the intellectual
property being disputed.

356 Donald J. Reifer

17.5 Valuation Framework for Intellectual Property

As noted, valuation experts currently use the cost-, market-, and income-based ap-
proaches, the last of which employs discounted cash flow methods, to value intan-
gible assets. Valuation is done using cost and/or income projections to develop
and use a fair value estimate as a standard for compensation. To augment these
approaches for valuing trade secrets, we have enhanced the following valuation
framework developed by Pitkethly (Pitkethly, 1997) at Oxford for patents as fol-
lows in Figure 67 to include options that address changing risk (e.g., due to market
and other conditions). Such risk determinations are needed to get a good handle on
feasible options. Once these are scoped, we recommend that the option space be
enlarged to investigate nontraditional alternatives that could occur due to non-
controllable events like market growth or vendor abandonment of support for a
product or product line.

Typically, software intellectual property is protected using copyrights, patents,
and trade secrets. A trade secret is defined as information, including formulas, pat-
terns, compilations, programs, devices, methods, techniques or processes that
(1) derives independent economic value, actual or potential, from not being gener-
ally known and (2) is the subject of efforts that are reasonable under the circum-
stances to maintain its secrecy (Pitkethly, 1997). The last sentence in this defini-
tion is critical as efforts to protect the trade secret are paramount.

Fig. 67. Valuation framework for intellectual property

A Simple Licensing Valuation Example

To illustrate the conceptual use of the valuation framework, let us value a license
using the income method based on the following three available alternatives:

17 Valuing Software Intellectual Property 357

(1) introduce the product immediately without concern to quality; (2) improve the
product quality by spending an additional year or more if the market conditions a
year from now are not favorable in testing before releasing the product to market;
and (3) wait and introduce the product when market conditions are best (i.e., when
the potential income from product sales is the greatest).

Valuation experts would value income by discounting income projections using
Net Present Value (NPV) to take the cost of money into account. The formula
used to discount some future sum of money F assuming interest rate i over N peri-
ods: NPV = F (1 + i)−N.

Table 40 identifies the potential income derived from each of these three alter-
natives over a five year decision horizon assuming that interest rates will vary as a
function of a tightening economy (i.e., interest rates are rising to control spending
and limit inflation). Alternative 1 introduces the product immediately to market to
try to derive as much income as possible. Because the product has some quality is-
sues, expenses to repair and stabilize the product are high in early years. In addi-
tion, sales revenues are lower than the alternatives because of quality issues. Al-
ternative 2 spends $250,000 during the first year of the decision horizon to
stabilize the product and improve its quality. The hope is that the increased sales
derived by focusing on quality would offset the investment. Alternative 3 waits
until market conditions are favorable before introducing the product to market.
This choice invests in quality improvement as it waits, but not at the level of Al-
ternative 2. For all cases, the sales projections and expenses have been adjusted to
reflect loss of market share because of quality concerns. All alternatives assume
that marketing and product release costs are factored into the sales forecasts.

Alternative 2 can involve real options. For this alternative, the real option oc-
curs after beta testing is finished at the end of year 1 because the release of the
product can be postponed at this time. For this choice, the exercise date of the un-
derlying real option is fixed like an American call option, a year from the current
date. Because such options represent a subset of those available in Alternative 3,
we will not analyze these options in our further discussions. We will just note that
they exist.

Alternative 3 involves real options. For this alternative, the investment decision
to release the product can be made in the future. Like a European call option, the
choice can be exercised when either the return on investment or income in our
case is deemed best.

Using the results summarized in Table 40, valuation experts would value the li-
cense based on the income derived via Alternative 2 because it represents the
“highest and best use” of the asset in question. They would establish the replace-
ment cost for the lost license income based on results of Alternative 2.

358 Donald J. Reifer

Table 40. License valuation example

Uncertainty Assessment Using Decision Trees

The use of variable interest rates tries to take changing economic conditions into
account in our basic example. But, there are many other variables that influence
the market conditions that may exist over our planned five year decision horizon
that must also be taken into account. The uncertainty associated with these market
conditions can be factored into our analysis in a number of ways. First, we could
use econometric models to determine the potential sales variations due to market
conditions. Second, we could assess the uncertainties associated with each of our
alternatives statistically. Third, we could use more advanced mathematical tech-
niques like time series analysis (Box, 1994) and stochastic differential equations
(Øksendal, 2002) to more fully assess the impact of the many variables in our de-
cision space on market and financial conditions. However, use of these techniques
requires time, effort, and specialists.

17 Valuing Software Intellectual Property 359

Fig. 68. Decision tree for licensing example

For simplicity’s sake, we could use the concept of decision trees to assess uncer-
tainty. As discussed earlier in the book and illustrated in Figure 68, decision trees
allow you to account for uncertainty by adjusting the forecasted sales revenue for
each licensing option using an associated probability of marketplace penetration
success. Such probabilities can be determined using either qualitative techniques
like expert judgment or quantitative approaches like statistical sales forecasting
models and Monte Carlo simulations (i.e., techniques used to assess the range of
potential impacts for marketplace phenomena). To use decision trees properly, we
must assume that branches represent mutually exclusive alternatives.

For our licensing example, we can assign a probability of marketplace penetra-
tion success to each of the alternatives based on a poll of consumers that took into
account their assessment of product quality versus marketplace penetration con-
siderations. These probabilities along with the respective returns taken from Table
40 are illustrated in Figure 68.

It should be noted that computation of the second-year projections for the “wait
and see” alternative expenses $100,000 during each option year considered instead
of adding income into the projected net revenue stream. When these expenses are

360 Donald J. Reifer

incorporated into the tallies, they reduce the NPV of the revenue stream during the
year in which they are considered.

It should also be noted that for simplification purposes we truncated the deci-
sion tree for Alternative 2 in Figure 68 and made our calculations based on an as-
sumed favorable beta testing result.

We can now make our selection between alternatives by comparing NPV of re-
turns with similar probabilities of market penetration success. We can eliminate
Alternative 1 because it provides a low return with a relatively low probability of
market success. Based on our analysis, we would then choose Alternative 2 be-
cause its return with 90% market penetration success is $2,048,000 compared with
$1,584,000 for Alternative 3. We can also discontinue examining Alternative 3
beyond the introduction delay of two years in Figure 68 because the incremental
increase in probability of market penetration success does not seem worth the ad-
ditional investment of $100,000 per year and potential loss of revenue.

More Advanced Analysis – Trade Secrets

As mentioned earlier in this chapter, trade secrets are defined as information, in-
cluding formulas, patterns, complications, devices, methods, techniques, or proc-
esses, that: (1) derive independent economic value, actual or potential, from not
being generally known to the public or to other persons who can obtain economic
value from their disclosure or use; and (2) are the subject of efforts that are rea-
sonable under the circumstances to maintain their secrecy. Because what consti-
tutes a trade secret is hard to determine, many practitioners have difficulty in valu-
ing them. For example, what is the value of a formula like convolutional coding
with Viterbi decoding (i.e., the basis of a forward error correction technique used
in cellular phones called Code Division Multiple Access) (Viterbi, 1995)?

Let us take our licensing example a step further and assume that embedded in
the software you are licensing is an algorithm that you are protecting as a trade se-
cret. You have taken reasonable precautions to protect information about this algo-
rithm. Access to the algorithm is also limited as you have protected it in the code
through encryption. Let us further assume that you licensed the software to a third-
party and provided it access to the source code for maintenance purposes with
adequate safeguards to protect your intellectual property (nondisclosure agree-
ments, marking of materials as proprietary, etc.). You would have a breach of your
license agreement should the licensee disclose information about the algorithm to
some outside party. If you went to court over the breach, how much would you
claim in terms of value for the algorithm?

To determine the value of the trade secret, you would probably claim lost in-
come using the fair value for the asset. You would discard the cost approach to
valuation because it would be inappropriate to use replacement or reproduction
costs to establish the value of the asset. In addition, you would most likely reject
the use of market approach to valuation because it is highly improbable that you
could get realistic data about a like algorithm sold on the marketplace.

17 Valuing Software Intellectual Property 361

To determine the worth of the lost income, you would value feasible scenarios
using real options as noted in Figure 67 to address changing risk when appropri-
ate. You will have to carefully delimit your decision space need because those ex-
perts who will be hired to discredit your work will contend that your valuation is
neither reasonable nor customary.

The scenarios that we have developed to value our trade secrets are summa-
rized in Figure 69 using weightings to reflect the uncertainty associated with the
outcome at a given point in time. Probabilities in this example are provided by a
panel of experts and reflect the probability that the alternative will occur in the fu-
ture. The probabilities are time dependent and change as a function of market con-
ditions. The numbers portrayed are based on conditional probabilities because the
alternatives are not mutually exclusive (e.g., nonlinear growth may make the firm
more attractive for either venture funding or purchase). Table 41 provides backup
information about how the NPV is calculated. Once the scenarios are assessed,
you will again use the principle of “highest and best use” of the asset to determine
value.

Fig. 69. Weighted returns for trade secrets example

Our first scenario computes the loss of income using traditional means by assum-
ing a sales forecast, decision horizon (5 years), and cost of capital as in the previ-
ous licensing example. For the sake of simplicity, we have carried this alternative
over as our first option. Scenario 2 assumes a growth model where the algorithm
is used to penetrate aligned markets creating nonlinear growth rates. Our third
scenario being evaluated assumes that our sales growth attracts venture funding
that is used to propel the firm forward. Scenario 4 assumes that increased sales at-
tract various buyers who offer to purchase the firm in the future for the sum of $8
million. Our fifth and final scenario assumes that we do not realize our sales pro-
jections and have to seek bankruptcy protection. Because sales projections will
vary as a function of market conditions, each of these scenarios should be valued
several times during the decision horizon.

Scenarios 3 and 4 can involve real options. In Scenario 3, the option to offer
equity to venture capitalists in exchange for funds needed to grow the firm at some
future time can be continuously assessed in order to determine when to exercise
this option. In Scenario 4, management can take control of those factors that can
influence the potential purchase price for the firm at a future time. For example,

362 Donald J. Reifer

they can minimize expenses to reduce overhead to make their Profit and Loss
statement look good.

Table 41. Trade secrets valuation example

Of course, our analysis of alternatives is neither complete nor completed. There
are many linked events that could transpire that need to be added to the decision
framework because many of the options are not independent of one another.
Therefore, staging of options to take events that could occur into account is essen-
tial to our evaluations.

In addition, real options as explained in other chapters of this book can be ex-
amined as offers are extended to purchase the firm and withdrawn (Black and
Scholes, 1973). For example, the timing of purchase offers could impact determi-
nation of the value (or price) offered for the firm. The offers represent the option
price. For these cases, income streams from payment options and royalties or cash
outlays need to be analyzed as an extension of NPV which remains the point of
departure for our assessment. Of course, buyers want to value the firm low while
sellers want to do the opposite. It is like playing a game like chess where the tim-
ing dictates the strategy that you will use to win the match.

There are many other approaches that have been advanced with this book for
valuing intellectual property like trade secrets. Selection of the most appropriate
value-based decision making technique is a function of why you are developing a

17 Valuing Software Intellectual Property 363

value and who will use it once it is published. Within the context of the legal sys-
tem, a simple approach is better because the results will have to be explained to
both a judge and a jury. Because the valuation expert will also be called to defend
his or her work, the results must be pragmatic, free of errors, and indisputable.

17.6 Potential Uses of the Valuation Framework

The valuation framework has a great deal of utility because it can be used to put a
value on different forms of software intellectual property including: copyrights,
goodwill, human capital, knowledge assets, and technology. Its advantage is that it
does not rely only on classical discounting techniques to derive value. Instead, it
forces the valuation expert to look at the value of options that can be taken within
the expected time frame of the decision to compute what the intellectual property
is truly worth. In times of either inflation or recession, timing is its own strategy
especially when firms that view information as capital are assessing options in
terms of recouping their investments. Under such circumstances, more traditional
valuation methods can underestimate or overestimate the value especially when
timing of the strategy is not considered. The framework takes risk into account to
address these and other considerations using both traditional and advanced risk
management techniques.

17.7 Future Shock

As we look into the future, we can visualize many barriers to developing a repre-
sentative value for an organization’s intellectual property. Chief among these con-
cerns are the movement within the information technology business area to open
source, outsourcing, and the internationalization of the industry. The industry
seems to have no boundaries as products are developed and serviced by teams
who reside in many nations.

As we have seen in our example, it is difficult to derive a value for a patent or
trade secret. It even complicates matters further by having third parties abroad use
the property without protection afforded by international law. Disclosure issues
dominate as employees drift from a firm. In some instances, foreign employees
might even set up their own firm to compete with yours using similar ideas. This
is the situation that exists in some nations who do not enforce copyright, patent,
and trade secret protection laws.

Now think about where technology is going in our business. The Internet is
making it easy to telecommute. Access is seamless and wideband pipelines exist
that make computing ubiquitous in many nations. Limiting access within a multi-
national firm to intellectual property is difficult even under the best of circum-
stances. Additional protection limitations exist especially as organizations try to
guard their intellectual property against piracy and industrial espionage.

364 Donald J. Reifer

To answer these challenges, additional forms of intellectual property protection
need to be developed. They must be capable of preventing unauthorized access to
the golden nuggets (algorithms, rule sets, designs, private or classified data, etc.)
which form the basis of all software protected assets. Research is needed as are
redefinitions of the law that encompass the new technology. Engineers, lawyers,
and valuation experts must work together to define these changes in ways that
minimize impact on established valuation procedures. Otherwise, transition to
their use will be difficult and preventive violations of the law will occur.

Just relying on legal safeguards is not enough. Technical defenses need to be
strengthened as more and more protection is built into systems to limit unauthor-
ized access to software assets. Research is needed to determine which defenses
work, when, and under what conditions. In addition, we need to explore additional
means to capture forensic evidence of break-ins like honeypots.

17.8 Summary and Conclusions

In this chapter, we discussed how to value intellectual property like copyrights,
patents, and trade secrets. We started by outlining current intellectual property
valuation practices. We next provided a valuation framework that permits experts
to value all forms of intangible assets when involved in acquisitions, litigations,
and disputes. The framework takes advantage of current theory to derive a fair
value for use in valuing intellectual property using the currently accepted cost, in-
come, and market approaches. Under certain conditions, the framework takes ad-
vantage of real options theory to address risk when warranted. We conclude by fo-
cusing on the barriers that software experts will have to overcome when
presenting their findings to non-software participants.

Our hope is that the framework will prove useful to those engaged in valuation
exercises. We encourage trial and error and innovation. Our real goal is to make
those involved in valuation think about the alternatives. Just developing a value by
rote is not enough. Your clients deserve more.

References

(AICPA, 1998) American Institute of Certified Public Accountants: Accounting
for the Costs of Computer Software Developed or Obtained for Internal User,
AICPA SOP-98-1 (1998)

(ASB, 2002) Appraisal Standards Board: Uniform Standards of Professional Ap-
praisal Practice (2002)

(Black and Scholes, 1973) Black, F. and Scholes, M.: The pricing of options and
corporate liabilities. Journal of Political Economy, 81, pp 637–659 (1973)

(Boehm, 1991) Boehm, B. W.: Software Risk Management: Principles and Prac-
tices. IEEE Software, pp 32–41 (Jan. 1991)

17 Valuing Software Intellectual Property 365

(Box, 1994) Box, G.: Time Series Analysis: Forecasting and Control (3rd Edition),
Prentice-Hall (1994)

(Cole et al., 2002) Cole, R. J., Barnes, and Thornburg: Valuing IP Assets: The Le-
gal Aspects, In: ICLE Spring (2002)

(Damiano, 2002) Damiano, K., “Valuing Intangible Assets under SFAS 141,” In:
Insights, Winter 2002, Willamette Management Associates (2002)

(Erdogmus, 2001) Erdogmus, H.: Management of license cost uncertainty in soft-
ware development: a real options approach. In: Proc. 5th Annual Conference
on Real Options: Theory Meets Practice, UCLA, Los Angeles, CA (2001)

(Favaro, 1999) Favaro, J.: Managing IT for Value. In: Proc. National Polish Soft.
Eng. Conference, Warsaw (May 1999)

(Goldenberg and Tenen, 2001) Goldenberg N. and Tenen, P.: Legal Briefs: Intel-
lectual Property, In: Casenotes (2001)

(Kaplan and Norton, 1996) Kaplan, R. and Norton, D.: The Balanced Scorecard,
Harvard Business School Press (1996)

(Loud and Reilly, 2000) Loud, A. and Reilly, R.: What is a Trade Secret Worth?
In: Insights, Willamette Management Associates, (2000)

(Mard, 2001) Mard, M.: Intellectual Property Valuation Challenges, In: The Li-
censing Journal (2001)

(Øksendal, 2002) Øksendal, B.K.: Stochastic Differential Equations, Springer-
Verlag Telos (2002)

(OTA, 1990) Office of Technology Assessment: Computer Software & Intellec-
tual Property Background Paper, Report OTA-BP-CIT-61, U.S. Government
Printing Office (1990)

(Pitkethly, 1997) Pitkethly, R.: The Valuation of Patents, In: Judge Institute Work-
ing Paper 21/97, Judge Institute of Management Studies, Cambridge, England
(1997)

(Reifer, 2001) Reifer, D.: Improvement by the Numbers: Making the Sofware
Business Case, Addison-Wesley (2001)

(Reifer, 2004) Reifer, D.: Industry Software Cost, Quality and Productivity
Benchmarks, In: The DoD SoftwareTech News (2004)

(Reilly and Schweihs, 1998) Reilly, R. and Schweihs, R.: Valuing Intangible As-
sets, McGraw-Hill (1998)

(Smith and Nau, 1995) Smith, J.E. and Nau, R.F.: Valuing risky projects: option
pricing theory and decision analysis. Management Science 41(5) (1995)

(Tockey, 2004) Tockey, S.: Return on Software: Maximizing the Return on Your
Software Investment (Addison-Wesley, 2004)

(Viterbi, 1995) Viterbi, A.J.: CDMA: Principles of Spread Spectrum Communica-
tions, (Prentice-Hall, 1995)

Author Biography

Donald J. Reifer is an expert in the fields of software engineering and manage-
ment with over 35 years of progressive management experience in both industry

366 Donald J. Reifer

and government. For the past five years, Mr. Reifer has specialized in the area of
Information Operations and Anti-Tamper technology. He has conducted vulner-
ability assessments, developed a language to represent hacker attack scenarios,
devised game theory algorithms to respond to attacks in real-time and led efforts
to develop new and novel technologies to implement defense-in-depth protection
strategies.

Glossary

Absolute Risk Aversion. A measure of investor reaction to uncertainty relating to
absolute currency changes in the investor’s wealth. (Chapter 3)

Acceptance Testing. Testing conducted to determine whether or not a system sat-
isfies its acceptance criteria and to enable the customer to determine whether or
not to accept the system. [IEEE Std 610.12-1990] (Chapter 11)

Additive Weighting Methods. A class of methods for making decisions with
multiple criteria, in which weights are used to represent the preferences of the de-
cision maker. (Chapter 4)

Agency Conflicts. Agency conflicts occur if project stakeholders have private in-
centives that differ from the common project goals. (Chapter 3)

Alternatives. Possible courses of action a decision maker can take. In a decision
problem, there are at least two alternatives, otherwise, no decision needs to be
made. When formulating a decision problem, two properties of alternatives must
be fulfilled: the set of alternatives must be complete, i.e., all alternatives (includ-
ing the alternative of doing nothing) must be considered, and alternatives must be
mutually exclusive, i.e., one and only one alternative must be selected. (Chapter 4)

Ambiguity and Risk. In many decision problems, outcomes of alternatives are
not known with certainty. In decision analysis, two classes of decision problems
are distinguished: in decisions under risk, the probability distribution of outcomes
is known, while in decision problems under ambiguity, only the possible states of
nature which lead to different outcomes are known, but not their probabilities.
(Chapter 4)

American Option. An option that can be exercised at any time before the final
exercise date. (See European option.) (Chapter 3)

Artifacts. Pieces of information that describe a software system (or part thereof).
Artifacts include requirements, architecture, and design elements, structural and
behavioral descriptions, test scenarios. Artifacts are often maintained by different
stakeholders. Trace dependencies (also known as traces or traceability): identify
the commonalities among the distributed artifacts of a software system. Trace de-
pendencies are needed for understanding and analyses. Trace Analysis: the activ-
ity of generating and validating trace dependencies. (Chapter 14)

Aspiration-Level Methods. A class of methods for making decisions with multi-
ple criteria, in which the preferences of the decision maker are specified via de-
sired levels of the criteria. (Chapter 4)

Behavioral Model. A model of human behavior, the purpose of which is to de-
scribe what people actually do when they make decisions, rather than what they
should do. (Chapter 8)

368

Best Alternative To Negotiated Agreement (BATNA). This is an alternative one
can obtain if the current negotiation terminates without an agreement, i.e., with a
breakdown. Any offer which is higher than the BATNA is better than an impasse.
No offer should be accepted that is worse than BATNA. (Chapter 7)

Bundle of Software Requirements. A bundle of software requirements is an in-
formal package of software requirements. The requirements are bundled together
based on specific criteria. (Chapter 9)

Business Goals. System qualities are generally defined as nonfunctional require-
ments which include attributes such as reliability, usability, maintainability, cost,
etc. Many of these attributes originate at the business level and thus these are
treated as business goals. Achieving business goals is crucial for software product
success. Therefore it is important to examine, within a wider business context,
how system requirements change, as well as to align them with business goals.
(Chapter 9)

Call Option. Option to buy an asset at a specified exercise price on or before a
specified exercise date. (Chapter 3)

Capital Asset Pricing Model (CAPM). The CAPM is the most influential equi-
librium asset pricing model. An asset pricing model is a theory for valuing real or
financial assets based on behavioral assumptions regarding the general economy,
capital markets or specific sectors, and investors or other decision makers. Among
other assumptions CAPM assumes that investors directly care about the mean (ex-
pected returns) and variance (risk or volatility) of asset returns. (Chapter 3)

Certainty Equivalent. A risk-free cash flow that has the same expected value as a
particular risky cash flow. (Chapter 3)

Change Propagation. Defines how changes have to be propagated across arti-
facts. It may query the user for guidance if multiple options for propagation are
available. Trace Uncertainties: incomplete knowledge on how software artifacts
trace to one another. Uncertainties limit the understanding of the connectedness of
software artifacts and impair automation. (Chapter 14)

Cognitive Science. A science concerned with the study of minds and other intelli-
gent systems. It is interdisciplinary in nature, bringing together researchers such as
anthropologists, computer scientists, educators, linguists, neuroscientists, philoso-
phers, and psychologists. Cognitive science has a broad span and includes cogni-
tive architectures, culture, development, instruction, language, learning and mem-
ory, neuroscience, pattern recognition, perception and attention, philosophical
foundations, reasoning, and representation. [Adapted from a statement from the
editor of the Journal of the Cognitive Science Society] (Chapter 8)

Collaboration Engineering. A design approach for recurring collaboration proc-
esses that can be transferred to groups that can be self sustaining in these proc-
esses using collaboration techniques and technology. (Chapter 10)

Glossary 369

Competitive Position. The economic profitability and growth rate of a particular
business unit relative to that of the average competitor in its product market, pro-
duced by its differentiation position and relative economic cost position. (Chap-
ter 3)

Conflict. Perceived divergence of interest; a belief that one’s own aspirations are
incompatible with others’ aspirations. (Chapter 7)

Consensus Building. As a group, to move from less to more agreement; to let a
group of mission-critical stakeholders aim for mutually acceptable commitments;
to align goals. (Chapter 10)

Contingent Claim. A claim whose value depends on (“is contingent on”) the
value of another asset. (Chapter 3)

Contingent Claims Analysis (CCA). Analysis of the value of a claim on a real or
financial asset, where the underlying asset is disposed of or acquired when certain
conditions hold and often at the discretion of the acquirer or seller. Option pricing
and decision trees are examples of techniques used for CCA. (Chapter 3)

Convergence. As a group, to move from having many concepts to a focus on and
understand to fewer concepts that are worthy of further attention. (Chapter 10)

Copyright. Refers to the protection given to authors of original literary works,
and motion pictures from unauthorized copying or performance. The Library of
Congress registers copyrights which last for the life of the author plus 70 years.
(Chapter 17)

Cost of Quality. The cost associated with the quality of a work product. Cost of
quality (CoQ) has two main components: Cost of conformance and cost of non-
conformance. Cost of conformance is the total cost of ensuring that a product is of
good quality, e.g., cost of testing. Cost of non-conformance is the total cost of re-
work (such as finding and correcting defective work) and any further post-delivery
costs (such as loss of business, legal redress). [Adapted from
http://www.isixsigma.com/dictionary/glossary.asp] (Chapter 11)

Decision Criteria. Decision criteria are numerical thresholds or targets used to de-
termine the need for action or further investigation, or to describe the level of con-
fidence in a given result. Decision criteria help to interpret the results of measure-
ment. Decision criteria may be calculated or based on a conceptual understanding
of expected behavior. Decision criteria may be derived from historical data, plans,
and heuristics, or computed as statistical control limits or statistical confidence
limits. [ISO/IEC 15939] (Chapter 8)

Decision Response. The outcome from an act of decision making. The outcome
may be a decision to act, a decision not to act or a decision to wait until further
decision stimuli are received. (Chapter 8)

Decision Stimulus. One or more indicators characterizing an object of interest to
the decision maker that stimulate them to commence an act of decision making.
(Chapter 8)

370

Decision Tree Analysis. A technique for modeling project outcomes and man-
agement decisions using state changes to model uncertainty, actions, and out-
comes contingent on these state changes, and probabilities associated with them.
(Chapter 3)

Decision making. A cognitive process in which a person uses a mental model to
evaluate a decision stimulus according to a set of decision criteria and make a de-
cision response. (Chapter 8)

Defect Testing. To discover faults or defects in the software where the behavior
of the software is incorrect, undesirable, or does not conform to its specification.
Defect testing is concerned with rooting out all kinds of undesirable system behav-
ior, such as system crashes, unwanted interactions with other systems, incorrect
computations, and data corruption. (Chapter 11)

Derivative. An asset (e.g., option or futures contract) whose value is derived from
the value of another asset. (Chapter 3)

Derived Measure. A measure that is defined as a function of two or more values
of base measures (based on the definition in International Vocabulary of Basic and
General Terms in Metrology, 1993). Derived measures capture information about
more than one attribute or the same attribute from multiple entities. Simple trans-
formations of base measures (for example, taking the square root of a base meas-
ure) do not add information, and thus do not produce derived measures. Normali-
zation of data often involves converting base measures into derived measures that
can be used to compare different entities. [ISO/IEC 15939] (Chapter 8)

Development Testing. Testing conducted during the development of a system or
component, usually in the development environment by the developer. [IEEE Std
610.12-1990] (Chapter 11)

Discount Rate. Compound rate used to calculate the present value of future cash
flows that represent income or expense streams. May be “risk-free” or “risk-
adjusted.” The discount rate typically captures the cost of capital to the investor.
(Chapter 5 and Chapter 3)

Discounted Cash Flow (DCF). A valuation technique based on adjusting income
and expense streams occurring at different points in time using a compound rate
that captures the risk borne by the streams. The compound rate, called the discount
rate, takes into account time value of money. (Chapter 3)

Distributive Negotiation. Negotiations concerned with the division of a single
good. (Chapter 7)

Divergence. As a group, to move from having fewer to having more concepts to
consider. (Chapter 10)

Diversifiable Risk. See unsystematic risk.

Diversification. Refers to an investor’s ability to reduce risk exposure by spread-
ing the total investment over multiple risky assets. The resulting reduction in

Glossary 371

overall risk impacts the value of the investor’s portfolio. In order to quantify the
risk reduction, one must know the correlation among the investment opportunities
or asset classes in the portfolio. The impact of diversification is largest if the dif-
ferent investment opportunities are negatively correlated (tend to move in the op-
posite direction in response to external events) and it is smallest if they are posi-
tively correlated (tend to move in the same direction in response to external
events). (Chapter 3)

Economic Value (of the firm). The economic worth of a commercial organiza-
tion is the sum of all its future profits, discounted for time and risk. (Chapter 5)

European Option. Option that can be exercised only on the final exercise date.
(See American option.) (Chapter 3)

Evaluation. As a group, to move from less to more understanding of the benefit of
concepts toward attaining a goal relative to one or more criteria. (Chapter 10)

EVOLVE*. EVOLVE* is a problem solving paradigm for ill-structured or
wicked problems. It is designed as an iterative and evolutionary procedure to ex-
ploit available tools of computational intelligence for handling explicit knowledge
and crisp data, and the involvement of human intelligence for tackling tacit
knowledge and fuzzy data. There are three phases at each iteration: modeling, ex-
ploration, and consolidation. The expected result of applying the paradigm is a
better understanding and description of the problem settings and the ability to pro-
vide appropriate solutions meaningful in the real-world context. (Chapter 12)

Exercise Price (Strike price). Price at which a call or put option may be exer-
cised. (Chapter 3)

F-EVOLVE*. Refinement of EVOLVE* with focus on financial attributes. Con-
siders value in financial terms where cardinal measures are taken into considera-
tion when choosing among plans. This financial component is added to
EVOLVE* as a cardinal metric that will help users choose among plans based on
this financial metric. (Chapter 12)

Facilitator. Being impartial, the facilitator is responsible for the preparation,
structuration, and moderation of group interaction and collaboration in order to
help a group realize the desired outcome of the group process. (Chapter 10)

Financial Assets. Pieces of paper, documents, recorded agreements, or contracts
that represent claims on real assets. (Chapter 3)

Financial Option. An option on financial assets (such as stocks). (Chapter 3)

Financial Risk. A measure of likelihood of the receipt of a particular sum of
money in the future. Notably, financial risk does not consider just the likelihood of
receiving less than a certain sum of money, but also the likelihood of receiving
more than a certain sum of money. In financial circles, investors want to know ex-
actly what they are going to receive, since underestimating can result in a misap-
plication of funds just as easily as can overestimating. (Chapter 5)

372

Future Value (FV). The value of a flow of money, at some time in the future. For
example, the Future Value of a collection of $100 monthly payments is $2,400 in
24 months. The Future Value may also reflect interest payments. (Chapter 5)

Group Support System (GSS). A suite of collaborative software tools that can be
used to focus and structure a team's deliberation, while reducing cognitive costs of
communication and information access and minimizing distraction among teams
working collaboratively toward a goal; an electronic meeting system. (Chapter 10)

Image Theory. A behavioral model of decision making (developed by psycholo-
gists Beach and Mitchell) that suggests that the goal of measurement is to foster
the creation of a set of images in the mind of the decision maker about the situa-
tion, process, service, product, or event that is being measured. This set of images
should be so clear that it captures the attention of the decision maker. When nec-
essary, the images should stimulate the decision maker to consider taking action.
The images should be rich enough to enable the decision maker to make an appro-
priate choice from among the available actions. Following this decision, the im-
ages should then enable the person to receive feedback on its consequences in or-
der to allow for refinements and corrections. (Chapter 9)

Impact Analysis. Describes the exact nature (impact) of a change. For example,
what design and implementation artifacts are affected by a requirement change.
Impact Analysis is often integrated with Change Propagation. (Chapter 14)

Incremental Funding Method. It is a data-driven, financially informed, approach
to plan iterations in incremental software development. This development ap-
proach maximizes Net Present Value (NPV) of software investment by carefully
analyzing and sequencing feature delivery. (Chapter 12)

Incremental Software Development. Offers a series of releases with additive
functionality to create optimal value under existing project constraints. This pro-
motes faster delivery of small components of the overall software product to in-
corporate early user feedback into the system. (Chapter 12)

Independent Verification and Validation (IV&V). Verification and validation
performed by an organization that is technically, managerially, and financially in-
dependent of the development organization. [IEEE Std 610.12-1990] (Chapter 11)

Information Asymmetries. Occur in situations where some project stakeholders
have superior or private information not available to others. (Chapter 3)

Information Need. The insight necessary to manage objectives, goals, risks, and
problems [ISO/IEC 15939] (Chapter 8)

Information Product. One or more indicators and their associated interpretations
that address an information need (for example, a comparison of a measured defect
rate to planned defect rate along with an assessment of whether or not the differ-
ence indicates a problem) [ISO/IEC 15939] (Chapter 8)

Integrative Negotiation. Negotiations where the parties make use of their capa-
bilities and resources to generate more value. (Chapter 7)

Glossary 373

Intellectual Property. Refers to intangible value created by human creativity and
invention, and includes copyrights, trademarks, and patents. (Chapter 17)

Interdependence. Interdependence means that each party in the negotiation
shares has or wants something that the other party has or wants. Without interde-
pendence, there would be no need for negotiation. (Chapter 7)

KJ. A technique to structure information, typically after a brainstorm. Keywords
are written on stickers and organized according to group. The technique is named
after Japanese ethnologist Jiro Kawakita. (Chapter 15)

Knowledge-Based Economy. As the world continues its profound transition from
an industrial economy to an “Information-Age Economy, ” knowledge and tech-
nology have become central to the economic development which strongly depend
on production, distribution, and use of knowledge and information. Knowledge is
the driver of productivity and economic growth, leading to a new focus on the role
of information, technology, and learning in economic performance. The term
“knowledge-based economy” is the result of a fuller recognition of the role of
knowledge and technology in economic growth. (Chapter 10)

Market Risk (systematic risk). Risk that cannot be diversified away (e.g., in a
portfolio of holdings). (Chapter 3)

Model Uncertainty. Relates to the validity of the specific models used (e.g., the
suitability of a certain distribution to model the defects). (Chapter 3)

Model. An idealized, simplified representation of a real object, system, or any
other subset of reality, which is still similar with respect to certain properties.
(Chapter 13)

Monte Carlo Simulation. A computer-intensive technique for assessing how a
statistic will perform under repeated sampling. (Chapter 13)

Natural Uncertainty. Directly relates to variations in the environment variables
(e.g., the variation in the number of defects in a software product). (Chapter 3)

Negotiation Analysis. The science and art of collaborative decision making. It is a
mostly prescriptive approach to advise negotiators to understand the intricacies of
the problems they face, to make decisions confidently in the face of complexity, to
justify decisions and to ultimately conduct negotiations. Negotiation analysis is
based on decision analysis, behavioral decision making approach, and game the-
ory. (Chapter 7)

Negotiation. A form of conflict behavior that seeks to resolve divergence of inter-
ests by means of a verbal exchange between parties. (Chapter 7)

Net Present Value (NPV). A project’s net contribution to wealth. Given by the
present value of future cash flows minus initial investment. Alternatively, the pre-
sent value of future income net of immediate investment and the present value of
future expenses. (Chapter 3 and Chapter 5)

374

Organization. As a group, to move from less to more understanding of relation-
ships among concepts; to provide structure among a set of concepts. (Chapter 10)

Outranking Methods. A class of methods for making decisions with multiple cri-
teria, in which a special relation between alternatives (the outranking relation) is
constructed. (Chapter 4)

Parameter Uncertainty. Relates to the estimation of parameters (e.g., the reliabil-
ity of the parameter representing average number of defects). (Chapter 3)

Patent. Refers to property right granted by a government to an inventor “to ex-
clude others from making, using, offering for sale, or selling the invention or im-
porting the invention” for a limited time in exchange for public disclosure of the
invention when the patent is granted. (Chapter 17)

Positivist Behavior Model. A label attached to a particular model of human be-
havior. The concepts underlying this model can be summarized as: (a) Human ac-
tion is intentional and “rational,” (b) Humans interact in stable and orderly ways,
and (c) Conflict is dysfunctional and must be eliminated. (Chapter 8)

Postmortem Review. A collective learning activity which can be organized for
projects either when they end a phase or are terminated. The main motivation is to
reflect on what happened in the project in order to improve future practice – for
the individuals that have participated in the project and for the organization as a
whole. (Chapter 15)

Preferences. In decision analysis, preferences of decision makers are always for-
mulated with respect to outcomes of decision alternatives, not with respect to the
alternatives themselves. Thus, two alternatives which always lead to the same out-
comes are considered to be identical. Preferences can be measured at different
levels of scales. In ordinal scales, only the information that one outcome is pre-
ferred to another outcome is available. In difference scales, it is assumed that the
decision maker is also able to rank differences between outcomes, e.g., that mov-
ing from outcome A to outcome B is a greater improvement than moving from
outcome B to outcome C. In ratio scales, it is assumed that the decision maker is
able to provide ratios of the outcomes, e.g., stating that outcome A is twice as
good as outcome B. (Chapter 4)

Present Value (PV). The current value of a sum of money, payable or receivable
at some point in the future. Discounted value of a future cash flow representing
income or expense. (Chapter 3 and Chapter 5)

Prioritization of Software Requirements. Software requirements may be priori-
tized based on different criteria, to be included first in a bundle and then later in a
requirements package. (Chapter 9)

Process Guide. A structured, workflow-oriented, reference document for a par-
ticular process, exists to support participants in carrying out the intended process.
Usually describes activities, artifacts, roles, and tools. (Chapter 15)

Glossary 375

Process Workshop. A workshop where employees with key roles such as project
managers, developers, and system architects are invited to define work processes
to be disseminated in a process guide. (Chapter 15)

Process. A method of doing or producing something following a sequence of
steps. (Chapter 13)

Product Value. The value of a product is a function of the quality of the inputs
utilized to create it. The value of a product might be interpreted in different ways
by different customers and software developers. (Chapter 9)

Put Option. Option to sell an asset at a specified exercise price on or before a
specified exercise date. (Chapter 3)

Quality Management. A systematic set of activities to ensure that processes cre-
ate products with maximum quality at minimum cost of quality. The activities in-
clude quality assurance, quality control, and quality improvement.
[http://www.isixsigma.com/dictionary/glossary.asp] (Chapter 11)

Quality Risk Management. The process of identifying, prioritizing, and manag-
ing risks to the quality of the system under test, with the aim of preventing them or
detecting and removing them. (Chapter 11)

Quality Risk. The possibility of undesirable types of behaviors, or failure modes,
in which the system under test does not meet stated product requirements or end
users' reasonable expectations of behavior; in plain terms, the possibility of a bug.
(Chapter 11)

Random Sampling. A sampling procedure that assures that each element in the
population of interest has an equal chance of being selected. (Chapter 13)

Real Assets. Tangible and intangible assets used for doing business. Real estate
and a software project’s income stream are examples of real assets. (Chapter 3)

Real Option. A contingent claim on real assets such as capital investment oppor-
tunities in projects. See also contingent claim (Chapter 3 and Chapter 17)

Real Options analysis. A set of techniques used to value options on real assets by
examining the underlying active and passive waiting strategies and using option
pricing and decision tree techniques. See also real option, contingent claim, and
contingent claims analysis (Chapter 3 and Chapter 17)

Relative Risk Aversion. A measure of investor reaction to uncertainty relating to
percentage changes in the investor’s wealth. (Chapter 3)

Release Planning. Release planning for incremental development assigns features
to releases such that the most important technical, resource, risk, and budget con-
straints are met. Poor release planning decisions that result (i) in unsatisfied cus-
tomers not getting what they expect, (ii) in release plans unlikely to be performed
within given schedule, quality and effort constraints, and (iii) in plans not offering
the best business value out of the taken investments. (Chapter 12)

376

Return on Investment (ROI). A measure of the financial performance of an in-
vestment. Usually expressed as the return divided by the investment. For example,
a $1,000 investment that yields a $100 return has a 10% return on investment.
(Chapter 5)

Risk Analysis. All management activities that are related to assessing the poten-
tial impact of identified risks. This includes the quantification of the probability of
risk occurrence and the description of potential loss (qualitatively or quantita-
tively). (Chapter 13)

Risk Assessment. All management activities that are related to risk identification,
risk analysis, and risk prioritization. (Chapter 13)

Risk Management. A practice with processes, methods, and tools for managing
risks in a project. It provides a disciplined environment for proactive decision
making to assess continuously what could go wrong (risks), determine which risks
are important to deal with, and implement strategies to deal with those risks.
(Chapter 13)

Risk Premium. An extra amount added to a discount rate to reflect the financial
risk of the investment’s return. (Chapter 5)

Risk. The possibility of suffering loss. (Chapter 13)

Risk-adjusted Discount Rate. The discount rate that applies to uncertain cash
flows. The more uncertain a cash flow is, the higher the risk-adjusted rate. (Chap-
ter 3)

Risk-Based Testing. (1) Prioritizing tests according to the probability that the
tested part fails and the impact of the failure, if it does fail. Risk is used to manage
testing, mainly for validation testing. (2) Using risk analysis to identify problem
areas for designing tests with a high probability to uncover resulting errors. Risk is
used for test design, mainly for defect testing. (Chapter 11)

Risk-free (Discount) Rate. A discount rate that does not reflect any financial risk
and that applies to cash flows with no or minimal uncertainty. This rate can be ob-
served in the markets and often equated with the interest rate provided by short-
term government-backed securities such as treasury bills. (Chapters 3 and 5)

Root Cause Analysis. Also called Ishikawa or fishbone diagrams, are used to
structure discussions on the causes of important issues by drawing a line for an is-
sue, and arrows for causes and sub-causes. (Chapter 15)

Simulation. The process of conducting experiments with a model. (Chapter 13)

Socio-technical systems. Systems that are situated in a social context and where
some elements of the system depend on human abilities to think and work in
groups, while other elements of the system are provided through the use of tech-
nology. (Chapter 8)

Software Engineering Decision Support. Intelligent decision support is mainly
required in situations characterized by the following factors: complexity, uncer-

Glossary 377

tainty, presence of multiple stakeholders, large quantities of (organization-
specific) data, and/or rapid changes in problem parameters and related informa-
tion. Support here means to provide access to information that would otherwise be
unavailable or difficult to obtain; to facilitate generation and evaluation of solution
alternatives; and to prioritize alternatives by using explicit models that provide
structure for particular decisions. (Chapter 12)

Software Process Simulation. A computer-intensive technique for imitating be-
havioral aspects of real software development behavior with a set of mathematical
models representing the software development process. (Chapter 13)

Software Process. A method of developing or producing software. (Chapter 13)

Software Requirements Package. This refers to the formal packaging of soft-
ware requirements, i.e., it is the formalization of bundles after having prioritized
requirements. A package acts as a non-devisable unit that is delivered to a project.
However, several packages may be input to a development project and the inten-
tion is that a specific package should be implemented as a whole, without remov-
ing any of the requirements within a package. (Chapter 9)

System Dynamics. A methodology for studying and managing complex feedback
systems, such as one finds in business and other social systems. (Chapter 13)

System. A collection of elements that operate together for a common purpose and
appears as a self-contained unit with a defined structure. (Chapter 13)

Systematic Risk (Un-diversifiable risk). A type of risk to which all companies,
or projects are exposed. For example, since the ability to attract and hire good en-
gineers is essential to any project, we might consider “hiring good people” to be a
systematic risk factor. (Chapter 5)

Test Cycle. A partial or total execution of all the test suites planned for a given
test phase as part of that phase. A test phase involves at least one cycle (usually
more) through all the designated test suites. Test cycles are usually associated with
a single release of the system under test, such as a build of software. Generally,
new test releases occur during a test phase, triggering another test cycle. (Chap-
ter 11)

Test Management. Activities for planning, executing, analysis, and control of
testing. (Chapter 11)

Test Planning. The process of identifying the means, resources, and actions nec-
essary to accomplish the testing objective. (Chapter 11)

Testing. The process of operating a system or component under specified condi-
tions, observing or recording the results, and making an evaluation of some aspect
of the system or component. [IEEE Std 610.12-1990] (Chapter 11)

thinkLet. A scripted facilitation technique to create a pattern of collaboration. All
a facilitator needs to know to reproduce one predictable, repeatable pattern of col-
laboration among people working together toward a goal. (Chapter 10)

378

Trade Secret. Refers to any information, whether or not copyrightable or pat-
entable, that is not generally known or accessible and that gives competitive ad-
vantage to its owners. (Chapter 17)

Undiversifiable Risk. See systematic risk.

Unsystematic Risk (Specific, Private, or Diversifiable Risk). A type of risk spe-
cific to an individual company or project. For example, it may be important to
have a medical domain expert available for consultation while a software project
entailing a CAT scan system is underway. This would be viewed as unsystematic,
or specific risk, since the need for such a domain expert is not a risk factor shared
with other projects. (Chapter 5)

Usability Evaluation. Usability evaluation considers the user, the tasks, the
equipment, and the environment, and the relationships among them (Bevan and
Macleod, 1994). Usability evaluation includes multiple methods to evaluate the
usability of a system including usability testing. (Chapter 10)

Usability Heuristics. A common set of criteria used to evaluate software usabil-
ity. (Chapter 10)

Usability Testing. Usability testing determines whether a system meets a pre-
determined, quantifiable level of usability for specific types of users carrying out
specific tasks. (Chapter 10)

Usability. The extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified con-
text of use. (Chapter 10)

User Interface. The part of the system through which the user interacts with the
system either physically, perceptually, or conceptually. (Chapter 10)

Utility Functions. A utility function is a mathematical representation of prefer-
ences. An outcome A is preferred to outcome B whenever u(A) > u(B). Depending
on the scale level of preferences, different functional forms of utility functions can
be used. It should be noted that utility functions are mainly a technical device for
preference representation, and are not meant to represent the “inherent value” of
outcomes to the decision maker. (Chapter 4)

Validation Testing. To demonstrate to the developer and the customer that the
software meets its requirements. For custom software, this means that there should
be at least one test for every requirement in the user and system requirements
documents. For generic software products, it means that there should be tests for
all of the system features that will be incorporated in the product release. (Chap-
ter 11)

Valuation Horizon. Period over which cash flows are captured in order to com-
pute a firm’s valuation. Typically five to ten years. (Chapter 5)

Glossary 379

Valuation. The act of valuing, or of estimating current value or worth of intellec-
tual property for the purpose of acquisition, appraisal, and/or other purposes.
(Chapter 17)

Value Creation. To remain competitive in an era of increasing uncertainty and
market globalization in the third millennium, software companies have begun fo-
cusing on the value of different customers and markets when developing products.
Value creation is about building and growing business by creating value for the
customer and delivering this effectively. It involves identifying core competencies
of the organization and connecting these to its future vision. This is essential in
any business, including software companies, as it help them to achieve long-term
strategic gains. (Chapter 9)

Value Measurement. Value is a “measurable concept” that satisfies some infor-
mation need. By this it is meant that value can be indirectly measured once there is
agreement about what the concept means. In this, it is similar to other “measurable
concepts” such as quality, productivity, efficiency, effectiveness, and client satis-
faction. Value cannot be directly measured in the way that mass, volume, and time
can be measured, chiefly because it is a multi-attributed, personal construct. In-
stead base measures must be collected of the agreed attributes of value, using
agreed measurement methods and scales, and combined with other base measures
according to an agreed measurement model to produce derived measures that, by
agreement, act as indicators of value. (Chapter 8)

Value. The numerical or categorical result assigned to a base measure, derived
measure, or indicator [ISO/IEC 15939] (Chapter 8)

Value-Based Decision Making. Values are a driving factor in personal and or-
ganizational activities. Value-based decisions, such as value analysis, are meant to
assist software developers in their decisions. For example, whether enhancing
software performance, improving flexibility, or improving data integrity and con-
sistency will increase the lifecycle cost and strengthen communication between
stakeholders. (Chapter 9)

Verification and Validation (V&V). The process of determining whether the re-
quirements for a system or component are complete and correct, the products of
each development phase fulfill the requirements or conditions imposed by the pre-
vious phase, and the final system or component complies with specified require-
ments. [IEEE Std 610.12-1990] (Chapter 11)

List of Figures

Fig. 1. Pareto 80-20 distribution of test case value ...5
Fig. 2. ROI: Value-neutral ATG vs. Pareto Analysis..6
Fig. 3. Road map for realizing benefits of value-based software engineering10
Fig. 4. The "4+1" Theory of VBSE: overall structure...18
Fig. 5. Win-Lose generally becomes Lose-Lose ...19
Fig. 6. Results Chain ...20
Fig. 7. WinWin Negotiation Model...22
Fig. 8. Process-oriented expansion of 4+1 VBSE Theory framework24
Fig. 9. Results Chain for Sierra supply chain management...................................26
Fig. 10. Steps 1-4 in the VBSE theory framework..27
Fig. 11. Expected benefits and business case ..28
Fig. 12. Value-based expected/actual outcome tracking30
Fig. 13. Representation of uncertainty in the R&D project...................................48
Fig. 14. Refined scenario for the R&D project..49
Fig. 15. Full decision tree of the R&D project ..51
Fig. 16. Financial and real option correspondence..54
Fig. 17. Problems of additive weighting ...74
Fig. 18. Maturity level and actual budget..99
Fig. 19. Benefits Realization Approach Results Chain110
Fig. 20. Value Proposition Model-Clash spiderweb diagram..............................112
Fig. 21. Example of business case analysis results..113
Fig. 22. Risk Exposure (RE) profile: planning detail ..116
Fig. 23. “Earned Value” feedback process..119
Fig. 24. Value realization feedback process ..120
Fig. 25. Example production function for software product features..................121
Fig. 26. Results Chain for fire dispatching system..126
Fig. 27. EasyWinWin activities and deliverables..141
Fig. 28. Portfolio of Win conditions..144
Fig. 29. Overview of measurement and decision making158
Fig. 30. Stimulating a decision..163
Fig. 31. Decision making process ...164
Fig. 32. Importance of current criteria at Company A ..192
Fig. 33. Importance of current criteria at Company B...193
Fig. 34. Importance of future criteria at Company A ..194
Fig. 35. Importance of future criteria at Company B ..195
Fig. 36. Different usability evaluation methods ..203
Fig. 37. The collaborative usability testing process ..210
Fig. 38. The e-CUP workshop process..211
Fig. 39. STATPack can transmit images of cultures ...213
Fig. 40. STATPack e-CUP workshops..215
Fig. 41. Balancing external and internal stakeholder value propositions227
Fig. 42. Stages in test framework ..237

382

Fig. 43. F-EVOLVE* Process Model ...252
Fig. 44. Product flow captured by the GENSIM production sub-model268
Fig. 45. The magic triangle ...270
Fig. 46. Data-based construction of probability distribution...............................271
Fig. 47. Expert-based construction of probability distribution............................271
Fig. 48. Impact factors of the case example ..274
Fig. 49. Simulation output for project duration...275
Fig. 50. Simulation output for product quality ..276
Fig. 51. Simulation output for total project effort consumption..........................276
Fig. 52. Construction of the impact factor probability distribution.....................277
Fig. 53. Class and statechart diagram of the VoD system...................................291
Fig. 54. Execution paths (footprints) of three VoD requirements296
Fig. 55. Grouping uncertainty causes trace dependency uncertainty297
Fig. 56. Trace analysis based on commonality ...299
Fig. 57. The effects of the input on the trace analysis ...304
Fig. 58. Mind map showing reasons for issue “competence development”315
Fig. 59. Process worksheet example ...316
Fig. 60. A screenshot of a part of the resulting electronic process guide317
Fig. 61. Example: Before and after a Release 5A change (in bold)330
Fig. 62. Release 5A view in VE with change in bold..331
Fig. 63. VE usage over time..332
Fig. 64. VE usage over time..333
Fig. 65. Domain engineering and application engineering..................................334
Fig. 66. Valuation process...351
Fig. 67. Valuation framework for intellectual property356
Fig. 68. Decision tree for licensing example...359
Fig. 69. Weighted returns for trade secrets example ...361

List of Tables

Table 1. Comparative business cases: ATG and Pareto testing5
Table 2. Frequent protagonist classes ...24
Table 3. Applying financial and economic techniques in VBSE..........................62
Table 4. Discounted value of $100,000 received n years in the future95
Table 5. Four projects, returns, schedules, and present value...............................96
Table 6. Four projects from Table 5 delayed by 10%...97
Table 7. Effect of financial risk on projects from Table 598
Table 8. Relative risks of CMM Level-1 and Level-3 projects101
Table 9. LCO, LCA, and IOC Pass/Fail Criteria ..118
Table 10. Obligations of the software owner..127
Table 11. Components in the Image Model of decision making161
Table 12. The model of Value ..172
Table 13. Measurement plan...174
Table 14. Measurement algorithms...175
Table 15. Division of points between different dimensions of criteria195
Table 16. Examples of thinkLets ..208
Table 17. Background information on the workshops ..214
Table 18. Satisfaction in the e-CUP workshops..216
Table 19. Productivity in the e-CUP workshops...216
Table 20. Resource capacities (in person-days for release k)256
Table 21. F-Evolve* data..256
Table 22. F-Evolve* example results..257
Table 23. GENSIM input parameters with units...268
Table 24. GENSIM output parameters with units...269
Table 25. QA/QC-related risk factors ...273
Table 26. QA/QC-related risk factor variation ...274
Table 27. List of VoD requirements ...290
Table 28. Scenarios and observed footprints ..294
Table 29. VoD Java classes and their unique identifiers.....................................295
Table 30. Artifact to class mapping ..300
Table 31. Effect of input completeness/correctness on output............................304
Table 32. Effect of precision on completeness and correctness..........................305
Table 33. Input vs. output trade-off during trace analysis306
Table 34. Feature lead time regression, VE impact ..339
Table 35. Feature lead time regression, AIM impact..339
Table 36. Feature quality logistic regression, VE impact340
Table 37. Feature quality logistic regression, AIM impact.................................340
Table 38. Number of developers in a feature, AIM impact341
Table 39. Tools by software valuation method...355
Table 40. License valuation example..358
Table 41. Trade secrets valuation example...362

Index

adaptive control, 23, 31, 32
ambiguity, 367
analytic hierarchy process, 149, 253

behavioral model, 156, 160, 166,
167, 173, 372

benefits realization, 12, 121, 227,
280

Best Alternative To Negotiated
Agreement (BATNA), 148, 368

business case, 5, 6, 8, 11, 12, 25,
28–31, 103, 113, 114, 118, 120,
129, 130, 183, 203, 280; analysis,
8, 12, 28, 29, 113, 114, 129, 203,
280

business goals, 183, 184, 247, 368
business value, 3, 5, 6, 23, 30, 31,

58, 120, 122, 225, 237, 239, 263,
264, 277, 280, 328, 341, 375

capital asset pricing model (CAPM),
42, 100, 368

capital budgeting, 59, 102, 104
collaboration, 112, 139, 150, 202,

203, 205–210, 310, 318, 319, 368,
371, 377

conflict, 22, 72, 111, 112, 124, 135,
139, 147, 151, 167, 218, 292, 318,
319, 373; agency conflict, 45

consensus: consensus building, 137,
207, 212, 218

consistency, 33, 75, 118, 201, 210,
227, 288, 292, 302, 338, 379

contingent claim, 375; contingent
claims analysis, 375

convergence, 143, 149, 207, 212,
217

copyright, 345, 347, 363
cost-benefit, 41, 42, 59, 183, 184,

187, 190, 192–194, 197, 229, 231,
232, 237, 238, 241, 350

cost-benefit analysis, 41, 42, 59,
183, 184, 232, 237, 241, 350

decision analysis, 67, 68, 71, 149,
367, 373, 374

decision making, 11, 39, 41, 43, 50,
52, 53, 68, 69, 72, 74, 76, 83, 84,
91, 101, 114, 138, 155–157, 158,
160–164, 166–168, 171–174, 185,
186, 188, 193, 196, 236, 237, 240,
241, 249, 265, 280, 281, 310, 319,
362, 369, 372, 373, 376

decision model: multi-attribute, 8, 9,
21, 28, 31, 43, 72, 74, 81, 84, 156,
157, 182, 379; multicriteria, 23,
68–74, 84, 148, 149;
multiobjective, 72, 77; multiple
criteria, 68–70, 73, 138, 367, 374

decision response, 370
decision stimulus, 163, 370
decision support, 8, 9, 68, 71, 79,

80, 138, 159, 170, 249, 252, 254,
264, 281, 376; decision support
system, 80, 138, 159, 170, 249;
expert judgment, 230, 270, 359;
group bias, 319; Pareto-optimal,
45, 73

decision tree, 40, 41, 43, 50–53, 55,
56, 58, 59, 62, 359, 360, 369, 375

decision tree analysis, 59
derivative, 54, 347
development lead time, 338
discount rate, 40, 45, 46, 62, 94–96,

100–102, 352, 370, 376
discounted cash flow, 42, 97, 355,

356
divergence, 207, 212, 369, 373
diversification, 44, 236, 371
domain engineering, 183

386

economic value, 7, 16, 40, 58, 91,
92, 96–98, 102–104, 124, 180,
182, 184, 278, 348, 356, 360

ethics, 7, 9, 22, 124, 125, 126, 128,
160, 161

EVOLVE*, 248, 250–252, 258, 259,
371

facilitation, 135–137, 207, 217, 377
facilitator, 139, 140, 145, 146, 206,

207, 209, 214, 312, 320, 322, 371,
377

F-EVOLVE*, 248, 251, 252, 255,
256, 258, 259, 280

game theory, 7, 21, 60, 373
goal programming, 77, 78, 79, 83
group process, 135, 166, 309, 310–

312, 318–322, 371
group support system, 135, 322
groupware, 112, 134, 138, 203, 205

impact analysis, 123, 150, 288, 302
impact of change, 83, 150, 182, 292
information asymmetry, 45
intellectual property, 9, 93, 124,

345–353, 355, 356, 360, 362–364,
379

knowledge management, 150, 309,
311, 318, 322

knowledge-based economy, 179,
373

learning software organization, 309

measure: derived measure, 157, 173,
370, 379

measurement, 91, 155–158, 160–
163, 167, 168, 170, 173, 174, 183,
369, 372, 379

method: outranking method, 72, 81,
82, 84

negotiation, 8, 21, 22, 28, 29, 112,
127, 133–142, 145–151, 159, 160,

167, 185, 218, 232, 236, 237, 240,
241, 270, 368, 373; aspiration
level, 69, 72, 77, 83, 148;
integrative negotiation, 135, 148;
negotiation analysis, 147;
requirements negotiation, 8, 45,
133–140, 146, 147, 149, 151, 206,
236, 239

option theory: call option, 54, 56,
57, 58, 357; exercise price, 54,
56, 368, 375; financial option, 55,
60, 355; put option, 54, 58, 371;
real option, 7, 9, 10, 11, 21, 40,
41, 43, 44–46, 53–56, 58–61, 121,
123, 350, 357, 358, 361, 362, 364,
375; real options theory, 7, 21, 40,
46, 350, 364

patent, 345, 347, 348, 351, 363, 374
preference, 7, 72, 147, 151, 167,

378; subjective preference, 68, 71
prioritization, 8, 9, 41, 112, 123,

128, 130, 134, 138, 181, 185, 194,
203, 211, 218, 233, 234, 236, 239,
250, 251, 263, 265, 271, 289, 376

process guide, 140, 310, 313, 317,
318, 321, 322, 375

process improvement, 8, 91, 99,
100, 101, 103, 165, 172, 183, 228

product management, 182, 183, 188,
235

quality: cost of quality, 231, 375;
nonfunctional, 47, 50, 155, 368;
software quality, 23, 159, 229

quality management, 9, 171, 181

release planning, 9, 130, 181, 185,
232, 236, 247, 248, 249, 251, 254,
255, 258, 259, 280, 375

requirements, 3, 103, 117, 129, 137,
139, 159, 181, 236, 368, 377;
requirements negotiation, 8, 45,
133–140, 146, 147, 149, 151, 206,
236, 239

 387

return on investment, 28, 29, 103,
113, 129, 171, 218, 226, 231, 238,
240, 241, 247, 328, 357, 376

review: postmortem review, 309,
310, 312, 313, 318–323

risk: financial risk, 91, 94, 98–100,
371, 376; opportunity
management, 12, 128, 280;
systematic risk, 47, 94, 373, 377,
378; unsystematic risk, 94, 370

Risk: risk-averse, 43, 115
risk analysis, 115, 117, 128, 239,

240, 263, 265, 269, 272, 274, 279,
280, 376

risk assessment, 128, 184, 263–266,
271, 280, 281, 301

risk aversion: absolute, 43; relative,
43

risk management, 9, 23, 32, 114,
115, 118, 133, 139, 171, 181, 184,
228, 263, 265, 280, 350, 363

root cause analysis, 314

sensitivity analysis, 61, 62, 69, 82,
83, 265

simulation, 9, 45, 60–62, 138, 172,
203, 239, 240, 264–269, 271, 272,
275, 277, 278, 280, 281;
simulation model, 138, 264, 266,
269, 280; software process
simulation, 98

software change, 328, 335–337, 342
software development: incremental,

248, 372
software economics, 349
software process, 59, 91, 98, 138,

157, 165, 169, 171, 180, 183, 264,
265, 338

stakeholder: end user, 205, 214, 216,
219, 228, 375

stakeholder value, 8, 155, 171, 181–
184, 227

stakeholder value proposition, 12,
111, 112, 115, 119, 128, 133, 134,
138, 151, 157, 159, 165, 167, 202,
218, 227, 229, 230, 232, 233, 237,

238, 240; mission value, 5, 23,
30; mission-critical, 207, 369

statistical model, 328, 338, 342

technology transfer, 327
testing: benefits, 226, 229, 230, 231,

237, 241; cost of testing, 369;
requirements-based testing, 233,
234, 241; risk-based testing, 8, 9,
234, 238, 241; test cycle, 236–
241, 377; test management, 225,
226, 234, 236, 237, 241; test
planning, 229, 230, 233, 234, 236,
239, 241; validation testing, 376;
value-based testing, 7, 8, 226,
233, 236, 238, 240, 241, 289

theory: control theory, 9, 18, 23, 31,
32; decision theory, 7, 9, 18, 21,
28, 33, 114; dependency theory,
9, 18–21, 26–28, 31–33; image
theory, 169

thinkLet, 207, 210, 377
trace analysis, 288–293, 295, 298–

306
traceability, 8, 150, 233, 247, 288,

289, 298, 367
trade secret, 345, 346, 348, 349,

353, 356, 360–364
trade-off analysis, 112, 203

uncertainty, 39–49, 52, 53, 55–62,
68, 82, 83, 94, 96, 98, 103, 114,
115, 137, 179, 183, 228–230, 238,
240, 241, 297, 303, 350, 354, 358,
359, 361, 367, 375, 376, 379;
model uncertainty, 370

unsystematic risk, 377
usability: usability evaluation, 201–

205; usability testing, 130, 202–
205, 208–210, 217, 219, 378

valuation, 11, 39–46, 55, 59–62, 91,
95, 181, 183, 230, 232, 346, 350–
358, 360–364, 370, 378;
intellectual property valuation,
364

388

valuation horizon, 95
value: future value, 51, 94, 172, 355;

net present value, 101, 182, 253,
254, 258; present value, 45, 47,
51, 52, 55–58, 94–96, 98, 101,
102, 254, 353, 355, 370, 373;
product value, 181–183, 226, 227,
277–279; real asset, 55, 60, 371,
375; risk premium, 42, 94, 95, 98,
100–103; risk-adjusted discount
rate, 42, 46, 94, 101; utility
function, 4, 7, 21, 27, 28, 43, 60,
62, 74, 75, 77, 114, 115, 133, 148,
264, 310, 378; utility theory, 7, 9,
18, 21, 26, 28, 31, 33, 182

value-based software engineering,
8–10, 12, 39, 61, 91, 115, 124,
125, 128, 133, 143, 170, 171, 174,
197, 202, 203, 218, 226, 228, 233,
287, 288, 289, 298, 306, 310, 318,
320, 322

verification and validation, 8, 171,
181, 226, 229, 265

weighting methods: additive, 69,
73–77, 80, 82–84

win-win, 7, 16, 18, 19, 21–24, 27,
29, 32, 33, 112, 125, 127, 129,
134, 135, 138, 139, 148, 218, 310;
EasyWinWin, 134, 137–141, 143,
146–151

	Table of Contents
	Foreword
	Preface
	List of Contributors
	Part 1 Foundations and Frameworks
	1 Value-Based Software Engineering: Overview and Agenda
	1.1 Overview and Rationale
	1.2 Background and Agenda
	1.3 A Global Road Map for Realizing VBSE Benefits
	1.4 Summary and Conclusions

	2 An Initial Theory of Value-Based Software Engineering
	2.1 Introduction
	2.2 A "4+1" Theory of Value-Based Software Engineering
	2.3 Using and Testing the VBSE Theory: Process Framework and Example
	2.4 VBSE Theory Evaluation
	2.5 Conclusions and Areas for Further Research

	3 Valuation of Software Initiatives Under Uncertainty: Concepts, Issues, and Techniques
	3.1 Introduction
	3.2 Issues in Valuation
	3.3 Valuation of Uncertain Projects with Decision Trees
	3.4 Real Options Theory
	3.5 Summary and Discussion

	4 Preference-Based Decision Support in Software Engineering
	4.1 Introduction
	4.2 Decisions with Multiple Criteria and Software Engineering
	4.3 Multicriteria Decision Methods
	4.4 Incomplete Information and Sensitivity Analysis
	4.5 Summary and Conclusions

	5 Risk and the Economic Value of the Software Producer
	5.1 Introduction
	5.2 The Value of the Firm
	5.3 The Time Value of Money
	5.4 Financial Risk
	5.5 Prediction and the Value of the Firm
	5.6 Multi-Project Firms and Economic Value
	5.7 The Economic Cost of Extended Time-to-Market
	5.8 Financial Risk and Software Projects
	5.9 Predictability and Process Improvement
	5.10 Arriving at a Risk Premium for Software Projects
	5.11 Computing the Financial Value of Improved Predictability
	5.12 An Illustrative Example
	5.13 Conclusions

	Part 2 Practices
	6 Value-Based Software Engineering: Seven Key Elements and Ethical Considerations
	6.1 Benefits Realization Analysis
	6.2 Stakeholder Value Proposition Elicitation and Reconciliation
	6.3 Business Case Analysis
	6.4 Continuous Risk and Opportunity Management
	6.5 Concurrent System and Software Engineering
	6.6 Value-Based Monitoring and Control
	6.7 Change as Opportunity
	6.8 Integrating Ethical Considerations into Software Engineering Practice
	6.9 Getting Started Toward VBSE

	7 Stakeholder Value Proposition Elicitation and Reconciliation
	7.1 Introduction
	7.2 Negotiation Challenges
	7.3 The EasyWinWin Requirements Negotiation Support
	7.4 Possible Extensions to the EasyWinWin Approach
	7.5 Conclusions

	8 Measurement and Decision Making
	8.1 Introduction
	8.2 Models of Measurement and Decision Making
	8.3 Decision Making Behavior
	8.4 Decision Making Behavior in Groups
	8.5 Measurement and Analysis for Decision Making
	8.6 Decision Support in a VBSE Framework
	8.7 Conclusion

	9 Criteria for Selecting Software Requirements to Create Product Value: An Industrial Empirical Study
	9.1 Introduction
	9.2 Background
	9.3 Research Approach
	9.4 Survey Results and Analysis
	9.5 Conclusions and Further Work

	10 Collaborative Usability Testing to Facilitate Stakeholder Involvement
	10.1 Introduction
	10.2 Usability Testing
	10.3 Collaboration Tools and Techniques for Usability Testing
	10.4 Research Approach
	10.5 The e-CUP process
	10.6 Application of e-CUP
	10.7 Conclusion

	11 Value-Based Management of Software Testing
	11.1 Introduction
	11.2 Taking a Value-Based Perspective on Testing
	11.3 Practices Supporting Value-Based Testing
	11.4 A Framework for Value-Based Test Management
	11.5 Conclusion and Outlook

	Part 3 Applications
	12 Decision Support for Value-Based Software Release Planning
	12.1 Introduction
	12.2 Background
	12.3 Value-Based Release Planning
	12.4 Example
	12.5 Conclusions and Future Work

	13 ProSim/RA – Software Process Simulation in Support of Risk Assessment
	13.1 Introduction
	13.2 Software Process Simulation
	13.3 SPS-Based Risk Analysis Procedure
	13.4 Case Example
	13.5 Discussion and Future Work

	14 Tailoring Software Traceability to Value-Based Needs
	14.1 Introduction
	14.2 Video-on-Demand Case Study
	14.3 Testing-Based Trace Analysis
	14.4 Trace Analysis through Commonality
	14.5 The Tailorable Factors
	14.6 Conclusions

	15 Value-Based Knowledge Management: the Contribution of Group Processes
	15.1 Introduction
	15.2 Managing Knowledge
	15.3 Example: Postmortem Review and Process Workshop
	15.4 Discussion
	15.5 Conclusion and Further Work

	16 Quantifying the Value of New Technologies for Software Development
	16.1 Introduction
	16.2 Background
	16.3 Applications
	16.4 Impact Assessment Methodology
	16.5 Results
	16.6 Related Work
	16.7 Discussion

	17 Valuing Software Intellectual Property
	17.1 Introduction
	17.2 Software Intellectual Property Protection Mechanisms
	17.3 Licensing
	17.4 Valuation Process
	17.5 Valuation Framework for Intellectual Property
	17.6 Potential Uses of the Valuation Framework
	17.7 Future Shock
	17.8 Summary and Conclusions

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	List of Figures
	List of Tables
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

