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Preface

What! Yet another book on medical biostatistics! Why? What for?
The purpose of this preface is to answer those questions and to add a few other pertinent 

remarks. The sections that follow describe a series of distinctions, some of them unique, 
that make this book different from other texts.

Goals and Objectives

The goal of the text is to get biomedical readers to think about data and statistical 
procedures, rather than learn a set of “cook-book recipes.” In many statistics books aimed 
at medical students or biomedical researchers, the readers are believed to have either 
little interest or limited attention. They are then offered a simple, superficial account of 
the most common doctrines and applications of statistical theory. The “get-it-over-with-
quickly” approach has been encouraged and often necessitated by the short time given 
to statistics in modern biomedical education. The curriculum is supposed to provide 
fundamental background for the later careers of medical and other graduate students, 
but the heavily stressed “basic science” topics are usually cellular and molecular biology. 
If included at all, statistics is usually presented briefly, as a drudgery to be endured 
mainly because pertinent questions may appear in subsequent examinations for licensure 
or other certifications.

Nevertheless, in later professional activities, practicing clinicians and biomedical 
researchers will constantly be confronted with reports containing statistical expressions 
and analyses. The practitioners will regularly see and use statistical results when making 
clinical decisions in patient care; and the researchers will regularly be challenged by 
statistical methods when planning investigations and appraising data. For these activities, 
readers who respect their own intellects, and who want to understand and interpret the 
statistical procedures, cannot be merely passive learners and compliant appliers of doc-
trinaire customs. The readers should think about what they want, need, and receive. They 
should also recognize that their knowledge of the substantive biomedical phenomena is 
a major strength and dominant factor in determining how to get, organize, and evaluate 
the data. This book is aimed at stimulating and contributing to those thoughts.

Another distinction of the text is that the author is a physician with intimate and 
extensive experience in both patient care and biomedical investigation. I had obtained a 
master's degree in mathematics before entering medical school, but thereafter my roots 
were firmly and irrevocably grounded in clinical medicine. When I later began doing 
clinical research and encountering statistical strategies, my old mathematical background 
saved me from being intimidated by established theories and dogmas. Although not all 
statisticians will approve the temerity of an “unauthorized” writer who dares to compose 
a text in which the fundamental basis of old statistical traditions is sometimes questioned, 
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other statisticians may be happy to know more about the substantive issues contained in 
biomedical research, to learn what their clients are (or should be) thinking about, and to 
lead or collaborate in developing the new methods that are sometimes needed. 

New Methods and Approaches

The text contains many new methods and approaches that have been made possible by 
advances in statistical strategy for both analytic description and inferential decisions.

Statistical description has traditionally relied on certain mathematical models, such as 
the Gaussian distribution of a “normal” curve, that summarize data with means, standard 
deviations, and arbitrarily constructed histograms. Readers who begin to think about what 
they really want, however, may no longer happily accept what is offered by those old 
models. For example, because biomedical data seldom have a Guassian distribution, the 
median is usually a much better summary value than the mean; and new forms of data 
display  —  the stem-and-leaf plot and the box plot  —  not only are superior to histograms, 
but are more natural forms of expression.

Another descriptive distinction, which is omitted or blurred in many text books, is the 
difference between a trend (for citing correlation or regression) and a concordance (for 
citing agreement). Investigators who study variability in observers or in laboratory pro-
cedures have usually been taught to express results with the conventional indexes of 
“association” that denote trend, but not concordance. This text emphasizes the difference 
between correlation and agreement; and separate chapters are devoted to both “nondi-
rectional” concordance (for observer variability) and “directional” concordance (for accu-
racy of marker tests).

In statistical inference for decisions about probability, the customary approach has used 
hard-to-understand mathematical theories and hypothetical assumptions that were devel-
oped, established, and entrenched (for topics such as t tests and chi-square tests), because 
they led to standard formulas for relatively simple calculations. During the past few 
decades, however, the elaborate mathematical theories and assumptions have been aug-
mented, and sometimes replaced, by easy-to-understand new methods, which use rear-
rangements or resamplings of the observed data. The new methods often require 
formidable calculations that were not practical in the pre-computer era; but today, the 
“computer-intensive” work can be done quickly and easily, requiring no more effort than 
pushing the right “button” for an appropriate program. The new methods, which may 
eventually replace the old ones, are discussed here as additional procedures that involve 
no complicated mathematical backgrounds or unrealistic assumptions about “parametric” 
sampling from a theoretical population. In the new methods  —  which have such names as
Fisher exact test, bootstrap, and jackknife  —  all of the rearrangements, resamplings, and 
statistical decisions about probability come directly from the empirical real-world data. 
Another departure from tradition is a reappraisal of the use of probability itself, with 
discussions of what a reader really wants to know, which is stability of the numbers, not 
just probabilistic assessments.

The text also has sections that encourage methods of “physical diagnosis” to examine 
the data with procedures using only common sense and in-the-head-without-a-calculator  
appraisals. From appropriate summary statistics and such graphic tactics as box-plot 
displays, a reader can promptly see what is in the data and can then make some simple, 
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effective, mental calculations. The results will often offer a crude but powerful check on 
more complex mathematical computations.

A particularly novel and valuable approach is the careful dissection (and proposed 
elimination) of the term statistical significance, which has been a source of major confusion 
and intellectual pathogenicity throughout 20th-century science. Statistical significance is an 
ambiguous term, because it does not distinguish between the theoretical stochastic signif-
icance of calculated probabilities (expressed as P values and confidence intervals) and the 
pragmatic quantitative significance or clinical importance of the “effect sizes” found in 
the observed results. Not only is the crucial difference between stochastic and quantitative 
significance emphasized and thoroughly discussed, but also a special chapter, absent from 
conventional texts, is devoted to the indexes of contrast used for expressing and evaluating 
the “effect size” of quantitative distinctions.

Two other unique features of this text are the following:

• Two chapters on the display of statistical data in tables, charts, and graphs 
contain good and bad examples that can be helpful to readers, investigators, and 
the artists who prepare medical illustrations.

• A chapter that discusses the challenges of evaluating “equivalence” rather than 
“superiority” also considers the management of problems that arise when dis-
cordance arises in what the investigator wants, what the results show, and what  
the statistical tests produce.

Sequence, Scope, Rigor, and Orientation

The text is arranged in a logical sequence of basic principles that advance from simple to 
more elaborate activities. It moves from evaluating one group of data to comparing two 
groups and then associating two variables. Thereafter, the scope extends into more com-
plex but important topics that frequently appear as challenges in biomedical literature: 
controversies about stochastic issues in choosing one- or two-tailed tests, the graphic 
patterns of survival analysis, and the problems of appraising “power,” determining 
“equivalence,” and adjudicating “multiple hypotheses.”

Nevertheless, despite some of the cited deviations from customary biostatistical dis-
course, the text describes all the conventional statistical procedures and offers reasonably 
rigorous accounts of many of their mathematical justifications. Whether retaining or reject-
ing the conventional procedures, a reader should know what they do, how they do it, and 
why they have been chosen to do it. Besides, the conventional procedures will continue 
to appear in biomedical literature for many years. Learning the mechanisms (and limita-
tions) of the traditional tactics will be an enlightened act of self-defense.

Finally, although the conventional mathematical principles are given a respectful 
account, the book has a distinctly clinical orientation. The literary style is aimed at bio-
medical readers; and the examples and teaching exercises all come from the real-world 
medical phenomena. The readers are not expected to become statisticians, although appro-
priate historical events are sometimes cited and occasional mathematical challenges are 
sometimes offered. Clinical and biomedical investigators have made many contributions 
to other “basic” domains, such as cell and molecular biology, and should not be discour-
aged from helping the development of another “basic” domain, particularly the bio-portion 
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of biostatistics. As preparation for a future medical career, such basic tools as the methods 
of history taking, auscultation, imaging, catheterization, and laboratory tests are almost 
always taught with a clinical orientation. As another important basic tool, statistics receives 
that same orientation here.

Containing much more than most “elementary” books, this text can help repair the 
current curricular imbalance that gives so little attention to the role of statistics as a prime 
component of “basic” biomedical education. Statistical procedures are a vital, integral part 
of the “basic” background for clinical or biomedical careers, and are essential for readers 
and investigators who want to be at least as thoughtful in analyzing results as in planning 
and doing the research. The biomedical readers, however, are asked to read the text rather 
than race through it. What they learn will help them think for themselves when evaluating 
various statistical claims in the future. They can then use their own minds rather than 
depending on editorial decisions, authoritarian pronouncements, or the blandishments of  
various medical, commercial, or political entrepreneurs.

Before concluding, I want to thank various faculty colleagues   —  (alphabetically) Domenic
Cicchetti, John Concato, Theodore Holford, Ralph Horwitz, James Jekel, Harlan Krumholz, 
Robert Makuch, Peter Peduzzi, and Carolyn Wells—who have contributed to my own 
statistical education. I also want to acknowledge the late Donald Mainland, whose writings 
made me realize that statistics could be profound but comprehensible while also being 
fun, and who launched my career in statistics when he invited me to succeed him in 
writing a bimonthly set of journal essays on biostatistical topics. I am immensely grateful 
to the post-residency physicians who have been research fellows in the Yale Clinical 
Scholar Program, sponsored by the Robert Wood Johnson Foundation and also supported 
by the U.S. Department of Veterans Affairs. The Clinical Scholars are the people who 
inspired the writing of this text, who have received and worked through its many drafts, 
whose comments and suggestions have produced worthwhile improvements, and who 
helped create an intellectual atmosphere that I hope will be reflected and preserved. While 
I was trying to prod the group into learning and thinking, their responses gave me the 
stimuli and pleasures of additional learning and thinking.

My last set of acknowledgments contains thanks to people whose contributions were 
essential for the text itself. Donna Cavaliere and many other persons  —  now too numerous 
to all be named  —  did the hard, heroic work of preparing everything on a word processor. 
Robert Stern, of Chapman and Hall publishers, has been an excellent and constructive 
editor. Carole Gustafson, also of Chapman and Hall, has done a magnificent job of checking 
everything in the text for logic, consistency, and even grammar. I am grateful to Sam 
Feinstein for esthetic advice and to Yale’s Biomedical Communications department for 
preparing many of the illustrations. And finally, my wife Lilli, has been a constant source 
of patience, encouragement, and joy.

Alvan R. Feinstein
New Haven

July, 2001
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1
Introduction

CONTENTS
1.1 Components of a Statistical Evaluation

1.1.1 Summary Expressions
1.1.2 Quantitative Contrasts
1.1.3 Stochastic Contrasts
1.1.4 Architectural Structure
1.1.5 Data Acquisition
1.1.6 Data Processing

1.2 Statistical and Nonstatistical Judgments
1.3 Arrangement of the Text
1.4 A Note about References
1.5 A Note about “Exercises”
1.6 A Note about Computation
Exercises

Suppose you have just read a report in your favorite medical journal. The success rates were said to be  
50% with a new treatment for Disease D, and 33% in the control group, receiving the customary old 
treatment. You now have a clinical challenge: Should you beginning the new treatment instead of the 
old one for patients with Disease D?

Decisions of this type are constantly provoked by claims that appear in the medical literature or in 
other media, such as teaching rounds, professional meetings, conferences, newspapers, magazines, and 
television. In the example just cited, the relative merits were compared for two treatments, but many 
other medical decisions involve appraisals of therapeutic hazards or comparisons of new technologic 
procedures for diagnosis. In other instances, the questions are issues in public and personal health, rather 
than the clinical decisions in diagnosis or treatment. These additional questions usually require evalua-
tions for the medical risks or benefits of phenomena that occur in everyday life: the food we eat; the 
water we drink; the air we breathe; the chemicals we encounter at work or elsewhere; the exercise we 
take (or avoid); and the diverse patterns of behavior that are often called “life style.”

If not provoked by statistics about therapeutic agents or the hazards of daily life, the questions may 
arise from claims made when investigators report the results of laboratory research. A set of points that  
looks like scattered buckshot on a graph may have been fitted with a straight line and accompanied by 
a statement that they show a “significant” relationship. The mean values for results in two compared 
groups may not seem far apart, but may be presented with the claim that they are distinctively different.

Either these contentions can be accepted in the assumption that they were verified by the wisdom of  
the journal’s referees and editors, or — mindful of the long history of erroneous doctrines that were 
accepted and promulgated by the medical “establishment” in different eras — we can try to evaluate 
things ourselves. To do these evaluations, we need some type of rational mechanism. What kinds of 
things shall we think about? What should we look for? How should we analyze what we find? How do 
we interpret the results of the analysis?

The final conclusions drawn from the evaluations are seldom expressed in statistical terms. We 
conclude that treatment A is preferable to treatment B, that diagnostic procedure C is better than 
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diagnostic procedure E, that treatment F is too hazardous to use, or that G is a risk factor for disease H. 
Before we reach these nonstatistical conclusions, however, the things that begin the thought process are  
often statistical expressions, such as success rates of 50% vs. 33%.

The statistical citation of results has become one of the most common, striking phenomena of modern 
medical literature. No matter what topic is under investigation, and no matter how the data have been 
collected, the results are constantly presented in statistical “wrappings.” To evaluate the results scientif -
ically, we need to look beneath the wrapping to determine the scientific quality of the contents. This 
look inside may not occur, however, if a reader is too flustered or uncomfortable with the exterior 
statistical covering. Someone familiar with medical science might easily understand the interior contents, 
but can seldom reach them if the statistical material becomes an obscure or intimidating barrier.

The frequent need to appraise numerical information creates an intriguing irony in the professional lives 
of workers in the field of medicine or public health. Many clinicians and public-health personnel entered 
those fields because they liked people and liked science, but hated mathematics. After the basic professional 
education is completed, the subsequent careers may bring the anticipated pleasure of working in a 
humanistic science, but the pleasure is often mitigated by the oppression of having to think about statistics.

This book is intended to reduce or eliminate that oppression, and even perhaps to show that statistical 
thinking can be intellectually attractive. The main point to recognize is that the primary base of statistical 
thinking is not statistical. It requires no particular knowledge or talent in mathematics; and it involves 
only the use of enlightened common sense — acquired as ordinary common sense plus professional 
knowledge and experience. Somewhat like a “review of systems” in examining patients, a statistical 
evaluation can be divided into several distinctive components. Some of the components involve arith-
metic or mathematics, but most of them require only the ability to think effectively about what we 
already know.

1.1 Components of a Statistical Evaluation

The six main components of a statistical “review of systems” can be illustrated with examples of the 
way they might occur for the decision described at the start of this chapter.

1.1.1 Summary Expressions

The first component we usually meet in statistical data is a summary expression, such as a 50% success 
rate. The statistical appraisal begins with the adequacy of this expression. Is it a satisfactory way of 
summarizing results for the observed group? Suppose the goal of treatment was to lower blood pressure. 
Are you satisfied with a summary in which the results are expressed as success rates of 50% or 33%? 
Would you have wanted, instead, to know the average amount by which blood pressure was lowered in  
each group? Would some other quantitative expression, such as the average weekly change in blood 
pressure, be a preferable way of summarizing each set of data?

1.1.2 Quantitative Contrasts

Assuming that you are satisfied with whatever quantitative summary was used to express the individual 
results for each group, the second component of evaluation is a contrast of the two summaries. Are 
you impressed with the comparative distinction noted in the two groups? Does a 17% difference in 
success rates of 50% and 33% seem big enough to be important? Suppose the difference of 17% 
occurred as a contrast of 95% vs. 78%, or as 20% vs. 3%. Would these values make you more 
impressed or less impressed by the distinction? If you were impressed not by the 17% difference in 
the two numbers, but by their ratio of 1.5 (50/33), would you still be impressed if the same ratio were  
obtained from the contrast of 6% vs. 4% or from .0039 vs. 0026? What, in fact, is the strategy you 
use for deciding that a distinction in two contrasted numbers has an “impressive” magnitude?
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1.1.3 Stochastic Contrasts

If you decided that the 50% vs. 33% distinction was impressive, the next step is to look at the numerical 
sources of the compared percentages. This component of evaluation contains the type of statistics that 
may be particularly distressing for medical people. It often involves appraising the stochastic (or 
probabilistic) role of random chance in the observed numerical results. Although the quantitative contrast 
of 50% vs. 33% may have seemed impressive, suppose the results came from only five patients. The 
50% and 33% values may have emerged, respectively, as one success in two patients and one success 
in three patients. With constituent numbers as small as 1/2 and 1/3, you would sense intuitively that 
results such as 50% vs. 33% could easily occur by chance alone, even if the two treatments were identical.

Suppose, however, that the two percentages (50% vs. 33%) were based on such numbers as 150/300  
vs. 100/300? Would you now worry about chance possibilities? Probably not, because the contrast in 
these large numbers seems distinctive by what Joseph Berkson has called the traumatic interocular test. 
(The difference hits you between the eyes.) Now suppose that the difference of 50% and 33% came 
from numbers lying somewhere between the two extremes of 1/2 vs. 1/3 and 150/300 vs. 100/300. If 
the results were 8/16 vs. 6/18, the decision would not be so obvious. These numbers are neither small 
enough to be dismissed immediately as “chancy” nor large enough to be accepted promptly as “intu-
itively evident.”

The main role of the third component of statistical evaluation is to deal with this type of problem. 
The process uses mathematical methods to evaluate the “stability” of numerical results. The methods 
produce the P values, confidence intervals, and other probabilistic expressions for which statistics has 
become famous (or infamous).

1.1.4 Architectural Structure

Suppose you felt satisfied after all the numerical thinking in the first three steps. You accepted the 
expression of “success”; you were impressed by the quantitative distinction of 50% vs. 33%; and the 
numbers of patients were large enough to convince you that the differences were not likely to arise by 
chance. Are you now ready to start using the new treatment instead of the old one? If you respect your 
own common sense, the answer to this question should be a resounding NO. At this point in the evaluation, 
you have thought only about the statistics, but you have not yet given any attention to the science that 
lies behind the statistics. You have no idea of how the research was done, and what kind of architectural 
structure was used to produce the compared results of 50% and 33%.

The architectural structure of a research project refers to the scientific arrangement of persons and 
circumstances in which the research was carried out. The ability to evaluate the scientific architecture 
requires no knowledge of statistics and is the most powerful analytic skill at your disposal. You can use  
this skill to answer the following kinds of architectural questions: Under what clinical conditions were 
the two treatments compared? Were the patients’ conditions reasonably similar in the two groups, and 
are they the kind of conditions in which you would want to use the treatment? Were the treatments 
administered in an appropriate dosage and in a similar manner for the patients in the two groups. Was 
“success” observed and determined in the same way for both groups?

If you are not happy with the answers to these questions, all of the preceding numerical appraisals 
may become unimportant. No matter how statistically impressive, the results may be unacceptable 
because of their architectural flaws. The comparison may have been done with biases that destroy the 
scientific credibility of the results; or the results, even if scientifically credible, may not be pertinent for  
the particular kinds of patients you treat and the way you give the treatment.

1.1.5 Data Acquisition

The process of acquiring data involves two crucial activities: observation and classification. For clinical 
work, the observation process involves listening, looking, touching, smelling, and sometimes tasting. 
The observations are then described in various informal or formal ways. For example, the observer 
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might see a 5 mm. cutaneous red zone that blanches with pressure, surrounding a smaller darker-red 
zone that does not blanch. For classification, the observer chooses a category from an available 
taxonomy of cutaneous lesions. In this instance, the entity might be called a petechia. If the detailed 
description is not fully recorded, the entry of “petechia” may become the basic item of data. Analo-
gously, a specimen of serum may be “observed” with a technologic process, and then “classified” as 
sodium, 120 meq/dl. Sometimes, the classification process may go a step further, to report the foregoing 
sodium value as hyponatremia.

Because the available data will have been acquired with diverse methods of observation and classifi-
cation, these methods will need separate scientific attention beyond the basic plan of the research itself.  
What procedures (history taking, self-administered questionnaire, blood pressure measurements, labo-
ratory tests, biopsy specimens, etc.) were used to make and record the basic observations that produced  
the raw data? How was each patient’s original condition identified, and how was each post-therapeutic 
response observed and classified as success or no success? Was “success” defined according to achieve-
ment of normotension, or an arbitrary magnitude of reduction in blood pressure? What kind of “quality  
control” or criteria for classification were used to make the basic raw data trustworthy?

The answers to these questions may reveal that the basic data are too fallible or unsatisfactory to 
be accepted, even if all other elements of the research architecture seem satisfactory.

1.1.6 Data Processing

To be analyzed statistically, the categories of classification must be transformed into coded digits that 
become the entities receiving data processing. This last step in the activities is particularly vital in an 
era of electronic analysis. Because the transformed data become the basic entities that are processed, 
we need to know how well the transformation was done. What arrangements were used to convert the 
raw data into designated categories, to convert the categories into coded digits, and to convert those 
digits into magnetized disks or diverse other media that became the analyzed information? What 
mechanisms were used to check the accuracy of the conversions?

The transformation from raw data into processed data must be suitably evaluated to demonstrate 
that the collected basic information was correctly converted into the analyzed information. 

1.2 Statistical and Nonstatistical Judgments

Of the six activities just cited, the last three involve no knowledge of mathematics, and they also have 
prime importance in the scientific evaluation. During the actual research, these three activities all occur  
before any statistical expressions are produced. The architectural structure of the research, the quality 
of the basic data, and the quality of the processed data are the fundamental scientific issues that underlie 
the statistical results. If the basic scientific structure and data are inadequate, the numbers that emerge 
as results will be unsatisfactory no matter how “significant” they may seem statistically. Because no 
mathematical talent is needed to judge those three fundamental components, an intelligent reader who 
recognizes their primacy will have won at least half the battle of statistical evaluation before it begins.

Many readers of the medical literature, however, may not recognize this crucial role of nonstatistical 
judgment, because they do not get past the first three statistical components. If the summary expressions 
and quantitative contrasts are presented in unfamiliar terms, such as an odds ratio or a multivariable 
coefficient of association, the reader may not understand what is being said. Even if the summaries and  
contrasts are readily understood, the reader may be baffled by the P values or confidence intervals used  
in the stochastic evaluations. Flustered or awed by these uncertainties, a medically oriented reader may  
not penetrate beyond the outside statistics to reach the inside place where enlightened common sense 
and scientific judgment are powerful and paramount.

Because this book is about statistics, it will emphasize the three specifically statistical aspects of 
evaluation. The three sets of scientific issues in architecture and data will be outlined only briefly; and  
readers who want to know more about them can find extensive discussions elsewhere.1–3 Despite the 
statistical focus, however, most of the text relies on enlightened judgment rather than mathematical 
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reasoning. Once you have learned the strategy of the descriptive expressions used in the first two parts  
of the statistical evaluation, you will discover that their appraisal is usually an act of common sense. 
Except for some of the complicated multivariable descriptions that appear much later in the text, no 
mathematical prowess is needed to understand the descriptive statistical expressions used for summa-
ries, contrasts, and simple associations. Only the third statistical activity — concerned with probabilities 
and other stochastic expressions — involves distinctively mathematical ideas; and many of them are 
presented here with modern approaches (such as permutation tests) that are much easier to understand  
than the traditional (parametric) theories used in most elementary instruction.

1.3 Arrangement of the Text

This book has been prepared for readers who have some form of “medical” interest. The interest can 
be clinical medicine, nursing, medical biology, epidemiology, dentistry, personal or public health, or  
health-care administration. All of the illustrations and examples are drawn from those fields, and the 
text has been written with the assumption that the reader is becoming (or has already become) 
knowledgeable about activities in those fields.

A major challenge for any writer on statistical topics is to keep things simple, without oversimplifying 
and without becoming too superficial. The achievement of these goals is particularly difficult if the 
writer wants to respect the basic intellectual traditions of both science and mathematics. In both fields, 
the traditions involve processes of assertion and documentation. In science, the assertion is called a 
hypothesis, and the documentation is called supporting evidence. In mathematics, the assertion is called 
a theorem or operating principle, and the documentation is called a proof.

To make things attractive or more palatable, however, many of the assertions in conventional statistical 
textbooks are presented without documentation. For example, a reader may be told, without explanation 
or justification, to divide something by n − 1, although intuition suggests that the division should be 
done with n. Many medical readers are delighted to accept the simple “recipes” and to avoid details of 
their justification. Other readers, however, may be distressed when the documentary traditions of both 
science and mathematics are violated by the absence of justifying evidence for assertions. If documentary
details are included in an effort to avoid such distress, however, readers who want only “the beef” may  
become bored, confused by the complexity, or harassed by the struggle to understand the details.

The compromise solution for this dilemma is to use both approaches. The main body of the text has 
been kept relatively simple. Many of the sustaining mathematical explanations and proofs have been 
included, but they are relegated to the Appendixes in the back of the pertinent chapters. The additional 
details are thus available for readers who want them and readily skipped for those who do not.

1.4 A Note about References

The references for each chapter are numbered sequentially as they appear. At the end of each chapter, 
they are cited by first author and year of publication (and by other features that may be needed to avoid  
ambiguity). The complete references for all chapters are listed alphabetically at the end of the text; and  
each reference is accompanied by an indication of the chapter(s) in which it appeared.

For the first chapter, the references are as follows:

1. Feinstein, 1985; 2. Sackett, 1991; 3. Hulley, 2000.

1.5 A Note about “Exercises”

The list of references for each chapter is followed by a set of exercises that can be used as “homework.” 
The end of the text contains a list of the official answers to many of the exercises, usually those with 
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odd numbers. The other answers are available in an “Instructor’s Manual.” You may not always agree  
that the answers are right or wrong, but they are “official.”

1.6 A Note about Computation

Statistics books today may contain instructions and illustrations for exercises to be managed with the 
computer programs of a particular commercial system, such as BMDP, Excel, Minitab, SAS, or SPSS. 
Such exercises have been omitted here, for two reasons. First, the specific system chosen for the illustra -
tions may differ from what is available to, or preferred by, individual readers. Second, and more impor-
tantly, your understanding and familiarity with the procedures will be greatly increased if you “get into 
their guts” and see exactly how the computations are done with an electronic hand calculator. You may 
want to use a computer program in the future, but learning to do the calculations yourself is a valuable 
introduction. Besides, unlike a computer, a hand calculator is easily portable and always accessible. 
Furthermore, the results obtained with the calculator can be used to check the results of the computer 
programs, which sometimes do the procedures erroneously because of wrong formulas or strategies.

Nevertheless, a few illustrations in the text show printouts from the SAS system, which happens to 
be the one most often used at my location.

Exercises

1.1 Six types of “evaluation” were described in this chapter. In which of those categories would you 
classify appraisals of the following statements? [All that is needed for each answer is a number from 
1–6, corresponding to the six parts of Section 1.1]

1.1.1. “The controls are inadequate.”
1.1.2. “The data were punched and verified.”
1.1.3. “Statistical analyses of categorical data were performed with a chi-square test.”
1.1.4. “Compared with non-potato eaters, potato eaters had a risk ratio of 2.4 for developing 
omphalosis.”
1.1.5. “The patient had a normal glucose tolerance test.”
1.1.6. “The trial was performed with double-blind procedures.”
1.1.7. “Newborn babies were regarded as sick if the Apgar Score was ≤6.”
1.1.8. “The rate of recurrent myocardial infarction was significantly lower in patients treated with 
excellitol than in the placebo group.”
1.1.9. “The reports obtained in the interviews had an 85% agreement with what was noted in the 
medical records.”
1.1.10. “The small confidence interval suggests that the difference cannot be large, despite the 
relatively small sample sizes.”
1.1.11. “The compared treatments were assigned by randomization.”
1.1.12. “We are distressed by the apparent slowing of the annual decline in infant mortality rates.”
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Formation, Expression, and Coding of Data
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During the 17th and 18th centuries, nations began assembling quantitative information, called Political 
Arithmetic, about their wealth. It was counted with economic data for imports, exports, and agriculture, 
and with demographic data for population census, births, and deaths. The people who collected and tabulated 
these descriptions for the state were called statists; and the items of information were called statistics.

Later in the 18th century, the royalty who amused themselves in gambling gave “grants” to develop 
ideas that could help guide the betting. The research produced a “calculus of probabilities” that became  
eventually applied beyond the world of gambling. The application occurred when smaller “samples” 
rather than the entire large population were studied to answer descriptive questions about regional 
statistics. The theory that had been developed for the probabilities of bets in gambling became an effective 
mechanism to make inferential decisions from the descriptive attributes found in the samples. Those 
theories and decisions thus brought together the two statistical worlds of description and probability, 
while also bringing P values, confidence intervals, and other mathematical inferences into modern 
“statistical analysis.”

The descriptive origin of statistics is still retained as a job title, however, when “statisticians” collect  
and analyze data about sports, economics, and demography. The descriptive statistics can be examined 
by sports fans for the performances of teams or individual players; by economists for stock market 
indexes, gross national product, and trade imbalances; and by demographers for changes in geographic 
distribution of population and mortality rates. The descriptive origin of statistics is also the fundamental 
basis for all the numerical expressions and quantitative tabulations that appear as evidence in modern 
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biologic science. The evidence may often be analyzed with inferential “tests of significance,” but the 
inferences are a secondary activity. The primary information is the descriptive numerical evidence.

The numbers come from even more basic elements, which have the same role in statistics that 
molecules have in biology. The basic molecular elements of statistics are items of data. To understand 
fundamental biologic structures, we need to know about molecules; to understand the fundamentals of 
statistics, we need to know about data.

In biology, most of the studied molecules exist in nature, but some of them are made by humans. No  
data, however, exist in nature. All items of data are artifacts produced when something has been observed 
and described. The observed entity can be a landscape, a person, a conversation, a set of noises, a 
specimen of tissue, a graphic tracing, or the events that occur in a person’s life. The medical observations 
can be done by simple clinical examination or with technologic procedures. The description can be 
expressed in letters, symbols, numbers, or words; and the words can occupy a phrase, a sentence, a 
paragraph, or an entire book.

The scientific quality of basic observations and descriptions depends on whether the process is suitable, 
reproducible, and accurate. Is the score on a set of multiple-choice examination questions a suitable 
description of a person's intelligence? Would several clinicians, each taking a history from the same 
patient, emerge with the same collection of information? Would several histopathologists, reviewing the  
same specimen of tissue, all give the same reading? If serum cholesterol is measured in several different 
laboratories, would the results — even if similar — agree with a measurement performed by the National 
Bureau of Standards?

2.1 Scientific Quality of Data

Suitability, reproducibility, and accuracy are the attributes of scientific quality. For reproducibility, the 
same result should be obtained consistently when the measurement process is repeated. For accuracy,
the result should be similar to what is obtained with a “gold-standard” measurement. For suitability,
which is sometimes called sensibility or face validity , the measurement process and its result should be 
appropriate according to both scientific and ordinary standards of “common sense.”

These three attributes determine whether the raw data are trustworthy enough to receive serious 
attention when converted into statistics, statistical analyses, and subsequent conclusions. Of the three 
attributes, accuracy may often be difficult or impossible to check, because a “gold standard” may not 
exist for the definitive measurement of such entities as pain, discomfort, or gratification. Reproducibility
can always be checked, however. Even if it was not specifically tested in the original work, a reader can 
get an excellent idea about reproducibility by noting the guidelines or criteria used for pertinent decisions. 
Suitability can also be checked if the reader thinks about it and knows enough about the subject matter 
to apply enlightened common sense.

The foregoing comments should demonstrate that the production of trustworthy data is a scientific 
rather than statistical challenge. The challenge requires scientific attention to the purpose of the obser-
vations, the setting in which they occurred, the way they were made, the process that transformed 
observed phenomena into descriptive expressions, the people who were included or excluded in the 
observed groups, and many other considerations that are issues in science rather than mathematics.

These issues in scientific architecture are the basic “molecular” elements that lie behind the assembled 
statistics. The issues have paramount importance whenever statistical work is done or evaluated — but 
the issues themselves are not an inherent part of the statistical activities. The data constitute the basic 
scientific evidence available as “news”; statistical procedures help provide summaries of the news and 
help lead to the “editorials” and other conclusions.

To give adequate attention to what makes the basic data scientifically trustworthy and credible, 
however, would require too many digressions from the statistical procedures. A reader who wants to 
learn mainly about the statistics would become distressed by the constant diversions into scientific 
priorities. Therefore, to allow the statistical discourse to proceed, many of the fundamental scientific 
issues receive little or no attention in this text. This neglect does not alter their primacy, but relies on 
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the assumption that they will be known, recognized, and suitably considered by readers whose minds 
are liberated from mathematical confusion.

For the statistical discussion, the raw descriptive information and groups will be accepted here as 
satisfactory scientific evidence. This acceptance, an ad hoc literary convenience, is never warranted in 
the real world, where scientific credibility leads to the most important, but commonly overlooked, 
problems in statistical analyses. In fundamental scientific thinking, the focus is on what the information 
represents, how it got there, and how good it is. Accepting the underlying scientific process as adequate, 
however, we can turn to the statistical process discussed in this and the subsequent 27 chapters. The 
next level of thinking begins with conversion of the raw data to statistics.

2.2 Formation of Variables

The available raw information can be called data, but the data can seldom be analyzed statistically. For 
example, statements such as “John Doe is a 37-year-old man” and “Mary Smith is a 31-year-old woman” 
contain specific data about specific persons, but the information is not arranged in a manner suitable for 
statistical analysis. To get the data into an appropriate format, the first statement can be converted to 
“Name: John Doe; Age in years: 37; Sex: male.” The second statement would become “Name:
Mary Smith; Age in years: 31; Sex: female.

In the format just cited, specific attributes such as name, age, and sex were chosen as labels for each 
citation. Analogous attributes and formats would be needed to express details of the medical information 
contained in a patient’s history, an account of a surgical operation, or a description of a pathologic 
specimen. Many other types of raw information, however, receive expressions that are immediately 
suitable for analysis. Examples are the laboratory report, hematocrit: 47%, or the clinical description 
of systolic blood pressure as 125 mm Hg.

Each of these formats refers to a selected attribute, cited in an available set of expressions. In the 
parlance of mathematics or statistics, the attributes are called variables, and the expressions available 
for citation are called a scale.

2.2.1 Definition of a Variable

A variable is a class of data in which different distinctions can be expressed. A person’s age, height,
sex, diagnosis, and therapy are all variables. Their distinctions might be cited respectively for a particular 
person as 52 years, 69 inches, male, peptic ulcer, and antacid tablets. Although not particularly desirable 
as a scientific term, the word variable has become firmly entrenched in its mathematical role. You can 
think of it not as something that denotes diversity or change — in the sense of variation or variability — but 
simply as the name used for a class of data that can be cited differently for different people.

The expression of eight variables for six individual persons could be shown in a “matrix” table that 
has the following skeleton structure:
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The interior “cells” of this table would contain the assembled citations of each variable for each person. 
(Exercises will use different ways and the additional categories for analyzing these data.)

2.2.2 Scales, Categories, and Values

The scale of a variable contains the available categories for its expression. The scale for the variable 
sex usually has two categories: male and female. The scale for age in years has the categories 1, 2, 3, 
4, …, 99, 100, … . (In statistics, as in literature, the symbol “…” indicates that certain items in a 
sequence have been omitted.)

For a particular person, the pertinent category of a scale is called the value of the variable. Thus, a 
52-year-old man with peptic ulcer has 52 as the value of age in years, male as the value of sex, and 
peptic ulcer as the value of diagnosis. The word value is another entrenched mathematical term that 
has nothing to do with judgments or beliefs about such “values” as importance, worth, or merit. The 
value of a variable is the result of an observational process that assigns to a particular person the 
appropriate category of the variable’s scale.

Any descriptive account of a person can be converted into an organized array of data using variables,  
scales, categories, and values.

2.3 Classification of Scales and Variables

Scales and variables can be classified in various ways. The most common and useful classification 
depends on the precision of ranking for the constituent categories.

2.3.1 Precision of Rankings

A 31-year-old person is 14 years younger than someone who is 45. A person with severe dyspnea is 
more short of breath than someone with mild dyspnea, but we cannot measure the exact difference. In 
both these examples, definite ranks of magnitude were present in the values of 31 and 45 for age, and 
in the values of severe and mild for severity of dyspnea. The ranks were distinct for both variables, but  
the magnitudes were more precise for age than for severity of dyspnea.

Certain other variables, however, are expressed in categories that have no magnitudes and cannot be 
ranked. Thus, no obvious rankings seem possible if history of myocardial infarction is present in one 
patient and absent in another; or if one patient has an anterior and another has a posterior location of 
myocardial infarction. We might want to regard present as being “more” than absent, but we cannot 
rank the magnitude of such locations as anterior or posterior.

The four examples just cited illustrate patterns of precision in ranking for the dimensional, ordinal,
binary, and nominal variables that were used, respectively, to denote age, severity, existence, and location. 
These four patterns, together with quasi-dimensional scales, are the basic arrangements for categories 
in the scales of variables. The patterns are further discussed in the sections that follow.

2.3.1.1 Dimensional Scales — In a dimensional scale, the successive categories are monotonic 
and equi-interval. In the directional sequence of a monotonic ranking, each category is progressively 
either greater or smaller than the preceding adjacent category. For equi-interval ranks, a measurably 
equal interval can be demarcated between any two adjacent monotonic categories.

Thus, in the scale for age in years, a measurably equal interval of 1 year separates each of the successive 
categories 1, 2, 3, 4, …, 99, 100, … . Similarly, for the variable height in inches, each of the successive 
categories …, 59, 60, 61, 62, …, 74, 75, … has an incremental interval of 1 inch.

Many alternative terms have been used as names for a dimensional scale, which is now the traditional 
form of scientific measurement. Psychologists and sociologists often refer to interval scales, but the 
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word interval is often used medically for a period of time. The term metric might be a satisfactory name, 
but it regularly connotes a particular system of measurement (in meters, liters, etc.).

Mathematicians sometimes talk about continuous scales, but many dimensional categories cannot be 
divided into the smaller and smaller units that occur in continuous variables. For example, age and height
are continuous variables. We could express age in finer and finer units such as years, months, days, 
hours, seconds, and fractions of seconds since birth. Similarly, with a suitably precise measuring system, 
we could express height not merely in inches but also in tenths, hundredths, thousandths, or millionths 
of an inch. On the other hand, number of children or highest grade completed in school are dimensional 
variables that are discrete rather than continuous. Their scale of successive integers has equi-interval 
characteristics, but the integers cannot be reduced to smaller units.

Psychologists sometimes use ratio scale for a dimensional scale that has an absolute zero point, 
allowing ratio comparisons of the categories. Thus, age in years has a ratio scale: a 24-year-old person 
is twice as old as someone who is 12. Fahrenheit temperature does not have a ratio scale: 68°F is not 
twice as warm as 34°F.

Although these distinctions are sometimes regarded as important,1 they can generally be ignored. 
Any type of scale that has equi-interval monotonic categories can be called dimensional.

2.3.1.2 Ordinal Scales — In an ordinal scale, the successive categories can be ranked monoton-
ically, but the ranks have arbitrary magnitudes, without measurably equal intervals between every two 
adjacent categories.

Clinicians constantly use ordinal scales to express such variables as briskness of reflexes in the graded 
categories of 0, 1+, 2+, 3+, 4+. Severity of pain is a variable often cited as none, mild, moderate, or 
severe. Although age can be expressed in dimensional data, it is sometimes converted to an ordinal scale 
with citations such as neonatal, infant, child, adolescent, young adult, middle-aged adult, … .

An ordinal scale can have either unlimited ranks or a limited number of grades. Most ordinal scales in 
medical activities have a finite group of grades, such as 0, 1+, …, 4+  or none, mild, …, severe. If we 
wanted to rank the people who have applied for admission to a medical school, however, we could use an  
unlimited-rank scale to arrange the applicants with ratings such as 1, 2, 3, 4, 5, …, 147, 148, … . In this 
limitless scale, the lowest ranked person might be rated as 238 or 964, according to the number of applicants. 
Scales with unlimited ranks seldom appear in medical research, but have been used (as discussed much 
later) for the mathematical reasoning with which certain types of statistical tests were developed.

2.3.1.3 Quasi-Dimensional Scales — A quasi-dimensional scale seems to be dimensional, but 
does not really have measurably equal intervals between categories. Quasi-dimensional scales can be 
formed in two ways. In one technique, the scale is the sum of arbitrary ratings from several ordinal 
scales. For example, a licensure examination might contain 50 questions, for which each answer is 
regarded as a separate variable and scored as 0 for wrong, 1 for partially correct, and 2 for completely 
correct. Despite the arbitrary ordinal values, which have none of the equi-interval characteristics of 
dimensional data, the candidate’s scores on each question can be added to form a total score, such as 
46, 78, 85, or 100. The arbitrary result looks dimensional and is often manipulated mathematically as 
though it were truly dimensional.

A second source of quasi-dimensional data is a graphic rating technique called a visual analog scale.
The respondent rates the magnitude of a feeling, opinion, or attitude by placing a mark on a line that is  
usually 100 mm. long. The measured location of the mark then becomes converted to an apparently 
dimensional rating. For example, someone might be asked to mark the following line in response to a 
question such as “How bad is your pain?”

None Worst
Ever
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If the mark is placed as follows,

the measured distance could represent 67 “pain units.” Despite the dimensional expression, such scales 
are not truly dimensional because adjacent categories — such as 70, 71, and 72 — in the arbitrary graphic 
ratings are not accompanied by criteria that demarcate equal intervals.

2.3.1.4 Binary (Dichotomous) Scales — A binary or dichotomous scale has two categories, 
such as male and female for the variable sex. Other common scales with two categories are alive/dead, 
success/failure, and case/control. In medical research, many binary scales refer to entities, such as 
chest pain, that can be classified as present or absent, or to a variable such as previous pregnancy that 
can be cited as yes or no. When used to represent existence or nonexistence, a binary scale is sometimes 
called an existential scale.

Although apparently binary, existential data can often be regarded as a subset of ordinal data. The 
ordinal ranking becomes apparent if gradations of probability are added to the scale. Thus, when existence 
of acute myocardial infarction is expressed as likelihood of existence, the available scale is ordinally 
expanded to include the categories of definitely present, probably present, uncertain whether present 
or absent, probably absent, and definitely absent.

2.3.1.5 Nominal Scales — In a nominal scale, the unranked categories have no magnitudes. 
Nominal scales would express such variables as a person’s name, address, color of eyes, birthplace, 
religion, diagnosis, or type of therapy.

Nominal characteristics can sometimes receive implicit ranks based on cultural, social, political, or 
even clinical preferences. Thus, a short name might be preferred to a long one; certain addresses might  
be regarded as being in better neighborhoods than others; someone might like blue eyes better than 
brown (or vice versa); a person raised in Alabama might be more accustomed to social patterns in 
Mississippi than someone from Maine; and a diagnosis of acute pancreatitis might be more desirable 
than pancreatic carcinoma. When such rankings occur, however, the variable is no longer nominal and 
needs a different title for its expression. For example, if the variable is designated as desirability of 
diagnosis rather than diagnosis, the previously nominal categories acute pancreatitis, gallstone obstruc-
tive jaundice, and pancreatic carcinoma might become an ordinal scale.

For analytic purposes, the individual categories of a nominal scale are often decomposed and converted 
into a set of “dummy” binary variables, each rated as present or absent. For example, suppose current 
occupation is expressed in the nominal categories doctor, merchant, or other. The categories can be 
converted into three binary variables: occupation as a doctor, occupation as a merchant, and occupation 
as neither a doctor nor a merchant. (The three variables could be suitably condensed into only the first  
two, because someone whose values are no for both occupation as a doctor and occupation as a merchant
would have to be rated as yes for occupation as neither a doctor nor a merchant.)

2.3.2 Other Forms of Nomenclature

Because of their fundamental roles in scientific information, the five types of scales and data have 
received considerable attention from statisticians and psychosocial scientists, who have labeled the scales 
with many different titles. For dimensional data, we have already met the terms interval and ratio, which 
are used by psychologists, and continuous, used by statisticians. To distinguish the arbitrary non-
dimensional categories, ordinal, binary, or nominal data are sometimes called attribute data, categorical 
data, or discrete data (although the last term is ambiguous, because integer dimensions are also discrete). 

None Worst
Ever
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Being readily added, multiplied, and otherwise manipulated mathematically, dimensional data are some -
times called quantitative data, whereas categorical data, which can only be enumerated and cited as 
frequency counts, are sometimes called qualitative or quantal data.

For practical purposes as well as simplicity, we can escape all of the possible jargon by using five 
main terms: dimensional, quasi-dimensional, ordinal, binary, and nominal. To indicate the arbitrary 
categories of non-dimensional scales, they are sometimes here called categorical, although the term non-
dimensional will usually convey the desired distinction.

2.4 Multi-Component Variables

Variables can also be classified according to their number of components and timing of component 
states. Regardless of the type of scale, a single variable can contain one component or more than one. 
A simple variable has only one main component; a multi-component or composite variable has more 
than one. A variable can also refer to only one stated condition, or to two or more states.

2.4.1 Composite Variables

A composite variable contains a combination of data from two or more component variables. Each 
component variable, expressed in its own scale, is “input” that is aggregated to form a separate “output” 
scale. For example, the Apgar Score for the condition of a newborn baby is a composite variable. Its 
output scale, ranging from 0 to 10, is a sum of ratings for five simple variables — representing heart 
rate, respiration, skin color, muscle tone, and reflex response — each cited in its input scale of 0, 1, or 2.
Although the aggregation can be an “additive score,” some composite variables are formed as “Boolean 
clusters.” A Boolean cluster contains a combination of categories joined in logical unions or intersections. 
For example, the TNM staging system for cancer contains categorical ratings for three component 
variables representing Tumor, Nodes, and Metastases. The individual ratings, which might be cited as 
T5NlM0 or T2N0M2, are often combined into an ordinal set of clustered categories called stages. In 
one common pattern, Stage III represents patients who have distant metastases, regardless of the ratings 
for tumor and regional nodes. Stage II represents patients with involvement of regional nodes and no 
evidence of distant metastases, regardless of the ratings for tumor. Stage I represents patients with no 
evidence of either regional node or distant metastatic involvement.

A composite variable can also be formed from dimensional components. For example, for the variable 
called anion gap, the sum of serum chloride and bicarbonate concentrations is subtracted from the serum 
sodium concentration. The Quetelet index is the quotient of weight (in kg.) divided by the square of 
height (in cm.).

Composite variables have many different names. They are sometimes called indexes, factors, stages, 
systems, classes, scales, ratings, criteria, multi-dimensional scales, or clinimetric indexes. Although 
composite variables are usually expressed in dimensional or ordinal scales, some of the most complex 
constructions have binary existential citations. They occur for variables formed as diagnostic criteria for 
presence or absence of a particular disease. Thus, in the clinical diagnostic criteria for tuberculosis, 
rheumatic fever, rheumatoid arthritis, or myocardial infarction, the output scale is a simple binary 
expression such as yes or no (or present or absent). The input, however, consists of multiple variables, 
arranged in complex patterns, that often form intermediate axes or “subscales” before everything is 
ultimately aggregated into the binary output rating.

2.4.2 Component States

All of the variables described thus far refer to the single-state condition of a particular person at a single 
point in time. A single variable, however, can also express the comparison of results for two or more 
states. They can be the single-state condition of two persons, the change noted in a person’s single state  
on several occasions, or descriptions of the same state by several independent observers.
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In these situations, the comparative result is often cited as a separate variable, having its own scale 
for denoting an increment, decrement, or some other comparative distinction in the linked values. For 
example, if 70 kg and 68 kg are the values for two people “matched” in a particular study of weight, 
the difference between the two single-state values could be cited in a separate variable as +2 kg (or 
–2 kg). Alternatively, using a separate ordinal scale, one person could be regarded as slightly heavier 
than the other. In another study, a particular person’s single-state values of serum cholesterol might have 
been 261 before treatment and 218 afterward. The change could be recorded in a separate variable as 
fall in cholesterol: 43. In a study of observer variability, the S-T wave depression in the same electro-
cardiogram might be reported as 2.0 mm by one electrocardiographer and as 2.4 mm by another. The 
difference in the two measurements could be expressed in a separate variable as 0.4 mm.

For the three foregoing examples, the value of the additional variable was calculated from values of 
the original single-state variables. In other circumstances, however, the change can be rated directly, 
without specific reference to single-state values. For example, a patient might express response to 
treatment in a rating scale such as excellent, good, fair, poor or in specifically comparative terms such 
as much better, somewhat better, same, somewhat worse, much worse.  When a comparative change 
is cited without reference to single-state components, the expression is called a transition variable.

The total effect of more than two states in the same person often cannot be expressed in simple 
comparative terms, such as larger, smaller, or same. The expressions may therefore describe the trend
in the entire series of values. Thus, the pattern of successive blood pressure measurements for a particular 
person might be cited in a scale such as rising, stable, or falling. Sometimes the general pattern of 
trend is categorized for its average value, desirability, or diagnostic features. For example, a set of 
successive daily values for post-therapeutic pain might be cited for their mean value, or in ratings of 
the total response as excellent, good, …, poor. The set of successive dimensional values in a glucose 
tolerance curve might be classified as normal, diabetic, or hypoglycemic.

2.4.3 Scales for Multi-Component Variables

Regardless of how the components are expressed and assembled, multi-component variables are cited 
in the same types of dimensional, ordinal, binary, or other scales used for single-component variables. 
Thus, an Apgar Score of 10, a TNM Stage of III, an anion gap of 9, a diagnosis of acute myocardial 
infarction, or a post-treatment response of much improved could all come from multi-component 
variables, but could all be analyzed as values in individual variables.

To evaluate the scientific quality of the multi-component expression, however, we would need to 
consider not only the quality of each component, but also the suitability and effectiveness of the way 
they have been put together. For example, suppose a composite scale to indicate satisfaction with life
contained certain weighted ratings for age, occupation, and income. Each of the components might be 
scientifically measured, but the combination would be an unsatisfactory expression for satisfaction with 
life. As another example, each of the components of the Apgar score might be suitably chosen and 
appraised, but their aggregate would be unsuitable if reflex responses were rated on a scale of 0, 5, 10
while the other four variables were rated as 0, 1, 2.

2.5 Problems and Customs in “Precision”

The idea of precision is a fundamental concept in both science and statistics, but the concept is used 
with different meanings in the two domains. Furthermore, the attribute of numerical precision is different 
from ordinary precision and is usually a matter of arbitrary custom.

2.5.1 Concepts of Precision

Scientists use precision to denote “the quality of being exactly or sharply defined or stated.” 2 Thus, the 
phrase “cachectic, dyspneic, anemic old man” is more precise than the phrase “sick patient.” The 
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numerical expression 3.14159 is a more precise value for π than 3.1. Statisticians, however, use precision
to refer to “the way in which repeated observations” conform to themselves and … to the dispersion of  
the observations.’’3 In this idea, a series of repeated measurements of the same entity, or individual 
measurements of multiple entities, is statistically precise if the spread of values is small relative to the 
average value. To a scientist, therefore, precision refers to increased detail and is an attribute of a single
measurement. To a statistician, precision refers to a small spread or range in a group of measurements.

This fundamental difference in concepts may cause confusion when scientists and statisticians com-
municate with one another, using the same word for two different ideas. Furthermore, the difference in 
concepts leads to different goals in measurement. A prominent aim of scientific measurement is to 
increase precision by increasing details. Statistics does not have a word to indicate “detail,” however, 
and many statistical activities are deliberately aimed at “data reduction,” 4 which helps eliminate details.

Doing studies of quality control or observer variability in a measurement process, regardless of its 
precision in detail, the scientist may be surprised to discover that excellent reproducibility for the process 
is regarded by the statistician as precision. The scientist may also be chagrined to find that the hard 
work of developing instruments to measure with high precision may be regarded statistically as producing 
excessive details to be reduced.

The two sets of concepts can readily be reconciled by recognizing that scientific precision refers to 
individual items of data, whereas statistical precision refers to a group of data. In trying to understand 
or summarize meaning for a group of data, both the scientist and the statistician will reduce the amount  
of detail conveyed by the collection of individual values. This reduction occurs with the formation of 
statistical indexes that denote the average value, spread, or other attributes of the collective group. Before 
or while the reduction occurs, however, the individual items of data will require certain policies or 
customs about the management of numerical precision.

2.5.2 Strategies in Numerical Precision

The idea of numerical precision involves concepts and customs for “significant figures” or “significant 
digits.” In the decimal system of notation, any number can be converted to a standard numerical 
expression by moving the decimal point so that the number is cited as a value between 0 and 10, 
multiplied by a power of 10. Thus, .01072 becomes 1.072 × 10−2 and 1072 becomes 1.072 × 103. With 
this convention, a significant figure occurs at the left of the decimal point and the other significant figures 
occur at the right. The number 15,000 becomes 1.5000 × 104 and 14,999 becomes 1.4999 × 104. Each 
number has five significant figures.

A prominent challenge in data reduction — at the level of individual values of data — is the decision 
about how many significant figures (or digits) to retain in each number. The decision will depend on 
how the number was obtained and how it will be used.

2.5.2.1 Production of Numbers — Numbers can be produced by measurement or by calcula-
tion, but there are two forms of measurement: mensuration and enumeration.

2.5.2.1.1 Mensuration. This unfamiliar term refers to the most familiar form of scientific measure-
ment: identifying the magnitude of an entity on a calibrated scale. Mensuration is used to distinguish 
this type of measurement from the other type, enumeration, which is discussed in the next subsection. 
In the customary form of mensuration, the scale contains dimensional values, and the number is a 
measured amount, such as 137 meq/dl for serum sodium concentration or 15.2 units of hemoglobin. 
With more precise systems of measurement and calibration, sodium might be determined as 137.419
or hemoglobin as 15.23, but such systems are rarely used because the extra precision is seldom necessary 
or helpful.

Because precision will depend on the “refinement” of the dimensional scale, decisions must be made  
about how to report results (i.e., how many significant figures to include) that lie between the two finest 
units of calibration. For example, if an ordinary ruler is marked at intervals of 1 mm, magnitudes that 
lie between two marks are often cited at the midpoint and expressed as 1.5 mm., 2.5 mm., etc.
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Note that mensurations do not always produce dimensional numbers. With an ordinal, binary, or 
nominal scale, the result of the mensuration process may be values such as 3+, yes, or hepatitis. The 
foregoing discussion of mensuration, however, was confined to dimensional numbers.

2.5.2.1.2 Enumeration. This fancy word for counting is often used because it refers to both the 
process and result and, therefore, offers a single term for the two words, frequency count. An enumeration 
has unlimited precision because the number of significant digits continues to increase as more entities 
are counted. For example, the census bureau can report counts of 1873 or 2,194,876 people in different  
regions.

2.5.2.1.3 Calculation. Most of the main numbers used in statistics are calculated from the basic 
results obtained with mensuration and/or enumeration. For example, as noted later, a mean is constructed 
when a sum of mensurations or enumerations is divided by another enumeration.

During the calculations, numerical precision can be altered in ways that no longer reflect the original  
precision of measurement. Addition and multiplication may increase the original number of significant 
digits; subtraction can decrease them; and division can produce either increases or decreases. For 
example, if one hematocrit is measured with high precision as 23.091 and another as 46, the sum of 
69.091 suggests that both measurements have 5 significant digits. Multiplication of the two numbers 
would produce the 7 significant digits of 1062.186. For the three-digit serum calcium values of 11.3
and 10.9, subtraction loses two digits, yielding .4. With division, the ratio of the two-digit ages 84 and 
42 produces the one-digit 2, but the ratio of 56/32 produces the three-digit 1.75. In some instances, 
calculation can produce a “repeating” or “unending” decimal having as many significant digits as desired. 
Thus, 2/3 = .66666666… and 1/22 = .0454545… .

2.5.2.2 Transformations — Some variables are regularly transformed either as raw data or for 
analytic purposes. The raw-data transformations, often done for scientific custom, can express weight 
as kg rather than lb, height in cm rather than in., and temperature in ºC rather than ºF. Many chemical 
concentrations today are transformed into standard international units from their original measurements  
in mgm or Gm. Other raw-data transformations, done for scientific convenience, will express hydrogen  
ion concentration as its negative logarithm, called pH.

In yet other transformations, used for analytic purposes discussed later, values of survival time in 
months or bacterial counts might be converted to logarithms. A series of dimensional values for 
hemoglobin might be compressed into an ordinal array such as ≤ 8, 9–11, 12–13, 14–15, 16–17, and 
≥18. A series of values for serum calcium might be compressed into the categorical zones low, normal, 
and high. These transformations, however, usually occur during the statistical analyses, not in the original 
expression of the data.

2.5.2.3 Customs in Management — Certain customs have been established to achieve consis-
tency in managing the diverse possibilities for computational alteration of numerical precision. Each 
custom depends on whether the number is being understood, reported, or formally calculated.

2.5.2.3.1 Understanding. For understanding what the numbers imply, and for doing certain mental 
or in-the-head calculations that can facilitate comprehension, most people are accustomed to using two 
significant digits. For example, if two percentages are reported as 49.63% and 24.87%, you may not 
immediately perceive their comparative relationship. The relationship is promptly apparent, however, 
when the numbers are “rounded” to 50% and 25%. Because most people have become accustomed to 
dealing with percentages, which range from 0 to 100 while usually having two digits, the process of 
comprehension usually requires no more than two significant digits.

Furthermore, the digits are usually most rapidly understood when presented in a range of 0 to 100. 
Thus, the proportions .50 and .25 are easier to compare when expressed in percentages as 50% and 25%. 
This custom is responsible for the frequency with which proportions are multiplied by 100 and expressed 
as percentages. The custom is also responsible for the epidemiologic tactic, discussed later, of expressing 
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populational rates in unit values per 10,000 or per 100,000. Thus, an occurrence rate of 217/86,034 
might be cited as 25.2 × 10−4 or 252 per hundred thousand rather than .00252.

(Certain tactics in prompt understanding will work with “convenient” numbers rather than significant  
digits. For example, if you see a number such as , you can almost immediately recognize that the 
result lies between 12 and 13 because 122 = 144 and 132 = 169.)

2.5.2.3.2 Reporting. In reporting numbers for readers, three significant digits are usually listed for 
measured amounts, and two digits for most percentages. The “rules” may be altered, however, if they 
produce ambiguous discriminations or misleading impressions. For example, two baseball players with 
“rounded” averages of .333 after the last day of the season may be tied for the batting championship. 
The winner, determined with extra decimal places, will be the batter with 216/648 = .3333 rather than 
217/652 = .3328. Among a series of percentages, one member of the group may be listed as 0% because  
the proportion 2/483 = .00414 was rounded to 0 when converted to integers between 0 and 100. To avoid 
confusion between this 0 and another that arises as 0/512, the first one can be cited as 0.4%.

An unresolved custom in reporting is whether to use a “leading” 0 before the decimal point in numbers 
such as .183. Frequently seen expressions such as P < .05 need not be reported as P < 0.05, but some 
writers believe that the leading zero, as in 0.183, helps improve clarity in both typing and reporting. 
Other writers believe the leading 0 is a waste of space. In computer or other printouts of integer digits, 
numbers such as 01 or 08 look peculiar, but are increasingly used and accepted. (In this text, the leading 
zeros will be omitted except when needed to avoid ambiguity.)

2.5.2.3.3 Calculating. In contrast to the truncated two or three digits used for understanding and 
reporting, calculations should always be done with all pertinent digits retained during the calculation. 
Any truncation (or “rounding”) of “trailing” digits on the right should be reserved until everything is 
done, when the final result is reported. The rule to follow is “Round at the end.” Keep all numbers as 
intact as possible throughout the calculation and save any rounding until all the work is completed.

The rule is particularly important if you use an electronic hand calculator that can store no more than 
9 digits. Many personal digital computers work in “single precision” with 6 digits or in “double precision” 
with 12. In the latter situation, or when a mainframe computer works with 24 significant digits in 
“extended precision,” the computer seldom has problems in rounding. The reader of the printout may 
then be suffused with an excess of trailing digits, however, when the computer displays results such as 
“.04545454545” for divisions such as 1/22.

2.5.3 Rounding

Many people in the world of medicine learned about mathematical rounding long before the same word 
was applied in patient care. In mathematics, rounding consists of eliminating trailing digits at the right 
end of a number. The excess digits are those beyond the stipulated boundary of two, three, or sometimes 
more “significant figures.”

With simple truncation, the trailing digits are chopped off directly with no “adjustment” of previous 
digits. With rounding, the previous adjacent digits are adjusted; and the adjustment may involve more 
than one digit. Thus, 19.09 might be rounded to 19 for two digits and 19.1 for three, but 19.99 would 
become 20 or 20.0.

The rounding process is simple and straightforward if the terminal digits are between 0–4 and 6–9. 
If <5, the candidate digit is dropped without further action. If the candidate is >5, the preceding digit 
is incremented one unit. Thus, 42.7 becomes 43; 42.4 becomes 42; and 5378 becomes 5380 (or 5400 
with more drastic rounding).

The only pertinent problem is what to do when the terminal digit is exactly 5 or has the sequence of 
5000… . In many branches of science ( and in most hand-held calculators), the rule is simple: If the 
last digit is ≥5, round upward. With this rule, 42.5 would become 43. A statistical argument has been 
offered, however, that the strategy is biased. Of the ten candidate digits, four (1, 2, 3, 4) are rounded 
down; four (6, 7, 8, 9) are rounded up; and one (0) has no effect. Therefore, a bias toward higher values  
will occur if all terminal 5’s are rounded upward. To avoid this problem, terminal 5’s are rounded to the 
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preceding even digit. Thus, 17.5, having an odd digit before the 5, is rounded upward to 18; but 16.5, 
with an even digit before the 5, is rounded down to 16. With this tactic, the preceding digits of 0, 2, 4, 
6, 8 are left intact, but 1, 3, 5, 7, 9 are rounded upward.

You may now want to argue that the procedure produces a bias toward getting even terminal digits. 
This bias might be a problem for betting in roulette, but should not be a difficulty in quantitative 
calculations. In fact, the rule would work just as well and the results would be just as “unbiased” if 
rounding were aimed toward a preceding odd rather than even digit. The even direction is probably 
maintained because rounding toward an even number is easier to remember than rounding “odd.” If you  
(or your calculator) happen to neglect the rule, and if terminal 5’s are routinely rounded upward, however, 
no great disasters are likely to occur.

Bear in mind that the round-even strategy applies only when the terminal nonzero digit is 5 (or 
50000…). Otherwise, use the simple rule of rounding up for > 5 and down for < 5.

Like any other set of rules, the foregoing recommendations have exceptions that occur for discrimi-
nation, identification, and decrementation.

2.5.3.1 Discrimination — If the relative magnitude of two numbers must be discriminated, 
rounding can be counterproductive, as in the previous illustration of ranking baseball players. If the 
extra digits are needed to discriminate distinctions, do not round.

2.5.3.2 Identification — Among a series of percentages ranging from 1% to 99%, one member  
of the group may have the proportion 2/483 = 0.4%. If listed with no more than two integer digits, this 
result would be a misleading 0%. To avoid the problem, the rule can be “bent” for an exception listing 
the result as 0.4%.

2.5.3.3 Decrementation — Trailing digits are particularly important when two numbers are 
subtracted, because the size of the decrement may be determined entirely from distinctions in last 
few digits. A disastrous statistical syndrome, called premature rounding, occurs when trailing digits 
are “ejaculated” too soon. The malady can occur with hand-calculator determination of an entity 
called group variance, which precedes the determination of a standard deviation in Chapter 4.

2.6 Tallying

Despite the advances of electronic computation, you may sometimes (or often) find yourself doing 
enumeration by counting the frequency of data in a set of nominal, ordinal, or binary categories. Doing  
it manually can save a great deal of effort if you have a relatively small amount of data. By the time 
everything gets punched and verified for electronic processing, the manual tally can be long done, 
checked, and tabulated. For example, suppose a questionnaire returned by 150 people contains ratings 
of 1, 2, 3, 4, or 5 for each of 4 statements, A, B, C, and D. You want to know and summarize the 
distribution of frequency counts for the ratings. The rapid manual way to do this job is to prepare a 
“tally box” or “tally table” that has the skeleton shown in Figure 2.1.

The next step is to go through the questionnaires, one at a time, putting an appropriate tally in the 
columns for the rating given to A, B, C, and D by each person. With a convenient method of tallying, 
the frequency counts are evident as soon as you have completed the last questionnaire.

2.6.1 Conventional Methods

The conventional method of tallying uses a vertical slash or up-and-down mark for each of four tallies,  
then a diagonal mark through the fifth. The first two marks would be , the first four would be ;
the fifth would be . With this tactic, the tally  would promptly be 
identified as 18.

|| ||||
|||| |||| |||| |||| |||
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2.6.2 Alternative Methods

An alternative way of bunching groups of five, proposed by K. H. Hsieh,5 is the Chinese tally count,
which is based on the five strokes used in the Chinese character cheng. According to Hsieh, the result
is “neater and easier to read than a series of slashes”; and because “an incomplete character can be 
identified at a glance,” the method avoids having “to count carefully to see if four slashes have been
recorded” before crossing the fifth. The upper part of Figure 2.2 shows the writing sequence for forming
cheng, and the lower part illustrates its application in a tally table.

John Tukey6 has proposed a system of dots and lines that shows 10, rather than 5, for each completed
visual group. In the Tukey system, : : is 4, then lines are drawn around the periphery to form a box (so
that  is 7). Diagonal lines are then drawn so that is 10.

Any of the tally methods will work well if you become familiar and comfortable with it, and use it
carefully. The Tukey method has the advantage of saving space if only a small area is available for the
tally box.

References
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Exercises

2.1. The skeleton table in Section 2.2 contains variables for age, height, sex, diagnosis, treatment, and
three values of blood pressure.

2.1.1. Identify the scale of each of those variables according to the classifications listed in
Section 2.3.1.
2.1.2. You have been asked to prepare an analysis of the response of blood pressure to treatment.
You can use the three cited values of blood pressure to form any additional variables you might
wish to analyze. Indicate what those variables might be and how they would be formed.

2.2. The variable age is almost always expressed in a dimensional scale. Prepare transformations of the
data that will express age in three different scales that are ordinal, binary, and nominal. Cite the contents
of the categories that form the new scales.

FIGURE 2.1
Illustration of a “Tally box” with five possible ratings for
four statements.

FIGURE 2.2
Alternative approach for tallying. [Taken from Chapter 
Reference 5.].

1 2 3 4 5

A

B

C

D

Complete
' cheng' (1) (2) (3) (4) (5)

Writing Sequence

Age in Years Tally Mark Frequency in Group

The Chinese Character Cheng

5 8

6 12

7 16

8 17

9 12

10

Total

5

70
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2.3. The value of a variable expressing a change in state is usually determined by direct comparison 
of results in two single-state variables. Occasionally, however, a transition variable is created during 
clinical activities without specifically establishing two individual single-state values. Give an example 
of a question you might ask a patient (or about a patient) in which the answer would produce data that  
can be directly classified as a transition variable.
2.4. In Section 2.4.1, a composite variable was created by combining two or more separate variables. 
Can you give at least one example of a nonmedical phenomenon, occurring in daily life, that is regularly 
expressed as a composite variable? 
2.5. In the TNM system for classifying patients with cancer, the T is expressed in 4 or 5 categories for 
rating certain attributes of the primary tumor. The N contains three ordinal categories for rating the 
spread of the tumor to regional lymph nodes. The M contains three ordinal categories for rating the 
spread of the tumor to distant metastatic sites. With numerical ratings assigned to each category, the 
results for a particular patient may be cited in such TNM index expressions as T3NlM0, T2N0Ml, 
TlN2M2, and so on. According to the classifications you have learned in this chapter, what kind of a 
scale is this? Give the reasons for your decision.
2.6. Using the five types of classification listed in Section 2.3.1, what kind of scales are formed by the  
Apgar Score, TNM Stage, anion gap, and Quetelet index?
2.7. In extracting data from medical records, an investigator decides to cite age in years according to 
decade. The scale of categories will be 0, 1, 2, 3, …, 8, 9 according to ages 0–9, 10–19, 20–29, 30–39, 
…, 80–89, and Š 90. What do you foresee as the advantages and disadvantages of this scale when the 
extracted data are later analyzed statistically?
2.8. Find a set of diagnostic criteria for any disease in which you are interested. Briefly outline the 
construction of the criteria and classify the scale used to express the result.
2.9. From any literature at your disposal, find a variable that has been reported with what you regard 
as unsatisfactory precision, or that seems to have been categorized or coded in an unsatisfactory manner. 
The categorization or coding is “unsatisfactory” if you do not like the chosen categories, cannot determine 
how they were identified or demarcated, or believe that the selected codes were inadequate. For example, 
you might complain about a component of the Apgar Score if you think that heart rate should have been 
divided into four categories rather than three, if you cannot decide where to assign a baby with a heart 
rate of 100, if you would have difficulty using the stated criteria for scoring muscle tone, or if you think 
that muscle tone is not a “sensible” or sufficiently important variable to be included in the total score.

All that is needed for the answer here is one complaint. You need not identify or include a copy of 
the source publication, but please say enough about the topic or circumstances for your complaint to be 
clearly understood and justified.
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Part I

Evaluating a Single Group of Data

If individual items of data are the statistical counterpart of biologic “molecules,” groups of data are the  
“cells.” In fact, the word cell is regularly used in statistics to denote the particular group of data in each 
location of the basic entity called a table. Just as cells are the smallest viable structure in biology, a 
group of data for a single variable—containing information such as each person’s diastolic blood pressure, 
sex, clinical stage, or principal diagnosis—is the smallest analyzable structure in statistics.

The next seven chapters describe the many things that might be done with such a “univariate” group 
of data. The activities extend all the way from simple descriptive summary indexes, such as medians 
and standard deviations, to more complicated inferential calculations, such as standard errors, confi-
dence intervals, and a “one-sample” t-test. This long tour through a single group of data will also 
include the main conventional activities of statistical inference — probabilities and parametric 
sampling — and some attractive new procedures made possible by modern computers: jackknife 
analyses and bootstrap resampling.

If you become impatient with the amount of attention being given to a single group, please bear in 
mind that (1) as a counterpart of the cells of biology, the phenomena have fundamental importance in 
statistics; and (2) all the activities of “advanced” statistics are essentially an extension of what can happen 
for a single group. If you understand the univarate descriptions and inferences, the rest is relatively easy. 
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Central Index of a Group
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The items in a large collection of data can always be examined individually, but the collection cannot 
be interpreted until it receives a meaningful summary. To “make sense” of a collection of individual 
items of data, we begin by forming groups, inspecting the spectrum of data in each group, and choosing 
appropriate summaries for each spectrum. This chapter is concerned with the crucial first choice in that  
summary: a central index. 

3.1 Formation of a Group

Most statistical discussions begin with the idea that a “sample” has been obtained and is about to be 
analyzed. In most medical activities, however, the idea of a sample is often misleading because a process 
of “sampling” did not occur.

Instead, the investigator usually collects data from conveniently available groups of people. Some-
times the group is “natural,” consisting of everyone who came to the emergency room or received a 
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particular treatment during a specified interval of time. Often the group is more “artificial,” containing  
the individual persons who decided to respond to a mailed questionnaire or who volunteered for a 
special test. Sometimes the group may contain not individual people but a set of observations obtained 
repeatedly for the same person.

The way that groups are chosen and formed is an important scientific issue that is commonly 
overlooked when statistical procedures are applied. As an arbitrarily defined collection of conveniently  
available people, most groups are usually biased either for representing a larger population or for being 
compared with one another. The prevention, evaluation, and management of these biases are prime 
challenges in scientific architecture, but the statistical discussion here will proceed with the assumption 
that the groups have been suitably formed. The statistical goals are to prepare a “univariate” summary 
of the data for each variable in a group. 

3.2 Role of Summary Indexes

The summary of a group is used for both internal and external purposes. Internally, it is a reference 
point for locating the relative status of individual members within the group. Is a particular person much 
older or much younger than the other people? Externally, the summary index locates the group for 
comparison with the outside general world or with some other selected group. Thus, we might want to 
know whether a particular collection of people contains mainly children or octogenarians or whether 
the group is generally older than a compared group. In other external activities, we may examine the 
relationship of one variable, such as age, to other variables, such as serum cholesterol and survival time.

The formation of a summary often receives perfunctory statistical attention. After a description of the 
means that offer an “index of central tendency” and the standard deviations that offer an “index of 
spread,” the discourse promptly advances to more “interesting” topics: the inferential statistical proce-
dures used for analyzing the summarized data. If the descriptive data have prime scientific importance, 
however, the choice of summary expressions is a key decision, requiring substantial thought and attention.

At least three major problems can arise if we merely calculate means and standard deviations, while 
ignoring the main scientific goals and the other statistical options:

1. Representation: The mean or other value chosen as a central index becomes the one single number 
that repeatedly represents the group thereafter, in all of the internal and external comparisons. If 
this central index is unsatisfactory, the group will not be adequately represented.

2. Distortion: If the spread of the data in the group’s spectrum is denoted by the standard 
deviation, and if the standard deviation is not an effective index of spread, the data will be 
inadequately represented and possibly distorted for internal placement of relative locations, 
for various external comparisons, and for analytic correlations with other variables.

3. Omission: Many important clinical phenomena are expressed in categorical data, which cannot 
be summarized with means and standard deviations. Consequently, a focus on only the latter  
two indexes will omit the challenge of getting suitable summaries for non-dimensional 
variables.

For all these reasons, the role and choice of summary indexes require careful attention. The rest of 
this chapter is devoted to indexes of central tendency. The next two chapters are concerned with indexes  
of internal location and spread. 

3.3 Spectrum (Distribution) of a Group

To choose appropriate summary indexes, the first step is to see what is in the data. The collection of 
values in the group form what is usually called a spectrum by biologic scientists and a distribution by 
statisticians. The contents and “shape” of the spectrum will indicate how best to summarize the results.
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3.3.1 Displaying the Spectrum

A spectrum is arranged, displayed, and summarized differently for non-dimensional and dimensional data.

3.3.1.1 One-Way Frequency Tabulations — Non-dimensional data are usually displayed in
a “one-way table” showing frequency counts and the relative frequencies (or proportions) for each
categorical value. The results are called “one-way tables” because only a single variable is tabulated. 
Figure 3.1 shows the contents of such a table for the ordinal variable, TNM stage, in a group of 200 
patients with lung cancer. The distribution has its highest individual proportions (25.5 and 34.0 percent)
at the two “ends” of the data. The lowest proportion (9.0 percent) is in the “middle.” (The “cumulative”
frequencies marked in Figure 3.1 will be discussed in Chapter 4.)

Dimensional data can also be displayed in one-way tables, but a “pattern” may not become apparent
if the spectrum contains too many individual values.

3.3.1.2 Stem-Leaf Plots — To show the pattern of dimensional data, John Tukey1 introduced the
display called a stem-leaf plot. For this plot, each numerical value of data is split into two parts: the left
side becomes a stem, and the right side, a leaf. For example, the numbers 114, 120, 93, 107, 128, 99,
and 121 might be split as 11|4, 12|0, 9|3, 10|7, 12|8, 9|9, and 12|1. In the tabulated plot, the leaves are
listed consecutively next to each common stem. In the foregoing group of values, which has three 12
stems and two 9 stems, the plot would be

  12|081 
11|4 
10|7 

9|39

The number of digits in the available values will determine where to place the splits that separate
stems and leaves. The subsequent plot can then be constructed simply and rapidly to show the spread,
concentration, and shape of the data.

Figure 3.2 shows a stem-leaf plot for the values of hematocrit in 200 patients with lung cancer. The
stems extend from 24 to 56; and most of the leaves are 0 because hematocrit values are usually recorded
as integers. The column on the right shows the number of leaves at each stem.

3.3.1.3 Histograms — Before stem-leaf plots were invented and became generally available via
commercial computer programs, dimensional data were often displayed with histograms. (The term is
a reduced combination of history-gram; it has nothing to do with histology.)

Instead of demarcations formed by the stems of leading digits, the data are divided into a series of
intervals. Instead of showing the trailing digit(s) as leaves, the number of items are counted as frequencies
for each interval. When placed on a graph, the X-axis for the results indicates the boundaries of each
interval, and the Y-axis, the associated frequency counts or their relative proportional frequencies. The
graph forms a frequency polygon, if shown with points, and a histogram, if shown with bars.

TNM STAGE

TNM STAGE Frequency Percent
Cumulative
Frequency Cumulative Percent

I 51 25.5 51 25.5
II 27 13.5 78 39.0
IIIA 18 9.0 96 48.0
IIIB 36 18.0 132 66.0
IV 68 34.0 200 100.0

FIGURE 3.1
Distribution of TNM stages in 200 patients with lung cancer.
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To illustrate the procedures, consider the data of Table 3.1. For the raw values of data in the left-
hand column, the boundaries of intervals are chosen arbitrarily. In one common approach, at least seven
intervals are used for the spread of the data; in another approach each interval spans 5 dimensional
units. Both tactics can be used to divide the data of Table 3.1 into seven intervals: 10–14, 15–19, …,
and 40–44 units. The results for relative frequency are graphed in Figure 3.3 as both a frequency polygon
and a histogram.

Table 3.2 shows a stem-leaf plot, prepared with an ordinary typewriter, for the data of Table 3.1. (Each
digit must be given equal width if a stem-leaf plot is prepared by hand or by a typewriter that ordinarily
shortens the width of the digit 1.) The horizontal pattern shown in Table 3.2 is essentially identical to
the vertical pattern in Figure 3.3.

3.3.2 Inspection of Shape

The shape of a distribution is the pattern formed by the frequencies (or relative frequencies) displayed
at each of the categorical values, stems, or demarcated intervals. For non-dimensional data, the shape
is not particularly important because, as noted later, it does not affect the choice of summary indexes.
For dimensional data, however, the patterns — when arranged vertically rather than in horizontal stem-
leaf plots — can form the series of shapes shown in Figure 3.4.

Stem Leaf #
56 0 1
55
54 0 1
53 00 2
52 0 1
51 00 2
50 000000 6
49 000 3
48 000009 6
47 0001 4
46 0000000 8
45 000000000000006 15
44 000000000000 12
43 000000000000555 15
42 0000000000000000009 19
41 00000000047 11
40 0000000000000005 16
39 000000000000003399 18
38 00000000004 11
37 0000000000558 13
36 000033 6
35 0000000 7
34 000000255 9
33 0000003 7
32 07 2
31 00 2
30 0 1
29
28 0 1
27
26
25
24 0 1

FIGURE 3.2
Stem-leaf plot for values of hematocrit in 200 patients with lung cancer.
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TABLE 3.1

Raw Data, Interval Values, and Relative Frequencies

Raw Data
Demarcated

Intervals
Frequency

Count
Relative

Frequency (%)

12,14,12,11,13 10–14 5 9
15,18,17,17,16,19,19,18,15 15–19 19 34
17,16,16,17,19,15,17,19,16,18
21,24,20,22,22,21,24,20 20–24 13 23
23,21,22,24,21
28,26,29,28,28,25 25–29 10 18
29,26,28,29
33,30,34,33 30–34 4 7
36,39,37 35–39 3 5
41,43 40–44 2 4
TOTAL 56 100

FIGURE 3.3
Histogram (rectangles) and frequency polygon (dots and
lines) for data contained in Table 3.1.

FIGURE 3.4
Shapes of different distributions of data. The vertical axes for each shape are relative frequencies of occurrence for the
values (or intervals) in the horizontal axes.
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Stem-Leaf Plot for Data in Table 3.1
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These univariate patterns are sometimes mistakenly regarded as bivariate, because the graphs seem
to have two variables, placed along an X- and Y-axis. The entity on the Y-axis, however, is not a variable.
It is a statistic determined from counting the available values, not from acts of individual measurement.
The Y-axis shows frequency counts or relative proportions for each category of the single variable on
the X-axis.

3.3.2.1 Catalog of Shapes — The shapes in Figure 3.4 can be catalogued as convex or other,
and as symmetrical and non-symmetrical.

Most patterns have one or more crests that form a basically convex shape, with small relative frequen-
cies at one end of the distribution, rising toward one or more crests in the interior and falling toward
the other end. With a single crest at the center of the curve, the convex shape is also symmetrical. The
famous “bell” or “cocked-hat” shape of the Gaussian (or “normal”) distribution has an essentially
symmetrical convex pattern. (The distribution will be called Gaussian throughout this text to avoid the
medical ambiguity produced when statistical jargon refers to this shape as “normal”). Another shape
that can be regarded as symmetrically convex is a uniform (or rectangular) distribution. When the single
crest is asymmetrically off-center, located toward one of the exterior ends, the distribution is called skew.
The frequency polygon in Figure 3.3 has a right skew pattern.

A symmetrical distribution need not be convex. Symmetrical shapes can also be produced by abimodal
distribution with two distinctive crests and by a concave distribution with a U-shaped trough. (The latter
type of shape would be produced by the data in Figure 3.1.) Bimodal and concave distributions can also
be asymmetrical, according to the location of the crests and troughs.

A sloping distribution does not have the fall-rise-fall or rise-fall-rise pattern of any of the previous 
shapes. Instead, the curve of relative frequencies is “monotonic,” continuously rising toward (or falling 
from) a crest that occurs at one end of the distribution. One type of sloping distribution is sometimes 
called J-shaped; another type is called inverse-J-shaped, or L-shaped. Statisticians often use the word 
exponential for these sloping shapes.

Shapes can also be described as centripetal if their crest (or crests) are somewhere near the center of 
the distribution away from either end. All basically convex shapes are centripetal. The shape is centrifugal
if the crests are located at the ends, or if no specific crest occurs. The uniform, concave, and sloping 
distributions are all centrifugal.

The reason for all the attention to shape is that symmetrical distributions — whether convex or concave, 
centripetal or centrifugal — can be well represented by the means and standard deviations discussed 
later. All other distributions are eccentric and may require other types of summary indexes to avoid 
distortions.

3.3.2.2 Outliers — When arranged in ascending or descending order of magnitude, the items of 
a dimensional distribution are usually close to one another, forming a shape that seems well “connected” 
from its lowest to highest values. Sometimes, however, a large gap may occur between the main bulk 
of the data and one or more values at the extreme ends.

The extreme values, called outliers, create two types of problems. First, they may sometimes arise as  
errors in observing or transferring data. The error can be immediately detected if it represents an 
impossible value. For example, values of −21 or 275 for age in years are obviously erroneous. A value 
of 275 for weight in kg. is unusual but not necessarily an error. (A complex scientific decision is whether 
to accept an outlier value as unusual or to discard it as erroneous.)

The second problem arises if non-symmetrical outlier values, which produce an eccentric shape, are 
accepted and included in the data. To avoid the possible distortion of summary indexes calculated as 
means and standard deviations, the raw data may be transformed (as noted in Section 3.8.1) into scales 
that reduce the impact of outliers, or the summary indexes can be chosen with methods that are unaffected 
by outliers.
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3.4 Types of Summary Indexes

At least two types of indexes of location are used to summarize a set of data. For external comparisons,
an index of central tendency, or central index, will represent the entire group of data when it is referred
to the outside world. For this purpose, we want something that represents the group by being particularly
typical, common, or central in the distribution. For internal comparisons, an index of cumulative relative
frequency (or percentile) will locate the items of data with reference to one another. These (and other)
indexes of inner location can also indicate the spread or dispersion of the data around the central index.

3.5 Indexes of Central Tendency

Although no single index can perfectly represent an array of values, we want something that will do the
best possible job. The job will vary for non-dimensional or dimensional data.

3.5.1 Indexes for Non-Dimensional Data

Non-dimensional data are often summarized not with a single central index, but with an apportionment
that shows the relative frequencies of each category. This type of expression, marked “percent,” was
used to summarize the five categories listed in Figure 3.1.

If a group has c categories, and if ni represents the number of members in category i, the total size
of the group will be N = n1 + n2 + n3 + ... + nc. The Greek symbol Σ is regularly used to show these
summations. Thus, N = Σni = n1 + n2 + ... + nc. [In strict mathematical usage, the Σ is accompanied by
upper and lower symbols that indicate exactly where the summation begins and ends. For the complete
collection of data, the result here would be shown as In pragmatic usage, however, the sum
almost always extends from the first to the last items. The upper and lower symbols are therefore omitted
from the Σ sign.]

The actual frequencies are converted to relative frequencies when cited as proportions of the total
group. Thus, the relative proportion of the ith category is pi = ni/N. In Figure 3.1, which shows 5 categories,
the third category has n3 = 18 and N is 200, so that p3 = 18/200 = .09 or 9%.

3.5.1.1 Binary Data — For binary data, only two proportions can be cited. If 35 people have 
lived and 15 have died in a group of 50, the survival proportion is p = 35/50 = .70 or 70%. The fatality 
proportion is q = 15/50 = .30 or 30%. Similarly, if a group of 60 people contains 21 women, the proportions 
are p = .35 for women and q = .65 for men, or vice versa.

Because q = 1 − p as a proportion (and 100 − p as a percentage), each of the two proportions (or 
percentages) is called the complement of the other. The complete spectrum of binary data is effectively 
summarized with either proportion. The choice of whether to use p or q usually depends on the item of  
interest, rather than the item that is most common. Thus, the summary of a group might say that 14% 
of its members have coronary disease, rather than 86% do not.

3.5.1.2 Nominal Data — Suppose a group of patients on a medical service has the following 
spectrum of nominal diagnoses: pneumonia, 8; myocardial infarction, 5; ulcerative colitis, 1; 
stroke, 4; cancer, 6; and renal failure, 2. In these 26 people, the relative frequencies of each diagnosis  
are pneumonia, .31 (or 31%) calculated as 8/26; myocardial infarction, .19; ulcerative colitis, .04; 
stroke, .15; cancer, .23; and renal failure, .08. To summarize a nominal spectrum, the relatively 
uncommon items of data are often consolidated into a single category called other or miscellaneous.
Thus, the ulcerative colitis and renal failure diagnoses might be combined into an other category, with 
frequency of 3 and a relative frequency of .12. For the total spectrum, the individual proportions will 
add up to 1 (or 100%).

c
N = Σni.i  =1
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The spread of the spectrum is shown in the array of proportions for each cited category, but a single
central index is difficult to choose for nominal data. The best single choice is usually the proportion of
the most common item, which is called the mode. For the spectrum of the preceding 26 diagnoses,
pneumonia = 31% would be the best single central index.

Alternatively, certain categories may be consolidated and expressed accordingly. Thus, myocardial
infarction and stroke might be combined, and the central index listed as cardiovascular = 34%
[= (5 + 4)/26].

3.5.1.3 Ordinal Data — For grades of ordinal data, the central index can come from the pro-
portion of the most common category or from two or more consolidated categories. Suppose response
to treatment is rated as poor in 6 people, fair in 12, good in 11, and excellent in 10. A single summary
index could be formed from the mode of fair in 31% (= 12/39) or from the consolidated category, good
or excellent, in 54% (= 21/39). The data in Figure 3.1 could be summarized with the statement that
61% (= 9% + 18% + 34%) of the patients are in the metastatic stages of IIIA, IIIB, or IV.

Because ordinal data can be ranked, the results can be summarized with a median, which is the middle
value in the ranked grades. In the preceding 39 people, the 20th rank has the middle position. Counting
the 20th rank from either end of the data, good is the median value. For the 200 people in Figure 3.1,
the middle ranks are 100 and 101. Stage IIIB, the value at both those ranks, is the median. (Medians 
are more thoroughly discussed in the next section.)

In some instances, ordinal grades are given arbitrary numerical values, which are then treated as 
though they were dimensional. Thus, if the foregoing responses were rated as 1 = poor, 2 = fair, 3 =
good, and 4 = excellent, the individual ratings might be added and averaged in the same manner shown 
in the next section for dimensional data. Although the propriety is often disputed, this additive procedure 
is often applied to ordinal data.

3.5.2 Indexes for Dimensional Data

For dimensional data, three different contenders are immediately available as an index of central 
tendency: the mode, the median, and the mean. The mode is the most common value in the data. It  
can be determined for any type of data — dimensional or non-dimensional. The median is the value 
that occupies the middle rank when the data are arrayed monotonically in ascending or descending 
magnitudes. A median can be determined for ordinal as well as dimensional data. The mean, as an 
arithmetical average of the added values, is most properly used only for the equi-interval data of 
dimensional variables.

Consider the group of data {13, 7, 1, 15, 22, 7, 21}. For these 7 items, the mean is produced with the 
formula , when their sum, 86, is divided by the number of items to yield 86/7 = 12.3. The mode 
is 7, which happens to be the only value that appears more than once in this group. To find the median,  
we rearrange the values according to their ranks as 1, 7, 7, 13, 15, 21, and 22. The middle-ranked 
number, 13, is the median.

The mode can be determined, without any calculations, from a simple count of frequencies in the 
data. The median can also be determined without any substantial calculations. We simply rank the data  
and count the ranks until reaching the middle one. For N items of data, the median is the value of the 
item of data that has rank (N + 1)/2 if N is odd. If N is even, (N + 1)/2 is not an integer; and the median 
occurs between the values in ranks N/2 and (N + 2)/2. By custom, the median is assumed to be midway 
between them. Thus, in the foregoing array of 7 items, the median was at the rank of (7 + 1)/2 = 4. 
If the data contained 8 items — arranged as 1, 7, 7, 13, 15, 21, 22, and 25— the median would be midway 
between the 4th and 5th items, at the value whose rank is (N + l)/2 = (8 + 1)/2 = 4.5. There is a 2-unit 
distance between 13 (the 4th ranked value) and 15, the 5th ranked value. Half of this distance is 1 unit,  
and so the median would be 13 + 1 = 14.

Each of the three contenders has a reasonable claim for selection as the central index. The mode has 
the right of popularity: it is the most common occurrence. The median can argue that its central position 

ΣXi/n X=
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is literally in the exact middle (or center) of the array. Half of the items are on one side of the median;
half are on the other. The mean has the centrality of a fulcrum. It is the point that divides the data by
weight. Half of the summed amounts (or weights) of the values are on one side of the mean; half are
on the other.

Given these three reasonable options, which should be chosen as the index of central tendency? For
people with commercial marketing interests, the best choice is often the mode. It lets the vendor know
where to find the largest audience of potential buyers for a product. In medical research, however, the
mode is generally not a good central index because the data may contain either no naturally occurring
mode or several widely separated modal values.

3.5.3 Choice of Median or Mean

With the mode eliminated as a contender, the choice is between the mean or median. For this decision,
we need to examine the pattern (or “shape”) of the dimensional distribution.

The shapes of the diverse spectrums in Figure 3.4 demonstrate the problems of making a suitable
choice. A centripetal distribution can be reasonably represented by a central index, but a centrifugal
distribution does not have a central tendency; and any efforts to create one will inevitably be 
undesirable compromises.

For a symmetrical convex distribution, the mean and median will occur at essentially the same crest
of the curve, and so no major decision is necessary. Either choice will give the same value. For a
symmetrical distribution that is concave, bimodal, or even multi-modal, no central index can be really
satisfactory. Citing a mode would be inadequate, since two or more modes would be needed to represent
the two “crests” on either side of the center. The mean and median will have essentially similar values,
but neither one will be “typical” of the main bulk of the data, which occurs on both sides of the center.
Nevertheless, for lack of anything better, either the mean or the median would seem to be a reasonable
compromise in these circumstances.

The main problems and challenges occur for the many medical distributions that are eccentric. Their
shape can be overtly centrifugal, or centripetal but non-symmetric, or basically symmetric with distinctive
outlier values at the low or high ends of the spectrum. Figure 3.5 illustrates the different locations of
the mode, median, and mean in a common type of right-skewed non-symmetrical distribution that creates 
difficult decisions in choosing a single central index. [A simple mnemonic for remembering the location 
of the three indexes in a skewed distribution is that they are arranged both statistically and alphabetically 
starting at the skewed end of the data. Mean precedes median, which precedes mode.]

3.6 Advantages of the Median

The median has four main descriptive advantages as an index of central tendency. It is better than the 
mean for summarizing eccentric distributions; it can also be properly used, unlike the mean, for ordinal 
data; it is often, unlike the mean, an actual member of the data set; and it can be applied, also unlike 
the mean, to sets containing incomplete longitudinal data.

FIGURE 3.5
Customary location of mode, median, and 
mean in a right-skewed distribution.
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3.6.1 Eccentric Distributions

The median is preferable to the mean for avoiding problems in summarizing eccentric distributions
created by outliers or by asymmetrical (skew) patterns.

3.6.1.1 Avoidance of “Outlier” Distortions — Consider a group of eleven people aged 1,
2, 4, 4, 5, 5, 5, 6, 6, 8, and 97 years. Except for the first and last members of the group, all other values
are arranged symmetrically around a central value of 5. If the last value were 9 rather than 97, the entire
distribution would be symmetrical, with the mean and median each being 5. The outlier value of 97
substantially distorts the symmetry, however, and raises the mean to a value of 13.0 — an index that
misrepresents the group’s central location for age and that is not typical for any member of the group.
The median, on the other hand, has the advantage of being unaffected by extreme outliers. For the eleven
people just listed, the median value would be 5, regardless of what the highest value may be.

3.6.1.2 Use in Asymmetrical (Skew) Distributions — The virtues just cited for the median
become more apparent when a distribution is overtly asymmetrical. For a convex skew distribution or
for a sloping distribution, the crest of relative frequencies, the median, and the mean will each usually
be located at different sites. For example, for the raw data listed in Table 3.1, the mode is 17, the median
is 21, and the mean is 22.7. The shape of these data, as shown in Figure 3.3, is skewed to the right — a
pattern that commonly occurs in medical data.

The more general pattern of a right-skewed distribution is shown in Figure 3.5. The most “typical”
or common values of skew distributions will occur at their crests, which are the modal values that are 
unsatisfactory as indexes of central tendency. In choosing an alternative central index, the median seems 
preferable because the outlier values that create the skew will also move the mean far from the crest, 
leaving the median to fall between the crest and the mean.

The median thus has two advantages over the mean for summarizing an eccentric distribution. Being 
unaffected by the impact of outlier values, the median will always be consistently located in the central 
rank of the distribution; and the median will also be closer than the mean to the “popular” values in the crest.

3.6.2 Application to Ordinal Data

Another advantage of the median is that it can readily be applied to ordinal data because its proper 
calculation does not require dimensional values. In Section 3.5.1.3, the median produced good as a 
central index for 39 ordinal ratings of response to therapy, and Stage IIIB for 200 cases of lung cancer.

3.6.3 Membership in Group

Another advantage is that the median value is particularly likely to occur in an actual member of the 
group. For example, when a census report says that the average American family contains 2.3 children 
(calculated as a mean), you may wonder what the family does with the 0.3 child. If the average is 
reported as a median of 2, however, the statement is immediately plausible.

If the group contains an even number of people, however, the median is calculated as an average of 
two middle values. If they are different, the median will not be a member of the group. Thus, for six 
people whose ages are 7, 9, 10, 28, 37, and 43, the two middle values would be 10 and 28. The median  
would be cited as halfway between them, or 19. Although not found in any member of the group, this 
median value seems reasonable as a central index. (The alternative choice would be a mean of 22.3.)

3.6.4 Application to Incomplete Longitudinal Data

Finally, the median is particularly valuable for expressing results of longitudinal data (such as length of 
survival) in groups where the mean value cannot be calculated because some of the people have not yet 
died (or otherwise ended the follow-up period). For example, suppose 17 patients followed for 3 years 
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after treatment of a particular cancer have survival times that are 1, 2, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 12, 17,
and 25 months, and unknown for two patients who are still alive after 36 months. The mean survival 
time cannot be calculated yet for this group; and the result will vary according to whether the two 
survivors die soon after 36 months or live much longer. The median survival, however, can be determined 
now. It is 5 months, and will remain at 5 months no matter how long the last two people live.

The median is also helpful as a single summary for survival of the group. The survival rates might 
be reported for individual time points such as 65% (= 11/17) at three months, 35% (= 6/17) at six months, 
and 24% (= 4/17) at one year; and a survival curve could be drawn to show each temporal rate. To 
summarize survival with a single quantitative value, however, the best of the available options would be 
the median of 5 months. 

3.7 Disadvantages of the Median

In view of all these advantages of the median, you may wonder why the mean is so commonly used in  
reports of medical research.

3.7.1 Symbolic

A trivial reason for preferring the mean is that it has a standard symbol, , but the median does not. 
It is sometimes labeled as Xm, M, or Xmed. This problem can readily be solved, particularly with modern 
typewriter symbols, by using X~ for a median.

3.7.2 Computational

A more substantive disadvantage of the median is the enumerative challenge of finding it. The data 
must be arranged in ranked order and the ranks must be counted to find the middle one. In the days 
before computers and programmable electronic hand calculators, this ranking procedure could be a 
nuisance, requiring considerable time to get all the numerical values ranked and then counted for a 
large group. A mean was easily determined, however, by the simple act of pushing buttons in a 
mechanical calculator, which would do the adding and dividing.

Today, this disadvantage has little pertinence. With modern computational devices, the median can 
often be determined just as easily as the mean; and, in fact, with a suitably programmed calculator, both 
values can emerge from the same act of button pushing.

3.7.3 “Elitist”

With the problem in counting eliminated, the only remaining objections to the median are conceptual. 
One conceptual complaint is that the median is somewhat “elitist.” It is determined from only the middle 
or the two middlemost values in the data. The rest of the data are used as ranks and counts in finding 
the median, but do not participate as actual values. Since the choice of a central index is intended to 
provide intellectual communication rather than participatory populism, this objection does not seem 
cogent. Besides, a value that denotes “mediocrity” can hardly be regarded as “elitist.”

3.7.4 Inferential

The most important conceptual objection to the median is that it seldom appears in the probabilistic 
reasoning and calculations of inferential statistics.

After being chosen for a group, the central index is often used for inferences about a “parent 
population,” or for stochastic contrasts of “statistical significance” in two groups. The various strategies  
(confidence intervals, P values, etc.) used for these statistical inferences, as discussed later, have tradi-
tionally been developed with concepts that depend on means, rather than medians. Consequently, the 

X
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mean is usually preferred because it can be analyzed for both descriptive and inferential statistics. Even  
if a median were used for description, we might still need the mean for inference.

This point is true, but not germane to the main descriptive issues; and the point may eventually become  
irrelevant for the inferential issues. In description, we want a summary that will communicate as effectively 
as possible. The median usually offers more effective communication than the mean. In the inferential 
activities, if a data set is poorly represented by the mean, its use is scientifically unattractive, regardless  
of whatever traditional mathematical theory may be associated. Most importantly, however, modern 
computational devices have allowed inferential statistical work to be done with new strategies called 
non-parametric, permutation, or resampling procedures, which do not require a mean for the calculations. 
As these new procedures become more popular and eventually replace the older ones (such as t or Z 
tests), the communicative advantages of the median will no longer be inhibited by extraneous features 
of statistical inference.

Until that time arrives, however, you will often see the mean, rather than the median, in most summaries 
of dimensional data.

3.8 Alternative Approaches

The descriptive problems of using the mean as a central index have led to many proposed substitutions  
and adjustments, having diverse titles or eponyms. Among the many proposed alternatives, only two are  
likely to appear in current medical literature: transformations of data and geometric means.

3.8.1 Transformations of Data

Various mathematical transformations have been used to convert non-symmetrical distributions into more 
symmetrical shapes, from which the mean is then calculated. After the raw data are changed into their 
square roots, logarithms, or some other suitably chosen value that will produce a “better” pattern, an 
additive mean is calculated for the transformed data. The result is then converted back to the original 
units of expression.

For example, in a study of antibody levels to poliomyelitis vaccine, the following values were found 
in 17 persons: 4, 4, 8, 8, 16, 16, 32, 64, 64, 256, 256, 256, 512, 512, 512, 1024, and 2048. For these 
skewed data, the median is 64, but the arithmetic mean is the unrepresentative value of 328.9. The data 
would become more symmetrical (or “Gaussian”) if transformed to their logarithmic values (base 10). 
The logarithms of the 17 antibody values are respectively .60, .60, .90, .90, 1.20, 1.20, 1.51, 1.81, 1.81,  
2.41, 2.41, 2.41, 2.71, 2.71, 2.71, 3.01, and 3.31. This distribution seems reasonably symmetrical, and 
its mean is 1.89. To convert the “log mean” back to the original values, we calculate 101.89 and get 78.47. 
(Note that the reconverted log mean is reasonably close to the median value of 64.)

The logarithmic transformation is particularly useful (and common) for data that have a right skew 
or high-value outliers. A square root transformation is sometimes applied to help “adjust” data that have 
a left skew or low-value outliers. A transformation having the delightful eponym of Box-Cox2 is often 
mentioned in statistical literature, but rarely (if ever) receives medical usage.

Two other seldom-used transformations are applied for their logical rather than “Gaussianizing” 
virtues. The harmonic mean, calculated from the reciprocals (1/Xi) of the observed values, is often used 
for averaging rates of speed. The quadratic mean or root mean square, calculated from the squares of 
the observed values as , appears later in the text here as a mechanism for summarizing a set 
of differences in two measurements of the same entities.

3.8.2 The Geometric Mean

The log-mean transformation was popular in the days before modern electronic calculators. Today, the 
same result can be calculated directly as an entity called the geometric mean. It is obtained by multiplying 
the N values of observed data and then taking the Nth root of their product. (The advantage of modern 
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calculators is the “yx” function that allows an easy computation of the N th root, where y = product of 
the values and x = 1/N.)

The direct product of the 17 previous antibody values is 4 × 4 × 8 × … × 512 × 1024 × 2048 =
1.622592769 × 1032. The 17th (or 1/17) root of this number is 78.47, which is the same as the reconverted 
log-mean value.

The logarithmic transformation was popular for many years because it could often “Gaussianize” skew 
data and provide the numerical precursor of the geometric mean. Today, with the ease and rapidity 
permitted by electronic calculators, the geometric mean can be determined directly with hardly more 
effort than what is needed to obtain an arithmetic mean.

For people who want a “populist” index of central tendency, the geometric mean has the advantage 
of including all the values of data in the calculation, but the result is often close to the “elitist” median.  
This advantage of the geometric mean is lost, however, in several important situations. If any of the data  
values is 0, the entire product is 0, and the geometric mean must be 0. If the product of the data values  
is negative, a logarithm cannot be determined and the Nth root of the product (even if calculatable) may 
be meaningless. A different kind of problem occurs if the data are skewed to the left, rather than rightward. 
For example, suppose the data set contains the values 1, 62, 67, 67, and 75. The arithmetic mean of this  
group is 54.4 and the median is 67, but the geometric mean is 29.1, which is farther from the median 
than the arithmetic mean. On the other hand, if the data set were skewed right, with values of 62, 67, 
67, 75, and 200, the arithmetic mean would be 94.2 and the geometric mean of 83.97 would be closer 
to the median of 67. For these reasons, except perhaps in an all-positive skewed-right distribution, the 
median is a better general index of central tendency than the geometric mean.

The geometric mean is often preferred, however, if the basic data are expressed “exponentially” in 
powers of 10 (or some other number) for such entities as bacterial counts and antibody titers. In the 
earlier example (Section 3.8.1) of 17 antibody levels to poliomyelitis vaccine, all of the values were 
expressed in exponential powers of 2, and the geometric mean was much better than the arithmetic mean 
as an index of central tendency. The geometric mean has also been used to summarize the “skewed 
distribution” of plasma prolactin concentrations3 and the “log normal distribution” of blood-lead values.4

3.8.3 The Midrange

A particularly simple index, the midrange, is half of the sum of the minimum and maximum items in 
the data set. The midrange is a good “screening clue” for discerning an asymmetrical distribution, which 
probably exists if the midrange differs substantially from the ordinary additive mean, . In Table 3.1,
the midrange of (12 + 43)/2 = 27.5 immediately indicates the asymmetry of the data set, for which the 
mean is 22.7.

3.8.4 “Robust” Means

In modern new approaches, called Exploratory Data Analysis (EDA),5 the mean is still determined by 
addition, but is made more “robust” by different methods of thwarting the effect of outliers. The 
calculations use various tactics to eliminate or “trim” the extremes of the data. The results have names 
such as trimmed mean, Tukey’s tri-mean, Studentized mean, Windsorized mean, and Hempel adjusted 
mean; and new suggestions are constantly proposed in the literature of statistics and data processing.

The mathematical attraction of the “robust means” seldom overcomes both their unfamiliarity and 
their inapplicability for inferential (rather than descriptive) statistics. The median seems much simpler 
and more intuitively appealing as a descriptive mechanism for avoiding the effects of outliers.

References
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Exercises

3.1. Which of the three central indexes — mean, median, and mode — would you choose to summarize
the central tendency of the data in Table 3.1 and Figure 3.3? Why?
3.2. The results of a clinical trial are presented in a two-way table as follows:

3.2.1. Classify the types of variables under assessment in this table.
3.2.2. What proportion of patients received Treatment A?
3.2.3. How would you summarize the results for success with Treatment C?
3.2.4. If you had to give a single index for the success achieved in this entire trial, what would 
you choose?

3.3. A group of patients on a medical service shows the following values for fasting blood sugar: 62, 
78, 79, 80, 82, 82, 83, 85, 87, 91, 96, 97, 97, 97, 101, 120, 135, 180, 270, and 400. Calculate or 
demonstrate the following indexes for these data: mean, median, mode, geometric mean.
3.4. Using any method you want to apply for estimating shape, classify the shape of the distribution of  
data in Exercise 3.3.

Number of Patients Who Received
Outcome Treatment A Treatment B Treatment C

Success 40 70  50
Failure 320 280 295
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For the external role of showing an “average” general location, the central index lets us know whether 
the members of a group are mainly children or octogenarians, fat or thin, rich or poor, high or low 
achievers — or somewhere in between. The central index also represents each group when it is compared 
to decide whether some other group is older, fatter, richer, or more achieving.

An index of inner location has a different job. It shows the relative position of individual members 
internally within the group. If told that someone had the 10th highest score in a certification test, we 
might be impressed if the group contained 273 people, and unimpressed if it contained 11. In another 
group with a central index of 80, a value of 75 seems relatively close to the center — only 5 units away. 
The actual closeness of the 75 item, however, depends on all the other items of data. In the data set {75, 
77, 77, 79, 79, 79, 81, 81, 81, 83, 83, 85} the 75 is relatively far away, separated by five intermediate items. 

4.1 Analytic Roles of Inner Locations

An index of inner location can have four important roles in description and subsequent analysis.

1. The most obvious role is to identify members of a group as being relatively near or far from 
the center.

2. In a subsequent role, indexes of inner location can demarcate boundaries for inner zones that 
contain selected proportions of the data.

3. The size of the inner zones can indicate the data set’s relative compactness or dispersion.
4. The relative dispersion of the data can then be used to assess the adequacy and (later) the 

stability of the central index itself.

The last three roles of indexes of inner location will be discussed in subsequent chapters. The rest of  
this chapter is concerned with the indexes themselves. The two most commonly used expressions are 
percentiles and standard deviations. The percentile index is simple, obvious, and direct: it relies on 
counting the relative “depth” of ranked items in the observed distribution. The standard deviation, as a 
calculated entity, is more complex, but is currently more popular because it has become a traditional 
statistical custom.

4.2 Percentiles

Percentiles are points that divide a set of ranked (dimensional or ordinal) data into proportions. At the 
25th percentile point, .25 or 25% of the data are below the cited value, and 75% are above. The 50th
percentile point divides the data into two equal halves.

The proportions are easy to determine because each member of a set of n items occupies a 1/n
proportion of the data. The ranking can be done in either direction — from low values toward high, or 
vice versa — but as the ranks ascend (or descend), the proportions accumulate so that the first r ranks 
will occupy r/n of the data. For example, in the 56-item data set of Table 3.l, each item occupies 1/56 =
.018 of the data. At the 39th rank, the first 39 items will occupy 39/56 = .696 of the data.

4.2.1 Problems in Identification

The concept is easy to describe and understand, but its application produces three tricky problems: shared 
boundaries, intra-item percentiles, and shared ranks.

4.2.1.1 Shared Boundaries — The proportions occupied by two adjacent members of a data set 
have boundaries that “touch” or are shared by the upper end of the first and the lower end of the second.  
For example, in a five-item data set, the first item occupies the proportions 0−.20; the second item 
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occupies .20−.40; the fifth occupies .80−1.00. To do the demarcation properly, the corresponding
percentile point is located between the two items that might claim it. Thus, in the five-item data set, the
20th percentile would be placed between the first and second items, and the 80th percentile would be
between the fourth and fifth.

When adjacent items “touch” the pertinent proportions, the in-between location allows the percentile
to be additively reciprocal. Thus, the percentile point, P, when counted in one direction, will be 100 – P
when counted in the opposite direction. If we went from high to low ranks instead of from low to high
in the five-item data set, the 20th percentile would become the 80th, and vice versa. The direction of
counting ranks is unimportant as long as it is used consistently, because the percentile in one direction
is always the additive reciprocal of the percentile in the other.

4.2.1.2 Intra-Item Percentiles — In mathematical theories for “continuous” data, each value
is a point of infinitesimal width on a curve. In pragmatic reality, however, each item of data occupies
its own zonal proportion of the total collection. This attribute creates problems in the small data sets
that are commonly analyzed in biomedical research, because certain percentiles may be containedwithin
an item of data.

For example, in a five-item data set, the first item occupies the proportions 0−.20; and any of the 
percentiles from 1 to 19 would be contained within this item. Similarly, the fifth item of data would
contain any of the percentiles from 81 to 99. The 50th percentile or median of the data set would pass
through the third item, which occupies the proportions from .40 to .60.

This distinction of small data sets is responsible for the use of two different methods (discussed later)
for determining percentiles. The pragmatic-reality method uses proportions of the discrete data; the math-
ematical-theory method relies on interval divisions for a continuous curve.

4.2.1.3 Shared (Tied) Ranks — When two or more items have the same value in a data set,
they are “tied” and will share the same ranks.To preserve the correct sums and proportions for the total
of ranks, each tied value is assigned the same average rank. For example, in Table 3.1, the two values
of 12 would occupy ranks 2 and 3. They are each assigned rank 2.5. (The next value, 13, becomes
rank 4.) The four values of 21 would occupy ranks 27, 28, 29, and 30. Their average rank can be determined
as (27 + 28 + 29 + 30)/4 = 28.5, or, more simply, as the first plus last divided by 2. Thus, (27 + 30)/2 =
28.5. (The proper management of tied ranks is an important challenge that is further discussed for Rank
Tests in Chapter 15.)

Tied ranks are seldom a substantial problem in determining percentiles, particularly if the same values
“compete” for the location of a particular percentile point. For example, in the 56-item data set of
Table 3.1, the first 28 items occupy the proportions 0−.50 and the last 28 items occupy .50 – 1. Because
the .50 value is shared by ranks 28 and 29, the 50th percentile, or median, is placed between them. Since
these ranks, as noted in the foregoing paragraph, are occupied by the same value, i.e., 21, the value of
the 50th percentile is 21.

4.2.2 General Procedure

Each of the 56 items in the data set of Table 3.1 will have two ranks — one counted from each end.
Thus, 11 is the first rank counting in one direction, and the 56th rank in the other; and 43 would 
correspondingly be either the 56th or the first rank.

As just noted, the middle rank or median for this distribution would be at the rank of (56 + 1)/2 =
28.5. Counting from low to high values, this rank occurs among the four values of 21 that occupy ranks 
27 through 30. Going in the other direction, if 43 is counted as the first rank, the values of 24 occupy 
ranks 20–22; 23 has rank 23; values of 22 occupy ranks 24–26; and values of 21 occupy ranks 27–30.

Since the number of ranks will vary as n changes from one data set to another, the counted ranks are  
standardized by citation as proportions or relative frequencies of the data. The cumulative relative 
frequency or cumulative proportions will be 2/n after the second ranked item, 3/n after the third, and 
r/n after the rth ranked item.
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In the ordinal data of Figure 3.1, the two rightmost columns show the cumulative count of frequencies
as the categories ascend, and the associated cumulative relative frequency is marked cumulative percent.
After the last category in any array, the cumulative count is always N (the total size of the group), and
the cumulative percent is always 100%.

4.2.3 Points and Zones

The first percentile point demarcates a zone of cumulative relative frequency that includes 1/100 of the
data. The second percentile point demarcates a zone for 2/100 of the data, and so on. Note that percentile
points demarcate the boundaries of zones, whereas cumulative proportions refer to the amounts of data
contained in each zone. Thus, the 50th percentile point demarcates two zones, each containing a .50
cumulative proportion, or half the data in the set. The 25th, 50th, and 75th percentile points demarcate
four zones, each containing one fourth of the data.

The distinction is shown in Figure 4.1. The upper part of the figure indicates the percentile points for
values of the data. The lower part shows the proportionate amount of the items of data located in each
zone demarcated by the percentiles.

Figure 4.2 shows the location of the 25th, 50th, and 75th percentiles in a Gaussian distribution. Because
the distribution is much denser near the center than at the edges, the zones containing the second and 

FIGURE 4.1
Distinction between percentile points (upper) and the corresponding zones of demarcated data (lower).

FIGURE 4.2
Location of 25th, 50th, and 75th percentiles, and associated zones in a Gaussian distribution.
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third “quarters” of the data are taller and thinner than the zones for the first and fourth quarters. Despite
the symmetrical shape of the Gaussian curve around its center, the distances between adjacent percentile
points are not symmetrical. Thus, the distance from the 0th percentile (which is never quite reached) to
the 25th percentile is much larger than the distance from the 25th to the 50th percentile. On the other
hand, on the two sides of the curve, the interpercentile distances are symmetrical between the 25th to
50th and 50th to 75th percentiles, and between the 0th to 25th and 75th to 100th percentiles.

4.2.4 Tabular Illustration of Cumulative Frequencies

An empirical display of frequencies, relative frequencies, and cumulative relative frequencies is shown
in Table 4.1, which contains the observed serum chloride values and the frequency of each value in 2039
consecutive patients tested at a university hospital’s laboratory. The relative frequencies of each value,
which are shown in the third column of the table, are plotted as a frequency polygon in Figure 4.3. The
shape of the spectrum seems reasonably symmetrical, with the crest of the “curve” at the mode of 103.

TABLE 4.1

Serum Chloride Values for a Population of about 2,000 People (Courtesy of laboratory service, Yale-
New Haven Hospital.)

Serum 
Chloride 

Concentration* 
mEq/dl)

Observed 
Frequency

Relative 
Frequency

Ascending 
Cumulative 

Relative 
Frequency

Descending 
Cumulative 

Relative 
Frequency Z Scores

75−83 8 .0039 .0039 1.0000 —
84–85 12 .0059 .0098 .9961 —
86–87 12 .0059 .0157 .9902 —

88 10 .0049 .0206 .9843 −2.611
89 10 .0049 .0255 .9794 −2.418
90 28 .0137 .0392 .9745 −2.226
91 20 .0098 .0490 .9608 −2.034
92 22 .0108 .0598 .9510 −1.842
93 18 .0088 .0687 .9402 −1.649
94 32 .0157 .0844 .9313 −1.457
95 43 .0211 .1054 .9156 −1.264
96 51 .0250 .1305 .8946 −1.072
97 76 .0372 .1677 .8695 −0.879
98 96 .0471 .2148 .8322 −0.687
99 125 .0613 .2761 .7852 −0.495

100 146 .0716 .3477 .7239 −0.302
101 159 .0780 .4256 .6523 −0.110
102 204 .1000 .5257 .5743 0.082
103 222 .1089 .6346 .4743 −0.275
104 195 .0956 .7303 .3654 0.467
105 167 .0819 .8122 .2697 0.659
106 136 .0667 .8789 .1878 0.852
107 83 .0407 .9196 .1211 1.044
108 49 .0240 .9436 .0804 1.237
109 41 .0201 .9637 .0564 1.429
110 26 .0128 .9765 .0363 1.621
111 13 .0064 .9828 .0235 1.813
112 15 .0074 .9902 .0172 2.006

113–114 10 .0049 .9951 .0098 —
115–127 10 .0049 1.0000 .0049
TOTAL 2,039 1.0000 — —

Note: Mean = µ = 101.572; standard deviation = σ = 5.199; the Z score values are described in Chapter 5 of the text.
* At the top and bottom of this table, certain extreme values have been compressed to save space. The individual values 

and their observed frequencies are as follows: 75–1; 76–1; 77–1; 80–2; 82–1; 83–2; 84–5; 85–7; 86–7; 87–5; 113–4;  
114–6; 115–1; 116–3; 117–1; 118–1; 120–1; 123–2; 127–1.
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The relative frequencies of the chloride values can be cumulated in either an ascending or descending
direction, as shown in the fourth and fifth columns of Table 4.1. In the ascending direction, starting with
the lowest chloride value, each successive chloride value (or interval) adds its own relative frequency
to what was previously cumulated. The cumulative results continue to increase until they reach their
final total of 1.000 after the highest chloride value is added. In the descending direction, starting with
the highest chloride value, the process is similar but opposite.

Figure 4.4 shows the relative cumulative frequencies in an ascending direction for each chloride value.
The S-shaped or sigmoidal curve is called an ogive. The shape is characteristic of cumulative frequencies
in a Gaussian distribution.

The data in Table 4.1 (or in Figure 4.4) allow any cited chloride value to be immediately located in
the spectrum. The value of 94 occurs near the lower end, as shown by its ascending cumulative relative
frequency of .0844. The chloride value of 108, with an analogous proportion of .9436, is located near
the upper end. The value of 102, with an ascending cumulative relative frequency of .5257, is close to
the middle.

With either Table 4.1 or Figure 4.4, we can immediately find the chloride value that corresponds to
a selected percentile, and vice versa. In an ascending direction, the value of 102 occupies the cumulative
proportions from .4256 to .5257. In a descending direction, 102 occupies the cumulative proportions
from .4743 to .5743. In either direction, the cumulative proportion of .50 is passed within the value of
102, which is therefore the 50th percentile point or median. With a similar inspection, the chloride value
of 99 contains the 25th percentile point in an ascending direction and the 75th percentile point in a
descending direction.

4.2.5 Nomenclature

When a set is divided into hundredths, the demarcations can properly be called either centiles or
percentiles. The former term is preferred by some writers, but the latter (employed throughout this text)
is more commonly used and seems to be preferred in both ordinary and statistical dictionaries.

The percentile (or centile, if you wish) is regularly used to denote the inner location of an item of
data in a dimensional spectrum. If a particular item occupies several percentiles, it is commonly cited
with the “esthetic” or “conventional” demarcations that end in (or near) the digits 0 or 5. Thus, the

FIGURE 4.3
Frequency polygon showing the relative frequencies asso-
ciated with the observed values of serum chloride listed
in Table 4.1. The two extreme “tails” of the curve are
shown with dotted lines because the points marked “×”
are a composite of several values, as noted in Table 4.1.

FIGURE 4.4
Ogive curve of ascending relative cumulative frequencies
for the chloride concentrations shown in Table 4.1 and
Figure 4.3.
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chloride value of 95, which occupies the ascending cumulative relative frequencies between .0844 and
.1054 in Table 4.1, could be called the 9th percentile, but would usually be called the 10th.

4.2.5.1 Quantiles — Certain percentiles are given special names, called quantiles. The tertiles
are the 33rd and 67th percentiles. The quintiles are the 20th, 40th, 60th, and 80th percentiles. The 
frequently used quartiles are the 25th, 50th, and 75th percentile points. These three quartiles are also 
respectively called the lower quartile, median, and upper quartile. The lower and upper quartiles are 
often symbolized as Q1 and Q3. (The median would be Q2, but is usually shown with X~ or some other 
special symbol.) The percentiles set at 2.5, 5.0, 7.5, …, 92.5, 95, 97.5, 100 each demarcate zones 
containing 1/40 of the distribution. Henrik Wulff1 has proposed that they be called quadragintiles.

4.2.5.2 Quantile Zones — The names of certain percentiles are regularly applied erroneously 
to the demarcated zones as well as the boundary points. A set of k quantiles will demarcate k + 1 zones. 
Thus, the four quintile points demarcate five zones, each containing one fifth of the data. The three 
quartile points demarcate four zones, each containing one fourth of the data. These zones are really fifths 
and fourths, but they are often mislabeled as quintiles or quartiles.

4.2.5.3 Points, Ranks, and Values — An important distinction in nomenclature is the points, 
ranks, and values of percentiles.

A percentile point is a general location. Among 100 such points, it is regularly set (or found to be) 
at 20, 25, 50, 70, 75, or some other percentage of 100. In demarcating cumulative proportions of the 
data, these points would be denoted as .20, .25, .50, .70, and .75. When the term percentile is used 
without further specification, the reference is almost always to the point.

Percentile points will have different ranks within a set of data, according to the number of members 
in the distribution. The 50th percentile point (or median) occurs at rank 5 in a group of 9 items and at 
rank 14 in a group of 27.

A percentile value is the actual value of the particular item (or interpolated item) of data that is located  
at the percentile rank. This value will be 0.6, −12, 78.3, 1.9 × 106 or whatever occurs at that rank in the 
observed collection of data.

The following statement indicates all three uses of the terms: “He scored 786, which placed him in 
the 95th percentile, because he ranked 60th among the 1206 candidates who took the test.” In this 
instance, the percentile value is 786, which is the actual score in the test. The percentile rank is cited 
directly as 60. The percentile point is determined from the proportion 60/1206 = .0498. Since high scores 
are usually reported with reciprocal percentiles, this proportion becomes converted to 1 − .0498 = .9502, 
or the 95th percentile. 

4.3 Calculating Ranks, Zones, and Percentile Points

If r is the rank of an item in an n-item data set, the percentile point, P, occurs when the cumulative 
proportion, r/n, just exceeds P; i.e., (r/n) > P or r > Pn. Consequently, if the product Pn = r is exactly 
an integer, the selected rank must exceed Pn. It will have an intermediate rank that lies between r = Pn 
and the next rank, r + 1. For example, the formula Pn = r for the 25th percentile point of a 28-item data 
set yields (.25)(28) = 7; and the point will lie between the 7th and 8th ranks. Similarly, for the median 
or 50th percentile in that set, Pn = r is (.50)(28) = 14, and the point occurs between the 14th and 15th ranks.

On the other hand, if Pn = r is not an integer, the rank is within the next item. Thus, for the 5th
percentile in a set of 28 items, Pn = r = (.05)(28) = 1.4. The 5th percentile is within the second rank.

This process will produce symmetrical results, working from either end of the data. With the proportion 
formula for the 95th percentile in a set of 28 items, we get r = (.95)(28) = 26.6, which becomes the 27th
ranked item, counting from the lower end. This item will correspond to the 2nd ranked item (i.e., 5th
percentile) counting from the upper end.
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4.3.1 Calculating Ranks from Percentile Points

To calculate a rank from a percentile point, the simplest approach is to use the r = Pn formula. If the 
result is not an integer, the rank is the next higher item. If the result is an integer, the rank lies between  
the surrounding items. Thus, if Pn = 8, the rank is between 8 and 9. If Pn = 8.3, the rank is within the 
9th item.

4.3.2 Calculating Percentile Points from Ranks

Going in the other direction is not as easy because you start with a ranked integer, r, and cannot promptly 
use the foregoing rule to calculate r = Pn. After getting the value of P = r/n, however, you can use r =
Pn to see whether an integer emerges. Thus, for the 12th rank in a 37 item data set, P = 12/37 = .32 
and r = (.32)(37) = 11.8, which confirms that the 32nd percentile is within rank 12. For the 14th item 
in a 28 item data set, P = 14/28 = .5, and r = (.5)(28) = 14, which is an integer. Therefore the 50th
percentile must lie between ranks 14 and 15. In zones, the cumulative proportions end at .464 ( =13/28) 
for the 13th rank, at .500 (=14/28) for the 14th rank, and at .536 (=15/28) for the 15th. The individual 
zones are from .464 to .500 for the 14th rank and .500 to .536 for the 15th. Because the 14th and 15th
ranks share the “edges” of the .500 cumulative proportion, the percentile point must lie between them.

4.3.3 Alternative “Statistical Method”

The foregoing discussion is straightforward and direct, and the proposed method will always do the 
correct job. This method, however, is not what is offered in most conventional statistical discussions of 
percentiles. Accustomed to the theoretical collection of “continuous” data in Gaussian curves, the 
statistical approach does not deal with the problems of data sets that contain a finite number of individual 
items. Accordingly, in most statistical discussions, percentiles are used to demarcate intervals and interval 
boundaries, rather than the zones demarcated by those boundaries.

For large data sets (e.g., n > 100) or for the continuous curves that seldom occur in medicine but that 
are a common substrate in statistical reasoning, no real distinctions arise between the interval and the zonal 
approaches. In small data sets, however, where each item can occupy a substantial zone, the customary 
statistical approach will sometimes give slightly different (and erroneous) results. The next few subsections 
describe the statistical concepts and the reasons why the statistical formula usually appears as r = P(n + 1) 
rather than r = Pn. If you are content with what you already know about percentiles, skip to section 4.4. 
If you want to know about the customary statistical reasoning, read on.

4.3.3.1 Concept of Intervals — A data set containing n members will have n + 1 interval 
boundaries. Consider the alphabet as a 26-member data set symbolized as

a, b, c, d,…, w, x, y, z.

There are 25 or n − 1 interval boundaries between each pair of adjacent members; and there are 2 
boundaries at each end, separating the first and last members from the outside world. Thus, the total 
number of interval boundaries is 27, or n − 1 + 2 = n + 1. The first of these boundaries is the 0th
percentile, which never actually occurs. Each letter then occupies 1 /26 or .038 of the zones of this data 
set, and so the sequence of cumulative proportions is .038, .076, .115,... until 1 is reached after the letter z.

4.3.3.2 Use of n + 1 Formula — To convert back and forth from ranks to percentile points, 
the interval-based formula is r = P(n + 1), where n is the number of items in the data set, P is the 
percentile point (expressed in hundredths), and r is the corresponding rank.

With this approach, if P(n + 1) is an integer, it is the rank. Thus, the median (or 50th percentile) rank 
in a set of 29 items is r = (.50)(30) = 15. If P(n + 1) is not an integer, the percentile lies between the 
two surrounding ranks. Thus, for the lower quartile in a set of 40 items, (.25)(41) = 10.25, and so Q1
will lie between the 10th and 11th ranks.
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The location of ranks for the two methods of calculations are shown in Table 4.2. For the two examples
just cited, the results are the same with either formula. Thus, the proportion formula, r = Pn, yields
(.50)(30) = 14.5, which becomes 15 for the median of a set of 29 items, and (.25)(40) = 10, which places
Q1 between ranks 10 and 11 for a set of 40 items.

4.3.3.3 Problems in Small Data Sets — The r = P(n + 1) formula will work well for finding
percentile ranks in large data sets, but can lead to difficulties in small data sets where the cumulative
proportions and boundaries of intervals are not always the same.

For example, consider the five ranked items in the data set {a, b, c, d, e}, which has 6 interval
boundaries, numbered as

The median item, c, contains the .50 cumulative proportion; and it also will split the six interval 
boundaries evenly so that three of them are on each side of c. With the interval P(n + l) formula the
ranked location of c is (.50)(6) = 3. The rank of the 25th percentile point, or lower quartile, however,
would be (.25)(6) = 1.5, which suggests a location between the first and second ranks, which in this
instance are the items a and b. In reality, however, the cumulative portion of .25 in a five-item data set
occurs within the second item of data, which occupies the proportions from .20 to .40. Thus, the P(n + 1)
calculation yields something between a and b for the lower quartile, but the cumulative proportion shows
that it actually occurs within b.

Correspondingly, the upper quartile, determined for the cumulative proportion of .75, will lie within
d, which occupies .60 to .80 of the data. If the percentile is calculated as a split interval, however, the
upper quartile will lie between d and e.

4.3.3.4 No Problem in Large Data Sets — For large data sets, the difference in interval vs.
proportion methods of calculation becomes trivial because the results will usually be the same whether
the data are apportioned as n items or split into n + 1 intervals. Consequently, the P(n + 1) method is
often preferred because it seems easier to work with.

For example, the 5th percentile value for the 2039 items in Table 4.1 is in the 102nd rank whether
calculated as a cumulative proportion, (.05)(2039) = 101.95, or as an interval marker, (.05)(2040) = 102.
In the table itself, the serum chloride values from 75 to 91 occupy 100 observed frequencies (=8 + 12 
+ 12 + 12 + 10 + 10 + 28 + 20), which are the ranks from 1 to 100. The chloride level of 92 has 22
observed frequencies, which occupy the ranks from 101 to 122. Thus, the 102nd rank occurs at a chloride
level of 92.

Analogously, to get the 2.5 percentile value for the 2039 items in Table 4.1, P(n) would produce
50.975 and P(n + 1) would produce 51. With either calculation, the percentile value would occur in the
51st rank. As shown in the table, the chloride levels from 75 to 88 occupy the first 42 ranks (= 8 + 12 
+ 12 + 10). The chloride level of 89 occupies the next 10 ranks, from 43 to 52, and so the 2.5 percentile
is at the chloride level of 89.

In small data sets, however, the results of the two methods may differ. Being immediately anchored
to the data, the proportion technique is always preferable for small data sets.

TABLE 4.2

Location of Rank with Two Formula for Percentiles

Result of Calculation Proportion: r = Pn Interval: r = P(n + 1)

Integer (exactly r) Between r and r + 1 r
Non-integer (r +…) r + 1 Between r and r + 1

1  2  3  4  5  6
 a  b  c  d  e 
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4.3.4 Management of Values for Inter-Rank Points

If the calculated rank lies between two integer ranks, the easiest way to choose the appropriate percentile 
value is to split the difference in values at those two ranks. Thus, if the calculated rank lies between the  
two values of a and b, the percentile value can be set at (a + b)/2. This result is equivalent to calculating 
a + .5[(b − a)].

A preferable method of getting the inter-rank value, however, is to adjust the difference according to 
the “weight” of the percentile. With this technique, the inter-item value for the 20th percentile would 
be a + .20(b − a) = .80a + .20b. The calculation is a + P(b − a) where P is the percentile in hundredths.  
In the opposite direction, if the 80th percentile lies between a and b, the formula for its value would be  
b − .80(b − a) = .80a + .20b, which produces the same result as before. Thus, if the lower quartile lies 
between the values of 31 and 37, the quartile value will be (.75)(31) + (.25)(37) = 32.5. The alternative 
formula for the calculation would be 31 + (.25)(6) = 32.5.

This method of calculating the inter-rank values can be used regardless of whether the ranks are 
determined with the zonal formula r = Pn or with the interval formula r = P(n + 1). On the other hand, 
no great harm will be done if you ignore the distinction and simply split the value as (a + b)/2 rather 
than as a + P(b − a).

4.3.5 Choice of Methods

Because of the possible disparities, data analysts are sometimes advised not to use percentiles unless 
the data set contains at least 100 members. Because this advice would eliminate a valuable index for 
the many small data sets that constantly occur in medical research, a better approach is to recognize 
that the r = P(n) method is always more accurate for demarcating the zones that are usually a prime 
focus of analytic attention. The only disadvantages of the r = P(n) method are the need to remember 
(1) that an integer result implies an intermediate rank, (2) that a non-integer result implies the next higher 
rank and (3) that most statistical textbooks (ignoring the challenges of small data sets) cite r = P(n + 1) 
as a routine method of calculation. If in doubt about whether the data set is large enough, always use 
the r = P(n) method. It will be correct for small data sets, and should agree with the r = P(n + 1) result 
for large data sets.

Regardless of which method is used, the same percentile value should emerge for the rank calculated  
in both directions. Thus, the 2.5th, 5th, and 25th percentile values in one direction should be identical 
to the corresponding values that emerge, respectively, for the 97.5th, 95th, and 75th percentile ranks in 
the opposite direction. 

4.4 Percentiles as Indexes of Inner Location

Despite the ambiguities of calculation for small data sets, the percentile technique is a simple method 
of immediately locating an item within a distribution. Low percentile points will denote a location at 
one end of the distribution; high percentiles will denote the other end; and the 40–60 region of percentile 
points will denote values near the middle.

4.4.1 Identifying Remoteness from Central Index

The percentile technique can be used to illustrate earlier comments (on the first page of this chapter) 
about two data sets, each containing 13 members, in which the value of 75 seemed close to or far away 
from the median of 80.

Using the proportional technique to calculate percentiles for the small data sets, each item contains 
the proportions of 1/13 = .077 of the data. The first item occupies percentiles from 0 to 7.7. The fourth  
ranked item occupies the percentiles from 3/13 to 4/13, which contains the proportions from .231 to 
.308. The sixth ranked item occupies the percentiles from 5/13 to 6/13, containing .385 to .462 of the 
cumulative proportions. Using customary expressions, we could say that the first item is at the 5th, the 
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fourth item is at the 25th, and the sixth item is at the 40th percentile. Thus, in the first data set, 75 (as 
the sixth ranked item) is roughly at the 40th percentile, and in the second data set, 75 (as the first ranked 
item) is roughly at the 5th percentile.

[With the customary statistical (interval) method of calculation, the r = P(n + 1) formula would produce 
the percentile point as P = r/(n + 1). In the first data set, 75 is the sixth ranked member, and its percentile 
point would be 6/(13 + 1) = .43. In the second data set, 75 is the first ranked member; and its percentile 
would be P = 1/(13 + 1) = .07. With either technique of calculation, the value of 75 is relatively close 
to the median of 80 in the first data set and relatively distant in the second.]

The percentile-point index shows where an item lies in the total distribution, but does not specifically 
designate distance from the center. Because the central percentile is at 50, the subtraction of P − 50 can 
promptly indicate remoteness from the center. The absolute size of the P − 50 difference, which can 
extend from 0 to 50, will indicate increasing remoteness, with negative values being below the center, 
and positive values above it.

4.4.2 Clinical Applications

Percentiles are commonly used by practicing pediatricians as a method for checking a child’s growth. The 
patient’s actual height and weight are located in a chart that shows the percentile distributions of these 
values in “standard” groups of normal children at different ages. If the child’s percentile location for height 
and weight seems satisfactory for the age, the child is regarded as having normal development (at least 
in these two variables).

The height–weight percentiles can also be used for certain descriptive comparisons. If a child is at 
the 20th percentile for height and 80th percentile for weight, each percentile is within the limits of 
normal, but their relationship suggests that the child may be relatively too fat.

Percentiles are commonly used (as noted in a previous example) to rank candidates in a certifying 
examination, and can also be employed (as noted later) to compare the similarity or differences in data  
for two groups.

Some of the most valuable statistical applications of percentiles, however, are discussed in Chapter 5, 
where they are used to form zones of data. 

4.5 Percentiles as Probabilities

Beyond their role in describing inner locations, percentiles can indicate probabilities for what might 
happen if members were randomly chosen from a distribution. For example, in the earlier data of 
Table 4.1, a chloride value of 99 has an ascending cumulative relative frequency of .2761; and 100 has
a descending cumulative relative frequency of .7239. Therefore, if someone were randomly chosen from 
this distribution, the probability would be .2761, or about 28%, for getting a chloride value of ≤ 99 and 
about 72% for getting a chloride value of ≥100.

These probability values, as discussed later, have prime importance in the statistical applications of 
percentiles. In descriptive statistics, percentile boundaries are used to demarcate a range of “customary” 
or “normal” values. In inferential statistics, percentile zones of probability are used for decisions about 
“significant” distinctions. 

4.6 Standard Deviation

The statistical entity called the “standard deviation” was originally devised and is best known for 
its role (discussed later in Chapter 5) as an index of dispersion. With certain mathematical principles, 
however, the standard deviation can become an index of inner location.
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4.6.1 Definitions, Symbols, and Calculations

Usually symbolized as s, the standard deviation denotes the average deviation between the individual 
items of data and the mean. The ideas require some new symbols and terms. If X i is a member of a data 
set having n members, with ΣXi as the sum of values in the set, the mean is calculated as  = ΣXi/n. 
Each member of the data set deviates from the mean by the amount Xi − .

The obvious way to get the average of the deviations is to take their sum and divide it by n, the 
number of items in the data. Since some of the deviations in a set of data will lie above and others below 
the mean, however, the sum of the deviations, Σ(Xi − ), will always be zero.

To avoid this problem, we can find the average deviation by eliminating the positive or negative signs, 
determining the sum of each absolute deviation, , and then calculating the average absolute 
deviation as /n. Although an excellent way to get average deviations, this method has not 
become statistically popular because the calculations were difficult in the days before electronic com-
putation.

To escape from absolute values, and from positive and negative signs, the deviations are squared, as 
(Xi − )2. Their sum, which is always a positive number, is expressed symbolically as

[The reason for the xx subscript is that the calculation is really Σ(Xi − )(Xi − ). Later on, in Chapter 
19, the calculation of Σ(Xi − )(Yi − ) for co-deviations between two variables is symbolized as Sxy.] 
Sxx has many synonymous names: deviance, group variance, system variance, and sum of squares. In 
strict statistical concepts, Sxx is the sum of squares in a “sample,” and is used to estimate group variance 
in the parent population. This distinction is commonly neglected, however, in many discussions and 
computer printouts. Because both deviance and sum of squares can pertain to diverse computational 
arrangements, the calculation using the original mean of the data ( ) is easily and unambiguously cited 
as group variance — the term commonly used in this text.

In its role now, Sxx is merely an entity calculated enroute to a standard deviation. In many subsequent 
statistical activities, however, Sxx has an important job of its own. 

4.6.2 Calculation of Group Variance: Sxx

The computation of Sxx can be simplified for hand calculators by using an algebraic expansion and 
reformulation of Σ



These results immediately show the important role of the squared original observations, , in
contributing to the group variance. Each of the three cited data sets had the same mean, and hence the
same values of , ΣXi and (ΣXi)2/n. The source of the differences in the Sxx values was the value of Σ .

Each of the original values, Xi, contributes  to the sum Σ , which is sometimes called the
“original” or “uncorrected” sum of squares. If each value of Xi were replaced by the mean, , the new
square for each value would be , and the sum of the n squared values would be n The difference
in the two sums of squares, i.e., − n , represents the reduction or “correction” achieved in the
original sum of squares when each of the original values is replaced by a “fitted model.” In this instance,
the fitted model is the mean.

An advantage of using the mean as an index of central tendency is that the sum of squared deviations,
Sxx, is smaller with the mean than with any other “model” (such as the median) that might have been
chosen as a central index. (The median, X~ , is best for minimizing the sum of absolute deviations as
Σ �Xi – X~ �, but not for sums of squared deviations.) The idea of a smallest value for sums of squares
may not seem particularly impressive now, but it becomes important later on, when we fit data with
other models and evaluate the achievement by noting the reductions produced in sums of squared
deviations from the model.

4.6.3 Formula for Repeated Frequencies

If each value of the data, Xi, occurs repeatedly with a frequency of fi, the formula for calculating Sxx is

where N = Σfi. For the data in Table 3.1, the group variance calculated in the usual manner is 3255.
If each interval in Table 3.1 is replaced by its midpoint (so that 10–14 is represented by 12, 15 – 19
by 17, etc.), the result could be approximated as 5(12)2 + 19(17)2 + 13(22)2 + 4(32)2 + 3(37)2 + 2(42)2 − 
[5(12) + 19(17) + 13(22) + 10(27) + 4(32) + 3(37) + 2(42)]2/56. The result is 31524 − (1262)2/56 =
31524 − 28440 = 3084, and is not too different from the more accurate calculation of Sxx.

4.6.4 Calculation of Variance

With Sxx as the group variance for the total of n members, we want an average value that is “standardized” 
for the size of the group. For this purpose, Sxx is divided either by n or by n − 1 to produce a result 
called the variance, which is symbolized as s2. The square root of the variance is s, the standard deviation.

In the three sets of data in Section 4.6.2, dividing each Sxx value by n = 3 produces the respective 
variances of .67, 16.67, and 560.67. The square roots of these variances are the respective standard 
deviations of .82, 4.08, and 23.68. If Sxx had been divided by n − 1, which is 2 in this instance, the 
respective standard deviations would be 1, 5, and 29.

4.6.5 Choice of Division by n or n − 1

A subtle issue in calculating the variance is whether to use n or n − 1 in the denominator. Because 
ordinary intuition suggests the use of n, you may wonder why n − 1 becomes a tenable or even desirable 
candidate for the divisor. The reason, as noted later when we consider the inferential strategies of 
statistics, is that division by n − 1 generally provides a better or allegedly “unbiased” estimate of variance 
in the hypothetical population from which the observed group is thought to have been “sampled.”

For the moment, you can use the rule that if the data set is complete and is being summarized for 
purely descriptive purposes, Sxx is divided by n to yield the variance. On the other hand, if the standard  
deviation is going to be used for anything inferential — such as calculating the standard errors, confidence 
intervals, or P values discussed later in the text — Sxx is divided by n − 1.

If you are not sure about whether to use n or n − 1 in a particular situation, use n − 1. With a large 
data set, the results will be hardly affected. With a small data set, your statistical colleagues are more 
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likely to feel comfortable and to approve. For most purposes, therefore, the formula for calculating the 
standard deviation is

If n is used as divisor, the variance becomes

The latter (descriptive) formula is responsible for the statement that the variance is the “mean of the 
squares minus the square of the mean.” With this formula, the standard deviation is

4.6.6 Other Approaches

Calculations that use a central index can be avoided if an average deviation is determined for all possible  
pairs of values in the data set. If Xi and Xj are any two members in the data set, this average can be 
calculated from the squares of all differences, (Xi − Xj)2, or from the absolute differences |Xi − Xj|. The 
latter approach is called Gini’s mean difference. Although available and interesting, these “pairing” 
approaches are hardly ever used.

A different pairing tactic, called Walsh averages, can be applied for descriptions of non-Gaussian 
data sets. An array of means is calculated as (Xi − Xj)/2 for each pair of data, including each value 
paired with itself. For n items of data, there will be n(n + 1)/2 Walsh averages. The median of the array 
can be used as a central index, and the range of values above and below the median can help denote 
(as discussed later) the stability of the central index. 

4.7 Standardized Z-Score

The inner location of any item in a distribution of data can be cited with a standardized Z-score, which  
is calculated as

and sometimes called a standardized deviate. The division by s produces a “standardization” that is unit-
free, because Zi is expressed in magnitudes of the standard deviation. The positive or negative value of 
each Zi indicates whether the item lies above or below the mean.

To illustrate the standardizing effect, consider {9, 12, 17, 18, 21} as a data set for age in years. This 
5-item set of data has  = 15.4 and s = 4.827. If age were expressed in months, however, the same set  
of data would be {108, 144, 204, 216, 252}. For the latter expression, = 184.8 and s = 57.924. Thus, 
with a simple change in units of measurement, the same set of data can have strikingly different values  
for , s, and the deviations, Xi − . The values of Zi, however, will be identical in the two sets. In the  
first set, Zi for the first item will be (9 − 15.4)/4.827 = −1.326. In the second set, Z1 for the first item 
will be Z1 = (108 − 184.8)/57.924 = −1.326. Identical Zi values will also occur for all other corresponding 
items in the two data sets.
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4.7.1 Distribution of Z-Scores

In the two foregoing sets of data, the Z-scores for age are {−1.326, −.704, .331, .539, 1.160}. The scores
have a mean of 0 and a standard deviation of 1. This attribute of any set of Z-scores is inherent in their
calculation and has nothing to do with the shape of the distribution of data. Regardless of whether a
distribution is symmetrical or skew, convex or concave, the Z-scores will have a mean of 0 and a standard
deviation of 1. (A proof of this statement appears in Appendixes 4.1 and 4.2.) This remarkable feature
gives Z-scores many statistical advantages.

4.7.2 Z-Scores as Indexes of Inner Location

The main advantage to be discussed now is that Z-scores can be used as indexes of inner location. An
item’s Z-score of −0.6, 1.2, 0, −2.3, etc. will immediately indicate how relatively far (in standard deviation
units) the item lies above or below the mean.

The rightmost column of Table 4.1 shows the Z scores calculated as Zi = (Xi − 101.572)/5.199 for
each item of the chloride data, using their mean and standard deviation. These Z-scores, rather than
percentiles, could cite the relative inner location of any item in the data. Note that most of the items are
included in a zone of Z-scores that extends from –2 to +2. If values of Z >|2| are excluded, the Z-score
zone from −2 to +2 in Table 4.1 contains the chloride values from 92 to 111. The zone will contain
about 93% of the data, excluding .049 of the data at the low end and .0172 of the data at the high end.

4.7.3 Application of Z-Scores

The ability of a Z-score to denote inner location is exploited in diverse ways. A common procedure, 
which you have probably already encountered in previous scholastic adventures, is the use of Z-scores
for educational tests, where the process is sometimes called “grading on a curve.” The Z-scores can
avoid calculation of percentiles for small data sets, and can immediately be used to rank the test takers
for performance in tests that have different scoring systems.

Standard reference Z-scores2 were used in a recent study of zinc vs. placebo supplements in breastfed
infants3 to compare each infant’s status for length and weight before and after treatments. Z-scores
have also been advocated4 as a replacement for percentiles in determining the nutritional status of
children, particularly in developing countries. The argument is that the rank of many malnourished
children is difficult to establish as a percentile, because they are below the first percentile of the World
Health Organization (WHO) reference population.5 A “road to health” chart, shown in Figure 4.5, has
been proposed as an illustration that can help health workers understand the Z-score procedure.
Figure 4.6 illustrates the mean Z-scores of weight according to age in a population of children in a
region of South Africa.6

FIGURE 4.5
Z-scores for road-to-health charts. Comparison of
60% of median weight-for-age for males (–·–) with
a 4 SD below the median (----); the bold line is the
median. [Figure taken from Chapter Reference 4.]
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The use of Z-scores also avoids an undesirable technique, discussed in Chapter 5, which identifies 
inner locations according to the percentage by which each value is greater or less than the median value. 

4.8 Conversion of Z-Scores to Probabilities

Compared with percentiles, Z-scores have one major disadvantage as indexes of inner location. By 
showing cumulative relative frequency, a percentile immediately denotes a specific location relative to 
other ranks; and the location can also be converted to a probability. Thus, a percentile of 95% tells us 
that only 5% of items have higher values and that the probability of getting one of those higher values 
is .05. A Z-score of 1.2, however, does not indicate either of these features. The array of Z-scores could 
be used to arrange a set of 5 items in ranked order as {−1.3, −.70, .33, .54, 1.2}, but we would not have  
known that 1.2 was the highest rank until we saw its location relative to the others.

This advantage can be overcome if the distributional shape of the data can be described with a 
conventional mathematical formula. When a suitable mathematical expression is available, each Z value 
can promptly be converted to a probability value for cumulative relative frequency. The eponymic 
mathematical distributions named after Gauss, Poisson, Bernouilli, etc. have been popular because of 
the correspondence between probability values and statistical indexes, such as Z.

4.8.1 Gaussian Distribution

The famous Gaussian distribution was promulgated in the 19th century by Carl Gauss, studying what 
today would be called “observer variability.” As new technologic devices became available, the results 
found for repeated measurements of the same entity did not always agree. Confronted with the choice 
of which observation to accept, Gauss decided that their mean would be the correct value. He then noted 
that the deviations from the mean, called errors, were distributed around the mean in a symmetrical 
pattern that is today sometimes called normal by statisticians and Gaussian by people who want to avoid 
the medical connotations of normal.

FIGURE 4.6
Mean weight-for-age Z-scores of 921 Basotho children by age and sex, Lesotho, 1985–1986. Z-scores were computed using
the reference population of the National Center for Health Statistics. The child’s weight was compared with the 50th 
percentile value of the reference populations and divided by the standard deviation of the references at that age. A Z-score 
of zero means that the child’s weight is equal to the 50th percentile of the reference population. [Legend and figure taken 
from Chapter Reference 6.]
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Later in the 19th century, Adolphe Quetelet found that this same pattern occurred for the distribution
of height in Belgian soldiers. This similarity of patterns helped give the Gaussian distribution its
enthusiastic application in biostatistics of the 19th and early 20th centuries. The same pattern seemed
to fit two different phenomena: multiple measurements of the same individual entity and individual
measurements of multiple entities.

This dual accomplishment made the Gaussian distribution so mathematically attractive that Francis
Galton, often regarded as the founder of modern biometry, believed it was a “Law of Frequency of
Error.” He expressed his admiration by saying, “the law would have been personified by the Greeks
and deified, if they had known of it. It reigns with serenity and in complete self-effacement amidst the
wildest confusion.”7

The diverse technologic measurements of the 20th century, however, have demonstrated that most
medical data do not have Gaussian distributions. Consequently, clinical investigators have had to think 
about other distributions and to use statistical strategies that do not depend on theoretical mathematical
patterns. Nevertheless, despite the descriptive inadequacies, the Gaussian distribution remains valuable
for inferential activities that will be discussed later.

4.8.2 Gaussian Mathematics

Although popularized by Gauss, the mathematical formula for the distributional pattern was actually
discovered by Abraham DeMoivre. In that formula, the height of the curve shows the relative frequency,
y, at each Zi score. The mathematical expression is essentially

where e is the well-known mathematical constant, 2.7183…. This formula describes astandard Gaussian
curve, with mean = 0 and standard deviation = 1.

In the standard Gaussian curve, the height of the curve, y, is the relative frequency for each possible
value of Z. Thus, when Z = 0, i.e., at the mean, y = .4e0 = .4. When Z = ± .5, y = = .35. When Z =
± 2.0, y = .054. The corresponding values of y and z are as follows:

The pattern of these points is shown in Figure 4.7. Note that the height of the curve becomes infinitesimal
for Z values that exceed ± 3, but the height never reaches zero. For example, if Z = 6, y = 6.092 × 10 –9.

When Gaussian curves are expressed in values of Xi, rather than Zi, their mean will be at  and their 
relative width will be determined by the size of the standard deviation, s. The value of Zi in the foregoing 
Gaussian formula will be replaced by (Xi − )/s and the .4 factor will be divided by s, thus making 
the curve wider and shorter as s enlarges, and narrower and taller as s gets smaller.

4.8.3 Citation of Cumulative Probabilities

With integral calculus, the formula for the Gaussian curve can be converted to show the cumulative 
rather than individual relative frequencies at each value of Zi. With this conversion, a specific probability 
value of cumulative relative frequency is associated for each of the possible negative and positive Z values.

The cumulative relative frequencies are usually expressed as proportions (or percentiles) that begin 
with 0 at Z = 0, and enlarge as Z becomes larger in either a positive or negative direction. In one mode 
of expression, the cumulative proportions on either side of 0 can be cited as follows:

Z 0 ±.25 ±.50 ±.75 ±1.0 ±1.25 ±1.50 ±1.75 ± 2.0 ± 2.25 ±2.5 ±3.0 ±3.5
y .4 .39 .35 .30 .24 .18 .13 .087 .054 .032 .018 .004 .0009

Z 0 ±.25 ±.5 ±.75 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 ±3.5
Cumulative 
Proportion 0 .099 .191 .27 .34 .43 .477 .494 .498 .499
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A more detailed account of the corresponding results is shown in Table 4.3. If you want to cumulate
these proportions starting from the lower end of a Gaussian distribution and going upward, remember 
that the value of .5 should be added or subtracted appropriately for each of the foregoing values of the 
corresponding proportions. Thus, the Z value of –3.08, with a cumulative relative frequency of .4990 on  
the left side of the distribution, becomes .5 − .4990 = .001, which is the .1 percentile. The corresponding 
results for converting Z values to cumulative relative proportions are −.6 → .5 – .2257 = .2743, –.26 →
.5 – .1026 = .3974, 0 → .5, .26 → .599, .6 → .7257, …, 2.0 → .9772, …, 3.6 → .999.

Although the cumulative proportions (and probabilities) can be used like percentiles merely to identify 
the inner locations of a distribution, their most frequent application occurs as P values in statistical 
inference. The P values are created when inner locations and probabilities for individual items in the 
data are demarcated into zones of location and probability. The demarcations and applications are 
discussed in the next chapter. 

4.9 Inner Locations for Non-Dimensional Data

The percentiles and standard deviations that are pertinent for dimensional data cannot be used directly 
and must be modified to rank inner locations for the categories of non-dimensional data.

4.9.1 Nominal Data

Questions about the rank of an inner location do not arise for nominal data, which cannot be ranked.

4.9.2 Ordinal Data

Percentiles can easily be determined for ordinal data, although the same values will occupy many 
percentiles if the data are expressed in grades. For example, consider the 39 people whose therapeutic 
responses were rated as poor, 6; fair, 12; good, 11; and excellent, 10 in Section 3.5.1.3. Because each 
item occupies 1/39 = .026 of the data, the poor group would include the percentiles from 0 to 15 (since 
6/39 = .154). The fair group occupies the subsequent percentiles up to 46 (since 18/39 = .462); the good
group extends to the 74th percentile (since 29/39 = .744); and the excellent group occupies the rest.

Although not appropriate for ordinal data, standard deviations could be calculated if the four 
grades were regarded as dimensions (such as 1, 2, 3, 4) and summarized with means.

FIGURE 4.7
Values of y axis for Z-scores in Gaussian curve.
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4.9.3 Binary Data

A set of binary data, expressed as yes/no, success/failure, alive/dead, etc. can be coded as 1/0. If the 
set contains n items, r items will be coded as 1 and n − r items will be coded as 0. The binary proportion 
that summarizes the data will be either p = r/n or q = (n − r)/n.

The percentiles of such a data set are relatively trivial. The first r values of 1 in the set 1, 1, 1, …, 1, 0,
0, …, 0 will occupy r/n = p or the first P percentiles. The standard deviation of the data set, however, is 
not trivial. It becomes particularly important later on when we consider the “standard error” of a proportion.

The standard deviation of a set of binary data can be calculated with the same formula used for 
dimensional data. In r items of the data, the deviation is (1 − p) from the “mean” value, p; and n − r 
items will have the deviation (0 − p). Thus, the group variance will be r(1 − p)2 + (n − r) × (0 − p)2.
Letting 1 − p = q, r = pn, and n − r = qn, this expression becomes pnq2 + qnp2 = npq(q + p) = npq.

The group variance is customarily divided by n − 1 to form the variance of dimensional data, but by 
n for binary data. (The reason will be explained later.) Accordingly, the variance of a set of binary data  
is npq/n = pq, and the standard deviation is

Note that this remarkable formula refers to standard deviation of the data, not to variance of the binary 
proportion that is the central index. In other words, each of the 1 or 0 values in the data deviates from 

TABLE 4.3

Cumulative Normal Frequency Distribution (Area under the standard 
normal curve from 0 to Z)

Z 0.00 0.02 0.04 0.06 0.08

0.0 0.0000 0.0080 0.0160 0.0239 0.0319
0.2 .0793 .0871 .0948 .1026 .1103
0.4 .1554 .1628 .1700 .1772 .1844
0.6 .2257 .2324 .2389 .2454 .2517
0.8 .2881 .2939 .2995 .3051 .3106
1.0 .3413 .3461 .3508 .3554 .3599
1.2 .3849 .3888 .3925 .3962 .3997
1.4 .4192 .4222 .4251 .4279 .4306
1.6 .4452 .4474 .4495 .4515 .4535
1.8 .4641 .4656 .4671 .4686 .4699

1.9 .4713 .4726 .4738 .4750 .4761
2.0 .4772 .4783 .4793 .4803 .4812
2.1 .4821 .4830 .4838 .4846 .4854
2.2 .4861 .4868 .4875 .4881 .4887
2.3 .4893 .4898 .4904 .4909 .4913
2.4 .4918 .4922 .4927 .4931 .4934

2.6 .4953 .4956 .4959 .4961 .4963
2.8 .4974 .4976 .4977 .4979 .4980
3.0 .4987 .4987 .4988 .4989 .4990
3.2 .4993 .4994 .4994 .4994 .4995
3.4 .4997 .4997 .4997 .4997 .4997
3.6 .4998 .4999 .4999 .4999 .4999

3.9 .5000

Note: Abridged table showing correspondence of Z-scores (shown in first 
column, augmented by values in subsequent columns) and unilateral 
cumulative proportions (shown in cells) of Gaussian curve in zone 
from 0 to Z. Values not shown here can be obtained by interpolation.

s pq=

© 2002 by Chapman & Hall/CRC 



the central index, p, by an average of . This same average deviation occurs if we express the
central index as q = 1 − p, rather than p. Thus, for the 12 values of 1 and 7 values of 0 that are
summarized as p = 12/19 = .63 or as q = 7/19 = .37, the standard deviation is  =

 = .48. This same standard deviation would occur if the data set were three times larger, with
p expressed as 36/57 = .63.

Appendixes for Chapter 4

A.4.1 The Mean of a Set of Z-Scores is 0

Proof: If the original data are represented by {Xi}, , and s, each Z-score will be Zi = (Xi − )/s.
Then ΣZi = Σ(Xi − )/s = (l/s)[ΣXi − Σ ] = (1/s)[N − N ] = 0.

A.4.2 The Standard Deviation of a Set of Z-Scores is 1

Proof: The group variance of the Z scores will be Σ(Zi − )2 = Σ , since  = 0. Since Zi = (Xi −
)/s, each will be ( − 2Xi + )/s2 and Σ = (Σ − n )/s2. If calculated with n − 1, the

variance of the Z scores will be Σ /(n − 1) = (Σ − n )/[(n − 1)s2]. Since (n − l)s2 = Σ − n ,
the quotient for the variance is 1. Its square root, 1, will be the standard deviation.

References
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Exercises

4.1. For the data in Table 3.1 (Chapter 3),
4.1.1. What are the lower and upper quartile values?
4.1.2. What values are at the 2.5 and 97.5 percentiles?
4.1.3. In what percentile is the value of 30?

4.2. For the data set in Exercise 3.3 (Chapter 3),
4.2.1. What is the standard deviation calculated with n and with n − 1?
4.2.2. Calculate the Z-scores for the two lowest and two highest items of the data. What do these
Z-scores tell you about whether the distribution is Gaussian?

4.3. What feature of the Z values in Table 4.1 indicates that the chloride data do not have a Gaussian
distribution?
4.4. Students graduating in the 25th percentile of “performance” at Medical School X had higher MCAT 
scores on admission than students graduating in the 75th percentile of performance at Institution Y. 
Assuming that performance has been determined and graded in the same way at both institutions, does 
this result indicate that MCAT scores are poor predictors of performance in medical school? If your 
answer is No, give an alternative possible explanation for the observed results.
4.5. In the certifying examination of American specialty boards (in Medicine, Pediatrics, Surgery, etc.), 
the candidates receive a total “raw” numerical score based on right and wrong answers to the questions. 
For psychometric purposes in the theory of educational testing, the Boards transform these results so 
that each group of candidates will have a mean score of 500, with a standard deviation of 100. How are  
the raw scores altered to accomplish this goal?
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4.6. As the Dean of Students for your Medical School, you must prepare each student’s class ranking 
in clinical work. The ranking, which will be used for internship and other recommendations, comes 
from a combination of grades for clinical clerkships in five departments. Each grade is given an equal 
weight in the student’s “class standing.” The five clinical departments express their individuality by 
using different scales for giving grades. The scales are as follows:

Internal Medicine: A,B,C,D,E, (with A = highest and E = lowest) 
Obstetrics-Gynecology: A+, A, A−, B+, B, B−, C+, C, C−, D, and E 
Pediatrics: Numerical examination grade from 100 (perfect) to 0 (terrible) 
Psychiatry: Superior, Satisfactory, Fail 
Surgery: High honors, Honors, Pass, Fail

How would you combine these non-commensurate scaling systems to form a composite score for 
class standing?
4.7. Please mark each of the following statements as true or false (correct or incorrect). If you disagree, 
indicate why.

4.7.1. Harry had a percentile score of 70 in a board certification test. The result implies that he 
correctly answered 70% of the items.
4.7.2. At the beginning of the year, Mary had a percentile score of 90 in class standing. By the 
end of the year, she had moved to a percentile score of 99. During the same period, John moved 
from the 50th to 59th percentile. The two students, therefore, made about equal progress.
4.7.3. There is little difference between Joan’s score at the 98 percentile and Bob’s score at the 
99.9 percentile, but a large difference between Bill’s 84th percentile and Joan’s 98th.
4.7.4. Since Nancy scored at the 58th percentile and Dick at the 64th, Dick obviously did much 
better in the test.
4.7.5. The Dean of Students at Almamammy medical school wants to evaluate secular trend in 
the students’ performance on National Board examinations. He believes the trend can be correctly  
determined if he forms an average of each student’s overall percentile score for members of last 
year’s class and uses it to compare this year’s performance.

4.8. A pediatrician who likes to be different decides to use Z-scores rather than percentiles for 
characterizing the status of patients. What would be the approximate Z-scores associated with the 
following percentiles: 2.5, 25, 40, 50, 60, 75, 97.5?
4.9. Joe has brought a lawsuit against the American Board of Omphalology because he failed the 
certifying examination, although he knows (from information sent by the Board) that he correctly 
answered 72% of the items. What would your argument be if you were Joe’s lawyer? If you were the 
Board’s lawyer, how would you defend it?
4.10. If you enjoy playing with algebra, and want to check your ability to manipulate statistical symbols 
(and also have the available time), here are two interesting but optional assignments.

4.10.1. Show that Σ(Xi − )2 = Σ − N
4.10.2. A sum of squares or group variance can be calculated as Σ(Xi − M)2 with any selected 

central index, M. Prove that this group variance is a minimum when M =  (the mean). 
(Hint: Let M = ± c, where c > 0. Then see what happens. Another approach, if you 
know the calculus, is to differentiate this expression in search of a minimum.)

X Xi
2 X2

X
X
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5
Inner Zones and Spreads
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We now know how to indicate a group’s external location and the relative internal location of individual 
members, but we do not yet have a way to denote a group’s spread. This chapter is devoted to indexes 
of spread and to the demarcation of several valuable inner zones of spread. Their important roles are 
to denote the compactness of the group and the adequacy with which the group is represented by its 
central index.

© 2002 by Chapman & Hall/CRC 



5.1 The Range

A simple, obvious index of spread for a set of dimensional data is the range from the lowest to highest
values. In Table 3.1, where the data extend from values of 11 to 43, the range can be cited as 11–43.
For the chloride values in Table 4.1, the range (noted from the footnotes in that table) is 75–127.

The two extreme boundaries of a range are usually listed individually and are seldom subtracted to 
produce such single values as 32 or 52.

5.1.1 Non-Dimensional Ranges

With non-dimensional data, a formal expression is seldom needed, because the range is readily evident 
when the array of categories in each variable’s distribution is summarized with frequency counts or 
relative frequencies.

For a binary variable, the range is obvious: it covers the two categories for yes/no, present/absent,
success/failure, 0/1, etc. For ordinal data, the range extends from the smallest to largest of the available 
grades or ranks. The ordinal grades would have ranges of I–III for the three TNM Stages I, II, or III,
and 1–10 for the 10 values of the composite Apgar Score. If not expressed as a set of counted ranks, 
an ordinal variable seldom has more than ten grades.

Not having ranked magnitudes, the categories of nominal variables cannot be shown as a range. A 
nominal variable, such as occupation, might contain twelve categories arbitrarily coded as 01, 02, …,
12, but would not be summarized as a range of 01–12.

5.1.2 Problems in Dimensional Ranges

The main problem in using range for the spread of dimensional data is potential distortion by outliers. 
This problem, which keeps the mean from being an optimal central index, may also make the range 
an unsatisfactory index of spread. For example, a range that extends 12 units from 19 to 31 for an 
array of 200 items would suddenly have its spread become five times larger (from 12 units to 60) if 
the data set contains a single outlier value of 79. The range thus offers a useful “quick and dirty” 
way to appraise the spread of the data, but some other index will be preferred to avoid the potential 
adverse effect of outliers.

5.2 Concept of an Inner Zone

To eliminate the problem of outliers, the spread of dimensional data can be truncated and converted to 
a smaller inner zone. The goal is to exclude the extreme values but to have the inner zone contain either  
most of the “bulk” of the data or a selected proportion thereof. [The “bulk” of the data refers to individual 
items, not the “weight” or “magnitude” of the values of those items. Thus, the data sets {1, 3, 6, 7} and  
{95, 108, 234, and 776} each have a bulk of four items.]

The location and magnitude of inner zones are chosen arbitrarily. Some of them can readily be 
demarcated in a relatively “natural” manner. For example, because 25% of the items of data are contained 
in each zone demarcated by the 25th, 50th, and 75th percentiles, the inner zone between the lower and 
upper quartiles will comprise 50% of the data, with each half of that zone containing 25%. With quartile  
demarcations, the bulk of items in the inner 50% zone is symmetrically distributed around the median, 
but in other circumstances, the selected inner zone may be located eccentrically, or may hold a much 
larger “bulk” than 50%.

The decisions about symmetry in location and quantity of “bulk” will depend on the purpose to be 
served by the inner zone.
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5.2.1 Symmetry in Location

In many circumstances, the low and high values of a data set are relatively well balanced at the two
ends of the spectrum. This reasonably symmetrical pattern, which occurs in the chloride data ofTable 4.1,
could allow bidirectional decisions that certain values are “too low” and others are “too high.” An inner
zone for the “range of normal” would therefore be located symmetrically (or concentrically) around the
center of the data.

In other instances, however, the data may be overtly unbalanced or skewed, with most of the items
occurring eccentrically at one end of the distribution. For example, in a large group of people examined
routinely at a hospital emergency department, most of the levels of blood alcohol would be 0. On various
occasions, the patients’ values would be high enough to make the mean for the total group exceed 0, but
the “range of normal” for blood alcohol would be placed eccentrically, beginning at the 0 end of the data.

Even if the spectrum is relatively symmetrical, however, we may sometimes be interested in only one
side of the distribution. For example, we might want to know the probability of finding a person with
hyperchloridemia in Table 4.1. For this purpose, the “inner zone” would be located eccentrically. It
would extend from the lowest chloride value in the table to an upper boundary chosen as demarcating
a “too high” chloride. If the latter boundary is set at 109, the inner zone would start at 75 (the lowest 
chloride value in Table 4.1) and extend through 108. The zone would include .9436 of all values in the
data. The “outer zone,” at chloride levels of 109 onward, would include the remaining .0564 proportion 
of the group. The probability would be .0564 that a particular person has a value in the zone denoted 
by chloride levels ≥ 109.

Inner zones are most commonly set symmetrically with two boundaries that form an external zone at  
each end of the distribution. The two external zones beyond the boundaries are often called “tails” when 
the results are cited as probability values. Sometimes, however, the inner zone has only one demarcated  
boundary, and the result (as in the example just cited) is called “one-tailed” for probability.

5.2.2 Decisions about Magnitude of “Bulk”

A separate decision refers to the quantity of the distribution that will be regarded as the “bulk,” “great 
bulk,” or “most” of all the items in the data. For some comparative purposes, the “bulk” may be set at 
50%, 80%, or 90%. For conclusions about uncommon, unusual, or “abnormal” members of a distribution, 
the bulk is often set at 95%.

The choice of 95% is completely arbitrary. It has no inherent biologic or logical virtue and could just  
as well have been set at 83%, 94%, 96%, or some other value. The current custom arose when R.A. 
Fisher, a prominent leader in 20th century statistics, noted that 95% of the data in a Gaussian distribution 
was contained in a symmetrical inner zone bounded by 1.96 standard deviations on both sides of the 
mean. Because the “1.96” could easily be remembered as “2,” a convenient mnemonic symbol was 
constructed. With  as mean and s as standard deviation,  became the symbol that designated 
the 95% inner zone of a Gaussian distribution. Fisher then referred to the remaining values of data, 
located in the two segments of the outer zone, as highly uncommon or unusual.

5.3 Demarcation of Inner Zones

After the decisions about symmetrical location and magnitude of bulk, inner zones can be demarcated 
with three tactics: percentiles, standard deviations, or Gaussian Z-scores.

5.3.1 Percentile Demarcations

An inner zone demarcated with percentiles is called an inner-percentile range, abbreviated as ipr. It is 
centered at the median, and its bulk is indicated with a subscript, such as ipr95 for a zone covering 95% 

X X 2s±
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of the data, which extends from the 2.5 to the 97.5 percentile. The ipr95 can also be called the quadragintile
range, since each 2.5 percentile zone contains 1/40 of the data. The ipr50 contains 50% of the data and
goes from the lower to upper quartile, i.e., the 25th and 75th percentiles. It is sometimes called the
interquartile range or spread.

[In some of the modern tactics proposed as exploratory data analysis,1 the bulk of data is first divided
into two parts at the median. The upper and lower halves are then each divided into two parts by entities
called the upper and lower hinges. The distance between the values of the two hinges is called the H-spread.
Although the method of calculation is different, the values of the hinges are usually quite close to the
corresponding quartiles. For most practical purposes, therefore, the H-spread and the interquartile range
are identical.]

Inner-percentile ranges are always symmetrical around the median in their bulk, but not in their
demarcating values of data. For example, in Table 3.1, the interquartile range has a symmetrical bulk,
with 25% of data located on each side around the median value of 21. The lower quartile boundary
value of 17, however, is nearer to the median than the upper quartile of 28. Because the boundary values
are often asymmetrical, both are usually listed when an inner percentile range is demarcated. Thus, for
the data of Table 3.1, we could write “ipr50: 17, 28” to denote the interquartile range.

Because the standard deviation (as noted shortly) is often used as a single value to denote spread,
a counterpart single value can also be obtained from percentile demarcations. The most commonly
used single entity, the quartile deviation, is half the distance from the lower to upper quartile values
and is symbolized as (Q3  Q1 )/2. (Another name for this entity is the semi-interquartile range.) For
the data in Table 3.1, the quartile deviation is (28 17)/2 = 5.5.

5.3.2 Standard-Deviation Demarcations

The standard deviation, s, is the most commonly used index of spread. The popularity comes from its
symbolic economy and conceptual implication. Symbolically, the single s value is simpler and shorter
to write than the two boundary values of an ipr. Conceptually, as noted earlier, a span of 1.96 standard
deviations on both sides of the mean will include the inner 95% zone of data in a Gaussian distribution.

5.3.2.1 Apparent Notational Simplicity — Because the value of 1.96 is easily remembered
as 2, the inner 95% standard-deviation zone can be simply written with four symbols: . The
apparent advantage of this simplicity, however, is somewhat illusory. As noted in Section 5.3.1, a single
value, analogous to the standard deviation, could readily be obtained from the previously described
quartile or quadragintile deviations. If X~ represents the median, and q represents the percentile-based
deviation, we could analogously write X~ ± 2q.

The full scope of pertinent percentiles for an ipr95 zone could be written with three symbols within
brackets: the 2.5 percentile, the median (in italics), and the 97.5 percentile. InTable 4.1, this zone would
be shown as [92; 102; 109]. The conventional standard-deviation inner 95% zone for the data would be
cited as 101.572 ± (2)(5.199). The ipr95 percentile notation is more accurate in showing the correct inner
95% zone; and the reader does not have to do the multiplication and addition that determine the two
outer boundaries. Furthermore, because decimal results are not produced in the calculations for this
example, the percentile notation here actually occupies less space.

5.3.2.2 Peculiar Symbolism — Although the main symbolic role of s is to denote the 95% inner
zone implied by , many distributions are summarized in medical literature as “ .” The latter
symbols save one digit in space, but they create a peculiar zone that has no intellectual, logical, or
statistical advantages. The Gaussian zone that extends from  to  contains about 68% of the
data — a proportion that seldom has any analytic merit. (Descriptively, however, the “passing score” for
certain medical Board certification examinations is set at .)

For example, if the chloride data in Table 4.1 are summarized with the formula as 101.6 ±
2(5.2) = 101.6 ± 10.4, the “inner 95% zone” would extend from 91.2 to 112.0. As noted from the direct
results in Table 4.1, this zone actually includes about 95% of the data; and we could justifiably conclude

X 2s±

X 2s± X s±

X s– X s+

X s–
X 2s±
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that the zone covers the great bulk of the data. We might even, if desired, try to demarcate the “range
of normal” for chloride levels as extending from 91.2 to 112.0 — or more realistically, from 91 to 112.

Because the data in Table 4.1 are discrete integers rather than continuous values, the size of the zone
depends on whether the boundary values are included or excluded. In Section 4.7.2, when the boundaries
were excluded, the proportion of data in the inner zone was 1 (.049 + .0172) = .9338. If the values
of 91 and 112 are included in the zone, Table 4.1 shows that the cumulative frequencies ascend to .0392
at a value of 90 and descend from .0098 starting at a value of 113. Thus, the inner zone from 91 to 112
would contain a proportion of 1 (.0392 + .0098) = 0.951.

When written in the format as 101.6 ± 5.2, however, the conventional symbols would form an
inner zone that extends from the values of 96.4 to 106.8. In a Gaussian distribution, this zone, covering
the 68% of data associated with one standard deviation around the mean, would have little or no analytic
value. [If we let the zone extend from 96 to 107, the appropriate cumulative frequencies in Table 4.1
are .1054 at 95 and .0804 at 108. The zone from 96–107 would therefore include 1 (.1054 + .0804)
= .8142 of the data. The theoretical and empirical values do not agree, because the chloride distribution,
as shown in Figure 4.3, is not strictly Gaussian.]

5.3.2.3 Distorted or Impossible Zones — The main hazard of standard-deviation demarca-
tions occurs when the inner 95% zone is calculated as for distributions that are not Gaussian.
If the distribution is either Gaussian or symmetrical without being exactly Gaussian, this inner zone will
usually contain about 95% of the data. If the distribution is asymmetrical, however, the inner zone may
be distorted or impossible.

When boundary values are placed symmetrically on either side of the mean by the technique,
the result does not correctly show the 95% inner zone for most eccentric distributions. Furthermore, if
the data are highly skew or contain many outliers on one side of the distribution, the calculated 95%
inner zone will yield an impossible result. For example, in a group of patients receiving non-steroidal 
anti-inflammatory therapy, the duration of “rheumatic activity” was reported as a mean of 37.6 days
with a standard deviation of 21.4. The inner 95% zone, calculated as 37.6 ± (2)(21.4), will be 37.6 ±
42.8. It will extend from 5.2 to 80.4 days. No matter how efficacious, the treatment cannot produce a
retroactive inactivity of 5.2 days.

Figure 5.1 shows a dramatic illustration of the problem, constructed by W. S. Cleveland2 in a drawing
he called “Failure of means and sample standard deviations.” The upper panel displays the strikingly

FIGURE 5.1
W. S. Cleveland’s demonstration of identical means and standard deviations for four strikingly different distributions. For
further details, see text. [Figure taken from Chapter Reference 2.]
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different distributions of four sets of data, each with the same number of observations. The lower 
panel shows that despite the obvious differences, the four sets of data have identical means and 
standard deviations.

5.3.2.4 Reasons for Survival of Standard Deviation — In view of the potential (and 
sometimes actual) major distortions produced when 95% inner zones are calculated from , you 
may wonder why the standard deviation has managed to survive so long and be used so often as a 
descriptive index.

Aside from the reasons already cited, an additional advantage of the standard deviation was compu-
tational. In the era before easy ubiquitous electronic calculation, the standard deviation was easier to 
determine, particularly for large data sets, than the locations of percentile ranks and values. With easy 
electronic calculation, this advantage no longer pertains today.

The main apparent remaining advantage of the standard deviation arises from inferential rather than 
descriptive statistics. The standard deviation is an integral part of the Z tests, t tests, and other activities  
that will be encountered later when we begin to consider P values, confidence intervals, and other 
inferential statistics. This inferential advantage, however, may also begin to disappear in the next few 
decades. Easy electronic calculation has facilitated different approaches — using permutations and other 
rearrangements of data — that allow inferential statistical decisions to be made without recourse to 
standard deviations.

Accordingly, if your career is now beginning, the standard deviation may have become obsolete by 
the time your career has ended.

5.3.3 Gaussian Z-score Demarcations

If a distribution is Gaussian, a cumulative probability will be associated with the Z-score calculated as 
. This probability can promptly be converted to the spans of inner and outer zones of 

data. In fact, the  principle discussed in Section 5.3.2 depends on the Gaussian idea that the 
interval will span about 95% of the data.

Since very few medical distributions are truly Gaussian, however, Z-score probabilities are seldom 
used descriptively as indexes of spread. The Z-score probabilities, however, will later become prominent 
and useful for the strategies of statistical inference in Chapter 6.

5.3.4 Multiples of Median

Multiples of the median, called MoMs, are sometimes proposed as a mechanism for replacing Z-scores. 
The MoM score is calculated as Xi/X

~ when each item of data Xi is divided by the median, X~ . The 
method is controversial, having both supporters3 and detractors.4 The MoM score produces a distinctive 
relative magnitude for each item of data, but the span of scores is grossly asymmetrical. The MoMs will 
range from 0 to 1 for Xi values below the median, but will extend from 1 to infinity for values above 
the median. Furthermore, unlike a percentile or Z-score, the MoM result is not a standardized location. 
A MoM score of .7 will indicate that the item’s value is proportionately .7 of the median, but does not 
show the item’s rank or inner location.

Lest mothers be upset by rejection of something called MoM, however, the technique, although 
unsatisfactory for denoting a standardized inner location or zone, may be a good way of denoting a 
“standardized” magnitude for individual items of data.

5.4 Indexes of Spread

The main role of an index of spread is to allow the prompt demarcation of either a suitable inner zone 
for the data or an index of relative spread, which will denote (as discussed in Section 5.5) the “com-
pactness” of the data set.

X 2s±

Zi Xi X–( )/s=
X 2s±
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5.4.1 Standard Deviation and Inner Percentile Range

For most practical purposes, indexes of spread are calculated and used only for dimensional data. Since
the range, standard-deviation zones, and Z-score Gaussian demarcations have major disadvantages for
eccentric data, the inner-percentile ranges would seem to be the best routine way to describe spread.
Nevertheless, for reasons noted earlier, the standard deviation is the most popular expression today,
usually shown in citations such as  or . If the goal is to demarcate a 95% inner zone that
will always be both realistic and accurate, however, the ipr95 — extending from the 2.5 to 97.5 percentile
values — is the best choice.

5.4.2 Ordinal Data

Since ordinal data can be ranked, their range can be reduced to a spread that is expressed (if desired)
with an inner zone determined from percentiles. The quartile deviation (or semi-interquartile range) is
commonly used for this purpose.

Although the mathematical propriety is disputed, ordinal data are sometimes managed as though they
were dimensional, with means, standard deviations, and corresponding inner zones being calculated
from the arbitrary digits assigned as ordinal codes.

5.4.3 Nominal Data

Since nominal data cannot be ranked, an inner zone cannot be demarcated. Several “indexes of diversity”
have been proposed, however, to summarize the proportionate distribution of the nominal categories.
Hardly ever appearing in medical literature, these indexes are briefly noted at the end of the chapter in
Section 5.10.

5.5 Indexes of Relative Spread

For ranked dimensional or ordinal data, indexes of relative spread have two important roles: they indicate
the compactness of the distribution and they will also help (as noted later in Chapter 6) indicate the
stability of the central index.

An index of relative spread is calculated by dividing an index of spread, derived from standard
deviations or percentiles, by a central index, such as a mean or median. The result indicates the relative
density or compactness of the data.

5.5.1 Coefficient of Variation

The best known index of relative spread is the coefficient of variation, often abbreviated as c.v. It is
calculated from the ratio of standard deviation and mean as

For example, the c.v. is 80.48/120.1 = .67 for the data in Table 3.1 and .05 (= 5.199/101.572) for
Table 4.1. A compact distribution with a tall and narrow shape will have a relatively small standard
deviation and therefore a relatively small c.v. For a short, wide shape, the c.v. will be relatively large.

As the external representative of the distribution, the mean cannot do a good job if the distribution is  
too widely spread, but no specific boundaries have been established for c.v.s that are “too large.” Wallis  
and Roberts5 have proposed a boundary of ≤.10. Snedecor and Cochran,6 suggesting a zone between .05 
and .15, say that higher values “cause the investigator to wonder if an error has been made in calculation, 
or if some unusual circumstances throw doubt on the validity of the experiment.”

X s± X 2s±

c.v. s/X=
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These proposed standards seem theoretically excellent, but they may be too strict for the kinds of
variation found in medical data. If the results have doubtful validity when the c.v. exceeds .10 or .15, a
great many medical research projects will be brought under an enormous cloud, and hundreds of
published papers will have to be either disregarded or recalled for repairs.

5.5.2 Coefficient of Dispersion

Directly analogous to the coefficient of variation, the coefficient of dispersion, sometimes abbreviated
as CD, is determined with absolute deviations from the median, rather than squared deviations from the
mean. The average absolute deviation from the median, AAD, is calculated as Σ|Xi – X~ | /n. It is then
divided by the median, X~ to form CD = (AAD)/X~ . Because of the algebraic “awkwardness” of absolute
deviations, this index is seldom used.

5.5.3 Percentile-Derived Indexes

Since neither the mean nor the standard deviation may be a good representative of a dimensional data
set, the coefficient of variation might be replaced by percentile-derived values for indexes of relative
dispersion. An index that corresponds directly to c.v. could be obtained by dividing the quartile deviation
by the median.

A formal entity called the quartile coefficient of variation is calculated from the lower quartile value
(Q1) and the upper quartile value (Q3) as (Q 3 − Ql)/(Q3 + Q1). Since (Q3 Ql)/2 corresponds to a standard
deviation, and (Q3 + Q1)/2 corresponds to a mean, this ratio is a counterpart of the result obtained with
the c.v. For example, for the data in Table 4.1, the lower quartile is 99 and the upper quartile is 105.
The quartile coefficient of variation is (105 − 99)/(105 + 99) = .029, which corresponds to the c.v. of 
.05 for those data.

5.5.4 Other Analytic Roles

Perhaps the most important statistical role of coefficients of variation (or other indexes of relative spread) 
occurs in subsequent decisions when we evaluate the stability of a central index, or when central indexes 
are compared for two groups. These decisions will be discussed in Chapter 7 and later in Part II of the text.

5.6 Searching for Outliers

Another reason for demarcating inner zones and indexes of relative spread is to play a fashionable indoor
sport called “searching for outliers.” The activity has scientific and statistical components.

5.6.1 Scientific Errors

Scientifically, the outlier may be a wrong result. The measurement system was not working properly; 
the observer may have used it incorrectly; or the information may have been recorded erroneously. For 
example, an obvious error has occurred if a person’s age in years is recorded as 250. Outliers that 
represent obvious errors are usually removed from the data and replaced by blank or unknown values. 
Sometimes, however, the error can easily be corrected. Miller9 gives an example of a data set {12.11, 
12.27, 12.19, 21.21, and 12.18} in which “we can be fairly certain that a transcription error has occurred  
in the fourth result, which should be 12.21.”

In laboratory work where substances are usually measured dimensionally, diverse statistical approaches 
are used to find suspicious values. One approach, cited by Miller7 and called Dixon’s Q, forms a ratio,

Q suspect value nearest value–= /range 
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If the value of Q is higher than the value authorized in a special statistical table, the result is deemed
suspicious and probably erroneous.

5.6.2 Statistical Misfits

Outliers are commonly sought for statistical reasons, not to detect wrong values, but to remove “misfits.”
In many statistical procedures that involve fitting the data with a “model,” such as a mean or an algebraic
equation, the choice or fit of the model may be substantially impaired by outliers. The problem becomes
more prominent later when we reach the algebraic models used for regressions and correlations, but we
have already seen some examples in the way that outliers can alter the location of a mean or the magnitude
of a standard deviation.

In the algebraic activities discussed later, the outlier is often removed from the data, which are then
fitted into a new model. Most scientists, however, are not happy about removing correct items of data
simply to improve the “feelings” of a mathematical model. Furthermore, if something is wrong with a
system of measurement, why should we be suspicious only of the extreme values? Should not the interior
values be viewed just as skeptically even if they do not stand out statistically?

5.6.3 Compromise or Alternative Approaches

The different motives in searching for outliers will often lead to different approaches for management.
In one tactic already mentioned (Section 3.8.4), the problem is avoided with “robust” methods that

are relatively unaffected by outlier values. Thus, values of the median and inner percentile ranges, which
are usually unaffected by outliers, are preferred to means and standard deviations. [Later on, when we
reach issues in statistical inference, the “robustness” of “non-parametric” methods will often make them
preferred over “parametric” methods.]

Nevertheless, in examining distributions of univariate data for a single group, we may want some sort
of mechanism to make decisions about outliers, regardless of whether the main goal is to find scientif-
ically wrong values or statistical misfits. To escape from outlier effects on means and standard deviations,
the best tactics are to examine the data directly or to employ medians and inner-percentile ranges. Both
these approaches can be used during the displays and examinations discussed in the next section.

5.7 Displays and Appraisals of Patterns

The stem-leaf plots discussed earlier in Section 3.3.1.2. have been replacing the histograms that were
used for many years to display the shape and contents of dimensional data. Histograms are gradually
becoming obsolete because they show results for arbitrary intervals of data rather than the actual values,
and because the construction requires an artistry beyond the simple digits that can easily be shown with
a typewriter or computer for a stem-leaf plot.

5.7.1 One-Way Graph

Data can always be displayed, particularly if the stem-leaf plot is too large, with a “one-way graph.” The
vertical array of points on the left of Figure 5.2 is a one-way graph for the data of Table 3.1. In this type
of graph, multiple points at the same vertical level of location are spread horizontally close to one another 
around the central axis. A horizontal line is often drawn through the vertical array to indicate the location 
of the mean. The horizontal line is sometimes adorned with vertical flanges so that it appears as || rather 
than  .The adornment is merely an artist’s esthetic caprice and should be omitted because it can be 
confusing. The apparently demarcated length of the flange may suggest that something possibly useful 
is being displayed, such as a standard deviation or standard error.
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5.7.2 Box Plot

If you want to see the pattern of dimensional data, the best thing to examine is a stem-leaf plot. To
summarize the data, however, the best display is another mechanism: the box plot, which Tukey called
a “box-and-whiskers plot.” Based on quantiles rather than “parametric” indexes, the box plot is an
excellent way to show the central index, interquartile (50%) zone, symmetry, spread, and outliers of a
distribution. The “invention” of the box plot is regularly attributed to John Tukey, who proposed1 it in
1977, but a similar device, called a range bar, was described in 1952 in a text by Mary Spear. 8 Spear’s
horizontal “range bar,” reproduced here as Figure 5.3, shows the full range of the data, the upper and
lower quartiles that demarcate the interquartile range, and the median.

5.7.2.1 Construction of Box — In the customary box plots today, data are displayed vertically
with horizontal lines drawn at the level of the median, and at the upper and lower quartiles (which Tukey
calls “hinges”). The three horizontal lines are then connected with vertical lines to form the box. The
interquartile spread of the box shows the segment containing 50% of the data, or the “H-spread.” The
box plot for the data of Table 3.1 is shown on the right side of Figure 5.2, using the same vertical units
as the corresponding one-way graph on the left. For the boundaries of the box, the lower quartile is at
17 between the 14th and 15th rank, and the upper quartile is at 28 between the 41st and 42nd rank. The
box thus has 28 as its top value, 21 as the median, and 17 at the bottom. The mean of 22.7 is shown
with a + sign above the median bar.

The width of the horizontal lines in a box plot is an esthetic choice. They should be wide enough to
show things clearly but the basic shape should be a vertical rectangle, rather than a square box. When
box plots are compared for two or more groups, the horizontal widths are usually similar, but McGill
et al.9 have proposed that the widths vary according to the square root of each group’s size.

5.7.2.2 Construction of “Whiskers” — Two single lines are drawn above and below the box 
to form the “whiskers” that summarize the rest of the distribution beyond the quartiles. ŽThe length of
the whiskers will vary according to the goal at which they are aimed.

If intended to show the ipr95, the whiskers will extend up and down to the values at the 97.5 and 2.5
percentiles. For the 2.5 and 97.5 percentiles, calculated with the proportional method, the data of Table
3.1 have the respective values of 12 and 41. Because the upper and lower quadragintile boundaries may
not be located symmetrically around either the median or the corresponding quartiles, the whiskers may
have unequal lengths. In another approach, the whiskers extend to the smallest and largest observations
that are within an H-spread (i.e., interquartile distance) below and above the box.

FIGURE 5.2
Display of data points and corresponding box-and-
whiskers plot for data in Table 3.1.

FIGURE 5.3
Antecedent of box plot: the “range plot” proposed in 1952
by Spear. [Figure taken from Chapter Reference 8.].
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For many analysts, however, the main goal is to let the whiskers include everything but the outliers.
The egregious outliers can often be noted by eye, during examination of either the raw data or the stem-leaf
plot. The box-plot summary, however, relies on a demarcating boundary that varies with different statis-
ticians and computer programs. Tukey originally proposed that outliers be demarcated with an inner and
outer set of boundaries that he called fences. For the inner fences, the ends of the whiskers are placed at
1.5 H-spreads (i.e., one and a half interquartile distances) above the upper hinge (i.e., upper quartile) and
below the lower hinge (i.e., lower quartile). The outer fences are placed correspondingly at 3.0 H-spreads
above and below the hinges. With this convention, the “mild” or “inner” outliers are between the inner
and outer fences; the “extreme” or “outer” outliers are beyond the outer fence.

[Tukey’s boundaries are used for box-plot displays in the SAS data management system,10 where the
inner outliers, marked 0, are located between 1.5 and 3 H-spreads; the more extreme outliers, marked
*, occur beyond 3 H-spreads. In the SPSS system,11 however, an “inner outlier” is in the zone between
1.0 and 1.5 H-spreads and is marked with an X; the “outer” (or extreme) outliers are beyond 1.5 H-spreads
and are marked E.]

In the data of Table 3.1 and Figure 5.2, the spread between the hinges at the upper and lower quartiles
is 28 − 17 = 11. Using the 1.5 H-spread rule, the whiskers would each have a length of 1.5 × 11 = 16.5
units, extending from 0.5 (=17 16.5) to 43.5 (=28 + 16.5). Because the data in Table 3.1 have no major
outliers, the whiskers can be shortened to show the entire range of data from 11 to 43. This shortening
gives unequal lengths to the whiskers in Figure 5.2.

On the other hand, if boundaries are determined with the 1 H-spread rule, each whisker would be 11
units long, extending from a low of 6 (= 17  11) to a high of 39 (= 28 + 11). The lower value could
be reduced, because the whisker need only reach the smallest value of data (11), but the upper whisker
would not encompass the data values of 41 and 42, which would then appear to be outliers.

5.7.2.3 Immediate Interpretations — The horizontal line of the median between the two
quartiles divides the box plot into an upper and lower half. If the two halves have about the same size,
the distribution is symmetrical around the central index. A substantial asymmetry in the box will promptly
indicate that the distribution is not Gaussian.

The “top-heavy” asymmetry of the box in Figure 5.2 immediately shows that the distribution is skewed
right (toward high values). Because the mean and median have the same location in a Gaussian distri-
bution, the higher value of the mean here is consistent with the right skew. In most distributions, the 
mean is inside the box; and a location beyond the box will denote a particularly egregious skew.

5.8 “Diagnosis” of Eccentricity

The “diagnosis” of a non-Gaussian or eccentric distribution of data has several important purposes: (1) to 
warn that the distribution may not be properly represented by the mean and standard deviation; (2) to 
help identify outliers; (3) to suggest methods of “therapy,” such as transformations, that may either cure 
the statistical ailment or reduce its severity.

The statistical methods of “diagnosis” are analogous to the tactics used in clinical medicine. Some of  
the procedures are done with simple “physical examination” of the data. Others use easy, routine ancillary 
tests that might correspond to a urinalysis or blood count. Yet others involve a more complex technologic 
“work-up.”

The simple methods of “physical examination” will be recurrently emphasized in this text because 
they can be valuable “commonsense” procedures, often using nothing more than inspection or a simple  
in-the-head calculation. These “mental” methods, although seemingly analogous to screening tests, are 
actually different because a distinctive result is seldom false. Thus, in many of the mental methods to 
be discussed, a “positive” result is almost always a “true positive,” but a “negative” result should seldom 
be accepted as truly negative without additional testing.

The methods for diagnosing eccentric distributions can be divided into the “mental” tactics, the simple 
ancillary test of examining the box plot, and the more elaborate tests available in a formal statistical 
“work-up.”
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5.8.1 “Mental” Methods

Three simple “mental” methods for determining eccentricity are to compare the mean with the standard
deviation and with the mid-range index, and to see if exceeds the limits of the range.

5.8.1.1 Mean vs. Standard Deviation — The coefficient of variation (see Section 5.5.1) is
formally calculated as the standard deviation divided by the mean. An even simpler approach, however,
is to compare the two values. In a symmetrical relatively compact data set, the standard deviation is
substantially smaller than the mean. If the value of s is more than 25% of , something must be wrong.
Either the distribution is eccentric, or it is highly dispersed. Thus, in Table 3.1, where s = 7.693 is about
1/3 of = 22.732, eccentricity can promptly be suspected. In Table 4.1, however, where s = 5.199 and

 = 101.572, the s vs. comparison does not evoke suspicions. A non-Gaussian diagnosis for Table 4.1
requires more subtle testing.

5.8.1.2 Mean vs. Mid-Range Index — The mid-range can easily be mentally calculated as half
the distance between the maximum and minimum values of the data set. The formula is mid-range
index = (Xmax + Xmin)/2. If the mid-range differs substantially from the mean, the data have an eccentric
distribution. In Table 3.1, the mid-range is (43 + 11)/2 = 27, which can produce a prompt diagnosis of
eccentricity, because the mean is = 22.7. In Table 4.1, however, the mid-range is (127 + 75)/2 = 101,
which is quite close to the mean of 101.6.

5.8.1.3 Range vs.  — A third type of mental check is sometimes best done with a calcu -
lator to verify the arithmetic. In Table 3.1, the value of  is 22.7 ± 2(7.693). With a calculator,
the spread is determined as 7.314 to 38.086. Without a calculator, however, you can approximate the 
data as 23 ± 2(8) and do the arithmetic mentally to get a spread that goes from 7 to 39. Because the
actual range in that table is from 11 to 43, the lower value of the  spread — with either method
of calculation — goes beyond the true limit. Therefore, the distribution is eccentric. In Table 4.1, however,

 would be 101.6 ± 2(5.2) which can be calculated as going from 91.2 to 112.0, or 92 to 112. 
Either set of spreads lies within the true range of 75 to 127.

5.8.2 Examination of Box Plot

After a box plot has been drawn, its direct inspection is the simplest and easiest method for identifying 
eccentricity.

In a symmetrical or quasi-Gaussian distribution, the box plot will show three features of “normality”:  
(1) the mean and median are relatively close to one another; (2) the two halves of the box, formed above 
and below by the location of the upper and lower quartiles, should be relatively symmetrical around the  
median; and (3) no egregious asymmetrical outliers should be present. Obvious violations of any of these 
three requirements can easily be discerned as an “abnormality” in the box plot, indicating an eccentric 
distribution. If all three requirements are fulfilled, the data are almost surely Gaussian or quite symmetrical.

The decisions about what is relatively close, symmetrical, or egregious will depend on the analyst’s 
“statistical judgment.”

5.8.3 Special Tests for Eccentricity

For analysts who prefer more precise “laboratory tests” rather than the simple judgments just discussed, 
diverse tactics have been devised to offer warnings about non-Gaussian distributions. The methods are 
automated and the results regularly appear, often without having been solicited, in computer programs 
that display summaries of univariate data.
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The additional results can regularly be ignored, but are there if you want them. They include indexes
of “normality” and various graphical plots. The procedures are briefly mentioned here to outline what 
they do, should you ever decide (or need) to use them. Further explanation of the strategies is usually
offered in the associated manuals for the computer programs, and their interpretations can be found in
various statistical textbooks.

5.8.3.1 Indexes of “Normality” — Two relatively simple tests produce an index of skewness,
reflecting different locations for mean and median, and an index of kurtosis which denotes whether the
distributional shape is leptokurtic (too tall and thin), platykurtic (too short and fat), or mesokurtic ( just
right). One of these calculations is called Geary’s test of kurtosis.12

Royston has described computational13 and graphical14 methods that offer more sophisticated
approaches for evaluating normality.

5.8.3.2 Graphical Plots — A different way of checking for normality is to do simple or com-
plicated graphical plots. In a simple plot, which shows the residual values of  graphed against
Xi, the results of a Gaussian curve should show nonspecific variations, with no evident pattern, around
a horizontal line drawn at the mean of .

The more complicated plots compare the observed values of the data with the corresponding quantile
or standard-deviation points calculated for a Gaussian distribution that has the observed  and s as its
determining features.

5.8.3.3 Illustration of Univariate Print-Out — Figure 5.4 shows the univariate print-out
produced by the SAS system for the 200 values of hematocrit whose stem-leaf plot was previously
shown in Figure 3.2. The upper left corner shows the group size of N = 200, the mean of 41.09,
and standard deviation of 5.179 (with s 2 = 26.825), with c.v. = (s/ × 100) = 12.605 and standard
error of the mean (marked “Std Mean”) = .366. The uncorrected sum of squares (USS) for  is
343015.8 and the corrected sum of squares (CSS) for Sxx is 5338.32. The other data in the upper
left corner show indexes of skewness and kurtosis and results for three other tests [T: mean; M(Sign);
and Sgn Rank] that will be discussed later. The middle part of the upper half of the printout shows
the various quantile values, and the far right upper section shows the five lowest and highest observed
values in the data, together with their individual identification codes (marked “Obs”) among the
200 members.

The stem-leaf plot on the lower left is a condensed version (marked for even-numbered stems only)
of what was shown earlier in Figure 3.2. Next to it is the box plot, which is ordinarily the most useful
part of the visual display. It shows the essentially similar values for mean and median in this set of data.
The two halves of the box here falsely appear asymmetrical because of an artifact of the graphic plotting
system, which contained no provision for odd values. Hence, the mean and median, with values of 41,
were plotted at values of 40. [This graphic artifact should warn you always to check the actual values
of the three quartiles before concluding that a box plot is asymmetrical.]

With an interquartile range of 6 (= 44 38), the two whiskers extend a distance of 9 (= 1.5 × 6) units
above and below the margins of the box, leaving low outlier values (marked “0”) at values of 28 and
24, with high outliers at 54 and 56.

The normal probability plot in the lower right corner of Figure 5.4 shows + marks to denote where
points would be located if the distribution were perfectly Gaussian. Thus, the locations for − 0.5, 1, 
and 1.5 standard deviations below the mean for these data should be respectively at values of 41.09 
(0.5)(5.179) = 38.5; 41.09  5.179 = 35.9, and 41.09  (1.5)(5.179) = 33.3. The asterisks (or “stars”) 
show the actual locations of the points in the distribution. In this instance, they follow the Gaussian line  
of + marks fairly closely, but dip below it at the low end and extend above at the high end. 

Xi X–

X

X

X
ΣXi

2

© 2002 by Chapman & Hall/CRC 



FI
G

U
R

E 
5.

4
Pr

in
to

ut
of

un
iv

ar
ia

te
di

sp
la

y
fo

rg
ro

up
 o

f2
00

 h
em

at
oc

rit
va

lu
es

pr
ev

io
us

ly
sh

ow
n

in
 F

ig
ur

e
3.

2.
Th

e 
di

sp
la

y
w

as
cr

ea
te

d
by

 th
e 

PR
O

C
U

N
IV

A
R

IA
TE

pr
og

ra
m

of
th

e
SA

S
sy

st
em

.A
ll

re
su

lts
in

 th
e 

up
pe

r h
al

f o
f 

th
e 

di
sp

la
y 

ap
pe

ar
 r

ou
tin

el
y.

 T
he

 s
te

m
-le

af
, b

ox
, a

nd
 n

or
m

al
 p

ro
ba

bi
lit

y 
pl

ot
s 

ar
e 

al
l r

eq
ue

st
ed

 o
pt

io
ns

.

Va
ria

bl
e=

H
C

T
H

E
M

AT
O

C
R

IT

N
20

0
S

um
 W

gt
s

M
om

en
ts

Q
ua

nt
ile

s 
(D

ef
=5

)
E

xt
re

m
es

20
0

10
0%

  M
ax

75
%

  Q
3

44 41 38 24 32 426

25
%

  Q
1

0%
  M

in

50
%

  M
ed

56
99

%
53

.5
Lo

w
es

t 
H

ig
he

st
O

bs
O

bs
50

24
 (

  1
93

)
52

 (
  1

46
)

53
 (

  1
85

)

56
 (

  1
15

)

28
 (

   
 6

5)
53

 (
   

 7
8)

54
 (

   
 1

1)
30

 (
   

 6
4)

31
 (

   
 6

6)
31

 (
   

 5
0)

48 33 29

34
.1

95
%

90
%

10
% 5% 1%

M
ea

n
41

.0
9

S
um

82
18

S
td

 D
ev

5.
17

93
07

Va
ria

nc
e

26
.8

25
23

S
ke

w
ne

ss
0.

02
91

79
Ku

rto
si

s
0.

27
05

36
U

S
S

34
30

15
.8

C
S

S
53

38
.2

2
C

V
12

.6
04

79
S

td
 M

ea
n

0.
36

62
32

T 
: M

ea
n=

0
11

2.
19

65
P

r >
   

T
0.

00
01

N
um

   
  =

 0
20

0
N

um
 >

 0
20

0
R

an
ge

Q
3 

- Q
1

M
od

e
M

( S
ig

n 
)

10
0

P
r >

 =
   

M
0.

00
01

0.
00

01
P

r >
 =

   
S

S
gn

 R
an

k
10

05
0

S
te

m
  L

ea
f

#
B

ox
pl

ot
56

   
0

1
54

   
0

1
52

   
00

0
3

50
   

00
00

00
00

8
48

   
00

00
09

00
0

9
46

   
00

00
00

00
00

01
12

44
   

00
00

00
00

00
00

00
00

00
00

00
00

00
6

27
42

  0
00

00
00

00
00

00
00

00
09

00
00

00
00

00
00

55
5

34
40

  0
00

00
00

00
00

00
00

50
00

00
00

04
7

27
38

  0
00

00
00

00
04

00
00

00
00

00
00

00
33

99
29

36
  0

00
03

30
00

00
00

00
05

58
19

34
  0

00
00

02
55

00
00

00
0

16
32

  0
70

00
00

03
9

30
  0

00
3

28
  0

1
26 24

  0
1

0
57

+

41
+

25
+

0 0 0

*
*

+
+

+
+

+
+

+
+

+
+

+

*
**

**
*

+
**

**
*

+

+

**
****

**
***

**
***

**
***

**
***

*
+

+
**

**

+
+

++

*

* *
*

+
+

+
**

**

*
* *

-2
-1

0
+1

+2

N
or

m
al

 P
ro

ba
bi

lit
y 

P
lo

t

© 2002 by Chapman & Hall/CRC 



5.9 Transformations and Other “Therapy”

When worried about the misrepresentation that can occur if an eccentric distribution is externally 
represented by its mean and standard deviation, data analysts can use various tactics to discern and try 
to “repair” non-Gaussian distributions of dimensional data.

The usual mechanism of repair, as noted earlier, is to eliminate outliers from the data or to perform 
“Gaussianizing” transformations. The transformations were particularly popular during the pre-computer 
era of statistical analysis, but the tactic is used much less often today.

1. Many new forms of analysis, as noted in Parts II-IV of the text, do not depend on Gaussian 
(parametric) procedures. The data can be processed according to their ranks (or other arrangements) 
that do not rely on means and standard deviations. Having been automated in various “packaged” 
computer programs, the new methods are easy to use and readily available.

2. Many forms of medical data are not expressed in dimensional variables. They are cited 
in binary, ordinal, or nominal categories for which means and standard deviations are 
not pertinent.

3. Despite apparent contradictions of logic and violations of the basic mathematical assumptions, 
the parametric methods are quite “robust” not for description of eccentric data, but for 
inferences that will be discussed later. Without any transformations or alterations, the “unvar-
nished” methods often yield reasonably accurate inferential conclusions — i.e., the same 
conclusions about “statistical significance” that might come from transformed data or from 
the “gold standard” non-parametric methods.

For all these reasons, analysts today do not transform data as often as formerly. The univariate 
distributions should still be carefully inspected, however, to determine whether the dimensional data are 
so eccentric that they require non-parametric rather than parametric procedures.

5.10 Indexes of Diversity

Indexes of spread are seldom determined for categorical data, but the dispersion of frequency counts 
among the categories can be expressed, if desired, with statistical indexes of diversity.

Maximum diversity in any group occurs when its members are distributed equally among the available 
categories. Thus, with c categories for a group of N members, the group has maximum diversity if the 
frequency count, fi, in each category is fi = N/c. The various indexes of diversity differ in the way they 
express the distribution, but all of them compare the observed distribution score with the maximum 
possible score.

Although these indexes seldom appear in medical or biological literature, they can sometimes be used 
to describe the proportionate distribution of a set of categorical descriptions in ecologic studies of birds  
or animals, or even, in the first example cited here, for clinical “staging” of people.

5.10.1 Permutation Score for Distributions

One expression of diversity uses scores obtained from factorial permutations. The number of permuta-
tions of N items is N! = 1 × 2 × 3 × … × N. If divided into c categories containing f1, f2, … , fc members, 
the total number of permutations will be N!/(f1! f2! … fc!). [We shall meet this same idea later when 
permutation procedures are discussed.]

Suppose a group of 21 patients contains 4 in Stage I, 6 in Stage II, and 11 in Stage III. The permutation 
score would be 21!/(4! 6! 11!) = 5.1091 × 1019/(24 × 720 × 39,916,800) = 7.4070358 × 107. If the group 
were perfectly divided into three parts, the maximum possible score would have been 21!/(7! 7! 7!) =
3.9907 × 108 . The ratio of the actual and maximum scores would be 7.4070358 × 107/3.9907 × 108 = .186.
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The log-of-factorial-permutations score has been used clinically15 for comparing different partitions 
of groups in the preparation of prognostic “staging” systems. For example, suppose a group of 200 
people can be distributed as {19, 77, 82, 22} or as {20, 84, 72, 24}. The result of the log permutation 
score is 100.9 for the first partition and 102.4 for the second. If all other factors were equal, the second  
partition would be regarded as having a better (i.e., more diverse) distribution.

5.10.2 Shannon’s H

An entity called Shannon’s H16 is derived from concepts of “entropy” in information theory. The idea 
refers to “uncertainty” in a distribution. If all cases are in the same category, there is no uncertainty. If 
the cases are equally divided across categories, the uncertainty is at a maximum.

The formula for Shannon’s index of diversity is

where pi is the proportion of data in each category. For patients in the three categorical stages in the 
example of Section 5.10.1, the respective proportions are .190, .286, and .524. Shannon’s index of 
diversity is

The last index cited here expresses qualitative variation from a heterogeneity score calculated as the 
sum of the products of all pairs of frequency counts. For three categories, this sum will be f 1 f2 + f1 f3 +
f2 f3. In the example cited here, the score will be (4 × 6) + (4 × 11) + (6 × 11) = 134. The maximum 
heterogeneity score — with equal distribution in all categories — would occur as (7 × 7) + (7 × 7) +
(7 × 7) = 147. The index of qualitative variation is the ratio of the observed and maximum scores. In 
this instance, it is 134/147 = .91.

Indexes of diversity are probably most useful for comparing distributions among groups, rather than 
for giving an absolute rating. Because the scores depend on the number of categories, the comparisons 
are best restricted to groups divided into the same number of categories. For the two groups of 200 
people cited at the end of Section 5.10.1, the observed heterogeneity scores would respectively be 13251 
and 13392. The higher result for the second group would indicate that it is more heterogeneous than the 
first, as noted previously with the permutation score.
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Exercises

5.1. In one mechanism of constructing a “range of normal,” the values of the selected variable are 
obtained for a group of apparently healthy people. The inner 95% of the data is then called the “range 
of normal.” Do you agree with this tactic? If not, why not — and what alternative would you offer? 
5.2. At many medical laboratories, the “range of normal” is determined from results obtained in a 
consecutive series of routine specimens, which will include tests on sick as well as healthy people. What 
would you propose as a pragmatically feasible method for determining the “range of normal” for this 
type of data? 

H Σpi pilog–=

H .190 .190 .286 .286 .524 .524log+log+log[ ] .4396–[ ] .4396=–=–=
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5.3. A “range of normal” can be demarcated with a Gaussian inner zone around the mean, with an
inner percentile zone, or with a zone eccentrically placed at one end of the data. Each of these methods
will be good for certain variables, and not good for others. Name two medical variables for which each
of these three methods would be the best statistical strategy of establishing a “range of normal.” Offer
a brief justification for your choices. (Total of six variables to be named. Please avoid any already cited
as illustrations.)
5.4. The quartile deviation is almost always smaller than the corresponding standard deviation. Why
do you think this happens?
5.5. For the data in Table 3.1, the mean is 22.732 and the standard deviation (calculated with n  1)
is 7.693.

5.5.1. What would have been the standard deviation if calculated with n?
5.5.2. What is the coefficient of variation for the data?
5.5.3. What is the quartile coefficient of variation?

5.6. What corresponding values do you get when an inner 95% zone is determined by percentiles and
by a Gaussian demarcation in the data of Table 3.1? Why do the results differ?
5.7. Using whatever medical journal you would like, find three sets of data (each describing one variable
in one group) that have been summarized with an index of central tendency and an index of spread.
From what you know or have been shown about the data, are you content with these summary values?
Mention what they are, and why you are content or discontent. Be sure to find at least one data set for
which the published summary indexes have evoked your displeasure, and indicate why you are unhappy.
As you read more of the published report where those indexes appeared, do you think they have led to
any serious distortions in the authors’ conclusions? If so, outline the problem.
5.8. A colleague who wants to analyze categories rather than dimensional values has asked you to
divide the data of Table 3.1 into five categories. What partition would you choose? How would you 
demonstrate its effectiveness?
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We now have methods to summarize a group of data by citing indexes of central location and spread. 
We can also examine box plots and relative spreads to indicate whether the data have a symmetric 
distribution, and whether the central index does a satisfactory job of representing the group. For decisions 
that one group is taller, heavier, or wealthier than another, the central indexes can be compared directly 
if they are satisfactory. If not, additional mechanisms will be needed for the comparison.
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The foregoing approach seems reasonable and straightforward, but it does not take care of a major 
problem that has not yet been considered: the stability of the indexes. When we compared 50% vs. 33% 
back in Chapter 1, each group was suitably represented by the proportions of 50% and 33%, but we 
were uneasy about the comparison if the actual numbers were 1/2 vs. 1/3, and relatively comfortable if  
they were 150/300 vs. 100/300. 

6.1 Stability, Inference, and Probability

The comparison of 1/2 vs. 1/3 left us uneasy because the summary indexes were unstable. If the first 
group had one more member, its result could be 1/3, producing the same 33% as in the second group. 
If the second group had one more member, its result might be 2/4, producing the same 50% as in the 
first group. On the other hand, the original comparison of 50% vs. 33% would hardly be changed if one  
more person were added to (or removed from) groups with results of 150/300 vs. 100/300.

Even if the groups are large, stability of the indexes is not always assured. For example, in two groups 
that each contain 1000 people, a ratio indicating that one group has twice the mortality rate of the other 
might seem impressive if the rates are 200/1000 vs. 100/1000, but not if they are 2/1000 vs. 1/1000.

For these reasons, statistical decisions require attention to yet another component — stability of the 
central index — that is not denoted merely by the index itself or by the spread of the data. The evaluation 
of stability involves concepts of probability and inference that will be discussed in this chapter before 
we turn to the mechanisms of evaluation in Chapters 7 and 8.

6.1.1 “Perturbation” and Inference

Stability of a central index is tested with various methods of “perturbing” the data. The methods, which  
are discussed in Chapters 7 and 8, include such tactics as “jackknife” removal of individual items, 
“bootstrap” resampling from an empirical group, and “parametric” sampling from a theoretical population 
to determine a “confidence interval.”

The perturbations are used to answer the question, “What would happen if…?” Each set of results 
allows us to estimate both a range of possible values for the central index, and also a probability that 
the values will be attained. All of these estimates represent inference, rather than evidence, because they 
are derived from the observed data but are not themselves directly observed.

6.1.2 Probability and Sampling

If a set of data has already been collected, it can be “perturbed” in various ways to make inferences 
about the probability of what might happen. A different and particularly important role of probability, 
however, occurs when we do not yet have any data, but plan to get some by a sampling process. For 
example, suppose we want to conduct a political poll to determine the preferences of a group of voters.  
How large a sample would make us feel confident about the results? The latter question cannot be 
answered with the tactic of perturbing an observed group of data, because we do not yet have any data 
available. The decision about the size of the sample can be made, however, with principles of probability 
that will be cited later.

Because probability has many other roles in statistics, this chapter offers an introductory discussion 
of its concepts and application. The idea of probability usually appears in statistics not for descriptive 
summaries of observed data, but in reference to inferential decisions. Nevertheless, probability has 
already been mentioned several times (in Sections 4.5 and 4.8) in connection with such descriptive 
indexes as percentiles and Z-scores. In addition, all of the inner zones discussed in Chapter 5 describe 
proportions of the observed data; and each proportion can be regarded as the probability that a randomly  
chosen item of data would come from the designated zone.

A particularly valuable attribute of zones of probability is their role as the main intellectual “bridge”  
between the descriptive and inferential strategies of statistical reasoning. An internal zone of probability 
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is used, as noted later in Chapter 7, to construct boundaries for a confidence interval that shows possible 
variations in the location of a central index. An external zone of probability is used, as discussed here 
and in many subsequent chapters, to establish P values for the possibility that important distinctions in 
the observed results arose by chance alone. 

6.2 Why Learn about Probability?

Mathematical discussions of probability are usually the place at which most non-statisticians lose interest 
in statistics. The reader (or student) usually wants to learn about quantitative distinctions: how to examine 
the magnitudes of observed data in a group; how to contrast the results in two (or more) groups; how 
to check the associations among two (or more) variables. Seeking enlightenment about these pragmatic  
activities in the real world of statistical description, the reader wonders why the discussion has entered 
the theoretical world of probabilities and statistical inference. When the discussion begins to include 
long mathematical details about the “laws of probability,” principles of sampling, and other theoretical 
background, the reader is usually bored, repelled, or confused beyond redemption.

The purpose of these remarks is to indicate why probability is important, and to assure you that the 
forthcoming discussion will try to avoid many of the unattractive mathematical details.

The prime reason for being concerned about probability is that medical research often involves small  
groups and data that create uncertainty about unstable numerical results, such as those discussed at the 
beginning of this chapter. The instabilities can lead to potentially troublesome events. A political 
candidate who discovers she is favored by 67% of the voters may reduce her campaigning efforts because 
she feels sure of winning the election. If the value of 67% reflects the preference of only 4 of 6 people,  
however, the decision might be disastrous. If we conclude that treatment A is definitely better than 
treatment B because the respective success rates are 50% vs. 33%, the conclusion might be dramatically 
wrong if the actual observed numbers were only 4/8 vs. 2/6. 

In considering the consequences of numerical instability, we use probabilities to determine the chance  
of occurrence for potentially distressing events. If the probability is small enough, we might stop 
worrying. Thus, if the political poll in a properly conducted survey shows that the candidate is favored 
by 40 of 60 voters, the probability is about one in a hundred (as is demonstrated later) that the observed 
result of .67 represents a voting population whose preference for that candidate might actually be as 
low as .51. With this small a chance of losing, the candidate — particularly if running out of 
funds — may decide to reduce campaign efforts.

Not all statistical decisions involve appraisals of probability. When the first heart was successfully 
transplanted, or the first traumatically severed limb was successfully reattached, neither statistics nor 
probabilities were needed to prove that the surgery could work. No control groups or statistical tabulations 
were necessary to demonstrate success on the initial occasions when diabetic acidosis was promptly 
reversed by insulin, when bacterial endocarditis was cured by penicillin, or when a fertilized embryo 
was produced outside the uterus. No calculations of probability are used when a baseball team wins the
pennant with a success proportion of 99/162 = .611, although this result seems but trivially larger than 
the 98/162 = .605 result for the team that finishes in second place.

Many eminent scientists have said, “If you have to prove it with statistics, your experiment isn’t very  
good,” and the statement is true for many types of research. If the experiment always produces the same 
“deterministic” result, no statistics are needed. The entity under study always happens or it does not; 
and the probability of occurrence is either 100% or 0%. For example, if we mix equal amounts of the 
colors blue and yellow, the result should always be green. If the color that emerges is purple, statistics 
are not needed to prove that something must have gone wrong.

If the anticipated results are not “deterministic,” however, probabilities will always be produced by the  
uncertainties. If told there is a 38% chance of rain today, we have to decide whether to take an umbrella.  
If told that a particular treatment usually has 80% failure, we might wonder about believing a clinician 
who claims three consecutive successes.
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The probabilities that can often be valuable for these decisions are also often abused. A surgeon is 
said to have told a patient, “The usual mortality rate for this operation is 90%; and my last nine patients 
all died. You are very lucky because you are the tenth.”

Many (if not most) decisions in the world of public health, clinical practice, and medical research 
involve statistical information that has an inevitable numerical uncertainty. The groups were relatively 
small or the data (even if the groups were large) had variations that were nondeterministic. In these 
circumstances, wrong decisions can be made if we fail to anticipate the effects of numerical instability.

The world of probabilistic inference joins the world of descriptive statistics, therefore, because 
decisions are regularly made amid numerical instability, and because citations of probability are invalu -
able components of the decisions. The discussion of probability in this chapter has three main goals:

1. To acquaint you with the basic principles and the way they are used;
2. To emphasize what is actually useful, avoiding details of the mathematical “ethos” that 

underlies the principles; and
3. To make you aware of what you need to know, and wary of unjustified tactics or erroneous 

claims that sometimes appear in medical literature.

Finally, if you start to wonder whether all this attention to probability is warranted for a single group
of data, you can be reassured that all decisions about probability are based on a single group of data. 
When two or more groups are compared, or when two or more variables are associated, the probabilistic 
decisions are all referred to the distribution of a single group of data. That single group can be constructed 
in an empirical or theoretical manner, but its distribution becomes the basis for evaluating the role of 
probability in comparing the observations made in several groups or several variables. Thus, if you 
understand the appropriate characteristics of a single group of data, you will be ready for all the other 
probabilistic decisions that come later.

6.3 Concepts of Probability

In many fields of science, the most fundamental ideas are often difficult to define. What should be 
intellectual bedrock may emerge on closer examination to resemble a swamp. This type of problem can  
be noted in medicine if you try to give unassailable, non-controversial definitions for such ideas as 
health, disease, and normal. In statistics, the same problem arises for probability. It can represent many 
different ideas, definitions, and applications.

6.3.1 Subjective Probabilities

In one concept, probability represents a subjective impression that depends on feelings rather than specific 
data. This type of subjective guess determines the odds given for bets on a sporting event. The odds 
may be affected by previous data about each team’s past performance, but the current estimate is always 
a hunch. Similarly, if you take a guess about the likelihood that you will enjoy learning statistics, you 
might express the chance as a probability, but the expression is subjective, without any direct, quantitative 
background data as its basis.

6.3.2 Frequentist Probabilities

In most statistical situations, probability represents an estimate based on the known frequency charac-
teristics of a particular distribution of events or possibilities. These estimates, which are called frequentist
probabilities, are the customary concept when the idea of “probability” appears in medical literature. 
The results depend on frequency counts in a distribution of data.

If the data are binary, and the results show 81 successes and 22 failures for a particular treatment, the 
success proportion of 81/103 = .79 would lead to 79% as the probability estimate of success. If the data  

© 2002 by Chapman & Hall/CRC 



are dimensional, as in the chloride information of Table 4.1 in Chapter 4, the distribution of results can
lead to diverse probabilities based on relative and cumulative relative frequencies. If we randomly selected
one chloride value from the series of items in that table, the chances (or probabilities) are .0780 that the
item will be exactly 101, .0598 that it will lie below 93, .8598 (= .9196 − .0598) that it will lie between
93−107, and .0804 that it will be above 107.

Frequentist probabilities need not come from an actual distribution of data, however. They can also
be obtained theoretically from the structure of a particular device, mechanism, or model. Knowing the
structure of a fair coin, we would expect the chance to be 1/2 for getting a head when the coin is tossed.
Similarly, a standard deck of 52 playing cards has a structure that would make us estimate 13/52 or 1/4
for the chance of getting a spade if one card is chosen randomly from the deck. The chance of getting
a “picture card” (Jack, Queen, or King) is (4 + 4 + 4)/52 = 12/52 = .23.

Frequentist probabilities can also be constructed, as noted later, from modern new tactics that create
empirical redistributions or resamplings from an observed set of data.

6.3.3 Other Approaches

Just as human illness can be approached with the concepts of “orthodox” medicine, chiropractic,
naturopathy, witchcraft, and other schools of “healing,” statistical approaches to probability have different 
schools of thought. The conventional, customary approach — which employs frequentist
probability — will be used throughout this text. Another school of thought, however, has attracted the
creative imagination of capable statisticians. The alternative approach, called Bayesian inference, often
appears in statistical literature and is sometimes used in sophisticated discussions of statistical issues in
medical research. Bayesian inference shares an eponym with Bayes theorem, which is medically familiar
from its often proposed application in the analysis of diagnostic tests. Bayes theorem, however, is a
relatively simple algebraic truism (see Chapter 21), whereas Bayesian inference is a highly complex
system of reasoning, involving subjective as well as frequentist probabilities.

Yet another complex system for making estimates and expressing probabilities is the likelihood method
which relies on various arrangements for multiplying or dividing “conditional” probabilities. Its most 
simple applications are illustrated later in the text as the likelihood ratios that sometimes express results
of diagnostic tests, and as the maximum likelihood strategy used to find regression coefficients when
the conventional “least squares” method is not employed in statistical associations.

6.4 Empirical Redistributions

The frequentist probabilities discussed in Section 6.3.2 were obtained in at least three ways. One of
them is empirical, from a distribution of observed data, such as the success proportion of .79 (=81/103),
or the different values and frequencies in the chloride data of Table 4.1. The other two methods rely on
theoretical expectations from either a device, such as a coin or a deck of cards, or from the “model” 
structure of a mathematical distribution, such as a Gaussian curve. Mathematical models, which will be  
discussed later, have become a traditional basis for the probabilities used in statistical inference.

The rest of this section is devoted to a fourth (and new) method, made possible by modern computation, 
that determines probabilities and uncertainties from redistributions or “resamplings” of the observed, 
empirical data.

6.4.1 Principles of Resampling

The great virtue of a theoretical distribution is that it saves work. If we did not know whether a coin 
was “fair,” i.e., suitably balanced, we would have to toss it over and over repeatedly to tabulate the 
numbers of heads and tails before concluding that the probability of getting a head was 1/2. If we were  
asked to estimate the chance of drawing a spade from 100 well shuffled decks of cards, we could 
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promptly guess 1/4. Without the theoretical “model,” however, we might have to count all 5200 cards
or check results in repeated smaller samplings.

The Gaussian distribution discussed in Section 4.8.3 has a similar virtue. If we know that a particular
distribution of data is Gaussian and if we are given a particular member’s Z-score, we can promptly use
the Gaussian attributes of Z-scores to determine the corresponding percentile and probability values. If
we could not assume that the data were Gaussian, however, we would have to determine the desired
probabilites either by examining the entire group of data or by taking repeated samplings.

The repeated-sampling process, in fact, was the way in which certain mathematical model distributions
were discovered. For example, the t-distribution (discussed later) was found when W. S. Gosset, who
published his results under the pseudonym of “Student,” took repeated small samples from a large 
collection of measurements describing finger lengths and other attributes of criminals.1

With the modern availability of easy electronic computation, new methods have been developed to
create distributions empirically as resampled rearrangements of an observed set of data. The method of
forming these ad hoc empirical redistributions, without recourse to any theoretical mathematical models,
uses bootstrap and jackknife strategies that will be briefly described here and further discussed in
Chapter 7.

6.4.1.1 Illustrative Example — To illustrate the resampling process, suppose we want to assess
the stability of the mean in the three-member data set {1, 6, 9}, for which = 16/3 = 5.33. We know
that the three items of data have come from somewhere, and that the source included items whose values
were 1, 6, and 9. As discussed later, we can try to construct a hypothetical population that might be
the source, and we can contemplate theoretical samples that might be drawn from that population.
Alternatively, however, we can work with the real data that have actually been observed. We can regard
the values of 1, 6, and 9 as the entire “parent population.” We can then take repeated samples of 3
members from this “population,” being careful to replace each member after it is drawn. We determine
the mean of each sample and then note the distribution of those means. The variations in the array of
means can then help answer the question about stability of the original mean.

To construct each sample, we randomly draw one member from the set of data {1, 6, 9}. After replacing
it, we randomly draw a second member. We replace it and then randomly draw a third member. We then
calculate the mean for those three values. The process is repeated for the next sample. As the sampling
process continues, it will yield a series of means for each of the three-member sets of data. To denote
variation in the distribution, we can determine the standard deviation and other features of that series
of means.

6.4.1.2 Mechanism of Redistribution — The sampling process itself can be avoided if we
work out the specific details of what might happen. Since three possibilities exist for each choice of a
member from the 3-item data set, there will be 33 = 27 possible samples of three members. Those
samples, and their means, are shown in Table 6.1.

Table 6.2 shows the frequency distribution of the 27 means in Table 6.1. The distribution has a mode
of 5.33, which is the same as the original mean of 5.33. The mean of the 27 means is also 5.33, calculated 
as [(1 × 1.00) + (3 × 2.67) + (3 × 3.67) + … + (3 × 8.00) + (1 × 9.00)]/27 = 143.98/27 = 5.33. The 
group variance, using the formula  is [(1 × 1.002) + (3 × 2.672) + (3 × 3.672) + …
+ (3 × 8.002) + (1 × 9.002)] − [(143.98)2/27] = 865.700 − 767.787 = 97.913. For this complete set of 27 
samples, the group variance is divided by n to calculate variance, which becomes 92.913/27 = 3.626. 
The square root of the variance is the standard deviation, 1.904.

6.4.2 Standard Error, Coefficient of Stability, and Zones of Probability

The term standard error of the mean refers to the standard deviation found in the means of an array of  
repeated samples. In resamplings of the data set {1, 6, 9}, the mean value of 5.33 will have a standard 
deviation, i.e., standard error, of 1.904.

The more customary method of determining standard error is with theoretical principles discussed later. 
According to those principles, however, the standard error in a sample containing n members is 

X

ΣXi
2 ΣXi( )2 n⁄[ ],–

σ/ n,
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where σ is the standard deviation of the parent population. In this instance, the group of data {1, 6, 9}
is a complete population, rather than a sample, and its standard deviation is calculated with n rather than
n – 1. Thus σ2 = [(12 + 62 + 92) − (162/3)]/3 = 10.89 and σ = 3.30. The value of will be

which is essentially identical to the result obtained with resampling.
To evaluate stability, we can examine the ratio of standard error/mean.

This ratio, which might be called the coefficient of stability, is a coun-
terpart of the coefficient of variation, calculated as c.v. = standard devi-
ation/mean. In this instance, the coefficient of stability (c.s.) will be
1.905/5.33 = .36. The interpretation of this index will be discussed later.
Intuitively, however, we can immediately regard the value of .36 as
indicating an unstable mean. We would expect a “stable” coefficient of
stability for the mean to be substantially smaller than an adequate coef-
ficient of variation for the data. Yet the value of .36 for c.s. is much
larger than the values of .10 or .15 proposed in Section 5.5.1 as a standard
of adequacy for the c.v.

Another approach to the array of resampled means in Table 6.2 is to
note that the value of the mean will range from 2.67 to 8.00 in 25 (92.6%)
of the 27 possible resamplings. Excluding the four most extreme values
at each end of Table 6.2, we could state that the mean will range from
3.67 to 7.00 in 19/27 (=70.4%) of the resamplings. Expressed in proba-
bilities, the chances are .704 that the mean would be in the range 3.67 − 7.00, and .926 for the range
of 2.67 − 8.00. There is a chance of 1/27 = .04 that the mean would be either as high as 9.00 or as low
as 1.00.

This resampling activity may seem like a lot of needless work to get the same standard error of 1.904
that could have been found so easily with the theoretical formula. The resampling process,
however, has several major advantages that will be discussed later. Two virtues that are already apparent
are (1) it helps confirm the accuracy of the formula, which we would otherwise have to accept
without proof; and (2) it offers an accurate account of the inner zone of possible variations for the
resampled means. The inner zone from 2.67 to 8.00, which contains 92.6% of the possible values, is
something we shall meet later, called a confidence interval for the mean. The range of this interval can
also be determined with the theoretical tactics discussed later (Chapter 7), but the resampling process
offers an exact demonstration.

6.4.3 Bootstrap Procedure

The strategy of examining samples constructed directly from members of an observed distribution
is called the bootstrap procedure. If the original group contains m members, each one is eligible to
be a member of the resampled group. If each resampled group has n members, there will be mn

possible samples. Thus, there were 33 = 27 arrangements of resamples containing 3 members from the

TABLE 6.1

All Possible Samples and Corresponding Means in a
3-Member Complete Resampling of the Set of Data {1, 6, 9}

Sample Mean Sample Mean Sample Mean

{1, 1, 1} :
{1, 1, 6} :
{1, 1, 9} :
{1, 6, 1} :
{1, 6, 6} :
{1, 6, 9} :
{1, 9, 1} :
{1, 9, 6} :
{1, 9, 9} :

1.00
2.67
3.67
2.67
4.33
5.33
3.67
5.33
6.33

{6, 1, 1} :
{6, 1, 6} :
{6, 1, 9} :
{6, 6, 1} :
{6, 6, 6} :
{6, 6, 9} :
{6, 9, 1} :
{6, 9, 6} :
{6, 9, 9} :

2.67
4.33
5.33
4.33
6.00
7.00
5.33
7.00
8.00

{9, 1, 1} :
{9, 1, 6} :
{9, 1, 9} :
{9, 6, 1} :
{9, 6, 6} :
{9, 6, 9} :
{9, 9, 1} :
{9, 9, 6} :
{9, 9, 9} :

3.67
5.33
6.33
5.33
7.00
8.00
6.33
8.00
9.00

σ/ n
3.30 3⁄ 1.905,=

TABLE 6.2

Frequency Distribution  
of Means in Table 6.1

Value Frequency

1.00  1
2.67  3
3.67  3
4.33  3
5.33  6
6.00  1
6.33  3
7.00  3
8.00  3
9.00  1
Total 27

σ/ n

σ/ n
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three-member group. If each of the resampled groups contained only two members, there would be a 
total of 32 = 9 groups.

In a complete resampling, as in Section 6.4.1.2, all possible arrangements are considered — so that 
mm samples are produced. Thus, a complete resampling from the 20 items of data in Exercise 3.3 would
produce 2020 = 1.05 × 1026 arrangements. A properly programmed computer could slog through all of 
them, but a great deal of time would be required. Consequently, the bootstrap approach seldom uses a 
complete resampling. Instead, the computer constructs a large set (somewhere between 500 and 10,000)  
of random samples, each taken from the original group of n members, with each member suitably 
replaced each time. The name Monte Carlo is sometimes used for the process of taking multiple random 
samples from an observed collection of data. The Monte Carlo resamples are then checked for the 
distributional patterns of means (or any other desired attributes) in the collection of samples.

With dimensional data, the bootstrap procedure is often applied for a limited rather than complete 
resampling of the original data, but the complete procedure is relatively easy to do if the data have 
binary values of 0/1. For binary data, mathematical formulas (discussed later in Chapter 8) can be used 
to anticipate the complete bootstrapped results.

6.4.4 Jackknife Procedure

An even simpler method of determining the stability of the mean for the set of data {1, 6, 9} is to use 
a sequential removal (and restoration) strategy. For the three-item data set, the removal of the first 
member produces {6, 9}, with a mean of 7.5. After the first member is restored, removal of the second  
member produces {1, 9}, with a mean of 5.0. Removal of the third member leads to {1, 6}, with a mean 
of 3.5. Thus, removal of a single member can make the original mean of 5.33 change to values that 
range from 3.5 to 7.5. [Note that the mean of the rearrangements is (7.5 + 5.0 + 3.5)/3 = 16/3 = 5.33, 
which is again the value of the original mean.]

The strategy of forming rearrangements by successively removing (and then later restoring) each 
member of the data set is called the jackknife procedure. In a data set containing n members, the 
procedure produces n rearranged groups, each containing n – 1 members.

The jackknife procedure, which will later be used here to evaluate the “fragility” of a comparison of 
two groups of data, is particularly valuable in certain multivariable analyses. At the moment, however, 
the main value of the jackknife is its use as a “screening” procedure for the stability of a mean. In the 
data set of {1, 6, 9} we might want to avoid calculating standard errors with either a theoretical formula 
or a bootstrap resampling. If the jackknife possibilities show that a mean of 5.33 can drop to 3.5 or rise  
to 7.5 with removal of only 1 member, the mean is obviously unstable. This type of “screening” 
examination, like various other tactics discussed later, offers a simple “commonsense” approach for 
making statistical decisions without getting immersed in mathematical formulas or doctrines.

6.4.5 “Computer-Intensive” Statistics

The bootstrap and jackknife procedures are examples of a “revolution,” made possible by computers, 
that is now occurring in the world of statistics. An analogous revolution, which has caused diagnostic 
radiology to change its name to imaging, has already been facilitated by computers in the world 
of medicine. 

The jackknife procedure was first proposed by Quenouille 2 and later advocated by Tukey.3 An analog 
of resampling was developed many years ago by R. A. Fisher4 to construct a special permutation test 
discussed in Chapter 12, but the modern approaches to resampling methods were developed by Julian 
Simon5 and independently by Bradley Efron6. Efron introduced the term bootstrap and later gave the 
name computer-intensive7 to both types of new procedures, because they could not be used regularly or  
easily until computers were available to do the necessary calculations.

In the “revolution” produced by the new procedures, statistical inference with probabilities can be 
done in an entirely new manner, without relying on any of the theoretical “parametric” mathematical 
models that have become the traditional custom during the past century. The revolution has not yet 
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become widespread, however, and most elementary statistical instruction, as well as a large amount of
discourse in this text, still employs the traditional “parametric” statistical strategies.

Nevertheless, the revolution is happening, and you should be prepared for its eventual results. Respect-
able statisticians today are even proposing such heresies as, “All techniques designed before the advent
of automatic computing must be abandoned.”8 Until the revolution becomes totally established, however,
the traditional statistical strategies will continue to be used and published. Consequently, the traditional
strategies will be discussed here to prepare you for today’s realities. The new strategies will regularly
be mentioned, however, to indicate things that can not only be done today, but routinely expected within
the foreseeable future.

6.5 Demarcating Zones of Probability

Regardless of whether a sample is constructed empirically or theoretically, zones of probability in the
distribution have a particularly important role in both statistical description and statistical inference.
Descriptively, the zones are used to demarcate the “bulk” of a set of data or to form a “range of normal.”
Inferentially, analogous zones lead to decisions that a particular observation is too “uncommon” or “far
out” to be accepted as a regular part of the distribution. For these purposes, boundary markers must be
set for zones of probability.

6.5.1 Choosing Zones

In gambling, we may want to know the probabilities for a single event, such as drawing a spade in cards
or tossing a 7 in dice. In statistical activities, however, we often want to know the probabilities for a
zone of events or values. We would seldom ask about the probability that a single chloride value will
be exactly 101, but we might regularly want to know the chances that the value will lie in a zone below
93 or above 107.

A zone almost always refers to a series of directly contiguous dimensional (or ordinal) values in a
distribution. In the chloride example just cited, the selected zone would extend from 93 to 107.
Sometimes, however, a zone can be a cluster of selected noncontiguous values. For example, when
you make a “field” bet in tosses of two dice, the successful zone consists of any member of the items
2, 3, 4, 9, 10, 11, or 12.

6.5.2 Setting Markers

One way to set markers for a zone is from the cumulative relative frequencies associated with an actual
or resampled distribution. The array of frequencies could be examined to note the values that demarcate
zones of either chloride measurements in Table 4.1 or resampled means in Table 6.1.

A direct check of individual frequencies can be avoided, however, if the distribution has certain 
mathematical characteristics, such as the distributions eponymically cited with such names as Gauss, 
“Student,” and Bernouilli. If we know (or can assume) that a collection of data has one of these model 
distributions, we can easily find markers for the desired probabilities, without resorting to specific 
tabulations of frequencies.

This mathematical attribute has given the eponymic model distributions their statistical popularity. To 
determine probabilites, we first calculate a special index, called a “test statistic,” from the observed data.  
We then assume, based on mathematical justifications discussed later, that the test statistic is associated  
with a particular mathematical model such as the standard Gaussian distribution. The value of the test 
statistic then becomes the marker for a zone of probability. For example, the Z-score is often used as a  
test statistic that has specific probability values, shown in Section 4.8.3, for each of its locations in a 
standard Gaussian distribution. [Other well-known test statistics are referred to a t (or “Student”) 
distribution or to a chi-square distribution.]
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The percentiles and standard deviations discussed in Chapters 4 and 5 can thus be used in two ways:  
descriptively, to indicate specific zones for an empirical set of data, and inferentially, to demarcate zones 
of probability in a mathematical model.

6.5.3 Internal and External Zones

The total cumulative probability in any distribution always has a sum of 1. This total can be divided 
into different sets of zones. An internal zone of data contains values that are within or smaller than the 
demarcated boundary. An external zone contains values that are outside or beyond the demarcated 
boundary. For example, the ipr95 has an internal cumulative probability of .95 and an external cumulative 
probability of .05. At the 97.5 percentile point, the internal cumulative probability is .975 (for values of 
data smaller than the associated percentile value), and the external cumulative probability is .025.

6.5.4 Two-Zone and Three-Zone Boundaries

A single percentile point, such as P.95, demarcates two zones — one internal and the other external. 
Boundaries established by two percentiles, such as the 2.5 and 97.5 percentile points that form the ipr 95,
will demarcate three zones of cumulative probability: a central internal zone, surrounded by two external 
zones. The distinctions are shown in Figure 6.1.

6.5.5 P-Values and Tails of Probability

In many appraisals of probability, the focus is on the external zone, i.e., the chance of observing something 
more extreme than what is contained within the selected boundary. This external zone of cumulative 
probability is called a P-value. The external zone is often demarcated as the area located in the “tail” 
of the curve of relative frequencies for a mathematical model.

The cumulative aspect of the frequencies is omitted when the P-values or other cumulative results are 
cited as probabilities, but the cumulative feature is implicit in the word tail, which describes the location 
of the zone. Thus, if only two zones have been demarcated with a single boundary, the single external 
zone is called a one-tailed probability. A key distinction in one-tailed probabilities is stipulating a 
direction to indicate whether the focus of the external zone is on values that are above or below the 
selected boundary. If three zones have been formed from two boundaries, the two external zones are 
called a two-tailed probability. Two-tailed probabilities are always bi-directional, demarcating external 
zones that occupy both extremes of the distribution.

6.5.6 Confidence Intervals and Internal Zones

For the entity called the confidence interval for a central index, the focus is on an internal zone of 
probability. It usually has two boundaries, set around the proposed location of the central index, for a 

FIGURE 6.1
Cumulative probability zones for ipr95. Upper drawing 
shows the 95 percentile point as one boundary with 
two zones. Lower drawing shows the 2.5 and 97.5 
percentile points as two boundaries with three zones.
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zone within which the location might vary under circumstances discussed earlier and also later in
Chapter 7.

6.5.7 To-and-from Conversions for Observations and Probabilities

Observations in a set of data can readily be converted to probabilities, and vice versa. Beginning with
observed (or cited) values of data, we can find probabilities; or beginning with probabilities, we can
find observed values.

6.5.7.1 From Observations to Probabilities — For the data of Table 4.1, suppose we want
to know the probability that a chloride value is below 93. The single cited boundary of 93 establishes
a directional two-zone arrangement. For the extreme values below 93, the cumulative relative frequency
is external to the boundary. For values of 93 or higher, the cumulative relative frequency is internal. In
Table 4.1, the external probability for values below 93 is .0598 and the internal probability is .9402
(= l − .0598).

For chloride levels bounded by values of 93 and 107, the three zones have an internal probability for
the zone of 93–107, an external probability for the zone below 93, and another external probability for
the zone above 107. The respective values for these three probabilities in Table 4.l are .0598, .8598,
and .0804.

Note that the internal and external probabilities in a frequency distribution always have a sum of 1.
This important distinction is often disregarded, however, when people make subjective estimates about
probabilities for a particular choice (such as a diagnosis or murder suspect) among a series of candidates.10

The total of the probability values estimated for individual candidates may exceed 1. Other human
inconsistencies in using probabilities (and magnitudes) are discussed in Section 6.8.

6.5.7.2 From Probabilities to Observed Values — To determine cumulative relative fre-
quencies or probabilities, we read horizontally rightward in Table 4.l beginning with the observed
chloride values. We could also, however, go leftward, from cumulative frequencies toward chloride
values. For example, from the definition of percentiles, we know that the 25th percentile occurs where
the ascending cumulative frequency (or lower external probability) passes 0.25. Table 4.1 shows that the
25th percentile occurs at the chloride level of 99. The table also shows that the 50th percentile is at the
chloride level of 102, and the 75th percentile at 105. An ipr95, extending from the 2.5 to the 97.5 percentile
in Table 4.l, could be marked by the chloride levels of 89 to 110.

6.6 Gaussian Z-Score Demarcations

Despite all the difficulties in non-Gaussian distributions, the standard deviation is a splendid way of
demarcating inner zones when a distribution is truly Gaussian. In particular, the Z-scores determined 
from the standard deviation of Gaussian data will correspond directly to probability values discerned
from the mathematical formula for the Gaussian curve.

One of these probability values, often called a probability density, is the height of the curve at a
particular value, i.e., the relative frequency of items having the individually cited Z-score. These were
the probability values shown with the Gaussian formula and small table in Section 4.8.2. (In a tabulation
of either dimensional or categorical data, the probability density represents the proportion or relative
frequency of the distribution occurring at a particular individual value.)

A different set of probability values refers to cumulative relative frequencies rather than the focal
density at a cited value of Z. These cumulative proportions were shown for one side of the curve in
Table 4.3 and for both sides in the in-text table in Section 4.8.3. Because of the symmetry and versatility
of the Gaussian curve, a single value of Z can be associated with probabilities that represent several 
different zones of cumulative relative frequencies. These cumulative relative frequencies are the areas
formed under the Gaussian curve.
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6.6.1 One-Tailed Probabilities

A percentile value demarcates a one-tailed probability for
the zone of data spanned as the distribution moves upward
from its lowest value.

The top part of Figure 6.2 shows the demarcation for a
positive value of Z. The zone of internal probability is the
percentile value associated with Z, counting from the lower
end of the distribution. The rest of the distribution contains
the zone of external probability. As shown in the middle part
of Figure 6.2, if Z has the same but negative value, the zone
of internal probability again starts from the lower end of the
distribution, but is smaller than in the first situation. The
zones of internal and external probability in each situation
are opposite counterparts.

In many appraisals, however, the data analyst is interested
in external probabilities for values of Z that are more
extreme, in the same direction, than the observed value. 
Thus, if Z = 1.3, we want external probabilities for values
of Z that are Š 1.3. If Z is −1.3, we want external probabilities
for values of Z that are ≤ −1.3. In the latter situation, there-
fore, the external probability would be redesignated on the
lower side of the Gaussian curve, as shown in the bottom
part of Figure 6.2. The upper and lower figures become
mirror images around the central value where Z = 0.

If the external one-tailed probability value is called P, it
corresponds to a percentile value of 1 − P. For example, a
Z-score of 1.0 in a Gaussian curve represents a one-tailed
exterior probability (or P value) of .16. The corresponding
interior probability or percentile point is 1 − .16 = .84. This
same result can be obtained by noting in Table 4.3 that a
Z-score of 1.0 has a cumulative relative probability of .34
on the right side of the curve. Because the left side of the
curve contains a cumulative probability of .50, the total will
produce an interior probability of .84 for the percentile point.

6.6.2 Two-Tailed Probabilities

The proportion of data contained in the symmetrical inner
zone formed between the positive and negative values of
a Gaussian Z has an inner probability. The remaining data,
on the two outside portions beyond the inner zone, have
a total external probability, which is called a two-tailed
P value.

The distinction is shown in Figure 6.3. In this instance,
if the Z-score is ±1, the external probability is .16 on one
side of the curve and .16 on the other, so that the two-tailed
P value is .32. The inner zone of probability is 1 − .32 =
.68. (The latter value should look familiar. It was mentioned
in Section 5.3.2.2 with the statement that a zone of
i.e., one standard deviation around the mean, occupies 68%
of a set of Gaussian data.)
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FIGURE 6.2
Zones of internal and external probability for a
single value of Z in a Gaussian curve.

FIGURE 6.3
Zones of internal and external probability for 
the customary value of±  Z in a Gaussian curve.
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6.6.3 Distinctions in Cumulative Probabilities for Z-Scores

In special tables or in computer print-outs for a Gaussian distribution, the Z-scores and the corresponding
cumulative probabilities are almost always shown as two-tailed (external) P values. These can easily be
halved to denote the one-tailed P values, but the distinctions must be carefully considered if you want
to determine percentiles, to find internal rather than external probabilities, or to go back and forth from
Z values to P values. Table 6.3 shows the corresponding one-tailed and two-tailed cumulative probability
values of Z-scores in a standard Gaussian distribution.

To find internal probabilities or percentiles, the cited external probabilities must be suitably subtracted.
With a two-tailed P value, symbolized as 2P, the internal probability (for the zone of inner values) is 1
− 2P. For a one-tailed inner zone of probability, however, the two-tailed P value must be halved before
it is subtracted from 1. Because percentile points represent one-tailed probability values, the Z-score
corresponding to the 95th percentile would be 1.645, because it has an external one-tailed probability
of .05.

6.6.3.1 “Decreasing Exponential” Z/P Relationship — As Z gets larger, the external two-
tailed P values get smaller. Since P is an area under the curve, the Z and P values have a “decreasing
exponential” rather than linear relationship in Gaussian curves. The distinctions are shown in Figure 6.4.
A 19% increase in Z, from 1.645 to 1.96, will halve the two-tailed P value, from .1 to .05. A 40% 
decrease in Z, from 3.29 to 1.96, will produce a 50-fold increase in the two-tailed P, from .001 to .05. 
Consequently, whenever Z exceeds 1, small changes in Z can have a major proportionate impact on P 
in the zones used for critical decisions about “significance.”

If interested in one-tailed P values, we would find the Z-score associated with twice the one-tailed P.  
This one-tailed value for Z will be smaller, but not half as small, as the two-tailed value. Thus, for a 
two-tailed P of .025, Z is 2.24; but for a one-tailed P of .025, Z is 1.96, which corresponds to a two-
tailed P of .05. A Z-score of 1.645 has a P of .1 when two-tailed and .05 when one-tailed.

6.6.3.2 Ambiguous Interpretations — These Z/P relationships are particularly noteworthy 
when external probabilites are cited for P values that represent statistical inferences rather than direct 
descriptions. In tests of statistical inference, as noted later, many investigators prefer to use one-tailed 

TABLE 6.3

Cumulative Relative Frequencies and P Values Associated with Z Values  
in a Standard Gaussian Distribution

One-Tailed Two-Tailed
Z External Probability* External Probability Internal Probability

0 .5000 1 0
±0.500 .3090 .6170 .3830
±0.674 .2500 .5000 .5000
±1.000 .1585 .3170 .6830
±1.282 .1000 .2000 .8000
±1.500 .0670 .1340 .8660
±1.645 .0500 .1000 .9000
±1.960 .0250 .0500 .9500
±2.000 .0230 .0460 .9540
±2.240 .0125 .0250 .9750
±2.500 .0060 .0120 .9880
±2.576 .0050 .0100 .9900
±3.000 .0073 .0027 .9973
±3.290 .0005 .0010 .9990

* For positive Z values only. For negative Z values, the external probability (for values higher than −Z) is 1 minus the 
cited result. For example, at Z = − 1.282, the one-tailed external probability is 1 − .1 = .9.
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P values because, for the same value of Z, the one-tailed P will be lower (and hence more “significant”) 
than the two-tailed value. A currently unresolved dispute, discussed later in Chapter 11, has arisen 
between advocates of the two opposing policies: to always demand 2-tailed or sometimes accept 1-tailed 
P values for expressing “significance.” Regardless of which policy is adopted, however, a reader will 
need to know how the decisions were made by the investigator (or editor).

If the inferential result is merely cited as “P < .05,” however, the reader will not know whether it is 
one-tailed or two-tailed. To avoid ambiguity, P values can be reported as “2P < .05” when two-tailed 
and “P < .05” when one-tailed. This convention has begun to appear in published medical literature, but 
is not yet common. Until it becomes universal, writers should specify (in the associated text) whether 
P values are one-tailed or two-tailed.

6.6.4 Designated and Observed Zones of Probability

Special symbols are used to distinguish a previously designated zone of probability from zones that are  
observed in the data. For example, we might decide to give the accolade of high honors to anyone who 
ranks in or above the 95th percentile in a certification test. Someone who scores in the 97th percentile 
would receive this acclaim, but not someone who is in the 89th.

The Greek symbol α is used for designated levels of these zones. For the preceding percentile example, 
Pα was set at ≥ .95. In many statistical decisions, α ≤ .05 is commonly set as the boundary level for P 
values that will be called “significant.” In statistical decisions, the Z value that corresponds to α is marked 
Zα. For a two-tailed α = .05, Z.05 = 1.96.

6.6.4.1 Inner Percentile Zones and Symbols — For inner percentile ranges, the correspond-
ing zones are based on two-tailed internal probabilities. If α represents the two-tailed external probability, 
the inner zone is determined as 1 − α.

To find an ipr95, the corresponding zone is 1 − α   =   .95, and the two-tailed α is .05. If you want an 
ipr90, α = .1 and the Gaussian Z.1 = 1.645. For an ipr50, or interquartile range, α = .5 and Z.5 = .674.

FIGURE 6.4
Relationship of 2- tailed P values and Z-Scores in a Gaussian curve.

.65

.60

.55

.50

.45

.40

.35

.30

.25

.20

.15

.10

.05

0 .5 1.0 1.5 2.0 2.5 3.0 3.5

Z-scores

Two-tailed
P Values

© 2002 by Chapman & Hall/CRC 



6.6.4.2 Observed (Calculated) Values — If we start with observed data and want to determine
probabilities, no Greek symbols are used. The value of Z is calculated as /s, and is simply
marked Z or Zi. We then find the probability (or P value) associated with that value of Z. (Later in the
text, to distinguish the observed value of Z from other possibilities, it will be cited as Z0 and the
corresponding P value will be P0.)

6.6.4.3 Limited Tables of Z/P Values — With modern computer programs, a precise value of
P, such as .086, is printed for each calculated Z value, such as 1.716. Before this computational
convenience became available, however, Z values had to be interpreted with published tables showing 
the P values that correspond to selected values of Zα. These tables, which resemble Table 4.3, are still
needed and used if Z is determined with a hand calculator or other apparatus that does not immediately
produce the corresponding P value.

If the available tables do not show all possibilities, the observed Z value will often lie between the
tabular values for cited levels of Zα. Consequently, a Z value such as 1.716 is often reported with the
interpolated statement .05 < P < .1, indicating that P lies between two pertinent Zα values, which in this
instance are Z.05 = 1.96 and Z.1 = 1.645. If a particular boundary of Zα has been set for “statistical
significance,” as discussed later, only the most pertinent level of α is usually indicated, with statements
such as P < .1 or P > .05.

6.6.4.4 Wrong Expression of Intermediate Values — When a P value lies between two val-
ues of α, such as .1 and .05, the > and < signs are sometimes placed incorrectly, so that the expression
becomes an impossible .1 < P < .05. To avoid this problem, always put the lowest value on the left, as
it would appear on a graph. The best expression for the intermediate P is then .05 < P < .1.

6.6.5 Problems and Inconsistencies in Symbols

As long as α, Zα, and P always represent two-tailed values and selections, the symbols are clear and
unambiguous. The α, Zα, and P symbols, however, traditionally refer to two-tailed probabilities. When
the symbols (as well as the corresponding values) are modified for one-tailed applications, confusion 
can be produced by the inverse relationship that makes Z and P go in opposite directions. If 2P and P
respectively represent two-tailed and one-tailed external probabilities determined from the data, the
modified symbols are clear, except perhaps for readers who do not realize that P (alone) will then
specifically represent one tail rather than the conventional two. To avoid this problem, the solo P can
be modified with the parenthetical remark “(one-tailed).”

The big problems arise in choosing subscripts for Z, particularly when it demarcates boundaries against
which the values of P or 2P will be compared for decisions about “statistical significance.” In most 
special tabulations of Z values, the associated P values are two-tailed. For a two-tailed α, the total
external zone of α is split into two parts, each containing α/2, as shown in Figure 6.5. A 2P value is
therefore compared against a boundary that has α/2 externally on each side.

In a one-tailed procedure, all of the external probability is unilateral, occupying the full value of α
rather than α/2. To allow the external probability on one side of the curve to be α, the selected demarcation
point for the ordinarily two-tailed Z would be Z2α. With this demarcation in Figure 6.6, an α/2 probability
zone is transferred from the left to the right side of the curve. Having been placed under a higher point  
in the curve, the additional α/2 area is achieved with a smaller horizontal distance for Z than was 
previously needed at the other end of the curve. Thus, the values for Zα and Z2α do not correspond 
proportionately to the relative magnitudes of α and α/2.

The probability zones, demarcations, and symbols can be cited as follows for two-tailed and one-
tailed decisions:

Decisions
Probability in

Pertinent Zones
Demarcation

Point
Symbol for

P Value

Two-tailed α/2 Zα 2P
One-tailed α Z2α P (one-tailed)

Xi X–( )
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For two-tailed decisions with α = .05, Z.05 is set at 1.96; the inner 95% zone has two exterior zones
that each have a probability of .025; and the corresponding internal probability is 1 − α = .95. For one-
tailed decisions with α = .05, the 2α demarcation point is set at Z.10 = 1.645; the one-tailed external
probability is .05, and the internal probability is still l − α = .95.

A reasonably complete set of values in a Z/P tabulation is shown in Table 6.4, where values of 2P
are shown for positive values of Z extending from 0 to about 3.9. Because almost all published tables
of probability show two-tailed values, the Z boundaries are sometimes labelled as Zα/2, to clarify their 
connotation. Regardless of the label used for Z, however, the corresponding value of P in any two-tailed
Z/P table is halved to get the one-tailed P value.

To try to avoid confusion, the symbols P, α, and Zα will be used here in an uncommitted general way
to denote observed or specified levels of probability. Most discussions will refer to the conventional
two-tailed approach, but one-tailed directions will often be considered. To allow this flexibility, the
symbols will be “P” for the general probability, “2P” when it is specifically two-tailed, and “(one-tailed)
P” when it is one-tailed. The α and Zα symbols will be used as such, without recourse to the confusing
forms of α/2, 2α, Zα/2 or Z2α. The one- or two-tailed direction of α or Zα will always be cited in the
associated text. Although perhaps undesirable for mathematical rigor, the apparent inconsistency has the
pedagogic advantage of being reasonably clear and permitting an unconstrained discussion. If not
otherwise specified, P and Zα can be considered as two-tailed.

6.6.6 Determining Gaussian Zones

After Zα is chosen, Gaussian zones of data are easy to determine when Zα is multiplied by the observed
standard deviation, s, to form Zαs. The latter value is then added and subtracted from the mean, , to
form  ± Zαs. In Chapter 4, the value of 2 was used instead of the more precise 1.96 to produce an
inner 95% Gaussian zone as ± 2s. The Zα multiplying factor can be changed, when desired, to form
Gaussian zones of different sizes, such as ipr90 or ipr50. The corresponding values of α will be .10 and
.50; and the corresponding values of Zα (derived from Table 6.4) will be 1.645 and .674.

With smaller values of Zα, the inner zones will shrink as 1 − α gets smaller. Thus, in a set of data 
where = 10 and s = 3, the corresponding Gaussian zones will be as follows:

FIGURE 6.5
Demarcation of two α/2 zones of probability by ±Zα.

  FIGURE 6.6
Demarcation of a one-tailed probability zone for α.

ipr α Zα Zαs Extent of  ± Zαs

95 .05 1.906 5.880 4.120 to 15.880
90 .10 1.645 4.935 5.065 to 14.935
50 .50 .674 2.022 7.978 to 12.022

α/2 α/2

_+ Zα 

α/2

α/2

Z2α Zα 

X
X

X

X

X
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TABLE 6.4 

Values of 2P for Positive Values of Z

Z 0.000 0.002 0.004 0.006 0.008

0.00 • 99840 99681 99521 99362
0.04 98609 96650 96490 96331 96172
0.08 93624 93465 93306 93147 92988
0.12 90448 90290 90132 89974 89815
0.16 87288 87131 86973 86816 86658
0.20 84148 83992 83835 83679 83523
0.24 81033 80878 80723 80568 80413
0.28 77948 77794 77641 77488 77335
0.32 74897 74745 74594 74442 74291
0.36 71885 71735 71586 71437 71287
0.38 70395 70246 70098 69950 69802
0.40 68916 68768 68621 68474 68327
0.42 67449 67303 67157 67011 66865
0.44 65994 65849 65704 65560 65415
0.46 64552 64408 64265 64122 63978
0.48 63123 62981 62839 62697 62555
0.50 61708 61567 61426 61286 61145
0.52 60306 60167 60028 59889 59750
0.54 58920 58782 58644 58507 58369
0.56 57548 57412 57275 57139 57003
0.58 56191 56057 55922 55788 55653
0.60 54851 54717 54584 54451 54319
0.62 53526 53394 53263 53131 53000
0.64 52217 52087 51958 51828 51698
0.66 50925 50797 50669 50541 50413
0.68 49650 49524 49398 49271 49145
0.7 48393 47152 45930 44725 43539
0.8 42371 41222 40091 38979 37886
0.9 36812 35757 34722 33706 32709
1.0 31731 30773 29834 28914 28014
1.1 27133 26271 25429 24605 23800
1.2 23014 22246 21498 20767 20055
1.3 19360 18684 18025 17383 16759
1.4 16151 15561 14987 14429 13887
1.5 13361 12851 12356 11876 11411
1.6 10960 10523 10101 09691 09296
1.7 08913 08543 08186 07841 07508
1.8 07186 06876 06577 06289 06011
1.9 05743 05486 05238 05000 04770
2.0 04550 04338 04135 03940 03753
2.1 03573 03401 03235 03077 02926
2.2 02781 02642 02509 02382 02261
2.3 02145 02034 01928 01827 01731
2.4 01640 01552 01469 01389 01314
2.5 01242 01174 01109 01047 00988
2.6 00932 00879 00829 00781 00736
2.7 00693 00653 00614 00578 00544
2.8 00511 00480 00451 00424 00398
2.9 00373 00350 00328 00308 00288
3.0 00270 00253 00237 00221 00207
3.2 00137 00128 00120 00111 00104

3.4: 00067 3.5: 00047 3.6: 00032 3.7: 00022 3.8: 00014 3.891: 00010

Note: The three decimal places in the top headings become reduced to two when Z 
reaches 0.7. Thus, for Z = .82, the 2P value is found as .41222 in the column 
marked 0.002. For Z = 1.96, the value of 2P in the 0.006 column is 0.5000. [Table  
derived from page 28 of Geigy Scientific Tables, Vol. 2, ed. by C. Lentner, 1982. 
Ciba-Geigy Limited. Basle, Switzerland.]

© 2002 by Chapman & Hall/CRC 



6.7 Disparities Between Theory and Reality

In a Gaussian distribution, the two sides of the curve are symmetrical around the center. No matter what
boundary is chosen, the external two-tailed probabilities will be identical and equally divided. Thus, if
a boundary of Zα is set at 1.96 for 2P = .05, the internal probability contains .475 of the data in the
inner zone from Z = 0 to Z = 1.96, and .475 of the data in the zone from Z = 0 to Z = −1.96. The total
inner probability is .475 + .475 = .95. The external probability is .05, representing the sum of the upper
zone of .025 beyond Z = 1.96, and the lower zone of .025 below Z = − 1.96.

If only a one-tailed probability is desired, however, the internal probability contains the entire 50%
of items in the zone below the mean, plus the demarcated group in the corresponding zone above the
mean. Thus, for a one-tailed probability with Zα set at 1.96, the internal probability is 0.975, calculated
as 0.5 (for the lower half of the data) + 0.475 for the zone from Z = 0 to Z = 1.96. The external probability
is 0.025 for the zone beyond Z = 1.96.

This perfect symmetry is seldom present, alas, in the empirical data of the real world. For example, 
the values in Table 4.1 show ascending cumulative frequencies of 0.0255 when the chloride level is 89
and .9765 when the level is 110. These two chloride boundaries would offer a reasonably symmetrical
inner zone (the ipr95) for the inner 95% of the data, but the chloride levels of 89 and 110 are not
symmetrically located around either the median of 102 or the mean of 101.6.

The chloride values of Table 4.1 appear in this text by courtesy of the laboratories of Yale-New Haven
Hospital. In response to a request seeking a Gaussian set of data, the laboratory produced a print-out of  
distributions for about 30 of the many chemical substances it measures. To ensure that the “sample size” 
would be large enough to show the true shape of the distribution, at least 2000 measurements were 
included in the set of data for each variable. The main point of this story is that none of the distributions 
was Gaussian. The chloride values were chosen for display here because they had the most “Gaussianoid” 
appearance of all the examined results.

The moral of the story is a warning to beware of using Gaussian statistics to describe medical data. 
The mean may be dislocated from the center of the distribution; the standard deviations may be affected 
by outliers or asymmetrical distributions; and the Gaussian Z-scores may yield misleading values for 
percentiles. The absence of a truly Gaussian pattern in most biologic data has been entertainingly 
described by Micceri9 as “the unicorn, the normal curve, and other improbable creatures.”

Gaussian statistics are most effectively used, as discussed later, for roles in statistical inference, not 
description. Gaussian confidence intervals can be employed for inferences about possible variation in 
a central index, but not for describing the data set itself. For the variations in a central index, as we 
shall see in the next two chapters, a reasonable mathematical justification can be offered for using the 
Gaussian strategy.

6.8 Verbal Estimates of Magnitudes

The last aspect of probability to be considered in this chapter is the quantitative inconsistency with 
which different people attach numbers to verbal terms describing magnitudes such as amounts, frequen -
cies, and probabilities. In 1976, after consulting with various authorities, U.S. President Gerald R. Ford  
said that a swine flu epidemic in the next winter was “a very real possibility.” When asked by a science  
writer,11 four experts estimated this probability as 2%, 10%, 35%, and “less than even.” Ever since this 
revelation, disagreement has often been studied for the quantitites implied when people use such verbal  
terms as a little, a lot, often, unlikely, and usually.

6.8.1 Poetic License

One of the earliest recorded complaints about verbal imprecision was made by Charles Babbage, 
renowned as the inventor of a 19th century “calculating engine” that is often regarded as the earliest 
ancestor of today’s digital computers.
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After reading Alfred Tennyson’s poem “The Vision of Sin,” Babbage is said to have written the 
following letter to the poet:

In your otherwise beautiful poem, there is a verse which reads:

“Every moment dies a man
Every moment one is born.”

It must be manifest that, were this true, the population of the world would be at a standstill. In 
truth the rate of birth is slightly in excess of that of death. I would suggest that in the next edition 
of your poem you have it read:

“Every moment dies a man
Every moment 1  is born.”

Strictly speaking this is not correct. The actual figure is a decimal so long that I cannot get it in 
the line, but I believe 1 will be sufficiently accurate for poetry. I am etc.12

6.8.2 Estimates of Amounts

After hearing reports that a child “throws up a lot” or “ throws up the whole feed,” Pillo-Blocka et al. 13

asked 58 mothers of children less than 2 years old to estimate “two volumes of standard formula — 5
ml. and 10 ml. — which had been spilled uniformly over a baby’s wash cloth, with the mother out of 
sight.” The median estimates were 30 ml. for the smaller spill and 50 ml. for the larger. Only 1 of the 
58 mothers underestimated the spill, and only two mothers were close to correct. All the other mothers 
“grossly” overestimated the emesis volumes, and the degree of accuracy had no correlation with the 
mothers’ educational status or age.

6.8.3 Estimates of Frequencies and Probabilities

In the foregoing example, the observers responded to a direct visual challenge. In the other investigations 
cited here, the research subjects were asked conceptually to quantify the meaning of words for frequency  
and/or probability. Different subjects and research structures were used for the projects. The number of 
verbal terms to be quantified ranged from a few (i.e., 5) to many (i.e., 41). The quantitative expressions 
could be chosen from the following citations: dimensional selections on an unmarked continuum from 0 
to l; choices in increments of .05 or .1 extending from 0 to 1; “percentages” for each term; and four formats 
of quantitative expressions that contained special zones for “high probability” and “low probability,” as 
well as a “uniform” ordinal scale, and a “free choice” between 0 and 100. The research subjects included 
different groups of medical personnel (nurses, house officers, students, laboratory technologists, hospital-
based physicians in various specialties) as well as members of a hospital Board of Trustees. The nonmedical 
participants included graduate students at a school of business administration, highly skilled or professional 
workers (secondary school teachers, engineers), an otherwise unidentified group of “nonphysicians,” and 
a set of male employees of the “System Development Corporation.”

With these diverse designs and approaches, the investigators then proceeded to analyze and report 
the inconsistencies.

6.8.3.1 Frequencies — Figure 6.7 shows Robertson’s summary14 of four studies that included
ratings for five categories ranging from always to rarely. Although the mean values were reasonably 
consistent (except for a Board of Trustees mean estimate that rarely had a frequency of 23%), the most 
noteworthy results were the wide range of individual responses. In the conclusion of the review, 
physicians were urged to use precise percentages instead of “shooting from the mouth.”

Analogous results were obtained when 94 physicians and 94 non-physicians responded to a similar 
challenge that contained 22 verbal modifiers.15 The investigators concluded that physicians had a better 

1
16
------

1
16
------
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consensus on meaning of the verbal expressions than laymen, but that physicians should take “no 
consolation” from the apparent superiority. According to the authors, the results “highlight the folly of 
assuming that any two randomly chosen physicians are likely to have similar percentages in mind” when  
these terms are used and that laymen have an “even greater likelihood of misunderstanding” when the 
terms are communicated. The authors’ main recommendation was the subtitle of their paper: “Verbal 
specifications of frequency have no place in medicine.”

This argument was reinforced in a study16 showing that endoscopists had major differences, unrelated 
to experience or site of training, in the number of cm. intended when the size of a gastric ulcer was 
described as small, medium, or large. With this variation, an ulcer called large in a first examination 
and small in a second may actually have increased in size.

6.8.3.2 Probabilities — In other investigations of medical personnel, diverse ranks and ranges 
of values were obtained for 30 “probability estimates” in a study17 of 16 physicians; the magnitude 
of “rare” seemed to change with the pharmaceutical agent for which side effects were being 
estimated;18 different medical professionals were found19 to have relatively good agreement in 
quantitative beliefs about 12 expressions ranging from certain to never. In the last study, the numerical 
estimates were reasonably consistent within groups studied in different eras, and clinical context 
influenced the values but not the order of the quantitative ratings. Although recommending devel-
opment of a “codification based on common usage,” Kong et al.19 wanted to do additional research 
(apparently not yet reported) “before proposing an overall scheme.” The summary results were 
regarded as possibly “adequate for codifying usage for physicians speaking to physicians,” but the 
authors believed that a formal code could not be enforced, because physicians and patients may want 
“to use qualitative expressions and some people are more comfortable with them than with exact 
values. Sometimes we want to be vague.”

FIGURE 6.7
Summary of results in four studies of quantification for five terms referring to frequency. [Figure adapted from Chapter 
Reference 14.]

Quantifying Word Meanings

Sample
Term

Children's
Orthopedic

Hospital,
Board of

Trustees, %
(n=40)

University
of

Washington
MBAs, %

(n=80)

Seattle
Physicians,

%
(n=53)

N Engl J Med
Study, %

(n=32)

100 +_ 098 +_ 398 +_ 699 +_ 2
100

57 +_ 1361 +_ 1659 +_ 1761 +_ 13
20-9020-9020-9030-80

12 +_ 7
0-20

20 +_ 16 20 +_ 10
0-70 5-50

18 +_ 21
10-60

80-10060-10090-100

5 +_ 4
0-10

15 +_ 34
0-95

12 +_ 20
0-90

23 +_ 36
0-60

34 +_ 16
0-90

33 +_ 17
10-60

38 +_ 12
10-60

37 +_ 21
10-70

Range

Always_
x _+ SD

Range

Sometimes_
x _+ SD

Range

Rarely_
x _+ SD

Range

Range

Often

On occasion

_
x _+ SD

_
x _+ SD

© 2002 by Chapman & Hall/CRC 



6.8.4 Virtues of Imprecision

The virtues of preserving certain forms of “vagueness” have been noted by several commentators, 
including Mosteller and Youtz,20 who presented a meta-analysis of 20 studies of quantification for verbal 
expressions of probability. According to Clark,21 quantitative studies often fail to distinguish between 
“word meaning” and “word use.” Cliff22 argued that “words are inherently fuzzy and communicating 
degree of fuzziness is a significant aspect of communication ... (I)f boundaries were not vague, there 
would be endless debates about where such boundaries should lie.” Wallsten and Budescu 23 stated that 
“probability phrases should not be made to appear more precise than they really are” and that sometimes 
an “imprecise judgment is useful information in and of itself.”

The imprecise qualitative terms have survived in human communication because they are necessary 
and desirable. Such terms are often used when an exact number is either unknown or not needed, or 
when the precise quantity, after being determined with a great deal of effort, might be misleading. For 
example, the word often was used in the preceding sentence because I would not want to identify or 
count all the possible occasions on which an exact quantity is best replaced with an imprecise term; and  
I doubt that citing proportions such as 8/21 or 37/112 would convey the idea better than often. The term 
a great deal was also used in that sentence because I have no data — and have no intention of getting 
the data — on how much effort was spent when the investigators did the cited research projects. At best, 
the amount of time might be measured or estimated, but no suitable rating scale exists for this type of 
effort. I feel sure, i.e., 100% certain, that the total research took more than a few days, but the term a
great deal suitably conveys the idea.

When doctors communicate with one another or with patients, the exchanged words must be clearly 
and mutually understood. This understanding can be thwarted by both quantitative and nonquantitative 
features of the communication: an inadequate scale may be used to express risk;24 the doctor may be 
too busy or imperceptive; the patient may be too frightened or intimidated; the patient may have answered 
a self-administered questionnaire containing ambiguous phrases and concepts. In clinical practice, the 
direct personal exchange called history taking can help prevent or remedy the misunderstandings if both  
doctors and patients are aware of the possibilities and if both groups are constantly encouraged to ask, 
“What do you mean by that?”

Some of the desired quantifications may be statistically precise but clinically wrong. For example, 
prognosis in patients with cancer is commonly estimated from statistical results for morphologic cate-
gories of the TNM staging system. A patient in TNM Stage III, with an “inoperable” metastasized 
cancer, might be told, “Your chance of 6-month survival is 57%.” Nevertheless, with additional clinical  
classifications based on functional severity of illness,25 the TNM stage III can be divided into distinct 
clinical subgroups with prognoses for 6-month survival ranging from 5% to 85%. A physician who uses 
the 57% estimate may be given credit for being a good quantifier, but the patient is poorly served by 
statistically average results that may not pertain to individual clinical distinctions.

Efforts to quantify the unquantifiable have produced currently fashionable mathematical models, such
as decision analysis and quality-adjusted-life years (QALYs), that have all the virtues of precision, 
quantitative analysis, economic comparisons, successful grant requests, and multiple academic publica -
tions, but none of the virtues of a realistic portrait of clinical decisions and human aspirations.26

Having made many efforts to improve quantification in clinical medicine, including the construction 
of specific rating scales for clinimetric phenomena27 that are now identified imprecisely or not at all, 
and being now engaged in further quantitative advocacy by writing a book on statistics, I trust that the 
foregoing comments will not be misunderstood. Workers in the field of health need quantitative infor-
mation for its many invaluable and irreplaceable contributions to communication, reasoning, and human 
life. The rest of this text is devoted to the ways of analyzing that information. We also, however, need 
qualitative terms and quantitatively imprecise words for all the human phenomena and ideas that cannot 
or should not be subjugated into quantitative rigidity. Like workers in fireworks factories, we should 
remember that it is sometimes better to curse the darkness than to light the wrong candle.

I shall not demand that a great chef quantify a “pinch” of salt, that a superb violinist indicate the 
Hertzian frequency of a splendid vibrato, or that an excellent artist specify wave length or area for a 
“dab” of color. Trying to do a good job of writing, I hope you will let me end this chapter here. If so, 
I shall thank you very much, unless you insist on .863 units of gratitude.
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Exercises

6.1. Here is a set of questions that will help prepare you for your next visit to the statistical citadels of
Atlantic City, Las Vegas, or perhaps Ledyard, Connecticut:

6.1.1. A relatively famous error in the history of statistics was committed in the 18th century by
d’Alembert. He stated that the toss of two coins could produce three possible outcomes: two heads,
two tails, or a head and a tail. Therefore, the probability of occurrence was 1/3 for each outcome.
What do you think was wrong with his reasoning?
6.1.2. The probability of tossing a 7 with two dice is 1/6. Show how this probability is determined.
6.1.3. The probability of getting a 7 on two consecutive tosses of dice is (1/6)(1/6) = 1/36 = .03 — a
value smaller than the .05 level often set for “uncommon” or “unusual” events. If this event occurred
while you were at the dice table of a casino, would you conclude that the dice were “loaded” or
otherwise distorted? If not, why not?
6.1.4. The shooter at the dice table has just tossed a 6. What is the probability that his next toss
will also be a 6?
6.1.5. At regular intervals (such as every 30 minutes) at many casinos, each of the identical-looking
roulette wheels is physically lifted from its current location and is exchanged with a roulette wheel
from some other location. The process is done to thwart the “system” of betting used by certain
gamblers. What do you think that system is?

6.2. Using the chloride data of Table 4.1, please answer or do the following:
6.2.1. What is the probability that a particular person has a chloride level that lies at or within the
boundaries of 94 and 104?
6.2.2. What interval of chloride values contains approximately the central 90% of the data?
6.2.3. Assume that the data have a Gaussian pattern with mean = 101.572 and standard deviation
= 5.199. Using Table 6.4 and the mathematical formula for Gaussian Z-scores, answer the same
question asked in 6.2.1.
6.2.4. Using the same Gaussian assumption and basic methods of 6.2.3, answer the same question 
asked in 6.2.2.

6.3. We know that a particular set of data has a Gaussian distribution with a standard deviation of 12.3. 
A single randomly chosen item of data has the value of 40. What would you do if asked to estimate the  
location of the mean for this data set?
6.4. An investigator has drawn a random sample of 25 items of dimensional data from a data bank. 
They have a mean of 20 with a standard deviation of 5. What mental screening process can you use 
(without any overt calculations) to determine whether the data are Gaussian and whether the mean is 
stable?
6.5. A political candidate feels confident of victory because he is favored by 67% (= 6/9) of potential 
voters in a political poll.

6.5.1. What simple calculations would you do — with pencil and paper, without using a 
calculator — to find the standard deviation, standard error, and coefficient of stability for this 
proportion? Do you regard it as stable?
6.5.2. Suppose the same proportion is found in a poll of 900 voters. Would you now regard the 
result as stable? What nonstatistical question would you ask before drawing any conclusions?

6.6. “Statistical significance” is usually declared at α = .05, i.e., for 2P values at or below .05. A group 
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of investigators has done a randomized clinical trial to test whether a new active drug is better than 
placebo. When appropriately calculated, by methods discussed later in Chapter 13, the results show a 
Gaussian Z-score of 1.72 for a difference in favor of the active drug. Because the corresponding one-
tailed P value is <.05, the investigators claim that the difference is “statistically significant.” The statistical 
reviewers, however, reject this claim. They say that the result is not significant, because the P value 
should be two-tailed. For Z = 1.72, the two-tailed P is >.05. What arguments can be offered on behalf 
of both sides of this dispute?
6.7. Find a published report — not one already cited in the text — in which an important variable was 
cited in a verbal scale of magnitude, i.e., an ordinal scale. Comment on what the investigators did to 
ensure or check that the scale would be used with reproducible precision. Do you approve of what they  
did? If not, what should they have done?
6.8. Here is a chance to demonstrate your own “quantitative” concepts of “uncertainty,” and for the 
class convener to tabulate observer variability in the ratings.

Please rank the following verbal expressions from l to 12, with 1 indicating the highest degree 
of assurance for definite occurrence and 12 the lowest.

Probable Uncertain Expected Possible
Credible Impossible Likely Certain
Doubtful Hoped Unlikely Conceivable
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The concepts of probability discussed in Chapter 6 can now be used for their critical role in evaluating  
the stability of a central index. For the evaluation, we want to determine not only the magnitude of 
possible variations when the index is “perturbed,” but also the probability of occurrence for each variation.

The perturbations that produce the magnitudes and probabilities can be done with modern methods 
of empirical reconstruction, such as the jackknife and bootstrap, or with the traditional parametric-
sampling strategy. 

7.1 Traditional Strategy

The traditional statistical strategy — which constantly appears in modern literature — is complicated, 
making its discussion particularly difficult to read and understand. The reason for the difficulty is that 
the customary statistical approach involves hypothetical entities such as standard errors and confidence 
intervals, and uses an array of mathematical theories that do not correspond to reality or to anything 
that might actually be done by a pragmatic medical investigator.

The theories were originally developed to deal with a real-world challenge called parametric sampling;
and they have worked well for that challenge. The mathematical strategy behind the theories was then 
applied, however, for a quite different challenge in evaluating stability. The same parametric theories 
thus became used in two very different situations. For parametric sampling, the theories involve the 
hypothetical possibility of repeatedly taking an infinite number of samples from an unknown population 
that is seldom actually observed. For evaluating stability, however, we examine what was found in a 
single group of data.

7.1.1 Goals of Sampling

In a sampling process, we determine the mean, standard deviation, or other attributes, called parameters,
of a large entity, called the parent population, that would be too difficult or costly to examine completely. 
For example, in industrial work, such as mining gold or making beer, the chemical testing of quality 
takes time and destroys the material being analyzed. We therefore use samples (often called aliquots)
to save time and to avoid losing too much gold or beer. In marketing activities, the makers of a new 
product will examine samples of potential purchasers to appraise its possible public reception, because 
a test of the total population would be unfeasible and too expensive. The sampling activity called poll-
taking is constantly used by political or social scientists to determine beliefs or opinions in a much larger 
public than the people included in the sample. On election night, a sampling process is used when the 
media try to forecast the winner before all the precincts have been reported.

The sampling activities are not always successful; and the failures have become legendary examples 
of errors to be avoided or corrected. In the United States, many older persons still remember the fallacious 
marketing research that led to the Edsel automobile and to the (temporary) removal of classic Coca Cola 
from the market; and almost everyone can give an example of blunders in political polls or in election-
night forecasts. In general, i.e., “on average,” however, the pragmatic results have confirmed (or “vali-
dated”) what was found with the theoretical sampling strategy.

7.1.2 Random Sampling

An important basis for the theoretical strategy is that the sampling be done randomly. The term random
is not easy to define, but it requires that every member of the target or parent population have an equal  
chance of being selected for inclusion in the sample. This requirement is not fulfilled if the sample is 
chosen haphazardly (e.g., without a specific plan) or conveniently (e.g., whatever happens to be available 
in the persons who came to the clinic today or who mailed back a questionnaire). To get a truly random  
sample from a parent population requires special maneuvers, such as making selections by tossing a 
coin or using either a random-number generator or table of random numbers.
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Many sampling activities fail not because the mathematical theory was flawed, but because the sample 
was not a representative random choice. The material may not have been well mixed before the tested 
aliquots were removed. The group of people who mailed back the questionnaire may have been a 
relatively extreme sector of the target population. (Another nonmathematical source of error is the way 
the questions were asked. The inadequate wording or superficial probing of the questions is now regarded 
as the source of the marketing disasters associated with the Edsel and with “New Coke.”)

The necessity for random sampling is another problem that makes the parametric theory seem strange 
when used in medical research. Random sampling almost never occurs in clinical investigation, where 
the investigators study the groups who happen to be available. In a randomized trial, the treatments are  
assigned with a random process, but the patients who enter the trial were almost never obtained as a 
random sample of all pertinent patients. A random sampling may be attempted for the household surveys 
of public-health research or in the “random-digit dialing” sometimes used to obtain “control” groups in  
case-control studies. Even these activities are not perfectly random, however, because the results usually 
depend on whoever may be home when the doorbell or telephone rings and on the willingness of that 
person to participate in the study. Consequently, medical investigators, knowing that they work with 
potentially biased groups, not with random samples, are often uncomfortable with statistical theories 
that usually ignore sources of bias and that assume the groups were randomly chosen.

7.1.3 Reasons for Learning about Parametric Sampling

Despite these scientific problems and discomforts, the theory of parametric sampling is a dominant factor 
in statistical analysis today. The theory has been the basic intellectual “ethos” of statistical reasoning 
for more than a century. If you want to communicate with your statistical consultant, this theory is where 
the consultant usually “comes from.” The parametric-sampling theory is also important because it has 
been extended and applied in many other commonly used statistical procedures that involve neither 
sampling nor estimation of parameters. One of these roles, discussed in this chapter, is evaluating the 
stability of a central index. Other roles, discussed in later chapters, produce the Z, t, and chi-square tests 
frequently used for statistical comparisons of two groups. As noted earlier and later, however, the 
parametric theory may be replaced in the future by “computer-intensive” statistical methods for evaluating 
stability and comparing groups.

Even if this replacement occurs, however, the parametric theory is still an effective (and generally 
unthreatened) method for the challenge of determining an adequate sample size before a research project 
begins. Furthermore, despite the complicated mathematical background, the parametric methods lead to 
relatively simple statistical formulas and calculations. This computational ease has probably been respon-
sible for the popularity of parametric procedures during most of the 20th century, and will continue to 
make them useful in circumstances where computers or the appropriate computer programs are not 
available.

For all these reasons, the parametric theory is worth learning. Before it arrives, however, we shall first 
examine two relatively simple methods — the jackknife and bootstrap procedures introduced in 
Chapter 6 — that can yield appraisals of stability without the need for complex mathematical reasoning. 
The intellectual ardors of parametric theory will begin in Section 7.3, and will eventually be followed 
by a pragmatic reward: the application of your new parametric knowledge to construct a common 
statistical procedure called a one-group t test.

7.2 Empirical Reconstructions

A parametric sampling, such as a political poll, must be planned “prospectively” before any data are 
available for analysis. Consequently, the strategy must be based on theoretical principles. If data have  
already been obtained, however, the stability of the central index can be evaluated “retrospectively” 
with an empirical reconstruction of the observed results.
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The various empirical rearrangements are based on what was actually observed and do not require
theoretical reasoning about a larger, parametric population. Like the parametric approach, the empirical
strategy depends on distributions, but each distribution is generated in an ad hoc manner from the
observed set of data. Furthermore, the empirical strategies — applied to data obtained without a sam-
pling process — are used only for drawing conclusions about the observed group. The conclusions are
not expected or intended to refer to a larger parametric population.

The jackknife reconstruction technique, as shown in Section 7.2.1, determines what would happen to
the “unit fragility” of the central index (or some other selected value) if a member is successively
removed from (and then returned to) the data set. The bootstrap reconstruction technique, as shown
earlier in Section 6.4.3 and here in Section 7.2.2, is a resampling process that determines what would
happen in samples prepared as rearrangements of all or some of the observed members of the data.

7.2.1 Jackknifed Reconstruction

The jackknife method, which is seldom formally used for checking the stability of a central index, is
presented here mainly to give you an idea of how it works and to indicate the kinds of things that can
be done when investigators become “liberated” from parametric doctrines.You need not remember any
of the details, but one aspect of the process, discussed in Sections 7.2.1.2 and 7.2.1.3, offers a particularly
simple “screening test” for stability of a central index.

7.2.1.1 Set of Reduced Means — The jackknife process works by examining the variations
that occur when one member is successively removed (and then restored) in the data set. If the data set
has n members, each symbolized as Xi, the mean value is , calculated as ΣXi/n. If one member of the
set, Xi, is removed, the reduced set of data will have n − 1 members, and the “reduced” mean in the
smaller data set will be . As each Xi is successively
removed, a total of n reduced groups and n reduced means will be created.

For example, consider the group of blood sugar values that appeared in Exercise 3.3. Table 7.1 shows
what would happen successively as one member of the group is removed. Because the reduced means
range from values of 105.37 to 123.16, we can be completely (i.e., 100%) confident that any of the
reduced means will lie in this zone. Because the reduced set of means has 20 values, we can exclude
the two extreme values to obtain a 90% inner zone of 18 values whose ipr90 extends from 112.21 to
122.32. If we want a narrower zone of values, but less confidence about the results, we can prepare an
ipr80 by removing the two highest and two lowest values. With this demarcation, we could be 80%
confident that the reduced mean lies between 116.95 and 122.26.

7.2.1.2 Decisions about Stability — The jackknife procedure offers a particularly useful
“screening” tactic for stability of a central index. The “screening” occurs when we consider both the
“distress” that would be evoked by some of the extreme values that appear in the array of reduced
jackknife means, and also the possibility that such extreme values might occur.

Thus, in the data of Table 7.1, the most extreme of the 20 values is 400. Its removal, which has a
random chance of 1 in 20, would lower the reduced mean to 105.37. This drop is a reduction of (120.1 −
105.37)/120.1 = 12.3% from the original value. How distressed would we be if 105.37 were the true
mean of the data set, thereby making 120.1 a misrepresentation? Conversely, if the true mean is 120.1,
how seriously would the data be misrepresented if the last member (with a value of 400) had been
omitted, so that 105.37 were used as the observed mean?

In this data set, which has 20 members, the (one-tailed) probability is only 1/20 = .05 that 105.37
would become the reduced mean. The ipr90 mentioned earlier for the reduced mean denotes a probability
of only .10 that the reduced mean would drop to 112.21 (a proportionate change of about 7%) or lower.
Because the highest value (123.16) for the reduced mean is not too disparate from the original value,
we would be concerned mainly about the removal of extreme individual values such as 270 or 400. In
highly skewed data sets, such as the blood sugar values in Table 7.1, the relative frequency of possible
jackknife changes may therefore be appraised in a “one-tailed” rather than “two-tailed” direction.

X

Xi ΣXi Xi–( )/ n 1–( ) nX Xi–( )/ n 1–( )= =
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Thus, with no special calculations except “screening” by the jackknife perturbation, there is a .05 
chance that the mean might become proportionately 12% lower than its original value, and a .1 chance 
that it will be changed by 7% or more. If troubled by these possibilities, you will reject the observed 
mean as unstable. If untroubled, you will accept it. In the absence of standards and criteria, the decision 
is “dealer’s choice.”

The main virtue of this type of jackknife “screening” is that you can determine exactly what would 
happen if one person were removed at each extreme of the data set. You need not rely on an array of 
theoretical parametric samplings or empirical bootstrap resamplings to determine and then interpret a 
standard error and confidence interval.

7.2.1.3 Screening with the Jackknife — To evaluate stability of a central index, the jackknife 
tactic is valuable mainly for mental screening, aided by a simple calculation. For the procedure, remove 
one item from an extreme end of the dimensional data set and determine the reduced mean. If it is 
proportionately too different from the original mean, or if it takes on a value that extends beyond an 
acceptable external boundary, and if the data set is small enough for the event to be a reasonably frequent
possibility, the original mean is too fragile to be regarded as stable. The internal and external criteria 
for stability will be further discussed in Section 7.4.

7.2.2 Bootstrap Resampling

Of the two empirical methods for checking the stability of a mean, the complete bootstrap tactic is easy 
to discuss but hard to demonstrate. Unless the bootstrapped samples are relatively small, a computer 
is required to do all the work. Furthermore, even with a computer, the complete bootstrap tactic becomes 
formidable as the basic group size enlarges. For example, as noted earlier in Section 6.4.3, the complete 

TABLE 7.1 

Formation of Reduced Means and Reduced Medians for Data Set in Exercise 3.3

Values of original group: 62, 78, 79, 80, 82, 82, 83, 85, 87, 91, 96, 97, 97, 97, 101, 120, 135, 180, 
270, 400. Σxi = 2402; = 120.10.

Value Removed
Sum of Values in 
Reduced Group Reduced Mean Reduced Median

62 2340 123.16 96
78 2324 122.32 96
79 2323 122.26 96
80 2322 122.21 96
82 2320 122.11 96
82 2320 122.11 96
83 2319 122.05 96
85 2317 121.95 96
87 2315 121.84 96
91 2311 121.63 96
96 2306 121.37 91
97 2305 121.32 91
97 2305 121.32 91
97 2305 121.32 91

101 2301 121.11 91
120 2282 120.11 91
135 2267 119.32 91
180 2222 116.95 91
270 2132 112.21 91
400 2002 105.37 91

 = 120.10
s = 4.128

X

X
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bootstrap resampling of a group with 20 members would require 1.05 × 1026 resampled arrangements.
Consequently, a smaller resampling, consisting of perhaps 1000 randomly selected bootstrapped sam-
ples, is usually prepared. After the values of the means in those 1000 samples are ranked, an ipr95
interval would depend on the boundaries of the inner 950 values. This ipr 95 is called a 95% confidence
interval for the range of possible variation of the observed mean.

7.2.2.1 Illustration of Bootstrap Process — A complete bootstrap rearrangement was pre-
pared earlier in Section 6.4.1.1, and inTables 6.1 and 6.2. Another example of the process is shown now
for all the samples of two items that can be drawn from the set of data {1, 2, 3, 4}. The number of
samples is small enough to show everything easily, whereas 256 entries (= 44) would be needed for a
complete bootstrap of all four items.

When considered as a parent population, this 4-item set of data has 2.5 as its mean, µ, and its group
variance is Σ  − n = 30 – 25 = 5. Because the original data set is a parent population for the 
bootstrap procedure, its standard deviation is calculated with n, as σ = = 1.118.

With m members in the original data set, and n members in each sample, the number of possible
bootstrap samples is mn. In this instance, with m = 4 and n = 2, we can expect 42 = 16 samples of two
members each. Those 16 samples are shown in Table 7.2.

The distribution of means in those 16 samples is shown in Figure 7.1.
The next few sections contain a general discussion of the bootstrap results, with illustrations supplied

from Table 7.2 and Figure 7.1.

7.2.2.2 Mean of the Resampled Means — The mean of a collection of bootstrapped sample
means is the same as the mean in the original set of data. In Table 7.2, the bootstrapped means extend,
as expected, from 1 to 4, but their mean value is 2.5. (The same principle occurred for the complete
resampling of means in Tables 6.1 and 6.2.)

7.2.2.3 Shape of the Distribution of Means — Regardless of the shape of the original data
set that becomes the parent population, the collection of means in a bootstrapped sample will have a

TABLE 7.2 

Bootstrap Samples of Two Items Each from the Set of Data {1,2,3,4}

Sample of Two Items
Mean of This 

Sample
Deviation 

from µ
Squared Deviation 

from µ

1,1 1 −1.5 2.25
1,2 1.5 −1.0 1.00
1,3 2 −0.5 0.25
1,4 2.5 0 0
2,1 1.5 −1.0 1.00
2,2 2 −0.5 0.25
2,3 2.5 0 0
2,4 3 +0.5 0.25
3,1 2 −0.5 0.25
3,2 2.5 0 0
3,3 3 +0.5 0.25
3,4 3.5 +1.0 1.00
4,1 2.5 0 0
4,2 3 +0.5 0.25
4,3 3.5 +1.0 1.00
4,4 4 +1.5 2.25

Total of Foregoing Values 40 0 10

Mean of Foregoing Values 2.5 0 (10/16) = 0.625 = variance
= .791 = standard deviation

Xi
2 X2

5/4

0.625
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Gaussian distribution, provided that n is large enough. This assertion about a Gaussian distribution for
resampled means is particularly crucial for parametric reasoning and will be discussed later in
Section 7.3.6.

In Table 7.2, the array of means for samples where n = 2 obviously does not have enough items to
produce a smooth curve, but the shape in Figure 7.1 clearly has the symmetry and convex central crest
that are consistent with a Gaussian distribution. (The shape seen earlier in Table 6.2 is also “Gaussianoid.”)

7.2.2.4 Standard Deviation of the Sample Means — In bootstrapped samples containing n
members each, the standard deviation of the means is . This formula, which is another basic
concept discussed later in parametric reasoning, was illustrated earlier in Section 6.4.2. The formula is
again confirmed in Table 7.2, where the variance of the 16 bootstrapped sample means is .625 and their
standard deviation is .791. With σ = 1.118 in the parent population, the formula  produces
1.118/  = .791.

7.2.2.5 Inner Percentile Ranges for the Samples of Means — We can determine certain
ipr zones for the resampled means directly from the results shown in Table 7.2. Each of the 16 items
occupies 1/16 or .0625 of the distribution. Consequently, the ipr95 and ipr90, which respectively go from
the 2.5 to 97.5 percentiles and from the 5 to 95 percentiles, will be bounded by the extreme values of
1 and 4. The interquartile range, from the 25 to 75 percentiles, will cover the inner 50% of the data.
The lower quartile occurs at 2, and the upper quartile at 3, so that the ipr50 would be from 2 to 3. Actually,
because 10 of the 16 sample means lie between the values of 2 and 3, this zone occupies 62.5% of the
data. Because 14 of the 16 means lie between the values of 1.5 and 3.5, the inner zone from 1.5 to 3.5
will cover 14/16 (= 87.5%) of the data.

Thus, examining the data in Table 7.2, we can choose the size of the desired zone of confidence — 50%,
90%, 95%, etc. — and demarcate the corresponding boundaries of the confidence interval for the resa-
mpled means.

7.2.2.6 Application of Bootstrap — The foregoing illustration was intended merely to show
how the bootstrap works. The method is seldom used or needed in determining a confidence interval
for the mean of a single group of dimensional data. In fact, perhaps the main value of the bootstrap for
such data is to offer empiric confirmation for the parametric theory, discussed later, that the standard
error of a mean is . Nevertheless, a bootstrap confidence interval can be valuable for small data
sets that may not always comply with theoretical principles.

 For example, for the 3-item data set {1, 6, 9} in Section 6.4.1.1, the mean was 5.33 and the standard
error of the mean was 1.905. Using the parametric theory to be discussed shortly, a 70.4% confidence
interval for the mean would be constructed with α = .296 and Zα = 1.04. The interval would be placed
symmetrically around the mean as 5.33 ± (1.04) (1.905) = 5.33 ± 1.98, and would extend from 3.35 to
7.31. As shown in the bootstrap resampling in Table 6.2 and Section 6.4.2, however, the 70.4% confidence
interval actually extends from 3.67 to 7.00.

FIGURE 7.1
Distribution of means in bootstrapped samples shown in Table 7.2.

Number of
Samples
with Each

Mean

4

3

2

1

1 2 3 41.5 2.5 3.5

Values of Sample Means

σ / n

σ / n
2

σ/ n

© 2002 by Chapman & Hall/CRC 



The bootstrap method becomes particularly valuable when we turn to binary data in Chapter 8, 
because each item of data is coded as either 0 or 1. The bootstrap is therefore relatively easy to use 
and display; and in fact, a mathematical model devised several centuries ago by Bernouilli can 
indicate exactly what would be produced by a complete bootstrap.

7.3 Theoretical Principles of Parametric Sampling

Although the jackknife and bootstrap methods seem easy to understand and were easy to illustrate in 
the deliberately simple foregoing examples, the “computer-intensive’’ calculations can become formi-
dable for most of the groups of data collected in medical research. Consequently, in the era before 
ubiquitous availability of digital computers, the alternative approach, using parametric theories, became  
popular because the associated calculations were easy. The harder part, for nonmathematicians, was to 
understand the parametric reasoning.

The parametric sampling method begins with the idea that a group of n items has been randomly 
sampled from a parent population, which has its own correct values for such parameters as the mean 
and standard deviation. We do not know what those parameters are, and the goal is to estimate their 
values from the sample. To be distinguished from the corresponding results in the observed sample, the  
population parameters are designated with Greek symbols: µ for the mean and s for the standard deviation 
in dimensional data and π for the (binary) proportion in binary data. The corresponding symbols for the 
sampled group would be , s, and p. The aim is to observe the results for , s, or p in the sample, 
and to use them for inferences about the unobserved populational parameters: µ, σ, or π.

The parametric process uses a sequence of reasoning that involves the following activities:

1. Repetitive sampling from the parent population.
2. Calculation of central index (or other anticipated parameters) in each sample.
3. Distribution of the central indexes of those samples.
4. Standard deviation, i.e., “standard error,” of the central indexes.
5. Calculation of a “test statistic” for each sample.
6. Distribution of the test statistics.
7. Confidence interval for the population parameters.
8. Use of test statistics for an individual group.

These activities are described in the sections that follow. Note that the first four steps are exact 
counterparts of what occurred earlier in bootstrap resampling.

Figure 7.2 illustrates the difference between the theoretical and empirical methods of rearranging a
group of data. In the theoretical method, a parametric population is inferred, from which theoretical 
repeated samplings are then taken. In the empirical method, specific groups or resamples are recon-
structed from the observed data.

7.3.1 Repetitive Sampling

In the theoretical parametric process, we repeatedly take random samples of n members from a parent 
population. For this process, we assume that the parent population is infinitely (or at least very) large. 
In smaller or “finite” populations, the theory requires each sample member to be returned immediately 
afterward, so that the next sample member is obtained after the replacement. In the parametric process,  
however, we do not actually “take” each sample. The entire activity is theoretical.

7.3.2 Calculation of Anticipated Parameters

In each of the repeated (although theoretical) samples, we determine the observed values of the central 
indexes or other parameters that are being estimated. They would be the mean, , and standard deviation, 
s, for samples of dimensional data, and the binary proportion, p, in samples of binary data.

X X

X
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7.3.3 Distribution of Central Indexes

Each sample in the repetitive array can be denoted with the subscript j, and each has its own central 
index: a mean  or a binary proportion pj. Thus, the first sample of n items has mean ; the second 
sample of n items has mean ; the third sample has mean , and so on. Each of those central indexes  
will have its own deviation from the parent population’s parametric value. The deviations will be 
for each mean or pj − π for each proportion. The parametric reasoning depends on the average results 
found in the deviations of those central indexes.

The pattern of deviations will turn out to have a mathematical distribution that allows decisions about  
stability, confidence intervals, and even a test of statistical hypothesis about zones of probability.

7.3.4 Standard Error of the Central Indexes

[The discussion that follows is confined to samples of dimensional data for which the central index is 
a mean. The process for binary data, summarized with proportions, will be considered in Chapter 8].

The series of means, { , , …, , …}, found in the repeated samples becomes a sample of its 
own, with its own mean, its own standard deviation, and its own pattern of distribution. The standard 
deviation of that series of means is the crucial entity called the standard error of the mean. A prime 
step in the parametric reasoning, therefore, is to estimate the standard deviation, i.e., standard error, of 
the hypothetical sample of sample means.

7.3.4.1 Standard Deviation of the Means — The standard error of the mean, which is the 
standard deviation in the theoretical sample of repetitive means, { , , …, , …}, is often 
abbreviated as s.e., s.e.m., or SEM, and is symbolized as . Intuitively, you would expect the standard 
deviation of a set of means to be smaller than σ, the standard deviation in the parent population of data.

The actual value is

The accuracy of this formula was confirmed with bootstrap sampling for a 3-item data set in Section 
6.4.2 and for a 2-item data set in Section 7.2.2.4. A more formal and general proof of the formula 

FIGURE 7.2
Theoretical and empirical methods of arrangement.
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requires a good deal of mathematics that has been relegated to the Appendix, which can be examined 
or omitted as you wish. The mathematics involves determining the variance in a sum or difference of 
two variables (Appendixes A.7.1 and A.7.2), the variance of a parametric distribution (Appendix A.7.3), 
and finally, the variance of a sample mean (Appendix A.7.4).

7.3.4.2 Estimation of σ with s — Because we do not know the parent population’s value of 
σ, it must be estimated. Diverse candidates might be used from the available single sample of observed 
data, but the best “unbiased” estimate on average comes from the value of s produced when the observed 
sample’s group variance is divided by n − 1. Thus, using the “^” (or “hat”) symbol to indicate an 
estimated value, we decide that the best estimate (for dimensional data) is

This assertion is proved in Appendixes A.7.4 and A.7.5.

7.3.4.3 Estimation of Standard Error — Because  is the standard error of the paramet-
ric data and σ is estimated with s for the sample, we can estimate the standard error of the mean as

For the set of dimensional data in Exercise 4.3, the standard deviation, s, was calculated with n − 1 to 
be 80.48. With n = 20, the standard error of the mean would be estimated as .

With the standard error, we can eventually construct a zone of probable location, called a confidence 
interval, for the parametric mean, µ. We can also develop an index of stability for the observed mean, .

7.3.5 Calculation of Test Statistic

In Chapter 4, we constructed descriptive Z-scores as standard deviates formed in a set of data by the 
“critical ratio” of (observed value − mean value) divided by standard deviation of the data. These ratios, 
or other analogous entities, are regularly constructed for inferential activities as indexes that are called 
test statistics because they are often used for testing statistical hypotheses that are discussed later.

For descriptive Z-scores, we learned earlier that each score can be associated with a particular 
probability (or percentile) if the data come from a mathematical distribution that allows a correspondence 
between Z scores and probability values. This correspondence occurs with a Gaussian distribution, but 
other correspondences occur for the associated distributions of other test statistics. For example, prob-
ability values can be readily determined between values of a different test statistic (to be discussed later) 
and a distribution called chi-square.

For the sample of means we have been theoretically assembling, a Zj test statistic can be determined 
for each mean, . A particular observed value in the sample of means will be ; the mean value of 
the observed means will be the parametric mean, µ; and the standard deviation in the sample of means 
will be the standard error, . Thus, as repetitive samples of means are drawn from the population 
with parameters µ and σ, each of the sampled means, , can be expressed in the Z-score format of a 
standardized deviate,

[7.1]

If we had a mathematical model for the distribution of these Zj values, each Zj could be associated 
with a P value that indicates its percentile location.

7.3.6 Distribution of the Test Statistics

The distribution of the test statistic in Formula [7.1] is demonstrated by the Central Limit Theorem,
which is one of the most majestic discoveries in statistics and in all of mathematics.1 The proof of this 
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theorem, which requires too many pages of higher mathematics to be shown here, received contributions
from many stars in the firmament of statistics: DeMoivre, Gauss, Laplace, Legendre, Tchebyshev,
Markov, and Lyapunov.

According to this theorem, repeated samples of means, each having sample size n, will have a
Gaussian distribution, regardless of the configuration of shape in the parent population. Thus, if you
take repeated samples from data having a Gaussian distribution, an exponential distribution, a uniform
distribution, or any of the other shapes shown in Figure 3.4, the means of those repeated samples will
have a Gaussian distribution. Consequently, the values of Zj calculated with Formula [7.1] will also 
have a Gaussian distribution.

The crucial contribution of the Central Limit Theorem, therefore, is that it allows the use of Gaussian 
mathematical models for inferences about means, even when Gaussian models are unsatisfactory for 
describing an observed set of data.

7.3.7 Estimation of Confidence Interval

Once we know that Zj has a Gaussian distribution for the samples of means, we can take care of the 
original challenge of finding a zone to locate the unobserved value of the parametric mean, µ. As the 
theoretical sampling process continues over and over, positive and negative values of Zj will occur when 
calculated for each  found as the sampled mean. Because of the Gaussian distribution, Zj will be a 
standard Gaussian deviate and can be used or interpreted with Gaussian P values. We can therefore solve  
Formula [7.1] for µ, substituting s for σ and bearing in mind that the Zj values might be positive or 
negative. The result is

[7.2]

If we want to denote an inner probability zone for the location of µ, we replace Zj by an assigned value 
of Zα, using Gaussian levels of α for the size of the desired zone.

7.3.7.1 Choice of  — Formula [7.2] offers an excellent method for locating µ, but has one 
major problem. It is based on the array of theoretical means denoted as  and on each corresponding 
Zj value. In reality, however, we shall obtain a single random sample and have to work with its results. 
The next section demonstrates that we use the observed sample’s value of  to substitute for  in 
Formula [7.2].

7.3.7.2 Estimation of µ — In Chapter 6 and also in the current chapter, the bootstrap or jackknife 
resamples had a mean that was the same as the mean of the original group. An analogous event happens 
in the repetitive sampling now under discussion. The mean of the series of means will turn out to be µ,
the parametric mean. In the bootstrap and jackknife procedures, however, the original observed group 
was the parent population used for the resampling procedures, but in the current activities, the parent 
population was not observed. Although the parametric reasoning allows us to contemplate a theoretical 
series of samples, the reality is that we obtain a single random sample from the parent population. We 
therefore have to estimate the value of µ from something noted in that single observed sample. The 
“something” might be the sample’s mean or median or some other selected index. The best estimate of  
µ, according to a mathematical proof not shown here, is produced, on average, by the observed mean, 

. For example, if the twenty blood sugar measurements in Exercise 4.3 were a random sample from 
a larger population, its mean, µ, would be estimated from the sample mean as 

7.3.7.3 Choice of Zα — If the observed  is used for , we can substitute a designated value  
of Zα for Zj, and Formula [7.2] will become

[7.3]

Xj

µ Xj=   Zj s/ n( )± .

Xj

Xj

X Xj

X
µ̂ X 120.10= = .

X Xj
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After choosing Zα, we can promptly calculate a confidence interval for µ. For example, suppose we
want an inner probability zone of 90% for an observed value of . In Table 6.3, the corresponding
value of Zα is 1.645. The corresponding zone for µ would be . If we wanted an inner
probability zone of 95%, the value of Zα in Table 6.3 is 1.96, and the zone would be .

The choice of α will affect the amount of confidence we can have that µ is truly located in the cited 
interval. The level of confidence is 1 − α. Thus, if α = .05, 1− α = .95, and the result is called a 
95% confidence interval. If α = .1, 1 − α = .90, and the result is a 90% confidence interval. Note that 
confidence increases as α gets smaller; but as α gets smaller, Zα gets larger, so that the size of the 
confidence interval enlarges.

For example, suppose a particular random sample of 25 members produces  and s = 2, 
so that . With a 90% confidence interval, we can estimate 

= 10 ± .658. The interval extends from 9.342 to 10.658. With a 95% confidence 
interval, the estimate for  is 10 ± (1.96)(.4) = 10 ± .784; and the interval extends from 9.218 to 10.784. 
We can be more confident that the true parametric mean, µ, will be contained in the larger interval 
(for 95%) than in the smaller interval (for 90%).

7.3.7.4 Contents of Confidence Interval — The usual way of expressing a confidence-inter -
val estimate is to say that we are 95% (or whatever was chosen as 1 − α) confident of finding the correct 
value of µ in the calculated interval. Strictly speaking, however, the actual confidence is that µ will be 
included in 95% of the zones formed by calculations from all the potential values of  in the repeated 
samples. The reason for this distinction is that the confidence intervals are calculated around the observed 
values of , not the unobserved value of µ.

Suppose we took ten samples of means, each group having 25 members, from a parent population having 
µ = 36 and σ = 10. The standard error of the mean will be  = 10/ = 2. The 95% confidence 
interval around each sampled mean will be . When each sampled mean is 
checked, we find the following:

In this instance, the true parametric value of the mean, 36, was included in 8 of the 10 confidence 
intervals calculated with Z.05 = 1.96, but in repetitive sampling, the parametric value would (or should) 
be included in 95% of those intervals.

7.3.8 Application of Statistics and Confidence Intervals

As a conventional method of denoting “stability,” confidence intervals have two main applications: to 
estimate the zone of location for a parametric index and to indicate the extremes of potential variation 
for an observed central index.

7.3.8.1 Parametric Zones — The most obvious application of confidence intervals is in the role 
for which they were originally devised. In political polls, market research, or industrial testing, the goal  
is to infer the parametric attributes of a larger population by using what is found in a smaller random 

Value of 
Confidence

Interval
Does This Interval

Include 36?

40.2 36.28 to 44.12 No
39.7 35.78 to 43.62 Yes
38.2 34.28 to 42.12 Yes
37.1 33.18 to 41.02 Yes
36.3 32.38 to 40.22 Yes
35.4 31.48 to 39.32 Yes
34.6 30.68 to 38.52 Yes
33.5 29.58 to 37.42 Yes
32.7 28.78 to 36.62 Yes
31.8 27.88 to 35.72 No

X
X 1.645 s/ n( )±

X 1.96± s/ n( )

X 10=
s/ n 2/5 .4= = µ̂ X= 1.645±
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sample. The confidence interval indicates the zone in which the desired parameter (such as the mean) 
is likely to occur; and the selected value of Zα increases or decreases the confidence by affecting the 
size of the zone and thus the probability that µ is located in that zone. The process will be further 
illustrated in Chapter 8, for political polls or election-night forecasting, when the sampled central index  
is a proportion, p, rather than a mean, .

7.3.8.2 Potential Extremes of Variation — In contrast to the process of parametric sampling, 
the observed group in most medical research is not chosen as a random sample, and a parameter is not 
being estimated. Nevertheless, because the group is a sample of something, the central index might have 
numerical variations arising merely from the few or many items that happen to be included. For example, 
a particular treatment might have a success rate of 50% in the “long run” of 200 patients, but might be  
successful in 75% of a “short run” of 4 patients. By making provision for numerical caprices that might 
occur in a group of size n, the confidence interval serves to warn or anticipate what could happen in 
the longer run.

For observed groups, the confidence interval is calculated from the  contribution of Zα  and 
is placed symmetrically around the mean, . The two extreme ends of the interval will indicate how 
large or small  might really be. For example, if the mean weight of a group of adults is 110 pounds, 
we might conclude that they are relatively thin until we discover that the mean itself might vary, in an 
80% confidence interval, from 50 to 170 pounds.

This role of confidence intervals becomes particularly important later for comparison of two groups 
in Chapter 13. Whether the observed difference between the two means is tiny or huge, the extremes of  
the confidence interval for the difference in means can be inspected, before any firm conclusions are 
drawn, to show how big that difference might really be.

7.3.9 Alternative Approaches

Despite the popularity and customary use of the foregoing procedures, they can often produce problems,  
particularly with the small data sets discussed in Section 7.2.2.6 and throughout Section 7.5. Many 
statisticians today may therefore advocate that parametric procedures be replaced and that confidence 
intervals be obtained with bootstrap methods. 2 They have the advantage of being applicable to any type 
of distribution and can also be used3 for the ranked data discussed in Chapter 15.

7.4 Criteria for Interpreting Stability

Regardless of whether we use parametric theory or empirical resampling (with bootstraps or jackknives),  
the decision about stability of a central index can be made intrinsically, from its own potential variation,  
or extrinsically, in reference to a selected outer boundary of “tolerance.”

7.4.1 Intrinsic Stability: Coefficient of Stability

In Section 5.5.1, the coefficient of variation (c.v.) was calculated as  to indicate the “effectiveness” 
with which the mean represents the individual items of data. If the coefficient was too large, the mean 
was not effective. This same approach, which was introduced in Section 6.4.2, can be used to denote 
the effectiveness or stability with which the observed mean, , represents the potential means , ,
…, , … that might have been obtained in the repetitive sampling.

Because  is the standard deviation, i.e., standard error, of the samples of means, the coefficient 
of stability for the mean can be calculated as 
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We would expect this coefficient to be much smaller than the ordinary c.v., which is multiplied by the 
factor  to form the c.s. (coefficient of stability); but specific standards have not been established 
for “stability.” If .25 is used as a liberal upper boundary for  to be “effective” and if 20 is a typical 
sample size, then  = 4.47 and 1/4.47 = .22. A crude upper boundary for “stability” would therefore 
be .25 × .22 = .056. Because the value of .05 has many other mnemonic stimuli in statistics, we might 
use it as a rough guide for intrinsic stability in considering the potential variation for a mean.

In the data set of Exercise 3.3, the mean was 120.10, and the standard error was 18.0. The value of 
18.0/120.10 = .15 would suggest that the mean in that set of data is not stable.

7.4.2 Extrinsic Boundary of “Tolerance”

A different approach to stability is to establish an extrinsic critical boundary of “tolerance” that should 
be avoided or exceeded by the observed results. For example, a political candidate might want to be 
sure that she is getting more than 50% of the votes; or we might want the mean value of blood lead in 
a group of children to be below 10 units. If the observed central index for the group is suitably above 
(or below) the selected boundary of tolerance, the confidence interval can be used to provide assurance  
that the boundary level is suitably avoided.

The multiplication by Zα will make the size of the interval vary according to the “confidence” produced 
with the choice of α. We can make the interval small by choosing a relatively large α, such as .5, for a 
50% confidence interval in which Zα will be only .674. For greater confidence, with a 95% interval, α
will be much smaller at .05, and Zα will enlarge about three times to 1.96. If the confidence interval is 
small with a large Zα, we can feel particularly confident about its stability in relation to the chosen 
boundary.

For example, suppose the mean blood level of lead in a group of children is 7.1 with an SEM of 2.2. 
With a 50% confidence interval, the potential spread will be 7.1  (.674)(2.2), and will extend from 5.6 
to 8.6. With a 95% confidence interval, however, the factor (1.96)(2.2) = 4.3 will make the interval 
extend from 2.8 to 11.4. Thus, we could be 50% confident that the mean lead level is below the tolerance 
boundary of 10, but not 95% confident. Similarly, a political candidate who is favored by 60% of a 
random sample of 30 voters might have different degrees of confidence that the percentage exceeds the 
tolerance level of >50% needed for winning the election. (The use of confidence intervals with binary 
data and the mechanisms used for “election night predictions” are discussed in Chapter 8.) 

7.5 Adjustment for Small Groups

All of the foregoing ideas about the Gaussian distribution of sampled means and values of Zj are splendid, 
but not strictly true. They pertain only if the group sizes, n, are suitably large (usually above 30). For 
smaller groups, the critical ratio calculated for Zj as

has a distribution that is not strictly Gaussian. By pointing out this distinction in a 1908 paper 4 published 
under the pseudonym of “Student,” W. S. Gosset, a statistician working at the Guinness brewery, became 
a member of the statistical hall of fame.

7.5.1 The t Distribution

Gosset showed that for small samples of n, the ratio  has a sampling-distribution that 
resembles the basic Gaussian curve, while differing at the peaks and tails. The sampling distribution is 
often called t, but you may prefer Gossetian if you like eponyms. Furthermore, the patterns of a 
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t distribution have slight variations in shape according to the degrees of freedom (d.f.) in each sample.
For a sample having n members, the value for degrees of freedom is

Figure 7.3 shows the basic resemblances and variations for a standard Gaussian distribution and for
standard t distributions having 4 and 14 degrees of freedom. The same critical ratio, ,
is used to calculate either Z or t; and the three curves in Figure 7.3 were plotted for critical ratio values
at intervals of 0.5 from 0 to ± 3.0. The t curves are slightly shorter in the center and slightly taller in
the tails than the Gaussian curve. The two curves become quite close, however, as group sizes (or
degrees of freedom) increase.

7.5.2 Explanation of Degrees of Freedom

The term degrees of freedom, abbreviated as d.f., appears so often in inferential statistics that it warrants
a brief explanation.

In the actual data, we find as the mean of a sample of n members. For inferential purposes thereafter,
we use to estimate µ, the population mean. When the repetitive theoretical sampling takes place, we
assume that each of those samples also offers an estimate of µ. Consequently, when each sample is drawn
from the parent population, the first n − 1 members can vary in any possible way, but the last member
is constrained. For each sample to be an estimate of µ, with , the sum of its values must be ΣXi
= n = .

For example, suppose a group of 6 people have a mean of 73 units, so that ΣXi = 6 × 73 = 438. In
repeated theoretical sampling thereafter from a parent population with , the first five values of
a sample might be 132, 63, 72, 52, and 91, with a sum of 410. To estimate as 73, however, the total
sum of the sample values should be 438. Therefore, the sixth member of the group must have a value
of 438 − 410 = 28.

This constraint removes one degree of freedom from the possible variations in Xi. Before the observed
group was formed, n values could be chosen freely for any sample. Once that group has been formed,
however, and after the parametric value of  has been estimated from , only n − 1 values can vary
freely in each sample thereafter.

FIGURE 7.3
Relative frequencies associated with Z and with t distribution at 14 and 4 degrees of freedom.
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This idea is the source of the degrees of freedom concept. In general, a degree of freedom is lost for
each parameter that has been estimated from a sample. Thus, when n − 1 is used in the calculation of

the principle is that the best estimate of population variance comes from dividing
the group variance (Sxx) by the degrees of freedom in the sample.

7.5.3 Using the t Distribution

For small samples, the critical ratio of  is interpreted not as Zj, but as t ν,j, from a
t distribution, using the appropriate value of ν. When confidence intervals are constructed, the value that
corresponds to Zα is t ν, j, selected from a table showing the P values associated with the degrees of
freedom, ν, and with the assigned value of α for each t ν, j. The relationship of P values, t values, and
degrees of freedom is shown in Table 7.3.

If you have calculated a tj value as the critical ratio from data for a sample of size n, you enter the
table at ν = n − 1 degrees of freedom, and find the value of P. If you have designated a confidence
interval of size 1 − α, you enter the table at ν = n − 1, and find the value of tν,α in the location where P = α.

Near the end of Section 7.3.7.3, a 95% confidence interval for a data set of 25 members was
calculated with Zα = 1.96. A more appropriate calculation, however, would use the corresponding
value of t. Since ν = 25 − 1 = 24 for those data, we would find the value for t24,.05 in Table 7.3 to be 
2.064. The 95% confidence interval would then be 10 (2.064)(.4) = 10 ± .83. It would be slightly 
larger than before, extending from 9.17 to 10.83.

If you examine Table 7.3 closely, you will see that the t values become Z values as the sample sizes
enlarge and become infinite. In particular, the t values are quite close to Z values for sample sizes .
For example, at the external probability P value of .05, the critical ratios at 30 degrees of freedom are 
1.960 for Z, and 2.042 for t. If the sample sizes are quite small, the critical ratios are more disparate. 
Thus, at the .05 level of P, the critical values of t increase to 2.365 and 2.776 for 7 and 4 degrees of 
freedom, respectively. When group sizes have these small values, however, decisions about external 
probability might preferably be made by a bootstrap resampling method as discussed earlier.

7.5.4 Distinctions of t vs. Z

The achievement that made W. S. Gosset a statistical immortal was his revelation, as “Student,” that a 
t rather than Gaussian distribution should be used for inference with the means of small samples. For 
reasonably large samples (i.e., ), however, the distinction makes relatively little difference; and 
for smaller samples, the theoretical inferential method may be replaced by a different (empirical) 
resampling technique in the foreseeable future.

Consequently, despite all of the fame and popularity of the t distribution and t test (to be discussed 
later), the t technique is not substantially different from the counterpart Z technique. Nevertheless, as 
long as the t test retains its current popularity, the medical literature will often contain results that were 
referred to a t distribution. Furthermore, you will keep your “orthodox” statistical colleagues happier if 
you use tν,α or tν,j in most circumstances where you might have been tempted to use Zα or Zj.

7.6 Finite Population Correction for Unreplaced Samples

All of the discussion thus far in this chapter has been based either on an infinite parametric population 
or on resampling procedures in which each sampled item was replaced as soon as it was drawn. If the 
parent population is not enormous and the sampling is done without replacement, an important warning 
must be noted.

With random sampling from a parent population containing N items, the principles of probability
depend on the idea that each item in the sample has a 1/N chance of being selected. If N is a very large  
number, or if the sampling is done with replacement, this principle holds true. When sampling is done 
without replacement in smaller populations, however, a correction must be made for the changes that 
occur in N as each member is removed. (This point is important to bear in mind when samples are taken 
from a roster of medical admissions, discharges, autopsies, etc.)

σ̂ s SXX/ n 1–( )= = ,

X µ–( )/ s/ n( )

±

30≥

ν 30≥

© 2002 by Chapman & Hall/CRC 



TABLE 7.3

Distribution of 2-Tailed P Values for Values of t at Different Degrees of Freedom*

Degrees of 
Freedom

Probability of a Larger Value, Positive or Negative
0.500 0.400 0.200 0.100 0.050 0.025 0.010 0.005 0.001

1 1.000 1.376 3.078 6.314 12.706 25.452 63.657
2 0.816 1.061 1.886 2.920 4.303 6.205 9.925 14.089 31.598
3 .765 0.978 1.638 2.353 3.182 4.176 5.841 7.453 12.941
4 .741 .941 1.533 2.132 2.776 3.495 4.604 5.598 8.610
5 .727 .920 1.476 2.015 2.571 3.163 4.032 4.773 6.859

6 .718 .906 1.440 1.943 2.447 2.969 3.707 4.317 5.959
7 .711 .896 1.415 1.895 2.365 2.841 3.499 4.029 5.405
8 .706 .889 1.397 1.860 2.306 2.752 3.355 3.832 5.041
9 .703 .883 1.383 1.833 2.262 2.685 3.250 3.690 4.781

10 .700 .879 1.372 1.812 2.228 2.634 3.169 3.581 4.587

11 .697 .876 1.363 1.796 2.201 2.593 3.106 3.497 4.437
12 .695 .873 1.356 1.782 2.179 2.560 3.055 3.428 4.318
13 .694 .870 1.350 1.771 2.160 2.533 3.012 3.372 4.221
14 .692 .868 1.345 1.761 2.145 2.510 2.977 3.326 4.140
15 .691 .866 1.341 1.753 2.131 2.490 2.947 3.286 4.073

16 .690 .865 1.337 1.746 2.120 2.473 2.921 3.252 4.015
17 .689 .863 1.333 1.740 2.110 2.458 2.898 3.222 3.965
18 .688 .862 1.330 1.734 2.101 2.445 2.878 3.197 3.922
19 .688 .861 1.328 1.729 2.093 2.433 2.861 3.174 3.883
20 .687 .860 1.325 1.725 2.086 2.423 2.845 3.153 3.850

21 .686 .859 1.323 1.721 2.080 2.414 2.831 3.135 3.819
22 .686 .858 1.321 1.717 2.074 2.406 2.819 3.119 3.792
23 .685 .858 1.319 1.714 2.069 2.398 2.807 3.104 3.767
24 .685 .857 1.318 1.711 2.064 2.391 2.797 3.090 3.745
25 .684 .856 1.316 1.708 2.060 2.385 2.787 3.078 3.725

26 .684 .856 1.315 1.706 2.056 2.379 2.779 3.067 3.707
27 .684 .855 1.314 1.703 2.052 2.373 2.771 3.056 3.690
28 .683 .855 1.313 1.701 2.048 2.368 2.763 3.047 3.674
29 .683 .854 1.311 1.699 2.045 2.364 2.756 3.038 3.659
30 .683 .854 1.310 1.697 2.042 2.360 2.750 3.030 3.646

35 .682 .852 1.306 1.690 2.030 2.342 2.724 2.996 3.591
40 .681 .851 1.303 1.684 2.021 2.329 2.704 2.971 3.551
45 .680 .850 1.301 1.680 2.014 2.319 2.690 2.952 3.520
50 .680 .849 1.299 1.676 2.008 2.310 2.678 2.937 3.496
55 .679 .849 1.297 1.673 2.004 2.304 2.669 2.925 3.476

60 .679 .848 1.296 1.671 2.000 .299 2.660 2.915 3.460
70 .678 .847 1.294 1.667 1.994 2.290 2.648 2.899 3.435
80 .678 .847 1.293 1.665 1.989 2.284 2.638 2.887 3.416
90 .678 .846 1.291 1.662 1.986 2.279 2.631 .2878 3.402

100 .677 .846 1.290 1.661 1.982 2.276 2.625 2.871 3.390

120 .677 .845 1.289 1.658 1.980 2.270 2.617 2.860 3.373
(z) .6745 .8416 1.2816 1.6448 1.9600 2.2414 2.5758 2.8070 3.2905

* This table has been adapted from diverse sources.
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For example, the first card selected from a deck of 52 cards has a 13/52 chance of being a spade. If
the card is not replaced, the denominator for selecting the next card will be 51; and the probability of
the next card being a spade will be either 13/51 or 12/51, according to what was chosen in the first card.
Thus, the probability that four consecutive unreplaced cards will all be spades is not (13/52)4 = .004. It
is (13/52)(12/51)(11/50)(10/49) = .003.

With the jackknife reconstruction technique, in contrast to the bootstrap resampling method, the
sampling is done without replacement. Each jackknifed “sample” contains n –  l persons taken, without
replacement, from the “parent population” of n persons. A mathematical principle can be derived for
the shifting probabilities and necessary corrections of variance that occur when samples of size n are
drawn without replacement from a “finite” population of size N. We can expect those samples to have 
a smaller variance than what would be found if they were taken each time from the intact population,
but we need a quantitative indication of how much smaller the variance might be.

If σ2 is the variance of the total but finite population, the variance of the means in samples of size n
can be called . It can be calculated as

[7.4]

Because N − n is smaller than N − 1, this value will be smaller than . To illustrate the calculation,
the parent population of the data set in Table 7.1 has 20 members, and their variance (calculated with N,
rather than N − 1) is (78.44)2. [The variance calculated with N – 1 was (80.48)2]. Because each of the
jackknife samples has n = 19, the foregoing formula will produce

This is the same result obtained in Table 7.1, when a standard deviation was calculated for the n reduced
means produced by the jackknife procedure.

Note that if N is very large, the value of (N − n)/(N − 1) in Formula [7.4] will be approximately 1. 
The standard deviation of means in general samples of size n will then be

This is the formula for the “standard error” or standard deviation of means when parametric sampling 
is done from a population of infinite size.

7.7 Confidence Intervals for Medians

Because the median is used so infrequently in current reports of medical research, most statistical texts 
give relatively little attention to finding a confidence interval for a median. The procedure is mentioned  
here because it may become more common when the median replaces the mean as a routine index of 
central tendency.

7.7.1 Parametric Method

With the parametric approach, the standard error of a median in a Gaussian distribution is mathematically 
cited as
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where π is the conventional 3.14159… . For an actual group (or “sample”) of data, the value of σ would
be approximated by the s calculated from the sample. Because , this formula implies that
the median is generally more unstable, i.e., has a larger standard error, than the mean. This distinction
may be true for Gaussian distributions, but the median is particularly likely to be used as a central index
for non-Gaussian data. Consequently, the formula has few practical merits to match its theoretical virtues.

7.7.2 Bootstrap Method

The bootstrap method could be applied, if desired, to produce a confidence interval for the stability of
a median. The approach will not be further discussed, however, because currently it is almost never used
for this purpose.

7.7.3 Jackknife Method

The jackknife process is particularly simple for medians. Because the original group in Table 7.1 contains
20 members, the reduced group will contain 19 members, and the reduced median will always be in the
10th rank of the group. This value will have been the 11th rank in the original group. Counting from
the lower end of the original data, the 11th ranked value is 96. It will become the reduced median after
removal of any original item that lies in the first 10 ranks, i.e., between 62 and 91. The value of 91 will
become the reduced median after removal of any items that lie in the original ranks from 11 to 21, i.e.,
from 96 to 400.

Thus, the reduced median will be either 91 or 96, as noted in the far right column of Table 7.1. We can
also be 100% confident that the reduced median will lie in the zone from 91 to 96. Because the original
median in these data was (91 + 96)/2 = 93.5, the reduced median will always be 2.5 units lower or higher
than before. The proportional change will be 2.5/93.5 = .027, which is a respectably small difference and
also somewhat smaller than the coefficients of stability for the mean. Furthermore, the proportional change
of 2.7% for higher or lower values will occur in all values and zones of the reduced median. Accordingly,
with the jackknife method, we could conclude that the median of these data is quite stable.

If the data set has an even number of members, the jackknife removal of one member will make the
median vary between some of the middlemost values from which it was originally calculated. For an odd
number of members, most of the reduced medians will vary to values that are just above or below the
original median and the values on either side of it. Thus, if the data set in Table 7.1 had an extra item of
94, this value would be the median in the 21 items. When one member is removed from the data set, the 
reduced median would become either (94 + 96)/2 = 95, or (91 + 94)/2 = 92.5, according to whether the 
removed member is above the value of 96 or below 91. The median would become (87 + 94)/2 = 90.5 
with the removal of 91, (91 + 96)/2 = 93.5 with the removal of 94, and (94 + 97)/2 = 95.5 with the removal 
of 96. Thus, if Xm is the value at the rank m of the median, the maximum range of variation for the reduced 
median will be from (Xm−2 + Xm)/2 to (Xm+2 + Xm )/2.

Although seldom discussed in most statistical texts, this type of appraisal is an excellent screening 
test for stability of a median.

7.8 Inferential Evaluation of a Single Group

A single group of data is often evaluated inferentially to determine whether the central index of the 
group differs from a value of µ that is specified in advance by a particular hypothesis about the data.

Although “hypothesis testing” will be extensively discussed in Chapter 11, the illustration here can 
be regarded either as a preview of coming attractions or as a “bonus” for your labors in coming so far 
in this chapter.

π/2 1.253=
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7.8.1 One-Group t or Z Test

The test-statistic ratios for Z or t can be applied stochastically for inferring whether the mean of a single 
set of data differs from a previously specified value of µ. The test-statistic is calculated as 

and the result is interpreted as a value for Zj or for tν, j according to the size of the group. The corresponding 
P value will denote the external probability that the observed or an even more extreme value of  would 
arise by chance from a parent population whose mean is µ. If we assume that µ = 0, the test statistic 
becomes , which is also the inverse of the coefficient of stability for the mean.

This application of the t or Z index produces what is called a one-group or paired “test of significance.” 
It can be used to determine whether the mean of a group (or sample) differs from a previously specified 
value, which serves as µ. More commonly, however, the test is done with “paired” data, such as a set 
of before-and-after treatment values for a particular variable in a collection of n people. If we let wi be 
the values before treatment and vi be the paired values after treatment, they can be subtracted to form 
a single increment, di = vi − wi for each person.

 The values of di will represent a single variable, with mean  and standard deviation

If we believe that the value of  is significantly different from 0 —  i.e., that the after-treatment values 
are substantially different from the before values — we can establish the “null” hypothesis that the di
values have been randomly sampled from a population for which µ = 0. The critical ratio of 

can be converted to indicate the external probability, or P value, for the possibility that the observed 
value of , or a more extreme value, has occurred by chance under the null hypothesis. Using principles 
to be discussed later, we can then decide whether to reject or concede the null hypothesis that the true 
mean for the di data is 0.

Note that the “one-group” procedure requires either a single group of data or two groups that can be 
“paired” to form the increments of a single sample.

7.8.2 Examples of Calculations

The one-group t test is illustrated here in application to a single group and to a set of paired data.

7.8.2.1 Single-Group t (or Z) Test — A clinical professor at our institution claims that the 
group of patients in Exercise 3.3 is highly atypical. She says that the customary mean of blood sugar 
values is 96, and that the observed mean of 120.1 implies that the group must be inordinately diabetic.

 The claim can be stochastically evaluated using a one-group t test, with 96 assumed to be the 
parametric mean. We would calculate

In Table 7.3, at 19 degrees of freedom, the two-tailed P value associated with this value of t is close
to .2, lying between .2 and .1.

t or Z X µ–( )/ s/ n( )=

X

X/ s/ n( )

d

sd Σ di d–( )2/ n 1–( )=

d

d 0–
sd/ n
------------- d

sd/ n
-------------=

d

X µ–
s/ n
------------- 120.1 96–

18.0
------------------------- 24.1

18.0
---------- 1.339= = = =
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This type of result is commonly symbolized, with the lower values coming first, as .1 < P < .2. To
indicate the two tails, a better symbolism would be .1 < 2P < .2. The two-tailed P value indicates the
possibility that a mean at least 24.1 units higher or lower than 96 could arise by chance in the observed
group of 20 patients. Because the original conjecture was that 120.1 was too high (rather than merely 
atypical in either direction), we might be particularly interested in the one-tail rather than two-tail
probability. We would therefore take half of the 2P value and state that the external probability is .05 <
P < .1 for the chance that a mean of 120.1 or higher would be observed in the selected 20 people if the
true mean is 96.

Chapter 11 contains a further discussion of one-tailed and two-tailed probabilities, and their use in
rejecting or conceding assumed hypotheses about the observed data.

7.8.2.2 Paired One-Group t Test — Suppose that the 20 patients in Exercise 3.3 were treated
with various agents, including some aimed at reducing blood sugar. The values after treatment, shown
in Table 7.4, have a mean of −23.3 for the average change in blood sugar. The standard deviation of
the increments, however, is 65.6, suggesting that the data are extremely dispersed. This point is also
evident from inspecting the wide range of values (going from −254 to +13) for the increments of paired
results shown in Table 7.4.

The wide range might elicit strong suspicion that
the observed distinction is unstable. Nevertheless,
our main question here is not whether −23.3 is a
stable value, but whether the mean blood sugar was
indeed lowered by more than the value of 0 that
might occur by random chance alone. To answer
the latter question, we can do a paired single-group
t test on the incremental values. We assume the
hypothesis that they came from a population of
increments having 0 and 65.6 as the parameters for
µ and σ respectively.

The calculation shows

Interpreted at 19 d.f. in Table 7.3, this value of t
has an associated two-tailed P value that is between
0.1 and 0.2. If given a one-tail interpretation
(because we expected blood sugars to go down-
ward), the P value would be between 0.05 and 0.1.
If this chance is small enough to impress you, you
might reject the conjecture that the group of incre -
ments came from a population whose true mean is
0. This rejection would not make the mean of –23.4
become stable. The inference would be that no
matter how unstable the mean may be, it is unlikely
to have come from a parent population whose para-
metric mean is 0.

7.8.2.3 Confidence Interval for One-Group t Test — Another approach to the main ques-
tion about changes in blood glucose is to calculate a parametric confidence interval for the observed
mean of −23.4. Using t19, .05 = 2.093, the 95% confidence interval would be −23.4 ± (2.093)(65.5/ )
= −23.4 ± 30.65. Extending from −54.05 to 7.25, the interval includes 0, thus suggesting that the observed
results are consistent with a no-change hypothesis.

TABLE 7.4 

Before and After Values of Treatment of
Blood Sugar for 20 Patients in Table 7.1

Before After Increment

 62  75 +13
 78  82 +4
 79  78 −1
 80  91 +11
 82  82 0
 82  84 +2
 83  80 −3
 85  79 −6
 87  94 +7
 91  90 −1
 96  99 +3
 97  91 −6
 97  85 −12
 97  98 +1
101  97 −4
120 112 −8
135 123 −12
180 140 −40
270 110 −160
400 146 −254

Total −468
Mean −23.3
s.d.n−1 65.6

t d µ–
sd/ n
------------- 23.3–

65.6/ 20
----------------------- 1.588= = =

20
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You may now want to argue, however, that the confidence interval should be one-tailed rather than
two-tailed, because of the original assumption that blood sugar values were being lowered. With a one-
tailed hypothesis, the appropriate value for a 95% confidence interval is t19, .1 = 1.729. With this approach,
the interval is −23.4 ± (1.729)(65.5/ ) = –23.4 ± 25.32. Because the upper end of this interval also
includes 0, we might feel more comfortable in acknowledging that the observed value of −23.4 is not
unequivocally different from the hypothesized value of 0.

Appendixes: Documentation and Proofs  
for Parametric Sampling Theory

This appendix contains documentation and “proofs” for the assertions made in Chapter 7 about standard
errors, estimation of σ, and other inferential strategies. Because the proofs have been kept relatively
simple (avoiding such complexities as “expectation theory”), they are reasonable, but not always math-
ematically rigorous.

A.7.1 Determining the Variance of a Sum or Difference of Two Variables

This concept is needed in Chapter 7 to help determine the “standard error” of a mean, but is also used
later in Chapter 13 to find the variance for a difference in two means.

To demonstrate the process, suppose we add or subtract the values of two independent variables, W i

and Vi, each containing n members, having the respective means,  and , with group variances Sww
and Svv, and variances  and . The result will be a new variable, formed as Wi + Vi or Wi − Vi, having
n members and its own new mean and new variance.

It is easy to show that the new mean will be  or . A more striking point is that the new
group variances and variances will be the same, Sww + Svv and , regardless of whether we subtract
or add the two variables.

The latter point can be proved with the following algebra: For the addition of the two variables, the
new group variance will be Σ[(Wi + Vi) − ( + )]2 = Σ[(Wi − ) + (Vi − )]2 = Σ(Wi − )2 + 2(Wi

− )(Vi − ) + (Vi − )] = Σ(Wi − )2 + 2Σ(Wi − )(Vi − ) + Σ(Vi − ). In the latter three
expressions, the first and third are Sww and Svv. The middle term essentially vanishes because Wi and
Vi are independent and because  and . Therefore, the group variance
of will be Sww + Svv, and the variance will be (Sww + Svv)/(n − 1), which is  + .

If the two variables are subtracted rather than added, the new mean will be . The new group
variance will be Σ[(Wi − Vi) − ]2 = Σ[ − ]2 = Σ[ −

] = Sww + Svv, when the middle term vanishes. Thus, when two indepen -
dent variables, Vi and Wi, are either added or subtracted, the variance of the new variable is .

A.7.2 Illustration of Variance for a Difference of Two Variables

Table 7.4 can be used to illustrate this point if we regard the “Before” values as a sample, {Wi}, and
the “After” values as another sample, {Vi}, each containing 20 items. The 20 items in the Wi and Vi
groups can then be subtracted to form the (Wi − Vi) group shown as the “increment’’ in Table 7.4. The

20

W V
sw

2 sv
2

W V+ W V–
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2 sv
2+

W V W V W
W V V2 W W V V2

Σ Wi W–( ) 0= Σ Vi V–( ) 0=
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results show means of 120.1, and V = 96.8. For the difference of the two variables, the mean is (as
expected) 23.3 for .

The respective variances are 6477.35 and 403.95 for  and , with their sum being 6881.30. This
sum is much larger than the variance of 4298.77 formed in the  group. The reason for the
difference in observed and expected variances is that Wi − Vi are not independent samples. The basic
principle demonstrated by the mathematics will hold true, on average, for samples that are not related.
In this instance, however, the two sets of data are related. They are not really independent, and thus do not
have a zero value for covariance. In other words, the statement in A.7.1 that “the middle term essentially
vanishes” was not correct. The term vanishes in each instance only if  is 0. A little
algebra will show that this term becomes . For samples that are not independent, this
term is not zero. Thus, for the data in Table 7.4, , and . Conse-
quently, = 257047 − 232513.6 = 24533.4, rather than 0. The value of 24533.4 is 
doubled to 49066.8 and then divided by  to produce 2582.46 as the incremental contribution 
of the WV covariance component. Accordingly, 6881.30 − 2582.4 = 4298.84 for variance in the difference 
of the two variables.

A.7.3 Variance of a Parametric Distribution

By definition, the parametric population has mean µ and standard deviation σ. Any individual item, Xi,
in that population will deviate from the parametric mean by the amount Xi − µ. By definition of σ, the 
average of the Xi − µ values will be σ, and the average of the (Xi − µ)2 values for variance will be σ2.

In any individual sample of n items, the sum of squared deviations will be Sxx =  from the 
sample mean, and  from the parametric mean. With σ as the average value of Xi − µ, the 
average value of the squared deviations from the parametric mean will be .

Because Xi − µ = (Xi − ) + ( − µ), the average value of  will be the difference between σ
and the standard deviation, s, in the sample. We can square both sides of the foregoing expression to get

Summing both sides we get 

For any individual sample,  is a fixed value, and  The middle term on the right 
side will therefore vanish, and we can substitute appropriately in the other terms to get the average 
expression:

 [A.7.1]

This expression shows that in a sample of n members the average group variance will be larger around 
the parametric mean, µ, than around the sample mean,  The average parametric group variance, nσ2,
will exceed the sample group variance, SXX, by the magnitude of  This concept will be used 
later in Section A.7.5.

A.7.4 Variance of a Sample Mean

When n members, designated as X1 , …, Xn, are sampled from a parametric distribution, their mean will be 
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The deviation of this value from the parametric mean will be

In repetitive samples, each constituent value of Xi will take on different values for X1, X2, X3, etc. 
We can therefore regard each of the (Xi − µ)/n terms as though it were a variable, with the  term 
being a sum of the n constituent variables.

 According to Section A.7.1, the average variance of  will be the sum of average variances 
for the constituent variables. Each constituent variable here has the variance 

and the average value of (Xi − µ)2, by definition, is σ2. Therefore, the average value of  can 
be cited as

Thus, the average variance of a sampled mean is σ2/n. The square root of this value,  is the special 
“standard deviation” that is called the “standard error” of the mean.

A.7.5 Estimation of σ

If you understand the mathematics of Appendixes A.7.3 and A.7.4, the procedure here is simple. In 
Appendix A.7.3, Formula [A.7.1] showed that  and in Appendix A.7.4, we 
learned that σ2/n was the average value of  When the latter value is substituted in Formula 
[A.7.1], we get

nσ2 = SXX + n(σ2/n) = SXX + σ2

Therefore,

 (n − 1)σ2 = SXX.

This result tells us that on average, the value of SXX/(n − 1) will be the value of σ2. The result also 
explains why SXX is divided by n − 1, rather than n, to form the variance of a sample. When the sample  
standard deviation is calculated as

we get the best average “unbiased” estimate of the parametric standard deviation, σ.
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Exercises

7.1. The hematocrit values for a group of eight men are as follows:

For this set of data, the mean is 34 with sn−1 = 5.18 and sn = 4.84. The median is 33.5. [You should 
verify these statements before proceeding.]

7.1.1. What are the boundaries of a parametric 95% confidence interval around the mean?
7.1.2. What is the lower boundary of a parametric one-tailed 90% confidence interval around 
the mean? 
7.1.3. What are the extreme values and their potential proportionate variations for the jackknifed 
reduced means in this group?
7.1.4. What are the extreme values and their potential proportionate variations for the reduced 
medians?
7.1.5. Do you regard the mean of this group as stable? Why? Does it seem more stable than the 
median? Why?

7.2. One of your colleagues believes the group of men in Exercise 7.1 is anemic because the customary 
mean for hematocrit should be 40. How would you evaluate this belief?
7.3. A hospital laboratory reports that its customary values in healthy people for serum licorice 
concentration have a mean of 50 units with a standard deviation of 8 units. From these values, the 
laboratory calculates its “range of normal” as 50 ± (2)(8), which yields the interval from 34 to 66. In 
the results sent to the practicing physicians, the laboratory says that 34–66 is the “95% confidence 
interval” for the range of normal. What is wrong with this statement?
7.4. Our clinic has an erratic weighing scale. When no one is being weighed, the scale should read 0, 
but it usually shows other values. During one set of observations, spread out over a period of time, the 
following values were noted with no weight on the scale: +2.1, −4.3, +3.5, +1.7, +4.2, 0, −0.8, +5.2, 
+1.3, +4.7. Two scholarly clinicians have been debating over the statistical diagnosis to be given to the  
scale’s lesion. One of them says that the scale is inconsistent, i.e., its zero-point wavers about in a 
nonreproducible manner. The other clinician claims that the scale is biased upward, i.e., its zero point, 
on average, is significantly higher than the correct value of 0. As a new connoisseur of statistics, you 
have been asked to consult and to settle the dispute. With whom would you agree? What evidence would 
you offer to sustain your conclusion?

31 42 37 30 29 36 39, 28, , , , , ,{ }
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8
Confidence Intervals and Stability:  
Binary Proportions
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The evaluation of stability and confidence intervals for binary proportions needs a separate chapter, 
because the methods will often differ from those discussed in Chapter 7 for dimensional means. The 
differences in basic structure of the binary data will make the methods sometimes similar, but other 
times either simpler or more complex.

Any proportion always has a binary structure, but the entities called binary proportions are the 
central indexes for a group of binary data, in which each item has one of two complementary categories, 
such as yes/no, failure/success, dead/alive. With the items coded as either 0 or 1, the array of data 
will be {0, 1, ..., 0, 1, 0, ..., 1}. If the group contains n items, r will be coded as 1, and n − r as 0.
The central index can be chosen as either p = r/n or q = 1 − p = (n − r)/n. Thus, if 15 people are alive 
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and 27 are dead, the group’s binary proportion can be the survival rate, 15/42 = .36, or the fatality 
rate, 27/42 = .64.

The binary proportions that commonly appear in medical statistics can describe diverse clinical entities, 
but can also refer to population “rates” (over intervals of time) for such demographic events as births, 
marriages, and deaths. The differences between proportions and rates are discussed in Chapter 17, but 
in pragmatic reporting, the two terms are often used interchangeably, and are also often cited with a 
third term, percentages. In the statistics of daily life, binary percentages can express baseball batting 
averages, weather forecasts, polls of public opinion, interest on bank accounts, discounts for sale 
merchandise, the composition of foods, and the concentration of atmospheric pollutants.

8.1 Sources of Complexity

Although stability and confidence zones can sometimes be evaluated with the same theoretical and 
empirical procedures used for a mean, the rearrangements of binary proportions have three important 
features that increase the complexity. 

1. Because each proportion can be cited as either p or q, rather than with a unique single value, the 
proportionate changes and potential variation of a rearrangement can differ dramatically if referred 
to p or q. Thus, a 6% increment in rates will seem relatively large if divided by the observed 
success rate of 10%, but much smaller if divided by the corresponding failure rate of 90%.

2. The language and concepts can become tricky when an increment such as .06 or 6% in two 
proportions is divided by another proportion — such as the observed success rate of .10 or 
10% — to form a third proportion, which is .06/.10 = .6 or 60%. If the published results 
mention an “improvement of 60%,” you will not know whether the writers have cited a 
proportionate change (in which the compared values were 10% and 16%), or a direct incre-
mental change in the observed success rate (which would have had to go from 10% to 70%). 
Furthermore, if someone wants to minimize rather than maximize the apparent accomplish-
ment of a 6% increment between success rates of 10% and 16%, the change could be referred 
to the original failure rate of 90%. With the latter citation, the proportionate decline in the 
failure rate would be .06/.90 = .067 or 7%. Thus, the same observed change could be reported 
as 6%, 60%, or 7%, according to the choice made by the “seller.” All three citations are 
legitimate and accurate, but the “buyer” will have to beware.

3. Stability and confidence intervals for binary proportions can often be well estimated with the 
Gaussian mathematics used for means. If the group size is small, however, or if the proportion 
is far below (or above) 50%, the Gaussian procedure may yield distorted results. A more 
accurate set of calculations can be obtained with binomial (or Bernouilli) distributions, 
discussed in Section 8.4, for the 0/1 structure of the data.

8.2 Jackknife Screening

The jackknife technique has already been illustrated at the beginning of Chapter 7 for examining stability 
in such proportions as 1/2, 1/3, 150/300, and 100/300.

A proportion constructed as r/n can change either to the smaller value of (r − 1)/(n – 1) if the removed 
member is a 1, or to the larger value of r/(n − 1) if the removed member is a 0. For example, if p = 2/7 
= .2857, the reduced proportions will be either 1/6 = .1667 or 2/6 = .3333. The chance of getting the 
smaller value will be r/n, and the chance of getting the larger value will be (n − r)/n.

The strategy of examining the two extreme jackknife results (and the chances of getting those results) 
offers a quick, almost purely mental method of screening for the stability of a proportion. Regardless 
of how the potential values and chances are interpreted, the results here show that the 2/7 proportion is 
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certainly unstable. Aside from a jackknife screening that shows obvious fragility, however, the stability  
of a proportion is usually evaluated with more formal mathematical methods.

8.3 Gaussian Confidence Intervals

The same parametric reasoning used in Chapter 7 can be applied to estimate the standard error of a 
proportion and to determine confidence intervals. We assume that the parent population contains binary  
data, with π as the parametric proportion. When repeated samples of size n are drawn from the parent 
population in the theoretical sampling process, each sample will have pj as its central index. We can 
find the standard error of those sampled proportions by determing the average or “standard” deviation 
of pj − π. We then use the standard error to calculate a confidence interval for the zone in which π is 
located.

8.3.1 Standard Error of a Proportion

The parametric strategy for determining standard error of a proportion is exactly analogous to what was 
done with a mean. You may recall, from Section 4.9.3, that the variance of an observed set of binary 
data was s2 = pq, which will estimate the parametric variance as = pq. The standard error of the 
proportion will then be estimated as

This simple formula is possible because npq, the group variance of the binary data, was divided by 
n to form the variance in Section 4.9.3. Now that the degrees-of-freedom concept has been discussed, 
the reason for this divisor can be explained. When group variance was calculated for dimensional data 
as , there were n degrees of freedom in the choice of the Xi values, and 1 d.f. in the choice 
of . Thus, the value for d.f. was n − 1. When a binary proportion is determined as p, there are n 
degrees of freedom in choice of the 0 or 1 component values. As soon as p is known, however, the value 
of q is promptly found as q = 1 − p, and the group variance is also promptly found as npq, without any  
subtractions to reduce the n degrees of freedom. Accordingly, the group variance npq is divided by n 
to form the variance. The standard deviation, , is then divided by  to determine the standard error.

For example, if a political candidate is favored by 60% of voters in a poll, the standard error of the 
proportion is = .155 if the sample size was 10, and = .049, if the 
size was 100.

A “short-cut” method for calculating the standard error of p = r/n is to use the formula
. For p = 4/10, the result would be = .155; and for 40/100, the result is 

= .049.

8.3.2 Confidence Interval for a Proportion

Another splendid attribute of Gaussian mathematics and binary proportions is that the values of Zj
calculated for pj in repeated samplings will have a Gaussian distribution (if n is suitably large). With 
this principle, we can form the ratio

[8.1]

and interpret it as though it were a standard Gaussian deviate.

σ̂2

σ̂
n

------- pq
n

------=

ΣXi
2 nX2–

X

pq n

.40( ) .60( ) 10⁄ .40( ) .60( ) 100⁄

r( ) n r–( ) n3⁄ 4( ) 6( ) 103⁄
40( ) 60( ) 1003⁄
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pj π–
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--------------=
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Using the observed value of p for pj, and  for σ, we can estimate boundaries for the location of 
the parametric π by choosing an appropriate value of Zα for the desired 1 – α level of the Gaussian 
confidence interval. After Formula [8.1] receives suitable substitution and conversion, the calculation 
becomes

[8.2]

and is an exact counterpart of the confidence interval Formula [7.3] for a mean. To compare the observed 
p with a hypothesized π, Formula [8.1] becomes the critical ratio

[8.3]

8.3.2.1 Example of Calculation — Suppose the observed proportion is 26/42 = .62. The value 
of the standard error  = .075. [With the short-cut formula, 
this calculation is  .075.] The 95% confidence interval will be

π = .62 ± (1.96)(.075) = .62 ± .147

and will extend from .473 to .767.
Suppose someone believes that this result, despite a group size of 42, is a “short-term fluke” and that  

the “long-run” parametric value in the population is actually π = .50. With Formula [8.3], we can calculate 
Z = (.62 − .50)/.075 = 1.6, for which 2P > .05. As discussed later, we could have anticipated that this 
result would have 2P > .05, because the 95% confidence interval included the parametric value of π = .50.

8.3.2.2 Example of Practical Application — Confidence intervals for proportions are con-
stantly used on election night when the media make forecasts about a winner. A particular voting 
precinct (or cluster of precincts) is chosen as a random (or at least trustworthy) representative of the 
political region under scrutiny. As increasing numbers of votes accrue from the selected precinct(s), 
confidence intervals are repeatedly calculated. When a high-level confidence interval excludes .50, a 
victor will be predicted.

When the forecasts go wrong, the error may have scientific or statistical sources. Scientifically, the 
selected precincts may have been poorly chosen. Because of population migration or some other reason,  
the precincts may no longer suitably represent the entire region. If the precincts have been well chosen, 
however, the source of wrong predictions can be two statistical factors: the value of Zα chosen for the 
level of confidence, and the increment of tolerance by which the lower level of the estimate must exceed 
.50. With lower values of confidence level and higher tolerance, the forecasts can be made earlier on 
election night (i.e., with smaller numbers of precinct ballots), but will have a greater margin for error.

For example, suppose the early results show Candidate A ahead of Candidate B by 60 votes to 40. 
With a 90% confidence interval, the estimate is

  π = (60/100) ± 1.645  
= .60 ± (1.645)(.049) = .60 ± .08.

The confidence interval extends from .52 to .68. Since the “tie” value of .50 is excluded, Candidate  
A might be proclaimed the winner. On the other hand, with a 99% confidence interval, Zα will be 
2.58. The interval will be .60 ± (2.58)(.049) = .60 ± .126 and extends from .484 to .726. With this 
result, Candidate A cannot yet be guaranteed victory. With Zα set at 1.96, a 95% confidence interval 
could be calculated as .6 ± (1.96)(.049) = .6 ± .096, and would extend from .504 to .696. If the 
forecasters are content to regard 50.4% as a suitable margin of tolerance above 50%, they might issue  
a victory prediction.

pq

π̂ p Zα
pq
n

------±=

Z p π–( ) pq n⁄⁄=

pq n⁄ 26 42⁄( ) 16 42⁄( ) 42⁄ .00561= =
26( ) 16( ) 423⁄ .00561 = =

.60( ) .40( ) 100⁄
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8.3.2.3 Customary Applications and Abuses — In the foregoing discussion, we were trying 
to estimate a populational parameter from the results found in a sample; and a specific sampling process 
was either planned or had actually occurred. In most medical publications, however, the investigator has 
obtained results from an observed group of people (or other entities) who happened to be conveniently 
available for the research. For the binary proportion, p, that was found in these entities, the main goal is 
to determine the stability of the result, not to estimate a populational parameter.

Nevertheless, the goal of checking stability in convenient groups is almost always approached with 
the same strategy used for estimating parameters in random samples. A standard error and/or confidence 
interval, determined from the observed result, become used for appraising its stability. As the observed  
result is not a random sample, all of the mathematical reasoning based on randomness is not really 
appropriate or justified. To allow the reasoning to be used, however, the assumption is made that the 
observed group is indeed a random sample.

This abuse of the fundamental mathematics has persisted for about a century and has become 
sanctified by the recommendation and approbation received from authoritative statisticians and as well  
by constant appearance in medical publications. A major advantage of bootstrap (or Bernouilli) con-
fidence intervals discussed in the next section is that they come only from the observed data, without 
making parametric estimates and without requiring mathematical assumptions about parametric sam-
pling or distributional shapes.

8.4 Binomial (Bernouilli) Confidence Intervals

A different way to determine standard errors and confidence intervals for binary proportions is both 
empirical and theoretical. Empirically, the observed group of n members is used directly as a parent 
population in a bootstrap resampling procedure. Theoretically, the results of the binary sampling process 
can be exactly anticipated with a mathematical model. Applied to items having the binary or “binomial” 
values of 0 or 1, the model is often called the binomial distribution.

8.4.1 Illustration of Bootstrap Procedure

Consider the binary proportion 6/10 = .60. Because each of the ten people in this group can be rated as  
0 or 1, success or failure, yes or no, the existing group of data can be depicted as a set of six members of 
one type and four of the other. One such depiction would be the data set {Y, Y, Y, Y, Y, Y, N, N, N, N}, 
where each Y = yes and each N = no.

8.4.1.1 Formation of Samples — To show each member in a complete bootstrap resampling 
would require 1010 samples. The process is therefore easier to demonstrate if we do the complete bootstrap 
for 5 items, which will involve only 105 = 100,000 samples from the set of data.

Each time an item is chosen, there are 10 possibilities. For the first choice in the sample, we could 
get any one of the 6 Y items, or any one of the 4 N items. For the second choice, we could again get 
any one of the 6 Y items or any one of the 4 N items. The 100 possibilities in the first two choices 
would thus contain the patterns

YY: 6 × 6 = 36 possibilities 
YN: 6 × 4 = 24 possibilities
NY: 4 × 6 = 24 possibilities 
NN: 4 × 4 = 16 possibilities 

These four patterns contain three sets of contents: YY, NN, and a set that has one N and one Y.
With 10 more chances in the third choice, the total number of possibilities would be expanded to 

1000, the number of patterns to eight, and the number of different contents to four. Among the four sets 
of contents, one group would have 3 Y’s; one would have 2 Y’s and 1 N; one would have 1 Y and 2 N’s; 
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and one would have 3 N’s. The fourth and fifth choices would expand the number of possibilities to
10,000 and then to 100,000; the number of patterns would go to 16 and then to 32; the number of sets
with different contents would go to five and then to six.

8.4.1.2 Summary of Results — The sequence of possible patterns and contents for the forego-
ing choices is shown in Table 8.1.

The 100,000 possible patterns after five choices will be arranged in the six basic formats of: 5 Y’s;
4 Y’s and 1 N; 3 Y’s and 2 N’s; 2 Y’s and 3 N’s; 1 Y and 4 N’s; and 5 Y’s. Table 8.2 shows a summary
of the patterns, frequencies, and relative frequencies of the contents in Table 8.1. For each set, the
respective proportions, pi, are 1.00, .80, .60, .40, .20, or 0. The relative frequency, fi, of choices for each
proportion, pi, is shown in the sixth column of Table 8.2. [The far right column, binomial relative
frequency, is explained in Section 8.4.2.3.]

8.4.1.3 Mean, Variance, and Standard Error — To find the mean value for the proportion
of Y’s in the 100,000 bootstrapped samples of Table 8.2, we can multiply each value of pi by its total
number of choices, mi, and then divide by 100,000. Alternatively, we can multiply each pi by its relative
frequency fi and then take the sum of the products as

With the latter calculation, the bootstrap-sample mean is (1.00)(.0778) + (.80)(.2592) + (.60)(.3456) +
(.40)(.2304) + (.20)(.0768) + (0)(.0102) = .60, which is the expected result for p.

For the variance of the bootstrapped samples, we can use the formula

which yields (.0778)(1.00 − .60)2 + .2592(.80 − .60)2 + .3456(.60 − .60)2 + .2304(.40 − 60)2 + .0768
(.20 − .60)2 + .0102(0 − .60)2 = .048.

The standard deviation of the bootstrapped proportions is = .219. Note that this is the same
standard error obtained for the binary data using the Gaussian formula of = .219.

8.4.1.4 Confidence Intervals — The main virtue of Tables 8.1 and 8.2 is that they show the
exact distribution of proportions in the array of bootstrap samples. An important thing to note about this
distribution is that the relative frequencies are not arranged symmetrically around the central index value
of p = .60. This asymmetry will occur whenever the sample sizes are relatively small (i.e., n < 20 or
30) for any proportion in which p is not at the “meridian” value of .50. Consequently, the symmetrical 
confidence interval calculated with the component value, ± Zα , will not be wholly accurate with
small sample sizes. Thus, just as the t distribution is best used for small samples of dimensional data,
the Bernouilli binomial distribution (which is discussed shortly, and which provides the same results as
the bootstrap) is best used for small samples of binary data.

From Table 8.2, we can demarcate a symmetrical confidence interval using the proportions .40 to .80.
They would include .2304 + .3456 + .2592 = .8352 or 84% of the data. The proportions from .20 to
1.00 would create an asymmetrical interval that contains 99% of the data, with the 0 value of the
proportion excluded.

As noted shortly, the Bernouilli or binomial distribution takes a Gaussian shape when n is large. (The
relative frequencies in Table 8.2 already look somewhat Gaussian despite the small n of 5.) Accordingly,
the Gaussian Z indexes are often applied to estimate confidence intervals for a proportion, using the 
standard error . For example, Z.16 = 1.41 and  for the data here is .219; thus, 
1.41 × .219 = .31. With the Gaussian formula, the 84% confidence interval would be the zone of 
.60 ± .31, which extends from .29 to .91. It approximates but is larger than the corresponding 84% zone 
of .40 to .80 found with the bootstrap.

Σpi fi

Σfi pi p–( )2

.048
pq n⁄ .60( ) .40( ) 5⁄=

pq n⁄

pq n⁄ pq n⁄
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TABLE 8.1

100,000 Possible Patterns in Five Selections from Population  
with Binary Proportion of .6

1st 
Choice

2nd 
Choice

3rd 
Choice

4th 
Choice

5th 
Choice

Number
of 

Patterns

Contents
of

Pattern

Proportlon 
of Y’s 

in Pattern

Y(6) 7776 5Y 1.00
Y(6)

N(4) 5184 4Y,1N .80
Y(6) Y(6) 5184 4Y,1N .80

N(4)
N(4) 3456 3Y,2N .60

Y(6) Y(6) 5184 4Y,1N .80
Y(6)

N(4) 3456 3Y,2N .60
N(4) Y(6) 3456 3Y,2N .60

N(4)
N(4) 2304 2Y,3N .40

Y(6) Y(6) 5184 4Y,1N .80
Y(6)

N(4) 3456 3Y,2N .60
Y(6) Y(6) 3456 3Y,2N .60

N(4)
N(4) 2304 2Y,3N .40

N(4) Y(6) 3456 3Y,2N .60
Y(6)

N(4) 2304 2Y,3N .40
N(4) Y(6) 2304 2Y,3N .40

N(4)
N(4) 1536 1Y,4N .20
Y(6) 5184 4Y,1N .80

Y(6)
N(4) 3456 3Y,2N .60

Y(6) Y(6) 3456 3Y,2N .60
N(4)

N(4) 2304 2Y,3N .40
Y(6) Y(6) 3456 3Y,2N .60

Y(6)
N(4) 2304 2Y,3N .40

N(4) Y(6) 2304 2Y,3N .40
N(4)

N(4) 1536 1Y,4N .20
N(4) Y(6) 3456 3Y,2N .60

Y(6)
N(4) 2304 2Y,3N .40

Y(6) Y(6) 2304 2Y,3N .40
N(4)

N(4) 1536 1Y,4N .20
N(4) Y(6) 2304 2Y,3N .40

Y(6)
N(4) 1536 1Y,4N .20

N(4) Y(6) 1536 1Y,4N .20
N(4)

N(4) 1024 5N 0
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8.4.2 Bernouilli Procedure

The diverse possibilities in a bootstrap sampling of binary data were mathematically determined by
Jacob Bernouilli more than three centuries ago. He formulated an elegant expression, called the binomial
expansion, which is

(p + q) n

You met the simple forms of this expansion in your elementary algebra as (a + b)2 = a2 + 2ab + b2, and
(a + b)3 = a3 + 3a2b + 3ab2 + b3.

To illustrate how the expansion works, suppose we toss a coin three times. With H for head and T for
tails, there are 8 possible outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. One of these
eight outcomes has all heads; three have two heads and one tail; three have one head and two tails; and
one has all tails. This result could have been expected from the binomial expansion of (p + q)3, if we let
p = probability of a head and q = probability of a tail. The expansion is p3 + 3p2q + 3pq2 + q3. The
probability of getting all heads is p3 = (1/2)3 = 1/8. The probability of getting two heads and a tail is 3p2q =
3/8. Correspondingly, 3pq2 = 3/8 and q3 = 1/8 are the probabilities for the other two outcomes.

8.4.2.1 General Format of Binomial Terms — In general application, the binomial expan-
sion for a sample of n items has n + l terms. They are pn, pn−lq, pn−2q2, …, pn−rqr, …, p2qn−2, pqn−1, qn.
The values of r increase successively from 0 for the first term to n for the last. Each term will reflect a
sampled proportion having the value (n − r)/n. For example, in Table 8.2, the sampled proportion
associated with p5 was 5/5 = l; the sampled proportion associated with p2q3 was 2/5 = .40.

8.4.2.2 Binomial Coefficients — Each term will also have an associated binomial coefficient,
which can be symbolized as , , or . The symbol will be used here. It is calculated as

The binomial coefficient is particularly worth knowing about because it also plays an important role 
later in Chapter 12 when we meet the Fisher Exact Probability test for comparing two proportions. The
coefficient represents the different number of individual combinations that can be formed when n things
are taken r at a time. The first term can be chosen in n different ways. The next term can then be chosen
from n − 1 items. The third term can come from n − 2 items, and so on. Thus, there are n × (n − 1) ×
(n − 2) × … × 2 × 1 = n! sequences, called permutations, in which the n items could be arranged. If
only r items are selected from the total group of n, the permutation will extend from n down to n − r + 1.

TABLE 8.2

Summary of Results in Table 8.1 for p = .6, q = .4

Contents

pi =
Proportion of 

Y’s

Number of 
Choices within 

This pi

Number of 
Patterns within 

Each Choice

mi =
Frequency 
of This pi

mi/100, 000 =
fi = Relative 
Frequency

Binomial Relative 
Frequency

5Y 1.00 7776 1 7,776 .0778 p5 = .0778
4Y,1N .80 5184 5 25,920 .2592 5p4q = .2592
3Y,2N .60 3456 10 34,560 .3456 10p3 q2 = .3456
2Y,3N .40 2304 10 23,040 .2304 10p2q3 = .2304
1Y,4N .20 1536 5 7,680 .0768 5pq4 = .0768
5N 0 1024 1 1,024 .0102 q5 = .0102

TOTAL 100,000 1.0000 1.0000

Cn r Cr
n n

r 
  n

r 
 

n
r 

  n!
r! n r–( )!
----------------------=
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For example, suppose you are being dealt 13 consecutive cards from a well-shuffled deck of 52. The
first card can be chosen in 52 ways, the second in 51, the third in 50, and so on down to the 13th in 40
ways. The value of 40 is n − r + 1 = 52 − 13 + 1. Accordingly, the sequence in which you get the cards
has 52 × 51 × 50 × … × 41 × 40 possibilities. This sequence can be expressed as 52!/39! = (52 × 51 ×
50 × … × 2 × 1)/(39 × 38 × 37 × ... × 2 × 1), because we divide by 39! to remove the remaining 39!
possibilities from the original 52!. The general formula for the sequence of r things taken from a group
of n is n!/(n − r)!.

In receiving the cards, however, you do not care about the sequence in which they arrive. What
concerns you is the particular combination of 13 cards that constitutes your “hand.” Because those 13
cards could themselves be permuted in 13! sequences, the combination in your particular hand could
have been constructed in (52!/39!) ÷ 13! ways. The latter expression is 52!/[(39!)(13!)]. If you work out
this calculation, the result turns out to be 8.0658 × 1067/[(2.0398 × 1046 )(6.227 × 109)] = 6.3501 × 1011.

The general formula for the combination that forms your “hand” is therefore n!/[(n – r)! (r!)]. An
important thing to know when working with factorials is that 0! = 1. If you take all n things at once,
there is only one possible combination. It is n!/[(n!)(0!)] = 1.

8.4.2.3 Application of Binomial Coefficients and Terms — The binomial expansion of
(p + q)n can be expressed as

[8.4]

The first term, with r = 0, is {n!/[(n!)(0!)]}pn = pn. The second term, with r = 1, is {n!/[(n – 1)! (1!)] }pn−

1q = npn−1q. The third term with r = 2, is {n!/[(n − 2)!(2!)]}pn−2q2 = [n(n − 1)/2]pn–2q2, and so on down to qn.
For example, the binomial expansion when n = 5 is p5 + 5p4q + 10p3q2 + 10p2q3 + 5pq4 + q5. The two

coefficients of 5 came from 5!/(4!1!) and the two coefficients of 10 came from 5!/(3!2!). Each of these
terms will indicate the relative frequency, i.e., the probability, of getting the particular arrangement of
1’s, and 0’s implied by the pn−rqr part of the term. Thus, when n = 5 and r = 2, there would be three 1’s
and two 0’s, producing the proportion 3/5 or (n − r)/n. The chance of occurrence for this proportion
would be 10p3q2 = 10(3/5)3 (2/5)2 = .346. Each of the pn−rqr terms represents the binomial relative
frequency, cited in the far right column of Table 8.2, for the pi proportion that is calculated as (n − r)/n.

8.4.2.4 Example of Application — In Table 8.2, the bootstrap sampling showed the possibili-
ties occurring when samples of 5 members were taken from a population with π estimated to be .6. If
we apply the Bernouilli process with n = 5, p = .6, and q = 1 − .6 = .4, we get the binomial relative
frequencies shown in the far right column of Table 8.2. These relative frequencies are identical to those
obtained previously as values of fi with the bootstrap process.

As another example, suppose we want to evaluate the proportion of spades that would be obtained in
five selections, each from a full deck of cards. Because p = 1/4, we obtain the possibilities are shown
in Table 8.3.

TABLE 8.3

Bernouilli Distribution or Probability for Spades Found in 5 Selections Each from a Full Deck of Cards

Selection

Observed 
Proportion of 

Spades

Chance of 
Getting This 
Proportion

All spades 1 (1/4)5 = .0010
Four spades, one non-spade .8 5(1/4)4(3/4) = .0146
Three spades, two non-spades .6 10(1/4)3(3/4)2 = .0879
Two spades, three non-spades .4 10(1/4)2(3/4)3 = .2637
One spade, four non-spades .2 5(1/4)(3/4)4 = .3955
No spades 0 (3/4)5 = .2373

TOTAL  = 1

Σ(r
n)pn r– qr

n
r 
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In this instance, proportions of spades ranging from 0 to .6 would be found in .2373 + .3955 + .2637 +
.0879 = .9844 of the selections. We could thus form a nonsymmetrical 98% confidence interval,
demarcated by values from 0 to .6, for the expected proportions if five items were taken from a distribution 
with π = .25. Note that the interval of 0 to .6 is not symmetrical around the value of .25. Note also that
the expected proportion of .25 was impossible to obtain in a sample of 5 members. The highest individual
probabilities were .3955 for getting a proportion of .2 for the spades, and .2637 for a proportion of .4.

If we had tried to get this result with a Gaussian calculation, the closest approach would be with Z.01 =
2.58 for a 99% confidence level. The standard error would be = .194 and the interval 
would be .25 ± (2.58)(.194) = .25 ± .50. It would extend from an impossible −.25 to .75. (In the binomial
expansion, the interval from 0 to .8 would have covered 99.9% of the possibilities.)

8.4.2.5 Binomial Expansions for Confidence Intervals — Because of the possible asym-
metries and unrealistic results, the confidence intervals for proportions are best determined with binomial
expansions when the sample or group size, n, is small. As n enlarges, the binomial and Gaussian results
become less disparate.

For example, suppose the proportion of .2 has been observed as 4 successes and 16 failures in a group
of 20. The binomial expansion would contain 21 terms for possible proportions whose values would be
1, .95, .90, ..., .10, .05, 0. The binomial coefficients and terms would produce tiny values for the relative
frequencies of the first ten terms with potential proportions of 1, .95, ... , .60, .55. For the remaining 11
terms, shown in Table 8.4, about 84% (= .1090 + .1745 + ... + .1369) of the possible proportions would
be in the zone from .10 to .30. An additional 11% (= .0545 + .0576) would be included if the zone 
extends from .05 to .35. Thus, the interval from .05 to .35 would include 95% of the possible proportions 
if a sample of 20 members was drawn from a binary population with parameter π = .20. The tactic of 
getting the confidence interval by using the exact binomial formula and working toward the center from 
both ends is sometimes called the Clopper-Pearson method.1

If this same 95% confidence interval were calculated with Gaussian arithmetic, the result would be 
.20 ± (1.96)  = .20 ± .175. The interval would extend from .025 to .375. [If you wanted 
to use a t-distribution approach for the small sample, the 95% confidence interval for 19 degrees of 
freedom would be .20 ± (2.093)  = .20 ± .192. This interval would extend from .008 to .392.]

Both of the Gaussian and t parametric calculations are now much closer to, but are still not quite the 
same as, the “gold standard” zone of .05 to .35 obtained with the binomial Clopper-Pearson method.

8.4.2.6 Binomial Tactics for Rare Events — A particularly valuable use of the binomial cal-
culations occurs when claims are made about rare or uncommon events. For example, suppose an 

TABLE 8.4

Demonstration of Bernouilli Probabilities for 11 terms of p = 4/20 = .20

Potential 
Proportion Bernouilli Probability of Occurrence

10/20 = .50 184756( .2)10( .8)10 = .0020
9/20 = .45 167960(.2)9(.8)11 = .0074
8/20 = .40 125970(.2)8(.8)12 = .0222
7/20 = .35 77520(.2)7(.8)13 = .0545
6/20 = .30 38760( .2)6( .8)14 = .1090
5/20 = .25 15504(.2)5(.8)15 = .1745
4/20 = .20 4845(.2)4(.8)16 = .2182
3/20 = .15 1140(.2)3(.8)17 = .2054
2/20 = .10 190(.2)2(.8)18 = .1369
1/20 = .05 20(.2)(.8)19 = .0576
0/20 = 0 (.8)20 = .0116

1 4⁄( ) 3 4⁄( ) 5⁄

.2( ) .8( ) 20⁄

.2( ) .8( ) 19⁄
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investigator has observed that a particular treatment failed in only 1 (4%) of 23 patients. An evaluator 
who thinks that the true rate of failure should be 15% then suspects the investigator of either not telling  
the truth or having a peculiar group of patients. To determine whether the observed result is within the 
limits of chance, we can find the relative frequencies with which 1 failure would be expected in 23 
treatments if the true rate of failure is 15%, with the success rate being .85 (= 85%).

If .85 is the success rate, the chance of observing no failures (i.e., all successes) in 23 patients would  
be (.85)23 = .0238. The chance of observing 1 failure in 23 patients would be 23(.85)22 (.15) = .0966. 
Thus, if the true failure rate is 15%, there is a chance of .0966 + .0238 = .1204, or 12% of observing 
as few as 1 or no failures in 23 people. The decision about whether the investigator is telling the truth 
depends on how you interpret the chance of 12%.

8.4.2.7 Use of Reference Tables — Because the Clopper-Pearson calculations are cumber-
some (particularly for more than one or two events), they are seldom used routinely for determining 
Bernouilli confidence intervals. The main reason for discussing them is to let you know of their existence 
as the “gold standard” approach for small samples and for proportions that are remote from the meridian 
value of .5.

To save time and effort, special tables have been constructed to show “exact confidence limits” for 
events or proportions calculated with binomial distributions. For example, consider the observed value 
of 4/20 = .20. In an “exact-confidence-limits” table for the binomial distribution (cf. page 89 of the 
Geigy Scientific Tables2), the 95% confidence interval for 4/20 is listed as extending from .0573 to 
.4366. Note that this result differs slightly from the exact boundary of .05 to .35 that was noted earlier 
for the Clopper-Pearson calculations shown here in Section 8.4.2.5. The reason for the disagreement is 
that the results in the Geigy tables are calculated with a complex iterative method for working with 
Formula [8.4]. The subsequent solutions can then produce values, such as .573 or .4366, that cannot be 
precisely achieved with a sample of exactly 20 members.

As another example, to answer the concern posed in Section 8.4.2.6 about a failure rate of 15% in 23 
patients, page 103 of the Geigy tables shows that the 95% “Confidence limits for Np” extend from 0 to 
8 persons if the true proportion is .15 in a group of 23 persons. Consequently, the observed failure of 
only 1 in 23 persons is within the 95% confidence interval for a .15 rate of failure.

The main point of this subsection is simply to let you know that appropriate tables exist for diverse  
attributes of binomial distributions. If you later find yourself in situations where the tables can be 
helpful, you can then learn the pertinent operational details and interpretations. 

8.5 Mental and “No Events” Short-Cut Approximations

Two simple techniques are available as “screening” or short-cut methods for approximating the confi-
dence interval of certain proportions. One technique can often be done mentally, without a calculator; 
the other offers a simple rule for the confidence interval around a proportion of 0, in circumstances 
where no events have been observed.

8.5.1 Mental Approximation

The standard deviation, , is close to .5 for a wide span of proportions ranging from .3 to .7. For 
example, if p = .4, pq = (.4)(.6) = .24 and = .49. If p = .7, pq = .21 and = .46. For a 95% 
confidence interval, Zα = 1.96 can be approximated as 2. Consequently, in the span of proportions from  
.3 to .7, Zα   can be approximated as ~(2)(.5) = 1. Therefore, the confidence interval component Zα 

  can be approximated as .
By estimating the square root of 1/n mentally, you can promptly get a good idea of the scope of the 

confidence interval component. If you feel insecure about this mental feat, bear in mind that when n = 25, 
= 1/5 = .2. When n = 100,  = .1. Thus, for group sizes between 25 and 100, the confidence 

interval component will lie between .2 and .1. With this tactic, you can promptly get a reasonably good  
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estimate of the confidence interval for any proportions ranging between .3 and .7. [For p or q = .2 or 
.8,  = .4; and for p or q = .1 or .9,  = .3. The corresponding estimates for the latter proportions 
will be 80% and 60%, respectively, of the foregoing results for  ~.5.]

Examples: Suppose the observed proportion is 42/76 = .55. As 76 is close to 81, let =
1/9 = .11. The approximate 95% confidence interval, calculated mentally becomes .55 ± .11 and goes 
from .44 to .66. The actual calculation for standard error here is = .057 and the actual 
Zα   value is (1.96)(.057) = .11. If the observed proportion is 8/65 = .12, use  = 8, and 1/8 =
.125, then multiply by .60 to get .075 as the approximate value. Its calculated result will be 1.96 

= .080.

8.5.2 “Rumke’s Rule” for “No Events”

If no adverse events occur in a clinical trial, the investigators may want assurance about the likelihood 
that no such events will occur in the future. At a scientific level, the assurance will depend on the types  
of future patients, dosage, and additional treatments. At a purely statistical level, however, numerical 
calculations are possible.

For example, suppose no side effects were observed in 40 patients. If the true rate of side effects is 
.01, the observed event has a chance probability of (.99)40 = .67. If the true rate is .04, the probability 
is (.96)40 = .20. For a rate of .07, the probability is (.93)40 = .055; and for a rate of .08, the probability 
is (.92)40 = .036. Thus, because .05 lies between the latter two probabilities, a one-sided 95% confidence 
interval could be estimated that the true rate is as high as something between 7% and 8%.

The calculations can be greatly simplified by a “rule of thumb” proposed by C. L. Rumke.3 In Rumke’s 
rule, if “nothing” has been observed in n patients, the one-sided upper 95% confidence limit is 3/n. 
Thus, for 40 patients, 3/40 = .075 = 7.5%. In a trial with 120 patients, the corresponding result is 3/120  
= .025 = 2.5%. [To check this, note that (.975)120 = .048, consistent with a 95% confidence interval.]

The formulas in Rumke’s rule are changed to 4.61/n for a 99% confidence interval and 5.30/n for a 
99.5% confidence interval. 

8.6 “Continuity” and Other Corrections for Mathematical Formulas

For a binary proportion expressed as p = r/n, the commonly used Gaussian confidence interval is called 
a Wald-type interval, calculated with Formula [8.2] as

p ± Zα

where Zα is chosen from a Gaussian distribution to provide a 100 (1 − α) percent level for the interval.

8.6.1 Customary “Continuity Correction”

Aside from the problems already noted in Section 8.4.2.4, this formula is inappropriate because a 
Gaussian curve is continuous, whereas a distribution of binomial proportions has the discrete “noncon -
tinuous” values shown in Tables 8.1 through 8.4. The customary solution recommended for this problem
is an incremental “continuity correction,” 1/(2n), that reduces the size of Z and expands the width of 
the confidence interval. Thus, the critical ratio noted in Formula [8.3] would be corrected to

 [8.5]

The confidence interval around p would extend from

p − Zα   − (1/2n) to p + Zα   + (1/2n) [8.6]

pq pq
pq

1 n⁄

42( ) 34( ) 763⁄
pq n⁄ 64

8( ) 57( ) 653⁄

pq n⁄

Z p π– 1 2n⁄( )–
pq
n

------
---------------------------------------=

pq n⁄ pq n⁄

© 2002 by Chapman & Hall/CRC 



and the net effect is to widen the confidence interval by twice the value of 1/2n.
If we applied this correction factor to the proportion observed earlier as .6 in a group of 5 members.

The 95% confidence interval would be

and would go from .071 to the impossible value of 1.129. [Without the correction, the interval would
have been .60 ± .429, and would go from .171 to 1.029.]

Like many parametric “corrections” and “estimations,” this one works better “on average” than in
isolated individual instances. For example, in Section 8.4.2.5, the Bernouilli 95% confidence interval 
around the proportion 4/20 = .20 went from .05 to .35. The Gaussian interval was larger, going from
.025 to .375. With the continuity correction, the Gaussian interval would become even larger and more
disparate from the true result. On the other hand, an argument can be offered that the “true” result cited
here is not strictly accurate. If you add the relative frequencies for the zone of proportions from .05 to
.35 in Table 8.4, they occupy .9561 of the data, so that they slightly exceed a 95% confidence interval.
If the Gaussian 95% interval of .025 to .375 is enlarged, things will be even less accurate.

Like many other “corrections,” the customary continuity correction has relatively little effect at large
sample sizes, where 1/2n becomes very small; but at small sample sizes, if accuracy is really important,
the exact Bernouilli method is the “gold standard.” Thus, the continuity correction is mentioned here
mainly so you will have heard of it. You need not use it in any of the “homework” exercises, but you
may sometimes meet it in the medical literature.

8.6.2 Other Corrections and Appraisals

In a modified continuity correction, proposed by Blyth and Still,4 the factor in the denominator of
Formula [8.6] is replaced by a smaller term, which enlarges the size of the interval. Another modification,
lauded in a thorough review by Vollset,5 is a continuity-corrected “score interval,” which involves “an
approximation using the limit estimate instead of the point estimate in the standard error.”

After carefully considering 13 mathematical methods for calculating the confidence interval of a binary
(or “binomial”) proportion, Vollset “strongly discouraged” both the usually recommended Gaussian
formula and the customary continuity-corrected version. He concluded that the upper and lower limits
are best obtained with an exact Clopper-Pearson computation, as demonstrated earlier in Section 8.4.2.5
and Table 8.4. Among mathematical formulas, Vollset preferred the continuity-corrected score interval
and said that a formula for “Pratt’s approximation” comes quite close to the Clopper-Pearson results 
and is easier to calculate.

8.7 Interpretation of Stability

In Chapter 7, the stability of a central index was evaluated in two ways. In one way, the coefficient of 
stability was checked as a ratio of the standard error divided by the central index. The other way relied 
on avoiding or including an extrinsic boundary value such as >50% in an election poll.

8.7.1 Impact of Directional Variations

The coefficient of stability is easy to determine for dimensional data as (s/ )/  because the central 
index has a unique, single value. With binary proportions, however, the central index is ambiguous: it 
can be either p or q; and the coefficient of stability can be dramatically different according to which 
value, p or q, is used as the reference.
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With the standard error cited as , the coefficient of stability will depend on whether it is 
referred to p or q. It will be /p = = =  if referred to p, and /q = 

=  if referred to q.
For example, the Gaussian standard error of 2/7 = .2857 is = .1707. The coefficient 

of stability will be .1707/.2857 = .598 if referred to p and .1707/.7143 = .239 if referred to q. An 
alternative way of getting these same results is with the  formula as = .598 and with 

 as = .239. With either coefficient of stability, the proportion 2/7 is highly unstable, 
but the existence of two possible values can be disconcerting.

[One way of trying to get around the problem is to use the geometric mean, , of the two values 
for p and q. With  as the denominator, the ratio for the coefficient of stability becomes =

, which is the same value used in Section 8.5.1 for mentally approximating the scope of a 95% 
confidence interval for proportions ranging from .3 to .7.]

8.7.2 Impact on Small Proportions

Ambiguous results for the coefficient of stability can create big problems for small proportions. A small
proportion can be defined, according to many beliefs, as having a value below .1. You may want to set 
its upper boundary, however, at a smaller level such as .05. Most people would agree that .01 is a small  
proportion, and agreement would probably be unanimous if the level were set at .001.

To illustrate the problems of small proportions, suppose we evaluate the stability of the fatality 
proportion 4/100 = .04. The Gaussian standard error for this proportion is  = .0204. 
When referred to q = .96, the coefficient of stability is .0204/.96 = .021 —  a relatively small value. 
When referred to p = .04, however, the analogous result is .0204/.04 = .5103, which is 24 times larger.

Furthermore, if one of the four fatalities is removed by the jackknife procedure, the reduced proportion 
will be 3/99 = .0303, which is a proportionate drop of (.04 − .0303)/.04 = .24, or almost 25% of the 
original value. This drastic change would occur, however, in only 4 of the 100 jackknife-reduced 
proportions. In the other 96 instances, the reduced proportion will be 4/99 = .0404, which is only slightly 
altered from the original value of .04. Nevertheless, the potential for getting a drastically altered result 
might be too distressing to make us want to rely on the stability of 4/100. If the observed proportion 
has a value such as 2/1000, the potential instability of the reduced proportion would be even greater, 
although its probability of occurrence is even smaller.

8.7.3 Effect of Small Numerators

The impact of potentially drastic changes is responsible for the statistical doctrine that the trustwor-
thiness of data for proportions (or rates) depends on the size of the numerators. If the numerators are 
small, as in 4/100, the results will be relatively unstable. The same proportion of .04, however, would 
be more stable if obtained from 40/1000 or from 400/10,000.

To illustrate the problem, suppose we arrange so that the smaller value of r or n − r is used as r. The 
cited proportion (as is common in death rates) will be p = r/n. The coefficient of stability for p will be 
the formula demonstrated earlier (Section 8.7.1) as  = . If n – r is substantially larger 
than r, the factor  will be close to 1. The coefficient will then be essentially 1/ . Thus, if 
r = 5, the coefficient will be approximately 1/ = 0.45, which greatly exceeds the boundary of .05 
for stability. A coefficient less than the .05 boundary will be achieved only if r exceeds 400, because 
1/ = .05.

With the jackknife procedure, the main threat of instability occurs when the reduced value is 
(r – 1)/(n – 1). In this instance, the proportionate change from the original value will be [(r/n) −
(r – 1)/(n − 1)]/[r/n] = [q/(n − 1)]/[r/n]. If n is large, (n − 1)/n approximates 1, and so the proportionate  
change will be essentially q/r. The q/r formula immediately shows the potential for a very large change 
if a small proportion, i.e., p < .1, also has a small numerator. For example, the potential for an almost 
25% change in the 4/100 proportion can be determined rapidly as .96/4 = .24. If the proportion .04 
came from 40/1000, however, the extreme jackknife instability would be only .96/40 = .024. On the 
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other hand, with Gaussian calculations the standard error for 40/1000 would be =
.006197, and its coefficient of stability will be the “unstable” value of .006197/.04 = .155. If the .04 
came from 400/10,000, the standard error would be .00196 and the coefficient would be “stable,” at a  
value of .049.

For this reason, calculations of sample size and subsequent determinations of stability will be strongly 
affected by the number of “events” that become the numerator value of r in the smaller complement of 
binary proportions.

8.7.4 Events-per-Variable Ratio

The instability produced by small numerators is worth remembering in statistical methods that use 
multivariable analysis. You become confronted with those problems when medical journals contain 
results published for binary data (such as survival rates) that were analyzed with such multivariable 
methods as logistic regression or proportional hazards (Cox) regression. Although you may not yet know
how the latter methods work, you can already use the “small numerator” principle to evaluate the stability 
of the claimed results. If the multivariable procedure contains k variables and e events in the outcome 
variable, such as deaths, the ratio of e/k is called the event-per-variable (epv) ratio. Harrell et al.6 have 
proposed, and Peduzzi et al.7 have empirically demonstrated, that the analytic results are unstable if this  
ratio is ≤10.

Many published multivariable results contain an elaborate array of statistical statements, but give no 
attention to the importance of the epv ratio.8 Thus, without knowing anything formal about multivariable 
procedures, you can easily look at the data, determine the values of k and e, and mentally calculate epv
as e/k. If the result is too small, be skeptical of the authors’ claims. (When you determine e, remember  
that it is the smaller of the two types of binary events. Thus, in a study of 4 predictor variables for 180 
survivors in a total of 210 patients, e = 210 − 180 = 30 deaths, and epv = 30/4 = 7.5.)

8.8 Calculations of Sample Size

When sample size is calculated for a single group, the goal is to get a result having a specified zone of 
error, or tolerance. The easiest (and conventional) approach is to use the Gaussian technique cited here 
in Formula [8.2]. The calculated size of the sample should allow suitable confidence about the estimated 
value of π.

8.8.1 Political Polls

In political polls, the candidate’s manager wants to spend the least amount of money that will yield a 
confident result. The required steps are to estimate the apparent value of p, choose a magnitude of 
tolerance, select a level of confidence, and apply the formula for Zα . For example, suppose the 
manager, estimating that her candidate will receive 60% of the popular vote, wants 95% confidence (or 
assurance) that the actual vote is not below 51%. In this instance, the value of

.60 ± 1.96

must not go below .51. The calculation would be

.60 − 1.96 ≥ .51

which becomes

(.60 − .51)/1.96 ≥
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After all the algebra is developed, and both sides are squared, this becomes

.0021085 ≥ .24/n

and the result is

n ≥ 114

The random sample for the poll should contain at least 114 persons.

8.8.2 General Formula

The general formula for sample size of a single group can be developed as follows: If  is the estimated 
proportion, with b as the lowest acceptable boundary and 1 − α as the desired level of confidence, the 
formula will be

( − b)/Zα ≥

The desired sample size is

n ≥ [8.7]

Formula [8.7] shows that n will increase for larger levels of confidence (where Zα increases), and for 
smaller increments between the estimated  and the boundary it must exceed.

For example, suppose the candidate’s apparent proportion of support was 53% rather than 60%. If the 
manager were content with a 90% confidence interval and 50.5% as the lower boundary of tolerance, 
the required sample size would be

n ≥ (.53)(.47)  ~ 1079.

The calculations are sometimes simplified by assuming that p = q = .5, choosing a level of Zα, and 
letting Zα  be designated as a “margin of error.” With this approach, if e is the margin of error, 
we want

 ≤ e

and so

n ≥ [8.8]

For a 95% confidence interval and a 2% margin of error, the sample size will be

n ≥  ~ 2401.
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These results help show why getting accurate political polls can be a costly activity. The formulas 
also show why a “tight race,” with small values of − b, can be particularly expensive for accuracy 
in polling.

8.8.3 Sample Sizes in Medical Research

Medical investigators frequently ask statistical consultants for help in determining a suitable sample 
size. The calculations for comparing two groups will be discussed later. If only one group is being 
considered, however, the consultant trying to apply the foregoing formulas will have to know the 
estimated value of p, the desired boundary of b, and the level of α. A value of e could be used for 
margin of error instead of b.

When probing to get these values, the consultant is often frustrated by the investigator’s inability (or 
unwillingness) to state them. The discourse sometimes resembles history taking from a patient who does 
not state a chief complaint or account of the present illness.

“What do you anticipate as the expected proportion?” asks the consultant.
“If I knew what it was, I wouldn’t be doing the research,” is the reply.
“What tolerance or margin of error do you want?”
“Whatever seems right.”
“What level of confidence would you like?”
“That’s your job.”
“I can't determine a sample size unless you give me the necessary information.”
“But I was told to consult a statistician. You’re supposed to let me know what the sample size 

should be.”
Eventually, if suitably pressed, the statistician will conjure up some guesses, plug them into the 

formula, and calculate a result. The investigator, having abandoned a primary role in stipulating the 
basic quantities, then happily departs after receiving all the guesswork as an exact number for the desired 
sample size.

8.8.4 Sample Size for Dimensional Data

If the data are dimensional rather than binary, the sample-size job is even harder. An estimated value of  
p for binary data can immediately be used to get the variance as pq, but with an estimated value of 
for the mean of dimensional data, an additional separate estimate is needed for the variance, s2. The 
calculation may require four rather than three previous decisions: for estimates of  and s, and for 
levels of α and b. The formula will be

n ≥ s2 (8.9)

If e is used as the margin of error for − b, only three decisions are needed in the formula

n ≥

For example, suppose we expect a mean of 30 with a standard deviation of 6. We want a 95% confidence 
interval within a margin of 2. The sample size will be

n ≥ = 34.6
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8.8.5 Checks on Calculations

To be sure the calculations are correct, it is helpful to try them in reverse and see what happens. In the  
research just described, suppose the investigator finds a mean of 30 and a standard deviation of 6 in 35  
patients. The standard error of the mean will be 6/ = 1.01. A 95% confidence interval will depend 
on Zα  , which will be 1.96 × 1.01 = 1.99. The margin around the observed mean of 30 will be 30 ±
1.99 and will just be within the desired boundary of 2.

Note that the foregoing calculation was done with Z α rather than t ν,α .Trying to use the t statistic would 
have created a “double bind.” We need to know the value of ν (for degrees of freedom) to choose the 
right value of t, but we cannot know the value of ν until we find the value of n for which the calculation 
is intended. To avoid this problem, the calculation can be done with Zα. If n turns out to be small, it 
can be used for choosing an appropriate value of tν,α and then recalculating. The calculations can then 
be adjusted back and forth until the level of t ν,α produces the desired confidence level for the calculated 
level of n.

8.8.6 Enlargement for “Insurance”

Because any of these sample-size calculations will yield results that “just make it” if everything turns 
out perfectly, a certain amount of imperfection should be expected. The calculated sample size is enlarged 
as “insurance” against this imperfection. The amount of the enlargement is “dealer’s choice.” Some 
investigators or consultants will arbitrarily double the calculated size; others will raise it by 50%; still 
others will multiply it by a factor of 1.2 (for a 20% increase).

The “bottom line” of the discussion in this section is that a precisely quantitative sample size is 
regularly calculated from highly imprecise estimates. To avoid disappointment afterwards, whatever 
emerges from the advance calculations should be suitably enlarged.

8.9 Caveats and Precautions

For reasons discussed later in Chapter 13, confidence intervals are now being increasingly demanded 
by medical editors; the results regularly appear in medical publications; and an entire book9 has been 
devoted to the available formulas for calculating the intervals for many statistical summary indexes.

For a single group, with p = r/n, the formula usually recommended for a 95% confidence interval is 
the Wald-type Gaussian expression, p ± 1.96 , although authors are sometimes urged to use the 
customary continuity-corrected modification. These “conventional” formulas will usually allow a manu-
script to pass scrutiny from most statistical reviewers in biomedical literature, but as noted in Section 
8.6.2, “high-powered” statisticians may disagree about the best way to calculate a binomial confidence 
interval.

The main point of this comment is simply to warn you that you can usually “get away with” the 
Gaussian formula, but sometimes a statistical reviewer may object to it. If the boundaries of the 
confidence interval are really important (rather than merely serving as publicational “window dressing”), 
you may want to resort to a more exact method.

A more substantive (and substantial) problem in any confidence interval, regardless of the method 
used for its calculation, relies on the single value of p (or q) as being the central index for a homogeneous
group of data. Because biomedical groups are seldom homogeneous, a cautious evaluator will want to 
know the proportions found in pertinent subgroups, not a single “average” value of p that is both 
scientifically and “politically” incorrect because it ignores diversity. Good clinicians are not content with 
a rate that cites 5-year survival for a particular cancer as 60%; the clinicians want to know the rates in 
pertinent subgroups such as stages for the spread of the cancer. Political managers want to know the 
proportion of voting preferences in different demographic subgroups (according to age, sex, gender, 
socio-economic status, and likelihood of actually voting), not for a single monolithic average proportion 
for the entire sample.
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Even in sports such as baseball, the team managers will make decisions based on “situational variables,” 
rather than a player’s overall average performance. In an engaging paper in a prominent statistical journal, 
Albert10 discussed about 20 of the situational variables (handedness of batter and pitcher, home or away 
games, day or night, grass or turf, time of season, etc.) that can affect a player’s batting average. Thus, 
for Wade Boggs, the overall 1992 batting average was .259 (= 133/514). The 95% confidence interval 
component for this “average” would be 1.96 = .038, and so the statistically expected 
95% range would be from .211 to .297. Nevertheless, in different batting situations, Boggs’s batting 
average ranged from .197 to .322.

The moral of these stories is that you can calculate confidence intervals to pay appropriate homage to 
the statistical ritual. If you really want to know what’s happening, however, check the results not for an 
overall “average,” but for substantively pertinent subgroups.
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Exercises 

8.1. For many years in the United States, the proportion of women medical students was about 10%. 
At Almamammy medical school, however, 30 persons have already been accepted for admission to the  
next entering class. Of those 30 persons, 12 are women. What would you do to determine whether this 
40% proportion of women is likely to continue in the long run, and whether it is compatible with the 
old “10%” policy or a substantial departure?
8.2. According to a statement near the middle of Section 6.2, if a political “candidate is favored by 40  
of 60 voters, the probability is about one in a hundred … that the … voting population(’s) ... preference 
for that candidate might actually be as low as .51.” Verify that statement and show your calculation.
8.3. Another statement in Section 6.2 referred to our willingness to believe “a clinician who claims 
three consecutive successes” for “a particular treatment (that) usually has 80% failure.” What would you 
do to decide whether this claim is credible? What is your conclusion?
8.4. In a clinical trial of a new pharmaceutical agent, no adverse reactions were found in 50 patients. 
Can the investigators confidently assume that the rate of adverse reaction is below 1/50? What evidence 
would you offer for your conclusion?
8.5. The state health commissioner, having a list of inhabitants of all nursing homes in your state, wants 
to examine their medical records to determine what proportion of the inhabitants are demented. Because 
the examination of records is costly, the commissioner wants to check the smallest sample that will give 
an accurate result within an error tolerance of 1%. When you ask about a level of confidence, the 
commissioner says, “Use whatever is needed to make the report acceptable.”

8.5.1. What sample size would you choose if the commissioner also does not know the probable 
proportion of demented patients?
8.5.2. What size would you choose if the estimated proportion of dementia is 20%?
8.5.3. If the commissioner says funds are available to examine no more than 300 records, what 
would you propose?

8.6. A clinical epidemiologist wants to do a study to determine how often endometrial cancer is found 
at necropsy after having been undetected during life. In examining the diagnoses cited at 26,731 
consecutive necropsies, he finds about 40 such undetected endometrial cancers, all of them occurring 
in women above age 50 with intact uteri.
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He can use 40 as the numerator for a “rate of undetected cancer,” but he needs an appropriate 
denominator for the eligible patient population. To determine the number of post-menopausal, uterus-
possessing women who constitute the appropriate eligible denominator population in the necropsy group, 
he would prefer not to have to check these characteristics in the entire group of 26,731 people who 
received necropsy. He therefore decides to take a random sample that can be counted to give an accurate 
approximation of the number of women, above age 50, with intact uteri.

He estimates that the autopsy population contains 50% women, that 80% of the women have intact 
uteri, and that 70% of the women are above 50 years of age. Thus, the proportion of eligible women is  
estimated at (.50)(.80)(.70) = 28%. The investigator wants to be able to confirm this estimated value 
with 95% confidence that the true value lies within 1% of the estimated result in either direction, i.e., 
between 27% and 29%. He calculates that 7745 people will be needed for the cited 95% confidence 
interval.

After checking with a statistician, however, the clinical epidemiologist learns something that reduces  
the sample size to 6005. What do you think was learned, and what was the appropriate calculation?
8.7. (Optional exercise if you have time) Using any literature at your disposal, find a published example 
of either logistic regression or proportional hazards (Cox) regression. [Note: Such papers appear about 
once a week on average in the NEJM or Lancet.] Determine the events per variable ratio and show the 
source of your calculation. Did the authors appear to pay any attention to this ratio?
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Before the statistical horizon expands from one group to two, the last topic to be discussed is the different 
ways in which a group’s data can be communicated. A good picture is said to be worth a thousand 
words, but a good statistical portrait may sometimes be even more valuable, because the summary for 
a large group may reflect more than a thousand items of data. On the other hand, a few well chosen 
words (or numbers) of description can often be better than an unsatisfactory portrait.

Statistical information is communicated with tables, graphs, charts, and individual summary indexes.  
The rest of this chapter describes some of the “lesions” to be avoided and some useful things to consider 
when results are shown for univariate data of a single group. The catalog of visual challenges in statistical 
display will be augmented later after the subsequent discussion of data for two groups. 

9.1 Construction of Visual Arrangements

The visual displays of tables, graphs, and charts can be made consistent and clear with some basic rules, 
cited in the next few sections.
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9.1.1 Tables

Arranging tables creates a tricky problem because they are oriented differently from graphs. In a 
2-dimensional graph, the examination usually goes in an upward diagonal direction ( ) when the X 
and Y axes unfold as . A two-way table has the opposite direction ( ), however, as the columns 
and rows move rightward and down, .

The cells of tables show frequency counts for the corresponding values of the data. These counts are  
commonly displayed for the categories of binary, ordinal, and nominal data, but dimensional data are 
usually shown as points in a graph. The main decisions about a table are the arrangement of orientation  
and sequence of categories.

9.1.1.1 Orientation — The difference in orientation can produce many inconsistencies, not only 
for two-way tables (which will be discussed later), but also for the one-way tables that display data for 
a single group. In general, because many readers are accustomed to comparing magnitudes in a vertical  
tier, a one-way table usually goes in a vertical direction as

Editors usually prefer the horizontal arrangement, however, because it saves space.

9.1.1.2 Sequence of Categories — In the sequence of categories for binary variables, should 
presence precede absence or vice versa? For ordinal variables, should the sequence be mild, moderate, 
severe or severe, moderate, mild? And what should be done with nominal variables, which cannot be 
ranked? Should they be listed alphabetically, enabling easy identification of each category, or placed 
according to the magnitude of the frequency counts, allowing easy visualization of results? If frequency 
counts determine the orientation, should they go downward or upward in the sequence of categories?

The sequence of binary or ordinal categories within an arrangement is usually “dealer’s choice.” 
Remembering the analogous codes of 0/1 for binary data and 1, 2, 3, … for ordinal data, many readers 
prefer to see the sequence go from lower to higher “values” as

Absent Mild
or Moderate

Present Severe

rather than

Present Severe
or Moderate

Absent Mild

Either sequence is acceptable, but once chosen, it should be used consistently thereafter for all binary 
and ordinal variables. If the first tabulated ordinal variable is sequenced as 3, 2, 1, all subsequent ordinal 
sequences should usually go the same way, not as 1, 2, 3 for some variables and 3, 2, 1 for others.

The sequencing of nominal categories depends on the purpose of the table. If it is an exhaustive 
presentation of details, such as the population of each of the 50 United States, the categories should be 
arranged alphabetically (or by region) so that individual states (or regions) can be easily identified. If the

Category Frequency

A 21
B 82
C 38
D 67

rather than horizontally as Category A B C D
Frequency 21 82 38 67

↑
↑→

↑

↑→
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table will be used to compare frequencies among several but not
a large number of categories, the sequence can be listed according
to magnitude. The largest frequencies are usually shown first.
Thus, the previous alphabetical arrangement would become

9.1.2 Graphs

Graphs are intended to show the individual points of the data. A one-way dimensional graph, as illustrated
earlier in Figure 5.2 and here in section 9.1.2.1, is almost always oriented in a vertical direction. The 
main decision is how to display the scale. The conventional rules for this decision are discussed in the
next few subsections.

9.1.2.1 Increments in Scale — The increments on the scale should be large enough to show
the distinctions suitably. If the increments are too small, tiny distinctions will be excessively magnified
into misleading comparisons. For example, the three numbers 103.1, 102.6, and 103.8 are all relatively
close to one another. They might become quite distant, however, if the graph had increments of 0.1 unit,
so that the separations become 5 units for the first and second numbers, and 7 units for the first and third.
The left side of the vertical graph in Figure 9.1 shows the first distinction; the right side shows the second.
If the graphic increments are too large, important distinctions may become trivialized. Thus, the numbers
4.3, 2.7, 1.8, and 3.1 might all seem to be in essentially the same place of the coarse graphic scale in
Figure 9.2.

9.1.2.2 Origin — The origin (0 point) of the scale should almost always be shown. This demand
will avoid the misleading magnifications produced on the right side of Figure 9.1 when the origin was
omitted and the scale ranged from 102 to 104. The 0 point can be avoided in situations where its display
would be silly, as when one of the variables indicates calendar years, such as 1980, 1985, 1990, …, or
when a 0 value does not appear in the data, such as height.

9.1.2.3 Changes in Scale — If the points have a wide spread but several “modal” zones, the
results may be bunched in an unsatisfactory way for each zone. One way to avoid this problem is to
change the scale at different places in the graph. The changes should always be shown, however, with
a clearly demarcated break in the identifying axis. Thus, the six points 129, 135, 140, 2051, 2059, and 
2048 might appear in two ways as shown in Figure 9.3.

This same break-in-scale approach can be used whenever the data cover a wide range. To change
scale in mid-graph without a clear identification of the change, however, is one of the cardinal sins of
data display.

FIGURE 9.1
Excessively small (on left) and large (on right) scales
for same three numbers.

FIGURE 9.2
Four numbers appearing in essentially the same loca-
tion of a coarse scale.

Category Frequency

B 82
D 67
C 38
A 21
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9.1.2.4 Transformations of Scale — Rather than breaking the scale for a wide range of data,
the investigator can convert the results into some other continuous scale, such as the popular logarithmic
transformation. For example, the six numbers of the foregoing section could easily be transformed to
the base-10 logarithms of 2.11, 2.13, 2.15, 3.312, 3.314, and 3.311. The results could then be readily
shown in a scale whose demarcations extend from 0 to 4.

Alternatively, the data could be plotted directly on graph paper that is calibrated in logarithmic units
and that will show the same distinctions, without the need for calculating logarithmic values. In this
type of scale, the value of 0 will represent 1, and the other values will be 1 (for 10), 2 (for 100), 3 (for
1000) and 4 (for 10,000).

Two important details to remember about logarithmic transformations are that they may sometimes
be used merely to display data, not necessarily to analyze it, and that the logarithms are sometimes
constructed with a “base” other than 10. Logarithms with base 2 can be used for showing antibody
values; and “natural” logarithms, abbreviated with ln and constructed with e = 2.7183 as the base, are
commonly used in certain types of multivariable analysis. In a graph scaled with natural logarithms, the
correspondence of ln and original values would be 0 for 1, 1 for 2.72, 2 for 7.39, 3 for 20.1, 4 for 54.6,
5 for 148.4, etc. (This type of scale seems to have been used for values of whole-body glucose disposal
in Figure E.19.4 of the Exercises in Chapter 19.)

9.1.3 Charts

The word chart can be used for any pictorial display of statistical data that does not involve the cells
of a table or points of a graph. The pictogram charts that can be used to illustrate (or distort) comparisons
will be further discussed in Chapter 16. Most other charts appear as bar graphs.

9.1.3.1 Arrangement of Bars — The frequency counts or relative frequencies of categories in
a univariate group of data are often displayed in bar charts (also called bar graphs).

The bars are usually oriented vertically, showing the height of each corresponding magnitude for the
category listed at the base of the bar. A histogram is a bar chart in which the horizontal categories are
the ordinalized intervals of dimensional data. For example, age might be shown in intervals of < 10,
10–19, 20–29, 30–39, etc.

In any bar chart, all the bars should have equal widths, but the basic width may vary to permit suitable
labeling. For example, the bars may be narrow, as in the left of Figure 9.4, or wide as on the right.

FIGURE 9.3
Crowded display on left converted to clear 
display with changes in axis on right.

FIGURE 9.4
Narrow bars on left, enlarged on right to permit wider labels.
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For dimensional and ordinal data, the bars can touch contiguously to represent the ranked arrangment.
Thus, the bars might be shown as in Figure 9.5, but many artists and investigators prefer to leave small
spaces between each bar. For unranked nominal data categories, the bars should be separated by spaces
as in the foregoing A, B, C or Austria, Brazil, Canada illustrations in Figure 9.4. In a histogram, the 
bars always touch one another, but the bars at the two ends may be omitted if the extreme intervals are 
unbounded, as in the arrangement <10, 10–19, 20–29, 30–39, 40–49, …, 70–79, ≥80. If the extreme 
intervals are bounded, with widths that differ from the equal-sized intervals in the interior, the outside 
intervals can have unequal widths, but the height of each bar should then be adjusted to represent the 
average value for the entire interval.

9.1.3.2 Artistic Abuses — Because each category has a single associated magnitude, the length  
of the bar is its only item of numerical communication. For this purpose, as discussed later, the bars 
could easily be replaced by simple lines. As an esthetic custom, however, the bars are usually made 
wide enough to allow suitable labels, but major distortions can be produced by esthetic manipulations 
done to make things look “interesting” or “pretty.” For example, in certain pictograms, the bars may be  
replaced by drawings of persons, places, or things that have the same heights as the bars; but the different 
widths of the associated objects convert the visual image from a length to an area, thus creating deceptive 
impressions by magnifying the actual differences in size.

A particularly lamentable custom is “volumizing”—a tactic that converts the two-dimensional bar to 
a three-dimensional post. Since the second-dimension was needed only for labeling, the third-dimension 
is completely unnecessary. Its use is an act of “marketing,” not scientific communication. (Examples of  
these abuses for contrasts of groups will be shown later in Chapter 16.)

9.1.4 Labels

Each axis of a table, graph, or bar chart must be clearly labeled or 
explained in each direction. The statements for the vertical magnitudes 
in graphs or bar charts are easier to read if presented horizontally as

The vertical labels are conventional and are usually preferred because they allegedly save space, but a 
well-placed horizontal label will not increase space and may actually reduce the total width of the graph 
or chart.

FIGURE 9.5
Contiguous arrangement of three ordinal 
categories in bar chart.
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9.1.5 Legends

Each visual display — table, graph, or chart — should have a legend that describes the contents in a 
“stand-alone” manner, i.e., the reader should be able to understand the basic results without having to 
refer to the text. The legend need not repeat the details of criteria for categories such as mild, moderate,
and severe, but should always indicate the name of the variable whose categories are being displayed. 

9.2 Summary Indexes

For the reader as well as the author, the statistical summary of a group should always indicate the size 
of the group and the spread of data, not just the central index. The absence of the additional information 
for spread and size leads to “orphan indexes,” whose provenance is unknown. The two main orphans in  
the statistical “family” are unidentified indexes of spread and groups of unknown size.

9.2.1 Nonplussed Minus

An orphan index of spread occurs when dimensional data are summarized in an expression such as 37.8 
± 1.9, without mentioning whether the 1.9 is a standard deviation or standard error. To avoid the 
“nonplussed minus” lesion, the entity that appears after the ± sign should always be identified as a 
standard error or standard deviation. A minor problem occurs when authors use the ± symbol to report 
“SE = ± 1.9” or “SD = ± 31.7,” thus erroneously implying that the standard error or deviation (which 
is always positive) might be a negative number.

Arguments have been offered1 that the ± display be abandoned and replaced by expressions such 
as 37.8 (SE 1.9), but many editors resist the proposal because it seems to involve extra spaces of 
type when ± 1.9 is replaced by (SE 1.9). Trying to conserve space whenever possible, such as 
eliminating periods after abbreviations—making mm. become mm and Dr. become Dr—editors are 
unhappy about abbreviations that require more space. On the other hand, no ambiguity is created 
when mm. becomes mm, but the absence of an identifying SD or SE makes the solo 1.9 become a 
malcommunicated menace. If the preferred (SE 1.9) or (SD 20.7) notation is still regarded as too 
long, one space could be saved by eliminating the parentheses and using ± SD 1.9. The statement 
could then be 37.8 ± SD 1.9.

9.2.2 Sizeless Group

Even if the ± entity is identified as SE or SD, however, the number of members in the group is often 
omitted. If SE is given, stability of the mean can readily be estimated from the coefficient of stability, 
as SE/ . Thus, if 1.9 in the foregoing example is SE, the value of 1.9/37.8 = .05 indicates that the 
mean itself is relatively stable. If SD is cited but not n, however, stability of the mean cannot be determined 
for the sizeless group.

On the other hand, when the mean seems stable from the  ± SE values, a reader who does not know 
the size of the group cannot determine whether the “stable” mean is a suitable representative of the data. 
Thus, if n = 279 and SE = 1.9, the standard deviation in the foregoing data will be 1.9  = 31.7. The 
coefficient of variation will be 31.7/37.8 = .84, an excessively high value, indicating that the distribution 
is too eccentric (or diffuse) for the mean to be a satisfactory central index.

If not immediately adjacent to the central index and index of spread, the size of the group should  
always be cited somewhere in the neighboring text. A particularly important aspect of size is the 
“effective” number of persons contained in the analysis, not the original number in the group. For 
example, in a study of 279 people, the indexes of central location and spread may actually have 
been calculated with n = 205, because the variable had 72 items with unknown values. Failure to 
cite the “effective” rather than merely the original size of the group is a violation of “truth in 
advertising.”

X

X

279
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9.2.3 Unpropped Proportions

A different manifestation of the sizeless-group lesion occurs when proportions or percentages are 
recorded merely as a central index, such as .37 or 37%, without an indication of either numerator or 
denominator. Because the variance of binary data with the proportion p is p(1 − p), the reader can 
immediately determine variance, but is deprived of a crucial prop of information: the group size needed 
to discern the stability or standard error of the proportion.

Although the denominator can always be cited in a format such as .37 (82), the easiest-to-understand 
presentation would show both numerator and denominator as .37 (30/82). This arrangement, which puts 
the central index first, seems preferable to the alternative arrangement, 30/82 (.37).

9.3 Alternative Symbols for Spread

In deciding whether to display SE or SD, the main question is: What does the reader want to know or 
what does the author want to show? If the goal is to determine the stability of the mean, SE is preferred, 
because it easily leads to the evaluation of SE/ .

On the other hand, because the more common scientific goal is to communicate evidence rather than  
inference, the most desirable information is the spread of the data. For this purpose, the citation of ± SD
is unsatisfactory for the several reasons noted throughout Section 5.3.2. (A spread of one standard 
deviation around the mean demarcates a relatively useless Gaussian inner zone of about 68%; and 
Gaussian descriptive summaries will be unwarranted and possibly misleading for the many sets of 
medical measurements that do not have Gaussian distributions.

For example, a Gaussian 95% zone for the data in Section 9.2.2 would be approximated as 37.8 ±
(2) (31.7) = 37.8 ± 63.4. The zone would extend to an upper level of 101.2, but its lower level would 
be a negative value of −25.6, which might be impossible. This problem can be avoided by reporting 
medians and inner percentile ranges rather than means and standard deviations. The median and ipr95

zone for the foregoing data might be cited in symbols such as 32[2-96] or [2; 32; 96]. The citation 
may occupy a bit more space than ± SD, but decimal points may be saved if the original data are 
expressed in integer values.

Another example can come from the 56 integers that constitute the data set of Table 3.1, where =
22.73 and s (calculated with n  − 1) is 7.69. The median in this instance falls between the 28th and 29th  
ranks, both of which have values of 21. Calculated with the proportional method, the 2.5 percentile 
occurs at 11 and the 97.5 percentile occurs at 41. The data set could thus be summarized with ± s as 
22.73 ± 7.69 or with X and ipr95 as 21[11-41]. The second citation actually occupies less space than the 
first unless you round the decimals to 22.7 ± 7.7.

The preferred percentile method of descriptive citation will probably not come into general usage for  
many years, however, until the increased use of computer-intensive statistics begins to replace the 
parametric Gaussian paradigm. 

9.4 Displays of Binary Data 

A graph or chart is seldom necessary or even desirable for binary data. Nothing is gained by showing 
a large array of 1’s and 0’s (or whatever binary feature is being considered). Because the central index 
and spread of data are easily summarized with a single binary proportion, p = r/n [or q = (n − r)/n], a 
simple citation of this proportion and its two constituent numbers will suffice to show what is happening.

9.4.1 Citations of Both p and q

In some presentations, the values of p and q are separated for individual citations such as Success Rate
= 25% (18/72) and Failure Rate = 75% (54/72). The two entities are redundant because the complement 

X

X

X

X
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of any binary proportion is readily apparent. If the success rate is 25%, the failure rate must be 100%
− 25% = 75%.

The only possible need for listing more than one proportion occurs when the binary central index
represents a compressed summary for nominal or ordinal rather than binary data. For example, suppose
we want a single central index to summarize the post-therapeutic state in 72 people whose results are: 
improved, 18; no change, 44; and worse, 10. The largest single value would be the proportion 61%
(44/72) for the no-change group. If this result is regarded as too uninformative, the summary might be
offered with two proportions for improved, 25% (= 18/72) and worse, 14% (= 10/72). To avoid the 
redundant citation of 72 in both denominators, the summary might be stated as follows: “Of 72 patients,
25% improved and 14% were worse. All others were unchanged.”

Methods of displaying ordinal and nominal data are further discussed in Sections 9.5 and 9.6.

9.4.2 Comparisons of p vs. q

In certain portraits, the redundant complementary proportions are placed next to one another on a bar
graph, as in Figure 9.6, which shows the percentage of rapid and slow acetylator phenotypes in each of
three HIV stages (marked A,B,C). This type of display makes the two results in each stage look as 
though they arose from contrasted groups, rather than from a single group. All the expense and space 
of the picture for each stage communicates less effectively than single statements, such as Rapid 
Acetylator Phenotype in Stage HIV C: 55% (11/20).

9.5 Displays of Nominal Data

Nominal data are particularly challenging to summarize and display. Because the data cannot be ranked, 
quantitative values cannot be calculated for a central index and index of spread. The only possible single
central index is a modal or compressed binary proportion. For example, the illustrative set of nominal 
data in Section 9.1.1.1 had the following frequency counts for 208 persons: A, 21; B, 82; C, 38; D, 67. 
A single “plurality” central index could be obtained as the modal value = 82/208 = 39% for Category 
B. A “majority” central index could be produced by the compression of categories C and D to form the  
binary proportion 105/208 = 50.5%.

FIGURE 9.6
Redundant bar graph showing proportions for both complementary percentages in each group. (Figure and attached legend  
taken from Figure 2 of Chapter Reference 2).
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Visually, the frequencies or relative frequencies of nominal categories are often shown in bar charts,
but the horizontal sequence of bars implies (incorrectly) that the categories are ranked. Accordingly,
nominal data can be displayed in two other formats: pie graphs and dot charts.

9.5.1 Pie Graphs

The circular outline of a pie-graph can be divided into wedges that correspond to proportions of the
nominal categories. If each category has the relative frequency, pi, its angular slice is pi × 360°. For
example, in the preceding data, the proportions are A, .10; B, .39; C, .18; and D, .32. The respective
angles in the “pie” would be A, 36°; B, 140°; C, 65°, and D, 115°. The pie graph is usually constructed
in a clockwise arrangement, starting at 12 o’clock, and the categories are usually sequenced with the
largest coming first. Thus, the foregoing data would produce the pie graph shown in Figure 9.7.

An extraordinary pie graph, which may be among the worst ever constructed, is shown in Figure 9.8,
for sources of income of a charity organization in the U.K.3 The basic idea of a pie graph is abandoned
because each category is given about the same angular slice, and the circular shape has been converted
to a quasi-ellipse for portraying a third dimension. The extra dimension is height of the slices of pie,
which act “volumetrically” to show the distinctions in magnitude.

A useless pie graph is shown in Figure 9.9. Because only two categories are included, the authors are
displaying both p and q for the same single binary proportion. Instead of appearing as two magnitudes
in a redundant bar graph (as in Figure 9.6), however, these results are shown in a redundant pie graph.

9.5.2 Dot Charts

Pie graphs are difficult to draw, requiring a protractor or special paper for the angles, and are difficult
to interpret, because most persons are not accustomed to assessing and comparing angular wedges.
Although pie graphs continue to appear in published literature, the dot chart 5 is a preferred replacement
that is easier to draw and interpret.

In a dot chart, the scale of values is placed horizontally and the categories are placed in rows that can
be arranged in descending magnitudes or some other appropriate order (such as alphabetical). The dot
chart for the data in Figure 9.7 is shown in Figure 9.10.

In addition to its other virtues, a dot chart has the advantage of easily showing magnitudes of 0, which
cannot be readily displayed with bar charts or pie graphs.

FIGURE 9.7
Pie graph for data in Section 9.5.1.

FIGURE 9.8
Pie-graph (? Edam-cheese graph) needlessly cast into three
dimensions. [Figure taken from Chapter Reference 3.]
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9.5.3 Bar Charts

Although a univariate distribution of unranked nominal categories should not be shown as a graph, the
principle is regularly violated when the categories are ranked according to their relative frequencies and
then displayed in the form of a bar graph or chart. Figure 9.11 shows an example of this approach, used
by the American Statistical Association (ASA) to display6 percentages for the categories of its “continuing
education expenditures.”

FIGURE 9.9
Redundant pie graph for “Relationship between clinical
and bone biopsy diagnoses of osteomyelitis.” [Figure taken
from Chapter Reference 4.]

FIGURE 9.10
Dot chart corresponding to pie graph of Figure 9.7.

FIGURE 9.11
1992 Budgeted ASA continuing education expenditures. [Legend and figure derived from Chapter Reference 6.]
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9.5.4 Hyperpropped Proportions

An opposite counterpart of unpropped proportions (in Section 9.2.3) is the hyperpropped proportions
that occur when the same denominator is needlessly repeated in a tabulation of relative frequencies for
categorical (nominal or ordinal) data.

For example, the relative frequencies of the nominal data in Section 9.1.1.1, can be shown in two
ways as follows:

The right-hand arrangement avoids the hyperpropping produced by the needless repetition of the “208”
denominator in each row.

9.6 Displays of Ordinal Data

A central index for ordinal data can be expressed as a median or with the same plurality or compressed
proportions used for nominal data. Sometimes an investigator will cite a mean value, using the ordinal

codes of 1, 2, 3, 4, … as though they were dimensional data; and sometimes, particularly in clinical
trials of analgesic agents, the ordinal pain scales are even expressed in standard deviations. A box plot
could be used because it relies on quantiles that can be legitimately ranked, but the plot may not be
particularly informative if the categorical grades have many frequencies that will be “tied” for the
percentile values.

The usual display of ordinal data, therefore, is a bar chart or graph, as shown in Figure 9.12. Bar
graphs can also be converted to dot charts, however, if desired for clarity. On the other hand, because
the proportions of each category can easily be shown and understood in a simple one-way table, the
virtues of a more formal visual display are often dubious.

Category Relative Frequency
Relative

Frequency (N = 208)

A 21/208 (10%) 21 (10%)
B 82/208 (39%) 82 (39%)
C 38/208 (18%) 38 (18%)
D 67/208 (32%) 67 (32%)

FIGURE 9.12
Bar graph of frequencies for an ordinal variable
(Class of ventricular premature contractions).
[Figure taken from Chapter Reference 7.]
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9.7 Overlapping Multi-Binary Categories

A group of people may have a series of binary attributes, such as fever, chest pain, and sore throat, that
are present or absent in different combinations. The proportionate total occurrence can easily be cited
for each binary category; and a dot chart is the best way to display the individual proportions, which
cannot be shown in a pie graph because they overlap, with a sum that exceeds 100%.

The investigator may also, however, want to display the spectrum of overlapping categories. Venn
diagrams are excellent for this purpose. For example, Figure 9.13 shows the overlapping spectrum of
different forms of new carditis in 54 recurrent episodes of rheumatic fever.8

Sometimes the investigators (and artists) may get carried away to produce the exotic multi-binary
portrait shown in Figure 9.14. For each of 232 “common congenital malformations,”9 17 lesions were
identified as present or absent. A line was drawn between each two lesions present in the same patient.
The lines get thicker as they are augmented for each identified pair. The resulting picture is probably
more remarkable for its artistic imagery than for its statistical communication.

9.8 Gaussian Verbal Transformations

The fame of the Gaussian distribution has evoked efforts to display it in diverse ways. Among the most
striking are “verbal transformations.”

The first, shown in Figure 9.15, was prepared by the statisticican, W. J. Youden.10 The second, shown
in Figure 9.16, was done by John Hollander, a poet who is A. Bartlett Giamatti Professor of English at
Yale University. Figure 9.16, which is taken from Hollander’s book11 on “Types of Shape,” shows his
poem for the “bell-shaped” Gaussian curve, together with additional exposition. If any of your molecular
colleagues uses a new term you do not understand, you can now respond by asking what they know
about technopaignia, calligrammes, or a carmina figurata. [You can act particularly superior if your
colleagues say that these things are, respectively, an adverse reaction to a new imaging test, the weight
gain avoided with non-metabolized sweeteners, or a stand-in for the female lead of an opera by Bizet.]

FIGURE 9.13
Incidence and types of different manifestations of new carditis in 54 recurrent episodes of rheumatic fever. [Figure taken
from Chapter Reference 8.]
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FIGURE 9.14
Interrelations of congential defects in 232 cases. HSPD: hypospadias; ANEN: anencephaly; EXOS; exomphalos; SP BIF: 
spina bifida; SUA: single umbilical artery; IMP AN: imperforate anus; OEATF: oesophageal atresia/tracheal fistula; DH: 
diaphragmatic hernia; OBD: other brain defects; etc. [Figure derived from Chapter Reference 9.]

FIGURE 9.15
W. J. Youden’s verbal display of the Gaussian distribution. [Figure derived from Chapter Reference 10.]
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Exercises

The purpose of these assignments is to get you to find some things that are bad and to propose ways of  
improving them, and also to challenge you to create something new.
9.1. Using any published literature at your disposal, find a set of univariate data that has been 
summarized or displayed in an unsatisfactory way. (If univariate reports are difficult to find, you can 
use a section of a 2-way table, graph, or chart that involves two variables or two groups, but confine 
your comments to only one of the variables.) For each variable you choose, describe enough to indicate  
what is wrong and to justify your opinion. If the problem occurs in a visual display, attach a copy of 
the display. Please find one such example for a variable that is:

9.1.1. Dimensional
9.1.2. Binary
9.1.3. Nominal
9.1.4. Ordinal

9.2. For each problem that you describe in 9.1.1 through 9.1.4, propose the corresponding improvement 
or solution in Exercises 9.2.1, 9.2.2, 9.2.3, and 9.2.4.
9.3. What ideas do you have about how to improve any of the methods proposed in this chapter for 
summarizing and/or displaying data for a single variable? Because the need is particularly great for 
nominal, ordinal, or multi-binary variables, any suggestions about them will be particularly welcome.

FIGURE 9.16
John Hollander’s poetic portrait of “Bell curve: normal curve of distribution.” Text on the left contains further description 
of this type of “emblematic meditation.” [Figure and text derived from Chapter Reference 11.]
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Part II

Comparing Two Groups of Data

For almost a century, two groups of data have been compared with various “tests of statistical signifi-
cance.” The purpose of this part of the text is to describe those tests, but first to clarify and perhaps 
eliminate the confusion caused by the ambiguous meaning of statistical significance.

The confusion arises because the phrase statistical significance is usually applied to only one of the 
two evaluations needed for a numerical comparison. The first comparative evaluation refers to the 
quantitative magnitude of the observed distinction. Is a mean of 8.2 impressively larger than a mean of  
6.7? Is a proportion of 25% substantially smaller than a proportion of 40%? This type of quantitative 
comparison evaluates what was descriptively observed in the data.

The second comparative evaluation looks at the stability of the central indexes. Are the means  of 8.2 
and 6.7 stable enough to be accepted as adequately representing their groups? Are the two means so 
fragile that their confidence intervals would have a large overlap? Do the proportions of 25% and 40% 
come from unstable numerical components, such as 1/4 vs. 2/5? These questions refer not to quantitative 
magnitudes, but to stability of the central indexes, and the comparison of stability involves stochastic 
inferences about what might happen if the indexes were perturbed or otherwise rearranged.

Of the two types of comparison, the quantitative decision requires substantive thought about the 
magnitudes of observed distinctions, whereas the inferential decision usually requires mathematical
thought about stochastic probabilities and possibilities. Nevertheless, the inferential activities have been 
the main focus of attention during the statistical developments of the past century, and almost no emphasis 
has been given to intellectual mechanisms or criteria for the descriptive contrasts. With this monolithic 
concept, “statistical significance” has been restricted to the inferential procedures, and the descriptive 
evaluation has no name and no operational principles.

In statistical inference, the stability of two central indexes is usually contrasted with the t tests, 
chi-square tests, and other procedures that have become famous in decisions about “statistical signifi-
cance.” The quantitative contrast of magnitudes, however, is a different and even more fundamental 
statistical activity, but it is descriptive, not inferential. Lacking the mathematical panache of inference, 
the descriptive contrasts are hardly discussed in most textbooks and other accounts of statistical reasoning. 
Descriptive decisions about quantitative significance, however, are constantly made by investigators, 
reviewers, readers, and policy makers. As a former medical student, Gertrude Stein, once said, “A 
difference must make a difference to be a difference.” A quantitative comparison may not be worthy of 
serious attention if the component numbers are too unstable to be statistically significant, but the real 
significance or importance of a comparative difference depends on the magnitude of what it shows and  
implies, not on its P value, confidence interval, or other calculation in a mathematical test of inference.

Several other crucial issues are also involved in making decisions about significance. As noted in 
Chapter 1, these issues are substantive—not an inherent part of the statistical reasoning. They refer to the 
architectural structure of the comparison and the quality of the raw data and processed data. Although 
paramount constituents of credibility for the data and the comparison, these substantive scientific issues 
are beyond the scope of discussion in the next eight chapters, which are concerned with exclusively 
statistical aspects of comparison.

The first topic will cover the methods of evaluating a quantitative contrast. The subsequent chapters 
will discuss the principles of forming and testing stochastic hypotheses, the different procedures used 
for testing different types of data, the mechanisms for displaying two-group contrasts, and the special 
epidemiologic tactics applied for comparing rates and proportions.
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How would you decide that the difference between the two means of 8.2 and 6.4 is “impressive” or 
“unimpressive”? How would you make the same decision if asked to compare the two proportions, .25  
and .40?

One manifestation of the customary inattention to quantitative contrasts is the uncertainty or even 
discomfort you might feel if asked these questions. What things would you look at or think about? 
What statistical indexes might you use to do the looking or thinking? For example, suppose you agree  
that the distinction is quantitatively impressive between the two means 11.3 and 25.6, but not between 
the two means 18.7 and 19.2. What particular statistical entities did you examine to make your decision? 
If you were reluctant to decide without getting some additional information, what kind of information 
did you want? 

10.1 Nomenclature for Quantitative and Stochastic Significance

Decisions about quantitative magnitude and numerical stability are different statistical activities, but 
they are not clearly separated in traditional nomenclature. Both decisions involve thinking about 
significance for the observed distinction, and two different labels are needed for these two different 
ideas, but the commonly used term statistical significance is usually applied only to the appraisal of 
stability. The quantitative decision has no definite name.

In customary usage, statistical significance implies that the distinction is numerically stable and is 
not likely to arise from the random effects of chance variation. When someone wants to refer to an 
impressive magnitude, however, a specific title is not available for the quantitative distinction. It is 
sometimes given such labels as clinical significance, biologic impressiveness, or substantive importance.
Lacking specific titles for the different decisions that distinguish quantitative contrasts from numerical 
stabilities, the two ideas become obfuscated and confused when the term statistical significance is 
restricted to only one of them. To escape the profound problems of this unsatisfactory nomenclature, 
the term statistical significance will generally be avoided hereafter in this text.

The term quantitative significance will refer to the magnitude of an impressive or important quantitative 
distinction. The term stochastic significance will denote the role of chance probabilities in the numerical 
stability of the observed distinction. [The word stochastic, which is easier to say than the alternative 
word, probabilistic, refers to random processes and comes from the Greek stochastikos, which means 
“proceeding by guesswork or conjecture in aiming at a target.” Besides, not all stochastic appraisals 
involve a consideration of probabilities.]

The rest of this chapter is devoted to principles of quantitative significance in a contrast of two groups. 
The stochastic strategies for evaluating a two-group contrast are discussed in Chapters 11–16. 

10.2 Context of Quantitative Decisions

Quantitative decisions always have two components. One of them is the magnitude of the observed 
distinction, such as the contrast of 11.3 vs. 25.6, or 19.2 vs. 18.7. The other component is the clinical, 
biologic, or other substantive context of the comparison. This context is responsible for such labels as 
clinical significance, biologic impressiveness, or substantive importance to describe a sufficiently large 
distinction.

For example, suppose .06 and .09 are the proportions of young patients who develop an adverse event 
after each of two treatments. If the adverse event is a transient, symptomless skin rash, the quantitative 
distinction will seem unimpressive. If the adverse event is permanent sterility, however, the same 
distinction will be important. In a different context, suppose the rate of occurrence for a rare but dreadful 
disease is .000004 after exposure to Agent A and .000003 in the unexposed general population. The 
incremental difference of .000001 in the two rates, or the ratio of .000004/.000003 = 1.33, may not seem 
impressive; but a nation that contains 50,000,000 people, half of whom are exposed to the agent, will 
have 25 (= 100 − 75) extra cases of the disease. As another example, an incremental rise of .0025 or 
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0.25% may seem like a trivial change in a proportion, but the change can have a major impact on the 
stock market if it represents an elevation in the Federal Reserve Board’s prime lending rate.

Another issue in quantitative comparison is the variability of the measurement process. Suppose a 
patient’s hematocrit rises from 10.2 to 10.4 after a blood transfusion, or suppose the diastolic blood 
pressure falls from 97 to 94 mm Hg after a particular treatment. Should these changes be ascribed to 
the effects of therapy, or could variations of 0.2 in hematocrit and 3 mm Hg in diastolic pressure occur  
simply as ordinary fluctuations in either the method of measurement or the patient’s biologic state?

For all these reasons, quantitative contrasts must always be suitably considered within the context in 
which they occur. These contexts can include the severity of the observed phenomenon, the method of 
measurement, the immediately associated clinical or biologic factors, and the external social, regional, 
or national implications. These contextual features are always a crucial component of the total judgment  
used for decisions about quantitative significance in groups of people. The context may be less crucial 
if the compared phenomena refer to events in rodents or in inanimate systems. Even for nonhuman 
phenomena, however, the decisions may also be affected by important contextual features. An improve -
ment of success rate from 90% to 95% may not seem immediately impressive, but may make the world  
beat a path to your door if you have built a better mousetrap (or a better computer mouse).

Aside from context, however, the other vital component of quantitative decisions is the numerical 
magnitude itself. Although the final judgment about quantitative significance will come from simulta-
neous consideration of both the numerical and contextual components, the numerical magnitude alone 
may sometimes suffice. For example, if a particular agent is suspected of causing a significant change 
in the potassium or calcium concentration of a rat’s serum, we need not worry (at this point in the 
research) about the human clinical or populational implications of the change. We do need a way to 
decide, however, how much of a difference in the potassium or calcium level will be regarded as a 
“significant change.”

Thus, although quantitative decisions are sometimes made without a concomitant evaluation of context, 
they always require an appraisal of magnitudes. The rest of this chapter is concerned with the principles 
that can be used for those appraisals. 

10.3 Simple Indexes of Quantitative Contrast

When two groups are descriptively compared, their central indexes are converted into indexes of 
quantitative contrast.

(The magnitudes found in these contrasts are sometimes called effect size, a term that has two 
unattractive features. First, the entities being compared may be baseline states, such as age or weight, 
rather than the “effects” of an intervention, such as treatment. Second, many statisticians reserve size
for the number of members in a group, e.g., “sample size.”)

At least two simple indexes of contrast can be created immediately — a direct increment and a 
ratio — and the emerging results can have at least four different values.

10.3.1 Methods of Simple Expression

The four values for the simple indexes of contrast can come from two methods of calculation, each 
performed in two possible ways.

10.3.1.1 Direct Increments — A direct increment is the subtracted difference between the two 
values under comparison. If A and B represent the central indexes for Groups A and B, the direct 
increment can be calculated as A – B, or as B – A. For the two sets of means, 11.3 vs. 25.6 and 19.2  vs. 
18.7, the respective increments are 14.3 units (= 25.6 − 11.3) and 0.5 units (= 19.2 − 18.7). Because the 
order of subtraction could have been reversed, these same values could have been expressed alternatively 
as −14.3 and −0.5. If A – B yields a positive increment, the negative result of B − A could be called a 
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decrement. To avoid two words for this difference, the term direct increment will be used hereafter to
represent either the positive or negative result of a subtraction.

10.3.1.2 Ratios — If the two central indexes are divided as A/B or as B/A, the index of contrast
is called a ratio. For the two pairs of means under discussion, the respective ratios would be 0.44
(= 11.3/25.6) and 1.03 (= 19.2/18.7) if calculated as A/B, and 2.27 and 0.97 if calculated as B/A.

10.3.2 Orientation of Comparison

The four possible simple indexes of contrast for two central indexes, A and B, can promptly be reduced
to two, if one of the two groups is used as a “reference” to orient the direction of the calculations. For
example, if B represents the result of a control or placebo therapy, and if A represents an active treatment,
the respective increment and ratio would be A − B and A/B. This same arrangement would also provide
the desired indexes of contrast if A represents the observed value for a group and if B represents the
expected value, or if A and B are the values after and before a particular treatment.

Because a reference group can be determined or inferred for almost any comparison of two groups,
the decision about orientation is seldom difficult. If we assume that B is the basic or “control” group,
B always becomes the subtractor or divisor. With this orientation, the choice of the appropriate simple
index can be reduced to two candidates: A − B or A/B.

If a reference group is not obvious, as in a comparison of two standard active treatments, readers
should remember that data analysts will usually choose a presentation that puts a “best foot forward”
for the results. Thus, if the central indexes are 24.8 for Treatment C and 12.7 for Treatment D, the
investigator may decide that a ratio of 1.95 for C/D is more “impressive” than the corresponding .51
for D/C. Both presentations are legitimate and honest, but their results seem quite different if inspected
without further thought.

10.3.3 Customary Scientific Evaluations

If you had your first exposure to science in activities of physics or chemistry, you may recall that
quantitative importance was often shown by the slope of a line on a graph. The effect of substance X
on substance Y usually appeared in a plot of points such as in Figure 10.1. The larger the slope of the
line that fit those points, the greater is the impact of X on Y.

If this principle is used to compare dimensional data for two groups, the two “one-way graphs” of
points (recall Section 5.7.1) can be placed on a single graph if we regard the results as values of Y for
an X-variable coded as 0 for group B and 1 for group A. Such a plot is shown in Figure 10.2. If a straight
line is fitted to the two sets of points (by methods demonstrated later in Chapter 19), it will connect the
two means,  and . With the 0/1 codes used for the X variable, the value of − will be 1.
The slope of the line will be (  − )/(  − ) = ( − )/l. Thus, the increment of two means,

 − , corresponds to the slope of the line connecting the two groups of data.
The same principle holds true for a comparison of two proportions, pA and pB. Their increment corre-

sponds to the slope of the line connecting them. The individual values of 0 and 1 that are the constituents

FIGURE 10.1
Impact of X and Y determined by 
slope of bivariate curve.
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of each proportion are shown as clusters of points in Figure 10.3. The proportions themselves are the
“means” of each group, and the slope of the line that connects those means is the increment, pA −  pB.

As the “natural” index of scientific comparison for two groups, the increment always takes precedence
over the ratio, which is a mathematical artifact. The ratio was developed to help evaluate additional
features of increments and is also popular in epidemiologic work (as discussed in Chapter 17), because
the ratio allows two groups to be compared even when fundamental data are not available to determine
the desired increment. Thus, if only a single index is to be used, it should be the increment, or some
appropriately modified arrangement of the increment. Nevertheless, for an enlightened comparison, we
usually examine the ratio as well as the increment.

10.3.4 Role of Two Indexes

For a contrast to be evaluated effectively, both the increment and the ratio should usually be considered
simultaneously. If only one is examined, the result can be misleading.

Table 10.1 contains a set of examples to illustrate this point. The increment of 10 units, shown in the
first row, might seem substantial if the contrast is between values of 12 and 2, but trivial if the comparison
(as in the second row) is between values of 3952 and 3942. The feature that made the same increment
seem “substantial” in one instance and “trivial” in the other was the ratio. In the first case, the associated
ratio was 6, and in the second case, 1.003. An increment of 10 derived from the values of 10.2 and .2
in the third row of Table 10.1 might be even more impressive, because the associated ratio is 51.

FIGURE 10.2
One-way graphs comparing two groups. Ordinates (Y-
axis) show points of dimensional data for septal systolic
thickening as percentage of diastolic thickness in two
groups of 29 members each. The groups are “normal”
on the left, and have idiopathic hypertrophic subaortic 
stenosis (IHSS) on the right. Horizontal line shows mean
value for each set of points of the Y-axis. If the groups
are respectively coded as 0 and 1 on the X-axis, the slope
of the line joining the two means will be their increment.
With the IHSS group coded as 1, the slope will be an
increment of about 10 – 43 = –33. [Figure taken from
Chapter Reference 1.]

FIGURE 10.3
Binary points for two groups summarized in two propor-
tions, pA and pB , and connecting line whose slope is the 
increment pA – pB. The proportions are pA = 7/21 = .33 and 
pB = 6/22 = .27.
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Conversely, as shown in the last four rows of Table 10.1, a ratio of 4 might seem substantial if it
represents an increment from 10% to 40% for therapeutic success, but not if the increase is from 1% to
4%. Similarly, if the ratio of 4 represents the increased chance of death associated with a “risk factor,”
an increment of 45 per thousand (representing death rates of .015 and .060) would be much more
impressive than an increment of 6 per 10 million (from .000002 to .000008).

For these reasons, the quantitative distinction of a ratio can seldom be interpreted without simultaneous 
knowledge of the increment, and vice versa. The need to consider two indexes, rather than one, is another
reason — beyond the problem of context — why scientists have been reluctant to set specific boundaries
(analogous to “P < .05”) for quantitative significance. What would be required is a demarcated zone that
includes simultaneous levels of values for a ratio and an increment. The boundary chosen for this zone 
is not likely to evoke prompt consensus; and furthermore, particularly when the data under contrast are
epidemiologic rather than clinical, substantial disagreements may arise between one evaluator and another.

10.4 Distinctions in Dimensional vs. Binary Data

Two mortality rates, .21 vs. .12, can be immediately compared because the units of expression are
immediately evident. They are 21 per hundred and 12 per hundred. Two medians or means, 102.3 vs.
98.4, cannot be promptly compared, however, until we know the units of measurement. If they are
degrees Fahrenheit, the two central indexes would become 39.1 vs. 36.9 when expressed in degrees
Celsius.

Another distinction in dimensional vs. binary data is the connotation of stability for a central index. 
For dimensional data, the coefficient of stability, (s/ )/ , will have the same value for the same set
of data regardless of units of measurement. In the foregoing example, (s/ )/ would be the same for
each group whether the temperature is measured as Fahrenheit or Celsius. For the proportions (or rates)
that summarize binary data, however, the coefficient of stability and the connotation of a contrast will
vary according to whether the results are expressed with p or with q = 1 −  p. Thus, the increment of
.09 in the foregoing mortality rates will seem more impressive if referred to a “control” mortality rate
of .21 than to the equally correct but complementary survival rate of .79.

Binary proportions also have a unique attribute, discussed later in this chapter. They can be compared
with a special index, called an odds ratio, which cannot be determined for the medians or means of
dimensional data.

For all these reasons, the indexes of contrast are usually expressed (and interpreted) in different ways
for dimensional data and for binary data.

10.5 Indexes for Contrasting Dimensional Data

Central indexes for two groups of dimensional data are seldom compared as direct ratios; but direct
increments may be difficult to interpret because of the inconsistent effects of units of measurement.

TABLE 10.1

Different Ratios Associated with Same Increment and Different Increments Associated 
with Same Ratio 

Value of Value of
Value of A Value of B Increment (A − B) Ratio (A/B)

12 2 10 6
3952 3942 10 1.003
10.2 .2 10 51
40 10 30 4
4 1 3 4

.060 .015 .045 4
.000008 .000002 .000006 4

n X
n X
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Consequently, the direct increments are often converted into special expressions that are unit-free. 
According to the mode of construction, the unit-free expressions are called standardized, proportionate,
or common proportionate increments.

10.5.1 Standardized Increment

The standardized increment is often used to compare two groups in the psychosocial sciences but is 
undeservedly neglected in medical publications. Sometimes called the effect size,2 the standardized 
increment is a type of Z-score formed when the direct increment in the means of two groups,  and 

, is divided by their common standard deviation, sp, to produce

The standardized increment is particularly valuable because it is a unit-free expression and it also 
provides for variance in the data. It therefore becomes, as noted later, a direct connection between a 
descriptive contrast and the value of t or Z used in stochastic testing.

10.5.1.1 Common Standard Deviation — Calculating a standardized increment requires use 
of the common standard deviation that will be discussed in greater detail later when we consider stochastic 
tests. The symbol sp is used, however, because the common standard deviation is found by pooling the 
group variances of each group. Their sum is 

for group A, plus 

for group B. Because each group has n A − 1 and nB − 1 degrees of freedom, the total degrees of freedom 
in the two groups is nA − 1 + nB − 1 = N −  2. Thus, the common pooled variance is calculated as ( +

)/(N − 2) and the common standard deviation is the square root of this value. If standard deviations 
have already been found as sA and sB for each group, the pooled group variance can be calculated as 

+ = (nA − 1) + (nB − 1) .
For example, suppose group A has nA = 6, = 25.6, and sA = 7, whereas group B has nB = 5, 

= 11.3, and sB = 4. The pooled group variance is (6 − 1)(7)2 + (5 − 1)(4)2 = 309. The total degrees of 
freedom is 6 − 1 + 5 − 1 = 9, and the common variance is = 309/9 = 34.33. The common standard 
deviation is  = 5.86. The standardized increment is 

To avoid calculating a common standard deviation, some investigators use the standard deviation 
of the “control” group rather than sp for the denominator. If sB is the standard deviation of the 
control group and SI represents standardized increment, the formula becomes 

SI = (  − )/sB

10.5.1.2 Applications of Standardized Increment — As a unit-free ratio that is the coun-
terpart of a Z-score, the standardized increment is an excellent method of comparing two means. Thus, 
if you recall the distribution of Z-scores from Chapter 6, the value of 2.44 in the previous subsection is  
relatively large, suggesting an impressive increment. In the social sciences, the standardized increment 
is frequently used as a conventional index of effect size for comparing results in any two groups.2 The 
standardized increment has also been used in combining results of different studies in a meta-analysis. 3
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Unfortunately, because the magnitude of descriptive contrasts receives so little attention in medical 
literature, the standardized increment seldom appears in current publications. The infrequency of its 
usage thus gives medical investigators little or no experience with which to develop an “intuitive” feeling
about boundaries (discussed later) for impressive or unimpressive magnitudes.

10.5.2 Conversion to Complex Increment

If both a ratio and increment are to be considered, their combination might allow two groups to be 
contrasted with a single complex increment. The two combinations that can be constructed are the 
proportionate increment and the common proportionate increment. They differ in the choice of a 
denominator for the comparison.

10.5.2.1 Proportionate (Percentage) Increment — The proportionate or percentage incre-
ment shows the relative incremental change from a baseline magnitude. For two groups A and B, the 
calculation is either (A − B)/B or (B − A)/A; and the resulting proportion is customarily multiplied by 
100 and expressed as a percentage. [This type of reference to a baseline was used earlier when the 
standard deviation, as the average change from the mean of a distribution, was divided by the mean to 
form the coefficient of variation.]

For a contrast of the two means, 11.3 and 25.6, the proportionate increment would be either (11.3 − 
25.6)/25.6 = −56% or (25.6 − 11.3)/11.3 = 127%.

If B is clearly the reference value, it is the obvious choice for denominator of the proportionate 
increment, but if C and D are both “active” treatments, the same problem arises that was noted for the  
ratio at the end of Section 10.3.2. If the central indexes are 24.8 for Treatment C and 12.7 for Treatment 
D, the results can be reported proportionately as a rise of 95% [= (24.8 − 12.7)/12.7] from Treatment 
D, or a fall of 49% [= (12.7 − 24.8)/24.8] from Treatment C. The investigator can legitimately present  
whichever value seems more “supportive,” and the reader will have to beware that alternative presen-
tations were possible.

10.5.2.2 Redundancy of Simple Ratio and Proportionate Increment — De sp i te  i t s  
possible value for certain forms of “intuitive” understanding, the proportionate increment is really a 
redundant expression, because it can always be converted to the simple ratio. Algebraically, the propor -
tionate increment, (A − B )/B = (A/B) − 1, is simply the ratio (A/B) minus 1. Analogously, (B − A)/A 
= (B/A) − 1. Consequently, the ratio and proportionate increment do not provide distinctively different 
items of information. A simple ratio can immediately be converted to a proportionate increment by 
subtracting 1 and then, if desired, multiplying by 100 to form a percentage. Conversely, a proportionate  
(or percentage) increment can immediately be converted to a ratio after division by 100 and the addition 
of 1. Thus, a proportionate increment of −15% becomes a ratio of .85.

On the other hand, the direct increment and the standardized increment are unique expressions. 
They cannot be determined from either the simple ratio or the proportionate increment.

10.5.2.3 Common Proportionate Increment — The problem of choosing a reference 
denominator can be avoided if the increment of A and B is divided by the mean of the two values. If 
group sizes are unequal, with nA + nB = N, the common mean will be (nAA + nBB)/N; and the common 
proportionate increment will be N(A − B)/(nAA + nBB). For the two groups in Section 10.5.1.1, the 
common mean is [(6)(25.6) + (5)(11.3)]/11 = 19.1, and the common proportionate increment is (25.6  − 
11.3)/19.1 = .75. If the group sizes are equal, the mean of the two values will be (A + B)/2, and the 
common proportionate increment will be (A − B)/[(A + B)/2].

If A is larger than B, the simple ratio will be r = (A/B). Replacing A by rB, the common proportionate 
increment (for equal group sizes, where nA = nB = N/2) will become 2(r – 1)/(r + 1). It will thus include 
contributions from the increment and the ratio. If the two means, 25.6 and 11.3, came from groups of 
equal size, the common proportionate increment would be (25.6 − 11.3)/[(25.6 + 11.3)/2] = 14.3/18.45 
= .78. Alternatively, because r = 25.6/11.3 = 2.265, we could calculate (2.265 − 1)/[(2.265 + 1)/2] =
1.265/1.632 = .78.
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A major advantage of the common (or any) proportionate increment is that it is unit-free. If the central
indexes are 24 months and 12 months in two equal-sized groups of children, the direct increment is 12
months. If age were expressed in years, however, the direct increment would be 1 year. The proportionate
increment in the two groups, however, would be 100% [ = (24 – 12)/12], and the common proportionate
increment would be 67% [=   (24 – 12)/18], regardless of whether age is measured in months or years.

The main problem with the common proportionate increment is that it is seldom used. Consequently,
it is unfamiliar and has no immediately intuitive meaning. The substantive experience that provides
“intuition” for most biomedical scientists has usually come from direct increments, simple ratios, and
ordinary proportionate increments.

10.6 Indexes for Contrasting Two Proportions

If the compared items are means or medians, only the two individual central indexes are available to
form a direct index of contrast. If the two compared items are proportions or rates, however, nine numbers
are available. When expressed in the form of p = a/n, any proportion (or rate) can be decomposed into
three parts: n, the number of people in the denominator; a, the number of people in the category counted
for the numerator; and (n − a), the number of people who are not in that category. When suitably arranged
for each group and for the total, the three component parts produce nine numbers.

For example, suppose we want to contrast the two proportions, 33% and 50%, representing the 
respective rates of success with Treatments A and B. Each proportion comes from a numerator and
denominator for which the underlying data might be 6/18 vs. 10/20. These data can be tabulated as the
nine numbers shown in Table 10.2.

10.6.1 General Symbols

In general symbols, data showing binary proportions for two groups can be expressed as p1 = a/n1 and
p2 = c/n2. These proportions can be arranged to form the classical 2 × 2 or “fourfold” arrangement shown
in Table 10.3. The additional five numbers that become available in Table 10.3 are b = n1 − a, d = n2 − c,
and the totals a + c, b + d, and N = n1 + n2. Furthermore, in addition to the two stated proportions, p1
and p2, the two complementary proportions, q1 and q2, are also available for comparison. For example,
if the stated proportion is a success rate of 33%, its complementary proportion is a failure rate of 67%.
Thus, if p1 = a/n1, q1 = (n1 − a)/n1.

TABLE 10.2

Table with Nine Numbers Derived from the Four Numbers  
of Two Proportions, 6/18 vs. 10/20.

Success Failure Total

Treatment A 6 12 18
Treatment B 10 10 20

Total 16 22 38

TABLE 10.3

Classical 2 × 2 Table Formed from p1 = a/n1 vs. p2 = c/n2

Number of People
In Category Not in

of Numerator Category Total

Group 1 a b n1

Group 2 c d n2

Total a + c b + d N
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The two proportions, p1 and p2, could be contrasted in the usual two approaches as a direct increment 
(p2 − p1) or as a simple ratio (p2/p1). We could also, however, contrast the complementary proportions 
q1 − q2 and q1/q2.

10.6.2 Increments

If the index of contrast is an increment, no problems are produced by comparing the complementary 
proportions, because q2 − q1 = 1 − p2 − (1 − p1) = p1 − p2. The increment for p2 − p1 will therefore be 
identical but opposite in sign to the increment q2 − q1. For example, with success rates of 55% and 33%, 
the increment is 22%; with the corresponding failure rates of 45% and 67%, the increment is −22%.

The increment in two proportions is usually expressed directly but can also be cited as a standardized  
increment.

10.6.2.1 Direct Increment — Since p1 − p2 and q1 − q2 will have equal but opposite values, 
negative signs can be avoided by citing the absolute direct increment as |p1 − p2| . The positive result 
will represent subtraction of the smaller from the larger value of the pair.

The direct increment is clear and never deceptive, but some people have difficulty interpreting 
increments cited in decimal proportions such as .17 or .0064.

10.6.2.2 Number Needed for One Extra Effect — To ease the interpretation of decimal 
proportions, Laupacis et al.4 proposed that the increment be inverted into a reciprocal

1/|p1 − p2|

which they called NNT: the number needed to be treated.
For example, if the success rate is .61 for Treatment A and .44 for placebo, the incremental advantage 

for Treatment A is .61 − .44. = .17, which is 17 persons per hundred. The reciprocal, which is 1/.17 = 
5.9, indicates that about six persons must receive Treatment A in order for one to have an incremental 
benefit that exceeds what would be produced by placebo. If the increment is .27 − .25 = .02, the value 
of NNT is 1/.02 = 50; and 50 persons must be treated for one to be incrementally benefited.

The result of the NNT is simple, direct, easy to understand, and applicable to many comparisons of 
proportions or rates. The nomenclature is somewhat confusing, however, because the compared entities  
are not always the effects of treatment. For example, suppose Disease D occurs at rate .01 in persons 
exposed to a particular “risk factor” and .0036 in persons who are not exposed. The incremental difference 
is .0064, and its reciprocal, 1/.0064 = 156, is an excellent way of expressing the contrast. Nevertheless, 
the result is not a number needed to be treated and is sometimes called NNH — the number needed to 
harm. To avoid several abbreviations and labels for the same basic idea, the Laupacis index can be called 
NNE, the number needed for one extra effect — a term applicable for comparing treatments, exposures, 
or other agents.

The NNE is a particularly valuable and effective way to express the apparent benefit of the therapeutic 
agents tested in clinical trials, but the expression is not enthusiastically accepted by public-health 
epidemiologists.  One reason, noted later in Chapter 17, is that the available epidemiologic data may not 
contain the occurrence rates needed to construct and invert the increment. Another reason, discussed later 
in this chapter, is the very small proportions that become cited as rates of “risk” for etiologic agents. For 
example, the occurrence rates of disease D may be .005 in persons exposed to a “risk factor” and .001 in  
persons who are nonexposed. The ratio of .005/.001 is an impressive value of 5, but the direct increment 
of .004 is relatively unimpressive. Since the NNE of 1/.004 = 250 indicates that 250 persons must be 
exposed for one to become incrementally diseased, public-health campaigns and other efforts to impugn 
a “risk factor” are more likely to have an impact if the results are expressed in a “scary” ratio of 5 than in  
a less frightening NNE of 250.

After pointing out that “perceptions change when data are presented in a way that relates therapeutic  
efforts to clinical yields,” Naylor et al.5 suggest that “NNTs and similar measures relating efforts to 
yields dampen enthusiasm for drug therapy by offering a more clinically meaningful view of treatment 
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effects.” For an additional innovative expression, the Naylor group proposes the use of TNT, which is 
“tons needed to treat.” According to Naylor et al., about “10.3 metric tons of cholestyramine were 
consumed for each definite coronary death prevented in the Lipid Research Clinics Coronary Primary 
Prevention Trial,” and “about 200,000 doses of gemfibrozil were ingested in the Helsinki Heart Study 
per fatal or non-fatal myocardial infarction prevented.”

10.6.2.3 Standardized Increment — If two proportions, p1 and p2, are expressed as a stan-
dardized increment, the common standard deviation is much simpler to determine than for two means. 
We first find the common proportion, which is P = (n1p1 + n2p2)/N. [If the groups have equal size, so 
that n1 = n2, P = (p1 + p2 )/2.] The variance of the common proportion is PQ, where Q = 1 − P. The 
common standard deviation is then . The standardized increment becomes 

Because both P and Q appear in the denominator, the standardized increment will produce the same 
absolute magnitude, whether the contrast is between p1 − p2 or q1 − q2.

For example, suppose we compare p1 = 10/20 = .50 and p2 = 6/18 = .33. The common proportion P 
is (10 + 6)/(20 + 18) = .42 and so Q = 1 − .42 = .58. The standardized increment is

For smaller proportions, such as the previous comparison of .01 vs. .0036, the common proportion 
(with equal group sizes) would be P = .0068, with Q = .9932. The standardized increment would be 
(.01 − .0036)/ = .078.

The main problem with the standardized increment is that using  in the denominator converts 
the result into the counterpart of a ratio. If P and Q are near the meridian value of .5, the value for
is also near .5. For example, if P = .3, Q = .7 and = = .46. If P and Q are widely depart 
from the meridian value, however,  becomes increasingly close to the square root of the smaller 
value. The following table shows what happens as P decreases:

Consequently, a tiny incremental change of .001 from .0005 to .0015, in two groups of equal size, will 
have P = .001 [= (.0015 + .0005)/2] and a standardized increment of .001/.032 = .03, which inflates the actual 
value of the increment. The NNE of 1000 [= 1/.001] will give a much better idea of the real comparison 
than the standardized increment.

10.6.3 Simple and Complex Ratios

Whenever one proportion is divided by another to form a ratio, the results can be correct but ambiguous 
or deceptive. Some of the problems, which have already been cited, will be briefly reviewed before we  
turn to a new complex index, the odds ratio.

10.6.3.1 Ambiguity in Simple Ratios — The simple ratio of two proportions, p1 and p2 , can 
be an ambiguous index because it can also be formed from the complementary proportions, q1 and q2 ,
and because p2/p1 does not necessarily equal q2/q1, which is (1 − p2)/(1 − p1). Thus, a success ratio of 

P Q PQ
.1 .9 .09 .3
.01 .99 .0099 ∼.1
.001 .999 .000999 .032
.0001 .9999 .0001 ∼.01

PQ

p1 p2–
PQ

----------------

.50 .33–
.42( ) .58( )

----------------------------- .17
.49
------- .35= =

.0068( ) .9932( )
PQ

PQ
PQ .21

PQ

PQ
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58%/33% = 1.76 (and its reciprocal 1/1.76 = .57) are not the same as the corresponding failure ratio of 
42%/67% = .063 (and its reciprocal of 1.60).

10.6.3.2 Ambiguity in Proportionate Increments — The proportionate increment for two 
proportions, p1 and p2, is a ratio that has two ambiguities. The first occurs when the numerator |p 1 − p2|
is divided by a denominator that can be chosen from four possibilities: p1, p2, q1, and q2. The second 
ambiguity is in the nomenclature that expresses the result. For the two success percentages, 49% and 
33%, the proportionate increment can be (49 − 33)/33 = 48% or (33 − 49)/49 = −33%. Expressed for 
rates of failure, rather than success, the corresponding results would be (51 − 67)/67 = −24% and 
(67 – 51)/51 = 31%. Aside from ambiguity in numerical constituents, the expressions themselves are 
potentially confusing, because two percentages are contrasted, but the contrast is expressed with a quite  
different percentage. Thus, 49% is 16% higher than 33% as a direct increment, but is 48% higher as a 
proportionate increment.

10.6.3.3 Possible Deception in Proportionate Increments — Because investigators will 
always want to put a “best foot forward” in reporting results and because any of the cited statistical 
comparisons are correct and “legitimate,” the proportionate increment is frequently (and sometimes 
deceptively) used to “magnify” the importance of a relatively small direct increment. For example, the 
mortality rate in a randomized trial may be 21% with placebo and 15% with active treatment. When the  
results are reported in prominent medical journals (and later in the public media), however, the investi-
gators seldom emphasize the direct increment of 6%. Instead, they usually say that the active treatment  
lowered the mortality rate by 29% [= (.21 − .15)/.21].

Furthermore, if we examine survival rather than death, the proportionate improvement in survival rates 
will be (q2 − q1)/q1 = (.85 − .79)/.79 = .06/.79 = .076 = 7.6%. Thus, the same treatment can paradoxically 
seem to produce an impressive reduction in mortality while simultaneously having relatively little effect  
on survival.

The problem is heightened when values of p1 and p2 are particularly small. For example, suppose the 
occurrence rate of Disease D is .005 after exposure to Agent X and .001 without exposure. The actual 
increment is .005  − .001 = .004 and the NNE is 1/.004 = 250. The investigators will seldom use these 
unimpressive values, however, for citing their main results. Instead, the indexes of contrast will emphasize 
the direct ratio of 5, or the proportionate increment of .004/.001, which is a 400% rise from the rate in 
the unexposed group.

10.6.3.4 Relative Difference — Another available but seldom used complex ratio for contrast-
ing two proportions is the relative difference proposed by Sheps.6 If pA is the success rate for treatment 
A, and pB is the success rate for treatment B, the proportion 1 − pB indicates the “failures” with B who 
are available to become successes with A. The incremental accomplishment of A can then be propor-
tionately expressed as the relative difference

For example, if the success rates are pA = .53 and pB = .43, the proportion of failures in B is .57. The 
relative difference is .10/.57 = .175. In public-health risk results, such as pA = .005 and pB = .001, the 
relative difference would be .004/.999 = .004.

The relative difference is seldom used in public health statistics because 1  − pB is often close to 1, so 
that the result is almost the same as the direct increment. For the larger rates that occur in clinical trials, 
investigators usually prefer to use the direct increment (which would be .10 for the comparison of .53 
vs. .43), the NNT (which would be 10), or the proportionate increment (which would be .10/.43 = .23).

For small rates of success increments in clinical trials, the relative difference might be preferred 
scientifically as more overtly “honest” than the proportionate increment. For example, if the mortality 
rate is .02 with Treatment A and .04 with Treatment B, the relative difference is (.02  − .04)/.96 = −.021 

pA pB–
1 pB–
-----------------
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or −2.1%. As a proportionate increment, however, the reduction is a much more “impressive” value of 
(.02  − .04)/.04 = −.50 or −50%.

10.6.4 Problems of Interpretation

Because indexes of contrast receive so little formal attention in statistical education, it is not surprising 
that physicians have great difficulty interpreting published results. In a series of special studies,7–9

physicians were frequently deceived when the same set of results was compared in different ways. 
Treatment A was regularly preferred over Treatment B when the comparison was reported with a ratio 
or proportionate increment, but not when the same result was cited with a direct increment or as a 
number needed to treat.

What is more surprising, perhaps, is that the authors of medical publications are allowed “to get away 
with” misleading (although accurate) presentations of ratios and proportionate increments, without 
adequately emphasizing the alternative methods of citing and interpreting the same results. When 
historians of science review some of the medical and public-health errors of the second half of the 20th  
century, an interesting point of evaluation will be the vigilance (or lack thereof) with which editors and 
reviewers guarded the integrity of published literature and carried out the responsibility to prevent even  
inadvertent deception.

The problem will probably vanish or be greatly reduced in the 21st century when “statistical signif-
icance” is decomposed into its component parts, and when quantitative contrasts begin to receive the 
prime attention now diverted to stochastic inference.10–12

10.7 The Odds Ratio

The odds ratio gets special attention here because it is unique to binary data and is commonly used for  
contrasting two proportions.

10.7.1 Expression of Odds and Odds Ratio

The idea of odds is a classical concept in probability. If the probability that an event will happen is p, 
the probability that it will not happen is q. The odds of its occurrence are p/q. For example, in a toss 
of a coin, the chance of getting heads is 1/2 and the chance of tails is 1/2. The odds of getting heads 
(or tails) are therefore (1/2)/(1/2) = 1 — an “even money” bet. If the chance of failure with Treatment 
A is 12/18, the chance of success is 6/18, and the odds in favor of failure are (12/18)/(6/18) = (12/6) =
2, or 2 to 1.

Note the way in which the odds were constructed. If a + b = n, the odds in favor of b are (b/n)/(a/n) =
b/a. The two probabilities, b/n and a/n, have n as a common denominator, which cancels out to allow 
the odds to be calculated simply as b/a.

With this tactic in mind, we can now re-examine the results for each treatment in the previous 
Table 10.2. The odds of success are 6/12 = .5 (or 1 to 2) for Treatment A and 10/10 = 1 (or 1 to 1)
for Treatment B. These two sets of odds produce an odds ratio of (6/12)/(10/10) = .5/1 = .5, which 
expresses the relative odds of success for Treatment A vs. Treatment B.

We also could have formed the odds ratio in another way by asking: what are the odds that a 
successful patient received Treatment A vs. the odds that a failure received Treatment A? This odds 
ratio would be expressed as (6/10)/(12/10) = .5, and the result would be the same as before.

10.7.2 Odds Ratio as a Cross-Product Ratio

As a general algebraic principle, a fourfold table having the cellular structure  will have the odds 
ratio (a/b)/(c/d) or (a/c)/(b/d). With either algebraic  arrangement, the calculation becomes ad/bc. Because 
the two opposing diagonal terms are multiplied and the two pairs of products are then divided, the odds 
ratio is sometimes called the cross-product ratio.

a  b
c  d 
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10.7.3 Attractions of Odds Ratio

The odds ratio has the statistical appeal of being “independent” of the group sizes expressed in the
marginal totals of a 2 × 2 table. As long as the inner four components of the table remain proportionally
similar, within each column (or row), the odds ratio will remain the same even if the marginal totals are
substantially changed.

For example, suppose the question examined in Table 10.2 was answered from a case-control study,
with 48 cases drawn from the “success” group and 110 controls drawn from the “failure” group. If
treatment has the same effects as before, the new fourfold table will be . Rates of success can
no longer be calculated from this table, because the persons were “sampled” from the outcome events,
rather than from the “exposure“ to treatment. [If calculated, the “success rates” would be .23 (= 18/78)
for Treatment A and .375 (= 30/80) for Treatment B, and would be much lower than the correct
corresponding values of .33 and .50.] The odds ratio, however, calculated as (18 × 50)/(30 × 60) = .5
in the new table, will be identical to the .5 result obtained in Table 10.2.

This virtue of the odds ratio also leads to its two main epidemiologic attractions. One of them occurs  
in a multivariable analytic procedure called multiple logistic regression, where the coefficients that 
emerge for each variable can be interpreted as odds ratios. The most common appeal of the odds ratio, 
however, is that its result in a simple, inexpensive epidemiologic case-control study is often used as a 
surrogate for the risk ratio that would be obtained in a complex, expensive cohort study.

10.7.4 Approximation of Risk Ratio

The basic algebra that is briefly outlined here will be described and illustrated in greater detail in Chapter
17. Suppose a particular disease occurs at a very low rate, such as p2 = . 0001, in people who have not 
been exposed to a particular risk factor. Suppose the disease occurs at a higher but still low rate, such 
as p1 = .0004, in people who have been exposed. The simple ratio, p1/p2, is called the risk ratio. In this 
instance, it would be .0004/.0001 = 4.

To determine this risk ratio in a cohort study of exposed and nonexposed people, we would have to 
assemble and follow thousands of persons for a protracted period of time and determine which ones do  
or do not develop the selected disease. Instead, with an epidemiologic case-control study, we begin at 
the end. We assemble a group of “cases,” who already have the disease, and a group of “controls,” who  
do not. We then ask each group about their antecedent exposure to the risk factor. The results are then 
manipulated as discussed in the next few subsections.

10.7.4.1 Structure of 2 × 2 Table — The fourfold (or 2 × 2 ) table in either a cohort or case-
control study would have the following skeletal structure:

In a cohort study, where we begin with exposed and nonexposed groups, they become the denominator 
for any calculations of rates of occurrence. Thus, a + b = n1 is the denominator of exposed persons and 
c + d = n2 is the denominator of unexposed persons.

In a case-control study, however, we assemble diseased and nondiseased groups. They consist of a +
c = f1 for the total of diseased cases, and b + d = f2 for nondiseased controls. The values of a + b and 
c + d can be calculated, but they are not appropriate denominators for determining rates of disease 
occurrence. If any “rates” are to be calculated, they would have to be a/f1 for rate (or proportion) of 
exposure in the cases and b/f2 for the corresponding rate in the controls.

10.7.4.2 Advantages of Case-Control Odds Ratio — In a cohort study, the rate of occur-
rence for the disease in the exposed group would be p1 = a/(a + b) = a/n1. The corresponding rate 
in the unexposed group would be p2 = c/(c + d) = c/n2. The risk ratio would be p1/p2 = (a/n1)/(c/n2).

Diseased Cases
Nondiseased 

Controls

Exposed a b
Nonexposed c d

18 60
30 50 
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In a case-control study, however, values of n1 and n2 in the exposed and nonexposed groups are not
available to allow these calculations of p1 and p2 . Nevertheless, if the cases and controls suitably represent
the corresponding members of the cohort population, the odds of exposure should be the same in the 
two tables. Thus, the odds of a/c in the case group and b/d in the control group should have the same
values as their counterpart odds in the cohort. The odds ratio, which is (a/c)/(b/d) = ad/bc, should be
the same in both types of research.

In the cohort study, the odds ratio would be (p 1/p2)/(q1/q2) = (p1/p2)[(1 − p2)/(1 − p1)]. It is the desired
risk ratio, p1/p2, multiplied by q2/q1 = (1 − p2)/(l − p1). If the occurrence rates of disease are quite small,
however, both 1 − p2 and 1 − p1 will be close to 1. The factor (1 − p2)/(1 − p1) will then be approximately
1. Thus, in the foregoing example, p1 = .004 and p2 = .001. Because 1 − p1 = .996 and 1 − p2 = . 999, the
factor .999/.996 = 1.003. If we assume that this factor is essentially 1, the odds ratio will be (p1/p2 ) ×
(∼l) and will approximate the risk ratio.13

A more formal algebraic proof of these relationships is provided in the Appendix to this chapter, and
the topic is further discussed in Chapter 17. The main point to be noted now is that if the basic rate of
disease is small and if the groups in the fourfold case-control table suitably represent their counterparts
in the fourfold cohort-study table, the odds ratio in a relatively small case-control study should approx -
imate the risk ratio produced by a much larger and elaborate cohort study.

This mathematical attribute of the odds ratio had made it (and case-control studies) so irresistibly
appealing in epidemiologic research that the investigators regularly overlook the scientific criteria
needed to accept the odds ratio as a credible scientific substitute for the risk ratio.14

10.8 Proportionate Reduction in System Variance (PRSV)

A descriptive index that is well known to statisticians, but not to most other readers, is the proportionate
reduction that occurs in the total variance of a system when it is fitted with a “model.” This index, which
is particularly useful for describing the associations considered later in the text, is valuable now because
it can be applied to contrasts of both dimensional and binary data, where the two compared groups form
the “model.”

For example, consider the two groups of binary data compared in Table 10.2. In the total data, before
division into two groups, the system variance, using the formula NPQ, is (16/38) (22/38)(38) = 9.26. After 
the two-group split, the sum of group variances, using the formula n1p1q1 + n2p2q2, becomes 
(6/18)(12/18)(18) + (10/20)(10/20)(20) = 9.00. The proportionate reduction in system variance is (9.26 − 
 9.00)/9.26 = .028. 

With dimensional data, as shown in the example in Section 10.5.1.1, the determination of system 
variance requires first that the grand mean of the system be identified as G = (nA + nB )/N. In the 
cited example, G = [(6)(25.6) + 5(11.3)]/11 = 19.1. Thus, the system variance will be +  − 
NG2 , where = + nA  and = + nB . For the cited data, = (5)(7)2 + 6(25.6)2 =
4177.16 and = 4(4)2 + 5(11.3)2 = 702.45. Thus, the system variance is 4177.16 + 702.45 − 
11(19.1)2 = 866.7. The sum of the two group variances is + = 309, so that the proportionate 
reduction in system variance is (866.7 − 309)/866.7 = .64.

The proportionate reduction in system variance (PRSV) is seldom considered in ordinary descriptive 
comparisons of two groups. It has three major advantages, however:

1. With some complex algebra not shown here, it can be demonstrated that the square of the 
standardized increment (or “effect size”) — discussed in Sections 10.5.1 and 10.6.2.3 — is roughly 
4 times the magnitude of the proportionate reduction in system variance, particularly if the two 
group sizes are reasonably large and relatively equal. Thus, in many situations, (SI)2 ∼ 4(PRSV) 
and so SI ∼ . For example, for the two proportions 10/20 and 6/18, which have modestly 
sized groups, PSRV = .028 and  = .167 which is about half of the SI (.35) shown in Section 
10.6.2.3. (For the very small groups of dimensional data in Section 10.5.1.1, the SI of 2.44 is about 
three times the = = .8.)*

* The actual formula, for two groups of dimensional data each having size n, is SI = 2( )/[n(l – PRSV)].
For two groups of binary data, the formula is SI = .
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2. Because PRSV can be determined for both dimensional and binary data and has a direct 
mathematical relationship to the standardized increment (or “effect size”), a single standard 
of evaluation can be used, if desired, for subsequent decisions about “quantitative signifi-
cance” in contrasts of both types of data.

3. As will be noted later in Chapter 19, when we compare associations in two variables rather 
than contrasts in two groups, the value of  is called the correlation coefficient.
Therefore, the decisions discussed later for quantitative significance of a correlation coeffi-
cient can also be applied for evaluating SI and  in a contrast of two groups. 

10.9 Standards for Quantitative Significance

Although stochastic (or “statistical”) significance is commonly proclaimed when a calculated P value 
is smaller than .05, no analogous boundary has been established for demarcating quantitative significance.

10.9.1 Reasons for Absence of Standards

Many excuses can be offered for the failure of biomedical scientists to set such a boundary.

10.9.1.1 Substantive Context — As noted in Section 10.2, quantitative contrasts always occur  
in a substantive context. The increment of .03 = .09 − .06 for two proportions of occurrence of an adverse 
drug reaction may be unimpressive if it refers to a minor skin rash, but important if it refers to sterility 
or death. Aside from the particular event being considered, the context also includes the size of the 
population “at risk” for the event. Suppose a skin cream that offers striking improvement in acne also 
raises the rate of fetal deformity from .010 to .011 if the cream is used by pregnant women. The increment 
of .001 seems tiny, but could lead to 2,000 unnecessarily deformed babies in a nation with 2,000,000 
births. [One reason that public-health people often seem more “alarmed” than clinicians about “risks” 
is that the public-health denominator is so much larger than the clinical denominator. An obstetrician 
who delivers 200 women per year may not notice an adverse event that occurs at a rate of .005. In a 
community with 100,000 deliveries, however, the event will be much more apparent.]

Because the substantive context cannot be easily separated from the associated quantitative magnitude, 
biomedical scientists have often been reluctant to draw boundaries based on magnitude alone.

10.9.1.2 Quantitative Complexity — For the simple indexes of contrast, both a ratio and an 
increment must be considered. The demarcation of values for two indexes simultaneously is much more 
complicated than choosing a single boundary, such as .05, for “significance” of a stochastic probability.

For the other indexes discussed throughout Sections 10.5 and 10.6, neither the standardized increment 
nor the common proportionate increment is well known or frequently used for dimensional data. 
Consequently, neither index is accompanied by a “commonsense” background of analytic experience to  
aid in the interpretation. For binary data, the odds ratio is probably easy to interpret intuitively as a “risk 
ratio,” but the odds ratio will falsely enlarge the “risk” ratio15 if the compared proportions exceed values 
of .1. For example, if p1 = .04 and p2 = . 01, the risk ratio is 4, and the odds ratio is (.04/.01)(.99/.96) =
4.12. If p1 = .84 and p2 = .21, however, the risk ratio is still 4, but the odds ratio is (.84/.21) 
(.79/.16) = 19.75.

10.9.1.3 Intellectual Distraction — In the fallacious belief that decisions about importance 
depend only on the P values (or confidence intervals) of stochastic significance, investigators may not 
feel that any boundaries are needed to demarcate quantitative significance. This intellectual distraction 

PRSV

PRSV
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has become untenable in recent years, however, because scientists have discovered two major circum-
stances in which quantitative boundaries must be demarcated.

10.9.2 Demand for Boundaries

Despite the inattention or efforts at avoidance, boundaries of quantitative significance are demanded and 
must be established in two common circumstances that occur before or after the research is done.

10.9.2.1 Planning Sample Size — In planning a research study, investigators will want to have 
a sample size that assures stochastic significance for the results. As noted later, the calculation requires 
establishment of a boundary for the contrasted magnitude that will be regarded as quantitatively significant.

10.9.2.2 Checking for False Negative Results — When a study has been completed and has 
yielded results that do not show an impressive quantitative distinction, the investigator may want to 
conclude that the compared groups do not have a major difference. To prevent this decision from being  
a “false negative” conclusion, certain stochastic calculations can be done to determine whether the group  
sizes were large enough to detect and confirm a “major difference.” For the stochastic calculations to 
be interpreted, however, a boundary must be set for the magnitude of the “major difference.”

10.9.3 Development of Standards

For both reasons just cited, modern investigators have been increasingly unable to escape the challenge  
of demarcating quantitative significance and have had to develop some methods for doing so.

10.9.3.1 Sample Size in Clinical Trials — One frequent challenge is to choose a magnitude 
of quantitative significance when sample size is calculated for a controlled clinical trial. The calculated 
formula (as discussed later) requires a demarcation for δ, the amount of a significant quantitative 
increment in the contrasted means or proportions. Thus, if  is the expected proportion of success in 
Group A, and if  is the corresponding proportion in Group B, the result is quantitatively significant 
in favor of Group A if

(The “^” or “hat” symbol indicates a result that is estimated or expected but not directly observed.)
In making decisions about δ, the investigators have seldom assigned a direct value for it. Instead, they 

usually choose a value for the proportionate increment, θ, that is to be regarded as quantitatively 
significant. Thus, θ = . The value of δ is then found by anticipating a value of  for the 
reference group, and by applying the formula δ = θ . The customary choices of θ have been values 
of 25% or 50%. With these decisions, if the control group has had a success rate of 16%, a proportionate 
increment of 25% would require an actual increment of 4%, so that the treated group would need a 
success rate of 20%. If θ is 50% and the success rate is 16% in the control group, the treated group’s 
success rate would have to rise to 24% to be quantitatively significant.

The proportionate increment θ has often been used for approaching decisions about quantitative 
significance, but it creates two problems. The first is that the choice of δ is left to depend entirely on 
the magnitude of  in the control group. Thus, if θ is 50% and the control group has a success rate 
of 2%, the rate of success required for a quantitatively significant difference in the treated group would  
be 3%. Despite the impressive value of 50% for θ, few commonsense evaluators would ordinarily be 
impressed either with a δ of 1% or with a “substantial improvement” that produces a success rate of 
only 3%.

The second problem is deciding which of the two complementary rates should be multiplied by θ.
Thus, if θ = 50% is applied to the control group’s failure rate of = 98%, the failure rate demanded 
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for the new treatment will be = 49%. This δ of 49% (= 98% – 49%) is substantially greater than 
the δ of 1% calculated when θ = 50% was applied to the success rate of 2%.

For these reasons, the current concept of establishing quantitative significance with a θ value can be 
applauded because any clinical attempt to demarcate this type of significance is better than nothing. 
Nevertheless, because a thorough judgment requires a demarcation of two values — δ and θ — decisions 
based only on a θ value will inevitably be inadequate. Furthermore, such decisions perpetuate the 
custom of reporting results according to the somewhat misleading and occasionally deceptive propor-
tionate increment.

10.9.3.2 Importance of Epidemiologic Distinctions — In many epidemiologic studies of 
risk factors for disease, the proportions of people who become diseased is quite small. For example, in  
Doll and Hill’s famous study16 of smoking in British physicians, the occurrence rates of deaths ascribed 
to lung cancer were about 166 per hundred thousand in cigarette smokers and 7 per hundred thousand 
in non-smokers. These two values have an impressive ratio of 23.7 ( = 166/7) but a highly unimpressive 
increment of .000159. Expressed in the NNE formula, an extra lung cancer would occur in one of 6289  
(= 1/.000159) smokers.

For an individual smoker, the increased incremental risk of developing lung cancer may seem too 
small to warrant cessation of the habit. On the other hand, in a society that contains 200 million people, 
a small increment can have a large total impact. If half of those people are adults and if half of the 
adults are smokers, there would be 50,000,000 smokers. With an incremental risk of .000159, this group  
of smokers would develop 7950 cases of lung cancer that presumably would not have otherwise occurred. 
The increment in the two rates may seem unimpressive at an individual personal level, but be important  
at a societal level.

The importance of certain quantitative distinctions may sometimes depend on such external features 
as the frequency with which the cited issue occurs as a general or medical problem. The kinds of 
distinctions that might seem trivial in a clinical comparison of two treatments might thus become 
substantial in an epidemiologic contrast of risk factors for disease.

10.9.3.3 Importance of Additional Clinical Distinctions — Finally, certain issues in the 
quantitative magnitude of significance will regularly be affected by associated clinical factors such as 
the costs of treatment and the type and risk of adverse reactions. If a particular drug is very expensive 
and has a high rate of untoward adverse reactions, we might demand that its efficacy exceed that of 
placebo by a greater amount than we might ask of a cheaper drug that is relatively risk-free. 

10.10 Pragmatic Criteria

Because no formal criteria have been promulgated for quantitative significance, Burnand, Kernan, and 
Feinstein17 investigated the boundaries that seemed to be used pragmatically for decisions about quan-
titative contrasts in a series of papers published in three general medical journals.

For comparisons of two means, the published reports did not always list the group sizes or standard 
deviations. Consequently, neither a standardized nor a common proportionate increment could regu-
larly be determined. Accordingly, Burnand et al. examined the simple ratio, / , with  routinely 
chosen to be the larger mean, so that the ratio always exceeds 1. The investigators concluded that 1.2  
was commonly used as a lower boundary for quantitative significance of the ratio in a contrast of two  
means. Thus, if  Š 1.2 , the value of  −  will be Š.2 . In other words, one mean must 
be proportionately at least 20% larger than the other. If = 1.2  and if the two groups have equal 
size, the common proportionate increment will be (2)(.2)/(1 + 1.2) = .18. Thus, .18 might be regarded 
as a lower boundary for quantitative significance of the common proportionate increment.

To illustrate this process, suppose two compared groups have means of 18.9 and 10.1. The simple 
ratio is 18.9/10.1 = 1.87, which clearly exceeds the criterion boundary of 1.2. For this simple ratio, the 
common proportionate increment — for equal-sized groups — will be (2)(.87)/2.87 = .61.
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For a contrast of two proportions, Burnand et al. found that 2.2 was a commonly used lower boundary 
for quantitative significance of the odds ratio. The odds ratio was chosen as a single index of contrast 
to avoid decisions based on increments alone in proportions that could range from very small values, 
such as .001 in public health rates, to much higher values, >.1, in clinical rates of “success.” The odds 
ratio, which multiplies p1/p2 by q2/q1, also eliminated the ambiguity of deciding whether the compared 
ratio should be p1/p2 or q2/q1.

The boundaries of an impressive odds ratio, however, sometimes varied with the size of the groups 
under study. With the smaller groups and higher proportions (i.e., usually ≥ .01) in most clinical studies, 
the published reports often used somewhat lower boundaries for “quantitative significance,” than what 
appeared in the larger groups and lower proportions (i.e., <.01) of public-health research.

A value of .28 seemed to be a reasonable lower boundary for quantitative significance in a standardized 
increment of two proportions. This magnitude is slightly more than 1/4 of the common standard deviation 
between the two proportions. Thus, if = .5, the absolute increment between two proportions would 
have to exceed (.28)(.5) = .14. For comparisons of much smaller proportions, such as .01 vs. .07, where  
P = .04 and = = .196, the absolute increment would have to exceed (.28)(.196) = .055.

Studying the “treatment effect size” in 21 trials of surfactant therapy for neonatal respiratory distress  
syndrome, Raju et al.18 found that a median value of θ = 50% had been used for the proportionate 
reduction expected in adverse outcomes after intervention. In most of the trials, however, the “observed  
treatment effect sizes were lower than the investigator-anticipated treatment effect sizes.” Nevertheless, 
“all except 1 of 21 reports concluded that the therapy was useful, mostly based on subgroup analyses.” 
[The phenomenon of clinical-trial distinctions that are unexpectedly small but nevertheless “significant”  
will be discussed later in several chapters.]

As noted later in Chapter 19, the variance of a system is not regarded as impressively altered unless 
the proportionate reduction is at least 10%. With this criterion for quantitative significance, 
must Š , which is about .3. If this criterion is extended to the “effect size,” as discussed in Section 
10.8, “quantitative significance” would require that SI Š .6. This boundary is much higher than the value 
of .28 noted earlier for SI in two proportions, and some further thought will show why epidemiologists  
often avoid using the SI to present their results. For example, consider the “impressive” risk ratio of 5 
for a disease having occurrence rates of .005 in exposed and .001 in nonexposed groups. When these 
rates are suitably expressed as (.005 − .001)/ , the SI has the unimpressive value of .07. If 
the occurrence rates are ten times higher, at .05 and .01, the SI is raised to the still unimpressive value 
of (.05 − .01)/ = .23. At the “clinical” rates of .5 and .1, however, the SI finally becomes 
impressive, reaching a value of (.5 − .1)/  = .87.

10.11 Contrasts of Ordinal and Nominal Data

In all of the two-group comparisons discussed so far, the data were either dimensional or binary. Ordinal 
and nominal data seldom receive descriptive comparisons because of the problem of choosing a single 
central index to compare, although the total distributions of data in the two groups can be contrasted 
stochastically with methods discussed for ordinal data in Chapter 15 and for nominal data in Chapter 27.

One common approach for descriptive comparisons in ordinal data is to assign arbitrary dimensional 
values to the categories, e.g., 0 = none; 1 = mild; 2 = moderate; 3 = severe. The results are then compared 
with means, medians, standard deviations, etc. as though the data were dimensional. The tactic is 
mathematically “shady,” but has been repeatedly used and frequently accepted in studies where data for 
pain, anxiety, satisfaction, or other subjective feelings are expressed in ordinal scales. A mathematically 
proper descriptive index of contrast can be developed (see Chapter 15) for ordinal data, but the index 
is unfamiliar and seldom used.

For nominal data, which cannot be ranked, the most common descriptive approach is to summarize 
each group with a single binary proportion derived from the modal category of the total or from a 
compression of several categories. The selected binary proportions are then compared as though they 
were ordinary binary proportions. 

PQ

PQ .04( ) .96( )

PSRV
.1

.003( ) .997( )

.03( ) .97( )
.3( ) .7( )

© 2002 by Chapman & Hall/CRC 



10.12 Individual Transitions

All the discussion thus far has been concerned with comparing central indexes for two groups. A 
different type of quantitative contrast is appraised when an individual person’s condition changes from  
one state to another. These transitions are easy to evaluate if graded (by patient or clinician) on a 
simple “transition scale” such as better, same, or worse.

A distinctive clinical change has also occurred if a single-state ordinal rating of 4, on a pain scale of 
0, 1, 2, 3, 4, later declines to 2. Changes of one category, from 4 to 3 or from 3 to 2, are more difficult 
to evaluate unless accompanied by a separate transition rating such as somewhat better. A one-category 
single-state change from 1 (for slight pain) to 0 (for no pain), however, almost always represents a 
distinct clinical improvement.

The tricky problems in individual transitions arise for dimensional variables, where vicissitudes of 
the measuring system itself must also be considered. For example, a change of 0.2 units may represent 
measurement variations in hematocrit rather than a hematologic alteration; and a rise or fall in magnitude 
of at least two tube-dilutions is usually demanded to represent a change in Group A streptococcal 
antibody titers. Another problem in dimensional data is deciding whether to calculate direct or propor-
tional increments from a person’s baseline value for changes in such entities as blood pressure or weight.

In the absence of a clinically symptomatic observation to confirm the result of a laboratory test or 
physical measurement, the standard deviation of the group has been proposed as a basis for determining 
individual changes. Thus, a person may be rated as having a “significant” change if the direct increment 
exceeds one-fourth or one-half of the group’s standard deviation in that variable.

The concepts and standards used for measuring individual transitions are now in a state of ferment, 
particularly as clinical investigators (and regulatory agencies) have begun giving increased attention to 
quantitative rather than merely stochastic accomplishments in therapeutic trials and other research. 

10.13 Challenges for the Future

As a basic part of statistical appraisals, decisions about quantitative significance require intricate judgments 
for which a well-developed set of standards has not yet been established.

In the absence of standards, you will have to use your own judgment to determine whether a claim 
of “statistical significance” represents a truly important quantitative result or a stochastically low P-value 
obtained (as noted later) from a trivial difference with a large group size. If investigative judgments by 
you and your colleagues can lead to better general agreement about the strategies and boundaries, the 
results may produce desperately needed standards for quantitative significance. The new standards would 
allow the part of statistics that depends on substantive observation and analysis of quantitative signifi-
cance to become at least as important as the stochastic significance that relies on mathematical theories  
of probability.
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Appendix for Chapter 10

A.10.1  Algebraic Demonstration of Similarity for Cohort Risk Ratio  
and Case-Control Odds Ratio

In a cohort study, let e be the proportion of exposed persons in the total population, N. The size of the 
exposed group will be n1 = eN; the unexposed group will have n2 = (1 –  e)N and N = n1 + n2. The 
occurrence rate of events in the exposed cohort will be p1 and the number of events will be a = p1n1 =
p1eN. The number of persons without events will be b = (1 − p1)n1 = (1 − p1)eN. The corresponding 
values in the nonexposed cohort will be p2 for the occurrence rate, and c = p2n2 = p2 (1 − e)N and d =
(1 − p2)(1 − e)N for persons with and without events. The fourfold table for the cohort study will be as 
follows.

When the odds ratio is calculated as ad/bc for this table, the factors of e, 1  −  e, and N all cancel. The 
odds ratio becomes

As noted in Section 10.7.4.2, this odds ratio is the risk ratio, p 1/p2, multiplied by (1 – p2)/(l − p1), and 
the latter factor will approximate 1 if both p2 and p1 are relatively small.

In a case-control study, the “sampling” is done from the total of diseased cases and nondiseased 
controls. Suppose the sampling fractions are k for cases and k′ for controls. In other words, if we choose 
50 of 1000 possible cases for the research, the sampling fraction is k = 50/1000 = .05. If we correspond -
ingly choose 50 of 99,000 possible controls, the sampling fraction is k′ = 50/99,000 = .000505.

The fourfold table for the results of the case-control study will still appear as , but the data will 
actually represent the following: 

When the odds ratio is calculated in the form of ad/bc for this table, the values of k and k′, as well 
as the values of e, 1 −  e, and N, will cancel. The odds ratio will then represent (p1/p2)[(1 − p2)/(1 − p1)]. 
With the “uncommon” disease assumption that 1 − p1 and 1 – p2 are each ∼1, this result will approximate 
p1/p2.

Diseased Cases
Nondiseased 

Controls Total

Exposed pleN (1 − pl)eN eN
Nonexposed p2(1 − e)N (1 − p2)(1 − e)N (1 − e)N

Diseased 
Cases

Nondiseased 
Controls

Exposed kpleN k′(1 − pl)eN
Nonexposed kp2(1 − e)N k′(1 − p2)(1 − e)N

p1

p2
----- 1 p2–( )

1 p1–( )
------------------×
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Exercises

10.1. Millions of persons in the U.K. and U.S. now take aspirin as daily (or every other day) 
“prophylaxis” against myocardial infarction. The therapy depends on results of a randomized trial of 
22,071 male U.S. physicians, receiving aspirin 325 mgm every other day or a double-blind placebo, for  
an average of 60.2 months.19 In summarizing the results, the investigators reported a “statistically 
significant” finding of a “44 percent reduction in the risk of myocardial infarction (relative risk 0.56…)” 
in men aged ≥ 50 years. In an analogous previous trial in the U.K.,20 results for 5139 “healthy male 
doctors” receiving either no treatment or 500 mgm (or 300 mgm) of daily aspirin for an average of 6 
years were somewhat “positive” but not “statistically significant.” A summary of the pertinent data is 
in the following table.

10.1.1. What results and indexes of descriptive comparison would you use to express the most 
cogent findings in the American trial?
10.1.2. What are the corresponding results in the U.K. trial?
10.1.3. What information was used by the U.S. investigators to calculate a “44 percent reduction” 
and “relative risk 0.56”?
10.1.4. Why do you think the total death rates were so much higher in the U.K. trial than in the 
U.S.?
10.1.5. How would you evaluate and compare the benefits of aspirin for MI versus its risk for 
stroke in the two trials?
10.1.6. Do the foregoing evaluations change your beliefs about the merits of daily or every-other-
day aspirin prophylaxis? In other words, what did you think before you did this exercise, and 
what do you think now? 

10.2. The following results were reported for two carefully conducted randomized trials of cholesterol-
lowering treatment.

Trial A:
When 1,900 men receiving active treatment X were compared with 1,906 men given a placebo,  
the death rate from coronary heart disease after seven years was found to be 2.0% in the group 
given the placebo and 1.6% in the group given the active treatment, a reduction in the death rate 
from coronary heart disease of 0.4% over those seven years. (This difference was statistically 
significant.)

Trial B:
When active treatment Y was compared with placebo among almost 4000 middle-aged hyperc-
holesterolemic men, a statistically significant 20% relative reduction was achieved in the 7-year 
rate of death from coronary heart disease. 

Which of these two treatments would you prefer to offer your patients? Why?

U.S. Study U.K. Study
Aspirin Placebo Aspirin No Aspirin

No. of participants 11,037 11,034 3429 1710
No. of subject years 54,560.0 54,355.7 18,820 9470
No. of:

Total deaths (all causes) 217 227   270 151
Deaths from myocardial 10 26    89 47

infarction
Nonfatal confirmed 129 213    80 41

myocardial infarction
Fatal stroke 9 6    30 12
Nonfatal stroke 110 92    61 27

© 2002 by Chapman & Hall/CRC 



10.3. In the first case-control study 21 that described an alleged relationship between reserpine and breast 
cancer, the data were as follows

10.3.1. What indexes would you use to contrast the risk of breast cancer in reserpine users vs. 
non-reserpine users?
10.3.2. What is the incremental risk of breast cancer in users of reserpine?

10.4. Here is a direct copy of the Abstract of a randomized trial in treatment of lactic acidosis.22

Abstract Background. Mortality is very high in lactic acidosis, and there is no satisfactory 
treatment other than treatment of the underlying cause. Uncontrolled studies have 
suggested that dichloroacetate, which stimulates the oxidation of lactate to acetyl-
coenzyme A and carbon dioxide, might reduce morbidity and improve survival among 
patients with this condition. 
Methods. We conducted a placebo-controlled, randomized trial of intravenous sodium 
dichloroacetate therapy in 252 patients with lactic acidosis; 126 were assigned to receive 
dichloroacetate and 126 to receive placebo. The entry criteria included an arterial-blood 
lactate concentration of Š5.0 mmol per liter and either an arterial-blood pH of ≤7.35 or 
a base deficit of ≥6 mmol per liter. The mean (± SD) arterial-blood lactate concentrations 
before treatment were 11.6. ± 7.0 mmol per liter in the dichloroacetate-treated patients 
and 10.4 ± 5.5 mmol per liter in the placebo group, and the mean initial arterial-blood 
pH values were 7.24 ±  0.12 and 7.24 ± 0.13, respectively. Eighty-six percent of the 
patients required mechanical ventilation, and 74 percent required pressor agents, ino-
tropic drugs, or both because of hypotension.
Results. The arterial-blood lactate concentration decreased 20 percent or more in 83 (66  
percent) of the 126 patients who received dichloroacetate and 45 (36 percent) of the 126 
patients who received placebo (P = 0.001). The arterial-blood pH also increased more 
in the dichloroacetate-treated patients (P = 0.005). The absolute magnitude of the dif-
ferences was small, however, and they were not associated with improvement in he-
modynamics or survival. Only 12 percent of the dichloroacetate-treated patients and 
17 percent of the placebo patients survived to be discharged from the hospital.

What conclusions would you draw about the value of dichloroacetate treatment? 
10.5. Here is an opportunity for you to indicate what you mean by “quantitative significance” (and for  
the class convener to note observer variability in the decisions). You have been asked to choose a specific 
boundary point that will allow the following conclusions in quantitative contrasts. What boundaries 
would you choose for each decision? If you used specific increments and ratios in making the decisions, 
indicate what they were.

10.5.1. What value of the success rate for active treatment will make you decide that it is 
substantially better than a placebo success rate of 45%?
10.5.2. The mortality rate with placebo is 8%. What should this rate become to decide that the 
active treatment is worthwhile?
10.5.3. Short-term pain relief has been rated on a scale of 0 to 3, with 0 = no relief and 3 =
complete relief. The mean rating for placebo is 1.3. What should the mean rating be for an effective 
active treatment?
10.5.4. The rate of endometrial carcinoma in postmenopausal women who do not use estrogens 
is .001. What rate, if correctly associated with estrogens, will alarm you enough to make you 
want to stop estrogen treatment in a patient whose distressing menopausal syndrome is under 
excellent control? 

Breast Cancer “Control” Patients
Cases Without Breast Cancer Total

Users of Reserpine 11 26 37
Nonusers of Reserpine 139 1174 1313
Total 150 1200 1350
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10.6. By now you should appreciate the point that decisions about quantitative and stochastic 
significance are not always concordant. A quantitatively significant difference, such as 75% vs. 25%, 
may not achieve stochastic significance if the sample sizes are too small, such as 3/4 vs. 1/4. Conversely,  
a quantitatively trivial difference, such as baseball batting averages of .333 vs. .332, can become 
stochastically significant if the group sizes are large enough. (The latter statement will be proved in 
Exercise 14.5.) Without going through an exhaustive search, can you find and cite an example of this 
discordance in published literature? In other words, you want to look for one of two situations. In one 
situation, the investigators claimed “statistical significance” for a contrast that you believe was not
quantitatively significant. In the other situation, the investigators dismissed, as “not statistically 
significant,” a contrast that you believe was important quantitatively and that should have received more  
serious attention.

One example — it can be either type — will suffice; but outline briefly what you found and why you 
disagree with the conclusion. 
10.7. Find a published report of a randomized trial. It should be on a topic “important” enough to 
warrant advance calculation of sample size. Check to see what value of δ or θ (or any other demarcation 
of quantitative significance) was used for the sample-size calculation. Regardless of whether you can 
find this demarcation, note the results reported for the main outcome of the trial. Were they “statistically 
significant”? Do you regard them as quantitatively significant? (Give reasons and/or calculations for your 
answer.) Did the “significant” difference found in the actual results agree with the previously stated 
value of δ or θ?
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Statistical inference was originally developed to estimate the parameters of a parent population by using 
the results found in a single random sample. As discussed in Chapters 7 and 8, the estimated parameters 
were the location of a point, such as the parametric mean or proportion, and the magnitude of a confidence 
interval surrounding the point. (In statistical parlance, these inferences are often called point estimation
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and interval estimation.) The inferential strategies were originally developed for use with random 
sampling only, but were later extended for their now common application to evaluate stability in single  
groups of data that were not obtained as random samples.

This chapter is devoted to another type of inference, particularly common in medical research and 
literature today, that is also an extension of the original methods for making estimates from a single 
random sample. The additional inferential activity, which is called hypothesis testing, uses the same 
basic strategy as before, but the “parameter” being estimated is the “value” of a mathematical hypothesis. 
The new process involves three main steps: (1) making a particular mathematical assumption, called a 
null hypothesis, about a parameter for the observed results; (2) appraising what happens when the 
observed results are rearranged under that hypothesis; and (3) deciding whether to reject or concede 
the hypothesis.

The process was illustrated (without being so identified) for the one-group t tests near the end of 
Chapter 7. In Section 7.8.2.2, we began with the null-hypothesis assumption that the observed data came 
from a parent population with mean µ = 0. With that assumption, the “rearrangements” were done with 
theoretical repetitive sampling. Among the possible samples, the observed mean difference of −23.4 had 
a t-score of 1.598. The corresponding two-tailed P value was between .1 and .2 for the probability that 
the observed difference, or an even larger one in either direction, would emerge by chance from a parent 
population of sampled increments whose parametric mean was 0. After this P value was noted, however, 
the inferential process stopped, without a further decision. We are now ready to discuss how those 
decisions are made. 

11.1 Principles of Statistical Hypotheses

In elementary geometry you probably engaged in the three-step process of forming, exploring, and 
deciding about hypotheses. To prove that two triangles were congruent, you formed the initial hypothesis 
that they were not. As the “proof” proceeded thereafter, various things happened that would lead to 
something impossible. If a hypothesis leads to impossible things, it cannot be maintained. You therefore 
rejected it and concluded that the triangles were congruent.

When the same type of reasoning is used in statistics, the basic strategy is similar. The initial hypothesis 
is stated as the opposite of what we want to prove. The “proof” occurs when an impossible consequence 
makes us reject the hypothesis. Unlike events in geometry, however, the things that might happen under  
a statistical hypothesis are never wholly impossible. There is always a chance, however tiny, that an 
extraordinary event might actually occur. Therefore, to reject a statistical hypothesis as incorrect or 
unacceptable, a boundary must be set for the level at which the chance possibility is too small to be 
taken seriously. The use of this rejection boundary is the main difference in the basic reasoning for 
evaluating mathematical hypotheses in geometry and in statistics.

The mathematical nomenclature, however, is used for a thought process that is drastically different 
from the often complex details and concepts of a scientific hypothesis. In science, the hypothesis is 
usually a specific substantive idea, such as “DNA is structured as a double helix” or “Vigorous control  
of elevated blood sugar will prevent vascular complications.” In statistical inference, however, the 
hypotheses are strictly mathematical, and the conclusions refer not to anything substantive, but to the 
role of random-chance probability in the numerical results. The mathematical reasoning is the same, 
regardless of where the data come from and regardless of what they represent. The scientific hypothesis 
may be brilliant or foolish; the data may be accurate or wildly wrong; the comparison may be fair or 
grossly biased; but the statistical hypothesis does not know or care about these distinctions as it does 
its purely mathematical job.

The word stochastic, introduced in Section 10.1, is also a useful name for examining the possible 
events that might arise by chance under a mathematical hypothesis. Stochastic hypotheses are always 
stated in concise, simple mathematical symbols, such as H 0 : µA = µB. In this set of symbols, H0 denotes 
the null hypothesis, and µA and µB are the hypothesized parametric means for groups A and B.
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Stochastic hypotheses are commonly tested to evaluate stability of a numerical contrast for two (or 
more) groups. When stability was examined for only a single group in Chapters 7 and 8, the observed 
data could be rearranged in only a limited manner. When more than one group of data is available, 
however, diverse rearrangements can be constructed. For those constructions, the stochastic hypotheses 
are used for assumptions that can be applied both in making the rearrangements and in drawing 
conclusions afterward.

This chapter is concerned with the strategy of forming hypotheses and making the subsequent deci-
sions. Chapters 12 through 15 describe the specific “tests” that produce the rearrangements and results 
used for the decisions.

11.2 Basic Strategies in Rearranging Data

The popular statistical procedures used to rearrange data for two groups have such well-known names 
as t-test, Z-test, chi-square test, and Fisher exact probability test. Other procedures, such as the Pit-
man-Welch test and Wilcoxon test, are less well known.

Regardless of their fame, the procedures all use the same basic strategy: forming a hypothesis, 
contemplating a distribution, and reaching a decision. The procedures differ in the method used to form  
the rearranged distributions; and the tactic chosen for the rearrangement will determine the way in which 
the hypothesis is stated and evaluated. Regardless of how the procedure is done, however, rejection of 
the hypothesis leads to the conclusion that the comparison is “statistically significant” and that the 
contrasted results are stable.

11.2.1 Parametric Sampling

Parametric sampling is the traditional basis of the “rearrangements” used for testing statistical hypotheses 
and making inferential conclusions. The sequence of events in the parametric method for contrasting 
two groups has many similarities to what was done in Chapters 7 and 8 for evaluating a single group.

1. Using features of the observed data, parameters are estimated for a parent population.
2. Repetitive samples are theoretically drawn from the parent population, but each “sampling” 

consists of two groups rather than one.
3. The anticipated results in the array of two theoretical samples are converted to the value of 

a single group’s “test statistic,” such as t or Z.
4. The pattern of results for the selected test statistic will have a specific mathematical distri-

bution, from which a P value can be determined.
5. Instead of a P value, a confidence interval can be demarcated, using appropriate theoretical 

principles, for the location of the parameter.
6. From the P value or confidence interval, a decision is made to reject or not reject the selected 

hypothesis.

All of these steps occur in parametric tests of inference, whether aimed at a single central index or 
at a contrast of two central indexes. When two central indexes are compared, however, the procedure 
has a different goal; the population parameters are estimated in a different way; and a different type of 
conclusion is drawn. The goal is to determine whether the contrast in the two central indexes is distinctive 
enough to depart from the hypothesized parameter. The parameters for the theoretical parent populations 
are usually estimated under a “null hypothesis” that they are the same; and if the null hypothesis is 
rejected, we conclude that the observed indexes are stochastically different.

The mathematical reasoning is as follows: Suppose  and  are observed as the mean values for 
two groups with sizes nA and nB. We assume that each group is a random sample from corresponding 
parent populations having the parametric means µA and µB. Using the same respective group sizes, nA
and nB, we now repeatedly take theoretical random samples from these two populations. Each pair of 

XA XB
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samples has the mean values  and  and the increment . As the sampling process 
continues, the results form a series of increments in two sample means, . This series of 
increments can be regarded as coming from the single group of a third parent population, which consists 
solely of increments formed by each of the items . Applying the null hypothesis, we now 
assume that µA = µB, i.e., that the two groups come from parent populations having the same parametric 
mean. With the null-hypothesis assumption that µA − µB = 0, the parametric mean of the third population 
will be 0. The observed value of  is then regarded as a sampling variation among increments 
of means in samples taken from the third population, whose parametric mean is µ = 0. 

For example, suppose the observed results are  and , with . If we 
drew repeated sets of two samples from a parent population and calculated the difference in means for 
each set, we might get a series of values such as 2, 1, 7, 4, 8, …. These values would form the 
sampling distribution for a difference in two means, taken from a theoretical population whose mean 
difference is assumed to be 0. The theoretical sampling distribution and the result of 5 that was actually 
observed in the two groups are then appraised for the decision about P values and confidence intervals.

The Z test and t test, which will be discussed in Chapter 13, are the two most common parametric 
procedures used for this purpose. The popular chi-square test, applied to binary data, will be discussed 
in Chapter 14.

11.2.2 Empirical Procedures

Although theoretical parametric sampling is the traditional statistical method of forming rearrangements, 
modern electronic computation has allowed two additional strategies to evaluate stability of a contrast. 
The new strategies are called empirical, because they depend only on the observed data, without invoking 
any theoretical populations or anticipated parameters. The two types of empirical methods are permu-
tation (or randomization) procedures, which are discussed in the next section, and bootstrap procedures, 
discussed in Section 11.2.2.2.

11.2.2.1 Permutation Tests — For a permutation test of two groups, the data are first combined 
into a single larger group, which is pooled under the null hypothesis that the distinguishing factor (such 
as treatment) has the same effect in both groups. The pooled data are then permuted into all possible 
arrangements of pairs of samples having the same size as the original two groups. The index of contrast, 
such as an incremental mean, is determined for each of these paired samples. The distribution of the 
indexes of contrast is then examined to determine P values under the null hypothesis.

For example, consider the two groups of data {1, 2} and {3, 4}, having the respective means 1.5 and  
3.5. If the two groups are pooled into a single “population,” {1, 2, 3, 4}, Table 11.1 shows the six possible
permuted arrangements that divide the data into two groups, each with two members. The table also 
shows the mean and increment in means for each pair of samples. If one pair of samples were randomly 
selected from these six possibilities, the chances would be 2/6 (= .33) for getting an incremental value 
of 0, 1/6 for a value of +1.0, 1/6 for 1.0, and so on.

TABLE 11.1

Distribution of Incremental Means in Permutation Procedure for 
Two Groups of Data, {1, 2} and {3, 4} 

Sample A Sample B

 1, 2 1.5 3, 4 3.5 2.0
 1, 3 2.0 2, 4 3.0 1.0
 1, 4 2.5 2, 3 2.5 0
 2, 3 2.5 1, 4 2.5 0
 2, 4 3.0 1, 3 2.0 1.0
 3, 4 3.5 1, 2 1.5 2.0
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Permutation tests are also called randomization tests, for two reasons. First, the subsequent P values
denote probabilities for random occurrence of any of the permuted arrangements. Second, large group
sizes can produce too many possible permutations for display and examination of the complete tabulation,
as illustrated in Table 11.1. For example, about 1.38 × 1011 permuted arrangements can be formed from
two groups that each contain 20 members. The appraisal of the full display can be dramatically eased,
however, with some of the condensation tactics discussed in Chapter 12.

If those condensations cannot be applied, a different “shortcut” approach is to form permutations as
a resampling exercise, by assigning members of the pooled array of data randomly (without replacement)
to each of the two compared groups. As each new pair of samples is generated, the corresponding index
of contrast is noted and added to the distribution of those indexes. The distribution can then be examined
for P values (or other attributes) after a suitable number of pairs of samples has been randomly generated.
The total number of pairs of samples can be quite large, ranging from 1000 to 10,000 or more.
Nevertheless, for two groups containing 20 members each, the distribution of indexes of contrast will
be easier to obtain from 10,000 samplings than from the total of 1.38 × 1011 possible arrangements.

The term Monte Carlo sampling can be applied for this approach, which checks a large but truncated
series of samples, rather than all possibilities. Monte Carlo sampling relies on applying random choices
to an underlying model. In this instance, the underlying model forms a permuted arrangement of the
available data, rather than a sampling-with-replacement procedure, which is used for bootstrap tests.

The empirical permutation methods for contrasting two groups have existed for many years, long
before modern computation became available; and the methods have many names. They are sometimes
called non-parametric, because no parameters are estimated, or distribution-free, because the resampled
results generate their own ad hoc distribution, without involving a theoretical mathematical model. The
best known empirical procedure is a permutation technique, discussed in Chapter 12, that is eponymically
called the Fisher exact probability test or Fisher exact test. Other reasonably well-known empirical
procedures, more commonly called non-parametric rank tests, are the Wilcoxon signed-ranks test and
the Mann-Whitney U test; they are discussed in Chapter 15.

11.2.2.2 Bootstrap Tests — In a permutation “resampling,” the existing members of data are
rearranged to form distinctive combinations. In a bootstrap resampling, the observed data are used as a
“parent population,” from which random sampling is done, with each individual member being replaced
after its random selection. The permutation procedure requires a pooling of two (or more) groups of
data, which can then be rearranged appropriately. The bootstrap resampling, however, can be done with
a single group of data, as shown earlier in Section 6.4.1.1. Thus, the group of data {1, 6, 9} could form
27 possible resampled groups ranging from {1, 1, 1} to {9, 9, 9}, as shown in Table 6.1.

Bootstrap resampling is seldom used to compare two groups of data, but can be employed in two
different ways to construct confidence intervals or P values for the index of contrast.

11.2.2.2.1 Confidence Interval.  For a confidence interval, each group is maintained separately;
and a resampling is done, with replacement, within the group. The results of such a resampling for the
previous two groups {1, 2} and {3, 4} are shown in Table 11.2.

Each group can produce four bootstrapped samples with corresponding means, shown in the upper 
part of the table. Each of the four samples for one group can be matched by one of four samples from 
the second group, and the 16 possible increments in means are shown in the lower half of the table. The 
distribution of the 16 increments shows values of 1.0 and 3.0 each occurring once, 1.5 and 2.5 each 
occurring four times, and 2.0 occurring six times. The range spanned from 1.5 to 2.5 would include 14 
or 87.5% of the 16 possible values. Thus, the observed increment of 2 would be surrounded by an 87.5% 
confidence interval that extends from 1.5 to 2.5.

11.2.2.2.2 P Value.  For a P value, the two groups are pooled, and pairs of samples, containing two 
members each, are formed, with replacement. As 4 possible choices can be made each time, a total of 
16 (= 4 × 4) samples can be obtained for each group, and the increment of means in the two samples 
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can be formed in 16 × 16 = 256 ways. The distribution of increments can extend from 0, when the two 
samples have similar means, to a peak value of 3, when the compared samples are {1, 1} vs. {4, 4}.

Neither of the two bootstrap methods is regularly used for contrasts of two groups, although the 
methods can often be applied for other stochastic challenges.

11.2.3 Relocation Procedures

A different new strategy, which depends on “relocations” rather than resamplings, is analogous to the 
jackknife procedure. The jackknife itself is seldom used in ‘‘elementary” statistics but is often applied 
in multivariable statistics, as discussed elsewhere,1 for getting or checking the values of the estimated 
parameters. The tactic about to be discussed now is a type of simultaneous jackknife maneuver for two  
groups. With only one group available in Chapter 7, the jackknife tactic could do no more than remove  
members from the group. With two groups available, members can be exchanged or otherwise relocated.

11.2.3.1 Unit Fragility Test — The relocations create a series of altered groups, analogous to 
the altered series produced by the jackknife removals in Section 7.7.3. For these altered groups, the most  
interesting stochastic approach is to compare the central indexes descriptively. Instead of examining 
distributions to determine P values and confidence intervals, we check to see whether the differences 
(or other distinctions) in the compared indexes exceed the boundaries selected for quantitative zones of 
significance or insignificance.

For example, suppose the proportions of success are being compared as pA  pB for two treatments, 
where A is expected to be better than B. Suppose the value of δ ≥ .15 is set as the boundary for an 
increment that is quantitatively significant, and that ζ ≤ .04 is demarcated as the boundary for quanti-
tatively insignificant increments. With these boundaries, the compared result will be deemed quantita-
tively significant if pA  pB is ≥ .15, insignificant if pA  pB is ≤ .04, and inconclusive in the intermediate 
zone where .04 < (pA  pB) < .15.

To illustrate the relocation process, suppose the results of a clinical trial show pA = 10/20 = .500 
and pB = 6/18 = .333. The observed increment of .500  .333 = .167 would be regarded as quantitatively 
significant because it exceeds δ = .15. If one member of the numerator group in the larger pA were 
moved from A to B, however, the result would become pA = 9/20 = .450 and pB = 7/18 = .389. The 
increment of .450  .389 = .061 would no longer be quantitatively significant. We might therefore decide 

TABLE 11.2

Bootstrap Procedure to Form Confidence Interval for Incremental 
Means of Two Groups, {1, 2} vs. {3, 4}

Bootstrapped Samples
Group {1, 2} Group {3, 4}

Contents Mean Contents Mean

 1, 1 1.0 3, 3 3.0
 1, 2 1.5 3, 4 3.5
 2, 1 1.5 4, 3 3.5
 2, 2 2.0 4, 4 4.0

Incremental Means in 16 Possible Bootstrapped Samples
Mean in Mean in Sample {3, 4}

Sample {1, 2} 3.0 3.5 3.5 4.0

1.0 2.0 2.5 2.5 3.0
1.5 1.5 2.0 2.0 2.5
1.5 1.5 2.0 2.0 2.5
2.0 1.0 1.5 1.5 2.0
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that the originally observed “significant” result is not statistically stable because the boundary of 
quantitative significance would no longer be exceeded if one person were relocated.

The relocation strategy, called the unit fragility procedure, has been proposed2 for evaluating the 
change that might occur in two proportions, pA and pB, if a single unit is moved from one numerator to  
the other. Thus, if pA = rA/nA and pB = rB/nB, the new proportions might be = (rA + 1)/nA and 
= (rB  1)/nB. If the move went in the other direction, the new proportions would be = (rA  1)/nA
and = (rB + 1)/nB. With the first change, the comparison of 10/20 = .500 vs. 6/18 = .333 would 
become 11/20 = .550 vs. 5/18 = .278, an increment of .272. With the second change, the results would 
become 9/20 = .450 vs. 7/18 = .389, an increment of .061.

The changes could be evaluated either intrinsically or against an extrinsic standard, such as δ ≥ .15 
(or ζ ≤ .04). For the intrinsic evaluation, the increment between the two proportions in one instance 
would rise by .105 [= .272  .167], and in the other instance, the increment would fall by .106 [= .167
.061]. The absolute amount of change in the increment is the same (except for rounding) in either 
direction, whether the shifted unit makes the value of rA become rA + 1 or rA  1.

The amount of change, called the unit fragility , can be expressed with the formula, f = N/(n1n2) where 
N = n1 + n2. This result for 10/20 vs. 6/18 is 38/(20 × 18) = .106. Thus, with the unit fragility procedure, 
the observed increment of .167 would rise or fall by a value of .106. In reference to change from the 
intrinsic value of the original increment of .167, the index of proportionate fragility is relatively high, 
at .106/.167 = .63. In reference to an extrinsic boundary, the reduction of .106 would make the original 
increment become .061, which is no longer quantitatively significant. With either type of boundary, we  
could conclude that the observed contrast of 10/20 vs. 6/18 is not stable.

Perhaps the most striking feature of the unit fragility procedure is the appraisal of “statistical 
significance” in a purely descriptive manner, without recourse to probabilities. When quantitative
boundaries are established for “significant” and “insignificant” differences, the fragility (an inverse of 
“stability”) for the observed result can be determined by whether it crosses those boundaries after a 
potential unitary change.

11.2.3.2 Application in Mental Screening — The idea of checking stability without resort-
ing to probability is a striking departure from a century of the now traditional paradigms of “statistical 
inference.” Although the new approach has received serious discussion,2,3 many years will probably 
elapse before its value becomes recognized by investigators or accepted by statisticians. Regardless of 
the ultimate fate of the unit fragility tactic, it offers an excellent method for doing a prompt 
‘‘in-the-head-without-a-calculator” appraisal of the observed results. With this type of “mental screen-
ing,” the analyst evaluates the data from the counterpart of a simple “physical examination,” before 
doing any calculations as a “laboratory work-up.”

This type of screening was done, without being called “unit fragility,” when decisions were made 
earlier in Section 1.1.3 that the comparison of .500 vs. .333 was unstable as 1/2 vs. 1/3 and stable as 
150/300 vs. 100/300. In the first instance, a unit fragility shift could reverse the direction of the increment
from .500  .333 = +.167 to (0/2)  (2/3) = .667. In the second instance, a one-unit shift would make 
the altered increment become (149/300)  (101/300) = +.160, which hardly changes the original incre-
mental result of .167. For small numbers, such as 1/2 vs. 1/3, the comparison is easily done with mental 
rearrangements that do not require a calculator.

Exercise 11.1 offers an opportunity to try this type of “mental screening” for a set of dimensional data. 

11.3 Formation of Stochastic Hypotheses

The fragility procedure creates a new type of “inference-free” statistics that may not become popular 
for many years; and the standard, customary inferential procedures will be individually discussed in 
Chapters 12 through 15. The rest of this chapter is therefore devoted to the traditional inferential 

p′A p′B
pA″

pB″
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reasoning that occurs when statistical hypotheses lead to conventional decisions about stochastic sig-
nificance. The basic principles used for a contrast of two groups are also applicable to most other types 
of stochastic contrast.

In the traditional reasoning, hypotheses are established for tests that answer the question, “What if?”; 
and the answers always depend on stochastic probabilities found in theoretical or empirical random 
sampling from a distribution. The hypotheses will differ according to the type of question being asked 
in each test, the type of answer that is desired, and the procedure selected to explore the questions and 
answers. Nevertheless, certain basic concepts are fundamental to all the procedures, regardless of how 
they are done. 

11.4 Statement of Hypothesis

As the opposite of what we want to prove, the null hypothesis is set up for the goal of being rejected, 
i.e., declared nullified. With the usual aim of confirming that the observed difference is big, important, 
or “significant,” the opposite null hypothesis is customarily set at the value of 0. In parametric procedures, 
the statement for means would be H0: µA µB = 0 (which is H0 : µA = µB), and for proportions, H0: πA = πB.

In other instances, to be discussed in Section 11.8 and Chapters 23 and 24, the investigator wants to 
confirm that an observed difference is small, unimportant, or “insignificant.” For this purpose, the 
stochastic hypothesis is set at a nonzero large value, such as δ, with a parametric statement such as H0:
µA µB ≥ δ. In the rest of this chapter (and in Chapters 12 through 15) the null hypotheses are all set 
essentially at 0, but the distinction in nomenclature should be kept in mind to avoid confusion later. The  
null hypothesis is called null because it is being evaluated for rejection, not because its value is 0. 

11.5 Direction of the Counter-Hypothesis

The counter-hypothesis represents the contention to be supported or the conclusion to be drawn when 
the null hypothesis is rejected. In the usual logic of the mathematical arrangement, the statistical 
counter-hypothesis represents the investigator’s goal in doing the research. Thus, if the aim of a clinical  
trial is to show that Treatment A is better than Treatment B, the investigator’s goal is A > B. When the 
statistical null hypothesis is stated as A = B, the original goal of A > B becomes the counter-hypothesis.

A prime source of the one-tail vs. two-tail dispute in interpreting probabilities is the direction of the 
counter-hypothesis. Suppose the null hypothesis is stated as A − B = C. If the hypothesis is rejected, 
the conclusion, which is A  B ≠ C, states an inequality, but not a direction. It does not indicate whether 
A  B is > C or < C.

For example, if the research shows that , do we want to support the idea that  is at 
least 5 units larger than ? If so, the counter-hypothesis is . Do we also, however, want 
to support the possibility that  might have been at least 5 units larger than ? For this bidirectional 
decision, the counter-hypothesis is .

The choice of a uni- or bidirectional counter-hypothesis is a fundamental scientific issue in planning 
the research and interpreting the results. The issue was briefly discussed in Chapter 6, and will be 
reconsidered in Section 11.8. 

11.6 Focus of Stochastic Decision

The focus of the stochastic decision can be a P value, a confidence interval, or both. 

XA XB– 5= XA

XB XA XB– 5≥
XB XA

XA XB– 5≥
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11.6.1 P Values

The customary null hypothesis makes an assumption about “equivalence” for the two compared groups. 
If searching for a P value, we determine an external probability for the possibility that the observed 
difference (or an even larger one) would occur by stochastic chance if the hypothesis about equivalence 
is correct.

11.6.1.1 Parametric Tests — In parametric testing, the concept of equivalence refers to param -
eters. If the two compared groups have mean values  and , we assume that the groups are random 
samples from parent populations having the identical parameters µA = µB.

11.6.1.2 Empirical Tests — In empirical procedures, if no parameters are involved or estimated, 
the hypothesis of equivalence refers to the treatments, risk factors, or whatever distinguishing features 
are being compared in the groups. To contrast success rates for rearranged groups receiving either 
Treatment A or Treatment B, we can assume that the two treatments are actually equivalent. The scientific 
symbols for this stochastic hypothesis are TA  TB.

11.6.2 Confidence Intervals

With either parametric or bootstrap procedures for confidence intervals, we examine the array of possible 
results that would occur with rearrangements of the observed data. The methods of forming these 
rearrangements will depend on whether the stochastic hypothesis is set at the null value (of equivalence  
for the two groups) or at an alternative value, discussed in Section 11.9, which assumes that the two 
groups are different. 

When the rearranged results are examined, the decision about an acceptable boundary can be made 
according to intrinsic or extrinsic criteria. In one approach, using intrinsic criteria, the main issue is 
whether the hypothesized parameter is contained internally within the confidence interval. Thus, in the 
conventional parametric approach, with the null hypothesis that µ = 0, the hypothesis is rejected if the 
value of 0 is excluded from the estimated confidence interval. For example, if the observed difference 
is , we would check stochastically to see whether the hypothesized parametric value of 0  
is contained in the confidence interval constructed around 7.

The second approach depends on an extrinsic descriptive boundary that indicates how large (or small) 
the observed difference might really be. For this type of decision, regardless of whether 0 is included 
in the confidence interval, we might want to check that the interval excludes a value as large as 20.

11.6.2.1 Parametric Tests — With parametric testing, a confidence interval is constructed 
around the observed distinction, which is usually an increment such as . If the two groups are 
stochastically different, the null-hypothesis parametric value of µA µB = µ = 0 will be excluded from 
this interval. The ultimate decision may therefore rest on four constituents: (1) the selected level of 
confidence, (2) the magnitude of the zone formed by the confidence interval, (3) inclusion (or exclusion) 
of the “true” parametric value of 0 in that zone, and (4) inclusion (or exclusion) of any “undesirable” 
or inappropriate values.

For example, suppose two means have an incremental difference of 175 units, and suppose we find 
that the 95% confidence interval for this difference is constructed as 175 ± 174, thus extending from 
1 to 349 units. Since the parametric value of 0 is not included in this zone, we might reject the null 
hypothesis and conclude that the two means are stochastically different. On the other hand, because 
their true difference might be anywhere from 1 to 349 units, we might not feel secure that the observed  
difference of 175 is a precise or stable value, despite the “95% confidence.”

11.6.2.2 Empirical Procedures — With empirical procedures, we inspect results for the indexes 
of contrast in the series of resamples, as discussed earlier (and later in Chapter 12). A series of permuted 
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samples can be prepared under the “null hypothesis,” but a specific confidence interval is not constructed  
around the observed difference. Consequently, the main goal in inspecting the permuted results is to 
note the range of possible values. This range can be expressed in the counterpart of a zone of percentiles. 
Thus, if two groups have  as the difference in means, a permutation procedure might show 
that 95% of the possible differences extend from 8 to +36. With a bootstrapping procedure, however, 
the confidence intervals show the array of results that can occur around the observed difference.

11.6.3 Relocation Procedures

Relocation procedures do not use the customary forms of statistical inference. The strategy is stochastic 
because it answers a question about what might happen, but no mathematical hypotheses are established, 
and no probability values are determined. The decision depends on potential changes in the observed
results. For the “unit fragility” procedure discussed in Section 11.2.3.1, these changes were evaluated 
with a form of reasoning analogous to confidence intervals.

11.7 Focus of Rejection

Because the main goal of stochastic hypothesis testing is to determine whether the hypothesis should 
be rejected, a focus must be established for the rejection.

11.7.1 P Values

For P values, an α level is chosen in advance as the critical boundary, and the hypothesis is rejected if 
the test procedure produces P ≤ α. (As noted later in Section 11.12, the value of α is often set at .05.) 
If P > α, the hypothesis is conceded but not actually accepted.

The reason for the latter distinction is that rejecting the null hypothesis of equivalence allows the 
stochastic conclusion that the parameters or treatments are different, but much stronger evidence is 
needed to accept the null hypothesis and conclude that they are essentially equivalent. The absence of 
proof of a difference is not the same as proof that a difference is absent. For example, if two treatments  
have success rates of .25 vs. .40, coming from 1/4 vs. 2/5, we cannot reject the stochastic null hypothesis. 
Nevertheless, we could not be confident that the two treatments are actually equivalent.

The reasoning for a stochastic hypothesis thus has three possible conclusions: rejected, conceded, and 
accepted. These three categories are analogous to the verdicts available to Scottish juries: guilty, not 
proven, and not guilty. Accordingly, we can reject or concede a null hypothesis, but it is not accepted
without further testing. The stochastic procedures needed to confirm “no difference” will be discussed 
later in Chapters 23 and 24.

11.7.2 Confidence Intervals

A confidence interval is usually calculated with a selected test statistic, such as the Zα or tν,α discussed 
in Section 7.5.4, that establishes a 1  α zone for the boundaries of the interval. This zone can be 
evaluated for several foci. The first is whether the anticipated (null-hypothesis) parameter lies inside or 
outside the zone. If the parametric value of µ is not contained in the zone of the interval, we can conclude 
that P ≤ α and can reject the null hypothesis. This result of this tactic is thus an exact counterpart of 
the reasoning used for α and P values.

Two more foci of evaluation are the upper and lower boundaries of the interval itself. Do these 
boundaries include or exclude any critical descriptive characteristics of the data? For example, suppose 
the increment of 175 units in two means has a confidence interval of 175 ± 200 and extends from 25 
to 375. Because 0 is included in this interval, we cannot reject the hypothesis that the two groups are 
parametrically similar. On the other hand, because of the high upper boundary of the confidence interval, 
we could also not reject an alternative hypothesis that the two groups really differ by as much as 350 
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units. Conversely, as discussed earlier, if the confidence interval is 175 ± 174, and goes from 1 to 349, it 
excludes 0. The null hypothesis could be rejected with the conclusion that the two groups are “signifi-
cantly” different. Nevertheless, the true parametric difference might actually be as little as 1 unit.

This double role of confidence intervals—offering an inferential estimate for both a parameter and 
descriptive boundaries—has elicited enthusiastic recommendations in recent years that the P value strategy 
be replaced by confidence intervals. Some of the arguments for and against the abandonment of P values 
will be discussed later in Section 11.12 and again in Chapter 13.

11.7.3 Relocation Procedures

For P values and confidence intervals, the rejection of the stochastic hypothesis will depend on the 
magnitudes selected either for α or for the corresponding Zα or tυ,α. Relocation decisions, however, 
depend on the descriptive boundaries set quantitatively for the large “significant” δ or the small “insig-
nificant” ζ. The quantitative boundaries, which have received almost no attention during all the stochastic 
emphases, are crucial for decisions with relocation procedures, but are also needed both to evaluaute 
the extreme ends of confidence intervals and, as discussed later, to calculate sample sizes or to establish 
alternative stochastic hypotheses. 

11.8 Effect of One- or Two-Tailed Directions

The choice of a one-tailed or two-tailed direction for the counter hypothesis determines how to interpret 
an observed P value, or how to choose the level of α used in forming a confidence interval.

11.8.1 Construction of One-Tailed Confidence Intervals

Just as a two-tailed P value of .08 becomes .04 in a one-tailed interpretation, the chosen level of α for 
a 1  α confidence interval really becomes α/2, if we examine only one side of the interval. To illustrate 
this point, suppose Zα is set at Z.05 for a 95% confidence interval calculated as . The 
upper half of the interval includes .475 of the distribution of means that are potentially larger than ,
and the lower half of the interval includes the other .475 of the distribution, formed by means that are 
potentially smaller. If we are interested only in the upper boundary and ignore the lower one, however,  
the lower half of the interval really includes .50 of the distribution, i.e., all of the potentially smaller 
values. The confidence interval would be larger than the stated level of .95, because it would really 
cover .975 = 1  .025 = 1  (α/2) of the potential values.

In the first example of Section 11.7.2, suppose we wanted the 175 unit increment in two means to be  
definitely compatible with a parametric value of 350. The lower half of a two-tailed 95% confidence 
interval would include only a .475 proportion of the values that are potentially smaller than 175. If we 
are not interested in any of the smaller values, however, and want to know only about the larger ones, 
we would dismiss all .50, not just .475, of the potential values that are smaller than 175.

Accordingly, if we want a decision level of α for a strictly one-tailed confidence interval, examining 
only one boundary or the other but not both, the originally chosen α should be 2α, which will become 
α when halved. Therefore, for a strictly one-tailed confidence interval at the .05 level of α, the calculation 
would be done with Z.1 = 1.645, rather than Z.05 = 1.96.

The ± sign in the customary calculation can be confusing for the idea of a one-tailed confidence 
interval. The lower and upper value produced by construction of central index ± [Zα (standard error)] 
will regularly seem strange for a decision that allegedly goes in only one direction. In proper usage, 
however, a one-tailed confidence interval should be constructed with a + or  sign, but not both. Thus, 
if we want to reject the null hypothesis for a positive result, such as d, the one-tailed confidence interval  
is calculated as d  [Zα (standard error)] and then checked to see if it excludes 0. If we want to consider 
the alternative possibility that d is really much larger, the one-tailed interval would be d + [Zα (standard 
error)], which would be checked to see if it excludes the larger value.

X Z.05 s / n( )±
X
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11.8.2 Origin of Two-Tailed Demands

During the early growth of statistical inference in the 20th century, the mathematical hypotheses were 
almost always bidirectional. The bidirectional approach probably became established in the days when 
substantial statistical thought, particularly by R. A. Fisher and his disciples, was devoted to agricultural  
experiments in which two active treatments, A and B, would be compared to determine which was more 
effective. Since placebos were not used in the agricultural work, it was reasonable to expect that either 
A or B might be superior; and a bidirectional scientific hypothesis was entirely appropriate.

As statistical methods became increasingly used in medical and psychosocial research, the reviewers 
and editors began to demand that claims of “significance” be accompanied by P values; and a level of 
α = .05 was set for the boundary of “significance.” For the small groups of animals or people who were 
often studied in the research, the investigators soon discovered that a “nonsignificant” two-tailed P 
value could sometimes become “significant” if given a one-tailed interpretation. (An example of this 
event occurred in Exercise 7.4.)

The conversion to one-tailed interpretations could thus salvage results that might otherwise be dis-
missed as “nonsignificant.” For example, an investigator studying the cultural ambiance of different 
cities and finding a two-tailed P value of .09 for the superiority of Bridgeport over New Haven, could 
transform the result to a one-tailed P < .05. Although the superiority of Bridgeport had not been 
anticipated when the research began, the investigator might nevertheless claim that the research had 
produced “significant” stochastic support for the concept.

To avoid this type of retrospective manipulation for research hypotheses that had not been clearly 
stated in advance and that were developed to fit the observed data, the demand was made that all values  
of P or α be interpreted in a two-tailed manner. This policy has now become well established at prominent 
medical journals and at various agencies where research results are evaluated.

11.8.3 Controversy about Directional Choices

In modern medicine, however, many investigations are deliberately aimed in a single direction. In 
particular, whenever efficacy is compared for an active agent vs. placebo, the goal is almost always to 
show superiority for the active treatment. If Excellitol is being tested as a new analgesic agent, we want 
to show that it relieves pain better than placebo. If the observed results show that placebo is better than 
Excellitol, the next step would not be to seek stochastic support for the results. Instead, we would look 
for a different, more effective active agent.

A reasonable argument might then be offered that Excellitol, although better than placebo in relieving 
pain, might be worse in producing more adverse side effects such as nausea. If so, however, the data 
about nausea would be recorded in a variable other than pain. The results for the pain and nausea 
variables would be tested separately, with each test having its own null hypothesis. Therefore, when we 
stochastically test the results in variables for pain relief and for occurrence of nausea, each test could 
be done with the one-tailed hypothesis that results for Excellitol will be larger than those for placebo.

If you accept the latter approach, it leads to a subtle problem. Suppose the patient gives a separate 
single “global” rating for the overall effect of treatment. This rating will incorporate both the good 
things such as pain relief, and the bad things such as nausea. Should this overall rating be interpreted  
with a one-tailed or two-tailed hypothesis? Because we may not know in advance whether the nauseous 
effects of Excellitol are severe enough to overwhelm its anticipated analgesic benefits, we might argue 
that placebo could turn out to be a better overall agent. Therefore, the hypothesis should be two-tailed. 
On the other hand, returning to the investigator's original goal, the aim of the research is to show 
superiority for Excellitol. It will receive no further investigative or public attention if it does not 
produce a better overall rating. Therefore, the hypothesis should be one-tailed.

The decisions about unidirectional vs. bidirectional hypotheses can become much more complex, 
particularly when the research is concerned with effects of more than one treatment, with stopping (rather 
than starting) a treatment in a clinical trial, and with diverse other situations. Because the decision in 
each situation may involve subtle substantive issues, an easy way to avoid the subtle problems is to 
insist that all hypotheses be examined in a two-tailed direction. The policy has the advantage of being 
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clear and easy to enforce, but also has some distinct disadvantages. According to the opponents, the 
policy is too rigid: it substitutes arbitrary mathematical dogma for careful scientific reasoning; and it 
needlessly raises the expenses (and risks) of research because much larger group sizes are needed to 
obtain stochastic significance for the same quantitative results.

For example, suppose we anticipate finding that the mean for Treatment A is 4 units better than 
placebo in a study where the standard deviation of the pooled data is expected to be 15. The formula 
for sample-size calculations will be discussed later in greater detail, but a simple example can be 
instructive here. To calculate sample size for two equal-sized groups that would produce a two-tailed P 
value of .05 for the anticipated distinction, we would choose Z.05 = 1.96 and solve the equation:

where n is the size of one group. The result would be (1.96)(15)/4 ≤  and so 
= 54. If we want only a one-tailed P value of .05, however, Z.1 would be 1.645. The required sample 
size would drop to  = 38. The number of patients (and cost) for conducting the 
trial would be proportionately reduced by 30% [= (54  38)/54].

11.8.4 Compromise Guidelines

Different authorities have taken opposing positions on this issue, and the controversy is currently 
unresolved. In one policy, tests of hypotheses should always be two-tailed; in the other policy, one-tailed  
tests are allowed in appropriate circumstances.

The following “compromise” guidelines would probably be acceptable to all but the most rigid 
adherents of the two-tailed policy:

1. Always use a two-tailed procedure if an advance unidirectional hypothesis was not stated before 
the data were examined.

2. A one-tailed test is permissible, however, if the appropriate hypothesis was stated before the 
data were examined and if the direction of the hypothesis can be suitably justified.

3. If the “significance” reported with a one-tailed test would not persist with a two-tailed test, 
the distinction should be made clear in the text of the report.

4. Because your statistical colleagues will generally be happier with two-tailed tests, use them 
whenever possible. Thus, if the “significance” achieved with a previously stated one-tailed 
hypothesis remains when the test is two-tailed, report the two-tailed results.

Regardless of whether you decide to work at levels of α, 2α, or α/2, however, another basic and 
controversial question (although currently less prominent) is whether any rigid boundary should be 
set for the stochastic decisions. This question is discussed in Section 11.12.

To avoid all of the foregoing reasoning and arguments, investigators can report the exact value of the  
two-tailed P, and then let the reader decide. This approach, which was not possible with the older 
tabulated “look-up” values that would allow only statements such as P > .05 or P < .05, can now be 
used when modern computer programs report exact values such as .087 or .043 for the two-tailed P. 
Receiving this result, the reader is then left to interpret it with whatever authoritative guidelines seem 
most persuasive. The only problem with the “computerized-P” approach is that (as discussed later) the 
one-tailed P is not always simply half of the two-tailed P. 

11.9 Alternative Hypotheses

As the opposite of the null hypothesis, the counter-hypothesis merely states a direction. It does not state 
a magnitude. Suppose we have observed that . The null hypothesis for testing this result 
is µA µB = 0. The subsequently determined P value or confidence interval reflects the probability of 
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observing a difference of  if the null hypothesis is correct, but the counter-hypothesis does not specify 
the magnitude of the difference. The counter-hypothesis is merely |µA − µB| > 0 if two-tailed, and µA −
µB > 0 if one-tailed.

If we are concerned about how large the difference might really be, it becomes specified with an 
alternative hypothesis. For example, if we want to show that  is not really as large as 12, the 
alternative hypothesis would be µA − µB ≥ 12.

An alternative hypothesis is often stipulated when the observed result appears to be “negative,” i.e., 
when the customary null hypothesis is not rejected. For example, if P > .3 for the stochastic test when 

, we can conclude that a “significant” stochastic difference was not demonstrated. We 
might wonder, however, whether an important quantitative difference was missed. If 12 is chosen as the  
magnitude of this difference, we could reappraise the data under the alternative hypothesis that µA − µB
≥ 12. If the latter hypothesis is rejected, we could then conclude that the observed result of 
is not likely to reflect a difference that is at least as large as 12.

For showing that an observed difference is stochastically significant, the level of α indicates the 
likelihood of a false positive conclusion if the ordinary null hypothesis (µA – µB = 0) is rejected when 
it is correct. If an alternative hypothesis is correct, however, we run the risk of a false negative conclusion 
when the null hypothesis of 0 is conceded. The ideas will be discussed in detail later in Chapter 23, but  
two main points can be noted now. The first point is that the extremes of the confidence interval are 
often explored for questions about the possibility of false negative conclusions. For example, an observed 
increment of .08 in two proportions might be regarded as “nonsignificant” both quantitatively (because 
it is too small) and stochastically, because P > .05 and because the 95% confidence interval, from −.06 
to +.22, includes 0. The possibility of a quantitatively significant difference (e.g., ≥ .15) cannot be 
dismissed, however, because the confidence interval extends to .22.

The second point is that although examining the extremes of confidence intervals is an excellent way  
to “screen” for alternative possibilities, an alternative hypothesis (such as πA − πA ≥ .15) is often formally 
tested for showing that an observed difference is “insignificant.” An additional stochastic boundary, 
called β, is usually established for this decision. The level of β indicates the likelihood of a false negative
conclusion if the alternative hypothesis is rejected when it is correct.

In statistical jargon, the false-positive conclusion is often called a Type I error, and the false-negative 
conclusion, a Type II error. The value of 1 – β is often called the statistical power of the study, i.e., its 
ability to avoid a Type II error. This additional aspect of “statistical significance” introduces a new set 
of ideas and reasoning that will be further discussed in Chapter 23.

11.10 Multiple Hypotheses

Another important question is what to do about α when a series of comparisons involves multiple 
hypotheses about the same set of data or multiple tests of the same basic hypothesis. The value established 
for α indicates only the chance of getting a false positive result in a single comparison where the null 
hypothesis is true. With multiple comparisons, however, the level of α may be misleading. For example, 
suppose we do 20 randomized trials of a treatment that is really no better than placebo. If we use a 
two-tailed level of α = .05 for each trial, we might expect by chance that one of those trials will produce 
a “significant” result. If we use a one-tailed level of α = .1, two of the trials might produce such results.

11.10.1 Previous Illustration

This same problem occurred earlier in considering whether the dice were “loaded” if two consecutive 
7’s were tossed. In the multiple events that occur when the two dice are tossed on many occasions, a 
pair of consecutive 7’s can readily appear by chance if the dice are perfectly fair. Because the probability 
of tossing a 7 is 6/36 = 1/6, the probability of getting two consecutive 7’s is (1/6)(1/6) = 1/36. At a dice 
table where the action is fast, two consecutive 7’s could readily appear in the short time interval consumed 
by 36 tosses.
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To determine the chance of getting at least one 7 in several consecutive tosses, we can note that the 
chance of getting it in one toss is 1/6 and the chance of not getting it is 5/6. Therefore, the chance of not  
getting a 7 is (5/6)(5/6) = .69 for two tosses, (5/6)5 = .40 for five tosses, and (5/6)20 = .03 for 20 tosses. 
Thus, the chances that a 7 will appear at least once are .17 (= 1/6) in one toss, .31 (= 1  .69) in two tosses, 
.60 in five tosses, and .97 in twenty tosses. If the null hypothesis is that the tossed dice are “loaded” to 
avoid a value of 7, the hypothesis will regularly be rejected by chance alone if tested on multiple occasions.

When you carry your knowledge of statistics into the pragmatic world of gambling casinos, this 
phenomenon may help you decide when to bet against a shooter who is trying to make a non-7 “point”  
before tossing a 7.

11.10.2 Mechanism of Adjustment

In the world of medical research, the chance results that can emerge from multiple testing may require 
an adjustment or precaution, which usually involves a change of the α level for individual decisions. As 
seen in the previous illustration of tossing dice, the false positive boundary of α for a single stochastic 
test becomes a true positive probability of 1 – α. For two tests, the true positive probability is (1 α)
(l α), so that the false positive boundary becomes 1  (1  α)2. For k tests, the false positive boundary 
becomes 1  (1 – α)k. Consequently with k tests, the α level for a false positive decision is really lowered 
to 1 – (1  α)k. This formula indicates why, if 1/6 was the chance of a 7 appearing once, its chance of 
appearing at least once in 20 tosses was 1  [1  (1/6)]20 = 1  (5/6 )20 = 1 − .03 = .97.

Many proposals have been made for strategies that lower α to an individual value of  that allows 
the final overall level of 1  (1  )k to be . The diverse strategies have many eponymic titles 
(Duncan, Dunnett, Newman-Keuls, Scheffe, Tukey) based on various arrangements of data from an 
“analysis of variance.” The simplest, easiest, and most commonly used approach, however, is named 
after Bonferroni. In the Bonferroni correction for k comparisons, . Thus, for four comparisons, 
an α of .05 would be lowered to  = .05/4 = .0125 as the level of P required for stochastic significance 
of each individual comparison. With  = .0125, the “final” level of α = 1  (.9875)4 = 1  .95 = .05.

11.10.3 Controversy about Guidelines

Although the Bonferroni correction is often used as a mechanism for how to do the adjustment, no 
agreement exists about when to do it.

Suppose an investigator, believing active treatment A is better than active treatment B, does a ran-
domized trial that also includes a placebo group (for showing that both treatments are actually effica-
cious). Should the α level be lowered to α/3 for the three comparisons of A vs. B, A vs. placebo, and 
B vs. placebo? As another issue, suppose an investigator regularly checks the results of an ongoing trial 
to see if it should be stopped because a “significant” result has been obtained? If k such checks are 
done, should each check require an α′ level of α/k? Yet another question is what to do about α in “data 
dredging” or “fishing expeditions” where all kinds of things might be checked in more than 500 
comparisons searching for something “significant.” If α is lowered from .05 to the draconian level of 
.0001 for each comparison, even a splendid “fish” may be rejected as “nonsignificant” when caught.

Because the answers to these questions involve more than mathematical principles alone, no firm 
guidelines (or agreements) have been yet developed for managing the challenges. The issues are further 
discussed in Chapter 25. 

11.11 Rejection of Hypothesis Testing

Regardless of whether the decisions are one-tailed or two-tailed, the most difficult task in all of the 
stochastic reasoning is to choose a boundary for rejecting null hypotheses or drawing conclusions from  
confidence intervals.
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11.11.1 Complaints about Basic Concepts

Some authors avoid this choice entirely by rejecting the basic ideas of testing stochastic hypotheses and 
drawing conclusions about “significance.” For example, in the encyclopedic four volumes called, The 
Advanced Theory of Statistics, Maurice Kendall and Alan Stuart4 refuse to use the terms null hypothesis
and significance because they “can be misleading.” Reservations about stochastic testing were also stated 
by two prominent leaders in the American statistical “establishment,” William Cochran and Gertrude 
Cox:5 “The hard fact is that any statistical inference made from an analysis of the data will apply only 
to the population (if one exists) of which the experiments are a random sample. If this population is 
vague and unreal, the analysis is likely to be a waste of time.” 

In a remarkable book called The Significance Test Controversy,6 published over 30 years ago, inves-
tigators mainly from the psychosocial sciences lamented the harm done by “indiscriminate use of 
significance tests.” The editors of the book concluded “that the significance test as typically employed 
… is bad statistical inference, and that even good statistical inference … is typically only a convenient 
way of sidestepping rather than solving the problem of scientific inference.”

Amid the many attacks (and defenses) in the 31 chapters of the book, none of the writers mentioned 
the idea of evaluating stability of the numbers. The main complaints about “significance testing” were 
that the research could not be statistically generalized because it usually contained “convenience” groups 
rather than random samples, that errors in the reliability of the basic data were usually ignored by the 
tests, that significance should denote substantive meaning rather than a probabilistic magnitude, and that 
infatuation with stochastic significance had overwhelmed the priority of attention needed for substantive 
significance.

In one of the chapters of the book, Joseph Berkson, the leading medical biostatistician of his era, 
objected to the null hypothesis because “experimentalists [are not] typically engaged in disproving 
things. They are looking for appropriate evidence for affirmative conclusions. … The rule of inference  
on which [tests of significance] are supposed to rest has been misconceived, and this has led to certain  
fallacious uses.”

11.11.2 Bayesian Approaches

The proponents of Bayesian inference are willing to calculate stochastic probabilities, but complain that 
the classical frequentist approaches are unsatisfactory. Some of the complaints7,8 are as follows:

1. It is counter-intuitive and may be scientifically improper to draw conclusions about “more extreme 
values” that were not observed in the actual data.

2. Two groups will seldom if ever be exactly equivalent, as demanded by the null hypothesis.
3. Confused by the contradictory method of forming hypotheses, many readers mistakenly 

believe that P values represent the probability that the null hypothesis is true.
4. Conventional confidence intervals do not solve the problem, since they merely indicate 

the potential frequentist results if the same study had unlimited repetitions.
5. Frequentist approaches are “rigidly” dependent on the design of the research, whereas Baye -

sian methods “flexibly” allow the application of subjective probabilities, derived from all 
available information.

In the frequentist approach, the stochastic conclusion indicates the probability of the data, given the 
hypothesis. In the Bayesian approach, the stochastic conclusion is a “posterior” determination of the 
probability of the hypothesis, given the data. This determination requires that a subjective appraisal (i.e., 
an enlightened guess) of a value for the prior probability of the hypothesis be multiplied by the value 
of a likelihood function, which is essentially the probability of the data given the hypothesis. In an 
oversimplified summary of the distinctions, the Bayesian’s conclusive P value is produced when the 
frequentist’s conclusive P value is modified by a subjective prior probability, and denotes the chance 
that the prior hypothesis is correct.
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The controversy recently received an excellent and often comprehensible discussion in a special issue 
of Statistics in Medicine,9 where the respective “cases” were advocated and later attacked on behalf of 
either frequentism10 or Bayesianism10 in clinical trials. 

11.12 Boundaries for Rejection Decisions

Despite the cited reservations and denunciations, stochastic tests of significance have survived, prospered, 
and prevailed. They are now routinely demanded by editors, reviewers, granting agencies, and regulatory 
authorities. As an investigator, you usually cannot escape the tests if you want to get your research 
funded or its publication accepted; and as a reader, you will find results of the tests appearing in most 
of the papers published in respectable journals. The Bayesian alternatives may have many merits, but 
they are seldom used.

Regardless of whether the customary tests are good or bad, worthwhile or harmful, they are there; 
and they will continue to be there for the foreseeable future. Accordingly, like it or not, we have to 
consider the daunting task of setting boundaries for decisions to reject a stochastic null hypothesis.

In stochastic hypotheses the observed result always has a chance, however tiny, of having occurred 
under the null hypothesis. The decision to reject the hypothesis will therefore be wrong if it was true 
on that occasion. The value set for α indicates the frequency with which we are willing to be wrong. 
Thus, if α is set at .05, we accept the chance of being wrong in one of every twenty times that the null 
hypothesis is rejected. (The wry comment has been made that “Statisticians are the only members of 
society who reserve the right to be wrong in 5% of their conclusions.”)

Relatively few people would calmly accept the idea that their decisions in daily life would have so 
high a frequency of error. Physicians practicing medicine (with or without the additional scrutiny of 
lawyers) might be unable to maintain an unperturbed aequanimitas if one clinical decision in 20 was 
flagrantly wrong. Nevertheless, if statistical inference requires hypothesis testing, a boundary must be 
set for the rejection zone.

11.12.1 P Values and α

Since probability values are measured in a continuum that extends from 0 to 1 (or from 0% to 100%), 
choosing a boundary to demarcate a small enough level of α is particularly invidious. The decision is 
somewhat like answering the question, “How large is big?” or “How much is enough?” If asked one of 
those two questions, you would probably answer, “It all depends.”

Nevertheless, a specific boundary was suggested many years ago by R. A. Fisher,11 when he introduced 
the name tests of significance for the rearrangement procedures. As noted earlier, Fisher set α at .05 
because about two standard deviations around the mean would span the 95% inner zone of data in a 
Gaussian distribution. He wrote, “It is convenient to take this point (i.e., α = .05) as a limit in judging 
whether a deviation is to be considered significant or not. Deviations exceeding twice the standard 
deviation are thus formally regarded as significant.”

In a posthumous biography, Fisher’s daughter12 stated that he later came “to deplore how often his 
own methods were applied thoughtlessly, as cookbook solutions, when they were inappropriate or, at 
least, less informative than other methods.” In subsequent writings after his initial proposal of .05, Fisher 
himself did not maintain the 5% boundary. He repeatedly referred to using a “1% level or higher” for 
stochastic decisions; and eventually he began to discourage the use of any fixed boundary. “The 
calculation is absurdly academic,” he wrote in 1959, “for in fact no scientific worker has a fixed level 
of significance at which from year to year, in all circumstances, he rejects hypotheses; he rather gives 
his mind to each particular case in light of his evidence and his ideas.”13

Although many other leaders in the world of statistics have also deplored the fixed boundary of .05, 
it has become entrenched in medical research. Reviewers and editors may adamantly refuse to publish 
results in which the P value reached the disastrous heights of .051, while happily accepting other studies 
that had unequivocal “significance,” with P = .049. Like many past medical doctrines that were maintained 
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long after they had been discredited, the “P ≤ 0.5” boundary will probably continue until it is replaced 
by something better (or equally doctrinaire).

11.12.2 Confidence Intervals

The problem of choosing a boundary for α is not eliminated by current arguments that P values be 
replaced by confidence intervals for stochastic decisions. The main contentions in the dispute are whether 
more information is provided by a P value or a confidence interval; but the choice of a boundary is not 
discussed. Because of the dominant role of α and Zα (or tα) in both calculations, a confidence interval 
is a type of “reciprocal” P value, as shown later in Chapter 13. A boundary of α must be chosen regardless 
of whether we calculate P to see if P ≤ α, or choose Zα (or tα) and then inspect the contents of the 
calculated confidence interval. The decision about rejecting the null hypothesis is based on exactly the 
same data and reasoning, whether the α boundary is examined directly with P or indirectly with the 
lower (or upper) limit of a confidence interval calculated with Zα or tα .

Consequently, the main advantage of a confidence interval is not the avoidance of an arbitrary α
boundary for stochastic decisions. Instead, the confidence interval shows an “other side” that is not 
displayed when the null hypothesis is conceded because of a too large P value. For example, the null 
hypothesis would have to be conceded if an observed difference in means was 175, with 102 as the 
standard error of the difference. The Z value would be 175/102 = 1.72, which is below the Zα of 1.96 
required for 2P < .05; and the 95% confidence interval, calculated as 175 ± (1.96)(102), would extend 
from −25 to 375, thus including 0. The same stochastic decision of “nonsignificant” would be reached 
with either approach as long as α = .05. The main merit of the confidence interval, however, would be 
its upper limit of 375, indicating that the “nonsignificant” difference of 175 might be as large as 375.

On the other hand, if α were given a one-tailed interpretation, Z.1 = 1.645. The Z value of 1.72 exceeds 
this boundary, so that P would be < .05; and the confidence interval calculated as 175  (1.645)(102) 
would have a lower limit of 7.2, thus excluding 0. With the one-tailed boundary for α, both methods 
(the P value and confidence interval) would lead to rejection of the null hypothesis and a stochastic 
proclamation of “significance.”

11.12.3 Descriptive Boundaries

Perhaps the only way to avoid a boundary for stochastic decisions about “significance” is to convert the 
focus of the decision. Instead of examining probabilities for events that might happen when the data are 
rearranged, we might directly inspect the descriptive possibilities.

For example, suppose we set 300 as the lowest value of δ for quantitatively significant increment 
between two groups. With this boundary, an observed value below δ would not be dismissed if a 
reasonable rearrangement would bring the results above δ. With this approach, the observed value of 
175 in the foregoing example would be regarded as “nonsignificant” if the stochastic α was set at the 
two-tailed value of .05. On the other hand, with a reasonable rearrangement of the data (in this instance, 
using a 95% confidence interval), the value of δ = 300 would be included in the zone of 25 to 375. 
The observed increment, despite its failure to pass the stochastic hurdle of “significance,” could not be 
dismissed as insignificant.

If the stochastic α had the one-tailed value of .1, however, the increment of 175 would be regarded 
as “significant.” Nevertheless, if we set 30 as the highest descriptive boundary of ζ for a quantitatively 
insignificant difference, the one-tailed 95% confidence interval that extends from 7.2 to 343 would 
include the 30 value for ζ (as well as the 300 value for δ). This interval would be too descriptively 
unstable for a decision in either direction.

To replace stochastic boundaries by descriptive boundaries would make things much more complex than 
their current state. We would have to choose not only descriptive boundaries for both δ and ζ, but also a 
method for rearranging the data. The “fragility” technique of unitary removals and relocations offers a method 
that can avoid hypothesis testing, P values, and choices of α, while producing a result analogous to a 
confidence interval.

© 2002 by Chapman & Hall/CRC 



Although an approach based on descriptive boundaries seems worthwhile and scientifically desirable, 
it departs from the established paradigms and involves many acts of judgment about which consensus 
would not be easily attained. Consequently, the entrenched boundaries of α— which are entrenched only 
because they got there first — are likely to be retained for many years in the future. You might as well 
get accustomed to their current hegemony, because you will have to live with it until scientific investigators 
decide to confront the basic descriptive challenges and create a new paradigm for the evaluations.
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Exercises

11.1. In a properly designed laboratory experiment, an investigator finds the following results in 
appropriately measured units:

Group A: 1, 12, 14, 16, 17, 17
Group B: 19, 29, 31, 33, 34, 125

The difference in mean values,  vs. , seems highly impressive, but the investigator 
is chagrined that the t test (discussed in Chapter 13) is not stochastically significant, presumably because 
of the particularly high variability in Group B. What relatively simple procedure (i.e., no calculations) 
might the investigator do to get evidence that the distinction in the two groups is stable enough to be 
persuasive?
11.2. In Section 1.1.3, the quantitative contrast between 8/16 and 6/18 seemed quantitatively impressive 
because the increment of .500  .333 = .167 seemed reasonably large. How would you interpret the 
results of a unit fragility test for this comparison?
11.3. In the examples cited in this chapter, when the observed result turned out to be “nonsignificant,” 
the upper end of the confidence interval was examined as a possibly “significant” value. In what 
“nonsignificant” circumstance would you want to examine the lower end of the confidence interval as 
a possibly significant value?
11.4. Although you may not yet have had much pragmatic experience in testing stochastic hypotheses,  
you have probably had some “gut reactions” to the controversy about using one-tailed or two-tailed 
criteria for P values. What are those reactions and what policy would you establish if you were appointed 
supreme czar of stochastic testing?
11.5. These questions refer to the choice of α = .05 as the boundary for customary decisions about 
stochastic significance.

11.5.1. Are you content with this boundary? If so, why? If not, why not, and what replacement 
would you offer?

11.5.2. In what kind of circumstance would you want to change the value of α to a more 
“lenient” boundary, such as .1 or perhaps .2?

11.5.3. In what kind of circumstance would you want a more strict boundary, such as .01 or .001?
11.5.4. What would be the main pragmatic consequences of either raising or lowering the 

customary value of α? How would it affect the sample sizes and costs of research? How 
would it affect the credibility of the results?

11.6. About two decades ago, the editor of a prominent journal of psychology stated that he wanted to  

XA 12.8= XB 45.2=
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improve the scientific quality of the published research. He therefore changed the journal’s policy from 
using α = .05 for accepting statistical claims, and said that henceforth no research would be published 
unless the P values were <.0l. How effective do you think this policy would be in achieving the stated 
goal? What kind of research do you think would be most affected by the new policy?
11.7. Here is an interesting optional exercise if you have time. In Section 11.10.1, we noted that the 
chance of getting two consecutive 7’s in two tosses of dice was .03, and that the chance of not getting 
a 7 in two tosses was .69. These two apparently opposite probabilities do not add up to 1. Why not?
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Permutation Rearrangements:  
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Of the main methods that rearrange two groups of data for stochastic tests, permutation procedures are 
particularly easy to understand. Unlike parametric methods, no theoretical assumptions are required 
about hypothetical populations, parameters, pooled variances, or mathematical model distributions; and 
unlike jackknife or relocation methods, the process involves no arbitrary removals or displacements. 
Everything that happens emerges directly from the empirically observed data. Furthermore, for contrasts 
of two groups, a permutation procedure is not merely statistically ‘‘respectable”; it is often the ‘‘gold 
standard” for checking results of other stochastic procedures.

The permutation strategy relies on the idea that when two groups of observed data are compared under 
the null hypothesis, the data can be pooled into a single larger group. The entire larger group is then 
permuted into all possible rearrangements that assign the data into batches of two groups of appropriate  
size. The results in the rearranged groups form a distribution that can be evaluated for P values and, if 
desired, for a counterpart of confidence intervals.

The best known permutation arrangement procedure, discussed in this chapter, is called the Fisher 
exact probability test. It was first proposed by R. A. Fisher 1 in 1934 and amplified by J. O. Irwin2 in 
1935. The eponym often cited is the Fisher–Irwin test, Fisher exact test, or Fisher test, although the last 
term may sometimes be ambiguous because Fisher also devised so many other procedures.
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12.1 Illustrative Example

Suppose an investigator finds that the success rates in a clinical trial are 75% for new Treatment A and  
33% for old Treatment B. The ratio of .75/.33 is 2.27; the direct increment is .75 − .33 = .42; the number 
needed to treat is 2.4; the proportional increment is (.75 – .33)/.33 = 127%; and the odds ratio is 
(.75/.33) × (.67/.25) = 6.1.

All of these quantitative comparisons are highly impressive and would strongly support the inves-
tigator’s claim that the distinction is quantitatively significant. On the other hand, if the actual sources 
of the observed numbers were 3/4 vs. 1/3, the claim might be instantly rejected. With so few people 
under study, the observed distinction could be merely a ‘‘fluke,” arising from chance alone, even if 
the two treatments are identical in the long run. Our quantitative enthusiasm would be overridden by 
our stochastic skepticism.

If the proportions of .75 and .33 arose from 450/600 vs. 200/600, however, we would have no problem 
in accepting the idea that the quantitatively significant difference is also stochastically significant. Chance 
alone could hardly be responsible for the observed increment when the groups are this large. (In fact, 
as we shall see later, the P value for this distinction is less than one in a million if the two treatments 
are really equivalent.)

With many other sets of data, however, the result of the stochastic contrast for .75 vs. .33 would not 
be evident ‘‘by eye,” and would be more difficult to evaluate. Such contrasts might occur if the numbers 
were 9/12 vs. 5/15, or 3/4 vs. 100/300, or 150/200 vs. 1/3. In these situations, the indexes of contrast would 
have the same quantitatively significant values previously noted for the increment, ratio, NNE, proportional 
increment, and odds ratio. We would not immediately be able to decide, however, whether the distinction 
is stochastically significant.

The Fisher Exact Test, which is a valuable method for making the stochastic decisions, will be first 
illustrated for the comparison of 3/4 vs. 1/3. (With larger numbers, an unwieldy amount of tabulation 
is needed to show all the possibilities.) 

12.2 Formation of Null Hypothesis

We begin by assuming that the two treatments are equivalent, i.e., TA  TB. With this assumption, the 
seven people who were treated in the two groups should have had exactly the same outcome, whether 
they received Treatment A or B. If we identify those seven people individually with the letters a, b, c, d, 
e, f, and g, their results can be listed as follows for the 3/4 success rate in Treatment A and 1/3 in 
Treatment B:

Persons a, b, c, and e are shown in italics to indicate that they were the successful members of the 
groups. The others—d, f, and g—were failures. According to the null hypothesis, each person’s outcome 
would have been the same whether treated with A or B. 

12.3 Rearrangements of Observed Population

In the combined data, seven people were originally divided so that four (a, b, c, and d) were in one 
group and three (e, f, and g ) were in the other. The seven people could have been divided in many other 

Treatment A Treatment B
Person Outcome Person Outcome

a Sucess e Sucess
b Sucess f Failure
c Sucess g Failure
d Failure
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ways, however, while preserving an arrangement that gives Treatment A to four people and Treatment
B to three. With a complete permutation of the data, we can see all of the possible ways in which this
arrangement can occur, and we can determine their effects on the observed results. The arrangements
are shown in Table 12.1, which you should examine carefully.

The first line ofTable 12.1 shows the original observations. The remaining 34 lines show all the other
possible arrangements that contain four persons in Group A and three in Group B. Each arrangement
is accompanied by the corresponding success rates that would be found in Groups A and B, and by the
incremental difference in the two rates.

The results of the 35 arrangements in Table 12.1 are summarized in Table 12.2. Of those 35 arrangements,
one would have produced an increment of 100% in favor of A; twelve would have produced an increment 
of 42% in favor of A; eighteen would have produced an increment of 17% in favor of B; and four would 
have produced an increment of 75% in favor of B. If we happened to pick one of those 35 arrangements 
randomly, the chances are .029 (= 1/35) that the increment would be 100%, .343 (= 12/35) that the increment 
would be 42%, .514 (= 18/35) for an increment of −17%, and .114 (=  4/35) for −75%. The chances of getting 
an increment as large as the one we observed in favor of A, or even larger, would therefore be .029 + .343 =
.372. The chance of getting an increment that is smaller than what was observed (or even negative) would be 

TABLE 12.1

Complete Permutation Distribution of Data for Two Groups with Success Rates 3/4 vs. 1/3

Identification of 
Arrangement

People in 
Treatment A

People in 
Treatment B

Success Rates for: Incremental 
Difference of A − BA B

1 a,b,c,d e,f,g 3/4 (75%) 1/3 (33%) 42%
2 a,b,c,e d,f,g 4/4 (100 %) 0/3 (0%) 100%
3 a,b,c,f d,e,g 3/4 (75%) 1/3 (33%) 42%
4 a,b,c,g d,e,f 3/4 (75%) 1/3 (33%) 42%
5 a,b,d,e c,f,g 3/4 (75%) 1/3 (33%) 42%
6 a,b,d,f c,e,g 2/4 (50%) 2/3 (67%) –17%
7 a,b,d,g c,e,f 2/4 (50%) 2/3 (67%) –17%
8 a,b,e,f c,d,g 3/4 (75%) 1/3 (33%) 42%
9 a,b,e,g c,d,f 3/4 (75%) 1/3 (33%) 42%

10 a,b,f,g c,d,e 2/4 (50%) 2/3 (67%) –17%
11 a,c,d,e b,f,g 3/4 (75%) 1/3 (33%) 42%
12 a,c,d,f b,e,g 2/4 (50%) 2/3 (67%) –17%
13 a,c,d,g b,e,f 2/4 (50%) 2/3 (67%) –17%
14 a,c,e,f b,d,g 3/4 (75%) 1/3 (33%) 42%
15 a,c,e,g b,d,f 3/4 (75%) 1/3 (33%) 42%
16 a,c,f,g b,d,e 2/4 (50%) 2/3 (67%) –17%
17 a,d,e,f b,c,g 2/4 (50%) 2/3 (67%) –17%
18 a,d,e,g b,c,f 2/4 (50%) 2/3 (67%) –17%
19 a,d,f,g b,c,e 1/4 (25%) 3/3 (100%) –75%
20 a,e,f,g b,c,d 2/4 (50%) 2/3 (67%) –17%
21 b,c,d,e a,f,g 3/4 (75%) 1/3 (33%) 42%
22 b,c,d,f a,e,g 2/4 (50%) 2/3 (67%) –17%
23 b,c,d,g a,e,f 2/4 (50%) 2/3 (67%) –17%
24 b,c,e,f a,d,g 3/4 (75%) 1/3 (33%) 42%
25 b,c,e,g a,d,f 3/4 (75%) 1/3 (33%) 42%
26 b,c,f,g a,d,e 2/4 (50%) 2/3 (67%) –17%
27 b,d,e,f a,c,g 2/4 (50%) 2/3 (67%) –17%
28 b,d,e,g a,c,f 2/4 (50%) 2/3 (67%) –17%
29 b,d,f,g a,c,e 1/4 (25%) 3/3 (100%) –75%
30 b,e,f,g a,c,d 2/4 (50%) 2/3 (67%) –17%
31 c,d,e,f a,b,g 2/4 (50%) 2/3 (67%) –17%
32 c,d,e,g a,b,f 2/4 (50%) 2/3 (67%) –17%
33 c,d,f,g a,b,e 1/4 (25%) 3/3 (100%) –75%
34 c,e,f,g a,b,d 2/4 (50%) 2/3 (67%) –17%
35 d,e,f,g a,b,c 1/4 (25%) 3/3 (100%) –75%
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.514 + .114 = .628. For the two-tailed probability of getting an increment of Š 42% in either direction, the 
chance is .029 + .343 + .114 = .486 or 17/35.

12.4 Probability Values

With the concepts and results of the previous two sections, we can set up the following table of relative
frequencies or probabilities for each of the possible outcomes.

Note that the sum of these four probabilities is 1.000, although sometimes the sums of the total
probabilities in a permutation distribution may be slightly different from 1 because of rounding errors.
Thus, if we listed the foregoing probabilities in two decimal places rather than three, the sum would be
.03 + .34 + .51 + .11 = .99.

For stochastic considerations, we contemplate the full external rather than isolated individual proba-
bility of an event. As discussed earlier, the external probability consists of the observed individual
probability, plus the probability of getting an event that is more extreme. In the foregoing table of events,
the first outcome is more extreme than the second in the same direction. Thus, the external probability
of having Treatment A exceed Treatment B by at least 42% is the sum of the first and the second
probabilities. A capital P is usually used for this purpose, and we could write (for the cited event)
P = p1 + p2 = .029 + .343 = .372.

If we have no preconception that one treatment is better than the other, we would want to know the 
two-tailed external probability values for chances that either one of the two treatments is superior by an
increment as high as 42%. To answer this question, we would include not only the probabilities p1 and
p2, but also p4, from the ‘‘other side” of the results, where B would be 75% better than A. The two-
tailed probability that a difference of 42% (or greater) might arise by chance is thus 2P = Σ(p1 + p2 + p4)
= .029 + .343 + .114 = .486. [The odds in this clinical trial would be about ‘‘even money” that if the 
two treatments are equivalent, one of them will appear to be at least 42% better than the other.]

The interpretation of the P values will depend on the level and direction set for α. In the foregoing
comparison of Treatments A and B, the 100% difference of 4/4 vs. 0/3, with its P value of .029, would
be stochastically significant if α were set at .05 but not at .02 or .01.

TABLE 12.2

Summary of Results in Table 12.1

Success Rates for:
Increment A–B

No. of
Arrangements

Identification of
Arrangements
in Table 12.1Treatment A Treatment B

4/4 (100%) 0/3 (0%) 100% 1 2
3/4 (75%) 1/3 (33%) 42% 12 1,3,4,5,8,9,11,14,15,21,24,25
2/4 (50%) 2/3 (67%) –17% 18 6,7,10,12,13,16,17,18,20,22,

23,26,27,28,30,31,32,34
1/4 (25%) 3/3 (100%) –75% 4 19,29,33,35

Distinction in Outcome Probability

A is 100% better than B p1 = 1/35 = 0.029
A is 42% better than B p2 = 12/35 = 0.343
B is 17% better than A p3 = 18/35 = 0.514
B is 75% better than A p4 = 4/35 = 0.114

TOTAL = 1.000
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12.5 Simplifying Calculations

Except for arbitrary decisions about the level of α and the unilateral or bilateral directions of P, the 
foregoing activities were quite straightforward. We were able to determine the exact value of P by 
considering all the permutation patterns that could have occurred in the actual, observed data. The
procedure has one major disadvantage, however: it can be a nuisance to do if all of the possible
combinations must be individually prepared, tabulated, analyzed, and counted. Fortunately, the calcu-
lations can be greatly simplified by using the numbers of permutations and combinations of a group
of objects.

12.5.1 Formulas for Permutations and Combinations

From the earlier discussion in Section 8.4.2.2, you may recall that a total of n objects can be permuted
into n! sequential arrangements, where n! = (n)(n − 1)(n − 2)(n − 3)…(1). This ‘‘sequential” permutation
can then be converted into ‘‘consequential” combinations indicating the number of ways in which r
items can be selected from n items. The formula is

For a simple example, consider the number of combinations of two letters that could be chosen from
the four letters a, b, c, d. The first choice could be done in four ways and the second in three, making
4 × 3 = 12 possible pairs. Each of those pairs can be permuted in 2 × 1 = 2 ways. There are thus 12/2 = 6
possible combinations. From the formula for combinations, we would find this number as 4!/[(2!)(2!)] = 6.
To verify the process, we can list the six possibilities: ab, ac, ad, bc, bd, and cd.

Note that the formula of n!/[r!(n − r)!] indicates the number of ways in which we can select r items
from a group containing n items. If we want to know about the remaining group that contains the
‘‘residue” of n − r items, we do not need a second formula, because the contents of that group will
always be uniquely determined after the first group is chosen. Thus, if we choose the letters b, c, e, and
g from a group containing a, b, c, d, e, f, and g, the remaining second group will be a, d, and f. Therefore,
the formula n!/[r!(n – r)!] will indicate the number of ways in which we can divide n objects into two
groups, one containing r members, and the other containing n − r members.

12.5.2 Application to the Fisher Exact Test

The formula for combinations can be used to simplify calculations for the Fisher Exact Probability test.
With the two proportions, 3/4 vs. 1/3, we first determine the number of ways of dividing seven people
into two groups, containing four people in one group and three in the other. The result is 7!/(4! × 3!) =
5040/(24 × 6) = 35. This is the quick way of determining that 35 arrangements are possible forTable12.1.

Next, we consider each of the four possible tabular arrangements for success and failure, preserving 
the ‘‘marginal totals” of four successes (S) and three failures (F), with four people in Treatment A and 
three people in Treatment B. The four possible tables are as follows:

I II III IV
S F S F S F S F Total

Treatment A 4 0 3 1 2 2 1 3 4
Treatment B 0 3 1 2 2 1 3 0 3

TOTAL 4 3 4 3 4 3 4 3 7

n
r
--- 

  n!
r! n r–( )!
----------------------= .
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In each of the four tables just cited, the marginal totals are identical, but the cells differ internally. These
are the four tables whose distinctive outcomes were summarized in Sections 12.3 and 12.4.

In each of the foregoing tables, we also have to consider the distribution of the four successful and
three unsuccessful patients. Table II contained three successes in one treatment and one success in
the other. This arrangement could be done in 4!/(3! × l!) = 4 ways. Simultaneously, the three failure
patients would have to be distributed so that two were in one treatment and one in the other. This
arrangement could be done in 3!/(2! × l!) = 3 ways. Consequently, Table II could be prepared in
4 × 3 = 12 ways.

Analogously, for Table III, the successful patients could be divided in 4!/(2! × 2!) = 6 ways and the 
failures in 3!/(2! × l!) = 3 ways, so that this table could be formed in 6 × 3 = 18 ways. For Table IV,
the number of possibilities would be [4!/(3! × 1!)] × [3!/(3! × 0!)] = 4 × 1 = 4 ways; and for Table I,
the number of possibilities is [4!/(4! × 0!)] × [3!/(3! × 0!)] = 1 × 1 = 1 way. These calculations have
produced the same frequencies that were determined previously from the long listing in Table 12.1. The
summary of those frequencies inTable12.2 showed 1, 12, 18, and 4 ways of getting the four respective
tables, I, II, III, and IV. 

12.6 General Formula for Fisher Exact Test

To develop the general formula for the Fisher Exact Test, suppose a total of N people have been divided 
so that n1 are treated with A and n2 are treated with B. The total number of possible arrangements 
for those people — preserving n1 in one group and n2 in the other — is N!/[(n1!) (N−n1)!] = N!/(n1!)(n2!) = 
Ν! /(n1!n2!).

Now suppose that f1 of the people were post-therapeutic successes and f2 were failures (where f1 +
f2 = N). The marginal totals of the table will be as follows:

Two of the marginal totals — n1 and n2 — are fixed by the decision to maintain the original arrangement, 
which had n1 members in one group and n2 in the other. We thus have N!/(n1!n2!) ways of achieving the 
basic arrangement. The other two marginal totals — f1 and f2 — are unchangingly fixed by our null 
hypothesis that the two treatments have identical effects. The remaining room for variation thus occurs 
among the four cells — a, b, c, d — of the table, which can now be fully shown as follows:

[Note that a, b, c, d here refer to numbers of people in the four cells of this table. These are not the 
individual people who were labeled for discussion in Section 12.2.] The f1 people who are successes 
can be arranged in f1!/a!c! ways, and the f2 people who are failures can be arranged as f2!/b!d!. The 
total number of possible arrangements for successes and failures in this particular table is thus

Success Failure Total

Treatment A n1

Treatment B n2

TOTAL  f1 f2 N

Success Failure Total

Treatment A a b n1

Treatment B c d n2

TOTAL f1 f2 N

f1!
a!c!
--------- f2!

b!d!
----------× .
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If we want to know the probability of getting this particular table among all the possible tables that could 
have been obtained, we divide the foregoing number by N!/n1!n2!. The result is

Rearranging terms, we get

[12.1]

where the subscript i on pi denotes the particular table that is being considered. To get the remainder of  
the probabilities, the remaining tables must be examined in the appropriate directions. Because the 
marginal totals remain fixed throughout, the term f1! f2! n1! n2!/N! will be the same for each table. It 
can be calculated separately for the first table and then used repeatedly thereafter. The pattern of 
probabilities in the sequence of tables is sometimes called the hypergeometric distribution.

12.6.1 Another Example of Calculations

In a clinical trial, Treatment C had a success rate of 1/5 (20%), whereas Treatment D had a success rate  
of 4/6 (67%). What is the likelihood that the difference arose by chance if the two treatments are actually 
identical?

To answer this question with the Fisher test, the observed results are first arranged as

The ‘‘direction” of these results shows an incremental success rate of 47% (= 67% − 20%) in favor 
of Treatment D. Keeping the marginal totals fixed, we now want to look in two different ‘‘directions” 
to see what other tables can be constructed with an incremental success rate of 47% or higher. Looking  
in the same “direction,” we seek results where the increment of ≥  7% is in favor of Treatment D. If the 
observed table is abbreviated as , the second, third, and fourth tables with similar or more extreme 
results in the same and in opposite directions are:

The p value for the original table is (5! 6! 5! 6!)/(1! 4! 4! 2! 11!) = 1.870129870 × /(1! 4! 4! 2!) 
= 0.162. If we let 1.870129870 × = k, the p value for the second table is k/(0! 5! 5! 1!) = 0.013. 
The p value for the third table is k/(0! 5! 6! 0!) = .002. The p value for the fourth table is k/(1! 4! 5! 1!) 
= 0.065.

Consequently, the one-tailed P value in the same direction is 0.162 + 0.013 = 0.175. (It covers the observed 
result plus another that is more extreme.) The P value on the other side is .002 + .065 = .067. The two-tailed 
P value is 0.175 + .067 = 0.242.

Success Failure Total

Treatment C 1 4 5
Treatment D 4 2 6

TOTAL 5 6 11

SAME OPPOSITE OPPOSITE
DIRECTION DIRECTION DIRECTION
(0% vs. 83% (100% vs. 0%) (80% vs. 17%)

f1!
a!c!
--------- f2!

b!d!
----------×

N!
n1!n2!
--------------

--------------------------

pi
f1!f2!n1!n2!
a!b!c!d!N!
---------------------------=

1  4
4  2 

 
 

0 5
5 1 

 
  5 0

0 6 
 
  4 1

1 5 
 
 

102

102
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12.6.2 Additional Considerations

Several other things will be helpful if you do the calculations for a Fisher Exact Test yourself, or if 
you want to check whether a computer program does them correctly. [Sometimes a ‘‘locally con-
structed” computer program does things wrong by getting the allegedly 2-tailed P value either from 
only the observed table or from the observed table plus only the others that are more extreme in the 
same direction].

12.6.2.1 Total Number of Examined Tables — The total number of tables that can be 
examined is one more than the smallest of the four marginal totals. Thus, if f 1 is the smallest number 
of the marginal values, the total number of tables is f1 + 1.

For example, suppose the original table is . The marginal totals here are 6, 25, 12, and 19, so 
that 6 is the smallest marginal value. According to the ‘‘formula,” we would expect a total of 7 tables. 
They are as follows:

The reason for f1 + 1 tables is that we can start with one table having f1 and 0 in one row; we then form 
additional f1 tables until reaching the opposite arrangement (0 and f1 ) as the endpoint in that row.

12.6.2.2 Number of Same-Direction Tables — If we simply want to determine how many 
additional tables will give us a more extreme result in the same direction, the answer is the smallest 
number in any of the four cells. The reason is that our quest toward the extreme direction will make 
this smallest number even smaller and the quest will end when the number reaches 0.

Thus, if we start with the table , there will be two tables that are more extreme in the same 
direction. They are  and .

12.6.2.3 Two-Tailed Calculations — In the procedures described earlier, we had to determine 
and calculate the tables separately for each ‘‘tail” of probability. This process is necessary whenever the  
two items in each pair of marginal totals are unequal, i.e., f1 ≠ f2 and n1 ≠ n2. If either one of these pairs 
has equal members, i.e., f1 = f2 or n1 = n2, the two tails of probability will be symmetrical, and the two-
tailed P value can be determined merely by finding the one-tailed value and doubling it.

For example, suppose the table under consideration is

The more extreme tables in the same direction are:

The analogous tables in the opposite direction are:

Success Failure Total

Treatment E 10 3 13
Treatment F 5 8 13

TOTAL 15 11 26

4  2
8 17 

 
 

6 0
6 19 

 
  5 1

7 18 
 
  4 2

8 17 
 
  3 3

9 16 
 
  2 4

10 15 
 
  1 5

11 14 
 
  0 6

12 13 
 
 

4  2
8 17 

 
 

5  1
7 18 

 
  6  0

6 19 
 
 

13 0
2 11 

 
  12 1

3 10 
 
  11 2

4 9 
 
 

2 11
13 0 

 
  3 10

12 1 
 
  4 9

11 2 
 
  5 8

10 3 
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The latter set of tables has the same interior cells as the first four tables and will yield the same individual 
pi values.

12.6.2.4 Two-Tailed Stopping Point — If n1 ≠ n2 and f1 ≠ f2, the tables in the opposite direction 
must be examined separately to find the one for which the absolute difference in proportions begins to 
be less than what was observed originally.

For example, in Section 12.6.1, the values of 4/6 vs. 1/5 had a difference of 47%. In the opposite 
direction, a difference of 47% or larger was noted for two sets of results: 1/6 vs. 4/5 and 0/6 vs. 5/5. 
The latter two tables would be the ones whose individual pi values would be added to provide the P 
component for the ‘‘tail” on the other side.

An algebraic formula can be developed to establish the particular table where the stopping point occurs 
on the other side. For the general  table shown in Section 12.6, suppose that the two proportions 
under comparison are a/n1 and c/n2. Suppose also that a/n1 > c/n2, so that (a/n1) − (c/n2) = e, where 
e is a positive number. Since f1 = a + c, it can be shown algebraically that e = (Na − n1f1)/n1n2. When we 
examine the other tail, the corresponding cells will be a′, b′, c′, and d′, and we shall want to have 
(c′/n2)− (a′/n1) ≥ e. Substituting the previous value of e into the latter equation, substituting f 1 = a′ + c′,
and working out the algebra, we get

To show how this formula works, consider the previous table . The increment in the original 
proportions under comparison is (4/6) − (8/25) = .35, where a = 4, n1 = 6, c = 8, n2 = 25, f1 = 12, and 
N = 31. To find the value of a′ on the ‘‘other side” of the tables, we calculate a ≤ [(2)(6)(12)/31] − 4 =
4.65 − 4 = 0.65. Thus, a′ must be less than 0.65, and its only possible integer value would be 0. To prove 
this point, the table  shows an increment of (0/6) − (12/25) = 0 −.48 = − .48; and the next table 

 shows an increment of (1/6) − (11/25) = .167 − .44 = − .27, which is smaller in absolute magnitude 
than the observed increment of .35. Consequently, the other tail contains only one table to be examined.

12.6.2.5 Limitation of Hand Calculators — With today’s electronic hand calculators, the 
largest number that can be managed is 10 × 1099, which usually appears as ‘‘10 E 99.” Consequently, 
the largest manageable value of n! is 69! = 1.7112 × 1098. Because of this limitation, the Fisher Exact 
Test cannot be done directly on a hand calculator if the total group size is ≥ 70.

There are various ways to trick the machine. For example, suppose N = 75 in Formula [12.1], but all 
other numbers are ≤ 69. You can first get f1!, then divide by a!, then multiply by f2!, then divide by b!, 
and so on, going ‘‘up and down” to keep the result relatively small. When you reach the division by 
75!, do not use it directly. Instead, divide by 69!, and then do repeat subsequent individual divisions by 
70, 71, 72,…, 75. In the B.E.C. (before electronic computation) era, the entire calculation was done by 
using the logarithms of n!, which are still available in handbooks of scientific or statistical tables. Today, 
however, if a Fisher Exact Test is sought for a sample size ≥ 70, the best approach is to go directly to 
the capacity of a digital computer, rather than trying to use a hand calculator.

Even if N ≤ 69, however, you may still need to arrange for an oscillating rather than direct compu-
tational process to avoid exceeding a value of 10 × 1099. Instead of multiplying f1! f2! n1! n2! to get the 
numerator, and then dividing by each term in the denominator, you can oscillate the calculational 
sequence as f1!/N! × f2! /a! × n1! /b! and so on.

12.7 Application of Fisher Test

The Fisher exact probability test can be applied to any comparison of two proportions. They will form 
a ‘‘fourfold” or 2 × 2 table whose rearrangements can then be developed. The Fisher test is particularly  
valuable for tables having ‘‘small” numbers in the cells. For tables with ‘‘large” numbers, almost identical 

a  b
c  d 

 
 

a′ 2n1f1

N
------------≤ a–

4  2
8 17 

 
 

0  6
12 13 

 
 

1  5
11 14 
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two-tailed P values will be produced by the chi-square test (discussed in Chapter 14), which is usually 
preferred because it is easier to calculate.

12.7.1 Small Numbers

The criteria for demarcating “small” and “large” numbers, as noted later in Chapter 14, vary with 
recommendations from different statistical authorities. Because the Fisher test is the ‘‘gold standard,” 
its use in all situations (particularly if a computer is available to do the calculations) will help avoid 
worries or disputes about what is small or large. If you think (or suspect) that the numbers in any cell 
are small, the chi-square test may be unreliable (and its ‘‘corrections’’ are controversial); and so the 
Fisher test should definitely be used.

12.7.2 One-Tailed Tests

Because the chi-square test produces a two-tailed P value, the Fisher test should also be used if you 
want a one-tailed P value for data in which you suspect that the two tails are not symmetrical.

12.7.3 Controversy about “Fixed” or “Random” Marginals

Although any 2 × 2 table can be submitted to a Fisher test, the particular proportions being compared 
can be constructed in different ways. Consider the fourfold table  with the n1, n2 row totals and f1,
f2 column totals shown in Section 12.6. In a randomized trial, we set fixed values of n1 and n2, but 
values of f1 and f2 emerge from the trial. In a case-control study, where groups are chosen from the 
outcome events, we fix the values of f1 and f2, but the n1 and n2 values emerge from the ascertainment 
process. In a general community cross-sectional survey, we fix the value of N, but the marginal totals 
of n1, n2, f1, and f2 emerge from the results of the survey.

These three different ways of getting ‘‘fixed’’ or ‘‘random’’ values of the marginal totals have led to 
a statistical dispute about whether all four observed marginal totals are appropriately regarded as ‘‘fixed’’ 
in the Fisher test and also in the chi-square test. The controversy has been useful for generating graduate-
school theses in statistics, but can otherwise be generally ignored. For pragmatic scientific purposes, 
the four marginal totals can be regarded as fixed; and the Fisher test calculations can be done as 
previously described. 

12.8 “Confidence Intervals” from Fisher Test

In the customary Gaussian construction (discussed in Chapter 13), a confidence interval is placed 
symmetrically around the observed increment of the two central indexes. In the Fisher test, however, a 
standard error is not determined to allow use of the Gaussian procedure. Nevertheless, an inner percentile 
zone that corresponds to a confidence interval can be determined directly from the array of sequential 
tables in the Fisher Exact Test.

The array of tables indicates the potential spread of data for proportions contrasted under the null 
hypothesis. The associated pi value of probability for each table indicates the relative frequency of the 
corresponding increment in proportions pA − pB in the total distribution. Addition of the pi values in 
both directions for adjacent tables produces an inner zone of probability. The values of the pA − pB

increments at the ends of the selected zone will then correspond to the limits of a confidence interval. 
It will surround the null hypothesis, rather than the observed increment, but it will offer exact boundaries 
for a demarcated zone of potential increments.

Furthermore, if the analyst wants to know about the occurrence of increments more extreme than the  
observed value, an exact probability can be found by adding the appropriate pi’s in the Fisher tables. 
Consequently, the tabular components of the Fisher procedure offer both an empirical and inferential 
method for stochastic decisions. From the permuted rearrangement of the observed data, the analyst can 
determine exactly what has happened or might have happened.

a  b
c  d 
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For example, consider the stochastic contrast of 18/24 = .75 vs. 10/15 = .67. The 2 × 2 table for this
comparison is

Because 11 is the smallest marginal total, the Fisher test will involve an examination of 12 tables. The
extreme ends are shown in Table 12.3.

A reasonably symmetrical 95% confidence interval will extend to the locations where the sums of pi

values exceed .95 for the interior tables or, alternatively, where the probability sums = .025 for the tables
in each tail. Because of the discrete values of pi for each of the constructed tables, the sums may not
add up exactly to .025 in each tail. In the array of Table 12.3, the best boundaries occur at Table II, for 
which p2 = .018, and at Table IX, for which p9 = .0078. The sum of the extreme probabilities is .0014 +
.018 = .0194 for Tables I and II, and, on the other end, 8.66 × = .00866 for Tables IX through XII.
The total external probability is .0194 + .00866 = .028. In the two interior tables (III and VIII) that are
demarcated within the outer boundaries, the corresponding values of the increments for pA − pB are −
.242 and .300. Thus, the zone created by the boundaries of −.242 to +.300 occupies 97.2% of the potential
increments. (The pi values for the remaining tables, not shown in Table 12.3, are p4 = .200, p5 = .282,
p6 = .241, and p7 = .127. The total spanned by the individual probabilites in Tables III through VIII is .972.)

As a more simple example, the data in the clinical trial of Section 12.6.1 would have the following
rearrangements in the Fisher test.

The zone from −10% to 27% will cover .433 + .325 = .758 or about 75% of the possible increments.
If extended from −47% to 63%, the interval will span an additional .162 + .065 = .227 of the possibilities,
so that the total inner percentile range will cover .758 + .227 = .985 of the increments. Thus, an ipr98.5
will extend from −47% to 63%.

This approach places the ‘‘confidence interval’’ around the value of the null hypothesis (which here
is the equivalence assumption of 0), rather than in the more customary location, discussed later, around
the value of the observed increment. Nevertheless, conventional P values are determined from what lies
outside the 95% (or other selected) boundary of sampled values, obtained via resamplings or parametric
theories, that are centered at the null hypothesis. Because Chapters 13 and 14 discuss the conventional
locations of confidence intervals for comparing two central indexes, the last main point to be noted now

TABLE 12.3

Extreme Ends of array of Tables for Fisher Exact Probability Test of 18/24 = .75 vs. 10/15 = .67

Table Number I II III … VIII IX X XI XII

Constituents { 13 11 14 10 15 9 … 20 4 21 3 22 2 23 1 24 0
15 0 14 1 13 2 8 7 7 8 6 9 5 10 4 11

Value of pA .542 .583 .625 … .833 .875 .917 .958 1.0000
Value of pB 1.000 .933 .867 … .533 .467 .400 .333 .267
Value of pA − pB –.458 –.350 −.242 … .300 .408 .517 .625 .733
Value of Fisher pi .0014 .018 .082 … .041 .0078 8.2 × 10–4 4.3 × 10–5 8.0 × 10–7

Compared Proportion Increment pi value

0/5 vs. 5/6 −83% .013
1/5 vs. 4/6 −47% .162
2/5 vs. 3/6 −10% .433
3/5 vs. 2/6 27% .325
4/5 vs. 1/6 63% .065
5/5 vs. 0/6 100% .002

18 6 24
10 5 15
28 11 39

10 3–
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is that the customary parametric approach for the confidence interval of two contrasted proportions may
not always yield one of the realistic values shown in the foregoing tabulation of Fisherian rearrangements.
[The disparities will be illustrated in Chapter 14.]

Although the Fisher-table method might offer an elegant solution to the problem of getting confidence
intervals for comparisons of two proportions, the method has not been automated and does not appear
in the computer programs offered by such ‘‘package” systems as BMDP or SAS. If you want to use the
method, you will have to work out a suitable approach. The simplest tactic is to start at the‘‘terminal’’
Fisher tables at each end and then work toward the center, as in Table 12.3.

12.9 Pitman–Welch Permutation Test

A permutation rearrangement can also be applied to dimensional data with results expressed as a
difference in two means rather than two proportions. The strategy of stochastically contrasting two means
by rearranging the permuted probabilities was described independently by two statisticians3,4 whose
names are joined here for the Pitman–Welch commemorative eponym.

Because the data are dimensional rather than binary, the calculations can become much more complex
than in a contrast of two proportions, where each individual item of data was either a 0 or a 1. The
binary data allow probabilities to be determined with the simplifying calculations that use permutations
and combinations for the 0/1 values. Because each item of dimensional data can have different values,
the same type of simplification cannot be used. Nevertheless, with the ‘‘short cuts” noted in the following
example, the computations can be substantially eased.

12.9.1 Example of a Contrast of Two Means

In four patients who received Treatment A, the measured results were 8, 11, 13, and 21 units, so that
the mean was 53/4 = 13.25 units. For Treatment B, the results were 19, 25, 31, and 37 units, with a
mean of 112/4 = 28.00 units. Is this difference of 14.75 units stochastically significant?

To answer this question, we could contemplate all the ways of arranging the eight values — 8, 11, 13,
19, 21, 25, 31, and 37 — into two groups, each containing four members. We could calculate the mean
for each group in the arrangement, find the difference in means for each pair of groups, and determine
how often the difference equals or exceeds 14.75. For the eight values divided into two groups of four
each, there would be 8!/(4!)(4!) = 70 arrangements to consider.

Table 12.4 shows 35 of these arrangements. Because the two groups each contain the same number
of four members, the second set of 35 arrangements would simply be a mirror image of what is shown
in Table 12.4, with all of the Group A results appearing as Group B and vice versa. This type of symmetry
occurs in permutation tests whenever the two compared groups have the same number of members. If
the numbers are unequal, the entire set of possible arrangements must be considered.

12.9.2 Summary of Distribution

The 35 arrangements in Table 12.4 can be summarized as follows:

Observed Difference in Means Frequency

15.75 1
14.75 1
10 to 14 3
7 to <10 5
4 to <7 7
0 to <4 7
−4 to <0 7
−7 to <−4 2
−10 to <−7 2
TOTAL 35
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We now have the answer to the basic question. An absolute difference of 14.75 units or more occurs 
twice in these 35 arrangements and would appear four times in the full total of 70 arrangements. The 
one-tailed P value is 2/70 = .03, and the two-tailed P value is 4/70 = .06.

12.9.3 Simplified Arrangement

To shorten (or avoid) all these calculations, we can note that the observed results for the group receiving  
Treatment A contain the three members with the lowest values (8, 11, 13) of the total array of values: 
8, 11, 13, 19, 21, 25, 31, and 37. The fourth observed value in Treatment A is 21, yielding the mean 
difference of 14.75 in the two groups. If we look for a difference in mean values that is more extreme, 
i.e., even larger, than 14.75, the only way to get it is if the fourth member of Group A were 19 rather 
than 21. For the group of values 8, 11, 13, and 19, the mean would be 12.75. The mean for 21, 25, 31,  
and 37 would be 28.50; and the difference in means would be 15.75.

Because there are only two ways of getting a mean difference that is at least as large as 14.75, the 
one-tailed P value will be 2/70 or .03. Because there are 4 members in each treatment group, 35 (or 
half) of the possible 70 arrangements will be symmetrical. Thus, there will be one arrangement in which 

TABLE 12.4

Permutation Arrangements in Comparing Means of Two Groups

Data for Group A Data for Group B Mean
Treatment A Mean Treatment B Mean Group B − Group A

8,11,13,19 12.75 21,25,31,37 28.50 15.75
8,11,13,21 13.25 19,25,31,37 28.00 14.75*
8,11,13,25 14.25 19,21,31,37 27.00 12.75
8,11,13,31 15.75 19,21,25,37 25.50 9.75
8,11,13,37 17.25 19,21,25,31 24.00 6.75
8,11,19,21 14.75 13,25,31,37 26.50 11.75
8,11,19,25 15.75 13,21,31,37 25.50 9.75
8,11,19,31 17.25 13,21,25,37 24.00 6.75
8,11,19,37 18.75 13,21,25,31 22.50 3.75
8,11,21,25 16.25 13,19,31,37 25.00 8.75
8,11,21,31 17.75 13,19,25,37 23.50 5.75
8,11,21,37 19.25 13,19,25,31 22.00 2.75
8,11,25,31 18.25 13,19,21,37 23.00 4.75
8,11,25,37 19.75 13,19,21,31 21.50 1.75
8,11,31.37 21.25 13,19,21,25 20.00 −1.25
8,13,19,21 15.25 11,25,31,37 26.00 10.75
8,13,19,25 16.25 11,21,31,37 25.00 8.75
8,13,19,31 17.75 11,21,25,37 23.50 5.75
8,13,19,37 19.25 11,21,25,31 22.00 2.75
8,13,21,25 16.75 11,19,31,37 24.50 7.75
8,13,21,31 18.25 11,19,25,37 23.00 4.75
8,13,21,37 19.75 11,19,25,31 21.50 1.75
8,13,25,31 19.25 11,19,21,37 22.00 2.75
8,13,25,37 20.75 11,19,21,31 20.50 −0.25
8,13,31,37 22.25 11,19,21,25 19.00 −3.25
8,19,21,25 18.25 11,13,31,37 23.00 4.75
8,19,21,31 19.75 11,13,25,37 21.50 1.75
8,19,21,37 21.25 11,13,25,31 20.00 −1.25
8,19,25,31 20.75 11,13,21,37 20.50 −0.25
8,19,25,37 22.25 11,13,21,31 19.00 −3.25
8,19,31,37 23.75 11,13,21,25 17.50 −6.25
8,21,25,31 21.25 11,13,19,37 20.00 −1.25
8,21,25,37 22.75 11,13,19,31 18.50 −4.25
8,21,31,37 24.25 11,13,19,25 17.00 −7.25
8,25,31,37 25.25 11,13,19,21 16.00 −9.25

* = observed result.
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the values 19, 25, 31, and 37 appear in Group A, while 8, 11, 13, and 21 appear in B; and another
arrangement in which 21, 25, 31, and 37 appear in A, with 8, 11, 13, and 19 in B. Consequently, the 
probabilities on the ‘‘other side’’ will be distributed in a manner similar to those of the ‘‘first side.”
Thus, the two-tailed P value will be .03 + .03 = .06.

If α is set at .05, the one-tailed but not the two-tailed probability will be ‘‘statistically significant.”

12.9.4 “Confidence Intervals”

Like the Fisher test, the Pitman–Welch procedure offers P values for the null hypothesis, but does not
produce confidence intervals around the observed distinction. Nevertheless, from the probability values
associated with each arrangement of the data, a counterpart of confidence intervals can be formed to
show extreme limits on either side. For example, the results in Table 12.4 show that 2 of the 35 one-
sided arrangements have incremental means that are >13. Among the 35 arrangements on the other side, 
2 would have incremental means that are <−13. Consequently a zone from −13 to +13 would cover 
66/70 = .94 of the data—an ipr94 for the spread of possible increments in means. Because these intervals 
are not arranged, however, around the observed difference (which is 14.75 in this instance), the Pit-
man–Welch procedure is seldom used for the stochastic goal of forming a confidence interval around 
the observed distinction in means. The conventional procedure for the latter goal will be discussed in 
Chapter 13.

12.9.5 Additional Application

The Pitman–Welch procedure is an excellent way to manage the problem previously stated in Exercise 
11.1, where the difference seemed obviously ‘‘significant,’’ but where high variability in the data 
prevented the t-test from giving stochastic confirmation. In Exercise 11.1, a group of 12 items was 
divided into two groups of 6 each, so that the number of possible arrangements is 12!/[(6!)(6!)] = 924. 
Because all of the ‘‘low” values were in Group A and all of the ‘‘high” ones were in Group B, the 
observed data are at the extreme ends of the two-group distribution. Any other arrangement will lead 
to a smaller increment. Because there is a ‘‘mirror” extreme table at the other side, the 2-tailed P value 
is 2/924 = .002 for the observed result.
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Exercises

The assignment is relatively light to allow you to digest all the reading material.

12.1. In Section 12.6.1, the two-tailed P value was determined from only four possible tables of the 
observed data. How many more such tables are there? Calculate the p value for each such table, and 
show that the sum of all the p values for all the tables is unity.
12.2. In Section 12.1, we compared the proportions, 9/12 (75%) vs. 5/15 (33%). Perform a Fisher Exact 
Probability Test for both tails of this stochastic contrast. (Be sure to show your constituent results.) 
12.3. In a randomized clinical trial, an investigator finds the following dimensional results: For 
Treatment X: 2, 8, 11, and 13 units; and for Treatment Y: 1, 3, and 6 units. Perform a Pitman–Welch 
probability test on the difference in means, in both possible directions.
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The procedures described in Chapter 12 are simple, direct, relatively easy to understand, and empirical.  
They use the evidence that was actually observed, and they require no excursions into a hypothetical 
world of parent populations and parameters. The tests can be used for stochastic contrasts of any two 
binary proportions, two means, or even, if desired, two medians. (In the last instance, the permuted 
samples would show the distribution of differences in medians, rather than means.)

Permutation tests, however, are not the customary methods used today for evaluating stochastic 
hypotheses. Instead, the conventional, traditional approaches rely on parametric procedures that are well 
known and long established. You may have never heard of the Fisher and Pitman-Welch tests before 
encountering them in Chapter 12, but your previous adventures in medical literature have surely brought 
a meeting somewhere with the two-group (or “two-sample”) Z and t tests.

They are based on the same principles described in Chapter 7 when the Z and t procedures were used 
in parametric inference for a single group. In this chapter, the principles for one group are expanded to  
their most common application: a contrast of two groups.

13.1 Differences in Permutation and Parametric Principles

For the Fisher and Pitman-Welch permutation procedures described in Chapter 12, the central indexes 
of the two observed groups were converted to a single group of increments. The distribution of the 
rearranged group of increments showed all the potential differences that could occur, for the Fisher test, 
in the two proportions, and for the Pitman-Welch test, in the two means. Decisions about P values or 
confidence intervals were then made from what was found in that distribution.

This same type of activity occurs when two groups are contrasted with parametric methods. A single  
group is formed from the observed results in the two groups; a set of samples is constructed; and decisions 
are made from the distribution of the samples. The permutation and parametric procedures differ mainly 
in that the parametrically constructed samples are theoretical, rather than empiric, and that the distribution 
is examined for a test statistic, rather than for increments of the central indexes. The main advantage of  
the parametric procedure is that the test statistic theoretically has a specific mathematical distribution, 
which presumably will always be the same, regardless of what actually occurred in the two observed 
groups. The mathematical distribution has previously known probabilities for each value of the parametric 
test statistic, which can thus be promptly used for decisions about P values and confidence intervals.

This advantage is what made the parametric procedures so popular in the days before ubiquitous 
digital computation. With permutation techniques, the single group of re-arranged increments forms a 
unique structure that must be calculated ad hoc for each pair of contrasted groups. Although easy to 
understand, the calculations were usually difficult to do. With parametric techniques, the single theoretical 
distribution of the test statistic can be applied for a contrast of almost any two groups; and the test 
statistic itself has a formula that makes calculation relatively easy. The hard part, however, is to understand 
the mathematical reasoning that underlies the theoretical construction.

13.2 Parametric Comparison of Two Means

In common forms of statistical inference, the summary index for contrasting two groups is the direct 
increment of the two central indexes. For two observed means,  and  the increment is −
or  and for two proportions, p A and pB, the increment is pA − pB or  For parametric 
procedures, these increments are converted to the standardized values of the test statistics Z or t. In the 
discussion that follows, the conversion process and reasoning will first be described for contrasting two 
means. The contrast of two proportions will be discussed later in Section 13.8.

As you might expect from Chapter 7, the Z and t procedures for comparing two means are quite 
similar. With both procedures, we form the same “critical ratio,” which is the test statistic called Z 
or t. With both procedures, the critical ratio consists of the observed increment in means divided by  
its standard error. With both procedures, the critical ratio can be interpreted with a P value or used 

XA XB, XA XB

XA XB– ; pA pB– .
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to construct a confidence interval. With both procedures, the critical ratio is interpreted in reference 
to a parametric mathematical model of the “sampling distribution.” The only difference between the 
two procedures is in the mathematical model. For large groups, the model is the Gaussian Z distri-
bution; for small groups, the model is the “Student” t distribution, selected for the appropriate degrees 
of freedom.

Although the basic operations are similar for the t and Z procedures, and for contrasting two groups 
rather than examining only one, a new strategy is needed to estimate the parametric standard error for 
an increment in means. For this strategy, the observed two groups of data are converted into a theoretical 
sample consisting of increments in means, and the standard error is found as the standard deviation in 
that sample.

The basic principles of that process, discussed in the rest of this section, involve a lot of mathematics, 
but should not be too difficult to understand. It is worth reading if you want to know about a prime 
doctrine in the “ethos” of parametric inference. If not, skip to Section 13.3.

13.2.1 Basic Principles

For two observed means,  and  in groups having the respective sizes nA and nB, with total size 
N = nA + nB, the parametric reasoning assumes that Group A is a random sample from a population 
having µA as mean and σA as standard deviation, and that Group B analogously has the populational 
parameters µB and σB.

We now do a repetitive theoretical sampling process as in Chapter 7, but on each occasion, we draw 
a pair of samples, not just one. One sample, with nA members, is taken from population A and has 
as its mean. The other sample, of size nB, is taken from population B and has  as its mean. We then 
subtract those two sampled means to form a single item of “new” data, which is the increment in means,  

As the theoretical sampling process is repeated over and over, each time yielding different values of 
 and  the increments in those two means form a distribution having its own parametric mean, 

and its own parametric variance and standard deviation. The next step is to determine what they are.

13.2.2 Variance in Increments of Two Means

To determine the parametric variance of the increments  we resort to a concept that appeared 
in Appendix 7.1, with an illustration in Table 7.4. The concept is that the variance of either a sum or
difference in two variables is equal to the sum of their variances. For the series of means sampled from  
population A, the parametric variance will be  which is estimated as 

The corresponding parametric variance for the means in population B will be  estimated as 
 The variance of the distribution of increments in means could therefore be estimated as

[13.1]

Although this sum offers a satisfactory estimate for σC, a problem will arise for the stochastic null 
hypothesis.

13.2.3 Estimation of Parametric Variance

The appropriate estimate for the parametric variance depends on what we have in mind for the null 
hypothesis. If the null hypothesis assumes that the two means are equal, i.e., µA = µB, we imply that the 
data forming the increments in the two sample means,  and  came from the same single 
population, having 0 as its parametric mean, i.e., µC = µA – µB = 0, with σ as the standard deviation of 
the data. After making the assumption that µA = µB, however, do we also assume that σA = σB = σ?
With the latter assumption about variance, we cannot estimate  directly from  and  because 
sA and sB may not be equal. If we do not assume that σA = σB, however,  can readily be estimated 
from the sum of  in Formula [13.1].
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In most circumstances, the null hypothesis assumes that the two groups are parametrically equal for 
both the means and the variances, i.e., that µA = µB and σA = σB = σ. In other situations discussed in 
Section 11.9 and later in Chapter 23, however, the stochastic assumption is an alternative hypothesis 
that the two means are different, i.e., µA ≠ µB. In the latter situations, we do not require that σA = σB.

If σA ≠ σB, the parametric variance of the increments of means can be correctly estimated with Formula 
[13.1]; but for most ordinary uses of the two-group Z or t test, the null hypothesis assumes equivalence 
of both means and variances. Consequently, because the observed  will seldom equal , we need a 
new way to estimate σ with the idea that σA = σB. For this tactic, we estimate σA and σB as the “average” 
value of sA and sB, found from their pooled variance, called  The pooling process was shown earlier 
in Section 10.5.1.1. The group variances,  in Group A and  in group B, are added to form 

 as the pooled group variance. This sum is then divided by the combined degrees of freedom 
to form the average pooled variance of the total data as

[13.2]

The degrees of freedom are calculated as

νc = νA + νB = nA − 1 + nB − 1 = N − 2

because, as noted in Section 7.5.2, the estimate of µc as µA − µB requires estimates for µA and µB.
Therefore, two degrees of freedom are lost from the total group size, N. Because 
and  a convenient working formula is

[13.3]

For example, suppose a group of 8 people have a mean chloride value of 101.25, with s = 4.30. 
Another group of 15 people have a mean chloride value of 96.15 and s = 4.63. To find the pooled 
variance, Formula [13.3] would produce

and sp = = 4.52. This result is what would be anticipated as a “common standard deviation” for  
the two groups: the value of s p lies between the two observed values of sA = 4.30 and sB = 4.62; and the 
pooled value in this instance is closer to sB, because Group B had a larger size for nB.

13.2.4 Construction of Standard Error

The value of the parametric variance,  in the theoretical samples of increments of means is the 
square of the standard deviation, σC, in those samples. This standard deviation is the standard error 
needed for the denominator of the critical ratio.

If we were not using a pooled standard deviation, sp, the standard error could promptly be calculated  
for the cited two groups of chloride values using Formula [13.1] and inserting

so that sC = 1.93.
When a pooled standard deviation is used, however,  is substituted for both  and  in Formula 

[13.1]. The result is a slightly different estimate, designated as  and calculated as
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For the example under discussion,

so that sC′ = 1.98.

13.2.5 Similarity of the Two Estimates

According to the type of null hypothesis being tested, either sc or sc′ will represent SED, the standard 
error of the difference in two means.

As in various other mathematical niceties — such as when to use t or Z — the distinction between 
 and  (or between sC and sC ′) is theoretically important. Pragmatically, however, the distinction 

often makes little difference, because sC and sC′ are usually quite similar, as in the values of 1.93 and 
1.98 for the example here. In fact, with development of the algebra, it can be shown that

[13.5]

The result shown in Formula [13.5] will be slightly positive or negative according to the relative 
magnitudes of nB vs. nA and sA vs. sB. If the original sample sizes or variances are similar, so that nB =
nA or sA = sB, the values of  and  will be identical.

Nevertheless, it is useful to know the rules and to “play the game” properly. You would probably do  
just as well in a “surgical scrub” if you used an ordinary good soap, rather than the special chemical 
solution that is usually provided. You keep your operating-room colleagues happy, however, by using 
the special chemical. Analogously, you will keep your statistical colleagues happy by using the pooled 
standard deviation, sp, and the pooled standard error, sC′ , to test a zero null hypothesis, and the unpooled  
sC to test the nonzero alternative hypotheses discussed later.

13.2.6 Estimating the Parametric Mean

The last step needed to form the critical ratio for the test statistic is to estimate the parametric mean of  
the distribution of increments in means, formed as

µc = µA − µB

In Section 7.3.7.2, we learned that the parametric mean is best estimated, on average, from the value of  
the observed mean. Therefore,  is best estimated by the observed  and  by the observed 
Accordingly, the value of µC is best estimated as

13.3 Z or t Tests for Means in Two Groups

With the principles cited throughout Section 13.2, we are now ready to use t or Z for stochastic tests 
on a difference in two means. The critical ratio will be

Under the parametric null hypothesis that µA = µB, the second term in the numerator of this ratio vanishes. 
The standard error of the difference in means can then be estimated in two ways. For the conventional 
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null hypothesis, the standard error is estimated as sC ′ from the pooled variance, sp. The critical ratio 
becomes

[13.6]

When sc′ is calculated with Formula [13.4] and sp with Formula [13.3], the “working” formula becomes

[13.7]

Formula [13.7] is used for an ordinary “two-sample” Z or t test.
The alternative formula, used for the “alternative hypotheses” discussed later, places sC rather than sC′

in the denominator. With Formula [13.1] for sC , the critical ratio is

[13.8]

The reference distribution for interpreting the test statistic formed in either Formula [13.7] or [13.8] 
depends on sample size. For larger groups, we use the standard Gaussian Z distribution. For smaller 
groups, the t distribution is applied, with ν = nA − 1 + nB − 1 = N − 2.

The interpretation can produce either P values or confidence intervals or both. P is found as the 
appropriate value associated with the calculated critical ratio of Z or tυ. A confidence interval is 
constructed by first choosing Zα or tν,α for the selected 1 − α level of confidence. The standard error of 
the difference is then multiplied by Zα (or tν,α), and the interval becomes calculated as

or as

13.3.1 Example of Calculations

For the two groups of chloride values that were cited in Section 13.2.3, − = 101.25 – 96.15 =
5.1. The two possible values for SED (calculated in Section 13.2.4) were 1.93 for sC and 1.98 for sC′.
The critical ratio (calculated with sC ′) would be

For groups having 8 and 15 members, ν = 7 + 14 = 21. The critical ratio (or “test statistic”) would 
therefore be interpreted from t21 in Table 7.3 as a 2-tailed P value for which .01 < 2P < .025. At the
α rejection level of .05, this result is “significant.”

To determine a 95% confidence interval around the observed increment, we first find
After calculation of (2.080)(1.98) = 4.12, the interval will be ± 4.12 = 5.1 ± 4.12, and extends 
from .98 to 9.22. Because the null-hypothesis value of 0 is excluded, the result is “significant.”

More examples and opportunities for calculation are available in the Exercises at the end of the chapter.

13.3.2 Crude Mental Approximation

A crude mental approximation can sometimes be useful as a “screening” test for a “significant” confidence 
interval. For the approximation, the two individual standard errors,  and  are simply added as
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[13.9]

If the results for each group have been summarized with standard errors (rather than standard devia-
tions), the two standard errors can be added immediately. For the example at the end of Section 13.2.3,  
however, “standard errors were not listed for each group of chloride values. We therefore use Formula 
[13.9] to calculate the crude combined standard error as sc″ = (4.30/ ) + (4.63/ ) = 1.520 + 1.195 =
2.715. It is larger than either sC = 1.93 or sC′ = 1.98.

The value of sC″ will always exceed the value of sC obtained from Formula [13.1]. (You can prove 
this statement by squaring formula [13.9] and comparing  with  in Formula [13.1].) Consequently, 
any confidence intervals calculated with  will be larger than those calculated with sC and almost 
always larger than those calculated with sC′.

The value of the enlarged crude sc″ interval can then be used for a quick, mental answer to questions 
about stochastic significance. The first step is to approximate Zα or tν,α as 2 for a 95% confidence interval 
and then double the sC″ value of 2.715 to produce 5.430. The confidence interval will not include 0 
whenever the doubled crude value of sC′′ is less than  In this instance  is 5.1 and the 
doubled sC″ is >  We therefore cannot promptly conclude that “significance” exists. If 2sC″
were smaller than 5.1, however, we could reach the conclusion of stochastic significance without needing 
the formal test.

Thus, a working rule for the “in-the-head” approach is:

1. Add the two standard errors.
2. Double the added value.
3. If the doubled value is distinctly smaller than the difference in the two means, the result is 

stochastically significant at 2P < .05.
4. Otherwise, do the formal test. (In this instance, as shown in Section 13.3.1, the formal value  

of 2P turned out to be <.05.)

When the two means and their standard errors are cited on a “slide” during an oral presentation, the 
use of this mental tactic, followed by an appropriate comment, can sometimes make you seem like a 
wizard. Beware of “false negative” conclusions, however. You will seldom commit a “false positive” 
error in claiming “significance” if 2sC″ is <  but if not, the formal test should be done.

13.3.3 Summary of Procedure

Although permuted non-parametric methods (such as the Pitman-Welch test) will probably eventually 
replace the t test and Z test, the two parametric procedures will remain popular for many years to come. 
For readers who want a synopsis of “cookbook” directions, two recipes are cited below for the t test. 
The same recipes are used for Z, when degrees of freedom can be ignored with larger samples (e.g., 
N > 40).

13.3.3.1 Getting a P Value

1. For each group, A and B, calculate a mean, group variance (or “sum of squares”), and a standard 
deviation. The respective formulas are = ΣXi/n; SXX =  and s =

2. Add  or, alternatively, (nA − 1) + (nB − 1)  Divide the sum by nA + nB − 2.
The result is the pooled variance,  in the data.

3. Calculate the estimated standard error of the difference in means as  [It 
is calculated directly as  for the “alternative” hypothesis.]

4. Choose a value of α  and decide whether the result will be interpreted in a two-tailed or one-
tailed direction. For a one-tailed test, t is associated with half the probability value of a 
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two-tailed test. (All these directional decisions should be made before the value of t is
calculated, and preferably before any of the statistical analysis begins.)

5. Calculate t as:

6. Using nA + nB − 2 degrees of freedom, look up the corresponding P value in Table 7.3 or in
a more complete table.

7. Using the preselected value of α, decide whether the P value allows you to reject the null
hypothesis and to proclaim stochastic significance.

13.3.3.2 Getting a Confidence Interval — If you prefer to use the confidence interval tech-
nique for checking stability, the steps are as follows:

1. Carry out the previous steps 1 to 4 to find the estimated standard error of the difference,

2. Select the 1 − α level of confidence and find the value of tν,α that is associated with this value
of α, with ν = nA + nB − 2.

3. Multiply the selected t value by
4. Obtain the 1 − α confidence interval by adding and subtracting the result of step 3 to the 

value of
5. Concede or reject the null hypothesis according to whether this confidence interval includes

or excludes the value of 0.

After you have finished the procedure, particularly if the conclusion is what you had hoped for, obtain
a Guinness product and drink a toast to the memory of William S. Gosset. If you prefer, get a German
beer and say “prosit” for Carl F. Gauss.

13.3.4 Electronic Computation

With modern electronic computation, you may never actually have to do the calculations of t or Z. If
properly commanded, an appropriate program will do the calculations and promptly give you the results.

You may also never have to use tabular arrays, such as Table 7.3, either to find the associated P values
or to guess about interpolated results when the calculated t or Z lies between the values tabulated at 
P levels of .2, .1, .05, .025, .01, etc. Many “packaged” computer programs today will use the mathematical
formulas of standard t and Gaussian distributions to obtain the exact probabilities associated with any 
value of t and Z. The printout will show you both the t or Z value and a precisely calculated external 
probability such as P = .063.

The only potential problem in the printouts is that they may not show the actual magnitude of very tiny 
P values. If P is below .00005, the result may be printed as P = .0000. At even tinier P values, below 
1 × 10−16, the printout may show P = •. Unless you know about these symbolic conventions, the printout  
may initially be confusing.

The calculational formulas are necessary if you have to do the computations yourself, if you want to 
check whether an electronic program has done them correctly, or if you occasionally do a mental 
screening of presented results. You also need to know about the underlying strategy when you decide 
about 1- or 2-tailed interpretations of P.

13.3.5 Robustness of Z/t Tests

A statistical test is called robust if it is “insensitive” to violations of the assumptions on which the test 
is based. For example, because the means of small-sized groups do not have a Gaussian distribution, 
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the Z procedure is not robust and will give inaccurate results at small group sizes. The t distribution is 
therefore used for small groups when P values are interpreted for the “critical ratio” in Formula [13.7].

For the two-group t or Z procedures, the underlying assumption that is most likely to be violated is 
the idea that the observed variances,  and  come from the same parametric population, with 
variance σ2, estimated by the pooled variance,  If  and  however, are highly heteroscedastic 
(which is a splendid word for having dissimilar variances), the invalid assumption might lead to defective 
values for the critical ratio and its interpretation. To avoid this potential problem, some statisticians will  
do a “screening” check that the ratio of variances,  does not greatly depart from 1. This screening 
is seldom used, however, because most of the concerns were eliminated after a classical study by Boneau.1
He did a series of Monte Carlo samplings showing that the t test was “remarkably robust” except in the  
uncommon situation where both the group sizes and the variances in the two groups are substantially 
unequal. In the latter situation, the best approach is to use a Pitman-Welch test.

13.3.6 Similarity of F Test

The published literature sometimes contains a report in which the means of the two groups have been 
stochastically contrasted with an F test. The F test strategy, which is customarily used in a procedure 
called analysis of variance (discussed later in Chapter 29), was originally developed for contrasting the  
means of three or more groups, rather than two. For two-group contrasts, however, the calculated value  
of F is the exact square of the critical ratio used for t, and the squared ratio is interpreted with an F, 
rather than t, distribution. Nevertheless, the P values that emerge from the F test in a two-group contrast 
are identical to those obtained with a t test.

The F test is also used when heteroscedasticity is checked for the ratio of the two variances,  and 

13.4 Components of “Stochastic Significance”

Formula [13.7] indicates that the stochastic calculation of t or Z is a product of several components, 
which produce the conversion of quantitative into stochastic indexes. One of these components is the 
standardized increment, which you may recall from Section 10.5.1. The other two components reflect 
the size and partition of the total group under examination. The diverse components become apparent 
if we rewrite Formula [13.7] as

[13.10]

13.4.1 Role of Standardized Increment

In Chapter 10, the standardized increment was briefly introduced as an index of contrast to describe 
“effect size” in a comparison of two central indexes. With sp as a common standard deviation for two 
groups of dimensional data, having means  and  the standardized increment for the contrast is

The standardized increment is a descriptive index of contrast because it involves no act of inference 
(other than the use of degrees of freedom in the calculation of sp). The sp factor, however, makes the 
standardized increment an index of contrast that uniquely provides for variability in the data. This 
provision is absent in all of the other indexes of contrast discussed in Chapter 10.

The provision for variability gives the standardized increment another vital role (noted earlier) as the 
bridge that connects descriptive and inferential statistics for a contrast of two groups. The t or Z (and 
also later the chi-square) test statistics are all constructed when the standardized increment is multiplied 
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by factors indicating the magnitude (and partition) of group sizes. The stochastic statistics of t, Z, and 
chi-square are thus a product of factors for the standardized increment and group sizes.

13.4.2 Role of Group Sizes

The group sizes are reflected by , the other factor in Formula [13.10]. Because 
(1/nA) + (1/nB) = N/nAnB, division by this factor can be rewritten as the multiplicative entity 
which is the group size factor. Thus, 

[13.11]

The group size factor is decomposed into two parts when the total group, N, is divided into the two 
groups, nA and nB. If we let k = nA/N, then nA = kN and nB = N − nA = (1 − k)N, and the group size factor 
will become 

The value of (k)(1 − k) will depend on the partition of nA and nB. If the group sizes are equal, nA = nB =
N/2 and (k)(1 − k) = 1/4 so that = .5. As the partition becomes more unequal, 
will become smaller. Thus, if nA = 20 and nB = 80, = .4. If nA = 10 and nB = 190, 
= .22. If we call  the group partition factor, the stochastic test result becomes a product of 
three factors:

×   ×

or

[13.12]

Formula [13.12] offers a striking demonstration of the role of group sizes in achieving stochastic 
significance. The values of t (or Z) will always increase with larger groups, because  is a direct 
multiplicative factor. The values will also increase with equally partitioned groups, because 
achieves its maximum value of .5 when nA = nB. The values get smaller as the proportion for k departs 
from the meridian of .5 toward values of 1 or 0.

13.4.3 Effects of Total Size

Of the various components of Formula [13.12], the most dramatic is the total group size, N. No matter 
how small the magnitudes may be for the standardized increment and the group partition factor, a 
sufficiently large value of  can multiply their product into a value that exceeds the Zα (or tν,α) needed 
for stochastic significance. Conversely, even if the standardized increment is quantitatively impressive 
and the group partition factor is a perfect .5, the result for the test statistic will still fail to achieve 
stochastic significance if  is too small.

For example, suppose the standardized increment is an extraordinarily low value of .001 and the 
group partition factor is a greatly unbalanced .04. To exceed the value of Zα = 2 for stochastic 
significance, all we need is

2 ≤ 5 (.001)(.04) 

and so

≥ 2/(.001)(.04) = 50,000
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The necessary value of N will be the square of this value, which is 2.5 × 109 or 2.5 billion. Archimedes 
is said to have remarked, “If you give me a lever long enough and strong enough, I can move the earth.” 
If the total group size is large enough, any observed distinction can be stochastically significant.

Conversely, suppose the standardized increment is an impressively high value of .75 and the group-
partition factor is a splendid 0.5. The total product will fail to exceed a value of Z = 2 if

2 ≥ (.75)(.5) 

which occurs when

≤ 2/[(.75)(.5)] = 3.27

This situation would arise with a total group size of (3.27)2 = 10.7 or anything smaller than 10.

13.4.4 Simplified Formulas for Calculation or Interpretation

Formula [13.10] can be converted to

[13.13]

In addition to its use in computing the value of t or Z, the formula offers a way of promptly interpreting 
both quantitative and stochastic significance. The standardized increment,  can be used 
as a guide to interpreting quantitative significance. The group size factor,  will indicate the 
role played by the numerical sizes of the groups in converting the standardized increment to stochastic 
significance.

13.4.4.1 Equal Group Sizes — When the groups have equal sizes, so that nA = nB = n = N/2, 
Formula [13.13] can receive two simplifications. The factor  will become = 

 The value of  earlier in Formula [13.3] will become 

[(n − 1) + (n − 1) ]/[2(n − 1)] = ( + )/2

so that the values of sC and sC ′ are identical. Formula [13.13] will then become

which can be further reduced to

[13.14]

(Remember that n here is the size of one group.)

13.4.4.2 Use of Cited Standard Errors — In many instances, the investigators report the 
results of the two means, the two group sizes, and the two standard errors as SE A and SEB. If you want 
to check the claims for t (or Z), the SE values would have to be converted to standard deviations as 

(SEA) and (SEb). To avoid this work, you can use the “alternative-hypothesis” Formula [13.8]  
and estimate  directly as (SEA)2 + (SEB)2. Because the group size factor is incorporated when standard 
errors are determined, as  Formula [13.8] becomes simply

(13.15]
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This formula will be slightly inaccurate, because the variance was not pooled, but the results are usually 
close enough for a quick “screening” check of reported values.

If the groups have equal size, Formulas [13.14] and [13.15] produce identical results, because the 
denominator of [13.15] becomes 

13.5 Dissidence and Concordance in Significance

The formulas cited in Sections 13.4.1 through 13.4.4 indicate why separate evaluations are needed for 
quantitative and stochastic significance, and why the two evaluations may sometimes disagree. Because  
of small group size, a quantitatively significant difference may fail to achieve stochastic significance. 
Because of huge group size, a quantitatively trivial difference may become stochastically significant.

The distinctions also help explain some of the problems we encountered in Chapter 10 when trying 
to choose the magnitude of a quantitatively significant increment. Suppose we decide that we want 
concordant results for both stochastic and quantitative significance. Because Z ≥ 2 (or 1.96) is the 
minimum boundary for stochastic significance at two-tailed α = .05, the magnitude needed for a quan-
titatively significant increment will vary with the group size. If the total group size is 40, equally divided 
into two groups of 20, the formula will be

2 ≤ (S.I.)(.5)

and so the required standardized increment (S. I.) must exceed 2/[(.5) ] = .63. If the sample size 
is larger, perhaps 100, and still equally divided, stochastic significance will occur when the standard -
ized increment exceeds 2/[(.5) ] = .40. With a larger, equally divided total group of 300, the 
required standardized increment must exceed 2/(.5)( ) = .23.

Unless we carefully separate what is quantitatively important from what is stochastically significant, 
decisions about quantitative importance will be dominated by mathematical calculations of probability. 
The scientific boundaries set for magnitudes that are quantitatively important will frequently have to 
change—as noted earlier—according to the clinical, populational, or other biologic implications of the 
observed results. A much less scientifically acceptable source of varying boundaries, however, is the 
stochastic caprice caused by changes in group size.

In a particular biologic setting, a standardized increment of .4 either is or is not quantitatively 
significant; and it may or may not be derived from numbers large enough to be stochastically significant. 
The decision about quantitative significance, however, should depend on its magnitude and connotations 
in a biologic setting, not on the size of the groups under study. This principle will be further discussed 
and illustrated with many examples in Chapter 14.

13.6 Controversy about P Values vs. Confidence Intervals

During the past few years, the stochastic dominance of P values has been threatened by advocates of 
confidence intervals; and a lively dispute has developed between the “confidence couriers” and the “P-
value partisans.” The advocates of confidence intervals want to supplement or replace P values because 
the single value of P does not give the scope of information offered by a confidence interval. The 
defenders want the P value preserved because it indicates the important distance from the stochastic 
boundary of α. Many highly respected statisticians and statistical epidemiologists have lined up on both 
sides of the controversy, urging either the use of confidence intervals or the retention of P values.

The confidence couriers seem to be winning the battle in prominent clinical journals. After presenting 
“tutorial” discussions to educate readers about the use of confidence intervals, the editors proudly 
announce their enlightened new policies demanding confidence intervals instead of (or in addition to) 
P values. The enlightened new policies are presumably expected to bring medical literature out of the 
statistical “dark ages” induced by previous editorial policies that set the demand for P values.
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13.6.1 Fundamental Problems in Both Methods

An even-handed reaction to this controversy would be to agree with both sides, since both sets of 
contentions are correct and both sets of approaches are useful. In fact, as suggested by some of the 
disputing participants, truly enlightened editors could ask for both types of information: confidence 
intervals (to show the potential range of results) and P values (to keep authors and readers from being 
infatuated or deceived by an arbitrarily chosen interval).

Regardless of the opposing viewpoints, however, the argument itself resembles a debate about whether 
to give an inadequate medication orally or parenterally.2 The argument ignores the reciprocal similarity 
of P values and confidence intervals, while also overlooking four fundamental problems: (1) the absence  
of clearly stated goals for the statistical procedures, (2) the arbitrariness of the α and Zα boundaries that 
determine both the interpretation of P values and the magnitude of confidence intervals, (3) the continuing 
absence of standards for descriptive boundaries of δ for “big” and ζ for “small” distinctions in quantitative 
significance, and (4) the distraction of both P values and confidence intervals from the challenge of 
setting scientific standards for those quantitative boundaries.

13.6.1.1 Goals of the Statistical Procedures — What do investigators (and readers) really 
want in a stochastic test? What questions would they really ask if the answers, somewhat in the format  
of a game of Jeopardy, were not previously supplied by P values and confidence intervals?

Probably the main questions would refer to the stability of the results and their range of potential 
variation. When two central indexes are contrasted, a first question would ask whether they arise from 
groups containing enough members to make the contrast stable. Although this question requires a 
definition or demarcation of stability, the idea of stability is not a part of conventional statistical discourse, 
and no quantitative boundaries have been considered or established. Consequently, the currently unan-
swerable question about stability is usually transferred to an answerable question about probability. An  
α boundary is established for the level of probability, and the results are regarded as “statistically 
significant” when P ≤ α or a 1 – α confidence interval has suitable borders. The conclusion about 
statistical significance is then used to infer stability.

If boundaries were directly demarcated for stability, however, questions about a range of potential 
variation could be referred to those boundaries. For example, an observed distinction that seems to be 
“big” could be accepted as stable if the potential variations do not make it become “small.” A distinction 
that is “small” could be accepted as stable if it does not potentially become “big.” For these key decisions, 
however, investigators would have to set quantitative boundaries for big and small. The boundaries might 
vary for the context of different comparisons but could be established for appropriate circumstances. If  
these boundaries were given priority of attention, the investigators could then choose a method—fragility 
relocations, parametric theory, bootstrap resampling, etc.—for determining a range of potential variation.

Probably the greatest appeal of the purely probabilistic approach is that it avoids the scientific challenge 
of setting descriptive boundaries. The stochastic α boundary, which refers to probability, not to substantive 
magnitudes, becomes the basis for evaluating all quantitative distinctions, regardless of their scientific 
components and contexts. With a generally accepted α level, such as .05, the stochastic decision can 
promptly be made from a P value or from a 1 − α confidence interval. As noted earlier and later, the .05 
boundary may be too inflexible, but it serves the important role of providing a “standard criterion.”

When the range of potential variation is examined with confidence intervals, however, the data analyst 
may sometimes make an ad hoc “dealer’s choice” for the selected level of α. The extremes of potential 
variation (denoted by the ends of the constructed confidence intervals) can then be interpreted with 
individual ad hoc judgments about what is big or small. Without established standard criteria for either 
a stochastic or quantitative boundary, confidence intervals can then be used, as discussed in Section 
13.6.1.3, to achieve almost any conclusion that the data analyst would like to support.

These problems will doubtlessly persist until investigators reappraise the current statistical paradigm 
for appraising probability rather than stability. If the basic question becomes “What do I want to know?” 
rather than “What can I do with what is available?” the answer will require new forms of inferential 
methods aimed at quantitative rather than probabilistic boundaries.
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13.6.1.2 Reciprocal Similarity of P Values and Confidence Intervals — W h e n α  i s  
used as a stochastic boundary, the reciprocal similarity of P values and confidence intervals can be shown 
from the construction and “location” of the concomitant stochastic hypothesis. In ordinary stochastic 
tests of a two-group contrast, the “location” of the tested hypothesis can be cited as ∆. For the conventional 
null hypothesis, symbolized as H0, the value assigned to ∆ is 0. Thus, in a contrast of two means 
and  with parameters µA and µB, the hypothesis is H0: ∆ = µA − µB = 0.

In the conventional 2-group Z test, after a boundary is chosen for α, a “decision interval” for two-
tailed P values is constructed around the null hypothesis value of 0, extending from –Z α to +Zα. If do is 
the observed difference for −  and if SED is its standard error, the critical ratio for the observed 
Zo is calculated as Zo = do/(SED). The null hypothesis is conceded if Zo falls inside the interval of 0 ±
Zα , and is rejected if Zo is outside. Thus, a two-tailed P value will achieve stochastic significance if | Zo|
> Zα.

The confidence interval for comparing two groups is constructed not around ∆ = 0, but around the 
observed value of do. After α is chosen and Zα is determined, the 1 – α interval is calculated as do ± Zα

(SED). The null hypothesis is conceded if its value of 0 falls inside this interval and is rejected if 0 is 
outside. Thus, the stochastic requirement for “significance” is | do| − Zα (SED) > 0. When both sides of 
the latter expression are divided by SED to express the result in standard error units, the symbolic 
formulation becomes | do/SED| − Zα > 0, which is | Zo| − Zα > 0 or | Zo| > Zα — the same demand as 
previously.

Because the requirement for stochastic significance is exactly the same whether Zo is converted to a 
confidence interval or to a P value, confidence intervals are essentially a type of “reciprocal” for P 
values. For the P value, we calculate | do|/SED = Zo and compare Zo directly with Zα. For the confidence 
interval, we calculate | do| − Zα (SED) and compare the result against 0.

13.6.1.3 Scientific Standards for Descriptive Boundaries — When extending from | do| −
Zα (SED) to | do| + Zα (SED), the confidence interval demonstrates how large | do| might really be. Beyond 
their stochastic roles, the two ends of the confidence interval might therefore make an extra contribution 
to quantitative decisions about importance or “clinical” significance for the observed results. During 
most of the latter half of the 20th century, however, this type of quantitative significance has been 
restricted to stochastic rather than substantive decisions. When scientists begin to exhume or reclaim 
significance from its mathematical abduction, they will realize, as discussed in Chapter 10, that quan-
titative decisions depend on purely descriptive rather than inferential boundaries. Therefore, a descriptive 
scientific question cannot be suitably answered when the product of an inferential choice, Zα , multiplies 
an inferential estimate of SED, to form an arbitrary mathematical entity, Z α (SED). Aside from obvious 
problems when the Gaussian Zα and SED do not adequately represent “eccentric” data, the doubly 
inferential product gives no attention to the investigator’s descriptive concepts and goals.

As crucial scientific boundaries for quantitatively significant and insignificant distinctions, respec-
tively, δ and ζ must be chosen with criteria of scientific comparison, not mathematical inference. 
Consequently, the stochastic intervals constructed with Zα and SED calculations do not address the 
fundamental substantive issues, and attention to the stochastic results may disguise the absence of truly 
scientific standards for the quantitative boundaries.

13.6.1.4 Potential Deception of Confidence Intervals — One immediate problem pro-
duced by the absence of standards is that an investigator who wants to advocate a “big” difference may  
focus on the upper end of the confidence interval, ignoring the lower end, which might extend below 
the null hypothesis level of 0 (or 1, for a ratio). Although the observed distinction would not be 
stochastically significant and might be dismissed as too unstable for serious attention, the investigator 
may nevertheless claim stochastic support for the “big” difference. This type of abuse evoked a protest 
by Fleiss,3 who said the problem would be prevented if P values were always demanded. If both ends 
of the confidence interval are always reported, however, and if the lower end goes beneath the null-
hypothesis boundary, readers of the published results can readily discern the potential deception of a 
unilateral focus.

XA

XB,

XA XB,
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A more substantial deception, against which the reader has no overt protection, occurs when the 
confidence interval itself has been “rigged” to give the result desired by the investigator. This type of 
“rigging” is readily achieved if α is abandoned as a stochastic criterion, so that a fixed level of α is no 
longer demanded for a 1 − α confidence interval. If nonspecific “confidence intervals” can be formed 
arbitrarily, a zealous analyst can choose whatever level of α is needed to make the result as large or 
small as desired.

To illustrate this point, suppose the observed increment is do = 8.0, with a standard error of SED =
4.0. To make the confidence interval exclude 0, we can choose a relatively large α such as .1. With 
Z.1 = 1.645, the component for the two-tailed 90% confidence interval will be 1.645 × 4.0 = 6.58, and 
the interval, constructed as 8.0 ± 6.58, will extend from 1.42 to 14.58, thereby excluding 0. To make 
the interval include 0, however, we can choose a smaller α, such as .02. With Z.02 = 2.32, the two-
tailed 98% component will be 2.32 × 4 = 9.28. Constructed as 8.0 ± 9.28, the confidence interval will 
include 0 by extending from −1.28 to 17.28. To give the interval an unimpressive upper end, let α =
.5. The 50% confidence interval constructed with Z.5 = .674, will now be 8.0 ± 2.7, extending only to 
10.7. To give the interval a much higher upper end, let α = .001. The 99.9% confidence interval, with 
Z.001 = 3.29, will then be 8.0 ± 13.16, and its upper end will exceed 21.

As a customary standard for stochastic decisions, α = .05 may have all the invidious features of any 
arbitrary choice, but it has the laudable virtue of being a generally accepted criterion that cannot be 
altered whenever, and in whatever direction, the data analyst would like. Unless the proponents of 
confidence intervals agree on using a fixed (although suitably flexible) boundary for α, stochastic 
decisions will become an idiosyncratic subjective process, based on the analyst’s personal ad hoc goals 
for each occasion.

Until editors and investigators reach a consensus on this matter, you should be wary of any confidence  
interval that is reported as merely a “confidence interval.” If not accompanied by an indication of 1 – α
(such as 95%, 90%, 50%), the uninformative result may be deceptive. If the 1 − α level is reported but 
departs from the customary 95%, a suitable (and convincing) explanation should be provided for 
the choice.

13.6.2 Coefficient of Stability

A commonsense approach, which avoids all of the mathematical manipulations, is to make up your own 
mind by examining the ratio, SED/do, which is the two-group counterpart of the coefficient of stability 
for the central index of one-group. In previous discussions, the coefficient for one group seemed “stable” 
if its value was ≤ .1. For the greater variability that might be expected in two groups, this criterion level  
might be raised to a higher value such as .3, .4, or .5. The criterion can then be used to decide whether 
the increment (or other distinction) in central indexes for the two compared groups is relatively stable 
or unstable. As you evaluate the ratio, SED/do, for the coefficient of stability in two groups, however, 
remember that its inverse, do/SED, produces the value of Zo used for determining P values, and that 
P < .05 when Zo ≥ 2. If you feel assured by α = .05, then “stability” seems likely when SED/do is ≤ .5. 
If you want a much smaller SED/do ratio to persuade you of stability, the corresponding Zo values will 
be much larger than 2, and the corresponding P values will become .01 or .001. In the example just 
described, with do = 8 and SED = 4, the coefficient of potential variation is .5, which is just at the border 
of “stochastic significance” or “stability.”

To do this type of assessment, however, the SED, and not just the confidence interval, would always 
have to be cited as a necessary part of truth in reporting.

13.7 Z or t Tests for Paired Groups

Section 7.8.2.2 was concerned with the “paired one-group t test” that can be done when individual 
members of the two groups are paired, usually in a before-and-after arrangement of data values. 
Sometimes, however, the data may represent results of a “cross-over” study where each person received 
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treatment A and then treatment B. In yet other situations, two parts of the same person may be paired 
for comparing therapeutic responses. (Suncream A may be tested on the right arm and Suncream B on 
the left arm.) In all of these “paired” circumstances, two groups of data are collected, but they can readily
be converted to a single group and tested with the one-group (or “one-sample”) rather than two-group test.

For this procedure in Section 7.8.1, the pairs of individual data for variable V and variable W were 
converted to a single group of differences, di = Vi − Wi, for which we found the mean difference ( ), 
the group variance (Sdd), the standard deviation (sd), and the standard error (sd/ ). We then calculated 
and interpreted

t (or Z) =

13.7.1 Effect of Correlated Values

The main reason for converting the data and doing a one-group rather than two-group t (or Z) test is 
that the two-group test makes the assumption that the two sets of data are independent for each group. 
In a crossover, before-and-after, or analogous “paired” arrangement, however, each person’s second 
value is not independent; it will usually be correlated with the first value. The explanation for this effect 
was shown in Appendixes 7.1 and 7.2. For a difference in two paired variables, {Wi} and {Vi}, the 
group variance is SWW − 2SWV + SVV. If the two variables are independent, the covariance term SWV ~ 0. 
If the variables are related, however, SWV has a definite value and its subtraction will produce a substantial 
reduction in group variance for the paired values.

For example, consider the following before-and-after values for three people:

The values of the mean and standard deviation for the Group B (“before”) values, will have =
(160 + 172 + 166)/3 = 166 and sB = 6. For the Group A (“after”) values, the corresponding results will 
be = (156 + 166 + 161)/3 = 161 and sA = 5. The values of group variance would be Sbb = (nB − 1) 

= 72 and Saa = (nA − 1) = 50. The increment in the two means will be 166 − 161 = 5; the pooled 
group variance will be 72 + 50 = 122; and its stochastic average will be 122/[(3− 1) + (3 − 1)] = 30.5, 
so that the pooled standard deviation, s p, is = 5.52. As a separate single group of data, however, 
the paired increments have the same incremental mean, = (4 + 6 + 5)/3 = 5, but much lower values 
for variance: Sdd = 2 and sd = 1. In this instance Sdd = Saa − 2 Sab + Sbb; and Sab can be calculated as 
Σ XAi XBi − N = 80238 − 3 (166)(161) = 60. The value for Sdd becomes 50 − 2 (60) + 72 = 2.

Because sd becomes much smaller than sp, the paired t (or Z) test is more likely to achieve stochastic 
significance than the “unpaired” or two-group test. In the foregoing example, the paired calculation for 
t is 5/( ) = 5/.58 = 8.66. The unpaired or two-group calculation is t = (5/5.52)( ) = 1.11. 
The paired result would be stochastically significant at 2P < .05, but the unpaired two-group result 
would not.

13.7.2 Paired vs. Two-Group Arrangements

Because the paired one-group test is more likely to produce stochastic significance than the two-group 
test, you may wonder why investigators seeking the accolade of stochastic “significance” do not always 
use the paired test. Why bother with the two-group test?

The answer to this question is that most sets of data for two groups cannot be individually paired. In 
most studies, the members of the two groups were obtained or treated separately, i.e., “independently,” 

Person
“Before” 

Value
“After” 
Value Increment

1 160 156 4
2 172 166 6
3 166 161 5
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and the two group sizes are usually unequal, i.e., nA ≠ nB. A pairing can be done, however, only when 
the research has been specifically designed for a paired arrangement of data in the individual persons 
under investigation.

The reduction in variance that allows stochastic significance to be obtained more easily with the paired 
individual arrangement also allows the use of smaller groups. This distinction is responsible for the 
avidity with which investigators try to do “crossover studies” whenever possible. Unfortunately, for 
reasons noted elsewhere,4 such studies are seldom possible — and even when they are, a formidable 
scientific problem can arise if the effects of Treatment A are “carried over” when the patient transfers 
to Treatment B.

13.7.3 Arbitrary Analytical Pairings

The pairing tactic is sometimes applied to check or confirm results noted with a two-group comparison.  
Using a type of resampling, the analyst randomly selects members of Group A to be paired with randomly 
selected members of Group B. Results are then calculated for the randomly selected “paired sample,” 
and many such samples can be constructed to see if their results verify what was previously found for 
the two groups. The procedure, which keeps each group intact, differs from the combination of both 
groups that precedes a Pitman-Welch type of permutation resampling.

In the days before modern forms of multivariable analysis, a paired arrangement of members of two 
groups could be used to “match” for other pertinent variables beyond the main variable under analysis. 
For example, as part of the original research used to indict cigarette smoking as a cause of early mortality, 
the Surgeon General’s Committee5 asked Cuyler Hammond to reanalyze the original data of his long-
term cohort study,6 and to compare mortality rates for “a ‘matched pair’ analysis, in which pairs of 
cigarette smokers and non-smokers were matched on height, education, religion, drinking habits, urban-
rural residence and occupational exposure.”5

13.8 Z Test for Two Proportions

Although commonly used for two means, the Z test can also be applied to evaluate a difference in two 
proportions, pA = rA/nA and pB = rB/nB. Because the variance of a proportion is pq, we can use Formula 
[13.1] to substitute appropriately and find that the variance of the increment, pA − pB, will be (pAqA/nA)
+ (pBqB/nB). Under the null hypothesis that πA = πB, we estimate a common value for π as P = (nApA +
nBpB)/N = (rA + rB)/(nA + nB). The estimated variance (or squared standard error) of the difference will 
then be (PQ/nA) + (PQ/nB) = NPQ/nAnB. The test statistic will be calculated as

[13.16]

You may already have recognized that this formula is an exact counterpart of [13.13] for dimensional 
data. The standardized increment, which is (pA − pB)/  is multiplied by the group-size factor, which 
is 

To illustrate the calculations, consider the contrast of 18/24 (75%) vs. 10/15 (67%). The common 
value for P would be (18 + 10)/(24 + 15) = .718 and Q = 1 − P = .282. The standardized increment will 
be (.75 − .67)/ = .178. The group size factor will be = 3.04 and the 
product for Z will be (.178)(3.04) = .54. The result will not be stochastically significant if α = .05.

13.8.1 Similarity to Chi-Square Test

As noted later in Chapter 14, the value of Z in Formula [13.16] is the exact square root of the test 
statistic obtained when the chi-square test is applied to a contrast of two proportions. Accordingly, 
although the chi-square test is more conventional, the Z test can be used just as effectively for comparing 
two proportions.

Z pA pB–
NPQ/nAnB

----------------------------- pA pB–
PQ

----------------- nAnB

N
-----------×= =

PQ,
nAnB/N.

.718( ) .282( ) 15 24×( )/39
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13.8.2 Continuity Correction

You may remember that a continuity correction was recommended back in Section 8.6.1 when the Z 
procedure is applied to a proportion. Although not all authorities are agreed, this correction can also be  
applied when two proportions are compared. For the correction, 1/2 is subtracted from the numerator 
of the larger proportion, and 1/2 is added to the numerator of the smaller proportion. Thus, if pA = rA/nA
and pB = rB/nB, and if pA > pB, the correction is

The algebra can be simplified if you recognize that the numerator of this expression becomes pA − pB −
[(1/2)(N/nAnB)]. If we let G = N/nAnB, the expression becomes

In the foregoing example, G = 39/(15 × 24) = .108, and G/2 = .054. The corrected value would be

The continuity result is identical to what is achieved as the square root of chi-square when the latter is 
calculated with an analogous continuity correction in Chapter 14. The desirability of the correction will 
be discussed in that chapter.

13.8.3 Standard Error for Alternative Hypothesis

For the alternative hypothesis, when we assume that πA ≠ πB, the common value for π is not estimated 
as P = (nApA + nBpB)/N. In this situation, the standard error is determined as 
not with  as in Formula (13.16).

If you work out the algebra, the difference in the two squared standard errors turns out to be minor. 
Thus, if we let

the value of k becomes

[13.17]

For example, for the comparison of 18/24 vs. 10/15, the conventional standard error is 
= .148. The standard error for the alternative hypothesis is 

= .150. According to Formula [13.17], k turns out to be −.00069, 
which is essentially (.148)2 − (.150)2.

13.9 Sample Size for a Contrast of Two Means

The last topic discussed in this chapter is the calculation of sample size for a contrast of two means. 
The calculational challenge occurs most commonly in clinical trials, where the contrast is usually between 
two proportions, rather than two means; and the clinical-trial calculations often involve the simultaneous 
consideration of both a null and an alternative hypothesis, as discussed later in Chapter 23. Nevertheless, 
particularly in laboratory experiments, an investigator may want to know the sample size required to 
show stochastically that the mean is “significantly” larger for Group A than for Group B.

ZC
rA 1/2( )–[ ]/nA rB 1/2( )+[ ]/nB–

NPQ/nAnB

--------------------------------------------------------------------------------=

ZC
pA pB– G/2( )–

PQG
-------------------------------------=

ZC
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.718( ) .282( ) .108( )
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The process once again involves the type of anticipatory estimates that were discussed in Section 
8.8.3, and the conversation between investigator and statistician often evokes the same kind of frustrating 
guesswork. The decisions require six choices: two estimates, a quantitative distinction, a stochastic 
boundary, a direction, and a sample partition. The estimates, distinctions, and boundaries are commonly 
shown with Greek letters to denote that they have been guessed or assigned, rather than actually observed.

One of the estimates is  the mean expected in Group B. The other estimate is  the common 
(or pooled) standard deviation of data in the two groups. For example, we might estimate that Group B  
will have a mean of 32.0, and that the common standard deviation is 12.3. The quantitative distinction 
is labeled δ, the anticipated magnitude for the impressive or “quantitatively significant” increment in 
means between Group A and Group B. After δ is chosen, the anticipated mean in Group A is estimated 
as  If we want the mean in Group A to be at least 25% larger than in Group B, we set δ
at 8.0, so that the mean expected for Group A should exceed 40.0.

The next step is to chose a stochastic boundary for α, which can be set at the conventional .05. Because 
we expect Group A to exceed Group B, a direction has been stated, and the Z α corresponding to a one-
tailed α = .05 would be Z.1 = 1.645. If we wanted to comply with the customary preference for two-
tailed tests, however, the anticipated difference would be | µA − µB| = δ and the α = .05 would be bi-
directional, so that Z.05 = 1.96. Finally, for sample partition, we can make the customary choice of equal-
size samples, so that nA = nB = n, and N = 2n.

With all of these decisions completed, the rest is easy. The sample size can be calculated by putting 
all the Greek and other values into the appropriate formula for either a Z test or a confidence interval.

13.9.1 Z-test Formula

For the Z-test sample-size calculation, Formula [13.13] receives appropriate substitutions to become

Squaring both sides and rearranging terms produces

[13.18]

and because  and  the sample size for one group is

[13.19]

Substituting the foregoing data and using a two-tailed test, we get

The required sample size will be 19 members in each group. The total sample size will be 38.

13.9.2 Confidence-Interval Formula

With the confidence-interval approach, we want the expected difference, do, to exceed 0 at the lower 
end, so that

do − Zα(SED) > 0

Because SED is  we can substitute appropriately and rearrange terms to get

µ̂B, σ̂p,

µ̂A µ̂B= δ.+

Zα µ̂A µ̂B–( )/σ̂p[ ] n2/2n=

n/2( ) Zα
2 σ̂p

2

µ̂A µ̂B–( )2
-------------------------=

µ̂A µ̂B– δ= σ̂p
2 sp

2= ,

n 2Zα
2 sp

2/ δ( )2=

n 2( ) 1.96( )2 12.3( )2

8.0( )2
------------------------------------------- 18.2= =

sp N/ nAnB( ),

δ Zα sp 2n/n2>
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which becomes

yielding the same result as previously in Formula [13.19].

13.9.3 Adjustment for t Distribution

If we worry that the sample size of 38 is not quite large enough to justify using Z rather than t, the 
value of t36,.05 = 2.028 can be substituted for Z.05 = 1.96 in the foregoing formulas. The result will be

n > 2(2.028)2 (12.3)2/(8.0)2 = 19.4

With a sample size of 20 members in each group, the degrees of freedom will be 38, and t38,.05 will be 
2.0244. Substituting (2.0244)2 for (2.028)2 in the foregoing calculation produces n > 19.33, and so we 
can keep the sample size as 20 in each group.

13.9.4 One-Tailed Result

Because  (or ) appears in the numerator of the calculation, the sample size is always larger for 
two-tailed than one-tailed decisions. For one-tailed calculations, we would use Z.1 = 1.645 or t38, .1 =
1.686. The sample size in Formula [13.19] would be reduced to

n > 2(l.686)2 (12.3)2/(8.0)2 = 13.4

and the total sample size would become 2 × 14 = 28.

13.9.5 Augmentation for “Insurance”

After all the precise calculations have been completed, with all their exact mathematical stipulations, 
the results are usually altered by an act of pure judgment. To provide “insurance” against such phenomena 
as loss of members, “unusable data,” or any other potential reduction in the effective size of the research 
group, a cautious investigator will almost always increase the number that emerged from the mathematical 
calculations. The amount of augmentation usually exceeds the calculated amount by 10%, 20%, or even 
more, according to a background “judgment” based on the losses encountered in previous instances of 
the same type of research. The mathematical calculations may have had splendid quantification, but the  
ultimate decision depends on augmentations that come from the “hunch” of previous experience.

References
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Exercises

13.1. In Exercise 11.1, you were informed that the t test gave a “nonsignificant” result for the two cited 
groups of data. Please verify this statement. Why does the t test “fail” to confirm “significance” for these 
obviously “significant” results?
13.2. In Exercise 12.3, you did a Pitman-Welch test on the mean difference of two groups. For Group 
A, the data were 2, 8, 11, and 13; for Group B, the data were 1, 3, and 6. Perform a t test on this 
difference and compare the stochastic conclusions with what you found using the Pitman-Welch test.

n 2Zα
2 sp

2/δ2>

Zα
2 tα

2
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13.3. In a randomized clinical trial, one group of babies was fed Formula A from birth to age six 
months; and the other group was fed Formula B. The two groups can be assumed to have had identical 
weights at birth. At the end of six months, the weight gains in pounds for members of the two groups 
were as follows:

Group A: 5, 7, 8, 9, 6, 7, 10, 8, 6
Group B: 9, 10, 8, 6, 7, 9

13.3.1. Considering each group individually, calculate a 95% confidence interval and a 99% 
confidence interval for the mean. (Show the cogent intermediate steps in your 
arrangement of calculations.)

13.3.2. Considering each group individually, what is the probability that this group arose from 
a parent population in which the mean weight gain is 6.7 pounds?

13.3.3. Use two different approaches (t test and confidence interval) to show whether the 
difference in the means of the two groups is “statistically significant” at the level of 2P  
< .025.

13.3.4. Forgetting the differences in the formula feeding, assume that the members of Groups 
A and B constitute the entire population of babies in which you are interested. What 
procedure would you use (and show the calculations) to determine whether there is 
something peculiar about the baby who gained only 5 pounds?

13.4. Here is a chance to let current activities be enlightened by a repetition of past history. In 1908, 
Gosset reported data showing the comparative effects of two drugs in producing sleep in 10 patients. For 
each patient, he noted the amount of sleep obtained without medication and the additional hours of sleep 
gained after treatment (1) with hyoscyamine and (2) with hyoscine. The table below reproduces the data from 
an original publication, except for a replacement by modern symbols for mean and standard deviation.

The results in this table can be stochastically evaluated with a two-group or one-group test. Do 
both procedures and compare the results. What is the reason for any differences you observed? Can you  
demonstrate the source of the differences? 
13.5. At a medical meeting you are attending, a renowned professor presents “statistically significant” 
results showing = 16, SEA = 4, and nA = 81 for Group A; and = 25, SEB = 6, and nB = 64 for 
Group B. Everyone seems to be impressed by the large difference. During the discussion period, however, 
a member of the audience, who has been sitting placidly taking no notes and doing no apparent 
calculations, arises to dispute the professor’s contention. The commentator says that the difference is 
not “statistically significant” and says, in addition, that the data should not have been reported with 
mean values as summaries of the results. 

Everyone is now shocked or outraged by the temerity, skill, or chutzpah of the commentator. The 
challenged professor responds by saying that he does not understand the mathematics and calls for 
help from his statistician, who happens to be present in the audience, accompanied by a large volume 

Additional hours’ sleep gained by the use of two drugs (“Student,” 1908)
Patient Hyoscyamine Hyoscine Difference

1 +0.7 +1.9 +1.2
2 –1.6 +0.8 +2.4
3 –0.2 +1.1 +1.3
4 –1.2 +0.1 +1.3
5 –0.1 –0.1 0
6 +3.4 +4.4 +1.0
7 +3.7 +5.5 +1.8
8 +0.8 +1.6 +0.8
9 0 +4.6 +4.6

10 +2.0 +3.4 +1.4
X
–

+0.75 +2.33 +1.58
s 1.79 2.00 1.23

XA XB
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of computer printout. Intrigued by the dispute, the chairperson declares a brief intermission, while the  
statistician checks the results. After the intermission, the professor returns to the podium and confesses, 
somewhat abashedly, that he mistakenly looked at the wrong section of printout in finding the 
“significant” P value. Furthermore, he says that the statistician has also expressed reservations about 
using means to summarize the results.

13.5.1. What do you think the commentator did to decide that the results were not “statistically 
significant”?

13.5.2. What is the correct P value for this comparison?
13.5.3. On what basis do you think the commentator rejected the means as summary indexes?
13.5.4. What would you recommend as a strategy for an improved alternative summary and 

analysis?
13.6. In a report in The Lancet, the authors did a crossover study in 10 patients with refractory noctural 
angina.7 For the control night the bed was placed with the head in a semi-erect position; and for the test 
night it was put in a feet-down position. The authors wrote that “Results were compared by means of 
student’s t test (non-paired, two-tailed). All numerical results were expressed as mean ± standard error 
of the mean.” 

The table below is a copy of what was published as Table II in the report.7

13.6.1. A value of “p < 0.001” is shown for the comparison of “No. pain episodes” in the 
Control and Test results. Verify this claim, and show how you verified it.

13.6.2. Can you think of a simple procedure, which can be done mentally without any 
calculation, that would promptly give you essentially the same result for the P value in  
the table? (This is one of those questions where you immediately see how to get the 
answer—or you don’t. If you don’t, go on to the next question and don’t spend a lot of  
time deliberating.) 

13.7. If you have time, and want to check your understanding of some of the basic principles involved  
in this and preceding chapters, try answering the following “top ten” questions:

13.7.1. For a two-group t (or Z) test, why do we subtract the two means? Why not form a 
ratio of some other index of contrast?

13.7.2. In the two-group tests, the incremental deviation is calculated as Xi −  for the 
members of each group. Is this the best way to indicate discrepancies between 
individual values and the central indexes?

13.7.3. Why are standard deviations calculated by first squaring and summing the individual 
deviations? Why not use them directly?

13.7.4. Why is the sum of squared deviations divided by n − 1 rather than n for inferential 
calculations? What is the justification for getting an “average” value by using one 
fewer than the number of available members in a group?

Effects of Feet-Down Position on Number of Pain Episodes and Number of Isosorbide Dinitrate 
Tablets Taken

No. Pain Episodes No. Tablets
Patient No. Control Test Control Test

1 6 0 6 0
2 2 0 4 0
3 2 0 2 0
4 7 0 10 0
5 3 1 4 1
6 5 0 5 0
7 3 0 5 0
8 2 0 2 0
9 3 1 6 2

10 4 0 4 0
Mean ± SEM 3.7 ± 1.8 0.2 ± 0.4* 4.8 ± 2.3 0.3 ± 0.7*

* p< 0.001.

X
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13.7.5. What is a standard error of the mean? What errors were created during the measurement 
process, and why don’t the investigators find and fix the errors before doing all the 
statistical analyses?

13.7.6. In the formula for a t (or Z) test, the increment in the numerator is divided by a standard 
error in the denominator. Why are the two terms divided? Why aren’t they added or 
multiplied?

13.7.7. What is the meaning of degrees of freedom? What type of incarceration and subsequent 
liberation occurred before the data received their “freedom”? And why does it have 
different “degrees”?

13.7.8. What is a P value? It has immense importance in the uriniferous aspects of human 
physiology, but what is it statistically? Why does it have so dominant a role in deciding 
whether research results are “significant” or “nonsignificant”?

13.7.9. What are you confident about in a “confidence interval”? When might your confidence 
be statistically unjustified? When would the confidence be unjustified for other reasons?

13.7.10. What is the meaning of an α level for “false positive conclusions”? Are they an 
inevitable consequence of the errors in “standard errors”? Why is α regularly set at .05?
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14
Chi-Square Test and Evaluation  
of Two Proportions
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To do a stochastic contrast (for “statistical significance”) of two proportions, the following three methods 
have already been discussed in Chapters 11–13:

1. Fragility test: The unit fragility test (Section 11.2.3.1) is simple, is easy to understand, and uses 
a commonsense approach that might be applied if investigators were directly appraising stability, 
without being affected by previous mathematical instruction. The fragility test, however, is new, 
generally unfamiliar, and currently unaccompanied either by a long track record or by recommen -
dations from what R. A. Fisher once called “heavyweight authorities.”

2. Fisher Exact Test: Generally regarded as the “gold standard,” the Fisher exact test (Chapter 12) 
should always be used when the constituent numbers are small. It can also be applied if the 
numbers are large, but usually needs a computer for the calculations. The only disadvantages 
of the Fisher test are that most current computer programs have not been automated to produce 
confidence intervals routinely or to do advance calculations of sample size.

3. Z test: The Z test (Section 13.8) for the increment in two proportions is easy to do with a 
hand calculator and requires only that the group sizes be adequately large. Unlike the first 
two methods, the Z procedure can readily be applied to get conventional confidence intervals 
or to calculate sample size.

Despite the availability of these three methods, however, two proportions are usually stochastically 
compared with a fourth procedure to which the rest of this chapter is devoted. Called chi-square (rhymes 
with “eye square”), the procedure is probably the most commonly applied statistical tactic in group-based 
clinical or epidemiologic research. The chi-square test is popular because it is easy to calculate from 
the frequency counts of categorical data; and it is versatile enough for many additional applications that  
will be described later. For two proportions, the chi-square test yields the same result as a Z test; and, 
when the constituent numbers are large enough, the chi-square (or Z) test produces a stochastic conclusion 
almost identical to what emerges from a Fisher exact test.

14.1 Basic Principles of Chi-Square Reasoning

The chi-square test relies on a hypothetical “model” for the set of “expected” frequencies in categories 
of the data. The expected and observed frequencies in each category are then arranged in a ratio as

and the sum of these ratios forms the test statistic,

[14.1]

The calculated results for X2 are interpreted with a theoretical sampling distribution from which we find 
the associated P value and then decide to concede or reject the hypothesis that formed the model being tested.

observed expected–( )2/expected

X2 Σ observed expected–( )2

expected
-------------------------------------------------------=
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14.1.1 Two Sources of Models

The model that produces the expected values can come from one of two different assumptions for the
null hypothesis. One assumption refers to the apportionment of categories in the simple univariate
distribution of a one-way table. The proportions may be assumed either to be equal, such as 25% for
each of four categories, or to occur in a specific ratio, such as the 9:3:3:1 distribution of AB, Ab, aB,
and ab in genetic mixtures. The X2 test for the observed univariate distribution will indicate how well
the expectations fit the observed categorical frequencies. Rejection of the null hypothesis leads to the
conclusion that the anticipated model fits the data poorly. This type of procedure, illustrated later in
Section 14.7.1, is called a goodness-of-fit chi-square test and is usually applied to a one-way table of
categories, not to the proportions compared in a 2 × 2 table.

The latter comparison is usually done with a different assumption, which is the null hypothesis that
the two variables under examination are independent, i.e., that one of the variables, such as type of
treatment, has no effect on the other variable, such as successful outcome. In the chi-square test of
independence, which is commonly applied to two-way tables, the expected values emerge from the
observed data, not from a previous belief about apportionment. Subsequent rejection of the null hypoth -
esis leads to the conclusion that the two variables are not independent, i.e., that successful outcome is
affected by type of treatment.

14.1.2 Illustration of Test of Independence

In its most frequent and world-renowned application, X2 (pronounced ex-square) is used to compare
two proportions, such as the occurrence of anemia in 6% (6 /95) of a group of men and in 13% (14 /105)
of a group of women. For the stochastic comparison, the proportions are usually “unpacked” to form a
2 × 2 (or fourfold) contingency table, having a structure such as Table 14.1.

Under the null hypothesis of independence, we assume that the two variables, sex and anemia, in
Table 14.1 are independent, i.e., unrelated. We therefore expect men and women to be similar in their
proportions of anemia and non-anemia. To determine these proportions, we use the total results in the
data as the best source of the parametric estimates. Thus, from the marginal totals in the table, the “true”
proportional parameters would be estimated as 20/200 = .10 for anemia and 180/200 = .90 for non-anemia.

With these parametric estimates, the expected frequency counts in the cells of the table would be 
.1 × 95 = 9.5 for anemia and .9 × 95 = 85.5 for non-anemia in the 95 men, and .1 × 105 = 10.5 and
.9 × 105 = 94.5 correspondingly for the 105 women. For calculating the observed/expected ratios in
Formula [14.1], the upper left cell in Table 14.1 would produce (6  9.5)2/9.5 = ( 3.5)2 /9.5. After the
remaining appropriate ratios are formed and added, the value for X2 would be

When checked as shown shortly, the associated 2P value for this X2 exceeds .05. Thus, there is a
reasonable stochastic chance (i.e., greater than 1 in 20) that men and women — at least in the group
under study here — do indeed have similar occurrence rates of anemia.

TABLE 14.1 

2 × 2 Table Showing Contingency Counts for Presence of
Anemia in a Group of 200 Men and Women

Anemic Not Anemic Total

Men 6 89 95
Women 14 91 105
Total 20 180 200

X2 3.5–( )2

9.5
----------------- 3.5( )2

85.5
-------------- 3.5( )2

10.5
-------------- 3.5–( )2

94.5
----------------- 12.25

9.5
------------- 12.25

85.5
------------- 12.25

10.5
------------- 12.25

94.5
------------- 2.73=+ + +=+ + +=
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14.1.3 The χ2 Distribution 

The critical ratio that forms the calculated value of X2 is an arbitrary stochastic index or “test statistic,”
which has a mathematical sampling distribution called chi-square, written as χ2. (This same phenomenon
occurred earlier for the “critical ratio” of test statistics that were referred to a t or Gaussian Z distribution.
In the previous activities, however, the same names, t or Z, were used for both the test statistics and
the corresponding distributions of “continuous” dimensional data. For the “discontinuities” of categor -
ical data, a distinction can be made between X2, the calculated test statistic, and χ2, the theoretical
continuous distribution.)

The “discovery” of the chi-square distribution is usually ascribed to Karl Pearson, but it is now believed
to have been introduced in Germany in 1863 by the physicist, E. Abbe,1 and publicized in 1876 by 
another physicist, F. R. Helmert.2

The mathematical idea behind the χ2 distribution (if you are curious to know) involves the sum of
squares for a series of individual Gaussian variables, Xj, each with standard deviation, σj. When each
variable is cited as a standardized deviate, , the sum of squares for ν such independent
deviates is

[14.2]

The subscript “ν” denotes that ν independent standard “normal variates” contributed to the sum. The
sampling distribution of would produce a family of curves, analogous to the family we found for
the t distribution, with ν being the degrees of freedom for each curve.

Figure 14.1 shows the probability density, analogous to that of a Gaussian curve, for several members
of the family of χ2 curves, each marked with n degrees of freedom. Unlike Z and t curves, the χ2 curves
are not symmetrical. Like the Z and t curves, however, the χ2 curves are interpreted for the external 
probability area that remains under the curve beyond a particular value of χ2.

14.1.4 Degrees of Freedom and Interpretation of χ2

The χ2 distribution is well suited for interpreting the test statistic, X2, determined as Σ[(observed – 
expected)2/expected]. The proof of the correspondence between X2 and χ2 lies buried somewhere in the
annals of mathematical statistics and will not be exhumed here. (Shouts of “hurrah” are permissible, but
not encouraged.)

The sampling distribution of χ2 in its family of curves will have different external P values according
to the degrees of freedom in the particular calculated value of X2. Table 14.2 shows the correspondence
of values for χ2, ν, and P.

To apply Table 14.2 for the X2 of 2.73 in the data of Table 14.1, we first determine the degrees of
freedom in the data. One approach to this decision is to recognize that the increment in two proportions
can be converted to a “Z-deviate” using Formula [13.16]. When entered in Formula [14.2], the squared
value of Z would be a single member of a χ2 family and would, therefore, have one degree of freedom.

FIGURE 14.1
Probability density of chi-square distribution for different degrees of freedom marked n. (For further details, see text.)
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Accordingly, at one degree of freedom in Table 14.2, the top row shows that the calculated X2 of 2.73
is just higher than the 2.706 value required for 2P = .10. Therefore, the stochastic conclusion is
.05 < 2P < .10.

To confirm the relationship of Z2 and X2, note that the increment in the numerator of Formula [l3.16]
for Z is (14/105) (6/95) = .070, and  is . The denominator term for

 is calculated as Therefore, Z = (.070)(7.06)/.3 = 1.65 and Z2 is 2.72, which
is identical, except for minor rounding, to the value of X2 calculated with the observed/expected tactic
in Section 14.1.2.

Although this approach is satisfactory to show that a 2 × 2 table has one degree of freedom, a more
general strategy is needed for larger two-way tables.

14.1.5 Controversy about d.f. in 2-Way Tables

X2 tests are most commonly applied to a 2 × 2 table having four interior cells, but can also be used for
two-way tables with larger numbers of cells. With r categories in the rows and c categories in the
columns, the table would have r × c cells.

The decision about degrees of freedom in an r × c table gave rise, early in the 20th century, to a
heated, bitter battle between two statistical titans: Ronald A. Fisher and Karl Pearson. Fisher emerged
the victor, but the personal feud between the two men was never resolved, with Fisher thereafter avoiding
(or being denied) publication in the then leading journal of statistics ( Biometrika), which was edited by
Pearson. [Fisher, of course, found other places to publish, but the feud was a juicy scandal for many
years. Consider the analogous situation in medicine today if William Osler were alive in the U.S. and
writing vigorously, but never publishing anything in the New England Journal of Medicine.]

In the argument over degrees of freedom, Pearson contended that a two-way table with r rows and c 
columns would have r × c cells, and that the degrees of freedom should therefore be rc − 1. Fisher
demonstrated that the correct value for degrees of freedom was (r 1)(c 1).

He began his argument by “dis-entabling” the data and converting the cells into a linear array. It would
have r × c cells, which could be filled with rc degrees of freedom, choosing any desired numbers. Because
the cellular totals must add up to N, one degree of freedom is immediately lost, so that rc  1 choices
become “freely” available. Reconstructing the r × c cells into a 2-way table, however, produces some new
constraints. The marginal totals must add up to the grand total (N) in the rows and also in the columns.
Therefore, only r  1 marginal totals can be freely chosen for the rows, and each of those choices creates
an additional constraint in the cellular freedom, so that r 1 degrees of freedom are lost in the basic cellular
choices. Analogously, the column totals create another c  1 constraints. Therefore, the degrees of freedom

TABLE 14.2

Correspondence of Two-Tailed External P Values for X2 Values at Different Degrees of Freedom (marked ν)

  ν 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.050 0.0250 0.010 0.0050 0.0010

1 0.0158 0.0642 0.148 0.275 0.455 0.708 1.074 1.642 2.706 3.841 5.024 6.635 7.879 10.828
2 0.211 0.446 0.713 1.022 1.386 1.833 2.408 3.219 4.605 5.991 7.378 9.210 10.597 13.816
3 0.584 1.005 1.424 1.869 2.366 2.946 3.665 4.642 6.251 7.815 9.348 11.345 12.838 16.266
4 1.064 1.649 2.195 2.753 3.357 4.045 4.878 5.989 7.779 9.488 11.143 13.277 14.860 18.467
5 1.610 2.343 3.000 3.355 4.351 5.132 6.064 7.289 9.236 11.070 12.833 15.086 16.750 20.515
6 2.204 3.070 3.828 4.570 5.348 6.211 7.231 8.558 10.645 12.592 14.449 16.812 18.548 22.458
7 2.833 3.822 4.671 5.493 6.346 7.283 8.383 9.803 12.017 14.067 16.013 18.075 20.278 24.322
8 3.490 4.594 5.527 6.423 7.344 8.351 9.524 11.030 13.362 15.507 17.535 20.090 21.955 26.124
9 4.168 5.380 6.393 7.357 8.343 9.414 10.656 12.242 14.684 16.919 19.023 21.666 23.589 27.877
10 4.865 6.179 7.267 8.295 9.342 10.473 11.781 13.442 15.987 18.307 20.483 23.209 25.188 29.588
11 5.578 6.989 8.148 9.237 10.341 11.530 12.899 14.631 17.275 19.675 21.920 24.725 26.757 31.264
12 6.304 7.807 9.034 10.182 11.340 12.584 14.011 15.812 18.549 21.026 23.337 26.217 28.300 32.909
13 7.042 8.634 9.926 11.129 12.340 13.636 15.119 16.985 19.812 22.362 24.736 27.688 29.819 34.528
14 7.790 9.467 10.821 12.078 13.339 14.685 16.222 18.151 21.064 23.685 26.119 29.141 31.319 36.123
15 8.547 10.307 11.721 13.030 14.339 15.733 17.322 19.311 22.307 24.996 27.488 30.578 32.801 37.697
16 9.312 11.152 12.624 13.983 15.338 16.780 18.418 20.465 23.542 26.296 28.845 32.000 34.267 39.252
17 10.085 12.002 13.531 14.937 16.338 17.824 19.511 21.615 24.769 27.587 30.191 33.409 35.718 40.790
18 10.865 12.857 14.440 15.893 17.338 18.868 20.601 22.760 25.989 28.869 31.526 34.805 37.156 42.312
19 11.651 13.716 15.352 16.850 18.338 19.910 21.689 23.900 27.204 30.144 32.852 36.191 38.582 43.820

Source: This table is derived from Geigy Scientific Tables, Vol. 2, ed. by C. Lentner, 1982 Ciba-Geigy Limited, Basle, Switzerland.

nAnB/N 95( ) 105( )/200 7.06=
PQ 20( ) 180( )/200 .3.=
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are rc 1 (r − 1)  (c 1), which becomes (r 1)(c 1). Thus, a 4 × 5 table has (4 − 1)(5 − 1) = (3)(4)
= 12 degrees of freedom, and a 2 × 2 table has (2 1)(2 1) = 1 degree of freedom.

The idea can be quickly grasped for a 2 × 2 table if you consider the marginal totals fixed as follows:

As soon as you enter a number in any one of these four cells, the values of all the remaining cells
are determined. Suppose a is chosen to be the value of cell 1,1. Then cell 1,2 is n 1 a; cell 2,1 is f1 a;
and cell 2,2 is either n2  (f1 a) or f2 (n1 a). Consequently, the only available freedom in this table
is to choose the value for any one of the cells.

14.1.6 “Large” Degrees of Freedom

The formula (r 1)(c  1) should be kept in mind when the value of ν is determined for r × c tables
that are larger than 2 × 2. If ν becomes very large, however, you may want to reappraise the planned
analysis. For example, a table with 4 categories in the rows and 5 categories in the columns will have
12 degrees of freedom, but the results of such a table are usually difficult to understand and interpret.
In fact, many experienced, enlightened data analysts say they regularly try to reduce (i.e., compress)
everything into a 2 × 2 table because they understand it best.

Chapter 27 contains a discussion of tables where r and c are each ≥3, and also of special tables
constructed in a 2 × c (or r × 2) format where only c (or r) is ≥ 3. [For example, we might consider the
sequence of survival proportions for four ordinal stages – I, II, III, and IV — in a table that would have
(2 1)(4 1) = 3 degrees of freedom.] In general, however, if the degrees of freedom start getting
“large” (i.e., ≥ 6), the table is probably unwieldy and should be compressed into smaller numbers of
categories. Therefore, opportunities should seldom arise to use the many lines of Table 14.2 for which
the degrees of freedom exceed 6.

14.1.7 Yates Continuity Correction

Another major conceptual battle about χ2 is still being fought today and has not yet been settled. The 
source of the controversy is the “continuity correction” introduced by Frank Yates3 in 1934.

The basic argument was discussed in Section 13.8.2. The distribution of a set of categorical frequencies, 
or of the X2 value calculated from them, is discontinuous, but χ2 has a continuous distribution.

Consequently, χ2 is the “limit” toward which X2 approaches as the group sizes grow very large. For 
a suitable “correction” of X2, Yates proposed that if we take “the half units of deviation from expectation 
as the group boundaries, we may expect to obtain a much closer approximation to the true distribution.”

The net algebraic effect of the Yates correction was to make the basic Formula [14.1] become

where O = observed values, E = expected values, and the c subscript indicates use of the Yates correction. 
For practical purposes, the Yates correction usually alters the individual observed–expected deviations 
to make them less extreme. The corrected value of  is then used for entering the standard chi-square  
tables to find the associated value of P.

The Yates correction soon became established as a chic item of statistical fashion in the days before 
easy computation was available for the Fisher Exact Test. A manuscript reviewer (or editor) who could 
find nothing else to say about a paper would regularly ask whether the investigators had calculated their 
X2 values ignorantly (without the correction) or sagaciously (with it). To know about and use the Yates  

Column
Row 1 2 Total

1 n1

2 n2

Total f1 f2 N

Xc
2 Σ O E– 1/2–( )2

E
-------------------------------------=

Xc
2
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correction became one of the “in-group” distinctions — somewhat like knowing the difference between
incidence and prevalence — that separated the pro from the neophyte in the analysis of clinical and
epidemiologic data.

In recent years, however, a major assault has been launched against the continuity correction and it
seems to be going out of fashion. The anti-Yates-correction argument is that the uncorrected X2 value
gives better agreement than the corrected one when an exact probability (rather than an approximate
one, via χ2 tables) is calculated for the data of a 2 × 2 table. If the “gold standard” Fisher exact probability
test, discussed in Chapter 12, eventually replaces the X2 test altogether, the dispute about the Yates
correction will become moot.

14.2 Formulas for Calculation

Because the chi-square procedure is so popular, many tactics have been developed to simplify the
arithmetic with methods that incorporate the “expected” values into the calculations, thereby avoiding
the cumbersome Σ[(observed – expected)2/expected] formula. The alternative formulas are listed here
for readers who may want or need to do the calculations themselves without a computer program. [If
you like interesting algebraic challenges, you can work out proofs that the cited formulas are correct.]

14.2.1 2 × 2 Tables

For a 2 × 2 table constructed as

the simplified formula is

[14.3]

In words, X2 is the squared difference in the cross product terms, multiplied by N, divided by the product
of the four marginal totals. Thus, for the data in Table 14.1,

which is the same result obtained earlier.

14.2.2 Yates Correction in 2 × 2 Table

To employ the Yates correction, Formula [14.3] is changed to

[14.4]

If Yates correction were applied, the previous calculation for Table 14.1 would become = [700
(200/2)]2 [200]/35910000 = (600)2(200)/35910000 = 2.005.

Total

a b n1
c d n2

Total f1 f2 N

X2 ad bc–( )2N[ ]/ n1n2f1f2( )=

X2 6 91×( ) 89 14×( )–[ ]2 200×
95 105 20 180×××

----------------------------------------------------------------------- 546 1246–( )2 200×
35910000

-------------------------------------------------= =

700–( )2 200×
35910000

---------------------------------- 98000000
35910000
------------------------ 2.73= ==

Xc
2 ad bc– N/2[ ]–( )2N

a b+( ) c d+( ) a c+( ) b d+( )
--------------------------------------------------------------------=

Xc
2
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14.2.3 Formula for “Rate” Calculations

The results of two proportions (or two rates) are commonly expressed in the form p1 = t1/n1 and p2 = t2/n2,
with totals of P = T/N, where T = t1 + t2 and N = n1 + n2. The “unpacking” of such data can be avoided
with the formula

[14.5]

This formula may look forbidding, but it can be rapidly carried out on a hand calculator, after only one
manual maneuver—the subtraction of T from N.

The formula can be illustrated if the occurrence of anemia in Table 14.1 were presented as 6/95 =
.063 for men and 14/105 = .133 for women. Instead of unpacking these proportions into a table, we can
promptly determine that T = 6 + 14 = 20, N = 95 + 105 = 200, and N T = 200  20 = 180. With
Formula [14.5], we then calculate

X2 = [(62/95) + (142/105) (202/200)][2002/{(20)(180)}]
= [.2456][11.11] = 2.73

which is the same result as previously.
Another formula that determines X2 without fully “unpacking” the two proportions is

[14.6]

For the data in Table 14.1, this calculation is [(105)(6) (95)(14)]2(200)]/[(95)(105)(20)(180)] = 2.73.

14.2.4 Expected Values

If you, rather than a computer program, are going to calculate X2 for a two-way table that has more 
than 2 rows or 2 columns, none of the simplified formulas can be used. The expected values will have 
to be determined, and a strategy is needed for finding them quickly and accurately.

The process is easiest to show for a 2 × 2 table, structured as follows:

In this table, the proportion of old people is f1/N. Under the null hypothesis, we would expect the 
proportion of old men to be (f1/N) × n1 and proportion of old women to be (f1/N) × n2. Similarly, the 
expected values for young men and young women would be, respectively, (f 2n1)/N and (f2n2)/N. Conse-
quently, the expected values in any cell are the products of the marginal totals for the corresponding 
row and column, divided by N. Thus, the expected values here are

Men Women Total

Old a b f1

Young c d f2

Total n1 n2 N

Men Women

Old

Young

X2 t1
2

n1
----- t2

2

n2
----- T2

N
-----–+ N2

T( ) N T–( )
---------------------------=

X2 n2t1 n1t2–( )2N
n1n2T N T–( )
-----------------------------------=

f1n1

N
--------- f1n2

N
---------

f2n1

N
--------- f2n2

N
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For a table of larger dimensions, the process can be illustrated as shown in Figure 14.2. In the cell for
row 2, column 1, the expected value is f2n1/N—which is the product of the marginal totals for row 2
and column 1, divided by N. In row 1, column 3, the expected value is f1n3/N. In row 3, column 2, the
expected value is f3n2/N.

14.2.5 Similar Values of  in Cells of 2 × 2 Table

An important attribute of the observed-minus-expected values in a 2 × 2 table is that their absolute
magnitudes are identical in each cell, but the signs oscillate around the table. For example, for Table 14.1,
the results in Section 14.1.2. showed that the observed-minus-expected values are

A simple formula for the absolute magnitude of the observed-minus-expected value for any cell in a
2 × 2 table is . For the anemia example, (ad bc)/N = [(6 × 91) (89 × 14)]/200 =

700/200 = 3.5.
With e = (ad  bc)/N, the pattern of observed–expected values in the four cells will be:

The rotating pattern of +e and e values is useful for checking calculations and for indicating that the
four marginal totals (nl, n2, f1, f2) should be exactly the same in the expected values as in the observed
values. Because the (observed  expected)2 values of e2 will be identical in each cell, the main distinctions
in X2 arise from divisions by the expected values. If they are too small, the results may be untrustworthy,
as discussed in Section 14.3.1.

14.2.6 Equivalence of Z2 and X2

Near the end of Section 14.1.4, we found that Z2 and X2 gave identical results for the data of Table 14.1.
The equality of Z2 and X2 in any 2 × 2 table can be proved by substituting into the previous Formula
[13.16] for Z and developing the algebra. The increment of the two binary proportions, p 1 p2, becomes
(ad − bc)/n1n2. The common value of P in a2 × 2 table is (n1p2 + n2p2)/N = f1/N, and Q = 1  P will be
f2/N. When entered into Formula [13.16], these results lead to

which is the square root of Formula [14.3] for X2.
The similarity between Z2 and X2 is so striking that in looking for P values you can square Z values

if you do not have a Table of χ2 (at one d.f.) available. For example, in Table 14.2, the X2 values for

FIGURE 14.2
Diagram showing marginal totals used for 
calculating expected values in a cell.
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P = .1, .05, and .01, respectively, are 2.706, 3.841, and 6.635. These are the exact squares of the 
corresponding Z values in Table 6.3. They produce (1.645)2, (1.96)2 and (2.58)2.

The equivalence of Z2 = X2 for a 2 × 2 table, with 1 degree of freedom, was also shown in the 
construction of the chi-square distribution in Formula [14.2]. The equivalence helps indicate that for 
two-group contrasts, the Z procedure is probably the most useful of the three parametric tests: Z, t, and  
chi-square. Except when group sizes are small enough to be troublesome, the Z test can be used to 
contrast two means and also two proportions. Perhaps the main reason for noting the similarity of Z and 
chi-square, however, is that Z is used for calculating confidence intervals and sample sizes, as described 
in Sections 14.4 and 14.5.

14.2.7 Mental Approximation of Z

A simple mental approximation becomes possible when the Z formula for comparing two proportions 
is rearranged as

[14.7]

where k = n1/N and 1  k = n2/N.
If  and  are each about .5 (as is often true), they essentially cancel in the foregoing  

formula, which becomes

[14.8]

To use this formula mentally, without a calculator, begin with the values presented for p 1 and p2 and for 
their increment, p1  p2. Because Z is “statistically significant” when ≥ 2, this status can be achieved if 

 is strikingly larger than 2. The main job is to see whether  is large enough to achieve 
this goal when it multiplies . If denominators are shown for p1 and p2, you can quickly add n1
+ n2 to form N and then estimate its square root.

For example, suppose an investigator compares the two proportions 70/159 = .44 and 300/162 = .19 
as success rates in a trial of Treatment A vs. B. The increment p1  p2 is .44 .19 = .25. To exceed 2, 
this value must be multiplied by something that exceeds 8. Because the total group is bigger than 300, 
its square root will surely exceed 8. Therefore, your mental screening test can lead to the conclusion 
that Z > 2, and that the result is stochastically significant. The actual calculation would show that =
.463, , and Z = (.440 − .185) (.500)/(.463) = 4.93 for which 2P < 1 × 10−6.

Conversely, suppose a speaker compares the proportions 19/40 = .48 and 12/42 = .29. The increment 
of p1  p2 seems impressive at .48  .29 = .19, or about .2. For the appropriate product to exceed 2, 
however, the .2 value must be multiplied by 10; but the total group size here is below 100, being 40 +
42 = 82. Because the square root of the group size will not exceed 10, the result cannot be stochastically 
significant at 2P < .05 for Z > 2. If you want to awe (or offend) the speaker, you can immediately volunteer 
the warning that the result is not stochastically significant. [The actual calculation would show 

= .48, and = .500. The value of Z would be 
. It is close to 2 and will have a one-tailed but not a two-tailed 

P < .05.]
The “mental method” is best for two-tailed rather than one-tailed tests. In the latter, Z need exceed 

only 1.645 rather than the easy-to-remember “2” of 1.96. In the foregoing example, the closeness of 
 to  might have acted as a cautionary warning that 1.645 could be exceeded in a one-tailed test.

14.3 Problems and Precautions in Use of X2

The chi-square test became popular because it offered a stochastic contrast for the proportions found 
in two groups. For a clinical investigator who works with enumeration (counted) data, chi-square was 
the counterpart of the t test (or Z test) used for contrasting the means in two groups of dimensional 
laboratory data.

p1 p2–
PQ

---------------- k( ) 1 k–( )× N×

k( ) 1 k–( ) PQ

Z p1 p2–( ) N≅

p1 p2– N N
p1 p2–·

PQ
k 1 k–( ) .500= 321

PQ .378( ) .622( )= k( ) 1 k–( ) 40/82( ) 42/82( )=
.475 .286– 82[ ] .500( )/ .48( ) 1.78=
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Aside from disputes about how well the X2 computation fits the χ2 distribution, many other problems
require attention.

14.3.1 Size of Groups

No consistent agreement has been developed for the minimum size of N, or of n1 and n2, that will
preserve validity in the assumptions about a χ2 distribution. A compromise solution offered by Cochran4

is to avoid X2 and to use the Fisher Exact Probability Test if N < 20, or if 20 < N < 40 and the smallest
expected value in any cell is less than 5.

14.3.2 Size of Cells

Consistent agreement is also absent about the minimum size of the expected values in the cells. Some
authors have said that the X2 test is not valid if the expected value in any cell is below 5. Others put
this minimum expected cell value at 10. Yet others recommend 20.

If you have a suitable computer program, the conflicting recommendations about sizes of groups and
cells can be avoided by using the Fisher Exact Test for all 2 × 2 tables.

14.3.3 Fractional Expected Values

The expected values often seem scientifically odd. Given success rates of 8/23 = .35 and 11/16 = .69
for groups of treated and untreated patients, respectively, the observed and expected values for these
data are shown inTable 14.3. Just as a “mean of 2.7 children” is one of the reasons for avoiding means
and using median values in dealing with discrete integer data, an expected value of “11.8” or “8.2” 
people seems equally strange in a 2 × 2 frequency table. Nevertheless, these fractions of people are 
essential for the calculations.

14.3.4 Is X2 a Parametric Test?

The X2 test is sometimes called “non-parametric” because (unlike the usual Z or t test) it does not require
dimensional data. Nevertheless, the interpretation of X2 requires the conventional parametric-type rea-
soning about sampling from a hypothetical distribution. Besides, as noted earlier, the parametric Z test 
and X2 give identical results in the comparison of two proportions.

14.3.5 Controversy about Marginal Totals

As discussed earlier in Section 12.7.3, an academic controversy has developed about the idea of fixing 
the marginal totals at f1, f2, n1, and n2 when either X2 or the Fisher Exact Test is determined for a 2 × 2
table. Because the numbers in the table can be obtained from at least three different methods of 
“sampling,” each method (according to the theorists) can lead to different estimates of parametric values 
for the observed proportions, and to different strategies for either fixing the margins or letting them vary.

The arguments offer interesting displays of creative statistical reasoning, particularly for estimating  
sample sizes before the research is done. Nevertheless, when the research is completed, the pragmatic  

TABLE 14.3

Observed and Expected Values for Data in a 2 × 2 Table

Observed Values Expected Values
Failure Success Total Failure Success

Untreated 15 8 23 11.8 11.2
Treated 5 11 16 8.2 7.8
Total 20 19 39 20.0 19.0

© 2002 by Chapman & Hall/CRC 



reality, acknowledged by many prominent statisticians,5–7 is that the four marginal totals are f 1, f2, n1,
and n2. They are therefore kept intact, i.e., fixed, for the Fisher exact test and for the conventional X2

test, as well as for the test with Yates correction.
Unless you are planning to write a mathematical thesis on inferential probabilities, the useful pragmatic 

approach is to follow custom and fix both sets of margins. Besides, as the Fisher test gradually replaces  
X2 (or Z) for comparing two proportions, the arguments about estimating the parameters will become 
historical footnotes.

14.3.6 Reasons for “Success” of Chi-Square

Despite all the cited infelicities, the X2 test has grown and flourished because it is easy to calculate, 
reasonably easy to understand, versatile, and robust. Its versatility will be discussed in Section 14.7. Its  
robustness arises because the results, when converted into probability values, are generally similar to 
those produced by the “gold standard” Fisher exact probability procedure.

Like the t test, the X2 test has major intellectual defects and major numerical advantages. The object 
here is neither to praise nor to condemn the test, but to familiarize you with its usage. Since the X2 test 
will probably not be replaced for a long time, it will regularly appear in published literature, and the 
process of learning about it becomes an act of enlightened self-defense.

Nevertheless, to calculate confidence intervals or to estimate sample size for a contrast of two 
proportions, the preferred tactic is the Z procedure, not chi-square.

14.4 Confidence Intervals for Contrast of Two Proportions

To use the Z procedure for calculating the confidence interval of a contrast of two proportions, pA = tA/nA

and pB = tB/nB, the first step is to determine the standard error of the difference.

14.4.1 Standard Error of Difference

An increment of two proportions, like an increment of two means, evokes the same question about 
“Which standard error?”

14.4.1.1 Customary SED0 for Null Hypothesis — With the conventional null hypothesis, 
when we assume that the outcome is unrelated to treatment, the common proportion for the two groups  
is estimated parametrically as π = (nApA + nBpB)/N. With the observed P used to estimate π, the standard 
error of the difference, subscripted with 0 to indicate a null hypothesis, will then be

[14.9]

With Zα appropriately selected for a 1 − α level of confidence, the corresponding confidence interval 
will be

[14.10]

14.4.1.2 Simplified Calculation of SED0 — The calculation of SED0 can be simplified by 
noting that nA + nB = N and tA + tB = T. Then P = (nApA + nBpB)/N = (tA + tB)/N = T/N. The value of 
Q = 1  P will be [N  T]/N. The product NPQ will then be T(N  T)/N, and the calculational formula 
for [14.9] becomes

[14.11]

SED0 NPQ/nAnB=

pA pB– Zα NPQ/nAnB±

SED0 T N T–( )[ ]/ N( ) nA( ) nB( )[ ]=
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For example, suppose we want to find the standard error for the difference in two proportions 18 /24 =
.75 and 10/15 = .67. The value of P can be calculated as (18 + 10)/(24 + 15) = 28/39 = .718, and Q will 
be 1  .718 = .282. The standard error would become = .148. With the 
simplified formula, which avoids rounding for values of P and Q, the calculation would be

14.4.1.3 Rapid Mental Approximation — An additional feature of Formula [14.11] allows a 
particularly rapid “mental” approximation of the standard error of the difference.

This approach is possible because over a reasonable range of values, the ratio of [(T)(N  T)]/[(nA)(nB)] 
will not be too far from 1. (In the cited example, it is (28)(11)/(24)(15) = .856.) If the value of [T(N  
T)]/[(nA)(nB )] is crudely approximated as 1, the standard error of the difference will be approximated 
as 

The  approximation for SED in comparing two proportions is the same  calculation 
discussed earlier (Section 8.5.1) for the 95% confidence-interval component of a single proportion. In 
using this “shortcut,” remember that the  formula is used for two different approximations: SED 
for two proportions and 2SE for one proportion. In the example here, = .160 — a value not far 
from the actual SED of .148.

For the “mental” part of the calculation, you can estimate  as roughly , for which the 
square root is 1/6 = .167, which is reasonably close to the actual value of .148. The “mental” feat here 
is even more impressive because it just happened that way: the numbers in the example were not 
deliberately “rigged” to produce a close result.

Unlike the results of two means, the results for two proportions are seldom listed with standard errors, 
which would be  and . Therefore, a crude confidence interval component cannot 
be readily obtained by adding the two standard errors and doubling the result. Applying the “crude” 
formula of , however, and using the particularly crude value of  in the example 
here, we could double the approximated SED to get .167 × 2 = .234. Since this value substantially 
exceeds the observed pA  pB = .083, we can feel almost sure that the result is not stochastically significant 
at a two-tailed α = .05. Essentially the same computational tactic was used for the mental approximation 
in Section 14.2.7, when pA  pB was multiplied by , and the result compared against a value of 2.

14.4.1.4 SEDH   Error for Alternative Hypothesis  — In additional types of stochastic rea-
soning discussed later in Chapter 23, the assumed alternative hypothesis is that the two “treatments” are 
different, i.e., the observed values of pA and pB are not parametrically similar. With this assumption, the 
appropriate variance of the increment in the two central indexes is calculated, as in Chapter 13, by adding 
the two observed variances as (pAqA/nA) + (pBqB/nB). Under the alternative hypothesis, the standard error 
of the difference will be

[14.12]

Thus, if we assumed that one treatment was really different from the other in the foregoing example,  
the correct standard error would be calculated as

14.4.1.5 Simplified Calculation of SEDH — To avoid problems in rounding, the alternative 
SEDH is best calculated with the integer values of

39 .718( ) .282( )/ 15 24×( )

18 10+( ) 6 5+( )/ 24 15+( ) 24( ) 15( ) 28( ) 11( )/ 39( ) 24( ) 15( ) .148= =

SED −∼ 1/N.
1/N 1/N

1/N
1/39

1/39 1/36

pAqA/nA pBqB/nB

1/N 1/36 .167=

N

SEDH pAqA/nA( ) pBqB/nB( )+=

.75( ) .25( )/24[ ] .67( ) .33( )/15[ ]+ .150=

tA/nA( ) nA tA–( )/nA[ ]/nA{ } tB/nB( ) nB tB–( )/nB[ ]/nB{ }+

© 2002 by Chapman & Hall/CRC 



With hand calculators that can easily do “cubing,” a simple computational formula is

[14.13]

In the foregoing example, the result would be

14.4.2 Similarity of SEDs

As in a contrast of two means, the two methods of calculation usually produce quite similar results 
for the standard error of the difference in two proportions. Thus, although Formula [14.9] (or [14.11])  
vs. Formula [14.12] (or [14.13]) may produce different results in mathematical theory, the pragmatic 
values are reasonably close. In the foregoing example that compared 18 /24 = .75 with 10/15 = .67, the 
disparity between the SEDs of .148 and .150 is only about 2 parts in 150.

For practical purposes, therefore, the standard error of the difference in proportions can be calculated  
with either formula, regardless of what assumption is made about the parametric hypothesis. Because 
the intermediate calculation of P is avoided, the formula of (pAqA/nA) + (pBqB/nB) seems somewhat easier 
to use on a hand calculator, but NPQ /nAnB is usually preferred here because it is also more appropriate 
for the conventional null hypothesis.

If the result is so borderline that stochastic significance will be lost or gained by choice of the method 
for calculating SED, the data probably do not warrant any firm conclusions. Besides, both formulas rely 
on the assumption that increments in the two proportions have a Gaussian distribution. As shown in 
Chapter 8, however, this assumption does not hold for relatively small group sizes. In such circumstances, 
the data analyst might want to use the Fisher-test intervals or some other procedure to achieve reality 
amid the allure of the Gaussian wonderland.

14.4.3 Choice of Zα Values

After an SED value is determined, the next step in constructing a confidence interval is to choose a 
value for Zα . This choice depends on the same questions that have been previously discussed for how 
much “confidence” we want, and whether it goes in a one- or two-tailed direction.

The questions can be answered with the same reasoning and arguments used previously for dimensional 
data in Chapter 13, but two distinctions need further consideration for comparisons of binary proportions.

14.4.3.1 Magnitude of α — In most ordinary situations, α is set at a two-tailed level of .05, 
for which Zα= 1.96. Thus, for the difference in the previously cited comparison of 18/24 = .75 vs. 10/15
= .67, with SED = .148, the 95% confidence interval will be

and will extend from .21 to +.37. Because the interval includes 0, the result is not stochastically 
significant at 2P ≤ .05. On the other hand, we might be reluctant to conclude that the increment of .08  
is truly “insignificant” because it might be as large as .21 in favor of “Treatment B” or .37 in favor of  
“Treatment A” within the extent of the 95% confidence interval.

The magnitude of α becomes particularly important when the stochastic result is “nonsignificant,” 
and the confidence interval is then explored for the possibility that its upper end is impressively high. 
With a small enough choice of α, e.g., α = .0001, Zα can become large enough to “drag” the interval 
for any two-proportion increment across whatever descriptive border is set for “high.” For example, if 
the observed increment is .04 and the SED is .03, the customary Zα will make the confidence interval 
be .04 ± (1.96)(.03). It will be “nonsignificant,” extending from .019 to +.099.

On the other hand, if we set α = .001, the Zα of 3.29 will make the interval become .04 ± (3.29)(.03). 
Its upper end will now have the “impressive” value of .14.

SED tA( ) nA tA–( )/nA
3[ ] tB nB tB–( )/nB

3[ ]+=

18( ) 6( )/243[ ] 10( ) 5( )/153[ ]+ .150=

.75 .67–( ) 1.96( ) 1.48( ) .08 .29±=±
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14.4.3.2 Focus of Conclusions — In Chapter 10, we saw how an investigator can honestly and 
legitimately, but somewhat deceptively, make unimpressive results seem impressive. Instead of being 
cited as unimpressive increments, they can be cited as impressive ratios or proportionate increments. 
An analogous tactic is available when the investigator chooses Zα and emphasizes a directional focus 
for the confidence interval.

If the confidence interval includes the null hypothesis value of 0, the result is not stochastically 
significant. In this circumstance, many investigators (especially if the group sizes are small) will examine 
the ends of the interval to see how big pA  pB might really be. Such an examination is quite reasonable, 
but it may sometimes be used zealously by an investigator who is committed to advocating a “signifi-
cance” that was not confirmed stochastically. The investigator may emphasize and focus on only the 
large potential difference shown at one end of the confidence interval. If Zα is enlarged, the difference 
can be made even larger. The other end of the interval, of course, will indicate a reverse possibility—but 
its existence may then be conveniently ignored. (The prevention of this type of stochastic abuse was 
one of the reasons cited by Fleiss8 for insisting on P values.)

In other situations, as discussed earlier in Chapter 13, when the null hypothesis parameter is excluded  
from the conventional 95% confidence interval, an investigator who is avidly seeking “significance” can  
ecstatically proclaim its presence. A cautious analyst, however, will examine both the range of the 
confidence interval and its smaller end. If the range is too wide and the smaller end is close to the 
null-hypothesis value, the relatively unstable result may have “just made it” across the stochastic border.  
A “fragility shift” of one or two persons might often drastically alter the result and even remove the 
“significance.”

14.4.4 Criteria for “Bulk” of Data

If a confidence interval is being used for descriptive decisions about how big a difference might be, and 
if Zα is regularly chosen to be the same value of 1.96 used for a two-tailed α = .05, the stochastic tail 
of the conventional α is allowed to wag the descriptive dog of quantitative significance.

Arguing that descriptive significance depends on bulk of the data, rather than arbitrary stochastic 
boundaries, some analysts may prefer to use Z values that reflect differences established by bulk of data, 
not by stochastic doctrines about level of α. For example, a two-tailed Z.75 = 1.15 will span 75% of the 
Gaussian increments, and Z.50 = .6745 will span 50%. The inner 50% of the data is the interquartile 
range spanned by a box plot. In the early days of statistical inference, before α was set at .05 by R. A. 
Fisher’s edict, the 50% zone of .6745 × standard error was regarded as the “probable error of a mean.” 
The investigators were satisfied with the idea that a mean might reasonably vary within this 50% zone,  
and they did not demand a larger zone that spanned 95% of the possibilities.

If this same idea is used for a descriptive possibility regarding the upper boundary of a “nonsignificant” 
increment, the confidence interval might be better calculated with Zα set at smaller values of .6745 (or 
perhaps Z.75 = 1.15), rather than with the arbitrary 1.96. For example, when the previous contrast of 
18/24 = .75 vs. 10/15 = .67 failed to achieve stochastic significance, the potential interval ranged from 

.21 to +.37 if calculated with the Gaussian Zα = 1.96. With Zα set at a descriptive .6745, however, the 
interval would be .08 ± (.6745)(.150) and would extend from .02 to .18. We are not concerned about 
the low end here, but the upper value of .18—which produces an interval spanning 50% of the potential 
increments—might be a more realistic estimate for the descriptive range of the upper boundary in 
denoting how much larger pA might be than pB.

This type of estimate may become attractive when data analysts begin to give serious attention to 
descriptive rather than inferential decisions about “significance” in statistical comparisons.

14.5 Calculating Sample Size to Contrast Two Proportions

Advance sample sizes are usually calculated, before the research begins, to avoid the frustration of 
finding quantitatively impressive results in group sizes too small to achieve stochastic significance. The  
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calculation seems to use a relatively simple formula noted later, but the procedure involves decisions, 
assignments, and directional estimates that have important but often overlooked consequences. In most 
situations, the investigator expects to observe do = pA  pB as an increment in two proportions, and also 
hopes that do will exceed δ, which is the lower level of quantitative significance. After choosing an α
level of stochastic significance, the investigator wants a sample size whose capacity will produce P < 
α, or a suitably small 1  α confidence interval.

14.5.1 “Single” vs. “Double” Stochastic Significance

In most trials, the investigators would like to get stochastic significance at the chosen level of α for an 
observed do having a “big” value that is ≥ δ. In the past two decades, however, statisticians have worried 
about a different problem that occurs when the anticipated do turns out to be smaller than δ. The stochastic 
conclusion that such results are nonsignificant may then be a “Type II” or “false negative” error. These  
conclusions differ from the “Type I” or “false positive” errors that are presumably avoided by a suitably 
small choice of α. Avoidance of Type II errors involves considerations of statistical “power” that will 
be discussed in Chapter 23. The main point to be noted now, however, is that an investigator who wants  
to avoid both false positive and false negative errors will enlarge the sample size substantially by seeking 
“double stochastic significance” at the level of α and also at a later-discussed level of β.

The rest of the discussion here describes the conventional methods of determining sample sizes that 
will achieve “single significance” at the chosen level of α. For the customary “single-significance” 
null-hypothesis contrast of two proportions, sample sizes are calculated with the Z procedure, which 
yields the same results when used with either a P-value or confidence-interval strategy. The “prospective” 
calculations are conceptually more difficult than “retrospective” appraisals after the research is com-
pleted, however, because no data are available in advance. Everything must be assigned and estimated. 
In addition to choosing assignments for δ and α, the investigator must estimate both πB and the common 
value of π.

14.5.2 Assignments for δ and α

Sample-size decisions begin with two assignments. The first is to set a boundary for δ, the magnitude 
of the impressive quantitative distinction desired (or expected) between p A and pB. As noted earlier 
(Chapter 10), this choice will depend on the conditions being investigated.

The second assignment sets a level for α. This decision is crucial in both prospective and retrospective 
stochastic activities because the corresponding level of Zα is used prospectively to calculate sample size, 
and retrospectively either to evaluate an observed Z o for “significance” or to calculate the magnitude of 
the confidence interval.

As noted in earlier discussions, the choice of α involves decisions for both magnitude and direction. 
The customary boundary, .05, can be made larger or smaller in special circumstances (such as the 
multiple-comparison problem mentioned in Chapter 11). The customary direction is two-tailed, so that 
the Gaussian value of Zα = Z.05 = 1.96. If the direction is one-tailed, however, the level of α is doubled, 
and Z2α = Z.10 = 1.645.

14.5.3 Estimates of πA, πB, and π 

The next decisions involve three estimates, for which a plethora of symbols can be applied. We can use  
 to represent an observed value,  for an estimated value, and πA for a parametric assumption about 
 or . To avoid the confusion of probabilities and proportions that can be represented with p or P 

symbols, we shall here use “hatted Greeks,” such as , for estimated values. The main basic estimate 
is , the value anticipated for  in the “reference” group, which can be receiving no treatment, 
placebo, or a compared active agent. After  is chosen, pA can be immediately estimated as = 
± δ. For reasons discussed throughout Section 14.6, however, the choice between +δ or δ is usually 
avoided, and the increment is usually estimated in a noncommittal two-tailed manner as 

pA p̂A

pA p̂A

π̂A

π̂B p̂B

π̂B π̂A π̂B

π̂A π̂B– δ.=
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As the counterpart of the common proportion, P, the value of π is estimated as

[14.14]

The counterpart of Q = 1 −   P cannot be easily written in Greek (which has no symbol for Q), and is 
therefore expressed as 1  . The requirements of Formula [14.14] bring in the values of nA, nB , and 
N for which sample size will eventually be calculated.

14.5.4 Decision about Sample Allocation

Although aimed at determining the total sample size, N, the Z formula cannot be applied until the 
standard error of the difference is estimated. For this estimate, we need to use /N, 
but, in addition to not knowing the value of N, we do not know the values of either nA or nB.

14.5.4.1 Equal Sample Sizes — The approximation of nA and nB is usually resolved by assum -
ing that the two groups will have equal size, so that nA = nB = N/2. We can then use n = N/2 for the 
size of each group. With this decision, the value of  becomes . The 
value of N/(nAnB) becomes 2n/[(n)(n)] = 2/n. The value of SEDo is then estimated as

[14.15]

(With the alternative-hypothesis formula, the estimated standard error for SEDH would be 
)

14.5.4.2 Unequal Sample Sizes — If for some reason the investigator wants unequal sized 
groups, the process is still relatively easy to manage. In this situation the samples will be divided as nA =
kN and nB = (1  k)N, where k is a prespecified value for the sample-allocation fraction. For example, 
if twice as many people are wanted in the treated group as in the control group, and if n B is the size of 
the control group, the sample-allocation fraction will be k = 1/3, with 1  k = 2/3. The value of  will 
be . The value of N/nAnB will be N/[(kN)(1  k)N] = 
1/[(k)(1 – k)N]. The standard error would then be estimated from the NPQ/(nAnB) formula as 

.  I f  k  i s  sp ec i f i e d  a s  1 / 3 ,  t h e  f o r mu l a  w ou l d  be  
 which becomes .

In all the estimates discussed here, the samples will be calculated, in the conventional manner, as 
having equal sizes.

14.5.4.3 Tactics in Calculation  — With

[14.16]

as the customary formula for getting to a P value, we now seem to have everything needed to calculate  
sample size by suitably substituting into Formula [14.16], where do = observed difference in the two 
proportions, SED = standard error of the difference, and Zo is the value of Z for the observed results. 
The substituted values will be the anticipated  for do; and the anticipated SED, for equal 
sample sizes, will be SED = . When these values are substituted, we can solve Expression 
[14.16] for n (or N if an appropriate formula is used for unequal sample sizes).

The Z value at δ will be calculated as

[14.17]

π̂ nAπ̂A nBπ̂B+( )= /Ν

π̂

π̂ nAπ̂A nBπ̂B+( )=

π̂ nπ̂A n π̂B+( )/2n π̂A π̂B+( )/2=

2 π̂ 1 π̂–( )/n

π̂A 1 π̂A–( ) π̂B 1 π̂B–( )+[ ]/n.
·

π̂
kNπ̂B 1 k–( )Nπ̂A+( )/N kπ̂B 1 k–( )π̂A+=

kπ̂B 1 k–( )π̂A+[ ]/(k)(1 – k)N]
π̂B/3( ) 2π̂A/3( )+[ ]/[2N/9], 3π̂B 6π̂A+[ ]/2N

Zo
do

SED
------------=

δ π̂A π̂B–=
2 π̂ 1 π̂–( )/n

Zδ
δ

2π̂ 1 π̂–( )/n
---------------------------------=
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For stochastic significance we want Zδ to exceed the selected level of Zα. Therefore,

[14.18]

To solve for n, we square both sides and determine that

[14.19]

14.6 Problems in Choosing 

Formula [14.19] is the standard recommendation for calculating sample size if the goal is to achieve 
results in which either P < α or the 1  α confidence interval has a suitable lower end. The formula relies 
on the assumption that  will be calculated for equal sized groups as , but the formula does 
not indicate whether  is expected to be larger or smaller than . If ,  becomes 

. If ,  becomes .

14.6.1 Directional Differences in Sample Size

The different directional possibilities for π can substantially affect the variance calculated as  in 
the numerator of Formula [14.19]. For example, suppose δ = .15 is set as an impressive difference in two 
proportions and = .33 is estimated for Group B. If Group A has a larger value,  will be .33 + .15 = 
.48,  will be (.33 + .48)/2 = .405, and will be (.405)(.595) = .2410. Conversely, if Group A has 
a smaller value,  will be .33 .15 = .18,  will be (.18 + .33)/2 = .255, and  will be 
(.255)(.745) = .1900.

With Zα set at a two-tailed 1.96 for α = .05, the insertion of the foregoing values in Formula [14.19]  
will produce n ≥ [2(.2410)(1.96)2]/(.15)2 = 82.3 for the first estimate, and n ≥ [2(.1900)(1.96)2]/(.15 )2

= 64.9 for the second. The first sample size will exceed the second by the ratio of the two variances, 
which is .2410/.1900 = 1.27, a proportionate increase of 27%.

Consequently, the direction of the anticipated increment in proportions does more than just affect the 
choice of a one- or two-tailed level of α. It extends into the “guts” of calculating SED and, thereby, 
sample size.

14.6.2 Compromise Choice of π̂  

The different values of n occurred because the value of  was estimated directionally as  in 
one instance and as  in the other. For a noncommittal two-tailed hypothesis, a compromise decision 
using δ/2, can produce estimates for a different  and  instead of  and . With this compromise, 
the value  will always have the same result whether  is larger or smaller than .

Thus, we can estimate  as  and . Alternatively,  can be estimated 
as  and  will be . In both situations,  will be δ; the common 
proportion  will be ; and the “compromise” value of  will be .

In the foregoing example, with δ set at .15,  might be .33 + .075 = .405 and  would be .33 
.075 = .255, with  =  (.405 + .255)/2 = .330, which is the value of . Alternatively,  could be 
.33  .075 = .255 and  would be .33 + .075 =   .405, yielding the same result for .

In giving the same result for the substitute values of , regardless of direction, the compromise 
choice of  avoids the two conflicting sample-size estimates created by a directional choice, 
but the compromise uses  for the single estimated value.

δ
2π̂ 1 π̂–( )/n

--------------------------------- Zα≥

n 2π̂ 1 π̂–( ) Zα
2( )

δ2
-----------------------------------≥

π̂

π π̂A π̂B+( )/2
π̂A π̂B π̂A π̂B δ+= π̂

π̂B δ/2( )+ π̂A π̂B δ–= π̂ π̂B δ/2( )–

π̂ 1 π̂–( )

π̂B π̂A

π̂ π̂ 1 π̂–( )
π̂A π̂ π̂ 1 π̂–( )

π̂A π̂B δ+
π̂B δ–

π̂A ′ π̂B′ π̂A π̂B

π̂′ˆ 1 π̂′–( ) π̂A π̂B

π̂B′ π̂B δ/2( )– π̂A′ π̂B= δ/2( )+ π̂B′
π̂B δ/2( )+ π̂A′ π̂B δ/2( )– π̂A ′ π̂B′–

π̂′ π̂A′ π̂B′+( )/2 π̂B= π̂′ˆ 1 π̂′–( ) π̂B 1 π̂B–( )
π̂A ′ π̂B

π̂′ π̂B π̂A′
π̂B′ π̂′

π̂′ 1 π̂′–( )
π̂B 1 π̂B–( )

π̂B
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14.6.3 “Compromise” Calculation for Sample Size

With the compromise tactic, the “theoretical” Formula [14.19] becomes the “working” formula

[14.20]

For the data under discussion, Formula [14.20] will produce n Š [(2)(.33)(.67)(1.96)2]/(.15)2 = 75.5. As 
might have been expected, this value lies between the two previous estimates of 82.3 and 64.9. With 
the compromise choice, the results should be stochastically significant, at 2P ≤ .05, if the sample size 
exceeds 76 persons in each group. The total sample size would be 152.

The compromise tactic has two potential hazards. One of them occurs in a really close situation where 
pA turns out to be pB + δ. The compromise sample size—which is smaller than the 166 needed for the 
larger estimate—may just fail to bring the calculated P value or confidence interval across the desired 
stochastic border. The second hazard is a scientific problem discussed in the next section.

14.6.4 Implications of Noncommittal (Two-Tailed) Direction

Although statistically comforting and conventional, a noncommittal two-tailed direction has important 
scientific implications. They suggest that the investigator is disinterested in the direction of the results, 
does not care which way they go, and is essentially working in a laissez faire manner, without a scientific
hypothesis. The indifference, of course can be statistically proper and valuable if pA  pB might acceptably 
go in either direction, for which a two-tailed null hypothesis is necessary.

The scientific idea being tested in the research itself, however, is the counter-hypothesis of the 
stochastic null hypothesis, which is established as , so that it can be rejected. With the 
rejection, we accept the counter-hypothesis, but it can be either a directional , with ∆ > 0 or ∆
< 0, or a noncommittal  with ∆ ≠ 0.

Very few scientific investigators would be willing to invest the time and energy required to do the 
research, particularly in a full-scale randomized trial, without any idea about what they expect to happen 
and without caring which way it turns out. Furthermore, if the expectation were actually completely 
indifferent, very few agencies would be willing to fund the research proposal. A distinct scientific 
direction, therefore, is almost always desired and expected whenever an active treatment is compared 
against no treatment or a placebo; and even when two active treatments are compared, the investigator 
is almost never passively indifferent about an anticipated direction.

Nevertheless, the noncommittal two-tailed approach has been vigorously advocated, commonly 
employed, and generally accepted by many editors, reviewers, and readers. The one-tailed approach, 
however, is probably more important when the results are interpreted afterward than when sample size 
is calculated beforehand.

The reason for the latter statement is that the selection of  often becomes a moot point after the 
augmentations discussed in Section 14.6.5, which usually increase the calculated sample size well 
beyond the largest value that emerges from different choices of . Thus, the possibility of a one-tailed 
interpretation is most important after the study is completed, particularly if pA and pB have a relatively 
small increment.

14.6.5 Augmentation of Calculated Sample Size

Regardless of how  is chosen, cautious investigators will always try to enroll groups whose size is 
much larger than the calculated value of n.

If everything turns out exactly as estimated, the observed value of  will be just ≥ δ,
and do/SED should produce a value of Zo that exactly equals or barely exceeds Zα. The expected result 
can easily be impaired, however, by various human and quantitative idiosyncrasies. Some or many of 
the people enrolled in the trial may drop out, leaving inadequate data and a reduced group size. Some 
of the anticipated success rates may not turn out to be exactly as estimated.

n 2π̂B 1 π̂B–( ) Zα
2( )

δ2
----------------------------------------≥

π̂A π̂B 0=–
π̂A π̂B–

π̂A π̂B–

π̂

π̂

π̂

pA pB– do=
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For example, suppose the investigator enrolls 76 persons in each group of the foregoing trial, but data 
became inadequate or lost for two persons in each group. Suppose the available results came close to 
what was anticipated for the two groups, but the actual values were pA = 36/74 = .486 and pB = 25/74 =
.338. When Zo is determined for these data, the result is [(36/74)  (25/74)]/
= .1486/.0809 = 1.84, which falls just below the Zα = 1.96 needed for two-tailed “significance.” (With 
everything already determined and calculated, it is too late for the investigator now to claim a unidirec -
tional hypothesis and to try to salvage “significance” with a one-tailed P.)

For all these reasons, the calculated sample size is always augmented prophylactically. With the 
augmentation, some of the ambiguities in one/two-tailed directions and decisions for the estimated 
are eliminated, because the sample size usually becomes large enough to manage all the stochastic 
possibilities. On the other hand, if many of the augmented people really do drop out or produce unusable 
data, the results may eventually depend on the originally calculated sample size. In such circumstances,  
the decisions for magnitude and direction of α, and the estimates of  and SED, can have important 
effects in either inflating the calculated sample size or reducing the eventual stochastic significance.

14.6.6 “Fighting City Hall”

This long account of problems in calculating sample size for two proportions is relatively unimportant 
if you are a reader of reported results, rather than a doer of research. As a reader, you will see what was  
observed and reported, together with the calculated P values and confidence intervals. You need to know 
the difference between one- and two-tailed decisions in the calculations and contentions, but the original 
sample-size strategies do not seem important. (They do become important, however, as noted later in 
Chapter 23, if the observed difference, do, was substantially smaller than the anticipated δ and became 
stochastically significant only because of an inflated sample size.)

As an investigator, however, your ability to carry out the research will directly depend on the estimated
sample size. If it is too big, the project may be too costly to be funded, or too unfeasible to be carried 
out. Accordingly, you will want to get the smallest sample size that can achieve the desired goals of 
both quantitative and stochastic significance. For this purpose, you would use unidirectional scientific 
hypotheses, uncompromised choices for π, and one-tailed values of Zα. You may then need “ammunition” 
with which to “fight city hall,” if your statistical consultants or other authorities disagree.

The customary advice is to calculate sample size in a perfunctory manner by estimating , using 
the compromise δ/2 strategy for estimating  and  and then employing Formula [14.20]. The 
value of  is almost never estimated, however, as . Not fully aware of the numerical consequences 
of the bidirectional or unidirectional decisions, an investigator may not realize that the subsequent sample 
sizes can sometimes become much larger than they need to be. Fearing accusations of statistical 
malfeasance, an enlightened investigator may be reluctant, even when scientifically justified, to insist 
on declaring a direction, changing from a two-tailed to one-tailed value of Zα , or estimating , when 
appropriate, as  rather than .

The great deterrent for most investigators, of course, is the risk of defeating “city hall” in the calculated 
sample-size battle, but then losing the “war” for statistical approval when the final results are submitted  
for publication. If the reviewers insist on a two-tailed Zα , the group sizes that so efficiently yielded a 
one-tailed P < .05 may not be big enough to succeed in rejecting the two-tailed null hypothesis. The 
results themselves may then be rejected by the reviewers.

In an era of cost–benefit analyses for almost everything, however, some of the exorbitant costs of 
huge sample sizes for large-scale randomized trials might be substantially reduced if appropriate re-eval-
uation can be given to the rigid doctrine that always demands nondirectional, noncommittal two-tailed 
approaches for all research.

14.7 Versatility of X2 in Other Applications

Because stochastic contrasts for two proportions can readily be done with the Z or Fisher Exact 
procedures, chi-square is particularly valuable today for its role in other tasks that are briefly mentioned 
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now to keep you from leaving this chapter thinking that chi-square may soon become obsolete. Except 
for the following subsection on “goodness of fit,” all the other procedures will be discussed in later 
chapters.

14.7.1 “Goodness of Fit”

The “observed minus expected” tactic is regularly employed (see Section 14.1.1) to determine how well 
a particular model fits the observed categorical frequencies in a “one-way table,” for a single group of 
univariate data.

For example, in genetic work with certain organisms, we expect the ratios AB :Ab:aB:ab to be 9:3:3:1. 
A set of real data may not follow these ratios exactly, but their goodness of fit to the expected model 
can be determined using chi-square. The expected values in each category would correspond to the cited 
ratios multiplied by the total number of observations. Thus, if a group of genetic observations gave 
corresponding totals of 317, 94, 109, and 29, we could calculate X2 for the expected ratios as follows:

With 4 groups and 3 degrees of freedom, the value of P for ν = 3 at X2 = 2.18 is > .05 and so we cannot  
reject the idea that the observed data are well fitted to the 9:3:3:1 ratio.

Some statisticians, such as J. V. Bradley,9 refer to this use of chi-square as a test for “poorness of fit.” 
The name seems appropriate because the stochastic test can “prove” only that the selected “model” fails 
to fit well, not that it is good or correct. The decision that the model is correct is an act of scientific 
judgment rather than statistical inference.

An alternative to the chi-square goodness-of-fit test for a one-way table is cited here mainly so you 
can savor the majestic sonority of its eponymic designation. Called the Kolmogorov–Smirnov test,10,11 it 
compares the cumulative frequencies of the observed distribution against the cumulative frequencies of 
the expected distribution. (The chi-square test compares the observed and expected frequencies for 
individual rather than for cumulative categories.)

14.7.2 McNemar Test for “Correlated Proportions”

The X2 test was adapted by Quinn McNemar, a psychologist, for examining “correlated proportions” in  
a manner that reduces two sets of results to one set, somewhat like the one-sample Z (or t) procedure 
for dimensional data. Being often used in medical research to test agreement among observers, the 
McNemar procedure will be discussed among the indexes of concordance in Chapter 20.

14.7.3 Additional Applications 

Additional applications of X2, all to be discussed later, can be listed as follows: getting a Miettinen-type 
of confidence interval12 for an odds ratio, testing for stochastic significance in 2-way tables where either 
the rows or columns (or both) have more than 2 categories, evaluating linear trend for binary proportions 
in an ordinal array, doing the Mantel–Haenszel test for multiple categories in stratified odds ratios, and  
preparing the log-rank test calculations to compare two survival curves.

14.8 Problems in Computer Printouts for 2 × 2 Tables

If you do a chi-square test yourself, the formulas cited earlier are easy to use with a hand calculator. If 
you do not have a printing calculator to show that you entered the correct numbers, always do the 

GROUP AB Ab aB ab TOTAL

Observed Value 317 94 109 29 549
Expected Ratio 9/16 3/16 3/16 1/16 1
Expected Value 308.8 102.9 102.9 34.3 548.9 ≅ 549
(0 − E)2/E 0.22 0.78 0.36 0.82 2.18 = X2
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calculation twice, preferably with different formulas. If you use a “packaged” computer program for a 
2 × 2 table, always try to get the results of the Fisher Test as well as chi-square.

The main problems in the computer programs are that a confusing printout may appear for the Fisher  
Test and that a deluge of additional indexes may appear as unsolicited (or requested) options. Because 
2 × 2 tables are so common, their analytic challenges have evoked a plethora of statistical indexes, which 
can appear in the printouts. Many of the additional expressions are used so rarely today that they are 
essentially obsolete. Other indexes were developed for tables larger than 2 × 2, but are available if 
someone thinks they might be “nice to know about” in the 2 × 2 situation. Still other indexes represent 
alternative (but seldom used) approaches to evaluating stochastic significance.

The diverse additional indexes are briefly mentioned here so that you need not be intimidated by their 
unfamiliarity when deciding to ignore them.

14.8.1 Sources of Confusion

The Fisher Test results can be presented in a confusing manner. In one packaged program (SAS system), 
the results are called “left,” “right,” and “2-tail.” The sum of the “left” and “right” probability values, 
however, exceeds 1 because the original (observed) table was included in the calculation for each side. 
This confusion is avoided in the BMDP system.

The BMDP system, however, offers results for a chi-square test of “row relative symmetry” and “col  
relative symmetry.” The calculation and meaning of these results, however, is not adequately described 
in the BMDP manual. Communication with the BMDP staff indicates that the test is used to assess 
results in 2 × 2 tables that are agreement matrixes (see Chapter 20). For most practical purposes, and 
even for agreement matrixes, the “symmetry” chi-square tests can be ignored.

14.8.2 Additional Stochastic Indexes

Beyond the results for Fisher exact test and for X2 with and without the Yates correction, X2 can be 
presented with two other variations. One of them, called Mantel–Haenszel X2, is calculated with N  1 
replacing N in the customary formula of [(ad  bc)2 N]/(n1 n2 f1 f2) for a 2 × 2 table. The reason for the 
change, discussed in Chapter 26, is that Mantel and Haenszel calculate variance with a finite-sampling 
correction.

The other stochastic test, sometimes called the log likelihood chi-square, was first proposed by Woolf.13

It is usually symbolized as G, and calculated as . In this formula, the symbols oi and 
ei refer respectively to the observed and expected values in each of the four cells, and ln is the natural 
logarithm of the cited values. G is interpreted as though it were an X2 value, which it closely approximates. 
For a 2 × 2 table having the conventional format shown in Section 14.2.4, an easy calculational formula  
is G = 2[a (1n a) + b (1n b) + c (1n c) + d (1n d) + N (1n N)  n1 (ln n1) − n2 (ln n2) − f1(ln f1)  f2
(ln f2)]. When applied to the data in Table 14.1, this calculation producesG = 2.81, whereas the previous
X2 was 2.73.

Although some statistical writers14,15 believe that G is routinely preferable to X2, both of the extra 
approaches just cited for X2 add little beyond the customary stochastic tests used for 2 × 2 tables.

14.8.3 Additional Descriptive Indexes

As noted in subsequent chapters, a 2 × 2 table can also be analyzed with diverse indexes of an association
between two variables. The indexes are mentioned here as a brief introduction before you meet them, 
perhaps uninvitedly, in computer printouts. Although sometimes valuable for larger tables (as discussed 
in Chapter 27), the indexes of association for 2 × 2 tables usually add nothing beyond confusion to what 
is already well conveyed by the increments and ratios (see Chapter 10) used as indexes of contrast.

14.8.3.1 φ Coefficient of “Correlation” — The φ index, calculated as , is the “correlation 
coefficient” for a 2 × 2 table. φ is mentioned later in Chapter 20 as a possible (but unsatisfactory) index 
of concordance and has a useful role, discussed in Chapter 27, in indexing associations for larger tables.

2Σ oi oi/ei( )ln×[ ]

X2/N
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14.8.3.2 Obsolete Indexes of 2 × 2 Association — The five additional indexes cited in this 
section were once fashionable, but almost never appear in medical literature today. The contingency 
coefficient, C, is calculated as . Cramer’s V, which is a transformation of X2, reduces to φ
for a 2 × 2 table. In a table having the form , Yule’s Q is (ad  bc)/(ad + bc). Yule also proposed an 
index of colligation, Y =   (  )/( + ). The tetrachoric correlation is a complex coefficient 
involving a correlation of two bivariate Gaussian distributions derived from the probabilities noted in the  
2 × 2 table.

14.8.3.3 Indexes of Association in Larger Tables — Several other indexes of association, 
developed for application in tables larger than 2 × 2, sometimes seek prestige and fame by appearing 
in computer printouts of analyses for 2 × 2 tables. Those indexes, discussed later in Chapter 27, are 
Gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D, and several variations of lambda and of an “uncer-
tainty coefficient.” The results of all these indexes can safely be disregarded for 2 × 2 tables.

14.8.3.4 Indexes of Concordance — Tests of concordance, as discussed later in Chapter 20, 
can be done when each variable in a two-way table offers a measurement of the same entity. The 
agreement (or disagreement) in these measurements is expressed with indexes such as McNemar sym-
metry and Kappa. They would pertain only to the special type of “agreement matrix” discussed in 
Chapter 20, not to an ordinary 2-way table.
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Exercises

14.1. In a randomized clinical trial of timolol vs. placebo in patients surviving acute myocardial 
infarction,16 the total deaths at an average of 17 months after treatment were reported as 98/945 in the 
timolol group and 152/939 in the placebo group. The authors claimed that this difference was both 
quantitatively and statistically significant. What calculations would you perform to check each of these 
claims? What are your conclusions?
14.2. Here is the verbatim summary of a clinical report:17 “Twelve patients with chronic mucocutaneous 
candidiasis were assigned by random allocation to a 6-month course of treatment with Ketoconazole or  
placebo in a double-blind trial. All six recipients of Ketoconazole had remission of symptoms and 
virtually complete regression of mucosal, skin, and nail lesions, whereas only two of the six receiving 
placebo had even temporary mucosal clearing, and none had improvement of skin or nail disease. The 
clinical outcome in the Ketoconazole-treated group was significantly more favorable (p  0.001) than 
in the placebo-treated group.”

What procedure(s) do you think the authors used to arrive at the statistical inference contained 
in the last sentence of this summary? How would you check your guess?
14.3. In Mendelian genetics theory, the crossing of a tall race of peas with a dwarf race should yield 
a ratio of 3:1 for tall vs. dwarf peas in the second generation. In his original experiment, J. G. Mendel 
got 787 tall and 277 dwarf plants in a total of 1064 crosses. Is this result consistent with the 3:1 
hypothesis? If so, why? If not, why not?
14.4. In the famous Physicians’ Health Study,18 the investigators reported a “44% reduction in risk” of 
myocardial infarction for recipients of aspirin vs. placebo. The results had “P < .00001” for 139 
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myocardial infarctions among 11,037 physicians in the aspirin group, compared with 239 infarctions 
among 11,034 physicians assigned to placebo. For purposes of this exercise, assume that the “attack 
rate” in the placebo group was previously estimated to be 2%.

14.4.1. What feature of the reported results suggests that the sample size in this trial was much 
larger than needed?

14.4.2. Before the trial, what sample size would have been calculated to prove stochastic 
significance if the estimated attack rate were reduced by 50% in the aspirin group?

14.4.3. The authors report that they enrolled “22,071” physicians, who were then divided almost 
equally by the randomization. How do you account for the difference between this 
number and what you calculated in 14.4.2?

14.5. Exercise 10.6 contained the statement that a comparison of two “baseball batting averages, .333 
vs. .332, can become stochastically significant if the group sizes are large enough.” What should those 
group sizes be to attain this goal? Do a quick mental estimate and also a formal calculation.
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Empirical procedures, such as the permutation tests discussed in Chapter 12, can be regarded as non-
parametric because they do not use the parametric estimates that are required for the t, Z, and chi-square 
tests. In customary statistical usage, however, the name non-parametric is often reserved for a different 
set of procedures, discussed in this chapter, that use the ranks of the observed data rather than the original 
values. The procedures are often called non-parametric rank tests or simply rank tests.

15.1 Background Concepts

Rank tests were introduced as a pragmatic analytic procedure because Frank Wilcoxon, a statistician 
working at Lederle Laboratories, was “fed up with the drudgery of computing one t statistic after another 
and was looking for something simpler.”1 To get a simpler procedure for two groups, Wilcoxon converted 
all the dimensional values to ranks, formed an easy-to-calculate sum of ranks for each group, constructed 
a test statistic from the increment in the two sums, and determined P values from the sampling distribution 
of the test statistic.

When introduced in 1945, however, Wilcoxon’s approach2 was generally disdained, because it 
“wasted” information by converting precise dimensional values into ordinal ranks. The approach was 
labeled “rough-and-ready” or “quick-and-dirty” and was regarded as both inefficient and inferior to the 
parametric procedures that used Gaussian or other mathematical theories.

The main virtues of the non-parametric procedures, however, came from two advantages that Wilcoxon 
had not anticipated when he tried to avoid the calculational “drudgery” of t tests for dimensional data. 
One advantage was that rank tests could be applied directly to ordinal data that were expressed in ranks. 
Ordinal rating scales, although also sometimes deprecated by classical statisticians, were becoming the 
best and often the only mechanism for expressing medical phenomena, such as pain, distress, and 
dysfunction, that could not be measured dimensionally. Ordinal grades became increasingly necessary 
(and respectable) for such clinical ratings as stage of disease (I, II, III), baseline condition (excellent, 
good, fair, poor), and responses to therapy (much worse, worse, same, better, much better). Other 
data for ordinal analysis came from visual analog scales,3–5 which were commonly applied for rating 
diverse forms of severity, using dimensional-looking numbers that did not have the equi-interval attributes 
of measured dimensions.

The ordinal and visual analog ratings could readily be analyzed stochastically today with permutation 
procedures such as the Pitman-Welch test, but in the precomputer era, the non-parametric rank tests 
seemed an ideal way to do the job. No one could complain that information was being “lost,” because 
the ordinal data were not converted; they were maintained in their original ratings or quasi-dimensional 
ranks. The rank tests could also avoid alternative complaints that might arise if the ordinal ratings were 
regarded as dimensions and managed with t or Z tests.

A second major advantage of rank tests was that they could be applied, without fear of violating 
mathematical assumptions, to the many sets of dimensional data that had eccentric, non-Gaussian 
distributions. Furthermore, as noted later, the rank tests could sometimes demonstrate stochastic signif -
icance that cannot be achieved in situations where the t and Z tests become “handicapped” by large 
variance in the eccentric distributions.

15.2 Basic Principles

A rank test uses a hybrid of the empirical and parametric strategies discussed for two-group stochastic 
tests in Chapters 12 through 14. In both of those strategies, we begin with an index of contrast, which 
is usually an increment in two means or in two binary proportions, but can also be expressed as a ratio.  
We next choose a “test statistic” that will be examined stochastically. The test statistic can be either the 
focal index itself (in empirical tests) or a special stochastic index, such as Z, t, or X2 (in parametric 
tests). We then examine the way in which the test statistic would be distributed in a sampling arrangement 
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formed under the null hypothesis. From the possibilities that would occur in that distribution, we
determine a P value or a confidence interval for the focal index.

The main difference between the empirical and parametric methods is in forming the rearranged
“sampling distribution” of the test statistic. Empirically, the sampling distribution of the index of contrast
is constructed from appropriate resamplings or permutations of the observed data, as in the Fisher exact
probability or Pitman-Welch test. Parametrically, the test statistic is a special stochastic index — such
as Z, t, or X2 — whose distribution is derived from known mathematical characteristics of the parametric
sampling procedure. The non-parametric rank tests are “hybrids,” because they also prepare a special
stochastic index, which is then rearranged according to empirical permutations.

The purpose of this chapter is to introduce you to the basic operational methods of the “classical”
non-parametric rank tests. You need not remember any of the formulas, because you can either look
them up when you need them or get a suitable computer program to do all the work.

15.3 Wilcoxon Two-Group Rank-Sum Test

Perhaps the best way to demonstrate the rank-test strategy is with a simple example of the type that led
Wilcoxon to devise the procedure.

15.3.1 Illustration of Basic Strategy

Suppose we wanted to compare the dimensional values for {76, 81, 93} in Group A vs. {87, 95, 97} in
Group B. To do a t-test for this contrast we would have to calculate values such as Sxx for both groups,
get the pooled variance, etc. To avoid these calculations, Wilcoxon decided to do a permutation test,
somewhat like the Fisher or Pitman-Welch procedure. Instead of permuting the dimensional values of the
data, however, he permuted their ranks.

After a null hypothesis is formed, the six items under examination can be combined into a single
group and placed in order of magnitude as 76, 81, 87, 93, 95, and 97. The corresponding ranks are 1,
2, 3, 4, 5, 6. (The process yields exactly the same results if the ranks are reversed as 6, 5, 4, 3, 2, 1.)
In the observed data, ranks 1, 2, and 4 occurred in Group A and 3, 5, and 6 in Group B.

Because the sum of N consecutive integers is (N)(N + 1)/2, the sum of the ranks in these two groups
will always be fixed at 21 = (6 × 7)/2. Consequently, as the distinctions between the groups increase,
the increment in the sum of ranks for each group will enlarge. For example, the widest possible separation
for these six items would occur if Group A contains the smallest values 76, 81, and 87, with Group B
containing 93, 95, and 97. For this arrangement, the sum of ranks would be 1 + 2 + 3 = 6 in Group A,
and 4 + 5 + 6 = 15 in Group B. The difference, 15 − 6 = 9, is the largest obtainable increment in the rank
sums for two groups that each contain three members. In our observed data, the sums of ranks are1 + 2 + 4
= 7 in Group A and 3 + 5 + 6 = 14 in Group B. The difference in sums is 14 − 7 = 7.

15.3.2 Arrangement of Permutations

By examining permutations of the summed ranks, Wilcoxon developed the distribution of the expected
increments and could establish probabilities for their occurrence. For the six ranks —  1, 2, 3, 4, 5,
6 — divided into two groups of three members each, a total of 6!/[3! × 3!] = 20 combinations are possible.

The arrangement of these combinations for the first ten patterns is shown in Table 15.1. The remaining
ten patterns are identical to those shown inTable 15.1, except that the contents are reversed for Groups
A and B. The absolute differences in sums of ranks for the 20 possibilities in the total distribution are
shown in Table 15.2.

Under the null hypothesis that the two groups are taken from the same underlying population, the 
observed difference of 7 (or larger) in the sum of ranks would randomly occur with a relative-frequency 
chance (i.e., P value) of .2. The maximum difference of 9 would have a two-tailed P = .1.
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15.3.3 Choice of Test Statistic

The strategy just described is used in essentially all of the diverse forms of non-parametric rank tests,
which differ mainly in the construction of the index used as a test statistic.

In Wilcoxon’s original formulation, he chose the smaller of the two sums of ranks to be the test
statistic. Because the total sum of N ranked integers is (N)(N + 1)/2, each of the two groups should have
half this value, i.e., (N)(N + 1)/4, under the null hypothesis of equivalence. Extensive tables of P values
can then be constructed for the smaller of the two rank sums under the null hypothesis. The tables are
usually condensed to show critical values of the test statistic for conventional α levels such as .05 and
.01. Table 15.3 shows such an arrangement for sizes ranging from 2 to 20 in the two groups. (For larger
groups, the non-parametric test statistic can receive the parametric conversion discussed in
Section 15.4.4.)

15.3.4 Illustration of Procedure

Suppose a written examination for medical licensure has been given to five people from School A and
to four from School B. Their scores in the exam are as follows:

School A: 78, 64, 75, 45, 82

School B: 93, 70, 53, 51

TABLE 15.1

Permutations and Incremental Sum of Ranks for Two Groups  
with Three Members Each*

Contents,
Group A

Sum of Ranks,
Group A

Contents,
Group B

Sum of Ranks,
Group B

Absolute Difference
in Sum of Ranks

1,2,3 6 4,5,6 15 9
1,2,4 7 3,5,6 14 7
1,2,5 8 3,4,6 13 5
1,2,6 9 3,4,5 12 3
1,3,4 8 2,5,6 13 5
1,3,5 8 2,4,6 12 4
1,3,6 9 2,4,5 11 2
1,4,5 9 2,3,6 11 2
1,4,6 11 2,3,5 10 1
1,5,6 12 2,3,4 9 3

* An additional 10 possibilities are produced by reversing the contents of Groups A and B.

TABLE 15.2

Summary of Distribution Illustrated in Table 15.1*

Absolute
Difference in

Sum of Ranks Frequency
Relative

Frequency

Descending
Cumulative
Frequency

9 2 .1 .1
7 2 .1 .2
5 4 .2 .4
4 2 .1 .5
3 4 .2 .7
2 4 .2 .9
1 2 .1 1.0

Total 20 1.0

* Note that Table 15.1 shows half of the total distribution.
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A data analyst determines that  = 68.8, sA = 14.89, = 66.75, sB = 19.47; and then claims (after
doing a t test) that the results are not stochastically significant. Another analyst might then argue, however,
that the t test is improper and that a ranks test is more appropriate, because the examination scores are
arbitrary ratings rather than truly dimensional data and, therefore, should not be analyzed with dimen-
sional tactics.

For the Wilcoxon Rank Sum test, we rank the total set of observations, irrespective of group, and then
find the sum of ranks in each group. The results are as follows:

[If you do a rank test yourself, rather than with a computer program, always check your calculations by
seeing that the total of the two rank sums is equal to the value of (N)(N+ 1)/2. In this instance 26 + 19
= 45 = (9 × 10)/2.]

The smaller of the two rank sums here is RB = 19. In Table 15.3, with a smaller group of 4 members
and a larger group of 5, the value of RB would have to be ≤ 11 to attain a 2P value of ≤ .05. Consequently, 
the observed result for RB is too large to be stochastically significant. [The only way stochastic signif-
icance could be obtained in the situation here is to get RB ≤ 11 with ranks 1, 2, 3, and 4 or ranks 1, 2, 
3, and 5 in Group B.] 

15.4 Mann-Whitney U Test

To avoid using the somewhat crude sum of ranks, Mann and Whitney6 developed a different, more subtle 
indexing strategy, which relies on the sequential placement of ranks. The index reflects the number of 
times, in the ranked total arrangement, in which a value (or “mark”) in one group precedes that of the 
other group. The sequential placement index, called “U,” will have two sets of values: one for the number
of times that Group A marks precede those of Group B, and the other, for the number of times that 
Group B marks precede those of Group A.

Under the null hypothesis, the two U indexes should be about equal. If the two compared groups are  
different, one of the U indexes should be substantially smaller than the other. The values of U will have  
a sampling distribution for groups of sizes nA and nB; and P values can be found for magnitudes of the 
smaller value of U in that distribution.

The stochastic results for P turn out to be essentially identical for the Wilcoxon rank-sum approach and 
for the Mann-Whitney sequential-placement U approach. Nevertheless, the Mann-Whitney approach is 
usually preferred, perhaps because it has better academic credentials (the paper was published in the Annals 
of Mathematical Statistics), but mainly because its stochastic and descriptive properties have several 
advantages to be discussed later. In view of the similarity of results, however, the Mann-Whitney U 
procedure now often receives the eponym of Wilcoxon-Mann-Whitney.

15.4.1 Illustration of Procedure

For a Mann-Whitney analysis, the 11 examination grades in the previous example from Schools A and 
B would be ranked, from lowest to highest, as follows:

Group A Group B
Observed Value Rank Observed Value Rank

78 7 93 9
64 4 70 5
75 6 53 3
45 1 51 2
82 8

Sum of Ranks RA = 26 RB = 19

45 51 53 64 70 75 78 82 93
A B B A B  A A A B

XA XB
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The test statistic, U, can be determined as the number of times a B mark precedes an A mark. Thus,
the first A mark, 45, is preceded by no B marks. The next A mark, 64, is preceded by two B marks.
The next A mark, 75, is preceded by three B marks (51, 53 and 70); and the last two A marks, 78 and 
82, are each preceded by the same three B marks. Thus, the value of U is:

U = 0 + 2 + 3 + 3 + 3 = 11

In the extreme instance, if School A had the five highest scores and School B had the four lowest
scores, the results would be:

In this situation, each of the A marks would be preceded by four B marks and the value of U would be:

U = 4 + 4 + 4 + 4 + 4 = 20

If we had reversed our enumeration technique and counted the occasions on which a B mark is
preceded by an A mark, rather than vice versa, we would have obtained, for the first instance:

U′ = 1 + 1 + 2 + 5 = 9

In the second instance, for the extreme example, U′ = 0.
It can be shown mathematically that U + U′ = nAnB, where nA and nB are the respective sizes of the

two groups under consideration. Thus, for the examples being discussed, nA = 5 and nB = 4, so that
nAnB = 20. In the first example U = 11 and U′ = 9. In the second example, U = 20 and U′ = 0. In both
examples, U + U′ = 20.

15.4.2 Simplified Procedure

Because the process of determining U (or U′) can become a nuisance if the group sizes are large, a
simpler method is used. By some algebra that will not be shown here, it can be demonstrated that, if
we use the subscripts 1 and 2 for Groups A and B, and if the sums of ranks are R 1 for Group A and R2
for Group B, then

U1 = R1 − [n1 (n1 + 1)/2] and U2 = R2 − [n2 (n2 + 1)/2] [15.1]

One of these values will be U and the other will be U′. In the example here, U1 = 26 − [5(6)/2] = 11;
and U2 = 19 − [4(5)/2] = 9. These are the same values found earlier with the A-before-B or B-before-
A sequential placement procedure.

15.4.3 Use of the U/P Table

Table 15.4 gives the values of P for .025 (one-tail) or .05 (two-tail) decisions, associated with the smaller
of the two values of U or U′. For the data under discussion, Table 15.4 shows that with n2 = 5 and n1 = 4, 
U must equal 1 or less for a P value of .05 or lower. Therefore, since U = 9, we again conclude that P > .05.

15.4.4 Z/U Relationship for Large Groups

When n1 and n2 become large (e.g., > 20), the sampling distribution of U approaches that of a Gaussian  
distribution, having as its mean

[15.2]

and standard deviation

[15.3]

45 51 53 64 70 75 78 82 93
B B B B A A A A A

µ̂U n1n2 2⁄=

σ̂U
n1( ) n2( ) n1 n2 1+ +( )

12
---------------------------------------------------=
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For large group sizes, therefore, Table 15.4 can be avoided. The observed value of U can be converted
into a Z test, using the formula:

[15.4]

This result can then be interpreted using either a table of probabilities associated with Z, or the last
row (with ν = ∞) in a t/P arrangement such as Table 7.3.

15.5 Management of Ties

All of these attributes make the Wilcoxon-Mann-Whitney U Test quite easy to use if the data come from
dimensions that have been converted to ranks or if the data are expressed in an unlimited-ranks scale.
In most medical situations, however, the ordinal data are expressed in a limited number of grades that
will produce many ties when the results are ranked. The ties then create problems in choosing scores
for the ranking process and also in the analysis of the test statistic.

15.5.1 Illustrative Example

Table 15.5 shows the results of a randomized double-blind trial of active agent A vs. placebo in the
treatment of congestive heart failure. Because the outcome was expressed in a 4-category ordinal scale
of improvement, the Wilcoxon-Mann-Whitney U procedure is an appropriate stochastic test for the
contention that the active agent was better than placebo.

TABLE 15.4

U/P Table for Wilcoxon-Mann-Whitney U Test

(Larger) n2

(Smaller) n1

Smallest Permissible Value of U for 2-Tailed P = .05
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13
5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27
7 8 10 12 14 16 18 20 22 24 26 28 30 32 34
8 13 15 17 19 22 24 26 29 31 34 36 38 41
9 17 20 23 26 28 31 34 37 39 42 45 48

10 23 26 29 33 36 39 42 45 48 52 55

11 30 33 37 40 44 47 51 55 58 62
12 37 41 45 49 53 57 61 65 69
13 45 50 54 59 63 67 72 76
14 55 59 64 67 74 78 83
15 64 70 75 80 85 90

16 75 81 86 92 98
17 87 93 99 105
18 99 106 112
19 113 119
20 127

This table is derived from Smart, J.V., Elements of Medical Statistics. Springfield, IL: Charles C Thomas, 1965.

Z U µ̂U–
σ̂U

----------------
U n1n2

2
---------–

n1n2 n1 n2 1+ +( )
12

-----------------------------------
----------------------------------------= =
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15.5.2 Assignment of Ranks

To establish the ranks here, we begin at the “low” end of Table 15.5, with 10 patients who were worse.
Their mean rank will be (1 + 2 + ⋅⋅⋅ + 10)/10 = 5.5. The next 17 patients had no change. They share
the ranks 11 to 27, and their mean rank will be (11 + 12 + 13 + ⋅⋅⋅ + 27)/17 = 323/17 = 19.

An easy method can be used to get a cumbersome sum such as (11 + 12 + ⋅⋅⋅ + 27)/17. The hard way
is to enter all the numbers into a calculator, step by step, pushing the buttons 17 times to get all the numbers
entered and added, and then dividing their sum by 17 to get the average value. The easy method relies on
remembering that the average value of a sequence of integer numbers —  nA, nA + 1, nA + 2, nA + 3, …,
nB — is simply (nA + nB)/2. Thus, (11 + 27)/2 = 38/2 = 19, which is the same as 323/17.

The next 48 patients, sharing the ranks 28 through 75, were improved. They tie at the average rank
of (28 + 75)/2 = 51.5. The remaining 29 patients, who were much improved, have the average rank of
(76 + 104)/2 = 90.

To be sure that the assignment of ranks is correct, recall that the sum of ranks for the 104 patients in
the trial should be (104)(105)/2 = 5460. The sum of ranks for the placebo group is (8 × 5.5) + (9 × 19)
+ (19 × 51.5) + (10 × 90) = 44 + 171 + 978.5 + 900 = 2093.5. The sum of ranks for the actively treated
group is (2 × 5.5) + (8 × 19) + (29 × 51.5) + (19 × 90) = 3366.5. The total is 2093.5 + 3366.5 = 5460.

15.5.3 Determination of U and Z Values

With the two sums of ranks available, the corresponding U values can be calculated with Formula [15.1] as

Uplacebo = 2093.5 − [(46)(47)/2] = 1012.5

and

Uactive = 3366.5 − [(58)(59)/2] = 1655.5

[To check accuracy of the calculation, note that 1012.5 + 1655.5 = 2668 = (46)(58).] Because Uplacebo is
the smaller value, it will serve as U for the subsequent evaluation.

To do a Z test here, we would use Formulas [15.2] and [15.3] to get = (46)(58)/2 = 1334 and
=  =  = 152.79. Substituting into Formula [15.4], we then get:

The result is stochastically significant, but is not strictly accurate because we have not taken account 
of ties.

15.5.4 Adjustment for Ties

If ti is the number of observations tied for a given rank, we can determine

[15.5]

TABLE 15.5

Results of Clinical Trial for Treatment of Congestive Heart Failure

Ordinal Scale for Improvement of Patients
Treatment Worse No Change Improved Much Improved TOTAL

Placebo 8 9 19 10 46
Active Agent 2 8 29 19 58
TOTAL 10 17 48 29 104

µ̂U

σ̂U 46( ) 58( ) 105( ) 12⁄ 23345

Z 1012.5 1334–
152.79

---------------------------------- 2.10–= =

Ti ti
3 ti–( )/12=
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for each rank, and then calculate ΣTi. In the cited example, for ratings of worse, t1 = 10; for no change,
t2 = 17; for improved, t3 = 48; and for much improved, t4 = 29. We would have

The value of Ti is used to modify the estimate of the standard deviation of U in Formula [15.3]. The
modified formula is:

[15.6]

where N = n1 + n2.
For our observed data,

This value of sU can then be used to calculate Z as:

With some simple algebra, not shown here, it can be demonstrated that the subtraction of ΣTi always
reduces the variance, so that sU ≤ σU. Consequently, the Z value calculated with sU will always be larger
than the Z calculated with . Thus, the effect of adjusting for ties is to raise the value for Z, thereby
increasing the chance of getting stochastic significance.

In the example just cited, the result was stochastically significant without the adjustment, which
becomes unnecessary if the directly calculated value of Z yields a P value that is < α. If the uncorrected
Z yields a P value substantially > α, the adjustment probably will not help. Thus, the adjustment is best
used when the uncorrected Z is somewhere near but below the border of stochastic significance.

15.6 Wilcoxon Signed-Ranks Test

Wilcoxon also created a one-group or paired rank test, analogous to the corresponding one-group or
paired Z and t tests. To show how the Wilcoxon procedure works in this situation, suppose 6 patients
have received treatment intended to lower their levels of serum cholesterol. The results of the before
(B) and after (A) differences in Table 15.6 show that four of the six cholesterol levels were reduced.
The stochastic question to be answered is whether the reduction might be a chance phenomenon if there 
had been no real effect.

15.6.1 Basic Principle

To do a parametric one-group t test for these data, we would examine all of the B-A differences, find 
their mean, and contrast its value stochastically against a hypothesized mean difference ( ) of 0. The 
process is equivalent to adding all the positive increments, subtracting all the negative increments, and 
noting their mean difference.

In a rank test, we do something quite analogous, but instead of dealing with the direct values, we 
work with their ranks. After ranking all of the observed increments according to their absolute values, 

ΣTi
103 10–( ) 173 17–( ) 483 48–( ) 293 29–( )+ + +

12
---------------------------------------------------------------------------------------------------------------------- 14790

12
--------------- 11732.5= = =

sU
n1n2

N N 1–( )
---------------------- 

  N3 N–
12

---------------- ΣTi– 
 =

sU
46( ) 58( )

104( ) 103( )
---------------------------- 1043 104–

12
-------------------------- 11732.5–=

 0.24907[ ] 81997.5[ ] 20423.12 142.9= = =

Z U µU–
sU

---------------- 1012.5 1334–
142.9
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d
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i.e., regardless of negative or positive signs, we take the sum of ranks for all the positive increments
and compare it stochastically with the sum of ranks for all the negative increments. Under the null 
hypothesis, we would expect these two sums to be about the same. If their observed difference is an
uncommon enough event stochastically, we would reject the null hypothesis.

15.6.2 Finding the Ranks of Increments

The first step is to examine the increments, B – A, in the observed paired values for each patient. (We
expect most of these increments to be positive if the treatment is effective in lowering cholesterol.)

The next step is to rank the differences in order of magnitude, without regard to sign, from smallest
to largest. In Table 15.6, the smallest increment, 6, is ranked as 1. The next largest increment, −11, is
ranked as 2 (even though −11 is arithmetically less than 6). The next increment, −12, is ranked 3; and 
26 is ranked 4.

A problem arises when two (or more) increments are tied for the same rank. This problem is solved,
as discussed in Section 15.5.2, by giving each increment the rank that is the average value of the
ranks for the tied set. Thus, in the foregoing table, the incremental values of 34 and 34 are tied for
the 5th rank. Since these two numbers would occupy the 5th and 6th ranks, they are each ranked as
5.5. [If three increments were tied for the 5th rank, they would each be ranked as 6, since the average
rank of the three would be (5 + 7)/2 = 6. Note that the next increment after those three ties would be
ranked as 8, not as 6 or 7. If you forget this distinction and rank the 8th increment as 6 or 7, the
results will be wrong.]

15.6.3 Finding the Sum of Signed Ranks

The next step is to find the sum of all the ranks associated with negative and positive increments. In
Table 15.5, the two negative increments (−11 and −12) have a rank sum of 2 + 3 = 5. The four positive
increments have a rank sum of 1 + 4 + 5.5 + 5.5 = 16.

We could have determined the value of 16 either by adding the ranks for the four latter increments,
or by recalling, from the formula (n)(n + 1)/2, that the total sum of ranks should be (6)(7)/2 = 21. Thus,
if the negative increments have a rank sum of 5, the positive increments must be 21 − 5 = 16. The
smaller value for the sum of the two sets of ranks is a stochastic index designated as T. In this instance,
T = 5.

15.6.4 Sampling Distribution of T

The values of T have a sampling distribution for different values of n. Under the null hypothesis,
anticipating that about half the signed ranks will be positive and half will be negative, we would expect
T to be half of (n)(n + 1)/2, which in this instance, would be 21/2 = 10.5. The smaller the value of T,
the greater will be its departure from this expectation, and the less likely is its distinction to arise
by chance.

TABLE 15.6

Initial and Subsequent Levels of Serum Cholesterol

Patient 
Number

(B) Initial 
Level 

(A) Subsequent 
Level

(B – A) 
Increment Rank

1 209 183 26 4
2 276 242 34 5.5
3 223 235 −12 3
4 219 185 34 5.5
5 241 235 6 1
6 236 247 −11 2

© 2002 by Chapman & Hall/CRC 



15.6.4.1 Total Number of Possible Values for T — As with any other complete resampling
distribution, we first need to know the number of possible values that can occur for T. This result will
be the denominator for all subsequent determinations of relative frequencies.

In a contrast of two groups, having n1 and n2 members, the number of possible arrangements was 
N!/(n1!)(n2!), where N = n1 + n2. This approach will not work here because the arrangements involve one
group, not two, and also because the permuted ranks can be assembled in various groupings. The six
“signed” ranks (in the example here) may or may not all have positive values; and the positive values
can occur in none, 1, 2, 3, 4, 5, or all 6 of the signed ranks.

When each possibility is considered, there is only one way in which all 6 ranks can be negative and
one way in which all 6 are positive. There are 6 ways in which only one of the ranks is positive, and 6
ways in which five of the ranks are negative (i.e., one is positive). There are 15 ways (= 6 × 5/2) in which
two ranks are positive, and 15 in which two are negative (i.e., four are positive). Finally, there are 20 ways
in which three ranks will be positive, with the other three being negative. (The 20 is calculated as
6!/[(3!)(3!)]). Thus, there are 1 + 1 + 6 + 6 + 15 + 15 + 20 = 64 possible values for the number of
positive rank combinations when n = 6. A general formula for this process is (n!)/[(n − r)!(r)!]. For
n = 6,

15.6.4.2 Frequency of Individual Values of T — Under the null hypothesis, for n = 6, we
expect T to have a value of 21/2 = 10.5. Therefore, if T is the smaller sum of signed ranks, we need to
determine only the ways of getting values of T ≤ 10. Each of the possibilities in Table 15.7 shows the
arrangement that will yield the cited value of T for a sum of six ranks. The number of occurrences is
then divided by 64 (the total number of possibilities) to show the relative and cumulative frequency for
each occurrence.

Table 15.7 need not ordinarily be extended beyond T = 10, because if T becomes 11, we have begun to
look at the other, i.e., negative, side of the summed ranks. When the absolute values are summed for the
negative ranks, their result will be T = 10. For example, the 5 groupings that produce T = 11 in Table 15.7
each contain the complement ranks omitted from the counterpart groupings when T = 10. (The “comple-
ment” of {4, 6} is {1, 2, 3, 5}. The “complement” of T = 0 is {1, 2, 3, 4, 5, 6}, for which T = 21.)

The cumulative relative frequencies in Table 15.7 show the one-tailed P values for any observed
positive value of T. These are one-tailed probabilities because a symmetrically similar distribution could

TABLE 15.7

Values of T for Possible Arrangements of Positive Values of Six Signed Ranks

Value of T
Identity of Positive Ranks That Are 

Components for This Value of T
Number of 

Occurrences
Relative 

Frequency

Cumulative 
Relative 

Frequency

0 None 1 1/64 = .016 .016
1 1 1 .016 .031
2 2 1 .016 .047
3 {3}, {1,2} 2 .031 .078
4 {4}, {1,3} 2 .031 .109
5 {5}, {1,4}, {2,3} 3 .046 .156
6 {6}, {1,5}, {2,4}, {1,2,3} 4 .062 .218
7 {1,6}, {2,5}, {3,4}, {1,2,4} 4 .062 .281
8 {2,6}, {3,5}, {1,2,5}, {1,3,4} 4 .062 .343
9 {3,6}, {4,5}, {1,2,6}, {1,3,5}, {2,3,4} 5 .078 .421
10 {4,6}, {1,3,6}, {1,4,5}, {2,3,5} {1,2,3,4} 5 .078 .500
11 {5,6}, {1,4,6}, {2,3,6}, {2,4,5}, {1,2,3,5} 5 .078 .578

Σr=0
n

64 6!
6!0!
---------- 6!

5!1!
---------- 6!

4!2!
---------- 6!

3!3!
---------- 6!

2!4!
---------- 6!

1!5!
---------- 6!

0!6!
----------+ + + + + +=
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be constructed for the negative signed ranks. To interpret the results, if T = 4, P = .109, and if T = 3, P
= .078. If we want the one-tailed P to be below .05, T must be ≤ 2. For the two-tailed P to be below
.05, T must be 0.

Arrangements such as Table 15.7 can be constructed for any value of n. A summary of the key values
found in such constructions is presented here in Table 15.8, which can be used to find the P values
associated with T. For example, Table 15.8 shows what we have just found for the circumstance when
n = 6: a T of 2 or less is required for two-tailed P to be ð.1, and T must be zero for a two-tailed P of ð .05.

15.6.5 Use of T/P Table

To use Table 15.8, a suitable value must be chosen for n. If any of the observed increments in the data
are 0, they cannot be counted as either positive or negative when the sums of ranks are formed. Therefore,
zero increments should not be ranked, and the value of n should be the original number of pairs minus
the number of pairs that had zero increments.

The 6 patients in Table 15.6 have no zero-increment pairs, and so n = 6. (If there were two zero-
increment pairs, we would have had to use n − 2 = 4 for entering Table 15.8.) For all values of n in the
table, the value of P gets smaller as T gets smaller. Because our calculated T is 5, we can say that P >
.05, regardless of whether the result receives a two-tailed interpretation, or the one tail that might be
used because treatment was expected to lower cholesterol. We can therefore conclude that a stochastically
distinctive (P < .05, one-tailed) lowering of cholesterol has not been demonstrated.

With only six patients in the group, Table 15.8 shows that T would have to be 0 for a two-tailed P < .05
or 2 for 2P ≤ .1. If the third patient had an after-treatment value of 211, so that the B – A increment was
223 − 211 = 12, rather than the observed −12, the value of T would have been 2, and the result would
have a one-tailed P value of .05.

TABLE 15.8

Critical Values of T for Signed-Ranks Test

P: two-tailed test
.1 .05 .02 .01

n
6 2 0
7 3 2 0
8 5 3 1 0
9 8 5 3 1

10 10 8 5 3

11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12
15 30 25 19 15

16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37

21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61
25 100 89 76 68

This table is derived from Smart, J.V. Elements of Medical Statistics.
Springfield, IL: Charles C Thomas, 1965.
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15.7 Challenges of Descriptive Interpretation

All of the foregoing discussion of statistical “machinery” describes the operating procedures of non-
parametric rank tests. You need not remember the basic strategy or the specific tactics, as the tests today 
are almost always done with a suitable computer program. Because the program will produce a P value  
for stochastic significance, your main challenge will be to make decisions about quantitative significance.

The latter task will be difficult, however, because ordinal data do not have precise central indexes that 
can be quantitatively contrasted, and the non-parametric rank tests offer P values, but not confidence 
intervals.

15.7.1 Disadvantages of Customary Approaches

In the absence of a simple, obvious central index for each ordinal group, the contrasts have been done 
with several approaches, cited in the next three subsections, that are not fully satisfactory.

15.7.1.1 Dichotomous Compression — As noted earlier (see Section 3.5.1.3), ordinal data  
can be compressed dichotomously and then summarized as a binary proportion. For example, suppose 
we want to compare groups A and B, which have the following frequency counts in a five-category 
ordinal scale:

The better and much better results could be combined to form a “central index” for patients who 
became at least better. The result would be (27 + 19)/(6 + 10 + 34 + 27 + 19) = 46/96 = .48 for group 
A and 46/96 = .48 for group B. Although the two sets of data have quite different distributions, they 
would have the same binary proportion for the rating of at least better.

15.7.1.2 Median Value — The central index of a set of ordinal data could also be cited according  
to the median value, but this tactic also has the disadvantage of losing distinctions in the rankings. Thus, 
the foregoing data for Groups A and B have same as an identical median value in each group.

15.7.1.3 Dimensional Conversions — If the Wilcoxon approach “loses” data, an opposite 
approach can gain “pseudo-data” if we convert the ordinal grades to dimensional codes. Thus, if we 
assign coded digits of 1 = much worse, 2 = worse, 3 = same, 4 = better, and 5 = much better, and if we 
then use the digits as though they were dimensional values, an arithmetical mean can be calculated for 
the ordinal ratings. With this type of coding, the means in the foregoing example would be [(1 × 6) +
(2 × 10) + (3 × 34) + (4 × 27) + (5 × 19)]/96 = 3.45 in Group A and [(1 × 37) + (2 × 9) + (3 × 4) + (4 × 36) +
(5 × 10)]/96 = 2.72 in Group B.

The two groups could now be distinguished as different, but only via the somewhat “shady” tactic 
of giving arbitrary dimensional values to data that are merely ranked categories. Thus, the customary 
binary proportions, medians, and means may not offer a fully satisfactory approach for identifying 
desirable contrasts of central indexes in ordinal data.

15.7.2 Additional Approaches

The non-parametric rank tests were originally developed without attention to an index of descriptive
contrast. Wilcoxon had no need for one because he could immediately compare the observed dimensional 

Much Worse Worse Same Better Much Better

Group A 6 10 34 27 19
Group B 37 9 4 36 10
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means; he used the non-parametric rank test only for its stochastic simplicity in providing P values.
When non-parametric rank tests received further development in the academic world of mathematical
statistics, the process was aimed solely at a stochastic, not descriptive, contrast.

Accordingly, we need something that is both legitimately ordinal and also applicable as an index of
contrast for two ordinal groups. The next few subsections describe the available options.

15.7.3 Comparison of Mean Ranks

From the data presented in Section 15.5.2, we can determine the mean ranks as 2093.5 /46 = 45.5 in the
placebo group and 3366.5/58 = 58.0 in the actively treated group. These two mean values are “legitimately
ordinal” because they emerged from the ranks of the data. No arbitrary dimensional values such as 1,
2, 3, ... were assigned to any of the ordinal categories such as worse, no change.

Because these ranks have no associated units, we could contrast the two mean rank values as a ratio,
58.0/45.5 = 1.27. The result would be impressive if you regard the ratio of 1.27 as quantitatively significant.
If you are willing to accept the average-rank values of 5.5, 19, 51.5, and 90 as being analogous to
dimensional data, however, we can also calculate a standardized increment. In the placebo group, the group
variance will be 8(5.5)2 + 9(19)2 + 19(51.5)2 + 10(90)2 − [(2093.5)2/46] = 39606.745, and the standard
deviation is  = 29.67. In the actively treated group, the counterpart results are 2(5.5)2 +
8(19)2 + 29(51.5)2 + 19(90)2 − [(3366.5)2/58] = 38361.643 for group variance and  =
25.94 for standard deviation. The pooled standard deviation is = 27.6
and the standard increment (or effect size) will be (58.0 − 45.5)/27.6 = .45, which could be regarded as
modest (according to the criteria in Chapter 10).

15.7.4 Ridit Analysis

The technique of ridit analysis, proposed by Bross7 in 1958, is analogous to the tactic just described for
assigning values to the ranks. A ridit, which is an acronym for “relative to an identified distribution,” is
calculated for each of a set of ordinal categories and represents “the proportion of all subjects from the
reference group falling in the lower ranking categories plus half the proportion falling in the given category.”
The reference group is usually the total population in the study. After the ridits are determined for each
category, the mean ridits can be calculated to compare the two groups. The ridit approach is illustrated
here so you can see how it works, but you need not remember it, because (for reasons cited later) it is
hardly ever used today.

15.7.4.1 Illustration of Procedure — For the data in Table 15.5, the worse category occupies
10/104 = .096 of the total group, and will have a ridit of .096/2 = .048. For the no change category,
which has a proportion of 17/104 = .163 in the data, the ridit will be (.163/2) + .096 = .178. For the
improved category, with proportion 48/104 = .462, the ridit will be (.462/2) + .096 + .163 = .490.
Finally, the much improved category, with proportion 29/104 = .279, will have (.279/2) + .096 +
.163 + .462 = .860. Because the mean ridit in the reference group is always .5, a check that the ridits
have been correctly calculated for Table 15.5 shows (10 × .048) + (17 × .178) + (48 × .490) +
(29 × .860) = 51.97 as the sum of the ridits and their mean is 51.97/104 = .5.

Having established the ridit values, we can calculate the mean ridit of the active-agent group as 
[(2 × .048) + (8 × .178) + (29 × .490) + (19 × .860)]/58 = .553. The corresponding mean ridit in the 
placebo group is [(8 × .048) + (9 × .178) + (19 × .490) + (10 × .860)]/46 = .433. Their ratio, .533/.433, 
is 1.23. (Recall, from Section 15.7.3, that the corresponding mean ranks were 58.0 and 45.5, with a ratio 
of 1.27.) Interpreted as probabilities, the ridit results suggest that an actively treated person has a chance  
of .553 of getting a result that is better than someone in the placebo group.

Standard errors can be calculated for ridits, and the results can be stochastically examined with a 
Z test. The textbook by Fleiss8 shows a simple formula for calculating the standard error of the difference 
in two mean ridits,  and . The value of Z is then determined as ( )/SED.

39606.745/45
38361.643 57⁄

39606.745 38361.643+( ) 102⁄

r2 r1 r2 r1–
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15.7.4.2 Similarity to Mean-Rank Procedure — The ridit values are reasonably similar to
what would have been found if the mean ranks in each category had been expressed as percentiles.
When divided by 104 (the total group size), the mean rank of 5.5 becomes a percentile of .052, 19
becomes .183, 51.5 becomes .495, and 90 becomes .865. The respective ridits that correspond to these
percentiles are .048, .178, .490, and .860.

The mean average ranks in the two groups, 45.5 vs. 58.0, could each be divided by 104 to become
“percentiles” of .438 vs. .558. The corresponding ridit means are .433 vs. .533. The respective ratios
are 1.27 for the mean ranks and 1.23 for the ridits.

15.7.4.3 Current Status of Ridit Analysis — After being initially proposed, ridit analysis
was used in investigations of the epidemiology of breast cancer 9, classifications of blood pressure,10 life
stress and psychological well being,11 economic status and lung cancer,12 and geographic distinctions in
schizophrenia.13 The ridit method seems to have gone out of favor in recent years, however, perhaps
because of a vigorous attack by Mantel14 in 1979. He complained that the ridit procedure, although
intended “for descriptive purposes,” was unsatisfactory for both description and inference. Descriptively,
the ordinal ridits emerge arbitrarily from frequency counts in the data, not from a biological or logical
scheme of scaling; and inferentially, the formulation of variance for ridits has many “improprieties.”

Because stochastic decisions for two groups of ordinal data can be done with a Wilcoxon-Mann-
Whitney U test and the mean rank for each group produces essentially the same result as the mean ridit,
the ridit technique offers no real advantages. It is mentioned here so you will have heard of it in case
it is suggested to you or (more unlikely) encountered in a published report.

15.7.5 U Score for Pairs of Comparisons

Another descriptive approach for categorical frequencies in two groups was proposed by Moses et al.15

For nA and nB members in the two groups, each item of data in Group A can be compared with each
item in Group B to produce nA × nB pairs of comparisons. Under the null hypotheses, half of these
comparisons should favor Group A and half should favor Group B. When we check the comparisons,
we count those favoring Group A, those favoring Group B, and the ties. Their sum should be nA × nB.

When this tactic is applied to Table 15.5, there are 16 tied pairs (= 8 × 2) at the rank of worse, 72
(= 9 × 8) tied pairs at no change, 551 (= 19 × 29) at improved, and 290 (= 10 × 29) at much improved,
yielding a total of 829 tied pairs. The number of pairs in which active agent scored better than placebo
is 8(8 + 29 + 19) + 9(29 + 19) + 19(19) = 1241. The number of pairs in which placebo scored better
than active agent is 2(9 + 19 + 10) + 8(19 + 10) + 29(10) = 598. The total of (58)(46) = 2668 pairs can
thus be divided into 1241 that favor active agent, 598 that favor placebo and 829 ties. If we credit half
the ties to placebo and half to active agent, the scores become 1241 + (829/2) = 1655.5 for active agent
and 598 + (829/2) = 1012.5 for placebo.

These numbers should look familiar. They are the values of U calculated for the active and placebo
groups in Section 15.5.3. Accordingly, we could have avoided all of the foregoing calculations for pairs
of ties, etc. by using the relatively simple Mann-Whitney formulas for determining the two values of
U. Conceptually, this result also lets us know that the “sequential placement” strategy of counting A-
before-B, etc. is the exact counterpart of determining the just-described allocation of paired ratings.

UA or UB can be used as a descriptive index for expressing a group’s proportion of the total number of
compared pairs. Thus, the proportionate score in favor of active treatment is 1655.5/2668 = .62. According
to Moses et al.,15 this index suggests that .62 is the random chance of getting a better response to active
treatment than to placebo in the observed trial. This descriptive attribute of the U index may be more
valuable than its role as a stochastic index, because the same stochastic results are obtained with the
rank sum and U tests, but the rank sum procedure does not provide a descriptive index.

15.7.6 Traditional Dichotomous Index

Although all of the tactics just described are useful, none of them is familiar, and we have no “intuitive
feeling” about how to interpret them. Probably the easiest and simplest “intuitive” approach to Table 15.5,
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therefore, is to dichotomize the outcome variable and report the percentages of any improvement as
(29 + 19)/58 = 82.8% for the active group and (19 + 10)/46 = 63.0% for placebo. The increment of .198
also produces an impressive NNE of 5.

Although dichotomous compression was unsatisfactory for the example in Section 15.7.1.1, the binary
“cut point” was not well chosen in that example. If the binary split had been demarcated to separate the
ratings of worse and much worse (rather than the rating of at least better), the proportions of patients
who were worse or much worse would have been 16/96 = .17 for Group A and 46/96 = .48 for Group B
in that example. A clear distinction in the two groups would then be evident.

In general, whenever two groups of ordinal grades have an evident distinction, it can usually be shown
quantitatively with a suitable dichotomous split and cited with binary proportions that are easy to
understand and interpret.

15.7.7 Indexes of Association

Yet another way of describing the quantitative contrast of two groups of ordinal data is available from
indexes of association and trend that will be discussed much later in Chapter 27.

One index, called Kendall’s tau, relies on calculations such as U (in Section 15.4.1) that determine
and score the sequence of placement for corresponding ranks. A second descriptive index can be the
slope of the straight line that is fitted to the ordinal categories by regression-like methods.

A crude, quick descriptive idea of the association, however, can be obtained by forming a ratio
between the observed increment in the sums of ranks and the “no expected” (rather than perfect)
difference. For example, in Table 15.5, the sum of ranks would be (104)(105) /2 = 5460. If the two
groups have equal values in ranks, their sums should be 5460/2 = 2730 in each group. The departure 
of each group’s rank sum from this value is 3366.5 − 2730 = 636.5 for the active group, and 
2093.5 – 2730 = −636.5 for the placebo group. The value of /2730 = .23 indicates how 
greatly the sums proportionately deviate from an equal separation. Because the increment in rank 
sums is 3366.5 – 2093.5 = 1273 and 636.5/2730 = (1273/2)/(5460/2), the desired ratio can be 
obtained simply as

(increment in rank sums)/(total sum of ranks)

The value of .23 here is not far from the Kendall’s tau value obtained for this relationship in Chapter 27. 

15.8 Role in Testing Non-Gaussian Distributions

A non-parametric rank test can be particularly valuable for demonstrating stochastic significance in 
situations where dimensional data do not have a Gaussian distribution. Because the t and Z tests are 
generally believed to be robust, the parametric tests are almost always used for contrasting two groups 
of dimensional data. Nevertheless, the non-parametric strategy can be a valuable or preferable alternative 
in non-Gaussian distributions where the group variance is greatly enlarged by outliers. Consider the 
dimensional values in the following two sets of data:

Group A: 15, 16, 16, 16, 17, 18, 19, 70;  = 23.375; sA = 18.88.

Group B: 21, 23, 25, 27, 29, 32, 33, 37; = 28.375; sB = 5.42.

The mean in Group B seems substantially higher than the mean in Group A, but the large variance in 
Group A prevents the t test from being stochastically significant. With  = 7(18.882 + 5.422)/14 =
192.92, the calculation of t produces (28.375 − 23.375)/[ ] = 5.00/7.42 = .67, 
which is too small to be stochastically significant.

On the other hand, the strikingly high variance in Group A suggests that something peculiar is 
happening. In fact, when we examine the data more closely, all values in Group A, except for the last 

636.5
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(outlier) member, are exceeded by the lowest value in Group B. When converted to ranks, the results 
are as follows:

Ranks for Group A: 1, 3, 3, 3, 5, 6, 7, 16; Sum = 44.

Ranks for Group B: 8, 9, 10, 11, 12, 13, 14, 15; Sum = 92.

With the lower sum serving as the basic component of U, we get U = 44 − [(8 × 9)/2] = 8. For 2P <
.05 at n1 = n2 = 8 in Table 15.4, U must be ≤ 13. Therefore, the rank test shows the stochastic significance
that was not obtained with the parametric t test. (If this situation seems familiar, it should be. An example 
of analogous data appeared as Exercise 11.1, and the example will surface again here as Exercise 15.3.) 

15.9 Additional Comments

Two other important features to be noted about non-parametric rank tests are claims about the reduced “power-
efficiency” of the tests, and the availability of other procedures beyond those that have been discussed.

15.9.1 “Power-Efficiency” of Rank Tests

Non-parametric tests were seldom used until Wilcoxon first began writing about them. Because he 
converted dimensional data to ranks, many complaints arose about the “loss of information,” even 
though — as noted in Section 15.8 — the “loss” can sometimes be highly desirable.

A different complaint about rank tests was that they had a reduced “power-efficiency.” The idea of 
statistical power, which will receive detailed discussion in Chapter 23, refers to the ability of a stochastic 
test to reject the null hypothesis when a quantitative difference is specified with an alternative hypothesis. 
Compared with parametric procedures for dimensional data, non-parametric rank procedures were less 
“efficient,” requiring larger sample sizes for this special “power” of “rejection.”

The complaint is true, but is seldom relevant today because the rank tests are almost always used for  
ordinal data, not for conversions of dimensional data. Besides, all the calculations of “efficiency” and 
“power” are based on Gaussian distributions. As shown in Section 15.8, however, a rank test can 
sometimes be more “powerful” than a parametric test in showing stochastic significance when distribu -
tions are not Gaussian.

15.9.2 Additional Rank Tests

Many other tests, which rarely appear in medical literature, are also available (if you want or need to 
use them) for one or two groups of ordinal data. The tests are labeled with a dazzling array of eponyms 
that include such names as Cramer-von Mises, Jonckheere-Terpstra, Kruskal-Wallis, Kuiper, Kolmog-
orov-Smirnov, Moses, Savage, Siegel-Tukey, and Van der Waerden. The tests are well described in 
textbooks by Bradley,16 Siegel and Castellan,17 and Sprent.18

15.9.3 Confidence Intervals

Because ranked categorical data have discrete values, confidence intervals calculated with the usual 
mathematical methods are inappropriate because they can produce dimensional results that are realisti-
cally impossible. Nevertheless, mathematical formulas have been proposed and are available19 for 
calculating the confidence intervals of medians or other quantiles. As computer-intensive statistics begin 
to replace the traditional mathematical theories, realistic confidence intervals, if desperately desired for 
ordinal data, can be obtained from a bootstrap procedure or from the array of possibilities that emerge 
with permutation rearrangements.
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15.10 Applications in Medical Literature

A one-group or two-group rank test appears regularly although infrequently in medical literature. For 
example, the Wilcoxon-Mann-Whitney U tests were recently applied to evaluate ordinal data for “level 
of alertness” in a study of analgesia for the pain of sickle cell crisis20 and to compare distributions of 
blood manganese and magnetic-resonance-imaging pallidal index in patients with liver failure vs. con-
trols.21 Wilcoxon Rank Sum tests were used to compare numbers of swollen joints in a clinical trial of 
oral collagen treatment for rheumatoid arthritis22 and to compare several ordinal-scaled baseline factors 
among hospitalized patients who did or did not consent to participate in a study of pressure ulcers.23

When patients with bacteremia or fungemia were compared with a control group,24 the Wilcoxon rank 
sum test was used for dimensional variables because they “were not normally distributed.” In a trial of 
topical training therapy for “photoaged skin,”25 with effects graded in a 5-category ordinal scale ranging 
from 0 = absent to 4 = severe, the signed-rank test was used for bilateral, paired comparisons of treated 
forearms, and the U test for “facial efficacy.” The signed-rank test was also used to compare differences 
in serum gastrin levels from one time point to another.26

In a study of cancer in the offspring of cancer survivors,27 the investigators applied an “exact version 
of the non-parametric rank sum test,” and in another instance a bootstrap procedure was used “to correct 
for loss of power of the Mann-Whitney U test due to the small sample size and tied observations.”28

With increasing availability in “packaged” computer programs, the bootstrap and exact permutation 
methods may begin to replace both the traditional parametric and the conventional non-parametric rank 
tests. The key decision for the rank procedures will then be the choice of a particular descriptive index 
of contrast (such as U or one of the others cited throughout Section 15.7) to be used as a focus of the 
bootstraps or permutations.

A randomized permutation procedure was also used in an intriguing controversy when data were 
reanalyzed for a randomized double-blind, placebo-controlled crossover trial that had shown efficacy 
for a 10−12 dilution of Rhus toxicodendron 6c as “active” homeopathic treatment for fibrositis.29 For the 
crossover, 30 patients “received active treatment and an identical placebo for one month each in random 
sequence,” without an intervening “washout” period. In the original analysis, the mean number of “tender 
points” after each phase of treatment was 14.1 for placebo and 10.6 for the “active” agent. The associated 
P value was <0.005 with the Wilcoxon rank sum test. The reanalysis of data30 was done with “random-
ization tests,” however. “When the original data set was randomized 20,000 – 50,000 times,” the results  
showed much higher, “non-significant” P values. The reanalyst concluded that the trial “provides no 
firm evidence for the efficacy of homeopathic treatment of fibrositis.”

The cogent point of contention, however, was not the use of a randomization rather than rank test. 
Instead, the reanalyst found a “treatment period interaction,” which means that the effects of whatever 
occurred in the first period of treatment had “carried over” into the second. According to conventional 
wisdom31 for such circumstances, “the only safe procedure is to restrict attention to the first treatment 
period only.” The impressive P values vanished when the analysis was confined to the first period 
effects alone. 

15.11 Simple Crude Tests

Two other tests mentioned here could have been cited in various previous chapters, but were saved for now  
because they can be applied to ordinal as well as dimensional data. Called the sign test and the median 
test, they are easy to do and easy to understand, although relatively “crude.” Nevertheless, they can 
sometimes promptly answer a stochastic question without resort to more complex work. They are sometimes 
called “quick and dirty” tests, but the “dirty” epithet is unfair. They are “dirty” only because they compress 
dimensional and ordinal data into binary scales. If stochastic significance is obtained at the “crude” binary 
level of compression, however, the more “refined” conventional tests are almost never necessary.
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15.11.1 Sign Test

The sign test is a particularly easy way to determine stochastic significance for matched-pair data in
which two groups have been reduced to one. The signs of the results are compared against the null-
hypothesis expected value of equality in the positive and negative values.

For example, in Table 15.6, under the null hypothesis for the six comparisons, we would expect three
to be positive and three negative. A P value for the observed results can then be calculated from the
binomial expansion of the hypothesis that π = .5. Thus, if all 6 observations were positive, the one-tailed
probability would be (0.5)6 = (1/2)6 = 1/64 = .016. The probability of getting exactly five positive
differences and one negative would be 5(0.5)5 (0.5) = 5(1/2)6 = 5/64 = .078. For getting 5 or more
differences in a positive direction, the one-tailed P value would be .016 + .078 = .094. As this value
already exceeds P = .05, the observed result (4 positives and 2 negatives) will probably not be stochas -
tically significant.

The sign test is particularly useful as a rapid mental way of calculating stochastic significance when
the paired results go exclusively in one direction. For example, if all results go in the expected direction
for five matched pairs, the one-tailed P value will be (1/2)5 = 1/32 = .03. In this circumstance, stochastic
significance could be promptly declared without any further calculations. (The tactic was used earlier
in the answer to Exercise 13.6.2.)

15.11.2 Median Test

In another simple stochastic procedure, the data are divided at the median value for the two groups. The
arrangement forms a 2 × 2 table, which can then be tested appropriately with either the Fisher test or
chi-square.

For example, in the congestive-heart-failure illustration of Table 15.5, the median value of the ratings
is improved. Partitioned on one side of this median, the data form a 2 × 2 table as

The X2 test for this table produces [(17 × 48) − (10 × 29)]2104/[(27)(77)(58)(46)] = 5.2, with 2P < .025. 
Thus, the stochastic significance of this set of data could have been promptly demonstrated with a simple 
median test, avoiding the more complex Wilcoxon-Mann-Whitney U test.

In the days before easy electronic calculation (and sometimes even today), the median test could also  
be used for two groups of dimensional data. For example, consider the dimensional results shown for 
Group B and the eccentrically distributed Group A in Section 15.8. The median for the total of 16 items 
is at rank 8 1/2, which is between the values of 21 and 23, at 22. If the two groups are partitioned at 
the median, the frequency counts produce the following table:

A crude, uncorrected, and inappropriate chi-square test for these data produces X2 = 9.0, with 2P < .005. 
A more appropriate Fisher Test yields p = .005 for the observed table and an even smaller value, p =
.00008, for . The two-tailed P will be about .01. Thus, stochastic significance for these data could  

Below 
Improved

Improved or
Much Improved TOTAL

Placebo 17 29 46
Active Agent 10 48 58
TOTAL 27 77 104

Number of Items
Below Median Above Median TOTAL

Group A 7 1 8
Group B 1 7 8
TOTAL 8 8 16

8  0
0  8 
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have been promptly shown with the median test, again avoiding the more cumbersome Wilcoxon-Mann-
Whitney U test.
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Exercises

15.1. In the clinical trial discussed at the end of Section 15.10, the investigators 29 said they were eager 
to avoid “flaws in the design” of previous trials of homeopathic treatment. They therefore “designed a 
trial to clarify these results by overcoming the methodological criticisms while retaining a rigorous 
design.” For example, beyond the features described in Section 15.10, the investigators used the following 
methods: “After entry, there was no further contact between the homeopathic doctor and the patient until 
the treatment was finished, The clinical metrologist dispensed the treatment and performed the 
assessments and analyses blind.” What aspect of this trial would make you clinically believe that the 
trial was not well designed, and that a “treatment period interaction” was probably inevitable?
15.2. For 10 diabetic adults treated with a special diet, the fasting blood sugar values (in mg./dl.) before 
and after treatment were as follows:

To test whether a significant change occurred after treatment, perform a stochastic contrast in 
these data using a paired t-test and the signed-rank test. Are the stochastic results similar?
15.3. The data in Exercise 11.1 received a Pitman-Welch test in Section 12.9.5, and a t-test in 
Exercise 13.1. This chapter gives you the tools with which you can again demonstrate the occasional 
“inefficiency” of the t test by checking the same data set in three new ways: 

15.3.1. With a Wilcoxon-Mann-Whitney U test; 
15.3.2. With a sign test; and 
15.3.3. With a median test. 

Do those tests, showing your intermediate calculations and results. (Because the sign test requires 
a single group of data or paired data, you will need some moderate ingenuity to apply it here.)

Person Before After

A 340 290
B 335 315
C 220 250
D 285 280
E 320 311
F 230 213
G 190 200
H 210 208
I 295 279
J 270 258
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15.4. Random samples of students at two different medical schools were invited to rate their course in 
Epidemiology using four categories of rating: poor, fair, good, or excellent. At School A, the course is 
taught in the traditional manner, with a strong orientation toward classical public health concepts and 
strategies. At School B, the course has been revised, so that it has a strong emphasis on clinical 
epidemiology. The student ratings at the two schools were as follows:

A medical educator wants to show that this distinction is quantitatively and stochastically 
significant.

15.4.1. How would you express the results for quantitative significance?
15.4.2. How would you test for stochastic significance?
15.4.3. If you did a non-parametric rank test in 15.4.2, what is another simpler way to do the 

contrast?
15.4.4. From what you noted in the quantitative comparison, can you think of a simple “in-the-

head” test for demonstrating stochastic significance for these data?
15.5. The table below is taken from the first report32 of the efficacy of propranolol in the treatment of 
angina pectoris. In a randomized, double-blind, crossover design, the 19 patients who completed the 
trial received either propranol or placebo for four weeks, followed by the other agent for the next four 
weeks. Each of the three variables in the table below had values of P < .05 for the superiority of propranol 
over placebo. Looking only at the data for Severity of Angina, what mental test can you do to persuade  
yourself that P is indeed <.05?

Poor Fair Good Excellent Total

School A 5 18 12 3 38
School B 1 3 20 12 36

No. of Attacks of Pain
No. of Glyceryl Trinitrate 

Tablets Taken
Severity of Angina 

(Grades 1–6)
Case No. Propranolol Placebo Propranolol Placebo Propranolol Placebo

1 37 68 37 68 3 4
2 121 116 61 56 6 6
3 19 47 19 46 2 3
4 14 26 15 25 2 3
5 16 79 16 79 2 4
6 4 6 4 6 2 2
7 24 24 24 24 4 4
8 118 100 0 0 4 4
9 5 4 5 8 2 2

10 10 27 10 14 3 4
11 31 19 6 5 4 4
12 31 46 41 71 2 3
13 59 64 59 64 3 4
14 86 175 119 203 6 6
15 1 8 3 21 2 4
16 4 8 3 4 2 2
17 103 96 115 92 3 3
18 6 44 19 43 2 2
19 38 75 38 75 4 4
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15.6. A renowned clinical investigator, who has just moved to your institution, consults you for a 
statistical problem. He says the Journal of Prestigious Research has refused to accept one of his most 
important studies of rats because he failed to include results of a t test for a crucial finding. “Then do 
the t test,” you tell him. He looks at you scornfully and says, “I did it before the paper was submitted.” 
“Oh,” you respond ruefully, “and I suppose it did not quite make ‘significance’.” “That is right,” he says,  
“I tried to get away without reporting the P value, but the reviewers have insisted on it.” “Why not add  
a few more rats?” you suggest. “I cannot,” he replies. “My lab at Almamammy U. was dismantled three  
months ago before I came here. The technician who did all the work is gone, and there is no way I can  
set things up to test any more rats now. I felt so sure the results were significant when I first saw them 
that I did not bother to check the t test at the time. Had I done so, I would have added more rats to the 
study. Do you have any ideas about what I might do now?” “Let me see your data,” you say. 

He shows you the following results, expressed in appropriate units of measurement:

Group A: 11,17, 21, 52; = 25.25; sA = 18.30

Group B: 1, 7, 8, 9;  = 6.25; sB 3.59

You look at the results for a moment, do a simple calculation at your desk with a paper and pencil, 
then say to him, “You need not do anything. Your results are significant now at a two-tailed P < .05.” 
After further discussion of what you did and how to report it, the investigator departs with a feeling of 
awe and wonder at your remarkable genius. The paper is accepted by the J. Prest. Res. and, as a grateful 
statistical “patient,” he sends you a bottle of an elegant champagne.

What did you do at your desk?

XA

XB
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Interpretations and Displays for Two-Group Contrasts
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A two-group contrast is probably the most common statistical comparison in medical research. As noted 
in Chapters 10 through 15, the comparison involves separate attention to description and inference. The 
descriptive focus is on quantitative distinctions in the data; the inferential focus is on stochastic appraisal  
of the quantitative distinctions.

This chapter is devoted to methods of interpreting and displaying the distinctions. The first section 
shows new graphic ways in which box plots and quantile-quantile plots offer a “visual interpretation” 
of the quantitative and stochastic decisions. The rest of the chapter discusses principles that can be used 
to produce effective (and ineffective) displays of the comparisons. 

16.1 Visual Integration of Descriptive and Stochastic Decisions

If concepts of Z tests, t tests, P values, and confidence intervals had not been developed, decisions about  
significant differences might be made by examining the observed data directly, without any calculated 
stochastic boundaries.
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16.1.1 Comparison of Observed Distributions

In one type of inspection, two groups of dimensional (or ordinal) data can be compared for the 
distributions shown in their histograms or frequency polygons.

This type of display, shown in Figure 16.1, was used to compare the distribution of urinary excretion
of a fixed dose of lithium given to three groups of factory workers demarcated according to tertiles of
serum uric acid.1 Perhaps the greatest advantage of such displays is their demonstration, discussed in
Section 16.1.1.2, of the extraordinary amount of overlapping data that can achieve such stochastic
accolades as “P < .001.”

16.1.1.1 Back-to-Back Stem-and-Leaf Diagrams — An approach that shows all data points
in both groups is a back-to-back arrangement of stem-and-leaf diagrams, suggested by Chambers et al. 2

These diagrams, as shown here in Figure 16.2, offer an excellent way of reviewing the data yourself.
The diagrams have the advantages of being easy to construct, compactly showing all the items as well
as the shape of the two distributions, while avoiding the problems of multiple points at the same location,
overlapping frequency polygons, and also the large vertical extent needed for a range of values that go
from 18 to 82 in Figure 16.2.

The main disadvantage of either frequency polygon or stem-and-leaf direct displays, however, is the
absence of summary indexes to help in the quantitative comparison of results. If the direct graphic
displays show little or no overlap, the two groups are clearly different; but because such dramatic
separations are rare, a more effective approach is needed for routine usage.

16.1.1.2 Permissiveness of Stochastic Criteria — If you begin examining the actual data — rather
than P values, standard errors, and confidence intervals — you will discover the extraordinary amounts
of overlapping spread, as shown in Figure 16.1, that can achieve stochastic “significance” in conventional
criteria for a contrast in means.

FIGURE 16.1
Frequency distributions of the fractional excretion (FE) of lithium by tertiles of serum uric acid in 568 male factory workers.
Statistics by analysis of variance for differences between the means. [Figure and legend taken from Chapter Reference 1.]

25

20

15

10

5

0

8-10
10-12

12-14
14-16

16-18
18-20

20-22
22-24

24-26
26-28

28-30
30-32

32-34
34-36

36-38
38-40

FE Lithium,  %

Fr
eq

ue
nc

y,
 %

22.6% 23.8% 25.3%

P<.001

1st Tertile
2nd Tertile
3rd Tertile

© 2002 by Chapman & Hall/CRC 



To illustrate what happens, suppose we have two sets of Gaussian data, with different means,
but with similar group sizes, nA = nB = n, and equal variances, The two groups

will have a common mean,  and a common variance, sp = sA = sB = s. As shown in
Figure 16.3, the Gaussian distributions in the two groups will overlap on both sides of

The cross-hatching on the right side of X shows the data from Group B that overlap in group A; and
the cross-hatching on the left side of X shows the data from Group A that overlap in Group B. These
two cross-hatched zones constitute the zone of central overlap. With some algebra not shown here, it 
can be demonstrated that if each curve has an area of 1, the magnitude of the central overlap is 1 – 2pc,
where pc is the one-tailed probability corresponding to for the proportion of data
lying between each mean and the location of

For example, suppose  with sp = 9.85. The value of Zc will be
(146.4 – 140.4) / [2 (9.85)] = .309, for which the one-tailed pc = .121. The area of central overlap will
be 1 − [2 (.121)] = .758.

FIGURE 16.2
Back-to-back stem-and-leaf diagrams of monthly average temperature for Lincoln (left) and Newark (right). [Figure and
legend taken from Chapter Reference 2.]

FIGURE 16.3
Patterns of central overlap at P < .05 for two Gaussian distributions with equal sample sizes and variances. Central overlap 
is the sum of the two shaded zones. For further details, see text.
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The magnitude of central overlap can be determined from the value of Zc that produces stochastic
significance. Thus, for two means, with group sizes nA and nB and a pooled common
standard deviation sp, the stochastic criterion for “significance” at a two-tailed α = .05 is

For equal sample sizes, with nA = nB = N/2 = n, the value of  becomes  and the
foregoing formula becomes which is Because

we can substitute appropriately and promptly determine that 

for stochastic significance with α = .05 in the comparison of two means. Table 16.1 shows the effect of
enlarging n on values of on the corresponding one-tailed pc for Zc, and on the
zone of central overlap, calculated as 1 − 2pc. As group sizes enlarge, the value of  becomes smaller,
thus making the “significance” criterion easier to satisfy. The value of Zc also becomes smaller, thus 
reducing the proportion of the nonoverlapping data and increasing the proportion of the central overlap.

For example, when n = 20, 0.98 = .309, for which pc = .121 and 1 − 2pc = .758. Consequently,
despite stochastic significance, the Group A and Group B distributions shown in Figure 16.3 will have
a “central overlap” of about 76%. About 38% of the Group A data would overlap the distribution of
Group B below the common mean and about 38% of the Group B data would overlap the distribution
of Group A above  The pattern for this result is further illustrated in Figure 16.4.

For n = 50, 0.98 = .196, and 84.4% of the data will be in a state of central overlap. For n =
200, the contrast of means will be stochastically significant at P = .05, despite a central overlap for more
than 92% of the data.

16.1.1.3 Illustration of Permissiveness — For a published illustration of permissiveness in
central overlap, Figure 16.5 here is modified (to show only the data points and means) from the original
illustration3 used to compare blood pressure in “100 diabetics and 100 nondiabetics.” Do the two sets
of data in Figure 16.5 look substantially different to you? Regardless of what your answer may be,
Figure 16.6 shows the original illustration, in which a 95% confidence interval extended from 1.1 to
10.9 around the increment of 6.0 in the two means. The interval excludes 0 and therefore denotes
stochastic significance at 2P < .05.

In a related illustration, shown here as Figure 16.7, the presented data had the same pattern and same
means as in Figure 16.5, but with only 50 members in each group. The 95% confidence interval is now
larger and includes the null value of 0, so that the difference is no longer stochastically significant.
Figure 16.7 was originally intended to show the effect of sample size in achieving stochastic significance
but might also be used to demonstrate the peculiarity of regarding these two groups as “significantly 

TABLE 16.1

Effect of Increasing Group Size (n) on Proportion of “Central Overlap” for a Stochastically 
Significant Contrast of Means at α = .05

n  Zc = .098
 pc = Nonoverlapping 

Proportion in One Curve 
 1 − 2pc = Proportion 

of Central Overlap

4  .707  .693  .256  .488
5  .632  .620  .232  .536

10  .447  .438  .169  .662
15  .365  .350  .137  .726
20  .316  .309  .121  .758
50  .200  .196  .078  .844

100  .141  .138  .055  .890
200  .100  .098  .039  .922

XA and XB,

XA XB 1.96sp N nAnB( )⁄≥–

N nAnB( )⁄ 2/n,
XA  − XB  1.96 2/ n( )sp,≥ XA XB–( ) sp  1.96≥⁄ 2/n.

Zc XA XB–( )= 2sp⁄ ,

Zc 0.98 2/n≥

2/n, on Zc 0.98 2/n= ,
2/n

2 n⁄ 2/n

2/n

X,
X.

2/n
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FIGURE 16.4
Overlap of data for two Gaussian groups of 20 members each, with 

 similar standard deviations, and P = .05. Beginning at 
the common mean  38% of the data in Group A overlap the 
distributions of Group B, and 38% of the data in Group B overlap 
the distribution of Group A. For further details, see text.

FIGURE 16.5
Systolic blood pressures in 100 diabetics and 100 
non-diabetics with mean levels of 146.4 and 
140.4 mm Hg, respectively. [Figure and legend 
taken from Chapter Reference 3.]

FIGURE 16.6
Systolic blood pressures in 100 diabetics and 100 non-diabetics with mean levels of 146.4 and 140.4 mm Hg, respectively. 
The difference between the sample means of 6.0 mm Hg is shown to the right together with the 95% confidence interval 
from 1.1 to 10.9 mm Hg. [Original figure and legend as presented in Chapter Reference 3.]
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different” in Figure 16.6, but not in Figure 16.7. If the large overlap of data and small quantitative
increment (6.0) in the means of Figure 16.7 did not impress you as “significant,” why were you impressed
with essentially the same pattern of data and quantitative distinction in Figure 16.6? (Further discussion
of Figures 16.6 and 16.7 is invited in Exercise 16.1.)

16.1.2 Stochastic Comparison of Box Plots

After recognizing the large amount of overlapping
data permitted by the conventional criteria for sto-
chastic significance, you may want to consider over-
lap in bulk of the data, rather than confidence
intervals for central indexes, as a stochastic mecha-
nism for deciding that two groups are “significantly”
different. A splendid way to inspect overlap is the
comparison of “side-by-side” box plots, for which
certain types of overlap can be readily “translated” 
into Gaussian stochastic conclusions.

16.1.2.1 No Overlap of Boxes — Bounded
by the interquartile range or H-spread, each box con-
tains 50% of the group’s data. If Group A has the
higher median, the boxes will not overlap if the lower
quartile value for Group A exceeds the upper quartile
value for Group B. In symbols, this requirement is

If the two boxes do not overlap, as shown
in Figure 16.8, the two groups can promptly be deemed
stochastically different.

FIGURE 16.7
Same as Figure 16.6, but showing results from two samples of half the size — that is, 50 subjects each. The means and
standard deviations are as in Figure 16.6, but the 95% confidence interval is wider, from −1.0 to 13.0 mm Hg, owing to 
the smaller sample sizes. [Figure and most of legend taken from Chapter Reference 3.]
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When converted into Gaussian principles for contrasting two means, the descriptive no-overlap-of-
boxes criterion is much stricter than the usual stochastic demands. In a Gaussian distribution, Z .5 = .674
demarcates a standard-deviation zone containing 50% of the data on either side of the mean. For the
spread of Gaussian data, the foregoing relationship would become
which requires that be > .674(sA + sB). Assuming that the group sizes are equal and that sA
and sB are approximately equal at a common values of sp, this descriptive requirement is

As noted in Section 16.1.1.2, for a two-tailed P < .05 in a comparison of two means for equal-sized
groups, the Gaussian demand for stochastic significance is that  must exceed
As group sizes enlarge, will become progressively smaller, thus making this demand easier to
meet for the same values of  and sp. For equal group sizes need merely be smaller
than twice the values of shown in Table 16.1. The largest of these doubled values, 1.386,
will occur when n in each group is as small as 5.

Consequently, a pair of box plots showing no overlapping boxes with group sizes of ≥5 (for essentially
Gaussian data) will almost always achieve two-tailed stochastic significance at P < .05.

16.1.2.2 Half-H-Spread Overlap Rule — 
A more lenient but still effective stochastic criterion
can be called the “Half-H-spread overlap” rule. It is
pertinent, as shown in Figure 16.9, if the median for
Group A is higher than the upper quartile for B and
if the lower quartile of A is higher than the median
of B. In symbols, the principle can be expressed as
QLA > X~B and QUB <X~A . If the overlap does not extend
beyond the cited quartiles, no more than 25% of the
data from Group B can be contained in the basic H-
spread of Group A, and no more than 25% of the data
from Group A can be in the H-spread of Group B.

Although apparently a lenient criterion, the Half-H-
spread-overlap rule is still more demanding than the
usual Gaussian stochastic standards, because the rule
refers to the spread of the actual data, not to the more
restricted scope of confidence intervals for an incre-
ment of two means. Because the inner 50% of Gaussian
data spans a two-tailed Z.5 = .674, the upper quartile
for a Gaussian group B would be at and
the corresponding lower quartile for Group A would
be  The “Half-H-spread” rule, expressed
in Gaussian terms, would demand that

which becomes the simultaneous requirement that

Consequently, the requirement is that

If we let s represent this larger value, exceeds .674s when the Half-H-spreads do not overlap.
In Table 16.1, the values of when doubled to produce show that two-tailed
stochastic significance at α = .05 will occur here for equal group sizes at all values of n above 20.

Thus, the “physical examination” of overlap in box plots can be used as a quick screening test for
stochastic significance of two compared groups. The mathematical values calculated in this section and

XA .674sA–( ) XB .674sB+( )> ,
XA XB–( )

XA XB– 1.348sp> .

XA XB–( ) sp⁄ 1.96 2/n.
2/n

XA XB– 1.96 2/n
0.98 2 n⁄
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in Section 16.1.2.1, however, rest on the assumptions that the data are Gaussian, with equal sizes and
variances in both groups. Nevertheless, the results will not be too disparate from these calculations if
those assumptions do not hold. In general, the contrast will almost always be stochastically significant 
at 2P < .05 if the two boxes have no overlap at all or if they have no more than a Half-H-spread overlap
for group sizes ≥ 20.

16.1.2.3 Published Examples — Because the box plot is a relatively new form of display, its
full potential as a visual aid has not yet been fully exploited for stochastic decisions. For scientists who
want descriptive communication and who would prefer to decide about “significance” by directly
examining quantitative distinctions in “bulks” of data, a contrast of box plots offers an excellent way to
compare the spreads of data and the two bulks demarcated by the interquartile zones. The comparative
display of two box plots can thus be used not only to summarize data for the two groups, but also to
allow “stochastic significance” to be appraised from inspections of bulk, not merely from the usual P 
values and confidence intervals. Because box-plot displays have been so uncommon, however, few
illustrations are available from published literature.

Figure 16.10 shows such a display, which was presented in a letter to the editor. 4 The spread is
completely shown for the data, which are not Gaussian, because the boxes and ranges are not symmetrical
around the median (marked with an asterisk rather than a horizontal line). Stochastic significance can
promptly be inferred for this contrast because the two boxes are almost completely separated. The only
disadvantage of this display (and of the associated text of the letter) is that the group sizes are not 
mentioned.

Figure 16.11 shows another contrast
of box plots, obtained during a previ-
ously mentioned (Chapter 10) study, by
Burnand et al.,5 of investigators’ deci-
sions regarding quantitative signifi-
cance for a ratio of two means. The
group sizes are indicated; and the medi-
ans are drawn with lines (rather than
asterisks). The “whiskers” for each
group cover an ipr95, rather than the
“fence” and “outlier” tactic proposed by
Tukey. With almost no overlap in the
boxes, the obvious differences in the
groups will also be stochastically sig-
nificant.

In a study of cardiac size on chest
films, shown in Figure 16.12, Nickol et
al.6 presented box-plot contrasts for
three variables in three ethnic groups.
The investigators stated that “every
comparison (in these data) differed sig-
nificantly (p < 0.001).” Using the Half-
H-spread exclusion principle, the box 
plots for the investigated groups show
obviously significant differences between Africans and Asians in cardiac diameter, between Africans
and Caucasians in cardiothoracic ratio, and between Africans and Caucasians in age.

16.1.2.4 Indications of Group Size — One disadvantage of box plots is that group sizes are
not routinely indicated. The sizes can easily be inserted, however, at the top of each “whisker,” as 
shown in Figure 16.11. Some writers have recommended7 that the width of the boxes be adjusted to

FIGURE 16.10
Box plots of rate ratios for involvement in a fatal crash by licensed
drivers 65 years of age or older in 20 states. according to whether the
state required vision testing for relicensure. Rate ratios represent the
comparison of rates for drivers 65 years of age or older with those for
drivers 45 to 64 years of age. Bars indicate the total range, boxes the
range from the 25th to the 75th percentile, and asterisks the median
value. [Figure and legend taken from Chapter Reference 4.]
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reflect the size of each group. Since unequal widths might impair the discernment of lengths in the
boxes, the group sizes are probably best specified with a simple indication of N for each group.

16.1.2.5 Notched Box Plots — To  m a k e t h e
results more stochastic, the box plot can be marked with
a central notched zone that covers the distance X~ ±

In these symbols X~ is the median, ipr50

is the interquartile range (between the top and bottom of the
box), n is the group size, and 1.57 is analogous to a Zα factor,
chosen here to provide a suitably sized counterpart of the
confidence interval for a median. The increment in two medi-
ans is stochastically significant if the notched interval of one
box does not overlap the median of the other.

Figure 16.13 shows notched box plots for CD4 lymphocyte
counts in two main groups of men, each divided into three
subgroups.8 The notch-spread criterion for “significance” is
analogous to the Half-H-spread-overlap rule, but is easier to
fulfill because the potentially overlapping distance is smaller.
The Half-H-spread rule is much easier to use, however, and
avoids the need for extra measurement of notch length.

16.1.3 Quantile-Quantile Plots

Despite its use as a descriptive summary of data, the box-plot
contrast discussed throughout Section 16.1.2 was employed
for stochastic decisions. An elegant way of contrasting the
quantitative distinctions of two groups, regardless of their
sizes, has been devised by Wilk and Granadesikan.9 They
originally proposed “quantile (Q-Q) plots, percent (P-P) plots,
and hybrids of these” to compare an observed univariate group
with a proposed theoretical distribution for the group, but the
tactic can be used to contrast distributions for two different
groups. The quantile technique, which relies on quintiles,
quartiles, medians, etc., is probably easier to apply than the
percent P-P plot, which relies on cumulative percentiles.

The quantile-quantile (Q-Q) graph creates a “pairing,” oth-
erwise unattainable with nonpaired data, in which the respec-
tive X and Y values at each point are the corresponding
quantiles of the compared Groups A and B. The two groups
can then be compared descriptively according to the line connecting the Q-Q points. If points lie along
the “identity” line X = Y, the two groups have similar results. If the line goes through the origin with
slope 1.2, the values in one group are in general 20% higher than in the other.

The method has seldom been used in medical literature, so the illustration here has another source.
In Figure 16.14, the ozone concentrations for Stamford vs. Yonkers are plotted with a large array of
quantiles, such as 2nd percentile, 5th percentile, 10th percentile, quartile, median, for each group. A 
much simpler line, however, could be drawn for just three points: the median and the lower and upper 
quartiles in each group. Four additional points —  the lower and upper quadragintile values and the 10-  
and 90-percentile values might be added for more complete detail.

C.P. Jones10 has pointed out that the relationship of lines and crossings in the Q-Q plot can be used 
to demonstrate descriptive differences in location, spread, and shape for the two compared groups of 
data. Jones has also proposed a simple “projection plot” in which the difference in each pair of quantile 
values is plotted against their average value. With this arrangement, the identity line passes horizontally 
through the increment of 0. 

FIGURE 16.11
Box-plot distribution of the ratio of two 
means according to the investigators’ deci-
sion about “quantitative significance.” 95% 
of the data is located between the horizontal 
lines at the ends of the top and bottom “whis-
kers” (the inner 95-percentile range). The 
central 50% of the data is located within the 
top and bottom ends of the box (the inner 50-
percentile or interquartile interval). The me-
dian transects the box. The best boundary that 
separates quantitatively significant from non-
significant distinctions is a dashed line drawn 
at a ratio of 1.2. [Figure and legend taken 
from Chapter Reference 5.]
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FIGURE 16.12
Box-and-whisker plots of the distribution of the data for radiographic cardiac diameter, cardiothoracic ratio, and age, by 
ethnic groups; AFR = African, ASI = Asian, CAU = caucasian. The box encloses the interquartile range, and is transected 
by a heavy bar at the median. The whiskers encompass the 25% of data beyond the interquartile range in each direction 
(after Tukey, 1977). Skew was statistically significant in 5 groups of data marked (S), p < 0.05, but was of very moderate 
degree in all but the data for Age of caucasian subjects. Age in African subjects showed kurtosis marked (K), p < 0.05, of 
mild degree. [Figure and legend taken from Chapter Reference 6.]

FIGURE 16.13
Distributions of CD4+ lymphocyte counts in injecting drug users and homosexual men, with each cohort divided into 
individuals who did or did not develop acquired immunodeficiency syndrome (AIDS) or thrush, as described in the text. 
Boxes indicate median and upper and lower hinges; “waists” around the medians indicate 95% confidence intervals of the 
medians. The lowermost and uppermost horizontal lines indicate fences, either 1.5 interquartile ranges away from the first  
and third quartiles or at the limit of the observations, whichever was smaller. Outliers (values beyond the fences) are marked 
by asterisks. [Figure and legend taken from Chapter Reference 8.]
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16.2 Principles of Display for Dimensional Variables

Graphs and other visual displays of dimensional 
data have usually been prepared in an ad hoc
arbitrary manner, according to the standards (or 
whims) of the artist to whom the investigator 
took the data. This laissez faire policy was 
sharply attacked several years ago in a landmark 
book by Edward Tufte, The Visual Display of 
Quantitative Information.11 He offered an 
invaluable set of principles for both intellectual 
communication and visual graphics in the dis-
play of data. Some of those principles have been 
used in the discussion here.

Results for a dimensional variable in two 
groups can usually be effectively compared 
from suitable summary statements that indicate 
the central index, spread, and size for each 
group. If this information is provided in the text 
or in a table, additional visual displays may be 
unnecessary. If presented, however, the displays 
should convey distinctions that are not readily 
apparent in the summary statements. The main 
such distinction is the distribution of individual 
data points. Their portrait can promptly let the 
reader distinguish spreads and overlaps that are 
not always clear in the verbal summaries.

16.2.1 General Methods

The main challenges in displaying individual points of dimensional data are choices of symbols, methods 
of portraying multiple points at the same location, and selection of summary indexes.

16.2.1.1 Symbols for Points — In most instances, dimensional values are shown in a vertical 
array within the arbitrary horizontal width assigned for columns of each compared group. Because 
each group usually occupies its own column, different symbols are seldom needed for the points of 
different groups.

A simple, circular, filled-in dot, enlarged just enough to be clearly visible, is preferable to open 
circles, squares, triangles, crosses, diamonds, and other shapes. The other shapes become useful, 
however, to distinguish one group from another when two or more groups are contrasted within the 
same vertical column.

16.2.1.2 Multiple Points at Same Location — Multiple points at the same vertical location 
can be spread out in a horizontal cluster as ……, and the arbitrary width of the columns can be adjusted 
as needed. If the spread becomes too large, the points can be split and placed close together in a double  
or triple tier. A remarkable “cannonball” spread of points is shown for multiple groups12 in Figure 16.15.

Instead of appearing individually in a cluster (or “cannonball”) arrangement, the multiple points are 
sometimes combined into a single expanded symbol, such as a large circle, whose area must appropriately 
represent the individual frequencies. The area is easy to identify if the symbol is a square, but is difficult 
to appraise if it must be calculated for a circle or other non-square symbol. Enlarged symbols can be 
particularly useful in a two-dimensional graph, whose spacing cannot be arbitrarily altered to fit the 

FIGURE 16.14
Empirical quantile-quantile plot for Yonkers and Stamford 
ozone concentrations. The slope is about 1.6, implying that 
Stamford levels are about 60% higher than Yonkers level. [Fig -
ure taken from Chapter Reference 2.]
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individual cluster. In comparisons of categorical groups, however, the enlarged symbols usually keep 
the viewer from discerning individual frequency counts.

16.2.1.3 Choice of Summary Symbols — The decisions about summary symbols for indexes 
of central tendency, spread, and size depend on whether the purpose of the display is descriptive 
communication or stochastic inference. Many displays seem to be aimed at stochastic decisions, showing 
bars and flanges for means and standard errors but not points of data. Because the summary indexes 
can readily be presented in verbal text or tables, the display seems wasted if it does not show the 
individual data points and if the summary does not indicate spread of the data rather than indexes for 
stability of the mean.

If the visual goal is really stochastic, a separate problem arises from the choice of a standard error. 
For a stochastic Z (or t) test, or for a confidence interval, the statistical formula uses a standard error 
calculated from the combined (or “pooled”) variance in the two groups. Thus, for purely stochastic 
displays, each group should have an identical standard error, derived from the combined variance. If the  
standard errors are shown individually for each group, they might be used for the type of crude mental 
evaluations described in Section 13.3.2, but the exact sizes of the standard errors are often difficult to 
discern from the graphical display.

Probably the main value of showing standard errors is to “market” the results by disguising spread 
of the data. Because the standard deviation is divided by  the standard error is always smaller than 
the SD and makes things look much more compact, tidy, and impressive. The SE becomes progressively 
smaller with enlarging sample sizes, thus allowing two big groups of data with a dismayingly large 
amount of overlap to appear neatly separated. 

If aimed at the appropriate goal of descriptive communication, the display of individual points will 
often suffice to show the data, because the corresponding summary values will usually appear in text 
or tables. An appropriate choice of summaries, however, can be valuable for descriptive (and even 
stochastic) evaluations of “bulk,” as discussed earlier. The summaries are also necessary for large data 
sets having too many points to be shown individually. The comparison of two box plots is the best 
current method of showing these summaries. With suitable artistic ingenuity, the individual points might  

FIGURE 16.15
Serum-ascites albumin gradient in ascites, classified by presence or absence of portal hypertension. Statistical 
comparisons are to the sterile cirrhotic group by unpaired t-test. CARD = cardiac ascites; Misc Non-PHT = miscellaneous-
nonportal-hypertension-related; Misc PHT = miscellaneous portal-hypertension-related; NS = not significant; PCA = 
peritoneal carcinomatosis. Mean ± SD bars are included as well as a horizontal line at 11 g/L, the threshold for portal 
hypertension. All groups differed significantly (P < 0.05) from the sterile cirrhotic samples by analysis of variance with 
the Dunnette test. [Figure and legend taken from Chapter Reference 12.]
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even be shown inside each box, and they could replace (or be shown alongside) the “whiskers” beyond
the box.

Some good and bad examples of two-group dimensional displays are shown in the sections that follow.
Because some of the displays will be adversely criticized, the sources of publication are not identified,
and the names of some of the original variables have been changed.

16.2.2 Conventional Displays of Individual Data Points

This subsection contains displays of various conventional arrangements of the points of data for two
comparisons.

Figures 16.16 and 16.17 show the points of data directly,
without any indexes of spread. In Figure 16.17, the location
of the means would probably be easier to identify if they
were shown with lines rather than asterisks, if the legend
called them means rather than averages, and if the vertical
scale on the far left had more “tick marks.”

In Figure 16.18, a solid line has been added to show the
mean, and dashed lines to show SE in each direction. As
noted earlier, the main value of displaying SE alone is that
a difference in means cannot be stochastically significant
if the SE values overlap. If they do not overlap, however,
a t value or confidence interval for the difference must still
be calculated to demonstrate stochastic significance. For
a very wide gap between the ranges of the two SE zones,
the mental calculation described earlier (Section 13.3.2) is
easier to do from the stated summary indexes than from
trying to measure the size of the gap in a graph.

In Figure 16.19, a desirable line has been drawn near
the bottom of each group to separate all the data points
having values of 0. The arrangement allows each of those
points to be seen without the crowding that occurs in the
points above the line in the left column.

Figure 16.20 makes a laudable effort to show all the
data points, but communication is impeded by the over-
lapping circles and by the many diverse symbols, which
are generally used only once or twice. The display prob -
ably would have been much easier to read and interpret
if each person were shown with a dot, group means with
lines, and special individuals identified with a label on the graph and an arrow pointing to the dot.

In Figure 16.21, a logarithmic scale is used to cover the wide range of values for data points shown
in a single vertical array for three groups, with different symbols. The three groups are so clearly separated
that no summary expressions are needed to emphasize the distinctions. In Figure 16.22, data points are
also shown for three groups, together with indications of mean and SEM for each group. In the original
report, no stochastic calculations were presented for the textual claim that the special amine was
“consistently raised in uraemia,” but the separation of the data points indicates that no such calculations
were needed. The display of SEM values thus seems redundant, particularly as no claims were made
for stochastic distinctions between the “blind-loop” and “control” groups.

Figure 16.23 is remarkable for displaying the summary results with medians and an inner 80-per-
centile zone rather than with Gaussian indexes. The authors13 say they wanted to avoid Gaussian
assumptions and that “this type of presentation is easily understood by most people.” The research was
used, however, to establish a zone of normal values in 704 “healthy asymptomatic aircrewmen.” The
10th and 90th percentile boundary points were chosen “arbitrarily … [as] conservative reference values
for the response of healthy men to treadmill exercise” and also “to exclude individuals having subclinical

FIGURE 16.16
Graph shows ratio of two variables in nonfailing 
(NF) and failing (F) conditions.
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FIGURE 16.17
Minimum arterial diameter for subjects receiving treat-
ments A or B.

FIGURE 16.19
Segregation of clusters of data points at value of 0.
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FIGURE 16.18
Means and standard errors for two groups.

FIGURE 16.20
Magnitude of measured variable in (at left) 39 normal 
adults and (at right) the 7 children with other neurologic 
diseases who were used as controls (open circles), includ-
ing 2 following a ketogenic diet (circles framed by 
squares); Patient 1; his parents (solid circles); Patient 2; 
and her mother (circle with slash). Half-filled circles to 
the right of each group represent means, and the vertical 
scales are marked in increments of 1 SD from the mean, 
with the results for Patients 1 and 2 excluded. The level 
of the variable for Patients 1 and 2 was more than 3 SD 
below the mean for either group of control subjects.
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conditions.” Despite the excellent clarity of the visual display, many clinicians will have doubts about
establishing a “range of normal” by arbitrarily excluding 20% of apparently healthy persons.

16.2.3 Bar Graphs

For large groups, which may have too many individual data points to be easily displayed, the results are
often shown with bar graphs. The lengths of the bars show the means, and flanges are added to show
dispersion (usually SE). Figure 16.24 gives an example of this tactic for comparing results, in two groups
of about 48 animals marked with cross-hatched or black bars, at different times after special adminis-
tration of insulin. The symbols “N.S.” and “p < 0.05” are added to show the absence or presence of
stochastic significance at each time point of comparison. This type of graph offers little that cannot be
discerned from the data summaries for each contrast, but a visual display may be valuable for showing
the trend of results over time.

A particularly complex bar chart, which probably tries to do too many things, is shown in Figure 16.25.
The lengths of the bars indicate the means, but the quartile and median values are appended, together 

FIGURE 16.21
Urinary excretion of cited variable during water-deprivation tests 
in 10 children with histiocytosis and diabetes insipidus (trian-
gles) and 21 children with histiocytosis but no symptoms of 
diabetes insipidus (circles). The hatched area represents the 
range in healthy children.

FIGURE 16.22
Special amine concentrations in control, blind-loop, 
and uremic subjects.
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FIGURE 16.23
Control and submaximal treadmill exer-
cise measurement data are shown as me-
dian (�) with 10th and 90th percentiles. 
Submaximal data are presented for the 5, 
10 and 15 percent grade within the 
Balke-Ware treadmill protocol; the rela-
tionship between these three grades and 
other treadmill protocol stages is depict-
ed at the bottom of the figure. The num-
bers of subjects with complete data for 
each of the measurements are 698 for 
control; 699, 700, and 503, respectively, 
for three submaximal responses. [Figure 
and legend taken from Chapter Refer-
ence 13.]

FIGURE 16.24
Blood-glucose in diabetic animals treated with special 
insulin.

FIGURE 16.25
Average relapse-free period after treatment in groups A 
and B, shown in the height of columns with correspond-
ing median values, and 1st and 3rd quartiles in 2,045 
patients.
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with a special symbol (∆) for demarcating the increment in means. This same information could probably
have been communicated, with greater artistic ease and visual effectiveness, in two contrasted box plots.
Note that the half-H-spreads do not overlap, consistent with a statement in the text that the 73-day
difference in medians is “highly significant with non-parametric tests.”

16.2.4 Undesirable Procedures

The next set of illustrations shows some particularly unattractive or undesirable procedures. In
Figure 16.26, information that could readily have been understood with simple, direct summaries has
been displayed in bar graphs. Beyond the basic redundancy, the graphs do not indicate the group sizes
or the identity of the top flanges as either SD or SEM. The artist has also “volumized” the bars with an
unnecessary third dimension. As a final undesirable touch, the legend erroneously states that the bar
graphs are histograms.

Figure 16.27 is another volumized bar graph, which also omits showing group sizes. The unidentified
“SED” at the far right of the graph is presumably standard error of the difference, explained in the text
only as having been obtained “from the error mean squared of the respective ANOVA (analysis of
variance) table.” Aside from the flaws in display, however, the data themselves may not have been
appropriately analyzed. According to the text of the report, all the results were obtained in two sets of
crossover studies of 6 patients. In one crossover, the patients went from a supine to a tilted position,
and in each position they were untreated or received a particular treatment. The research was thus aimed
mainly at contrasting the two sets of changes in a single group, but the results are presented as though
four groups were being compared.

Figure 16.28 shows two of several similar structures displaying blood pressure and heart rate in response
to five different treatments given to 14 patients. The original legend listed only the abbreviations used for 
the treatments and had no other identifying information. What at first seems to be an incomplete box plot 
for the blood pressure values could eventually, by careful reading of the text, be discerned as bars having 
mean systolic pressure on the top of each “box” and diastolic pressure on the bottom. The flanges represent 
standard deviations. In the lower display for heart rate, the circles are presumably central indexes, whose 
actual value is effectively obscured by the circles, and whose identity — as means or medians — is not 
listed in either the original legend or the original text.

FIGURE 16.26
Histograms of plasma levels of clotting sub-
stance before and after (4.2 ± 0.3 hours) tis-
sue-type plasminogen activator (t-PA) at the 
two doses. Levels were significantly lower af -
ter treatment with the two doses (p < 0.01) but 
similar for each.

FIGURE 16.27
Bar graphs showing changes in arterial plasma 
norepinephrine concentration during 30° 
head-up tilting before and after treatment. 
Data are shown for patients in the supine po-
sition (open bars) and after 30° head-up tilting
(shaded bars). 
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Figure 16.29 is a counterpart, in two groups, of the useless display of complementary proportions
shown earlier in Figure 9.1 for one group. The information for both groups could have been communi-
cated more simply and directly with a straightforward comparison of the constituent numbers.

Figure 16.30 has been nominated for an “Oscar” in malcom-
munication. The only virtue of the figure — its display of data
points — is negated by ineffective or inadequate marks and
labels. The upper and lower bars for each box show only the
range for each group. Two different measurement scales are
distinguished by ∗ and ∗∗ symbols, which are confusing because
they are normally used to signify magnitude of P values rather
than scales of measurement. The unidentified dashed horizontal
lines must be discerned, from the text, as means. Sample sizes
are not identified and must be either counted from the dots or
searched in the text.

Figure 16.31 at first seems to have many merits. It shows box
plots and cites actual values for pertinent boundaries on each
plot. The legend, however, is confusing in describing an “NL”
(presumably “normal”) hatched bar for “blood urea nitrogen,”
although the graph refers to “serum creatinine.” Furthermore,
the meaning of the hatched NL bar is not clear. Does the “NL”
symbol indicate a range of normal, or does its hatched bar
represent a box plot analogous to the others on that graph? A
more cogent statistical problem, however, is that the data in this
crossover study have been displayed as though two groups were
involved. A more effective portrait would have shown the results
of change for individual patients.

Figure 16.32 asks the reader to compare histograms for the
distribution of atypical lobules per breast in two groups. Despite
the merit of showing the actual distributions, the portrait has no
value in helping summarize the data for interpretation. The
associated table of data, copied here from the original publica-
tion, makes relatively little contribution beyond listing a rela-
tively useless “average” (presumably mean) value for the
eccentric distributions. The original discussion of the statistical
analysis and your invitation to improve things are contained in
Exercise 16.2.

16.3 Displaying Binary Variables

The frequency counts for a binary variable in two groups form a 2 × 2 table, and each group’s results
are easily summarized as a binary proportion. The main visual decision is how to orient the rows and
columns of the table itself.

16.3.1 Orientation of 2 × 2 Table

If the research has the cause–effect architectural structure of a randomized trial, observational cohort,
or etiologic case-control study, the most scientific arrangement places the alleged causal agents in the
rows and the outcomes in the columns. This format is used because readers are accustomed to looking
at horizontal scientific symbols for the sequence of cause → effect. Table 16.2 is organized in this
“longitudinal” direction of observation and reasoning. In longitudinal studies, the rows indicate the 

FIGURE 16.28
Blood pressure and heart rate during 
each treatment regimen.
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FIGURE 16.29
Percentages of black women and white women by type of menopause.

FIGURE 16.30
Absolute number and percentage of basophils in controls and in 
children with arthritic conditions.

FIGURE 16.31
Changes in renal function induced by treatment in 
patients receiving immunotherapy for advanced can-
cer. The arrow indicates that the maximum level for 
serum creatinine was greater than 7 mg/dL. Hatched 
bar shows blood urea nitrogen.
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denominator groups, n1 and n2, that have been exposed or nonexposed to the alleged “cause”; and the
columns show frequencies for the outcome fates, f1 and f2, for the forward direction of observation.

In an etiologic case-control study, however, the groups are chosen according to presence or absence
of the outcome event. They are then “followed backward” to determine previous exposure to the alleged
“cause.” To keep a scientific format, the table can still have the same horizontal orientation with “causes”
in the rows; but the n1 and n2 totals for the “sampling” are now listed in the columns for the selected
outcome groups that are the appropriate denominators. The arrangement is shown in Table 16.3.

16.3.2 Individual Summaries

Because of structural differences in the research, the n1 and n2 denominators for longitudinal and case-
control studies have different locations in the tables and must be expressed with different binary
proportions.

For the longitudinal data of Table 16.2, n1 and n2 are marginal totals for the rows. The proportions of
success, which would be p1 = a/n1 and p2 = c/n2, could then be compared as an increment pl − p2 or as
a “risk” ratio, p1/p2. (If “risk of success” seems like an inappropriate phrase, it can be replaced by the
risk ratio for failure, expressed as q2/q1.)

For the case-control study shown in Table 16.3, the analogous calculation of a /f1 and c/f2 in the rows 
is forbidden, as noted earlier (in Section 10.7.3), because patients were not chosen according to their 
exposure or nonexposure. If two proportions in this table are to be compared directly, they would have 
to refer to antecedent exposure, as e1 = a/n1 and e2 = b/n2. Because these proportions have relatively 
little intuitive meaning and cannot be used to express risk, they are seldom given much attention. Instead, 
the odds ratio, ad/bc, is usually cited as a single index of contrast, with the hope that it will adequately 
approximate the risk ratio. (The topic, mentioned in Chapter 10, is further discussed in Chapter 17.)

FIGURE 16.32
Reproduction of histograms and tabular data for a comparison of “atypical lobules per breast” in two groups.
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16.3.3 Graphic Displays

If graphic displays have any merit at all for a 2 × 2 table, their main role would be to show the direction
of observation and to compare magnitudes for the appropriate proportions.

Figures 16.33 and 16.34 show the “tabular box-graphs” that have been proposed14 for this purpose.
In both instances, the 2 × 2 table contains the data , and both box-graphs are drawn as “unitary 
squares.” The dividing lines, however, are arranged to show the different directions and interpretations 
of the research architecture. The proportions for the selected denominators of the two main groups are 
shown by the placement of thick horizontal or vertical lines, and the thinner perpendicular vertical or 
horizontal lines are then placed to show the appropriate proportions in each group of either success for 
the cohort study or exposure for the case-control study.

TABLE 16.2

Architectural Structure of a Longitudinal “Cause–Effect” 2 × 2 Table

Alleged Outcome

Alleged Cause
Present 

(Success)
Absent 

(Failure) Total

Present (Active Treatment) a b n1

Absent (Comparative Treatment) c d n2

Total f1 f2 N

TABLE 16.3

Architectural Structure of Etiologic Case-Control Study

Alleged Outcome

Alleged Cause
Present 

(Diseased Case)
Absent 

(Nondiseased Control) Total

Present (Exposed) a b fl

Absent (Non-exposed) c d f2

Total n1 n2 N

FIGURE 16.33
Tabular box-graph for a cohort study. The horizontal line 
is drawn at a distance of 0.33 (=30/91) in the unitary 
square. The two vertical lines are drawn at distances of 
0.67 (=20/30) and 0.25 (=15/61).

FIGURE 16.34
Tabular box-graph for a case-control study. The vertical 
line is drawn at a distance of 0.38 (=35/91). The two 
horizontal lines are drawn at distances of 0.57 (=20/35) 
and 0.18 (=10/56).
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To display each constituent of an odds ratio, Figure 16.35 has a “quadrant-hub” arrangement of four
contiguous squares, whose magnitudes for each side are  for the four cells of the
2 × 2 table. The substantial differences in magnitude of the ad vs. bc squares in Figure16.35 is consistent
with the odds ratio of 6.1 [= (20 × 46)/(10 × 15)].

The graphical displays in the squares of Figures 16.33 through 16.35 do not communicate much beyond
what is readily discerned from direct inspection of the corresponding table, but they can be used if you
want tables to receive an artistic emphasis that might help compensate for the enormous visual attention
given to dimensional graphs in statistical illustrations.

A visually esthetic but intellectually unattractive arrangement shows the spinning-top shapes of
Figure 16.36. The implications of the shapes themselves are difficult enough to understand; but the
legend — which is reproduced here exactly as published — is inscrutable.

16.4 Displaying Ordinal Data

Because of the problems of getting adequate summary indexes (discussed throughout Section 15.7),
there is no single ideal method for visual display of ordinal categories. The available methods of
arrangement will inevitably differ according to the goal of the display. Is it intended to compare the
overall distribution of categories in the two groups, or to do a category-by-category comparison? Bar
charts can be used for either purpose, but the organization of the bars will differ.

FIGURE 16.35
Contiguous squares showing cell sizes
in a 2 × 2 table. [Figure and legend
taken from Chapter Reference 14.]

FIGURE 16.36
Change with age of numbers of people 
at risk by virtue of having bone masses 
below an arbitrary threshold. Pendular 
shapes represent normal distribution of 
bone mass in two populations with dif-
ferent fracture risks (equivalent to cas -
es and controls) at two different ages. 
For each population mean bone mass 
has been reduced between the two ages 
by 1.5 standard deviations of the dis-
tribution ( ), an amount fully in accord 
with that implied by cross-sectional 
studies as occurring between age 50 
and 85. Risk threshold intersects dis-
tributions at (from left to right) 2.5, 1.0, 
1.0, −0.5 standard deviations from 
means, resulting in stated ratios of 
numbers at risk in the two populations 
(shaded areas).
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16.4.1 Overall Comparisons

The “divided bar-chart,” also called a “component bar-chart,” has been a standard method of showing the
distribution of constituent categories for two groups. Figure 16.37 is a schematic drawing of the arrangement,
with the ordinal categories arrayed in vertical tiers that obscure both the shape of the distribution, and the
comparison of individual categories.

A preferable way of displaying this same information is the divided dot chart proposed by Cleveland
and McGill.15 Figure 16.38, which shows their dot chart for the same information that appears in
Figure 16.37, allows magnitude to be clearly identified for each category, while also displaying shape of
the overall distributions.

FIGURE 16.37
Divided (or “component”) bar chart for ordinal categories in two groups. [Figure and legend taken from Chapter
Reference 15.]

FIGURE 16.38
Divided dot chart for data of Figure 16.37. [Figure taken from Chapter Reference 15.]
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16.4.2 Category-by-Category (Side-by-Side) Comparisons

Perhaps the most effective way to show category-by-category comparisons, however, is to place the
bars opposite one another on a single vertical stalk.16 If just a few categories are included, this type
of arrangement resembles a traffic signpost, as in Figure 16.39. If the ordinal data have many categories
that are shown without spaces, as in Figure 16.40, the portrait may look like the layers of the “Michelin
man.” The latter tactic has often been used to construct a “population pyramid,” which compares
demographic components for two regions. The tactic can also be used to construct a type of back-to-
back histogram, shown in Figure 16.41 for the distributions of CD-4 counts in two groups of men.17

If the layered categorical-bar arrangements of Figure 16.39 are converted to dot charts, as shown in
Figure 16.42, the results produce a “Christmas tree” effect.16

FIGURE 16.39
“Traffic signpost” arrangement. [Figure and legend
taken from chapter Reference 16.]

FIGURE 16.40
“Michelin-man” arrangement, showing “population pyramid”
often used in demographic comparisons.

FIGURE 16.41
Distribution of CD4+ counts in HIV-negative heterosexual and
homosexual men in San Francisco. [Figure and legend taken from
Chapter Reference 17.]

FIGURE 16.42
“Christmas tree” dot chart for the 5-category,
2-group data of Figure 16.39. [Figure taken from
Chapter Reference 16.]
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16.5 Nominal Data

For two groups of nominal data, no visual structure improves the comparison that can be obtained with
a well-organized table showing the frequency counts (or relative frequencies) for each of the nominal
categories in each group. If visual adornment is desired, a side-by-side category dot chart is probably
the best approach.

16.6 “Bonus” Displays

As a reward for your completing this chapter, here are two “bonuses” of interesting features in data
display.

16.6.1 New Haven–New York Timetable

In Edward Tufte’s second book, Envisioning Information,18 he denounces the visual display used for the
schedule of Metro North trains from New York to New Haven. His critique is replicated in Figure 16.43.

In Figure 16.44, however, Tufte shows a revised improved schedule, done as a student project at Yale
University in 1983. Whatever be the merits of the criticism and the new design, travelers on this railroad 
route will recognize that the old format is still being used almost 20 years later. (Tufte does not mention 
whether the improved version was ever brought to the attention of railroad officials.)

FIGURE 16.43
Edward R. Tufte’s critique18 of the Metro North Railroad schedule of trains from New York to New Haven.
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16.6.2 Sexist Pies

Several years ago the New Yorker magazine19 published a cartoon, shown here as Figure 16.45, in which
pie graphs depicted the alleged distribution of male and female thoughts. You can make your own
decision about whether the data are worth converting to a dot chart.

FIGURE 16.44
Proposed improvement for schedule shown in Figure 16.43. [Figure taken from Chapter Reference 18.]

FIGURE 16.45
Proposed distribution of gender-related cognitive foci. [Figure taken from Chapter Reference 19.]
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Exercises

16.1. (Note: To answer the following questions, you should not have to do any counting or locating of
individual points on the graphs.)

16.1.1. Using the data shown in Figure 16.6, determine a coefficient of potential variation, i.e.,
stability, for the mean difference in the two groups. Are you impressed with the stability?
Why or why not?

16.1.2. Determine a coefficient of variation for the data in each group. Are you impressed that
the means are suitable representatives of the data? Why or why not?

16.1.3. The authors state (see legend of Figure 16.7) that the groups in Figure 16.6 have the
same standard deviations as in Figure 16.7. Verify this statement.

16.1.4. Although you might think that the two groups in Figure 16.7 were randomly chosen as
half of the groups in Figure 16.6, the points on the graphs contain contradictory evidence.
What is that evidence? How do you think the data were really obtained for the two figures?

16.2. The text that follows appeared in a leading journal of American research and contains the only
quantitative information — together with what appeared in Figure 16.32— of a published report on
preneoplastic lesions in the human breast:

The t-test was used to examine the hypothesis that the means of the populations of the two
samples (routine autopsy and cancer-associated) are equal when the sigmas are equal but un-
known. If the two samples are drawn from the same population they must necessarily have the 
same sigma and mean. If the t-test rejects the hypothesis that the means are equal while the
sigmas are equal but unknown, then the populations are different within the confidence interval
that is drawn from the t-test. In this instance the t-test indicates that the two samples are not
drawn from the same population, with less than 1 percent chance for error. All P values were
less than 0.1. These results show a positive correlation between AL and cancer-associated breasts
in the human.
16.2.1. If this manuscript were submitted now and you were asked to review the statistical

analysis, what comments would you make?
16.2.2. Using the available information cited here and in Figure 16.32, prepare and show an

alternative (improved) graphic presentation for the results.

16.3. Figure E.16.3 appeared in the report of a study20 that compared two new technologies — gradient
echo magnetic resonance imaging (MRI) and 99mTc methoxyisobutyl-isonitrile single-photon emission
computed tomography (MIBI-SPECT) — for their ability to define myocardial scars. The abbreviation
DWT in the vertical ordinate refers to diastolic wall thickness, whose magnitudes on MRI were compared
with the MIBI-SPECT designation of scar or no scar.

By visual inspection and mental computation only, without using a calculator, how could you 
determine whether the ± 1 and ± 2 citations on the graph are standard deviations or standard errors?
16.4. Figure E.16.4 shows the data points and geometric means for two groups.

16.4.1. What alternative expression would you propose as an index of central tendency for these 
groups?

16.4.2. What problem would occur if you tried to do a t (or Z) test on the data shown in the graph?
16.4.3. What alternative simple strategy can you use to demonstrate stochastic significance for 

this contrast?
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16.5. In the displays in Figure 16.12, each box shows a lower quartile, median, and upper quartile for
the group. [The whiskers show the full range of data, i.e., from the 0th to the 100th percentile.] The 
actual values for the three quartile points of data can be estimated from the ordinates on the graph. Using 
this information for each group, prepare a quantile-quantile graph for the comparison of age in Africans  
and Caucasians.
16.6. Here is another “find-and-fix” set of exercises. From any published literature at your disposal, 
find an unsatisfactory graph, chart, or other visual display for two groups of data. (If you cannot find a  
drawing, a badly organized table can be substituted.) For each unsatisfactory display, indicate what is 
wrong and how you would improve it, sketching the improved arrangement. If possible, find such 
suboptimal displays for 2-group data that are

16.6.1. Binary
16.6.2. Dimensional
16.6.3. Ordinal

If you cannot find any “juicy” bad displays for these data, and are desperate, a particularly “good” 
display can be substituted.
16.7. In a scientifically famous legal case, called Daubert v. Merrell Dow Pharmaceuticals, Inc. (in 
which Bendectin was accused of causing birth defects), the U.S. Supreme Court reviewed a previous 
legal doctrine, called the Frye rule. The rule had been used by judges in lower courts to make decisions  
about admissible evidence in “toxic tort” cases involving the adverse effects of pharmaceutical substances 
or other products accused of “risk.” According to the Frye rule, the only admissible courtroom evidence 
should have been published in peer-reviewed journals; and any positive contentions about “risk” should  
have been accompanied by “statistically significant” evidence. The opponents of the Frye rule — who 
were the plaintiffs in the Daubert case — wanted a more lenient approach. It would allow “expert 

FIGURE E.16.3
Comparison of MIBI-SPECT and MRI assessed DWT. 
Distribution of DWT obtained from segments graded 
normal and scar by MIBI-SPECT. DWT was signifi-
cantly (p < 0.001) higher in normal segments than in 
segments graded as scar. [Figure and legend taken from 
Chapter Reference 20.

FIGURE E.16.4
Frequency and geometric mean of spontaneous B-cell out-
growth in the peripheral blood of patients with acute Epstein-
Barr-virus-induced infectious mononucleosis and of normal 
persons seropositive for Epstein-Barr virus. The geometric 
mean is indicated by the horizontal bar.
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witnesses” to introduce unpublished data and also, when P values were not “statistically significant,” 
the potential magnitude of risks could be estimated from the upper ends of confidence intervals. Amicus 
curiae briefs were filed on both sides by a prominent array of institutions and individuals. The Frye rule 
was defended by the American College of Physicians, AMA, New England Journal of Medicine, a 
consortium of Nobel laureate scientists, and other persons (such as ARF) who argued that the dropping  
of standards would fill courtrooms with “junk science.” The Frye rule was opposed by some prominent  
scientists, statistical epidemiologists, and legal groups (mainly attorneys for plaintiffs) who argued that 
P values were too rigid a standard and that peer-reviewed publication was neither a guarantee of, nor a 
requirement for, good scientific work.

Briefly discuss what position you would take in this dispute. What position do you think was taken 
by the Supreme Court?
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Several prominent ambiguities have already been noted when central indexes are chosen and contrasted 
for binary data. The central index itself is ambiguous, because information coded as 0, 0, 0, …, 1, 
1, 1 can be cited with either of two complementary proportions, p or q. Thus, the same group might 
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have a success rate of 29% or a failure rate of 71%. Another problem occurs for reporting changes. 
Choosing one central index rather than the other would not affect results when standard deviations are 
calculated as  or when two-group increments are formed as = . The results can 
differ dramatically, however, if proportionate incremental changes are cited with either p or q in the 
denominator. Thus, a drop in the death rate from .09 to .07 could be cited proportionately as either a 
22% decline in mortality [= (.07 − .09)/.09] or an equally correct 2% rise in survival [= (.93 − .91)/.91].

Beyond these ambiguities, however, the complexities of binary proportions create several profound 
scientific and statistical problems that are discussed in this chapter. The problems arise from the custom 
of calling the proportions “rates,” from their different sources of numerators and denominators, from 
their static or dynamic temporal constructions, from the uniqueness of the odds ratio as a statistical 
index of contrast, and from the special epidemiological jargon used for comparisons of rates. 

17.1 Ambiguous Concepts of a Rate

Like probability, the idea of a rate is a fundamental concept in statistics; and like probability, rate is 
difficult to define. As noted in Chapter 6, probabilities can be subjective or objective, isolated or 
cumulative, empirical or theoretical, frequentist or Bayesian. Rates have many more sources of diversity, 
inconsistency, and confusion.

17.1.1 Non-Biostatistical Rates

In nonmedical branches of science and daily life, a rate is often constructed as a quotient of different 
components, cited in the different units of measurement. Velocity (or speed) is a rate in which distance  
traveled, divided by duration of time, is listed in expressions such as km per hr. This usage suggests 
that a rate reflects something occurring over a period of time. The rate of an automobile’s gasoline 
consumption, however, is cited without reference to time, in such terms as miles per gallon.

Although the foregoing examples suggest that a rate is a quotient of two different constituents, such 
quotients also receive other names. When a quantity of calcium is divided by a quantity of fluid, the 
quotient is called a concentration, expressed in such units as mg/dl. A quantity of red blood cells divided 
by a quantity of fluid, however, is not called a concentration. It is called a count if the cells are enumerated 
and a hematocrit if their packed volume is measured. If the units of measurement are similar, but the 
measured entities are different, yet another word may be used. The quotient formed when a concentration 
of serum albumin is divided by a concentration of serum globulin is called a ratio and is unit-free. Many 
unit-free quotients, however, are not called ratios. They are called rates. Thus, a quotient of two quantities 
of money, such as the amount of interest for the principal of a bank loan, is called an interest rate. It is 
expressed as a unit-free proportion (or percentage). Although many proportions are called percentages
as well as rates, other names are sometimes used. A baseball player’s proportion of number of hits per  
number of times at bat is called an average.

In maintaining the inconsistencies just noted for the world beyond, the rates examined in biostatistics 
may or may not be proportions; the proportions may or may not be rates; and the ratios may be either 
or neither.

17.1.2 Complexity in Biostatistical Rates

Valiant attempts1 are sometimes made to define a rate as “a measure of change in one quantity (y) per 
unit of another quantity x … [which] is usually time.” Although a desirable standard, this definition is 
constantly ignored in the literature of medicine and public health. For practical purposes, a rate is almost 
anything that the user of the term wants it to be and that editors are willing to publish.

Any rate can readily be described (rather than defined) as a quotient of two quantities, a/n, in which 
a numerator, a, is divided by a denominator, n. In biostatistics, these quantities are usually frequency 
counts rather than measured dimensions. The quantities come from enumerations of either groups of 

pq p1 p2– q1 q2–
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people or events that occur for people, not from dimensional amounts of such entities as distance,
gasoline, calcium, or fluid. The inconsistencies and ambiguities of biostatistical rates (and non-rates)
arise from differences in what goes into the denominator, what goes into the numerator, and even what
goes into the virgule, which is the “ /” mark between denominator and numerator.

Regardless of what the a/n quotient is called, it is always a proportion if the number counted in the 
numerator is a specific subset of the entity identified and counted in the denominator. If a denominator
group of 60 people contains 20 men and 40 women, the proportion, not the rate, of men in the group 
is .33 = 20/60. If the numerator for those people, however, represents an event — such as death, success,
or occurrence of a disease — the analogous proportion is often called a rate. Thus, if 20 of the group 
of 60 people die, have successful outcomes after treatment, or develop streptococcal infections, the
enumerated 20 people are still a subset of the denominator of 60, and the quotient of .33 = 20/60 is still
a proportion; but it will often be called, respectively, a death (or mortality) rate, a success rate, or an
attack rate.

The next two main sections discuss the complexities produced by the different components and
nomenclature used when rates express probabilities of risk, and when they denote different directions
and durations of time. The main problems in these complexities are scientific: the diverse terms may be
difficult to understand or remember, and the enumerations may have dubious accuracy.

17.2 Components of Probabilities for Risk

The rate with which a particular event
occurs in a group of people is often called
a probability or risk for occurrence of the
event. This structure, which uses the quo-
tient of two frequency counts to form a rate
of risk, is unique in medical biostatistics.
The weatherman may say there is an 18%
chance or “risk” of rain, but does not derive 
the forecast from enumerations. In biosta-
tistics, however, if 10 members of a group
of 2000 people die in the next year, the 
proportion, .005 (= 10/2000), is often
called a mortality rate and is further cited
as the probability or risk of death for that group. This rate or risk, like all frequentist probabilities, is
constructed as a proportion. The denominator contains the enumerated people who are candidates for
the risk of death; the numerator contains the count of those who died; and the rate is the proportion or
relative frequency of death. The subset structure of a proportion is shown in Figure 17.1.

The basic idea is familiar and easy to understand, but clinicians and public-health epidemiologists
produce confusion by using the same name — mortality rate — for death rates calculated from substan-
tially different components in the numerators and denominators. Furthermore, when the necessary
components are not specifically counted, the calculations may produce quasi-proportions and quasi-risks
that are statistically reasonable, but scientifically inaccurate.

17.2.1 Sources of Denominators

The basic source of different rates is the group of people who constitute the denominator. In public-
health statistics, this group is the general population of a community or region. At any particular point
in time, some of the people in that region are sick, but most are healthy. In clinical work, however, the
denominator group is usually a collection or “case series” of patients with a particular clinical ailment.
The different proportions of subsequent death in these two different denominator groups, however, are
often given the same name: mortality rate.

FIGURE 17.1
Set and subset for a proportion.

Denominator
group of people

counted as n
Numerator

group of people
counted as a

Proportion = a/n = "rate" of an event
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Suppose a community contains 4000 people of 
whom 80 are known to have lung cancer, and 
suppose 20 of those patients die in the ensuing 
year. The rate of death for lung cancer in that 
year will often be expressed as a mortality rate
of .005 (= 20/4000) in public-health reports and 
as a mortality rate of .25 (= 20/80) in clinical 
reports. The distinctive sources that produce 
these disparate mortality rates for the same dis-
ease in the same year are shown in Figure 17.2.
With more precise citation, the result for the pub-
lic-health denominator is often called an annual 
cause-specific mortality rate, whereas the result 
for the clinical denominator may be called a one-
year mortality rate.

To avoid the ambiguity of using mortality rate for both types of denominators, the term case-fatality 
rate has been proposed as a substitute name for the clinical citation. Clinicians do not like to give up 
mortality rate, however, because they often refer to its complementary proportion, survival rate. Thus, 
the one-year survival rate for lung cancer in the foregoing group would be expressed as .75 = 60/80. 
This term creates no conflict in public-health statistics, which seldom refer to a survival rate.

The public-health data sometimes contain demographic calculations for rates that reflect survival, but  
the results are called “longevity” or “life expectancy,” not “survival.” Accordingly, the idea of a death 
rate is regularly expressed by public-health investigators as mortality rate for a regional denominator, 
and by clinical investigators as the complementary proportion, survival rate, for a clinical denominator. 
The two citations of death rates, however, are not at all complementary. In the foregoing example, the 
public-health mortality rate is .005, but the clinical survival rate is .75. Confusion often occurs when clinical 
investigators ignore the distinctions and refer to their clinical results as a mortality rate of .25.

17.2.2 Quasi-Proportions

A different type of problem arises when the public-health rates are regarded as proportions and used to 
express probabilities or risks. Because of inevitable difficulties in getting the data, these rates are really  
quasi-proportions; and their accuracy may sometimes be uncertain or dubious.

The challenge of finding and counting everyone to enumerate the entire human denominator of a large 
region or community is a daunting task. When this task is done every ten years, the census bureau is 
highly gratified if the enumeration seems reasonably complete. Aside from the problem of being 
completely counted, however, the denominator in a highly mobile society is constantly changing as 
various people move into or out of the region and other people die or are born. Because of depletions 
by deaths and out-migration and augmentations by births and in-migration, the denominators for inter-
censal years (such as 1991, 1992, …, 1999) depend on estimates derived from the counts obtained at 
the most recent census year (such as 1990). For inter-censal years, the basic decennial census results 
are altered according to counts of intervening annual births and deaths in the region, and then modified  
from educated guesses about annual out-migration and in-migration.

These estimates, without which no denominators would be available, make the regional mortality rates 
become quasi-proportions, rather than true proportions. The proportions are “quasi” because the counts 
of deaths, cancers, or other events in the numerators are not specific subsets of the people who were 
individually identified and counted in the denominators. The rates appear to be relative frequencies for 
a set and subset, but they are really a quotient of frequencies from two different sources, for groups 
counted in two different ways. The numerators come from an actual count of death certificates submitted 
to a regional agency, such as a state health department. These numerator counts can be accepted as 
complete, because a dead body cannot legally be disposed until a death certificate is prepared. The 
denominators for each of the nine inter-censal years, however, are not actual counts. They come from 
whatever formulas were used to estimate the augmentations and depletions that occurred after the actual 
counts in the census year.

FIGURE 17.2
Sources of numerators and denominators for 20/4000 = .005 
as “cause-specific annual mortality rate” for lung cancer, and 
for 20/80 = .25 as “one-year mortality rate” for lung cancer.
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Because two different groups of people
are sources of the counted and estimated
numbers, the regional rates of death are
sometimes called heterodemic. In con-
trast, the rates of death in clinical groups
are usually a homodemic true proportion:
Everyone in the clinical denominator is
suitably enumerated at the beginning of
the observation period and is suitably
accounted for afterward; and the numer-
ator is a true subset of the denominator.

17.2.2.1 Problems of In- and 
Out-Migration — 

Under-enumeration of a region is a strik-
ing problem, whose magnitude is diffi-
cult to determine. For various social,
cultural, or other reasons, the census tak-
ers can seldom count everyone who lives
in the region.2 The counted regional pop-
ulation in Figure 17.3 is therefore shown
as a smaller subset of the actual regional
population.

With geographic migration both into
and out of a region, some or many of the
people originally enumerated in the
denominators may later move elsewhere.
The rectangle counted as the regional
population in Figure 17.3 can be later
depleted by a non-counted number of
out-migrants while being simultaneously
augmented by a non-counted number of
in-migrants. If the two migrating groups
are similar in both numbers and compo-
sition (such as age-sex distribution), the
counted denominator will be essentially
unchanged. Otherwise, the actual denominator will be different from the estimated denominator.

For the numerators, all of the deaths are usually counted completely in industrially developed countries.
As shown in Figure 17.4, however, the deaths may not always be associated with the denominators from
which they emerged. The originally enumerated people who remain and die in the region will be suitably
managed. The out-migrants who die elsewhere, however, may be counted in the denominator of Region
A but in the numerator of Region B. The in-migrants who die in Region A may be counted in its
numerator, while appearing in the denominator of Region B.

17.2.2.2 Problems of Under-Enumeration — With suitable monitoring, data, and adjust-
ments, the migratory phenomena may not produce major inaccuracies in the results. The main problem
will then be the basic errors caused by census under-enumeration. For example, in many regions of the
United States, the African-American or Hispanic population is regularly undercounted. The community
leaders may then complain that the falsely low count has deprived their group of suitable political
representation. A fascinating legal battle may then occur as the regional district, supported by an array
of prominent statisticians, sues the government, supported by a different array of prominent statisticians,
asking that the census be adjusted for the undercount.3,4

FIGURE 17.3
Sources of denominators in regional rates.

FIGURE 17.4
Sources of appropriate deaths, counted and uncounted, and of deaths
inappropriately counted in the regional population of Figure 17.3. For
further details, see Figure 17.3 and text.
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During the legal and political skirmishes, however, an unrecognized biostatistical problem is that the 
falsely low denominators, when divided into the accurate numerators obtained from death certificates, 
will also lead to falsely elevated mortality rates. Thus, if 500 correctly counted deaths occur among 
100,000 people erroneously counted as 90,000, the true death rate is .005, or 5 per thousand; but it will  
proportionately increase by 12% when reported as 5.6 per thousand.

17.2.3 Inaccurate Numerators for Specific Diseases

If the numerators consist of all deaths and the appropriate denominators are suitably counted or 
estimated, the regional death rates may be reasonably accurate. Life insurance companies have 
managed to develop and maintain a profitable enterprise by using total death rates to anticipate 
longevity and set suitable costs for the premiums charged in policies.

For more than a century, however, death certificates have been used for much more than counts of 
total mortality. From the different diagnoses that may be listed on each death certificate, a single disease 
has been selected as the sole “cause of death”; the counts of these “causes” are then used as numerators 
for calculations called cause-specific mortality rates. These rates have been used to represent the 
frequency of occurrence, or “incidence rates,” of those diseases.

The errors produced by this peculiar custom have received thorough discussion elsewhere5,6 and are 
too extensive for more than a brief outline of all their lamentable consequences. The rates of “incidence” 
are fundamentally erroneous because they reflect death, not occurrence of disease; the rates are inevitably 
too low because only one of the patient’s many identified diseases is counted; the numerators contain 
counts of diagnoses rather than diseases and will vary with changes in diagnostic concepts and technol -
ogy; the reported diagnoses may depend on inconsistent idiosyncrasies in the physicians who fill out 
the death certificates; and when one of the cited diseases is chosen as the cause of death, the selection 
criteria will vary both from one decade to the next and with inconsistent application during the coding 
process at official agencies, such as a Bureau of Vital Statistics or (in the U.S.) the National Center for 
Health Statistics.

17.2.4 Quasi-Risks

Aside from the problem of accurate counts for numerators and denominators, the regional rates are 
seldom accurate as probability estimates of risk. The problem here arises from the concept of risk itself. 
Individual persons are “at risk” for a particular event if they are suitably susceptible to that event and
if it has not yet occurred. Risk of death is easy to identify because any living person has that risk. If 
the numerator event, however, is a “causal disease,” such as cancer of the uterus or gallbladder, rather 
than death itself, any woman who has had a hysterectomy, or anyone with a previous cholecystectomy, 
is not at risk. Furthermore, someone in whom the numerator event has already occurred is also not at 
risk of developing it. Thus, a woman who is now pregnant is not at risk for becoming pregnant, and the  
development of coronary heart disease is not a risk for someone who already has angina pectoris.

When a regional population is entered into a denominator for calculating a rate that will represent a 
risk, however, the counted group will include not only the people who are truly at risk, but also those 
who are not at risk either because they are not susceptible to the numerator event or because they already 
have it. To identify the three separate categories of people — the at-risk, no-risk, and already affected 
groups — is seldom possible or feasible, however, in large communities. Consequently, because the 
denominator will almost inevitably be too large, the “risks” calculated for the community or region will  
be too small. The magnitude of error in these quasi-risks will depend on the relative proportions of the 
three types of constituent groups in the denominator. For some diseases — such as the cancers, infarctions, 
and other chronic diseases often found unexpectedly at necropsy after having been clinically “silent” 
and unsuspected or undiagnosed during life7,8 — the errors can be substantial.
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17.2.5 Bilateral Units of Observation

A distinctly clinical problem in identifying constituents of the denominator arises when therapy is aimed 
at preventing or treating conjunctivitis, glaucoma, otitis media, diabetic neuropathy, or any other poten -
tially bilateral disease for which a person may have two anatomic candidates, rather than one. In this 
circumstance, the main issue is whether to count persons or anatomic entities. If we study 24 persons, 
do we count the denominator group as 24 persons or as 48 eyes and/or ears?

The answer to this question may vary from one study to another and will often depend on whether 
the therapy is prophylactic or remedial. With prophylactic therapy, we probably want to count susceptible 
people who may develop the outcome event on one anatomic side or the other (or both). For remedial 
therapy, however, we may want to determine what happens to each treated entity. Sometimes a patient 
with similar involvement on both sides might even be used as a “self-control” for comparing two 
treatments.

17.2.6 Proportionate Mortality Rates

Another potentially confusing entity is the proportionate mortality rate, symbolized as PMR. This 
proportion is almost never used in clinical work, but often appears in public-health or occupational 
epidemiology. The denominator for the PMR proportions is the collection of all deaths in a group or 
region during a particular time interval. The numerators are the counts of deaths ascribed to individual 
diseases. Thus, at the end of a year in a region with a total of 400 deaths, of which 50 are attributed to 
coronary heart disease, the PMR for coronary disease will be 50/400 = .125.

These calculations avoid the problem of erroneous counts in the denominator population, but magnify 
all the difficulty of getting accurate classifications and numbers for the “cause of death” cited in the 
numerators. Furthermore, the PMR values, although true proportions, cannot be used as probabilities 
for risk. They describe constituents in the univariate nominal spectrum of deaths, not the risk in living 
people.

The PMR has often been used in occupational epidemiology to examine death rates for workers in 
different industries. Getting the true death rate for an industry would involve the arduous task of 
identifying all the “exposed” employees in the denominator and following them as a cohort thereafter 
to discern the numerator fatalities. Instead, the deaths alone can be determined relatively easily (often 
from claims filed for “benefits”); and sometimes occupation is also listed on the death certificate. With  
either approach for relating deaths and occupation, a PMR can be constructed from death data alone, 
without the need for cohort studies.

Beyond the scientific difficulties of the PMR tactic, however, an additional mathematical problem is 
produced because the total of all proportionate mortality rates must add up to 1 (or 100%). Therefore, if 
the death rate declines for one disease but remains stable for a second disease, the PMR may rise for 
the second disease. Thus, if infectious diseases are substantially eliminated or reduced as causes of 
death, the PMR results can increase for chronic diseases, such as arteriosclerosis and cancer, even though 
the latter diseases may be occurring with unchanged lethality or even less often than before. 

17.3 Temporal Distinctions

All of the problems just cited arise from counting the numerators and denominators in a rate such as 
a/n. A quite different problem is due to time. For each person enumerated in the denominator, the 
numerator event may have been counted at the same time, at a later time, or more than once. This 
distinction gives the virgule (“/”) a special temporal role beyond merely denoting division of a numerator 
by a denominator to form a/n. The virgule can imply a direction, duration, or repetition of events for 
an interval of time.
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17.3.1 Cross-Sectional or Longitudinal Directions

The group of people in the denominator can be observed in either a static or forward direction. In static  
or cross-sectional observation, the condition counted in the numerator is observed at essentially the same 
time as the denominator condition. Thus, if we can simultaneously count the population of a region and  
the corresponding number of people with AIDS, we can calculate a “point prevalence” for AIDS in that  
region. In clinical work, group A streptococcal infection has a cross-sectional prevalence of 15% if we 
find 30 such infections in a survey examination of 200 schoolchildren.

In longitudinal observation, the numerator condition (or event) occurs afterward, at a serial time later 
than the original denominator condition. (The word longitudinal is itself a peculiar title. The name has 
no more of a forward connotation than latitudinal, but probably became popular because of its resem-
blance to “longevity,” which implies a forward direction of follow-up.)

A major distinction between cross-sectional and longitudinal data is the number of examinations 
required for each person. In a cross-sectional study, all the information can be obtained in essentially a  
single examination, which identifies the person’s age, sex, clinical state, or other descriptions of the 
condition counted in the denominator. The same examination can also identify the existence of a 
streptococcal infection, dietary habit, or previous exposure to a risk factor that may be counted in the 
numerator. To note the incidence of a longitudinal event, however, each person under observation must 
be examined on at least two occasions. If the 200 school children are examined repeatedly or at least 
one more time during the next year, and if 50 of them are found to have developed new streptococcal 
infections, the attack rate or incidence rate per person is 25% (= 50/200).

17.3.1.1 Incidence vs. Prevalence — The difference between incidence and prevalence is a 
key distinction in epidemiologic nomenclature. Prevalence refers to what is there now; incidence refers 
to what happens later. Deaths are always an incidence event, but the occurrence of a disease may represent 
prevalence or incidence, according to when and how the occurrence was discovered. If a woman is 
suitably examined today and found to be free of breast cancer, its discovery two years from now is an 
incidence event. If she received no previous examinations the breast cancer discovered two years from 
now is usually called incidence because it seems to be “new,” but it may also be a revealed prevalence
that would have been discovered had she been suitably examined today.

Clinicians constantly misuse the word incidence in referring to such prevalence events as the propor-
tions of women, antecedent myocardial infarction, or college graduates observed in a counted group of 
people. The distinction is particularly important for the case-control studies discussed in Section 17.5.2,  
where all of the retrospective phenomena represent prevalence, not incidence. [If you accept the idea 
that rates involve a change over time, incidence rate is a satisfactory term, but prevalence rate is not, 
because prevalence does not involve a change over time.]

17.3.1.2 Spectral Proportions — Clinicians also often misuse the idea of incidence when 
reporting proportions for the univariate age or sex spectrum of a disease. For example, suppose the 
spectrum of a clinical group of patients with omphalosis contains 70% men, and also 5% children, 20%  
young adults, 50% middle-aged adults, and 25% elderly adults. These results will regularly be reported  
with the comment that omphalosis has a higher “incidence” in men than in women, and has its highest 
“incidence” in middle-aged adults. Because the denominator of these univariate proportions is the number 
of patients with omphalosis, the results represent neither incidence nor prevalence in a group at risk. 
They show proportions in the univariate spectrum of distribution for each variable in the group of patients 
collected at whatever medical setting was the source of the research.

17.3.2 Durations

Because all incidence events involve observation during a duration of time, a temporal period becomes  
the third component of an incidence rate. As a longitudinal quotient, a/n has two components, but in 
strict symbolism, it is a/n/t, where t is the interval of time. The extra symbol for t is commonly omitted, 
however, because the results are usually cited in such phrases as annual mortality rate or 3-year survival 
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rate. The time duration becomes more evident when a streptococcal infection incidence rate of .60 over 
3 years becomes reported as an average annual incidence of .20. [This type of simple average can be 
erroneous for mortality rates. If .60 of a cohort dies over 3 years, and if the annual mortality rate is said  
to be .20, the survival rate each year will be .80. At the end of 3 years, the proportion of people still 
alive will be .80 × .80 × .80 = .51. The 3-year mortality rate will be .49, not .60.]

Time durations also become an evident and integral part of the computation process when actuarial 
or other methods, discussed in Chapter 22, are used to adjust incidence rates for numerator losses.

17.3.3 Repetitions

In many incidence rates, the numerator condition is a “failure event” — such as death, occurrence of 
myocardial infarction, or unwanted pregnancy — that ends each person’s period of observation. Some-
times, however, the numerator is a streptococcal or urinary tract infection that can occur repeatedly.

The repeated-occurrence events produce two types of problems in deciding how to express the attack 
rates. The first problem is whether to count the number of events or the number of persons in whom 
events occurred. For example, suppose 45 urinary tract infections are noted when 300 women are followed 
for an interval of time. Does the “45” represent 45 infections in different women, or perhaps 10 infections 
in one woman, 5 infections in each of 3 women, 2 infections in each of 8 women, and 4 women who 
had 1 infection each. Either approach can be used, but if the numerator refers to infected women rather  
than number of infections in this group, the attack rate is 16/300 rather than 45/300.

A second problem involves a decision about how to express unequal durations for people who have 
been followed for different lengths of time. If the numerator is a single “failure” event, unequal durations 
of observation can be managed with the actuarial methods of “survival” adjustment described in 
Chapter 22. Because these adjustments cannot easily be used for repeated events, the customary proce -
dure is to convert the denominator from a count of persons to a sum of person-durations. Thus, if 20 
women have been followed for 0.5 years, 30 for 1 year, 50 for 1.5 years, 60 for 2 years, 90 for 2.5 years,  
and 50 for 3 years, the denominator would contain 610 person-years of follow-up, calculated as 
(20 × .5) + (30 × 1) + (50 × 1.5) + (60 × 2) + (90 × 2.5) + (50 × 3). If 45 urinary tract infections occurred 
in that group during that duration, the attack rate would be 45/610 = 7.4% per patient-year. 

17.4 Issues in Eligibility

When the problem of quasi-risks was discussed in Section 17.2.4, persons were regarded as ineligible 
for the denominator if they could not possibly develop the numerator event, or if it had already occurred.

17.4.1 Exclusions for New Development

The previous existence of the event seems an appropriate reason for exclusion if the study is concerned  
with conditions such as cancer, coronary disease, cerebrovascular disease, or pregnancy, whose new 
development is the main focus of the research. If no attempt is made to remove the ineligible persons, 
the denominator will be wrong, and the subsequent incidence rates will be inaccurate.

For example, suppose we institute a program to prevent a relatively common ailment, such as coronary 
disease, in a community of 100,000 people. If 2000 people have coronary disease that is already present 
(but perhaps unrecognized), the eligible denominator should be 98,000. At the end of the program, 
suppose coronary disease has become identified in 1500 of the 2000 people who already had it, and in 
1000 new cases. The correct incidence rate would be 1000/98,000 = .0102. The incidence rate may be 
incorrectly cited, however, as 2500/100,000 = .025.

17.4.2 Inclusions for Repetitions

A different type of problem arises if the numerator event can occur repeatedly, because persons who 
have had it once may get it again. Clinical examples of such events are recurrent episodes (often called
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“attacks”) of streptococcal infection, rheumatic fever, asthma, acute pulmonary edema, epileptic
seizure, migraine headache, urinary tract infection, transient ischemic attack, syncope, severe depres-
sion, pregnancy, or dysmenorrhea. In these circumstances, persons who have already had the event
once are not merely eligible for inclusion in the denominator; they may sometimes be the main focus
of the research.

For example, continuous prophylactic medication would seldom be given to prevent rheumatic fever,
epilepsy, asthma, migraine, or urinary tract infection in someone who has never had an episode, but
might be used for persons whose susceptibility to recurrence has been demonstrated by an initial attack.
On the other hand, continuous prophylactic medication to lower blood sugar, blood pressure, or blood
lipids might be used in persons who may or may not have already manifested a “vascular complication.”

In the absence of a standard set of guidelines, the decisions about eligibility for repetition are arbitrary.
Regardless of what is chosen, however, the criteria should always be clearly stated in the published
report, and the results should always be analyzed separately for persons with and without previous
episodes of the numerator event.

17.5 The Odds Ratio

The odds ratio is a unique statistical index of risk. Calculated as (pA/pB) (qB/qA), it is applicable only to
a contrast of two proportions (pA vs. pB) and, in the world of medicine, is used almost exclusively for
epidemiologic statistics.

As discussed earlier throughout Section 10.7, the odds ratio in a fourfold table is constructed as ad/bc.
It is a contrast not of the actual proportions, but of the numbers in the four cells that are components
of the proportions. The two denominators for the proportions themselves would be constructed either
with (a + b) and (c + d) or with (a + c) and (b + d). Thus, a simple ratio that contrasts the two proportions
might be [a/(a + b)]/[c/(c + d)]. Because the denominators are ignored or “ablated,” the odds ratio has
an appeal that makes it sometimes regarded as the best single index for summarizing results of a
2 × 2 table.

In the world of epidemiology, however, the main attraction of the odds ratio is that it makes etiologic
research easy to do. In suitable circumstances, the odds ratio obtained from a quick, inexpensive case-
control study can approximate the risk ratio obtained from a protracted, expensive cohort study. A
specific numerical example of this accomplishment was not cited earlier and is offered now.

17.5.1 Illustration of Numbers in a Cohort Study

Suppose omphalosis usually occurs in about one person per thousand, and suppose we suspect that tea
drinking helps cause omphalosis, raising its rate of occurrence to about five per thousand. To get
supportive evidence for this etiologic suspicion, we might assemble a cohort of 10,000 people, of whom
2000 are tea drinkers and 8000 are non-tea drinkers. After following these people for the next 20 years,
we might find that omphalosis had developed as shown in Table 17.1.

For the people in Table 17.1, the risk (i.e., the rate of occurrence) of omphalosis is 10/2000 = .005
in tea drinkers and 8/8000 = .001 in non-tea drinkers. These two risks can be contrasted in a single
index, the direct risk ratio, which is .005/.001 = 5.

TABLE 17.1 

Occurrence of Omphalosis in a Hypothetical Cohort Study

Omphalosis No Omphalosis Total

Tea Drinkers 10 1990 2000
Non-Tea Drinkers 8 7992 8000
TOTAL 18 9982 10,000
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Alternatively, we can calculate an odds ratio from these data by determing the odds for tea drinking
in omphalotic patients (= 10/8 = 1.25) and in non-omphalotic patients (= 1990/7992 = .249). The odds
ratio will be 1.25/.249 = 5.02 and (in this instance) will be quite similar to the risk ratio.

To do the cohort study, however, would require assembling 10,000 people — tea drinkers and non-tea
drinkers — and following them for the next 20 years to determine which persons develop omphalosis.
This type of huge, long-term project does not attract many potential investigators, even if ample funds
were available to collect the 10,000 people and maintain them under observation for the next 20 years.
As a substitute research structure, the “retrospective” case-control study offers an alternative simpler
strategy for exploring the etiologic question.

17.5.2 Illustration of Numbers in a Case-Control Study

Instead of starting at the beginning of the causal pathway, with “exposed” tea drinkers and “non-exposed”
non-tea drinkers, the investigator starts at the end, assembling a group of people who have already
developed omphalosis. A comparative group, called controls, is chosen from persons without omphalosis.

After being selected, members of the case and control groups are asked about their antecedent intake
of tea. From this interview, each person might be classified as a tea-drinker or non-tea drinker, and a
fourfold table is created. If no distortions (or biases) have occurred in the itinerary between tea-drinking
(or non-tea-drinking) and the subsequent occurrence (or nonoccurrence) of omphalosis, the proportion 
of tea drinkers noted in the cases and controls will be the same as what would have been found in the
larger, longer, forward-directed cohort study of 10,000 people.

For example, suppose the investigator assembles 90 cases of patients with omphalosis, and 90 controls
who lack omphalosis. In the omphalosis group, the odds for tea drinking should be 10/8, and so 10 of
every 18 cases should be tea drinkers. Of 90 cases, 50 would be tea drinkers. In the non-omphalosis
group, the odds for tea drinking should be 1990/7992. For only 90 controls, the appropriate number
would be about 18 tea drinkers. The investigator’s fourfold table would produce the results shown in
Table 17.2.

The results in Table 17.2 do not allow a risk or incidence rate to be determined because the patients
were not assembled as tea drinkers or non-tea drinkers. If the “risk” of omphalosis were calculated in
the tea drinkers of this table, the result would yield the unbelievably high 50/68 = .74, instead of the
correct rate of .005 found in Table 17.1. Similarly, the “risk” of omphalosis in non-tea drinkers would be
40/112 = .36, which is about 360 times higher than the true risk of .001. Furthermore, if a “risk ratio” were
calculated from these two “risks,” the result would be .74/.36 = 2.06, which is substantially lower than the
true risk ratio of 5.

On the other hand, if the odds ratio for this table is calculated as (50/40)/(18/72) or (50 × 72)/(40 × 18), the
result is 5 and is identical to the true risk ratio. [The algebra that accounts for this similarity was shown
earlier in Section 10.7.4.1 and in Appendix A.10.1 of Chapter 10.]

17.5.3 Ambiguities in Construction

Just as odds can always be stated for or against a particular occurrence, the odds ratio is always ambiguous
because it can always be constructed in two ways. In a table that has as its four cells, the columns
could equally well have been reversed, so that the same four numbers would be . The rows might

TABLE 17.2

Case-Control Study of the Same Topic Presented in Table 17.1

Cases Controls Total

Tea Drinkers 50 18 68
Non-Tea Drinkers 40 72 112
TOTAL 90 90 180

a  b
c  d 

 
 

b  a
d c 
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also have been reversed to make the table either  or . The first and fourth of these four 
arrangements will produce ad/bc as the odds ratio. The second and third will produce the reciprocal 
value, bc/ad.

The choice of arrangements and expressions depends on what point is being communicated. If we 
think that exposure helps promote a disease, the odds ratio is usually constructed with the exposed-and-
diseased cell in the upper left corner. The ad/bc odds ratio will then exceed 1. If exposure protects 
against disease (as in tests of vaccines), this arrangement will produce an odds ratio below 1.

On the other hand, if exposure is believed to protect against disease, we may want to cite the risk 
ratio for the unexposed group. In the latter instance, the cell for the unexposed-and-diseased group 
is placed in the upper left corner, and the ad/bc odds ratio will exceed 1. Thus, an odds ratio that 
indicates a reduced or “protective” risk of 0.23 in the exposed group also indicates an increased or 
“promoted” risk of 1/.23 = 4.35 in the unexposed group.

17.5.4 Incalculable Results

The word incalculable is often used to denote something too large to be precisely quantified. For odds 
ratios, however, this word literally means “cannot be calculated” —  an event that happens whenever 
any one of the four cells has a value of 0. Because we must be able to determine both ad/bc and bc/ad,  
a zero cell would produce an unacceptable division by 0.

Reluctant to give up the cherished odds ratio, biostatisticians have proposed that 0.5 be added to each 
cell when this problem arises. Consider the controversial case-control study9 that associated clear-cell 
adenocarcinoma of the vagina or cervix (CCVC) with intrauterine gestational exposure to diethylstil-
bestrol (DES). The results were as follows:

With the “add 0.5 to each cell” tactic, the odds ratio in these data would be calculated as (7 + .5)
(32 + .5)/[(0 + 0.5)(1 + .5)] = 325.

17.5.5 Stochastic Appraisals

Like any other index of contrast, the odds ratio can be appraised stochastically with a P value or 
confidence interval.

17.5.5.1 P Values — As in any 2 × 2 table, a P value for the results of an odds ratio can be 
obtained with a Fisher exact test or a chi-square test. In many epidemiologic studies, the numbers are 
small enough to warrant the Fisher test.

17.5.5.2 Confidence Intervals — Determining a confidence interval for the odds ratio is tricky 
because it does not have a symmetrical span of values, and because it is constructed from two quotients, 
not one.

If the odds ratio exceeds 1, its value can range in the interval from 1 to almost infinity. If the ratio is  
<1, however, the values can range only in the relatively small interval between 1 and 0. To avoid this 
inappropriate asymmetry, confidence intervals are usually calculated for the natural logarithm (“ln”) of 
the odds ratio. Because ln 1 = 0, these intervals will be spread symmetrically around zero. Thus, if the 
odds ratio is 4, ln 4 = 1.39; if the ratio is 0.25 (= 1/4), ln .25 = −1.39. When the symmetric logarithmic 
calculation is converted to ordinary numbers, however, the interval will then be asymmetrical.

Because the confidence interval involves two quotients that can often have small numerical constitu-
ents, the calculation has evoked several mathematical strategies. They are mentioned here mainly so you 

Antecedent Exposure to DES Cases of CCVC Control Group

Exposed 7 0
Non-Exposed 1 32

d c
a b 

 
  c d

b a 
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will have heard of them and be able to recognize that the different results do not always agree.You need
not try to learn (or even understand) the formulas. The three most prominent methods are eponymically
named for Woolf,10 Cornfield,11 and Miettinen.12 Generically, they are sometimes called respectively the
simple, exact, and test-based methods. In several mathematical comparisons,13,14 Cornfield’s exact method
was the preferred approach, particularly for small sample sizes.

17.5.5.2.1 Woolf Simple Method. Using o as the symbol for odds ratio, a standard error can be
calculated for ln o in a relatively simple method proposed by Woolf. 10 The method relies on calculating
standard error of ln o with the formula

[17.1]

The a, b, c, d symbols are the frequency counts in each cell after 0.5 has been added to the cell. After
the confidence interval is prepared in the usual manner as ln o ± Zα (SE), the limits of the interval are
converted to customary units by taking the antilogarithm, i.e., eln(o) , for the lower and upper values.

For example, in Table 17.2, SE = = = .335. The
logarithmic 95% confidence interval will be ln 5 ± (1.96) (.335) = 1.609 ± .657. This confidence interval will
extend from .953 to 2.266. Because e .953 = 2.59 and e2.266   = 9.64, the boundaries for the 95% confidence
interval around the odds ratio of 5 will be 2.59 and 9.64. For the table in Section 17.5.4, SE =

= 1.68; and ln 325 ± (1.96) (1.68) = 5.784 ± 3.298.
Suitable calculations and conversions will then show that the 95% confidence interval for this odds ratio
extends from 12 to 8794.

Breslow and Day15 are willing to construct confidence intervals this way, but Gart and Thomas16 say
the limits will generally be too narrow, especially for small-sized groups. Fleiss17 recommends using
Formula [17.1] to gauge “precision” for the odds ratio but not to calculate the actual confidence interval.

17.5.5.2.2 Cornfield Exact Method. In a tactic originally suggested by Fisher18 and reminiscent
of the array of tables used for the Fisher exact test, Cornfield11 developed an exact method for getting
an odds ratio’s confidence interval. The calculations are complex and computer-intensive because iterative 
numerical solutions are required for quartic equations. Because of the calculational complexity, Corn-
field’s method is seldom used. If you do a lot of this work, however, you might want to get and use the
appropriate computer program. [The Cornfield method is not available in standard SAS, BMDP, or other
packages, but can be found in the EPIINFOVersion 5 available from the Centers for Disease Control. 19]

17.5.5.2.3 Miettinen Test-Based Method. Probably the most common approach today is Miet-
tinen’s “test-based” method,12 which uses the X2 test statistic calculated for the 2 × 2 table, preferably15

without Yates correction. The confidence interval will be

ln o ± o(Zα/X) [17.2]

where X is the square root of the X2 statistic, and where Zα would be 1.96 for a two-tailed α = .05.
Because the formula can be rewritten as ln o [1 ± (Zα/X)], the confidence limits could be expressed in
a power of o as

o[1 ± (Zα  /X)] [17.3]
For example, for the values of  in Table 17.2, o = 5.0; X2 = 24.2; and X = 4.92, so that 1.96/4.92 =

.398 and 1 ± .398 yields .602 and 1.398. The value of 5.0 .602 is 2.63 and 5.01.398 is 9.49. (With Woolf’s 
method, the corresponding values were 2.59 and 9.64.) For the table  in Section 17.5.4, the 
uncorrected X2 is 33.94 and X = 5.83, so that 1.96/5.83 = .336. With 1 – .336 becoming .664, the lower  
confidence limit is 325.664 = 46.33; and the upper limit is 3251.336 = 2269.22. (With Woolf’s method, the 
corresponding limits were 12 and 8794.) Thus, in both of the two cited examples, the Miettinen method 
produced narrower intervals than the Woolf method.

17.5.5.3 Tests of Fragility — A rapid crude (or “commonsense”) method to appraise stability 
for an odds ratio is to do a unit fragility test. For this test, relocate one unit of the data while keeping 

SE 1 a⁄( ) 1 b⁄( ) 1 c⁄( ) 1 d⁄( )+ + +=

1 50.5⁄( ) 1 18.5⁄( ) 1 40.5⁄( ) 1 72.5⁄( )+ + + .112

1 7.5⁄( ) 1 0.5⁄( ) 1 1.5⁄( ) 1 32.5⁄( )+ + + 2.83=

50 18
40 72 

 
 

7  0
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the marginal values constant, and then recalculate the odds ratio. For example, the table in Section 17.5.4
is already at a maximum value in one direction. The unit relocation can move things only in the other
direction toward . The odds ratio for the latter table is (6 × 31)/(2) = 93, which is a drop of 71%
[= (325 − 93)/325] from the original value. This demonstration of substantial descriptive “instability”
can be compared against the stochastic result of the Fisher test, which would produce P = 4.0 × 10−7

for the extreme data in the observed original table.
For in Table 17.2, however, the odds ratio of 5 has much less fragility. A shift of one unit produces

in one direction and in the other. The corresponding odds ratio would become 4.47 or 5.62.
The proportionate fragility would be a drop of .53/5 = 11% or a rise of .62/5 = 12%. The result is still not
impressively stable, but with X2 = 4.92, the 2P value is <.05.

17.5.6 Quantitative Appraisal of Odds Ratio

When boundaries of “quantitative significance” were discussed in Chapter 10, the odds ratio received
relatively little discussion among the other indexes of contrast. The quantitative importance of an odds
ratio is particularly difficult to evaluate because the appraisal strongly depends on the context, rather
than the magnitude itself. Furthermore, the magnitude may be directly distorted by the context.

17.5.6.1 “Inflation” of “High” Rates — Consider the “high” rates (usually ≥   .1) that are
found in many clinical studies, such as a randomized trial in which the compared success rates are
pA = .5 and pB = .3. The simple ratio of pA/pB = .5/.3 = 1.67 would indicate the higher “risk” of success
with treatment A. The simple ratio of qB/qA = .7/.5 = 1.4 would indicate the higher risk of failure with
treatment B. The odds ratio, however, multiplies these two “risks” to produce (pA/pB) (qB/qA) = (.5/.3)
(.7/.5) = 2.33, which substantially inflates the value for either simple ratio.

The inflation is the mathematical reason why the odds ratio should not be used if the smaller of the
two rates is not small enough. If not close to 1, the value of qB = 1− pB will be divided by a smaller qA,
and the product will inflate the value of pA/pB. Scientifically, of course, there is no reason to use the
odds ratio when the actual values of pA and pB have been determined in a clinical trial or cohort study.
In the latter two situations, the desired “risk” ratio can be expressed directly either as pA/pB or as qB/qA,
but not as their product.

17.5.6.2 No Effect on “Low” Rates — In most public health studies of etiologic “risk fac-
tors,” the odds ratio will not produce substantial inflation because the compared rates of disease
occurrence are relatively small, i.e., < .01. For example, in Table 17.1, pB = .001 and pA = .005, and qB

/qA = –999/.995 = 1.004. The odds ratio of 5.02 would be hardly changed from the simple risk ratio of 
5. If the risk ratio were still 5, but obtained from pA = .05 and pB = .01, the value of qB/qA would be 
.99/.95 = 1.04 and the odds ratio would become 5.2, which is moderately but not substantially inflated 
above 5. If the risk ratio of 5 came from pA = .5 and pB = .1, however, qB/qA would be .9/.5 = 1.8, and 
the odds ratio would increase to 9.

17.5.6.3 Criteria for Quantitative Significance — For the reasons just cited, odds ratios are 
particularly difficult to interpret out of context. In clinical studies of therapy, the odds ratio usually is 
mathematically undesirable because of potential inflation and is also unnecessary because the compared 
results can be effectively (and better) evaluated with more conventional indexes of contrast, such as the  
direct increment or number needed to treat. When etiology is investigated with an epidemiologic case-
control study, however, the “sampling method” usually precludes the calculation of direct increments or 
ratios. The odds ratio then becomes the only index of contrast available for evaluation.

Although the evaluation is highly judgmental, various authorities20,21 have stated that odds ratios < 3
represent “weak associations” that often may not warrant serious attention because the small elevations  
above 1 hardly exceed the “noise” that can be expected from ordinary sources of inaccuracy and bias 
in the raw data. In a study of quantitative conclusions for published odds ratios, Burnand et al.22 found 
that 2.2 seemed to be an average minimum level for quantitative significance. 
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Because odds ratios are so difficult to interpret, they are not well understood by workers in the health-
care field, and they can be seriously misleading or deceptive if presented to laymen when investigators 
seek either to obtain “informed consent” or to advocate a particular belief. A much more effective and 
“honest” approach is to determine or estimate an incidence rate for the control-group “risk,” use the 
odds ratio to calculate the corresponding rate for the “exposed” or “treated” group, and convert the 
increment in incidence rates to an NNE for the number needed for one event. An opportunity to do this  
conversion appears in Exercise 17.6 at the end of the chapter.

17.5.6.4 Lod Scores — Odds have received an entirely new use in molecular genetics, to quantify 
the strength of linkage for an observed association between two traits in families. The odds are determined 
as a ratio of posterior and prior probabilities. The numerator is the posterior probability of observing 
the distributional pattern of the two traits’ frequency of re-combination under the hypothesis of linkage. 
The denominator is the analogous prior probability, assumed to be 0.5, under the null hypothesis of no 
linkage. The decimal logarithm of this ratio is called a lod score; and a lod value of 3, i.e., odds of 1000 
to 1, is required to assert that linkage exists.23,24

17.5.7 Combination of Stratified Odds Ratios

A simple 2 × 2 table is sometimes stratified, according to an additional variable, into a series of 2 × 2 
tables. For example, Table 17.1 might be divided into separate 2 × 2 tables for men and women, or for
different durations of tea drinking. The table in Section 17.5.4 might be partitioned according to whether 
the women did or did not have pregnancy problems such as cramping, bleeding, or spotting. The separate 
odds ratios calculated for each stratum can then be appropriately combined to form an odds ratio that 
has been “adjusted” for imbalances in the strata. The adjustment method, called the Mantel–Haenszel 
procedure, is discussed in Chapter 26.

17.5.8 Scientific Hazards of Odds Ratios

Despite all the mathematical cavils, the main hazard of the odds ratio is scientific, not statistical. It is 
regularly used for a cause–effect inference about an etiologic agent or “risk factor,” but the research 
structure itself may contain few or sometimes no scientific precautions against biased or inaccurate results.

Randomized trials were developed to provide these precautions in cause–effect reasoning about the 
action of therapeutic agents; and the precautions are equally pertinent in cause–effect reasoning for 
etiologic agents. Although the precautions could be applied in case-control studies, suitable efforts are 
seldom made. Consequently, case-control studies become an easy prey for the susceptibility bias, 
performance bias, detection bias, and transfer bias — discussed elsewhere6 — that can occur innately in 
any form of cause–effect relationship. Beyond the innate biases, the investigator has the opportunity to 
introduce two additional biases — exclusion bias and ascertainment bias — when the groups of cases 
and controls are chosen and interviewed.

Thus, in exchange for the ease of doing etiologic research with the mathematical splendor of the odds 
ratio, case-control studies create formidable scientific problems in deciding whether the result is valid 
or credible. 

17.6 Specialized Terms for Contrasting Risks

As noted in Chapter 10, two central indexes are most commonly contrasted as an increment or ratio. 
Exactly those same ideas occur in a contrast of two epidemiologic rates. Because the rates are regarded  
as risks, however, an elaborate specialized jargon has been developed for the citations. Emanating from  
the world of public health, which emphasizes preventing disease by reducing risk factors, the jargon 
uses terms such as attributable risk and etiologic fraction, which indicate “editorial” conclusions about  
the data rather than scientific descriptions of “news.”
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An additional complication in the nomenclature is that the risks — which usually refer to the rate of 
death or the incidence rate for a particular disease — can be considered and compared for three sets of 
people, rather than two. The three sets are: a regional community population, a group of persons exposed 
to a particular etiologic agent or risk factor, and a group of persons who are unexposed. The risks are 
then contrasted in ways that imply the quantitative consequences of exposure or non-exposure. To avoid 
the threat of clarity amid all the other complexity, the same ideas have received many different names, 
and occasionally the same name is given to different ideas.

Card-carrying epidemiologists themselves often have difficulty remembering all the terms and dis-
tinctions, which are listed here mainly so you will have met them and know roughly what they mean 
when they appear in published literature. The “glossary” that follows is intended merely to cite the 
nomenclature and quantitative constituents, not to justify, praise, question, or condemn the associated 
assumptions and reasoning about cause–effect relationships. Whenever the literary exposure becomes 
too risky to your intellectual tranquillity, advance promptly to Section 17.7.

17.6.1 Glossary of Symbols and Terms

The three rates under discussion as risks can be represented with the following symbols:

pE = rate of event (e.g., occurrence of disease or death) in an exposed group of people
pU = rate in an unexposed group of people
pC = rate in a community (regional) population

The proportion of the community exposed to a risk factor is e, and the proportion of unexposed people 
will be 1 −  e. The rate of the event in the community will be

17.6.2 Increments

The increment in risk represents the alleged excess of the disease that is caused by exposure. The 
increment can be expressed in two ways. Attributable risk is used for the increment pE −   pU. It is also 
called the rate difference or risk difference. Attributable community risk is used for the increment pE – pC.
It is also called the attributable population risk. Substituting pC = epE + (1 − e)pU and working out the 
algebra produces (1 − e) (pE − pU). The attributable community risk is thus the attributable risk multiplied 
by the proportion of unexposed people.

17.6.3 Ratios

A single simple ratio expresses the contrast of rates for exposed/un-exposed risk as r = pE/pU. To 
compensate for the simplicity, this ratio has an exuberance of names. It has been called risk ratio, relative 
risk, rate ratio, incidence rate ratio, and relative rate. All of these statistical names refer to essentially 
the same entity. The term that will be used here is risk ratio.

17.6.3.1 Nonstatistical Sources of Confusion in Nomenclature — The reason that odds 
ratios are so attractive in epidemiology is that under the suitable conditions discussed earlier for a 
retrospective case-control study, the odds ratio, o, can be used to approximate the risk ratio, r, that might 
be obtained in a cohort study. (In fact, many case-control investigators improperly use the term risk ratio
or relative risk when reporting results of an odds ratio.)

In the customary use of pertinent words, however, the term cases refers to persons with the focal 
disease, and controls refers to persons who do not have it. The case-control structure is thus used for 
diagnostic marker studies (see Chapter 21) and for other cross-sectional clinical investigations6 in 
which a disease and a focal entity are associated in a concurrent, forward, or uncertain direction of 

pC epE= 1 e–( )+ pU
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timing, rather than in the retrospective direction of etiologic research. To separate the backward from 
the other directions of inquiry, the term trohoc (which is cohort spelled backward) was proposed25 for 
retrospective case-control studies. The term has been “deprecated”26 or actively resented, however, by 
many public-health epidemiologists, who insist that case-control is a satisfactory name, despite the 
directional ambiguity.

At least six alternative names have been proposed for retrospective case-control studies, not to clarify 
the problem of direction, but to remove the confusion produced when “control” is used for an outcome 
event rather than for the customary scientific designation of a comparative agent.6 Four additional 
terms are case-comparison study, case-compeer study, case-history study, and case-referent study.
Another alternative, case-base study, can indicate the choice of controls from the regional “base” 
population rather than from the available other clinical conditions that are often used as “controls.” A 
sixth term, case-exposure study, has been proposed27 when “the controls who are obtained concurrently 
with cases are representative of the exposure experience of the population from which the cases are 
drawn.”

The last term can add to the confusion produced when case-control is also used (erroneously) for a 
cohort study in which the exposed persons are called “cases,” and the non-exposed are called “controls.” 
Despite all the peer-reviewing and editing, this flagrant error occasionally appears in prestigious medical 
journals.28,29

17.6.3.2 Confidence Interval for Risk Ratio — When a cohort study has actually been done, 
with the outcome events found in a/nE exposed people and in c/nU unexposed people, the risk ratio is 
r = (a/nE)/(c/nU). A confidence interval can be obtained30 for the logarithmic transformation of r by 
calculating

This result is then managed like the standard error of the logarithm of the odds ratio, and the final 
confidence limits are the exponentiated values of ln r ± Zα [SE (ln r)].

17.6.4 Cumulative Incidence and Incidence Density

Another source of confusing jargon about rates is that the term incidence rate can be applied to two 
different mathematical phenomena. One of them is the conventional, standard scientific idea: the pro-
portion of people in a specified population who have developed the cited event during the course of 
specified time period. Mathematicians call this the cumulative incidence rate. The second usage refers 
to the proportionate number of new cases during a very small or “instantaneous” time period. This idea  
has different names: incidence density, instantaneous incidence rate, and hazard rate. The two approaches 
are used later in Chapter 22 when interval mortality rates indicate the hazards from which the cumulative 
incidence, or survival rate, is then calculated.

Most epidemiologic case-control studies claim to use “incidence-density” arrangements, in which 
exposure histories are compared for “ incident cases” and for control “noncases who are still at risk of 
becoming cases.” In a “cumulative-density” arrangement, however, the control group is “no longer at 
risk of becoming cases.” The latter situation is pertinent for investigating reproductive outcomes such 
as congenital deformities or vaccine efficacy during an epidemic. Hogue et al.31 have pointed out that 
the case-control odds ratio can suitably approximate the risk ratio in incidence-density studies, but must  
receive special checks and modification in cumulative-incidence studies.

17.6.5 Proportionate Increments

Proportionate increments are particularly popular because, as discussed in Chapter 10, they make the 
results seem more impressive than ratios alone, and also because they allow additional editorial claims 

SE rln( ) 1 a⁄( ) 1 nE⁄( )– 1 c⁄( ) 1 nU⁄( )–+=
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about etiology and prevention. The calculations and titles will depend on what is chosen for comparison 
in the reference group or denominator.

When the attributable risk is divided by the risk in the non-exposed group, the proportionate increment 
is formed as (pE – pU)/pU = r – 1. This excess relative risk is also called the relative effect.

Prevented fraction reports the same comparison as the excess relative risk, but the exposure is expected 
to prevent rather than promote the disease. Since pU should exceed pE, the proportionate increment is 
expressed as (pU – pE)/pU = 1 – r. With exposure having a protective effect, r will be < 1, and the value 
of 1 − r will range from 0 to 1. This term, often used for evaluating vaccines, is also called protective
efficacy.

For etiologic fraction (for exposed group), the attributable risk, pE − pU, is divided by the risk in the 
exposed group to form (pE – pU)/pE = 1 – (1/r) = (r – 1)/r. It is also called the attributable proportion 
or attributable risk percent. It indicates the proportion of disease that would presumably be removed 
from the exposed group if everyone became unexposed.

Etiologic fraction (for community) uses a different increment, formed by the excess of the community 
rate beyond the unexposed rate. This increment is then divided by the community rate to produce 
(pC – pU)/pC. Substituting pC = epE +   (1 − e)pU, and carrying out the rest of the algebra, this expression 
reduces to [e(r – 1)]/e(r – 1) + 1. The result, which is also called the population attributable risk percent,
is regarded as the proportion of community cases attributable to the exposure. The implication is that 
these cases would be prevented if the exposure were eliminated.

The calculations can be illustrated with data presented by Cole and McMahon32 for a case-control 
study of smoking and bladder cancer in men. The data were as follows:

Because bladder cancer is a relatively rare disease, the odds ratio, calculated as (284 × 114)/(261 × 59) =
2.10, can be used as a surrogate for the risk ratio. The proportion of exposure in the general population  
can be estimated from the control group as e = 261/375 = .696. Inserting this information into the 
foregoing formula, the community etiologic fraction is found to be (.696) (1.10)/[(.696) (1.10) + 1] = 
.43. Thus, if the underlying reasoning and data are correct, the men of a smoke-free society should 
achieve an apparently impressive 43% reduction in the former incidence rate of bladder cancer. Because  
the former rate is not stated, however, the actual magnitude of the reduction is unknown.

17.7 Advantages of Risk Ratios and Odds Ratios

If you have survived the tour through all the foregoing formulas, you may have noted a fascinating thing 
about r, the risk ratio: it avoids the need for knowing any of the basic values for pE, pU, or pC. Except 
for the direct increments cited in Section 17.6.2, all the other formulas do not require getting any scientific 
evidence or doing any specific research to find the actual occurrence rates for the disease (or death) in 
the exposed, unexposed, or community populations. Everything is taken care of by the mathematical 
arrangements. Such impressive information as “excess relative risk,” “etiologic fractions,” and “prevented 
fractions” can all be determined from a single item of information, r, which is the risk ratio for pE/pU.
(In one instance, we also need an estimate for e.)

Consequently, an easy, inexpensive, retrospective case-control study can avoid the laborious cohort 
research necessary to find pE, pU, or pC. With the risk ratio approximated by the ad/bc odds ratio of the  
2 × 2 table and with the value of e estimated from results in the “control” group [e.g., as b/(b + d)], we 
can produce a gigantic mathematical buffet that extends from risk ratios to etiologic fractions. As noted  
earlier in the text, Francis Galton once wrote33 that the ancient Greeks, had they but known it, would 

Cases Controls

Smokers 284 261
Nonsmokers 59 114
TOTAL 354 375
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have worshipped the Gaussian curve as a god. The retrospective case-control study and odds ratio, if 
available, might have received the same deification from ancient Greek epidemiologists. 

17.8 Adjustments for Numerators, Denominators, and Transfers

A quite different statistical strategy for epidemiologic rates is to “adjust” them mathematically for 
additional major problems, not hitherto cited, in either the numerator or denominator constituents.

The incidence data in a longitudinal study must often be adjusted for “numerator losses.” The “lost” 
people were counted when they entered the denominator, and their status was known at some subsequent 
time of observation; but they then became “lost to follow-up” and their ultimate status is unknown for 
counting the outcome event in the numerator as dead/alive, success/failure, etc. To adjust the ongoing 
depletion of the cohort, the denominators are successively decremented over time, using either conven-
tional actuarial or the currently popular Kaplan-Meier “life-table” methods. The methods of adjustment,  
often called survival analysis, are discussed in Chapter 22.

A different type of adjustment, used in both longitudinal and cross-sectional studies, is done for 
“denominator imbalances.” This problem arises when we want to compare incidence rates or prevalence 
in two groups, but we know that the composition of the groups is biased by a “confounding” factor that  
affects the rates. For example, the comparison of birth rates in two groups of people would be unfair if 
one group contained mainly men and postmenopausal women, whereas the other group contained mainly 
women aged 18 to 45. An adjustment called “standardization” is often done to help “equalize” the 
disproportionate denominator components that would distort the comparison of the unadjusted “crude” 
rates. This process, discussed in Chapter 26, leads to the “age–sex adjustments,” “stratum-specific rates,” 
and other adaptations for which epidemiologic data are famous (or infamous).

A third type of problem, which is difficult to adjust, occurs when epidemiologic cohorts are assembled 
from volunteers, or from the people who are still available many years after the initial serial time at 
which the cohort observations began. The problem, a scientific issue in assembly of groups, is beyond 
the scope of a mainly statistical discussion.

17.9 Interdisciplinary Problems in Rates

As might be expected when the same ideas and names are used for rates in substantially different 
groups, major interdisciplinary problems have occurred about the propriety of the activities. Public-
health researchers may contend that clinicians should not apply the name cohort or talk about rates if 
the denominator refers to clinical groups, rather than regional populations. Clinicians may respond that 
the public-health cohorts are studied mathematically, rather than with direct examinations, and that the 
population-based rates of “disease” are too inaccurate to warrant scientific credibility, particularly when  
results in different regions or eras are used for major decisions in public policy.

Because the problems are currently unresolved (with few attempts having been made to achieve 
resolution), both the public-health and the clinical investigators continue their unchanged use (or 
abuse) of the process. Although public-health mortality rates are regularly adjusted or “standardized” 
for unbalanced demographic composition of denominators, clinical mortality rates are seldom adjusted 
for corresponding imbalances caused by differences in severity of the denominator conditions. Although
extensive variations in accuracy and consistency of diagnostic citation5,6 make death-certificate data 
untrustworthy, a single selected “cause of death” continues to be used for public-health tabulations of 
the incidence of different diseases.

A striking example of scientific defects in both the clinical and public-health approaches is the use 
of infant mortality rates as indicators of national or regional quality of health care. The denominator of 
these rates consists of infants who were born alive. The numerator consists of live-births who died in 
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the next year. What is ignored in both denominators and numerators are the fates of the products of
conception. No adjustments are made for spontaneous or induced abortions; and in particular, no
adjustments are made for stillbirths or for infants born in a precarious state of life.

If left alone, the precarious infants may promptly die, be recorded as stillbirths, and appear in neither
numerators nor denominators of the infant mortality rates. If given vigorous resuscitation and excellent
care, however, many of the precarious births will survive, but those who do not will augment the
numerator of deaths. In this way, excellent care in the delivery room and in special neonatal nurseries
can help salvage life for many babies who formerly would have been “stillbirths.” The result, however,
can also lead to a paradoxical increase in the infant mortality rates.

Despite these problems, few attempts have been made to adjust the infant mortality rates for “precar-
ious” states (which include very low birth weights) or for the local clinical customs used to identify a
precarious baby who is resuscitated but who dies soon afterward.34 The rates of infant mortality can rise
or fall according to whether the clinician decides to list such babies either as stillbirths (thereby filling
out one official certificate) or as live births followed by deaths (thereby having to fill out two official
certificates).
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Exercises

17.1. A major controversy has occurred about apparent contradictions in biostatistical data as researchers
try to convince Congress to allocate more funds for intramural and extramural investigations supported
by the NIH. Citing improved survival rates for conditions such as cervical cancer, breast cancer, and
leukemia, clinicians claim we are “winning the war” against cancer. Citing increased incidence rates for
these (and other cancers), with minimal change in mortality rates, public-health experts claim that the
“war” has made little progress, and we should focus on prevention rather than cure.

17.1.1. What explanation would you offer to suggest that the rising incidence of cancer is a
statistical consequence of “winning” rather than “losing” the battle?

17.1.2. What explanation would you offer to reconcile the contradictory trends for survival and
mortality rates, and to suggest that both sets of results are correct?

17.1.3. What focus of intervention would you choose for efforts to prevent breast cancer, cervical
cancer, or leukemia?

17.2. Practicing pediatricians constantly make use of “growth charts” to show the range of normal
growth for children. The charts are constructed in the general format shown for weight in Figure E.17.2.

The data for these charts are obtained as follows. A collection of “normal” children is assembled, 
measured, and divided into groups according to age. For each age group, the distribution of weight is 
noted and converted into percentiles. The percentile points are then entered on the graph for each age 
group and the points are joined to form the lines.

Pediatricians use these graphs to follow their cohorts of well children and to determine whether 
the children are growing in a normal manner.

17.2.1. Were the data on the graph obtained from cohort research? If not, what designation 

© 2002 by Chapman & Hall/CRC 



would you give to the data structures?
17.2.2. Do you perceive any clinical biostatistical problems arising from any disparity you 

have noted?
17.3. The drawing shown in Figure E.17.3 gives
a diagrammatic representation of the occurrence 
and course of instances of a particular disease in 
six members of a group of 300 persons. The other  
294 persons remained free of the disease. For this 
group of 300 persons, calculate

17.3.1. Point prevalence on July 1, 1993.
17.3.2. Incidence rate, July 1, 1993 to 

June 30, 1994.
17.3.3. Period prevalence, July 1, 1993 to 

June 30, 1994.
[Epidemiologists use the term period 

prevalence for the sum (i.e., point prevalence plus 
incidence) of all encountered instances of disease.]
17.4. In patients receiving radiotherapy for lung 
cancer, the 6-month survival rate is found to be 
32% at the West Haven VA Hospital, and 54% at 
Yale-New Haven Hospital. A newspaper reporter 
discovers this difference and has prepared an article 
about the incompetent physicians working at the VA. The managing editor, after a few inquiries, discovers 
that the same physicians design and supervise radiotherapy at both institutions. The newspaper reporter 
then plans a major “exposure” of the unsatisfactory radiotherapy equipment purchased by the Veterans 
Administration, but the managing editor discourages the work after learning that the VA patients are 
transported by shuttle bus and usually receive their radiotherapy at Yale-New Haven Hospital. The 
reporter, who has been told to subside by the irritated managing editor, now alerts and urges the district  
congressman to conduct public hearings about the fatal fumes or other lethal ambiance of the shuttle bus. 
A day before the public hearings are due to begin, the congressman’s assistant, at a cocktail party, meets 
a quantitative clinical epidemiologist. The QCE person, when told about the impending excitement, makes 
a few statistically oriented remarks that persuade the congressman to call off the investigation immediately 
and to abandon further pursuit of the subject. What do you think might have been said?
17.5. After the original report9 of the case-control study mentioned in Section 17.5.4, a second case-
control study35 was published with the following results:

17.5.1. What is the odds ratio for this table?
17.5.2. Although DES is now almost universally regarded as a transplacental carcinogen, and 

although millions of women who were exposed to DES in utero now live in 
cancerophobic terror waiting for the clear cells to strike, the two cited case-control 
studies are the only “controlled” epidemiologic evidence that supports the carcinogenic 
belief. In a subsequent large cohort study (the “DESAD” project36), no clear-cell cancers 
were found after about 25 years since birth in any of about 2000 adult women exposed 
in utero to DES or in a corresponding number of women in the non-exposed matched 
group, born at the same time as the exposed cohort.

Several cantankerous clinical epidemiologists37 (from New Haven) have disputed the 
“established wisdom,” contending that the case-control studies were poorly conducted 
and that a cause–effect relationship has not been proved. What do you think were some  
of the main arguments offered by the “heretics”?

17.5.3. Assuming that the DES/CCVC relationship is real, causal, and has odds ratios as large 
as those you have noted and/or calculated, why do you think no cases of clear-cell 
cancer were found in the exposed DESAD cohort?

17.6. In a case-control study, the odds ratio for development of endometrial cancer was found to be 4.3  
for postmenopausal women taking replacement estrogen therapy. (The results have been disputed because 
of a problem in “detection bias,” but can be accepted as correct for this exercise.) To inform a patient 

 FIGURE E.17.2
 Format of pediatric growth curves.
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of the risk of this cancer if she decides to take replacement therapy, you want to convert the odds ratio 
to a value of NNE. You can assume that the customary incidence of endometrial cancer is .001. What 
calculations would you do, and what result do you get for NNE?
17.7. In an immaculately conducted case-control study, the investigators found an odds ratio of 6 for 
the development of an adverse event after exposure to Agent X. You have been invited, as an expert 
consultant, to comment about establishing public policy for management of the problem revealed by 
this research. Assuming that the study was indeed “immaculate” (so that research architecture need not  
be further evaluated), you have been allowed to ask no more than four individual questions before you 
reach your judgment. What sequence of four questions would you choose, and why?

FIGURE E.17.3
Occurrence patterns of disease in 6 cases.
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Part III

Evaluating Associations

All of the statistical strategies discussed so far were intended to evaluate one group or to compare two 
groups of data. When we now begin “comparing” two variables rather than two groups, the bad news 
is that the different types of variables will require diverse new arrangements and many new descriptive
indexes for the results. The good news, however, is that only a few indexes are needed for most of the 
common descriptive activities; the additional arrangements involve no new forms of statistical inference,
which is used with the same basic principles as before.

The arrangements of two variables are generally called associations, but the associations can have 
many different goals and structures. The aim might be to discern trend in the relationship of two 
different variables  or to note concordance for two variables that describe the same entity. The trends 
can be an interdependent correlation or a dependent regression;   the concordances can refer to 
conformity or to agreement.

The diverse associations that can be formed between two variables are discussed in the next few 
chapters. In more advanced activities, when the associations become multivariate, the statistical strategies 
are more complicated, but they should not be too hard to grasp if you clearly understand what happens  
for only two variables.
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Suppose we have measured weight and serum cholesterol in each member of Group A and Group B. 
The results could be summarized with the univariate and the two-group contrast indexes discussed in 
Parts I and II of the text. Indexes of location and dispersion could express the univariate values of weight 
and cholesterol separately in each group. Indexes of contrast could compare the weights and the choles -
terol values in Group A vs. Group B. If we wanted to know, however, whether cholesterol tends to rise 
or fall with increasing levels of weight, we currently do not have a suitable method of expression. To 
summarize the trend in two variables, we need a new approach, using indexes of association.

Association is a heavy-duty word in statistics. Except for univariate results in a single group of data, 
all statistical arrangements can be regarded as associations of either two variables or more than two. 

18.1 Two-Group Contrasts

Although not so designated, the two-group contrasts in Chapters 10 through 17 were really associations  
of two variables. One of them had a binary scale, identifying the two contrasted groups as A or B, 
exposed or nonexposed, treated or untreated. The second variable, which was the analytic focus for the 
two-group comparison, was a dimension (such as age), a binary attribute (such as success/failure or 
alive/dead), an ordinal grade, or a nominal category. When the results of the second variable were 
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summarized with means, medians, standard deviations, or proportions, the group identity, cited in the 
first variable, became a subscript (such as A and B, or 1 and 2) in the symbolic expressions and 

, or p1 and p2. The use of two variables is readily apparent if we consider the way the original data 
would have been coded. An X variable would have identified group membership as A or B (or in some 
other binary code), and a Y variable would have identified the “result,” which would then be summarized 
for two means as  and .

The arrangement of data is illustrated in the following layout for four variables that can each receive  
a two-group contrast. The first column identifies each person; the second column is the X variable, 
identifying group membership as A or B; and the remaining four columns show Y variables that can be  
binary, dimensional, ordinal, or nominal.

The two-group contrasts could compare Group A vs. Group B for proportions of success, mean (or 
median) age, or distributions of urine sugar or color of eyes.

In most instances, however, the idea of association is used for situations in which the X variable is 
dimensional, ordinal, or nominal rather than binary. According to the scale of the corresponding Y 
variable, the bivariate arrangement will then have a bi-dimensional, bi-ordinal, multi-group, or other 
format that cannot be summarized with a relatively simple index of contrast, and will require new 
statistical indexes.

18.2 Distinguishing Features of Associations

The indexes that describe associations are prepared for different goals, orientations, and patterns. The 
goals can be to evaluate trends or concordances; the orientation of variables can be dependent or 
nondependent; and the patterns can have the diverse formats produced when each variable is expressed  
in four possible types of scale. These basic distinctions are discussed in the next few sections before we 
turn to the corresponding statistical principles.

18.2.1 Goals of Evaluation

All of the associations to be discussed here and in the next three chapters refer to a relationship 
between two variables, but the bivariate relationships can be examined for diverse goals and cited in 
diverse indexes that reflect the types of variables under examination.

The goals can be aimed at describing concordances for the agreement between two similar variables 
or trends for gradients of change, contrast, or correlation between two different variables.

18.2.1.1 Concordances — The distinguishing feature of a concordance is that the two associated 
variables describe exactly the same substantive entity and are cited in exactly the same (i.e., “commen -
surate”) scales. Despite the similarity of scales and measurements, however, the two variables come 
from different sources, such as different observers, different systems of observation, or two sets of 
measurements by the same observer. The goal of the analyses is to summarize the agreement (or 
disagreement) between the two sets of measurements.

For example, we might check for inter-observer variability when two pathologists each give diagnostic 
“readings” to the same set of slides, for intra-observer variability when the same pathologist reads the 

Y Variable
Person X Variable Success Age Urine Sugar Color of Eyes

1 B 0 28 Trace Brown
2 A 1 34 1+ Blue
3 A 0 19 3+ Hazel
4 B 1 42 None Brown
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slides on a second occasion, for sensitivity and specificity when diagnostic marker tests are checked
against the “gold standard” diagnoses, or for quality control when the same set of chemical specimens
is measured at two different laboratories.

18.2.1.2 Trends — In an evaluation of trend, the two associated variables describe different
entities, such as body weight and serum cholesterol. If each variable is ranked in a dimensional or ordinal
scale, the goal is to determine the corresponding “movement” for the two sets of rankings. As one
variable changes, the trend is shown by the gradient that occurs as the second variable rises, falls, or
stays the same. Does serum cholesterol get lower as people get thinner? Does income go up as educational
level increases? Is severity of pain related to the amount of fever? All of these questions are answered
by examining trends in ranked variables that have dimensional or ordinal scales.

Unless each variable can be ranked, however, the trend cannot always be assessed as a pattern of
movement. Because binary and nominal scales do not have successive ups or downs, the idea of rising
or falling cannot be used to express trend in bivariate relationships between religion and occupation,
height and choice of hospital, or level of pain and a nominal set of therapeutic agents A, B, C, and D.
Nevertheless, even for non-ranked variables, gradients can often be identified in a second variable when
changes occur in the first. These gradients will be further discussed in Section 18.2.2.3.

18.2.2 Orientation of Relationship

The two associated variables can be oriented in a dependent or nondependent direction. In a dependent
relationship, one variable is believed to affect or influence the other. Thus, we may think that body
weight affects serum cholesterol or that treatment produces a successful outcome. These orientations go
in one direction because we are not likely to believe that a successful outcome influences the preceding
treatment or (in most instances) that serum cholesterol influences weight.

A somewhat confusing jargon has been developed for describing the directional distinction. The 
variable that does the influencing can be called independent, predictive, or explanatory. The affected
variable can be called the dependent, target, or outcome variable. In the usual graphic arrangement,
shown in Figure 18.1, the independent variable is marked X, and labeled as the abscissa in a horizontal
direction. The dependent variable is called Y, labeled as the ordinate, and placed in a vertical direction.
(If you have trouble remembering which is which, a good mnemonic is that alphabetically X precedes
Y; and abscissa precedes ordinate.)

Figure 18.2 shows the collection of data points for a dependent relationship of the dimensional
variables, serum cholesterol and body weight.

Figure 18.3 shows an analogous set of data points for the dependent relationship of two binary
variables, success and treatment. In this instance, success is coded as 0 if absent, and 1 if present; and 
Treatment is coded 0 for A and 1 for B. The clusters of points at the graph locations of (0, 0), (0, 1), 
(1, 0) and (l, l) correspond to the frequency counts that would appear in a 2 × 2 contingency table.

Y

X

Ordinate;
Dependent
Variable

Abscissa;
Independent Variable

Serum
Cholesterol

Body Weight
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As discussed earlier (Section 9.3.1), the axis of contingency tables is usually shifted and rotated, so
that the independent variable appears in the rows and the dependent (or outcome) variable is in the
columns. Table 18.1 shows the customary tabular arrangement that would express the data inFigure 18.3.

In a nondependent relationship, we simply see how the two variables go together, without necessarily
implying that one of them is independent and the other dependent. A nondependent association might
be examined for the relationship of hematocrit and hemoglobin, or for serum cholesterol and white
blood count. Nondependent relationships are sometimes called interdependent if the two variables
seem distinctly associated — such as hemoglobin and hematocrit — without having a specific depen-
dent orientation.

In evaluations of concordance, the relationship is dependent
if one of the variables is regarded as the “gold standard”; and
the analysis is concerned with accuracy or conformity rather
than mere agreement. Thus, indexes of sensitivity, specificity,
and predictive accuracy all have a directional orientation,
whereas other indexes of concordance, such as proportional
agreement, do not.

18.2.2.1 Trends in Ranked Variables — I f bo t h
variables can be ranked, trends can easily be examined either
nondependently or in a specific directional orientation.

18.2.2.2 Trends for Binary Variables — 
Although binary variables do not seem to have ranks, their
0/1 characteristics can readily be used for expressing trends.
The two categories of an independent binary variable delin-
eate two groups, such as A and B for treatment or men and
women for sex. The binary, dimensional, or ordinal results of
the dependent variable will then indicate the “trend” as the
independent variable “moves” from one binary category to the other. These “trends” are the contrasts
that were discussed throughout Chapters 10 to 17 when the independent variable identified Groups A
and B, and the results were compared for such outcomes as the success rates, pA vs. pB, for a binary
dependent variable, and as the means, vs. , for a dimensional variable, such as blood sugar.

For an independent ordinal variable, the results of a binary or dimensional dependent variable can
be summarized and compared according to changes in rank of the independent variable. For example,
suppose the dependent variable is the outcome state of being alive or dead at a particular point in time.
Figure 18.4 shows this state for 5 people at four time intervals after zero time. Figure 18.5 is a “survival
curve” that summarizes the results for these five people, showing binary proportions of survival at
different ranked points in time.

TABLE 18.1

Tabular Arrangement of Data in Figure 18.3

Outcome
Treatment Success Failure TOTAL

A 9 11 20
B 20 6 26
TOTAL 29 17 46

FIGURE 18.3
Relationship of outcome (success/failure) vs. 
treatment (A/B) as binary variables.
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If the ranks refer to severity of illness rather than time, the binary proportions of survival can be
shown in a table called a prognostic stratification for the clinical staging system. Table 18.2 displays
results for this type of arrangement.

18.2.2.3 Special Arrangements for Nominal Variables — Because ordinal and dimen-
sional variables can be ranked and binary variables can acquire magnitudes when summarized as
proportions, the main problems in describing trend occur for nominal variables. A set of unranked
categories, A, B, C, D,…, cannot be put into an ordered arrangement for discerning a specific trend.

If used as the dependent outcome event, a nominal variable is sometimes compressed into a binary
variable, and the trend is shown with binary proportions. For example, consider a set of diseases — in
heart, lungs, brain, liver, etc. — that can be the outcome associated with such independent variables as
a binary sex, an ordinal social class, a dimensional age, or a nominal ethnic group. If the nominal
dependent variable is dichotomized as cardiovascular disease vs. other, the binary proportions of
cardiovascular disease could promptly be examined in relation to each of the independent variables.

If the independent variable is nominal, a similar type of compressed dichotomization would allow
simple comparisons. For example, suppose the independent variable, religion, contains the four categories
Christian, Hindu, Jewish, and Moslem. The dependent variables might be the dimensional weight, the
ordinal stage of clinical severity, or the binary college graduate. The results of the dependent variables
could be contrasted in simple arrangements such as Christian vs. All Others or in pairs of categories
such as Jewish vs. Moslem.

Sometimes, however, the independent nominal variable is kept intact, and the results of the dependent
variable are examined simultaneously in all three (or more) of the nominal categories. The indexes for
this type of multicategorical arrangement are discussed in Chapter 27.

FIGURE 18.4
Data for survival in a group of 5 persons.

FIGURE 18.5
“Survival Curve” (survival proportions over time) for
data in Figure 18.4

TABLE 18.2

Prognostic Stratification Showing Relationship of 5-Year Survival to 
Clinical Stage of Disease

Variable X 
(Clinical Stage of Disease)

Variable Y
(5-Year Survival Proportions)

I 16/20 (80%)
II 23/50 (46%)
III 21/70 (30%)
IV 6/60 (10%)
TOTAL 66/200(33%)
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18.2.3 Patterns Formed by Constituent Variables

The main statistical complexity of bivariate associations is produced by the diverse patterns formed with
different scales for the constituent variables. Because each of the two variables can be cited in four
possible scales — binary, dimensional, ordinal, or nominal — indexes of descriptive association will be
needed for 16 (= 4 × 4) possible patterns. Additional possibilities will occur when the relationships are
concordant, or nondependent and dependent trends. The rest of this section, which provides an outlined
inventory of the diverse formats, is intended only to let you know about the many different indexes.
Fortunately, only a few of them regularly appear in medical research.

The diagram in Figure 18.6 shows 16 possible patterns for co-relationships in scales of an independent
and dependent variable. The bi-dimensional pattern in the heavily stippled central zone is the classical
and most frequent arrangement; it will be discussed throughout Sections 18.3 and 18.4, and again in 
Chapter 19. In the three lightly stippled central zones, both variables can be ranked. In seven of the
outer zones, around the top and left side of the diagram, at least one of the variables is binary; and in
the remaining five zones, at least one of the variables is nominal. These 16 possible patterns will not 
all occur, however, for concordances or for nondependent trends.

18.2.3.1 Concordance — Because concordance can be measured only when both variables are
commensurate — i.e., expressed in exactly the same scales — only four patterns are possible. They arise
when the two examined variables are expressed in the same binary-binary, dimensional-dimensional,
ordinal-ordinal, or nominal-nominal scales for the same entities. The possible arrangements are shown
in Table 18.3. The indexes of concordance for these four patterns of data will be discussed in Chapter 20.

18.2.3.2 Nondependent Trend — The trend in nondependent correlations can be expressed for 
four patterns in which the scales for the two variables are binary-binary, ..., or nominal-nominal. For 
example, the dimensional scales for hematocrit and hemoglobin, although different in magnitude, would 
form a dimensional-dimensional pair. Six additional patterns can occur, however, when the two associated 
variables have different types of scales. The additional pairs of scales can be binary-dimensional, binary-
ordinal, binary-nominal, dimensional-ordinal, dimensional-nominal and ordinal-nominal as shown in 

FIGURE 18.6
Possible patterns of co-relationship for two variables, each expressed in four possible scales.
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Table 18.4. The names of some of the indexes, as cited in the footnote to Table 18.4, will be discussed
either in Chapter 19, or later in Chapter 27.

Because the two variables are associated without a direction, the correlations for each pair will be
symmetrical, whether the variables are listed directionally in a dimensional-ordinal or ordinal-dimen-
sional orientation. For example, the correlation between the dimensional height and the ordinal social
class or between the nominal religion and the binary sex would be the same regardless of how the
variables are arranged.

18.2.3.3 Dependent Trend — For dependent associations, however, all 16 patterns can occur
asymmetrically, as shown in Figure 18.6.

18.2.3.3.1 Binary Constituents. The upper row and left-hand column of Figure 18.6 contain seven
patterns in which the independent and/or dependent variable is binary. If independent, the binary variable
forms the two groups whose contrasts were previously discussed. If the dependent variable for the two
groups is also binary, the contrast (or association) can be shown in a 2 × 2 table, with the results expressed
as an index of association or comparison for two proportions. In the other illustrations throughout
Chapters 10 to 17, the dependent variables were dimensional values of blood sugar (summarized as
means) or ordinal values of improvement. An independent binary variable could be associated with a
nominal dependent variable if we compared choice of occupation (doctor, lawyer, homemaker, etc.)
in women and men.

A binary dependent variable was associated with a dimensional (or ordinal) independent variable for
the “survival curve” constructed in Figure 18.5. Each point on the curve showed the proportion of people
who were alive (or dead) at various times after the onset of observation. The binary proportion of
survivors could also be associated with an independent variable that is ordinal (e.g., severity of clinical
stage) or nominal (e.g., different categories of diagnosis). In the latter two situations, the results will
usually be shown with tables (such as Table 18.2) rather than graphs.

TABLE 18.3

Four Patterns of Variables for Assessing Concordance

Scale of Variable A
Binary Dimensional Ordinal Nominal

Scale
of

Variable B
for

Same
Entity

Binary
Dimensional

Ordinal
Nominal

•
•

•
•

TABLE 18.4

Patterns of Variables and Statistical Indexes for a Nondependent Correlation*

Scale of Variable A
Binary Dimensional Ordinal Nominal

Scale of Variable B for Binary A
Different Entity Dimensional B C

Ordinal D E F
Nominal G H I J

* Examples of correlation indexes, discussed in either Chapter 19 or later in Chapter 27, for these bivariate scales are:  
A: φ; B: Biserial coefficient; C: Pearson’s r; D: Pearson’s r or same as F; E: Jasper’s multiserial coefficient; F: 
Spearman’s rho, Kendall’s tau, gamma, or Somers D; G: φ; H: Eta; I: Lambda or Freeman’s theta; J: φ.
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18.2.3.3.2 Nominal Constituents. The lower row and right-hand column of Figure 18.6 contain
five patterns in which at least one constituent variable is nominal. These associations will require special
arrangements, some of which were mentioned earlier.

18.2.3.3.3 Both Constituents Rankable. For the associations shown in the central four stippled
zones of Figure 18.6, both variables can be ranked, being either dimensional or ordinal. This type of
jointly ranked relationship is what most people have in mind when thinking about “associations.” In
particular, the dimensional-dimensional (or “bi-dimensional”) pairing is the pattern that gave rise to the
well-known ideas of regression and correlation.

18.3 Basic Mathematical Strategies for Associations

In any form of statistical analysis, the most pertinent basic question is, “What do I really want to know?”
The answer to this question indicates the basic goal of the analysis. The next question might be, “What
statistical strategy is used for this purpose?” The answer indicates the basic operational principle used
for achieving the goal. The third question is, “What particular index, procedure, or test is used to carry
out the strategy?” The answer indicates the particular statistical method applied to execute the basic
operational principle.

For example, in Part I of the text, one of the goals was to select a single value that would represent
a group of dimensional data. The main operational principle for achieving this goal was to choose an
item that was “central” in the group. The mode, median, (arithmetic) mean, and geometric mean were
methods available to carry out the principle. The choice of the method depended on what we wanted to
use as a “central” index.

In Parts I and II of the text, we discovered that the investigator’s goals and the operational principles
of statistical analysis do not always coincide. For example, if the goal is to evaluate numerical stability
for a contrast of two groups, the prime statistical strategy is often not aimed directly at stability. Instead,
various arrangements of mathematical probability are used to find a P value or a 1 − α confidence
interval for the summary indexes of the observed contrast. The parametric sampling and the permutation
or resampling methods are individual procedures for getting the desired P values or confidence intervals.

Analogous types of disparity between goals and operational principles can arise in the statistical
methods developed for indexes of association. These indexes have achieved the general status of
established tradition, widespread acceptance, and ubiquitous usage. Nevertheless, if common sense has
not been obliterated during all the mathematical explanations and computations, you may sometimes
note that what you get is not necessarily what you want.

18.3.1 Basic Mathematical Principles

To summarize a single group of data, the operational principles use a central index and an index of
dispersion. To summarize a contrast of two groups, the main principles rely on increments and ratios.
For associations, the mathematical principles employ estimations and covariations. With estimations,
one variable is used to estimate (or predict) the value of the other. With covariations, an index of
magnitude or strength is determined for the relationship between the two variables.

18.3.1.1 Estimations — For the univariate dimensional data, {Yi}, shown on the left of
Figure 18.7, suppose we had to guess the value of any individual Yi that might be chosen from this set. 
If G is the chosen guess, the individual error will be Yi − G.

From what was learned in univariate statistics (Section 4.6.2), we know that the average absolute 
error, |Yi − G|, will be smallest if G is chosen to be the median of the data set, and that the average 
squared error, (Yi − G )2, will be smallest if G is the mean. Accordingly, the best guess would be either 
the mean or the median of the Yi values.
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Now suppose that values of an associated variable, Xi, are available for each Yi, as shown on the right
side of Figure 18.7. The pattern of points suggests that the estimates of Yi could be substantially improved
if we made use of the Xi values. For this purpose, we can fit the points with an algebraic model* that

expresses Y as a “function” of X. The model used most commonly (for reasons discussed later) is the
straight line:

. [18.1]

In this expression, the “^” symbol over indicates that it is estimated from the corresponding
observed value of Xi. The value of a is the intercept of the equation, representing the value of
when Xi = 0. The value of b is the slope of the line indicating the number of units of change in
for each unitary change of Xi. (The calculation of a and b is discussed in Chapter 19.)

18.3.1.2 Errors in Estimation — For each  estimated with Xi, the absolute error of the
estimate will be and the squared error will be . We can express the accomplishment
of the algebraic model by comparing the total errors made when we used only the univariate “guesses”
from values of Y alone, versus errors in the bivariate estimates of , using values of X. The expression
for proportionate reduction in error would be calculated as

[18.2]

If the expression used the sums of squared errors, the “guesstimates” made from the mean of Y alone
would be . With Sr as the symbol, the corresponding sum of squared errors for
estimates with would be . The formula for proportionate reduction in errors would be

[18.3]

The idea of reducing error or improving accuracy is a fundamental principle in constructing indexes
of association, and the proportionate reduction in errors is commonly used as an index of the association.

Errors in estimation can also be reduced for associations that are not dimensional. For example,
suppose Y is a binary variable showing that the 5-year survival rate is 33% (= 66/200) for a particular
disease. If we had to make individual predictions for each patient from the univariate information alone,
the best guess would be to predict that everyone will be dead at 5 years. The prediction will be wrong
in 66 patients and right in 134.

Now suppose that the patients were classified, as in Table 18.2, into four ordinal stages of disease,
expressed as Variable X. Using results of the additional variable, we can form another set of predictions. 
For the 80% survival rate in Stage I, the prediction of alive would be correct in 16 patients and wrong 

FIGURE 18.7
Display of values, on left, for {Yi} alone, and, 
on right, for {Yi} with corresponding {Xi}.

* Many types of “models” — including clusters of categories, algorithmic flow charts, and other mathematical or quasi-math-
ematical structures — can be used in statistical analysis. Models arranged in the form of an equation will be called algebraic,
a term that seems preferable to equational.
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Ŷi Sr Σ Yi Ŷi–( )2=
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in 4. For Stages II, III, and IV, where the survival rates are below the meridian of 50%, we would predict
death for everyone. The prediction would be correct, respectively, for 27, 49, and 54 patients and wrong
in 23, 21, and 6 patients of those three stages. The total number of predictive errors in the 200 patients
would become 4 + 23 + 21 + 6 = 54; and the proportionate reduction in errors would be calculated,
from the 66 with Y alone and the 54 using X, as

18.3.1.3 Covariations — The other main principle for indexing an association is to cite the
magnitude (or “strength”) of covariation in the relationship between the two variables. As X increases,
how vigorously does the gradient rise or fall in Y? For example, in Table 18.2, the survival rate drops
from 80% to 10% during three “steps” from Stage I to Stage IV, so that the “average” decrease is
70%/3 = 23% for each change of stage.

The gradient of change is easy to discern when results are expressed in the ordinal-binary arrangement
of Table 18.2, but a more general approach is needed to show covariance when both variables are
dimensional. The index should denote the simultaneous change of the two variables in a set of paired
points, {Xi, Yi}, for each person, i.

Considering each variable alone, the “changes” within X can be cited as the amount by which each
item, Xi, deviates from a reference point, which is most commonly chosen to be the arithmetical mean,

. The deviation, Xi − , will then indicate the amount by which any individual value, X i, has changed
from the mean. Similarly, for the other variable Y, the deviation of Yi − would indicate the corre-
sponding change in Yi.

This principle was used to calculate variance and standard deviation as indexes of univariate disper-
sion. For n items in variable X, the individual deviations from the mean are squared and added to form
the group variance, , which is then divided by n − 1 (or n) to form the variance. A
similar process would produce as the group variance in variable Y. The square roots
of the two variances would be the corresponding standard deviations.

The two individual deviations for the pair of Xi and Yi values at point i will have a bivariate role if
they are multiplied. The product, (Xi − )(Yi − ), is the codeviation that indicates the simultaneous
change as the two variables “move” from their respective means to reach point i. The codeviation product
will be positive if both deviations are positive, so that Xi becomes greater than , and Yi greater than

. The product will also be positive if both deviations are negative, with Xi and Yi each becoming less
than their corresponding means. If the deviations for Xi − and Yi −  have opposite signs, the
codeviation product will be negative, indicating that the two variables have moved in opposite directions.
The greater the absolute magnitude of each codeviation, the greater the amount of movement in a jointly
positive or negative direction.

For “movement” within an individual variable, the univariate deviations were squared and added to
form  and . For the two variables “moving”
together, the individual codeviations are added to form a sum of products that can be called the group
covariance, symbolized as

[18.4]

The average value, obtained when Sxy is divided by n (or by n − 1 for inferential purposes) is called the
covariance. As a quantitative index of co-relationship between two variables, covariance will have a
high positive score if the variables generally move together in the same direction, a high negative score
if they generally move oppositely, and a score near 0 for no distinct pattern.

18.3.1.3.1 Illustration of Calculations. To demonstrate the way that covariance indicates co-rela-
tionship, consider the illustrative set of data for Xi and Yi of eight persons in Table 18.5. In addition to
the basic values of {Xi} and {Yi}, the table shows values for , , Xi − , Yi − , (Xi − )2,
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(Yi – )2, and (Xi − )(Yi − ). Figure 18.8 is a “scattergraph” for the eight points listed in Table 18.5.
In Figure 18.9, the scattergraph has been redrawn, with the axes of origin placed at the mean values of
X and Y, forming four quadrants that locate each point according to the deviation units for each variable.

18.3.1.3.2 Pattern and Quantification of Covariance. The X and Y deviations at each point are
both positive in Quadrant I of Figure 18.9 and both negative in Quadrant III. In both of these quadrants
the co-deviation product will be positive. Conversely, in Quadrants II and IV, the X and Y deviations
go in opposite directions, one being positive and the other negative; and the product of co-deviations
in these quadrants will be negative. This distinction is also shown by the values of (X i – )(Yi – ) in
Table 18.5. For persons A, C, F, and H, whose points lie in Quadrants I or III, each co-deviation is
positive. For persons B, D, E, and G, whose points lie in Quadrants II or IV, the products are negative.

TABLE 18.5

Deviations, Squared Deviations, and Codeviations for an Illustrative Set of Data

Variables
Person X Y

A 1 39 −3.88 1 5.05 −27.13 736.04 +105.25
B 2 90 −2.88 8.29 +23.87 569.78 −68.75
C 3 50 −1.88 3.53 −16.13 260.18 +30.32
D 4 82 −.88 .77 +15.87 251.86 −13.97
E 6 43 +1.12 1.25 −23.13 535.00 −25.91
F 7 95 +2.12 4.49 +28.87 833.48 +61.20
G 8 51 +3.12 9.73 −15.13 228.92 −47.21
H 8 79 +3.12 9.73 +12.87 165.64 +40.15
Sum 39 529 0 52.88 0 3580.88 +81.13

Mean = 4.88 = 66.13 0 6.61 0 447.61 10.14

Note: Divisor for all mean values = 8.

FIGURE 18.8
“Scattergraph” of data in Table 18.5.

FIGURE 18.9
Mean values of X and Y used as axes for scattergraph of data in
Table 18.5 and Figure 18.8.
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To show the general impact of co-deviations, arbitrary collections of illustrative points (not the ones
shown in Figure 18.8 and 18.9) have been placed in the appropriate quadrants of Figures 18.10 and
18.11. In Figure 18.10, where all the codeviate points lie in the first and third quadrants, the swarm of
points shows a distinct positive relationship between X andY. In Figure 18.11, where all of the points
lie in the second and fourth quadrants, the pattern shows a distinct negative or inverse relationship. (An
important feature of terminology for co-relationships is that negative means something going in a
direction distinctively opposite to positive. In many medical uses, the word negative refers to “none”
or “normal”; but in the absence of a distinct co-relation, the correct word is none, not negative. To
avoid possible confusion, however, a negative co-relationship is often called inverse.)

As the average value of Σ(Xi − )(Yi − ), the covariance could quantitatively indicate the positive
or negative strength of the relationship. For example, the group of eight points in Figure 18.8 do not show
a strong relationship in either direction. Their average codeviance (as shown in Table 18.5) is 10.14. On
the other hand, if we consider only the contributions of points A, C, F, and H (in Quadrants I and III),
their average co-deviance is +236.93/4 = +59.23; and for just the points B, D, E, and H, the average
co-deviance is –155.83/4 = −38.96.

18.3.1.4 Correlation Coefficient — Although helping quantify a co-relationship, the average 
magnitude of Sxy depends completely on the arbitrary units in which X and Y are expressed. If each
value of Y in Table 18.5 were ten times larger (e.g., 390, 900, 500,…rather than 39, 90, 50,…) the values
of Y would be ten times larger for the mean and deviations, and the values of S xy and Sxy /n would also
be ten times larger. Nevertheless, the basic relationship between X and Y would remain the same.

18.3.1.4.1 Product of Standardized Deviates. To eliminate this problem, each variable can be
expressed in the Z-scores that form standardized deviates, thereby making Sxy free of dimensional units.
Thus, if sX is the standard deviation of the X values, the entity (Xi − )/sx is dimension-free, cited in
standard-deviation units above or below the mean of X. The counterpart entity, (Yi − )/sy, has a similar
structure for values of Y. Each product of the standard deviation scores would be

FIGURE 18.10
Positive correlation effect evident from “swarm” of co-
deviate points in Quadrants I and III of a scattergraph.

FIGURE 18.11
Negative correlation effect evident from “swarm” of co-
deviate points in Quadrants II and IV of scattergraph.
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and the sum of these standardized codeviations would be , which is
Sxy /[(sx)(sy)]. The mean value of this sum (using n as the divisor) would be (Sxy/n)/[(sx)(sy)]. Because

 and , some further algebra will show that the new index would be

[18.5]

(The same result would emerge if each divisor were n − 1 rather than n.)
This index is customarily symbolized as r and called the correlation coefficient. It is also sometimes

called Pearson’s r, to commemorate Karl Pearson, who helped popularize its use for expressing corre-
lation. In older statistical language, values of Xi − and Yi − were called the “first moment around
the mean.” For this reason, the correlation coefficient is sometimes called the product-moment coefficient.

Some additional algebra, shown in Chapter 19, will demonstrate that r has a maximum positive value
of +1 and a maximum negative value of −1. Thus, when the “standardized” dimension-free r has values
close to +1 or −1, the two variables have a strong relationship. When r is close to 0, they have little or
no relationship.

18.3.1.4.2 Example of Calculations. The sums of appropriate columns in Table 18.5 show that
Sxx = 52.88, Syy = 3580.88, and Sxy = 81.13. Substituting these values in Formula [18.5], the correlation
coefficient for the data is

which indicates the weak positive relationship evident in Figure 18.8. If you do these calculations
yourself, some computing formulas can greatly ease the job. Just as was best
calculated as Sxx = , the best “hand-calculator” formula for the group covariance is

[18.6]

For example, as shown in the Sum row of Table 18.5, ΣXi = 39 and ΣYi = 529. The additional items
needed for the quick calculations are , , and ΣXi Yi = 2660. These items
would lead to Sxx = 243 − [(39)2/8] = 52.88 and Syy = 38561 − [(529)2/8] = 3580.88. The group covariance,
Sxy = Σ(Xi − )(Yi − ), was originally calculated in Table 18.5 by directly adding each codeviation
to get +81.13. The quick-calculation Formula [18.6] would produce 2660 − [(39)(529)/8] = 81.13.

18.3.2 Choice of Principles

According to the goals, orientation, and patterns of data, indexes of association will be formed with
principles of estimation or principles of covariation, and sometimes with both. For example, to demon -
strate closeness of agreement in appraising concordance or to make specific predictions, the emphasis
is on principles of estimation. To appraise trend in the two variables, the focus is on covariation.

The two indexes of expression — for estimation and covariation — will indicate different attributes of
the association. A weak relationship can produce highly accurate estimations, and a strong relationship
may have many errors. For example, in Figure 18.7, Y seems to have a weak relationship to X: the values
of Y go up only slightly as X increases. Yet the estimates of Y made from X might have perfect accuracy
because a straight line would fit the data so well. Conversely, in Table 18.2, the two variables have a
strong (although inverse) relationship, but the error rate in predictions is proportionately reduced only 18%. 
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18.4 Concept and Strategy of Regression

Regression has become the well established name for a process that fits a mathematical “model” to data
of a dependent variable. The same term is also regularly used in calling the result a regression line.

18.4.1 Historical Background

Fitting a mathematical model was not the idea, however, when the term regression was originally
proposed in 1885 by Francis Galton, who is often regarded (at least in English-speaking countries) as
the founder of biometry. While studying familial manifestations of genetics, Galton compared the height
of parents and the corresponding height of their children. Fitting a straight line to the plot of points
presented here in Figure 18.12, Galton1 noted a phenomenon that he initially called reversion but later

termed regression toward mediocrity. The tallest parents tended to have children who were shorter than  
themselves; and the shortest parents tended to have correspondingly taller children. The extreme values  
of tall or short height for the parents were associated, in the children, with heights that were closer to 
the mean for each variable.

FIGURE 18.12
Format of graph displayed by Francis Galton to demonstrate “regression toward mediocrity.” [Figure derived from Chapter  
Reference 1.]
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18.4.2 Regression to the Mean

The phenomenon Galton noted as reversion to mediocrity is today called regression to the mean and is
still regularly encountered, but not in Galton’s format. In subsequent repeated measurements of people
who initially have the highest (or lowest) values of blood pressure or serum cholesterol in a group, the
originally extreme values often tend to regress toward the mean of the group. The data analyst then has
to decide whether the change was due to treatment or whether values that were higher because of random
variation had later regressed to the mean.2,3 [An analogous event, occurring in professional sports, is
sometimes called the “outstanding rookie’s second-year slump.” The person who may have randomly
been the best player among the first-year rookies may regress to the mean in the next year, and is thought
to have “slumped.”]

Galton used the term regression for the straight line that he drew through the bivariate dimensional
points for heights of parents and children in Figure 18.12, but the mathematical strategy that fit the
line to the data had nothing to do with either the biologic idea of regression to the mean, or the statistical
idea that with random variations in measurement, the extreme values on one occasion subsequently
become closer to the mean. Nevertheless, the term regression became rapidly accepted and thoroughly
entrenched for a totally different idea: the mathematical procedure of fitting a line to a set of bivariate
dimensional data.

18.4.3 Straight-Line Models and Slopes

Although many kinds of curved lines can be fitted to a bi-dimensional set of points, the standard approach
uses a rectilinear, i.e., straight-line, model, Y = a + bX, which is mathematically arranged to do its best
job in fitting the data. The fit may be good or poor, but the slope of the straight line indicates a trend
that is constant throughout all zones of the data. Consequently, no matter how well the line fits, the 
single value of its slope will be misleading if the data have different gradients in different zones. Thus,
if we want to know the general trend of the data, the single slope may be a quite satisfactory average,
but if we want to know about the trends in different zones, the single slope may produce serious distortions
of what is happening.

The problem is illustrated for bi-dimensional data by the three sets of points shown in Figure 18.13.
Figure 18.14 shows the results of applying a best-fitting straight-line model to each set of points. As
expected from the pattern of points, the left-hand set of data is excellently fit by the straight line. The
middle set of data is relatively well fit by the straight line, which will be given credit for a good
achievement, according to the customary indexes of fit (discussed in Chapter 19). Nevertheless, the slope
of the line will fail to show the three different gradients present in the three zones of data: small gradients
at the low and high ends of the X variable and a large gradient in the middle.

For the right-hand set of data in Figures 18.13 and 18.14, the straight line will have a slope close to
0, indicating no relationship between X and Y. Nevertheless, X and Y have the strong relationship that
is evident from visual inspection of the pattern. The straight line will completely distort this pattern, by

FIGURE 18.13
Patterns for three sets of bi-dimensional points.
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failing to capture the large gradient, at the beginning of the X variable, that later reversed into another
large gradient going in the opposite direction.

18.4.4 Reasons for Straight-Line Models

Looking at the obvious curves in the middle and right side of Figures 18.13 and 18.14, you may wonder
why the data were fitted with a straight line. With alternative algebraic formats, a curve could have been
created to fit each set of data almost perfectly. For example, the middle set of data could be fit exactly
with a curve such as ln[Y/(1 − Y)] = a + bX. The right-hand set of data could be fit exactly with a curve
such as Y = a − (X – b)2. Why not use curves rather than straight lines?

The five main reasons for routine use of straight-line models are: (1) the curvilinear models are usually
difficult to choose; (2) the straight-line model is standard and easy to interpret; (3) it produces indexes
for both estimation and co-relation; (4) in bivariate data, the straight-line model can be used for both
the dependent relationship of regression and the interdependent relationship of correlation; and (5) in
bivariate data, the correlation coefficient is the standardized regression coefficient. These distinctions
are discussed in the next five subsections.

18.4.4.1 Problems in Choosing Curves — The curvilinear patterns in the data of Figures
18.13 and 18.14 were reasonably obvious. If you are familiar with the shape of different curves, you
would have promptly recognized the S-shaped “logistic” pattern of the middle set of data and the inverted-
U parabola of the right-hand set.

In many instances, however, the corresponding correct shape is not immediately apparent. For example,
consider the pattern of points in Figure 18.15. This set of points could be fit by many different curves.
The pattern could be part of a descending exponential curve having the form Y = ea−bX, but could
also be part of a polynomial expression such as Y = a + bX + cX2 + dX3 + fX4, or a segment of a giant
oscillating curve, such as a sine or cosine wave. From the limitless number of curves that might be fitted
to these data, an appropriately programmed computer could readily find one that fits excellently, but we
would not know whether the selected curve is correct for the true relationship between X and Y. The
excellent fit might be an artifact in which the “best” fit may not be the right fit.

A more substantial problem arises when the pattern of points does not have an obvious shape. Consider
the set of data shown in Figure 18.16. This pattern looks more like the customary results of medical
research than any of the illustrations in Figures 18.14 or 18.15. The data set of Figure 18.16 does not have
an obvious rectilinear or curvilinear pattern. Because these data could be assigned to almost any selected
pattern, the straight-line format has the advantage of being “standard.” It avoids the arbitrary choice of
a candidate from one of the many possible curves.

18.4.4.2 Problems in Interpreting Curvilinear Results — If the goal is to evaluate trend,
the result of a straight line is easy to interpret: the trend is the slope. With the line expressed as Y = a + bX,
its slope, b, is called the regression coefficient. It indicates that Y changes by the amount of b units for 
every unitary change in X. With curvilinear models, however, trends are much more difficult and

FIGURE 18.14
Best-fitting straight lines for the patterns shown in Figure 18.13.
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sometimes impossible to determine. Suppose the curve is expressed as Y = a + bX − cX2 − dX3 + eX4.
The trend, i.e., the change in Y as X changes, could eventually be determined from this curve, but the 
process would not be easy. The trends would differ in different sectors of the X values, and a great deal 
of computation would be needed to determine the locations of the sectors and the magnitude of the trends.

Consequently, a straight-line model has a second major advantage: The single regression coefficient 
for slope is easy to interpet as an index of trend for the co-relationship.

18.4.4.3 The “Two-Fer” Bonus — All regression models, whether straight lines or curves, are 
mathematically constructed (as noted in Chapter 19) to produce a “best fit” for the estimated values of 
Y. While producing this estimate, however, the straight-line model has the “two-fer” advantage of offering 
a bonus: the regression coefficient, b, is an easy-to-interpret index of the co-relationship between Y and X.

18.4.4.4 Indexes for Both Correlation and Regression — For any two variables, X and Y, 
we can assume either that Y depends on X or that X depends on Y. For the first assumption, the regression 
line takes the form 

Y = a + bX

For the second assumption, the regression line has different coefficients expressed as

X = a′ + b′ Y

As noted later in Chapter 19, these two lines are seldom identical. They will usually have different values 
for a and a′ and for b and b′; and the trend that is manifested by the regression coefficient will differ if 
we regress Y on X or X on Y. As both regression lines are legitimate, what do we do if interested not 
in regression, but in correlation? Suppose we want to know the interdependent trend between the two 
variables, rather than the slope of Y on X or the slope of X on Y?

The answer to this question involves another act of mathematical elegance that will be demonstrated 
in Chapter 19. The correlation coefficient, r, which indicates interdependent trend, is obtained like a 
geometric mean, as the square root of the product of the two slopes, b and b′. In other words,

Thus, the fourth advantage of the straight-line model is that the bivariate correlation coefficient is the 
geometric mean of the two possible regression coefficients. 

18.4.4.5 Correlation and Standardized Regression — The advantage just mentioned may 
not immediately seem impressive. To get the correlation coefficient symmetrically, as the square root 
of bb′, is a neat mathematical feat, but why should anyone be excited about it? The answer to this 
question, as demonstrated later in Chapter 19, is that the ordinary regression coefficient is affected by 
the units of measurement. In quantifying the dependent trend between Y and X, the regression coefficient 
will be larger or smaller according to whether X is measured in days, weeks, or years and Y in pounds  
or kilograms. In bivariate data, however, the correlation coefficient, as discussed throughout Section 

FIGURE 18.15
Pattern of points for which the appropri-
ate curve has many possibilities

.FIGURE 18.16
Patterns of points for which no linear pattern seems immediately 
apparent.
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X
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18.3.1.4, is analogous to a standardized Z-score that is unaffected by units of measurement. The
correlation coefficient, r, is a standardized regression coefficient, having exactly the same value whether
Y is regressed on X or X is regressed on Y.

The fifth advantage of the bivariate straight-line model, therefore, is that the correlation coefficient
can be used in a standardized way to compare the strengths of different co-relationships, regardless of
the units in which the variables were measured.

18.4.5 Disadvantages of Straight-Line Models

In exchange for these many advantages, straight-line models have the flaws that have already been cited.
The actual pattern of the data may be distorted by its transmogrification into a linear pattern, and the
single, constant index of trend, although correct on average, may be wrong in many zones of the data.

The problem is not altered by using the correlation coefficient, r, rather than the regression coefficient,
b, as an index of trend. Because the correlation coefficient seems to have been constructed as a product
of standardized deviates for X and Y, without invoking a linear model such as Y = a + bX, we might
expect the correlation coefficient to be unaffected by linearity in the data. That expectation is wrong, 
because the “linear” deviates of Xi – and Yi − were used to form the products calculated as
covariance. These products can give a distorted account of the co-relationship if X and Y do not have
a rectilinear pattern. Besides, as noted later in Chapter 19, r will have the same flaws as b because it
can be calculated simply as a “standardized” transformation of b.

The distortion of non-rectilinear dimensional patterns was shown earlier in Figures 18.13 and 18.14. The
distortion of zones can be seen in the previous results of Table 18.2, where the survival proportions were
80% in Stage I, 46% in Stage II, 30% in Stage III, and 10% in Stage IV. Without any special
mathematical concepts, the trend of this relationship is easily shown by the incremental gradient in
survival rates from one stage (or zone) to the next. The overall survival gradient is 70% (= 80 − 10)
between Stages I and IV, but the intermediate zonal gradients are distinctly unequal. They have a drop
of 34% between Stages I and II, 16% between Stages II and III, and 20% from III to IV. These inequalities
show that the trend is not the same in different zones of data, although the average gradient for the three
increments would be about 70%/3 � 23%. With certain techniques discussed later, a straight line could
be fitted to these data. The slope of that line would show the average decline in survival proportions
between Stages I and IV. The constant value of the slope, however, would not indicate the distinct
differences in component gradients for the zones. The question about overall trend in the data would
get a reasonable, respectable answer, but the answer would not reveal the striking differences in the
inter-zonal trends.

A crucial basic issue for the investigator, therefore, is: What kind of trend do we want to know about?
Is it the average overall trend or the distinctive differences that can occur in the constituent zones of the
data? The answer to this question is pertinent not only when bivariate data are fitted with straight-line
models but particularly in multivariable analysis, where everything may depend on the results achieved
with “linear models.” According to what we really want to know, these models can be entirely correct
statistically, while producing gross distortions scientifically.

18.5 Alternative Categorical Strategies

Despite the possible problems and distortions, the straight-line mathematical models have generally been
quite successful. In fact, this approach was used (without being deliberately identified) when two central
indexes were contrasted in Chapter 10. If we code X = 0 for all members of Group A and X = 1 for all
members of Group B, the pattern of points for dimensional data is as shown in Figure 18.17. The means
for these two groups could be expressed as for Group A and  for Group B. The increment of 

 is really the slope of the line joining the mean values of Y as X moves from 0 (for Group A) 
to 1 (for Group B).

This process is easy to conceive and illustrate because we could arbitrarily set the values of X at 0
and 1 for the two groups. If X has its own dimensional values, however, the data might have the bi-

X Y

YA YB

YB YA–
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dimensional pattern shown in Figure 18.16. Despite the many cited virtues of the straight-line model,
the pattern of data in Figure 18.16 does not intuitively suggest that a straight line (or any other linear
shape) should be fitted. What can be done instead?

The main alternative strategy is to abandon the idea of fitting the data with straight lines or any other
arbitrary mathematical shape. Instead, the data are divided into categories (or zones), and the results are
examined directly within those zones. Diverse mathematical tactics can be used during the
examinations — but no attempt is made to fit the data into the overall “shape” of a mathematical model.

18.5.1 Double Dichotomous Partitions

In one approach, the bi-dimensional data of Figure 18.16 are converted into two groups. A dichotomous
partition at the median value of X will produce two groups of equal size, as shown in Figure 18.18. The 
mean values of Y can then be determined in each group and compared as an increment.

In another possible approach, the data of Figure 18.16 become a “double dichotomy” when another
partition is added at the median of the total set of Y values. This partition would divide Figure 18.18 into
the four categories shown in Figure 18.19. The values above and below the median could then be called
high and low, and binary proportions could be compared for the occurrence of high values in the two
groups. With the median arbitrarily assigned here to the higher group, the data in Figure 18.19 would
form the following 2 × 2 table.

These results immediately show that Group B (with X values ≥ median) has a larger proportion of high
values of Y than Group A.

18.5.2 Ordinal Strategies

The main objection to a dichotomous split for the X variable is that the result shows a contrast rather
than a distinctive trend. Whenever only two groups are compared, one set of values will almost always
(on average) be higher or lower than the other, but the contrast does not convey a rising or falling sense
of movement.

Value of Y Proportion of
“High” Values of YValue of X < Median ≥Median Total

<Median 6 3 9 .33
≥Median 3 6 9 .67

FIGURE 18.17
Pattern of points and means for two-group con-
trast where X = 0 for Group A and X = 1 for
Group B.

FIGURE 18.18
Median drawn through X variable to divide data of
Figure 18.16 into two groups.
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The trend in movement of the data can be explored, however, if the X variable is partitioned into more
than two categories. For dimensional values of X, this partition can produce a set of three, four, five, or
more ordinal categories. The trend can then be examined for summaries of the Y variable as a mean,
median, or proportion in each of those categories.

To produce a definite central category, the X variable is often split into an odd number of zones. To
avoid invidious choices of boundaries and to distribute the data into relatively equal-sized groups, the 
split is usually done with quantiles of X. The simplest partition divides X at its tertiles. As shown in 
Figure 18.20, a tertile split for the X variable of Figure 18.16 produces two boundaries and divides the 
abscissa into three categorical zones. The proportions of “high” Y values in those three categories of X
are .33 (2/6), .50 (3/6), and .67 (4/6). Although the group sizes are small, the equal gradients are
compatible with a “linear” relationship.

If relatively abundant, the data are often partitioned
at the quintiles, which will divide X into five equal-
sized ordinal groups. The trend can readily be dis-
cerned from the summary value of Y in each group
as X “moves” from the lowest to highest category.

18.5.3 Choosing Summaries for Y

In choosing a summary value to show the trend of Y
in each category, we could use a mean or median, but
neither of these values would immediately indicate
the stability of the data. With dimensional summaries,
a second index, such as a standard deviation or ipr 95,
would be needed to help denote stability. Consequently, although many data analysts will check the
trend in Y by examining medians or means, many other analysts prefer to inspect the binary proportions
in each zone, expressed as p = t/n, where t is the count in the “high” or other category demarcated for
the binary split of n members. The single value of p immediately shows the magnitude of the binary
proportion, and the constituent elements, t/n, will immediately indicate the stability. With the latter
approach, the Y variable would be split at its median for the total data (as shown in Figure 18.20), and
each of the X groups would be summarized, as in Section 18.5.2, for the proportion of values that lie
either above or below the median.

18.5.4 Comparison of Linear-Model and Categorical Strategies

For another set of bi-dimensional data, shown in Figure 18.21, a straight line could be fitted (by methods
to be discussed in Chapter 19) as = 6.39 + 0.118Xi. An alternative categorical approach, with quintile
partitions for X and a binary split for Y, is shown in Figure 18.22. Using I, II, …, V for the five zones
of X, the binary proportions for high values of and Y in each zone are I: .20(1/5); II: .33(2/6); III:
.50(3/6); IV: .60(3/5); and V: .80(4/5). The numbers are small, and all of the proportions are unstable.
Nevertheless, the upward trend in the data seems quite clear.

The overall gradient across the five quintiles is .80 − .20 = .60, which produces an average gradient
of .60/4 = .15 for each of the four changes in the 5 categories of X. Because X ranges from 0 to 50, the

FIGURE 18.19
Medians drawn through X and Y variables to
divide data of Figure 18.16 into four groups.

Y

X

FIGURE 18.20
Tertile partition for X and median partition for Y in
the data of Figure 18.16.
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average span in each zone is 10 units. The average gradient in each zone is thus .15/10 = .015. When Y
changes from low to high values, the mean of the 14 low (i.e., ð10) values of Y is 6.07, and the mean

of the 13 high values is 12.92. Thus, the average change from a low to high value is 6.85 units
(= 12.92 – 6.07) in Y. Accordingly, the average change in Y is (6.85)(.015) = .103 per unit change in 
X. This average value, obtained with only a crude binary-quintile split, is reasonably close to the
coefficient of 0.118 obtained when the average slope was calculated with the regression-model equation.

18.5.5 Role of Categorical Examination

You can decide for yourself whether you prefer to use a line or a series of central indexes to discern the
trend of data in such Figures as 18.16 or 18.21. In this instance, both approaches lead to essentially the
same conclusion: a generally rising trend. (The denominators are too small in each of the five zones to
draw any firm conclusions about major changes in trend between adjacent zones.)

The alternative categorical strategies often play a role analogous to that of a history and physical
examination in clinical practice, but they can also be the “gold standard” for showing exactly what is
happening. They allow you to inspect the data directly, without being constrained by whatever emerges 
from application of a straight-line or other arbitrary algebraic model. The alternative categorical strategy
may sometimes be just as arbitrary as a straight line, but the arbitrariness is chosen by you rather than by
mathematical doctrines. One of the magnificent intellectual contributions of modern electronic computation
is not the capacity for complex calculation, but the ability to let you easily explore your own data. With
these explorations, you can do commonsense “clinical” evaluations that might otherwise be lost amid the
mathematical elegance and computational splendor.

This type of exploration can promptly reveal the distortions that may occur in relatively simple bivariate
analyses. For example, if you did not plot a graph of points for the collections of data in the middle and
right sides of Figure 18.13, you would not know about the curving patterns. If you then examined only
the value of b for the slope of the regression lines, you would totally miss the changing trends in different
zones. A categorical examination of trends in tertile or quintile splits of the X variables, however, would
promptly indicate the distinctions that were missed by the straight-line model.

A further advantage of categorical evaluations occurs, as discussed elsewhere,4 in multivariable
analyses. The algebraic models rely on a series of mathematical assumptions about straight-line or other
shapes for the data, but the basic assumptions are often difficult to check or confirm. If you really want
to know about trends in different zones of the data, the exploration of categorical groups becomes the
“gold standard” for determining whether a mathematical model has distorted the results.

FIGURE 18.21
Set of bi-dimensional data.

FIGURE 18.22
Quintile partition for X and median partition for Y in data
of Figure 18.21.
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Exercises

Because this chapter is intended mainly to describe background strategy and ideas, the exercises do not
involve many statistical operations or calculations.
18.1. Here are two opportunities to improve your skill in the “physical examination” of graphs.

18.1.1. Figure E.18.1.1 shows a straight line drawn for the points of two variables. Without
knowing how the line was determined and without trying to verify its coefficients, what
is one simple thing you can do mentally, without any formal calculations or specific
manipulations, to determine that the line is drawn correctly on the graph?

18.1.2. The intercept seems to be wrong for the straight line in Fig. E.18.1.2; because the line
does not meet the Y-axis at a value of −0.91. What feature of the graph suggests that 
the cited value is correct? How could you check it? Does the slope seem correct? Does  
the line seem to fit properly?

18.2. In any published literature at your disposal, find a paper where the authors used a straight-line pattern 
to summarize the trend in a set of bivariate dimensional data. The points of data should have been shown 
in a graph, together with an equation for the corresponding line. Although you do not yet know how that 
line was formulated, submit a replicate copy of the graph (indicating its publication source) and describe 
your comfort or discomfort in accepting the line as a “summary” of the bivariate relationship.

After describing your response, make “guesstimates” or other arrangements of the data points to 
prepare an alternative analysis that might help confirm or refute your reaction. You get extra credit if 
you find a graph that left you uncomfortable, give good reasons for the discomfort, and prove your point  
with the alternative analysis.
18.3. The most common associations that appear in medical literature involve either bi-dimensional 
data or the doubly dichotomous “contrast” shown in a 2 × 2 table. Examining the tables or graphs of 
any published papers that are conveniently available, find two examples of associations that are not
either bi-dimensional or “double dichotomies.” Show and label the skeleton structure of categories and/or 
dimensions (not the actual data) in the table or graph that connects the two variables.

FIGURE E.18.1.1
Relationship between Variable Y and Variable X in 
11 persons.. A significant correlation was found 
(y = 1.07x + 0.02, r = 0.79, 2P < 0.01).
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FIGURE E.18.1.2
Data and regression analysis for relationship of Variable W vs. Variable V. Variable W was appraised as a logarithm because  
of an “uneven distribution.”

2

1

0

-1
20 30

Variable V

In
 (V

ar
ia

bl
e 

W
)

40 50 60

y = 0.04 x - 0.91

r = 0.55

p < 0.001

© 2002 by Chapman & Hall/CRC 



19
Evaluating Trends

CONTENTS
19.1 Linear Model of Regression

19.1.1 Regression Coefficient
19.1.2 The “Other” Regression Line
19.1.3 Correlation and Standardized Regression
19.1.4 Alternative Approaches

19.2 Accomplishments in Estimation
19.2.1 Components of Estimations
19.2.2 Sum of Partitioned Variance
19.2.3 r2 and Proportionate Reduction of Variance
19.2.4 Interpretation of r2

19.2.5 F Ratio of Mean Variances
19.3 Indications of Trend

19.3.1 Magnitude of b
19.3.2 Standardized Regression Coefficient
19.3.3 “Quantitative Significance” for r

19.4 Stochastic Procedures
19.4.1 P Values
19.4.2 Confidence Intervals

19.5 Pragmatic Applications and Problems
19.5.1 “Screening” Tests for Trend
19.5.2 Predictive Equations
19.5.3 Other Applications

19.6 Common Abuses
19.6.1 Stochastic Distortions
19.6.2 Checks for Linear Nonconformity of Quantified Trends
19.6.3 Potential Influence of Outliers
19.6.4 Causal Implications
19.6.5 Additional “Sins”

19.7 Other Trends
References
Appendix: Additional Formulas and Proofs for Assertions
A.19.1 Sr = Σ  is a minimum when b = Sxy/Sxx
A.19.2 a =
A.19.3 Standardized Regression Equation is
A.19.4 Degrees of Freedom for
A.19.5 Parametric Variances of Regression Line

A.19.5.1 Variance of σy·x for
A.19.5.2 Variance of the Slope β

A.19.6 Critical Ratio for t or Z Test on b or r
A.19.7 Confidence Intervals for r and b
A.19.8 Confidence Interval for Individual Points
A.19.9 Confidence Interval for Intercept
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A.19.10 Comparison of Two Regression Lines
A.19.11 Transformations of r
Exercises

Like any set of strategic principles, the estimations and covariations discussed in Chapter 18 need 
operational methods to obtain specific results and to evaluate the accomplishments. This chapter is 
devoted to the most commonly used “classical” methods that produce regression and correlation analyses 
for bi-dimensional data.

The first four main sections of the chapter contain many statistical concepts and indexes that “set the 
stage” before the pragmatic “show” of applications and abuses arrives in Sections 5 and 6. The lengthy 
discourse is justified because everything previously discussed in the text (for one and two groups) and 
almost everything that follows (for more complex statistical activities later and even for multivariable 
analyses) can be regarded as extensions of the basic principles used for correlation and regression. 

19.1 Linear Model of Regression

Anyone who has seen straight-line graphs for expressing the data of physics or chemistry will be 
immediately familiar with using the slope of the line as an index of a targeted relationship. If Y depends 
on X, and if the straight line is expressed as Y =    a + bX, the slope of the line is b. If Y tends to rise 
as X rises, the line will slope upward and b will be positive; if Y tends to fall as X rises, the line will 
slope downward and b will be negative. The steeper the slope, the greater will be the absolute magnitude 
of b, and the stronger the relationship. If the line is essentially horizontal, showing no substantially 
upward or downward slope, b will be close to zero, suggesting that Y has little or no relationship to X.

When this same principle is used in bivariate analyses, we first make the assumption that X and Y 
have a rectilinear relationship, and we then find the slope of the straight line that best fits the data. There 
will actually be two possible lines: one in which Y depends on X, and the other in which X depends on Y.

19.1.1 Regression Coefficient

If Y depends on X, the line expressed as

represents the regression of Y on X. The  estimates the value of Y that lies on the line for each 
observed value of Xi . The Y i  symbol, without the hat, represents the corresponding observed value in 
the data.

As shown later (in Appendix A.19.2) the value of the intercept, a, is calculated as . Accord-
ingly, the line is regularly written in the form of deviations as

[19.1]

When  Therefore, the line always passes through the mean of the two variables. When 
 and so the line intersects the y-axis at the intercept value of a. The slope of 

the line, b, is called the regression coefficient.

19.1.1.1 Method of Calculation  — Of the various approaches that might be used for deter-
mining the appropriate values of a and b for the data, the traditional and still most popular strategy is 
the “principle of least squares.” According to this principle, b is chosen to give the smallest possible 
(i.e., the “least”) value to the quantity . Each  value represents the residual deviation 
between the observed Yi and the estimated ; and the goal is to minimize the sum of squares for the 
residual deviations. With the symbol r (for regression or residual), this sum is .

Ŷi a bXi+=
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Ŷi Y b Xi X–( )=–
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The desired minimization of squared deviations in S r occurs when

[19.2]

A proof of this assertion is given in Appendix 19.1; and the proof in Appendix 19.2 shows that as soon
as we know b, we can determine

[19.3]

Consequently, for the data in Table 18.5, where Sxy = 81.13 and Sxx = 52.88, we can calculate b =
81.13/52.88 = 1.53; and with =    66.13 and = 4.88, we find that a = 66.13 − (1.53) (4.88) = 58.64.

The regression coefficient, b, has an intuitively appealing construction. As the covariance of the XY
values, Sxy /n shows the way that the two variables change simultaneously. As the variance of the X
values, Sxx /n shows the changes that occur in X alone. When Sxy /n is divided by Sxx /n to form Sxy /Sxx,
we would expect to index the changes that occur in Y as changes occur in X. This index is exactly what
is calculated as the slope of the line. (The same Sxy /Sxx value would emerge if each divisor for the group
values were n − 1 rather than n.)

19.1.1.2 Expression and Graph of Regression Line — As soon as b and a are found, we
can immediately draw the regression line on a graph. Equation [19.1] shows that the line passes
through the point ( ); and when Xi = 0, the line goes through (0, a). To draw the line, these two
points are located and connected on the graph.

Thus, the regression line for Y on X in
the da ta of Tab le 18 .5 would  be

The line could promptly be
drawn in Figure 19.1 by connecting the points
(0, 58.64) and the bivariate mean, (4.88, 66.13).
The regression coefficient indicates that Y rises
by a factor of 1.53 for each unit of rise in X.

19.1.1.3 Calculating Estimates of  — 
After the equation is established for = 58.64
+ 1.53 Xi , each estimate of can be determined
for the corresponding Xi , as shown in Table 19.1.
The deviations of each Yi value from the regres-
sion line can also be determined (if desired) as

19.1.2 The “Other” Regression Line

The foregoing calculations were based on the
assumption that Y depended on X. The other
assumption, i.e., that X depends on Y, would pro-
duce an analogous set of calculations for the line

It would have suitably different values for b′, which is the regression coefficient of X on Y, and for a′,
which is the X-intercept when Yi = 0. The “other” straight line would be expressed as

and the best-fitting line would occur when b′ = Sxy/Syy, with a′ =

b Sxy

Sxx
-------=

a Y bX–=

Y X

X  Y,

FIGURE 19.1
The two possible regression lines for the data points in
Table 18.5.
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For the data of Table 18.5, the calculations would produce b′ = Sxy/Syy =  81.13/3580.88 = .0227 and
a′ = 4.88 − (.0227)(66.13) = 3.38. The “other” line for the regression of X on Y would be expressed as

it passes through the points (3.38, 0) and (4.88, 66.13), as shown in Figure 19.1.

19.1.3 Correlation and Standardized Regression

The formulas for the two regression coefficients, b and b′, demonstrate the remarkable property of the 
correlation coefficient noted in Section 18.3.1.4. To be suitably nondependent or interdependent, the 
correlation coefficient must get to a value that lies between the two “dependent” regression coefficients.
It does so by becoming a “geometric mean,” taking the square root of their product.

Thus,

[19.4]

This attribute of the correlation coefficient also indicates an important feature of its structure. When
the co-deviations were standardized to form the correlation coefficient, the idea of a straight line was
not invoked or even mentioned. Nevertheless, as shown in Formula [19.4], the correlation coefficient
involves straight-line reasoning, because it represents the geometric mean of slopes for the two straight
lines that would best fit the bivariate relationship. For the data in Table 18.5,

r =

The correlation coefficient also has another important attribute. Like the covariance, a regression
coefficient relies on the raw values in which the data were expressed. Thus, if time is cited in days rather
than months, or temperature in Fahrenheit rather than Celsius scales, the corresponding regression
coefficient will be substantially altered, even though the basic relationship remains unchanged. For this
reason, a regression coefficient is best interpreted when expressed in a standardized form that is dimen -
sion-free. The standardized regression coefficient can be obtained by working with the Z-score stan-
dardized values of Y and X. The algebraic activity to demonstrate this process is shown in Appendix
19.3, and the result is pleasing. Regardless of whether Y is regressed on X, or vice versa, the standardized
regression coefficient is the same: it is r.

In other words, r is not just the correlation coefficient; it is also the “standardized” regression coefficient
when either of the two regression lines is expressed in standard-deviation units.

19.1.4 Alternative Approaches

The “least squares” method for getting the values of a and b for the regression line is traditional, well
known, straightforward, and easy to understand. It has several potential problems, however, that can
become important in diverse circumstances, and particularly when an analogous linear model and method

TABLE 19.1

Estimated Values of  and Deviations around the Regression Line for
Data in Table 18.5

Person

A 1 39 60.17 −21.17
B 2 90 61.70 28.30
C 3 50 63.23 −13.23
D 4 82 64.76 17.24
E 5 43 67.82 −24.82
F 7 95 69.35 25.65
G 8 51 70.88 −19.88
H 8 79 70.88 8.12

Ŷi

Xi Yi Ŷi Yi Ŷi–

X̂i 3.38 .0227Yi ;+=

r Sxy

SxxSyy
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are later used in multiple regression for more than one independent variable. These problems can arise 
because (1) the linear model of regression is aimed at best fit, not best trend; (2) the least squares method 
may not always yield the best fit; and (3) the mean may not be the best central index for expressing 
deviations.

For example, a better fit might sometimes be obtained by minimizing the sum of absolute deviations.  
The median might sometimes be a better central index than the mean for either the squared or absolute  
deviations. A method called maximum likelihood, which is discussed elsewhere,1 might sometimes be 
a better way to find the coefficients, regardless of what is chosen for a central index and expression of 
deviations. Furthermore, when deviations are minimized with the goal of getting a best fit for the 
estimates, the trend expressed by b is merely a secondary by-product of the calculations. Different 
approaches, using resampling or other tactics requiring a computer, might be aimed primarily at finding 
a best coefficient of trend, letting the estimate of fit become a secondary product.

The focus on best fit rather than best trend is entirely reasonable. The observed Y i values are available 
as “gold standard” references for determining the accuracy of estimates made by  but no analogous 
reference slope is available to appraise accuracy for different selections of b. Consequently, the b that 
emerges from the least-square minimization of  rests on five important assumptions: (1) the 
data for {Xi , Yi} are suitably fit by a straight line; (2) we minimize the sum of squared deviations, 

 rather than other entities, such as the sum of absolute deviations,  (3) the 
deviations are all measured from the means, rather than some other central index, such as the median; 
(4) we use the least-squares rather than other potential methods for determining the best-fitting coeffi-
cients; and (5) the entire process is aimed mainly at getting a best accomplishment for the estimated fit  
rather than the identified trend. In diverse circumstances, particularly for nonlinear patterns of data and 
in multivariable regression, some or all of these assumptions may not be valid or optimal.

Despite these limitations, the linear, least-squares mathematical model for simple regression of two 
variables is relatively “robust” and has been used with great success for many years. The limitations are 
important to remember, however, when “linear” conclusions are drawn from the results, whether in 
simple bivariate or later in multivariable regression. Investigators using the regression process, particu-
larly in clinical epidemiology or public health, are often much more interested in the impact (i.e., trend) 
of the individual independent variables, than in estimating values for the dependent  The quantified 
results for trend can sometimes be deceptive when emerging from a rectilinear model, relying on squared 
deviations from means, that was aimed at estimates, not trends.

Assuming that the least-squares regression method is satisfactory, however, we can proceed to evaluate 
its accomplishments. 

19.2 Accomplishments in Estimation

The descriptive accomplishments of the regression model are expressed with statistical indexes that 
reflect the goals of making estimates and assessing trends. Appraisal of the estimates, discussed in this 
section, will let us know how good a job the model has done in fitting the data. Appraisal of trend, 
considered in Section 19.3, will indicate the impact of the independent variable.

19.2.1 Components of Estimations

As noted earlier (Section 18.3.1.2), improvements in estimation are expressed as a proportion, 

This expression is simple to use if each estimate can be marked right or wrong for categorical data. 
For dimensional data, however, the “errors” are deviations in each  To determine “errors,” these 
deviations are converted to sums of squares and partitioned into several forms of “group variance.” The  

Ŷi ,

Σ Yi Ŷi–( )2

Σ Yi Ŷi–( )2, Σ Yi – Ŷ ;
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Errors with Y Alone Errors Using X–
Errors with Y Alone

--------------------------------------------------------------------------------------------------

Yi Ŷi– .
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partition process is discussed here in detail because the principles are used not only in simple bi-
dimensional regression, but also later in other types of regression and in the procedure called analysis
of variance. The partitions also appear in computer printouts of results for any type of regression analysis.

19.2.1.1 Partition of Deviations — When is estimated from Xi, the original deviation,
 is decomposed into two parts:

[19.5]

Each of these deviations has a name:

• is the original or basic deviation.
• is the residual or “error” deviation from the regression model.
• is the “model” deviation, representing the increment between estimates from the

regression model and from the original basic “model,” which was the mean.

For example, for person A in Tables 18.5 and 19.1, the deviations are −27.13 for  –21.17
for  and −5.96 for . The last value could have been obtained by direct substitution as
60.17 – 66.13 = −5.96, or by subtracting the other two deviations to get –27.13 – (–21.17) = –5.96.

19.2.1.2 Partition of Variance — The three component deviations for each person in the group
can be squared and added to form a group variance (or “sum of squares”), which can be divided by the
appropriate degrees of freedom to produce a mean variance.

The jargon that describes the activities is sometimes confusing because the term variance is regularly
used for the sum of squares of a group variance, rather than for its mean value. Thus, in discussing
“reductions in variance,” the speaker (or writer) will often refer to variance as a group value, such as

 not to a mean value, such as This “abusage” of variance is too common
and convenient to be avoided here, so beware of the distinctions.

19.2.1.2.1 Basic Group Variance. The basic group variance available to be “improved” is

Representing the “indigenous errors” that will be reduced by the subsequent algebraic model, Syy is
often called the sum of squares or corrected sum of squares, particularly in computer printouts.

Because Yi can be chosen from n values, and represents one estimated parameter, the degrees
of freedom in  are n − 1. Thus, the mean value of the original group variance is

The square root of this value is the standard deviation for the {Yi} data.

19.2.1.2.2 Residual (“Error”) Variance. The group variance for symbolized as Sr = 
Σ is often called (with the word “group” omitted) residual variance or error variance. In
Table 19.1, the sum of squared values of  is Sr =   Σ =  3456.41.

As shown in Formula [A.19.1] of Appendix 19.1, S r can also be expressed in values of Sxx, Syy, and 
Sxy (as well as b). The expression is

[19.6]

This formula is conceptually useful for showing that S r consists of a weighted sum of the two group 
variances, Sxx and Syy, minus the weighted covariance, Sxy. The way that S r  reduces variance is via the 
subtracted covariance. Because the “weight” for b is calculated as Syy /Sxx, the expression in [19.6] 
becomes

Ŷi
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[19.7]

which shows that Srr will always be smaller than Syy except when Sxy = 0. Thus, fitting a regression
line should almost always reduce the original “basic” group variance.

Formula [19.7] also shows a “shortcut” method for determining the value of  We
could painstakingly square and add each of the values in Table 19.1 to get Sr = 3456.41. With
the shortcut, we substitute in Formula [19.7] to get Sr = 3580.88 − [(81.13)2 /52.88] = 3456.41.

19.2.1.2.3 Mean Square Error. To calculate a mean for Sr, the value for degrees of freedom is
n – 2. It represents the n degrees of freedom in Yi minus the 2 that are used when two parameters are
estimated for in the bivariate regression. (A further discussion of this idea appears in Appendix
A.19.4.) The residual mean variance when Sr is divided by n − 2 is symbolized as s2

y.x and often called
the “mean square error” or “MSE” in computer printouts. The y.x symbol indicates the regression of Y
on X. The calculation is

[19.8]

The smaller the value of “mean square error,” the better is the fit of the regression line. For the 8 items
of data in Table 19.1, the “mean square error” is 3456.41/6 = 576.0.

Although seldom used to express goodness of fit, the mean square error appears later (Section
19.4.2.2) for determining, if desired, a confidence interval for the estimated values, The concept
becomes particularly important in multivariable analysis, when fit is compared for different regression
models.

19.2.1.2.4 Model Variance. The group variance for the model deviation is usually called model
variance and symbolized as

[19.9]

The value of SM can be found algebraically by substituting  for in Expression
[19.9]. It becomes SM = = b2 Sxx; and because b = Sxy /Sxx,

[19.10]

Substitution of Formula [19.10] into Expression [19.7] produces

[19.11]

which shows that the model variance is the amount by which Syy is reduced to form the residual variance.
If we happen to know the values of Sr and Syy, we can always find the model variance as

[19.12]

From Table 18.5, we know that Syy = 3580.88, and from Table 19.1, we could determine that Sr =
= 3456.41. With this long approach, S M = 3580.88 − 3456.41 = 124.47. Alternatively, we 

could substitute the known values of S xy  and S xx  in Formula [19.10] to get S M = (81.13) 2 / 52.88  =124.47.
The mean of the model variance is used for various complex statistical activities discussed later in 

the text. In the simple bivariate analysis under discussion now, SM has only one degree of freedom, 
calculated from the 2 degrees of freedom in  minus the 1 degree of freedom in . Thus, the mean 
value of S M  in bivariate analysis is SM/1 = SM.

19.2.2 Sum of Partitioned Variance

Another way of rewriting Formulas [19.11] and [19.12] is

[19.13]
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This expression demonstrates an extraordinary feature of the partition of sums of squares in the basic
group variance: the results are arranged in a manner identical to the partition of deviations in Formula
[19.5], where

original deviation =   residual deviation + model deviation

For the group variances in Formula [19.13],

original variance = residual variance + model variance

This remarkable attribute of the partition of variance gave rise to the statistical domain called analysis
of variance, and is also constantly used in multivariable analysis. In the simple regression of two variables,
the attribute is interesting but not especially important. It is responsible, however, for the “analysis-of-
variance table” in which results are usually displayed in computer printouts.

19.2.3 r2 and Proportionate Reduction of Variance

With all of the necessary concepts and symbols now available, we can return to the main focus of the
agenda: expressing the proportionate reduction of group variance as (Errors with Y alone − Errors using
X)/(Errors with Y alone). Because Syy represents the “errors” in estimates with Y alone, and Sr represents
the “errors” in estimates using X, the expression becomes

[19.14]

Because Syy − Sr = SM (Formula [19.12]), the proportionate reduction in group variance is
Because in Formula [19.10], the desired index of proportionate reduction is

[19.15]

which is the square of the correlation coefficient, r.
Sometimes called the coefficient of determination, r2 indicates the proportion of basic group variance

that has been reduced or statistically “explained” by the X variable. Consequently, if we really want to
know about the error reduction accomplished by a bivariate regression line, or by a correlation of two
variables, the best index to examine to indicate the accomplishment is r2 rather than r.

Formula [19.15] also indicates that for a quicker, simpler (or kinder, gentler) calculation of propor-
tionate reduction in group variance, we need not go through the process of finding all the  values
to get Sr =  Instead, we can directly substitute appropriate values in the formula for r2.

In the data for Table 18.5, Sxy  = 81.13, Sxx = 52.88, and S yy =  3580.88. With Formula [19.15], we 
can promptly calculate r2 = (81.13) 2 / [(52.88)(3580.88)]  = .0348. With the longer approach, using values 
of Syy and Sr, the calculated r 2 would be (3580.88 − 3456.41)/3580.88 = 124.47/3580.88 = .0348.

If we knew the value of r2 and Syy but did not know Sr, it could easily be found by expressing Formula 
[19.14] as Syy − Sr = r2 Syy, and so

[19.16]

In this instance, Sr =  (1 − .0348)(3580.88) =  3456.27, which is the same value as before, except for 
minor differences due to rounding.

Proportionate reduction
in group variance

Syy Sr–
Syy
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19.2.4 Interpretation of r2

Formula [19.14] shows that r2 has a maximum value of 1 when Sr =  0, i.e., when the regression line fits 
perfectly, so that  Conversely, r2 has a minimum value of 0 when Syy =  Sr. As noted in 
Formula [19.6], the minimum of 0 occurs when b = 0, implying that the data are fitted with a line parallel 
to the X axis. This line, of course, will be at the level of the mean, 

Many people are surprised to discover that r2 is always smaller than r (except in the rare situations 
where r is either 0 or 1). If a number’s absolute magnitude lies between 0 and 1, the number becomes 
smaller when squared. Thus, if r = .6, r2 = .36; and if r = .2, r2 = .04. Because 0 ð r 2 ð 1, values of r 
that sometimes seem moderately impressive may lose their quantitative stature when considered for their 
job in reducing variance. An apparently large, respectable correlation coefficient, such as .5, has reduced 
only 25% of the variance, and a coefficient of .3 has reduced only 9%.

For the data in Table 18.5, the r2 value of .0348 shows the poor relationship expected from an inspection
of points in Figure 18.8.

19.2.5 F Ratio of Mean Variances

As noted in Section 19.2.3, the r 2 value for proportionate reduction in group variance is  A 
different way of expressing the accomplishments, however, is to form a ratio not from group variances,  
but from the mean of the group variances, S M  and S r .

The result is the F ratio that is famous in the analysis of variance and in multivariable analyses, but 
hardly needed in simple linear regression for two variables. The reason is that in simple regression SM

has only one degree of freedom, so its mean is SM/1 = SM; and Sr has n − 2 degrees of freedom, so its 
mean is Sr /(n − 2). Because Sr = (1 − r2 )Syy, according to Formula [19.16], the ratio of mean variances 
will be

and because r2 = SM/S yy ,

[19.17]

As noted later (Section 19.4), this value of F is identical to the square of the ratio formed when the 
customary value of t or Z is calculated to test stochastic significance for r or r2. Unlike r2, which is easily 
interpreted because it always has a “standard” range from 0 to 1, F can have an extensive spread of 
values. F will approach 0 as r2 approaches 0, but will approach infinity as r2 approaches 1. Therefore, F 
can be (and is) used as a stochastic index, but it has little or no value as a descriptive index of 
accomplishment. 

19.3 Indications of Trend

The co-relations of the two variables are expressed with two descriptive indexes: the regression coeffi-
cient, b, for dependent trend, and the correlation coefficient, r, for interdependent trend.

Σ Yi Ŷi–( )2 0.=
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19.3.1 Magnitude of b

As an index of dependent trend, the magnitude of b demonstrates the direct impact or effect of variable X
on variable Y. Despite the adequacy of this result in a specific research project, the values of b are
difficult to interpret because (as noted earlier in Section 19.1.3) they will vary with different units of
measurement for X and Y. Consequently, b is best evaluated as a dimensionless, standardized value.

19.3.2 Standardized Regression Coefficient

The value of r has a double role in simple linear regression. In addition to being the interdependent
correlation coefficient, r is the standardized value of the slope, whether the regression coefficient refers
to the line regressing Y on X or X on Y.

If you know the values of b, sx, and sy, but do not know r, it can be obtained as

[19.18]

If you know b′ for the regression of X on Y,

[19.19]

Because sx = and sy = the value of sx / sy is Thus, without
calculating sx and sy, we could determine r for the data in Table 18.5 by using the known values of
b = 1.53, Sxx = 52.88, and Syy = 3580.88. The result will be r = 1.53 = .186. This result 
is the same as what was obtained in Section 19.1.3 when r was calculated as . It is also essentially 
identical to what would occur as the square root of r2 = .0348 in Section 19.2.3, yielding  = .1865.

19.3.3 “Quantitative Significance” for r

Almost 50 years ago, J.P. Guilford2 recommended the following arbitrary standards for interpreting r:

A much more lenient set of standards was proposed by another statistical psychologist, J. Cohen.3

After asserting that “the state of development of much of behavioral science is such that not very 
much variance in the dependent variable is predictable,” Cohen set the standards for r at the following 
relatively low levels:

Cohen stated that most investigators in his field would regard values of r =  .50 as being “about as 
high as they come.”

Investigators elsewhere, however, may not be persuaded by Cohen’s “affirmative action” criteria for 
psychologic correlations. Although no formal boundaries have been established for “quantitative signif -
icance” in the magnitude of r 2, most investigators and data analysts agree that a bivariate relationship 

< .20: slight, almost negligible relationship
.20−.40: low correlation; definite but small relationship
.40−.70: moderate correlation; substantial relationship
.70−.90: high correlation; marked relationship

> .90: very high correlation; very dependable relationship

Š.10: small effect
Š.30: medium effect
Š.50: large effect

r bsx/ sy=

r b ′sy/ sx=

Sxx / n 1–( ) Syy / n 1–( ) , Sxx/Syy.

52.88/3580.88
bb ′

. 0348
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is particularly unimpressive if the X variable fails to “explain” (i.e., proportionately reduce) at least 10%
of the basic group variance in Y. Accordingly, r 2 ≥ .10 is often used (but not applied rigidly) as a
boundary for quantitative significance. If r 2 = .10 is about as low as one might accept for a substantial
proportionate reduction in group variance, the corresponding minimum value for a quantitatively sig-
nificant r becomes = .32. The latter level is recommended by Fleiss,4 and is essentially the same
as the value of 0.30-0.32 found by Burnand et al.5 in their study of minimum boundaries used for
quantitative significance in medical-literature publications. [For quantitative effects, Burnand et al. also
regarded r ≥ .45 (reducing 20% of variance) as “substantially significant” and r ≥ .60 as “highly signif-
icant.”]

The selected criteria should always be used flexibly, however, because each result must be interpreted
in context. For example, as noted later in Chapter 20, a correlation coefficient of .94, although strikingly
impressive, may not indicate good agreement for two different methods of measuring the same substance.
Conversely, in such fields as psychology and sociology, where correlation coefficients are often .06, .04,
or lower, a value of r as “high” as .1 (which represents only a 1% reduction of variance) may sometimes
be regarded as indicating a significant relationship.

The important point to bear in mind is not the choice of criteria, but the importance of evaluating the
quantitative magnitude of correlation (r) or “explained variance” (r2) from the descriptive coefficients,
not from the associated P values.

19.4 Stochastic Procedures

In bi-dimensional analysis, the three main descriptive indexes — r2, b, and r — are evaluated stochastically
with parametric procedures. Empirical rearrangements of data could be used but are seldom applied.

For the parametric reasoning, the observed set of n points, {Xi,Yi}, and the regression line,  = a + bXi,
are regarded as a random sample from a larger parametric population whose true regression line is Y =
α + βX. The estimate is done with n − 2 degrees of freedom, for reasons discussed in Appendix A.19.4.
The parametric null hypothesis is that β = 0 (indicating no relationship between X and Y). The P value
reflects the external probability that the observed or an even larger value of b or r would have occurred
by chance under the null hypothesis.

The parametric reasoning and strategy, presented in Appendixes 19.5 and 19.6, show that r2 , b, and
r can all be stochastically tested with exactly the same critical ratio, which is

[19.20]

19.4.1 P Values

The critical ratio in Formula [19.20] is converted to a P value, using Z for large groups, or t, with n – 2
degrees of freedom, for small groups. (Because the squared ratio is the same as F in Formula [19.17],
the Z or t test gives the same result as a stochastic test on F.)

For the data in Table 18.5, t would be calculated from Formula [19.20] as

.186

At six degrees of freedom inTable 7.3, P is between .404 and .553, and is not stochastically significant.We
could therefore decide stochastically that X is essentially unrelated to Y, although the quantitative decision 
of “unrelated” was already made much earlier when we noted the small descriptive values for r2 and r.
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19.4.2 Confidence Intervals

Confidence intervals can be calculated, if desired, for each of the diverse statistical components under
discussion: a, b, r, and even two forms of For most practical purposes, the “confidence” analysis
seldom extends beyond r (or b). Becasue most analyses in medical literature do not go even that far, the
rest of this section is optional reading. It is here if you ever need or want it, or if you have become
exhilarated by the ideas and are ecstatically awaiting more mathematics. If you are surfeited by all of
this stage setting, however, the pragmatic “show” begins in Section 19.5.

19.4.2.1 Confidence Intervals for r and b — The stochastic focus in simple regression is
almost always a P value; and confidence intervals are seldom constructed for r or b. A confidence interval
around r (or b), however, could help support a conclusion that the relationship is not significant.

If the P value exceeds the α boundary (usually set at .05), a stochastically significant relationship has
not been shown. The investigators may then improperly conclude that X and Y are not related, but the
“no-relationship” conclusion requires evidence that a quantitatively significant value was excluded from
the appropriate 95% confidence interval. To get a confidence interval, the easiest approach (See Appendix
19.7) is to calculate the “standard error” of r as

[19.21]

The confidence interval around r is then constructed, using t, as

[19.22]

For the data in Table 18.5, the standard error of r is and t.05,6 = 2.447. The 
confidence interval will be .186 ± (2.447)(.401) = .186 ± .981; it extends from – .795 to the (impossibly) 
high value of 1.167. Although stochastic significance was not demonstrated, we cannot exclude the 
possibility that a quantitatively significant relationship might be present in the “universe” represented 
by this small data set.

To convert the confidence interval to an expression that surrounds the slope b = 1.53, use Formula 
[A.19.7] in the Appendix. The previous confidence interval for r is multiplied by sy /sx, which is 

. The interval would become 8.229[.186 ± .981] = 1.53 ± 8.07; 
and it would go from − 6.54 to 9.60. Note that the 1.53 in this calculation coincides with the value of 
b in these data.

19.4.2.2 Confidence Interval for Estimated Values of  — In published graphs, the esti-
mates made by the regression line are sometimes accompanied by a “confidence band,” which consists 
of two lines showing upper and lower confidence limits along the range of potential variation for the line 
of estimated points,  The drawing always looks peculiar because the lines that form the confidence 
band are not straight. They are convex curves on either side of the regression line, as shown in Figure 19.2.

The reason for this peculiarity is that at an individual location of  the  value of the regression 
line is actually estimating the mean value,  of all the Yi points that may be present at that location. 
Thus, for a series of individuals Yi at location Xi, the mean of the series will be  and

The customary concave “confidence bands” are shown for estimates of the  mean values at each Xi.
For this calculation, mathematical tactics not shown here produce the formula

[19.23]

With a suitably chosen  the confidence interval around each estimated value on the line becomes
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Ŷi .

X̂i, Ŷi
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In Formula [19.23], , and Sxx are all constant, but  enlarges as Xi gets farther from 
the mean in either direction. The enlarging  term produces the symmetrically concave curves, 
which are closest to the regression line at the bivariate mean, 

19.4.2.3 Additional Evaluations — Four additional evaluation procedures, relegated to the 
Appendix, are confidence intervals for individual points and for the intercept, comparisons of two 
regression lines, and transformations of r. 

19.5 Pragmatic Applications and Problems

Regression and correlation coefficients are among the most frequently used indexes in statistics and are  
probably the most commonly abused. This section is concerned with the valuable applications. 
Section 19.6 discusses the abuses.

19.5.1 “Screening” Tests for Trend

Correlation and regression coefficients are commonly used in medical literature as a “screening” (or 
sometimes definitive) test for whether two variables are related and for the average magnitude of the 
trend. If the variables seem to be distinctly related, the investigator can then speculate or do additional 
research about reasons for the relationship.

19.5.1.1 “Physical Examination” for “Abnormalities”  — Before any statistical conclu-
sions are formed from r, b, or P values, the graphical portrait of points should always receive a “physical 
examination.” The goal is to find “abnormalities,” such as distinctly curved patterns or major reversals 
in trend, that may make a straight-line inappropriate for the data. If the points are diffusely spread with  
no obvious pattern as in Figures 18.8 and 18.16, the rectilinear analysis is satisfactory for identifying

FIGURE 19.2
Curved confidence-interval lines for regression line 
showing academic productivity (i.e., papers published 
per person) in relation to total full-time employed staff 
at British universities. [The figure is taken from Chapter 
Reference 6.] TOTAL FULL-TIME EMPLOYED STAFF
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an average trend. In such situations, a poor fitting line may be useless for accurate estimates, but can
be valuable for denoting the average trend in the data, particularly if the analyst does not compare results
in the zones, as suggested in Chapter 18. If the graph shows an obvious curving pattern, however, as in
Figures 18.13 and 18.14, a rectilinear analysis may yield distorted results.

Figure 19.3 gives an excellent example of a published “screening process,” which was especially easy
to do in this instance7 because the graph has points on both the X and Y sides of a (0,0) central axis.
The points do not show an obviously curved pattern; and the straight line seems appropriate, with about
equal numbers of points above it and below it throughout the graph.

After checking that a straight-line is suitable, the analyst can easily determine trend from the calculated
value of r, which is readily obtained from computer programs. Many investigators prefer to cite b as the
main quantitative index of the dependent relationship, but r has the advantage of being standardized,
relatively unaffected by arbitrary units of measurement, and easy to interpret.

19.5.1.2 “Physical Diagnoses” of b or Wrong Lines — Skillful physical examiners can
sometimes make good visual guesses of b without any calculations. One approach is to locate (and
determine the slope of) a line that will have about equal numbers of points above and below it, consistent
with a least squares sum for The visual approach may be tricky, however, if the X or Y
axes have unequal-sized increments produced by logarithmic or other transformations, or if the axes have
been truncated or changed in mid-course. Such axes, however, also provide opportunities for the artist
to place graphic lines improperly and for the error to be diagnosed with simple physical examination.

For example, visual inspection would suggest that the solid line for Group A has been calculated or
drawn incorrectly in Figure 19.4, which shows results of a clinical trial8 intended to find the effects of
recombitant human erythropoietin on the packed cell volume (PCV) and serum erythropoietin (s-EPO)
in patients donating blood before elective surgery. The solid squares are distributed so that about 32 of
them are above the corresponding solid line and only about 11 are below that line.

Furthermore, the corresponding regression line seems to have a wrong intercept. In the line, which is
reported to be log(s-EPO) = −.04(PCV) + 2.72, the customary Y-intercept cannot be checked because
neither axis reaches zero, but the graph shows the X-intercept, where log s-EPO appears to be 0 when
PCV is about 42.5. Inserting the latter value into the stated regression equation produces the disagreeing
result that for PCV = 42.5, log s–EPO = (−.04)(42.5) + 2.72 = 1.02, which is about 1. Therefore,

FIGURE 19.3
Correlation between the vitamin K-induced changes in Ca2+ and hydroxyproline excretion. The straight line was fitted with
a computer program equipped for linear regression calculations and the r value was + 0.437. [Figure and legend taken from
Chapter Reference 7.]
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something must be wrong. (The problem may arise from the artist’s forgetting that the Y axis has a
break between 0 and 1.)

A quick, crude way to check the value of b is to determine the range of X and Y dimensions as
(Xmax – Xmin) and (Ymax − Ymin) and then to estimate b as the ratio of (range of Y)/(range of X). For
example, the solid squares in Figure 19.4 have a Y range from about 1.1 to 2, and an X-range from
about 24 to 40. The crude slope would be −0.9/16 = –.06, which is not far from the stated value of −.04.

19.5.1.3 Taxonomy of Visual Patterns for r — Even with advanced skill in physical diag-
nosis of graphs, most examiners have difficulty anticipating the values of r or r2. The difficulty arises
from having to guess not just b, but also variances in the X and Y axes. Values of r near 0 or 1 are
relatively easy to anticipate if the points have mainly a horizontal spread or a pattern that clearly looks
like a straight line, but visual “diagnosis” is difficult for the intermediate zones between r = .2 and r = .8.

A collection of 10 graphs, excerpted from published medical literature, has been assembled here in
Figures 19.5, 19.6, and 19.7, producing a taxonomy of visual patterns for r values ranging from near 0
to near 1. Visual guesses for r seem relatively easy for the extreme values near 0 and 1, but the zones
between .2 and .8 do not have any obvious quantitative “diagnostic” signs.

Perhaps the main take-home message here is to be wary of any specifically quantitative claims based
on regression and correlation coefficients. If r is big enough and stable, it supports the idea that the two
variables are related on average. If the investigator claims they are closely or linearly related, however,
and if the coefficient for b is offered as a confident prediction of future values, beware of the often
contradictory graphical evidence.

FIGURE 19.4
Relation between log s-EPO and PCV after surgery. Regression line equations: group A (�), log s-EPO = –0.04 × PCV
(%) + 2.72 (r = − 0.76. p = 0.01); all r-HuEPO-treated patients (�), log s-EPO = − 0.01 × PCV (%) + 1.82 (r = − 0.38. p =
0.01). [Figure and legend taken from Chapter Reference 8.]
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19.5.2 Predictive Equations

Although developed to allow Yi to be estimated from Xi, the equation  rarely has a close 
enough fit to be used for individual predictive estimates in most medical research. Such estimates might
be attempted when r ≥ .9, but few analysts would be willing to make specific predictions from the 
extensive variability shown, despite “r = .94,” in the lower right graph of Figure 19.7.

Predictive equations are regularly used for exact estimates, however, when diverse (usually chemical) 
substances are measured with laboratory technology. The magnitude of the measured substance (such 

FIGURE 19.5
Four graphs showing r values from .04 to .42. 
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as a concentration of serum calcium) is usually converted into the magnitude of another entity (such as  
the voltage on a spectrophotometer), and a “calibration curve” is constructed, as shown in Figure 19.8,
for the voltage values at known magnitudes of the substance. If the calibration points produce a closely  
fitting straight line, the equation is then used to estimate the values of future “unknown” substances. 
For pragmatic application, the equation has a reverse biologic orientation. Biologically, the voltage 
readings depend on the concentrations in the serum, but pragmatically, future concentrations will be 
estimated from the voltage readings. Accordingly, the voltages are plotted as the X variable and con-
centrations as Y.

Equations of this type are invaluable in modern laboratories, but are misapplied if the goal is to 
compare measurements of the same substance, such as serum calcium, by two different methods, such 
as flame photometry vs. spectrophotometry. If the analytic aim is to determine agreement rather than 
trend, the best approach is a concordance method described in Chapter 20.

FIGURE 19.6
Two graphs showing r values from .51 to .60.
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19.5.3 Other Applications

Although screening for trend and making predictive estimates are the most common applications, 
regression/correlation procedures can be applied for some of the other goals noted in the next few 
subsections.

FIGURE 19.7
Four graphs showing r values from .68 to .94.

FIGURE 19.8
Relationship of serum calcium concentration 
and voltage values in a chemical measurement 
system. The four points are the known “cali-
bration” values of calcium specimens. The dot-
ted line represents the “relationship” used to 
estimate future values of Y from observed val-
ues of X in unknown specimens.
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19.5.3.1 Summarizing Individual Time Trends — Each person’s individual data (in a group 
of people) may be a series of measurements over a period of time. For example, the response to 
cholesterol-lowering treatment may comprise serum cholesterol measurements at baseline and at four 
time intervals thereafter. To summarize individual results, a regression equation can be fitted for 
each person’s trend over time; and the individual regression coefficients can represent the main 
“outcome” variable.

19.5.3.2 “Smoothing” Vital Statistics Rates  — The annual rates of incidence (or preva-
lence) in vital statistics phenomena (such as birth, death, or occurrence of disease) often show oscillations 
from one year to the next. To avoid these oscillations, the analysts may try to “smooth the curve” by 
using a “running average,” in which each year’s value is calculated as a mean of values for the current,  
preceding, and following year. Thus, the incidence rate for 1992 might be an average of the rates for 
1991, 1992, and 1993. In an alternative approach, a lengthy (or the entire) sequence of time points is 
“smoothed” by conversion to a regression line.

19.5.3.3 Curvilinear and Quadratic Regression — If the plot of points is obviously curved, 
the data analyst can try to preserve a “linear” format by transforming the X (or Y) variable into 
expressions such as log X or 1/X. The regression line is then constructed as =    a + b log Xi or 
=  a + b(1/X i ).

In other situations, however, X may be retained without transformation, but expressed in a frankly 
curvilinear polynomial such as 

The most common polynomial format, called quadratic regression, adds only one extra quadratic term, 
X2, as =    a + bX + cX2.

A quick screening “diagnosis” for the shape of the relationship can be shown by the ratio of the 
standard deviation (or its square) to the mean of the subset of Yi values in equally spaced intervals of 
Xi. The regression model is linear if this ratio remains about constant, and log linear (i.e., log Y = a + bX) 
if the ratio progressively increases. If the square of the standard deviation increases in proportion to the  
mean, the regression model is quadratic (i.e., Y = a + bX + cX2).

19.5.3.4 Time Series and Financial Applications — Some bivariate analyses are intended 
to show the “secular” changes during calendar time of a dependent variable, such as the population or 
economic status of a geographic region. The statistical goal might be satisfied with a best-fitting straight 
line for population size as Y variable and for time as the X variable. The patterns of data, however, may 
form a curve with wavy or irregular shapes that are not well fitted with a straight line; or the data analyst 
may want to make particularly accurate predictions for the future, based on what was noted in the past.

The association may therefore be described not with a crude straight-line model, but with a polynomial 
or other complicated algebraic expression called a time series. The relationship is still bivariate, but the 
complex expression (with t for time) may be something like = a + bt + ct2 + dt3 + …. Time-series 
relationships are commonly used in economics to help predict stock-market prices or in meteorology to  
forecast weather. Having seldom been usefully employed in clinical or epidemiologic activities, time-
series analysis will not be further discussed here.

In financial enclaves, an ordinary linear regression model, Y =    a + bX, is sometimes used to 
express the performance of individual stocks during a period of time, such as a month or year. In this  
model, Y represents daily prices of the stock and X represents the corresponding values of a market 
index, such as the Dow-Jones average. The b coefficient, called beta, indicates the stock’s movement 
in relation to the market (or “how much the market drives the stock”), but the a intercept, called 
alpha, indicates unique attributes of the stock itself. According to the theory, alpha should equal zero  
on average, but stocks with a high positive alpha are believed to have a high likelihood of going up 
rapidly in price. (The standard deviation of the Y values is sometimes used as an index of “volatility.”) 

Ŷi Ŷi

Ŷi a bX cX2 dX3 …+ + + +=

Ŷi

Ŷi
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19.6 Common Abuses

The four most common types of abuse for correlation and/or regression procedures are: (1) drawing 
“significant” conclusions from stochastic P values, while ignoring the actual quantitative significance 
of the relationship; (2) failure to check whether a straight-line model is suitable for the actual shape of 
the relationship; (3) ignoring the potential influence of outliers; and (4) concluding that a causal 
relationship has been shown when high values of correlation indicate a strong association.

19.6.1 Stochastic Distortions

Formula [19.20] for the stochastic t value can be re-written as

[19.24]

In this formula, the  ratio is analogous to a standardized increment. Its changing value for 
different values of r is shown in Table 19.2. On the left side of the table, with small values of r (below
.4), the value of 1 − r2 and the enlarged  will be close to 1, and so the ratio of  will 
be essentially r. On the right side of the table, as r enlarges above .5, the ratio becomes strikingly larger  
than r.

To get across the stochastic boundary for “significance” at P ð .05, t must be at least 2. (The 
requirement is somewhat higher with small group sizes.) Because the ratio exceeds 2 when r ≥ .9, 
this magnitude of r will almost always be stochastically significant. At levels of r ≥ .5, relatively small 
values of n will make the product high enough when the ratio of r/  is multiplied by .
The most striking effect occurs at small values of r, however, where sufficiently large group sizes for 
n will always produce a t value that exceeds 2. The most trivial value of r can thus become stochastically 
significant if n is big enough.

For example, with a negligibly small r value of .01, the P value will be < .05 if the sample size is 
huge, such as 40,000, because the value of t calculated with the foregoing formula will be

When suitably converted, Formula [19.24] shows that

[19.25]

TABLE 19.2

Values of r, 1− r2, and r/

r 1 −  r2 r 1 −  r2

.05 .9975 .05 .5 .75 .58

.1 .99 .10 .6 .64 .75

.15 .9975 .15 .7 .51 .98

.2 .96 .20 .8 .36 1.3

.25 .9375 .26 .85 .2775 1.6

.3 .91 .31 .9 .19 2.1

.4 .9165 .44 .95 .0975 3.0

t r

1 r2–
-----------------

 
 
 
 

n 2–=

r/ 1 r2–

1 r2– r/ 1 r2–( )

1 r2–

r/ 1 r2– r/ 1 r2–

1 r2– n 2–

t . 01 39 998,
1 .0001–

------------------------------ 2.00= =

n t2 1 r2–( )/ r2 2+=

© 2002 by Chapman & Hall/CRC 



Formula [19.25] can promptly show the group sizes that will transform r values into stochastic signifi-
cance. Using t = 2 as a rough guide, the required value will be n = [4(l – r2)/r2] + 2. Table 19.3 shows
the values of n needed to get t ≥ 2 for different values of r. For example, a correlation coefficient of .7,
which has reduced less than half of the original group variance (r2 = .49), will be stochastically significant
if obtained with as few as 7 people. (One more person will actually be required here because t must
exceed 2 as group sizes become very small. In this instance, t would have to be about 2.37, rather than
2; and Formula [19.25] would produce n = 7.85 rather than 7.) An r value of .2, which has reduced only
4% of the original variance, will be stochastically significant if the group size exceeds 98.

For this reason, the associated P value is the worst way to determine whether a correlation coefficient
is quantitatively significant. Nevertheless, either to avoid making a scientific judgment about the mag-
nitude of r or to escape the distressing implications of low values for r (or r2 ), many investigators use
only a stochastic calculation of P to claim that an association is “significant.” This pernicious abuse of
statistics is abetted by reviewers and editors who allow the authors to “get away with it.”

In 1978, Eugene A. Stead, a medical academician well known9 for maintaining “common sense”
in the midst of technologic onslaughts, was reproached, as the contemporary editor of Circulation, by
the authors10 of a paper in which “information regarding statistical significance of certain [r correlation
coefficients] ... was deleted.” Stead defended11 the editorial deletion by saying that “the P value is
frequently misleading [and that] … when the number of observations is large ... a relationship between
two variables at the mathematical level does not necessarily translate into a useful relationship at the
patient care level.”

This type of intellectual vigor seems to be disappearing among editors today. For example, in
Figure 19.9, which is reproduced exactly as published,12 the investigators showed “three data points” for
each of “63 men … who had stable angina pectoris … and a positive exercise test with ST-segment
changes indicative of ischemia.” Without citing a value of r or r2, the authors concluded that “For this
range of carboxyhemoglobin values, there was a decrease of approximately 3.9 percent in the length of
time to the ST end point for every 1 percent increase in the carboxyhemoglobin level.”

You can decide for yourself whether the claimed precision of the linear relationship is really supported
by the points in Figure 19.9. The decision can be helped by checking in a table of t/P values to find that
the highly impressive “P ≤ 0.0001” requires a value of t ≥ 4. Inserting n = 3 × 63 = 169 into Formula 
[19.25] produces 169 = [16(1 − r2)/r2] + 2, which can be solved to show that 11.44r 2 =  1. Consequently, 
an r 2  value as small as 1/11.44, or about .09, could be associated with the “impressive” findings and 
subsequent quantitative precision of the relationship claimed by the investigators. 

The abuse of P values is now so thoroughly entrenched that many published reports do not even show 
values of r, b, or the regression equation. They are replaced entirely by P values. The P values themselves 
are also sometimes replaced by “stars” (usually asterisks) in which * represents < .05, ** is < .01, and 
*** is < .001. The starry results, showing neither descriptive values nor the actual P values, may then 
appear in a celestial table that is bereft of any scientific evidence of quantitative effect. [The use of stars 
to indicate P values seems to have been introduced,* in a textbook discussion of regression methods, 
by the distinguished statisticians, G.W. Snedecor and W.G. Cochran.13]

Because P values are so affected by group size, they should never alone be trusted for decisions about  
“significance.” A sole reliance on P values may also substantially distort decisions about “nonsignifi-
cance.” If the P value is >.05 because only four patients were studied, a strong correlation coefficient, 
as high as .8, might be dismissed as “nonsignificant” (without confirmation by a confidence interval). 

TABLE 19.3

Values of n Required for Stochastic Significance (P ð  .05) at Cited Value of r 

r .03 .05 .1 .2 .3 .4 .5 .6 .7
r2 .0009 .0025 .01 .04 .09 .16 .25 .36 .49
n 4443 1598 398 98 43 23 14 10 7

* The introduction probably came in the 5th edition in 1956, as the tactic is not mentioned in the 1st edition (written by 
Snedecor alone) in 1937, or in the 4th edition in 1946.
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19.6.2 Checks for Linear Nonconformity of Quantified Trends

When b and r are determined, the bivariate pattern is fitted with a straight line whose slope is constant and
unchanging throughout all zones of the data. Nevertheless, as shown in Chapter 18, some data sets will not
be suitably analyzed with a straight line. For other data sets, as in the right side of Figure 18.13, a
straight line is obviously the wrong model. It will produce a fallacious result, with r and b near 0,
suggesting no relationship, although the two variables actually have a close parabolic relationship. In
yet other situations, as in the middle of Figure 18.13, a straight line will produce a reasonably good fit,
but the slope of the line will be misleading. It will be too high in the lower and upper ends of the data
and too low in the center. (In other situations, such as Figure 19.9, the appropriate regression line may
not be curved, but may fit so poorly that any claims for a precise relationship must be doubted.)

19.6.2.1 Quantitative Impact of “Risk Factors” — Checking the fit of the line becomes
important when a quantified trend in “risk factors” is claimed on the basis of coefficients obtained with
various forms of regression analyses. The customary statement is something like “You gain 3.4 years
of life for every fall of 5.6 units in substance X.” Because the claims usually come from data in which
the outcome event is a 0/1 binary variable for life or death, the regression lines (or “surfaces” in
multivariable analysis) cannot be expected to have the close fit that might be anticipated for dimensional
measurements of biochemical or physiologic variables.

Therefore, before any quantitative contentions, the analyst should first determine whether the data
have curved patterns and whether a rectilinear regression model is appropriate. As noted by Concato et
al.,14 however, many published quantitative claims have not been checked for linear conformity between
the regression model and the data.

19.6.2.2 Plots of Residual Values vs. Xi  — A conventional mathematical method of doing
this check is to examine the plot of the residual values,  against Xi. If a straight line gives a
proper fit, the plot of residuals should show points that vary randomly around 0 as X goes from its

FIGURE 19.9
Dose-Response Relation between the Percentage Change in the Length of Time of the Threshold Ischemic ST-Segment
Change (ST End Point) and the Carboxyhemoglobin (COHb) Level after Exercise. Each subject is represented by three
data points. The regression shown represents the mean slope of the individual regressions for each subject when y = 3.9
(percentage of COHb) + 8.0 (P ð 0.0001). [Figure and legend taken from Chapter Reference 12.]
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lowest to highest values. If the residuals show a pattern — i.e., contiguous zones where all of the values
are > 0 or < 0 — the data have a curved shape, and the straight line is an inappropriate model that 
produces a misfit.

This method of checking residuals is commonly used in multivariable analysis. In simple bivariate
analysis, however, a much simpler and easier option is to inspect the graph of the original points for Yi
vs. X i. This simple graph is always easy to plot, and a computer will do it, if asked. If the points show
a clear non-rectilinear pattern — as in the middle and right side of Figure 18.13 — the straight line is a
poor or potentially unsatisfactory model. If the points show a diverse scatter with no evident pattern, as
in Figure 18.16, and if all you want to know is the average trend in their relationship, a straight line
can be satisfactory.

The bivariate graph of points should always be drawn and inspected, and it should preferably be 
displayed in the published report. For drawing conclusions about a bi-dimensional relationship, a single
graphic picture can be worth more than 1000 “words” of statistical calculations.

19.6.2.3 Anscombe’s “Quartet” — F. J. Anscombe (Professor Emeritus of Statistics at Yale
University) constructed15 an ingenious illustration of the problems inherent in doing regressions and
interpreting coefficients without carefully examining the graph of the data. He prepared four different
sets of bivariate data that all had the same summary values. For each set of data, n = 11,  = 9.0,  =
7.5, Sxx = 110.0, Syy =  41.25, and Sxy =    55.01. Each set of data also had the same Sr = 13.75, SM =
27.50, r2 =   .667, and the same regression line: . From this striking similarity in all
pertinent features of the univariate and bivariate statistical summaries, the graphs for the four sets of
data could be expected to look quite similar. Nevertheless, the four data sets had the disparate patterns
shown in Figure 19.10. Whenever you think that a statistical summary has told you everything, and
that you need not bother looking at the graphical portrait, remember the cacophonous music of
“Anscombe’s quartet”!

19.6.3 Potential Influence of Outliers

In univariate analysis, outlier points could distort the effectiveness with which a mean and standard
deviation represented the associated data. In the conventional (“parametric”) form of bivariate analysis
under discussion here, the adverse effects can be particularly pernicious. The outlier can greatly alter
the covariance as well as the variances used in the calculations.

For example, consider the eleven points of the D graph in “Anscombe’s Quartet” (Figure 19.10). The
first ten points all lie on a vertical straight line that shows no relationship between X and Y. The eleventh  
point, however, is an outlier. It may represent an error in measurement, a person who does not belong 
in the group, or someone who is there quite properly. Regardless of the substantive propriety of the 
outlier, however, it will have the profound statistical impact shown in the summary coefficients and the 
linear graph.

X Y

Ŷi 3 0.5Xi+=
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19.6.3.1 Published Illustration of 
Problem — If you believe

that Anscombe’s imagination was too wild,
and that this type of configuration occurs too
rarely to be regarded as a serious problem,
consider Figure 19.11, which achieved publi-
cation in a prominent medical journal.16 The
investigators did not succeed in exactly repli-
cating Anscombe’s D pattern, but they cer-
tainly came close.

The best way to avoid such problems is to
look at the data. If you see a pattern such as D
in Figure 19.10 or the graph in Figure 19.11, do
not try to summarize the results with conven-
tional regression and correlation coefficients.

19.6.3.2 Another Published 
Illustration — A particularly

dramatic example of the outlier problem
appeared earlier in Figure 19.2. The data in 
the graph (and in the study itself) had been
used to conclude that “large science depart-
ments ... are more productive than small ones” 
in British universities. With that premise, gov-
ernment agencies were thinking about closing
small science departments. Two physicists at Sussex University, however, pointed out6 that the main
effect in Figure 19.2 is produced by the two outlier points on the far right of the graph. These two
points happen to be Oxford and Cambridge Universities, which have other atypical attributes. If the
Oxford and Cambridge points are removed from the data, the effect of department size on productivity

FIGURE 19.10
The four performers in “Anscombe’s Quartet.” (For details, see text.) [Figure and legend taken from Chapter Reference 15.]
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FIGURE 19.11
Relation of the baroreflex sensitivity during ACE inhibition
(vertical axis) to the baseline sensitivity (horizontal axis). [Fig-
ure and legend taken from Chapter Reference 16.]
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vanishes. Outraged about decisions based on this type of “spurious correlation,” one of the physicists 
said, “Who’s going to have a policy where you start closing university departments on the basis of a 
graph that’s really fuzzy … [and] easily destroyed by a very simple commonsense thing [i.e., removing 
the two outlier points].”

In ordinary bivariate regression, the effects of outliers can be reduced by transferring from a dimen-
sional to an ordinal analysis, as discussed in Chapter 27, using the ranks of the data rather than absolute 
values. (In multivariable analysis, the effect of outliers can be examined with various “influence func-
tions.” Some of them use the jackknife method of removing one member at a time, recalculating the 
regression coefficients, and seeing how extensively they vary.)

19.6.4 Causal Implications

Scientifically oriented readers probably need no reminder of the old statistical cliché that correlation 
does not imply causation. No matter how stochastically and quantitatively significant a correlation 
coefficient may be, its magnitude does not imply that the association is a causal relationship.

Most thoughtful scientists today are aware of this distinction, but it is still often disregarded during 
some of the etiologically infatuated reasoning that may occur during analyses of alleged causes of chronic 
disease. The attendant biases, which are beyond the scope of the discussion here, can distort the true 
value of correlation coefficients and lead to erroneous conclusions about etiology.

An important point to bear in mind, however, is that diverse types of strong associations can be found  
during various types of “dredging” from the computerized databases that are now widely available. If 
you cannot dredge the abundant data to find evidence associating anything that you want to incriminate  
and any effect that it allegedly produces, either you or your computer programmer is not very talented.  
For example, the annual rise in incidence rates for AIDS in the U.S. can be strongly correlated with 
increases in the annual sales of video cassette recorders. Yet no one has proposed — as of now — that 
the two events are causally related. A few years ago, however, a distinct association was found17 (in a 
case-control study) between AIDS and antecedent usage of amyl nitrite “poppers.” A chemical etiology 
was strongly proposed for AIDS before the causal virus was demonstrated, and before the role of amyl  
nitrite “poppers” was found to be correlated with the sexual activity that transmitted the virus.18

 A well-known example of the fallacy that correlation implies causation is shown in Figure 19.12,
where the population of Oldenburg during the years 1930–36 was plotted against the number of storks 
observed flying in the city each year. 19  What better evidence could one want to prove that storks bring  
babies?

19.6.5 Additional “Sins”

Beyond all the problems just cited, many other opportunities are available to abuse the correla-
tion/regression process. Of the many candidate “sins,” only five more will be listed here.

19.6.5.1 Retroactive Demarcations — In certain studies the regression line shows a 
“dose–response” or “exposure–response” relationship when different levels of response are plotted 
against increasing magnitudes of a pharmaceutical agent or a “risk factor.” If the regression line is not 
impressively “significant,” however, the investigator may demarcate the dose–exposure variable into zones 
and then search for “significance” in pairwise (or other) comparisons of results in the demarcated zones.

If the demarcation is announced beforehand or if it depends on quantiles that are determined inherently 
by the data, the procedure is scientifically “legitimate.” On the other hand, if the investigator makes 
arbitrary choices after inspecting the pattern of the data, the retroactive demarcations have dubious 
scientific credibility. They can sometimes be found, however, in studies where a binary variable for 
“exposure” is neither defined before the analysis nor stated in the text of the published report. Instead, 
after doing regression analysis for results of different levels of exposure, the investigators may present 
an odds ratio for response to a yes/no binary demarcation of “exposure.” Distressing examples of these 
retroactive demarcations have been noted 20  in reports of the alleged relationship between endometrial 
cancer and postmenopausal use of estrogen.
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19.6.5.2 Comparing Subsequent vs. Baseline Values — If variable X represents a person’s
baseline value at time 1 and if another value of X is obtained for each person at a later time 2, the
investigator may plot a graph showing the subsequent values as Y and the baseline values as X. If d is
each person’s change in values, the graph is really a plot of (X + d) vs. X, and a strong correlation with
the baseline values of X is inevitable.

Back in Chapter 7, this type of correlation was the reason for examining change in a single incremental
group of (after − before) values, rather than comparing two groups of values. In addition to the previously
cited impropriety of the graphical line, this problem occurred in the data reported in Figure 19.11. The
investigators checked at least nine other variables (plasma renin, noradrenaline, vasopressin, etc.) that
might affect baroreflex sensitivity in the displayed group, but concluded that “the only significant
correlation (p < 0.005) was found between baroreflex sensitivity before and during ACE inhibition.”

A separate biologic correlation is often present, of course, between the amount of change in a variable
and the initial level. An example of such a relationship is shown with the decreasing exponential curves
that depict survival rates in a cohort or levels of radioactive decay over time. The relationship between
change and initial levels is called the “Law of the initial value” and its appropriate analytic management
is often an improperly managed challenge in biomedical data.21

19.6.5.3 Extrapolation beyond Observed Range — Any regression line — whether rectilin-
ear or curved—is constructed to fit the observed values of points, and the estimates are valid only within
that range. For example, in most systems of laboratory measurement, voltages can be rectilinearly related
to chemical concentrations only within a limited range of values. If the concentration becomes too high
or too low, the laboratory will transfer to a different system of measurement (and a different linear
relationship with voltage).

The problem of beyond-range extrapolation is particularly likely to occur when the X-variable is time,
and when a future status is predicted from extrapolations beyond the most recent date in the regression
line. The annals of errors in the biomedical or social sciences contain many wrong predictions about

FIGURE 19.12
A plot of the population of Oldenburg at the end of each year against the number of storks observed in thatyear, 1930–1936.
[Figure and legend taken from Chapter Reference 19.]
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populations, economic events, global temperatures, etc. — all derived from beyond-range extrapolation
of a regression equation.

19.6.5.4Inappropriate 
Combinations — Data from dif-
ferent studies are regularly aggre-
gated for analysis as a single group
during meta-analyses or other forms
of analytic “pooling.” One require-
ment for pooling is that the individ-
u a l r e su l t s b e r e aso n ab l y
homogeneous. Testing for “homoge-
neity” is often neglected, however,
because its definition may be incon-
sistent for statistical components or
nonexistent for biologic distinctions.
Figure 19.13 displays a dramatic
example of the error that can occur 
when the directions of individual
group regressions are ignored dur-
ing a combined analysis of the
groups. Each of the individual
groups shows a distinct negative
association, but the aggregate
shows a strong trend in the opposite

(positive) direction.

19.6.5.5 Inappropriate Fits — Almost any collection of data can be fitted with a polynomial
or “time series” regression line expressed by Yi =  a + bX + cX2 + dX3 +…. Even if the data have no
resemblance to a linear structure, the computer can find coefficients for a line that offers “best fit” for
the collection of scattered points. Such an accomplishment appears in Figure 19.14, which shows total
results for repeated measurements of a cohort of 74 patients receiving antiretroviral therapy after acute
or recent HIV−1 seroconversion. The authors concluded that the line in Figure 19.14 “shows the rapid
decrease in plasma levels of HIV−1 RNA over time” and that “after 117 days after infection, an inflection
point was reached at which HIV-1 levels stopped decreasing and gradually increased.” You can decide
for yourself whether this interpretation is justified for the data fitted by the line.

19.7 Other Trends

Despite substantial length, the discussion in this chapter has covered only the bivariate estimates and
trends for two variables that are each dimensional. As noted in Chapter 18, however, many more statistical
indexes are needed for trends in relationships that are not bi-dimensional. After this long bolus of reading,
you will be pleased to know that most of the additional indexes seldom appear in medical literature,
and that their discussion, deferred until Chapter 27, will emphasize only a few that you may be likely
to encounter. The topics omitted now and included in Chapter 27are the following: bi-ordinal coefficients,
such as Spearman’s rho and Kendall’s tau; the expression of linear trend in an ordinal array of proportions;
binary and nominal coefficients, such as φ; and other indexes of trend in  or  two-way tables
(where r ≥ 3 and c ≥ 3).

FIGURE 19.13
Misleading aggregate regression line for individual results 
in four groups.
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Appendix  
Additional Formulas and Proofs for Assertions

A.19.1 Sr = Σ  is a minimum when b = Sxy /Sxx

From Equation [19.1], . Transposing  and subtracting Yi from both sides, we get 
 Because S r = Σ  the squaring and summing produces S r =

Σ  Substituting the appropriate symbols, this becomes

[A.19.1]

where Syy, Sxy, and Sxx are constant for any individual group of data. To find the minimum value, 
differentiate Sr with respect to b, set the result to 0, and solve. Thus, δSr / δb =  –2Sxy + 2bSxx = 0, and 
so b =    Sxy/Sxx.

FIGURE 19.14
Scatterplot of plasma HIV-1 RNA levels (×103/mL) and median plasma HIV-1 RNA levels in the cohort from the time of 
seroconversion. [Figure and legend taken from Chapter Reference 22.]
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A.19.2 a =

Starting with  = a + bXi, subtract Yi from both sides, then square both sides, and take the sums to 
produce  When differentiated 
with respect to a, all terms will vanish that do not include a. Differentiating and setting the result to 0 
produces δSr /δa = 2an + 2bn − 2n  = 0; and so a = − b

A.19.3 Standardized Regression Equation is 

Divide both sides of equation [19.1] by sxsy to produce  Transpose and 
rearrange terms to produce   Because sy =  and sx =

 sx/sy =  Because b = Sxy/Sxx, the factor bsx/sy becomes 
which is  [With a similar algebraic process, the same result emerges if we start with 

 where b′ = Sxy/Syy, The result is 

A.19.4 Degrees of Freedom for 

For parametric inference, the observed values of {X i, Yi } are regarded as a sample from the “true” 
regression equation, which is cited (using Greek letters for the parameters) as Y = α   +   βX. In the 
calculated equation for  =  a + bXi, a and b are estimates for the two parameters, α and β. Thus, two 
degrees of freedom are lost from the n degrees available for choosing . An alternative explanation is 
that a and b are calculated after the parametric means are estimated as µX = and µY =  Two degrees 
of freedom are lost for those two parameters. 

A.19.5 Parametric Variances of Regression Line

We need to estimate two variances. One of them is σy.x, which represents the average parametric variance 
of the observed Yi values for the  calculated from X i. The other is the sampling variance or “standard 
error” of the slope, β. Anything else that is needed can be derived from these two estimates.

A.19.5.1  Variance of σy·x for 

From Formula [19.8] the “mean square error” is estimated as

[A.19.2]

A.19.5.2  Variance of the Slope β

To determine variance of the slope, the formula b = Sxy/Sxx is rewritten as  
which becomes 

The second term in the numerator vanishes because  is constant and  by definition. 
The rest of the expression is now expanded to form

Y bX–

Ŷi

Σ Ŷi Yi–( )2 Sr na2 b2nX  nYi
2 2abnX 2anY– 2bΣXiYi–+ .+ += =

X Y Y X.

Yi Y–( )/ sy r Xi X–( )/ sx=

Ŷi Y–( ) sxsy⁄ b Xi X–( ) sxsy⁄= .
Ŷi Y–( ) sy⁄ bsx/sy( ) Xi X–( ) sx.⁄= Syy n 1–( )⁄

Sxx n 1–( )⁄ , Sxx Syy⁄ . Sxy Sxx⁄( ) Sxx/Syy( ) ,
Sxy SyySxx( ) r= .⁄

X̂i X b ′ Yi Y–( )=– , X̂i X–( ) / sx r Yi Y–( )/sy . ]=

Ŷi

Ŷi

Ŷi

X Y.

Ŷi

Yi Ŷi–

σ̂y.x
2 sy.x

2 Sr/ n 2–( )= =

b Σ Xi X–( ) Yi Y–( ) Sxx⁄ ,=

b Σ Xi X–( )Yi YΣ Xi X–( )–
Sxx

-----------------------------------------------------------------=

Y Σ Xi X–( ) 0=
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Sxx
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Sxx
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If each of the /Sxx components is expressed as a constant, ki, we can write

Using “Var ( )” as the symbol for variance, we first determine the effects of a constant in variance. Thus, 
if Var (X) = Σ  Var (kX) =

In Appendix A.7.1, we found that the variance of a sum is the sum of the variances. Thus, Var (X +
Y + W + ...) = Var(X) + Var (Y) +  Consequently, in the foregoing expression of b,

Var (b) = k 2
1  Var (Y1) + k 2

2  Var (Y2 ) +  + k 2
n  Var (Yn )

The average variance of each Yi value around the regression line was previously shown to be s2
y.x .  On 

average, therefore,

Because ki =  and k2
i =  the sum is

Therefore the variance of the slope is

[A.19.3]

A.19.6 Critical Ratio for t or Z Test on b or r

The critical ratio for a t or Z test on the slope will be

[A.19.4]

which becomes b/sb  when β is set to 0 under the null hypothesis. From Formula [A.19.2],  = 
S r/(n – 2) and from Formula [19.16], S r = (1 − r2)Syy. Therefore, s2

y.x =  (1 − r2)Syy /(n – 2). Substituting 
in Formula [A.19.3], we get = (1 – r2) Syy/[Sxx(n − 2)]. When the square root of this result and b =
Sxy/Sxx are substituted, and when terms are suitably rearranged, the critical ratio becomes

[A.19.5]

The critical ratio for testing b is thus expressed in values of r. Exactly the same calculation is used 
for a t or Z test on r when the parametric correlation coefficient, ρ, is set to 0 under the null hypothesis. 

A.19.7 Confidence Intervals for r and b

In the critical ratio of Formula [A.19.5],  corresponds to the standard error for the 
observed value of r. Therefore, a confidence interval for the estimated parameter ρ can be placed 
around r as

[A.19.6]

If you want a more formal demonstration of the “standard error” approach here, recall from Formula 
[A.19.4], that a confidence interval for β can be estimated (using t) as

This becomes

Xi X–( )

b k1Y1 k2Y2 … knYn+ + +=

Xi X–( )2, Σ kXi kX–( )2 k2Σ Xi X–( )2 k2Var X( )== .

Var W( ) … .+

…

Var b( ) sy.x
2 k1

2 k2
2 … kn
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Xi X–( )/ Sxx Xi X–( )2/Sxx
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and then

Because  and  the confidence interval becomes

[A.19.7]

The term in the square root sign is the “standard error” for r. 

A.19.8 Confidence Interval for Individual Points

If the goal is to estimate an actual point, Yi, rather than using  as the mean value of  at  the 
confidence interval is wider, to encompass the variations in . The standard error of an estimated 
point becomes

[A.19.8]

Because the value of 1 in Formula [A.19.8] is so much larger than (1/n) or  the result is 
not greatly affected by changes in , and the subsequent wide confidence bands will seem to be 
relatively straight rather than concave lines.

A.19.9 Confidence Interval for Intercept

Because the intercept is calculated when Xi = 0, the corresponding confidence interval can be determined 
from Formula [19.23], with X i set to zero.

A.19.10 Comparison of Two Regression Lines

Because most ordinary regression lines in medical research do not give close fits, two lines are seldom 
compared stochastically. (Two survival curves may be compared, as discussed later in Chapter 22, but 
the stochastic strategy does not use regression principles.)

If a stochastic contrast is desired, however, two regression lines can be compared either for the different 
slopes or, if the lines seem parallel, for the interlinear vertical distances. The latter evaluation is essentially 
a comparison of the two intercepts.

If you need to do any of these comparisons, they are clearly discussed, with a worked example, in an  
excellent paper by Altman and Gardner. 23

β̂ Sxy

Sxx
-------   tν α, 1 r2–( )Syy[ ]/ Sxx n 2–( )[ ]±=
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Sxx
-------    tν α,
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-------±=
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A.19.11 Transformations of r

If X and Y have a joint bivariate Gaussian distribution (which would look like a Gaussian hill), r can 
be transformed to

The distribution of Z r is approximately Gaussian and its standard error is . For the 1 − α
confidence interval we calculate , and then transform the results with suitable expo-
nentiation. A good worked example of the procedure is also shown by Altman and Gardner.23

The data of Table 18.5 obviously do not have a suitable distribution, but can be used for a crude 
illustration here. In those data, r = .186 and n = 8; and so Z r = (1/2) [ln(1.186/.814)] = .188. The value 
of  is 2.236, and t 6,.05 =   2.447, so that .188 ± 2.447 = – 2.259 to 2.635, is the range for Z r . Because 

we exponentiate to get  which leads to  For Zr = −
2.259, this result becomes r = − .989/1.0109 = −.978; and for Z r = 2.635, the corresponding result is 
r = 193.42/195.42 = .990. The 95% confidence interval for the observed r = .188 would thus extend 
throughout the wide range from −.978 to .990 — a result consistent with the diffuse spread in the small  
data set. Because neither boundary exceeds , this range seems more numerically “acceptable” than 
the range of −.795 to 1.167 previously calculated in Section 19.4.2.1 with Formula [19.22].

Exercises

To give you time for all the reading, the exercises that follow are mainly challenges in “physical 
diagnosis,” containing almost no requirements for calculation. (Besides, most regression calculations 
today are relegated to a computer program.) Nevertheless, because your education would be incomplete 
if you failed to do at least one set of regression computations yourself, a delightful opportunity is 
presented in Exercise 19.1. 
19.1. A clinical investigator who believes that serum omphalase is closely related to immunoglobulin 
zeta is disappointed by the nonlinear pattern seen in a graph of the following data:

The investigator consults a statistician who also happens to be board-certified in diagnostic graphology.  
The statistician looks at the graph, and promptly announces, “The relationship here is strong and probably 
stochastically significant.”

Immunoglobulin Zeta Level Serum Omphalase Level

1 35
3 10
5 40
7 30
9 15

10 45
11 80
13 75
15 50
17 60
19 50

Zr
1
2
--- 

   ln  1 r+
1 r–
----------- 

 =

1/ n 3–
Zr tν α, / n 3–( )±

n 3–

2Zr
1 r+
1 r–
-----------ln=

1 r+( )/ 1 r–( )[ ] e2Zr= ,  r e2Zr 1–( )/ e2Zr 1+( )= .

1

© 2002 by Chapman & Hall/CRC 



19.1.1. After plotting the graph on any kind of paper you want to use, try to guess (and explain 
your guess about) the reasons for the statistician’s statement.

19.1.2. Please carry out the computations necessary to determine the regression line, the value
of r, and the test of stochastic significance; also draw the line on your graph. Please
show all the intermediate computations, so that pathogenesis can be probed if you get
a wrong result.

19.2. The data in the scattergraph shown in Figure E.19.2 were recently used to support the claim that
“serum lipoprotein(a) levels are elevated in patients with early impairment of renal function” and that
the “inverse correlation between serum lipoprotein(a) level and creatinine clearance” points to “decreased
renal catabolism as a probable mechanism of lipoprotein(a) elevation in patients with early renal failure.”
The study was done in 417 patients, referred consecutively to a hypertension clinic in Italy, who were
tested one week after antihypertensive drugs were withdrawn. An abnormal creatinine clearance, defined
as < 90 mL/min per 1.73 m2 was found in 160 of the 417 patients.

Do you agree with the stated claim? Please justify your reasons.

19.3. The text of Chapter 19 contained no comments about one-tailed or two-tailed interpretations for
the P values associated with b or r; and most statistical writers and texts do not discuss the subject.
Nevertheless, investigators regularly do research with the anticipation that the slope will definitely go
up (or down), and that the correlation will be definitely positive (or an inverse negative). Do you believe
that one-tailed interpretations should be allowed when a distinct direction has been specified in advance
for the slope or correlation coefficient?
19.4. Here is another opportunity to draw conclusions from the physical examination of graphs. Figure
E.19.4 is an exact reproduction of what appeared in a publication25 on “racial differences in the relation
between blood pressure and insulin resistance.” The investigators studied “116 Pima Indians, 53 whites,
and 42 blacks who were normotensive and did not have diabetes.” The Pima Indians “were recruited
from subjects participating in a longitudinal study on the development of non-insulin dependent diabetes.
The whites and blacks were recruited by advertising in the local community.” The white and black
participants were required to have parents and grandparents who were correspondingly white or black.
“Afro-Caribbean and blacks from countries other than the United States were excluded.” The selected
groups were shown to be similar in mean age and blood pressure. From the results in Figure E.19.4,
however, the authors drew the following conclusions: (1) “the Pima Indians had higher fasting plasma

FIGURE E.19.2
Relation between creatinine clearance and log lipoprotein(a). A significant inverse correlation (r = 0.243; P < 0.0001) was
seen. [Figure and legend taken from Chapter Reference 24.]
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insulin concentrations than the whites or blacks”; and (2) in whites, but not in Pima Indians or blacks, 
“mean blood pressure ... was significantly correlated with fasting plasma insulin concentration (r = .42) 
and [with] the rate of glucose disposal during the low dose (r =   − 0.41) and high-dose (r =    − 0.49) 
insulin infusions.” The authors concluded further that “a common mechanism, genetic or acquired, such 
as enhanced adrenergic tone, or a cellular or structural defect may constitute the link between insulin 
resistance and blood pressure in whites but not in other racial groups.”

Considering only the graphic evidence, and avoiding discussion of the proposed biologic or 
physiologic mechanisms, do you think the investigators’ conclusions are justified?
19.5. The four figures marked E.19.5.1 through E.19.5.4 are taken directly from published medical
reports. In each instance, the author(s) claimed that a significant relationship had been demonstrated. 
Except for methodologic details describing the measurements and groups, the text offered no statistical  

FIGURE E.19.4
Relation between Mean Blood Pressure and Fasting Plasma Insulin Concentration (Top Panel) and Insulin-Mediated Glucose 
Disposal during Low-Dose (Middle Panel) and High-Dose (Bottom Panel) Insulin Infusions in Pima Indians, Whites, and 
Blacks, after Adjustment for Age, Sex, Body Weight, and Percentage of Body Fat. The differences among the three groups  
in the slopes of the regression lines between mean blood pressure and the fasting plasma insulin concentration and insulin-
mediated glucose disposal during low-dose and high-dose insulin infusions were statistically significant (P = 0.001, 0.017, 
and 0.025 for Pima Indians, whites, and blacks, respectively). [Figure and legend taken from Chapter Reference 25.]
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information about these relationships, beyond what is shown in the figures. (In one instance, r values
reported in the text have been added to the figures.)

For Exercises 19.5.1 through 19.5.4, comment on each of these four analyses, figures, and
conclusions. Do you think the authors are justified or unjustified? If you do not like what they did, what
would you offer as an alternative?

19.6. Figure E.19.6 shows a scatter-plot of residuals in which the values of  have been plotted
against the values of for a group of 12 bivariate points. What conclusion would you draw from this
pattern? If you are unhappy with the problem, what solution would you propose?
19.7. Figure E.19.7 shows the published points and corresponding regression lines for a plot of serum
copper vs. pleural fluid copper in three diagnostic categories of patients. 

19.7.1. In the text, the authors stated that for the 120 patients with malignant disease the value 
of r = 0.19 was statistically significant at P < 0.05. Are you convinced that this 
significance is biologically important? If so, why? If not, why not?

19.7.2. A regression line has been drawn for each of the three cited equations. How can you 
quickly (by eye test alone) get supporting evidence that these lines correctly depict the 
stated equation?

FIGURE E.19.5.1
Handgun availability and firearm mortality: United States, 1946–85. [Figure and legend taken from Chapter Reference 26.]
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FIGURE E.19.5.2
Relationship between fasting plasma glucose and FFA concentrations in nonobese and obese persons with normal glucose 
tolerance (open circles) or NIDDM (solid circles). [Figure and legend taken from Chapter Reference 27.]

FIGURE E.19.5.3
Correlation of mean arterial blood pressure (MABP) and measured PGI2 metabolite excretion (PGIM) in seven essential 
hypertensive patients receiving no medications. Each patient underwent three separate determinations for MABP and PGIM 
(during control periods 1 and 2 and during the placebo period) for a total of seven independent observations. Regression 
analysis was performed with the Statistical Analysis System using analysis of variance. [Figure and legend taken from 
Chapter Reference 28.]
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FIGURE E.19.5.4
Interleukin-2 serum level as measured by enzyme-linked immunosorbent assay in 81 sera samples. Data represent the mean 
of quadruplicate values. [Figure and legend derived from Chapter Reference 29.]

FIGURE E.19.6
[Figure and legend taken from Chapter Reference 30.]
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FIGURE E.19.7
Positive relationship between pleural fluid copper and serum copper in the group with malignant disease. [Figure and legend 
taken from Chapter Reference 31.]
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Evaluating Concordances
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A striking feature of modern medical statistics has been the relative absence of attention to the scientific 
quality of raw data. Despite the many methods developed for sampling, receiving, and analyzing data, 
and for drawing conclusions about importance or “significance,” the scientific suitability, accuracy, and  
reproducibility of the basic information has not been a major focus of concern.
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The contemporary statistical emphasis on inference rather than evidence is particularly ironic because 
problems of “observer variability” were the stimulus about 150 years ago that made C. F. Gauss  develop his 
“theory of errors” in describing the “normal” distribution of deviations from the “correct” value (i.e., 
the mean) of a measurement. Analogous challenges in “quality control” for chemical variations in beer 
at the Guinness brewery were the stimulus almost 100 years ago for W. S. Gosset’s activities that are 
now famous as the Student t test. After Gaussian and Gossetian theory were established, however, 
statistical creativity became devoted more to quantity in mathematical variance than to quality in 
measurement variability.

Until about two decades ago, W. Edwards Deming, a statistician who gave imaginative attention to  
industrial methods of achieving “quality control,” was generally little known or heralded in English-
speaking academic enclaves. Nevertheless, Deming’s methods are particularly famous in Japan, where 
they were adopted after World War II and became a keystone of Japanese success in developing high  
quality products with modern industrial technology.

Because variability in scientific measurement1 is still distressingly alive, well, and flourishing, the 
statistical methods of describing the problems have often come from investigators working directly in 
the pertinent scientific domain. Examining observer variability among radiologists,2 J. Yerushalmy, an 
epidemiologist, devised the indexes of sensitivity and specificity now commonly used in the literature 
of diagnostic tests. Indexes of biased observation,3 a special chi-square test for observer variability,4 and 
the commonly used kappa coefficient of concordance5 were contributed by two psychologists, Quinn 
McNemar and Jacob Cohen. Statistical methods for describing accuracy and reproducibility in laboratory 
data have also been developed mainly by workers in that field,6 although R. A. Fisher’s intraclass 
correlation coefficient has sometimes been applied for laboratory measurements. [Fisher originally 
proposed7 the intraclass coefficient, however, to compare results in pairs of brothers, not to analyze 
diverse measurements of the same entity.]

Lacking the mathematical “clout” of statistical theory, the pragmatic challenges of measurement 
variability are omitted from many textbooks of medical, biologic, and epidemiologic statistics. In many  
textbook discussions of “association,” in fact, trends in measurements of different variables are not 
distinguished from concordances in different measurements of the same entity.

This chapter is intended to outline some of the main distinctions and challenges in statistical appraisals 
of concordance and to discuss the diverse indexes of concordance that appear in medical literature. 

20.1 Distinguishing Trends from Concordances

The idea of interchangeability is what separates concordance from trend. Trends are assessed to 
determine whether two different variables are co-related, i.e., whether they “go along together.” For 
concordances, however, the goal is to see whether Variable A can be interchangeably substituted for 
Variable B. An index of trend may have a high correlation value when derived from the proportionate 
reduction in group variance for sums of squared errors, but the estimates of  may not be good enough 
to be used as direct substitutes for Yi.

To illustrate the problem, consider the four data sets in the table below. The values of X are the same  
in each set, but the corresponding values of Y — in the columns marked YA,YB,YC, and YD — represent 
different methods of measuring X.

X YA YB YC YD

3 3 7 6 4
4 4 8 8 3
5 5 9 10 6
6 6 10 12 5
7 7 11 14 8
8 8 12 16 7
9 9 13 18 10

10 10 14 20 9

Ŷi
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The graphs of the four sets of points and the corresponding fitted lines are shown in Figure 20.1.
If assessed for trend, the regression line fits the points perfectly for each of groups YA, YB, and YC,

and the line for Group YD also fits very well. The r values are 1 for the first three lines, and close to 1 
for the fourth. Despite the almost identical high marks for trend, however, only the YA line has close 
agreement; and in the three other lines, the corresponding Y values never agree with those of X. In Y B ,
the values are always 4 units higher; in YC, they are doubled; and in Y D, they are alternatingly one unit 
higher or lower.

None of these disagreements is shown, however, by
indexes of trend. The intercepts are different for lines YB

and YC, but similar for lines YA and YD; the slopes are 
identical in lines YB and YD; and the correlation coeffi-
cients are extremely high in all three of the disagreeing 
lines for YB, YC, and YD. Because the customary statis-
tical indexes of trend are not satisfactory, agreement must 
be described with a different set of indexes, aimed at 
appraising concordance. 

20.2 Conformity vs. Agreement

Although the orientation is either dependent or nonde-
pendent for assessing trend, the orientation of a concor-
dance is aimed at either conformity or agreement. In 
conformity, the goal is to see how closely the observed 
measurement conforms to a “correct result,” which is 
available as the “reference,” “criterion,” or “gold stan-
dard” value for each measurement. This concept is usu-
ally regarded as accuracy, but is best called conformity.
The idea of accuracy is pertinent for technologic mea-
surements, but cannot be readily applied to assess other 
types of discrepancy, such as whether a clinician’s deci-
sions comply with the criteria established by an audit 
committee. Conformity is also preferable because the 
“gold standard” may sometimes change. Thus, the “cor -
rect” answer to the question in a certifying examination 
ten years ago may no longer be correct today.

Agreement, however, is assessed without a “gold-standard” criterion. We determine how closely two 
observations agree, but not whether they are correct. For example, suppose two radiologists independently 
decide whether pulmonary embolism is present or absent in each of a series of chest films. If no 
information is available about the patients’ true conditions, we can assess only the radiologists’ agree-
ment. If additional data indicate whether each patient did or did not actually have pulmonary embolism, 
we can determine each radiologist’s accuracy (i.e., conformity with the correct diagnosis) as well as the  
agreement between them.

When pathologists provide “readings” of histologic specimens, we can assess only the agreement of the  
observers, unless one of the pathologists is accorded the deified status of always being correct. Two 
pathologists’ readings of cytologic specimens (such as pap smears) would usually be assessed for agreement, 
but accuracy could also be checked if an appropriate histologic decision were available for each smear.

Although studies of observer variability will indicate disagreements among “equal” observers, studies 
of conformity are done with a “gold standard.” For laboratory measurements, the gold standard is 
provided by a selected reference laboratory or a national Bureau of Standards. For the categorical 
measurements used in certifying examinations or audits of health care, the “gold standard” is provided 
by an individual expert or consensus of designated experts.

FIGURE 20.1
Graph of the four sets of data in Section 20.1.
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In a particularly common type of conformity research, the gold standard for a diagnostic marker 
test is the definitive diagnosis of the selected disease. Diagnostic marker tests and other aspects of 
conformity are appraised in so many different ways that the topic will receive a separate discussion 
in Chapter 21. The rest of this chapter is devoted to evaluating agreement.

In the specialized jargon developed for describing the ideas, the results of a study of agreement are 
sometimes called reproducibility, repeatability, reliability, or consistency. The first two terms are inad-
equate if each rater has given only a single rating, and the third term is unsatisfactory because reliability 
is an idea that generally connotes “trustworthiness” beyond mere agreement alone. To describe the 
general concept, consistency is probably the best of the four terms, but fortunately, the assessment of 
individual (rather than group) agreements is usually called agreement (or concordance). Indexes of 
agreement or disagreement will be needed for the individual results and total group patterns that can 
occur in the four main types of rating scales.

20.3 Challenges in Appraising Agreement

Appraising agreement involves a new set of statistical challenges that arise uniquely when discrepancies 
are noted and summarized for measurements of the same entities.

20.3.1 Goals of the Research

An important consideration before the work is done is to establish the goals of the research. Is it intended 
to expose and quantify the state of disagreement among the raters, or is the main goal to improve the 
state of the observational art? In most published studies of concordance, the work seems aimed merely 
at quantifying disagreement. The investigator does the research, presents the report, and departs in an 
air of sagacious revelation — but nothing happens thereafter. The disagreement itself becomes exposed,  
but whatever was causing it is neither discovered nor repaired.

The distinction between “diagnostic” demonstration and “therapeutic” improvement is shown in the 
names commonly used for the research. When disagreement is investigated for laboratory measurements, 
the work is usually called quality control. The revealed disagreements are confronted and carefully 
explored; the methods of measurement are checked and improved; and the eventual improvements elevate 
the quality of the measurement process. In most investigations of disagreement among clinicians, 
radiologists, and pathologists, however, the work is usually called observer variability. Little or no effort 
is made afterward to remove the defects that have been revealed.

This apparent complacency is probably due to the difficulty of arranging suitable analytic confronta-
tions. In laboratory measurements, the procedures can usually be clearly delineated, so that sources of 
variation can easily be sought among the component steps of the observational process. For clinicians, 
radiologists, and pathologists, however, the component steps of the procedure are not clearly discerned 
when the result is merely stated as a rating — such as systolic murmur, 1+ enlargement, or poorly 
differentiated adenocarcinoma — that emerges from a complex act of observation and decision. To 
determine component steps and criteria for the observational decisions, the observers must meet together,  
confront the disagreements, and identify the constituent steps of the process. These analytic confrontations 
may be difficult to arrange because of problems in getting the observers assembled, and also because 
many observers may dislike the confrontational process and its possible departures from “diplomacy.”

If the goal is to improve rather than merely document the problems of observer variability, however, the 
investigator may have to plan for much more than just getting and comparing the stated ratings. If the observers 
cannot be assembled for direct confrontation, the solicited information should include attention not only to 
the “final” ratings, but particularly to the intricate components and criteria of the observational process.

20.3.2 Process, Rater, and Observer

If the entity being “measured” is a white blood count, serum calcium, chest film, liver biopsy, answer 
to an examination question, or clinical decision, the person or apparatus that produces the actual 
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measurement can be called the rater. The term rater has two advantages over observer. First, many 
decisions are expressed as ratings in a scale of categories, such as adenocarcinoma or 1+ cardiac 
enlargement, rather than as purely descriptive statements, such as “roseating clusters of multi-nucleated 
cells” or “outward bulge of apex.” Second, when the observed entity requires technologic 
preparation — such as a radiographic film — variations can arise from the way the technologic apparatus 
was used in positioning the patient or in taking and developing the film. Since “variability” can arise 
from both the technologic process that produces an entity and the person who interprets it, the term 
rater indicates the latter source.

The term observer variability can then include the combination of variations that can arise from both 
the process and the rater. In certain technologic measurements where a numerical value is produced 
without the intercession of a human rater, the variability is usually called process, because human 
variations can still arise when the results are transcribed or transmitted.

20.3.3 Number of Raters

Any comparison requires at least a pair of ratings for each entity, but the pair can come from one rater 
or two, and sometimes the same entity can receive more than two ratings.

20.3.3.1 Single Rater — If the same rater provides both ratings, the comparison can have several 
formats. In a common arrangement, intra-rater concordance is assessed when the rating is repeated by 
the same observer (such as a radiologist or pathologist) after enough time has elapsed for the first rating  
to have been forgotten.

In other circumstances, which might be called intraclass concordance, two (or more) ratings are 
available almost simultaneously. This situation can occur when the same laboratory measures aliquots 
of the same specimen to check repeatability of the process. In another situation, individual ratings are 
available for somewhat similar entities, such as a pair of twins or brothers. In the latter situations, the 
ratings cannot be assigned to a specific source, such as Method A vs. Method B, or Sibling A vs. Sibling 
B, because either one of the ratings can go in the first position. The management of these “unassigned”  
pairs was the stimulus for development of the intraclass correlation coefficient, discussed later.

20.3.3.2 Two or More Raters — The most common test of agreement is the inter-rater con-
cordance between two ratings for the same entity, offered by Rater A vs. Rater B. Even when the same  
entity receives more than two ratings, many investigators prefer to check pairwise concordances for rater 
A vs. B, A vs. C, B vs. C, etc. rather than calculate a relatively nonspecific single index that covers all  
the raters simultaneously.

If measurements of the same entities come from three or more raters, concordance can be described for 
the pertinent pairs of two raters, or for the overall results among the group of raters. Because the mathe-
matical activities become particularly complex for more than two sets of ratings, the challenge of indexing  
multiple observers will be saved for the end of the chapter in Section 20.9. The main discussion throughout 
the chapter will emphasize pairwise comparisons for two raters.

20.3.4 Types of Scale

Concordance can be checked only if each entity is rated in commensurate scales, having the same values 
available for citation in each scale. Statistical indexes will be needed for patterns in which the scales 
for both variables are: dimensional, e.g., laboratory measurements; binary, e.g., diagnostic marker tests; 
ordinal, e.g., ratings for staging systems or grades of clinical severity; or nominal, e.g., histopathologic 
categories.

20.3.5 Individual and Total Discrepancies

Each of the four patterns of data needs arrangements and indexes to cite individual discrepancies between 
each pair of ratings and to summarize the total pattern of discrepancies.
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20.3.5.1 Categorical Data — For categorical data, the results are arranged in a two-way con-
tingency table that is often called an agreement matrix. It shows the frequency counts in each cell formed
by the rows and columns for each observer’s ratings. Individual pairs of ratings will have different
degrees of disagreement according to whether the scales are binary, ordinal, or nominal. Perfect agree-
ments occur in the appropriate diagonal cells; and all other cells show different degrees of partial
disagreement that are managed as discussed later.

The frequency counts for perfect or partial agreements in the cells can be added and then divided by
the total to show proportions of different types of agreement.

20.3.5.2 Dimensional Data — An ordi-
nary graph of dimensional data can show rater A’s
results as {Xi}, and rater B’s corresponding mea-
surements as {Yi}. Figure 20.2 is an example of
such a graph, for agreement between plasma and
salivary measurements of caffeine.

The individual discrepancies can be expressed
as di = Xi − Yi at each point, i, of the data. The
sum of the discrepancies can be converted to a
central index, such as a median, or a mean, which
will be Σdi/N for N points of data.

To get a better idea of magnitudes, the individ -
ual increments can be squared, added, divided by
N, and then reconverted by taking the square root.
The value of  is called the quadratic
mean or root mean square (mentioned in Section
3.8.1) of the increments. The smaller the square
root value, the better is the agreement. This proce-
dure is analogous to what was done in Section 7.8.1
for deviations in data for two paired groups or for
before-and-after results in the same group. The
increments here refer to deviations in pairs of
measurements for the same N entities.

Other challenges in evaluating agreement for
dimensional pairs of data will be discussed later
in Section 20.7.

20.3.6 Indexes of Directional Disparity

Expressions of agreement do not indicate the directional effect of the discrepancies. For example, two
raters can generally disagree in an apparently random manner, or one rater may be consistently higher
or lower than the other. In addition, the discrepancies may have about the same magnitude in all zones
of the data or may get larger or smaller in different zones. The bias in directional disparities will be
expressed differently according to the four types of data, and also according to whether the bias refers
to raters or to zones of data.

20.3.7 “Adjustment” for Chance Agreement

Another distinctive challenge in studies of concordance is that agreements can arise by chance alone.
For example, suppose you know nothing about the substantive content of a certifying examination 
containing five choices of a single correct answer for each question. With random guesses alone, you 
should correctly answer 20% of the questions. Analogously, if two radiologists regularly rate 90% of
chest films as being normal, we could expect their normal ratings to agree randomly on 81% (= .90 × .90)
of the occasions.

FIGURE 20.2
Correlation between caffeine concentrations in plasma (or-
dinate) and saliva (abscissa) in 12 subjects after single oral  
dose over 16 hr.
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In multiple-choice examinations, “guesses” are penalized when points are subtracted for wrong
answers but not for “blanks” where no answer is offered. In studies of concordance, an analogous type
of penalty can be used to make adjustment for the number of agreements that might have occurred by
chance alone. If the raters are not given a well-chosen challenge, however, the adjustment process can
produce an excessive penalty. For example, suppose two radiologists are tested for agreement on the
chest films of a university freshman class, for whom about 95% (or more) of the films will be normal. 
Even if the radiologists achieve almost perfect agreement, they may be harshly penalized because so
large a proportion of the agreement (.90 = .95 × .95) might be ascribed to chance alone. Consequently,
the distribution in the challenge group becomes particularly important if agreement is adjusted for chance.

Adjustments for chance in categorical data are cited with the Kappa index discussed later, but are
seldom (if ever) applied to dimensional scales, for which the same two values have only a remote chance
of being chosen randomly from the limitless (or at least large) number of dimensional choices for each
variable.

20.3.8 Stability and Stochastic Tests

For tests of stability in small groups, the descriptive index of concordance is usually converted to a
stochastic index that is checked with either a Z or chi-square procedure. Fortunately, the modern emphasis
on stochastic tests has not extended to the evaluation of concordance. The descriptive indexes are usually
reported directly and are seldom replaced by P values or confidence intervals. In fact, stochastic tests
are often left unexamined or unreported, because the focus is on descriptive agreement and because the
group sizes are usually large enough for the descriptive indexes to be regarded as stable.

Stochastic tests for concordance are discussed in Section 20.8.

20.4 Agreement in Binary Data

If Yes and No are used to represent the two categories of binary data, four possible results can occur for
each pair of ratings. They form the 2 × 2 agreement matrix of frequency counts shown in Table 20.1.

The two raters agree in the a and d cells, and disagree in the b and c cells, but the results have
directional distinctions as follows:

If one of the raters is the “gold standard,” the other’s ratings are correct in the a and d cells and
incorrect in the b and c cells. Without a gold standard, however, we need a way to summarize agreement
rather than conformity.

TABLE 20.1
Agreement Matrix for Binary Data

Rater A
Yes No Total

RATER B Yes a b f1

No c d f2

TOTAL n1 n2 N

Location of Cell in
Rater A Rater B Result Table 20.1

Yes Yes Agree a
No Yes Disagree b
Yes No Disagree c
No No Agree d
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20.4.1 Proportion (Percentage) of Agreement

Among many statistical proposals for summarizing index for agreement in binary data, only a few
expressions are generally popular or valuable.

The most obvious, straightforward, and easiest-to-understand index is the proportion (or percentage)
of agreement. It resembles a “batting average” in which the perfect agreements are “hits” and anything
else is an “out.” In the symbols of Table 20.1, the proportion of agreement is

[20.1]

In the example shown in Table 20.2, the two examiners agreed on 40 candidates, whom both passed,
and on 20 others, whom both failed. The proportion or percentage agreement is (40 + 20)/80 = 60/80
= 75%.

The simplicity of the index of percentage agreement is accompanied by three disadvantages. First, it
does not indicate how the agreements and disagreements are distributed. Thus, the same value of 75%
agreement would be obtained for the two raters in Table 20.2 if the 2 × 2 agreement matrix for 80 ratings
had any of the following arrangements:

A second disadvantage is that the index does not show whether agreement is better directionally when
the examiners decide to pass a candidate than when they decide to fail. A third disadvantage is that
the expression of percentage agreement makes no provision for the concordance that might occur by
chance alone.

20.4.2 φ Coefficient

The φ coefficient is an index of association (or correlation) for the data in a 2 × 2 table. The descriptive
index, which is further discussed in Chapter 27, is calculated from the (uncorrected) X2 statistic as φ2

= X2/N, where N = total number of frequency counts. Thus,

[20.2]

for the data in Table 20.1. Because X2 for a 2 × 2 table is calculated with values that are expected
by chance, the φ coefficient seems to offer a method of adjusting for chance-expected results in a
2 × 2 agreement matrix. With Formula [20.2], the value of φ in Table 20.2 would be

.
However, φ has several disadvantages. First, it is aimed at assessing the trend in two independent

variables, rather than concordance between two closely related variables. Suppose the ratings in
Table 20.2 were transposed to show the following results:

TABLE 20.2

Agreement Matrix of Ratings on a Specialty Board 
Certification Examination

Ratings by 
Examiner B

Ratings by Examiner A
Pass Fail Total

Pass 40 2 42
Fail 18 20 38
TOTAL 58 22 80

po
a d+

N
------------=

20 18
2 40 

 
  30 10

10 30 
 
  60 10

10 0 
 
  0 10

10 60 
 
 

φ X2/N ad bc–( )/ f1f2n1n2= =

40( ) 20( ) 2( ) 18( )–[ ] 58( ) 22( ) 42( ) 38( ) .535=
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The percentage of agreement would drop precipitously to only 25%[= (2 + 18)/80] but φ would have
the same absolute value, although in a negative direction, as −.535.

Because φ can take positive and negative signs, it might indicate whether the agreement is better or
worse than might be expected by chance. The construction of φ, however, depends on examining the 
observed-minus-expected values in all four cells of the table. The value of φ thus contains individual
discrepancies from cells showing agreements and disagreements; and it really tells us more than we
want to know if the goal is to look at agreement alone or at disagreement alone.

Furthermore, the usual calculation of X2 refers to N different members, each “rated” for a different
variable. In an agreement matrix, however, each member has been rated twice for the same variable. There
are really 2N ratings under consideration, not N. Thus, if we rearrange Table 20.2 to show total ratings
rather than an agreement matrix for two observers, we would get the 160 ratings that appear in Table 20.3.
The two arrangements for the same set of data are often called matched (in Table 20.2) and unmatched
(in Table 20.3). The differences become important later (in Chapter 26) when we consider appropriate
tabular structures for appraising results of exposed and non-exposed persons in a matched-pair case-
control study.

Despite these apparent disadvantages, the results of φ are usually reasonably close to those of the
chance-adjusted kappa discussed in the next section. In fact, it can be shown algebraically that when
the marginal totals ofTable 20.1 are equal, i.e., n1 = n2 and f1 = f2, the values of φ and kappa are identical.
The φ coefficient was recently used, without apparent complaint by editors or reviewers, to adjust for
chance in reporting agreement among observers’ opinions about whether antihistamine treatment had
been used prophylactically during anesthesia.8

20.4.3 Kappa

Kappa is now regarded as the best single index to adjust for chance agreement in a 2 × 2 table of
concordance. Specifically designed for this purpose by the clinical psychologist, Jacob Cohen,5 and
medically popularized by J. L. Fleiss,9 kappa forms a ratio that adjusts the observed proportion of
agreement for what might be expected from chance alone.

To illustrate the strategy, consider the situation in Table 20.2. Because Examiner A passes the proportion,
pA, of candidates and Examiner B passes the proportion, pB, we would expect the two examiners to agree
by chance in the proportion pA × pB. Similarly, the two examiners would be expected to agree by chance
in failing the proportion qA × qB. For the data in Table 20.2, pA = 58/80 = .725; pB = 42/80 = .525; qA = 
22/80 = .275; and qB = 38/80 = .475. The sum of (.725)(.525) + (.275)(.475) = .381 + .131 = .512
would therefore be expected as the chance proportion of agreement for the 80 candidates being rated.
Because the observed proportion of agreement was 60/80 = .75, the observed agreement exceeded the

Examiner A
Examiner B Pass Fail Total

Pass 2 40 42
Fail 20 18 38

Total 22 58 80

TABLE 20.3

Total Ratings in Table 20.2

Rating
Examiner Pass Fail Total

A 58 22 80
B 42 38 80
TOTAL 100 60 160
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chance expectation by .750 − .512 = .238. If the observed agreement were perfect, po would be 1 and 
the result would have exceeded chance by 1 − .512 = .488. The ratio of the observed superiority to
perfect superiority is .238/.488 = .488, which is the value of kappa.

Expressed in symbols, using po for observed proportion of agreement and pc for the agreement expected
by chance, kappa is

[20.3]

20.4.3.1 Computation of Kappa — To convert expression [20.3] into a calculational formula,
we can use the symbols of the 2 × 2 agreement matrix. The agreement expected by chance is

Because the observed agreement is (a + d)/N, the observed minus expected values will be [(a + d)/N]
− (f1 n1 + f2 n2)/N2 = [N(a + d) − (f1n1 + f2n2)]/N2. The value of 1 − pc will be [N2 − (f1n1 + f2 n2)]/N2, and
so the calculational formula for kappa will be

[20.4]

An alternative calculational formula, whose derivation is left as an algebraic exercise for the reader, is

[20.5]

Formula [20.4] is probably most rapid to execute on a hand calculator if the row and column totals
are available and if the calculations are suitably organized.

For the two medical-board examiners in Table 20.2,

using Formula [20.5], or

using Formula [20.4].

20.4.3.2 Interpretation of Kappa — Kappa has a range of values from −1 to +1. When the 
observed agreement is perfect, i.e., po = 1, kappa will be +1. If the observed agreement equals the chance-
expected agreement, so that po = pc, kappa will be 0. If the observed agreement is less than the chance 
expected agreement, i.e., po < pc, kappa will become negative. In the special case when both raters choose 
each of the categories half the time, p c will be [(N/2)(N/2) + (N/2)(N/2)]/N2 = 1/2. In this case, if the raters 
also happen to have no agreement at all, so that a = d = 0, then po will equal 0, and kappa will take on its 
minimum value of −1, i.e., [0 − (1/2)]/[l − (1/2)].
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Kappa is ordinarily used to measure concordance between two variables, i.e., two raters. If more than
two raters (or processes) are under comparison, kappa indexes can be calculated for each separate pair-
wise agreement, i.e., for A vs. B, for B vs. C, for A vs. C, etc. A summary “group value” could be
obtained as the median or other average of the individual kappa indexes. Alternatively, Fleiss9 has
developed a mathematically complicated method that allows calculation of a single generalized kappa
for three or more observers.

20.4.3.3 Quantitative Standards — Although stochastic P values can be calculated, the quan-
titative significance of kappa, i.e., its descriptive magnitude, is more important than the associated P
value. Thus, P < .05 might be necessary to show that the results are stable, but the P values are otherwise
useless for denoting meaningful degrees of observer agreement.

Kappa thus holds the distinction of being one of
the few descriptive indexes that has received seri-
ous statistical efforts to develop standards for
quantitative significance. For increments and cor-
relation coefficients, quantitative standards have
been proposed by clinical psychologists10 and clin-
ical epidemiologists.11 As guidelines for the quan-
titative strength of agreement denoted by kappa,
however, two sets of criteria have been proposed
by statisticians: Landis and Koch12 and Fleiss.9 The
proposals are shown in Figure 20.3. The Fleiss
guidelines seem “tougher” than the Landis–Koch
guidelines. Fleiss demands values of Š .75 for
excellent agreement, whereas Landis and Koch
regard .61 − .80 as substantial and .81 − 1.00 as
almost perfect. Fleiss deems everything < .40 as
poor, a designation that does not occur for Landis
and Koch until kappa gets below 0.

Despite the disagreement in criteria for agree-
ment, however, both sets of guidelines can be 
applauded for their pioneering attempts to demar-
cate descriptive zones of quantitative significance.

20.4.3.4 Problems in Distribution of Challenge — Values of kappa have important prob-
lems, however, that were not considered in the proposals for quantitative guidelines. The problems, first
noted by Helena Kraemer,13 arise when the challenge contained in the research is maldistributed. The
chance-expected penalty of kappa may then become unfair to raters who have excellent observational
agreement but who are victims of unsatisfactory research architecture.

To illustrate this situation, consider the agree-
ment matrix in Table 20.4. The two radiologists
have 97% agreement [= (102 + 3)/108] in desig -
nating the chest films of first-year university stu-
dents as normal or abnormal. The expected chance
agreement , however, i s [ (103) (104)  +  
(5)(4)]/1082 = .92. Using the formula (po – pc)/(1
− pc), kappa would be (.97 – .92)/(1 – .92) =
.05/.08 = .625. The value of .625 for kappa still
indicates an agreement that is “substantial”
(according to Landis–Koch) or “fair to good”
(according to Fleiss), but the result is much less
impressive than the former 97% agreement.

FIGURE 20.3
Scales for strength of agreement for Kappa, as proposed
by Fleiss9 and by Landis and Koch.12

EXCELLENT

FAIR
TO

GOOD

ALMOST PERFECT

SUBSTANTIAL

MODERATE

FAIR

SLIGHT

POOR

FLEISS KAPPA
LANDIS
& KOCH

POOR

1.

.8

.6

.4

.2

.0

-1.

neg

TABLE 20.4

Ratings of Chest Films for 108 First-Year  
University Students

 Radiologist B
Radiologist A

Normal Abnormal Total

 Normal 102 2 104
 Abnormal 1 3 4
 TOTAL 103 5 108
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Because this problem arises from a maldistribution of the challenge group, the two radiologists would
need a different research design to allow the remorseless kappa to produce a more impressive value for
their excellent agreement.

With expected agreement calculated as (f1n1 + f2n2) /N2, the penalty factor is substantially increased
when f1n1 + f2n2 has relatively high values in relation to N2. In a special analysis,14 the penalty factor
was shown to have its minimum values when the challenge group is distributed equally so that f1 = f2
= N/2 and n1 = n2 = N/2. Accordingly, the two radiologists would receive a better challenge if the test
population contained roughly equal numbers of abnormal and normal films, rather than a predominantly
normal group.

For example, suppose the 108 challenge cases
were distributed as shown in Table 20.5. In this
situation, the proportional agreement would still
be 105/108 = 97%, but the value of f1n1 + f2n2
would be (54)(55) + (54)(53) = 5832, in contrast
to the previous value of (103)(104) + (5)(4) = 
10732. Kappa would rise to [(108)(105) − 
(5832)] /[(108)2 − 5832] = .94, and would indicate
much better agreement than before.

If the challenge was not suitably arranged before the research was done, the problem can still be
managed, but the management requires replacing the single “omnibus” value of kappa by indexes of
specific agreement in different zones.

20.4.4 Directional Problems of an “Omnibus” Index

Regardless of whether kappa or either of the two other indexes is used, a single “omnibus” index cannot
answer two sets of directional questions that regularly arise about agreement in zones and bias in raters.
In dimensional data, the agreements may get better or worse with changes in the dimensional magnitudes
for different zones of the data. For binary data, only two zones occur, but the proportions of agreement
may differ in those zones.

This issue is neglected in any “omnibus” index that gives a single value for binary concordance,
without distinguishing the two types of agreement for positive and negative ratings. In many evaluations
of concordance, however, the goal is to answer two questions about agreement, not just one. Instead of
a single summary statement, we may want special indexes to show how closely the raters agree separately
on positive decisions and on negative decisions. This problem is particularly prominent, as noted later
in Chapter 21, in citing accuracy for diagnostic tests. Omnibus indexes of diagnostic agreement have
generally been avoided because they do not separate sensitivity and specificity, or accuracy for positive
and negative tests.

20.4.4.1 Indexes of Specific Agreement — Several approaches have been proposed for
determining indexes of specific agreement. The most useful for binary data is the specific proportionate
agreement for positive and for negative ratings, denoted as ppos and pneg.

If f1 and n1 are each observer’s total of positive decisions, the expected positive agreement can be
estimated as (f1 + n1)/2. Because positive agreement occurs with a frequency of a, its proportion will be

[20.6]

The expected negative agreement will be (f2 + n2)/2 and its proportion will be

[20.7]

For the two previous sets of challenges to radiologists, the value of ppos will be (2)(102)/ (104 + 103) =
.985 in Table 20.4 and (2)(53)/(55 + 54) = .97 in Table 20.5. The value of pneg will be (2)(3)/(4 + 5) = 
.67 in Table 20.4 and (2)(52)/(53 + 54) = .97 in Table 20.5.

TABLE 20.5

Ratings of Chest Films for 108 Selected Patients

Radiologist B
Radiologist A

Normal Abnormal Total

 Normal 53 2 55
 Abnormal 1 52 53
 TOTAL 54 54 108

ppos a/ f1 n1+( )/2[ ] 2a/ f1 n1+( )= =

pneg d/ f2 n2+( )/2[ ] 2d/ f2 n2+( )= =
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For these reasons, when concordance is evaluated in a 2 × 2 agreement matrix, kappa is probably the
best index to use if you are using only one; but the results should always be accompanied by values of
ppos and pneg to indicate what is really happening. The special indexes for the two types of agreement
can be obtained easily without any need for adjustments due to chance, because the “expected” value
is used for each calculation.

20.4.4.2 McNemar Index of Bias for Binary Data — Proposing a simple index for biased
disagreements in a 2 × 2 concordance matrix, such as Table 20.1, Quinn McNemar3 used the following 
reasoning: If the disagreements occur randomly, the total of b + c in the b and c cells of Table 20.1
should be split about equally between b and c. If the Yes/No disagreements occur much more often than
No /Yes disagreements, or vice versa, the b and c values will be unequal.

The inequality is expressed proportionately in McNemar’s index

[20.8]

The lowest possible value for this index is 0. It occurs when b = c, i.e., when the number of Yes/No
paired ratings is the same as the number of No/Yes ratings. The highest possible absolute value, |1|,
occurs either when b = 0, so that the index is (−c)/(+c) = −1, or when c = 0, so that the index is b/b = +1.
When either b = 0 or c = 0, all the disagreement is in one direction.

Thus, the closer McNemar’s index is to zero, the more likely are the two observers to be “unbiased” in
their ratings. As the index approaches |1|, the observers have increasingly substantial differences in the way
they disagree. If one of the observers is regarded as the “gold standard,” the McNemar index will be an
index of inaccuracy rather than merely bias in directional disagreement.

In Table 20.2, the two observers disagree on 18  + 2 = 20 occasions. The pattern is Fail/Pass in 18 and
Pass/Fail in 2. The McNemar index will be (2 − 18)/(18 + 2) = − 16/20 = − .8. This relatively high
magnitude suggests a substantial difference among the examiners. (The McNemar index is stochastically
evaluated with a special chi-square test in Section 20.8.1.) If Examiner A were regarded as the gold
standard in evaluating candidates, the McNemar index would show whether Examiner B has biased
inaccuracy. In the current situation, however, Examiner B merely seems “tougher” than A, failing more
candidates than might be expected if the disagreements went equally in both directions.

The McNemar index was used15 to denote bias in the diagnosis of toxic shock syndrome when clinicians
reviewed scenarios for a series of cases that were identical in history, physical findings, and laboratory
tests, but different in sex, and in presence/absence of menstruation or use of tampons. The proportion 
of biased diagnoses for toxic shock syndrome rose progressively when the same clinical scenarios
respectively included a woman rather than a man, a statement about menstruation rather than no
statement, and specific mention of a tampon rather than no mention.

The disadvantage of the McNemar index is that the emphasis on disagreements eliminates attention
to the rest of the results. For example, the two observers in Table 20.2 would have the same McNemar
index of −.8 if they seldom agreed, so that the 2 × 2 matrix was , or if the disagreements were 
an uncommon event among all the other concordances in an agreement matrix such as .

20.5 Agreement in Ordinal Data

For the three or more rows and columns of ordinal data, the paired ratings can have different degrees 
of “partial” agreement.

20.5.1 Individual Discrepancies

With g ordinal grades, the frequency counts for the two raters will form a g × g agreement matrix. A 
straightforward index of proportional agreement can be formed from the sum of frequencies for perfect 

| b c |–
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------------------
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agreement in cells of the downward left-to-right diagonal. For example, Table 20.6 shows concordance of
intraoperative Doppler flow imaging vs. pre-operative biplane ventriculography in rating the severity of

mitral regurgitation in 246 patients.16 Perfect agreements occur in (91 + 20 + 4 + 10 + 9) = 134 of the
246 cases, a proportion of 54%.

The disagreements in all the other cells can be managed in two ways. In one approach, they are
counted merely as disagreements. In a better approach, however, they are weighted according to the
degree of partial disagreement. For example, paired ratings of 0–1 in Table 20.6 would have less
disagreement than the pair 0–2, which in turn would have less disagreement than 0–3.

20.5.2 Weighting of Disagreements

At least three tactics can be used to create weights for partial disagreements.

20.5.2.1 Categorical-Distance Method — The most simple and commonly used procedure
assigns a point for each unit of categorical distance from the diagonal cells of perfect agreement. The
subsequent calculations are easier if the weights increase for increasing degrees of agreement, rather than
disagreement, as shown in Table 20.7. With g ordinal categories, ranked as 1, 2, 3,…, g, the maximum
disparity is in cells rated as (1,g) or (g,1). These cells are given weights of 0. The next worst disparities
will be in cells rated as (2,g), (g,2), (1,g−1), or (g−1,1). These cells are given weights of 1. The grading
process continues until the maximum possible weight, g−1, is given for perfect agreement in the diagonal
cells (1,1), (2,2), (3,3),…, (g,g).

TABLE 20.6

Severity of Mitral Regurgitation as Graded by Ventriculography and by 
Transesophageal Doppler Color Flow (TDCF) Imaging (Data from 
Chapter Reference 16)

Severity Severity in Ventriculography
in TDCF 0 1 2 3 4 Total

0þ 91 28 11 1 0 131
1 33 20 11 3 2 69
2 6 3 4 1 0 14
3 2 1 5 10 2 20
4 0 0 2 1 9 12
TOTAL 132 52 33 16 13 246

TABLE 20.7

Scheme of Weights for One-Point Units of Agreement in Ordinal Categories

Ordinal 
Rating by B

Ordinal Rating by A
1 2 3 4 … g−1 g

I g− 1 g−2 g−3 g−4 … 1 0
2 g−2 g−1 g−2 g−3 … 2 1
3 g−3 g−2 g−1 g−2 … 3 2
4 g−4 g−3 g−2 g−1 … 4 3
… … … … … … …
g−1 1 2 3 4 ... g−1 g−2
g 0 1 2 3 ... g−2 g−1

.. .
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20.5.2.2 “Squared-Deviation” Method — In an alternative method,17 partial disagreements 
are weighted according to “the square of the deviation of the pair of observations from exact agreement.” 
With the previous method of categorical-distance scoring, the partial agreements in a 5-category scale 
might be weighted as 4, 3, 2, 1, and 0. With the “squared-deviation” method, the corresponding partial 
disagreements would be rated as 0, 1, 4, 9, and 16. The disagreement ratings can be converted to a 
“unitary scale” when divided by the maximum rating. Thus, if the maximum is 9, the foregoing ratings 
would be 0, .11, .44, and 1. If the maximum is 16, the ratings would be 0, .0625, .25, .5625, and 1.

The argument offered17 in favor of the “squared-deviation” proposal is that it is “an intuitively appealing 
standard usage,” with the advantage that “weighted kappa calculated with these weights approximately 
equals the product-moment correlation coefficient.” Since indexes of concordance were developed to 
avoid possibly misleading results from ordinary correlation coefficients, the “advantage” claimed for 
the “squared-deviation” method may not be “intuitively appealing” to all potential users.

20.5.2.3 “Substantive-Impact” Method — Both the categorical-distance and the “squared-
deviation” methods of weighting are chosen according to arbitrary statistical strategies. In a third scheme, 
the weights are assigned according to the substantive impact of the disparities. For example, if the 
neoplastic suspiciousness of cervical pap smears is rated as 0, 1, 2, 3, 4, a one-category disagreement 
between 3 and 4 will have fewer consequences than a disagreement between 0 and 1. With either a 3
or 4 rating, the patient will receive a further “workup” that probably includes colposcopy and cervical 
biopsy. A disagreement between 0 and 1, however, can lead to the clinical difference between simple 
reassurance vs. invasive further testing. Accordingly, a discrepancy between 0 and 1 may be given a 
much greater “penalty” than any of the other one-category disagreements.

This type of problem is particularly likely to occur when the ordinal rating scale begins with a null,
negative, or absent category, followed by categories that have different degrees of a “positive” rating. 
These null-based scales — such as 0, 1, 2, 3, 4 for pain or for pap smears — differ from other ordinal 
scales, such as I, II, III for TNM stage of cancer, where something “positive” is always present. In TNM 
stages, however, a discrepancy between I and II, i.e., between a localized state and regional spread, 
might be regarded as more (or less) serious than the regional vs. distant metastases implied by a 
discrepancy between II and III.

Cicchetti18 has developed a formal procedure for assigning substantive weights for disagreements in 
what he calls dichotomous-ordinal scales, where the extreme rating at one end has a special connotation 
(usually “normal” vs. a set of “abnormal” ratings). In continuous-ordinal scales, the disagreements in 
adjacent increments have equal connotations. As long as the weights are established before the statistics 
are computed, the assigned weights seem scientifically reasonable and offer increased flexibility in the  
evaluation procedure.

A substantive-impact weighting procedure can also be used for appraising concordance in various other 
situations. For example, substantive weights can be assigned (as noted later in Section 20.6.2) for disagree-
ments among nominal categories. When errors are assessed in diagnostic marker tests (see Chapter 21), 
a false positive rating may sometimes be given a greater (or lesser) “penalty” than a false negative rating.

20.5.2.4 Other Weightings — Cicchetti18 has proposed another weighting scheme that assigns 
weights as proportions between 0 and 1, and Fleiss9 mentions two other arrangements beyond those 
already cited.

20.5.3 Proportion of Weighted Agreement

To form a summary score, the weighted indexes for individual agreements or disagreements are multiplied 
by frequency counts; the products are added and then converted to suitable proportions.

In the categorical-distance method, suppose fi is the frequency count in each cell and wi is the 
corresponding weight of agreement. The total agreement score for the table will be Σ fiwi. For perfect 
agreement, all of the N pairs of ratings would be in the diagonal cells getting weights of g − 1; and so 
the perfect score would be N(g − 1). Thus, the weighted proportion of agreement would be
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[20.9]

To illustrate this procedure in the five ordinal ranks of Table 20.6, the perfect-agreement cells all
receive weights of 4 for the 134 (= 91 + 20 + 4 + 10 + 9) frequencies in those locations. For the remaining
cells, disparities of one category occur in the locations of (0,1), (1,0), (1,2), (2,1), (2,3), (3,2), (3,4), and
(4,3). Each disparity receives a weight of 3 for the 84 (= 28 + 33 + 11 + 3 + 1 + 5 + 2 + 1) frequencies
in those locations. Two-category disparities, receiving weights of 2, occur in the (0,2), (2,0), (1,3), (3,1),
and (4,2) locations, which contain 23 (= 11 + 6 + 3 + 1 + 2) frequencies. Three-category disparities,
with weights of 1, occur with 5 (= 1 + 2 + 2) frequencies in the (0,3), (3,0), and (1,4) locations. The
maximum possible 4-category disparity, which would receive a weight of 0, did not occur in the (0,4)
or (4,0) cells of the table. Consequently, the total weighted agreement score is (134 × 4) + (84 × 3) + 
(23 × 2) + (5 × 1) = 839. Because a perfect score would have been 246 × 4 = 984, the proportion of
weighted agreement for Table 20.6 is 839/984 = 85%. (Without weighting, the ordinary proportion of
agreement would have been 134/246 = 54%.)

With the squared-deviation method, the weighted score for each categorical disagreement would be 
qi; the frequency of scores would be fi; the score for maximum disagreement in N ratings would be
N(g – 1)2; and the score for proportion of weighted agreement would be

[20.10]

To illustrate this process in the data of Table 20.6, the total score for disagreement would be (134 × 0) + 
(84 × 1) + (23 × 4) + (5 × 9) + (0 × 16) = 221. The score for perfect disagreement would be 246 × 16 =
3936. The proportion of weighted agreement would be 1 − (221/3936) = .94. (With the “categorical
distance” method, the corresponding value was .85.)

As another example of the weighted scoring process, suppose two clinical pharmacologists, A and
B, have independently appraised 30 cases of suspected adverse drug reaction,19 rating each case as
definite, probable, possible, or unlikely. The results are shown in Table 20.8.

The index of percentage agreement for the appropriate diagonal cells is

For the index of weighted percentage agreement with categorical-distance scoring, a weight of 3 is 
given for perfect agreement among the four ordinal categories. A one-category disagreement is given a 
weight of 2; a two-category disagreement is weighted as 1; and the maximum disagreement (of three 
categories) is weighted as 0. Using Formula [20.9], the index of weighted percentage agreement is 
calculated as:

TABLE 20.8

Agreement Matrix of Two Clinical Pharmacologists, A and B, in Rating the 
Likelihood of Adverse Drug Reactions in 30 Suspected Cases  
[Data from Chapter Reference 19]

Rater A
Rater B Definite Probable Possible Unlikely Total

Definite 1 2 0 0 3
Probable 1 5 3 1 10
Possible 1 4 5 2 12
Unlikely 1 1 1 2 5
Total 4 12 9 5 30

pw
Σfiwi

N g 1–( )
---------------------=

pw 1 Σfiqi/ N g 1–( )2[ ]{ }–=

1 5 5 2+ + +
30

------------------------------- 100( ) 43.3%=

1 5 5 2+ + +( ) 3( ) 2 3 2 1 4 1+ + + + +( ) 2( ) 0 1 1 1+ + +( ) 1( ) 0 1+( ) 0( )+ + +
30( ) 3( )

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 75.6%=
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This value is considerably higher than the 43.3% unweighted index of percentage agreement. With the 
squared-deviation scoring method, using Formula [20.10], the value of Σfiqi is (1 + 5 + 5 + 2)0 + (2 + 
3 + 2 + 1 + 4 + 1)1 + (0 + 1 + 1 + 1)4 + (0 + 1)9 = 13 + 12 + 9 = 34. The score for N(g − 1)2 is 30 × 9
= 270. The value of pw is 1 − (34/270) = .874, which is again higher than the .756 calulated with the 
categorical-distance method.

20.5.4 Demarcation of Ordinal Categories

In all of the foregoing methods, the analyst began with an array of ordinal categories, and then chose 
statistical weights for the different degrees of partial agreement or disagreement. A more fundamental 
scientific challenge can arise, however, in demarcating the array of categories before all the statistical 
work begins.

Getting commensurate scales is a common problem in observer variability because the raters may 
use different expressions for their routine activities. Thus, one rater may refer to cardiac size in four 
categories as normal, slightly enlarged, moderately enlarged, or substantially enlarged, whereas 
another rater may use six categories, which include the previous four plus borderline (after normal)
and massively enlarged (after substantially enlarged). The problem is magnified when the raters 
use additional categories formed by qualifying expressions such as compatible with normal or 
consistent with slightly enlarged.

The investigator’s work will be eased if the raters can be persuaded to agree on a common scale of 
standard categories before the research begins, but the raters may then protest that the standardized scale  
is an artifact and that the results will not accurately reflect what happens in routine clinical practice. 
Because every research study creates artificial conditions, this problem cannot be avoided if observer 
variability is to be investigated at all. Recognizing that perfection may be impossible, the investigator 
can simply try to use a maximum of clinical “common sense” to achieve a best possible consensus from 
the participating observers. Sometimes, when several options are available for demarcating or consoli-
dating categories, the investigator can analyze results for each option separately. If the results differ 
substantially, each set can be reported separately.

For example, in a study of observer variability in mammography,20 the original scale of four diagnostic 
categories was normal; abnormal, benign; abnormal, indeterminate (i.e., uncertain whether benign 
or probably malignant); and abnormal, suspicious of cancer. For one set of analyses using three ordinal 
categories, the investigators consolidated the middle two categories into a single benign/indeterminate
rating. Because some of the mammographers believed that the indeterminate group would receive 
essentially the same subsequent “workup” as the suspicious-of-cancer group, another set of three-
category analyses was done with the latter two groups collapsed into a single category. Finally, in yet 
another analysis, all four of the original categories were retained.

20.5.5 Artifactual Arrangements

A different set of problems arises if the observers are accustomed to certain operating conditions that 
are altered for the research. For example, pathologists and radiologists regularly see accounts of a 
patient’s history before they examine the pertinent slides or films. If the history, suspected as a source 
of biased interpretation,21 is not supplied, the observers may then complain that the research process did 
not conform to reality. 

As another example, when the initial interpretation is equivocal, a final conclusion may not be reached
until pathologists have ordered and examined additional slides or stains, or until radiologists have checked 
additional views or other films. If the research arrangement forces the observers to reach a final conclusion 
without access to the additional options, the investigative process may again be deemed unfair.

This problem is also seldom avoidable within the pragmatic constraints of realities for both ordinary 
practice and concordance research. The practitioners who volunteer to participate in studies of observer 
variability may themselves be an unrepresentative sample; and the investigator must hope to come as 
close as possible to the “average” conditions of clinical practice, while acknowledging that individual 
idiosyncrasies may have been suppressed and that no investigation can be done without certain artifacts.  
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The Heisenberg principle (which states that the act of observation may change the observed object)
pertains not only for the relatively simple phenomena of the world of physics, but particularly for the
more complex phenomena of observer variability. Sometimes, however, the artifacts can be effectively
used for testing certain hypotheses. Thus, to determine whether the patient’s history is indeed a source
of bias, the observers may be given and asked to report on selected specimens that have been submitted
on two occasions with and without an accompanying history.21 In one study of radiographic interpretations
of change in a sequence of chest films,22 the radiologists on one occasion reviewed films of the same
patients arranged in the chronologic succession and, on another occasion, in a random chronology.

20.5.6 Weighted Kappa

Regardless of the selected categories and weighting scheme, however, the index of weighted percentage
agreement does not make provision for the agreement that might be expected by chance. If a correction
factor is introduced for chance agreement, the best index for concordance in ordinal data is weighted
kappa, κw. It is derived from κ after weights are assigned for the magnitude of observed disagreements.
κw is easier to calculate when based on q, the proportion of disagreements, rather than p, the proportion
of agreements. Since q = 1 – p,

[20.11]

where  = observed proportion of weighted disagreements and  = chance-expected proportion of
weighted disagreements. (The “primes” are added to each q to indicate that the quantities are weighted.)

The most commonly used strategy of indexing disagreements for weighted kappa is a reverse counterpart
of the categorical-distance method. The varying degrees of disagreement are given “reverse” weights as
follows: 0 = perfect agreement (e.g., A and B both report “moderate” pain); 1 = one-category disagreement
(e.g., “severe” vs. “moderate”); 2 = two-category disagreement (e.g., “mild” vs. “severe”), and so on up to
a maximum weight of g − 1, where g is the number of categories in the ordinal scale. (With the other two
methods of weighting, the corresponding sequence would be 0, 1, 4, 9,… for the “squared deviation” 
method or whatever weights are assigned for the “substantive-impact” method).

In Table 20.9, Table 20.8 has been modified to include the chance-expected cell frequencies (fc) and
assigned cell weights (wi) of “categorical distance” that would be used in addition to the observed cell
frequencies (fi) in the calculation of κ w. As in the case of unweighted kappa, fc is calculated by multiplying
the appropriate marginals, i.e., row total by column total, and then dividing by N. Proportions of weighted
disagreements are computed by multiplying cell frequencies (fi or fc) by the disagreement weight (wi)
assigned to that cell, summing these values over all cells, and then dividing by N.

For the calculation of weighted kappa in Table 20.9,

and

κw 1 q′o
qc′
------–=

q′o qc′

qo′ Σwifi

N
------------=

= 0( ) 1 5 5 2+ + +( ) 1( ) 1 4 1 2 3 2+ + + + +( ) 2( ) 1 1 0 1+ + +( ) 3( ) 1 0+( )+ + +
30

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

= 22
30
------ .733=
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The quantitative magnitude of κw is interpreted in the same way as the magnitude of unweighted
kappa. The values range from −1 to +1, with 0 representing chance-expected weighted agreement.

20.5.7 Correlation Indexes

Analogous to the use of φ for describing trends between two dichotomous categorical variables, non-
parametric correlation indexes such as rs (Spearman’s rho) and τ (Kendall’s tau) — which are discussed
later in Chapter 27 — have sometimes been applied for analyzing concordance in ordinal data. Denoting
trend rather than agreement, however, these indexes refer to correlation or general relatedness, not
concordance.

In particular, the correlation indexes ignore systematic bias. If Observer B consistently assigns higher
rankings than Observer A, while using the same order of rankings, the correlation will be excellent 
although agreement is poor. On a four-category pain scale, for example, if B reports “mild” pain whenever
A reports “none,” “moderate” whenever A reports “mild,” and “severe” whenever A reports “moderate”
or “severe,” the correlation will be quite high, despite only a modest degree of concordance.

20.6 Agreement in Nominal Data

Agreement has seldom been assessed for circumstances in which the observer chooses one of a series
of Š3 nominal categories. In one example, citation of four possible body sites of melanoma was
compared, with ordinary (non-weighted) indexes of agreement, for the locations listed in physicians’
office records and in a hospital cancer registry.23 The usual situation that evokes a choice among nominal
categories, however, is a test of conformity between a series of diagnostic estimates and the “gold
standard” results. The same statistical index is used for expressing either concordance or conformity in

TABLE 20.9

Agreement Matrix Containing Observed and Expected Frequencies and 
Assigned Weights for Ratings of Adverse Drug Reactions in Table 20.8.
[From Chapter Reference 19]

Rater A
Rater B Definite Probable Possible Unlikely

Definite 3 = r1

Probable 10 = r2

Possible 12 = r3

Unlikely 5 = r4

4 = c1 12 = c2 9 = c3 5 = c4 30 = N

Note: Numbers in cells represent observed frequencies, (fa); numbers in parentheses 
indicate chance-expected cell frequencies (fa); numbers in upper right corner 
are the assigned weights (wi) for disagreements.

q c′
Σwifc

N
-------------=

= 0( ) 0.4 4.0 3.6 0.8+ + +( ) 1( ) 1.3 4.8 1.5 1.2 3.0 2.0+ + + + +( )+
30

-------------------------------------------------------------------------------------------------------------------------------------------------------

     + 2( ) 1.6 2.0 0.9 1.7+ + +( ) 3( ) 0.7 0.5+( )+
30

-------------------------------------------------------------------------------------------------------  = 29.8
30

----------  =  .933 ;   and
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.993
----------– +.262.= =
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nominal data. Table 20.10 shows the agreement matrix for a hypothetical series of clinical diagnoses of
liver disease and the “gold standard” results of liver biopsy.

Because nominal data cannot be ranked, the only straightforward index for Table 20.10 is the propor-
tional agreement, which would be expressed as (10 + 20 + 13 + 35)/114 = 78/114 = 68%.

20.6.1 Substantively Weighted Disagreements

Although the individual values cannot be ranked, certain pairs of nominal disagreements may be weighted
substantively as “better” or “worse” than others. For example, suppose we were estimating a person’s
birthplace in the nominal category of Alabama, Alaska, Arizona,…, Wyoming, for one of the 50 United
States. For these predictions, a set of discrepancies might be weighted on the basis of geographic
proximity. Thus, if someone were born in New Hampshire, the estimate of Vermont would be much
closer than the estimate of California.

An arbitrary scheme of substantive weights might also be established for disagreements in the
diagnoses of Table 20.10. Thus, a disagreement with the diagnosis of cancer might be rated as a much
worse discrepancy than disagreements for any other pair of diagnoses. In a study24 of variability in
ratings of cell types for the histopathology of lung cancer, a disagreement of well-differentiated
epidermoid vs. well-differentiated adenocarcinoma was weighted more heavily than a disagreement
of poorly-differentiated adenocarcinoma vs. large cell anaplastic.

Unless such substantive ad hoc weights are established, the only descriptive index for nominal data
is the simple proportion of agreement. Because such studies are uncommon, the results are usually
reported without any adjustments for chance. If desired, however, kappa statistics can be calculated by 
converting the nominal scales into a series of dichotomous scales such as diagnosis A vs. all others, B
vs. all others, or C vs. all others. Values of proportional agreement and kappa could then be determined
for each of the 2 × 2 tables created by the dichotomous scales. The final result would be the medians
(or means) of the series of values for proportional agreement and kappa.

20.6.2 Choice of Categories

If the observers are accustomed to a free range of expressions, the choice of rating-scale categories can be
even more difficult for nominal than for ordinal challenges in observer variability. For example, when
interpreting the cell types of a series of histologic specimens of lung cancer, some of the pathologists24

used sparse numbers of categories such as epidermoid carcinoma, adenocarcinoma,…, whereas others
used many more categories with additional qualifying details such as well-differentiated, moderately
well-differentiated, and poorly differentiated for the epidermoid group and yet other details (acinar,
papillary, bronchiolar) for the adenocarcinomas.

In such situations, special analytic arrangements may be needed beyond the usual indexes for
expressing agreement. In the study just cited, a special set of “spectral numbers” was calculated for
the different designations the same slide might have received in both the intra-observer and inter-
observer interpretations.

TABLE 20.10

Nominal Diagnoses by Clinician and by Liver Biopsy in Hypothetical Data Set

Clinical 
Diagnosis

Results of Liver Biopsy
Hepatitis Cirrhosis Cancer in Liver Other Total

Hepatitis 10 3 2 6 21
Cirrhosis 4 20 3 2 29
Cancer in Liver 3 5 13 4 25
Other 2 1 1 35 39
TOTAL 19 29 19 47 114
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20.6.3 Conversion to Other Indexes

In some nominal-rating circumstances, the results are converted into binary or summated expressions.
For example, the nominal-category coding of ethnicity was expressed in binary indexes for each category
vs. all others in a study of agreement between birth and death certificates.25 In another study,26 ten
categories of possible differences were established between the ante-mortem clinical diagnoses and the
post-mortem diagnostic decisions. The results of each category were given a point for agreement, no
points for disagreement, and a blank for not pertinent. The points were then added to form a type of
“batting average” called a concordance score.

A different type of summary score was used when Loewenson et al.,27 examining the consistency of
pathologists’ assessments of cerebrovascular atherosclerosis, gave one point for each occlusion noted in
the mounted specimens of a set of transversally cut pieces of cerebral arteries. The participating
pathologists were then checked for agreement in their total point scores.

20.6.4 Biased Agreement in Polytomous Data

Indexes of bias in direction and magnitude are seldom sought for agreement matrixes expressed in
polytomous (i.e., Š3) categories of ordinal or nominal data. When desired, however, a modified McNemar
index can be calculated from the rows and columns arranged appropriately around the main diagonal,
which contains the cells of perfect agreement. The cells of disagreement are divided into an upper group,
above the agreement diagonal, and a lower group below the diagonal. The sum of frequency counts in
the upper disagreement cells is U and the corresponding sum in the lower cells is L.

For nominal data, the modified McNemar index is then |U − L|/(U + L). For example, in Table 20.10,
the sum of the upper disagreement cells is U = 3 + 2 + 6 + 3 + 2 + 4 = 20. The corresponding lower
sum is L = 4 + 3 + 5 + 2 + 1 + 1 = 16. The index of disagreement would be (20 − 16)/(20 + 16) = 4/36
= 11%. For calculating U and L in ordinal data, the distances from the diagonal, i.e., weighted disagree-
ments, can be taken into account in a manner resembling the tactics used in Section 20.5.2.

20.7 Agreement in Dimensional Data

Expressing agreement for pairs of dimensional data would at first seem to be a relatively simple
procedure. We want to know the individual discrepancies, their summary, an indication of inter-rater
bias (whether one rater is regularly higher than the other), and an indication of directional bias (whether
the discrepancies change with magnitude of the ratings). If the ratings from Raters A and B are cited
respectively as Xi and Yi, these goals can readily be achieved from examining and appropriately analyzing
the increments, di = Xi – Yi.

This simple approach has been ignored for many years, however. Instead, the paired data are usually
analyzed with various types of correlation analysis that are unsatisfactory, as discussed in Section 20.1,
because they express trends rather than agreements. Furthermore, at least two different types of corre-
lation analysis have been used — the ordinary least-squares regression procedure discussed in Chapter
19, and an intraclass correlation that makes a brief debut in this chapter, with further discussion in
Chapter 29.

20.7.1 Analysis of Increments

The increments noted as di = Xi − Yi can be evaluated directly to offer a summary of results and to
provide indications of bias in raters and directions.

20.7.1.1 Direct Increments — Consider the data shown in Table 20.11 comparing two meth-
ods, A and B, for measuring serum sodium. A quick look at the data suggests that the methods yield 
reasonably close results, but a more careful inspection of the individual increments shows that they are 
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respectively −5, −3, −3, −2, −5, −7, −2, −6, −2, and −5 for the values of Method A – Method B in
subjects 1 through 10. This examination immediately shows that Method B, in this group of data, always
has higher values than Method A. For the 10 increments, Σdi = − 40 and  = − 4.0.

To get an idea of relative magnitude for this disparity, we can calculate its relationship to the actual
measurements. The mean of the values is 140.0 in Method A and 144.0 in Method B, with an overall
mean of 142.0. The ratio of the average disparity to the average measured value will be −4.0/142.0 =
–.028, which is about a 3% difference.

20.7.1.2 Absolute and Squared Increments — The main problem in examining the means 
of direct increments is that negative and positive values may cancel one another in situations less
extreme than that of Table 20.11. For example, suppose the compared rating systems produce the
following values for three persons:

If we merely added the three deviations, as Σdi = Σ(Xi − Yi), the result would be 0, which falsely
suggests perfect agreement. To eliminate this effect, we can examine either the absolute increments or
the squared increments. For absolute increments here, Σ |di| = 40 and their mean would be 40/3 = 13.3.
For squared deviations, the sum would be = 600. The root mean square, expressed as ,
would be .

Because the mean of the six measured values is 82.7, the ratio of (mean discrepancy)/(mean measured
value) would be either 13.3/82.7 = .16 or 14.1/82.7 = .17. For the data in Table 20.11, the mean absolute
deviation is the same as the mean of direct deviations (because they all have the same sign). The root
mean squared deviation is , which is close to the direct value of 4.0.

20.7.1.3 Bias in Raters — The bias in raters in Table 20.11 was shown by the mean deviation
of −4.0. To indicate the stability of this result, we can put a 95% inner percentile range around it. Bland
and Altman29 have suggested the name “limits of agreement” for this interval. If the data are Gaussian,
the interval will extend ±1.96 s.d. above and below the mean discrepancy. In Table 20.11, the standard

TABLE 20.11

Comparison of Two Methods (A and B) for Determining Serum 
Sodium Concentration (in mEq/l) in 10 Subjects

Method Method Subject
Subject No. A B Means

1 136 141 138.5
2 142 145 143.5
3 129 132 130.5
4 148 150 149.0
5 140 145 142.5
6 152 159 155.5
7 142 144 143.0
8 134 140 137.0
9 139 141 140.0

10 138 143 140.5
Method means 140.0 144.0 Overall mean:

142.0

Person Rating by X Rating by Y Deviation: X − Y

1 100 80 20
2 85 95 −10
3 63 73 −10

d

Σdi
2 Σdi

2/N
600/3 14.1=

190/10 4.36=
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deviation of the discrepancies is 1.83 and so the “limits of agreement” will be −4.0 ±(1.96) (1.83), a
zone that goes from −7.59 to −.41.

The foregoing “limits” were descriptive, being obtained with the standard deviation, not the standard
error. For stochastic confirmation of the bias, the standard error of the increments would be = .579.
A 95% confidence interval would denote stochastic significance by excluding 0 in the extent of –4.0 ±
(1.96) (.579), which goes from −2.87 to −5.13.

20.7.1.4 Bias in Zones of Data — An important directional problem arises from the magni-
tude of discrepancies in different zones of the data. For example, a difference of 10 units seems relatively
small if the two measurements are 821 and 831, but not if the two measurements are 21 and 31. To deal
with this problem, each discrepancy can be indexed as a proportion of the “correct” value (if a “gold
standard” exists). In the absence of a gold standard, the mean of the two values, i.e., (X i + Yi)/2, can
be the reference point.

The increments of Xi − Yi can then be plotted as a dependent variable in a graph where (Xi + Yi)/2
is the independent variable. If unbiased, the incremental values should vary randomly around zero from
the smallest to largest values of (X i + Yi)/2. If a set of the increments becomes all positive or all negative
in a particular zone, the measurements are biased in that zone.

Another potential problem in direction, however, is that the incremental values, although balanced
around 0, may become much larger (or smaller) with increasing (or decreasing) magnitudes of (Xi +
Yi)/2. The enlarging-discrepancy effect would suggest that the measurement process itself —  rather
than one of the raters —  is biased, getting excessive disparities at the extreme values of measurement.
A transfer to logarithmic values may sometimes help eliminate the problem.

For the data in Table 20.11, the plot of each di vs. the corresponding (Xi + Yi)/2 is shown in Figure 20.4.
As expected, all of the increments have negative values, but our main concern here is whether their
magnitudes are affected by the size of the corresponding mean values for (Xi + Yi)/2. An eye scan of
the graph suggests very little relationship. The points above and below the mean increment of −4 are
all within the Gaussian “limits-of-agreement” zone (from −7.59 to −.41) as (Xi + Yi)/2 increases.

20.7.2 Analysis of Correlation

The analysis of increments can indicate everything we want to know about pairs of dimensional data,
but it has often been avoided in favor of correlation analysis. In the latter procedure, the sets of points
for {Xi, Yi} are plotted on a graph similar to Figure 20.2, and then receive a set of regression-correlation
calculations. Readers can then be impressed with the relatively close fit of the line and with the high
values of r (such as .978 in Figure 20.2).

FIGURE 20.4
Plot of increments vs. mean values of X i and Yi for data in Table 20.11. = Overall mean.
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The regression approach can yield a reasonably satisfactory index of agreement provided that the line
has a slope of 1 (indicating a 45° angle) and an intercept at the origin. If either of these values significantly
deviates from the goal, agreement may be poor, although trend is excellent. Besides, the regressioin/cor-
relation approach does not indicate the relative magnitude of individual discrepancies or direction in bias.

Although the superiority of incremental analysis is sometimes regarded as a “modern” discovery, the
procedure was used as early as over 60 years ago. When the distinguished Indian statistician,
P. C. Mahalanobis30 was examining the “question of correlation between errors of observation … in
physician measurements,” he considered the increment and standard error of the means in the pairs of
observation. (Mahalanobis also noted the phenomenon that biased observations occurred more often
“than one would expect from the normal theory.”)

20.7.3 Analysis of Intraclass Correlation

When R. A. Fisher proposed7 the intraclass correlation coefficient, he was interested in single measure -
ments of paired entities (such as two brothers) rather than paired measurement of single entities (such
as serum sodium). Because the paired entities did not have an assigned position (with Method A as the
Xi values and Method B as the Yi values), either entity could be regarded as X i or Yi. Fisher’s approach
to this situation was to list the entities both ways. He assembled N pairs
of an {Xi, Yi} arrangement and then reversed their order to form N
interchanged pairs with each Y i in the Xi position and vice versa. He gave
the name intraclass correlation coefficient (ICC) to the ordinary correlation
coefficient calculated for the 2N pairs of data. The procedure is lucidly
described and well illustrated by Robinson.31 For example, for the three
persons whose ratings were reported in Section 20.7.1.2., Fisher’s set of
analyzed values are shown in the accompanying list at the right.

The ICC procedure became popular among statisticians because it used Fisher’s analysis-of-variance
approach (further discussed in Chapter 29). The “unassigned locations” of the X and Y values were also
appealing for psychometric assessments of “reliability” in repeated tests.

20.7.3.1 Sources of Variations — For the intraclass analysis, the results are partitioned
according to two main sources of variation: the inter-individual variations among the individuals being
rated and the intra-individual variations among the raters. These variations are expressed as means of
the pertinent group variances; and appropriate ratios of those mean variances form the interclass
correlation coefficient, RI. The process resembles the partitioning of group variance for linear regression
in Chapter 19, but the RI is calculated from the means of the group variances.

20.7.3.2 Example of Calculation — For the data in Table 20.11, the inter-individual group
variance is For n members, each group has n − 1 degrees of freedom, so the total for
degrees of freedom is 2n − 2. The mean of the group variance will be (394 + 442)/(20 − 2) = 46.44.
For the intra-individual group variance, Sdd = Σ(di − )2 = 30, and there are n − 1 = 9 degrees of freedom.
The mean will be 30/9 = 3.33.

If represents the inter-individual variance, and  represents the intra-individual variance, the
intraclass correlation coefficient is

[20.12]

In this instance, RI = 46.44/(46.44 + 3.33) = .93. Because RI will vary from 0 to 1, the value of .93
seems impressively high (as the ordinary correlation coefficient would be).

20.7.3.3 Problems and Complexities in RI — An immediately evident problem in RI is that
the high value just noted for the data in Table 20.11 does not indicate the discrepancies — with method
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B always being higher than method A —  that are promptly shown in direct examination of the
increments.

A second problem is the way that the  term dominates the value of RI calculated with Formula
[20.12]. With large variations in the group of people under study, will have a large value, and RI will
be relatively high regardless of how well or badly the raters perform in producing . This distinction
gives RI problems analogous to those of kappa in being greatly affected by the distribution of data in
the study group.32

For multiple raters rather than two, RI becomes much more complex, because it is constructed in
different ways for different analyses. The complexities, which involve components of the analysis of
variance, will be discussed in Chapter 29.

Perhaps the greatest deterrent to using RI is the difficulty of understanding its construction and
interpretation. Many authors have written about RI, using different formulations, symbols, and interpre -
tations, even for the simple set of two-observer data in Table 20.11. If you intend to use this approach,
or want to understand the results, get help from an appropriately knowledgeable and communicative
statistician.

Perhaps the last main point to be noted before we leave RI is that it would seem to be most pertinent
pragmatically in quality control studies of laboratory measurements. Nevertheless, RI seldom appears
in the literature of laboratory medicine. Perhaps the investigators have already discovered that RI does
not offer an optimum approach to the challenges.

20.8 Stochastic Procedures

As noted earlier, the descriptive indexes are almost universally acknowledged as the main entity to be
considered in evaluating concordance. Consequently, P values and/or confidence intervals seldom appear
unless the group sizes are particularly small. Nevertheless, various chi-square procedures have been applied
for stochastic tests, and the McNemar test is particularly well known. The other procedures, which lead
to Z tests for kappa and weighted kappa, are briefly mentioned so you will have heard of them.

The McNemar chi-square test warrants special attention because it is regularly used for 2 × 2 tables
that express change as well as agreement. To get a stochastic index for the agreement matrix in Table 20.1,
McNemar used the following reasoning: Under the null hypothesis, the b and c cells can be expected 
to have equal values, which would be (b + c)/2. A goodness-of-fit chi-square test between the observed 
and expected values can be calculated as

With suitable algebraic expansion and collection of terms, this expression becomes

[20.13]

which can be interpreted in a chi-square table with 1 degree of freedom. A continuity correction can be 
incorporated to make the working formula become

[20.14]
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McNemar recommended that the continuity correction be used when (b + c) < 10. 
The McNemar index and stochastic test, which will reappear later in Chapter 26 when “matched” 

arrangements are discussed for case-control studies, have been used33 to compare rates of agreement 
between patients and surrogates about preferences for different forms of life-sustaining therapy.

The conventional X2 test can be applied whenever the descriptive results are expressed either in ordinary 
(unweighted) proportions of agreement or with the φ coefficient. In a 2 × 2 agreement table, however, 
the McNemar test is often preferred.

Agreement in polytomous matrixes can be tested stochastically with an extension of the McNemar 
test, called the Bowker X2 test for off-diagonal symmetry. The test is well described, with a worked 
example, in the textbook by Sprent.34

The stochastic procedure for kappa uses its standard error to form either a confidence interval or a Z  
statistic from which a P value is determined. The formula for calculating the standard error of kappa
is shown with an illustrative example in Fleiss.9

Fleiss9 also shows the calculation of a standard error for weighted kappa. The standard error is used 
for a confidence interval or a Z statistic.

The paired t test can be used for pairs of dimensional data. 

20.9 Multiple Observers

The last topic in this long chapter is the problem of analyzing results from multiple observers. In the 
many indexes and strategies just discussed, two (paired) ratings are compared for each entity. Sometimes, 
however, more than two ratings may be available. For example, in studying observer variability in 
mammography, Elmore et al.20 appraised the diverse readings offered by 10 radiologists for each of 150 
sets of mammograms.

The strategy that seems most scientifically sensible and easy to understand is to arrange the multiple 
ratings into pairs of raters, to calculate indexes of concordance for each pair of raters, and then to determine 
an average result. Thus, for four raters, we might determine kappa indexes for rater A vs. B, A vs. C, 
A vs. D, B vs. C, B vs. D, and C vs. D. An overall result, if desired, could be the average (as a median 
or mean) of the six kappa indexes.

20.9.1 Categorical Data

Because the statistical challenge is irresistible, various proposals have been offered to determine an 
overall generalized index for m raters, each offering n ratings for a set of categorical data. The methods  
are discussed and demonstrated by Fleiss.9 Kendall’s coefficient W for associating m sets of rankings 
is presented and illustrated by Sprent34 and also by Siegel and Castellan.35

20.9.2 Dimensional Data

For dimensional data, each of the m raters is regarded as a “class,” and the m dimensional values for 
each of the n rated entities receive a “repeated measures analysis of variance” that leads to the intraclass 
correlation coefficient RI . The analysis-of-variance strategy used for RI will be discussed in Chapter 29.
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Exercises

20.1. Table E.20.1 reports two respiratory measurements with each of two flow meters on 17 subjects.
The investigator’s goal was to see whether the more complex Wright flow meter could be replaced with
a simpler-and-easier-to use mini flow meter. [Data and figures taken from Chapter Reference 29.]

20.1.1. What would you check to see whether each flow meter yields essentially the same
results (i.e., “intra-observer variability”) in its two measurements for each subject?
Which flow meter seems inherently more “variable”?

20.1.2. Suppose the investigator, using only the first measurement for each subject, compares
the results as shown in Figure E.20.1. For these data, r = .94 with P < .001. [For the
questions that follow, use only the first “PEFR” for each method of measurement.]
(a) From visual inspection of the graph, would you be impressed that the high r 

value shows excellent agreement? If not, why not?
(b) What could you do quantitatively to check the excellence of the agreement?
(c) What would you check to see whether the two measuring systems are biased 

TABLE E.20.1

PEFR Measured with Wright Peak Flow and Mini Wright Peak Flow Meter

Wright peak flow meter Mini Wright Peak Flow Meter

Subject
First PEFR

(1/min)
Second PEFR

(1/min)
First PEFR

(1/min)
Second PEFR

(1/min)

1 494 490 512 525
2 395 397 430 415
3 516 512 520 508
4 434 401 428 444
5 476 470 500 500

6 557 611 600 625
7 413 415 364 460
8 442 431 380 390
9 650 638 658 642

10 433 429 445 432
11 417 420 432 420
12 656 633 626 605
13 267 275 260 227

14 478 492 477 467
15 178 165 259 268
16 423 372 350 370
17 427 421 451 443
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with respect to one another or to the magnitudes of PEFR? If your check involves
calculations, show the results and your conclusions.

20.2. Table E.20.2 shows dodeciles of “sucrose intake” as reported in two questionnaires repeated at a
one-year interval.17

20.2.1. Form a 2 × 2 table by dividing the original 12 × 12 table between the 6th and 7th
dodeciles. What are the values of proportional agreement and kappa in the 2 × 2 table?

20.2.2. What are the values of ppos and pneg in the 2 × 2 table? Do these results convince or
dissuade you for the belief that kappa is a good index of concordance here?

20.2.3. Form a 3 × 3 table by dividing between the 4th and 5th and 8th and 9th deciles. What
happens to proportional agreement? Using the categorical-distance method, what is the
value of weighted proportionate agreement?

20.2.4. A compassionate instructor saves you from having to slog through the calculations and
tells you that weighted kappa (with the categorical-distance method) is 0.46 for the
3 × 3 table. How does this compare with the value previously obtained for the
unweighted (2 × 2) kappa? How do you account for the difference?

Comment: In the exercises that follow, you are not expected to do any sophisticated calculations such
as kappa. Your conclusions should come mainly from visual inspection and “clinical judgment,” although
you should feel free to check minor arithmetical details, such as sums.

20.3. In a paper on open-heart surgery for aortic valve and/or coronary disease in 100 consecutive
octogenarians,36 the authors concluded that “operation may be an effective option for…selected
octogenarians with unmanageable cardiac symptoms.” Symptoms were classified and tabulated as shown
in Figure E.20.3A.

20.3.1 The authors say that 90 patients were in Class IV for either the NYHA or CCS
classifications. What is the source of this number and do you agree with it?

20.3.2. Are you satisfied that the patients in Class IV (with either rating scale) have been
suitably classified? If not, why not?

20.3.3. In Figure E.20.3B, the authors report the “current functional and ischemic status of
the 54 patients who still remain alive” in follow-up durations that are at least one year
for all patients and as long as six years for a few. Are you satified with the classifications
and results offered in Figure E.20.3B? Is there anything else you might like to know
to determine which patients were most benefited by the operation, and whether the 
authors’ claim is justified that the operation is beneficial for “octogenarians with 

FIGURE E.20.1
PEFR measured with large Wright peak 
flow meter and mini Wright peak flow 
meter, with line of equality.
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unmanageable cardiac symptoms?”

20.4. Figure E.20.4 shows results of a simpler, speedier electrophoresis method than the standard
(“modified K-L columns”) method for measuring glycosylated hemoglobin (HbAl). The authors said the
new method was “accurate,” but offered no comparative information except what appears in Figure E.20.4
and its legend.

20.4.1. What is the meaning of “S2y . x = 1.04” on the graph?

TABLE E.20.2 

Cross-Classification of Subjects by Dodeciles of Sucrose Intake Measured by a Food Frequency
Questionnaire Administered Twice, One Year Apart, to 173 Boston-Area Female Registered Nurses
Aged 34–59 Years in 1980–1981 [Taken from Chapter Reference 17.]

Second
Questionnaire

Dodeciles
First Questionnaire Dodeciles

1 2 3 4 5 6 7 8 9 10 11 12

1 7 4 0 1 1 0 1 0 0 0 0 0
2 3 3 4 0 3 0 0 0 0 0 1 0
3 1 0 2 2 2 3 1 2 1 0 1 0
4 1 3 2 3 3 0 1 1 1 0 0 0
5 0 2 1 2 1 5 0 1 2 0 0 0
6 0 1 0 3 1 3 3 3 0 0 1 0
7 1 0 1 0 1 2 3 0 3 1 1 1
8 0 0 2 1 2 1 0 1 2 5 0 1
9 1 1 2 0 0 0 1 2 2 1 3 1

10 0 0 0 1 0 0 4 2 3 1 1 3
11 0 1 0 0 0 1 0 1 0 5 1 5
12 0 0 0 1 0 0 0 1 1 2 5 4

FIGURE E.20.3A
Matrix of Symptoms in All 100 Patients Who Underwent
Open-Heart Surgery. Each patient was classified according
to both the New York Heart Association (N.Y.H.A.) clas-
sifications of functional disability and the Canadian Car-
diovascular Society (C.C.S.) classifications of severity of
effort angina. Patients who did not have angina were in-
cluded in C.C.S. Class I, since none of them could exercise 
strenuously. [Taken from Chapter Reference 36.]

FIGURE E.20.3B
Functional and Anginal Classification of the 54 Living Pa-
tients. [Taken from Chapter Reference 36.]
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20.4.2. Do you agree with the authors’ claim that the new method is “accurate”? If not, 
why not?

20.5. In a study of therapeutic outcome as rated by patients and their psychotherapists, the following 
frequency counts were reported for 37 patients:

The authors listed the stochastic analytic results exactly as follows:

20.5.1. How do you think this stochastic analysis was conducted? Do you agree with it? If 
not, what would you propose instead?

20.5.2. What would you do to check whether the therapists were more optimistic than the 
patients?

Rating by Therapist

Rating by Patient Satisfactory Unsatisfactory Total

Satisfactory 19 1 20
Unsatisfactory 5 12 17
Total 24 13 37

X2 Value P Value

Agreement 17.345 < .005
Change 2.667 NS

FIGURE E.20.4
Relation between HbA1 concentrations measured by electrophoresis endosmosis and our own modified Kynoch-Lehmann 
(K-L) columns (n = 192). HbAt by electrophoresis 1.10 HbA1 by K-L−0.64(  Line of identity, - - - Regression line). 
[Taken from Chapter Reference 37.]
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As medical technology began to burgeon after World War II, the diagnostic accuracy of new procedures 
and tests required quantitative evaluation. As new therapeutic technology was developed, however, 
patient care began to offer many scientific challenges beyond diagnostic decisions alone. The additional 
decisions demanded that clinicians use the technologic information to estimate prognosis, choose and 
evaluate therapy, and appraise diverse conditions and changes. Nevertheless, most statistical methods 
for assessing technology have been devoted to the accuracy of diagnostic tests.

After a brief discussion of nomenclature, most of this chapter is devoted to the diagnostic statistical 
methods. Some of the additional nondiagnostic challenges in clinical care are noted afterward. 

21.1 Concepts of Accuracy and Conformity

When the same entity is measured in two ways, the agreement in results can be called accuracy if one 
result is accepted as the correct entity, which is often called the reference, criterion, or gold standard.
For chemical (and other laboratory) measurements, the criterion result may come from the National 
Bureau of Standards or from a particular laboratory designated as the reference standard. In the usual 
assessment of accuracy, a tested laboratory’s results for a measurement such as serum calcium are 
compared against the corresponding values obtained in the reference laboratory.

Many diagnostic activities, however, do not compare two measurements of exactly the same 
substance. Instead, the results of one variable, such as serum calcium, are used as a marker test to 
identify (or “predict”) the diagnosis of a disease, such as hypoparathyroidism, that is verified with 
other methods in the second, or “gold standard,” variable. In other activities, a marker test may be 
evaluated for efficacy rather than accuracy, because the gold-standard criterion may rely not on a 
single idea of “correctness,” but on a composite combination of costs, convenience, and consequences 
for right and wrong answers. The idea of accuracy may itself sometimes be uncertain, because the 
gold-standard criterion may not have enduring permanence. For example, the radiologic imaging 
procedure that is today’s “gold standard” might be replaced by a better technique tomorrow.

For all these reasons, the term conformity is often better than accuracy for assessing agreement between 
an evaluated entity and the accepted criterion. Nevertheless, accuracy is usually applied for tests of 
diagnostic markers. As a label for the reference criterion, gold standard has also become popular and 
conventional, despite occasional objections that the fluctuating value of gold is undesirable for an 
allegedly constant criterion.

This chapter is devoted mainly to quantitative methods of expressing conformity. Although diagnostic 
marker tests are the main topic, conformity can also be appraised for spectral marker tests, which are 
used for diverse clinical conditions rather than diseases, and for many clinical decisions beyond 
diagnosis alone. The mathematical methods often appear in medical literature, but they are beset by 
important, often overlooked, and currently unresolved scientific problems that are discussed in Sections 
21.8 and 21.9.

21.2 Statistical Indexes of Diagnostic Efficacy

The idea of diagnostic efficacy was introduced when scientific and statistical problems arose during 
“screening” for disease in apparently healthy people. After World War II, searches for tuberculosis were 
done with photofluorography, a simple, quick procedure that produced much smaller films than the 
customary “gold standard” chest X-ray. In 1947, observer variability and accuracy in the use of photof -
luorography were reported1 by a group of physicians working with Jacob Yerushalmy, an epidemiologist. 
Later that year, Yerushalmy2 introduced the terms sensitivity and specificity, which have subsequently 
become the “established” statistical indexes for appraising diagnostic performance.
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21.2.1 Structure of a Decision Matrix

The results of diagnostic tests are usually expressed in a 2 × 2 table, sometimes called3 a decision matrix,
showing frequency counts for the binary results of yes/no for presence of the disease, and positive/neg-
ative for the marker test. Table 21.1 resembles all other 2 × 2 tables, but the results are commonly
expressed with two statistical indexes aimed at diagnostic efficacy.Two of the indexes, as christened by
Yerushalmy, were sensitivity and specificity. Sensitivity, which is v = a/(a + c) = a/n1 in Table 21.1, is
the proportion of “true positive” results in diseased cases; and specificity, which is f = d/(b + d) = d/n2,
is the proportion of “true negative” results in the nondiseased controls. Another common index, called
prevalence, is the proportion of diseased cases in the total group under study, expressed as P = n1/N.

These three indexes — sensitivity, specificity, and prevalence — are commonly used in statistical
discussions, and are calculated “vertically” from the columns in the table. In making decisions for
individual patients, however, clinicians usually want to know the rates of diagnostic accuracy that
are shown “horizontally” in the rows of the table. These different directions of interpretation are the
source of the major problems to be discussed shortly.

21.2.2 Omnibus Indexes

The direction of interpretation can be avoided with an “omnibus” index, which offers a single summary
for a result that otherwise requires two or more separate citations, such as sensitivity and specificity.

For a diagnostic marker test, one omnibus expression, called index of validity, is essentially the same
as percentage agreement. In the symbols of Table 21.1,

Index of validity = (a + d)/N

Another omnibus index, called Youden’s J, was suggested as a compensation for error in the “vertical”
indexes. The false positive rate in nondiseased people, i.e., b/(b + d), is subtracted from the true positive
rate in diseased people, i.e., a/(a + c). When the algebra is developed, Youden’s J turns out to be 
v – (1 – f) = v + f − 1, which is simply the sum of sensitivity + specificity − 1.

The omnibus simplification that combines these two indexes is also a prime defect. It obscures what 
is needed for two separate clinical decisions: the accuracy of the marker test in diseased and in
nondiseased persons. Furthermore, when the test is applied to an “unknown” group, the clinician will
want to know “predictive” accuracy separately for positive and negative results. The omnibus indexes
are hardly ever used today because the single combined result does not provide the desired information.

21.2.3 Problems in Expressing Rates of Accuracy

The terms sensitivity and specificity were quite appropriate when the original research, designed in a
case-control manner, contained groups of cases, who were known to have the disease, and controls, who

TABLE 21.1

Components of Decision Matrix for Diagnostic Marker Tests

Diagnosis Made 
from Marker Test

Correct (“Gold Standard”) 
Diagnosis of Disease

Present Absent Total

Positiveþ a b ml

(true positive) (false positive)
Negative c d m2

(false negative) (true negative)
TOTALþþ n1 n2 N

Note: “Sensitivity” = a/(a + c) = a/n1; “Specificity” = d/(b + d) = d/n2; “Positive predictive 
accuracy” = a/(a + b) = a/m1; “Negative predictive accuracy” = d/(c + d) = d/m2.
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did not. In the case-control design, these two groups served as denominators of the original statistical 
indexes, which were a/n1 for sensitivity and d/n2 for specificity.

21.2.3.1 Problems in Nomenclature — The case-control approach, however, led to major
conceptual problems that have never been easily resolved. One problem is in nomenclature. Since the
opposite of a true positive is a false positive, the latter title might be expected for the additive reciprocal
of the “true positive” index of sensitivity. The value of 1 − (a/n1) = (n1 − a)/n1 = c/n1, however, refers
to false negative, not false positive, diagnoses for the diseased cases. Similarly, the additive reciprocal
of the true negative result for specificity, i.e., 1 − (d/n2), is b/n2, which refers to false positive diagnoses
for controls, rather than the intuitively expected idea of false negatives.

To avoid confusion, Henrik Wulff4 proposed using the more precise terms nosologic sensitivity and
nosologic specificity for the “vertical” statistical indexes that are calculated nosologically, from cases
and controls whose true state of disease is already known. The precise adjectives have generally been
omitted, however, and sensitivity and specificity are seldom cited with their nosologic prefixes.

21.2.3.2 Problems in Clinical Direction — A second problem is in the direction of clinical
application. The terms sensitivity and specificity, although perhaps satisfactory for a case-control struc -
ture, do not indicate what a clinician does with a diagnostic marker test. For persons with unknown
diagnoses (in clinical practice), the clinician wants statistical indexes to show the marker test’s rates of
accuracy when results are positive or negative. In Table 21.1, these rates would be determined, respec-
tively, as a/m1 and d/m2, not as a/n1 and d/n2.

If the statistical nomenclature were concerned with scientific clinical precision, the “predictive” rates
might have been called, respectively, diagnostic sensitivity and diagnostic specificity. An alternative, but
longer, pair of designations would have been diagnostic true positive rate and diagnostic true negative
rate. The reciprocal values for these diagnostic rates would have been intuitively easy to understand,
because each positive or negative rate would have true and false reciprocal components.

Instead, however, bowing to the established case-control definitions and improperly using the term
predictive for estimating a concomitant rather than future event, investigators designated the desired
clinical rates as positive predictive accuracy (for a/m1) and negative predictive accuracy (for d/m2).
Massive ambiguity and confusion can then occur when writers talk about a “false positive rate” or a
“false negative rate,” without indicating which denominator is used for the rates.

21.2.3.3 Problems of Prevalence — A third and more profound statistical problem was soon
recognized. Because comparative differences are often best demonstrated in contrasts for equal numbers
of members, the case and control groups chosen for most diagnostic marker research had roughly similar
sizes, i.e., n1 n2. With this partitioning, the disease had a prevalence of about 50%, i.e., n1/N  .5,
in the case-control research. At that level of prevalence, high values of nosologic sensitivity and
specificity would be converted into correspondingly high values of predictive diagnostic accuracy.

For example, consider a marker test that has 92% sensitivity and 96% specificity in a group of 50
diseased cases and 50 nondiseased controls. The numerical results, shown inTable 21.2, have relatively
high values of .96 for positive and .92 for negative predictive accuracy. The prevalence of the disease
in this carefully selected test group, however, is .50 — a situation that seldom occurs in real life, even
in tertiary-care hospitals. When the diagnostic marker test is used for screening purposes in the com-
munity, the prevalence of disease is substantially lower — at rates of .1, .05, or .001.

Table 21.3 shows the performance of this same diagnostic test when applied to 1,000 persons in a
community where prevalence of the disease is .05. The sensitivity and specificity of the test remain the
same: .92 in the 50 diseased persons, and .96 in the 950 who do not have the disease. The negative
predictive accuracy is even better than before, with a rate of .996 (= 912/916). The positive predictive 
accuracy, however, falls drastically to a value of .55 (= 46/84), indicating that about one of every two
positive results will be a false positive.

The two omnibus indexes of Section 21.2.2 would not be able to detect this problem. The index of
validity will be (46 + 48)/100 = .94 in Table 21.2 and (46 + 912)/1000 = .958 in Table 21.3. The high

−∼ −∼
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value of the latter result would completely hide the predictive “lesion” in that table. The lesion will also
be missed by Youden’s J, which is independent of prevalence, relying only on nosologic sensitivity and
specificity. In Tables 21.2 and 21.3, Youden’s J will have identical results of .92 + .96 − 1 = .88.

21.2.4 Mathematical Conversions for Clinical Usage

Because the indexes of nosologic sensitivity and specificity are unsatisfactory for clinical usage, some
other approach was needed. If the original diagnostic marker research had been done in cohort populations
and expressed directly in the clinically desired “predictive” indexes, the results (and main problems) of
clinical accuracy would have been immediately apparent. Case-control studies, however, were much
easier to do than cohort research, and besides, sensitivity and specificity seemed to be inherent, invariant
properties of the diagnostic marker test. They presumably reflected the test’s performance for the selected
disease, regardless of what its prevalence might be.

With this assumption, investigators sought a mathematical method that could easily, without any
further work, convert the two nosologic indexes into the desired diagnostic indexes.

21.2.4.1 Ordinary Algebra — The conversion can easily be done with simple algebraic sym-
bols, letting v = a/n1 represent sensitivity, f = d/n2 represent specificity, and P = n1/N represent prevalence.
These three symbols can then be algebraically transformed into predictive diagnostic indexes for any
group containing N people.

For positive predictive accuracy, we first determine appropriate substitutes for a / (a + b) in Table 21.1. Because
a = vnl, and n1 = PN, we can express a as vPN. Because b = n2 − d, with n2 = (1 − P)N and d = fn2, the
value of b becomes (1 − f)(1 − P)N. Thus, positive predictive accuracy, abbreviated as ppa, becomes
a/(a + b) = vPN/[vPN + (1 − f)(1 − P)N], which is

ppa = vP/[vP + (1 − f )(1 − P)] [21.1]

When applied to Table 21.3, this formula produces ppa = (.92)(.05)/[(.92)(.05) + (.04)(.95)] =
.04/[.046 + .038] = .046/.084 = .55, which is the same result obtained previously.

For negative predictive accuracy, we substitute for d /(c + d). The value of d becomes fn2 = f(1 − P)N;
and c = (1 − v)n1 = (1 − v)PN. Consequently, with suitable algebraic arrangements, the negative predictive
accuracy (npa) for d/(c + d) is calculated as

npa = [f(1 − P)]/[f(1 − P) + (1 − v)P] [21.2]

 TABLE 21.2

Performance of Diagnostic Indexes in a Setting of “High” Prevalence

Marker-Test Result Diseased Cases Nondiseased Controls TOTAL

Positiveþ 46 2 48
Negative 4 48 52
TOTALþþ 50 50 100

Note: “Sensitivity” = 46/50 = .92; “Specificity” = 48/50 = .96; “Positive predictive accuracy” = 46/48 = .958;
“Negative predictive accuracy” = 48/52 = .923.

TABLE 21.3

Performance of Same Test Shown in Table 21.2 in a Setting of “Low” Prevalence

Marker-Test Result Diseased Cases Nondiseased Controls TOTAL

Positiveþ 46 38 84
Negative 4 912 916
TOTALþ 50 950 1000

Note: “Sensitivity” = 46/50 = .92; “Specificity” = 912/950 = .96; “Positive predictive accuracy” = 46/84 = .548; 
“Negative predictive accuracy” = 912/916 = .996.
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For Table 21.3, the calculation would be (.96)(.95)/[(.96)(.95) + (.08)(.05)] = .912/(.912 + .004) =
.912/.916 = .996, which is also the same result obtained previously.

Formulas [21.1] and [21.2] can easily show why misleading clinical results are produced by case-
control studies in which P is about .5. When P = .5, 1 − P = .5, and so ppa becomes v/[v + (1 − f)],
i.e. , sensitivity/ [sensitivity + (1 − specificity)], and npa becomes f / [f + (1 – v)], i.e.,
specificity/[specificity + (1 − sensitivity)]. In this situation of high prevalence, if nosologic sensitivity
and specificity have essentially similar high values, their counterparts in diagnostic sensitivity and spec-
ificity will also have similar high values.

In Table 21.3, however, where prevalence is .05, ppa will be .05v/[.05v + .95 (1 − f)]. The result will
be strongly affected (and reduced) by the relatively large value of .95 (1 − f) in the denominator.
Conversely, npa will be .95f/[.95f + .05 (1 − v)]. The result will usually be close to 1, because the .05 (1
− v) term in the denominator, being relatively small, will have little effect.

21.2.4.2 Bayes Theorem — A mathematically “elegant” way of achieving the simple algebraic
conversions just described is to use the complex ideas and symbols of Bayes Theorem. Its basis is
illustrated with the Venn diagrams of Figure 21.1, which shows the Boolean relationship in a population
where one group, D, has the focal disease, and the other group, T, has a positive marker test for that
disease. The complementary symbol, , represents persons who do not have the disease, and , those
who have a negative (i.e., nonpositive) result in the marker test. In the combined diagram, the doubly
cross-hatched group in the upper left corner represents D � T, i.e., the “true positive” persons who have
both a positive result and the disease. The group of people shown without shading in the lower right
corner of Figure 21.1 represent � , i.e., the true negative group.

If the symbol “N( )” is used to represent the number of persons in a particular group, the number
of persons with disease D is N(D), and the prevalence of disease D in the total group of N persons is
N(D)/N, which is also called the probability of the disease, P(D). Analogously, the prevalence (or
probability) of persons with a positive test is P(T) = N(T)/N. The prevalence (or probability) of persons
with a true positive result is P(D � T) = N(D � T)/N. All of these probabilities represent proportionate
occurrence of the cited entities in the total population under investigation.

The other pertinent entities in Bayes Theorem are called conditional probabilities. They represent the
proportional occurrence of a subgroup within a particular group. Thus, the symbol P(TD) represents
the proportion of positive test results in diseased persons. The expression is pronounced “probability of
T, given D”; and the symbol is a vertical “” mark, not the diagonal “/” mark often used for division.

FIGURE 21.1
Rectangular Venn diagrams showing groups in-
volved in Bayes Theorem. The left side of the 
upper section shows the tested “population” di-
vided into D, persons who have the disease under 
study, and not D. The division on the right side 
shows T, persons with a positive marker test for 
that disease, and those without. The overlap in 
the lower section shows the four groups in the 
customary 2 × 2 table. Persons with  � ,
who have neither the disease nor a positive test, 
are represented in the lower right corner.
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The proportion of diseased persons among those with a positive test is P(D T). Figure 21.1 demonstrates
the relationships that can be expressed or defined as

P(TD) = P(D � T)/P(D) [21.3]

and
P(DT) = P(D �∩ T)/P(T) [21.4]

Solving these two equations for P(D � T) and then setting the results equal to each other, we get

P(DT) [P(T)] = P(TD) [P(D)] [21.5]

Some additional thought about these symbols will reveal that P(DT) represents positive predictive
accuracy; P(T) represents the prevalence of a positive test result; P(TD) represents the nosologic
sensitivity of the marker test; and P(D) represents the prevalence of the disease. In the jargon developed
for statistical communication, P(D) is also called the prior or pretest probability of the disease, and
P(DT) is called its posterior or posttest probability.

Because we want to know P(D|T), we can solve Equation [21.5] to get

[21.6]

which is one of the simpler ways of expressing Bayes Theorem for diagnostic marker tests. The more
complex expressions are derived by suitable substitutions of “known” values for those that are not known.
To get the value of P(T) in Formula [21.6], we note from Figure 21.1 that P(T) = [N(T � D) +
N(T � )]/N which becomes

P( T ) = [P(TD) P(D)] + [P(T ) P( )].

The cited value for specificity is P( � )/P( ), which is P(  ). The reciprocal value, 1 – P(  ),
will be P(T ). The reciprocal value of P(D) is P( ) = 1 − P(D). When the cited value of P(T) is
substituted into Equation [21.6], we can use the expressions of conditional probability, and the values
for sensitivity, specificity, and prevalence of disease, to write

[21.7]

This complex expression for positive predictive accuracy, cited in terms of conditional probabilities, 
says exactly the same thing as the much simpler algebraic expression in Formula [21.1].

The application of Bayes Theorem can be illustrated with exactly the same data used earlier to show
the change in positive predictive accuracy from Table 21.2 to Table 21.3. To apply Formula [21.7], we
know that sensitivity, i.e., P(TD), is .92 and that specificity, i.e., P(  ), is .96. In Table 21.3,
prevalence, i.e., P(D), is 50/1000 = .05. To determine positive predictive accuracy, i.e., P(D T), we now 
substitute into Formula [21.7] to get (.92)(.05)/[(.92)(.05) + (1 − .96)(l − .05)] = .55, which is the same 
result obtained previously.

An analogous expression can be developed for the Bayesian citation of P(  ), which indicates 
negative predictive accuracy. You can work out the details for yourself or find them cited in pertinent 
publications elsewhere.

An important (and perhaps comforting) feature of Bayes Theorem is that it is simply a manipulation 
of the algebraic truism recorded in Expressions [21.3], [21.4], and [21.5]. For most purposes of analyzing 
diagnostic marker tests, nothing more need be known about Bayes Theorem itself.

21.2.4.3 Likelihood Ratio — A more sophisticated manipulation of the Bayesian algebra pro -
duces an entity called the likelihood ratio. It is used later for other types of diagnostic calculations, 
but it has become an important intellectual contributor to a new form of stochastic reasoning, called 
Bayesian inference.

P D |T( ) P T |D( )P D( )
P T( )

-------------------------------=

D

D D

D T D T D T D
D D

P D |T( ) P T |D( )P D( )
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------------------------------------------------------------------------------------------------------=

T D

D T
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To demonstrate the use of the likelihood ratio, we first note that results in Figure 21.1 for the “false
positive” group, P( � T), can be included in two expressions as

P(T ) = P( � T)/P( ) [21.8]

and

P( T) = P( � T)/P(T) [21.9]

Solving [21.8] and [21.9] for P( � T) and equating the two results, we get

P(T ) P( ) = P( T) P(T) [21.10]

If Equation [21.10] is solved for P(T), and if the result is substituted for P(T) in Equation [21.6], we get

[21.11]

In Equation [21.11], the far right entity, P(D)/P( ), is simply the odds for prevalence. It is (nl /N)/(n2/N) =
nl/n2, and is also called the prior odds of the disease. The value of P(D T)/P( T) on the left side
of the equation is the odds for a true positive among positive results. It is (a/m1)/(b/m1) = a/b,
and is also called the posterior odds for a positive marker test.

The value of P(TD)/P(T ) is called the likelihood ratio. It converts the prior odds into the posterior
odds according to the formula

posterior odds = likelihood ratio × prior odds [21.12]

or

likelihood ratio = [21.13]

Because P(TD) = sensitivity = a/nl, and P(T ) = 1 − specificity = 1 − (d/n2), we can express the test’s
accomplishment for a positive result in the 2 × 2 decision matrix as

positive likelihood ratio = [21.14]

For a negative diagnostic marker result, the prior odds are n2/n1 and the posterior odds are d/c. When
appropriately arranged, the negative likelihood ratio for a 2 × 2 table becomes (d/n2)/(c/nl), which is

negative likelihood ratio = [21.15]

This reasoning becomes pertinent later when likelihood ratios are used to express levels of diagnostic
marker results.

21.2.4.4 Illustration of Likelihood-Ratio Calculations — To illustrate the numerical
activities, the positive likelihood ratio in Table 21.2 is [46/50]/[2/50] = 23. The negative likelihood
ratio is [48/50]/[4/50] = 12. The same results are obtained respectively in Table 21.3, where
[46/50]/[38/950] = 23, and [912/950]/[4/50] = 12. This similarity would be expected because sensi-
tivity and specificity are the same in both tables.

The main difference in the two tables is the prior odds, which is 50/50 = 1 in Table 21.2, and 50/950 =
.0526 in Table 21.3. Consequently, the two tables have different values for posterior odds, calculated as
likelihood ratio × prior odds. The posterior odds for a positive result are 23 × 1 = 23 in Table 21.2, and
23 × .0526 = 1.21 in Table 21.3. An even simpler way of getting these results for the first row in each
table is to note that 46/2 = 23 in Table 21.2 and 46/38 = 1.21 in Table 21.3.
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After being calculated, the posterior odds must be converted to the probabilities that express diagnostic
accuracy. The conversion uses the mathematical “construction” that probability = odds/(odds + 1). Thus,
the positive predictive accuracy is 23/(23 + 1) = .958 in Table 21.1 and 1.21/(1.21 + 1) = .548 in
Table 21.2. Various nomograms5–7 have been proposed to produce these transformations directly from
values for the likelihood ratios and prior probability.

21.2.5 Bayesian Inference

The logic of Formula [21.12] is especially cogent for the statistical reasoning called Bayesian inference,
which differs from the frequentist methods that underlie all the stochastic strategies discussed in this
text. Bayesian inference relies on the likelihood-ratio relationship between prior and posterior odds.

The Bayesian inferential methods are becoming fashionable today, especially for advanced graduate
courses and doctoral dissertations in academic departments of statistics. Nevertheless, the value of
Bayesian inference is highly controversial,8,9 and its ultimate role is currently uncertain. A fundamental
problem in the dispute is that subjective choices are often used for the values of prior odds. Clinicians
who have received decades of exhortation to avoid anecdotal evidence and to get precise documentation
for any quantitative statements are often surprised and ruefully chagrined to discover a new brand of
mathematical reasoning that allows completely subjective guesses to be made about prior odds.

The main point to be noted now, however, is that Bayes Theorem, in contrast to the complexities of
Bayesian inference, is a relatively simple mathematical mechanism for converting the case-control
(“nosologic”) values of sensitivity and specificity, and the anticipated or observed prevalence of disease,
into the desired “predictive” indexes of diagnostic accuracy. This mechanism is what has made Bayes
Theorem so famous (or infamous) in the statistical analysis of diagnostic marker tests.

21.2.6 Direct Clinical Reasoning

If all the foregoing mathematical methods had not been developed and subsequently advocated by
academic investigators, a simple direct procedure might have been used. When diagnostic-marker tests
are applied in cohorts of patients, the results can be promptly expressed in rates of diagnostic accuracy.
For the symbols in Table 21.1, these rates would be the “horizontal” values of a/m1 and d/m2 that are 
respectively called positive and negative predictive accuracy.

In a recent survey of practicing clinicians in diverse specialties, Reid et al. 10 found that the formal 
mathematical strategies were almost never used. Instead, the clinicians — although often believing that 
they evaluated the vertical indexes of “sensitivity” and “specificity” — usually examined the horizontal
results in their own groups of patients. The results were commonly expressed in the reciprocal values 
of false positive and false negative rates, which would be b/m 1 and c/m2. With these direct expressions, 
clinicians could promptly appraise the accuracy of the tests without having to rely on special mathematical 
calculations, transformations, or nomograms.

The direct, “sensible” clinical cohort approach may eventually replace the indirect case-control math-
ematical transformations. Because the indirect methods remain popular, however, they create the additional 
challenges (and problems) discussed in the next few sections.

21.3 Demarcations for Ranked Results

Regardless of whether Bayesian, likelihood-ratio, or direct expressions were used, all of the components 
discussed so far were dichotomous: the disease was either present or absent, and the diagnostic marker 
test was either positive or negative. The splendid mathematical tactics applied to these double dichotomies 
require binary citations for both the disease and the marker test.

Many diagnostic marker (or even gold-standard) tests, however, are expressed in ranked values. They  
might be dimensional scales for blood glucose, serum calcium, or enzyme tests, or ordinal scales, such 
as the none, trace, 1+, 2+, … ratings for various urinary tests. Furthermore, many “gold standard” 
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diagnoses are expressed in a three-category scale, containing an equivocal maybe or uncertain, in
addition to the 2-category unequivocal yes or no.

These problems can be managed with three approaches: (1) converting all gold standards into binary
categories, (2) choosing a binary demarcation for ranked results of the marker test, and (3) establishing
ordinal zones for the marker test and using a likelihood ratio, for efficacy in each zone.

21.3.1 Binary “Gold Standards”

The ranked results of marker tests can easily be converted into binary (or ordinal) arrangements that
will be discussed shortly. These arrangements, however, will not take care of a gold-standard criterion
that is not binary. Accordingly, diagnostic marker evaluations are almost always confined to situations
in which the gold-standard disease criterion is cited as an unequivocal binary yes or no. For example,
the dimensional scale of a glucose tolerance test for diabetes mellitus or a urinary culture for bacteriuria
might be given a yes/no binary demarcation such as Š 500 for the sum of four glucose levels orŠ 5 × 103

for a colony count of bacteria.
The custom of using a binary gold standard can easily be justified when the demarcation comes from

dimensional scales such as those used for bacterial counts or the sum of glucose values. If the boundary
is disputed, the accuracy of the marker test can be re-calculated at different boundaries. For example,
if ≥ 105 colony forming units (CFU) is chosen as the gold-standard threshold for bacterial infection in
a urinary culture, and if a different threshold is preferred, the efficacy of the marker test can be determined
for alternative boundaries, such as 103, 104, or 106.

Insistence on a binary gold standard, however, creates major difficulties for a three-category scale if
the group with an uncertain diagnosis is omitted from the clinical reality of diseases that are usually
diagnosed in the trichotomous categories11 of yes, uncertain, or no. For example, a biopsy specimen
may be inadequate for making a definitive diagnostic decision; or the collection of data for a patient
with chest pain may lead to the conclusion of possible, but not definite, myocardial infarction.

If the gold-standard results contain only the two groups of unequivocally diseased cases and
nondiseased controls, the results for efficacy, although mathematically attractive, may seriously distort
what really happens in clinical practice. This potential distortion is constantly ignored, however, for the
statistical activities of both published literature and the discussion that follows. Consequently, the
pertinent statistical evaluations may be deceptive when published results of marker-test accuracy for
binary gold standards are applied in the nonbinary scientific realities of clinical practice.

21.3.2 Receiver-Operating-Characteristic (ROC) Curves

To get the double dichotomy needed for Bayes Theorem, the gold-standard nosologic groups are divided
into diseased cases and nondiseased controls, and the ranked results of marker tests are also given a
binary demarcation. Without this double binary split, the marker test cannot be indexed for sensitivity
and specificity, and cannot be applied thereafter in Bayesian diagnostic analyses. Choosing the best
binary split for ranked marker-test values thus became a new statistical challenge. It was approached
with a method, developed in engineering, that analyzes a receiver-operating-characteristic curve.12 The
popularity of these curves in published reports soon made ROC become a fashionable abbreviation in
the mathematics of diagnostic analysis.3

21.3.2.1 Inverse Relationship of Sensitivity and Specificity — Table 21.4 shows the
relationship of results for a ranked marker (S-T depression in an exercise stress test) and the definitive
nosologic state of 150 cases of coronary disease and 150 controls. The 7 ordinal categories used for the
marker can be split dichotomously at six locations, marked A, B, …, E, F in Table 21.4. Each split
would produce a different fourfold table, yielding different indexes for sensitivity and specificity. For 
example, with split C, the fourfold table becomes , having a sensitivity of 73/150 = .49 and 
specificity of 143/150 = .95. With split D, which produces , the corresponding indexes are 
103/150 = .69 and 135/150 = .90.

73    7
77  143 

 
 

103  15
47   135 
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The results of the different demarcations for Table 21.4 are summarized in Table 21.5, which shows
that sensitivity and specificity have an inverse relationship: as sensitivity increases, specificity decreases,
and vice versa. This relationship is easy to prove algebraically, but can be understood intuitively if you
recognize that the denominators for calculating sensitivity and specificity are the same, regardless of
the level of demarcation. As the level goes downward, however, the numerator values increase for the
sensitivity index and decrease for specificity.

21.3.2.2 Construction of ROC Curves — If sensitivity is plotted against specificity at each
level of the possible split, the shape of the curve will go downward to the right. To make the curve go
upward, it is constructed as a plot of sensitivity vs. 1 − specificity. The two pairs of values then rise
monotonically.

The ROC curve for the data of Tables 21.4 and 21.5 is shown in Figure 21.2. The curve here has .21 
and .31 as the lowest values of sensitivity when 1 − specificity = 0, and .98 as the highest value when
1 – specificity = .65.

In a useless marker test, the cases and controls will have similar distributions, and the corresponding
values of sensitivity and 1 − specificity will be essentially equal in each row. The ROC curve will be a
straight line at a 45° angle.

In a perfect marker test, all of the cases will be included in rows that have no controls, and all the
controls will appear in rows that begin below the level of the last case. The values of sensitivity will

TABLE 21.4

Results in Diagnostic Marker Study of Coronary Artery Disease and Level
of S-T Depression inExercise Stress Test

Definitive State of Disease
Patients with S-T Segment

Depression of
Cases of

Coronary Disease
Controls Without
Coronary Disease

 ≥ 3.0 mm. 31 0
 A ______
 ≥ 2.5 mm. but < 3.0 mm. 15 0
 B ______
 ≥ 2.0 mm. but < 2.5 mm. 27 7
 C ______
 ≥1.5 mm. but < 2.0 mm. 30 8
 D ______
 ≥1.0 mm. but < 1.5 mm. 32 39
 E ______
 ≥ 0.5 mm. but < 1.0 mm. 12 43
 F ______

< 0.5 mm. 3 53
TOTAL 150 150

TABLE 21.5

Summary of Nosologic Sensitivity and Specificity Calculated for Demarcations of Table 21.4

Demarcation

Location of 
Boundary for 

Abnormal

Number of 
Cases 

Included Sensitivity

Number of 
Controls 
Included Specificity 1 – Specificity

A Š 3.0 mm. 31 0.21 0 1 0
B Š 2.5 mm. 46 0.31 0 1 0
C Š 2.0 mm. 73 0.49 7 0.95 0.05
D Š 1.5 mm. 103 0.69 15 0.90 0.10
E Š 1.0 mm. 135 0.90 54 0.64 0.36
F Š 0.5 mm. 147 0.98 97 0.35 0.65

TOTAL 150 — 150 — —
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ascend toward a maximum of 1 while 1 − specificity = 0, and will maintain the value of 1 while
1 –   specificity gradually rises. The curve will resemble a capital Greek gamma, Γ.

The useless, perfect, and ordinary possibilities for the ROC curves are shown in Figure 21.3. An
inverted wedge is formed as the upper and left outer lines of the Γ-shaped perfect test join the diagonal
line of the useless test. The results for most ordinary tests fit into that wedge. The closer they approach
the Γ shape, the better is the test’s performance.

21.3.2.3 Choice of Optimal Dichotomous Boundary — The main reason for constructing
ROC curves is to choose an optimal dichotomous boundary for the diagnostic marker results. For a
perfect test, the choice is easy: it will be the level at which sensitivity = 1, and 1 − specificity = 0.
Because perfect tests almost never occur in clinical reality, however, a practical strategy is needed for
the decisions. The strategy can be purely mathematical or can involve additional ideas about costs
and benefits.

21.3.2.3.1 Mathematical Strategy. A simple method of choosing an optimal cut-point is to mini-
mize the sum of false positive and false negative test results.13 Mathematical calculus will show that this
point occurs when the slope of the ROC curve is at (N − T)/T, where T is the total number of cases and
N − T is the number of controls. Because N Š T, the formula becomes (N/T) − 1, and this slope is
always positive.

To avoid calculations of slope, the cut-point can be found as the location where the number of accruing
false positive values begins to exceed the number of accruing false negatives. Thus, for the data in
Table 21.5, the accruing totals for each cut-point are as follows:

FIGURE 21.2
Receiver-operating-characteristic (ROC) curve for data in
Tables 21.4 and 21.5.

FIGURE 21.3
Perfect, useless, and ordinary possibilities for ROC curves 
of diagnostic marker tests.

Accruing Totals for:
Number of Number of Total Number of

Cut-Point False-Negatives False-Positives False Results

A 119 0 119
B 104 0 104
C 77 7 84
D 47 15 62
E 15 54 69
F 3 97 100
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In downward descent of these boundaries, the false negatives exceed the false positives at cut-point D,
but not at point E. The total number of false results is also minimized at cut-point D. Therefore D would
be the best choice of demarcation for these data. This point occurs in Figure 21.2 just before the curve
begins to flatten its sharp upward slope.

With another mathematical strategy,13 the chosen cut-point will maximize the predictive accuracy of the
test for its diagnostic sensitivity and specificity. Yet another mathematical tactic relies on “information 
content”3,12,14 of the test, determined from logarithmic calculations of sensitivity, specificity, and prevalence.

21.3.2.3.2 Cost-Benefit Strategies. Each false-positive, true-positive, false-negative, and true-neg-
ative diagnostic result can be multiplied by an arbitrary monetary (or other quantitative) value that gives
a “weight” to costs and benefits of that result. The score that is calculated for the different possibilities
can then be used to find an optimal cut-off boundary in the ROC curve.3,13

Despite the mathematical ingenuity, this strategy has had little value beyond its contributions to
academic scholarship. The basic problem is making pragmatically realistic choices of quantitative values 
for the costs and benefits.

21.3.2.3.3 Area under the ROC Curve. Because the ROC curve gets “better” as it approaches the
Γ shape, the area under the curve can be used as an index of accomplishment. In the square formed by
the coordinates of the graph, a perfect curve will have an area of 1, and a useless curve will cover an 
area of .5. The areas under most curves will thus range from .5 to 1.

This distinction may not help choose the best cut-point for an individual curve, but can be useful in
evaluating the accomplishments of different marker tests. For example, the areas under the correspond -
ing ROC curves could be compared to decide whether S-T segment depressions or CPK enzyme results
are the better diagnostic markers for coronary disease.

One problem in using areas under the curve is that a useless test will have a value of .5, which may
seem impressive in other contexts, such as correlation coefficients. If the kappa coefficient in Chapter 20
is intended to adjust indexes of agreement for results that might occur by chance, the area-under-the-
curve index should be similarly adjusted to reflect its superiority over a useless result. Thus, with an
area of only 1 − .5 = .5 available for showing “superiority,” a .8 area under the curve has produced an
improvement of only .8 − .5 = .3, which is a proportion of .3/.5 = 60% of what could be accomplished.

The main mathematical flaw in the area-under-the-curve strategy, however, is that the points on the
curve may often come from small proportions that are numerically unstable. The problem of stability 
is discussed in Section 21.4.

21.3.2.4 ROC Curves as Indexes of Prediction — The area under the ROC curve has been
proposed as an index for evaluating staging systems or other multivariable mechanisms that produce
prognostic predictions rather than diagnostic separations.15 Aside from the problem of instability in the
constituent numbers, the ROC method ignores the principle that staging systems are used for much more
than individual forecasts. In the design or evaluation of therapeutic research, a prognostic staging system
is most valuable for the way it distributes the patients and provides significant gradients between the 
stages.16 Neither of these desiderata is considered in ROC curves that are aimed only at the individual 
accuracy of each estimate.

21.3.3 Likelihood-Ratio Strategy

To avoid choosing a single binary cut-point, the marker test results can be appraised with likelihood
ratios for ordinal zones.5 The reasoning is as follows: Suppose the numerical results in any row (or zone) 
of the table are ti for the cases and si for the controls, with mi = ti + si as the total in that row. The grand
total will be T cases and S controls, with T + S = N. In any marker test, the prior odds of a positive
result from the total of cases and controls, will be T/S. In any row (or zone), such as those in Table 21.4,
the posterior odds for a positive result will be ti/si. As shown earlier in Formula [21.13],

likelihood ratio posterior odds
prior odds

----------------------------------=
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Accordingly, the positive likelihood ratio in any zone will be

LRpos = (ti/s)/(T/S)

Analogously, the likelihood ratio for a negative result will be

LRneg = (si/ti)/(S /T)

The major advantage of likelihood ratios is the removal of the grand total denominator, N, so that
prevalence does not affect the results. The values of LRpos and LRneg can therefore be calculated directly
from the counts in each zone and from the individual columnar totals for cases and controls. In contrast
to the separate binary values of sensitivity for cases and specificity for controls, the likelihood ratios
offer “stratified” indexes of efficacy for each selected zone of ordinal categories in the cases and controls
of the diagnostic marker research.

21.3.3.1 Example of Calculations — In Table 21.4, the value for prior odds is T/S = 150/150 = 1.
Consequently, the posterior-odds values in each zone will provide the positive and negative likelihood
ratios. For positive results, the posterior odds will be 31/0 = ∞ in the first zone, 30/8 = 3.75 in the fourth zone,
and 12/43 = .28 in the sixth zone. The posterior odds for the corresponding negative results will be 0,
.27, and 3.58. If the value of T/S were .5 rather than 1, however, each of these positive likelihood ratios
would be doubled, and each negative ratio would be halved.

21.3.3.2 Disadvantage of Likelihood Ratios — Although the conversion to odds gives the 
likelihood ratio the advantage of avoiding the effects of prevalence, the tactic becomes a disadvantage
when the result is actually applied clinically. As noted earlier, the probability value needed for a clinical
decision requires special calculations or nomograms to convert the odds values and likelihood ratio for
the estimated prevalence of disease in the clinical situation under scrutiny.

The likelihood ratios also have all of the problems of stability (see Section 21.4) that occur for any
collection of binary proportions, and the inevitable difficulties (see Section 21.8.3.1) of any index that
erroneously relies on having constant values in the varied spectrum of a disease.

21.3.4 Additional Expressions of Efficacy

Eisenberg et al.17 have proposed two additional ways of expressing diagnostic efficacy. In one method, 
which can be used only for binary markers, the prior and posterior probability values are subtracted as
P(DT) − P(D), and the incremental change in probability becomes the index of accomplishment. In
the second method, the indexes of accomplishment are cited as logarithms (rather than actual values)
of odds in the likelihood ratio. The logarithms are preferred, for reasons noted earlier (see Section 17.5.5.2),
because of asymmetrical constraints in the range of odds ratios below and above 1. If LR > 1, the values
can extend up to infinity; but if LR < 1, the values can range only between 0 and 1. Besides, if LR =
1, i.e., a useless result, log LR will be zero.

21.3.5 Trichotomous Clinical Strategy

From an esthetic mathematical viewpoint, the Bayesian, ROC, and likelihood-ratio approaches offer
appealing solutions for the challenges of either dichotomously demarcating or examining ordinal zones
of ranked marker-test categories. Nevertheless, a different approach, which uses no specific mathematical
strategy, may often best represent the way in which many clinicians would interpret the data in Table 21.4.

Clinicians usually want to separate three diagnostic zones for a marker test.11 In one extreme zone,
the disease should almost always be present and, at the other extreme, the disease should almost always
be absent. In the middle zone, the marker-test result will be too uncertain, and additional data (or tests)
will be needed for diagnostic confidence. For this type of trichotomous clinical partition, the data of
Table 21.4 would be divided as shown in Table 21.6. Coronary disease is particularly likely to be present
for S-T segment depressions in the upper zone of Table 21.6, and absent in the lower zone. In the middle
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zone, the results are too “iffy” for diagnostic decisions, and a more confident diagnosis would require
further information.

The simple trichotomous approach is particularly easy, effective, and commonly used by clini-
cians. The approach requires almost no mathematical adjuncts or calculations. Its main disadvantage
is that clinical “common sense” may not be cherished or useful for obtaining grants and writing
publishable papers.

21.4 Stability of Indexes

Regardless of whether the diagnostic indexes come from direct, Bayesian, ROC, likelihood-ratio, or
even “clinical judgment” methods, the indexes can be quantitatively unstable if derived from small 
numerical components. Their stability can be appraised with the same confidence-interval methods used
for proportions and for ratios. If a sensitivity or specificity value is derived from a proportion such as
p = r/n, a 95% confidence interval can be determined from an appropriately chosen binominal distribution
or from the Gaussian calculation of p ± 1.96 , where q = 1 − p.

Being derived as a ratio of two proportions, likelihood ratios require more complex methods. In any
selected zone, the 95% confidence interval for the likelihood ratio can be calculated, according to Simel
et al.18, as

exp [ln(pl/p2) ± 1.96 ]. [21.16]

The “exp” symbol in this formula is a typographically easy way of writing “e to the power of”; for
example, exp (w) is ew. The value of p1 is the analog of sensitivity, formed in a particular row by the
proportion of (positive results in cases)/(total no. of cases), with q1 = 1 − p1; and p2 is the analog of
1 – specificity formed by the proportion of (positive results in controls)/(total no. of controls), with
q2 = 1 − p2. According to the symbols developed at the beginning of Section 21.3.3, each p1 = ti/T and
each p2 = si/S.

Confidence intervals are useful not only for indicating the possible “range” of the sensitivity/specificity
and likelihood-ratio indexes, but also for considering weak numerical strength as an explanation for
situations in which a marker test did not yield the expected high values of efficacy.

A recent proposal19 that chance corrections be applied to indexes of diagnostic efficacy, analogous to
the kappa coefficient used for indexes of agreement, does not yet seem to have evoked suitable evaluations.

21.5 Combinatory and Multivariable Methods

In all the discussion so far, the marker result came from a single diagnostic test. Sometimes, however,
the marker can come from a combination of multiple tests or variables.

TABLE 21.6

Trichotomous Clinical Summary of Results in Table 21.4

ST Segment 
Depression

Number of
Cases Controls

Diagnostic 
Probability of 

Disease

Positive 
Likelihood 

Ratio

Negative 
Likelihood 

Ratio

≥ 2.5 mm. 46 0 1.00 ∞ 0þ
≥ 0.5 mm. but < 2.5 mm. 101 97 þþ.51 1.04 þþþþþþ.96
   <  0.5 mm. 3 53 þþþþ.054 þþþþ.057 17.5
   TOTAL 150 150 .5 1þþþþþ 1þ

pq/n

q1 p1n1⁄( ) q2 p2n2⁄( )+
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21.5.1 Simultaneous Tests

Because a single marker test may not be adequate, several marker tests can be combined simultaneously 
or ordered in a sequence that is prompted by results of previous tests. For example, a composite “dipstick” 
marker for urinary tract infection may contain two tests, not one. The efficacy of the dipstick marker 
can then be evaluated for positive results either in both component tests or in only one of the two.

21.5.2 Sequential Tests

A “battery” of tests is often ordered all at once to save time in hospitalized patients. In ambulatory 
situations, however, the same (or a smaller) set of marker tests may be ordered sequentially in an ad 
hoc manner. The sequential contribution of each test can be assessed from incremental changes in the 
likelihood ratios, posterior probabilities, or other indexes of diagnostic efficacy that existed before the 
additional results were obtained.

Despite the apparent efficacy when used alone, a particular individual test may have unimpressive 
incremental efficacy when added to other tests. For example, in a discussion of ECG-Tc 99m exercise 
tests after myocardial infarction, Staniloff et al.20 and later Ladenheim et al.21 decried “the incremental 
information boondoggle: when a test seems powerful but isn’t.” In analogous comments about the merit  
of electrophysiologic testing after myocardial infarction, Goldman22 lamented the absence of proof for 
a “significant, incremental prognostic value.”

21.5.3 Multivariable Analyses

The results of diverse accompanying variables (for demographic, clinical, co-morbid and other pertinent 
features) can be entered along with the results of the marker test in a multivariable analysis that develops 
a statistical model for estimating the probability of a particular disease in a particular person. This tactic 
eliminates all of the “bivariate” statistics devoted to sensitivity, specificity, ROC curves, and likelihood 
ratios.

Diverse mathematical methods can be used. The multiple variables can be combined with logistic 
regression,23 with discriminant function analysis,  24 in a simple point score system formed from regres-
sion coefficients,25 or in an algorithmic succession of categories.26 The analytic methods can also 
incorporate27 a “cost” or “regret” matrix that gives suitable weights to “partial” agreements or disagree-
ments. Although the multivariable approaches have been enthusiastically advocated, their advantages 
have not yet been well documented.

21.6 Conformity in Laboratory Measurements

The conformity of tests in modern laboratories is commonly assessed with activities called quality 
control. Aimed at mensurational accuracy rather than diagnostic efficacy, the assessments are intended  
to find and repair disagreements when the same specimen is tested repeatedly in the same laboratory 
and when the laboratory’s results are compared with those of a reference laboratory. For these appraisals 
of dimensional data, the results can be cited either for variability in agreement or for accuracy in 
comparison with a reference standard.

In a graphic plot of values for pairs of measurements, a rectilinear regression coefficient of 1 and an 
intercept of 0 (denoting a straight line slope of 45°, passing through the origin of the graph), would 
indicate that the two methods on average produce the same result. This apparently excellent index can 
often be achieved, however, despite considerable disagreement in the individual pairs of measurements.  
An example was shown earlier in the appraisal of concordance for data set D in Figure 20.1. For this
and other reasons noted in Chapter 20, regression coefficients or the Pearson correlation coefficient are  
not a good way to express agreement, but they still continue to be used.28
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The best alternative index has not yet received a unanimous consensus, but the most commonly
recommended method today is the examination of pairwise increments, as discussed in Section 20.7.1.
Other procedures regarded as less desirable are checking the standard deviation of the residual error
around the regression line29 or calculating the intra-class correlation coefficient (ICC).

21.7 Spectral Markers

In contrast to a diagnostic marker, which separates a particular disease from all other medical entities
of health or illness, a spectral marker usually indicates the status of persons within the spectrum of a
particular disease or condition. Thus, a diagnostic marker would denote that a patient has (or does not
have) cancer of the colon. A spectral marker would denote that the cancer is in Stage I (or some other
stage). The distinction is shown in Figure 21.4.

A spectral marker can be used for many clinical decisions — such as etiology, prognosis, choice of 
therapy, changes of therapy, or reassurance — other than diagnosis alone. For example, the estrogen 
receptor test has been used as a spectral marker in estimating prognosis and choosing therapy for patients 
with breast cancer. The carcinoembryonic antigen (CEA) test, which was introduced as a diagnostic 
marker for colon cancer, has now been relegated to being a spectral marker, denoting whether metastasis 
has occurred. In the “staging” role, a spectral marker can sometimes be used in post-therapeutic 
monitoring to denote transitions in clinical condition. Thus, after removal of a colon cancer, the CEA 
test may be repeatedly checked to determine whether the cancer has recurred.

In addition to roles in prognosis, therapeutic choices, and post-therapeutic monitoring for a particular  
disease, spectral markers can denote the “severity” of either a disease or a nonspecific clinical condition.  
For example, the APACHE index30 contains a combination of laboratory tests used to indicate the severity 
of acute illness for patients in an emergency or intensive-care setting.

21.7.1 Use of Spectral Marker without “Gold Standard”

Just as a “gold standard” is used to evaluate the accuracy of a diagnostic marker, an analogous reference 
criterion can be used for a spectral marker. For example, if a CEA result indicates metastasis, the gold 
standard is anatomic evidence of the presence (or absence) of metastasis, obtained via imaging, biopsy,  
surgical inspection, or autopsy. If a laboratory test shows that a bacterium is sensitive to a particular 
antibiotic, the “gold standard” is (probably) the patient’s post-therapeutic response to that antibiotic.

In many instances, however, a direct “gold standard” does not exist; and the spectral marker result 
becomes the main data used for a decision that must be evaluated some other way. This situation 
commonly arises when the results of a monitoring test (such as level of serum lithium or intra-ocular 

FIGURE 21.4
Diagnostic and spectral markers. In the figure on the left, a diagnostic marker test is intended to discriminate between 
disease D and all other conditions in the clinical universe. In the figure on the right, a spectral marker test is intended to 
discriminate among different portions (such as stages I, II, III, and IV) of the spectrum of disease D.
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pressure) are used to change or adjust therapy; when a scan of the brain in a patient with stroke is used  
to assure the patient, family, or physician that a surgically remediable lesion is absent; or when indexes  
of “severity” are proposed for diverse purposes.

21.7.2 Pre-Spective vs. Post-Spective Expressions

A common statistical problem in expressing results of spectral markers (and other variables) is the use 
of “backward” summaries for results that have “forward” implications. Suppose serum bilirubin levels 
on admission to the hospital are examined as possible predictors of hepatic encephalopathy. Using a 
case-control approach, the investigators assemble a case group, whose members have developed enceph-
alopathy, and a control group, whose members have not. The bilirubin levels in the two groups are then  
summarized, perhaps as means and standard deviations, and then compared. If the results show a 
significantly higher average level in the encephalopathy group, the investigators may conclude that an 
elevated bilirubin predisposes to encephalopathy. This conclusion may be correct, but is useless for 
future application, because it offers no “predictive” information about levels of risk. The results were 
cited “post-spectively” as baseline values per outcome events, rather than “pre-spectively” as outcome 
events per baseline values. In a pre-spective citation, the billirubin values would be demarcated into 
levels such as 0–1.9, 2.0 − 3.9, and Š 4.0. A rate of occurrence for encephalopathy might then be cited 
for each level, with expressions such as 0/100, 1/35, and 4/15.

Investigators may be reluctant to use these citations mainly because they require establishing levels 
of demarcation — a more difficult task than simply calculating the “post-spective” means and standard 
deviations. An additional problem is that the rates of occurrence, being obtained from case-control rather 
than cohort data, do not represent correct values of risk. Nevertheless, such demarcations are regularly 
used to obtain “dose-response” patterns in case-control data; and odds ratios can be used to avoid the 
connotation of risks.

The main point is that a “post-spective” citation of summaries for baseline data in the outcome groups 
does not allow the results to be used in predicting outcomes. For such predictions, the data must be 
cited “pre-spectively” as outcomes per level of baseline data, not in the reverse manner. This abuse of 
temporal direction frequently occurs, however.

21.7.3 Problems in Evaluation

The evaluation of spectral markers is a complex challenge that has not yet been fully mastered. The 
main problem is the delineation of what is being “marked” by the spectral marker. If the CEA test 
denotes the presence or extensiveness of metastases, its efficacy can be directly checked for that role. 
If results of upper gastrointestinal endoscopy are used as a marker that affects therapeutic rather than 
purely diagnostic decisions, the results can be evaluated31 for the changes they produce in previous plans 
of treatment. If a clinical staging system is used for prognostic predictions, the results can be checked 
for the associated gradient in outcomes such as survival rates.

If the test is a marker of severity, however, the results cannot be evaluated without a clear definition 
of what is meant by severity. Does it refer to the amount of medical and nursing care needed for an 
acute illness, to the anticipated length of stay in an intensive care unit, to the patient’s functional 
limitations, to the costs of care, or to other “gold standards” such as anticipated length of life, “activity”  
of an inflammatory disease, size of the heart, or size of a myocardial infarction?

Because clinicians have not yet clearly demarcated both the phenomena to be evaluated and the 
methods of evaluation, the appraisal of spectral markers is currently in a primordial state, awaiting better 
research ideas and strategies. The clinical inertia in developing strategy for the evaluation process has 
often led to methods that lack clinical sophistication. For example, many clinicians do not like the 
APACHE index of acute severity because it seems to be an arbitrary mathematical pastiche of multiple 
laboratory variables, having no clearly defined pathophysiologic connotations and excluding the subtle 
effects of co-morbid conditions. Yet these clinicians have not constructed or offered anything better. The 
DRG (diagnosis-related-group) system of demarcating categories of illness is perhaps the best illustration 
of the hazards that occur when clinical investigators avoid the scientific challenge of evaluations that 
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can improve efficiency and reduce costs. Few clinicians would approve the way that the DRG “marker” 
system was constructed32,33 — but it has become widely disseminated because of the principle of faute 
de mieux (lack of anything better), and because of its sponsorship by third-party payers of health care. 

21.8 Scientific Problems in Diagnostic Statistics

Despite all the statistical attention, the evaluation of diagnostic marker tests is beset with five major 
scientific problems that have often made the diagnostic statistics unsatisfactory either for individual 
patient-care decisions or for policy evaluations of informational technology. The problems are briefly 
summarized here because the scientific details and illustrations, which can be found in the cited refer-
ences, are beyond the scope of a mainly statistical text.

21.8.1 Surrogate vs. Other Diagnostic Roles

In the main evaluations thus far, the result of the marker test was used directly to identify the disease 
as present or absent. The strategies used for these evaluations will seldom be applicable when a test has 
other diagnostic roles. The result of the test may act as a definitive gold standard (e.g., liver biopsy or 
glucose tolerance test), as multidiagnostic information pertinent for many diagnoses (e.g., chest X-ray, 
abdominal ultrasound), as a prerequisite diagnostic demand (e.g., demonstration of Group A streptococcal 
infection for rheumatic fever34), or as contributory evidence in which a diagnosis is made only when 
the test’s result is combined with other types of data (e.g., enzymes plus ECG plus clinical history for 
acute myocardial infarction). A test’s performance in each of these different roles will require indexes 
different from those that have been developed for surrogate efficacy alone.

21.8.2 Diagnostic Performance

Not all tests are ordered for the same type of diagnostic performance. A discovery test, used to “screen” 
persons with no symptoms or overt manifestations of disease,35 has a job different from that of an 
exclusion (or “rule-out”) test, which, when negative, assures that the disease is absent. Conversely, a 
confirmation (or “rule-in”) test is used to give assurance that the disease is present. Examples of these 
three distinctions are urinary glucose in screening for diabetes mellitus, a negative echocardiogram to 
exclude significant cardiac tamponade, and urinary red blood casts to confirm nephronal inflammation.  
The demands for efficacy will differ with these different functions. A confirmation test needs high 
specificity, regardless of sensitivity; an exclusion test needs high sensitivity, regardless of specificity; 
and a discovery test needs both high sensitivity and high specificity to avoid too many false positive 
and false negative results.

Because of the horizontal-vertical converse reasoning, the nomenclature for these different perfor-
mances often seems counter-intuitive. A rule-in test for the disease should have high specificity in the  
nondiseased group, and a rule-out test should have high sensitivity in the diseased group. Beyond 
these paradoxes in nomenclature, however, the different goals of diagnostic marker tests lead to several 
statistical paradoxes in evaluating performance.

Being usually invoked when suitable suspicion has been aroused by other evidence, the “rule-in” and 
“rule-out” procedures need not be splendid in both sensitivity and specificity. A discovery test, 
however — which may be frequently used because of its convenience — is desirable only if it is excellent 
in both attributes. If too insensitive, it will fail to discover enough cases, and if too nonspecific, it will  
yield too many false positives. Thus, the simple discovery test used for “general” screening should 
preferably have a better performance record than the exclusion and confirmation tests used in more 
“specialized” clinical circumstances.

Another problem in evaluating a test’s performance is the choice of a suitable “gold standard.” Should 
a fecal occult blood test be evaluated for its ability to detect blood or to detect colorectal cancer? The 
test may be excellent for identifying blood as an immediate target, but relatively poor for identifying 
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cancer as an anatomic source. Similarly, a urine test for protein may be splendid for identifying protein, 
but less effective at demonstrating renal disease.

Finally, clinicians may create problems by failing to distinguish between the existence of a disease 
and its causal role in producing a particular manifestation. Because many diseases can exist “silently,” 
without provoking symptoms or other manifestations,35 the demonstration of a particular diagnosis may 
identify the disease without supplying an appropriate pathophysiologic explanation for the patient’s overt 
clinical problems. For example, a patient’s angiogram may show major coronary disease despite a history 
that is negative for angina pectoris and positive for postprandial pain relieved by antacid. In this instance, 
the existence of the coronary disease does not offer a pathophysiologic explanation for the pain.

When clinicians do not distinguish between existence and explanation, certain diagnostic tests may 
lead to unnecessary therapy. For example, because the classical symptoms of functional bowel distress 
are not explained if “silent” gallstones are found on an abdominal ultrasound examination, the removal 
of the stones would not be expected to offer enduring relief for the symptoms.

21.8.3 Spectral Composition

The fundamental but often unrecognized problem in all of the case-control statistical indexes and 
mathematical transformations is that they rest on an erroneous assumption of constancy.36 They assume 
that sensitivity and specificity, or likelihood ratios, remain the same for any cases of disease and for any 
control group without disease. This assumption has turned out to be wrong, because the values of the 
indexes will differ according to demographic, clinical, and/or co-morbid distinctions in the spectrums 
of patients who constitute the cases and controls.36–40

Consequently, the indexes calculated for diagnostic accuracy will vary not just with prevalence but 
with the spectral composition of the subgroups of patients who receive the test. This unfortunate fact 
of clinical reality essentially vitiates all of the splendid mathematical theory that has been developed 
for diagnostic marker analyses. The best approach, as practicing clinicians have already discovered,10 is 
to determine diagnostic accuracy for the pertinent collection of patients seen in a particular clinical 
practice.

The magnitude of this problem in a fixed index of efficacy was quantified by Lachs et al.39 for a 
composite dipstick marker test used to diagnose urinary tract infection. Among patients with a “high” 
prior probability of infection — i.e., those with pertinent suspicious symptoms or other clinical 
manifestations — the dipstick test had sensitivity 0.92 and specificity 0.42. Among patients with a “low” 
prior probability — i.e., those who lacked the cited clinical manifestations — the sensitivity and speci-
ficity varied directly with the degree of pyuria. For three ordinal groups having 0, 1–5, and > 5 leukocytes 
per microscopic field of spun urine, sensitivity rose progressively from 0.50 to 0.68 to 1.00 and specificity
declined progressively from 0.90 to 0.68 to 0.22.

21.8.4 Bias in Data and Groups

Regardless of whether the appraisals are done “vertically” or “horizontally,” the results can be biased 
by problems in the raw data or in the composition of groups. Because the marker test and the gold 
standard procedure occur in a sequence, the raw data for the results will not be objective if the interpreter 
of whichever procedure came second is aware of what was found previously. To avoid this type of 
review bias, the second procedure should always be examined blindly, without the reviewer knowing 
the previous results.

In composition of groups, the patients chosen to receive the gold-standard test may not equally 
represent the spectral composition of all possible candidates. The results of spectrum bias in these choices 
may then produce indexes distorted by group imbalances that are diversely called36,39–42 work-up, veri-
fication, or referral bias.

In ordinary clinical practice, the definitive test may not be ordered for everyone if it seems too costly  
or possibly hazardous. Accordingly, when diagnostic markers are evaluated from tests done in ordinary  
clinical circumstances, a definitive result may not be available for many patients, particularly those who 
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had a negative marker test. In this situation, the best way to avoid “workup” (or “spectrum”) bias is to 
get surrogate information for the patient’s definitive status. For example, a definitive diagnostic biopsy  
is almost always done for patients with a “positive” mammogram, but not for those with a “negative” 
result. Therefore, in a study of mammographic diagnoses, Elmore et al.43 restricted the eligible “negative” 
patients to those who had had at least three years of follow-up without evidence of cancer and who had 
another negative mammogram three years later. A simple long-term follow-up showing absence of the 
suspected disease may sometimes suffice as a suitable “reference standard,”44 without repeating the 
original marker test.

Yet another problem is the incorporation bias that arises when the result of a marker test is incor-
porated into the evidence used for the definitive diagnostic conclusion.36 For example, if a serum amylase 
result is used to make definitive diagnostic decisions about acute pancreatitis, the amylase test is no 
longer merely a marker. It becomes part of prerequisite evidence and should not be checked for 
sensitivity and specificity.

21.8.5 Reproducibility

A separate but often overlooked problem refers to issues in reproducibility rather than accuracy. Vari-
ability can occur whenever the result or interpretation of a test requires human observation and com-
munication. Nevertheless, checks of intra-personal and inter-personal variability are seldom done for the 
obviously subjective work of radiologists, histopathologists, and cytopathologists, and also for the less 
obviously subjective laboratory observations used for such examinations as flocculation, dark fields, and 
white blood cell differential counts.45

Unless basic reproducibility has been demonstrated, all the subsequent calculations may sometimes 
resemble an exercise in futility. The indexes of efficacy will have been determined for data whose 
fundamental reliability is uncertain.

21.9 Additional Challenges

Many additional major challenges, not yet discussed, are prominently available for thoughtful research 
in an era of proliferating technology, escalating costs, and increasing complaints about “dehumanized” 
clinical care.

21.9.1 Diagnostic Evaluations and Guidelines

Despite various recommendations for the contents and phases of evaluation, most diagnostic marker 
tests still come into widespread clinical usage before they have been adequately evaluated. Reid et al. 46

have recently shown that the proportion of satisfactory evaluations is rising with time but is still not 
good. Of 34 marker-test appraisals reported in four leading general medical journals during 1990–1993, 
more than 50% failed to meet at least 3 of 6 methodologic standards and only 6% complied with all 
6 standards.

In view of these basic scientific defects, many clinicians are surprised or appalled47,48 when “guidelines” 
for using the tests49–52 are issued by prominent clinical organizations. The organizations may hope to do 
a “preemptive strike,” offering better guidelines than what might otherwise be promulgated by govern-
mental or corporate agencies, but a more fundamental approach would be to convince the public and 
policy makers that suitable guidelines cannot be constructed because the necessary fundamental research 
is absent. Arrangements can then be made to carry out the appropriate research.

21.9.2 Non-Diagnostic Roles

As noted earlier, many technologic tests have a critically important role in non-diagnostic decisions, 
such as estimating prognosis or choosing or monitoring therapy. For example, laboratory tests of an 
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infectious organism’s “sensitivity” are done to select appropriate antibiotics, and tests of blood (or 
sometimes urine) levels may be used to monitor treatment with psychotropic or other chemical agents. 
An MRI scan of lumbar vertebrae may be intended not to diagnose a herniated disc, but to decide 
therapeutically whether more than one disc must be treated. The availability of various imagings for 
neoplastic involvement of abdominal (and other) lymph nodes has replaced the surgical explorations 
that were formerly done as “staging” for choosing treatment of Hodgkin’s or other lymphomatous disease.

These often invaluable clinical contributions of technologic information are neglected in statistical 
indexes aimed at only diagnostic performance. Consequently, to offer satisfactory appraisal for the total  
merit of a technologic procedure, new statistical indexes must be developed to account for all of a test’s 
contributions to diverse clinical decisions, not just diagnosis alone.

21.9.3 Appraising Reassurance

An important but often neglected merit of technologic tests is the reassurance they bring to clinicians, 
patients, and patients’ families. For example, in most patients with a classical “cerebrovascular accident,” 
the CT or magnetic resonance imaging (MRI) scan of the head seldom alters the main diagnosis, the 
estimated prognosis, or the therapeutic plans that would have been made without the scan. Nevertheless, 
by demonstrating that the patient does not have a surgically remediable lesion — such as a meningioma 
or subdural hematoma — the imaging provides a relatively risk-free form of important reassurance. In 
the era before the new images, this reassurance required the horrors of pneumoencephalography or the 
hazards of carotid arteriography.

Many older clinicians would have given the CT scan a Nobel prize for its role merely in providing 
risk-free reassurance that a stroke is a stroke. Yet the immense human importance of this reassurance 
is not currently appraised, or even “valued” enough to be regarded as warranting appraisal.

21.9.4 Automated Observations

The automated observation of images has been successfully applied for diagnosing a single state in an  
electrocardiogram, and is now being used for differential leukocyte counts53 and for ocular perimetry.54

Efforts55 are now in progress to develop automated image analysis in mammography, lung cancer, 
cervical cytology, and fine needle aspirates of the breast.

Some of the main statistical challenges in the automated-observation process are to choose both a 
suitable gold standard for the validation and suitable methods of identifying the image. For example, 
who is the person to be used as “gold standard” for interpreting a leukocyte differential smear or a 
mammogram? Should the recognition process be aimed at a direct recapitulation of the image or at a 
transformed attribute? Thus, in differentiating leukocytes, the automated entity is a histogram of light 
intensities in a grid that covers each cell, not a direct visual “portrait” of the cell.

21.9.5 “DNA” Diagnostic Markers

In the era of molecular biology, many genetic, oncologic, and other diagnoses are explored with markers 
that use DNA probes or polymorphism analysis.56–58 Bogardus et al.59 have recently discussed the striking 
methodologic flaws in many of these studies, including absence of objectivity, failure to check for test 
reproducibility, and an unsuitable spectrum of case and/or control groups. Better methods might be 
demanded sooner rather than later to avoid the devastating human and scientific effects of false positive  
results for genetic “risk” and of erroneous directions in genetic research.

21.9.6 Neural Networks

A technique still in its infancy does multivariable diagnostic analysis with the special pattern recognition  
methods of a neural network, rather than with mathematical procedures such as logistic regression. An 
impressive set of results has been reported60 for efficacy of neural-network analysis in diagnosing 
myocardial infarction among adults presenting to a hospital emergency department; and further work is 
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now in progress. To be scientifically acceptable, however, the neural-network results will require careful 
validation in “external” challenge groups. Most of the work reported thus far has been validated only 
“internally,” in the same group from which the neural-network model was constructed. The credibility 
of these analytic models will depend on how well they perform when exposed to the challenge of new 
“unknown” groups, and how well they can identify the most cogent variables.

21.9.7 Constructing “Silver Standards”

When not available or possible, a “gold standard” diagnosis can be obtained by noting the patient’s 
eventual outcome or by using an authoritative diagnosis made without the marker result. In the absence 
of these methods for getting a “gold standard,” a new statistical strategy has been proposed61 to determine 
efficacy from repeated observations of the marker test. Because “gold standard” results will inevitably 
be absent for many test procedures, the construction of a suitable alternative “silver standard” (to 
substitute for the “gold”) is an intriguing challenge.
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Exercises

21.1. About 4% of school-aged children in Megalopolis are believed to be physically abused by their 
parents. The schools in the city might be able to screen all children for evidence of abuse (e.g., scars,  
cuts, bruises, and burns), with the intent of follow-up by contacting the suspected parents. School and 
health officials must be very confident of their suspicions before approaching the parents, however, 
because a great deal of potential harm can be done either by letting an abused child go undetected 
or by erroneously suspecting an innocent parent. According to school health officials, the physical 
examination they use is very reliable: it gives positive results in 96% of abused children, and false 
positive results in only 8% of nonabused children.

a. What is the nosologic sensitivity of the physical examination?
b. What is the nosologic specificity of the physical examination?
c. If the screening program is implemented in Megalopolis schools, what will be the physical 

examination’s diagnostic sensitivity, i.e., positive predictive accuracy?
21.2. Your hospital has recently acquired a new non-invasive radiologic test to detect deep venous 
thrombi (DVT). The manufacturer reports impressive test performance data: nosologic sensitivity, 96%; 
and nosologic specificity, 98%. To evaluate the accuracy of the new test in your hospital, the radiology 
department invites the first 100 patients suspected of having DVT and evaluated by the new test to 
receive additional “gold-standard” testing with a lower extremity venogram. This evaluation yields a 
nosologic sensitivity of 52%, and a specificity of 65%. Cite and briefly discuss at least four possible 

© 2002 by Chapman & Hall/CRC 



reasons for the reduction in test performance.
21.3. A new diagnostic test for omphalosis has +LR
10.0, with 95% CI 5.0–20.0. You are seeing a patient
whom you suspect of having omphalosis, with a 
pretest probability ranging from 2 to 20%. Using
the nomogram and ci ted probab il i t ies in
Figure E.21.3, indicate the appropriate posttest
probab il i t ies . Do you regard this te st  as
diagnostically useful? Please give brief reasons for
whatever answer you choose.
21.4. A new outpatient test for rapid detection of
group A beta-hemolytic strepococci has a reported
nosologic sensitivity of 88%. The fine print
accompanying the test instructions, however, has the
following statement: “95% CI 76–100%.” Given this
information, how many patients do you think were
initially tested by the manufacturer?
21.5. One stated advantage of calculating likelihood
ratios, as opposed to predictive accuracies, is that
likelihood ratios do not depend on group prevalence.
Explain why this advantage occurs.
21.6. Many prominent textbooks and publications
have urged that diagnostic evaluations be done with
likelihood ratios and/or the conditional probability
methods that use sensitivity, specificity, and
prevalence to determine rates of “predictive
accuracy.” Do you use this approach? If so, please
cite and briefly discuss at least three advantages that
you have found with it. If you do not use this
approach, what are at least three disadvantages that
you have noted? What alternative approach do you 
use or advocate?
21.7. From your clinical background or experience,
give an example of a diagnostic marker (not
previously cited in the text) that is used mainly as a
“rule-in” test and another used as a “rule-out” test.
Briefly discuss the reasons that justify the use of
each test for the cited purpose.
21.8. From the literature at your disposal, select a
study of a diagnostic marker test, and in one or two
sentences, outline its basic arrangement. Comment
on the selection of case and control groups. If you 
do not fully approve of the selections, what 
alternatives would you suggest? Make any other
critical comments or architectural suggestions that
occur during your review of the study.
21.9. Find a set of diagnostic criteria for any disease in which you are interested. If the criteria were
tested for their diagnostic efficacy, comment on how well the test was done. If the criteria have not been
tested, outline the procedure you would suggest for this purpose.
21.10. What ideas do you have about how to evaluate (and quantify) reassurance?

FIGURE E.21.3
Nomogram showing relationship of pretest 
probability and likelihood ratio to form posttest 
probability. {Taken from Chapter Reference 57.]
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When free-living people are members of a cohort under long-term observation, a baseline “zero-
time” status can be identified for each person, but special problems and challenges can arise thereafter. 
The final outcome may be unknown for members of the cohort who “drop out” or become “lost to 
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follow-up.” The intermediate events may be unknown or difficult to interpret for persons who continue 
to participate in the study, but who make unauthorized changes in the assigned plans or fail to appear  
for scheduled examinations.

For events that are either unknown or occur under inappropriate circumstances or timing, the statistical 
analyses cannot be suitably managed with a regression equation that merely has outcome as one variable 
and time as the other. In other situations, where the follow-up period is aimed not at a single “survival”  
event, such as death, but at a series of events or changes, the analysis of repeated or multiple outcomes  
is also not amenable to any of the statistical structures discussed thus far in the text.

This chapter is devoted to methods of serial analysis that have been developed to cope with these 
challenges. The chapter begins and is mainly concerned with a method called survival analysis, which 
is also known as life-table or actuarial analysis. Used when each person is followed until the 
occurrence of a single “failure event,” such as death, which concludes the person’s period of obser-
vation “at risk,” the analysis produces the survival curves that commonly illustrate clinical trials and 
cohort studies. The main discussion of survival analysis is followed by brief accounts of two additional 
applications: measuring life expectancy and evaluating certain age-period cohort effects in a general 
population. The chapter concludes with an outline of another cohort procedure, called longitudinal 
analysis, that is devoted to repeatedly measured serial outcomes, which can be either recurrences of 
a binary event, such as episodes of streptococcal infection, asthma, or epilepsy, or changes in 
dimensional variables, such as blood pressure, serum cholesterol, or pulmonary function tests. 

22.1 Differences between Survival and Longitudinal Analysis

Any form of cohort analysis can be regarded as “longitudinal,” but the particular methods called survival 
analysis and longitudinal analysis collect and analyze the information with different approaches. In a 
conventional survival analysis, each person’s outcome data contain a single pair of bivariate values: the 
duration of serial time until the person’s exit date and the concomitant binary “exit state,” which might  
be dead or alive. In a longitudinal analysis, each patient’s basic outcome data contain multiple pairs of 
bivariate values for the timing and concomitant value of each measurement.

Both the survival and the longitudinal procedures use bivariate temporal data for each cohort, but the  
bivariate relationship can become trivariate when an additional variable allows results to be compared 
for two or more cohort groups, such as recipients of Treatment A or B or patients in Stages I, II, and 
III of a particular disease. The analytic methods can become multivariate when data for additional 
conditions, such as age and baseline clinical severity, are used to “adjust” the bivariate or trivariate results.

[Note to readers: This long chapter covers the extensive scope of the topic, but the main parts to learn 
are survival analysis (in Sections 22.2 through 22.5) and life expectancy (Section 22.6). If you are tired  
by the time you reach Section 22.7, you can go through the rest of the chapter quickly, and need not 
struggle with the details. — ARF] 

22.2 Construction of Survival Summaries

Survival analysis is concerned with an event that concludes the person’s period of time “at risk.” In the 
following discussion, the “event” will be a “failure,” i.e., death, but the analytic methods are equally 
pertinent and applicable for other types of concluding events, such as development of a myocardial 
infarction, stroke, unwanted pregnancy, or even a desired pregnancy.

If time to death were known for each person, the cohort’s results could easily be summarized as a 
mean survival time. When most studies are ended, however, some members of the cohort may still be 
alive. Their unknown duration of survival will preclude calculation of an accurate mean for the group. 
(If the unknown durations are omitted for still-alive persons, the mean survival time for the group will 
be too low.)
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This problem can often be avoided, as noted earlier in Section 3.6.4, by summarizing results with a
median survival time. It has the double advantage of being easily determined in most groups despite 
unknown durations for the still-alive persons, while also avoiding distortions of the mean by outlier
members with particularly short or long survivals. In fact, as noted later, the median survival time is
probably the best simple descriptive index for the results.

Nevertheless, neither the mean nor the median would show dynamic features of the survival curve,
and neither index would permit effective predictions. If the median survival is 2.3 years, we can predict
that 50% of the cohort will be alive at 2.3 years, but we would not know what the survival rates might 
be at serial times such as 6 months, 1 year, 3 years, or 5 years.

If survival time were known for everyone except those still alive at the end of the study, a summary
survival curve could easily be constructed, as shown earlier in Figure 18.5 for the data in Figure 18.4,
to depict the proportion of persons alive at each successive time interval. The choice of a suitable “para-
metric” algebraic expression for these curves has enriched statistical literature with the names of mathe-
matical models called gamma, lognormal, Weibull, Rayleigh, and Pareto distributions.

A simpler algebraic model is possible, however, if the survival-curve pattern resembles the type of 
exponential decay that occurs for radioactivity. In this frequent situation, the data can often be fitted 
with a descending exponential expression, Y = e−ct, in which t = time, Y = the corresponding survival 
proportion (which is 1 at t = 0), and c is a constant appropriate for each curve. This expression can 
promptly be logarithmically transformed into a straight-line model, ln Y = −ct.

The summary expression for Y at each time point, however, is a proportion constructed as (n −
d)/n, where n is the number of pertinent people at risk and d is the number of persons who have died 
at or before the cited time. Because the original denominator, n, is always known, this proportion could  
easily be determined if the numerator status were also known as dead or alive at each time point for 
each person. Unfortunately, in the realities of human follow-up studies, this status may not always be 
known; and even if known, the person’s condition may not always be easily classified in the simple 
dichotomy of dead/alive. This difficulty creates the problem of numerator losses — the prime challenge 
in survival analysis for medical phenomena.

22.2.1 Sources of Numerator Losses

Everyone is known to be alive when the cohort is assembled at each person’s zero-state baseline. The 
cohort is then followed thereafter until a selected “closing” duration, T, which might be five years of 
serial follow-up for each patient. If a relevant death occurs before time T, the status of the patient is 
always known for each time point thereafter. If a relevant death has not occurred before time T, however,  
problems are created by patients who have not been followed for as long as T. Such patients are called  
censored; and the censoring can arise from three (or four) mechanisms.

22.2.1.1 Insufficient Duration — In most cohort studies and clinical trials, the group is 
assembled by accrual during a period of calendar time, rather than being collected and entered into 
the study all at once on the same day. The research will therefore take much longer in calendar time 
than the shorter duration, T, that is usually chosen for the maximum length of each patient’s serial 
observation.

For example, suppose a particular study began on January 1, 1993 and ended on December 31, 1999.  
If T was set at 5 years, everyone who entered the study before January 1, 1995 had a chance to be 
followed for five years when the study ended; but someone who entered on July 1, 1997 was followed 
for only 2 1/2 years. If still alive on December 31, 1999, the latter person would have been censored at  
a follow-up duration of 30 months. In this type of “terminal censoring,” the ultimate status of the patient, 
who is still alive and under observation when the study closes, might easily be determined if the calendar 
time of the study were extended.
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22.2.1.2 Intermediate Lost-to-Follow-Up — A more substantial problem is created by inter-
mediate rather than terminal censoring. Intermediate censoring occurs when patients are last seen or 
known to be alive at a serial time before T, but are then “lost” or “dropped out” with nothing known of  
their status thereafter. Such intermediate lost-to-follow-up patients are censored (and called “withdrawn  
alive”) as of the last date on which they were known to be alive.

22.2.1.3 Withdrawn by “Competing Risk” — If any kind of death is the failure event, the 
problem of a “relevant” death need not be considered. In many cohort studies, however, the failure event 
is death due to a specific disease. For example, in the follow-up of patients treated for cancer of the 
breast, the relevant deaths under analysis are usually those ascribed to cancer of the breast. If someone 
dies of an apparently unrelated myocardial infarction or automobile accident, the death is regarded as 
part of the “competing risk” of an incidental, non-relevant event. Such patients are censored at the date  
of death and are also regarded as “withdrawn alive.”

22.2.1.4 Altered Therapy — A formidable problem in many randomized clinical trials is what 
to do about patients who abandon the originally assigned treatment, who may continue it in a poorly 
maintained schedule, or who may even transfer to the competing opposite therapy. For example, in a 
trial of medical vs. surgical treatment, some of the patients originally assigned to the medical therapy 
may later decide to have surgery. In a trial of an active vs. placebo pharmaceutical agent, some of the 
patients assigned to the active drug may comply so ineffectively that they essentially become an untreated 
counterpart of the placebo group. A further problem in any trial is the unauthorized use of additional 
treatment that may affect or obscure the actions of the main assigned agent(s). For example, if antibiotics 
A and B are being compared for their prophylactic ability to prevent a particular infection, the results 
may be distorted by patients who also take antibiotic C incidentally for some other reason.

The solution to the altered-therapy problem is controversial. In one popular statistical approach, called 
“intent-to-treat” (ITT) analysis, any therapeutic changes or supplements are ignored, and everyone is 
counted as though he or she had received the initially assigned treatment, in the exact regimen or schedule 
in which it was assigned. The main argument for this approach is that it is statistically “unbiased”: the 
original therapeutic classification is not affected by anything that happened after the initial “sanctifying”  
randomization. Consequently, the ITT approach makes no adjustments for altered therapy.

The counter-argument is that the ITT approach, although perhaps statistically unbiased, is scientifically 
improper. With scientific common sense, someone would not be counted as having received surgical 
treatment if the surgery was not done, nor would patients be counted as having received only medical 
therapy, if they later had the operation.

Because the ITT controversy has not yet been resolved, a possibly acceptable compromise is to 
withdraw the patient as censored when the major therapeutic alteration began. This type of withdrawal, 
if used, becomes a fourth mechanism for censoring.

22.2.2 Adjustment of Denominators

Although patients who have died can be “followed” thereafter for any selected duration of time, the  
original size of the cohort is progressively reduced when patients are withdrawn as censored. 
Therefore, the calculated summary expressions at each time point should reflect the smaller numbers  
of people for whom suitable data are available. This problem — the need to change denominators 
sequentially after censored losses in the numerators — cannot be readily managed by parametric 
algebraic models. Accordingly, survival summaries are usually constructed with “non-parametric” 
methods that do not have an algebraic format and that fit the data in an ad hoc manner. For the post-
censoring adjustments, the denominators of the remaining cohort can be decremented by two main 
mechanisms: a direct or an interval method; and the intervals can have a fixed or varying duration.

22.2.2.1 Arrangement of Data — In the ordinary arrangement of data, each person will have 
a calendar date for the time of randomization or some other event (such as date of diagnosis or admission)
that acts as the zero time for calculating serial duration until the calendar date of exit. The exit state 
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will be listed as the failure event (such as death) or one of the diverse sources of censoring. After the
serial durations are determined, the persons can be listed in ranked order according to the durations. An
excerpt of such a list might show the following:

Such a list is used in the two “interval” methods of calculation. For the “direct” type of calculation,
however, another entry is needed to denote the maximum duration for which dead patients might have 
been followed during the calendar time of the study. For example, the patient ranked 29 in the foregoing
list died at 18 months, but potentially might have been followed for 48 months, whereas patient 30, who
died at 19 months, may have entered the study only two years before its end, so that the maximum 
survival duration would have been only 24 months.

22.2.2.2 Direct Method — In the direct method of adjustment, the denominator should contain
only those persons who could have been followed for the appropriate length of time. Thus, one-year survival
rates are calculated only for those persons who could have been followed for at least a year; two-year rates
are calculated only for persons who could have been followed for at least two years; and so on.

Persons who died are counted as dead in the interval when they died, and in all subsequent eligible
intervals thereafter. For example, someone who entered the cohort 18 months ago and who died at 5.4
months of serial time would be eligible for being counted as dead in the 6-month and 1-year but not
in the 2-year survival rates. Persons who were censored are counted in the denominators of only the
pertinent eligible durations. Thus, someone who was censored at 6.3 months would not be counted in
the denominator for the 1-year or 2-year survival rates, but could appear in a 6-month survival denom-
inator. Persons who entered the study 12 months before it ends can be counted in all 6-month or 1-year
survival rates, but are not eligible for inclusion in a rate for any subsequent duration, even if they died
soon after admission.

If pertinent eligibility for being counted is ignored, substantial biases can be introduced. For example,
the direct 2-year survival rates might include the dead but not the still-living members of a group eligible
for only 1 year of follow-up.

Table 22.1 shows the way the data of a direct analysis might be summarized for 150 persons who
entered a study that lasted for three years, with 50 persons accrued at the beginning of each annual
interval. The first row shows the annual occurrence of deaths and losses in the 50 persons who could
have been followed for three years. The next two rows show analogous results for persons who could
have been followed for only two years or for only one. The third line shows 43 patients remaining and
terminally censored in the one-year group after 3 deaths and 4 intermediate losses. The second line
shows 39 patients remaining in the second-year group after a total of 5 deaths and 6 intermediate losses
during the two-year period.

Table 22.2 shows the direct arrangement of survival for the 150 persons cited in Table 22.1. All 150
persons were potentially eligible for 1-year survival calculations, but the 6 persons lost to follow-up 
during that year are removed from the denominator. The mortality rate at one year is thus calculated as 
9/144 = .0625. Only 100 persons are potentially eligible for inclusion in 2-year survival rates, but 13 of  
them have become lost to follow-up (2 in the first year and 11 in the second). With 12 deaths (= 3 + 3 +
4 + 2) having occurred in the two-year period, the 2-year mortality is 12/87 = .1379. Finally, among the 
50 persons potentially eligible for 3-year survival calculations, 10 (= 1 + 6 + 3) have been lost and 
9 (= 3 + 4 + 2) have died. The 3-year total mortality rate would be 9/40 = .2250. The corresponding total 

Rank Duration (mos.) Exit State

27 17 Dead
28 18 Censored (alive; lost to follow-up)
29 18 Dead
30 19 Dead
31 23 Censored (died in automobile accident)
32 24 Censored (alive; end of observation period)
33 25 Dead
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survival rates at 1, 2, and 3 years respectively are thus .9375, .8621, and .7750. These results are
reasonably close to those noted later with the interval methods.

An important point to bear in mind is that if the direct method is used without suitable attention to
the “eligible death” group, the mortality rates will become excessively high after the first interval. For
example, the group eligible for only 1 year in Table 22.1 had 3 deaths. If those 3 deaths are carried into
the 2nd year calculation in Table 22.2, the mortality numerator becomes 12 + 3 = 15 and the denominator
would be 87 + 3 = 90, so that the total mortality rate at 2 years would be raised to 15/90 = .1666. The
group eligible for only 2 years in Table 22.1 had 5 deaths in those two years. If those 5 deaths plus the
other 3 deaths from the only 1-year eligible group were included for the 3rd-year calculation in Table 22.2,
the total mortality numerator would be 9 + 8 = 17 and the denominator would be 40 + 8 = 48. The total
mortality rate would rise to 17/48 = .3542 and the corresponding survival rate, .6458, would be sub-
stantially lower than the correct value of .7750.

When properly calculated, the direct method is simple and obvious, and it has the scientific advantage
of being straightforward and promptly understood. The survival rate at each time point indicates the
exact number of persons who were eligible to be counted and classified at that point. The direct method,
however, does not acknowledge the survival contributions of censored people to the interval in which
they were censored. For example, persons who are censored at 23 months make no contribution to the
2-year survival rate, although they survived for 23/24ths of that period.

The direct results thus offer easy comprehension, but an underestimation of the dynamic survival rates.
The latter problem could be substantially reduced by calculating the rates at frequent intervals, such as
monthly rather than yearly, but a slight underestimate would still remain. Another disadvantage of the
direct method is a paradox that can occur when the survival rate is relatively high in the few persons
who have (or could have) been followed for the longest durations of time. In such situations, the direct
5-year survival rate may be higher than the corresponding rates at earlier time points.

Perhaps the main disadvantage that makes the direct method seldom used, however, is mathematical.
Being calculated directly at each time point, the total survival rates lack the mathematical appeal of a
series of interval survival rates, discussed in the next few sections, that are multiplied to form each total
survival rate as a cumulative product.

TABLE 22.1

Summary of Data that Precede a Direct Survival Analysis for 150 Persons

Maximum
Duration of
Observation
for Group

Persons
Censored at

End of 
Maximum

Observation
Size of
Group

Number of Persons
of This Group Who Died in:

Number of Persons
Lost to Follow-up in:

1st
year

2nd
year

3rd
year

1st
year

2nd
year

3rd
year

3 yrs. 50 3 4 2 1 6 3 31
2 yrs. 50 3 2 — 1 5 — 39
1 yr. 50 3 — — 4 — — 43

TABLE 22.2

Direct Arrangement of Survival Data for 150 Persons in Table 22.1

 
 
Maximum 
Duration

Number 
Potentially 

Eligible

Number 
of Potentially 
Eligibles Lost

Number 
Eligible

Total Deaths 
in Eligible 

Group
Mortality 

Rate
Survival 

Rate

1 yr. 150 6 144 9 .0625 .9375
2 yrs. 100 13 87 12 .1379 .8621
3 yrs. 50 10 40 9 .2250 .7750
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22.2.2.3 Actuarial (Fixed-Interval) Method — Long before the outcome of clinical cohorts
became a challenge in biostatistics, the actuaries of life insurance companies had developed a method, 
called life tables, to manage survival analyses. The actuaries particularly wanted to know about life
expectancy, so that their companies could set appropriately profitable “premiums” for the cost of policies
sold to the public. The derivation of life expectancy from a life-table survival analysis is discussed later
in Section 22.6. The analyses themselves, however, rely on constructing a cumulative product of fixed-
interval survival rates.

In the latter process, the total observation period for the group is divided into a series of follow-up
intervals, such as 0–1 year, 1–2 year, 2–3 year, etc. At the end of each interval, the numbers are catalogued
according to persons who were “at risk” when the interval began. They then died or were censored
during the interval, or they were alive and under follow-up when it ended. An interval mortality rate is
calculated as the number who died divided by an appropriate denominator of those at risk during the 
interval. The interval mortality rate, which is called the hazard for the interval, is then converted to an
interval survival rate. The final result, called the cumulative survival rate, is the product of all the
component interval survival rates.

For example, suppose pt represents the survival proportion for each interval. When the observations
begin, everyone is alive and p0 = 1. If p1 is the interval survival at the end of the first interval, the
cumulative survival is S1 = 1 × p1 = pl. At the end of the second interval, with p2 as its survival proportion,
the cumulative survival is S2 = S1 × p2. At the end of the fifth interval, S5 = S4 × p5 = p1 × p2 × p3 ×
p4 × p5. This construction should be intuitively evident, but can be illustrated as follows:

In a cohort of 100 persons for whom the outcome is always known to be either alive or dead, suppose
10 die in the first interval, 13 in the second, and 24 in the third. The interval survival rates will be (100
− 10)/100 = .900 for the first interval, (90 − 13)/90 = .856 for the second interval, and (77 − 24)/77 =
.688 for the third. The cumulative survival rate at the end of the third interval is the product of these
three interval rates: .900 × .856 × .688 = .530. [The direct method of calculation yields the same result:
47 persons have died at the end of the third interval, and so total survival rate at that time is (100 −
47)/100 = .530.]

The tricky statistical decision in this approach is the choice of an appropriate denominator for those
at risk during each interval. Everyone who died in an interval or who lived through it was at risk
throughout the interval, but those who were intermediately censored were not at risk for the entire time.
According to an arbitrary but customary convention, half the censored persons are assumed to have been
at risk for the interval. (Alternatively phrased, if the interval is one-year long, each intermediately
censored person is assumed to have been at risk for half a year. Thus, if 4 persons are censored respectively
at 2, 5, 7, and 10 months after the one-year interval began, their total duration of observation in that
interval is 24 months, which yields an average of 6 months, or 1/2 year, for each of the 4 persons).

With the actuarial approach for fixed-interval survival rates, the data in Tables 22.1 and 22.2 can
be rearranged as shown in Table 22.3. The first line in Table 22.3 begins with all 150 patients, of
whom 6 (= 4 + 1 + 1) were intermediately censored during the interval and 9 died. The denominator 
is adjusted only for the 6 lost patients, and it becomes 150 – (6/2) = 147. The interval mortality rate 
is 9/147 = .0612 and the corresponding survival rate is .9388. Because 43 patients of the “1-yr.-only”  
group were withdrawn at the end of the first interval, the second-year interval is begun by 92 persons  
(= 150 − 6 − 9 − 43), of whom 11 are lost, and 6 die. The adjusted denominator is 92 – (11/2) = 86.5; 
the interval mortality and survival rates are respectively 6/86.5 = .0694 and .9306. The cumulative 
survival rate at the end of the second year is .9388 × .9306 = .8737.

After the 39 remaining persons in the 2-year-only group are censored at the end of that interval, the 
third-year interval begins with 36 persons at risk, of whom 3 are intermediately censored and 2 die. The 
interval mortality rate is 2/[36 − (3/2)] = .0580; and the interval survival rate of .9420 leads to a three-
year cumulative survival rate of .8737 × .9420 = .8230. Note that the cumulative survival rates with the 
actuarial method are only slightly higher than with the direct method for the same data. The differences 
in the two methods can sometimes be more substantial, however, as shown in Exercise 22.1.

In the actuarial method, each interval usually has the same duration, but sometimes the lengths can 
vary so that a few intervals might be one year, and others, 6 months long. Regardless of equality in 
durations, however, the temporal location of the intervals is usually fixed in advance, before the analysis 
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begins. In medical activities, the fixed-interval approach is sometimes called the Berkson-Gage method,1

commemorating the Mayo Clinic statisticians who introduced the actuarial or “life table” method into
medical research. The Berkson-Gage eponym also serves to differentiate the fixed-interval method from
the Kaplan-Meier method, discussed in Section 22.2.2.5, which uses intervals of varying length for the
actuarial life-table procedure.

22.2.2.4 Hazard Functions — Actuaries and demographers who specialize in analyzing the
“forces of mortality” in a cohort use the term hazard for the interval mortality rates. For example, if a
particular population has an annual mortality rate of .007, the hazard of death is .007 for that year.

For interval analyses, the hazard is the proportionate change in cumulative survival rate between any
two intervals. Thus, if the cumulative survival rate is S4 at interval 4 and S3 at interval 3, the change is
(S3 − S4)/S3. Because S4 = p4S3, the hazard is (S3 − p4S3 )/S3 = S3(1 – p4)/S3 = 1 − p4, which is the interval
mortality rate. Consequently, if n3 people are followed for the third interval, and if d3 persons die during
that interval, the hazard is d3/n3.

In radioactive decay, the rate of decay at any moment is constantly proportional to the amount of
radioactivity, Y, at that moment. The expression for the rate of radioactive decay over time is dy/Y =
–c, which (if you remember the calculus) becomes converted to ln Y = −ct, and Y = e−ct. The value of
c in this expression is the constant hazard, or the logarithmic rate of decay, over time.

With your consent to some more mathematics, we can note that if successive temporal values of the
cumulative survival curve are denoted as St, the general formula for the type of change just discussed
is (St − St − 1)/St − 1. This expression (again recalling the calculus) is the time derivative of the natural
logarithm of St. Thus, if St has an exponential format, ln St = −ct. To make the latter expression positive,
we can examine −ln St = ct. If we then take the time derivative, we get d( −ln St) = c, which is the value
of the hazard.

In the realities of medical events, the survival curve seldom has a perfect exponential shape and the
hazard is seldom fixed at a constant value. In customary nomenclature, however, St is called the
cumulative survival function, −ln St is called the cumulative hazard function, and d(−ln St) is called the
hazard function. The values of the hazard function at different time points are usually approximated by
the interval mortality rate, qt = 1 − pt.

These ideas about hazards are not particularly important or necessary for the simple life tables under
discussion in this chapter, but the concept becomes important in more advanced statistics, when a
multivariable procedure, called proportional hazards analysis (or “Cox regression”), is used to evaluate
the effect of different baseline covariate factors — such as age, stage, anemia — on survival curves. The
concept of a hazard is also used in Section 22.4.5 to designate an index called the hazard ratio.

22.2.2.5 Variable-Interval Method — The variable-interval life-table method was created as
a result of some “matchmaking” by John Tukey.2 Knowing about a common interest in time-to-failure
events, he brought together workers in two different fields. The workers were Edward L. Kaplan, then
at Bell Laboratories, who was studying the “survival” time of vacuum tubes, and Paul Meier, then a 
biostatistician at Johns Hopkins Medical School, who was interested in analyzing post-therapeutic
human survival.

TABLE 22.3

Fixed-Interval Actuarial Arrangement of Survival Data for 150 Patients in Table 22.2

Interval

At Risk at 
Beginning 
of Interval

Lost or 
“Censored” 

During 
Interval

Withdrawn 
Alive at End 
of Interval

Died 
During 
Interval

Adjusted 
Denominator 
for Interval

Mortality 
Rate for 
Interval

Survival 
Rate for 
Interval

Cumulative 
Survival 

Rate

0–1 yr. 150 6 43 9 147.0 .0612 .9388 .9388
1–2 yr. 92 11 39 6 86.5 .0694 .9306 .8737
2–3 yr. 36 3 31 2 34.5 .0580 .9420 .8230
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Kaplan and Meier were troubled by the arbitrary fixed-duration intervals and adjustments of the
Berkson-Gage method and were especially worried about the effects in small samples. The alternative
Kaplan-Meier strategy3 was to let the intervals be defined by the observed events: a new interval would
be demarcated every time someone died. Anyone who was censored during one of those death-defined
intervals would be simply eliminated from the denominator of that interval, as in the direct method of
calculation discussed in Section 22.2.2.2. (Because no adjustments are made for a contribution to the
interval, the contribution may not be missed if the deaths occur at small enough intervals. Problems can
arise, however, when patients are censored during the long intervals that often appear near the right end
of many survival curves.)

Because the events must be exactly timed in the Kaplan-Meier method, they cannot be grouped for
fixed intervals as in Tables 22.2 or 22.3. Instead, the serial durations and corresponding exit states must
be individually examined for each person. To illustrate these entities for the cohort of 150 people under
scrutiny in Table 22.3, suppose the nine deaths in the first year occurred at 0.2, 0.3, 0.4, 0.4, 0.5, 0.5,
0.6, 0.7, and 0.9 years, and the six intermediate censorings at 0.3, 0.4, 0.6, 0.6, 0.7, and 0.9 years. To
avoid analytic ambiguity, deaths and censorings cannot take place at exactly the same time. Accordingly,
when a death and censoring seem to occur identically (as in many time points in this example), the death
is assumed to have happened just before the censoring. The death thus terminates the interval, and the
censoring is ascribed to the next interval. For example, for the death and censoring that both occurred
at 0.3 yr, the death is counted in that interval; the censored person is removed from the denominator of
the next interval.

For the remaining persons in Table 22.3, the deaths occurred at 1.1, 1.4, 1.5, 1.5, 1.6, 1.9, 2.3, and
2.8 years; and the intermediate censorings at 1.1, 1.1, 1.4, 1.4, 1.5, 1.5, 1.5, 1.9, 1.9, 1.9, 1.9, 2.3, 2.8,
and 2.8 years. In addition, 43 persons of the 1-year-only group were terminally censored at 1.0 year,
and 39 persons of the 2-year-only group were terminally censored at 2.0 years.

Table 22.4 shows an appropriate Kaplan-Meier life-table arrangement for the foregoing data. The first
interval in Table 22.4 begins with a cumulative survival rate of 1.000 and ends with the death at 0.2 year.
The death drops the interval survival rate to 149/150 = .9933; and so the second interval begins with a
cumulative survival rate of 1.000 × 0.9933 = 0.9933. After the death that ends the second interval at 0.3 yr,
the interval survival rate is 148/149 = .9933. The third interval thus begins with a cumulative survival rate
of .9933 × .9933 = .9866, and the denominator is reduced to 147 when decremented for the 1 censoring
at 0.3 yr. With 2 deaths at 0.4 yr, the interval survival rate for the third interval is 145/147 = .9864, which
makes the cumulative survival .9866 × .9864 = .9732.

The procedure then continues step by step, so that the seventh interval begins with a cumulative 
survival of .9461 and 137 persons at risk. The interval ends with a death at 0.9 yr. The one person
censored at 0.9 yr and the 43 people followed for only 1 year are removed from the denominator of the
eighth interval, which ends with a death at 1.1 yr. As the process continues, the thirteenth interval begins
with a cumulative survival rate of .8750 and with a “risk group” (number alive) that has been reduced
to 36, after removal of all the previous deaths, intermediate censorings, and terminal censorings. The
fourteenth interval begins with a cumulative survival of .8507 and with 34 people who are alive and 
being followed. The interval survival rate of .9706 would make the 15th interval begin with a cumulative
survival rate of .8257 and with 33 persons at risk, but no further deaths have occurred, so the table ends
here. Note that the sum of deaths (17) plus censorings (102) plus final number at risk (31) in Table 22.4
equals the 150 persons who began. Note also that the Kaplan-Meier cumulative survival rates of .9392,
.8750, and .8257 correspond to the respective Berkson-Gage results of .9388, .8737, and .8230 in
Table 22.3.

The Kaplan-Meier approach is sometimes called a product-limit method, because the cumulative 
survival is a product of all the component interval survival rates. Because the multiplicative tactic is also 
used in the Berkson-Gage method, variable-interval is a better generic title to distinguish the Kaplan-
Meier procedure. The term actuarial or life-table analysis can be applied to either method, but is usually 
reserved for the fixed-interval technique.
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22.2.3 Display of Results

Graphs for the fixed-interval and variable-interval survival summary curves of Tables 22.3 and 22.4 are
shown in Figure 22.1. The fixed interval points are usually connected directly with straight lines; if the
intervals are close enough, the lines may resemble a relatively smooth curve. The variable-interval results
are usually shown as the flat lines of a “step function.” With a drop occurring for the death(s) at each
step in the irregular intervals, the curve looks like a staircase with uneven steps. In a strict mathematical
portrait, however, the Kaplan-Meier curve would be the horizontal lines of a “step function,” without 
connecting vertical lines. The vertical lines are usually added for visual esthetics, to avoid a ghostly
staircase.

The fixed-interval and variable-interval methods usually produce relatively similar results, as in
Figure 22.1, but disparities can sometimes occur.

22.2.4 Choice of Methods

As in many other issues in statistical communication, the choice of a survival-arrangement method often
depends on the background and viewpoint of the data analyst and reader. Because the denominators are
reasonably well decremented for censored patients in all three methods, any one of the three offers a
reasonably satisfactory approach. Contemporary biostatisticians (perhaps in deference to Meier) usually
recommend the variable-interval method.

To provide prompt and easy-to-understand scientific communication, the direct method is most desir -
able because it shows the exact constituents of each survival rate, rather than a multiplicative product
whose components are not displayed. The survival rates in the direct method are slightly underestimated
because the censored patients do not contribute to the interval in which they are censored, but this same
disadvantage occurs with the variable-interval method. The variable-interval method gets its advantage
only if deaths occur at frequent intervals so that a small duration is available for each censored loss.
This same advantage can be gained for either the direct or the fixed-interval method if the rates are
determined at arbitrarily frequent intervals. Because the frequency of intervals in the Kaplan-Meier
method is data-dependent and cannot be altered, this method can have substantial disadvantages for long
intervals that have no deaths but many censorings.

TABLE 22.4

Variable-Interval (Kaplan-Meier) Arrangement of Data in Table 22.3*

Number
of Interval

Cumulative
Survival Rate

before
Death(s)

Time of
Death(s)

That End(s)
Interval

Number
Alive before

Death(s)
Number

of Deaths
Number of
Survivors

Interval
Survival 

Rate

Censored
before

Next Death

1 1.000 0.2 150 1 149 .9933 0
2 .9933 0.3 149 1 148 .9933 1
3 .9866 0.4 147 2 145 .9864 1
4 .9732 0.5 144 2 142 .9861 0
5 .9597 0.6 142 1 141 .9930 2
6 .9529 0.7 139 1 138 .9928 1
7 .9461 0.9 137 1 136 .9927 44(= 1 + 43)
8 .9392 1.1 92 1 91 .9891 2
9 .9290 1.4 89 1 88 .9888 2

10 .9185 1.5 86 2 84 .9767 3
11 .8972 1.6 81 1 80 .9877 0
12 .8861 1.9 80 1 79 .9875 43(= 4 + 39)
13 .8750 2.3 36 1 35 .9722 1
14 .8507 2.8 34 1 33 .9706 2
15 .8257 — 31 — — — —

* Additional data regarding timing are provided in Section 22.2.2.5 of text
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Regardless of which method is used, a problem occurs at the right end of the curve, when the cited
proportions of survival may depend on small numbers of observed patients. Although the constituent
numbers should always be shown, they are frequently omitted when artists (or computers) prepare the
displayed curves. Consequently, a reader may mistakenly believe that a five-year survival rate of 30%
refers to all 219 members of the initial cohort, when in fact only 10 persons in the entire group may
have been followed as long as five years. This deception can be avoided only if editors and reviewers
insist on showing the pertinent constituent denominators for each interval of follow-up. In an alternative
approach, standard errors and confidence intervals can be calculated (see Section 22.5) and cited for
each cumulative rate, but the simplest and best strategy is to let the reader see directly what is happening.

22.3 Scientific Problems and Adjustments

The main scientific problems in constructing survival curves arise from “informative censoring,” deci-
sions about competing risks and competing outcomes, “left censoring,” and the adjustments that occur
with sensitivity and relative survival analyses.

22.3.1 Informative Censoring

In any of the three cited methods for constructing survival curves, the censored patients are regarded as
essentially similar to those who continue under observation. The particular reasons that may have led
to the censoring are ignored and are not used to modify the post-censoring results. This laissez-faire
approach can lead to substantial distortions if the censorings were biased, i.e., caused by the effects of
treatment or by anything other than random events. The term informative is a delicate name for this type
of potentially biased censoring.

FIGURE 22.1
Survival curves for the data in Tables 22.3 and 22.4. The points and dashed lines show the results obtained with the fixed-
interval technique of actuarial analysis. The solid line “staircase” shows the results obtained with the Kaplan-Meier method. 
The vertical arrows on the abscissa show the timing of the 17 deaths used to demarcate the Kaplan-Meier intervals. In this  
instance, the fixed-interval and variable-interval methods give similar results at 1, 2, and 3 years.
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For example, in a clinical trial of treatment for chronic pain, suppose the failure event is the devel-
opment (or persistence) of pain severe enough to warrant vigorous supplemental therapy. If Treatment 
A is particularly effective, many of its recipients may drop out of the study early, without further 
treatment, because their pain has been “cured.” The remaining cohort for Treatment A will then contain  
only those patients who did not respond promptly. An analysis that does not acknowledge the successful 
censored patients will misrepresent the true effects of Treatment A. Conversely, many censored patients 
for Treatment B may have dropped out because of an adverse side effect or other untoward event that 
is not counted as a “failure.” The remaining uncensored cohort will then misrepresent the true effects 
of Treatment B.

For these reasons, in a scientifically well-conducted study, vigorous efforts are made to determine the 
reasons why patients dropped out so that they are not listed merely as “lost-to-follow-up.” The data 
might then be analyzed separately according to the reasons why the “informative censoring” took place. 
In the foregoing example, a separate success (rather than failure) rate might also be calculated (to show 
the advantages of Treatment A), and a separate adverse-event rate (to show the flaws of Treatment B).

22.3.2 Competing Risks

The competing-risk problem is a variation in the general theme of informative censoring. Special 
mathematical efforts4 have been made to adjust life tables for deaths ascribed to “competing” non-
relevant causes, and even to calculate separate rates of occurrence for those causes, but relatively little 
attention has been given to the scientific difficulty of deciding when a cause is truly “non-relevant.” For 
example, suicide would appear to be an unrelated cause of death in a patient with cancer, but sometimes 
the suicide is brought on by cancer-induced depression. In a patient with a particularly difficult-to-
maintain therapy, suicide may have been evoked by the discomforts of the therapy. The problem of 
competing risks is heightened if the untrustworthy information on death certificates is used to determine 
the “cause of death.”

Because of these difficulties, an unequivocal decision is not always possible about the unrelatedness 
of death attributed to a competing risk. Many cautious analysts therefore reject any disease-specific 
attributions and insist on using death itself, i.e., total deaths in the cohort, as the only unequivocal 
outcome event.

22.3.3 Competing Outcomes

The problem of competing outcomes arises when several “hierarchical” entities can be regarded as the 
failure event, and when occurrence of one of the entities precludes the occurrence of another. For example, 
suppose the failure event is occurrence of either a stroke or death. If the patient survives a stroke, death  
can always occur later, but someone who dies cannot have a subsequent stroke. The same type of 
competitive problem arises if the failure event can be the development of either myocardial infarction 
or of angina pectoris, which is often ended by myocardial infarction.

Kernan et al.5 have discussed the misleading results that can occur if the competing outcomes are 
examined in only a single life-table analysis. The proposed solution for the problem is to do a series of 
analyses with appropriately chosen categories and combinations of categories for the outcome phenomena.

22.3.4 Left Censoring

In any life-table analysis, an appropriate zero time must be chosen for the start of each person’s serial 
follow-up. In randomized clinical trials, the date of randomization is an easy, obvious choice, and so 
the zero-time challenge is generally ignored when discussions of survival analysis are limited to ran-
domized trials. In other forms of clinical epidemiologic research, however, a zero-time problem com-
monly arises when nonrandomized cohorts are assembled to evaluate therapy or to identify either 
prognostic factors for outcome of disease or risk factors for etiology of disease.

In many situations, the problem is easily resolved by assembling an inception cohort, which fulfills 
all of three requirements. The first requirement is that the cohort consist of persons whose zero time 
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was the date of the first therapy aimed at the disease (or the date of the decision not to treat). The second 
and third requirements refer to the zero-time event: It should have occurred both during a bounded 
secular (calendar) interval, such as 1991–1996, and at the institution(s) whose results are under study. 
The rationale for these criteria is discussed elsewhere.6

If a presumably effective therapy is not available, however, as in certain chronic diseases such as 
multiple sclerosis, zero time may be chosen as the date of first diagnosis. Consequently, the assembled  
group of patients at a particular specialty center may contain many who have had the disease for 5, 10, 
20 years or longer before they appeared for follow-up at that center. Such patients are the residue of 
cohorts elsewhere whose follow-up began at least 5, 10, or 20 years earlier, but the numbers and fates 
of the other cohort members are unknown. If patients in the specialty-center cohort are counted as 
though their zero time was the date of diagnosis, the follow-up results for the total group can be 
substantially distorted.

This problem can be avoided with a tactic called left censoring. (The term refers to the period before
the cohort observations began, rather than to the customary right censoring, which occurs afterward.) 
With left censoring, patients who have already had 10 years of post-diagnostic observation are “admitted” 
to the cohort at the 10-year interval point of serial time; they are then followed thereafter from the 10-
year point onward. The process of left censoring thus leads to increases in the post-zero serial denom-
inator, rather than the usual decrements produced by right censoring. The two processes have been 
engagingly compared by John Kurtzke7 in “a tale of two censors.”

22.3.5 Sensitivity Analysis for Lost-to-Follow-Up Problems

No bias occurs when persons who were still alive at the end of the observation period are terminally 
censored because of insufficient duration. A possible bias can arise, however, from imbalances in the 
unknown reasons for “informative censoring” among persons who have become intermediate losses-to-
follow-up.

The best way of managing the problem of “unknown reasons” for intermediate losses is to avoid it. 
Instead of relying on mathematical adjustments for the lost patients, an investigator can improve the 
scientific quality of the work by getting suitable follow-up information for all patients, even those who  
may have moved away from the research site. In an excellent early discussion of this problem, Harold 
Dorn8 said, “The only correct method of handling persons lost to follow-up is not to have any.” 
Demonstrating the flaws of each proposed method of “adjustment,” Dorn concluded that “even a small 
percentage lost to follow-up, less than five percent of the total number under observation … may seriously 
bias [the results] … if this group has a relatively large proportion of persons withdrawing due to the 
condition being studied.”

A sensitivity analysis is one mathematical method of approaching the problem of unknown-reason 
intermediate losses. For this analysis, a final cumulative survival rate is determined by the direct method
for everyone whose final status was known as dead or alive for the full period of observation. This 
rate is then recalculated twice: once with the assumption that all of the intermediate withdrawals were  
dead in their exit status, and again with the assumption that they are all alive at the end of the full 
observation period.

The range between the high and low “sensitivity-adjusted” survival rates will usually give a better 
scientific idea of potential variability in the results than the purely statistical calculation (see Section 22.5) 
of standard errors or confidence intervals.

22.3.6 Relative Survival Rates

To avoid invidious diagnostic decisions about the cause of competing-risk deaths, any type of death can 
be used as the failure event. Many investigators prefer this total-death approach because it avoids possibly 
biased or wrong decisions about what is a “relevant” death, and because (in clinical trials) a treatment 
is not really successful if it reduces relevant but not total deaths. The approach also allows a straight-
forward analysis of results without further adjustment for “competing risks.”
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If uncomfortable about the absence of such adjustments, however, the data analyst can calculate
a relative survival rate.9 In the first step of this calculation, a general demographic survival rate is
determined from census and general mortality data for a cohort having the same age-sex composition
as the group under observation. In this general-census cohort, the expected survival rate, SE, would
presumably reflect all the deaths — relevant and non-relevant — that would occur in ordinary
circumstances. The actual survival rate, SG, for the observed group under study, is then expressed as
a relative proportion of the demographically expected general survival rate, SE. For example, suppose
the observed life-table survival rate is 0.62 at the end of five years in a cohort for whom the
demographically expected general 5-year survival rate would have been 0.83. The relative survival
rate at that time would be 0.62/0.83 = .75.

Despite the advantage of avoiding decisions about deaths due to competing risks, the relative survival
rate has two major disadvantages: (1) it can sometimes be paradoxically higher at a later follow-up date
than at an earlier date; and (2) if an unusually healthy cohort is being observed or treated, the general
population may not be a pertinent comparison group and the relative survival rates may exceed 1.

Relative survival rates are now used much less often than in the past, probably because newer
multivariable statistical methods are readily applied to “adjust” the survival results for baseline features,
such as age and co-morbidity, that can affect competing risks.

22.4 Quantitative Descriptions

An unfortunate omission in contemporary statistics is the absence of a standard quantitative index to
describe either a single survival curve or the contrast of two curves.

The slope or standardized slope of a regression line
through the data might offer such an index, but it has
seldom been applied to survival curves, probably because
the denominators vary at different times and the time
relationship may not be rectilinear. The area under the
survival curve could also be used as a quantitative index,
but no routine methods have been developed for calcu-
lating area. Besides, the calculated areas might be mis-
leading if two survival curves with relatively similar
areas have striking differences in shape (and in the cor-
responding clinical implications). Figure 22.2 shows two
curves with a crossing that can produce many complex-
ities in the analysis and interpretation.

In the absence of a quantitative descriptive index for
each curve, survival curves are almost never compared
directly. Instead, the usual comparisons are stochastic
rather than descriptive, using the tests discussed in Section
22.5. Because the stochastic results depend so strongly
on size of the groups, the survival curves themselves
should always be inspected and evaluated judgmentally
to decide whether the distinctions are quantitatively
(rather than just stochastically) impressive.

Beyond the “physical examination” of the curve itself, however, the median and several other indexes
can be used for quantitative summaries of a single curve, and a “hazard ratio” can be used to contrast
two curves.

FIGURE 22.2
“Crossing” of survival curves. Sharply different 
survival curve patterns, but similar areas under the 
curve, produced by “crossing” of survival in 
Groups A and B.
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22.4.1 Median Survival Time

The most obvious and readily available statistical index for quantitative description is the median survival
time. Although it does not reflect a dynamic pattern, it has the major advantage of being simple and 
easy to interpret.

The median can always be calculated if all of the censorings are terminal and do not occupy more 
than half the cohort. If intermediate censorings, with an unknown survival duration, do not have an
obvious chronologic pattern and are not common, they might be ignored. If worst comes to worst, the 
median survival can be determined from the survival curve itself, using the time at which the cumulative
survival rate reaches 50%. If the 50% survival mark is a flat “step” line, the median can be estimated
at half the duration occupied by the step.

The examination of median survivals was denounced, however, in a frequently cited treatise on the
analysis of clinical trials. According to Peto et al.,10 the median survival is one of the thirteen “bad
methods of analysis” that are “either [sic] inefficient, misleading, or actually wrong.” The main
complaint is that the median can be “very unreliable unless the death rate around the time of median
survival is still high.” Peto et al. therefore urged that median survival times be “treated with great
caution, except for diseases in which nearly everyone dies, the data are extensive, and the life table
falls rapidly through the whole region between 70% and 30% alive (the region in which the life table
is used to estimate the median).”

After delivering this indictment, however, Peto et al. later in the same paper used the “bad method”
of median survival to denote quantitative clinical importance for a prognostic distinction in comparing
two groups. The authors wrote, “The difference between the relative death rates of 1.3 and 0.4 …
represents a difference between about 18 months and 5 years in median survival time, and is thus
of considerable medical significance” (p. 27).

22.4.2 Comparative Box Plots

The absence of satisfactory descriptions for survival curves was lamented by Gentleman and Crowley11

who said, “In more standard settings, no analysis would be considered complete without a detailed
graphical examination of the data.” After pointing out the difficulty of trying “to visually decode” the 
differences in plots of survival curves, the authors recommended several alternative graphic methods.
Perhaps the simplest and potentially most useful method is a comparison of “censored-data box plots.”
Each box is formed by the median, upper quartile, and lower quartile of the successive survival durations
in the group. If data have been censored, the pertinent quantile values can be determined from the
survival curve itself.

Figure 22.3 shows comparative cen-
sored box plots of survival distributions
for two treatments. The box plots are
called truncated because some of the
data are missing. (With “severe censor-
ing,” the upper quartile point may not
be observed, and the truncated box may
not have a top.) The median survival,
at close to 600 days in Figure 22.3, was
distinctly higher for “Treatment One”
than the 200-day median for “Treat-
ment Two.” The quantitatively signifi-
cant difference was also stochastically
significant, according to the “half-H-
spread overlap” rule discussed in Sec-
tion 16.1.2.2. (A personal communica-
tion from Dr. Gentleman has explained

FIGURE 22.3
“Truncated box-plots” comparing data in two survival curves. [Figure
derived from Chapter Reference 11.]

Treatment One Treatment Two

0
20

0
40

0
60

0
80

0
10

00
14

00

0.19

0.06

© 2002 by Chapman & Hall/CRC 



a potentially confusing feature of Figure 22.3. The numbers “0.19” and “0.06” represent the survival
rate just before the last observed failure in each group.)

22.4.3 Quantile-Quantile Plots

A quantile-quantile plot, another visual approach, allows the two curves to be compared in a dynamic
manner. If not readily available from the raw data, the appropriate quantiles of survival for each group
can be taken from the life-table graphs. If the quantile-quantile plot is a straight line, its location above
or below the “identity” line will promptly indicate the ratio of magnitude by which the quantiles of one
curve are larger or smaller for one curve than the other. Although proposed by Waller and Turnbull12

for checking goodness-of-fit between a model and the censored data, quantile-quantile plots should be
readily applicable for comparing two survival curves.

22.4.4 Linear Trend in Direct-Method Survival Rates

If the survival proportions at each interval are calculated with the direct method, rather than with the
cumulative products of an interval method, a counted numerator and denominator will be available at
each time point. Although the array of binary proportions will not be “independent” (because the same
patients may appear repetitively), the points can be fit with a suitably selected regression line.

The simplest model would be an ordinary rectilinear expression, Y = 1 − bt, where Y is the survival
proportion at each time duration, t. The slope, −b, would then be a descriptive quantitative index. If
the survival curve seems to have an exponential-decay pattern, however, the slope might best be
expressed with the model ln Y = −ct (see Section 22.2). The value of −c would then be an alternative
quantitative index.

22.4.5 Hazard Ratio

The hazard ratio is a descriptive index that contrasts the survival rates in two groups at a single selected
point in time. Machin and Gardner13 have described the calculation of this index, together with a formula
for its confidence interval.

At any time point in the life table, the hazard ratio for two groups, A and B, compares the total number
of observed deaths, symbolized as OA and OB , and the number of deaths that might have been expected
for the number of persons at risk in each group during that interval. If the number of persons at risk in
a particular interval is NA and NB, the total number of deaths would be expected to have the same ratio
as NA and NB. After all the algebra is worked out, the hazard ratio is calculated essentially as

R = (OA/NA)/(OB/NB)

In an ordinary 2 × 2 table for the alive and dead persons of two groups, with qA (= 1 – pA) and
qB (= 1 – pB) representing rates of mortality, the hazard ratio is simply the ordinary risk ratio, qA/qB. Its
main advantage is applicability to the decremented denominators of a life-table arrangement. Unfortu-
nately, even when calculated at the last temporal interval after all observed deaths have occurred, the
hazard ratio pertains to only one time point, not to the dynamic pattern in two compared curves.

22.4.6 Hazard Plots

The cumulative survival rates are useful for making predictions and giving an overall view of what is
happening to a group, but do not indicate whether the interval “force” or “hazard” of mortality is changing
over time. For example, the progressive declines in the cumulative survival curves in Figure 22.1 do not
indicate that the annual interval mortality rates (in Table 22.3) are relatively constant around values of
.06. Because the latter rates correspond to the annual hazard (see Section 22.2.2.4), data analysts14 have 
suggested that important descriptive information can be obtained by inspecting the hazard function, which 
is essentially a plot of the interval mortality rates over time. The hazard pattern is easier to visualize when  
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the graph has distinctive fixed intervals rather than the erratic oscillations that can occur with particularly
small intervals and numbers in the Kaplan-Meier table.

The left side of Figure 22.4 shows the customary cumulative survival rates and the right side shows
the annual percentage dying in a study of mortality and possible “curability” for a cohort of patients
with breast cancer. Because the hazard function levels off at similar values for the long-term survivors
in Stages I–III, the analysts concluded that stage becomes relatively unimportant after 5-year survival. 
This distinction could be inferred from the relatively parallel cumulative survival curves on the left side
of Figure 22.4, but is shown more clearly and distinctly on the right side.

Plots of hazard functions are also used to check the assumption of “constant hazards” when survival
is checked in multivariable analysis with the Cox regression procedure.

22.4.7 Customary Visual Displays

Most life tables are drawn, rather than tabulated, and are depicted in one of the two types of curves in
Figure 22.1, emphasizing rates for avoiding the “failure event.” The graphs can also go in an inverted
direction, however, to show cumulative rates for the “failure” event itself. With suitable artistry, as shown
in Figure 22.5, both types of plots for several types of events can be shown in the same graph.

22.5 Stochastic Evaluations

Standard errors and confidence intervals can be calculated at each time point of an individual survival
curve; and two curves can be stochastically compared with various adaptions of conventional infer-
ential tests.

22.5.1 Standard Errors

If the cumulative direct-method survival rate is ST at time T, the standard error is determined with the
customary calculation for any proportion. The formula will be  where nT is the number
of survivors at time T.

With the intervals of the actuarial methods, the cumulative survival rate is a product of the individual
proportions, pt = 1 − (dt/nt), where dt is the number of persons who died during the preceding interval

FIGURE 22.4
Cumulative survival (left side) and hazard function (right side) plots for a cohort with breast cancer. In Stage IV, the hazard
plot is discontinued because too few patients were alive after 5 years. [Figure taken from Figures 1 and 2 in Chapter
Reference 14.]
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and nt is the number of persons at risk in that interval. After the last interval, T, the value of ST = p1 ×
p2 × p3 × ⋅⋅⋅ × pt × ⋅⋅⋅ × pT. The standard error of ST is calculated by Major Greenwood’s formula16 as

The summation in this formula includes the individual values, from the first to the last interval, of 
[(1 − p1)/(n1p1)] + [(1 − p2)/(n2p2)] + ⋅⋅⋅ + [(1 − pT)/(nTpT)]. As time progresses, the values of nt will 
get smaller, and the magnitude of the standard error will usually be dominated by the relatively large  
quantities produced by small numbers in the last few terms.

22.5.2 Confidence Intervals

With the usual Gaussian assumptions and choices of Zα, confidence intervals can be calculated for 
any point on a single curve using Zα times the standard error. If two curves are being compared, 
however, standard errors are seldom determined for the differences in successive survival rates. 
Because the differences are seldom cited with confidence intervals, the stochastic comparison is usually 
done with methods discussed in the next section.

22.5.3 Comparative Tests

The stochastic comparison of two (or more) survival curves has evoked many statistical tests, most of 
which can be catalogued as variations of the Wilcoxon rank or chi-square procedures. The most important 
thing to remember (or beware) about all these tests is that, like all stochastic procedures, they depend 
on group sizes. No matter how impressive the P value may be, the curves themselves should always be 
inspected to determine whether their difference is really quantitatively significant.

22.5.3.1 Wilcoxon-Based Tests — The Wilcoxon test for comparing ranks in two groups was 
generalized and applied by Gehan17 to contrast two or more survival curves. After the Gehan tactic came  
under criticism,18 Peto and Peto19 developed an alternative log rank test that is currently preferred. 

FIGURE 22.5
Long-term prognosis after immediately successful PTCA (percutaneous transluminal coronary angioplasty) in 648 patients. 
Event-free survival is defined as absence of repeat PTCA, bypass surgery, myocardial infarction, and death. MI, Myocardial 
infarction. [Figure and legend taken from Chapter Reference 15]
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According to Matthews and Farewell,20 the Wilcoxon tests attach “more importance” to early deaths, 
whereas “the log-rank test gives equal weight to all others.”

22.5.3.2 Log-Rank and Chi-Square Procedures — Several chi-square procedures have been 
used to form a stochastic index from stratified arrangements of the ranked survival data. Almost all the  
procedures are derived from a rank test originally devised in 1956 by Richard Savage.21 The subsequent 
contributions, from many prominent statisticians, have been succinctly summarized by Breslow.22

The most commonly used type of chi-square procedure today is the log rank test, christened by Peto 
and Peto,19 who offered that name although the test overtly employs neither logs nor ranks. (According  
to Gehan,23 “the log rank statistic is the same as the statistic U(O)” previously proposed by Cox. 24) The 
log rank test relies on calculating the observed and expected deaths for each group, using the principle 
discussed for the hazard ratio in Section 22.4.5. At a particular time interval, if OT = OA + OB for the 
total and component deaths in groups A and B, and if N = NA + NB is the corresponding number of 
persons at risk of death, the expected number of deaths in each group is EA = (NA/N)OT and EB =
(NB/N)OT. These entities then receive a conventional chi-square expression for each interval, and the 
sum of the interval values for each group is calculated as

This result is then interpreted with 1 degree of freedom (when two groups are compared) in a chi-
square distribution. Clear worked examples of the procedure have been shown by Peto et al.10 and also 
by Tibshirani.25 Coldman and Elwood26 offer a worked example that shows calculation of both the 
Wilcoxon and the log-rank statistics.

To help preserve ambiguity, the log rank procedure is also sometimes called the Mantel–Haenszel
test, or the Cox–Mantel test. According to Haybittle and Freedman,27 however, the procedures have 
different operational mechanisms, and a test attributed to Mantel alone28 is recommended “if a substantial 
proportion of deaths in one group occur after the other group has been entirely removed from risk” or 
if the comparison is done with prognostically adjusted groups.

22.5.3.3 Permutation Resampling — Of various other proposals for stochastically contrasting 
two survival curves, perhaps the most interesting was Forsythe and Frey’s suggestion, 29 almost 25 years 
ago, that the tests be done with a “permutation technique” of rearrangement. The suggestion appears to  
have been ignored during the many subsequent proposals of diverse stochastic methods. Now that 
permutation and diverse resampling methods are becoming well known and regularly employed, the 
Forsythe-Frey proposal may warrant appropriate “resurrection” and reconsideration.

22.5.4 Sample-Size and Other Calculations

For additional stochastic activities, Freedman30 has prepared a set of tables showing required sample 
sizes with the log rank test; and Borenstein31 has described the challenges (and an appropriate computer 
program) of planning for “precision” in hazard ratios, attrition rates, and confidence intervals, as well 
as the “power” discussed in Chapter 23.

22.6 Estimating Life Expectancy

One of the main reasons life insurance companies developed actuarial methods was to estimate life 
expectancy, not to plot survival curves. The estimates are derived from what is called an age-cohort 
analysis, using the “cross-sectional” or “current” demographic mortality rates available for the age and 
sex groups of a regional population.

X2 Σ OA EA–( )2/EA[ ] OB EB–( )2/EB[ ]+{ }=
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22.6.1 Customary Actuarial Technique

Suppose the annual mortality rates for a general population at a particular calendar period are .00960 
at age 55–56, .01054 at age 56–57, and .01156 at age 57–58. If a cohort contains 89,000 persons who 
are alive at age 55, we would expect that .00960 × 89000 = 854 of them will die in the next year, leaving 
88146 (= 89000 − 854) still alive at age 56. If the 854 deaths are evenly distributed throughout the year, 
the dead persons will have each lived about a half year. The total number of years lived by the cohort 
during that year will have been 88146 + (0.5)(854) = 88573. During the next year, beginning at age 56, 
deaths would occur in 88146 × .01054 = 929 persons, leaving 87217 alive at age 57. The total years 
lived by the cohort in the 56–57 year interval will be 87217 + (0.5)(929) = 87682. The number who die 
in the interval from age 57 to 58 will be 87217 × .01156 = 1008, leaving 86209 alive, and a total of 
86209 + (0.5)(1008) = 86713 years lived.

The cumulative total of years lived by the cohort for the three-year period will be 88573 + 87682 +
86713 = 262,968. The foregoing calculations can be iterated, using the appropriate mortality rates for 
each successive year of age, to obtain the annual deaths, survivors, and annual years lived at each year 
of age until almost everyone in the cohort has died.

The annual depletions and additions of the cumulative years-lived data can then be used to determine  
life expectancy. In the most common procedure, the analysis begins with a “stationary” cohort of 100,000 
newborn persons who are then successively depleted by deaths at annual intervals until the cohort size 
becomes negligible at perhaps age 110. After the deaths and years lived are determined for each annual 
interval of the cohort, a “future cumulative” total of years lived is also calculated for each year. The 
future cumulative total consists of the total number of years lived by the cohort at that age, plus the 
annual total of years lived in all subsequent years. For example, in a stationary cohort of 100,000 persons 
who start at birth in the U.S., the future cumulative total might be 7,247,519 years. The average life 
expectancy at birth would then be 7,247,519/100,000 = 72.48 years.

With the stationary-cohort tactic, life expectancy can be determined for anyone at any age. Suppose 
87,217 persons in the stationary cohort are alive at age 57. The future cumulative total number of years 
lived in that year and in all subsequent years might be 1,895,992. If so, the average remaining life expectancy 
at age 57 would be 1,895,992/87,217 = 21.74 years.

22.6.2 Additional Procedures

In the strategy just discussed, the death rates and life expectancies were determined for a general 
population. The results can be made more demographically specific if the calculations use death rates 
for annual ages of different sex or ethnic groups.

In addition, extra refinements are sometimes used to determine what would happen to general life 
expectancy if diseases such as cancer were eliminated. Assuming accuracy of information, the annual 
death rates for cancer are subtracted from the corresponding total death rate to produce a cancer-free 
death rate at each year of age. The annual life-table events are then appropriately recalculated, and the 
new value of life expectancy denotes the arithmetical consequences of eliminating cancer. The increment 
between this result and ordinary life expectancy (without the conquest of cancer) is usually disappoint-
ingly small32,33 — only about a 2 to 3 year increase in average longevity.

A new life-table “disaggregation technique” was recently used34 to explore reasons why African-
American life expectancy declined, while Caucasian life expectancy rose, during 1984–89 in the United 
States. The authors concluded that for African-Americans the prime contributions came from HIV 
infection in both sexes, as well as from homicide in men and cancer in women. The diverse calculations 
were done, however, without attention to the massive problems caused by census underenumeration of 
African-Americans, as noted in Chapter 17. 
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22.7 Dynamic (Age-Period) Cohort Analysis

In the methods just discussed for estimating life expectancy, all of the mortality rates for each age group
were cross-sectional. They came from demographic mortality data at a single period in secular time,
which would usually be the latest available data for the general population. For example, the estimate
of life expectancy for someone in 1993 would rely on the death rates noted for each age group in 1992,
or in the closest calendar date (such as 1990) for which trustworthy information is available for census
counts, numbers of deaths, and the corresponding age-specific mortality rates. This approach seems
quite reasonable for an insurance company, which would want to estimate life expectancy for someone
today according to the death rates that pertain today.

In various other circumstances, however, the investigators may take a more “historical” approach,
aimed at determining the social or secular effects of changes in calendar time. For example, because of
reductions in infant and other annual mortality rates, a cohort of persons born in 1905 might have life
expectancies, at each successive age in each successive calendar interval, that differ substantially from
a cohort of persons born in 1950. These two cohorts would be unfairly compared, however, if cross-
sectional mortality rates were chosen from 1905 for all members of the first cohort, and from 1950 for
the second. When persons born in 1905 became 20 years old, they were affected by the annual mortality
rate for age 20 that existed in 1925, not in 1905. At age 40, they would be subject to the corresponding
mortality rate in 1945. Similarly, the members of the 1950 birth cohort would be expected to die at age
20 according to the corresponding rate for 1970, and at age 40 according to the corresponding rate
for 1990.

Analyzing the changing age-specific rates for each calendar period, rather than the “cross-sectional”
rates existing at a single calendar year, produces a dynamic approach that has received various names.
Age-period cohort analysis is the most popular term today, but the approach has also been called a
generation or fluent analysis.

22.7.1 Methods of Construction and Display

Although applicable to general demographic explorations, age-period-cohort analyses have medically
appeared most often in epidemiologic research on changes in mortality rates for a particular disease. In
an early demonstration in 1947, Margaret Merrell35 constructed the appropriate analytic grid, shown in
Figure 22.6, using age-specific death rates for tuberculosis in Massachusetts men at 10 year intervals
from 1880 to 1940. The columns show the “cross-sectional” secular calendar rates and the rows show
the pertinent age groups. The demarcated diagonal segment shows the “cohort experience” as persons
born in 1880 went through the changing age and secular rates at each period.

The data are usually plotted with age on the abscissa and age-specific death rates on the ordinate for
each “birth cohort.” The graphs can become quite complex because the investigators often show both
the cross-sectional and the diagonal rates for each cohort. Such an arrangement appears in Figure 22.7,
which presents both sets of results for lung cancer in cohorts of U.S. men.36 The solid lines show the 
cross-sectional secular rates of age-specific deaths from lung cancer during calendar intervals ranging 
from 1931–35 to 1971–75. The dashed lines show the “diagonal” rates for the life experience of different 
birth cohorts, born in approximately 1876, 1881, 1886, 1891, 1896, and 1901.

22.7.2 Uncertainties and Problems

Because age-period-cohort analysis seems to be an attractive method of examining the “natural history” 
of general and disease-specific mortality, various statistical models have been proposed for the procedure. 
The proposals have been disputed, however, with authorities such as Holford37,38 favoring and Kupper 
et al.36 doubting, the value of “currently available” models. The mathematical disputes refer to the choice 
of an appropriate statistical model for estimating parameters, and to the “identifiability” problem that 
arises because the age, period, and cohort effects are interrelated rather than independent.
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Regardless of the way this mathematical controversy is resolved, however, the age-period-cohort 
analytic method has the profound scientific problem of using disease-specific rates of death. The analyses 
might be much more persuasive if aimed at the credible data of total mortality. As noted in Chapter 17,  
cause-specific rates of disease can seldom be scientifically accepted as trustworthy data, 4,39,40 regardless 
of whether the rates come from the idiosyncratic inconsistencies of coded death certificates or from the  
technologic detection bias that affects results assembed at tumor registries.

22.8 Longitudinal Analysis

In longitudinal analysis, the members of a cohort are followed to delineate the results of repeated 
measurements over time.

22.8.1 Confusion with Longitudinal Cross-Sections

The age-period-cohort procedure is seldom mistaken for a truly longitudinal analysis because the 
information comes from general mortality data for a population; i.e., individual members of a cohort 
are not examined or followed. A procedure that is sometimes confused with longitudinal analysis, 
however, is constantly used by practicing pediatricians to track the location of a child’s annual height 
and weight on a graph showing appropriate percentiles in a reference “growing” population. The data 
for apparent growth in the reference population, however, come from cross-sections of children at the 
different ages, not from a longitudinally followed cohort. These analytic structures are often called 
longitudinal cross-sections.

The use of longitudinal cross-sections rather than cohort studies can create complex problems and 
controversies. The tactic seems to work well for the growth of normal children (as shown in Exercise 
17.2), but can produce major distortions in studies of the course of older adults, where various noxious 
influences, eliminating vulnerable persons at relatively early ages, can lead to deceptive results in the 
cross-sections of “survivors.” The topic is further discussed in Section 22.8.2.5.

FIGURE 22.6
Age-specific death rates per 100,000 from tuberculosis for Massachusetts males, 1880 to 1940. Rates for the birth cohort 
of 1880 are indicated in the outlined diagonal strip. [Taken from Chapter Reference 35]
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22.8.2 Applications of Longitudinal Analysis

Longitudinal analyses for the individual members of a followed cohort have become a prominent 
statistical challenge only in recent years,41-43 as pertinent data were made available from long-term clinical 
trials and epidemiologic cohort studies that were seldom conducted until the past few decades. The 

FIGURE 22.7
U.S. white male ling cancer mortality rates per 100,000 by age at death, period of death, and birth cohort. Solid lines show  
rates of death for the age groups cross-sectionally at each calendar period. Dashed lines show the corresponding rates of 
death as each birth cohort (marked 1901, 1896, 1891, etc.) goes through its ageing. To avoid too much overlapping, birth 
cohorts are labelled only for 5-year increments in the midpoints of 9 year intervals, such as “1901” for the interval 1897–1905.
[Taken from Chapter Reference 36]
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analyses have been done to appraise recurrent events, to explore dynamic impacts, to develop longitudinal 
correlations, to “track” changes, and to validate longitudinal cross-sections.

22.8.2.1 Recurrent Events — Longitudinal analyses become needed when a “failure event” — such 
as a streptococcal or urinary tract infection, episode of diarrhea, asthmatic attack, or epileptic 
seizure — can appear recurrently, thus precluding the conventional life-table procedure. Formal longitu -
dinal analyses can be attempted, and proposals have been made44 to extend the life table to repeated and 
changing events, but the most commonly used approach for recurrent events is to convert the denominator 
to person-durations of observation, rather than individual persons.

The results for the group are then cited, for example, as the number of events per patient-year. If 
certain persons are particularly susceptible to recurrent events, the results can also be cited as number 
of “eventful” persons per patient-year. Thus, if the recurrent events are streptococcal infections, the 
“attack rates” can be cited per patient-year either for number of infections or for number of infected 
persons. The process was discussed earlier in Section 17.3.3.

22.8.2.2 Dynamic Impacts — Longitudinal studies can also be used to investigate two types 
of dynamic impact. In one situation, the investigators determine the way that subsequent changes in 
baseline factors can affect (or predict) a single outcome event. In the other situation, individual events 
or factors are checked for their impact on a dynamic outcome — such as weight, blood pressure, or 
psychic status — that can change over time.

The first situation is illustrated by the famous Framingham study,45 in which persons without known 
heart disease were followed for more than 20 years to study the original values and changes in baseline 
variables regarded as “risk factors” for the subsequent development of coronary heart disease. The 
members of the cohort were re-examined in sequential “panels” every few years to check the pertinent 
variables and to determine whether coronary disease had occurred.

In other studies of dynamic factors, a predictive impact has been noted from declines in pulmonary 
function46 and sometimes from a patient’s immediate or short-term early response to treatment.47

Although “time-dependent covariate” and “time series” strategies have been developed for these analyses, 
an easier and more effective approach may be to record the successive values of pertinent clinical 
variables and then repeat the prognostic estimation at each new “zero-time” status, after a pertinent 
short-term interval.

The second type of dynamic longitudinal study, with moving values for the outcomes, has been done  
to check the impact of naturally occurring events in cohorts of women. For example, pregnancy was 
appraised for subsequent effects on adiposity,48 and menopause for impact on depression.49

22.8.2.3 Longitudinal Correlations — In another pattern of longitudinal analysis, the changes 
that occur over time can be correlated with one another. For example, the results of repeated pulmonary 
function tests may be correlated with concomitant respiratory symptoms, smoking status, and age.50

Changes in endogeneous testosterone over time may be correlated with age and with changes in triglyc -
erides and high density lipoprotein cholesterol.51 Serial values of ambient air pollutants, adjusted for 
temperature, humidity, and time of week or season, did not affect serial peak expiratory flow rates in 
asthmatic children.52 The longitudinal correlations may also be used prognostically if data are obtained 
for a specific target outcome.53,54

22.8.2.4 Tracking — The term tracking is commonly used for the process of following a patient’s 
course (or “trajectory”) in successive values of certain factors, such as blood pressure or serum choles-
terol. The analysis will often check whether a person’s initial rating or rank persists as time progresses.  
For example, do children who are in the lower (or upper) percentiles of height and weight at age 2 
remain in those percentiles at age 9 or age 19? Does asthma or acute rheumatic fever tend to have the 
same kinds of manifestations in recurrent episodes as in the initial attack? In a longitudinal follow-up 
study, when compared with children of parents with coronary artery disease (CAD), the offspring of 
those with CAD were found to have progressively higher development of cardiovascular “risk factors.” 55
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22.8.2.5 Validation of Longitudinal Cross-Sections — A major advantage of longitudinal 
analysis is the opportunity to resolve disputes about the value of research with longitudinal cross-sections. 
The effort and expense of long-term follow-up could be avoided if cross-sections of appropriately aged 
persons yielded the same results that might emerge from following a large single group of persons as 
they grew older. For example, Margolis et al.56 contended that short-term follow-up of a suitably analyzed 
cross-section gave essentially many of the same results obtained in the long-term Framingham cohort. 
In four contradictory examples, however, longitudinal analyses were used to show the “noncomparability 
of longitudinally and cross-sectionally determined annual change in spirometry,”57 to demonstrate the 
error of previous cross-sectional studies claiming an increase of stillbirth in women who postpone 
childbearing until their “late twenties,”58 to refute the wrong results of cross-sectional data for assessing 
“generational changes in the lifetime risk of depression or other psychiatric disorders,”59 and to note 
that cross-sectional estimates of change in urinary symptom severity may underestimate the true effect 
of aging on prostatism.60

22.8.3 Statistical and Scientific Problems

Longitudinal analytic studies have all the difficulties cited earlier for follow-up in any type of cohort 
research, but the problems are much more complex, occurring from persons, times, and data.

An obvious scientific difficulty is what to do about persons who are “intermediate drop-outs,” with 
subsequent longitudinal measurements that are unknown. Should they be excluded from the analysis, or  
conversely, with the intention-to-treat principle, should they be listed as though they had been followed  
to the end, receiving the originally assigned regimen? If the latter, should their most recent set of results 
be “carried over” and listed as the final data? In timing, the problems involve what to do with repeated 
measurements that are obtained irregularly when members of the cohort do not comply with the scheduled 
arrangements. (The problem of irregular long-term measurements seldom occurs when “acute” 
conditions — such as congestive heart failure, gastrointestinal bleeding, acute myocardial infarction, 
extremely low birth weight, or non-traumatic coma — have a short-term outcome.) An additional chal-
lenge refers to the timing of asymptomatic events (such as major changes that can be shown only in 
laboratory tests). Chappell and Branch61 have described the “Goldilocks dilemma” of arranging for 
follow-up intervals that are neither too short nor too long, but just right.

In data, a major question is what to do about missing subsequent values. Should they be imputed from  
other members of the cohort or “guesstimated” from a statistical regression of previous values for the 
individual person? Another set of problems involves the management of both missing data for interme -
diate tests and wrong timing of tests.

As might be expected, many mathematical models have been proposed62–65 for analyzing the scientific 
and statistical complexity. In a particularly clear account, Matthews et al.66 classified two types of 
challenges presented by the patterns (peaks or growth) of longitudinal data, indicated the specific 
questions associated with each challenge, and proposed methods of answering each question. The authors 
strongly urged that the analyses be constructed from pertinent summaries of each patient’s data, rather 
than with the more customary approach, which uses summaries of the group at different points in time. 
For example, instead of fitting a regression line through the group’s mean values as serial time progresses, 
we might fit a suitable regression line through each person’s data and then try to summarize the set of 
regression lines.

The choice of optimum analytic methods will doubtlessly be expanded and clarified as more experience 
is acquired with longitudinal studies.
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Exercises

22.1. Here is the “skeleton table” of a set of data for subsequent survival of a group of patients with 
a particular disease:

22.1.1. Using a fixed-interval method of analysis and calculating all rates to at least three 
decimal places (to avoid errors due to rounding), complete the table.

22.1.2. Using the direct method of decrementing denominators, calculate the cumulative (or 
“total”) survival rates at each of the cited intervals in the table.

22.1.3. Comment on the different results obtained for 5-year cumulative survival rates with 
the two methods of calculation. Which method would you prefer to use as a clinician 
evaluating treatment and making decisions in patient care?

22.2. For the data shown in Exercise 22.1, assume that the investigators checked each patient’s status 
every 6 months. The deaths and censored events listed in the data were noted at the following times:

(1)
Years 
after 

Diagnosis

(2)
Alive at 

Beginning

(3)
Died 

during 
Interval

(4)
Lost to 

Follow-up

(5)
Withdrawn 

Alive

(6)
Adjusted 

Denominator

(7)
Mortality 

Rate

(8)
Survival 

Rate 

(9)
Cummulative 
Survival Rate

0–1 126 47 4 15
1–2 5 6 11
2–3 2 0 15
3–4 2 2 7
4–5 0 0 6

During Interval
Lost to Follow-Up “Withdrawn Alive” Deaths at End of Interval

0–6 mos. 3 5 32
6–12 mos. 1 10 15

12–18 mos. 3 7 3
18–24 mos. 3 4 2
24–30 mos. 0 8 2
30–36 mos. 0 7 0
36–42 mos. 1 3 0
42–48 mos. 1 4 2
48–54 mos. 0 5 0
54–60 mos. 0 1 0
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Prepare a Kaplan-Meier analysis for these data.
22.3. Prepare a graph showing the results of the fixed-interval and Kaplan-Meier analyses of these data.
(You need not recalculate the previous data of Exercise 22.1.)

22.4. Like the direct method, the
variable-interval method does not
augment the interval denominators to
include contributions from people
censored during an interval. In
Exercises 22.1 and 22.2, are the
results of the variable-interval
method more like those of the direct
method or those of the fixed-interval
method? What is your explanation
for the observed distinction?
22.5. The graph in Figure E.22.5 is
an exact reproduction from a recent
report in a respectable medical
journal. If you were reviewing this
manuscript for publication, what
suggestions would you offer about
how to improve the graph?

FIGURE E.22.5
Overall and disease-free survival for entire group of 16 study patients.
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Part IV

Additional Activities

This last part of the text is devoted to two sets of additional topics in making stochastic decisions and 
in describing categorical contrasts and associations.

The new stochastic decisions arise when the goals differ from those of previously discussed stochastic 
tests, almost all of which were aimed at confirming something “big.” The new descriptive strategies are  
used to “adjust” for “confounding variables” and to provide indexes of association for arrangements that 
cannot be suitably managed with the methods discussed earlier in Part III.

In the stochastic tests discussed thus far, the main goal was to show “stability” and proclaim “signif -
icance” for an observed distinction, do, that was regarded as quantitatively impressive. Regardless of the 
index (increment, ratio, etc.) used to describe the impressive quantitative magnitude of do, its stochastic 
confirmation was sought from a P value or confidence interval calculated under the null hypothesis of 
“no difference.” After this calculation, the investigator would conclude that the results were stochastically 
either “significant” if the null hypothesis was rejected  or “nonsignificant” if the hypothesis was conceded.

Beyond confirming a single quantitatively impressive value of do, however, stochastic tests can also 
have many purposes. Sometimes, if do is smaller than expected, the goal is to see how large it really 
might be. This type of exploration can be done with confidence intervals, but can also involve the ideas  
of capacity, alternative hypothesis, type II errors, power, and doubly significant sample sizes that are 
discussed in Chapter 23. In other situations, the investigator may want  to find and confirm a small 
rather than large distinction. With this goal, discussed in Chapter 24, the stochastic procedures become 
re-oriented for testing “equivalence.” Another important issue in that chapter is the interpretation of 
disparities between the investigator’s goals and the statistical results. In still other situations, discussed 
in Chapter 25, the stochastic testing is done on multiple occasions rather than just once. The multiple 
testing may occur for different hypotheses (called “multiple comparisons”) within the same set of data, 
for repeated sequential tests of the same hypothesis in an accumulating set of data, or for a meta-analytic  
aggregation of data pooled from a series of individual studies, each of which has already been stochas -
tically tested.

The additional approaches to association occupy the last four chapters. With new descriptive indexes,  
discussed in Chapter 26, the two-group contrasts discussed in part II can receive special approaches to 
deal with the problems of “confounding.” The approaches involve such tactics as “adjustment,” “stan-
dardization,” and “matching.” A different descriptive challenge requires new indexes of association, 
discussed in Chapter 27, for categorical relationships that are not suitably managed with the strategies 
previously considered in Part III.

The last two chapters, which contain no Exercises at the end, are intended mainly to familiarize you 
with two sets of procedures that you may meet in medical literature. For reasons noted in those chapters, 
you may not do (or want to do) any of these procedures yourself, but they regularly appear in published  
papers. The non-targeted analyses in Chapter 28 contain methods for reducing multiple variables (or 
categories) into a smaller set of variables (or categories) without aiming at a specific target variable. 
The analysis of variance, in Chapter 29, aims at a target variable that is associated with more than two 
“independent” categories.

The additional stochastic and descriptive topics are not part of the common daily events in medical 
statistics, but they occur often enough to warrant inclusion among the principles needed by thoughtful 
readers or users.
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Type II errors are a common event in stochastic testing. They occur when the investigator concedes the
null hypothesis and concludes that the observed results are “not significant,” although the true distinction
is really impressive. These errors are the reverse counterpart of the Type I errors, emphasized in all the
stochastic discussions so far, that occur when the null hypothesis is rejected although it is actually true.

In conventional statistical discussions, the stochastic conclusion is often regarded as the fundamental
decision in the research. The stochastic strategy is then aimed mainly at either confirming the “correct”
decisions or preventing the errors of “false-positive” and “false-negative” conclusions. The research may
reach a wrong conclusion, however, for scientific rather than stochastic reasons. In the first part of this
chapter, devoted to the diverse sources of wrong conclusions, the scientific problems are discussed first.
A knowledge of those problems can often help either to avoid the use of an unsuitable stochastic test
or to keep the investigator (and reader) from being deceived by results of an appropriate test.

23.1 Sources of Wrong Conclusions

Assuming that the raw data are themselves correct, a wrong conclusion can be produced by several types
of scientific and statistical problems.

23.1.1 Scientific Problems

The main scientific sources of error are biased groups, erroneous hypotheses, and erroneous interpretations.

23.1.1.1 Biased Groups — Whether “significant” or “nonsignificant,” a statistical result can devi-
ate from truth because the particular group(s) under study did not suitably represent the pertinent population
or events. This problem was the source of a particularly famous error in political poll-taking. Before the
U.S. presidential election of 1936, a sample of more than 1,000,000 people was assembled by a respectable
magazine, Literary Digest, from the mailed-in “ballots” of readers and from randomly placed telephone
calls. The opinions expressed in this huge sample led to a highly confident prediction that the Republican
candidate, Alfred Landon, would win the election overwhelmingly. On Election Day, however, the
incumbent Democrat, Franklin Roosevelt, won by a “landslide.” A “post-mortem examination” showed
that the sampling process had a major bias, which you are invited to diagnose in Exercise 23.1.

In the example just cited, the composition of a single group (potential voters) was biased. When two
groups are contrasted for conclusions about cause–effect etiologic or therapeutic relationships, biased
comparisons can arise from diverse problems in susceptibility, detection, and other nonstatistical sources
of distortion. If the problems are recognized and if appropriate data are available, statistical efforts can
be made to adjust for the bias. The best approach, however, is scientific, not statistical. The research
should be designed in ways that can avoid or substantially reduce the bias.

23.1.1.2 Erroneous Scientific Hypotheses — As discussed in Chapter 11, most research
comparisons involve two types of hypotheses. One of them, seldom emphasized in statistical discus-
sions, is the scientific hypothesis. It denotes what the investigator expects (or wants) to find in the
research. Always cited descriptively, the scientific hypothesis may be stated in phrases such as: “Treat-
ment A is better than Treatment B,” or “Agent E causes or promotes development of Disease D.” The
scientific hypothesis will be wrong if the proposed maneuvers do not, in fact, have the action anticipated
by the investigator.

Medical history contains many accounts of erroneous etiologic and therapeutic hypotheses that were
scientifically popular in different eras until truth (or suitable corrections) eventually emerged. The
scientific sources of these errors were usually wrong qualitative concepts. For many centuries, disease
was thought to be caused by imbalances in the four “humors” of the body. The imbalances were then
“cured” by such treatments as blood-letting, blistering, purging, and puking. During the 19th century,
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many contagious diseases were ascribed to miasmal vapors. In the mid-20th century, thousands of
premature babies were blinded during an iatrogenic epidemic of retrolental fibroplasia,1 caused by
excessive oxygen therapy given as prophylaxis in the belief that its potential pulmonary benefits could
not be accompanied by adverse effects elsewhere in the body.

23.1.1.3 Erroneous Interpretations — When the hypotheses emerge from the data, a correct
set of information may be erroneously interpreted.

A major blunder in confusing association with causation was committed by William Farr (the respected
“founder” of Vital Statistics) who concluded, from statistical correlations, that cholera was caused by
high atmospheric pressure.2 In the early 20th century, pellagra was erroneously regarded as infectious
after it was commonly found in members of a family and in their neighbors.3

23.1.2 Statistical Problems

Common statistical sources of error have been the failure to set quantitative boundaries, to appraise
stochastic variation, and to understand dissident results.

23.1.2.1 Boundaries for Quantitative Distinctions — As the use of statistical data became
popular in the 20th century, a subtle source of error was incorrect beliefs about magnitude. If Treatment
A was believed “better” than B, but turned out “worse,” the scientific hypothesis itself was wrong. If A
was only slightly or trivially better, however, the scientific hypothesis was still correct, but the anticipated
magnitude of difference was wrong.

To be examined statistically, such concepts as better, worse, or trivially better must be converted to
quantitative expressions. The scientific difficulty of choosing these expressions was discussed in Chapter
10. Qualitatively, a particular phenomenon (death, “success,” relief of symptoms, etc.) must be chosen
as the focus of attention; and a particular statistical index (increment, direct ratio, proportionate incre-
ment, etc.) must be chosen to cite the quantitative distinction, do, observed in the compared treatments.
The next statistical step is to demarcate a magnitude that will make this distinction be regarded as “big”
or “small.”

The choice of these boundaries is often difficult, but they must nevertheless be established to allow
statistical procedures to be used, before the research, for calculating a suitable sample size, and afterward,
to decide whether the observed distinctions are impressive or unimpressive enough to warrant stochastic
“tests of significance.”

23.1.2.1.1 Demarcations of “Big” and “Small”. Suppose the symbol δ is used for the lower
boundary of a big or quantitatively impressive distinction. If Treatment A is expected to be substantially
better than Treatment B, the scientific hypothesis might be cited symbolically as

A − B ≥ δ

If Treatments A and B are expected to be essentially equivalent, the difference in results will seldom
be exactly zero. Consequently, an upper limit, expressed with the symbol ζ, can be established as the
maximum magnitude of a small or quantitatively insignificant distinction. The scientific hypothesis of
equivalence, or a tiny difference, could then be quantitatively cited as

A − B ≤ ζ

23.1.2.1.2 Effects of Quantitative Boundaries. The quantitative boundaries for δ and ζ are arbi-
trary, but no more arbitrary than the level of .05 usually set for the boundary of α in stochastic tests.
With two sets of boundaries available for quantitative and stochastic decisions, however, a gallery of
statistical errors becomes possible. Most of this chapter is concerned with possible errors in stochastic
decisions when the investigator wanted to find a “big” distinction, i.e., do ≥ δ. The stochastic examination
of “small” distinctions, i.e., the confirmation of “equivalence,” is discussed in Chapter 24.
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23.1.2.2 Stochastic Variations — Stochastic variation refers to phenomena that can occur dur-
ing the action of random chance. Wrong conclusions can occur if these variations are not recognized
and suitably accounted for. For example, someone who wins the main prize in a lottery might become
rich, but would not immediately be regarded as a talented selector of random numbers. In fact, if the
same person wins again and particularly a third time, we might believe something is wrong with the
lottery process. On the other hand, if a 12 is tossed with two dice, the chance probability of the occurrence
is (1/6)(1/6) = 1/36 = .028, but we would not immediately reject the idea that the dice are “fair.” The
event would regularly happen among a large series of consecutive tosses at a gambling casino’s dice table.

23.1.2.2.1 “False Positive” Conclusions. The customary “tests of statistical significance” are
done to avoid erroneous “false positive” conclusions that might arise merely from stochastic variation;
and α is set at the level of acceptable errors. Thus, an impressively large incremental success rate could
readily arise by stochastic variation alone if two treatments, A and B, are actually equivalent, but produced
pA = 8/13 = .615 and pB = 4/12 = .333, with do = .282, in a study done with small groups.

For these small numbers, the stochastic test of the null hypothesis is best done with the Fisher exact
procedure, which would produce 2P = .238. The mathematical principles, however, are easier to illustrate
with the Z test. The standard error of the difference is first calculated with Formula [14.11] as 

SED =  = 0.2

The observed value of Z, designated as Zo, is then calculated as .282/.2 = 1.41, for which 2Po = 0.159.
Although this P value is smaller than the result of the Fisher test, neither procedure would lead to
rejection of the null hypothesis with α set at .05.

23.1.2.2.2 “False Negative” Conclusions. Stochastic variation, however, might also lead to an
erroneous “false negative” conclusion. For example, suppose two treatments in a clinical trial really
differ substantially (i.e., by at least δ = .15), and suppose at least 25 patients had been entered into each
group. If the subsequent results then show that pA = 14/29 = .483 and pB = 12/28 = .429, the value of
do = .483 − .429 = .054 is less than δ = .15. This result is not quantitatively significant and is also not
stochastically significant with a test in which we first calculate 

SED =  = .132

The value of Zo is then .054/.132 = .409, for which 2Po = .68.
To avoid a false negative conclusion, however, we can first check to see whether the observed small

value of do is a stochastic variation, which differs by chance from the true value of δ ≥ .15. An obvious
way to check for the latter possibility was discussed in Sections 11.7.2 and 11.9. We determine whether
δ = .15 is included in the upper boundary of an appropriate confidence interval around do = .054. With
.132 as the value of SED, the 95% confidence interval is .054 ± (1.96)(.132) = .054 ± .258. It extends
from −.205 to .313. The result is not stochastically significant because the value of 0 is included, but
the confidence interval also includes the value of .15. The result might therefore be a stochastic variation
from a true difference, between treatments A and B, that is actually as large as δ = .15.

Because the confidence interval component, Zα × SED, is .258 here, the value of δ = .15 would be
included in the upper part of the confidence interval for all positive values of do. The interval would fail
to exceed δ only if do < δ − Zα(SED), which would occur when do has a negative value of at least .150
− .258 = −.108.

23.1.2.2.3 Clinical Claims of “No Difference”. The situation just described constantly occurs in
medical literature when the investigator gets the observed data, finds that the customary P value exceeds
the α level of “significance,” and then concludes that the study had “nonsignificant” results.

If a confidence interval was not published to show how large the “nonsignificant” difference might
have been (or sometimes even if the confidence interval was shown), irate readers will regularly send
letters to the editor complaining about the omission. The readers usually contend that the group sizes
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were too small to prove the claim. The original authors may then respond by citing the confidence
intervals (which may often include a “big” result), but offering various justifications for the claim
of nonsignificance.

Such arguments have occurred after publication of clinical trials claiming that early discharge from
hospital was relatively safe after acute myocardial infarction,4 that glucagon injections did not improve
accuracy of a double-contrast barium enema,5 that exchanging unsaturated fats did not affect plasma
lipoproteins6, that thoracic radiotherapy did not prolong survival in patients with carcinoma of the lung,7

and that ritodrine (a beta-adrenergic agonist) was not effective in treating preterm labor.8 If a big
difference is included, the upper boundary of the confidence interval can readily be used to justify the
contention that such a difference might exist.

23.1.2.3 Statistical Dissidence — The quantitative and stochastic decisions agree if the observed
distinction seems quantitatively significant, and if the stochastic test confirms the significance. Statistical
dissidence occurs when the two sets of results do not agree, so that significance is found quantitatively
but not stochastically, or stochastically but not quantitatively. The conclusion will be wrong if a correct
quantitative distinction is ignored in favor of the contradictory stochastic result.

The quantitative-yes–stochastic-no type of dissidence was frequently noted in scientific literature as
stochastic tests became increasingly used to prevent erroneous conclusions from small groups. The
dissidence occurs when the group size is too small to allow stochastic confirmation for a big quantitative
distinction. Without the stochastic test, an investigator might claim significance when a quantitatively
impressive increment of 15% in success rates of 25% vs. 40% came from numbers as small as 1/4 vs.
2/5. “Tests of significance” were introduced and intended to prevent this problem. The opposite type of
quantitative-no–stochastic-yes dissidence, which has become increasingly common when stochastic tests
are used as the main or only basis for scientific conclusions, is the stochastic proclamation of significance
for a small, unimpressive quantitative distinction.

23.1.2.3.1 “Boundless Significance” and Oversized Groups. The enormous impact of size in
tested groups was shown in earlier discussions of the Z, t, and chi-square tests. If the groups are too
small, an impressive quantitative distinction may not be stochastically confirmed; but if the groups are
too big, an unimpressive distinction may become stochastically significant.

The latter type of statistical dissidence can occur because the customary calculation of stochastic
significance is “boundless.” The quantitative boundary of δ is neither used nor needed for determining
a conventional P value from Zo = do/(SED) or a confidence interval constructed as do ± Zα (SED). If the
calculated Zo exceeds Zα, or if the confidence interval excludes 0, the stochastic result can be proclaimed
“significant,” regardless of the actual magnitude of do. For example, in a study that contains more than
2200 persons in each group, the rates of “success” may be 750/2207 = .34 in Group A and 819/2213 =
.37 in Group B. The increment of .03 in the two groups may seem small and unimpressive, but it is
stochastically significant at P < .05, because the big groups lead to a suitably large value of 2.1 for Zo.

There is no statistical method to prevent erroneous conclusions in this situation. They can be avoided
(or “cured”) only if investigators (and readers) preserve their scientific judgment and examine the actual
magnitude of the observed distinction. If it is not big enough to be impressive, it is not “significant”
even if the P value is infinitesimal.

23.1.2.3.2 Problems of Undersized Groups. The stochastic dissidence caused when undersized
groups are too small to allow rejection of the null hypothesis was illustrated in Section 23.1.2.2.1. In a
well-conducted clinical trial that produced pA = 8/13 = .615 vs. pB = 4/12 = .333, the investigator could
not get stochastic confirmation for the impressively large quantitative increment of do = .282.

This problem, although regularly regarded as a defect in “power” of the trial, is actually due to a
simpler defect in what might be called capacity. As noted later, power refers to the ability to reject an
alternative hypothesis that the quantitative distinction is large although the observed result may be small.
Capacity, however, refers to the ability to reject the original null hypothesis when the observed distinction
is large.
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23.2 Calculation of Capacity

The statistical dissidence just described occurred because the group sizes were too small. If the inves-
tigator had really expected to find an increment as large as .282 between the two treatments, the necessary
sample size for stochastic significance at a two-tailed P < .05 could have been calculated with the earlier
Formula [14.20], using πB = .333, to get

n ≥ (2)(.333)(.667)(1.96)2/(.282)2 = 21.5

At least 22 patients would have been required in each group. With Formula [14.19], for which π would
be estimated as (.615 + .333)/2 = .474, the sample size needed for each group would have been

n ≥ (2)(.474)(.526)(1.96)2/(.282)2 = 24.1

or at least 25. With either calculation, the actual group sizes of 13 and 12 would lack the capacity to
achieve a stochastic 2P < .05.

If δ = .15 had been originally chosen as a boundary for quantitative significance, the sample size
required by Formula [14.19] would have been

n ≥ 2(.4065)(.5935)(1.96)2/(.15)2 = 82.4

With at least 83 persons in each group, the quantitatively impressive do = .282 would easily have yielded
2P < .05.

The cited stochastic defect in capacity can easily be quantified numerically. The foregoing calculations
(where do = .282 and π was estimated as .474) showed that about 25 persons were required for each
group, making a total required size of NR = 50. Because the actual group, No, contained 13 + 12 = 25
people, the capacity was approximately No/NR = 25/50 = 50% of what was needed.

The main point to be noted, however, is that the trial under discussion was defective in its basic
capacity, not in its power to reject an alternative hypothesis, as discussed shortly.

23.3 Disparities in Desired and Observed Results

In a study that begins with the goal of finding a big difference, do ≥ δ, three possible outcomes can
occur. In the first two, the result is “positive,” with do ≥ δ. This “positive” result is then either confirmed
stochastically, with Po ≤ α, or not confirmed, with Pο > α. In the third situation, the result of the trial is
“negative,” with do < δ. In this situation, the investigator hopes that the small do is stochastically consistent
with a big δ.

23.3.1 General Conclusions

An observed “positive” big distinction, i.e., do ≥ δ, would be stochastically confirmed if the group size
had full capacity, but would not be confirmed, with P > α, if the group size was too small. If the result
was “negative,” i.e., do < δ, the small do might be rendered stochastically significant if the group size
was huge; but in most reasonable situations, the associated Po would exceed α, and the distinction would
be nonsignificant, both quantitatively and stochastically.

In the last situation, however, an investigator who wanted to find do > δ would be delighted if δ were
included in the upper end of the confidence interval for do. After savoring the delight, however, a cautious
investigator might have a nagging doubt. Suppose the scientific hypothesis is wrong, so that do is really
small, rather than being merely a stochastic variation from δ. Worried about this possibility, the inves-
tigator may now want some further stochastic reassurance that can prove or confirm “no difference.”
Thus, the investigator would ask, “How can I be sure I have not been deluded by random fate? What
would be convincing evidence that the treatments have a really small difference?”

© 2002 by Chapman & Hall/CRC 



23.3.2 Group Size for Exclusion of δδδδ

Scientifically, the immediate answer to the latter questions is “Repeat the trial.” Statistically, however,
a numerical solution can be offered. If a suitable confidence interval excludes the “big” value of δ, the
demonstration that

do + Zα (SED) < δ [23.1]

could be reasonably assuring. It would indicate that the “small” value of do is probably not merely a
stochastic variation from a true large value of δ.

To determine the group size required for this assurance, we first convert Formula [23.1] to Zα(SED)
< (δ − do). Assuming equal group sizes, SED can then be calculated as . After the algebra
is developed, the size of n needed in each group will be

[23.2]

To illustrate the calculation, suppose we assume that do will be .054, as in Section 23.1.2.2.2. We
determine  as the average of the estimated pA and pB, which is (.483 + .429)/2 = .456, so that 1 –   =
.544. We set Zα = 1.96 and then substitute in [23.2] to get

n > [(1.96)2(2)(.456)(.544)]/(.150 − .054)2

which turns out to be 1.906/(.096)2 = 206.8.
Thus, if a trial with 207 patients in each group yields the expected pA = .483, pB = − .429, and do =

.054, the value of δ = .15 would be excluded from the confidence interval. The investigator could then
be able, with 95% confidence, to conclude that Treatment A does not exceed Treatment B by a difference
of δ = .15 or more.

If things turn out almost exactly as anticipated in the preceding paragraph, the results with the larger
sample size will be pA = 100/207 = .483 and pB = 89/207 = .430. The SED will be 

 = .049

The 95% confidence interval will be (.483 − .430) ± (1.96)(.049) = .053 ± .096; and it will extend from
−.043 to .149. With 0 included, the result is not stochastically significant; and with .150 excluded, the
result offers stochastic assurance that do is unlikely to be as large as .150. The investigator could now
conclude that the original scientific hypothesis was probably wrong. Despite the desired hope, Treatment
A is not substantially better than Treatment B.

23.4 Formation of Alternative Stochastic Hypothesis

The foregoing tactics brought us into a new type of stochastic reasoning. In everything done until now,
we found a “big” difference, do, that was scientifically expected and welcome, so we tried to confirm it
stochastically. The stochastic hypothesis, symbolized as ∆, was assumed to be the opposite of what we
wanted to prove. We made ∆ as small as possible, i.e., ∆ = 0.

For the new situation, however, we want stochastic confirmation for a “small” difference, i.e., do < δ.
We therefore want to reject a different hypothesis, i.e., that ∆ ≥ δ. If δ is excluded from the corresponding
confidence interval, we could conclude stochastically that the observed result, do, is indeed smaller than δ.

This conclusion, however, would reverse the original goal of the trial, which was done with the hope
of finding do ≥ δ. The reversal is not important for the statistical procedures that follow in the next few
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sections, but becomes a crucial feature of the reasoning when we reach the Neyman-Pearson strategy
considered in Section 23.6.

23.4.1 Statement of Alternative Hypothesis

The conventional null hypothesis places the value of ∆ at 0 for increments, correlation coefficients, or
slopes, and at 1 for a ratio. To avoid frequently repeating the comment about “1 for a ratio,” all null
hypotheses about “equivalence” or “no distinction” will hereafter be cited as 0. The same ideas and
approaches will also pertain, if expressed for a ratio, but the null hypothesis will be 1.

With ∆ representing the value of the stochastic hypothesis, the conventional “null” assumption, ∆ = 0,
was stated (for two proportions) as Ho :  −  = 0. In the new procedure, however, the hypothesis
to be rejected is the alternative statement that ∆ ≥ δ. The symbols would be HH :  −  ≥ δ.

23.4.1.1 Imprecise Counter-Hypothesis — In the logic of stochastic testing, a primary
hypothesis can be rejected or conceded, but never accepted. The primary hypothesis is therefore set to
be the opposite of what we would like to conclude; and when the hypothesis is rejected, we concede
the counter-hypothesis. To be the direct opposite of the null hypothesis, ∆ = 0, the counter-hypothesis
must be imprecise, without a stipulated focal point. If ∆ = 0, the counter-hypothesis can be either a two-
tailed ∆ ≠ 0, or in a one-tailed direction, ∆ > 0 or ∆ < 0; but it cannot be ∆ = δ.

This logic is responsible for the “boundless significance” discussed in Section 23.1.2.3.1. Suppose
δ = .15 is set as the level of quantitative significance for an increment in two proportions, and suppose
the results show that pA = 27/42 = .64 and pB = 11/39 = .28. For the quantitatively significant distinction
of do = pA − pB = .36, the value of Zo turns out to be 3.25. Although the observed value of do can now
be deemed stochastically significant at a two-tailed P < .05, the actual stochastic conclusion is only that
∆ ≠ 0. The observed do = .36 acquires its label of “stochastic significance” merely by being compatible
with the stochastic conclusion. This same conclusion could have been obtained with adequately large
group sizes if do were smaller, at .19. The observed do could even be stochastically significant when
smaller than δ, at values of .10, .07, or .03. For example, suppose pA = 238/2166 = .11 and pB = 80/2184 =
.04, so that do = .07. This result is substantially smaller than δ = .15, but it would produce Zo = 2.5, for
which 2P < .05. Despite the relatively small do, we can still reach the same stochastic conclusion, i.e.,
∆ ≠ 0, as with the previous big do.

23.4.1.2 Precise Location for Alternative Hypothesis — Unlike a counter-hypothesis, the
alternative hypothesis has its own specific dignity and focal location. Like any other stochastic hypothesis,
the alternative hypothesis can be rejected or conceded but not accepted. When considered for the
possibility of being false, i.e., rejected, the alternative stochastic hypothesis must have a precisely
specified location, analogous to the precision of ∆ = 0.

If the goal is to get stochastic confirmation that do < δ, the precise value of the alternative hypothesis
is usually set at δ. With HH as the symbol, the alternative hypothesis becomes expressed as HH : ∆ = δ;
and its counter-hypothesis becomes ∆ ≠ δ. For reasons to be cited shortly, the alternative hypothesis is
almost always checked in a one-tailed direction. The appropriate statement would then be HH : ∆ ≥ δ;
and the counter-hypothesis would be ∆ < δ. For simplicity of expression and calculation, however, the
usual statement is simply HH : ∆ = δ. The directional issues are implicit when the results are interpreted.

In a contrast of two proportions, pA and pB, the parametric alternative hypothesis is HH : πA − πB = δ,
or (if specifically two-tailed) HH : |πA − πB| = δ. In a contrast of two means,  and , the same
principles are used, but the parameters in the hypothesis are µA and µB.

With this operating principle, we can explore what has been called “the other side of statistical
significance,”9 by considering what happens if the original null hypothesis is false and should have been
rejected. Its falsity is explored with the alternative stochastic hypothesis, for which δ replaces the null-
hypothesis value of 0. Under the alternative hypothesis, the observed value of do is examined as the
increment of δ − dο.

πA πB

πA πB

XA XB
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23.4.2 Alternative Standard Error

Under the alternative hypothesis (as under the
null hypothesis), the increment in two means
or in two proportions continues to have a
theoretical Gaussian (or Gossetian) sampling
distribution for values of Z (or t). Figure 23.1
shows the location of the observed do and the
potential Gaussian distributions of increments
under each of the two stochastic hypotheses.

As noted earlier, the standard error of a dif-
ference in two central indexes, symbolized as
SED, is calculated differently when ∆ = δ
rather than ∆ = 0. For contrasting two observed
proportions with ∆ = 0, Formula [15.9] for
SED is

SEDo = 

but for ∆ ≥ δ, the analogous calculation in
Formula [15.12] is

SEDH = 

Both calculations can be eased with the “short-
cut” formulas shown earlier in Expressions
[14.11] and [14.13].

The actual difference between the two SEDs, however, is usually small and inconsequential (see
Section 14.4.2). For example, although the SED was calculated as SED0 in Section 23.1.2.2.2, the
procedure was aimed at rejecting the alternative hypothesis that ∆ ≥ δ. Consequently, the calculation
should have used SEDH, which would have been  = .132. The result (at
three decimal places), however, is the same as the previously calculated SED0 = .132.

In many ensuing discussions in this text, the SED symbol will be used in a general way, regardless of
which formula it comes from. For illustrative calculations, SEDH will be used when it is particularly
pertinent, but SED0 will often be preferred because of its greater general applicability. A single calculation
for SED0 has the advantage of letting the same confidence interval sometimes be used, as in Section
23.1.2.2.2, for checking both the null hypothesis (in the lower boundary) and the alternative hypothesis
(in the upper boundary).

23.4.3 Determining ZH and PH Values

Using the alternative hypothesis, the symbols ZH and PH will correspond to the Zo and Po obtained with
the ordinary null hypothesis. For comparing two groups, the alternative Z values will come from the
formula

ZH = (δ − do)/SED [23.3]

With the alternative SEDH calculated for two proportions, the formula will be

[23.4]

FIGURE 23.1
Location of do in reference to distributions for original null
hypothesis (upper drawing) and for alternative hypothesis (low-
er drawing).
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For example, in a clinical trial where pA = 9/18 and pB = 8/17, so that do = .500 − .471 = .029, the
value of SEDH under the alternative hypothesis will be

 = .169 

If δ is designated as .15,

The values of ZH are interpreted as P values in exactly the same way as under the conventional null
hypothesis. At the Gaussian value of ZH = .716, the two-tailed PH is .47. Thus, there is a two-tailed
chance of .47, and a one-tailed chance of .235, that the observed result of do = .029 came from a
population in which the true difference was as large as .15.

23.4.4 Role of ββββ

For the original null hypothesis, the α level establishes the boundary of α-error or Type I error for false
positive conclusions if a correct hypothesis is rejected. For the alternative hypothesis, a corresponding
level, called β, establishes the boundary of β-error or Type II error for the relative frequency of wrong
decisions if a correct alternative hypothesis is rejected. If HH is true, its rejection would lead to the false
negative conclusion that the two groups are not substantially different, when in fact they are.

Table 23.1 shows the use of α and β
levels in reasoning for the original null-
hypothesis decision. If the null hypothesis
that ∆ = 0 is correct, there is an α chance
that rejection is wrong, and a 1 − α chance
that concession is right. If the true state of
affairs is ∆ = δ, however, concession of the
original null hypothesis has a β chance of
being wrong, and rejection has a 1 − β
chance of being correct.

23.4.5 Analogy to Diagnostic 
Marker Tests

The statistical parlance does not use the
language of diagnostic marker decisions,
but the concepts are almost identical. Suppose a pap smear is done as a diagnostic marker test for a
cancer. If the pap smear result agrees with the definitive tissue biopsy, the pap smear conclusion is either
a true positive or true negative. If the pap smear and biopsy disagree, the original conclusion is either
falsely positive or falsely negative.

23.4.5.1 False Positive Conclusions — If the null hypothesis is rejected with Po < α, there is
still a probability of Po that the rejection is wrong. The selected value of α is the upper boundary of risk
for the false positive conclusion. Thus, if α is set at .05 and stochastic significance is proclaimed when
Po = .049, the two groups may still be truly similar, and the probability is .049 that the decision is wrong.
With α set at a higher level of .1, the quantitative range of false positive conclusions is expanded. The
two groups might really be similar and the decision that they are different might be wrong in .03, .06,
.08, .09, or .099 of the occasions when the null hypothesis is rejected at the corresponding values of P < .1.

When α is set as the boundary of “risk” for a false positive decision, the level of 1 − α is analogous
to the specificity of a diagnostic test. In previous usage, 1 − α helped establish the boundaries of a

9( ) 9( )/183[ ] 8( ) 9( ) 173⁄[ ]+

ZH
.15 .029–

.169
------------------------ .716= =

TABLE 23.1

α, β, and Accuracy of Stochastic Decisions 
for Null Hypothesis

Conclusion 
RE Stochastic

Hypothesis True State of Reality
That ∆∆∆∆    ==== 0 ∆∆∆∆ ==== δδδδ ∆∆∆∆ = 0

Reject True Positive False Positive
Conclusion Conclusion

(1 − β) (α)

Concede False Negative True Negative
Conclusion

( 1 − α)
Conclusion

(β)
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confidence interval. In the application here, 1 − α helps denote the relative “confidence” attached to a
stochastic decision to concede the null hypothesis.

23.4.5.2 False Negative Conclusions — If the original null hypothesis is rejected as false, we
infer that the parent universe has a big distinction (at least as big as the observed do), rather than none.
If the null hypothesis is conceded, however, and if the parent universe really does have a big distinction,
the concession will be a false-negative conclusion. Because β is set as the permissible frequency of
false-negative conclusions, the value of 1 − β is analogous to the sensitivity of a diagnostic test.

23.4.5.3 Role of Horizontal “Gap” — When “vertical” indexes of sensitivity and specificity
are used in diagnostic decisions (see Chapter 21), we cannot immediately make “horizontal” appraisals
of accuracy, because the prevalence of diseased cases will vary in different clinical situations. An
analogous problem prevents horizontal conclusions in stochastic decisions, but the problem does not
arise from prevalence. The stochastic problem is caused by the numerical gap that separates ∆ = 0 from
∆ = δ in Table 23.1. If the observed value of do lies in the intermediate zone where 0 < do < δ, we might
have to concede (or reject) both the original null and the alternative hypotheses.

23.4.6 Choice of ββββ

Stated as ∆ ≥ δ, the alternative hypothesis obviously has a clear direction and could therefore be tested
with a one-tailed choice of β. Accordingly, for a .05 level of rejection, Zβ could be set at Z.1 = 1.645.

The concept becomes important if confidence intervals are used to examine both the null and the
alternative hypotheses. In previous examples, this examination was done with a “single” arrangement,
constructed as

A more accurate approach, however, would require two arrangements:

would be used to locate the lower border, and

would indicate the upper border.
If the alternative hypothesis is ∆ ≥ δ, a one-tailed 95% confidence interval can be used to check the

upper border, which will be enlarged if calculated with a two-tailed Zα, rather than with a one-tailed Zβ.
Unless the original null hypothesis was clearly expressed in advance as ∆ > 0 or ∆ < 0, however, a one-
tailed calculation is not appropriate for the lower border of the confidence interval.

[This distinction led to a major legal battle between the U.S. tobacco industry and the Environmental
Protection Agency (EPA), which had done a meta-analysis of results for lung cancer attributed to
environmental tobacco exposure (i.e., “passive smoking”). Certain crucial odds ratios that were not
stochastically significant in two-tailed 95% confidence intervals, calculated with Zα = 1.96, became
“significant” when the EPA’s 90% confidence intervals, calculated with Zα = 1.645, excluded the null
value of 1 from the lower border. The tobacco industry contended that substituting 90% for the customary
95% criterion was a political rather than scientific decision. (The argument included other scientific
disputes beyond the accusation of “rigged” confidence intervals.)]

Both the lower and upper margins of confidence intervals should be examined when investigators
either claim stochastic significance in rejecting ∆ = 0, or argue that the upper level of “risk” might be
much higher than what was found in the observed do. Rejection of ∆ = 0 is easier if the interval is
calculated with a one-tailed Zα; the converse claims of a potentially larger do are facilitated with a
two-tailed Zβ.

do Zα SEDo( )±

do Zα SEDo( )–

do Zβ SEDH( )+
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23.5 The Concept of “Power”

The unfamiliar term capacity was used in Section 23.2 to refer to group sizes that were too small to do
the desired job of rejecting the original null hypothesis when do was “big.” Capacity is an unfamiliar
word, because statisticians regularly use the term power in reference to the adequacy of group (or sample)
sizes. The idea of power, however, refers to the ability to reject the alternative, rather than the null,
stochastic hypothesis.

23.5.1 Statistical Connotation of “Power”

In the customary “test of significance,” a big distinction has been observed, and the stochastic question is
“How small might it have been?” If the Po value exceeds α, or if the lower end of a 1 − α confidence
interval includes the null hypothesis value of 0, the distinction is not stable enough for its “quantitative
significance” to be confirmed stochastically.

The “other side of statistical significance” is examined when the observed distinction is small, or
obviously not big, i.e., do < δ. The stochastic question is then “How large might it have been?” This
question can be answered with a direct counterpart of the former reasoning. If the PH value exceeds β,
or if the upper end of a 1 − β confidence interval includes the alternative hypothesis value of δ, the
quantitative “nonsignificance” is not confirmed. Although small, the observed distinction might really
be big. Thus, rejection of the alternative stochastic hypothesis is intended to confirm that the observed
small distinction is really small.

Although the ability of a group size to reject a stochastic hypothesis is often called “power,” the
statistical definition of power is much more constrained. When δ and β are set in advance, 1 − β is
called the statistical power to reject the alternative hypothesis that ∆ ≥ δ. This prospective concept of
power is also sometimes applied in retrospect, after a study is completed. When ZH is determined from
Formula [23.4] and converted to PH, the value of 1 − PH may be called “power.”

The latter usage of “power” has been vigorously disputed,10 however, because the strict definition
requires a single boundary value of δ that was designated before the research began. This “prospective”
boundary is often not established, however; and in its absence, the investigator or data analyst can
retrospectively make various choices of δ. Each choice would yield different results for ZH and for the
1 – PH value of “power.” For example, consider the clinical trial in Section 23.4.3, where PA = 9/18,
PB = 8/17, do = .029, and SEDH = .169. When δ was chosen to be .15, ZH = . 716, and the one-tailed
value of 1 − PH was 1 – .235 = .765. If δ is set at .10, ZH = .420, 2PH = .674, and 1 − PH = .663. If δ is
set at .20, ZH = 1.01, 2PH = . 312, and 1 − PH = . 844. To get an impressively high value of power, we
could set δ at .32. ZH would then be 1.72, 2PH = .085, and 1 − PH = .9575.

With these arbitrary retrospective choices of δ, however, “power” would become a type of “variable,”
rather than a distinctive, fixed attribute of the study. The opponents of this retrospective manipulation
of “power” argue that the best way to answer the retrospective question, “How big might it have been?”
is with an appropriate confidence interval (or perhaps a form of Bayesian strategy). Thus, in the foregoing
example, Zβ would be 1.645 for the upper end of a one-tailed 95% confidence interval, constructed
around do as

.029 + (1.645)(.169) = .307.

With this result, we could “rule out” the possibility that do was as large as .32, but not that it might be
as large as .30.

23.5.2 Comparison of “Capacity” and “Power”

Because power refers to the alternative hypothesis, the term capacity was introduced here for the ability
of a group (or sample) size to achieve “single significance” by rejecting the original stochastic hypothesis.
If the scientific goal of the research is to find something big, the original stochastic hypothesis is ∆ = 0;
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and the proportion of capacity calculated in Section 23.2 indicates how close the group size came to
what would have been needed to confirm do ≥ δ under the original null hypothesis.

Power, however, refers to the ability to reject the alternative hypothesis that ∆ ≥ δ. For capacity,
Zo is converted directly to Po under the null hypothesis; for power, ZH is converted directly to PH under
the alternative hypothesis, and 1 − PH might then be called power.

23.5.3 Example of Complaints and Confusion

The confusion between capacity and power was demonstrated in a fervent exchange of letters called
“Statistical problems with small sample size.” The original investigators11 found that the mean volumes
(per cm3) of the fourth ventricle in magnetic resonance imaging were 1.11 in 12 autistic patients and
0.99 in 12 controls. When the t test showed P < .10, the investigators concluded that their results did
not confirm earlier findings of abnormal fourth ventricles in autism. This conclusion was disputed12 after
the increment of 0.12 and common standard deviation of 0.18 were used to calculate that the effect size
(∼ .12/.18) had a quantitatively significant value of 0.69. The opponents then claimed that the results
had low power, with only “a 37% chance of rejecting” the alternative hypothesis.

In fact, however, with only 24 patients in the study, the standard error of the observed difference is
, and the original Zo for the null hypothesis is .12/.073 = 1.633. If the Zα

required for stochastic significance with the original null hypothesis was 1.96, then the required
minimum sample size for each group, according to Formula [13.19], would have been n = 2(1.96)2

(.18)2/(.12)2 = 17.3. With 24 patients observed and about 35 required, the study had a proportionate
capacity of only about 24/35 = .69. Thus, if the observed effect size was “large,” the study was defective
in its original capacity to reject the null hypothesis. The idea of “power” was not required to complain
that the study was too small.

On the other hand, in responding to the complaint about too-low power, the original investigator13 said
that the sample size had been calculated in anticipation of the much higher effect-size values (0.81 and
1.21) reported in previous research. The observed increment of 0.12, with its effect size of only 0.69,
was therefore dismissed as quantitatively insignificant, regarded as “not a clinically valuable result.”
Nevertheless, a one-tailed 95% confidence interval for the upper border of the result would yield
0.12 + (1.645)(.073) and would extend to .24, which would have an impressive effect size of .24/.18 = 1.33.

23.5.4 Reciprocity of Zo and ZH

Regardless of whether the aim is capacity or power, ZH is
calculated in the same way with Formula [23.3]; and ZH

has a special relationship both to Zo and to the value of Zδ
that occurs at δ. If the three values of Zo, Zδ, and ZH

are respectively calculated as do/SED, δ/SED, and
(δ – do)/SED, Figure 23.2 shows that the values of Zo and
ZH will be additively reciprocal in the relationship

[23.5]

For fixed values of δ and Zδ, ZH must go down as Zo goes
up, and vice versa. This relationship between Zo and ZH is
also analogous to diagnostic specificity and sensitivity. As
one of the diagnostic indexes rises for a particular set of
test results, the other must fall.

In general, large values of Zo, which allow the null
hypothesis to be rejected, will be accompanied by small
values of ZH, which allow the alternative hypothesis to be
conceded. Conversely, small values of Zo, which allow

.18/ 12( ) 12( )/24 .073=

FIGURE 23.2
Relationship of the three Z values (lower line)
that correspond to do and δ (upper line).
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concession of the null hypothesis, will be accompanied by large values of ZH, allowing rejection of the
alternative hypothesis.

Statistically, because confidence is often used for the level of 1 − α (or 1 − Po ), and power for the
level of 1 – β (or 1 − PH ), we can note that confidence goes up as Zo increases (making Po smaller) and
power goes up as ZH increases (making PH smaller). Because of the reciprocity of Zo and ZH at a fixed
level of Zδ, however, an ordinary (“single significance”) sample size is likely to produce high confidence
and low power, or low confidence and high power.

The goal of the “doubly significant” sample size, discussed shortly, is to produce both high confidence
and high power.

23.6 Neyman-Pearson Strategy

Before beginning the research, an investigator hoping to show a big distinction would ordinarily
calculate a stochastically significant sample size, using the formulas discussed earlier in Sections 13.9.1
and 14.5.4. If this calculation was not done and if the too small group size showed a big distinction
that was not confirmed stochastically, the deficit in group size could be determined with an assessment
of capacity. This strategy for assessing capacity seems scientifically straightforward and reflects the
way in which most investigators might approach their quantitative challenges if uncommitted to any
mathematical doctrines.

This straightforward approach has not been generally used during the past few decades, however, because
of the dominance of a different strategy that is often called Neyman-Pearson hypothesis testing. The eponym
commemorates Jerzy Neyman (a Polish statistician) and Egon S. Pearson (son of Karl Pearson), who first
described14 the principles in 1928. The Neyman-Pearson strategy uses a type of diagnostic “decision
analysis,” in which a single boundary value, set at δ, creates two zones. One zone contains the “big”
distinction where do is ≥ δ; the other is the “small” zone where do < δ. In the Neyman-Pearson approach,
δ is statistically regarded as a perfect single boundary, separating “big” from “small.”

23.6.1 Calculation of “Doubly Significant” Sample Size

With δ as a single demarcation for “big” and “small” zones, the Neyman-Pearson calculation of sample
size is intended to provide a “doubly significant” stochastic confirmation, no matter which way the
observed results may go. If do turns out to be big, i.e., ≥ δ, the value of Po determined from Zo should
allow rejection of the original null hypothesis. If do turns out to be small, i.e., < δ, the value of PH

determined from ZH should allow rejection of the alternative hypothesis.

23.6.1.1 Z Procedures — The customary method of calculating a doubly significant sample size
is to use Z procedures for P values. (The same result and the same calculational formula can be obtained
with a confidence-interval approach.) To allow rejection of the null and alternative hypotheses, the sample
size should let Zo ≥ Zα if do turns out to be ≥ δ, and ZH ≥ Zβ if do < δ.

Before calculating the size of each group for a comparison of two proportions, we first consider a
potential observed do, and the value of Zo that will be determined under the null hypothesis as

[23.6]

For determining sample size, P is estimated as π (with the “^” hat omitted for simplicity) and Zo is set
equal to Zα. With these designations, Formula [23.6] becomes

[23.7]

Zo
do

2PQ/n
--------------------=

Zα
do

2π 1 π–( )/n
--------------------------------- =
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When the observed do is tested under the alternative hypothesis, the calculation (letting SEDH = SED0)
will be

[23.8]

For estimating sample size, we revert to Greek parameters, and we want ZH ≥ Zβ. The result in Formula
[23.8] will be stochastically significant if

[23.9]

To take care of both stochastic goals, we solve Formula [23.7] for do, and then substitute its value
into Formula [23.9]. When carried out, the algebra produces

which becomes

Squaring both sides, and solving for n leads to

[23.10]

In many statistics books, Formula [23.10] is regularly cited as the method of calculating a “doubly
significant” Neyman-Pearson sample size.

23.6.1.2 Formula for Calculation with SED0 and SEDH — Formula [23.10] was devel-
oped with the assumption that SED was the same for both hypotheses. For greater precision under the
alternative hypothesis, however, the value of  in Formula [23.9] would be replaced by

 After appropriate substitution, rearrangement, and solving for n, For-
mula [23.10] would be replaced by

[23.11]

This formula is preferred by many statisticians because it uses the “correct” standard error for each
stochastic hypothesis.

In Formula [23.11], the value of π is usually estimated with (πA + πB)/2, not with the πB value
employed as a “compromise choice” when sample size was calculated earlier for “single significance”
in Section 14.5.4.1. Probably the main reason for this custom is the esthetic mathematical appeal of
symmetry. With πA and πB symmetrically cited in the “double significance” formula, an asymmetrical
choice for π would not be “elegant.” Besides, in deference to reality when the research is actually
done, the common value of P that corresponds to π will be calculated not with pB, but with (pA + pB)/2
[or with (nApA + nBpB)/N].

ZH
δ d– o

2PQ/n
--------------------=

Zβ
δ d– o

2π 1 π–( )/n
--------------------------------- ≤

Zβ 2π 1 π–( )/n δ Zα 2π 1 π–( )/n–≤

Zβ Zα+( ) 2π 1 π–( )/n δ≤

n
Zα Zβ+( )2 2π 1 π–( )[ ]

δ2
------------------------------------------------------ ≥

2π 1 π–( )/n
[πA 1 πA–( ) πB 1 πB–( )]/n+  .

n
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2
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23.6.2 Example of Calculations

In a forthcoming clinical trial, suppose we expect πB to be .33, set δ at .15, and then choose a two-tailed
Zα = 1.96 and a one-tailed Zβ = 1.645.

Because πA is expected to be .48, we can let the anticipated π be (.33 + .48)/2 = .405 and 1 – π =
.595. Substituting into Formula [23.10], we get

The trial would therefore need at least 279 persons in each group, for a total sample size of 558.
With Formula [23.11], the result would be

If π were anticipated as πB, the value of (.405)(.595) = .241 in the foregoing formula would be replaced
by (.33)(.67) = .221. After the rest of the calculation is carried out, n would be 262.9.

23.6.3 Use of Tables

All of the cited computations can be avoided by using appropriately prepared tables, such as Table A.3
(260–280) of the textbook by Fleiss.15 Fleiss cites values of α and “power” for 1 − β, and he uses P1 and
P2 as symbols for what have here been called πA and πB (or pA and pB). The values in the Fleiss table
are slightly higher than what would be obtained with Formula [23.11] because he applies a “continuity
correction.” If n′ is the result obtained with Formula [23.11], the continuity correction converts the final
sample size to

[23.12]

where 
For example, suppose we set πB = .30, δ = .15, πA = .45, two-tailed α = .05 and one-tailed β = .1.

The value of π would be estimated as (.30 + .45)/2 = .375 and 1 − π would be .625. With Formula
[23.11], we would get

With the continuity correction, this becomes

which is the result listed in Fleiss’s Table A.3 for the values used in this example.
Fleiss also offers a “short-cut” formula, which calculates n as n′ + (2/δ). In this instance, where δ =

.15 and 2/δ = 13.3, the result would be n = 216.9 + 13.3 = 230.2, a value almost identical to what was
found with the cumbersome Formula [23.12].

n 1.96 1.645+( )2 2 .405( ) .595( )[ ]
.15( )2

---------------------------------------------------------------------------- 278.4= =

n
1.96 2 .405( ) .595( ) 1.645 .33( ) .67( ) .48( ) .52( )++

2

.15( )2
----------------------------------------------------------------------------------------------------------------------------------------- 275.4= =

n n′/4( ){1 1 4/ n′δ( )[ ]+ }+
2
 =

δ πA πB– .=

n′
1.96 2 .375( ) .625( ) 1.22 .30( ) .70( ) .45( ) .55( )++

.15( )2
-------------------------------------------------------------------------------------------------------------------------------------

2

216.9= =

n 216.9/4( ){1 1 [4/ 216.9( ) .15( )]+ }+
2

230==
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23.7 Problems in Neyman-Pearson Strategy

The Neyman-Pearson strategy of “double significance” has been used to calculate the size of many large-
scale clinical trials during the past few decades. The strategy became particularly popular after the 1978
publication of an influential paper,16 showing that many published clinical trials reaching a “negative”
conclusion were undersized, having a high potential for “beta error” in conceding the null hypothesis
and perhaps “missing an important therapeutic improvement.”

Unfortunately, the authors of the influential paper did not distinguish between trials that were “singly
undersized” and those that were “doubly undersized.” In a singly undersized trial, the problem is low capacity.
The group size may not have been large enough to reject the null hypothesis even if the observed do is ≥ δ.
This type of problem would be easily avoided by calculating an advance sample size with the simple Formula
[14.19] or [14.20]. If prophylaxis of the singly undersized problem leads to the use of Formula [23.10] or
[23.11], however, several new problems are created in mathematics, science, and pragmatic realities.

23.7.1 Mathematical Problems

The mathematical problems in the “double-significance” strategy are inflated sample sizes, declarations
of stochastic significance for values of do much smaller than the original goal of do ≥ δ, and violation of
the principle that pre-established decision boundaries should not be altered after the research is done.

23.7.1.1 Inflated Sample Size — Regardless of whether α has a one-tailed or two-tailed direc-
tion, the sample sizes for “double significance” are several times larger than what is ordinarily needed
to reject the null hypothesis if do ≥ δ.

For example, suppose πB is estimated at .33 and δ is set at .15, as in Section 23.2. If only the null
hypothesis is considered, the sample size for a two-tailed Zα = 1.96 turns out to be about 83 persons in
each group. With both the null and alternative hypotheses taken into account, however, the sample size
becomes between 3 and 4 times larger, at 279 persons in each group with Formula [23.10], and 276
persons with Formula [23.11].

If Formula [23.10] is divided by the earlier Formula [15.19], the result shows that sample size is
enlarged by a factor of

[23.13]

If Zβ/Zα = 1.645/1.96 = .839, the “doubly significant” sample will be (1 + .839)2 = 3.38 times the size
of the “singly significant” sample.

23.7.1.2 Deflated Boundary for Quantitative Significance — Although the trial is planned
with the idea that quantitative significance requires do ≥ δ, the inflated sample size will regularly allow
stochastic significance to be attained with do < δ. Thus, a difference that was originally regarded as too
small to be quantitatively significant may emerge as stochastically significant.

For example, consider the clinical trial discussed in Section 23.6.2, where the calculated sample-size
values ranged from 263 to 279 for each group. Suppose we try to enroll more than 290 patients in each
group, having added a few more people for “insurance.” After the trial is done, we are chagrined that
only 240 patients were obtained in each group, despite vigorous recruiting efforts. The chagrin turns to
despair when we find that pB = 79/240 = .329 and pA = 100/240 = .417, so that do = .088, which is
substantially below the desired δ ≥ .15.

The despair soon turns to elation, however, after the stochastic tests work their magic. For these results, the
standard error for the null hypothesis will be calculated as

 = .044 

Zα Zβ+( )2

Zα
2

------------------------- 1
Zβ

Zα
------+ 

 
2

=

179( ) 301( ) 480( ) 240( ) 240( )[ ]⁄
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and Zo will be .088/.044 = 2.00, which exceeds the Zα of 1.96 needed for two-tailed stochastic signifi-
cance. Although the observed do of .088 will be substantially smaller than δ = .15, the investigators will
almost surely claim to have found a “significant” result. (The term “delta wobble” has been applied17

to the retroactive lowering of δ that allows a stochastically confirmed do to be called “significant.”)
If we let no and nD represent the sample sizes calculated respectively for “single” and for “double”

significance, the algebraic mechanism that produces the elation was shown in Formula [23.13]. Because
nD is larger than no by a factor of [1 + (Zβ/Zα)]2, stochastic significance can be achieved with an observed
difference, do, that is smaller than δ by a factor of Zβ/(Zα + Zβ). If Zα = 1.96 and Zβ = 1.645, this factor
will be 1.96/3.605 = .54.

23.7.1.3 Violation of Advance Demarcation — When “significance” is declared despite the
finding that do < δ, the advance demarcation of boundaries has been violated as a prime principle of
stochastic testing. According to this principle, all decisional boundary values should be fixed before the
results are observed and should not be changed afterward with a “delta wobble.”

For example, to avoid manipulation of α after the research results are analyzed, many statisticians
insist that α always be two-tailed, although a one-tailed direction is regularly acceptable for β. Regardless
of whether α and β are one-tailed or two-tailed, however, almost everyone agrees that their pre-
established level should not be altered afterward to fit the observed data. Nevertheless, the pre-established
level of δ, which might be expected to have a similar sanctity, is frequently altered to fit the observed
results. It becomes adjusted downward to comply with whatever value of do turned out to be stochas-
tically significant.

An example of the problems occurred when Kronmal18 complained that a pre-established α was
changed from the .01 level, used in the originally calculated sample size, to the .05 level used for
interpreting results in the famous Lipid Research Clinics Coronary Primary Prevention Trial.19 The
investigators defended20 the change of α by stating that the original level was chosen for sample size
calculations “that would be desirable for ensuring greater credibility”; but that after the trial, α = .01
was “not relevant to the issue at hand.” The investigators argued that the “results” would be no more
convincing “had α been set at .1 in these preliminary calculations; they would be no less convincing
had α been set at .001.” Because the investigators also noted, however, that “the observed reductions in
… CHD incidence … were … only about half as great as those assumed in the sample size computation,”
a sample size calculated with α = .1 would probably not have been large enough to provide P < .05 in
the observed results.

23.7.2 Scientific Problems

Several scientific problems in the double-significance approach will be discussed later in Chapter 24.
The three main problems noted now are that the results are often reported as incomplete truths, that the
observed do is forced to be < δ in the calculations, and that the calculated results are cited in an almost
inscrutable phrasing.

23.7.2.1 “Incomplete Truth” in Reporting — Having done all the work of conducting the
trial in the belief that Treatment A is better than B, an investigator may not want to admit that the
observed distinction is much smaller than desired, particularly if it is stochastically significant. Conse-
quently, ignoring the originally established value of δ, the investigators will usually conclude that
Treatment A is “significantly” better than B.

The report becomes an example of incomplete “truth in reporting” — the claims are correct stochas-
tically but not strictly correct quantitatively. The issue is a matter of scientific taste rather than morality,
however, because the investigators can usually re-express things to convince themselves (as well as
reviewers and readers) that the relatively unimpressive increment is really impressive. For example, in
Section 23.7.1.2, the observed direct increment of .088, although smaller than the desired δ = .15, will
seem much more impressive if cited as a proportionate increment of .088/.329 = 27%.

© 2002 by Chapman & Hall/CRC 



The occurrence of the “incomplete-truth” phenomenon can be discerned if you review the published
literature of randomized trials. Whenever the investigators report a “significant” result without citing the
level of δ that was originally used for the sample-size calculations, you can suspect that the observed
value of do was < δ.

23.7.2.2 Forcing do to Be <<<< δδδδ — A striking scientific oddity in calculating “doubly significant”
sample sizes is that the statistical strategy forces the anticipated value of do to be < δ in the calculation.
Rejecting the null hypothesis requires that do − Zα (SEDo) ≥ 0; and rejecting the alternative hypothesis
requires that do + Zβ (SEDH) ≤ δ. Thus, do must be simultaneously ≥ Zα (SEDo) and ≤ δ – Zβ (SEDH).
If we let SEDo = SEDH, and if we ignore the unequal parts of these two Formulas, the two equations
can be added and solved to show that

If Zα = Zβ, then  and is forced to be half the value of δ. If Zα = 1.96 and Zβ = 1.645, do is
slightly larger, at δ/2 + [(.315)(SED)/2]. For example, if δ = .15 and SED = .169, as in Section 23.4.3,
then (.315)(.169) = .05, and do = (.15 + .05)/2 = .10. If SED = .132, as in Section 23.1.2.2.2, do =
(.15 + .04)/2 = .095. If SED = .049, as in Section 23.3.2, do = (.15 + .015)/2 = .083. In each instance,
the two stochastic demands can be satisfied only if do is substantially smaller than δ.

This constraint on do was not overtly specified earlier when we solved Formula [23.7] for do, and
substituted it into Formula [23.9] to produce the doubly-significant sample size Formula [23.10]. A
careful examination of the required location of do, however, shows that the “doubly significant” sample
size also becomes a mechanism for getting stochastic significance under the null hypothesis for quan-
titatively nonsignificant values of do < δ.

The mechanism is responsible for the scientific inconsistencies of the mathematical problems cited
earlier. Having originally stated in the sample-size calculation that do must equal or exceed δ to be
quantitatively “significant,” the investigator then makes that same claim paradoxically when do turns out
to be < δ.

23.7.2.3 Unfamiliar Numerical Statements — After the double-significance calculations are
completed, the attempt to put α, β, and δ into a single statement often produces prose that seems like
an inscrutable jumble of numbers. The statement will say something like “The result will have a 90%
chance of detecting a difference of .15 at the 5% level.” In this statement, power is .90 = 1 – β, for a δ
level of .15, tested at an α level of .05.

The statement is difficult to comprehend because it no longer resembles the language and ideas of
diagnostic marker tests. In diagnostic-marker language, the results are given a single “horizontal”
diagnostic summary, which is a simple statement of predictive accuracy. Whether obtained directly
or with Bayesian combinations of sensitivity, specificity, and prevalence, the final diagnostic statement
cites one number, not three. The statistical statement for “double significance,” however, does not
come out as one number. It achieves the counterpart of the “horizontal” diagnostic phrase by specifying
three numbers that correspond to sensitivity (i.e., 1 − β), specificity (i.e., the 1 – α complement of
α), and, instead of prevalence, the gap (δ) that separates the null and alternative hypotheses.

A clearer way to communicate this information would be first to determine the estimated level of 
at which the null hypothesis (∆ = 0) will be rejected for the calculated sample size. For example, if  =
.08, the statement would say that “If the observed difference is ≥ .08, stochastic significance will be
confirmed by P < .05; otherwise, the P value will be < .1 for the possibility that the difference exceeds .15.”

23.7.3 Additional Scientific Problems

Four other scientific problems in “double significance” and “power” will be saved for discussion in
Chapter 24. These problems arise as peculiarities in calculating “power” for a goal at which the
investigator is not aiming, in assuming that the investigator does not care what happens in the research

2do ∼– δ Zα Zβ–( )SED+

do  ∼– δ/2

d̂o

d̂o
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as long as a stochastic hypothesis can be rejected, in using a black-and-white-but-no-gray partition that
divides all quantitative magnitudes into being either big or small, and in permitting “power” to be
calculated retroactively with highly arbitrary methods. 

23.8 Pragmatic Problems

Despite exact precision in the mathematical formulas, sample sizes are regularly augmented prophylac-
tically for the type of “insurance” discussed earlier in Section 14.6.5. The magnificent numerical precision
produced by the formulas can then be raised arbitrarily to values that are larger by 10%, 20%, or more.

23.8.1 “Lasagna’s Law” for Clinical Trials

A different sample-size problem in clinical trials arises from recruiting rather than calculating. Regardless
of what the basic and “insurance-augmented” sizes may be, the trial will be unsuccessful if enough
patients cannot be recruited.

As prophylaxis for this problem, the investigator usually tries to estimate how many patients might
be acquired, either at the local institution alone or with a consortium of several collaborating institutions.
(The latter activity has several names. It can be called a multi-center, multi-investigator, multi-institu-
tional, or cooperative study.) As past experience and medical records are reviewed to estimate the number
of available patients, the investigators regularly fall prey to a fallacy, described by the clinical pharma-
cologist, Louis Lasagna, that has sometimes been called Lasagna’s Law. It states that the number of
patients who are actually available for a trial is about 1/10 to 1/3 of what was originally estimated.

The reason for this problem is scientific and pragmatic, not statistical. Planning to study Disease D,
the investigators usually determine how many patients with that disease were seen at their institution
during an appropriate time period. When offered as the estimate of potential candidates, this number
does not take into account the depletions caused by eligibility criteria or by refusals to participate.

The obvious possibility of refusals is generally considered, but optimistic investigators may underes-
timate the proportion of reluctant candidates. The problems of eligibility, however, are usually much
greater and more complex than those of refusal. Most clinical trials admit only an eligible subset of
patients, not everyone who may have Disease D. The eligibility criteria may demand certain age limits,
appropriate degrees of mild or advanced disease severity, the patient's ability to avoid or receive specified
treatments, the absence of co-morbid diseases that might interfere with the study, and the presence of
geographic or personal attributes that facilitate cooperation with the study’s protocol. These restrictions
in the eligibility criteria usually remove a much greater proportion of potential candidates than refusal
of eligible persons to enter the study.

Consequently, an investigator who wants to avoid the pitfalls of Lasagna’s Law will try to estimate
the potential availability of eligible candidates, not just persons who have Disease D.

23.8.2 Clinical Scenario

The calculation of a doubly significant sample size in real-world research is commonly altered by a
scenario that resembles the events described in Section 8.8.3. The calculation requires selection of Zα
and Zβ , choice of δ, and an estimate of πB.

When asked to indicate δ and πB, however, the clinician may say he does not know, but wants a
“significant” result. Desperate to get some numbers, the statistician offers a guess such as πB = .20 and
δ = .10 (the latter determined from θ = .5). When the clinician says, “Sounds good,” the statistician sets
a two-tailed Zα = 1.96, a one-tailed Zβ = 1.645, and then uses Formula [23.10] to calculate

n
1.96 2 .25( ) .75( ) 1.645 .30( ) .70( ) .20( ) .80( )++

2

.10( )2
-------------------------------------------------------------------------------------------------------------------------------------=

© 2002 by Chapman & Hall/CRC 



The result is n = 485, so that 2n = 970. When this large number is mentioned, the clinician says, “No
way,” and goes into a state of shock.

The statistician therefore tries a one-tailed Zα = 1.645 and, letting β = .10, uses a one-tailed Zβ = 1.28
to recalculate

The result is n = 319, so that 2n = 638. The clinician’s response is, “Still can’t be done.”
The statistician then asks, “How many patients do you think you can get?” The clinician says, “About

200.” With this “bottom line,” the statistician asks if the achieved difference in δ = πA − πB might be as
high as .20. The clinician says, “Why not?” Letting α and β stay where they were, the statistician then
uses new values of πΑ and π to calculate

The result is n = 88, so that 2n = 176. If the anticipated 200 patients can actually be obtained, the
additional 24 patients will be “insurance.” The clinician is delighted and tells all his colleagues how
wonderful the statistician is, and the grant request is approved.

Everything eventually works out splendidly, but not quite as expected. The trial accrues only 160
patients, and pB turns out to be 14/80 = .175, with pA = 24/80 = .325, so that do is .15, rather than the
anticipated δ = .20. Nevertheless, because the initial “double-significance” calculations made the sample
size so large, the result shows

which is “statistically significant,” with Po < .05 in a two-tailed interpretation.
Everyone is jubilant. 

23.9 Additional Topics

Beyond all of the cited problems, six additional topics warrant further comment before this long
chapter ends. These topics are: the “power” of “single significance,” the dilemma of stopping trials
when do < δ, the choice of relative values assigned to α and β, the possible usefulness of making
stochastic decisions with a concept called “gamma error,” some generally unpublicized objections by
prominent statisticians to the Neyman-Pearson strategy, and some issues that involve scientific rather
than mathematical considerations.

23.9.1 The “Power” of “Single Significance”

An investigator who ignores the Neyman-Pearson doctrine and who calculates sample size only for
“single significance,” using a formula such as [14.19], will regularly be told that the result will have
“low power.” The usual value cited for the low power is .5. The reason for this value is that if δ is the
anticipated value for do, and if Zα is chosen to be the anticipated value at Zδ, a trial that turns out exactly
as expected, with do = δ, will have Zo equal Zα. Consequently, ZH will equal 0 when calculated from
either Formula [23.3] or [23.5]. For ZH = 0, 2PH = 1 and the single-tailed interpretation will be PH = .5,
for which “power” will be 1 − PH = .5.

Traumatized by the threat of this low power, the investigator may accept the reassurance offered by
a Neyman-Pearson calculation and arrange to get a much larger sample size. If the investigator really

n
1.645 2 .25( ) .75( ) 1.28 .30( ) .70( ) .20( ) .80( )++

2

.10( )2
-------------------------------------------------------------------------------------------------------------------------------------=

n
1.645 2 .30( ) .70( ) 1.28 .40( ) .60( ) .20( ) .80( )++

2

.20( )2
------------------------------------------------------------------------------------------------------------------------------------=

Zo
.325 .175–( )

2 .25( ) .75( ) 80⁄
------------------------------------------- .15

.0685
------------- 2.19= = =
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wants to show  however, the smaller “singly-significant” sample size would have ample capacity
to provide stochastic significance if do turns out to be ≥ δ. If do turns out to be disappointingly < δ, the
investigator will be comforted by the almost certain inclusion of δ in the upper zone of the confidence
interval, for reasons shown in Section 23.1.2.2.2.

Consequently, the only reason for transferring to the Neyman-Pearson calculation is if the investigator
wants to reject the alternative hypothesis and confirm “insignificance” if do is < δ. This stochastic goal,
however, is seldom what the investigator seeks in doing the trial. Because most investigators do not
understand that the Neyman-Pearson calculation is aimed at such a goal, the statistical procedure is
usually proposed and accepted without an adequately “informed consent.”

23.9.2 Premature Cessation of Trials with do <<<<    δδδδ

To avoid ethical problems, investigators usually want to end a long-term randomized trial as soon as it
shows a “significant” difference. If this achievement occurs before accrual of the previously calculated
sample size, the trial is stopped prematurely. Therefore, to check for “significance,” the investigators
may repeatedly “peek” at the accumulating results. The multiple “peeking” then leads to the multiple-
comparison problem, discussed later in Chapter 25, which has evoked diverse statistical proposals for
adjusting levels of α.

Because stochastic significance is almost always required before a trial is prematurely ended, the early
termination would be unambiguous if the accumulating results show that do is > δ: such results will be
“significant” both quantitatively and stochastically. Dissidence will occur, however, if an inflated sample
size produces stochastic significance for do < δ, before the entire planned group has entered (or completed)
the trial.

This dissidence, as well as the multiple-comparison stochastic problem, could be avoided if the
investigators always insisted on quantitative significance, so that do ≥ δ. With this demand, the repeated
“peeks” at accruing data could simply examine the value of do descriptively without doing any stochastic
calculations. The stochastic tests would be withheld until the results show that do ≥ δ. In the current
approaches, however, achievement of stochastic significance is given priority, regardless of the magnitude
of do. Consequently, the multiple-peek problem will continue to occur, accompanied by incomplete
“truth-in-reporting,” when trials are prematurely ended and then proclaimed stochastically significant
for values of do smaller than what was originally regarded as quantitatively significant.

23.9.3 Choice of Relative Values for αααα and ββββ

Instead of making simple choices for the one- or two-tailed levels of α and β, data analysts may try to
assign relative values according to the “seriousness” of Type I and Type II errors. In this mode of
reasoning, as described by Fleiss15 and by Cohen,21 a Type I error is less serious “if the study is aimed
only at adding to the body of published knowledge concerning some theory” than if the goal is “to
replace a standard form of treatment with a new one.” Thus, for investigators who believe that a “typical
… Type I error is some four times as serious as a Type II error,” the value of β might be set at 4α. (This
idea offers justification for setting α at .05 and β at .20.) If a Type I error is regarded as “less serious,”
however, α might be increased to .10.

23.9.4 Gamma-Error Strategy

An interesting but extreme mathematical view is the proposal by Schwartz and Lellouch22 that α (Type I)
and β (Type II) errors are sometimes relatively unimportant, and that the most serious (Type III) error
is to draw a “significant” conclusion in the wrong direction. Thus, if the true parametric state of affairs
is a directional (  − ) ≥ δ, the most serious error is to proclaim stochastic significance when the
actual difference, do = pA − pB goes in the opposite direction and is ≤ −δ.

Emphasizing only the avoidance of a Type III error, Schwartz and Lellouch are willing to assign
extremely relaxed values, such as α = 1 and 1− β = 0, for the usual two stochastic boundaries, but will
put a strict requirement, such as .05, on the third stochastic boundary, called γ. For a Type III error, the

do δ,≥

πA πB
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incremental magnitude of the observed and expected differences will exceed δ − (−δ) = 2δ. Using the
corresponding Zγ, the sample size can then be calculated so that

[23.14]

The value of n becomes

Because the denominator contains 4δ2 rather than δ2, the sample size will be about one fourth of what
would ordinarily be required with “one-way” significance at Zα.

The gamma strategy will strongly appeal to investigators who would like to reduce the sample sizes
(and costs) of clinical trials. Unfortunately, the small group sizes may make the subsequent results fail
to achieve stochastic significance for the α and β decisions that continue to be demanded by most
reviewers and readers. For example, suppose Zγ is set at 1.645 for a unidirectional .05 level of γ, with
δ = .15 and πA = .33. The sample size will be

Suppose the investigator, ecstatic about the small sample size, decides to double it and enroll 30 people
in each group.

If emerging even better than expected (in the desired direction), the results might show pB = 10/30 =
.33 and pA = 15/30 = .50. The pooled value for the common P will be (10 + 15)/(30 + 30); and the
standard error will be  = .127. With a one-tailed Zα set at 1.645, the
confidence-interval component will be (1.645)(.127) = .209, and the interval calculated as .17 ± .209
will include both 0 and δ. Although the γ hypothesis could be rejected, the customary α and β stochastic
hypotheses would have to be conceded. Despite the quantitatively impressive do ≥ δ, the stochastic claim
of “significance” would probably not be accepted.

23.9.5 Prominent Statistical Dissenters

The Neyman-Pearson “double-significance” strategy, which currently dominates the calculation of sam-
ple sizes for clinical trials, has been widely promulgated and accepted despite major reservations by
prominent statisticians.

According to David Salsburg,23 “R. A. Fisher was strongly opposed to this formulation. He did not
believe that one can think of scientific research in terms of type I and type II errors. This type of thinking,
he said, belongs in quality control, where the type I error rate predicts the number of good items rejected
and the type II error rate predicts the number of bad items accepted.” Fisher himself24 said that the
Neyman-Pearson principles come from “an unrealistic formalism” and “are liable to mislead those who
follow them into much wasted effort and disappointment.” Lehmann25 more recently described the
conflicts in the Fisher and Neyman-Pearson disputes about testing statistical hypotheses, and has proposed
a “unified approach ... that combines the best features of both.”

Kendall and Stuart26 say the “crux of the paradox” in the Neyman-Pearson strategy is that “we can
only fix two of the quantities, n, α, and β even in testing a simple Ho against a simple [alternative
hypothesis],” but “we cannot obtain an optimum combination of α, β, and n for any given problem.”
According to Salsburg,23 Sir David Cox believes that “We do not choose in advance a particular p-value
for decision making. Rather, we use p-values to compare a number of different possible alternative
hypotheses.” W. E. Deming,27 the “guru” of quality control procedures, contended that “there is no such
thing as the power of a test in an analytic problem, despite all the pages covered by the mathematics of
testing hypotheses.”

Egon Pearson himself,28 reviewing the basic issues over 30 years later, pointed out that the “Neyman-
Pearson contributions” should be regarded not “as some static system” but as part of “the historical

Zγ
2δ

2π 1 π–( ) n⁄
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n
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process of development of thought on statistical theory.” Without overtly recanting the basic strategy,
Pearson nevertheless confessed that “the emphasis which we gave to certain types of situations may
now seem out of balance.”

Despite these caveats from prominent leaders within the statistical profession, however, the ideas seem
to have thoroughly triumphed in the world of medical research.

23.9.6 Scientific Goals for δ

The calculation of a doubly-significant sample size has even entered the realm of ethics. According to
D. G. Altman,29 “a sample that is too small will be unable to detect clinically important effects … [and is]
hence unethical in its use of subjects and other resources.” Advocating a Neyman-Pearson approach,
Altman said it will “make clinical importance and statistical significance coincide, thus avoiding a
common problem of interpretation.” Arguing against this idea, however, M.R. Clarke30 stated that clinical
importance and statistical significance “are two fundamentally philosophic concepts which cannot be
made to coincide.”

That the two concepts do not coincide is demonstrated by the frequent absence of statistical attention
to an investigator’s scientific hypothesis for the research. If the investigator hoped for a big difference,
i.e., do ≥ δ, and if it was found, the next step would be to confirm it stochastically. If the stochastic result
was disappointing, i.e., P > α, the power of the “nonsignificant” result would not have to be checked
against an alternative hypothesis, because the observed do was already larger than δ. The problem in
this case is that the group size was too small, and the numerical deficit could easily be shown with a
simple check of capacity.

A test of power would also be unnecessary if the investigator, wanting a big difference, found a
disappointingly small one, i.e., do < δ. In this situation, not seeking rejection of the alternative hypothesis,
the investigator would be happy to find that δ was included in a simple confidence interval. If the actual
magnitude of do is ignored, and if a result is deemed “nonsignificant” merely because P > α, the calculated
confidence interval will let both the investigator and the reader see how big the “nonsignificant” difference
might have been.

To calculate a specific index of “power,” however, the investigator must choose a value for δ, thereby
addressing the challenge of setting a boundary for quantitative significance. Because this challenge has
not been vigorously pursued — mainly because investigators have not insisted on it — the mathematical
power games are usually played with the proportional-increment values of θ. To evaluate a quantitative
distinction by examining only θ, however, is as unsatisfactory as evaluating a distribution of data from
its central index only, without considering spread.

Until a better set of guidelines and criteria is developed for choosing δ, calculations of “power” will
remain an interesting theoretical exercise that gives a “politically correct” acknowledgment to the
Neyman-Pearson mathematical dogma, without the risk of any real scientific thought. As long as the
choice of δ remains an intellectually underdeveloped territory, confidence intervals have the major
advantage of reasonably answering the question “How big might it have been?” without any arbitrary
calculations of “power.”

23.9.7 Choosing an “Honest” δδδδ

Although the use of confidence intervals can avoid decisions about “power” after the research is done,
both δ and a mathematical strategy must be chosen to calculate sample sizes before the research begins.
If the goal is to show a “small” difference, as discussed in Chapter 24, the usual strategy does not involve
Neyman-Pearson reasoning, which is aimed mainly at finding a “big” difference, as in most clinical trials.

If the sample always has a large enough capacity to achieve “single significance” by rejecting the null
hypothesis when do ≥ δ, the main question is then whether the investigator will want to claim “significance,”
“insignificance,” or neither, if the observed difference goes the other way, so that do < δ. The Neyman-
Pearson strategy seems fundamentally unsatisfactory, therefore, because it substantially inflates the sample
sizes needed for “single significance” if do turns out to be ≥ δ; and it does not suitably cope with the scope
of possible decisions if do turns out to be smaller than δ, as noted in Chapter 24.
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The main scientific challenge is to choose an “honest” value of δ that is fixed in advance and maintained
thereafter. It should be the smallest distinction that will still be regarded as quantitatively significant.
Thus, if do is deemed impressive at a value of .08 but not at .07, the “honest” δ should be set at .08. In
many doubly significant calculations, however, δ has been inflated to levels of .10 or .20 so that the
sample size, although also inflated, is kept to a feasible magnitude. Nevertheless, the size may be large
enough to confer stochastic significance if do turns out to be .08. With an honest δ set at .08, however,
a singly significant sample size, calculated with Formula [14.19] rather than Formula [23.10], will provide
ample capacity to do the desired job.

Nevertheless, investigators who hope to get approval for their proposed clinical trials today and who
know that the proposal will be reviewed according to “mainstream” statistical principles, will probably
have to continue playing the Neyman-Pearson game until a better and more suitable strategy is created.
Perhaps the best guideline for the new strategy was offered by Egon Pearson31 himself: “Hitherto the
user has been accustomed to accept the function of probability laid down by the mathematicians, but it
would be good if he could take a larger share in formulating himself what are the practical requirements
that the theory should satisfy in application.” Establishing those requirements and developing the new
strategy are fascinating challenges for collaborative clinical-biostatistical research.
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Exercises

23.1. From the description offered in Section 23.1.1, what do you think produced the bias that made
the Literary Digest political poll, despite a huge sample size, yield results dramatically opposite to those
of the actual election?
23.2. In a clinical trial of medical vs. surgical therapy for coronary artery disease, the investigators expect
the surgical group to achieve results that are 30% proportionately better than the medical group. Two
endpoints are available for calculating sample size. The “hard” endpoint is rate of death at two years, which
is expected to be 10% in the medical group. The “soft” endpoint is improvement in clinical severity of
angina pectoris. This improvement is expected to occur in 70% of the medical group.

23.2.1. Using α = .05 and β = .1 for a Neyman-Pearson calculation, what sample size is required
for the “hard” endpoint?

23.2.2. Using the same arrangement as 23.2.1, what sample size is required for the “soft”
endpoint?

23.2.3. In view of the smaller samples needed with the soft endpoint, why do you think the
hard endpoint is so popular?

23.2.4. What sample sizes would you propose for quantitatively significant results in the hard
and soft endpoints if you do not use the Neyman-Pearson approach? How do these sizes
compare with what you obtained in 23.2.1 and 23.2.2?

23.3. In a multicentre trial of treatment for acute myocardial infarction,32 the in-hospital mortality rate
was 15/100 (15%) in patients receiving propranolol, and 12/95 (13%) in those receiving placebo. Aside
from stating that the trial “demonstrated no difference in mortality,” the authors drew no therapeutic
recommendations, such as abandoning the use of propranolol for patients with acute myocardial infarction.

© 2002 by Chapman & Hall/CRC 



23.3.1. Why do you think no recommendations were made?
23.3.2. What is the chance that these results arose from a “parent universe” in which mortality

rate with propranolol is actually 10% incrementally below that of placebo?
23.4. Enoximone, a phosphodiesterase inhibitor
that is a derivative of imidazole, had been
observed to exert an inotropic cardiac effect in
hemodynamic studies of patients with moderate
to moderately severe (New York Heart
Association Class II or III) congestive heart
failure. The manufacturers of the drug therefore
sponsored a randomized placebo-controlled
trial33 to determine whether enoximone, when
combined with digoxin and diuretics, improves
symptoms and exercise tolerance of such patients. 

The disappointing results showed that in
50 patients receiving enoximone and 52
receiving placebo, “there were no significant
differences in exercise duration between groups
at any time point” and the “symptom scores for
dyspnea, fatigue, overall functional impairment
and NYHA class were similar in both groups.”
In addition, “The dropout rate was significantly
higher (P < .05) in the enoximone group than in
the placebo group (46% enoximone, 25%
placebo).” At the end of the study period, “there
were 10 deaths in patients assigned to
enoximone (20%)” and “three deaths (6%) in
the patients assigned to placebo (P < .05).” 

23.4.1. In the discussion section of
the report, the investigators
considered various pharmaco-
physiologic reasons why the
drug had failed (dose too high,
excessive response in placebo
group, incomplete exercise
testing, etc.) but did not mention
any statistical tests for the possibility that the results were wrong.

What would you do to check the possibility that enoximone is really a superior agent
and that the differences in drop-out rates and deaths were due to the stochastic fickleness
of fate? Illustrate your idea with at least one calculation.

23.4.2. In the published report, the investigators presented a graph showing the mean values of
exercise duration at baseline and at 4, 8, 12, and 16 weeks for the enoximone group
and for the placebo group. In the legend of that figure, the investigators make seemingly
contradictory statements about exercise duration. They say that “there were no significant
differences between groups at any time point,” but they also state that there was “a
significant (P < 0.05) increase … compared with baseline values.” Are these two
statements contradictory? If not, why not? What kind of tests do you think were done
to support the two statements?

23.5. When Freiman et al. concluded that 71 “negative” randomized trials were undersized, their often
cited paper16 had a major impact in promoting the current fashion of calculating “doubly significant”
sample sizes for randomized trials. Figure E.23.5 shows the plot of confidence intervals for the 71 trials.
Do you believe the authors distinguished between two kinds of problems: (1) a sample size too small
to reject the null hypothesis for a quantitatively significant difference, and (2) a sample size too small
to reject both the null and the alternative hypotheses?

FIGURE E.23.5
Ninety percent confidence limits for the true percentage dif-
ference for the 71 Trials. The vertical bar at the center of each
interval indicates the observed value, , for each trial.
[Figure taken from Chapter Reference 16.]
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In all the stochastic discussions thus far, the investigator wanted to confirm something impressive: to 
show that a quantitatively “big” distinction was accompanied by a satisfactory P value or confidence 
interval. The ideas about “capacity,” alternative hypotheses, β error, and “power” that appeared in 
Chapter 23 were all related to the same basic goal. They offered hope for salvaging something favorable 
if a trial’s results were disappointingly “negative,” with the desired “significance” being obtained neither 
quantitatively nor stochastically.

Stochastic hypotheses can also be formulated and tested, however, for at least four other goals beyond 
the aim of confirming something “big.” For the main goal discussed in this chapter, the investigator 
wants to show stochastically that an observed distinction, do, is “small” or “insignificant,” rather than 
“big.” For example, the aim may be to confirm that the compared effects of treatments A and B are 
essentially similar, rather than substantially different. The other three stochastic procedures, which will 
be discussed in Chapter 25, involve testing multiple hypotheses. 

24.1 Delineation of Equivalence

For the alternative-hypothesis procedures in Chapter 23, the investigator began the research hoping to 
find a large do, which would be either confirmed stochastically under the primary null hypothesis or at 
least conceded under the alternative hypothesis. The new stochastic procedures to be discussed now, 
however, have a diametrically opposite main goal. They are directly aimed at finding and stochastically  
confirming a distinction that is “small” enough to support the idea that the two compared entities are 
essentially equivalent.

24.1.1 Research Situations

Seeking similarity rather than a difference is the goal in many research situations. An epidemiologic 
investigator, concerned with “risk factors,” may want to claim that a particular “exposure” is “safe,” 
i.e., it does not elevate the risk of “non-exposure.” For pharmaceutical “equivalence” in clinical 
research, the claim might be that a “generic” product has the same effect as the “brand-name” original 
drug; or that Agent B, which is prepared more conveniently or cheaply than Agent A, is just as effective.

In tests of efficacy for new pharmaceutical agents, the comparative agent has usually been placebo, 
not only because of its “standard” effect, but also because it avoids having to choose a single comparative 
agent from among several active competitors. In recent years, however, the use of placebo has been 
denounced both for ethical reasons (because the patient may be unfairly deprived of an effective agent) 
and for clinical reasons (because the results of a placebo comparison may not be directly applicable in 
patient care). Consequently, pharmaceutical efficacy may be increasingly tested in the future with the 
requirement that a new agent be at least as good as (i.e., equivalent to) an existing active agent.

In a non-pharmaceutical clinical situation, the aim might be to show equal efficacy for a “conservative” 
therapy. The investigator might want to demonstrate that simple surgery is no worse than radical surgery 
for treating cancer, that angioplasty gets the same results as bypass grafting for coronary disease, that 
most patients with acute myocardial infarction can be managed as effectively at home as in the hospital, 
or that nurse practitioners can work just as well as physicians in giving primary care. A policy planner 
proposing a new system for lowering the expense of health care may want to get clinical results that are  
essentially the same as with the old system, while costing less.

Kirshner1 has written a thoughtful review of the many differences in design when the evaluation process 
is aimed at demonstrating small distinctions for “equivalence,” rather than big ones for “efficacy.” In 
addition to a major change in the general scheme of stochastic reasoning, the evaluation process is often  
beset with major sources of ambiguity or confusion in specifying the concept of equivalence itself.

© 2002 by Chapman & Hall/CRC 



24.1.2 Type of Equivalence

What kind of equivalence is being examined? Is it chemical/physical, therapeutic, biologic, or etiologic? 
The first type of equivalence refers to such issues as the chemical structure of two pharmaceutical agents 
or the physical properties of two materials used for surgical sutures. Questions about equivalence for 
chemical or physical attributes seldom require studies in people, and can usually be answered with 
laboratory research. The other questions, which are the main topic in this chapter, require testing human 
subjects.

Therapeutic equivalence refers to effects on an outcome that would be sought in a patient’s clinical 
care. This outcome might be a laboratory entity, such as a change in antibody titer or blood glucose 
level, but is often something that is clinically overt, such as symptoms, functional capacity, or survival.  
Biological equivalence, which is usually called bioequivalence, refers to the bioavailability of a phar-
maceutical agent, as measured by various features of its absorption, dissemination, concentration, 
excretion, or other aspects of pharmacokinetics in the human body. For etiologic equivalence, which 
can be regarded as a subdivision of biologic equivalence, a particular disease would develop at essentially 
the same rate in the presence or absence of exposure to a particular “risk factor.”

24.1.3 Basic Design

For studies of therapeutic or biologic equivalence, the basic design of the research often involves complex 
decisions about population, “schedule,” and crossovers. Some of the many fundamental questions that 
require scientific rather than mathematical answers are the following:

Population: Should the equivalence of pharmaceutical or other agents be tested in people who 
are sick or well? If one of those two groups is chosen, can the results be extrapolated to the 
other group?

Schedule: Should the dosage of agent and duration of effect be evaluated with the same criteria, 
regardless of whether the agent is ordinarily given once a day, twice a day, in multiple 
daily doses, in a sustained or “long-acting” form, or in absorption via dermal patch or 
subcutaneous pellet?

Crossovers: Although crossover plans can probably be routinely justified more easily in healthy 
than in sick people, how many agents can (or should) be crossed over in a single person? 
Most scientific comparisons involve two agents, but statisticians enjoy making special cross-
over plans to compare three or more pharmaceutical agents in each person. The crossover 
plans, usually called squares,2 are prefixed with such names as Latin, Graeco-Latin, Youden,
and lattice. These multi-crossover squares, which were conceived in the agricultural studies 
that fertilized much of current statistical thinking, are often taught in statistical courses devoted 
to “experimental design.” Nevertheless, the “square” plans are seldom used in clinical re-
search, because their mathematical elegance almost never overcomes the pragmatic difficulty 
of conducting, analyzing, and understanding the results of multiple crossovers in people. (A 
prominent biostatistician, Marvin Zelen,3 has remarked that “the statistical design of exper-
iments … as taught in most schools, seems so far removed from reality, that a heavy dose 
may be too toxic with regard to future applications.”)

24.1.4 Personal vs. Group Focus

The next basic problem is to choose a personal focus for decisions when the same persons are exposed 
to different agents. Are the decisions aimed at demonstrating equivalence for individual persons, for 
specified groups, or for a general average?

Anderson4 has illustrated these three types of bioequivalence with the “cases” shown in Figure 24.1. In
the first case, which she calls “switchability,” the same person gets essentially the same result with each  
of two formulations. In case 2, which she calls “prescribability,” the clinician does not know (and may 
not care) about individual responses as long as the average response is the same, without excessive 
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variability, in the two treated groups. In case 3 of Figure 24.1, however, the variability among both
individuals and groups may be too extensive for either formulation to be regarded as “switchable” or 
“prescribable,” although the average results (such as the means) may still be close enough to allow the 
two compared formulations to be called “equivalent.”

The statistical procedures used for evaluation, as well as the basic design of the research itself, will 
vary with the desired type of equivalence.

24.1.5 Mensurational Problems

Yet another problem arises in choosing the prime “outcome” variable for measuring equivalence. In most 
clinical trials, this choice is relatively easy. The target variable is usually either a binary event, such as 
survival, or the change in a ranked variable, such as blood pressure or pain. In etiologic studies, the 
outcome is development of a particular disease.

In pharmacologic kinetics, however, many candidate variables can be measured to assess bioavail-
ability. The variables include area under the time curve (AUC) of blood or plasma concentration, the 
level of maximum concentration (Cmax), or time to maximum concentration5 (Tmax ), as well as such 
phenomena as plateau time, half-value duration, and several variants of peak-trough fluctuation.6 For 
antibiotic drugs, effectiveness against specific bacteria can be checked with a minimum inhibitory 
concentration (MIC), with the time at which MIC is first reached, or with the duration of time for 
which the concentration remains above MIC.7

Choosing an appropriate measurement to express a drug’s action or a treatment’s accomplishment is 
an important scientific issue that is beyond the scope of the statistically oriented discourse here. For the  
subsequent discussion, we shall assume that an appropriate measurement has been selected, and that the 
results can be evaluated for their quantitative distinctions in that measurement.

24.2 Quantitative Boundary for Tolerance

Perhaps the most crucial statistical decision is the choice of a quantitative boundary. Because we cannot 
expect the two compared effects to be exactly identical, a boundary of tolerance must be set to demarcate 
the zone within which different effects can still be regarded as equivalent. This boundary obviously 
depends on scientific considerations, but its magnitude—which involves answering the question, “How  
big is small?”—will affect all the subsequent statistical activities.

FIGURE 24.1
Levels of outcome in individual patients receiving formulation 1 vs. formulation 2. The pattern of results for equivalence, 
discussed further in the text, can be called “switchable” (Case 1), “prescribable” (Case 2), or “average” (Case 3). [Figure 
derived from Chapter Reference 4.]

1 2 1 2 1 2
Formulation Formulation Formulation

Case 1 Case 2 Case 3
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The maximum boundary of a “small” increment corresponds to the level of ζ that was briefly considered
in Chapters 10 and 23. If an increment is quantitatively small enough for two means to be regarded as “similar”
or “equivalent,” we would want to be ðζ. For two proportions, the zone would be ðζ.

24.2.1 Problems and Ambiguities

The choice of ζ is a major source of quantitative ambiguity. When equivalence is statistically defined
as a difference having “negligible practical interest,”8 or being below the “minimum difference of
practical interest,”9 the boundary for this difference might be expected to have a small magnitude for ζ.
For many years, however, the boundary chosen for “small” in most statistical discussions of equivalence
has been the same relatively large δ that was previously used (in Chapters 10 and 23) to demarcate
“big.” With the statistical idea that small is the opposite of big, the values of an observed do ≥ δ are big;
and the not-big values of do < δ are regarded as small and in the zone of equivalence.

With uncommon exception, most statistical discussions do not use an additional zone to separate
“small” from “big.” Even when recognizing that the “traditional statistical framework does not seem
appropriate” and that “the observed difference between treatments is relatively small for demonstrating
equivalence,”10 the authors may still place the main focus on confidence intervals for which the specific
magnitude of a “small” boundary is not demarcated.

In etiologic research, where the statistical comparison is usually expressed as an odds ratio or risk
ratio, the magnitude of an “incremental risk” is seldom discussed or considered. Instead, the investigators
focus on elevation of the ratio above the “equivalent” value of 1. In this situation, values of δ and ζ
respectively refer to the boundaries of large and tiny ratios rather than increments. No overt consensus
has developed, however, about the choice of those boundaries. Some epidemiologists, referring to the
additional cases of disease that might occur when a huge population is exposed to a “risk factor,” may
refuse to consider any elevated risk ratio as tiny or safe. Nevertheless, because of the small numbers of
“exposed cases” that are found in many case-control studies of risk, and because of problems in
misclassification, in detection, and in enumeration, most epidemiologists will regard ratios below 2 as
unimpressive and within the limits of “noise” in the observational system.11 Ratios of 3 or higher,
however, are almost always deemed impressive. With the latter criteria, the boundaries for ratios might
be set at 3 for δ and at 2 (or something between 1 and 2) for ζ.

The topic of etiologic equivalence for ratios is complex, controversial, and will not be considered
further in this chapter. The rest of the discussion is devoted to decisions about increments that have
clinical and/or pharmaceutical equivalence.

24.2.2 Use of Single Two-Zone Boundary

Whatever its mathematical merits, the statistical custom of
forming a dichotomous two-zone “decision space,” using a
single boundary of δ, is a drastic departure from the realities
of clinical reasoning.12 Clinicians usually think about a
three-zone “space,” shown in Figure 24.2, in which anything
Šδ is big, anything ðζ is small or “tiny,” and values between
ζ and δ are intermediate or inconclusive. The clinical deci-
sions are regularly cited in such trichomotous ordinal scales
as too high, normal, or too low; positive, uncertain, or
negative; hyperglycemic, euglycemic, or hypoglycemic;
tall, medium, or short.

With the customary two-zone statistical scheme, however,
“equivalence” would receive a relatively large upper bound-
ary if “small” or “equivalent” is regarded as anything less than “big.” This approach would let the same
big value of δ be used for deciding either that a new active treatment is more efficacious than standard
therapy or, conversely, that a “conservative” or “inexpensive” treatment has essentially the same effects.13,14

XA XB– pA pB–

FIGURE 24.2
Two boundaries (ζ and δ) forming three categor-
ical zones for magnitude of observed distinc-
tions. [The zones here are  for positive 
distinctions. A similar set of zones could be 
shown on the left of 0 for negative distinctions.]
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The relatively large size of the boundary for “tiny” is evident in a set of FDA guidelines15 for 
bioavailability studies, which state (according to Westlake7 ) that “products whose rate and extent of 
absorption differ by 20% or less are generally considered bioequivalent.” Although a proportionate rather 
than direct increment, the 20% boundary will often allow the upper level of a small difference to be 
larger than the δ Š .15 often used in Chapter 23 as the lower boundary of a big direct increment in two 
proportions.

24.2.3 Consequences of “Big” Two-Zone Boundary

When tiny distinctions are allowed big statistical boundaries, several immediate problems occur. The 
most obvious is that the quantitative criterion is not compatible with ordinary common sense. If someone 
who is Š72 inches (183 cm.) is regarded as tall, we are forced to say that anyone whose height is < 72
is short. If a fasting blood sugar of Š140 mg/dL is regarded as hyperglycemic, anyone whose level is 
below 140 would have to be called hypoglycemic. If a diastolic blood pressure of Š90 mm Hg demarcates 
hypertension, pressures below 90 become hypotensive.

24.2.4 Use of “Small” Two-Zone Boundary

In recent years, a smaller boundary has been proposed10,16 to distinguish zones of equivalence from zones 
of efficacy. The authors usually employ the same symbol (such as δ), however, whether the boundary 
is large or small. To avoid ambiguity, the δ symbol will be reserved here for the big value and ζ will 
be used for the small one.

The use of a small ζ has at least two important consequences. First (as discussed later), it can 
substantially raise the sample sizes needed for one-boundary–two-zone calculations of stochastic sig-
nificance. Second, the introduction of a small ζ also allows construction of a new three-zone approach 
for the calculations.

24.2.5 Directional Decisions

Regardless of whether equivalence is given a large or small boundary, the choice of a scientific direction 
is particularly important, because it is the source of one-tailed vs. two-tailed decisions in testing stochastic 
hypotheses.

Do we really want to show that Treatments A and B are similar? If so, the evaluation definitely goes  
in both directions. Using ζ as the boundary of a small difference, we would want to demonstrate that 
|A − B| ð ζ, regardless of whether the results are slightly larger or smaller for A than for B.

In many other situations, however, we may want to show mainly that A, although perhaps better, is 
not much more effective than B. Alternatively phrased, we want to show that B is almost as good as A.  
In this situation, where A might be the somewhat better “brand-name” and B the almost-as-good generic 
product, the goal would be to find that A − B ð ζ. If the results unexpectedly show that B seems better  
than A, we might be pleased, but we would probably not intend to claim stochastically that B is more
effective. In another situation, if “active” treatment A turns out to produce a lower success rate than 
placebo, we might be happy or unhappy (according to the preceding scientific hopes); but if pA for active 
treatment is lower than pB for placebo, we probably would not do stochastic tests to confirm the higher  
efficacy of placebo. (Stochastic testing might be done to demonstrate that A is more harmful than placebo, 
but the “harm” would be measured with some other variable, and tested with information different from 
what was used stochastically to compare rates of “success.”)

On the other hand, when two “active” pharmaceutical agents are compared, direction may be important 
for the incremental magnitude of tolerance within the zone of equivalence. For example, suppose X is 
the outcome variable chosen for showing equivalence, and suppose  and  are its mean values in 
two compared agents, A and B. Suppose further that A is the standard, “brand-name,” or customary 
treatment, whereas B is the perhaps inferior, generic, or less costly competing agent. In the selected 
variable that measures bioavailability, we would expect  to be greater than . To demonstrate 
equivalence, we would therefore want −  to be less than some relatively small positive value.

XA XB

XA XB

XA XB
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Nevertheless, if  turns out unexpectedly to exceed  and if B is a generic drug, its greater 
availability may impair the established dosing schedule of the standard agent. [This problem arose a 
few decades ago when digitalis toxicity developed in patients who transferred, at apparently similar 
constant dosage, from a “brand name” to a generic product.17]

To deal with the possibility that < , a separate boundary can be established for the largest 
permissible negative increment in − . The data analysts may then demarcate two boundaries 
of tolerance, one for −  < ζ 1 and the other for − < ζ2. The extra complexity of using 
different positive and negative values for tolerance can be avoided, however, if we use the same value 
for both. (If desired, the discussions that follow can be readily adapted to encompass separate positive  
and negative boundaries.) 

24.3 Stochastic Reasoning and Tests of Equivalence

As recently noted by Greene et al., 18 many studies claiming that results showed equivalence did not set 
a boundary for its magnitude, and made the claim only after the null hypothesis was not rejected when 
stochastic significance was tested for the observed distinction. The appropriate stochastic methods for 
examining and confirming equivalence create a challenging and currently unresolved problem. Because  
stochastic conclusions are based on rejecting hypotheses, equivalence obviously cannot be tested with 
the goal of rejecting the conventional null hypothesis, ∆ = 0, which is actually the basic idea we would 
like to confirm. Because the customary procedure cannot be used, some other approach is needed for 
stochastic tests of equivalence. The discussion that follows will first describe the approach that is currently 
used and will then introduce a new strategy, based on conventional stochastic logic, which can be reversed 
for testing equivalence. 

24.4 Customary Single-Boundary Approach

The customary stochastic approaches for testing equivalence rely on confidence intervals, not on tests 
of a specific hypothesis. The calculations and consequences will differ according to whether a big δ or 
small ζ is used in stating the permissible boundaries of the confidence intervals.

24.4.1 Procedure for “Big” δ

The earliest stochastic proposals for testing equivalence applied a confidence-interval strategy19,20

in which δ for equivalence was set as the maximum “big” boundary. The confidence interval needed
to stochastically confirm an observed difference, do, as small was

[24.1]

Regardless of whether the selected Zα is designated as Zα or Zβ and regardless of whether the 
probabilities are one- or two-tailed, this confidence-interval strategy uses the same statement that 
appeared in Chapter 23 for rejecting the alternative stochastic hypothesis that HH: ∆ Š δ. Furthermore, 
the confidence interval statement can readily be converted to an equivalence hypothesis symbolized as 
HE: ∆ Š δ. The confirmatory stochastic decision would thus require either a confidence interval that 
excludes δ, or an appropriately small P value, determined when ZE (for equivalence) is calculated as

[24.2]

This formula is identical to the previous Formula [23.3] for a two-boundary arrangement.

XB XA

XA XB

XA XB

XB XA XA XB

do Zα SED( ) δ<+

ZE δ do–( )/SED=
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24.4.1.1 Conventional Calculations under HE — Because HE is a nonzero hypothesis, the 
standard error of the difference, SED, is determined with the SEDH formula discussed previously. The 
designated value of Z can be marked as Zα, because HE becomes the counterpart of the primary hypothesis 
to be rejected. After an appropriate value of Zα is chosen, a 1 − α confidence interval can be constructed 
as in Formula [24.1]. If the hypothesis boundary of δ is excluded from the upper part of this interval, 
the observed “equivalence” is stochastically confirmed. For a two-tailed decision, the interval should lie 
between −δ and +δ.

24.4.1.2 Direction of Evaluation — The decision about a one-tailed or two-tailed direction 
will affect the magnitude of Zα or Z2α used for calculating confidence intervals or advance sample sizes, 
as well as the interpretation of P values as being 2P or half of the 2P value. Because a firm consensus 
has not been reached on this matter, you might use the compromise guidelines, suggested earlier in 
Section 11.8.4, which propose that the decisions always be two-tailed except when a one-tailed direction  
has been specified in advance and is suitably justified.

24.4.1.3 Examples of Calculations — The calculations for advance sample size and for sto-
chastic confirmation of results are similar to those done in Sections 23.4.2 and 23.4.3. An illustration 
for comparing two proportions, pA = 63/70 and pB = 56/70, with δ set at .18, would be as follows: To 
test stochastic significance for the “small” value of do = .90 − .80 = .10, we first find 

SEDH =  = .060

The 95% confidence interval is then .10 ± (1.96)(.060), and extends from −.018 to .218. Because the 
value of .18 is contained in this interval, we cannot stochastically confirm that do = .10 is small. 
Alternatively, we could have calculated ZE = (.18 − .10)/.060 = 1.33, which produces a “nonsignificant” 
2PE = .184.

If an argument is offered that the stochastic hypothesis should be unidirectional because a generic 
product was being tested, the foregoing 2P value would be halved to .092 with a one-tailed interpretation; 
and the upper end of the 95% confidence interval, calculated with a one-tailed Z.1 = 1.645, would be 
.10 + (1.645)(.060) = .199, which would still include .18. Thus, the “small” increment of .10 would be 
stochastically “nonsignificant” at α  = .05 for both a one-tailed and two-tailed decision.

To illustrate the procedure for dimensional data, suppose δ is set at a direct increment of 10 units in 
a study for which the observed means, standard deviations, and group sizes respectively are = 100, 
sA = 10, and nA = 50 in the standard group, with = 95, sB = 9, and nB = 49 in the test group. The 
value of do = = 100 − 95 = 5 seems small, and is well below the boundary of δ = 10. To test 
the “insignificant” difference stochastically, we first find

SEDH =

The value of ZE will be (10 − 5)/1.91 = 2.62, for which 2P =.009. With Zα = 1.96, the two-tailed 95% 
confidence interval will extend from 1.26 to 8.74, thus excluding the value of δ = 10. [The upper boundary 
of a one-tailed 95% confidence interval, with Zα = 1.645, will be 5 + (1.645)(1.91) and will extend only 
to 8.14.] The observed “small” difference will therefore be stochastically confirmed as “insignificant.”

24.4.1.4 Paradoxical Results — The 95% two-tailed confidence interval in the immediately 
preceding example (for two means) shows the kind of paradox that can sometimes occur with stochastic 
tests of “insignificance.” The observed do of 5 seemed small and is only 5% of the common mean, which 
is 97.5 for the two groups. [The latter value was calculated as {(100 × 50) + (95 × 49)}/99.] Nevertheless, 

.90( ) .10( )/70[ ] .80( ) .20( )/70[ ]+

XA

XB

XA XB–

10( )2/50 9( )2/49[ ]+   1.91=

© 2002 by Chapman & Hall/CRC 



because 0 is excluded from the lower end of the 2-tailed 95%-confidence interval, the observed result 
would also be stochastically significant for the original null hypothesis that ∆ = 0. This paradox— which 
allows a small difference to be stochastically confirmed as both “big” and “small” — arose from the 
relatively large sample size, and from d o, at a value of 5, being equidistant from the locations of ∆ = 10 
and ∆ = 0 for the two hypotheses.

24.4.2 Example of a “Classical” Study

A classical clinical study of equivalence was presented many years ago by Kramer, Rooks, and Pearson.21

Wanting to show that childhood growth and development are not impaired by the sickle-cell trait, the 
investigators measured several indexes of physical growth and cognitive development in 50 matched 
pairs of black infants with either normal (AA) blood or sickle cell (AS) trait. The pairs were matched 
according to date of birth, sex, birth weight, gestational age, and parental socioeconomic status at the 
time of delivery. The follow-up measurements were done, when the children were between 39 and 63 
months of age, by examiners who were “blind” to the child’s genotype, and for the cognitive tests, by 
a black psychologist.

For each measured variable, the investigators determined the do mean increments and corresponding 
Po values for members of the matched-pair groups. A value of δ was also established for each variable 
as a substantively “larger potential difference” in the incremental means for each group. Values of PE
were then determined for the values of δ − do. (The symbols used by the investigators have been converted 
to those of the text here.) The results were small and quantitatively unimpressive for the diverse results  
of do in 6 variables indicating physical growth and in 6 variables indicating cognitive development. In 
all of these comparisons PE was ð.05. In one variable, the McCarthy Perceptual-Performance subtest, 
do for the AA–AS increment was −2.4, for which Po was 0.036 under the original null hypothesis. 
Nevertheless, for the corresponding established δ = +2.0, PE was “< 0.001.” The reversed direction of 
do and the “significant” Po were attributed to a chance event occurring “because of the many outcome 
variables under comparison.”

The investigators concluded that sickle-cell-trait children have “no deficits in standard measurements 
of growth and development,” and that previous beliefs that such children were impaired were due to 
methodologic flaws in the research.

24.4.3 Procedure for “Small” δ

Recognizing that the big value of δ may be too large for satisfactory appraisals of equivalence, Makuch  
et al.10 and Jones et al.16 have proposed that a smaller boundary be used in the hypothesis for HE. If ζ
symbolizes this boundary, the demand made in Formula [24.1] becomes expressed as

[24.3]

and the primary stochastic hypothesis for equivalence of two means would be stated as

If the hypothesis is symmetrically two-tailed, Formula [24.3] becomes stated as

[24.4]

This approach produces the draconian demand that the entire confidence interval be contained between  
the boundaries of −ζ and +ζ. The demand seems scientifically peculiar because an observed value of d o
< ζ , although small enough to be regarded as “equivalent,” cannot be stochastically confirmed unless 
do is “super-small” enough for the entire interval to be smaller than ζ.

do Zα SED( ) ζ<+

HE : µA µB–( ) ζ>

do Zα SED( )± ζ<
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24.4.3.1 Consequences of “Small” Value for HE — When the increments of δ − do are 
replaced by ζ − do, much larger sample sizes will be needed for stochastic confirmation of the small 
differences. For example, consider the small increment in the two means, = 100 and = 95, that 
was stochastically confirmed in the second part of Section 24.4.1.3. Suppose the observed do was still 5, 
with SEDH = 1.91, but the “small” boundary for ζ was set at 6, rather than at the previous δ = 10. ZE
would then be calculated as (6 − 5)/1.91 = .523 and would not provide stochastic confirmation, because 
2PE is >.5.

Because the observed do was < ζ , the failure to confirm would be caused by inadequate capacity in a 
too-small sample. The sample size needed to confirm the “smallness” of do = 5 could be calculated from 
the formula

[24.5]

For a one-tailed Zα =1.645, with sA = 10 and sB = 9, the requirement would be

n Š (1.645)2(100 +  81)/(6 − 5)2 = 489.8

At least 490 members would be needed in each group. Thus, the total group size of 99 members (= 50
+ 49) had ample capacity to reject HE when it was set at the “big” δ = 10, but the capacity would be 
only 99/980 = .10, if HE were located at the “small” ζ = 6. If the latter HE were tested with Zα = 1.96 
instead of Zβ = 1.645, the required sample size would be increased to 695.3 per group.

As an additional example, consider the comparison in the first part of Section 24.4.1.3, where “success” 
was achieved by 90% and by 80% of two groups that each contained 70 persons. When HE was set at 
the large value of δ = .18, the incremental difference of 10% was not stochastically confirmed as small.  
For Zα = 1.96, a sample size of 150 persons would have been required. If HE were set at the smaller 
value of ζ = .12, however, the observed increment of .10 would still have satisfied the quantitative 
requirement for equivalence, but the sample size needed for stochastic confirmation would have risen 
to (1.96)2(.25)/(.12 − .10)2 = 2401 for each group. With Zα = 1.645, the required sample size per group 
would have been 1691.3.

24.4.3.2 Advantages of “Big” Value for HE — As shown in the foregoing calculations, 
when the equivalence hypothesis, HE, is set at a relatively large value of δ, stochastic confirmation can 
be attained with much smaller group sizes than if HE is placed at the small ζ. In fact, the calculations 
can also show the impossibility of trying to prove the null hypothesis that ∆ = 0. If the demanded ζ = 
0 is attained by an observed do = 0, the value of 0 would be entered in the denominator of Formula 
[24.5], and an infinite sample size would be required.

24.4.4 Alternative Hypothesis for Single Boundaries

As discussed earlier in Sections 11.5 and 11.9, when a stochastic hypothesis is rejected, its counter-
hypothesis is conceded. In customary two-tailed procedures with the null hypothesis that ∆ = 0, the 
counter-hypothesis is ∆ ¦ 0 and does not have a location. The alternative hypothesis, however, has a 
distinct location, which is set (for tests of efficacy) at the “large” value of δ. As shown in Chapter 
23, the alternative hypothesis can offer “consolation” when the desired big do turns out to be disap-
pointingly small, i.e., do < δ.

In stochastic testing for equivalence, however, if HE is set with only a single boundary for either δ or 
ζ , a specific location is not cited for an alternative hypothesis. The term “alternative hypothesis” is 
sometimes mentioned16,22 in stochastic discussions of equivalence tests, but the discussed entity is really 
a counter-hypothesis, expressed in terms such as . A specifically located alternative hypoth-
esis is not cited. Consequently, in the customary one-boundary strategy, a differently located alternative  
hypothesis is not available either for additional testing or for “confidence-interval consolation” if a 
desired small do turns out to be disappointingly large.

XA XB

n Zα
2 sA

2 sB
2+( )/ ζ do–( )2Š

µA µB– ζ<
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24.4.5 Double-Significance (Neyman-Pearson) Approach

As discussed in Chapter 23, the Neyman-Pearson strategy deals with two hypotheses, but has only one 
distinct quantitative boundary. The strategy is intended to produce stochastic significance no matter 
which way the results turn out. Using the big δ as a single two-zone boundary, the doubly significant 
sample would let the results be stochastically significant if the observed do is Š δ and also if do < δ. The 
analogous events would happen if the single boundary is set at a small ζ, rather than a big δ.

Among the various problems associated with the Neyman-Pearson approach, perhaps the most scien -
tifically peculiar idea is that the investigator is passively disinterested in the outcome of the research 
and does not care what emerges as long as it is stochastically significant. This approach inevitably leads 
to excessively large sample sizes, which can often stochastically confirm, as “big,” a disappointingly 
small quantitative value of do that is < δ. A counterpart of this dissidence would occur if the double-
hypothesis strategy were used in a trial aimed at showing equivalence. The trial might produce a value 
of do that is bigger than the boundary of a smaller ζ , but the large sample size might allow the result 
to be confirmed stochastically as small.

When the Neyman-Pearson two-hypothesis strategy has been proposed16,23 with a single-δ-boundary 
for the challenge of testing equivalence, δ has been set at smaller boundaries than the customary “big” 
δ. Nevertheless, after estimates of π1, π2, and the common π, the advance sample size formula becomes

[24.6]

which is the conventional “double significance” Formula [23.10] cited in Chapter 23.
One of the problems produced by the Neyman-Pearson strategy can be illustrated in an example offered 

by Jones et al.16 for equivalence of two bronchodilator inhalers. The upper boundary for equivalence was 
set at 15 l/min in mean values of morning peak expiratory flow rate. The “between subject variance,” i.e., 
s2, was estimated as 1600 (l/min)2. Using Zα = 1.96 and Zβ = 1.28, the authors then applied the Neyman-
Pearson formula of 2s2(Zα + Zβ)2/ζ2 to calculate a sample size of 150 patients. Suppose this sample size 
is used in a trial that produces do = 12 between the two groups, with s = 40 in each group. The value of 
SED will be  = 4.62, and the upper boundary of the confidence interval will be 12 +
(1.96)(4.62) = 21, thus exceeding the boundary of 15. Consequently, although the observed do = 12 was 
less than ζ = 15, the sample size would not allow stochastic confirmation of the small difference.

24.5 Principles of Conventional Stochastic Logic

A new strategy, which can avoid the problems and dilemmas of the currently used one-boundary 
approach, is to identify the principles of conventional stochastic logic, and then reverse them.

24.5.1 Identification of Four Principles

When we wanted to prove that something was big, the principles of customary stochastic logic placed 
the primary “null” hypothesis at the opposite extreme, setting Ho at the smallest possible distinction, 
i.e., ∆ = 0. The hypothesis was rejected if the calculated value of P was below a selected value α or if 
∆ was excluded from the zone of an appropriately calculated 1 − α confidence interval.

As noted earlier in Section 23.1.2.3.1, the primary hypothesis was “boundless” because it did not 
contain the boundary of δ (for big) either in its main statement or in demarcation of a confidence interval. 
The value of δ was used only for appraising the quantitative distinction of do. Later on, however, δ
appeared as the location of the alternative secondary hypothesis, which was set at HH : ∆ Š δ .

This reasoning, used for stochastically confirming a “big” difference, contained four crucial principles:

1. The primary stochastic hypothesis, ∆, is located at a value opposite to what we want to confirm.
2. The observed distinction, do, is stochastically confirmed, i.e., the primary hypothesis is 

rejected, if ∆ is excluded from a 1 − α confidence interval around do, or if the pertinent P 
value is ð α.

n 2π 1 π–( ) Zα Zβ+( )2/δ2=

2 40( )2/150
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3. The critical quantitative boundary (for δ) is not contained in the statement of the primary
hypothesis itself and is not used to demarcate limits for confidence intervals.

4. The critical quantitative boundary is used to mark the location of the alternative hypothesis.
For a “big” difference, this boundary is set at δ.

These principles are illustrated in Figure 24.3, which shows four ways in which the confidence intervals
can stochastically confirm “efficacy.” In the top two instances, do was > δ and in the lower two, do was
< δ; but in all four, the value of ∆ = 0 was excluded from the lower boundary of the confidence interval.
Note that in Situations B and D, the value of δ was not included in the confidence interval around do.
(Situations C and D are excellent examples of statistical dissidence, where the observed distinction is
stochastically but not quantitatively significant.)

24.5.2 Reversed Symmetry for Logic of Equivalence

If applied with reverse symmetry for stochastic testing of equivalence, the four principles just cited
would require the following:

1. The primary hypothesis of equivalence, HE, should be set at a value of ∆ that is large, i.e., the
opposite of the small quantitative distinction that we want to confirm.

2. The observed small distinction, do, is stochastically confirmed if the “large” hypothesis is
rejected by being excluded from a 1 − α confidence interval around do, or if the pertinent P value
is ð α.

3. The critical quantitative boundary, ζ, for the small distinction does not appear in the statement
of the primary hypothesis, and is not used to demarcate limits for confidence intervals.

4. The critical boundary, ζ, is used to mark the location of the alternative hypothesis.

These principles are illustrated in Figure 24.4, which is a counterpart of Figure 24.3. In Situations A
and B, the value of do is < ζ, and in C and D, do is > ζ , but in all four, the value of ∆ = δ  is excluded
from the upper boundary of the confidence limit. Note that in Situations B and D, the value of ζ is not
included in the confidence interval around do. Situation D here is almost identical to Situation D in
Figure 24.3 and shows the same statistical dissidence. The observed do, although too large to be called
quantitatively “small,” is nevertheless stochastically confirmed as small. (Because both 0 and ζ are
excluded from the confidence intervals, the observed do in Situation D in both Figures 24.3 and 24.4 is
stochastically confirmed as being both large and small.)

The more common kind of statistical dissidence occurs in Situation C of both figures where a difference 
that fails to satisfy the quantitative requirement is stochastically confirmed for that requirement, but is 
not confirmed for the alternative hypothesis.

24.5.3 Applicability of Previous Logic

For testing equivalence, the four cited principles of logic cannot be applied with a single-boundary two-
zone demarcation. The first principle requires that one boundary, such as δ, be set for a large value of 
∆; and the third principle requires another boundary, such as ζ, to demarcate something small. If δ and 
ζ are used for these boundaries, they produce three zones, rather than the two zones formed when a 
single boundary is placed at either a big δ or a small ζ. A three-zone system has not hitherto been 
applied, however, for stochastic evaluations of equivalence. The analysts have regularly used only a 
single boundary, placed at a big δ or a small ζ, as discussed earlier throughout Section 24.4. The next 
section (24.6) describes the two-boundary–three-zone approach that produces symmetrical stochastic 
logic for testing equivalence. 
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24.6 Logical (Three-Zone–Two-Boundary) Approach

To evaluate equivalence with a mirror image (or reverse symmetry) of the basic stochastic logic used
for evaluating efficacy, the first step is to set the primary hypothesis of equivalence at a large value, i.e.,

HE : ∆ ≥ δ

The alternative hypothesis is set at the small value, i.e.,

HS : ∆ ð ζ

The two sets of arrangements for efficacy and equivalence are shown in Table 24.1.

FIGURE 24.3
Dotted lines and arrows show extent of confidence 
intervals for the observed value of do and the desig-
nated boundary of δ. In all four situations, “efficacy” 
is confirmed because the lower end of the confidence 
interval exceeds 0. In situations A and B, do exceeds 
δ, but in situations C and D, do is < δ.

FIGURE 24.4
Dotted lines and arrows show extent of confidence intervals for
the observed value of do and the designated values of δ and ζ.
In all four situations, equivalence is “confirmed” because the 
upper boundary of the confidence interval does not exceed δ.
In parts A and B, do is ð ζ; and in Parts C and D, do is > ζ . In 
part B, the entire confidence interval is contained between 0 and 
ζ, thus confirming do as both “big” and “small.” In part D, the 
entire confidence interval excludes both ζ and δ.

TABLE 24.1

Changing Location of Hypotheses for Testing Efficacy or Equivalence

Location of
Quantitative Primary Alternative

Desired Goal Criterion Hypothesis Hypothesis

Efficacy do Š δ Ho : ∆ = 0 HH : ∆ Š δ

Equivalence do ð ζ HE : ∆ Š δ Hs : ∆ ð ζ

A

B

C

D

0 δ do

0 δ do

0 δdo

0 δdo

A

B

C

D

0 δζ

ζ

ζ

ζ

do

0 δdo

0 δdo

0 δdo
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24.6.1 Calculations for Advance Sample Size

With the two-boundary–three-zone arrangement, the advance calculation of a “singly significant” sample 
size for equivalence can be done with a confidence interval or a P value. With a confidence interval, 
using Zα for the primary hypothesis, the observed maximum difference of ζ should have the attribute 
that ζ + Zα(SED) ð δ.

24.6.1.1 Calculation for Two Proportions — With equal sizes in each group and with πA
and πB as the estimated values of the two proportions, the sample size will be

[24.7]

This same result emerges with the P value approach, if we determine n by using the formula

[24.8]

after substituting Zα for ZE, ζ for do, and  for SED.
To demonstrate the calculations, suppose we expect that a suitable measurement of bioequivalence 

will be achieved by 90% of persons receiving Drug A and by 80% of persons receiving a generic product, 
B. If we use the FDA two-zone guideline that allows proportionate increments within 20% to be regarded 
as small, the boundary value of δ for this comparison will be δ = (.20)(.90) = .18. We can then set the 
anticipated increment of .10 as the value of ζ.

Using Formula [24.7], the required sample size for each group would be 

n Š (1.96)2[(.90)(.10) + (.80)(.20)]/(.18 − .10)2 = 150.1 

if Zα = 1.96, and 105.7 if Zα = 1.645.

24.6.1.2 Calculation for Two Means — For dimensional data, the appropriate modification 
of Formula [24.7] produces

[24.9]

To illustrate the calculations, suppose the large value of δ is set at 12 for a study in which the two groups 
are expected to differ by no more than ζ = 5. We also expect that the two groups will have standard 
deviations of σΑ = 9 and σB = 10. With these expectations, and with α set at a two-tailed .05, the required 
sample size for each group will be n Š (1.96)2 (181)/(12 − 5)2 = 14.2.

Note that the expected values of the two means, µA and µΒ, do not appear in Formula [24.9], and the 
sample size will depend on only the increments and variances.

24.6.2 Effect of Different Boundaries for δ and ζ

An important feature of Formula [24.7] is that the sample-size requirement enlarges if the boundaries 
are “relaxed” so that δ is made smaller and ζ is larger. Thus, if δ is reduced to .16 and ζ is raised to 
.12 in the foregoing trial, the required per-group size for Zα = 1.96 will be 

n  ≥   (1.96)2(.25)/(.16 − .12)2 =   600.2

Conversely, the required sample size will decrease if either δ is made larger or ζ is smaller (or both).
For example, suppose the clinical trial in Section 24.6.1.1, done with 151 patients in each group, turns  

out to show pA = 136/151 = .901 and pB = 125/151 = .828. The observed do will be .901 − .828 = .073, 
and SED will be 

n Zα
2 πA 1 πA–( ) πB 1 πB–( )+[ ]

δ ζ–( )2
----------------------------------------------------------------------≥

ZE
δ do–
SED
-------------=

πA 1 πA–( ) πB 1 πB–( )+[ ]/n

n Zα
2 σA

2 σB
2+[ ]

δ ζ–( )2
------------------------------≥
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 = .0392 

The value of ZE will be (.18 − .073)/.0392 = 2.73, for which 2PE = 006. Thus, a stochastically significant 
result (with 2PE < .05) could have been achieved with smaller groups.

On the other hand, suppose the study comparing two means in Section 24.6.1.2 were done with 15 
persons in each group, and that the standard deviations produced the expected results of s A = 9 and sB = 10, 
but the observed difference in means turned out to be do = 7. With Formula [24.8], SED will be 

 = 3.47 and ZE will be (12− 7)/3.47 = 1.44, which is too small to yield PE< .05 with either 
a two-tailed or one-tailed evaluation.

24.6.3 Exploration of Alternative Hypothesis

If do is < ζ but the result is not stochastically confirmed, the main problem will be low capacity. If do

exceeds ζ , however, symmetrical logic will allow the investigator to explore the alternative hypothesis, 
which will be

HS : ∆ ð ζ

The investigator can then be consoled if ζ is included within the lower boundary of a confidence interval 
around the too big do.

For example, in the foregoing comparison of two means, with SED = 3.47, Zβ = 1.645 can be used 
to calculate the lower boundary of a one-tailed 95% confidence interval, which will be 7 − (1.645)(3.47) =
1.29. Because the value includes the desired ζ = 5, the result can be regarded as a compatible stochastic 
variation. Similarly, if ζ had been set at .04 rather than .10 in the foregoing clinical trial, and if the 
results still showed do = .073 with SED = .0392, the lower boundary of the one-tailed confidence interval 
would be .073 − (1.645)(.0392) = .0085, which would be stochastically compatible with the desired 
ζ = .04.

24.6.4 Symmetry of Logic and Boundaries

The logic in Table 24.1 is “symmetrical,” because each of the scientific goals — efficacy and
equivalence — has a separate location for its own primary hypothesis and its alternative hypothesis. 
The boundary values at those locations, however, are not symmetrically reversed. The “big” value of 
δ does double duty in locating the alternative hypothesis for a big distinction and the primary hypothesis 
for a small one. The “small” value of ζ, however, does not have a mirror image when the primary 
hypothesis is set at 0 for a big distinction.

To achieve the attractive scientific appeal of a perfect mirror image would require changing the 
primary null hypothesis from 0 to ζ in tests of efficacy. This change would probably be anathema to 
most statistical theorists, because it would alter a century of statistical reasoning. All of the ordinary 
parametric tests (t, Z, chi-square, etc.) based on ∆ = 0 would have to be recalled and reconfigured, and  
statisticians and investigators would have to collaborate closely in choosing an appropriate value of ζ
for each situation. Nevertheless, this idea may have considerable merit when parametric reasoning is 
eventually replaced in the new era of computer-intensive statistics; and besides, in Bayesian inference, 
a close clinico-statistical collaboration is needed to choose the appropriate values for prior probabilities. 
Furthermore, a clearly demarcated pair of boundaries, with ζ for small and δ for big, would allow tests 
of fragility (as discussed earlier) to be used for making stochastic decisions according to descriptive 
rather than probabilistic zones of reasoning.

136( ) 15( )/(151)3 125( ) 26( )/(151)3+

92 102+( )/15
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24.7 Ramifications of Two-Boundary–Three-Zone Decision Space

The most important ramifications of a three-zone decision space extend far beyond the testing of 
“equivalence.” The use of two boundaries and three zones can promptly help eliminate some of the 
prime difficulties produced by the Neyman-Pearson “double significance” method for calculating sample 
size. One main source of these difficulties is the choice of an unrealistically high value of δ to lower 
the “inflated” sample size to an attainable value. The subsequently observed do , although substantially 
smaller than the originally selected δ, may then be proclaimed “significant” after receiving stochastic 
confirmation for its large value.

24.7.1 Realistic Modifications for δ and ζ

With a three-zone decision space, the Neyman-Pearson calculations could be abandoned, and the inves -
tigators could set goals for values of δ and ζ that are closer to realistically acceptable boundaries for 
clinical decisions about quantitative magnitudes. For example, although δ could be set at .15 for an 
increment in two proportions, the investigator might still be willing to claim quantitative significance 
for smaller observed values, such as do = .14 or even do = .10, but not for do = .09. If so, a new boundary 
for “big” can be set at δ = .10. Similarly, if ζ were originally set as an increment of .02, the investigator 
might still be willing to claim “equivalence” if do = .03 or .04, but not if do = .05. If so, a new boundary 
for “small” can be set at ζ = .04. With δ made smaller and ζ larger than the unrealistic previous boundaries 
of δ and ζ , the magnitude of the intermediate zone would be substantially reduced.

The sample-size calculation would then involve two computations: one for “single significance” under 
the primary null hypothesis, with Ho : ∆ = 0 and δ as the boundary of big; and the other for “single 
significance” under the primary equivalence hypothesis, with HE : ∆ Š δ and with ζ as the boundary of 
small. The larger of these two sample-size values would then be used in the trial. Because the denom-
inators for these calculations will have δ in the first and δ − ζ in the second, the second calculation 
should always produce the larger result.

24.7.2 Effects on Sample Size

Single-significance calculations with these modified boundaries for δ and ζ would be scientifically 
realistic and “honest,” and will usually be smaller than the sample sizes that emerge with the “double 
significance” approach.

For example, suppose δ is set at .15 for a desired pA = .35 and pB = .20 in a randomized trial, so that 
 = (.35 + .20)/2 = .275. If Zα is set at a two-tailed 1.96 and Zβ is set at a one-tailed 0.84, the “double-

significance” calculation with Formula [23.10] would produce

which is n Š 137.8.
For a singly significant result if do > δ, the sample size calculated with Formula [14.19] would be 

n Š (1.96)2[2(.275)(.725)]/(.15)2 = 68.1. For a small value of do with ζ set at .02, a single-significance 
calculation to confirm the small result would use Formula [24.7] to produce n Š (1.96)2[(.35)(.65) +
(.20)(.80)]/(.15 − .02)2 = 88.1. Thus, the trial could be done with 89 persons in each group rather than 
with the 138 persons needed for “double-significance.”

On the other hand, if the investigators more realistically set δ = .10 and ζ = .04 as the “bottom-line” 
quantitative boundaries for respective claims of “big” or “small,” the sample size needed to confirm single 
significance of the large difference (with do Š .10) would be n Š (l.96)2[2(.275)(.725)]/(.l0)2 = 153.2; 
and confirmation of the small difference (with do ð .04) would use Formula [24.7] to require 
n Š (1.96)2[(.35)(.65) + (.20)(.80)]/(.10 − .04)2 = 413.5. Thus, the new approach might occasionally seem 

π̂

n
1.96 2 .275( ) .725( ) 0.84 .35( ) .65( ) .20( ) .80( )++

2

.15( )2
--------------------------------------------------------------------------------------------------------------------------------------≥
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to enlarge rather than reduce sample sizes, because the latter number (413.5) more than triples the 137.8 
that emerged from the previous “double-significance” calculation. 

The investigator could now be assured, however, that stochastic confirmation for do Š .10 would be 
obtained with the sample size of 154 persons in each group, although it is larger than the 138 persons 
required when double-significance was determined for an unrealistically enlarged δ = .15. Furthermore, 
if seeking a big difference, the investigator might decide that 414 persons are not needed in each group  
because stochastic confirmation would not be wanted for the discouragingly small value of do ð .04.

Accordingly, instead of obtaining “double-significance” with 138 persons for an excessively high 
δ = .15, the trial could be done for single significance with 154 persons and a reasonable δ = .10. 
Nevertheless, if the investigator really wants to show and confirm a small difference for a realistic 
boundary of ζ =.04, the trial would require 414 persons in each group. This number would still be 
smaller, of course, than what would emerge with a “double-significance” calculation using δ = .10. The 
latter calculation, with .10 rather than .15 in the denominator of Formula [23.10], would produce 
n Š 511.4.

24.7.3 Choices of α and β

If realistic values for δ and ζ were set before the trial and maintained afterward, the main method for 
reducing sample size would be to change the values of α and β. In the foregoing double-significance 
calculations, Zβ was already quite relaxed at a one-tailed β = .1, but the value of Zα was chosen for a 
two-tailed boundary of .05. If a one-tailed direction is accepted for α, the corresponding sample size 
would be smaller.

For the two separate calculations of single significance, a separate primary hypothesis is set for each 
calculation, and a β level need not be chosen. The foregoing calculations, however, were done with Zα

set at 1.96 for a two-tailed test at α = .05. With each hypothesis having a clear direction, a one-tailed 
test could be used for each calculation, and the sample sizes would be reduced when Z α is set at 1.645 
rather than 1.96.

24.7.4 Resistance to Change

Having become thoroughly entrenched, the “double-significance” approach will probably become 
another instance of an outmoded paradigm that is resistant to change. The resistance will probably be 
aided by the reluctance of clinical investigators to accept responsibility for setting quantitative boundaries  
for “big” and “small.” Unlike α and β, which can be designated arbitrarily regardless of what is happening 
in the research, the appropriate values of δ and ζ will often require ad hoc choices based on substantive  
content. If both the clinical investigators and statistical consultants, however, are willing to acknowledge  
that the prime scientific decisions depend on quantitative magnitudes rather than stochastic probabilities,
the clinico-statistical collaborators can work together to set appropriate boundaries.

The consequences will be an enlightened improvement in statistical features of both the planning and 
reporting of medical research. Sample sizes can be determined according to what the investigator wants  
to show; the sizes will usually be smaller than under the “double-significance” paradigm; and readers 
of the published reports will be protected from possibly deceptive claims of “significance” that have 
been adapted to fit the observed results rather than to corroborate well-made plans. The new process 
would even be consistent with the recommendations (cited in Section 23.9.5) that were offered by both  
Ronald Fisher and Egon Pearson after they thoughtfully reconsidered and changed their original pro-
posals, respectively, for testing “significance” and for determining “double significance.”

24.8 Evaluating All Possible Outcomes

The three-zone approach would also allow development of a new statistical strategy that emphasizes what 
the investigator wanted to achieve when the research project was planned. With this strategy, any project 
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can have at least eight possible outcomes, formed by two states for each of the following phenomena:
the initial desire (or hope) is to find that do is either big (Š δ) or small (ð ζ); the observed result can be
either desired or not desired; and the result can be either stochastically confirmed or not confirmed. The
desired, observed, and stochastic results can then be evaluated as noted in the next two sections.

24.8.1 Large Value Desired for do

When a large value is desired for do, the possible findings and conclusions are shown in Table 24.2. In
these four situations, the investigator wants or expects the observed result to be big. If the observed
result comes out as expected, the stochastic tests will either confirm the scientific hypothesis or show
that the study had defective capacity in group sizes. If the observed result is contrary to expectations,
the disappointed investigator might be either comforted by the possibility that the result was a stochastic
variation or distressed by having to reject the original scientific hypothesis as being probably wrong.
(The wrong result, however, might have been produced by bias, rather than by an erroneous scientific
hypothesis.)

24.8.2 Small Value Desired for do

In a study of “equivalence,” when a small value is desired for do, a similar set of conclusions can emerge
under the different numerical circumstances shown in Table 24.3.

24.8.3 Subsequent Actions

If the scientific hypothesis is confirmed, the investigator has nothing further to do, except perhaps to
arrange publication for the research. If the scientific hypothesis is probably wrong, the investigator can

 TABLE 24.2

Stochastic Results and Conclusions When Large Value Is Expected for do

Was Result 
Desired?

Observed 
Descriptive Result

Stochastic Result 
for Confidence Interval Conclusion

Scientific hypothesis confirmed
YES do Š δ

Defective capacity in group size

Scientific hypothesis is probably wrong
NO do < δ

Result may be a stochastic variation

TABLE 24.3

Stochastic Results and Conclusions When Small Value Is Desired for do

Was Result 
Desired?

Observed 
Descriptive Result

Stochastic Result 
for Confidence Interval Conclusion

Scientific hypothesis confirmed
YESþþþþþ do ð ζ

Defective capacity in group size

Scientific hypothesis is probably wrong
NO þþþ do > ζ

Result may be a stochastic variation

0 excluded

0 included





δ excluded

δ included





δ excluded

δ included





0 excluded

0 included
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try to find an alternative explanation by identifying cogent sources of bias. If the possibility of bias does 
not offer a suitable explanation, the original scientific hypothesis might have to be abandoned.

The other two conclusions are caused by statistical problems that can be solved with additional 
research. Defective capacity can be augmented in an ongoing project, or the research can be repeated 
with an adequately large sample. If the result might be a stochastic variation, a new attempt can be made 
to get stochastic confirmation or rejection by repeating the study with an adequate sample size.

24.8.4 Problems with Intermediate Results

The foregoing set of evaluations and conclusions will take care of all eight cited circumstances where 
do is either Šδ or ðζ. A different problem arises, however, if the observed value of do is in the intermediate 
zone between ζ and δ. Such results are almost always undesired and disappointing for the investigator, 
who usually wants to show that a distinction is either big or small, but not intermediate.

The intermediate result can be evaluated with both sets of procedures for managing unexpected 
findings, because data showing that ζ < do < δ will usually be unwelcome, regardless of whether the 
investigator had a “big” or “small” goal. The four possibilities for the intermediate situation are shown 
in Table 24.4. The confidence intervals will lead to conclusions that either the result is a stochastic
variation or one (or both) scientific hypotheses are probably wrong. If both scientific hypotheses are 
discarded, the conclusion is that do indeed has an intermediate location, which has been stochastically 
confirmed. With the latter conclusion, the investigated phenomenon has produced a distinction that is 
too small to be “big” and too big to be “small.” If the investigator still wants something impressively 
big or small, some other phenomenon (or explanation) should be explored.

24.9 Conflicts and Controversies

Because testing and confirming equivalence is a relatively new activity, many conflicts and controversies 
have arisen about almost every component of the procedures.

24.9.1 Clinical Conditions and Measurements

A major controversy erupted in 1997 when the manufacturer of a “brand name” thyroxine product 
provided sponsorship and then tried to suppress publication of a study in which the corresponding generic 
products were found to be bioequivalent and therefore “interchangeable.” The controversy24 included 
issues of academic freedom, financial conflicts of interest, choice of additional data released by the 
manufacturer, and the advertisement policy of a prominent medical journal. At the level of scientific 
discourse, however, the main contentions about the claim of equivalence referred to the appropriateness  

TABLE 24.4

Stochastic Results and Conclusions When do Is in Intermediate Zone

Observed 
Descriptive Result

Stochastic Result 
for Confidence Interval Conclusion

Stochastically not “big”

Possible stochastic variation from “big”
   ζ < do < δ

Possible stochastic variation from “small”

Stochastically not “small”

δ excluded

δ included

0 included

0 excluded
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of patients used for the research, the reliability of area-under-the-curve (AUC) calculations, and the
adequacy of serum thyrotropin measurements.

24.9.2 Quantitative Boundaries for Efficacy and Equivalence

As noted by Greene et al.,18 many investigators have published claims of equivalence without previously
establishing a quantitative boundary for ζ. Instead, equivalence has been claimed after a failed stochastic
test for “efficacy.” The results of such studies are defective in both quantitative and stochastic decisions
about equivalence.

A different problem arises when different boundaries are established in investigations of the same
phenomenon. For example, in comparisons of thrombolytic treatment for acute myocardial infarction,
the investigators in the GUSTO III trial25 claimed equivalence when an observed difference of do = .53%
was less than the preselected ζ = 1%. In the COBALT trial,26 however, the incremental value of do = 
.44% was even smaller than the .53% found in GUSTO, but was regarded as “inequivalent” because it
exceeded the preset limit of ζ = .40%. The GUSTO investigators25 commented on “the question of an
appropriate boundary for the definition of equivalence” and expressed concern that “acceptance of broad
statistical definitions of equivalence may compromise previously established benchmarks of therapy.”

24.9.3 Stochastic Problems and Solutions

In the absence of well-accepted boundaries for both quantitative distinctions and stochastic locations,
and without a suitably symmetric logic for the stochastic evaluations, the evaluation of “equivalence”
has many uncertainties and produces many difficulties. The three main problems are outlined in
Table 24.5.

The first two problems produce statistical dissidence: in a test of efficacy, a big sample may confirm
a small dO as significant; and in a test of equivalence, a relatively large difference may be confirmed as
small. The third problem is the excessively large sample size needed for confirmation of equivalence if
the primary stochastic hypothesis is set at a small value, such as ζ.

Table 24.6 indicates how a suitable choice of quantitative boundaries can eliminate the problems noted
in Table 24.5.

24.9.4 Retroactive Calculations of “Power”

The last topic to be considered before this chapter ends is the retroactive calculation of “power” for an
observed do that fails to achieve stochastic significance under the original null hypothesis. Although the
proposals for this calculation do not clearly separate defects in power from defects in capacity, the usual
assumption is that the observed do is smaller than δ, which is then used as the location of a secondary
hypothesis for the power calculation. As Detsky and Sackett27 have pointed out, the location of a

TABLE 24.5

Stochastic Problems Arising from Absence of Quantitative Boundaries for “Big” and “Small”

Observed do

to Be Stochastically 
Confirmed

Location 
of Stochastic Hypothesis 

to Be Rejected Problem

“Big” 0 (Null) Large sample may confirm small 
do as “significant”

“Small” 
(equivalent) 

Anything smaller than “big” may 
be confirmed as ‘small’

Huge sample size needed for 
confirmation

Big

Small
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“rejectable” δ will vary with the group sizes, so that larger groups can increase power for smaller values
of δ than otherwise.

In the Detsky-Sackett illustrations, the power of a contrast of two proportions was determined with a
chi-square test, not with the customary Z procedure; and the chi-square test28 was done with a new
primary equivalence hypothesis that ∆ Š δ. The Detsky-Sackett approach, however, was later attacked
by Makuch and Johnson,10 who advocated a Neyman-Pearson technique. Both of these approaches were
then denounced by Goodman and Berlin,29 who claimed that “power” is a prospective concept and should
not be calculated retroactively. Smith and Bates30 also argued that after a study has been completed,
“power calculations provide no information not available from confidence limits” and that “once an
actual relative risk estimate has been obtained, it makes little sense to calculate the power of that same
study to detect some other relative risk.”

Until this controversial issue receives a consensus solution, the best way of estimating how large do
might have been is to determine a suitable confidence interval around do, without getting into disputes
about demarcating a post-hoc δ and calculating “power.”
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Exercises

24.1. The investigators planning the clinical trial described in Exercise 23.1 realize that their results
will be most acceptable if the main endpoint is death rather than improvement in angina. They are
unhappy, however, to have to get about 3000 patients to prove the point. Having heard about the potential
sample-size savings discussed in Chapter 24, the investigators now want to know how much smaller the
sample size might be, with death as the end point, if they ignore the conventional Neyman-Pearson
calculations and if, instead, they take precautions both to avoid α error for a “big” difference and to
allow stochastic significance to be confirmed if a “tiny” difference is found. For this purpose, δ is set
at .02 (a 20% proportionate reduction in death rate) and ζ = .005 (a 5% proportionate reduction). What

TABLE 24.6

Boundary Solutions to Problems Noted in Table 24.5

Observed do to Be 
Stochastically 

Confirmed

Location 
of Quantitative 

Boundary

Location 
of Stochastic 
Hypothesis Confirmatory Conclusion

“Big” Šδ 0 Can’t be “big” unless do Š δ

δ Can’t be “small” unless do ð ζ
“Small”

ζ Improper logic: boundary and 
hypothesis should not be similar

ð ζ

ð ζ
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does the sample size become for the new goal? If the results are somewhat disappointing, what is your 
explanation? 
24.2. In a double-blinded randomized trial in which the control group received isotonic saline injections, 
the investigators concluded that “injecting methylprednisolone into the facet joints is of little value in 
the treatment of patients with chronic low back pain.”31 To be eligible for the trial, the participants were 
required first to have had low back pain, lasting at least 6 months, that was substantially relieved within 
30 minutes of a lidocaine injection in the facet joint space. Two weeks later, the back pain should have  
returned to at least 50% of its pre-lidocaine level. Patients meeting these requirements were then entered 
in the trial.

24.2.1. After deciding that “significant benefit” would be the outcome for “only patients who 
reported very marked or marked improvement,” the investigators “calculated that a 
sample size of 50 patients per group would be adequate at 80 percent power to detect 
at the 5 percent level of significance [by one-sided test] an estimated improvement in 
50 percent of the patients given corticosteroid [and in] … 25 percent of those given 
placebo.” Demonstrate the calculation that you think was used to obtain the estimate of 
“50 patients per group.”

24.2.2. In the published report, very marked or marked improvement was noted as follows in 
the two groups:

In reaching the stated conclusion, the investigators believed that the six-month differences could be 
ignored because the methylprednisolone group received more “concurrent interventions,” and because 
sustained improvement from the first month to the sixth month occurred in only 11 patients in the 
prednisolone group and in 5 of the placebo group.

Do you agree that these results justify the conclusions that “injections of methylprednisolone…are of 
little value in the treatment of patients with chronic low back pain”?

24.2.3. What aspect of the clinical and statistical design and analysis of this trial suggests that 
the trial was not an appropriate test of the hypothesis?

24.3. Exercise 10.1 was concerned with two clinical trials devoted to the merits of prophylactically 
taking an aspirin tablet daily (or every other day). In Exercise 14.4.1, you concluded that the U.S. study  
had an excessive sample size. Can you now apply a formula and appropriate assumptions re α, β, δ,
etc. that will produce the sample size used for the trial in Exercise 14.4?
24.4. In a controlled pediatric trial of gastrointestinal symptoms produced by iron-fortified formulas 
for infants,34 the mothers reported cramps for 41% (= 20/49) of infants receiving formula with no iron, 
and for 57% (= 25/44) of those receiving iron-fortified formula. The investigators concluded that “our 
study failed to provide any evidence for the commonly held belief that iron-fortified formulas produce 
gastrointestinal side effects in infants.”

In a subsequent letter to the editor, titled “Was It a Type II Error?” the writer35 claimed that the 
observed difference was “clinically important” but underpowered. According to the writer, “β is > 0.5” 
for the observed difference, but a “larger sample (about 150 per group) would have probably ( β = 0.35) 
generated a significant 16% difference.”

24.4.1. Do you agree with the investigators’ original conclusions?
24.4.2. Do you agree with the basic dissent in the letter to the editor (i.e., that the investigators 

haven’t proved their claim)? If you agree with the dissent, do you agree with the way 
it has been expressed? If not, suggest a better expression.

24.4.3. Do you agree with the dissenter’s claim that stochastic significance would require about 
150 per group, and that such a size would be associated with β = 0.35? Show the 
calculations that support your answer.

Time Methylprednisolone Placebo Difference and 95% CI

One month 42% (= 20/48) 33% (= 16/48) 9% (–11 to 28)
Six months 46% (= 22/48) 15% (= 7/47) 31% (14 to 48)
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All of the previously discussed stochastic analyses were concerned with appraising results for a single 
scientific hypothesis. The scientific goal, the observed result, and the stochastic test may or may not 
have been in full agreement (as discussed throughout Section 24.8), but the testing itself was aimed at 
a single main scientific hypothesis.

This chapter is concerned with three situations that involve multiple stochastic testing. It can occur 
for different hypotheses in the same set of data, for repeated checks of accruing data for the same 
hypothesis, or for new tests of aggregates of data that previously received hypothesis tests. In the first 
procedure, which is often called multiple comparisons, the results of a single study are arranged into a 
series of individual contrasts, each of which is tested for “significance” under a separate stochastic 
hypothesis. In the second procedure, often called sequential testing, only a single hypothesis is evaluated, 
but it is tested repeatedly in a set of accumulating data. In the third procedure, which occurs during an 
activity called meta-analysis, a hypothesis that has previously been checked in each of several studies 
is tested again after their individual results have been combined.

25.1 Formation of Multiple Comparisons

The first part of the chapter is concerned with the controversial problem of multiple comparisons, which 
warrants a more extensive discussion than the brief outline offered in Section 11.10.
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25.1.1 Example of Problem

To illustrate one aspect of the problem, suppose four different therapeutic agents — A, B, C, and D— are 
tested in the same randomized clinical trial. When the trial is over, the results for a single outcome, such 
as “success,” are compared in each pair of groups: A vs. B, A vs. C, A vs. D, B vs. C, B vs. D, and 
C vs. D. Because k groups can be paired in k(k – 1)/2 ways, 6 pairs of comparisons can be done for the  
4 groups.

If α is set at .05, and if the null hypothesis is correct that all four agents in the trial are essentially 
similar, each “positive” comparison has a .05 chance of being a false-positive result, and a .95 chance 
of being truly negative. For any two comparisons, the chances are .95 × .95 = .90 that both will be truly 
negative and 1 – .90 = .10 that at least one of the two comparisons will be falsely positive. For six 
comparisons under the null hypothesis, the chance is (.95)6 = .735 that all six will be negative, and 
1 – .735 = .265 that a false positive result will emerge somewhere in the group of six tests. Thus, although 
set at .05 for each comparison, the operational level of α for the total of six pairs of comparisons becomes 
elevated to .265.

If each pair in a set of k comparisons has a 1 − α chance of being truly negative, the overall chance of 
getting a true negative result is (1 − α)k. The chance of getting a false positive result somewhere in the 
set becomes 1 − (1 − α)k. Thus, with α designated at .05 for each of 20 comparisons, the chance that at 
least one of them will be positive by stochastic variation alone is 1 − (.95)20 = 1 – .358 = .642. For 100 
comparisons, (.95)100 = .0059; and the chance of getting at least one false positive result will be .9941. 
Therefore, even if nothing is really “significant,” stochastic significance can almost surely occur by 
random chance alone somewhere in the set of data if enough comparative tests are done.

Because of this problem, the α level for a single stochastic comparison may no longer be pertinent 
if the data of a particular study are tested in a series of comparisons. The difficulty has received many 
names. It is most often called the multiple-comparison problem, because the stochastic tests are usually 
applied to multiple two-group contrasts; but multiple-association has been the label when the multiple 
testing occurs in correlation or regression analysis. Both of these titles are covered in Miller’s generic 
but longer name, simultaneous statistical inference,1 for which multiple inference might be a shorter term.

25.1.2 Architectural Sources

Often approached as a purely statistical problem, multiple comparisons can usually be “sensibly” 
analyzed if their scientific sources are appropriately considered. These sources are the questions asked 
for data arising from architectural components that can be agents, outcomes, subgroups, and time.

25.1.2.1 Multiple Agents or Maneuvers — The term agent or maneuver can be used for the 
entity regarded as a possible cause, risk, or impacting factor for the “effect” noted as an outcome event.  
The maneuver can be examined in a prospective (or “longitudinal”) manner when “exposed” cohort 
groups are followed in observational studies or randomized trials. The maneuver can also be determined 
in retrospect for the “outcome” groups analyzed in case-control studies and other forms of cross-sectional 
research.

25.1.2.1.1 Cohort Studies. In clinical trials or in nonrandomized cohort studies, pragmatic conve -
nience may make the investigators examine several agents simultaneously. In the “four-arm” randomized 
trial discussed in Section 25.1.1, agents A, B, C, and D might have been examined concomitantly because 
the investigators wanted to learn all they could from the expensive complexity of arranging personnel, 
laboratory facilities, and other “apparatus” for the trial, without incurring the extra costs and efforts of 
doing separate trials to compare each pair of agents. Besides, the comparisons might be impeded if the 
trials were done at several locations (where the patient groups might differ) or at different periods in 
calendar time.

Another arrangement of multiple agents occurs when a “dose-response curve” is analyzed for parallel 
groups of patients receiving fixed but different doses of the same substance. A placebo may or may not  
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be used in such studies; a small, almost homeopathic dose of the active agent is sometimes substituted 
for a placebo.

In the two examples just cited, the mulitiple agents delineated the groups under study. In certain 
observational cohorts, however, specific agents have not been deliberately assigned. Instead, the inves-
tigators collect information about a series of baseline variables, which can then be analyzed as “risk 
factors” when pertinent events later occur as “outcomes.” The pertinent outcome events may have been  
individually identified beforehand, such as coronary heart disease in the Framingham Study,2,3 or may 
be chosen according to ad hoc topics of interest, as in the Harvard Nurses Study.4

25.1.2.1.2 Case-Control Studies. Retrospective case-control research is a fertile source of stochas-
tic tests for multiple agents. After the studied groups have been assembled according to presence or 
absence of the outcome event, the investigative inquiries, aimed in a backward temporal direction, can 
seek evidence of antecedent exposure to many etiologic agents or risk factors. If the results do not 
incriminate the main agent(s) under suspicion, the investigators may then “screen” all the other possible 
agents for which information was collected.

Some 20 years ago, this type of screening led to a highly publicized but now discredited accusation 
that coffee drinking was causing pancreatic cancer. The accusation came from a case-control study5 in 
which the main etiologic suspicions were originally directed at tobacco and alcohol. After these suspects 
were “exonerated” by the data, the investigators explored an unidentified number of additional agents, 
from which coffee emerged as having a “statistically significant” association with the cases of pancreatic 
cancer. The “significance” was not corrected for multiple comparisons,6 however, and the association was 
refuted when the research was repeated by the original investigators.7

Multiple comparisons are easily and regularly arranged in case-control studies of “risk factors” for 
etiology of disease. The investigators can “round up the usual suspects” by collecting information about 
diverse features of demographic status (age, sex, education, income, social status), past medical history 
(childhood and other previous diseases), family medical history (diseases in relatives), environmental 
exposure (pets, atmospheric pollution, travel abroad, home conditions), occupational exposure (fumes, 
chemicals), and personal habits (smoking, alcohol, dietary components, physical activities, cosmetics, 
hair dyes). In the usual questionnaire for such studies, more than 100 candidate variables can readily 
be assembled and then checked for their statistical relationship to the occurrence (or nonoccurrence) of 
the selected outcome disease.

25.1.2.2 Multiple Outcomes — Multiple outcome events will occur in any cohort study, 
regardless of whether the “causal” maneuvers are self-selected or assigned as part of a randomized trial. 
To satisfy regulatory agencies, reviewers, or readers and to provide a specific focus in design of the 
research, one of the many possible outcomes is usually designated as the prime target. The many other 
outcome events, however, are still observed, recorded, and then available as data that can be examined 
for purposes of confirmation, explanation, or exploration.

In a confirmatory examination, the desired primary outcome was achieved; and the confirmation 
provides additional, consistent evidence. For example, if imaging evidence shows that a thrombus 
dissolved or disappeared as the primary goal of treatment, additional laboratory evidence of clot-
dissolution effects would be confirmatory. In an explanatory examination, the additional evidence would 
help explain why the primary effect occurred. For example, a reduction in fever and white blood count 
could help explain the disappearance of pain or malaise in patients with a bacterial infection.

In an exploratory examination, however, the desired primary outcome was not achieved. The 
investigator may then check the additional outcome events, hoping to find some other evidence of a 
beneficial (or adverse) effect. Thus, if mortality was not reduced with an anti-leukemic treatment, the 
investigators may search for efficacy in evidence of remission, reduction in number of white cells, or  
other selected targets.

25.1.2.3 Multiple Agents and Outcomes — In a case-control study, the diverse risk-factor 
candidates can be explored only in relation to the specific disease chosen for the cases; but in a cohort 
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or cross-sectional survey, a diverse collection of diseases (or other conditions) can also be available as 
outcome events.

An extraordinary opportunity for multiple comparisons occurs in collections of data where the inves -
tigators can check simultaneously for multiple agents and multiple outcomes. Thus, if adequate data are 
available for 100 candidate “risk” variables and 50 outcome diseases, 5,000 relationships can be tested.  
Opportunities for these “mega-comparisons” arise when information is collected in a medico-fiscal 
claims system or in special data banks for pharmacologic surveillance of hospitalized patients. In both 
types of data banks, the investigators will have information about multiple therapeutic agents that can 
then be explored as etiologic precursors of multiple diseases.

The exploration is sometimes called a “fishing expedition,” “mining the data,” or “dredging the data 
bank.” If data are available for 200 therapeutic agents and 150 diseases, 30,000 relationships can be 
explored. With α set at .05 for each relationship, a “positive” result could be expected by chance alone 
in 1500 of the explorations, even if no true relationships exist.

25.1.2.4 Multiple Subgroups — If nothing exciting emerges from all the other possibilities, 
the relationships of agents and outcomes can be checked in different subgroups. The subgroups can be 
demarcated by demographic attributes such as age, sex, race, occupation, religion, and socioeconomic 
status; by medical attributes such as stage of disease and laboratory tests; and by geographic regions.

For example, in a large case-control study of the relationship between saccharin and bladder cancer, 8

the investigators were apparently disappointed to find an overall odds ratio of essentially 1. After 
multiple subgroup analyses, however, a significantly elevated odds ratio was found in two subgroups: 
white men who were heavy smokers and nonsmoking white women who were not exposed to certain 
chemical substances.

Probably the greatest opportunity to explore multiple subgroups occurs if the analyst has access to 
data collected for different geographic regions, such as individual nations or parts of a nation. For the 
United States, the nation can be divided into whatever zones the investigator wants to check: individual  
states (such as West Virginia), large regions (such as “the South”), counties, cities, political districts, or 
census tracts. If outcome events such as death or disease are available for these zones, and if exposures 
can also be demonstrated or inferred from concomitant data about occupation, industry, air pollution, or  
sales of different substances, an almost limitless number of explorations is possible, particularly because 
the relationships between any outcome and any exposure in any geographic zone can also be checked in 
multiple demographic subgroups. Explorations in search of a particular relationship have sometimes been 
called “data torturing,”9 and, when zealously applied, “torturing the data until they confess.”

Aside from the problem of mathematical corrections for “chance” results, the scientific interpretation 
of the findings is always difficult. Do the different occurrence rates of cancer reflect true differences in 
the zones demarcated for “cancer maps”10 or differences in the use of diagnostic surveillance, testing, 
and criteria? Has a true “cluster” or mini-epidemic of disease really occurred at a particular site, or is 
the event attributable to chance when so many possible sites are available for the occurrence?11,12

25.1.2.5 Temporal Distinctions — Beyond all the explorations of variables for agents, out-
comes, subgroups, and regions, a separate set of opportunities for multiple comparisons is presented by  
time, which can appear in both secular and serial manifestations.

The word secular is regularly used in an ecclesiastical sense to distinguish worldly or “profane” things 
from those that are religious or sacred; but in epidemiologic research, secular refers to calendar time. 
The word serial refers to time elapsed for a particular person since a selected “zero time,” which might  
be randomization, onset of therapy, or the date of admission to an ongoing study. The two concepts 
appear in a single sentence if we say that the five-year survival rate (serial) has been steadily rising for 
a particular cancer during the past thirty years (secular).

Secular trends are regularly examined in epidemiologic studies of mortality rates, cancer incidence, 
etc. for the same single geographic zones. Because the trends are usually reported with a single index 
of association, major stochastic problems do not occur. The problem of multiple comparisons would 

© 2002 by Chapman & Hall/CRC 



arise, however, if an investigator compared a mortality rate for a recent year against the corresponding 
rate for each of a series of previous years.

The main role of time in multiple comparisons, however, usually occurs as a serial problem in timing 
of outcome measurements, discussed next, or in the sequential accrual of data, discussed in Section 25.3.

25.1.2.6 Timing of Outcome Measurement — If the outcome is a binary event, such as 
death or recurrences of myocardial infarction, the analysis is usually managed with the “life-table” 
methods, discussed in Chapter 22, that focus on time to occurrence of the “failure” event. In many other 
studies, however, the outcome is expressed with an ordinal or dimensional variable, such as level of pain 
or blood pressure, for which average magnitude (or change) in two treated groups can be checked at 
different serial times after onset of treatment. For pain, the intervals might be at 15 min, 30 min, 60 min, 
and 90 min; for blood pressure, they might be at 1, 2, 4, 6, and 8 weeks.

If stochastic significance is present at just one or two of these intervals, but not at the others, questions
can arise about how (if at all) to adjust the α level for the multiple comparisons.

25.1.3 Analytic Sources

Beyond all the opportunities just cited in the architecture of the research, multiple comparisons can also 
be produced as a purely statistical activity when the data are analyzed. One opportunity comes when 
the same comparison receives alternative stochastic tests. Another opportunity arises during a “stepped” 
sequence for multivariable analyses.

25.1.3.1 Alternative Stochastic Procedures — A multi-comparison issue that seldom 
receives statistical attention occurs when the same hypothesis in the same set of data is tested with 
different stochastic procedures. For example, a set of dimensional results in two groups can be contrasted 
stochastically with a t test, a Wilcoxon-Mann-Whitney rank test, or a Pitman-Welch permutation test. 
[One-tailed and two-tailed interpretations cannot be regarded as more than one comparison, because 
they use different stochastic hypotheses. The null hypothesis would be ∆ = 0 for two tails, and ∆ Š 0 
(or ð 0) for one tail.]

If the alternative stochastic tests do not all lead to the same conclusion for “significance,” the data 
analysts usually choose the results they like. This problem is probably ignored in most statistical 
discussions because it arises not from random chance, but from the different mathematical strategies 
used to evaluate the role of random chance.

25.1.3.2 Sequential Stepping in Multivariable Analysis — A more “legitimate” random-
chance problem occurs in multivariable regression where the outcome event is a single dependent variable 
that is associated with different combinations of individual “independent” variables in sequentially 
stepped analyses. The stepping can go in an upward (or “forward”) direction, starting with one inde-
pendent variable and progressively adding others, or in a downward (or “backward”) direction, starting 
with all the available independent variables, and progressively removing them one at a time. [The process 
can also go back and forth in a “stepwise” (or “zig-zag”) arrangement].

Despite occasional discussion,13 no agreement has been reached on whether the α level should be 
adjusted for the multiple inferences. Consequently, the problem is usually ignored, and the analysts then 
apply the same preset level of α without alteration during each of the successive analyses.

25.2 Management of Multiple Comparisons

The management of multiple comparisons is a complex and controversial issue. The proposals range 
from a purely stochastic “correction,” to a “benign neglect” that imposes no adjustment at all, to decisions 
based on architectural and other scientific principles.
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25.2.1 Stochastic Decisions

The many mathematical proposals offered for prophylactic and remedial management of the “multiple 
inference” problem have enriched the world of statistical eponyms with such names as Bonferroni,14

Duncan,15 Dunn,16 Dunnett,17 Newman-Keuls,18,19 Scheffe,20 and (of course) Tukey.21,22 In almost all of 
the proposed methods, the overall level of α is “penalized” by reduction to a smaller α′ for the individual 
comparisons (or tests). When a smaller α′ is used for individual tests, the overall level of α can be kept 
at the desired boundary for the total set of comparisons. The diverse proposals differ in the arrangements  
used for planning the multiple comparisons and for setting the penalties.

25.2.1.1 Bonferroni Correction — Of the diverse penalty proposals, the most obvious and easy 
to understand is called the Bonferroni correction.14 For k comparisons, the level of α for each test is reduced 
to α′ = α /k. Thus, with 6 comparisons, each would be called stochastically significant only if its P value 
were below α′ = .05/6 = .00833. This tactic would make 1 − α′ become 1 − .00833 = .99167 for each 
comparison and (1 − α′)k would be (.99167)6 = .951 for the group. The overall α = 1 – .951 = .049 
would remain close to the desired level of .05.

 For interpretation, each of the multiple Pi values is multiplied by k (i.e., the number of comparisons) 
and the “Bonferronied” P value is compared against the original α. For example, if 8 comparisons were 
done, a result that obtains P = .023 would be evaluated as though P = .184. If decisions are made with 
confidence intervals rather than P values, the confidence interval is constructed with α /k rather than α.
Thus, for 8 comparisons at α = .05, the value of Zα selected for the confidence interval would be Z .00625
rather than Z.05. The larger adjusted value of Z would produce a larger confidence interval and a reduced 
chance of excluding the null value of the stochastic hypothesis.

In recent years, the Bonferroni procedure has been criticized for having low power, i.e., truly “signif -
icant” results may be declared “nonsignificant.” Of alternative methods proposed by Holm,23,24 Hoch-
berg,25 and Simes,26 the Holm procedure, which requires arranging the Pi values in increasing order, has 
been hailed27 as “simple to calculate, … universally valid, … more powerful than the Bonferroni 
procedure,” and a preferable “first-line choice for distribution-free multiple comparisons.” Nevertheless, 
after examining the operating characteristics of 17 methods for doing the correction, Brown and Russell28

concluded that “the only guaranteed methods to correct for multiplicity are the Bonferroni method and 
(the Holm) step-down analogue.”

Although each of the many multiple-comparison proposals has its own special mathematical virtues, 
the Bonferroni correction has the scientific advantage of remarkable simplicity. It is still probably the 
best correction to know, if you plan to know only one.

25.2.1.2 Other Proposals — Unlike the Bonferroni and other tactics just cited, which can be 
applied in almost any situation, most other proposals29,30 for managing the multiple-comparison problem 
are “tailored” to the particular structure of the research. For example, when treatments A, B, C, and D 
are tested simultaneously in the same trial, the conventional statistical analysis might begin with an 
analysis of variance (discussed later in Chapter 29), which first checks for “overall significance” among 
the four treatments. The stochastic adjustments thereafter are aimed at the pairwise comparisons of 
individual treatments.

If accruing data for two treatments are checked at periodic intervals in an ongoing randomized trial, 
the stochastic adjustments are set at lower levels of α′ for each of the sequential decisions, so that α
will have an appropriate value when the trial has finished. The choices proposed for the sequentially 
lowered α′ levels have brought an additional set of eponyms, which are discussed later in Section 25.3.3.3.

Among other purely stochastic approaches, Westfall and Young31 have developed a compendium of 
bootstrap correction methods. Another strategy32 is to split the data into two parts, of which the first is 
used to explore multiple hypotheses. Those that are “significant” are then tested in the second part; and  
attention thereafter is given to only the hypotheses that “passed” both tests.
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25.2.1.3 Problems of Intercorrelation — When multiple factors are individually checked for 
their impact on an outcome event, some of them may be stochastically significant by chance alone, but  
their actual impact may be altered by correlations among the diverse factors. An example of this problem 
was noted3 for intercorrelations among such baseline “risk factors” as blood pressure, weight, serum 
cholesterol, age, and pulse rate among men who did or did not develop coronary disease in the famous 
Framingham study.

The suitable adjustment of intervariable correlations is more of a descriptive than a stochastic chal-
lenge, however, and is managed with multivariable analytic methods. The main intervariable problems 
arise, as noted in Section 25.1.3.2, when multiple testing is done as individual variables are added or 
removed incrementally during a “stepping” process.

25.2.1.4 Bayesian Methods  — All of the challenges of interpreting and adjusting P values can 
be avoided by using the methods of Bayesian inference. For each relationship, a prior probability is specified 
beforehand. It then becomes transformed, with the likelihood ratio determined from the observed data, into  
a posterior probability that reflects belief in the observed relationship, given the data. Adjustments are not 
needed for multiple-null-hypothesis P values, because each relationship has its own prior probability.

Appealing as the Bayesian approach may be, it has one supreme disadvantage. The prior probabilities 
cannot be established beforehand for relationships that emerge as “significant” only in conventional P 
values obtained after the data have been explored. A second problem, which may or may not be a 
disadvantage, is that the selection of prior probabilities, even when possible, will depend more on 
scientific anticipations (discussed later in Section 25.2.4.) than on purely mathematical estimations.

25.2.2 “Permissive Neglect”

At the opposite extreme of management, the stochastic adjustments are replaced by a “permissive-
neglect” argument that “no adjustments are needed for multiple comparisons.”33 Perhaps the simplest 
way of stating this argument is that a stochastic test is intended to demonstrate numerical stability of 
the results. If not stable, they need receive no further attention; if stable, their further evaluation depends  
on the scientific context and connotations. The stochastic criterion for stability, however, should not be 
altered according to whatever additional comparisons may have occurred. If the number of additional 
comparisons is really pertinent, perhaps “an investigator should control his ‘career-wise’ alpha level, or  
… all investigators should agree to control the ‘discipline-wise’ level.”32

Proponents of the permissive-neglect argument may dismiss not only the stochastic but also the 
scientific approach to multiple comparisons. According to one proposal,34 the investigator’s “perspective” 
in deciding what data to collect and analyze is “irrelevant to assessing the validity of the product.” The  
“motivations for including the specific items in the study and conducting the analyses has [sic] no 
independent relation to the quality of the data generated.”

At the extreme of the anti-multiple-comparison-correction argument is the claim that hypotheses 
generated from the data need not be distinguished from those tested with the data.34,35 Cole has proposed 
a theoretical hypothesis-generating machine,35 with which “all possible cause-effect hypotheses have been 
generated,” so that all subsequent activities can be regarded as hypothesis testing rather than generating.  
This approach would allow epidemiologists to use a counterpart of the “Texas sharpshooter strategy” in 
which someone fires a shot at a barn and then draws a target around the site where the bullet hit.

25.2.3 Scientific Validity

In contrast to the mathematical rigidity of the purely stochastic approach and the nihilistic permissiveness
of the no-correction approach, multiple comparisons can be evaluated with principles, discussed 
elsewhere36 and earlier in Section 11.10.3, that focus on scientific rather than statistical inference. The 
principles refer to the internal validity of the comparisons or associations examined in the data, and to 
their external validity when applied beyond the particular persons who were investigated.
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For internal validity, the architectural components of the research should be free from four types of 
biased comparison: susceptibility bias in the baseline states, performance bias in the maneuvers, detection 
bias in the outcome events, and transfer bias in the collection of groups and data. For external validity,
the groups and data should be suitable for the derived conclusion, and for the observed results to be 
extrapolated to the outside world beyond the special conditions of the study. For scientific decisions, 
these internal and external evaluations should always take place after (and preferably before) any 
statistical conclusions have been formed. If scientific validity is dubious, the statistical results can often  
be dismissed without further attention.

For example, when multiple-comparison analyses lead to highly publicized reports that pizza protects  
against prostate cancer whereas hot dogs raise the risk of brain cancer, a first step might be to determine 
whether the surveillance and monitoring that detected those cancers were carried out similarly in the 
groups who are “exposed” or “non-exposed” to the ingestion of pizza or hot dogs. In most such reports,  
the investigators have given no attention to the problem of “detection bias.”

Without resorting to architectural appraisals, scientists who are familiar with real-world medical 
phenomena might even use a simple analog of Bayesian inference called “clinical common sense.” For 
example, after the erroneous statistical association that led to coffee being widely publicized as a cause  
of pancreatic cancer, a distinguished Canadian scientist37 told me, “I knew it couldn’t be true. If it were, 
pancreatic cancer would be a major problem in Brazil.” Analogous common sense might have been used 
to dismiss the anti- or pro-carcinogenic assertions about pizza and hot dogs, and to avoid some of the 
other epidemiologic embarassments produced by erroneous but highly publicized accusations about the 
“menace of daily life.”38

25.2.4 Specification of Scientific Hypotheses

An additional scientific approach to the multiple-comparison problem involves appraising the timing 
and specificity with which the statistical hypotheses were formulated. The choice and severity of a 
stochastic (or other) penalty might depend on the way those hypotheses were scientifically articulated 
before the analyses began. This approach has been advocated even in statistical publications, with the 
recommendation that no corrections are needed for multiplicity when “a select number of important 
well-defined clinical questions are specified at the design.”39

If the scientific hypotheses are stipulated in advance when the research is planned, the main mathe-
matical challenges are to choose one- or two-tailed test directions, magnitudes for the boundaries of δ
and ζ , and pertinent stochastic levels for α and β. In multiple-comparison problems, however, the 
scientific hypotheses may have been stipulated, vaguely anticipated, uncertain, or unknown before the 
data were statistically analyzed. If suitable attention is given to these previous specifications for the 
scientific hypothesis, the multiple-comparison problem might be effectively managed with substantive, 
rather than statistical, decisions.

25.2.4.1 Stipulated — Suppose the investigator wants to compare the virtues of a new analgesic 
agent, Excellitol, against a standard active agent, such as aspirin. To get approval from a regulatory 
agency, Excellitol must also be compared against placebo. When the randomized trial is designed with 
three “arms” —  Excellitol, aspirin, and placebo — the main goal is to show that Excellitol is better than 
aspirin or at least as good. In this trial, the placebo “arm” does not really have a therapeutic role; its 
main job is scientific, to avoid the problem of interpretation if two allegedly active analgesic agents 
seem to have similar effects. The similar results may have occurred if the active agents were not 
adequately challenged because the patients under study had pain that was either too severe or too mild.  
A superiority to placebo will indicate that both active agents were indeed efficacious.

Many data analysts would readily agree that previously stipulated hypotheses should be tested without 
a mathematical penalty. Instead of the “three-arm” randomized trial just discussed, the investigators 
might have done three separate trials, testing Excellitol vs. aspirin in one study, aspirin vs. placebo in 
another, and Excellitol vs. placebo in a third. Because the results of each of these three studies would 
be appraised with the customary levels of α, a penalty imposed for research done with an efficient design 
would seem to be an excessive act of pedantry.
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Similarly, when investigators check multiple post-therapeutic outcomes to explain a significant main 
result, no penalties seem necessary or desirable. For example, if Treatment A achieved significant 
improvement in the main global rating, various other individual manifestations — such as pain, mobility, 
or dyspnea — may then be checked to help explain other significant distinctions in the compared 
treatments. In these explanatory contrasts, the main role of the stochastic hypothesis is to confirm 
numerical stability, not to test new causal concepts.

In another situation, if cogent subgroups are defined by well-established and well-documented con-
founders, the examination of their results would represent the equivalent of previously stipulated hypoth -
eses. For example, if a new chemotherapy significantly prolongs survival in a large group of patients 
with advanced cancer, the results can quite reasonably be checked in “well-established” subgroups that 
are demarcated by such well-known prognostic factors as age and severity of clinical stage. The subgroups 
would not be well established or well documented if they were “dredged” from data for such factors as  
occupation or serum sodium level. Analysis of results within clinically cogent subgroups40 would 
therefore be an appropriate scientific activity, requiring no mathematical penalties. Because the explan -
atory tests would be done to confirm and explain the original hypothesis, not to generate new ones, the  
level of α need not be penalized for the tests.

25.2.4.2 Vaguely Anticipated — Suppose 8 active analgesic agents — A, B, C, D, E, F, G, and 
H — are compared in the same trial, in addition to aspirin and placebo. The investigators who do such 
a 10-“arm” trial might check all of the 45 (= 10 × 9/2) pairwise comparisons afterward, but the main 
focus might be only on the 8 comparisons of active agents vs. aspirin, and the 9 comparisons of active 
agents vs. placebo. The original scientific hypothesis was that aspirin would be inferior to at least one 
of the non-aspirin agents, but its identity was not stipulated. Hence, a superior individual result, if found, 
can be regarded as vaguely anticipated. A stochastic penalty might be imposed for the 8 tests of active 
agents vs. aspirin, but not for all the other comparisons.

25.2.4.3 Uncertain — Examples of multiple explorations for previously uncertain hypotheses can 
be found in most retrospective case-control studies. In cohort research, a counterpart example is provided 
by the results now published for more than 20 “cause–effect” relationships examined in a group of about  
100,000 nurses who were assembled and “followed-up” by responses to mailed questionnaires.4,41

Because most of the “risk” information would not be collected if it were regarded as wholly unrelated 
to the outcome event, the investigators may argue that any positive results in the multiple comparisons  
were “anticipated.” Furthermore, stochastic penalties are obviously not needed in certain analyses where
special additional data were collected for tests of specific scientific hypotheses.41 On the other hand, 
if the relationship between an individual risk factor and an individual outcome were not deliberately 
stipulated in advance as a focus of the research, the scientific hypothesis for each test can be regarded  
as uncertain. A stochastic penalty might be imposed, but it need not be quite as harsh as the draconian  
“punishment” warranted for totally unknown hypotheses discussed in the next subsection.

25.2.4.4 Unknown — The data-dredging activities mentioned earlier are the most glaring exam-
ple of the multiple-comparison problem, which is abetted by the modern availability of digital computers 
that can store and easily process huge amounts of data. With this capability, computer programs can be  
written to check any appropriate “risk” variable against any appropriate “outcome” variable in any 
suitably large collection of data. The computer can then print stars or ring bells whenever a “significant” 
distinction is found.

In one famous example of this type of “hypothesis-generating” adventure, previous exposures to 
medication were associated with hospital admission diagnoses for an estimated 200 drugs and 200 
diseases in a “data bank” for a large group of patients.42 Among the “significant” results of the explo-
rations, which were not stochastically corrected for multiple comparisons, was a relationship suspected  
as causal between reserpine and breast cancer. 43 After diverse sources of bias were later revealed in the 
original and in two concomitantly published “confirmatory” studies,44–45 the relationship has now become 
a classic teaching example of sources of error in epidemiologic research.
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If the analytic procedures are pure acts of exploration, data-dredging, or other exercises in “looking 
for a pony” whose identity was not anticipated beforehand, some type of intervention is obviously needed 
to protect the investigators from their own delusions. For example, if the primary hypotheses were not 
supported by the main results of a clinical trial, and if the investigators then explore other outcome 
events (such as individual manifestations or laboratory data) hoping to find something— anything — that 
can be deemed “significant,” the process is a counterpart of data dredging. Similarly, in various epide-
miologic studies, when diverse variables are checked as “confounders” without having been previously 
identified as such for the relationship under investigation, the results are obviously not a product of 
stipulated scientific hypotheses.

In the absence of both an established strategy for “common sense” and data that allow appraisal of 
architectural validity, the most consistent approach is to apply a mathematical adjustment. The mathe-
matical penalty could be harsh for previously unknown exploratory hypotheses, slightly reduced for 
uncertain hypotheses, and “softened” for hypotheses that were vaguely anticipated or tested repeatedly 
in sequential evaluations. A more powerful alternative strategy, of course, is to apply rigorous scientific  
standards to raise quality in designing and evaluating the architecture of the research, rather than using 
arbitrary mathematical methods to lower the α levels.

25.2.5 Commonsense Guidelines

Regardless of whether and how the foregoing scientific guidelines are applied, several non-mathematical 
principles of scientific common sense can always be applied.

25.2.5.1 Acceptibility of “Proof” — No hypothesis derived from statistical data can ever be 
regarded as proved by the same data used to generate it. At least one other study, with some other set 
of data, must be done to confirm the results. For example, in the previously cited erroneous accusation 
that reserpine was causing breast cancer, a causal claim would probably not have been accepted for 
publication if supported only by results of the original data-dredged study.43 The claim was published 
because it had been “confirmed” (at least temporarily) by two other investigations44,45 elsewhere.

25.2.5.2 Check for Scientific Error/Bias — Many unexpectedly “positive” relationships 
arise not by stochastic chance alone, but from bias and/or inaccuracy in the compared groups and data. 
The appropriate exploration and suitable management of these scientific errors will do much more to 
eliminate “false positive” results than anything provided by mathematical guidelines.

25.2.5.3 Demand for “Truthful” Reporting — Many clinical trials and other research 
projects today are done only after a sample size has been calculated, using selected levels of δ, α, and 
perhaps β. The previously set levels should preferably be maintained in the analysis and always be 
cited when the research is reported.

Another aspect of “truthful” reporting would be a citation of all the comparisons that were made 
before the analysis hit “bingo.” The citation would allow readers to determine whether and how much 
of a stochastic or other “penalty” should be imposed. For example, in the erroneous coffee-pancreatic 
cancer study mentioned earlier,5 a reader of the published report could discern that at least six relation-
ships had been explored, but the investigators had probably checked many others before achieving 
“success” with coffee.

25.2.5.4 Focus on Quantitative Significance — In many reports, the boundaries set for 
quantitative distinctions are not cited, particularly when the “delta wobble” lowers the initial value of δ
so that stochastic significance is claimed for a value of do that might not have been previously regarded 
as impressive. If readers and reviewers (as well as investigators) begin to focus on the quantitative 
importance rather than stochastic significance of the numbers, many of the existing problems can be 
avoided or eliminated. The dominant role of sample size should always be carefully considered when 
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analyses of large groups of persons (and data) produce impressive P values (or confidence intervals) for 
distinctions that may have little or no importance. With emphasis on the quantitative magnitude of the 
distinction rather than its stochastic accompaniment, many issues can be resolved on the basis of triviality 
in descriptive magnitude, without the need to adjust levels of α.

(The concept of quantitative magnitude will also require careful consideration if Bayesian methods 
are used to estimate prior probability, because both the prior and posterior probabilities will involve the  
“effect size” of anticipated and observed distinctions.)

If quantitative magnitude continues to receive its current neglect, however, investigators may preserve 
and increase the contemporary emphasis on stochastic confidence intervals and P values. An excellent 
example of the emphasis was presented in a guideline suggested for dealing with the problem of multiple 
comparisons: “Any unexpected relationships should be viewed with caution unless the P value is very 
extreme (say less than 0.001). However, this difficulty does not affect the relationships assessment of 
which would have been expected a priori. Paradoxically, in a study such as ours, a correlation significant 
at the 1 in 20 level demonstrating an expected relationship is more reliable than an unexpected correlation
significant at the 1 in 200 level.”46

The progress of science and statistics in the 21st century will depend on investigators’ ability to 
overcome this type of stochastic infatuation.

25.3 Sequential Evaluation of Accruing Data

A different type of multiple-comparison problem, which is almost unique to long-term randomized 
clinical trials, occurs when the same hypothesis is tested repetitively as data accrue for the results of 
the trial.

The repetitive testing is usually motivated by both pragmatic and ethical reasons. Pragmatically, the 
investigators would like to keep the trial as small and short as possible, getting convincing results with 
a minimum of patients, duration, and costs. Ethically, the investigators worry about continuing a trial 
beyond the point at which the conclusions are clear.

The ethics of randomized trials are a thorny problem. Some writers47 argue that most randomized 
trials are unethical because the investigators’ main goal is to get convincing evidence of a superiority 
that they already believe. In this view, a trial is ethical only when initiated with genuine uncertainty, 
under the “equipoise” principle48 that none of the compared agents has been demonstrably superior (or 
inferior). Most investigators, using their own concept of the term demonstrably, can usually justify the 
equipoise belief; but if the belief is altered by accruing results that show one of the agents to be 
unequivocally better (or worse), the investigators may want to stop the trial promptly before it reaches 
the scheduled ending.

25.3.1 Sequential Designs

The challenge can be approached with a sequential design, which makes advance plans to stop the trial 
as soon as a definitive conclusion emerges.

The general statistical method called sequential analysis was first developed during World War II by 
Wald49 in the U.S. and by Barnard50 in the U.K. The method was initially used as a quality control test 
in the manufacture of artillery and was later applied in other industrial circumstances. The method relied 
on repeated sampling, however, and the theory required suitable modification by Armitage51 to become 
pertinent for the single group of people who enter a randomized clinical trial.

In the plans of a sequential design, the patients are arbitrarily arranged in pairs as they successively 
enter the trial. After the compared treatments, A and B, have been randomly assigned and carried out 
for each pair of patients, the examined results may show either a tie or that A or B is the “winner.” As 
secular time progresses, an accruing tally of scores is kept in a graph on which the X axis is the number 
of entered pairs. The tally on the Y axis goes up or down for each A or B winning score. For a tie, the  
X axis advances by one, with no change in the level of Y.
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Before the trial begins, special “outer” boundaries are statistically calculated for stopping the trial
with a “significant” result when the accruing tally in favor of A or B exceeds the corresponding upper
or lower boundary. The trial can also be stopped for having “insignificant” or “inconclusive” results if
the tally crosses a separate “inner” boundary before reaching any of the outer boundaries of “signifi-
cance.” In certain drawings, the sloping outer and inner margins of the graphical pattern, shown in
Figure 25.1, resemble a “pac-man” symbol.

Despite the appeal of letting a trial be stopped at the earliest possible moment with the smallest
necessary sample size, the sequential-design method is seldom used. The main problem is feasibility.
To find a prompt “winner” for each pair of patients, the outcome event must be something that occurs
soon after treatment. The type of therapy that can be tested is therefore restricted to agents used in
treating acute pain, acute insomnia, or other conditions where the outcome can be determined within
a relatively short time, such as 24 hours after treatment. In the trial52 shown in Figure 25.1, the 
investigators applied an unusual cross-over design to compare an active agent vs. placebo in patients 
with a known high attack rate of (“catamenial”) epilepsy associated with the menstrual cycle.

An additional problem in sequential designs is that reliance on a single outcome event — such as 
relief of symptoms — may produce stochastic significance for that event, but not for associated 
manifestations that the investigators would also like to examine. Furthermore, unless the treated 
condition has a remarkably homogeneous clinical spectrum, the arbitrary pairing of consecutive 
accruals may produce comparisons for patients with strikingly different baseline severity of the clinical 
condition. Although the randomization should eventually equalize the total disparities of severity in 
each pair, the trial may be stopped before enough patients have been accumulated to allow either a 
balanced distribution of severity or an effective comparison of treatment in pertinent clinical subgroups.

25.3.2 N-of-1 Trials

An interesting variant of sequential designs is the N-of-1 trial, which was introduced53 to help choose 
optimum treatment for a single patient. If the patient has a chronic condition (such as painful osteoarthritis) 

FIGURE 25.1
Sequential analysis design for comparison of clobazam and placebo in the suppression of seizures associated with men-
struation. [Figure taken from Chapter Reference 52.]
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or a frequently recurrent condition (such as dysmenorrhea or migraine headaches), and if several treatments 
are available for the condition, practicing clinicians have usually tried the treatments sequentially. Agent 
B was given if Agent A failed to be successful, and Agent C if Agent B failed. The N-of-1 trial provides 
a formal evaluative structure — with randomization, double-blinding, etc. — for appraisals that were pre-
viously done informally and sometimes inefficiently.

N-of-1 trials are limited, however, to clinical situations where the patient recurrently reaches the same 
baseline state before each treatment, and where the outcome does not take an inordinately long time to 
occur. Aside from issues in feasibility, the main statistical challenges in the trials are to choose the 
phenomenon that will be evaluated quantitatively as the main “outcome,” and to decide whether the 
evaluation will depend on a simple preference for Agent A vs. Agent B, on purely descriptive evidence,  
or on tests of stochastic significance for the accrued data.54

25.3.3 Interim Analyses

Because sequential designs are seldom feasible and because N-of-1 trials are limited to individual 
patients, the long-term efficacy of many therapeutic agents is tested in conventionally designed random -
ized trials, with an advance calculation of sample size. As the trial progresses, however, the investigators 
then do interim analyses (often called “peeks at the data”) to see what is happening.

25.3.3.1 Quantitative and Stochastic Phenomena — The “premature” demonstration of 
superiority for one of the compared treatments may involve quantitative or stochastic distinctions. The 
prematurity has a quantitative source if the compared difference in rates of good (or bad) outcomes is 
unexpectedly much greater than anticipated. With a particularly large incremental difference, the quan -
titative distinction between the treatments will be stochastically significant much sooner than was 
expected in the original plans for sample size and secular duration.

The prematurity has a stochastic source, however, when “significance” is obtained by the progressive  
enlargement of group sizes. With this enlargement, the same quantitative difference in the same outcome 
event at the same serial time (such as 6-month survival) that was “nonsignificant” in an early secular 
comparison may become stochastically significant in a later comparison that included many more people. 
This phenomenon can arise because the participating patients in long-term randomized trials are seldom 
admitted all at once. Instead, they are accrued over a secular period of calendar time. Thus, if the plan 
calls for 500 patients to be admitted, 200 may be recruited in the first calendar year of the trial, 200 
more in the second year, and the last 100 in the third year. A comparison of 1-year survival rates for 
the treatments will therefore include enlarging groups at successive secular dates; and results for 1-year 
survival of all 500 patients cannot be obtained until at least the fourth calendar year of the trial.

Another source of premature “significance” is both quantitative and stochastic. As noted in Chapter 
23, the Neyman-Pearson calculation for “double significance” will produce a sample size much larger 
than what is needed if the observed do exceeds the anticipated “big” δ. With the “inflated” sample size, 
however, a value of do much smaller than δ can become stochastically significant. As the group sizes 
accrue in the trial, stochastic significance can be reached with do < δ, while the group size is also still 
smaller than the originally scheduled N.

25.3.3.2 Problems in Interim Examinations — To determine whether a stochastically signif-
icant difference has occurred in the accruing data, the investigators may regularly examine the interim 
results at sequential intervals of calendar time.55 If the quantitative value of the observed quantitative 
distinction, do, is unexpectedly higher than the anticipated δ, stochastic testing is easily justified. On the 
other hand, if the original value of δ is preserved, and if sample size was originally calculated for “single 
significance,” and if do is required to reach the level of δ, stochastic significance cannot be obtained 
until the full sample size is accrued.

The main problems arise when sample size has been calculated with the Neyman-Pearson strategy for  
“double” significance. Because the interim analyses are almost always done to test the original null 
hypothesis (which does not specify a value for δ), the “inflated” value of N can readily allow stochastic 
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significance to occur with do < δ, long before the planned numbers of patients are fully accrued. The 
frequency of the “delta wobble” problem and the interim stochastic tests could both be substantially 
reduced if a preserved level of δ were demanded for any declaration of “significance.” As noted in Chapter 
23, however, investigators usually lower the original value of δ to correspond to whatever smaller value 
of do produced stochastic significance. Consequently, with the prime quantitative distinction neglected, 
the main issue is no longer “scientific.” It becomes mathematically relegated to a stochastic mechanism  
for adjusting the boundary of α.

25.3.3.3 “Stopping Rules”  — A series of current proposals for adjusting α are called “stopping 
rules” for clinical trials.56,57 The rules contain limitations on the number of interim analyses, and offer 
boundaries for the reduced α′ to be used at each analysis. With the Haybittle–Peto technique,58,59 α′ is 
kept at a strict constant level (such as .001) for all the interim analyses, but returns to the original α
(such as .05) at the conclusion if the trial is not ended prematurely. In Pocock’s proposal,60 which 
resembles a Bonferroni adjustment, α′ is set according to the number of interim analyses. With five 
analyses, α′ would be 0.016 to achieve an overall α of .05 at the end of the trial. With the O’Brien–Flem -
ing method,61 the α′ levels are stringent for the early tests and more relaxed later. Thus, the successive 
α′ levels might be .0006 for the first, .015 for the second, and .047 for the third interim analysis.

O’Brien and Shampo62 have offered an excellent discussion and illustrations of these different rules, 
while also citing some ethical (as well as scientific) reasons for continuing a trial until its originally 
scheduled completion, despite the “stopping rules.”

25.3.3.4 “Stochastic Curtailment” — In another interim-examination technique, called sto-
chastic curtailment,”63,64 the analysts consider both the observed and unobserved data to decide whether 
the current conclusions would change if the trial continues to its scheduled completion. The focus is not 
merely on clear evidence of benefit or harm (as in the conventional stopping rule), but also on lack of 
“power” to show an effect. Common non-harm–non-benefit events that can lead to stochastic curtailment 
are inadequate recruitment of patients, and many fewer outcome events than originally expected.

25.3.3.5 “Financial Curtailment” — A different form of curtailment occurs when a study is 
stopped because the sponsoring agency decides that the continuing costs will not be justified by the 
anticipated benefits. The early termination of the study may be quietly accepted if the sponsor is a 
governmental agency (as in termination of the DES cohort study65 by the National Institutes of Health 
in the U.S.), but may evoke protests about ethical behavior66 if the sponsor is a pharmaceutical company 
(as in the decision by Hoechst Marion Roussel to stop a European trial of Pimagedine).

25.3.3.6 Additional Topics — An entire issue of Statistics in Medicine has been devoted to 25 
papers from a workshop67 on “early stopping rules.” Beyond the phenomena already mentioned here, the 
papers contained the following additional topics: Bayesian approaches, a trial in which the later results 
took a direction opposite to that of early results, an “alpha spending” approach for interim analysis, “the 
case against independent monitoring committees,” and a “lay person’s perspective” on “stopping rules.”

25.4 Meta-Analysis

In meta-analysis, the results of a series of studies on “similar” topics are pooled to enlarge the size of 
the group and volume of data. The enlarged aggregate is then statistically analyzed to check the same 
hypotheses that were tested previously, although the larger amount of data may sometimes allow new 
hypotheses to be tested for subsets of the original “causal maneuvers” (such as different doses of 
treatment) or for subgroups of patients. A major advantage of the meta-analytic procedure is the 
opportunity to get “significant” conclusions from research that was previously inconclusive because of 
small groups or nonconcordant results in individual studies.

© 2002 by Chapman & Hall/CRC 



25.4.1 Controversies and Challenges

The meta-analytic strategy is controversial, being hailed by some writers as a majestic scientific 
advance68,69 and regarded by others as being statistical “tricks,”70 “alchemy for the 21st century,”71 or 
“shmeta-analysis.”72 Even the name of the process is controversial. Disliking the etymologic potential 
resemblance to meta-physics, some authors prefer to use “overview,” “pooling,” or “analytic synthesis” 
to label the work. Because aggregation is the basis of the statistical activities, meta-analysis should be  
distinguished from other types of re-appraisal, called “methodologic analyses”73 or “best-evidence 
syntheses,”74 in which the authors review the collection of literature for a particular topic, isolate the 
few reports that have really high scientific quality, and then draw conclusions from only those reports.

A full discussion of meta-analysis is beyond the scope of the brief “overview” here; interested readers 
can find many detailed accounts elsewhere.75–77 The main problems and challenges of meta-analysis, 
however, do not arise from statistical sources. The prime scientific difficulties come from the imprecision 
produced by pooling evidence that is inevitably heterogeneous, from problems in the judgmental eval-
uation of acceptable quality in the original reports, and from the “publication bias” that may make the 
available literature an unsuitable representative of all the research done on the selected topic.

Many published reports of meta-analyses have come from the combined results of randomized
clinical trials. The aggregating activities, although not unanimously applauded by clinical trialists,78,79

have been more widely accepted than the increasing appearance of meta-analyses based on epidemiologic 
and other observational studies that were done without randomization. The value of meta-analysis for 
“observational” (rather than randomized-trial) research is particularly controversial, and some prominent 
epidemiologists72,80 refuse to accept the procedure.

25.4.2 Statistical Problems

The main statistical challenges in meta-analysis are the choice of an appropriate index of contrast for 
expressing the “effect” in each study, the mechanism used for combining individual indexes that may 
be heterogeneous, and the construction of confidence intervals for the aggregated result.

25.4.2.1 Individual Indexes of Effect — A first step is to choose the particular outcome (or 
other event) that will be indexed. In some investigations, this event is the credible fact of total deaths, 
but many other studies use the highly flawed data (see Section 17.2.3) of “cause-specific” deaths.

In a second step, regardless of the outcome entity, its occurrence must be expressed in an index of 
contrast for the compared groups. In meta-analyses of data for the psychosocial sciences, from which 
meta-analysis originated, the customary index of contrast is the standardized increment or “effect size” 
that was discussed in Section 10.5.1. Being seldom used in medical research, however, this index has 
been supplanted by many other expressions, including the proportional increment (or “relative gain”), 
the relative risk (or risk ratio), the odds ratio, or the log odds ratio. The main problem in all the latter 
indexes is that they obliterate the basic occurrence rate to which everything is being referred. The same  
ratio of 4 will be obtained with the major incremental change of 0.3 in risk from .1 to .4, and with the 
relatively trivial change of .00003 from .00001 to .00004.

If the meta-analytic results are to be understood by clinicians or by patients giving “informed consent” 
to treatment, comprehension can be substantially improved if the results are cited in direct increments 
or in the number-needed-to-treat expressions that were discussed in Chapter 10.

25.4.2.2 Aggregation of Heterogeneous Indexes — Regardless of which indexes are cho-
sen to express the contrasted effects, the next decision is to choose a method for aggregating the 
individual indexes. The problem of heterogeneity becomes particularly important here. If contradictory 
results are indiscriminately combined, the analysts violate both statistical and scientific principles of 
analysis. Statistically, the combination of opposite results may lead to unsatisfactory combinations and 
misleading conclusions (as discussed later in Chapter 26). Scientifically, the combination of contradic -
tions will violate the opportunity to use Bradford Hill’s well-accepted requirement of consistency 81
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(i.e., results of individual studies should almost all go in the same direction) to support decisions about  
causality.

In many meta-analyses, however, the heterogeneity of individual indexes is usually ignored, and the 
aggregated indexes are reported merely as means, medians, “weighted summary,” or “standardized sum-
mary” statistics. In one novel approach to the problem, the investigators82 obtained the original data for 
five trials. In contrast to a conventional meta-analysis, the data were pooled according to previously 
established “common definitions” that made the results “as homogeneous as possible.” The pooled data 
allowed a “risk factor analysis not possible with meta-analysis techniques,” although the aggregated risk  
ratios were essentially the same with both methods.

25.4.2.3 Stochastic Tests and Confidence Intervals — The idea of multiple inference or 
“multiple comparisons” seldom receives attention in meta-analysis, although the same hypothesis was 
previously tested repeatedly in the multiple studies that are combined. Nevertheless, studies that have 
been unequivocally positive in both quantitative and stochastic distinctions (as well as in scientific 
quality) may seldom require meta-analysis. If the latter procedure is confined to a set of k studies with 
equivocal individual results, the stochastic test of their combination could be regarded as yet another 
comparison, for which the Bonferroni correction would use k + 1. The combined numbers may often be 
large enough so that the final P value remains stochastically significant even if interpreted with α′ =
α /(k + 1). The correction might be considered, however, when the final P value (or confidence interval)  
is quite close to the uncorrected stochastic boundary.

With the multiple-comparison problem generally ignored, perhaps the most vigorous statistical cre-
ativity in meta-analysis has been devoted to the stochastic method of reporting “significance” of the 
aggregated summary. The methods include the following: P value, mean P value, “consensus combined” 
P, Z-score, mean Z-score, t score, “meta-regression” slopes,83,84 the “support” of a likelihood ratio,85 and 
Bayesian estimates.86

With the current emphasis on confidence intervals rather than other expressions, new attention has 
focused on the stochastic aggregation of summary indexes. For the odds ratio, which is a particularly 
popular index, the customary method of aggregation was the Mantel–Haenszel (M-H) strategy,87 which 
receives detailed discussion later in Chapter 26. In recent years, however, many statisticians have preferred 
the DerSimonian–Laird (D-L) strategy.88 The main difference in the two approaches is that M-H uses a 
“fixed-effects,” whereas D-L uses a “random-effects” model. With a fixed-effects model, we assume 
that the available batch of strata (i.e., individual trials) is the “universe,” and the aggregated variance is  
calculated from individual variances in each stratum. With a random-effects model, we assume that the 
available strata (or trials) are a sample of a hypothetical larger universe of trials. Accordingly, variation  
among the strata is added to the individual variances within each stratum. (The dispute about which 
model to use somewhat resembles the controversy, discussed in Section 14.3.5, about calculating the 
chi-square test in a fourfold table with the idea of either fixed or non-fixed marginal totals.)

The net effect of the random-effects model is to enlarge the total variance, thereby making stochastic  
significance, i.e., rejection of the null hypothesis, more difficult to obtain. In general, however, when 
large numbers of studies are combined, the total group size is big enough so that most of the quantitatively 
impressive aggregated indexes are also stochastically significant, regardless of whether variance was 
calculated with a “random” or “fixed” model.

25.4.3 Current Status

Having been vigorously advocated by prominent statisticians and clinical epidemiologists, meta-analysis 
is becoming a well-accepted analytic procedure. The Cochrane Collaboration, a special new organization, 
has been established at Oxford to encourage the process and to promote activities in which clinical 
trialists at diverse international locations contribute their data for meta-analyses that can produce “evi-
dence-based medicine.”

Like any new procedure that becomes enthusiastically accepted, meta-analysis will doubtlessly undergo 
an evolutionary course that reduces the initial enthusiasm and eventually demarcates the true value of 
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the procedure. Some of the reduced enthusiasm has already been manifested in occasional contradictions 
between the results of large new trials and previous meta-analyses of the same relationship. In one striking 
recent example, the results of at least five published meta-analyses were contradicted by a subsequent 
large trial,89 which showed that calcium supplementation during pregnancy did not prevent pre-eclampsia, 
pregancy-associated hypertension, or adverse perinatal outcomes. After ascribing the differences to 
distinctions in dosage, patient selection, and definition of outcomes, the authors concluded that “meta-
analyses cannot substitute for large, well-conducted clinical trials.” In another separate analysis, Lelorier 
et al.90 found that the outcomes of “12 large randomized, controlled trials ... were not predicted accurately 
35 percent of the time by the meta-analyses published previously on the same topics.”

Because a prime source of the problems is scientific rather than statistical, arising from the potential 
fallacies of heterogeneous combinations and the imprecision produced when important clinical variables 
are omitted from the data, the ultimate role of meta-analysis will depend more on improvements in 
clinical science than on better statistical methods for analyzing inadequate data.
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Exercises 

25.1. Find a report of a study in which the authors appear to have used multiple comparisons. Briefly 
outline the study and what was done statistically. Did the authors acknowledge the multiple-comparison 
problem and do anything about it (in discussion or testing)? What do you think should have been done?
25.2. The basic argument for not making corrections for multiple comparisons is that an ordinary 
(uncorrected) P value or confidence interval will answer the question about numerical stability of the 
data. As long as the results are stable, their interpretation and intellectual coordination should be a matter 
of scientific rather than statistical reasoning, and should not depend on how many other comparisons 
were done. Do you agree with this policy? How do you justify your belief? If you disagree, what is 
your reasoning and proposed solution to the problem?
25.3. With automated technology for measuring constituents of blood, multiple tests (such as the 
“SMA-52”) are regularly reported for sodium, potassium, calcium, bilirubin, glucose, creatinine, etc. 
in a single specimen of serum. If 52 tests are done, and if the customary “zone of normal” is an inner-
95-percentile range, the chance of finding an “abnormality” in a perfectly healthy person should be 
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1 − (.95)52 = 1 – .07 = .93. Consequently, when healthy people are increasingly “screened” with these  
tests, a vast number of false positive results can be expected. Nevertheless, at many medical centers 
that do such screening, this “epidemic” of excessive false positive tests has not occurred. What is 
your explanation for the absence of the problem?
25.4. Find a report of a randomized trial that seems to have been stopped prematurely, before the 
scheduled termination. Briefly outline what happened. Do you agree with the early-termination decision? 
Offer reasons for your conclusion.
25.5. Have you ever done or been tempted to do an N-of-l trial, or have you read the results of one? 
If so, outline what happened. If you have had the opportunity to do one, but have not, indicate why not.
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Beyond the confusing array of rates, risks, and ratios discussed earlier in Chapter 17, epidemiologists 
use certain strategies that almost never appear in other branches of science. One of those strategies — the 
“adjustment” of data — is discussed in this chapter.
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The adjustment process is seldom needed when an investigator arranges the experiments done with 
animals, biologic fragments, or inanimate substances. In the epidemiologic research called observational 
studies, however, the investigated events and data occur in groups of free-living people. Without the 
advantages of a planned experiment, the raw information may be inaccurate and the compared groups 
may be biased. The role of “adjustment” is to prevent or reduce the effects of these problems.

26.1 Problems of Confounding

A particularly prominent problem is confounding, which is easy to discuss, but difficult to define. It 
arises when the results of an observed relationship are distorted by an extrinsic factor. The consequence 
is that what you see is true, but is not what has really happened. An example of the problem appeared 
earlier in Section 19.6.4, when a correct statistical association was found between amyl nitrite “poppers” 
and AIDS. The interpretation that “poppers” were causing AIDS was wrong, however, because the 
relationship was confounded by an external factor: the particular sexual activity, often accompanied by 
use of “poppers,” that transmitted the AIDS virus.

Although confounding is commonly used as a nonspecific name for these distortions, the source of  
the problem can often be identified from biases arising in specific architectural locations for the 
baseline states, maneuvers, outcomes and other sequential events in the alleged causal pathway for 
the compared groups.1

26.1.1 Role of “Effect-Modifiers”

The statistical relationship between an outcome and maneuver can be altered by factors called effect 
modifiers. These factors are not cited (and sometimes not recognized) when the data are merely reported 
as outcomes for maneuvers, such as success rates for different treatments, or mortality rates for people 
“exposed” to living in different regions. For example, postsurgical success can be affected by the patient’s 
preoperative condition, concomitant anesthesia, and postoperative care, not just by the operation itself; 
and general-population mortality rates are affected by age, not just by region of residence. If the effect-
modifiers are equally distributed in the compared groups, bias may be avoided. If the effect-modifiers 
have a substantially unequal distribution, however, the bias produces confounding.

The relationship between poppers and AIDS was confounded by performance (or co-maneuveral)
bias, arising from the initially disregarded sexual activity that accompanied the “maneuver” of using 
poppers. Performance bias would also occur if results were compared for radical surgery, done with 
excellent anesthesia and postoperative care, versus simple surgery, done without similar excellence in 
the “co-therapy.” Confounding can also arise from detection bias if the outcome events are sought and 
identified differently in the compared groups. “Double-blind” methods are a precaution used in random -
ized trials to avoid this bias.

A particularly common source of confounding is the susceptibility bias produced when the compared 
groups are prognostically different in their baseline states, before the compared “causal” maneuvers are 
imposed. For example, a direct comparison of “crude” mortality rates in Connecticut and Florida would  
be biased because Florida has a much older population than Connecticut. An analogous susceptibility 
bias would occur if survival rates are compared for surgical treatment, given to patients who are mainly 
in a favorable “operable” condition, versus nonsurgical treatment, for patients who are “inoperable.”

26.1.2 Requirements for Confounding

The biases that produce confounding require the concurrence of two phenomena: (1) a particular effect-
modifying factor — such as age, “operability,” or certain sexual activity — has a distinct impact that 
alters the occurrence of the outcome event, such as death, “success,” or AIDS; and (2) the factor has a 
substantially unequal distribution in the compared groups. If these phenomena occur together, the factor 
is a confounding variable or confounder. Thus, the relatively good clinical condition that constitutes 
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“operability” can affect survival (regardless of whether surgery is done), but the variable is not a
confounder if it is equally distributed in randomized groups having similar “operability.” In most
nonrandomized comparisons of surgical and nonsurgical groups, however, the survival rates are usually
confounded by susceptibility bias, because the non-surgical group contains predominantly inoperable
patients. Analogously, if the populations have similar age distributions, the general mortality rates would
not be confounded in comparisons of Connecticut vs. Massachusetts, or Florida vs. Arizona. If the use
of “poppers” were examined in persons who all engaged in the same kind of sexual activity, the activity
might no longer be a confounder.

26.1.3 Simpson’s Paradox

A particularly striking form of confounding, called Simpson’s Paradox, occurs when the extremely
unbalanced distribution of an effect-modifier makes the total results go in a direction opposite from that
found in components of the compared groups.

For example, consider the success results for the two treatments shown in Table 26.1. The success
rates for Treatment B are higher than for Treatment A by an increment of 6.8% (= 34.5% − 27.7%),
which is a proportionate increase of 22% from the common proportion of 31.3%. The value of X2 is
6.50, so that 2P < .025. The results thus seem stochastically and quantitatively significant in favor of
Treatment B.

In the condition being treated, however, prognostic status is an effect modifier, for which the “good 
risk” group is Stratum I and the “poor risk” group is Stratum II. When examined within these two strata,
the results produce the surprise shown in Table 26.2. In each stratum, the results for Treatment A are
significantly better than for Treatment B, both quantitatively and stochastically.

The “Simpson’s-paradox” deception in the combined results of Table 26.1 arose from the markedly
unbalanced distributions of treatment in the two strata. Treatment B was used predominantly for the
good-risk patients of Stratum I, and Treatment A mainly for the poor-risk patients of Stratum II. This

TABLE 26.1

Illustration of Simpson’s Paradox, as Demonstrated Later in Table 26.2

Success Failure Total Rate of Success

Treatment A 158 412 570 27.7%
Treatment B 221 419 640 34.5%

TOTAL 379 831 1210 31.3%
X2 = 6.50; 2P < .025

TABLE 26.2

Results in Strata for the Simpson’s Paradox of Table 26.1

Success Failure Total Rate of Success

STRATUM I
Treatment A 10 10 20 50.0%
Treatment B 216 384 600 36.0%

TOTAL 226 394 620 36.5%
X2 = 5.12; 2P < .025

STRATUM II
Treatment A 148 402 550 26.9%
Treatment B 5 35 40 12.5%

TOTAL 153 437 590 25.9%
X2 = 4.03; 2P < .05
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type of imbalance might occur if Treatment B is an arduous procedure, such as “radical” therapy, that
is reserved for the “healthier” patients, whereas the less arduous Treatment A is given mainly to the
“sicker” patients.

26.1.4 Scientific Precautions

The main scientific approach to confounding is to avoid it with suitably planned research. The plans are
designed to reduce or eliminate bias when raw data are collected and when groups are formed for
comparison. The prophylactic precautions can easily be applied if the investigator, doing the research
as an experiment (e.g., a randomized clinical trial), can assign the agents to be compared and can plan
the collection of data. In nonexperimental circumstances — such as the work done at national bureaus
of health statistics, or in any other form of “retrospective” research — the agents were already received
and the data were already recorded for diverse groups before the investigation begins. The prophylactic
precautions must then be replaced by remedial adjustments.

One type of adjustment, called matching, is discussed later in Section 26.5. Another method of
adjustment is done with multivariable analytic strategies. The most common and traditional form of
epidemiologic adjustment is called standardization, which is discussed throughout the next section.

26.2 Statistical Principles of Standardization

The procedure called standardization was devised by demographers to convert the “crude” rate of a
group into a “standardized” rate that is adjusted for unbalanced distributions of confounders. The key
elements in the adjustment are the outcome rates and constituent proportions for component strata. The
group is first divided into strata of different levels for the confounding variable. For example, as an
effect-modifier for general mortality, age might be partitioned into such strata as ≤ 29, 30–49, 50–64,
65–79, and ≥ 80. For each stratum, the outcome rate is the occurrence of a selected target event, such
as death or success, and the constituent proportion is the fraction occupied by that stratum in the group’s
total composition. Thus, in Table 26.2, the success rate is 36.5% in Stratum I, which occupies 620/1210 =
.512 of the total population. For Stratum II, the corresponding values are 25.9% for the rate and 
590/1210 = .488 for the proportion. For the adjustment process, the rates and proportions in the com-
ponent strata are given appropriate “weights” and then combined into a single “standardized” result.

In adjusting general mortality rates, we begin with the total “crude” rate, decompose it into pertinent 
strata, and then weight and recombine the strata suitably. In other situations, when the results are 
expressed in odds ratios rather than rates, the weighted adjustments and recombinations are applied to 
stratum components of the ratios. The standardization process can thus be regarded as a statistical form 
of recombinant DNA: denominator-numerator-adjustments.

26.2.1 Weighted Adjustments

The principles used in weighted adjustment are analogous to a mechanism taught in elementary school 
for finding the average of two rates (or proportions). For example, if you want to get the average of two  
rates, .34 and .20, the wrong approach is to add them directly as .34 + .20 = .54, and then divide by 2 
to get .27 as the average. This tactic is wrong because the reported rates may come from groups having  
unbalanced denominators. Thus, if .34 = 51/150 and .20 = 2/10, the correct average result would be the 
much higher value of (51 + 2) / (150 + 10) = 53/160 = .33. Conversely if .34 = 10/29 and .20 = 96/480, 
the correct result is the much lower (10 + 96)/(29 + 480) = 106/509 = .21. To add the rates directly and 
then divide by 2 to produce .27 would be appropriate only if the two denominators had equal sizes, so 
that .34 = 17/50 and .20 = 10/50. The average would then be (17 + 10)/(50 + 50) = 27/100 = .27.

For the correct approach here, we added the two numerators, added the two denominators, and then 
divided the two sums. This basic strategy is used later to prepare “adjusted” values for ratios, and is 
also used for decomposing and then recombining rates.
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26.2.2 Algebraic Mechanisms

To show how rates are weighted, suppose one rate is constructed as r1 = t1/n1 and the other as r2 = t2/n2.
With the total group sizes being Ν = n1 + n2 in the denominators and T = t1 + t2 in the numerators, the
“correct” average result is T/N.

The algebraic weighting process recapitulates this result by using the component proportions of the
total denominator. They would be p1 = n1/N in the first group and p2 = n2/N in the second. The component
proportions and rates for each group are then multiplied and added to produce p1r1 and p2r2. Their sum
is p1r1 + p2r2 = T/N. [To prove this point, note that p1 = n1/N and r1 = t1/n1, so their product is p1r1 =
t1/N. Similarly, p2r2 = t2/N. The sum of the products is (t1 + t2 )/N = T/N.]

The general formula for constructing the average “crude” rate, R, from a series of component groups
(or “strata”) is

The values of pi are the “weighting factors” for the rates, ri . In the foregoing examples for two groups,
the result was wrong when we ignored weighting factors and calculated R as (r1 + r2)/2, instead of
p1r1 + p2r2. In the first example, where N = 150 + 10 = 160, p1 was 150/160 = .9375 and p2 = 10/160 =
.0625. In the second example, p1 was 29/509 = .057 and p2 was 480/509 = .943. In the third example,
p1 = 50/100 = .5 and p2 = 50/100 = .5. The immediate addition of rates gave the correct answer only in
the third example, where p1 = p2 = .5 was the correct weighting factor for their sum. In any other
adjustment that merely adds the ri values, the results would be wrong unless the appropriate pi values
were used as the weighting factor for each stratum.

The basic arrangement of Σpiri is used for all the conventional epidemiologic adjustments that produce
“standardized” mortality rates.

26.3 Standardized Adjustment of Rates

The customary standardization processes, discussed throughout this section, were developed to adjust
the rates obtained in cohort or cross-sectional research. For the research structures, each denominator
is either the “crude” total or a component stratum containing persons “at risk” for occurrence of the
event cited in the numerator. The target rates are constructed as r = t/n for the total group and ri = ti/ni
for a stratum. [The entities are cited here with lower-case symbols, because capital letters will be used
later for the counterpart entities in a “standard” population.]

In retrospective case-control studies, however, rates of “risk” cannot be directly determined and
compared. Instead, the “risk ratio” for contrasting two groups is estimated with an odds ratio, constructed
as (a × d)/(b × c) from cross-products of cells in the 2 × 2 table that reflects (but does not show) the
actual risks. The complexity of working with four component numbers, rather than two, in each stratum
requires that odds ratios be adjusted with a process, discussed later in Section 26.4, different from what
is used for rates in the subsections that follow.

26.3.1 Identification of Components

Every “target” rate in a group of people can be “decomposed”
into stratum proportions and stratum-specific target rates for
the components. In a particular group of people whose success
rate for Treatment X was 60/200 = 30%, the “decomposition”
for old and young persons forms the stratification shown in 
Table 26.3. In this table, the “crude rate” is the total success
rate of 30%, or .30, before stratification. The stratum-specific
rates of .40 and .27 are shown directly, but the stratum pro-
portions are not immediately evident. They are determined

R Σpiri T/N= =

TABLE 26.3

Hypothetical Success Rates for  
Young and Old Patients

Strata Success Rates

Young 20/50 (40%)
Old 40/150 (27%)
TOTAL 60/200 (30%)
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when the denominator, ni, of each stratum is divided by n, the total size of the combined strata. In this
instance, n1 = 50, n2 = 150, and n = 200, so that p1 = 50/200 = .25 and p2 = 150/200 = .75.

In general symbols, the data for a group can be partitioned into strata identified with the subscript i, 
as 1, 2, 3, …, i, …, k, where k is the total number of strata. Each stratum contains a denominator of
members, ni, and a corresponding numerator, ti, of focal or target events in those members. The rate of
the target event in each stratum will be ri = ti/ni. In Table 26.3, r1 = t1/n1 = 20/50 = .40 and r2 = t2/n2 =
40/150 = .27.

The total number of people in the group will be Σni = n; the total number of target events will be Σti

= t; and the crude rate for the target event will be t/n = Σti/Σni. In Table 26.3, n = Σni = 50 + 150 = 200;
t = Σti = 20 + 40 = 60, and r (the crude rate) = t/n = 60/200 =.30.

To avoid the sometimes ambiguous symbol, p, the stratum proportions can be symbolized with w (for
“weights”) and calculated as wi = ni/n. In Table 26.3, they are w1 = 50/200 = .25 and w2 = 150/200 =
.75. Each stratum thus has a proportion, wi , which is ni/n. Each stratum also has a specific rate, ri,
calculated as ti/ni , for the target event. As shown earlier in Section 26.2.2, the crude rate is

Applying this formula to the data in Table 26.3 produces (.25)(.40) + (.75)(.27) = .10 + .20 = .30, which
is the observed crude rate.

26.3.2 Principles of Direct Standardization

The wi proportions are the main source of problems when crude rates are compared. If the compared
groups have substantially different wi values for the stratum proportions and if the corresponding strata
have different target rates, the comparison of crude rates will be distorted by confounding. The imbalance
in stratum proportions for baseline susceptibility was the source of the biased comparisons discussed
earlier for the geographic regions of Connecticut vs. Florida, for surgical vs. nonsurgical treatment, and
for Simpson’s Paradox in Table 26.1.

Unless your cerebrum has been overwhelmed by the mathematics, you may have already thought of
a solution for the problem. Because the stratum-specific target rates, ri , are the main results and the wi
component values produce the distortion, the imbalance can be “fixed” if the two compared groups are
given the same set of wi values. An “adjusted” rate can then be calculated with these similar wi values
for the appropriate strata in each group. This solution is exactly what happens in the process called
direct standardization. The next main decision is to choose appropriate values of wi.

26.3.2.1 Choice of Standardizing Population — We could get a fair comparison by choos -
ing the “standardizing” wi values from either of the compared groups. Thus, we could standardize the 
mortality results in Florida by using wi weights from the population of Connecticut, or standardize the
Connecticut results with wi values from Florida. To avoid an invidious choice between the two sources,
however, the standardizing population is customarily selected in a neutral manner. The usual choice of
the reference or standard population (in epidemiologic research) is the composition and associated
death rates for an entire national population. The results of the standardizing population can be shown
with capital letters of W, R, T, and N, corresponding to the lower-case values of w, r, t, and n in the
observed groups.

For example, if the selected standard population contains 10% young people and 90% old people, the
standardizing Wi values are W1 = .10 and W2 = .90. If these Wi values are applied to the ri values in
Table 26.3, the adjusted rate would be ΣWiri = (.10)(.40) + (.90)(.27) = .04 + .24 = .28. With the adjustment,
the previous crude level of 30% for the success rate would fall to a standardized value of 28%.

The choice of a standard population is tricky. In clinical situations (where standarization is seldom
used), national data are almost never available for such important confounding factors as severity of
disease. Accordingly, a standard “clinical” population is usually chosen ad hoc to be the total of the
observed groups, irrespective of therapy or other group distinctions. Thus, for the data in Table 26.2,
the standardizing weights (as noted in Section 26.2) would be W1 = .512 for Stratum I, and W2 =

r Σwiri=
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.488 for Stratum II. Using the stratum rates in Table 26.2, we could then apply the formula ΣWiri to
obtain standardized rates of (.512)(.500) + (.488)(.269) = .387 for Treatment A, and (.512)(.360) +
(.488)(.125) = .245 for Treatment B. The superiority of Treatment A is now clearly apparent in the
standardized rates.

26.3.2.2 Illustration of Direct Standardization — The foregoing standardization, using
information for “clinical” strata, is rare. The common type of direct epidemiologic standardization is
done with demographic data and can be illustrated with the following example: In 1980, the crude death
rate per 1000 persons was 8.831 in Connecticut, and 10.741 in Florida. With a death rate that is
proportionately higher by more than 20%, is Florida an unhealthy place to live?

To answer this question, the numbers, proportions, and rates in strata for the two regions can be 
examined in Table 26.4. The age-specific stratum rates show that Connecticut had lower death rates than
Florida in each of the first four age strata, but that in people at age >64, the Florida mortality rate was
substantially lower (43.711 vs. 52.255).

If the two populations were added to get a standard population for the comparison, Florida would
dominate the results because it has so many more people than Connecticut. Accordingly, the entire U.S.
population for 1980 can be used as a “neutral” standard population. The information for that year is
shown in Table 26.5.

Using the formula

TABLE 26.4

Population, Deaths, Stratum Proportions, and Stratum Rates for Connecticut and Florida in 1980

Age
Stratum
(Years)

Connecticut Florida
Population

( ×× 103)
No. of
Deaths

Stratum
Proportion

Stratum
Rate ×    10–3

Population
(× 103)

No. of
Deaths

Stratum
Proportion

Stratum
Rate × 10–3

<  5 185.2 489 .060 2.641 567.8 2,283 .058 4.021
5–19 730.9 383 .237 0.524 2114.8 1,406 .217 0.655
20–44 1132.5 1,564 .367 1.381 3262.0 6,400 .335 1.962
45–64 674.3 5,757 .218 8.538 2109.1 20,781 .217 9.853
>64 364.9 19,066 .118 52.255 1687.6 73,765 .173 43.711

TOTAL 3087.8 27,269 1.000 8.831 9741.3 104,635 1.000 10.741

[Source of data: Vital Statistics of the United States. 1980.Volume II. Mortality,Part A . U.S. Dept. of Health and Human
Services. Public Health Service. Natl. Center for Health Statistics. Hyattsville, MD, 1985.]

TABLE 26.5

Stratum Proportions and Death Rates for Entire U.S. Population in 1980

Age Entire U.S. (Wi) (Ri)
Stratum Population Stratum Stratum-Specific
(Years) (× 106) Proportion Death Rate (× 10−3)

 < 5 16.3 .072 3.286
 5–19 56.1 .248 0.560
 20–44 84.0 .371 1.630
 45–64 44.5 .196 9.558
 65+ 25.6 .113 52.524

TOTAL 226.5 1.000 8.782

[Source of data: Same as in Table 26.4.]

rDS Σriwi or Σwiri( )=
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for a direct standardized rate, the direct adjustment for Connecticut would be (2.641)(.072) +
(0.524)(.248) + … + (52.255)(.113) = 8.41 per thousand. For Florida, the corresponding direct age-
standardized rate is (4.021)(.072) + (0.665)(.248) + … + (43.711)(.113) = 8.05 per thousand. The adjusted 
rates for the two regions now seem relatively similar.

26.3.2.3 Interpretation of Results — The main reason for learning about the standardization 
process is to know what was done and what to beware when you see results that were “age-adjusted” 
or “age-sex-standardized” in epidemiologic or public-health reports.

The most important thing to beware is that the standardized result can be substantially altered by the 
Wi proportions in the particular census year and region that is arbitrarily chosen for the standardizing 
population. For example, in an increasingly aging U.S. population, the W i proportions for the older age 
groups will be higher in 2000 than in 1980, higher in 1980 than in 1960, and so on. Because the ri
mortality rates are also higher in the older age groups, the standardized result can be made larger or 
smaller according to the magnitude of the Wi proportions. Thus, the standardized result for 1987 in the 
United States will be smaller with the 1960 rather than 1980 standard population, but will enlarge with  
the 1990 standard population. Unless the same standardizing population has been used for all compar-
isons, the calendar trends of rises and falls in standardized mortality rates for heart disease, cancer, etc.  
may be impossible to evaluate. Nevertheless, many “standardized” results are published without identi -
fication of the standardizing population, and without assurance that the same population was used 
throughout for all comparisons.

Another thing to beware is that the standardized rate is a completely arbitrary number, established 
merely for the purposes of an immediate comparison. It has no enduring value beyond the comparison 
itself; and the only entity that has been “standardized” is the particular factor(s), such as age and/or sex, 
used in the mathematical adjustment. Although aimed at reducing “confounding,” the process cannot 
account for important factors — such as baseline state of health— that were omitted from the adjustment. 
Furthermore, if the outcome event is the occurrence of death from a specific disease, rather than death 
itself, the numerator data have all the untrustworthy attributes discussed earlier in Section 17.2.3.

26.3.3 Symbols for Components

To show the algebraic tactics more precisely, the stratum proportions, stratum-specific rates, and other 
pertinent results can be given the symbols shown in Table 26.6. The standardization process involves a
“crossover” of components in the products riwi and RiWi. In the direct standardization just illustrated, 
the crossover used riWi for the adjusted components. With indirect standardization, as discussed in the 
next section, the crossover uses Riwi.

26.3.4 Principles of Indirect Standardization

In many public-health situations (particularly in underdeveloped countries), we may know a group’s 
crude total rate of mortality, r0, but not the stratum-specific rates, ri. From census results, however, we 

TABLE 26.6

Symbols for Components of Observed and Standard Populations

Observed Standard
Population Population

Stratum Proportions wi = ni/n Wi = Ni/N
Stratum-Specific Rates ri = ti/ni Ri = Ti/Ni

Crude Rate r0 = Σwiri R0 = ΣWiRi

or or 
r0 = t/n R0 = T/N
(t = Σti (T = ΣTi

n = Σni) N = ΣNi)
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can find the stratum proportions, wi, and we can get Ri values for a standard population. The values of
r0 and wi in the observed population and the values of R 0 and Ri in the standard population can then be
used for an indirect standardization.

26.3.4.1 Determining Expected Rates — The indirect standardization process begins by cal-
culating an expected stratum-specific rate as Riwi for each stratum in the observed population. [RiWi
would be the expected value if the rates were the same for corresponding strata of the observed group
and the standard population.] The sum of the expected values, re = ΣRiwi, will be the expected crude
rate in the observed group. When the group’s observed crude rate, r0, is divided by the expected rate,
re, the ratio of r0/re is called either the standardized incidence ratio (SIR) in reference to an “incidence”
rate or the standardized mortality ratio (SMR) for a mortality rate.

The indirect standardized rate, rIS, is produced when the SIR or SMR is multiplied by the corresponding
crude rate, R0, in the standard population.

26.3.4.2 Illustration of Indirect Standardization — Suppose we do not know the stratum-
specific rates and have data for only the stratum proportions and the crude death rates, 8.831 × 10−3 and
10.741 × 10−3 in Connecticut and Florida, respectively, in Table 26.4. From the Census Bureau and
National Center for Health Statistics, we learn the stratum-specific rates (Ri) and the crude rate (R0 = 8.782
× 10–3) that were shown for the standard population in Table 26.5.

 The expected values and remainder of the adjustment process for Connecticut produce the following: 
re = ΣRiwi = (3.286 × .060) + (0.560 + .237) + (1.630 × .367) + (9.558 × .218) + (52.520 × .118) = 9.21. 
The SMR is r0/re = 8.831/9.21 = .959. The indirect standardized mortality rate is rIS = SMR × R0 =
.959 × 8.782 = 8.42 per thousand. For Florida, the analogous calculations produce re = (3.286 × .058) 
+ (0.560 × .217) + (1.630 × .335) + (9.558 × .217) + (52.520 × .173) = 12.02. The SMR would be 
10.741/12.02 = .894, and the value of rIS is .894 × 8.782 = 7.85.

The indirect standardized results for Connecticut are almost identical to the direct standardized results 
found in Section 26.3.2.2, and are reasonably similar for Florida.

26.3.5 Role of “Standardization Factor”

The direct and indirect standardization processes initially seem quite different. For the direct process, 
values of Wi are simply substituted for wi, and the standardized results emerge promptly. The indirect 
process seems much more convoluted, requiring calculation of expected values and an intervening 
standardized ratio, such as SMR.

Chan et al.,2 however, after comparing the two processes, noted that they are quite symmetrical because 
the standardized rate in both procedures is obtained when the crude rate is multiplied by a standardizing 
factor. For direct standardization, this factor is Re/r0; for indirect standardization, the corresponding factor 
is R0/re. The direct process seems much simpler only because of an algebraic “cancellation” of r0 when 
the direct standardized rate is calculated as

The “adjusted” value, Re = ΣriWi, is really the expected crude rate in the standard population. With the 
indirect procedure, the corresponding standardizing factor is R0/re, but summations are needed for both 
R0 and re. The result becomes

and seems more “convoluted” because of the additional summations.
If all we want is a single index of comparison, the complete calculation of rIS for indirect standardization 

is unnecessary. The two populations can be compared immediately from their standardized incidence or 
mortality ratio, r0/re, because each rIS is produced when this ratio is multiplied by the same value of R0.

rDS r0= Re/r0( )× Re ΣriWi= =

rIS r0 R0/re( )× Σriwi( ) ΣRiWi( )/ ΣRiwi( )= =
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Thus, in Section 26.3.4.2, Connecticut and Florida could be compared either for indirectly adjusted 
mortality rates of 8.42 vs. 7.85 or for standardized mortality ratios of .959 vs. .894.

26.3.6 Importance of Standardizing Population

As noted in Section 26.3.2.3, reports of “age-standardized” or “age-sex-standardized” results may not 
cite the standardizing population — a crucial choice that can greatly affect the outcome results. Direct 
standardization will be altered by different values of Wi, and indirect standardization, by the rates of 
Ri. With appropriate selections of a standardizing population and of direct vs. indirect methods (or vice  
versa), an ingenious investigator might even be able to make the adjusted rates produce a previously 
“desired” result. You should therefore be skeptical of any “standardized adjustment” if the investigator 
does not cite (1) the choice of the standard population, (2) the method of adjustment (direct or indirect),  
and (3) a satisfactory justification for the choices.

One way to avoid the problem is to use the same population for all standardizations. For example, 
after noting that direct standardization in a single epidemiologic journal had been done with eight 
different populations, Carson et al.3 proposed that the Segi Standard World Population be applied for 
worldwide consistency. Another way to avoid the problem is to eliminate the age-stratum proportions 
by giving a fixed set of weights to the rates in the strata. The weights can be chosen according to a 
“reciprocal” pattern calculated by Yerushalmy4 or the duration of age-intervals proposed by Abramson.5
Nevertheless, after appraising all the available and proposed indexes, Kitagawa6 concluded that “no 
single summary index can be a substitute for a detailed comparison of age-specific death rates.”

Although the best approach is to avoid standardization and to compare the age-specific rates directly,  
the comparison in multiple strata is unappealing if you prefer the simplicity of contrasting results for 
just a single index. This simplicity is about to become more complex, however. For many decades in 
the United States, the 1940 population was used for standardization. In 1998, however, the National 
Center for Health statistics decided to use a new “modern” standard 7 — a projected estimate of the U.S. 
population for 2000. Because the later population is much older, certain standardized rates of disease 
may rise dramatically — merely because of the change of the reference population.

Some of the consequences are shown in Figure 26.1. The left side shows the change in distribution, with
higher proportions in 2000 for each age stratum at levels of 35–44 and older. The right side shows the 
impact on the adjusted rates for four cause-specific rates of death.8 Although hardly changed for HIV 
infection and homicide, the rates are more than doubled for heart disease and about 2/3 higher for cancer.  
Misinterpretation of the results will offer a splendid new opportunity for sensational stories in the media.

26.3.7 Choice of Method

If standardization is used at all, the direct method is usually preferred as being easier and more 
straightforward than the indirect approach. The indirect method is used in two circumstances: 
(1) absence of suitable data and (2) too-small numerators for the rates.

FIGURE 26.1 
Impact of change in standardizing population from 1940 to 2000. Left side shows counts and proportions of the two 
populations. Right side shows cause-specific death rates of 1995 when age-adjusted for the two standard populations. [Data 
and figures taken from Chapter Reference 8.]

1940 Standard 2000 Standard*

Age Population PopulationDistribution Distribution

Total 131,669,275 1.000000 274,634,000 1.000000
3,795,000 0.013818

15,192,000 0.055317
0.015343<  1 2,020,174

1-4 8,521,350 0.064718
5-14 22,430,557 0.170355 39,977,000 0.145565
15-24 23,921,358 0.181677 38,077,000 0.138646
25-34 21,339,026 0.162066 37,233,000 0.135573
35-44 18,333,220 0.139237 44,659,000 0.162613
45-54 15,512,071 0.117811 37,030,000 0.134834
55-64 10,572,205 0.080294 23,961,000 0.087247

18,136,000 0.066037
12,315,000 0.044842
4,259,000 0.015508

65-74 6,376,189 0.048426
2,278,373 0.017304

364,752 0.002770
75-84
85 +

* Projected based on population projection from Bureau of Census, P-25,
  No. 1130, 1996.

D
ea

th
s 

pe
r 1

00
,0

00
 p

op
ul

at
io

n

Heart Disease Cancer HIV Infection Homicide
1940 Standard 2000 Standard

350

300

250

200

150

100

50

0

138.3

280.7

129.9

219.4

15.6 16.4 9.4 8.6

© 2002 by Chapman & Hall/CRC 



26.3.7.1 Absence of Suitable Data — If stratum proportions and crude rates are known for 
the study population, but stratum-specific rates are unknown, the results cannot be directly standardized. 
In this situation, the stratum proportions and target rates of a standardizing population would be used 
first to construct the standardized mortality ratio as an expected crude rate, and then to form the indirect 
standardized rate.

26.3.7.2 Excessively Small Numerators — The necessary information may be known both 
for stratum proportions and for stratum rates in the study population, but the numerators of rates in the 
strata may be quite small, such as 0/9 or 1/18, making the stratum-specific target rates too unstable to 
be reliable. Accordingly, the larger numbers in the denominators of those rates can be used as stratum 
proportions for an indirect standardization, which will rely on target rates in the standardizing population.

This virtue of the indirect method was used in a cohort survey 9 of morbidity associated with mainte-
nance, cessation, or nonusage of oral contraceptive agents in 47,000 women. Because the morbidity data  
were simultaneously standardized for age (seven levels), parity (six levels), social class (seven levels), 
and cigarette consumption (six levels), a total of 1764 (= 7 × 6 × 7 × 6) strata were formed, so that 
many of the strata had small or 0 numerators for occurrence of “morbid” events. Because of small 
numerators, the indirect method was also used when Chan et al. 2 did an age-sex standardization for the 
rates of previously undetected disease found in a necropsy population.

26.3.8 Clinical Applications

Although bias is usually a more common problem in clinical rates of death than in demographic public-
health mortality rates, the standardization procedure is rarely used in clinical research, because clinicians 
seldom want to combine everything into a single “adjusted” result. For scientific and clinical precision,  
they want to know the effects of compared treatments within the strata of pertinent subgroups. Clinicians  
would also want to know results in subgroups demarcated by clinically cogent prognostic factors, not 
just by age or sex.

Even when willing to accept a single adjusted result, however, clinicians may be uncertain about how 
to attain it. In the usual public-health standardization of general mortality rates, the adjustment is almost 
always done with age, sex, or other demographic “risk” factors. In clinical studies of therapy, however, 
confounded rates for the outcome (rather than occurrence) of disease usually come from biased distri-
butions of clinical prognostic factors, such as extent of disease, severity of illness, and severity of co-
morbidity. Accustomed to epidemiologic standardizations that rely on age and/or sex, the analysts of 
clinical data may not realize that adjustments can also be done, as shown near the end of Section 26.3.2.1, 
with clinical and para-clinical rather than demographic variables.

Another problem that discourages the use of clinical standardization is the fear of too many strata. 
With two categories of sex and perhaps as many as six for age, a public-health adjustment might need 
no more than 12 strata. With the diverse clinical variables that might be confounders, however, a much 
larger number of strata can be produced. Within the hordes of multivariate strata, many cells might be 
empty or have too few members to be used with confidence. This problem can be eliminated, however,  
with an appropriate composite staging system10 that consolidates categories into smaller numbers of 
strata, thereby reducing or eliminating the many empty cells. Because relatively few appropriate com-
posite staging systems have been constructed, however, clinical rates are usually “adjusted” not with the 
stratified standardizations used in public-health epidemiology, but with multivariable analytic methods.

Nevertheless, when not too many strata are needed and adequate numbers are available, clinical 
rates can receive a stratified adjustment. Concato et al.11 used this process to evaluate a previous claim 
that 5-year postsurgical mortality was higher with transurethral prostatectomy (TURP) than with 
open-prostatectomy (OPEN). In the original study,12 based on medico-fiscal claims data for men with 
benign prostatic hyperplasia, the stochastically significant crude relative risk of 1.27 for TURP vs. 
OPEN persisted after multivariable adjustment for differences in age, co-morbidity, and other possibly 
confounding variables. The published results then evoked extensive publicity about the alleged dangers 
of TURP. Suspecting that the severity of co-morbidity had not been suitably classified and analyzed  
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in the original research, Concato et al. did a smaller but more detailed study, using medical records
rather than claims data. The Concato group noted crude 5-year mortality rates of 13% (17/126) for
OPEN and 17% (22/126) in the corresponding TURP group, thus confirming the crude risk ratio of
1.29 found in the previous investigation. With better data and classification for severity of co-morbidity,
however, the Concato study found the stratified results that appear in Table 26.7. Within the co-
morbidity strata, TURP seemed no more dangerous than OPEN surgery.

When directly standardized from propor-
tions of co-morbidity strata in the total popu-
lation, the 5-year mortality rates in Table 26.7
became 15.02% for OPEN and 14.38% for
TURP, and the adjusted risk ratio dropped to 
0.96. (An additional concomitant standardiza-
tion for age brought this ratio even closer
to 1).

26.3.9 Stochastic Evaluations

Back in Chapters 3 and 4, the “standard error” 
of a central index was used as a stochastic
“estimate of uncertainty” for the observed
value. The same standard-error strategy,
although more complex than for a single
group, is applied to the composite rates con-
structed with a standardization process.

For a direct standardized rate, the standard error is calculated with the actual numbers, rather than the
proportions, in each stratum. If ri is the rate in a stratum containing ni members and Ni is the corresponding 
membership in the “standard” stratum, the standard error of the direct standardized rate is

Morris and Gardner13 offer a worked example of the calculation.
For indirectly standardized rates, stochastic uncertainty is usually expressed with confidence intervals

for the SMR (or SIR) ratio. The approach has not evoked universal agreement because of different beliefs
about the mathematical distribution to be used for the observed number of deaths (or cases) in the study
group. A formula for variance of the SMR proposed in 1971 by Armitage14 relied on the Poisson
distribution, which is used for events that occur randomly at low frequency. The Poisson distribution 
was also the basis for a shortcut calculation of the 95% confidence interval proposed by Vandenbroucke15

in 1982, and for a simple formula listed in 1988 by Morris and Gardner.13 In 1983, however, a chi-square
distribution was proposed by Mulder,16 and was later also advocated by Liddell17 and by Ulm.18 In 1994,
Lee19 contended that a binomial distribution was the best strategy, and in 1991, Greenland20 proposed
using an F-distribution.

Until a summit conference is held to achieve resolution or consensus, you can choose whatever
confidence-interval method you think will be approved by the reviewers. No one, as yet, however, seems
to have proposed that the dispute about distributions be avoided by calculating the confidence interval
with bootstrap resampling.

26.3.10 Role of Proportionate Mortality Ratio (PMR)

Proportionate mortality ratios (PMR), calculated as discussed earlier in Section 17.2.6, can be “standard -
ized” to form a cause-specific SPMR. The latter is an observed/expected ratio formed when the observed
number of disease-specific deaths in the study population is divided by the corresponding number of
deaths expected if the study population had the same PMR as a standard population. The use of the
SPMR is controversial, with supporters contending21 that it is often similar to a relative SMR, determined

TABLE 26.7

Stratified Results for Postsurgical Mortality and 
Grade of Co-Morbidity [Data taken from Chapter 
Reference 11.]

  Grade of
5-Year Postsurgical 

Mortality
Co-Morbidity OPEN TURP TOTAL

None 6/64 1/37 7/101
(9%) (3%) (7%)

Intermediate 10/59 14/75 24/134
(17%) (19%) (18%)

Severe 1/3 7/14 8/17
(33%) (50%) (47%)

TOTAL 17/126 22/126 39/252
(13%) (17%) (15%)

Note: OPEN = Prostatectomy; TURP = Transurethral 
resection of prostate

SE rDS( ) Σ Ni
2ri/ni( )/ΣNi=
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when the SMR for an individual disease is divided by the SMR for all deaths. The detractors22 respond
that PMRs can lead to biased, erroneous conclusions if large differences exist in the “overall death rates
of study and comparison groups.” The argument can be resolved at a scientific rather than mathematical
level by noting that the basic disease-specific death rates are so untrustworthy that neither the PMR nor
the SPMR data can regularly be accepted as credible.

26.4 Standardized Adjustment of Odds Ratios

Despite the apparent complexity, the foregoing adjustment of rates was a relatively simple mathematical
process, because each rate came from two numbers: a numerator, ti, and a denominator, ni. These two
numbers formed the target rate, r i = ti/ni, and the denominator formed the stratum proportion, n i/n = wi.

The adjustment process becomes more complex when the results of case-control studies are expressed
in odds-ratios rather than rates, because each odds ratio comes from four numbers, not two. If the total
groups are divided into strata, the original 2 × 2 table that expressed the “crude” results as , becomes 
divided into a set of tables, constructed as for each stratum i.

26.4.1 Weighting for 2 × 2 Tables

The appropriate combination of a set of 2 × 2 tables has been a statistical challenge for more than 40
years, ever since Cochran23 first suggested a weighting mechanism. The results are expressed with an
appropriate index of contrast, which is then appropriately weighted. The two most obvious choices for
the index of contrast are the direct increment and the odds ratio.

26.4.1.1 Direct Increment — The rates of success for Treatment E and Treatment F in stratum
i can be subtracted to form the increment

If the row totals in each stratum are designated as  (for treatment E) and  (for Treatment F), the
total membership of the stratum will be ni = + . If the column containing ai and ci represents success,
the success rates will be = ai/ , and = ci/ .

Cochran proposed that each gi increment be weighted by a factor

and that a weighted mean increment be formed as

The process can be illustrated with the data in Table 26.2. In stratum I, gi = (10/20) – (216/600) = 0.140
and n1n2/n = (20)(600)/620 = 19.35. In stratum II, gi = (148/550) – (5/40) = 0.144 and n1n2/n =
(550)(40)/590 = 37.29. The combined weighted mean increment will be [(.140)(19.35) +
(.144)(37.29)]/(19.35 + 37.29) = .143.

This result can be compared with results of the direct standardization carried out for these data near
the end of Section 26.3.2.1. The standardized rates were .387 for Treatment A and .245 for Treatment
B, with an increment of .142. The two results are identical (except for rounding). In fact, if you work
out the algebra for two strata, Cochran’s weighted mean increment is the same as the increment in the
direct standardized rates.

The approach can also be used for more than two strata. For example, in the data of Table 26.7,
the results for the first (no co-morbidity) stratum are gi = (6/64) − (1/37) = .067, and (n1n2)/(n1 + n2) =
(64)(37)/101 = 23.45. In the intermediate comorbidity stratum, gi = (10/59) − (14/75) = −.017 and 
(n1n2)/(n1 + n2) = (59)(75)/134 = 33.02. In the severe co-morbidity stratum, gi = (1/3) − (7/14) = −.167, 
and wi = (3)(14)/17 = 2.47.
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The combined weighted increment will be

This result is close to the value of .1502 − .1438 = .0064 obtained with direct standardization at the
end of Section 26.3.8.

26.4.1.2 Odds Ratio — The Cochran adjustment for an increment in rates can be applied when
the stratified tables come from cohort or cross-sectional studies. The adjustment is not appropriate for
case-control studies, however, because an increment cannot be used. The appropriate index of contrast
for each stratum is the odds ratio, aidi/bici.

In their original discussion of an adjustment process for odds ratios, Mantel and Haenszel24 considered
two possible approaches: to adjust the exposed group for the distribution of the unexposed group or to
adjust both groups for a combined “standard” population. After pointing out the disadvantages of both
methods, Mantel and Haenszel offered their “compromise formula” which produces the “weighted
average” that has made their names a popular eponym in epidemiologic case-control studies.

To get an appropriate weighting factor, Mantel
and Haenszel used the following reasoning. In any
2 × 2 table, the p1 and p2 rates of exposure for the
compared groups can legitimately be contrasted
with an odds ratio formed as (p1/p2)/(q1/q2). For a
stratum arranged as shown in Table 26.8, the cor-
responding rates of previous exposure will be p1 =
a/n1, q1 = c/n1, p2 = b/n2, and q2 = d/n2. Thus, the
ad/bc odds ratio represents n1n2p1q2/n1n2p2q1. With
an enlarging total stratum size, n, the values of n1
and n2 in each stratum will also enlarge. Because
each numerator and denominator contains the products of two components, n1 and n2, the division of n1n2
by n will produce n1n2/n as a standardizing factor. In fact, if n1 = kn and n2 = (1 – k)n, the value of n1n2/n
becomes (k)(1−k)n; and the standardizing factor contains a multiplication by n, modified by (k)(1 −  k),
which reflects the distribution of n in the two groups. Therefore, if the numerators and denominators of
an odds ratio are to be decomposed into strata and suitably weighted when they are additively reassem -
bled, the adjusted values in each stratum should be n1n2p1q2/n, which is ad/n for each numerator, and
n1n2p2q1/n, which is bc/n for each denominator.

With this approach, the weighted values will be a idi/ni and bici/ni for each of the i strata, and the ratio
of their sum over all strata will form the adjusted odds ratio. It is named after Mantel and Haenszel and
calculated as

[26.1]

26.4.2 Illustration of Problems in “Crude” Odds Ratio

Suppose a hypothetical case-control study of the relationship between smoking and omphalosis produces
the results shown inTable 26.9. The “crude” odds ratio for these data has a reasonably impressive value
of (47 × 46)/ (23 × 35) = 2.69, and X2 is also impressive at 8.66 (2P < .01).

A closer examination of additional data is troublesome, however, because smoking and occupation
have the relationship shown in Table 26.10. The occupation was “dusty” for 38% (=  31/82) of the 
smokers but for only 14% (= 10/69) of the nonsmokers. If omphalosis is particularly likely to occur
among people who work at dusty occupations, and if a much higher proportion of smokers work in
dusty occupations, the “crude” odds ratio of 2.69 for smoking will be confounded.

To check this suspicion, we can examine data in Table 26.11 for the relationship between occupation
and omphalosis. The results show that occupation is indeed an effect modifier. With a “crude” odds

.067( ) 23.45( ) .017( ) 33.02( ) .167( ) 2.47( )––
23.45 33.02 2.47+ +

--------------------------------------------------------------------------------------------------------------- .597
58.94
------------- .010= =

TABLE 26.8

Symbols for Cells in 2 × 2 Table of Stratum  
in a Case-Control Study

Cases Controls TOTAL

Exposed a b f1

Nonexposed c d f2

TOTAL n1 n2 N
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ratio of (33 × 73)/(8 × 37) = 8.14 and X 2 = 26.4, dusty occupation has an even more impressive effect,
both quantitatively and stochastically, than the apparent result of smoking alone. Consequently, to get
an unbiased estimate for the impact of smoking, the results must be adjusted for the confounding effect
of occupation.

When stratified to show the effect of smoking in the two categories of occupation for the cases and
controls, the data of Table 26.12 confirm the suspicion of confounding. The odds ratios for smokers
have dropped to 2.23 in dusty occupations and 1.88 in non-dusty occupations; and neither one of these 
odds ratios is stochastically significant.

TABLE 26.9

Results in Hypothetical Case-Control Study

Cases of Controls
Omphalosis without Omphalosis TOTAL

Smokers 47 35 82
Nonsmokers 23 46 69
TOTAL 70 81 151

TABLE 26.10

Relationship of Occupation and Smoking for Groups  
in Table 26.9

Occupation Smokers Nonsmokers TOTAL

Dusty 31 10 41
Non-dusty 51 59 110

TOTAL 82 69 151

TABLE 26.11

Relationship of Occupation and Disease for Groups in Table 26.9

Occupation
Cases of 

Omphalosis
Controls 

without Omphalosis TOTAL

Dusty 33 18 41
Non-dusty 37 73 110

TOTAL 70 81 151

TABLE 26.12

Stratification of Results in Table 26.9

Dusty Occupation Non-Dusty Occupation
Cases Controls TOTAL Cases Controls TOTAL

Smokers 26 5 31 21 30 51
Nonsmokers 7 3 10 16 43 59
TOTAL 33 8 41 37 73 110

odds ratio = 2.23 odds ratio = 1.88
X2 (uncorrected) = 0.93 X2 (uncorrected) = 2.42
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26.4.3 Illustration of Mantel–Haenszel Adjustment

As noted in Section 26.4.1.2 and Formula [26.1], the Mantel–Haenszel process consists of choosing a 
component product, giving it a weight, adding the weighted components, and then dividing the two
sums. The component product is the odds ratio in each stratum, and 1/ni is the appropriate weight.

Thus, to get the ad numerator component of the adjusted odds ratio, we can form ad/n as a weighted
component for each stratified table and then use the sum of the weighted components. For the 41
people with dusty occupation in Table 26.12, the ad weighted adjustment would be (26 × 3)/41 =
1.902. For non-dusty occupation, the corresponding adjusted ad component would be (21 × 43)/110 =
8.209. The total adjusted ad component would be 1.902 + 8.209 = 10.111. The corresponding adjustment 
process for bc would yield a total of [(7 × 5)/41] + [(16 × 30)/110] = .8537 + 4.3636 = 5.2173. The 
final adjusted odds ratio would be 10.111/5.2173 = 1.94. The adjusted value, as might be expected, lies  
between the two stratum values of 2.23 and 1.88.

26.4.4 Stochastic Evaluations

When a composite rate contains weighted combinations of rates in individual groups, the result can be 
evaluated stochastically, as discussed in Section 26.3.9, by using the individual standard errors of those  
rates. This tactic cannot be used with odds ratios, however, because two groups are compared in each 
ratio. Accordingly, both Cochran and Mantel–Haenszel proposed a stochastic strategy that determines 
a Z-score type of “standardized deviate” from pooled values for each 2 × 2 table (or stratum). The 
numerator of each Z-deviate is a weighted sum of the increment in each stratum divided by a 
weighted sum of the square root of the corresponding variance. These Z-deviates are squared, added, 
and interpreted with the chi-square distribution discussed in Section 14.1.3. Because the same basic 
strategy is used in both the Cochran and Mantel–Haenszel procedures, the results are sometimes called  
the Cochran–Mantel–Haenszel chi-square test. [For readers who are interested in the stochastic strategy, 
it is outlined in the next few subsections. If your quality of life does not demand this understanding, 
skip directly to Section 26.4.6.]

26.4.4.1 Cochran–Armitage Approach — Despite a similar stochastic strategy, different 
authorities have proposed different ways to calculate the variance and to use or avoid the Yates 
correction in the calculations. In Cochran’s original proposal, the variance of each gi is poqon/n1n2
where po is the common value determined as p 0 = (n1p1 + n2p2)/n. The variance of  is then Var( ) =
Σwi /(Σwi)2, for the wi values defined in Section 26.4.1.1. The Z-deviate is then formed as 

Z =

Armitage14 gives an equivalent formula as 

Z = Σwidi /

26.4.4.2 Mantel–Haenszel Approach — Mantel and Haenszel also worked with a ratio of the 
same two weighted sums: one from the difference in proportions, p 1 − p2, in each stratum and the other 
from the variance of each difference. The numerator of the ratio was converted, however, to an adjustment 
not for p1 − p2, but for its equivalent expressed as the observed-minus-expected values of a single cell 
in each 2 × 2 table.

 As noted in Section 14.2.5, the observed-minus-expected value, e, will have the same absolute 
magnitude in each cell of a 2 × 2 table. Some further algebraic development, which the reader is spared, 
will show that 

g g
p0i

q0i

g Var g( )

Σwip0i
q0i

p1 p2– N/n1n2( )e=
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The value of e can be regarded as a sampling variation in which the sample nipi is taken from a 
“parent” population having the binomial parameter, niP. For this one-group “sample,” a Z-type ratio can 
be constructed as:

The variance of the binomial “parametric” observation will be niPQ = ni(f1/N)(f2/N). Because of the 
finite “sampling,” however, Mantel–Haenszel believed that the variance should be adjusted by the finite  
population correction factor, (N − ni)/(N − 1), whose role was discussed in Section 7.6. Accordingly, 
the variance becomes calculated as [(N – ni)/(N − 1)][ni(f1/N)(f2/N)]. Some further algebra will then 
show that the variance of nipi − niP = e, in any cell of the 2 × 2 table, will be 

[26.2]

The square of the critical Z-type ratio for a cell will be

As noted in Chapter 14, p1 − p2 = (ad − bc)/n1n2. Thus, the squared critical ratio becomes

[26.3]

This result is identical to the customary formula for X2 except that Formula [26.3] uses N – 1 rather 
than N in the numerator. Thus, the square of the critical ratio for a cell in the 2 × 2 table produces 
essentially the same value as the X2 calculated for the entire table. [According to Mantel–Haenszel, the 
conventional X2 formula uses (N − ni)/N, rather than (N − ni)/(N − 1), as the correction factor. The 
conventional arrangement leads to the customary chi-square formula, (ad − bc)2N/(n1n2f1f2).]

The focus of the adjusted chi-square calculation is usually the a cell, designated as a i in each stratified 
table. In the first step, the sum of numerators is obtained for the single values of (0 − E)2 in the ai cells. 
This sum is then divided by the sum of corresponding variances.

26.4.5 Alternative Stochastic Approaches and Disputes

The strategy used to calculate the numerators and denominators, and sometimes the entire process, has 
evoked some of the same kinds of disputes (noted in Chapter 14) for the calculation of chi square in a 
2 × 2 table. The disputes involve whether to use or omit Yales correction, whether the effects of the 
“sampling” should be analyzed with “fixed” or “random” models, and whether (or how) heterogeneous  
strata should be combined.

26.4.5.1 Determination of Numerators — The sum of the numerators can be determined in 
two ways. The obvious way is

but advocates of Yates correction prefer that it be subtracted from the sum of the absolute increments 
before they are squared. With the correction, the sum that forms the “adjusted” numerator would be

observed value parametric value–( )/ variance of observation

n1n2f1f2/N2 N 1–( )

e2/variance n1n2 N 1–( ) p1 p2–( )2

f1f2
----------------------------------------------------=

ad bc–( )2 N 1–( )[ ]/ n1n2f1f2( )

Σ observed ai ectedexp  ai–( )[ ]2

[(Σ observed ai ectedexp  ai– )–0.5]2
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The Yates correction was used in the original M-H paper,24 and is maintained in the M-H formulas cited
by Breslow and Day,25 Fleiss,26 Kahn and Sempos,27 and Schlesselman,28 but not by Kleinbaum et al.29

or Rothman.30 A vigorous argument is offered in favor of the Yates correction by Breslow and Day and
against it by Kleinbaum et al. In the absence of unanimity, probably the best approach is to calculate
both ways. If the ultimate (P-value) results agree, there is no problem; if they do not, report both results
and let the reader decide. If the adjusted X2 value that emerges is close to the boundary needed for α
 = .05, honesty in reporting should compel a citation of both sets of results.

26.4.5.2 Determination of Denominators — The denominators of the M-H chi-square can
also be calculated in two ways, according to a different type of dispute about variances. In the easy
approach, which accepts the Mantel–Haenszel concept, the denominator is determined simply as Σ(vari-
ance of ai). For each stratum, with N members having the marginal totals of n1, n2 and f1, f2, the variance
of the ai cell was shown in Formula [26.2]. With the Yates correction, the adjusted chi-square value will be

[26.4]

Without theYates correction, the 0.5 subtraction is omitted in the numerator term. The uncorrected value
can be designated as .

An alternative approach, mentioned previously, uses a “random-effects model” rather than the “fixed-
effects model” employed in the customary chi-square calculations. With the “fixed-effects” model,
Mantel and Haenszel regard the observed data as the “available universe,” and use N − 1 in the calculations
as a “finite population correction factor” for the “sampling process.” With the random-effects model,
the strata are regarded as samples from a larger undefined universe, for which variances are calculated
according to the DerSimonian–Laird method.31 (The D-L method produces larger variances, thereby
reducing the eventual value of the combined X2 result and increasing the size of confidence intervals).

Most calculations in packaged computer programs and in published literature have been done with
the fixed-effect M-H model, but the D-L model is becoming increasingly popular, perhaps because it
reportedly offers a better management of heterogeneous results in the strata.

26.4.5.3 Example of Calculations — The first stratum (for dusty occupation) in Table 26.12
has 26 as the a cell. Its expected value is (31)(33)/41 = 24.95. The corresponding variance, according 
to Formula [26.2], is [(33)(8)(31)(10)]/[(41)2(40)] = 1.217. The second stratum, for non-dusty occupation, 
has 21 as the a cell. Its expected value is (37)(51)/110 = 17.15, and the corresponding variance is 
[(37)(73)(51)(59)]/[(110)2(109)] = 6.162. Substituting these values into Formula [26.4], we get

Without the Yates correction,

At one degree of freedom, neither result exceeds the 3.84 boundary value of X2 needed for 2P < .05. Note 
that the adjusted M-H value of X2 exceeds the X2 values of 0.93 and 2.42 in the individual tables.

26.4.5.4 Use of Confidence Intervals — As confidence intervals have increasingly begun to 
replace P values, the combined results are often expressed with a confidence interval placed around the  
adjusted value of the odds ratio. For calculational convenience, the latter is regularly expressed as a 
natural logarithm, for which the standard error is used in the calculation.

Several methods, which were cited earlier (Section 17.5.5.2) for the log odds ratio in one 2 × 2 table, 
can be expanded to calculate the standard error of the adjusted combined ratio.

XMHc

2  = Σ observed ai ectedexp  ai–[ ] 0.5–{ }2

Σvariance of ai
---------------------------------------------------------------------------------------------------

XMH
2

XMHc

2 26 24.95– 21 17.15– 0.5–+( )2
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26.4.6 Caveats and Precautions

Although often proposed as a mechanism for dealing with “confounders,” the Mantel–Haenszel (or 
analogous forms of) adjustment can produce a false sense of security if the adjusted variables do not 
really “confound.” Three other problems which can arise are the results having opposite directions in 
the individual strata, the numbers in the partitioned strata becoming too small to be meaningful, or the 
strata being defined by a variable in which an ordinal trend is expected.

26.4.6.1 Choice of “Confounders” — To be regarded as a confounder, a variable must exert 
a confounding effect. For example, if sex does not affect the development of omphalosis but is the only 
variable used for the Mantel–Haenszel stratification, the results of smoking and nonsmoking would not
be adjusted for confounding.

In the example here, occupation was a “legitimate” confounder because it affected both the 
frequency of smoking and the frequency of omphalosis. In many instances, however, the variables 
used to “adjust for confounding” may include diverse attributes that affect the exposure or the outcome 
but not both. The problem is particularly common in multivariable analysis, as discussed elsewhere.10

26.4.6.2 Problems of Heterogeneity — The results of any form of combined adjustment can 
be distorted if the component results, such as risk ratios, odds ratios, or gradients for target rates, go in 
opposite directions.

In the smoking–occupation–omphalosis example, both of the stratified odds ratios exceeded 1 and so 
the adjustment was justified. Consider the situation, however, for the case-control study shown in 
Table 26.13. When stratified, the crude odds ratio of 1.74 becomes an apparently protective value of
0.52 in women but rises to an impressive “causal” value of 11.8 in men.

If these data receive a Mantel–Haenszel adjustment, the numerator for the odds ratio would be 
[(20)(60)/184] + [(36)(63)/137] = 23.08. The denominator would be [(32)(72)/184] + [(6)(32)/137] = 13.92. 
The Mantel–Haenszel adjusted odds ratio would be

TABLE 26.13

Hypothetical Case-Control Study

A. Crude Results:
Case Control Total

Exposed 56 38 94
Nonexposed 104 123 227

Total 160 161 321

odds ratio = (56 × 123)/(38 × 104) = 1.74
X2 = 5.03; 2P < .05

B. Stratified Results:
Women Men

Case Control Total Case Control Total

Exposed 20 32 52 Exposed 36 6 42
Nonexposed 72 60 132 Nonexposed 32 63 95

Total 92 92 184 Total 68 69 137

odds ratio = (20 × 60)/(32 × 72) = 0.52
X2 = 3.86; 2  P < .05

odds ratio = (36 × 63 )/(6 × 32) = 11.8
X2 = 31.5; 2 P < .000001

 OMH
23.08
13.92
------------- 1.66= =
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This result is consistent with what might have been expected judgmentally. It is lower than the original 
crude odds ratio of 1.74, and it lies between the odds ratios of 0.52 and 11.8 in the two strata. 
Nevertheless, a scientific “commonsense” evaluation of the stratified results would suggest that men 
seem to be at risk but women are not. Because the stratification led to this apparently valuable discovery, 
the opposing “risk” and “no risk” results should not be combined into a single adjustment, which will  
distort what is really happening.

Heterogeneity — a problem that plagues any efforts to combine a series of results into a single 
adjusted value — usually receives two approaches that are reasonable but incompatible. The connois -
seurs of substantive issues usually want the results to be substantively “precise,” i.e., kept separate 
for such detailed distinctions as men vs. women, Stage I vs. Stage III cancer, severely ill vs. moderately 
ill patients. Connoisseurs of mathematical issues, who usually regard “precision” as an issue in 
statistical variance rather than biologic or clinical variation, want a combined single result that will 
have enhanced numerical size and that will avoid the need for inspecting and comparing results in 
multiple subgroups. In the mathematical approach, heterogeneity depends on the numerical values of 
the results; in the substantive approach, heterogeneity depends on the biologic (or other substantive) 
distinctions of the entities being compared. Thus, despite the obvious biologic heterogeneity, a small 
child, a large dog, and a huge fish might be mathematically regarded as homogeneous if they all 
weigh the same.

In the mathematical approach, various statistical tests are proposed for appraising heterogeneity of 
results in the strata that are candidates for combination. No guidelines are offered, however, for a level 
of heterogeneity that contra-indicates the combined “adjustment.” An advantage claimed for the 
DerSimonian–Laird random-effects strategy31 is that it improves the mathematical process when heter-
ogeneous results are aggregated.

26.4.6.3 Effect of Small Numbers — When the relationship between clear-cell vaginal carci -
noma and in-utero exposure to diethystilbestrol (DES) was explored with the case-control study cited 
in Section 17.5.4, the original results showed the following:

With 0.5 added to each cell, the odds ratio turned out to be (7.5)(32.5)/(1.5)(0.5) = 325.
From additional data reported by the investigators, however, two additional tables could be noted as 

follows for mothers who had had pregnancy problems (spontaneous abortions in previous pregnancies 
or bleeding, cramping, etc. early in current pregnancy):

The odds ratios in these two tables are (7 × 27)/(1 × 5) = 37.8 and (7.5 × 28.5)/(0.5 × 5.5) = 77.7, thus 
suggesting that pregnancy problems were a strong confounder of the observed relationship.

The results could be divided into the following stratification:

Cases Controls

Exposed 7 0
Nonexposed 1 32

Pregnancy Problems Case Control Exposed Nonexposed

Yes 7 5 7 5
No 1 27 0 28

Mothers with Pregnancy Problems Cases Controls
Exposed to DES 7 0
Not Exposed to DES 0 5

Mothers without Pregnancy Problems Cases Controls
Exposed to DES 0 0
Not Exposed to DES 1 27
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 Calculated with 0.5 added to each cell, the odds ratios are (7.5)(5.5)/(0.5)(0.5) = 165 in the first 
stratum and (0.5)(27.5)/(0.5)(1.5) = 18.3 in the second. The Mantel–Haenszel adjusted odds ratio is

This value is substantially lower than the unadjusted crude result of 325.
To calculate an M-H adjusted X2, the second stratum will yield a value of 0 for both the observed 

and expected values in the ai and bi cells. In the other two cells, the observed-minus-expected values 
will be 0. In the first stratum, the expected value in the a cell is (7 × 7)/12 = 4.08, and the observed-
minus-expected value is (7 − 4.08) = 2.82.

 The numerator of  might be calculated as [|2.82 | + |0 | − 0.5]2 = 5.38, but the denominator is 
a problem. From Formula [26.2], the variance in the first stratum is (7)(5)(7)(5)/[(11)(12)2] = .773, but 
the variance in the second stratum will be (1)(27)(28)(0)/[(27)(28)2] = 0. If these two variances are 
added, the result for  would be 5.38/.773 = 6.96. The result is still stochastically significant at 2P 
< .05, but the adjustment makes X2 much smaller than the original corrected  value, which would 
have been [|(7)(32) − (1)(0)| − (40/2)]2(40)/(8) (32)(33)(7) = 28.15.

On the other hand, a major mathematical assault occurs on scientific “common sense,” when odds 
ratios, “expected” values, and variances are calculated for 2 × 2 tables with two zero values in cells, 
such as  or . In particular, the individual critical ratio in the second table where 0 − E = 0 and 
variance = 0 would be an incalculable 0/0. Furthermore, the M-H chi-square value here becomes derived 
essentially from only the first stratum.

Although possibly justified by diverse forms of mathematical reasoning, the results are too scientifi-
cally peculiar to be acceptable. They suggest that the basic design of the study should have been improved. 
Cases and controls should have been originally matched on the basis of pregnancy problems, rather than 
leaving the latter variable to be “adjusted” during an analysis afterward.

26.4.6.4 Ordinal Trend in Strata — When stratified results are combined with any of the 
methods discussed so far, the particular order of the strata is not considered. The standardized or adjusted 
descriptive summaries, and the corresponding stochastic calculations, will be the same regardless of 
whether age is divided as young, medium, old or as old, young, medium.

In data for “dose-response curves,” however, we expect the trend in response to go progressively up 
or down, according to the trend in dose. For example, the odds ratios (or risk ratios) for success with 
active treatment vs. placebo might be expected to rise in strata with progressively increasing doses of 
the treatment. An analogous rise in occurrence rates of disease might be anticipated (and might help 
prove “causation”) with higher magnitudes of exposure to a suspected etiologic agent.

These trends cannot be evaluated with the described arrangements for standardizing or adjusting. A 
special method of weighting, discussed in Chapter 27, is needed to allow appraisal of “linear trend” in 
the “dose-response” curves of the ordinal strata.

26.4.7 Extension to Cohort Data

Because cohort data can be expressed with rates and risk ratios, the cumbersome use of odds ratios is 
not necessary. Nevertheless, the M-H adjustment is sometimes applied to cohort data. The tactic is 
particularly justified when the cohort data contain many “censored” results that preclude a direct 
calculation and comparison of survival rates. The investigator may also want the stochastic comparison 
to reflect dynamic results for the entire survival curve rather than for a single time point alone.

Unlike odds-ratio data, for which the M-H adjustment provides both descriptive and stochastic indexes, 
the adjustment for cohort data is only stochastic and often applies to a comparison of two (or more) survival 
curves. The customary stochastic index is the log rank statistic, which was discussed in Chapter 22. Because 
this latter statistic has had so many versions, it is sometimes called the Cox-Mantel test or designated with 
other eponyms.
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26.5 Matching and “Matched Controls”

All of the stratifications and recombinations that have been discussed so far are but one way of dealing 
with confounders. Another approach, not discussed here, makes use of multivariable algebraic proce-
dures. A third approach, discussed in the rest of this section, is the use of “matching.”

To match individual persons seems ideal for managing the problem of confounding. In fact, the use of 
cross-over trials, where the same person receives different treatments, is based on the appealing idea of 
letting the treated persons be their own “controls.” As noted earlier, however, the idyllic hopes of the 
cross-over design are destroyed by the reality that severely restricts the clinical circumstances amenable 
to a cross-over arrangement.

In observational studies, the ideal hope would be to find a “control” whose confounder attributes 
exactly match those of the compared person. This hope, however, is also regularly thwarted by reality. 
The main confounders may not be known, or the number of different confounders may be too extensive 
to permit suitable matchings. Accordingly, although matchings are commonly done, they are arranged 
mainly for investigative convenience, not for management of confounding. Disputes may then arise about 
the best way to analyze the “matched” results.

26.5.1 Application in Case-Control Studies

In many case-control studies, the cases are chosen as an available group of people who all have the 
disease under consideration. The controls are selected from a group of people who are believed not to 
have the disease. Certain criteria may be applied to restrict eligibility, in either the case or control group  
or in both, to persons having a demarcated range of age, occupations, clinical conditions, or other possibly 
pertinent attributes.

The selection of a suitable control group is a complex topic about which universal agreement does 
not exist, and the topic has received abundant discussion elsewhere.1 The main point to be considered 
now is not the paramount importance of scientific propriety in the matching process, but the pragmatic 
method often used for choosing controls and for doing the subsequent statistical analysis.

The process sometimes involves getting 2 or more controls for each case, but the most common tactic 
(which is discussed here) involves a 1-to-1 matching arrangement.

26.5.2 Choosing “Matched” Controls

In a case-control study, the investigator usually begins with a group of cases, found via some type of 
medical roster or registry of persons with the appropriate disease. The controls can then come from 
three general sources of presumably nondiseased persons: the same medical milieu (e.g., a hospital 
where the cases were identified); the same large cohort study from which the cases emerged; or the 
general community (e.g., neighbors, friends, persons found via “random-digit” telephone dialing).

Because age and sex (and sometimes race) are commonly applied for epidemiologic adjustment, these 
demographic variables are often used to “match” the controls chosen for the cases. The subsequent 
analysis is easier because the compared groups are demographically similar, but the matching process 
can also have a major chronologic virtue. If the two groups come from a common roster, such as a list 
of admissions to a hospital or to a cohort study, the controls can be matched for admission at about the 
same date as the cases. For example, if the cases have all been hospitalized, the controls can receive a 
time-age-sex matching if chosen from the chronologic roster of hospital admissions, going upward and 
downward from the admission date of each case to find the next ensuing or previously admitted person  
who is similar in sex and in age years.

26.5.3 Formation of Tables

In a 1-to-1 matching, the investigator emerges with N case-control pairs, containing 2N persons. 
When previous exposure to the suspected etiologic agent is ascertained for each person, each 

5±

© 2002 by Chapman & Hall/CRC 



case-control pair will have one of four possible results that can be arranged as follows for the N
matched pairs:

Table 26.14 shows the agreement matrix for the N matched pairs, and Table 26.15 shows the
“unmatched” arrangement for these data, presented in the more customary format of case-control 
tabulations. In the familiar unmatched arrangement, the odds ratio for the “risk” of exposure will be (n 1
× f2)/(f1 × n2) = [(a + b)(b + d)]/[(a + c)(c + d)]. If you work out all the algebra, this result eventually 
becomes 

[26.5]

It can be compared with the odds ratio for the matched arrangement, which is calculated simply as b/c.  
The mathematical justification for the latter calculation is the topic for the rest of this discussion.

26.5.4 Justification of Matched Odds Ratio

If the unmatched odds ratio is 1, ad = bc; so ad − bc = 0, thus reducing expression [26.5] to b/c. For 
the matched and unmatched ratios to be equal, however, b/c must also equal 1. Therefore b = c, and ad 
must equal b2 = c2. For example, suppose the matched agreement matrix is . In this situation 
b/c = 10/10 = 1 and ad − bc = 100 − 100 = 0. The 2 × 2 table for the unmatched arrangement will be 

, which will have an odds ratio of 1. More commonly, however, neither the unmatched nor the 
matched odds ratio is 1, and the process needs a mathematical justification that is provided by the 
Mantel–Haenszel procedure.

Frequency of Each
Exposure Status Cell in Matched

Case Control Arrangement

Yes Yes a
Yes No b
No Yes c
No No d

TOTAL N

TABLE 26.14

Agreement Matrix for Matched Case-Control Pairs

Controls
Cases Exposed Nonexposed Total

Exposed a b n1

Nonexposed c d n2

TOTAL f1 f2 N

TABLE 26.15

Unmatched Arrangement of Data in Table 26.14

Cases Controls Total

Exposed n1 f1 n1 + f1

Nonexposed n2 f2 n2 + f2

TOTAL n1 + n2 f1 + f2 2N

b ad bc–( )/N[ ]+{ }/ c ad bc–( )/N[ ]+{ }

20  10
10   5 

 
 

15  15
30  30 
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26.5.4.1 Stratification of Matched Pairs — If we consider each of the N matched pairs as
an individual stratum in an “unmatched” arrangement, each of the strata will have one of the four possible
arrangements shown in Table 26.16. Because each pair contains 2 persons, the matched pairs in
Table 26.14, when displayed in Table 26.16, will contain 2a persons in Arrangement I, 2b in Arrangement
II, 2c in Arrangement III, and 2d in Arrangement IV.

26.5.4.2 Formation of Adjusted Odds Ratio — For the M-H summary odds ratio, each stra-
tum adds its own “intrinsic” aidi/ni term to the adjusted numerator and its own bici/ni term to the adjusted
denominator. In arrangements I, III, and IV of Table 26.16, the aidi terms will be 0. In arrangements I,
II, and IV, the bici terms will be 0. The only nonzero values will occur in arrangement II, where aidi/ni

= (1)(1)/(1 + 1) = 1/2, and in arrangement III, where bici /ni = (1)(1)/(1 + 1) = 1/2. The number of strata
will be a for arrangement I, b for II, c for III, and d for IV. Because b strata will have aidi/ni values of
1/2, with all other strata having corresponding values of 0, Σaidi/ni for the M-H adjusted numerator will
be b/2. For the M-H denominator, c strata will have bici/ni values of 1/2 and all other strata will have
corresponding values of 0. Thus, Σbici/ni for the M-H adjusted denominator will be c/2. The M-H adjusted
odds ratio will then be (b/2)/(c/2) = b/c.

26.5.4.3 Formation of Adjusted Variance — In arrangements I and IV of Table 26.16, the
variance will be 0, for reasons discussed earlier. In arrangements II and III, the variance will be nonzero
and identical. The four marginal totals in each arrangement will be 1, with ni = 2. Thus, according to
Formula [26.2], the variance will be (1)(1)(1)(1)/[(22)(1)] = 1/4 for each arrangement of the b strata
(with arrangement II) and the c strata (with arrangement III). Thus, Σ (variance of ai) will be b(1/4) +
c(1/4) = (b + c)/4. The expected value in the ai cell of arrangements II and III will be 1/2[= (1)(1)/(2)].
The observed-expected value in the ai cell will be 1 – 1/2 = 1/2 in arrangement II and 0 − 1/2 in
arrangement III. Thus, the value of Σ (observed − expected) will be b(1/2) + c(−1/2) = (b − c)/2.

26.5.5 Calculation of “Matched” X2

When the (b − c)/2 value is squared for the uncorrected calculation, we get = [(b – c)2 /4]/(b +
c)/4 = (b − c)2/(b + c), which is the same result as the formula previously cited for the uncorrected
McNemar chi-square test for a matched 2 × 2 table. Consequently, when uncorrected, the McNemar and
the Mantel–Haenszel procedures give identical results (and thus help justify one another) for determining
X2 in the matched analysis of a 2 × 2 table.

The 0.5 subtraction to “correct” the M-H results, however, becomes very tricky to apply to the matched
arrangements II and III in Table 26.13, because the observed values are either 1 or 0 and the expected
values are 0.5. Accordingly, if Yates correction is desired, the best stochastic approach for the matched
2 × 2 table is simply to calculate a corrected McNemar chi-square value as

TABLE 26.16

Arrangements of Strata of Matched Pair Results in Case-Control Study

Arrangement II:
(Case exposed,

not control)

Arrangement III:
(Control exposed,

not case)

Arrangement IV:
Arrangement I:
(Both exposed)

(Neither case nor 
control exposed)

Case Control Case Control Case Control Case Control
Exposed 1 1 1 0 0 1 0 0
Nonexposed 0 0 0 1 1 0 1 1

XM-H
2

XM
2 corrected( ) b c– 1–( )2

b c+
------------------------------=
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26.5.6 Scientific Peculiarities

Despite the apparent mathematical merits, the procedure just described for getting a matched odds ratio
has at least four scientific peculiarities:

26.5.6.1 Nonconfounding “Confounders” — The Mantel–Haenszel adjustment is intended
to deal with confounding variables, but the matching in most case-control studies is an act of demo-
graphic convenience, not a precaution against confounding. For reasons discussed elsewhere,1 age and
sex (and perhaps race) are seldom the main confounding variables in case-control studies of etiology
(or therapy).

26.5.6.2 Neglect of Bulk of Data — In a study where most of the data are in the matched a
and d cells of Table 26.14, it seems odd to place the main emphasis on the “disagreement” in the relatively
sparse b and c cells. This problem can be illustrated as follows. Suppose the matched data for 250 pairs
in a case-control study are arranged in the format of Table 26.14 as follows: . The matched odds
ratio will be 20/8 = 2.5, (uncorrected) will be (20 − 8)2/(20 + 8) = 5.14; and 2P < .05. The unmatched
results will be so that the unmatched odds ratio is [(170)(92)]/[(158)(80)] = 1.24, with a stochas-
tically nonsignificant X2 = 1.3. Although the investigator might want to use the matched data to claim a
“significantly” elevated risk, the claim would be contradicted by the unmatched results. The main findings
in this study would seem to be the predominant similarity of exposure or nonexposure in 222 (= 150 + 72)
of the matched pairs, rather than the dissimilarity noted in 28 pairs. To draw a conclusion from only the
latter results would ignore what is found in the great bulk of all the other data.

26.5.6.3 Results with Variance of 0 — It seems intuitively unacceptable to dismiss arrange-
ments I and IV of Table 26.16 as having 0 variance. Although quite correct mathematically, the dismissal
runs counter to the ingrained idea that all samples have variations. For example, a proportion such as 
0/2 has 0 variance according to the formula  (for the proportion) or the formula npq (for the 
numerator). Nevertheless, despite the 0 variance, most evaluators would regard such a proportion as 
unstable. The stability might be determined by resorting to binomial distributions, but these distributions 
are not used in the McNemar or M-H formulas; and the Yates corrections are but arbitrary attempts to 
substitute for the actual distributions.

26.5.6.4 Ambiguous Results — Because the odds ratios and the X2 values can become ambigu-
ous, yielding substantially different results when calculated with the matched and unmatched methods,32

an investigator can always do things both ways and then report the “desired” result. For this reason, 
reviewers, editors, and readers should always demand that both sets of results be presented. If the conclu-
sions disagree, the decision about which set to accept will usually be controversial, depending on the 
professional ancestry of the person who does the deciding. For persons with a mathematical background, 
the preferred choice will usually be the statistical appeal of the matched analysis. For persons with a 
scientific background, the preferred choice — for reasons stated in the first two points here — will be the 
unmatched analysis. As long as both sets of results are presented, however, you can make your own choice. 

26.6 Additional Statistical Procedures

If you feel mentally tired and somewhat confused after all the foregoing discussion, you are in good 
company. Most health professionals and scientific workers become distinctly uncomfortable (if not 
overtly oppressed) when confronted with the extensive mathematical reasoning used for the cited 
concepts. Complex as they may be, however, the concepts just discussed are but a few of the diverse 
mathematical strategies that have been developed for the statistical analysis of “risk” in case-control and  
cohort studies.

150   20
8      72 

 
 

XM
2

170  158
80    92 

 
 

pq/n
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The Mantel–Haenszel and many other methods can be used to adjust the risk ratio in cohort studies
as well as the odds ratio in case-control studies. The matched odds ratio can be calculated in special
ways when the controls are matched as ≥ 2 to 1, rather than 1 to 1. Special confidence intervals can be
calculated for these multiple matchings, as well as for 1 to 1 matchings. And all of the mathematical 
strategies have inspired multiple ideas and multiple pages of statistical literature.

As a reward for having come this far in the chapter, however, you will be spared an account of all
the additional ideas and operational tactics. If you ever want (or need) to find out what they are, you
can look them up (and try to understand them) from the accounts and cited references given in several
textbooks.25–28 After discovering that the authors do not always agree on the best way to do things, you
can feel particularly grateful to have escaped the risk of the exposure here.
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Exercises

26.1. Use your calculator to confirm the statement in the text that the direct standardized rates in
Table 26.5 are 15.02% for OPEN and 14.38% for TURP. Show at least some of the component
calculations.
26.2. If you did an indirect rather than direct standardized adjustment for the data in Table 26.5, what
would be the standardized mortality ratios for TURP and OPEN? What would be the indirectly 
standardized mortality rates?
26.3. The investigators whose work was contradicted have vigorously disputed the conclusions by 
Concato et al.11 What do you think is the focus of the counter-attack by the original investigators?
26.4. The five-year survival rate for breast cancer is reported to be 71% at the prestigious Almamammy 
Medical Center and 59% at the underfunded Caritas Municipal Hospital. The nationally reported five-
year rate of survival for breast cancer is 63%. We also know the following data:

What could you do to standardize the two sets of results for comparison? What are the 
standardized values?

5-Year 
National Survival 

Rates
TNM
Stage

Reported Number of Patients
Almamammy Caritas

I 129 631 .80
II 35 266 .62
III 32 642 .54
IV 23 307 .17

TOTAL 219 1846 .63
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26.5. In 1970, the crude death rate (all causes) for Guyana was 6.8 per 1000; for the United States it was
9.4 per 1000.

26.5.1. Can the lower crude death rate in Guyana be attributed to the fact that the United States
has a larger population? Explain your answer.

26.5.2. Cite two other possible explanations for the lower rate in Guyana.
26.5.3. Additional information about these countries for the same year is as follows:

How does this additional information assist you in interpreting the difference in crude
death rates?

26.6. In Figure E.26.6, curves (1) and (2) represent two ways of showing the secular trend in overall
mortality in the United States between 1900 and 1960. One curve represents crude death rates; the other, 
age-adjusted death rates.

26.6.1. The United States population of what year was used as the standard for the age-adjusted 
rates? Explain your answer.

26.6.2. From your examination of the two rates, which is the crude rate and which the age-
adjusted rate? Explain your answer.

26.6.3. Why has one curve leveled off after 1940, while the other has continued to decline?
26.7. Try to find (group cooperation permissable) a paper in which the Mantel–Haenszel adjustment 
was used. Do you understand what was done? Do you agree with the results and conclusions?

Guyana United States

Crude birth rate (per 1000 population) 38.1 18.2
Infant mortality rate (per 1000 live births) 38.3 19.8

FIGURE E.26.6
Crude and age-adjusted death rates, United States 
(1900–1930, death registration states; 1940–1960 
total, United States). Year
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In Chapter 26, we considered methods of adjusting and combining a set of results in which a binary 
variable — such as survival, success, or development of a disease — had been partitioned into a set of 
strata or an array of 2 × 2 tables. For reasons discussed in Chapter 18, the data presented in Chapter 26  
can all be regarded as associations, but our main interest was in contrasting groups rather than relating 
variables. We wanted to examine standardized rates or adjusted odds ratios.

In this chapter, we turn to relationships, rather than contrasts, for categorical variables, and to the 
pertinent indexes of categorical association. These indexes appear infrequently but regularly in medical 
literature; and some of them may already have been thrust upon you, uninvitedly, by the computer 
printout of a “packaged” program (in the BMDP, SAS, or other systems) that was used merely to obtain 
a chi-square or Fisher exact test for a simple 2 × 2 table. Although the additional indexes may often be  
neither necessary nor useful for such tables, the computer programs may include the extra embellishment, 
somewhat like automated laboratory tests that report many measurements beyond the result you wanted  
only for glucose or electrolytes.

The discussion now is intended to acquaint you with the additional categorical indexes, mention some 
of their many titles or eponyms, outline their construction, and show how and where they might be 
useful. The operational details need not be remembered, because you can always expand the acquaintance 
(or even develop a friendship) if you meet or need the indexes in the future. Detailed descriptions are 
available in a plethora of textbooks.1–8

The many additional indexes are needed because of (1) difficulty in expressing results for variables 
cited in ordinal or nominal categories and (2) the diverse structures created when the categories of ordinal 
or nominal variables are related to one another or to other (dimensional or binary) variables.

27.1 Sources of Complexity in Categorical Indexes

In previous discussions of indexes of association, Chapter 18 outlined the needs created by different 
scales for the two variables. In Chapter 19, the most commonly used indexes were shown for bi-
dimensional trends; and the many indexes of concordance appeared in Chapters 20 and 21. In the 
remaining indexes that have been reserved for this chapter, the associations are constructed with strategies 
of estimation or covariation; and at least one of the two variables in each index is categorical— expressed 
in binary, ordinal, or nominal data. The categorical relationships produce four complexities beyond those 
discussed previously.

27.1.1 Asymmetrical Orientations

In statistical jargon, the words symmetrical and asymmetrical are sometimes used respectively for the 
interdependent and dependent relationships of trend in two variables. In symbols, Y × X (or X × Y) can 
indicate a general bivariate relationship; Y ↔ X; represents a symmetric correlation; and Y → X or Y 
vs. X represents an asymmetric dependence of Y on X.

The asymmetry can lead to strikingly different statistical structures and expressions. Thus, if a 
dimensional × binary relationship is arranged as dimensional → binary, the structure of the data will 
produce a contrast of two means, but if the relationship is binary → dimensional, the structure can 
resemble a survival curve.

27.1.2 Non-Commensurate Scales

Even if the two variables have similar types of scales, such as ordinal × ordinal, the statistical index can 
differ for non-commensurate scales that have different numbers of categories. For example, if each 
ordinal variable has 3 categories, the two-way table has a “square” 3 × 3 structure, as in the relationship 
of TNM Stage I, II, III for cancer vs. young, middle, and old age groups. If one ordinal variable has 
3 categories and the other has 4, however, the 3 × 4 table may require a different “rectangular” index 
of association. The relationship of TNM Stage I, II, III to symptoms would be “rectangular” if the 
symptoms were cited in four categories as none, mild, moderate, and severe.
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As a nicety of nomenclature, note that a scale “cut” into two categories is called binary or dichotomous.
The latter term comes from dicha, which is Greek for “two,” and from tom, which also appears in such 
surgical cutting as laparotomy. Because tricha is Greek for “three,” a scale with three categories is 
trichotomous. Prefixed by the Greek for “many,” a scale with more than three categories is polytomous.
The latter term, however, is often mistakenly called polychotomous if the dicha- and tricha- prefixes 
lead to expectations that a “cho” should precede the “tom.”

Trichotomous and polytomous scales will always involve either ordinal or nominal variables.

27.1.3 Tied Ranks

When ordinal categories have a limited set of grades (such as none, mild, moderate, severe) rather 
than an unlimited array of consecutive “cardinal” ranks (such as 1, 2, 3, … 39, 40, …), the ranks in the 
graded categories can have many tied values, as discussed in Chapter 15. In such situations, indexes 
conceived with an unlimited-rank strategy will require “corrections” to account for the ties.

27.1.4 Presentation: Contingency Tables or Variables

Data expressed in categories are usually presented in a two-way contingency table, having r rows for 
one of the categorical variables and c columns for the other. The numbers in the cells of the r × c table 
represent frequency counts for the “contingent” occurrence of each bivariate category. (The most common 
such table is a 2 × 2 or “fourfold” arrangement of two binary variables.) Most of the additional indexes  
to be discussed here are produced by the different structures of the r × c tables. If the categories are 
ordinal grades, for which many tied ranks can be expected, the analysis is usually aimed directly at tied  
and non-tied frequencies in the tabular arrangement.

Not all ordinal data, however, are cited in frequently tied grades. An ordinal scale may sometimes  
have ranks that contain either unlimited cardinal counts or very few (if any) ties, because the ranks 
were obtained from dimensional variables. For these ordinal scales, the analysis can be approached 
simply as a relationship of variables. (If two unlimited-rank variables are arranged as a contingency 
table, each cell will often have only one member.)

27.1.5  Construction with Estimates or Trends

As noted earlier in Section 18.3.1, the association between two variables can be expressed with an 
index of either estimation or covariation. For the bi-dimensional data in Chapter 19, both types of 
indexes were obtained with a single procedure — the linear regression method, which is aimed at 
estimates, but also produces regression and correlation coefficients for trend (or “covariation”). This 
type of “two-fer” bonus is seldom possible with other forms of bivariate association, which are usually 
expressed with indexes of either estimation or trend, but not both. The few methods of estimation 
will be discussed in the next section, and the rest of the chapter thereafter is devoted to the many 
indexes of trend.

27.2 Indexes of Estimation

The improved accuracy achieved when one variable is estimated from values of the other can be cited 
as proportionate reductions in error, in variance, or in “entropy.”

27.2.1 Lambda

The index called lambda was proposed by Guttman9 and christened by Goodman and Kruskal.10 With 
these origins, the eponymic designation for lambda is usually given to Guttman by psychosocial 
scientists11 and to Goodman and Kruskal by statisticians.12,13
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Having been constructed for tables with nominal categories, the lambda index can also be used for 
ordinal contingencies. The basic strategy was discussed, without being so labeled, in Section 18.3.1.2. 
If Ey is the number of errors in the estimates made with Y alone, and if Ex is the number of errors in 
the estimates made with X, the index for proportionate reduction in error is

[27.1]

With this construction, lambda is analogous to r2 in bi-dimensional associations13, but the errors are 
determined from unit counts of right or wrong categorical estimates, rather than from squared deviations 
of measured dimensions.

For example, consider the data in Table 27.1, showing a relationship between five ordinal categories
of TNM stages (X-variable in rows) and four ordinal symptom stages (Y-variable in columns) in a 
random sample of 200 patients with lung cancer.14,15 To estimate a value for symptom stage using data 
from Y alone, the best estimate would be the mode, stage 2, which appears most often (82 times) among 
the 200 ratings. If estimated for all 200 ratings, this value would be wrong in 118 (=  200 − 82) instances. 
When an associated X value is available for TNM stages, however, the respective modal values of 27, 
21, 8, and 17 in each of the first four TNM rows (stages 1, 2, 3, and 4) would lead to Stage 2 as the 
corresponding estimate for symptom stage in each row. These estimates would be wrong in (51 + 27 +
18 + 36) − (27 + 21 + 8 + 17) = 59 cases. In the row for TNM stage 5, however, the modal estimate of 
symptom Stage 4 would be wrong in 68 − 39 = 29 cases. Thus, the total number of errors using the X 
variable would be 59 + 29 = 88. The proportionate reduction in errors would be 

lambda = (118 − 88)/118 = .25

The expression for lambda is asymmetric. In this instance, it was oriented as though Y (for symptom  
stage) depended on X, but it can also be calculated, if desired, either with the orientation that X depends  
on Y or with a symmetrical expression.

Although not a particularly useful index now, lambda will be valuable later on (in Section 27.4.1.1) 
to describe the effects of categorical stratifications for a binary variable.

27.2.2 Eta Correlation Ratio

Despite the “correlation” in the title, eta is a descriptive index of estimation. It can be used when a 
dimensional variable, such as weight, is examined in a series of nominal groups A, B, C, …  . This 
statistical arrangement commonly appears in the analysis of variance, and the results are usually expressed 
with a stochastic index, called F, which is a polytomous counterpart of the stochastic Z or t for comparing 

TABLE 27.1

Relationship of Symptom Stage and TNM Stage in Random Sample of 200 Patients with 
Lung Cancer*

Variable X: 
TNM Stage  
Ordinal Categories

Variable Y: Symptom Stage Ordinal Categories
1 2 3 4 Total

1 13 27 0 11 51
2 3 21 0 3 27
3 4 8 4 2 18
4 6 17 7 6 36
5 2 9 18 39 68

Total 28 82 29 61 200

* The full set of data is reported in Chapter Reference 14 and the random sample is further analyzed  
in Chapter Reference 15.

lambda Ey Ex–
Ey

-----------------=
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two groups. As a descriptive statistic for the dimensional → nominal arrangment, eta (η) indicates the 
proportionate reduction of group variance and corresponds to the roles of r2 in simple regression and φ2

(discussed later) in categorical data.
Figure 27.1 displays a set of data for which eta could be applied to summarize the total proportionate

reduction in group variance when serum concentration of sCD4 cells was partitioned into four diagnostic 
groups of patients.16 As shown by the p values in the figure, however, the authors preferred to do pairs 
of two-group analyses.

FIGURE 27.1
Serum concentrations of sCD4 in patients with primary (n = 25) and secondary (n = 13) Sjogren’s syndrome, patients with 
SLE (n = 64), and normal individuals (n = 43). ° = patients with sicca alone (n = 4, glandular type). Mean and standard 
deviation are indicated by vertical lines. [Figure and legend taken from Chapter Reference 16.]
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27.2.3 “Uncertainty” Coefficient

The uncertainty coefficient is based on the idea of entropy, which is a concept of “information theory.”
According to this concept, the entropy in a proportion such as pi is equal to pi times its logarithm. The
idea appeared (without being so labelled) when Shannon’s H was presented as an index of diversity in
Section 5.10.2.

The symbols in an r × c contingency table are as follows: The individual frequency counts in each
cell are nij. The marginal totals of the r rows are r1, r2 …, rr, with Σri = N. The marginal totals of the c
columns are c1, c2, …, cj, …, cc, with Σcj = N.
If X represents the row variable, the entropy in the rows is

U(X) = Σ (ri/N) ln (ri/N)

If Y is the column variable, the entropy in the columns is

U(Y) = Σ (cj/N) ln (cj/N)

The entropy in the individual cells, nij, is

U(XY) = sum of [(nij/N) ln (nij/N)]

From these components, the uncertainty coefficient can be calculated in an asymmetric or symmetric
direction. The numerator of the coefficient is always U(X) + U(Y) − U(XY). The denominator is U(Y)
if the column values are being established from the rows, and is U(X) if the row values are being
established from the columns. For the symmetric value, the denominator is [U(X) + U(Y)]/2.

For the data in Table 27.1, the proportions in the column totals are 28/200 = 0.14, 82/200 = 0.41,
29/200 = 0.145, and 61/200 = 0.305. The value of U(Y) is .14 ln (0.14) + .41 (ln .41) + .145 (ln .145) +
.305 (ln .305) = −1.283. Analogous calculations would show that U(X) = –1.511, and U(XY) = –2.5598.
[Null cells (with frequency counts of 0) do not participate in the calculations, because nij = 0 before an
attempt can be made to calculate ln nij. Consequently, although 20 terms would be expected in the5 × 4
structure of Table 27.1, only 18 cells were used to calculate U(XY).]

The foregoing results can then be appropriately substituted to produce

Uncertainty CR = [(−1.283) + (−1.511) − (−2.560)]/(−1.511) = .155.

Uncertainty RC = (−.234)/(−1.283) = .182.

Uncertainty (symmetric) = (−.234)/{[(−1.283) + (−1.511)]/2} = .168.

Regardless of which of the three uncertainty coefficients is used, the results in this instance are 
reasonably close, at values of .155 to .182.

The uncertainty coefficient is mentioned here because it regularly appears in certain computer printouts 
of indexes of association for r × c tables. Although higher values of the coefficient denote better 
“estimates,” the coefficient is seldom (if ever) used in medical literature. 

27.3 Trend in Bi-Ordinal Data

All the remaining indexes in this chapter are constructed with principles of covariation. This section is 
devoted to bi-ordinal trends, in which both variables have mainly untied ranks. The two main indexes 
are Kendall’s tau and Spearman’s rho.
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27.3.1 Kendall’s Tau

In Kendall’s index of association, a score is constructed with the type of sequential placement strategy 
used when the Mann–Whitney U index (Section 15.4.1) was calculated from the number of ranks in 
one group that preceded the ranks of the other. If the two ordinal variables are perfectly related and the  
X variable is arrayed according to its ranks, each corresponding rank of the Y variable should be 
successively higher than the previous rank. Each compared pair of observations is concordant with this 
expectation if the rank of Y is higher than the rank of X, and discordant, if the rank of Y is lower. The 
relationship is expressed in an index constructed from successively counting the numbers of concordant 
and discordant pairs (as well as ties).

27.3.1.1 Sequential-Placement Scoring System — The sequential-placement scoring strat-
egy warrants detailed description because it is used for seven indexes discussed in this chapter.

Suppose we have ordinal values for two variables, X and Y, in each of n members of a group. There 
will be (n)(n − l)/2 pairs of comparisons for the corresponding value of Y as we go from one ranked 
value of X to the next. As demonstrated by Simon, 17 each paired comparison can be cited in one of five  
counted groups:

P = no. of pairs concordant for X and Y (i.e., the item with the higher ranked X also has a 
higher ranked Y)

Q = no. of pairs discordant for X and Y (i.e., the item with the higher ranked X has a lower 
ranked Y)

Tx = no. of pairs for which X values are similar but Y values are different (i.e., the pairs are 
tied on X)

Ty = no. of pairs with similar Y values but different X values (i.e., the pairs are tied on Y)
W = no. of pairs tied on both X and Y

According to this construction, with T used for total score, T = (n)(n − l)/2 = P + Q + Tx + Ty + W.
These symbols will be used to construct three forms of Kendall’s tau, the Goodman–Kruskal gamma  

coefficient, and three forms of the Somers D coefficient. The rest of this main section is devoted to 
Kendall’s tau. The other indexes are discussed in Section 27.6.

27.3.1.2 Structure of Kendall’s Tau — Kendall’s tau actually has three forms. It was 
originally18 proposed, without attention to ties, from the decrement

S = P − Q

In a perfect concordance of all pairs, Q will be zero, and P will be (n − 1) + (n − 2) + (n – 3) + … + 1, 
which is n(n − 1)/2. Kendall’s tau is the ratio between the observed score S and the potentially perfect 
score: T = n(n − 1)/2. Thus,

[27.2]

For the scoring system with two ordinal variables, the ranked X values are first aligned as X 1, X2, …,
Xn. The ranks of the corresponding Y values will be Y1, Y2, Y3, …, Yn. To inspect the Yi ranks, we start 
with Y1. Each time the rank of Y2, …, Yn exceeds the rank of Yl, a score of 1 is added to P. Whenever 
the rank is below Yl, a score of 1 is added to Q. If the two ranks are tied, the score is 0. We next go to  
Y2 and repeat the scoring process for ranks Y3, …, Yn. The procedure is then reiterated for Y3 (comparing 
Y4, …, Yn); and the iterations continue until the last one, when Yn−l is compared with Yn. At the end 
of the procedure, S = P − Q.

tau S
T
--- S

n n 1–( ) 2⁄
--------------------------- 2S

n n 1–( )
--------------------= = =
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Formula [27.2] is called tau-a and rests on the assumption that no values are tied. Consequently, the
formula cannot be used for contingency tables (where multiple frequencies occur at the same rank). To
deal with ties, Formula [27.2] is adjusted into another formula, called tau-b. It is listed by Simon17 as

[27.3]

where T, Tx, and Ty (as well as P and Q) are the counts defined in Section 27.3.1.1.

27.3.1.3 Illustration of Calculations — To illustrate the calculations for two ordinal variables,
Table 27.2 has been arranged here from the ranks of the X and Y variables that were formerly used to
show covariances in Table 19.1 of Chapter 19. The X ranks are shown in ascending order, with a tied
last value for persons G and H.

The first rank in Y is 1, and each of the subsequent ranks in Y (7, 3, 6, 2, 8, 4, and 5) is higher than 1.
We therefore give P a score of 7 for each of these seven correctly ordered paired comparisons — 1 vs. 7,
1 vs. 3, 1 vs. 6, etc. — in which the second element of the pair ranks higher than the first. The next value
in the ranks of Y (corresponding to the X-rank of 2) is 7. Comparing 7 with each of the Y ranks that
follow it, we find 5 pairs (7 vs. 3, 7 vs. 6, 7 vs. 2, etc.) in which the correct order is reversed, and only
one (7 vs. 8) having the correct order. Thus, P is incremented by one to become 8, and Q becomes 5.
The next ranked Y value, 3, has four succeeding ranks (6, 8, 4, and 5) that are higher and one (2) that
is lower. P becomes 12, and Q becomes 6. For the next Y rank, 6, three succeeding ranks (2, 4, 5) are
smaller, and only one (8) is larger. P becomes 13, and Q becomes 9. For the next Y rank, 2, P is
incremented by 3 to become 16. For the next Y rank, 8, Q is incremented by 2 to become 11; and for
the final Y rank, 4, the P score is increased by one unit to become 17. The value of S = P − Q is 17 −
11 = 6. The value of a perfect score would be T = (8 × 7)/2 = 28.

Without any ties, the tau-a index in Formula [27.2] would be (2)(6)/(8)(7) = 0.214. Because one pair 
of values in X was tied (with different values of Y), Formula [27.3] produces

In Section 19.1.3, when the data of Table 27.2 were expressed dimensionally in Table 19.1, the 
conventional (or “Pearson”) correlation coefficient was .186.

27.3.1.4 Interpretations and Modifications — Interpreted the same way as r, the bi-dimen-
sional correlation coefficient, tau, is at a maximum of +1 when all n(n − 1)/2 ranks are concordant, and
at a minimum value, −1, when they are all discordant. A value of 0 indicates no association.

TABLE 27.2

Rearrangement of Table 19.1 to Show Rank Ordering and Rank Differences

Person
Rank in 

Variable X
Rank in 

Variable Y di

A 1 1 0 0
B 2 7 −5 25
C 3 3 0 0
D 4 6 −2 4
E 5 2 +3 9
F 6 8 −2 4
G 7.5 4 3.5 12.25
H 7.5 5 2.5 6.25

SUM 36 36 0 60.5

Note: The values of di and  are used in calculating Spearman’s rho, but not Kendall’s tau.

tau-b P Q–
T Tx–[ ] T Ty–[ ]

--------------------------------------------=

di
2

di
2

tau-b 6
28 1–( ) 28( )

----------------------------------- .218= =
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If the two variables do not have equal numbers of categories, the structure of tau must be modified.
The modified index, called tau-c, is further discussed in Section 27.6.5.

27.3.2 Spearman’s Rho

In Spearman’s rho, which is the oldest “non-parametric” index of trend, the ordinal ranks are regarded
as dimensional values; and di = Xi − Yi is calculated as the discrepancy between the two sets of
corresponding ranks for each point in the data. (An analogous process was used for Wilcoxon’s signed-
rank test.)

When appropriate results are entered into the customary “Pearson formula” for r = Sxy/ , the
quantity will equal Sxx + Syy − 2Sxy, so that Sxy = (Sxx + S yy − )/2. Consequently, using rS as
the symbol for Spearman’s rho, we would have

[27.4]

For two sets of untied ordinal ranks, the values of Sxx and Syy will be similar, producing Sxx = Syy =
(n3 – n)/12. Substituting these values of Sxx and Syy into Formula [27.4] and carrying out the rest of the 
algebra, we get Spearman’s rho as

[27.5]

27.3.2.1 Illustration of Calculations — For the data in Table 27.2, = 60.5, and n = 8. With
Formula [27.5], the value of rs will be 1 − [(6)(60.5)/(83 − 8)] = 1 − (363/504) = .280, which is higher 
than the value found earlier for Pearson’s r = .186. With Formula [27.4], Sxx = Syy = (n3 − n)/12 = (83 – 8)/12 =
42, which produces the same result: rs = (42 + 42 − 60.5)/[2 ] = .280.

The value just calculated for rs, however, does not include a correction for tied ranks in the last two 
values for X. The correction factor is T = (t3 − t)/12, where t = number of observations tied at a particular 
rank. With this correction, Sxx = [(n3 − n)/12] − , where  is the sum of all the T values in the 
X variable; and Syy = [(n3 − n)/12] − , where  is the corresponding value in the Y variable. In 
the example here, = 0, but = (23 − 2)/12 = 6/12 = 0.5. Thus, Sxx would be corrected to 
[(83 – 8)/12] – 0.5 = 41.5. The recalculated, corrected value of rs would be slightly lowered to

27.3.2.2 Choice of Kendall’s Tau vs. Spearman’s Rho — The choice between the Kendall 
and Spearman coefficients will usually depend on the professional ancestry of the person making the 
choice. (Kendall was a mathematical statistician; Spearman, a psychologist.) Both coefficients have their 
advocates19,20 and both yield results that are usually in the “same ballpark.” The Spearman coefficient 
regularly appears in medical literature, whereas the Kendall coefficient is rare. If you do the calculations 
yourself, the Spearman procedure is generally easier. A suitable computer “package” program usually 
produces both results, and you can then choose the one you like.

Because both coefficients are used mainly for description, they are seldom tested for stochastic 
significance, but appropriate procedures are available if desired.

27.3.3 Application to “Eccentric” Distributions

The two “non-parametric” rank correlation statistics are particularly valuable not for ordinal data, but 
for dimensional data that have eccentric distributions. Such distributions will violate the principles 
underlying the Pearson correlation coefficient, r, where the two variables are assumed to have a straight-
line relationship, and where the stochastic interpretation assumes that the data have a bivariate Gaussian 

SxxSyy

Σdi
2 Σdi

2

rS
Sxx Syy Σdi

2–+
2 SxxSyy

------------------------------------=

rS 1 6Σdi
2

n3 n–
--------------–=

Σdi
2

42( ) 42( )

ΣTx ΣTx

ΣTy ΣTy

ΣTy ΣTx

rs
41.5 42 60.5–+
2 41.5( ) 42( )

--------------------------------------- 23
83.5
---------- .275= = =
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distribution. These requirements cannot be satisfied if the relationship is non-rectilinear or if the distri-
bution is “eccentric” for either (or both) of the two variables. [An “eccentric” distribution has an
asymmetrical (“skew”) shape, unbalanced outliers, or any other patterns (such as two or more modes)
that make the data non-Gaussian.] The non-Gaussian patterns can promptly be recognized when the
univariate summary is checked separately for each variable, but detection of a nonlinear relationship
will require special examinations such as those discussed in Section 19.6.2.

Because relatively few sets of bivariate data meet the strict rectilinear and bi-Gaussian “eligibility”
requirements, most correlations for bi-dimensional data would probably best be expressed with the “non-
parametric” Kendall or Spearman coefficients, which do not make draconian demands for the pattern
of distribution. Nevertheless, because Pearson’s r is believed to be “robust” (i.e., not greatly affected by
violations of the eligibility criteria), it is often applied almost routinely for all bi-dimensional correlations.
Because the violations may sometimes distort the results, the non-parametric coefficients may often be
“significant” (quantitatively, stochastically, or both) in situations where Pearson’s r was not. In the simple
example in Tables 19.1 and 27.2, both the Kendall and Spearman coefficients had higher values than
Pearson’s r.

27.3.4 Published Examples

In clinical applications, the results of a randomized, double-blind, crossover trial21 of acetazolamide
versus placebo for the prevention of acute mountain sickness were expressed with Spearman’s rho and 
with Wilcoxon’s signed rank test, because the scores for symptoms did “not conform to normal distri-
butions.” Wilcoxon’s test was used to contrast differences in the two treatments, and the rs coefficient
expressed the association between symptoms and age.

Another clinical application occurred in a trial22 checking the effect of serum interleukin-6-level on
survival in patients with septic shock. The investigators elected not to use the conventional Pearson r
coefficient because the interleukin results were expressed in powers of 10. Accordingly, the Spearman
rs coefficient was applied to correlate the ranks of the two variables. The results are shown in Figure 27.2.
You can decide for yourself whether the data seem to have a correlation as high as the cited “r = .51.”

Other examples of the Spearman rs coefficient appeared in medical publications where the entities
being correlated were lipoprotein (a) with hemoglobin Alc in diabetes mellitus,23 collateral blood flow
with cardiac wall motion score in recent myocardial infarction,24 mean faculty income at university
hospitals vs. percent of women in each subspecialty fellowship,25 and ordinal ratings of “experiences
from an imaginary cardiovascular clinical trial.”26

FIGURE 27.2
Correlation between the serum concentrations of IL-6 (ng/mL) measured at study entry and the duration of survival (days)
in 33 nonsurvivors (Spearman rank correlation coefficient). [Figure and legend taken from Chapter Reference 22.]
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27.3.5 Concerns about “Reduced Efficiency”

When non-parametric analyses were first proposed for dimensional data, many statisticians were 
worried about a descriptive “loss of information” (as noted in Section 15.9.1). A more substantial
concern, however, was the stochastic fear that non-parametric procedures, such as the Wil-
coxon–Mann–Whitney U test, were less powerful than the counterpart parametric procedures, such as
the t test. The concept was checked with ratios of “power efficiency” or “asymptomatic relative efficiency”
that were calculated from the sample sizes needed to give the tests the same “power” when the same null
hypothesis and same alternative hypothesis were evaluated at the same level of α. As discussed earlier
(Section 23.5), if test A requires nA persons and if test B requires nB persons to have the same power,
and if nB is larger than nA, the reduced “power-efficiency” of test B is calculated as nA/nB. With this type
of calculation, the relative power-efficiency of non-parametric tests was found to range from about .64
to .96 when compared with the corresponding parametric procedures.

These comparisons, however, were done under conditions that are optimal for the parametric tests,
but not when eccentric distributions might handicap the parametric performance. Accordingly, the alleged
superiority of the parametric tests may be due to unfair comparisons. Perhaps the best approach is to
use a parametric test if it seems appropriate, but don’t let the false specter of “reduced efficiency” keep
you from using a non-parametric test if it does what you want or need it to do.

27.4 Trend in r × 2 Tables

Beyond the expressions of trend in bi-ordinal data, probably the most common and useful additional
indexes are those that express trend in r × 2 tables. Such tables have two columns for a binary variable,
which can also be cited as a proportion, and more than two rows for r polytomous categories of a variable
that can be nominal or ordinal. (The table can also appear in a counterpart 2 × c arrangement, for 2 rows
and c columns. Everything to be discussed here for the r × 2 format will also pertain to the alternative
arrangement.)

27.4.1 General Association

To illustrate the arrangement, the r × 2 format of Table 27.3 has a row variable with A, B, and C as three
polytomous categories. The column variable is a binary outcome event, such as survival. The data are
easier to understand and interpret when the two-column frequency counts are rearranged and shown as
proportions in Table 27.4.

Three general indexes — lambda, φ2, and φ — can be used to express association in any r × 2 table,
regardless of whether the row categories are nominal or ordinal.

27.4.1.1 Lambda Index of Error Reduction — The lambda index discussed in Section
27.2.1 is a simple expression for the statistical “accomplishment” of the categories in Table 27.4. From
only the “Y variable” totals, with survival rate 70%, everyone would be estimated as alive. The estimates
would be correct in 143 instances, and wrong in 61. When the X variable is used, everyone in Category

TABLE 27.3

Results in a 3 × 2 Table

5-Year Survival
Category Alive Dead Total

A 24 44 68
B 43 2 45
C 76 15 91
Total 143 61 204

TABLE 27.4

Alternative Arrangement of Table 27.3

 Category
5-Year 

Survival Rate

A 24/68 (35%)
B 43/45 (96%)
C 76/91 (84%)
Total 143/204 (70%)
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A, with a 35% survival rate, would be estimated as dead. The estimates would be correct in 44 persons
and wrong in 24. In categories B and C, where survival rates are 96% and 84%, everyone would be 
estimated as alive. These estimates would have 2 errors in B and 15 errors in C. The total number of
errors in the three groups would be 24 + 2 + 15 = 41.

The lambda value for proportionate reduction in errors will be

[27.6]

which is (61 − 41)/61 = .33 in this instance.

27.4.1.2 φ   2 for Variance Reduction — From the customary X2 used in the chi-square test, φ2

can be calculated as X2/N to form a descriptive index that expresses proportion of group variance
reduction in an r × 2 table. The mathematical justification is as follows:

Each row in the table has ni members, of whom ti have the target binary event, such as alive. The
proportion in that row will be Pi = ti/ni. For the total table, T = , N = , and P = T/N, with Q =
1 – P. The original group variance, before any division into categories, is NPQ; and the group variance
in each row category is nipiqi. The proportionate reduction in variance achieved by dividing the total
group into categories will be

[27.7]

After suitable substitution and carrying out the algebra, the reduction in group variance, NPQ − Σ(n ip iq i),
will become

[27.8]

and a simple computational formula for the proportionate reduction in variance will be

φ2 = [Σ( /ni) − (T2/N)]{N/[T(N − T)]} [27.9]

For example, in Table 27.4, NPQ = (204)(143/204)(61/204) = 42.76; Σnipiqi = [(24)(44)/68] +
[(43)(2)/45] + [(76)(15)/91] = 29.97; and NPQ − Σnipiqi = 42.76 − 29.97 = 12.79. With Formula [27.8],
we get (242/68) + (432/45) + (762/91) − (1432/204) = 113.03 − 100.24 = 12.79. The value of φ2 will be
12.79/42.76 = .299 with Formula [27.7] or 12.79{204/[(143)(61)]} = .299 with Formula [27.9].

These results for φ2 and the preceding lambda indicate that when the total survival rate of 143/204
(70%) is divided into the three categories shown inTable 27.4, the proportionate reductions are 33% in
error rate, and 30% (i.e., φ2 = .299) in group variance.

Because X2 = Nφ2, Formula [27.9], when multiplied by N, becomes exactly the same calculation of 
X2 that was shown earlier for a 2 × 2 table with Formula [14.5]. The extension of the X2 formula to an 
r × 2 table is

X2 = [Σ( /ni) − (T2/N)]{N2/[T(N − T)]} [27.10]

Formula [27.10] is particularly convenient because it avoids having to determine all the “expected” 
values for calculations using Σ(0 − E)2/E. It also avoids the nipiqi calculations of Formula [27.7]. With 
Formula [27.10], X2 (without Yates correction) can be promptly found for any r × 2 table and used as 
a stochastic index, interpreted with (r − 1)(c − 1) = (r − 1)(2 − 1) = r − 1 degrees of freedom. In 

lambda errors for total – errors for categories
errors for total

-----------------------------------------------------------------------------------------=

Σti Σni
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Table 27.4, where we already know that φ2 = .299, multiplication by N = 204 will produce X2, which
will have the very high value of (204)(.299) = 61, for which 2P is <.0001 at 2 d.f. If calculated first, the
X2 value in the r × 2 table can be divided by N to get φ2 as a descriptive index of association, representing
the proportion of reduced variance.

27.4.1.3 φ for Correlation — The square root of φ2 yields φ as the counterpart of a correlation
coefficient. For Table 27.4, φ =  = .55.

φ can be justified as a correlation coefficient if you work out the algebra for the corresponding values
of Sxy, Sxx, and Syy in a 2 × 2 table for which the X and Y variables are each coded as 0/1. When the
correlation coefficient is calculated as , the result turns out to be φ = .

The φ index is seldom used descriptively, because a correlation coefficient intuitively seems to be a
peculiar way of summarizing the results being contrasted in an r × 2 or 2 × 2 table. For larger r × c
tables, however, φ may sometimes have the useful “screening” function described later in Section 27.8.1.

27.4.2 Problems in General Trend

Table 27.5 shows another 3 × 2 table, but the row variable contains a specifically ordinal array — mild,
moderate, severe — rather than the unranked categories of Table 27.4. If the conventional X2, φ2, and
lambda values were calculated, the results in Table 27.5 would be exactly the same as inTable 27.4. In
fact, the same φ2, X2, and lambda values would also be produced for Table 27.6, where the ordinal array
sequentially has exactly the same proportions as in Table 27.4.

Despite obvious differences in the results of Tables 27.5 and 27.6, the φ2, X2, and lambda values are
similar because the conventional mathematical strategy and calculational formulas for the association
make no provision for the order of the categories. The values of Σ /ni in Formulas [27.8] and [27.9],
Σnipiqi in Formula [27.7], φ2 in Formula [27.9], and X2 in Formula [27.10] remain the same regardless
of whether the rows contain nominal or ordinal categories.

27.4.2.1 Inadequate Descriptive Message — Nevertheless, despite the similarities in φ2, X2,
and lambda, Tables 27.5 and 27.6 contain a dramatically different descriptive message. In Table 27.5,
the survival rates would be expected to show their downward monotonic gradient as the categories
progressively descend from the “better” to “worse” clinical conditions. In Table 27.6, however, the
gradient is biologically absurd. The best survival results occurred in the moderate group, and patients
with severe disease had a survival rate more than twice that of the mild disease group. On scientific
grounds alone, these results would be rejected as bizarre. Something has gone drastically wrong in the 
concepts or in the data, or perhaps in the statistical index of expression.

27.4.2.2 Monotonic Gradient — The scientific message in Tables 27.5 and 27.6 was commu-
nicated from the gradient in survival rates as the ordinal categories went from mild to severe. Because
the ordinal categories monotonically increase in severity and because severity of clinical condition affects

.299

Sxy/ SxxSyy X2/N

ti
2

TABLE 27.5

Ordinal Array in a 3 × 2 Table

 Severity of
Clinical Condition

5-Year
Survival Rate

Mild 43/45 (96%)
Moderate 76/91 (84%)
Severe 24/68 (35%)

Total 143/204 (70%)

TABLE 27.6

Another 3 × 2 Ordinal-Array Table

 Severity of
Clinical Condition

5-Year
Survival Rate

Mild 24/68 (35%)
Moderate 43/45 (96%)
Severe 76/91 (84%)

Total 143/204 (70%)
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survival, we would expect the survival rates to show a corresponding monotonic gradient, going pro-
gressively downward.

For nominal categories, a “trend” cannot really be expected, because the categories have no ranks.
Thus, if the A, B, and C categories in Table 27.4 represented different treatments or diseases, we could
compare results in pairs of categories (such as A vs. B, B vs. C, or A vs. C), but a distinctive trend
could not be cited. If we wanted a single descriptive index for the result in the nominal categories, it
would have to be the association shown with lambda, φ2, or φ.

With a monotonic array of ordinal categories, however, a corresponding upward (or downward) trend
can be anticipated and checked. The statistical gradients can be noted from simple subtraction of the
(survival) proportions in adjacent categories. In Table 27.5, the monotonic descent of gradients is
indicated by the two negative values: p2 − p1 = –12% = −.12 and p3 − p2 = −.49. Thus, the results “made
sense” in Table 27.5 because it showed the expected gradient in survival. In Table 27.6, where p2 − p1
is +.61 and p3 – p2 = −.12, the results were “absurd” because the gradient had a peculiar reversal of
positive and negative values.

Examining gradients in subtracted proportions is an excellent way to “screen” the data, but can be 
hazardous if some of the categories have small numbers that make the proportions unstable. What we 
would like, therefore, is a better statistical mechanism to express the gradient for an ordinal array of
proportions.

27.5 Linear Trend in an r × 2 Ordinal Array

The overall gradient in proportions of an r × 2 ordinal array can be determined with a common, simple
statistical approach: fitting a straight line to the data.

27.5.1 Developing a Linear Model

If appropriate dimensional coding digits are assigned to the ordinal grades, we can construct a linear
regression model for the data. Despite the apparent mathematical impropriety, the procedure is prag-
matically effective. The index of slope will quantitatively describe the rectilinear trend, which can then
be evaluated stochastically.

The binary data, coded as 0/1, become the Y variable in the linear regression model; and the ordinal
categories become the X variable, coded with arbitrary weights, wi. The arrangement is shown in
Table 27.7. The wi codes in this table  are assigned to have equal intervals, consistent with dimensional 
data. The simplest approach is to code the ordinal categories in 1-unit intervals (such as 1, 2, 3, 4, …
or 0, 1, 2, 3, …), and then do a conventional linear regression — with an appropriate computer 
program — against the 0/1 data of the Y variable.

TABLE 27.7

Arrangement and Symbols for Assigning Coded Weights in an r × 2 Ordinal Array

Categories and Members Totals

Identity of Ordinal Category 
(X variable)

1 2 3 … i …

Coded Weights for  
X variable

w1 w2 w3 … wi …

Number of Members for  
X-Variable Category

n1 n2 n3 … ni … N = Σni

Number with Codes of 1  
in Y Variable

t1 t2 t3 … ti … T = Σti

Number with Codes of 0  
in Y Variable

n1 − t1 n2 − t2 n3 − t3 …  ni − ti …  N − T
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27.5.2 Regression Components

For the regression analysis, the value of Xi at each category will be ni(wi); and the mean  will be 
Σniwi/N. The value that corresponds to Sxx will be 

Σ − N = Σni(wi)2 − N(Σniwi/N)2

which becomes 

Sxx = [NΣni  − (Σniwi)2]/N [27.11]

If we let = Σniwi/N, Formula [27.11] can be algebraically simplified to

Sxx = Σni − N [27.12]

For each of the X categories, the corresponding value of Yi will be ti (1) + (ni − ti)0 = ti; and for the 
total,  will be Σti/N = T/N. For the regression analysis, the total system variance, ST (which corresponds 
to Syy in ordinary regression), will be Σ(Yi − )2 = Σ[t1 (1 – )2 + (ni − ti )(0 − )2], which is 
algebraically developed to become

ST = T(N − T)/N = NPQ [27.13]

At each category, the value of XiYi will be witi(1) + wi(ni − ti)(0) = witi. Thus, for 
the result will be Σwiti − [N(Σniwi/N)(T/N)], and so

[27.14]

Substituting  for Σniwi, Formula [27.14] can be algebraically simplified to

[27.15]

27.5.3 Slope of “Trend”

With these regression concepts and symbols, the categorical data can be fitted with a straight line, and 
the slope of the line will indicate the average trend in the array of proportions. Using b = Sxy/Sxx for the 
slope of the regression line, the values of N will cancel in the two denominators of [27.14] and [27.11], 
and the algebraic calculation will become

[27.16]

Using the simplifications of Formulas [27.12] and [27.15], the formula for slope would become

[27.17]

27.5.3.1 Illustration for Two Categories — To illustrate the calculation, suppose we com-
pare just two proportions t1/n1 vs. t2/n2, and suppose (for this example) we let w1 = 0 and w2 = 1. The 
components of Formula [27.16] become NΣwiti = Nt2; TΣniwi = Tn2; NΣni = Nn2; and (Σniwi)2 = .
When all the algebra is then carried out, these components for Formula [27.16] produce b = p2 − p1.
Thus, with two X categories coded as 0/1, the slope is simply the increment in proportions, p2 − p1.

If the codes had been w1 = −1 and w2 = +1, the numerator of [27.16] would be N(−t1 + t2) – T(−n1 +
n2), which becomes 2(n1t2 − n2t1), which is twice the previous value. The denominator would be 
N(n1 + n2) − (n2 − n1)2 = 4n1n2. The slope would be 2(n1t2 − n2t1)/4n1n2 which reduces to (p2 – p1 )/2, 

X

Xi
2 X2

wi
2

W

wi
2 W2

Y
Y Y Y

Sxy ΣXiYi NXY,–=

Sxy NΣwiti TΣniwi/N–=

NW

Sxy Σwiti TW–=

Slope b NΣwiti TΣniwi–
NΣniwi

2 Σniwi( )2–
----------------------------------------------= =

b Σwiti TW/ Σniwi
2 NW2–( )–=

wi
2 n2

2
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which is half the previous value. The halving would be expected since the −1/+1 coding made the slope 
span 2 units in the X-variable, rather than 1.

27.5.3.2 Standardized Slope in 2 × 2 Table — The standardized slope for a 2 × 2 table
would be the correlation coefficient, r, which is bsx/sy, or With the 0,1 coding for w1 and
w2, the value of Sxx in Formula [27.11] becomes [Nn2 − (n1)2 ]/N, which is n1n2/N. The value that
corresponds to Syy in Formula [27.13] is T(N − T)/N, which becomes NPQ. Thus, with the formula

the value of r can be expressed as

r =

which becomes This value is the same as  times the Z statistic
shown earlier in Formula [13.16]. Because Z2 = X2 in a 2 × 2 table, r becomes and r2 =
Z2/N = X2/N = φ2. Thus, in a 2 × 2 table, the values of r and φ are identical. (The similarity is seldom
true for larger tables.)

27.5.3.3 Illustration for Three Ordinal Categories — For the three ordinal categories inspected
in Tables 27.4 through 27.6, the simplest codes (for “hand” electronic calculation) would be w1 = −1,
w2 = 0, and w3 = +1. With these codes, Formula [27.16] becomes

[27.18]

For Table 27.5, the numerator of [27.18] will be 204(24 − 43) − 143(68 − 45) = 204(−19) − 143(23) =
−7165. The denominator of [27.18] will be 204(45 + 68) (68 − 45)2 = 204(113) − (23)2 = 22523. The
slope will be −7165/22523 = –.32.

Note that this slope is just what would have been expected from a judgmental evaluation of Table 27.5.
Because the gradient drops 12% (= 96% − 84%) from the first to the second category, and then drops 49%
(= 84% − 35%), the “average” drop would be −(12% + 49%)/2 = −30.5% or −.305, which is consistent
with the linear calculation of −.32. Because the trend is monotonic, another judgmental approach could
have been used to determine the total gradient as 96% − 35% = 61%, going downward from the first to
third categories. Because the drop of 61% is spread over two zones of change, the “average” gradient
would be –61%/2 = −.305.

For Table 27.6, however, judgmental examination would argue against calculating an average gradient.
The gradient rises by 61% (= 96% − 35%) from the first to second category, but then falls by 12%
(= 84% − 96%) from the second category to the third. With this reversal in trend, a single expression
of directional gradient would be misleading. Nevertheless, if such an expression is desired, the judgmental
“average” rise over the two categorical intervals would be .49/2 = .245. When the statistical “average”
for these data is calculated with Formula [27.16], the numerator is [204(76 − 24)] − [143(91 − 68)] =
7319. The denominator is [204(91 + 68)] − [(91 − 68)2] = 31907. The slope would be 7319/31907 =
.23, which is close to the judgmentally approximated value of .245.

To get standardized slopes for the three categories, we need to determine  The value
that corresponds to Syy is NPQ = T(N−T)/N, which is (143)(204 − 143)/204 = 42.76 in both tables. The
value of Sxx is 1/N times the denominator of Equation [27.16]. It was 22523 for Table 27.5 and 31907
for Table 27.6. Thus, for Table 27.5,

and for Table 27.6,

b Sxx Syy⁄ .

b Sxx Syy⁄ ,

p1 p2–( ) n1n2

N
---------- / NPQ

p1 p2–( ) 1 N⁄( ) n1n2 PQ⁄ . 1 N⁄
1/ N)( Z

Slope N t3 t1–( ) T n3 n1–( )–
N n3 n1+( ) n3 n1–( )2–
------------------------------------------------------=

r b Sxx Syy⁄= .

r .32( ) 22523/ 204( ) 42.76( )[ ] .51= =

r .23( ) 31907 204( ) 42.76( )[ ]⁄ .44 = =
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27.5.4 Precautions and Caveats

The linear trends calculated for Tables 27.5 and 27.6 should serve as an important warning whenever
ranked data — expressed in either ordinal or dimensional values — are fitted with a straight-line regres-
sion model. The mathematical model will fit an average constant rectilinear slope to the data, regardless
of whether the data do or do not have the constant monotonic trend denoted by the slope. Because the 
value of the constant slope may be used for conclusions such as “You live 2 years longer for every
5-point drop in Substance X,” the conclusion can be misleading or grossly distorted if the data do not
conform to the linear model.

For example, in Table 27.5, the slope of −.32 would denote an average drop of 32% in survival from
one category to the next. This result would be misleading because the gradient is not constant. It drops
12% from the first to second category, and then drops 49% from the second to the third. In Table 27.6,
the slope of .23 denotes a constant rise of 23% from one category to the next. This result is a gross
distortion of the sharp rise followed by a fall in gradient for the actual data. In both instances, the
statistically calculated slopes are correct as “average” values, but wrong in different zones of the data.
Similarly, the standardized slopes of .51 and .44 in the two tables seem moderately impressive, although
the impression is not strictly accurate in Table 27.5 and egregiously misleading in Table 27.6.

The point to remember is that fitting a linear slope is an excellent “screening” mechanism, but it 
cannot replace a direct examination of the data, and it should not be used for final conclusions until
confirmation that the data actually conform to the linear mathematical pattern.

27.5.5 Test of Linear Trend

The descriptive index for trend in the linear slope is regularly checked stochastically with a chi-square
test for linear trend. In the conventional simple regression discussed in Chapter 19, the stochastic
procedure was a t test on either b or the correlation coefficient, r. For an ordinal r × 2 table, the stochastic
approach is more complex because it involves using a partition of X2.

27.5.5.1 Strategy for X2 Partition — The X2 partition is derived from the principles of parti-
tioning variance that were introduced in Section 19.2.1.2.

The diverse concepts and symbols are shown in Table 27.8. In the ordinary arrangement that is used
for chi-square, a group of binary data, {Yi}, having N members with mean (or summary proportion)

is divided into k categories, each having pi as its mean. The total system variance, ST = NPQ,
becomes partitioned as a sum of the within-category group variance, SW, and the between-category group
variance, SB. The latter value is the numerator of the ordinary chi-square test, when X2 is formed as
SB/PQ = (NPQ − Σnipiqi)/PQ.

When a regression model is imposed on the same set of data, the group variance becomes partitioned
into ST = Sr + SM. (The latter value is used for the calculation of r2 as SM/ST.) The linear accomplishment
of the model can be stochastically examined in two ways. In the first way, SM represents the effect of
a linear model for the entire set of unpartitioned data. This procedure, as discussed in Chapter 19, uses
a t test on the correlation coefficient r. In the second way, the goal is to check what the linear model
does for the categorical partition of data. For the latter examination, the group variance between
categories, SB, is divided, as noted by Armitage and Berry,27 into

[27.19]

In the symbols of Table 27.8, the foregoing expression is

SB = SU + SM

When all terms in this expression are divided by PQ, the result is a partitioning of X2 as

 [27.20]

XL
2

Y P,=

Σ Yi Y–( )2 Σ Yi Ŷi–( )2 Σ Ŷi Y–( )2+=

X2 XR
2 XL

2+=
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In Equation [27.20], the  component, derived from SM, represents the linearity of the model’s fit,
and the component represents nonlinearity in the residual categories. The degrees of freedom for
interpreting the partitioned chi-square values in results for the k categories are k − l for X2, 1 for
and k − 2 for

27.5.5.2 Illustration of Calculations — If you do the calculations yourself, the easiest
approach is to note that  is determined as SM/PQ, and that SM was established when a regression
line was fitted to the data in Sections 27.5.1 and 27.5.2. From Chapter 19, we can recall that SM =
(r2)(total system variance) = r2(NPQ) = bSxy. We can then recognize that both b and Sxy have already
been found. The value of b is the slope previously obtained in [27.16] (or for a three-category coding
in [27.18]); and the value of NSxy, as noted in [27.14], is the numerator in the formulas for b. The value
of  can then be calculated as

[27.21]

For example, in Tables 27.5 and 27.6, NPQ = (143)(61)/204 = 42.76. For Table 27.5, the slope was
calculated as −7165/22523, which will be the value of b in Formula [27.21]. From the numerator of the
previous slope calculation, we get NSxy = 7165, and so Sxy = 7165/204. Since NPQ = 42.76, PQ =
42.76/204. The value of Sxy/PQ will be 7165/42.76 = 167.56. The value of in Formula [27.21] will
be (7165)(167.56)/(22523) = 53.3. For Table 27.6, the slope was calculated as 7319/31907. Substituting
NSxy/NPQ for Sxy/PQ, the corresponding value of will be (7319)(7319)/(31907)(42.76) = 39.3. At
1 d.f., both these values of are “highly significant” with 2P < .001. The “high significance” found
for the linear trend in values for both of these two tables should serve to warn against drawing
conclusions by inspecting P values alone.

27.5.5.3 Relationship of     and  — An even simpler approach is to realize that =
SM/PQ and that when a regression line is fitted to the data, SM = r2(NPQ). Therefore,

TABLE 27.8

Arrangement of Deviations and Group Variances in Tests of Ordinary  and  for Linear Trend

Symbols:  = any observed value in the data
 = any observed value in a category
 =  mean, i.e., summary proportion pi, for a category
= overall mean, i.e., summary proportion P, for the data

ni = number of members in category
N = total number in data
Q = 1 − P
qi = 1 − pi

Deviation
Group Variance for 

This Deviation
Name and Symbol 

for the Group Variance
Algebraic Formula 

for the Group Variance

ST = total system variance NPQ
SW = variance within categories Σnipiqi

SB = variance between categories NPQ − Σnipiqi

Sr = “regression residual” = residual 
variance of individual values around 
regression line at category

(1 − r2)NPQ

SM = “linear residuals” = model variance 
between estimates for regression 
categories and for  
overall mean

r2(NPQ)

SU = SB − SM = “nonlinear residuals” =
variance between category mean and 
regression estimate

NPQ − Σ nipiq i − r2(NPQ) 
= (1 − r2)(NPQ) − Σ nipiqi

X2 XL
2

Yj

Yi

Yi

Y

Yj Y– Σ Yj Y–( )2

Yi Yi– Σ Yi Yi–( )2

Yi Y– Σ Yi Y–( )
2

Yi Ŷi– Σ Yi Ŷi–( )2

Ŷi Y– Σ Ŷi Y–( )2

Yi Ŷi– Σ Yi Ŷi–( )2

XL
2

XR
2

XL
2 ,

XR
2 .

XL
2

XL
2

XL
2 bSxy PQ⁄=

XL
2

XL
2
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2
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2
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= r2N [27.22]

A linear regression computer program applied to the original results will produce a value of r2, from
which can promptly be found after multiplication by N.

Conversely, if a calculation has produced but not the value of r2, it can be easily found as

[27.23]

Thus, r2 = 53.3/204 = .26 and r = .51 for Table 27.5, whereas r2 = 39.9/204 = .19 and r = .44 for Table 27.6.
Table 27.6 thus continues to show a modestly high linear correlation coefficient despite the reversed
gradient in the last category.

The main point conceptually is that X2 reflects the variation that is “explained” by imposing categories
on the total data, and reflects the further “explanation” produced when a linear trend is imposed on
the categories. Because φ2 = X2/N and r2 = the relationship can be expressed as /X2 = r2/φ2.
In a 2 × 2 table, as noted in Section 27.5.3.2, the difference in the two proportions (p1 − p2) always
forms a straight line, and so φ2 = r2. Because the total system variance is NPQ and the variance within
the categories is Σnipiqi, the value of NPQ − Σnipiqi becomes the numerator of X2, which can be expressed
as as shown in Table 27.8. The latter value becomes partitioned into the non-linear and
linear components shown in Equation [27.19]. The reason for the easy calculation of r2 is that the SM
term is used for both the ordinary linear regression partition of variance and the subsequent partition of
chi-square.

27.5.5.4 Check of Residual Nonlinear Variance  — With the ordinal linear regres-
sion arrangement, we can check the residual variance of the pi category values around the regression
line to see whether a stochastically “significant” amount of “nonlinear variance” still remains. For this
purpose, the value of  is subtracted from X2, and the result is interpreted (using k for the number of
categories) with k − 2 degrees of freedom. Thus, at 2 d.f. for
Table 27.5, and the corresponding value is 61.0 − 39.3 = 21.7 for Table 27.6. Both of these values are
highly stochastically significant, indicating that a great deal of variance has not been explained by 
imposition of the linear model alone. The particularly high value of  for Table 27.6 could serve as
warning of linear inadequacy in that table.

27.5.6 Applications of Linear Trend Test

The linear trend in a set of ordinal proportions can serve as an alternative to the Wilcoxon–Mann–Whitney
U test. It can be used to appraise ordinal staging systems, to demonstrate “significance” for ordinal
partitions, or to screen for a “double gradient” before the conjunctive consolidation procedure of
targeted multivariable analyses.15

27.5.6.1 Alternative to Wilcoxon–Mann–Whitney U Test — A two-group rank test, such
as the Wilcoxon–Mann–Whitney U procedure, is customarily done for a 2 × c structure, such as the
earlier data in Table 15.5. Such data can also be regarded, however, as an r × 2 structure, and then
evaluated for linear trend.

For example, the data in Table 15.5 could be rearranged as follows:

The average crude gradient of decline in the binary proportions is (80% − 34%)/3 = 15.33%. With a 
more formal calculation, assigning codes of 1, 2, 3, 4 to the ordinal categories, and using Formula 

Category of Improvement  Proportion in Placebo Group

Worse  8/10 (80%)
No change  9/17 (53%)
Improved  19/48 (40%)
Much improved  10/29 (34%)
TOTAL 46/104 (44%)

XL
2
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2
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2 ,
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[27.17], the slope of the gradient is {104[(1 × 8) + (2 × 9) + (3 × 19) + (4 × 10)] – 46[(10 × 1) +
(17 × 2) + (48 × 3) + (29 × 4)]}/{104[(10 × 1) + (17 × 4) + (48 × 9) + (29 × 16)] – [(10 × 1) + (17 × 2) +
(48 × 3) + (29 × 4)]2} = (12792 − 13984)/(101296 − 92416) = −1192/8880 = –.134. The precise linear
trend, showing a decline of 13.4% per category, is similar to the crude gradient of 15.3%. This is a
quantitatively impressive trend, and it is also stochastically significant, as shown in Section 27.5.6.2.

The main problem with the foregoing arrangement is that it transposes the basic variables, so that the
outcome category (improvement) becomes regarded as though it were the “independent” variable, and
the preceding binary treatment becomes the “dependent” variable. Despite the transposed variables, 
however, the quantitative evaluation of trend is easy to understand and has been vigorously preferred28,29

over the customary statistical method30 (discussed in Chapter 15) for analyzing ordinal data.

27.5.6.2 Comparison of X 2 vs.  — The distinction between X2, for any array of categorical
data, vs. , for an ordinal array, should be kept in mind when stochastic tests are done for an r × 2
table. For example, the linear trend in proportions was used in Section 27.5.6.1 to provide a descriptive
summary of the ordinal gradings in Table 15.5. When this result is tested stochastically, the
Wilcoxon–Mann–Whitney U procedure takes account of the ordinal arrangement, but an ordinary X2

test does not. Thus, the test should be used if stochastic significance is to be appraised for Table 15.5.
In those results, the overall X2 is 7.247, which has 2P = .06 at 3 degrees of freedom. The linear regression
of the data, however, shows r2 = .0600 and = Nr2 = (104)(.0600) = 6.24, which has 2P < .025 at
1 degree of freedom. This result is more consistent with the Wilcoxon–Mann–Whitney test for the same
data in Section 15.5.4, where Z was −2.25, for which 2P = .024.

27.5.6.3 Appraisal of Ordinal Staging Systems — With increasing attention being given
to factors that affect etiologic “risk” for disease or prognostic outcome of disease, individual variables
or groups of variables are regularly arranged into the ordinal categories of a “risk stratification” or
prognostic “staging” system, such as Table 27.5. When several contender candidate variables are
available, the linear trend of the gradient in the outcome event can be examined to help choose a 
“best” candidate.

27.5.6.4 “Significance” for Ordinal Partitions — The categorical variables used in a prog-
nostic staging system can be constructed from an ordinal partition of dimensional data (such as dividing 
age into categories of < 20, 21–49, 50–69, and 70+) or from an ordinal array (such as TNM stages I, 
II, III, …). After the variable has been constructed, stochastic significance may not always occur in 
results for adjacent categories, even though the gradient shows a distinct linear trend. Rather than 
compressing the categories to form larger numbers of members in a small number of groups, the analyst 
may be content to let the original partition remain if it shows stochastic significance in the  test for 
linear trend.

27.5.6.5 Screening for “Double Gradients” — The conjunctive-consolidation procedure14,15

offers an easily understood multivariable-analytic method to construct prognostic staging systems. The 
method begins by screening for impressive “double gradients” in both the rows and columns of each 
conjunctive 2 × r × c table that becomes “consolidated.” An inspection of linear trend in the outcome 
rates for cells in the r rows and c columns is a useful way to do the screening.

27.5.7 Additional Approaches

Throughout the foregoing discussion, survival was examined as the “response” to a change in the ordinal 
category of severity. This type of “dose-response” phenomenon frequently occurs in clinical and epide -
miologic literature. The ordinal “dose” can often be levels of a pharmaceutical agent or a risk factor.
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Problems can arise if the ordinal categories do not ascend in equi-interval dimensions that justify a
linear coding, and if the responses do not show a linear relationship.Various alternative approaches, 31–33

including spline regression, have been proposed for dealing with these problems. Nevertheless, the linear-
trend method has the advantage of being a useful “screening” procedure that is relatively simple and
easy to understand (despite the length of the previous discussion).

27.6 Indexes of Ordinal Contingency

In addition to tau-b, other indexes for analyzing trend in the graded categories of two-way ordinal
contingency tables are called gamma, Somers D, and tau-c. These indexes all use the basic sequential-
placement scoring system described in Section 27.3.1.1 for the co-related pattern of ranks.

27.6.1 Scores for Co-Relationship of Tabular Grades

The scoring system discussed in Section 27.3.1.1 for
ordinal co-relationships is not too difficult to under-
stand, but can be tricky to apply for tabular grades.To
illustrate the basic strategy, suppose we have a 3 × 3
ordinal contingency table, with cells designated as a,
b, … , h, i as shown in Table 27.9, which is oriented
so that the X variable advances downward in the rows
and the Y variable goes rightward in the columns.

The cells are compared and scored as we advance
through the table, going across each row, down to the
next row, and then across that row. The ranks for each
pair of cells will be either tied, concordant, or discor-
dant. Any two cells in the same row have tied ranks
on the row variable, and any two cells in the same
column are tied on the column variable. Between any
two cells, the trend is concordant if the second cell
has higher ranks in both the row and column variable.
The trend is discordant if the second cell has a lower
rank in the column variable while having a higher rank
in the row variable, or vice versa.

Each score for concordances (marked P) and dis-
cordances (marked Q), and for ties, is the product of
frequency counts in the two compared cells. The pat-
tern of scoring for Table 27.9 is shown in Figure 27.3
and the scores are entered in the display of
Table 27.10.

To illustrate the process, suppose we start with the
a members of cell (1,1). The X variable is tied in cells
(1,2) and (1,3) for members b and c, and the Y variable
is tied in members d and g. In all other cells, i.e., e, 
f, h, and i, the ranks are higher for both variables. We
thus enter the “scores” for cell a into Table 27.10 as
P = a(e + f + h + i), Q = 0; ties on X for a(b + c) and
ties on Y for a(d + g). Going right and down from the
b members of cell (1,2), there are c ties on the X variable and (e + h) ties on the Y variable. Cells (2,1)

 TABLE 27.9

Contingency Table with Two Ordinal Variables

Variable Y

Variable X
(1)

Low
(2)

Medium
(3)

High

(1) Low a b c
(2) Medium d e f
(3) High g h i

FIGURE 27.3
Pattern of concordant, discordant, and tied ranks
in “advancing” cells of Table 27.9.

a b

e f

c

d

d

g h

d

i

d

Cell already considered

Concordant ranks

Discordant ranks

Ranks tied on row variable (X)

Ranks tied on column variable (T)
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and (3,1) have discordant values because the rank of variable Y is lower than 2, and cells (2,3) and (3,3)
have concordant values because the rank of Y is higher. Thus, as shown in Table 27.10, the scores for
cell (1,2) are b(f + i) for P, b(d + g) for Q, b(c) for ties in X and b(e + h) for ties in Y.

In the next step, nothing lies to the right of cell (1,3), but two downward cells are tied in the Y rank,
and four cells in the next two downward rows are discordant because of lower values in the Y rank as
X increases. Thus, the entries for cell (1,3) in Table 27.10 are P = 0, Q = c(d + e + g + h), X-ties = 0,
and Y-ties = c(f + i). The entries for the remaining cells are shown in the rest of Table 27.10.

The scoring system can be pragmatically illustrated for Table 27.11, which has 9 cells showing
hypothetical data of 150 hospitalized patients’ ratings for satisfaction with care in relation to clinicians’
ratings for severity of illness. The letters in parentheses of Table 27.11 correspond to the letters of
Table 27.9. Table 27.12 shows the corresponding scores for P, Q, and ties. The total scores are 1339 for
P, 3775 for Q, 2032 for ties in X, and 2347 for ties in Y.

The scores for P, Q, and ties in Table 27.12 become the constituents of the indexes called gamma, 
Somers D, tau-b, and tau-c, which differ only in the way they use these scores.

27.6.2 Gamma

The gamma (or Goodman and Kruskal’s gamma)10–12 index is constructed in essentially the same way
as tau-a and tau-b, except that ties are ignored. The formula is

[27.24]

TABLE 27.10

Minding the Ps and Qs for Table 27.9

Score for Ties
Location Cell Score for P Score for Q Variable X Variable Y

(1, 1) a a(e + f + h + i) 0 a(b + c) a(d + g)
(1, 2) b b(f + i) b(d + g) b(c) b(e + h)
(1, 3) c 0 c(d + e + g + h) 0 c(f + i)
(2, 1) d d(h + i) 0 d(e + f) d(g)
(2, 2) e e(i) e(g) e(f) e(h)
(2, 3) f 0 f(g + h) 0 f(i)
(3, 1) g 0 0 g(h + i) 0
(3, 2) h 0 0 h(i) 0
(3, 3) i 0 0 0 0

TABLE 27.11

Hypothetical Data for Relationship of Patient Satisfaction  
and Severity of Illness

Clinician’s Ratings Patients’ Ratings of Satisfaction with Care
of Severity of Illness Low Medium High Total

 Mild 8(a) 12(b) 25(c) 45
Moderate 17(d) 13(e) 18(f) 48

 Severe 32(g) 15(h) 10(i) 57

 Total 57 40 53 150

Note: Letters in parentheses correspond to the cells listed in Table 27.8.

gamma P Q–
P Q+
--------------=
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For the data in Tables 27.11 and 27.12, gamma will be (1339 − 3775)/(1339 + 3775) = –2436/5114 =
−.48. The moderately strong negative value, indicating an inverse trend, is consistent with the hypothesis
that satisfaction with care goes down as severity of illness goes up.

27.6.3 Somers D

Somers D resembles gamma, but is asymmetric and takes ties into account. The asymmetry is expressed
in two indexes. One of them, Dyx, accounts for the number of pairs tied on variable Y, but not on X.
The expression is

 Dyx = (P − Q)/(P + Q + Ty) [27.25]

where Ty is the score for the pairs tied on Y but not on X. The other index, Dxy, accounts for ties on
variable X, but not on Y. The expression is

Dxy = (P − Q)/(P + Q + Tx) [27.26]

where Tx is the score for the corresponding tied pairs.
For the data uuder discussion, Ty = 2347 and Tx = 2307. The value of Dyx = −2436/(5114 + 2347) = 

−.326 and Dxy = −2436/(5114 + 2307) = −.328.
In this instance, because of the belief that satisfaction (the Y variable) depends on severity of illness

(the X variable), the appropriate index is Dyx. Its value, somewhat analogous to a regression coefficient,
is smaller than gamma because of the ties that enlarge the denominator under P− Q. (If someone believed
that dissatisfied people are particularly likely to become or be made seriously ill, the appropriate index
would Dxy. In this example, but not always, the values for Dyx and Dxy happen to be quite similar.)

27.6.4 Tau-b

After the values of P, Q, Tx , and Ty are obtained, tau-b can be calculated for contingency tables, using
either Formula [27.3] or the alternative

[27.27]

which, in the cited example, becomes

TABLE 27.12

Scores for P, Q, and Ties in Table 27.11

Score for Ties
Location Cell Score for P Score for Q Variable X Variable Y

(1, 1) a 8(13 + 18 + 15 + 10) 0 8(12 + 25) 8(17 + 32)
(1, 2) b 12(18 + 10) 12(17 + 32) 12(25) 12(13 + 15)
(1, 3) c 0 25(17 + 13 + 32 + 15) 0 25(18 + 10)
(2, 1) d 17(15 + 10) 0 17(13 + 18) 17(32)
(2, 2) e 13(10) 13(32) 13(18) 13(15)
(2, 3) f 0 18(32 + 15) 0 18(10)
(3, 1) g 0 0 32(15 + 10) 0
(3, 2) h 0 0 15(10) 0
(3, 3)  i 0 0 0 0

Totals 1339 3775 2307 2347

tau-b P Q–( ) P Q Ty+ +( ) P Q Tx+ +( )⁄=

2436 / 7461( ) 7421( )– .33.–=
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In Formula [27.27], the structure of tau-b uses the two Somers indexes in a way resembling the 
calculation of the Pearson correlation coefficient, r, as the geometric mean of the two slopes b and b′.
Thus, r = and tau-b = Accordingly, tau-b could have been calculated from Dyx and Dxy
as

27.6.5 Tau-c

The calculation of tau-b requires a “square” table, with equal numbers of rows and columns. If the table
is rectangular, rather than square, the value of tau is corrected to

tau-c = 2(P − Q)/{(N2)[(m − 1)/m]} [27.28]

where N is the total number of members in the entire table, and m is the smaller value of either the
number of rows or the number of columns. Formula [27.28] should not be used for square tables, such
as Table 27.11, but if applied, the result would be

tau-c = 2(−2436)/{(150)2[(3 − 1)/31} = 4872/15000 = −.325

which is almost the same as the value obtained for tau-b, while being much simpler to compute.
Gamma and Somers D do not require an analogous correction for non-square tables.

27.6.6 Lambda

Table 27.11 could also be summarized with the lambda index discussed in Sections 27.2.1 and 27.4.1.1.
With 57 low ratings for satisfaction, the modal estimation would have 150 – 57 = 93 errors. Using the 
severity-of-illness ratings, the estimates of high satisfaction for the mild and moderate rows of illness 
and low satisfaction for severe illness would respectively have (45 − 25) + (48 − 18) + (57 − 32) = 75 
errors. The lambda index would be (93 − 75)/93 = .19.

This result, using a method of estimation, is much lower than the range of absolute values from .32 
to .48 in all of the corresponding indexes that use scores for trend — gamma, Somers D, and the two 
tau coefficients of association. The reason for the disparity is that lambda reflects accuracy in estimation, 
whereas the “score” indexes reflect trend. Lambda is thus analogous to r2, whereas the score indexes 
are analogous to r. 

27.7 Other Indexes of Ranked Categorical Trend

Ranked categorical trends can be determined whenever one of the variables has dimensional or ordinal 
data that can be ranked in relation to categories of the other variable. The diverse ways of arranging 
variables, categories, and tables have evoked many proposals of statistical indexes. The ones that have 
been cited in this chapter were chosen because they seem particularly pertinent for medical literature, 
or because they commonly appear in printouts of computer “package” programs for indexing associations. 
Beyond the bi-ordinal coefficients and contingency tables just discussed, three additional indexes are 
briefly outlined here. The text by Freeman34 has particularly good worked examples of their application.

Jaspen’s multiserial coefficient (dimensional × ordinal) can express the association between a dimen-
sional variable, such as weight, and an ordinal variable, such as social class. The coefficient has been 
used35 to cite the relationship between a dimensionally measured “scan artifact” in pelvic magnetic 
resonance imaging, and a four-grade ordinal scale of radiologist’s assessment of scan quality. A computer 
program has been constructed36 to do the calculations, but the index is seldom used, probably because 
many analysts ignore the mathematical impropriety, accept the ordinal grades as dimensional values, 
and then use conventional bi-dimensional regression methods.

In the biserial coefficient (dimensional × binary), which is a special case of the Jaspen multiserial 
coefficient, the ordinal scale has only two (binary) ranks. The biserial index can be pertinent when a 

bb′ DyxDxy.
.326–( ) .328–( ) .33.–=
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binary variable, such as existence of survival, depends on a dimensional variable, such as age or weight.
The coefficient would indicate the association in data showing the proportions of survivors at different 
ages or weights. If the dimensional variable is time and adequate data are available, the biserial coefficient 
might be used as an index of association for the survival curve. The association between binary and 
dimensional data could also be expressed with an index of linear trend in an r × 2 ranked array, as 
discussed in Section 27.5.

Freeman’s theta (ordinal × nominal) can be used when an ordinal variable, such as social class, is 
examined in a set of nominal groups, A, B, C,…. The theta (θ) coefficient for this association was 
developed as a multi-group extension of the Wilcoxon signed-rank procedure. 

27.8 Association in “Large” r × c Tables

The associations that have not yet been discussed occur in a “large” r × c table (where r and c are each 
≥ 3) for two nominal variables. In such tables, which are not common, the arrangements are best called  
“associations,” because the idea of “trend” seems inappropriate if either or both of the two variables is 
nominal. To ease comprehension, many analysts try to condense the big tables into a 2 × 2 structure by 
“collapsing” (i.e., compressing) suitable categories.

27.8.1 “Screening” with φ and X2

Before the “collapse,” the entire r × c table is often “screened” to see whether any “significant” findings 
are present. The most common screening procedure is to examine the φ coefficient of correlation for 
the two categorical variables. To determine φ, the expected values are first noted in each cell, and the 
value of X2 for the entire table is calculated as the sum of the [(observed − expected)2/expected] values 
in the cells. The value of φ, calculated as  is then interpreted like a correlation coefficient, 
with values ranging from 0 to |1|.

Further examination beyond the screening can be stimulated by a stochastically significant X2

[interpreted at (r − 1)(c − 1) degrees of freedom], by a quantitatively significant value of φ, or by both. 
The “significant” cells in the table will be those with individually high values of the [(observed − 
expected)2/expected] ratios.

Other data analysts, however, may collapse the table immediately and omit the “screening” process. 
The collapsing is usually done according to “sensible” strategies derived from the biologic content of 
the data and/or from the quantitative need to combine cells with small frequencies.

27.8.2 Example in Medical Literature

Large r × c tables with nominal categories seldom appear in medical literature. In one example, however, 
a letter37 to the editor of The New England Journal of Medicine reported a study of bimanual dexterity 
and batting “handedness” in baseball players. The players were divided into five groups: high school 
students, elementary school students, all recorded professional players, current major-league players 
(excluding pitchers), and best hitters of all time. The players’ handedness was divided into 6 categories  
based on whether each player threw right-handed or left-handed and also batted right, left, or both ways.

The 5 × 6 table was then analyzed with a chi-square procedure, which led to the conclusion that the 
“professional baseball players had a significantly … higher number of left handed batters than the 
(student) controls.”

27.8.3 φ in 2 × 2 Tables

φ is seldom applied for indexing a 2 × 2 table, because the investigator will usually want to contrast the 
two proportions as an increment or ratio, not with a correlation coefficient. 

If the 2 × 2 table is subjected to regression analysis, however, the slope (as shown in Section 27.5.3.1) 
is simply the increment, p2 − p1. Because the two proportions can be compared in two directions, as 

φ X2 N⁄= ,
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a/n1 vs. c/n2 or as a/f1 vs. b/f2, two different increments can be determined. Appropriate algebraic activity 
will demonstrate that φ, as a correlation coefficient, is the geometric mean of these two increments.

27.8.4 Alternatives to φ

An ideal correlation coefficient should be able to range from values of 0 to |1|. In a 2 × 2 table, the 
maximum value that X2 can attain is N; and so the largest possible value for φ2 will be N/N = 1. (This 
situation occurs when diagonally opposite cells such as a, d or b, c are both empty in a table structured  
as .) In a larger r × c table, however, X2 can exceed the value of N, and if so, φ2 will have an 
inappropriate value that exceeds 1. To avoid this problem, three alternative indexes are available — all 
of them constructed as modifications of X2/N.

27.8.4.1 Pearson’s C — Pearson’s “contingency coefficient,” C, is calculated as

C2 = X2/(X2 + N)

With this structure, C2 will always be < 1. When X2 = N, C2 will be 1/2. C is seldom used for 2 × 2 
tables because its maximum value will be  and because it does not have a good “intuitive” 
meaning for larger tables.

27.8.4.2 Tschuprow’s T — To eliminate the possibility of getting a correlation coefficient that 
exceeds 1, Tschuprow’s T2 divides φ2 by  The formula is

The square root of this value is Tschuprow’s T. In a 2 × 2 table, (r − 1) (c − 1) = 1, and so the result 
will be identical to φ. For “large” tables, (r − 1) (c − 1) will exceed 1, and its square root division will 
lower the value of φ.

27.8.4.3 Cramer’s V — Tschuprow’s T has the disadvantage of producing an overcorrection. 
Although kept from being > 1, the correlation coefficient often cannot reach the permissible maximum 
value of 1. This problem is particularly likely to occur if r is much greater than c (or vice versa) in a 
large r × c table.

To eliminate this problem, Cramer divided X2/N by an entity called Min (r − 1, c − 1), which represents 
the smaller value of either r − 1 or c − 1. The formula is

V2 = X2/[N × Min (r − 1, c − 1)]

Thus, if r = 3 and c = 4, the smaller value is r − 1 = 2, and V2 = X2/2N. When r = c, Tschuprow’s T and 
Cramer’s V are identical. When either r or c is 2, V and φ will be identical.

This attribute of Cramer’s V makes it the preferred index of association for large r × c tables. The 
index almost never appears in medical literature, but was used many years ago in an analysis where the  
investigators screened for correlations of 7 categorical variables in a study of limb sarcomas.38 The 
number of categories in the variables ranged from two to four; and Cramer’s V was used as the index 
of association because “it adjusts for … degrees of freedom … in a convenient manner, so that tables 
with differing degrees of freedom may be compared.”

a b
c d 

 
 

1 2⁄ .71=

r 1–( ) c 1–( ).

T2 X2 / N r 1–( ) c 1–( )=
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Exercises

27.1. These questions all refer to Figure 27.2 in the text. The two verbatim descriptions here are from
pertinent sections of the research report.

Methods: “Measures of association were calculated using either simple linear regression or the 
Spearman rank correlation coefficient, when appropriate. All reported significance levels are two-sided.”  
Results: “In the 33 nonsurvivors, as well as in the subgroup of 21 patients who died of irreversible septic 
shock, the serum concentrations of IL-6 measured at study entry correlated inversely with the duration 
of survival (r = −0.51, p = 0.004 and r = −0.62, p = 0.005, respectively; Spearman rank correlation 
coefficient). In particular, of nine patients who died of irreversible septic shock within the first 24 hours 
of study, all but one had a very high concentration of IL-6 (median: 64 ng/mL, range: 0.26 to 305 ng/mL)  
at study entry.”

27.1.1. Because the Spearman coefficient is for correlation, not regression, how do you think 
the apparent regression line was determined? Do you agree with the result? If not, 
why not?

27.1.2. Do you like the way the graph is arranged? If not, what would you prefer?
27.1.3. Does the graph have any obvious errors or inconsistencies? If so, what are they?

27.2. In a study of diagnostic fashions among psychiatrists, the diagnoses were compared for two groups 
of 145 patients each in a London and a New York hospital. In London, 51 patients were diagnosed as 
schizophrenic and 67 as affectively ill. The corresponding numbers of diagnoses in New York were, 
respectively, 82 and 24. The remaining diagnoses at each institution were classified as miscellaneous.

27.2.1. What would you suggest as the best statistical index to summarize this set of results?
27.2.2. To express concordance for these data, how should kappa be weighted?

27.3. In a study of prognostic stratification, a cohort with 5-year survival rate of 85/221 = 38% 
could be divided into two different staging systems having the following results:

27.3.1. Which of these two systems of staging would you prefer “intuitively,” i.e., by judgmental 
inspection of the data? Why?

27.3.2. The investigators would like some quantitative indexes to summarize and compare the 
results of the two systems. What are the values of the slope and chi-square test for linear 
trend?

27.3.3. Give the results for at least three additional quantitative indexes that could be applied 
to each system.

Stage System A System B

I 70/122 (57%) 36/50 (72%)
II 12/46 (26%) 40/85 (47%)
III 3/53 (6%) 9/86 (10%)
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27.3.4. Which of the indexes in 27.3.2 and 27.3.3 do you believe is best for citing these results? 
Has it made you change your mind about the answer to 27.3.1? Why?

27.4. Using any sources at your disposal (available journals, computerized-literature search, etc.) find 
a published paper that used any one of the additional indexes discussed in this chapter. Comment 
briefly on what was done and whether you think it was appropriate. Alternatively, find a published 
paper in which one of the indexes discussed in this chapter should have been used, but was not. If you  
choose this option, justify your reason for believing that the original procedure was “wrong” and for 
preferring the alternative index. With either option, enclose a copy of the selected publication (or a 
suitable abstract thereof).
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Although this chapter is concerned mainly with “non-targeted” forms of analysis, the first section describes 
sources of complexity that can occur here or in any multivariable and multicategorical procedures. 

28.1 Sources of Complexity

The brave new statistical world we are about to enter can be catalogued according to diversity in at 
least four entities that have appeared before in relatively simple arrangements. The entities that now 
produce additional complexities are the direction of relationships, the number (and symbols) of vari-
ables, the scales of the variables, and the patterns of combination.

28.1.1 Direction of Relationship

The distinction between targeted and non-targeted directions is a fundamental axis of classification for 
statistical procedures. All of the new tactics about to be discussed can be catalogued, according to their  
direction, as either targeted or non-targeted. In the previous discussion of targeted associations, an 
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“independent” variable, X, was examined unidirectionally for its effect on a “dependent” target, Y. Thus, 
age might affect a child’s height. Such an association was often called a regression of Y on X, but other 
targeted relationships were examined when we compared mean weight in two groups, when two variables 
formed a curve in which survival depended on time, or when stratifications (and adjustments) showed 
the effect of the variables (or groups) used for the stratification.

In the non-targeted bidirectional associations, the two variables were related to one another without 
implying that one depended on the other. The nondependent association was often called a correlation 
between Y and X. Thus, we might examine the correlation between hemoglobin and hematocrit or 
between hematocrit and serum cholesterol, without suggesting that one variable affected the other. We 
could also examine concordance for the agreement between two ratings, without choosing one of them 
as a “gold standard” for accuracy.

28.1.2 Number of Variables and Symbols

The two variables in a bivariate association could easily be symbolized as X and Y, and additional letters 
such as U, V, and W could be used to denote the multiple extra variables. Many alphabetical letters, 
however, have already been reserved for other purposes (e.g., N for sample size; P for proportions, rates, 
or probabilities; R for correlations or rates; Z for standardized scores or variables).

To avoid running out of available letters, the multiple available variables are identified with numerical 
subscripts in symbols such as Y1, Y2, Y3, … , which will represent the dependent or target variables. The 
general symbol for any of the independent variables is X j; and the collection of independent variables (X1,
X2, X3, X4, …) in a particular analysis is denoted as {Xj}. These new symbols can be confusing because 
they differ from what was used previously when X1, X2, X3, … showed the values of persons 1, 2, 3, … 
for a single variable, X. In the new arrangements, the subscripts represent variables, not persons. To show 
both persons and variables, we would need double subscripts such as X i,j (often written as Xij) to represent 
the value for person i in variable j. Thus, X26 would be the value of variable 6 for person 2; and X39,18
would be the value of variable 18 for person 39. In most circumstances, however, the double subscripts 
can be avoided without ambiguity, and Xj will represent individual independent variables.

The analytic situation becomes multivariable 
when three or more variables are examined 
simultaneously. In directional orientation, the 
multivariable associations can have the relation -
ships illustrated in Figure 28.1. In a many-to-one
or uni-targeted relationship, independent vari-
ables such as X1 = age, X2 = sex, X3 = smoking, 
X4 = serum cholesterol, and X5 = hematocrit are 
related to a single target, Y = blood pressure. 
Multiple linear regression is an example of this 
analytic procedure. In a many-to-many or multi-
targeted relationship, a set of several indepen-
dent variables might be related simultaneously 
to several target variables, such as Y1 = duration 
of survival, Y2 = functional status, Y3 = costs of 
care. Canonical analysis is a procedure that might be used for this many-to-many association. In a 
many-internal nontargeted relationship, the variables are neither dependent nor independent. They are 
analyzed together for their own interrelationships with one another, not with a target variable. Factor 
analysis and principal component analysis are procedures applied in this manner.

28.1.3 Scales of Variables

As noted in Chapter 2, any variable can be expressed in a dimensional or categorical scale; the 
categorical scales can be binary or polytomous; and the polytomous categories can be ordinally ranked 
or nominally unranked.

FIGURE 28.1
Three main types of relationships among multiple variables.
On the left, the five variables X1, X2, X3, X4, and X5 are 
related to a single external variable, Y1. In the middle, they 
are related to several external variables, Y1, Y2, Y3. On the 
right, the five variables are related internally to one another.
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Age, height, and serum cholesterol are all dimensional variables. Scales such as alive/dead, success/failure, 
male/female are all binary. Severity of illness can have an ordinally ranked polytomous scale such as none, 
mild, moderate, severe; and religion has an unranked nominal polytomous scale expressed (alphabet-
ically) as Buddhist, Catholic, Confucian, Hindu, … .

The categorical scales are a major source of complexity, leading to different formats for the analyses.  
For example, if the target variable is a dimensional blood pressure, the multivariable analytic procedure  
will usually be multiple linear regression. If the target variable is a binary alive/dead expression, however, 
the analysis will usually be done with multiple logistic regression. In the many-internal analytic proce-
dures that are done without a target, variables expressed in categories usually receive a procedure called 
cluster analysis, but dimensional variables usually receive factor analysis or principal component 
analysis. In many-to-one analyses, categorical independent variables may be examined with recursive 
partitioning or with conjunctive consolidation rather than with conventional regression procedures. (All 
of these new names are used merely to illustrate the distinctions and to give you a preview of coming 
attractions if you eventually go beyond the current text to learn about multivariable analysis.)

28.1.4 Patterns of Combination

Multiple variables can be combined in two fundamentally different patterns: algebraic models and 
decision-rule clusters.

28.1.4.1 Algebraic Models — With algebraic models, the variables are given coefficients, called 
weights, and are algebraically combined in the configuration of a geometric pattern, such as a straight or 
curved line. The linear regression equation Y = a + bX is a rectilinear algebraic model that relates the 
dependent variable Y to the independent variable X, which is weighted with the coefficient b. The value  
of a is the intercept when X = 0. The expression is constructed with the assumption that the relationship  
between Y and X can be “modeled” with a straight line. For curved models, the format of X (or Y) is 
appropriately changed. For example, Y = a + bX2, Y = a + b log X, log Y = a + bX, Y = ea + bX, and Y 
= a + bX + cX2 are algebraic models that form curved lines for the two variables, X and Y.

For multiple variables, the straight-line algebraic models form “hyperplanes” or “multi-dimensional 
surfaces.” Thus, Y = b0 + b1X1 + b2X2 is a plane in three dimensional space, showing the dependence of 
Y on the independent variables, X1 and X2. They are weighted with the respective coefficients, b1 and b2;
and b0 is the intercept. The Apgar1 score is a multidimensional non-targeted expression that takes the form

V = b1X1 + b2X2 + b3X3 + b4X4 + b5X5

V is the new variable (i.e., the Apgar score) formed by the combination; each of the five constituent X j
variables is expressed in a rating scale of 0, 1, or 2; and each of the five b j coefficients has a value of 1.

The formation of algebraic models is now the conventional method of statistical analysis for multiple  
variables or multiple categories, particularly because the availability of modern computers has eased the 
formidable difficulties of calculating the appropriate bj coefficients from the data. The availability of 
computers, however, has also allowed development of the different approach discussed next.

28.1.4.2 Decision-Rule Clusters — Forming decision-rule clusters is a common (although 
informal) multivariable strategy in medical activities. The name cluster is given to a collection of 
categories that form a group or subgroup. The collection can be simple or compound. For example, the  
variable age can be partitioned into two simple categories, old and young. These categories form groups 
that can be categorically subdivided into simple subgroups such as old men and tall women. Boolean 
symbols such as old ∩ male can be used to denote categories such as old men. A compound categorical 
cluster might contain old men and/or tall women, which could be symbolized as (old ∩ male) ∪ (tall
∩ female).

An analytic method that uses groups or subgroups is particularly compatible with the fundamental 
thought processes of biologists and clinicians, who usually think in categories, and seldom make decisions 
based on combinations of weighted variables. The term clusters is simply a formal designation for the 
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collections of categories that form the groupings. The TNM staging system for cancer is an example of  
decision-rule multi-categorical clusters. The system begins with the ordinal ratings given to three 
variables: T, which represents features of the primary tumor; N, which represents regional lymph nodes; 
and M, for distant metastases. In ordinary description, the TNM index gives ratings for each of these 
variables in a tandem profile such as T 2 N 1 M 0 or T 4 N 0 M 2. According to an arbitrary decision 
rule, these profiles are then assigned to clustered categories that are called stages. Stage I usually 
indicates a localized cancer. Stage II usually indicates a cancer that has spread to adjacent lymph nodes, 
but no farther. Stages III, IV, and V refer to increasingly distant degrees of spread.

Clustered categories are formed according to diverse decision rules that are determined biologically 
or statistically (or both), without reliance on the “model” of an algebraic configuration. The decision 
rule can also be expressed as an algorithm in which the sequential addition of categories leads to specified 
conclusions. Such algorithms now often appear as “guidelines” for clinical practice.

28.2 Basic Concepts of Non-Targeted Analyses

The multivariable procedures in this chapter contain non-targeted, “many-internal” analytic methods that 
have such names as factor analysis, principal component analysis, and cluster analysis. In non-targeted 
analyses, the selected variables are examined for their interrelationship with one another, not with a 
specific target variable. The goal is usually to reduce the variables into a smaller set of “factors” or other 
entities that contain the most cogent information.

For example, when Virginia Apgar1 constructed the score by which she is commemorated, she wanted 
to form a multivariate index that would describe the “severity” of the condition of a newborn baby. The  
index was not intended to predict an external target, such as survival or need for special therapy. The 
goal was merely to specify explicitly the components of a judgment about “condition” that was formerly 
expressed implicitly in such general terms as excellent, good, fair, and poor.

28.2.1 “Intellectual Dissection”

Apgar’s attempt to specify and reconstruct the components of an implicit global “intuition” or “judg-
ment” has become a relatively common medical event. The initial judgment might have been singly or  
doubly “global.” In a singly global judgment, the phenomenon under discussion is well identified, but 
no criteria are offered to demarcate the categories of an ordinal rating scale such as excellent, good,
fair, or poor. In a doubly global judgment, neither the phenomenon nor the rating scale is clearly 
identified. For example, if we ask someone “How are you?,” the answer is doubly global when the 
respondent says, “Good.” The same response would be singly global, however, for the question, “How 
is the pain in your ankle?”

An indication of the modern non-global approach is that clinicians today seldom talk about such things 
as a “guarded prognosis.” Instead, a duration of survival may be predicted from the specifications of an 
algorithm or equation containing multiple variables. In Virginia Apgar’s approach, the entity she wanted 
to dissect and reconstruct, as condition of newborn baby, was a clinical pathophysiologic status, rather than 
such attributes as cleanliness of skin, size of limbs, or excitement of parents. After reviewing all the 
pathophysiologic variables that might be observed neonatally, Apgar chose five as being most important: 
heart rate, respiratory rate, color, muscle tone, and reflex responses. She rated each variable in a three-
category ordinal scale of 0, 1, or 2. She then added the five ratings to form a score that ranged from 0 to 10.

Apgar constructed the composite score entirely according to her clinical judgment, without any formal 
mathematical procedures. The statistical methods that are about to be discussed offer a formal approach  
to the analogous process.

28.2.2 Face Validity

When Apgar identified and gave rating scales to the selected five variables, she had a clear vision of 
what should emerge in the composite score. Her years of clinical experience had given her a substantive 
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knowledge of the particular variables that would be most important for indicating pathophysiologic 
status; she could readily “dissect” her “intuition” to identify those variables; and she could examine the  
subsequent composite scores to determine that they were “clinically sensible” in doing the desired task.  
This type of “sensibility” is often called face validity. It cannot be discerned with any type of statistical 
calculation and requires a combination of “common sense” plus knowledge of the substantive issue 
under consideration. For example, the Apgar Score would have excellent face validity as an index of 
pathophysiologic condition, but not as an index of socioeconomic status.

Face validity is a particularly thorny problem in non-targeted analyses of multivariable data. If a target 
has been identified, it serves as a direct criterion for evaluating face validity in the analytic accomplish-
ment. Thus, a particular prognostic index can readily be shown (with appropriate data) to be effective 
or ineffective in its job of predicting survival. In the absence of a target to serve as a criterion, however,  
the non-targeted analytic methods are constructed exclusively with mathematical principles. The con-
structions may then be splendidly ingenious acts of mathematics, but ultimately unsuccessful because 
they lack face validity.

The factors (or other entities) created by composite variables can be constructed in an “inside-out” 
or “outside-in” manner. The Apgar Score was an inside-out construction, accomplished when Apgar 
examined her “inside” clinical judgment to identify and recombine the cogent (i.e., “sensible”) variables 
into a composite result. In contrast, the mathematical methods produce an outside-in approach. The 
available “outside” information is first processed mathematically, without any criteria for “sensibility”; 
and face validity of the composite result is evaluated afterward.

This distinction becomes particularly important when non-targeted analyses are used to construct and 
to offer a purely statistical “validation” for such composite variables as competence, intelligence, health 
status, satisfaction with care, and quality of life.

28.3 Algebraic Methods

The two most commonly used non-targeted algebraic methods are called factor analysis and principal 
component analysis. In recent years, these methods have sometimes been called “latent variable” analysis 
because the results are aimed at forming a separate latent idea or “construct” that is not itself directly 
observed. For example, Apgar’s construct was the severity of the clinical condition in newborns. Other 
clinical constructs such as congestive heart failure or hepatic decompensation are not observed directly, 
but are identified or conceptually derived from such observed entities as dyspnea, edema, or jaundice. 
The construct called intelligence is the latent variable that was the incentive2 for the early development 
of factor analysis.

In the customary factor-analytic procedure, data for a set of variables in a group of persons are 
examined for the intercorrelations among the variables. Those that most strongly correlate with one 
another have a “ shared variance” that is then attributed to their presumptive correlation with the 
“external” latent variable. For example, students whose scores are correlated as correspondingly high 
(or low) values in tests of reading, writing, and arithmetic may be regarded as having a high (or low) 
level of a common factor, which is the latent variable called intelligence.

Figure 28.2, showing data for only two variables, X1 and X2, will give a particularly simple illustration 
of the ideas. The small solid square is the centroid, which is the common mean of the two variables, 
located at the coordinate for ( ). In the original axes for the two variables, the variances around 
the centroid would be calculated as the group variance for X1, the group variance for X2, and the group 
covariance for the two variables. To simplify the symbols, the group variances can be written as S 11 and 
S22 for variables X1 and X2, respectively, and the covariance can be designated as S 12. Suppose we now 
prepare a new axis as two lines, V1 = a1X1 + a2X2 and V2 = b1X1 + b2X2, that pass through the centroid 
as shown in the figure, and suppose we cite the coordinate of each point according to its distance along  
the new axes. The group variance of the points will be larger along the V1 axis, where the points are 
widely spread, than along the V2 axis, where the points have smaller distances. (In an ideal situation, 
all of the points would fit perfectly on the V 1  line, and no deviations would remain to produce variance  
along the V2 axis.) If we wanted to replace the original variables, X1 and X2, by a new factor that 

X1 X2,
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“captured” most of the common variance in their interrelationship, the line constructed as V1 = a1X1 +
a2X2 would be an excellent choice, and the residual variance could be ignored in the V2 axis.

28.3.1 Analytic Goals and Process

The mathematical goal is to combine some or all of the existing variables into a smaller set of new variables,
called factors, that best “explain” the relationships among the original variables. The new factors should
ideally not be correlated with one another, but should be composed of variables having substantial inter-
correlations. For example, suppose we have five variables, X1, X2, …, X5. When finished, the analytic
procedure should produce four (or fewer) factors constructed as the following weighted combinations:

V1 = a1X1 + a2X2 + a3X3 + a4X4 + a5X5

V2 = b1X1 + b2X2 + b3X3 + b4X4 + b5X5

V3 = c1X1 + c2X2 + c3X3 + c4X4 + c5X5

V4 = d1X1 + d2X2 + d3X3 + d4X4 + d5X5

The second factor, V2, is constructed to “explain” the variance that remains after the construction of
V1. Factor V3 explains what is left after V1 and V2 are formed, and so on. In general, the goal is to get
the desired “explanation” with no more than two factors, and the original variables need not appear in
each factor. (For the Apgar Score, a large number of possible candidate variables was judgmentally
reduced to five, which were then combined into a single factor in which all coefficients had a value of 1.
The single Apgarian factor could be cited as V = X1 + X2 + X3 + X4 + X5, with each Xj having a rating
scale of 0, 1, or 2.)

The analytic process begins by examining the
matrix grid that is outlined with the variables cited
in the rows and columns in Table 28.1. The entries
in the cells of Table 28.1 can be either correlations
or group variances and covariances. When each vari-
able is related to itself, the group variances are S11

for X1X1, S22 for X2X2, etc. For intervariable rela-
tionships, the group covariances are S12 for X1X2 (or 
X2X1), S34 for X3X4 (or X4X3) and so on. The entries 
in the cells can also be correlation coefficients such 
as r12 (or r21) and r34 (or r43). In the main left-upper-
to-right-lower diagonal, these coefficients will all be 
1, when each variable is correlated with itself. Inspection of a matrix of correlation coefficients will 
immediately offer an idea of which variables are closely or hardly interrelated with one another.

FIGURE 28.2
Data for two variables, X1 and X2, with V1 and V2 as 
new axes passing through the centroid. Each data point 
is much closer to the V1 axis than to the V2 axis. For 
further details, see text.
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28.3.2 Operational Strategies and Nomenclature

The procedures have complex operational strategies and a correspondingly arcane jargon of names. [The 
names are mentioned here so that they will not be total strangers if you meet them in a published report. 
A complete explanation of the concepts, however, is beyond the scope of this text. You can read more 
about them (and hope to find clear presentations somewhere) if you begin giving serious attention to using 
these methods or their results.] Equations derived from appropriate arrangements of the correlation or 
variance–covariance matrixes are solved to construct factors having the form of V = a1X1 + a2X2 + a3X3 +
a4X4 + … . The solutions to a special set of equations are called eigenvalues (or characteristic roots); and 
the “best” factors, i.e., those that “explain” the most total variance, have the highest eigenvalues. (The 
hope is that the eigenvalues will be large for one or two factors, and small for others.) The coefficients 
(a1, a2, a3, …) indicate the variables that are most prominent in the arrangement of each factor.

After being selected, the factors can be checked for their correlation coefficients with the individual 
variables. For example, the Apgar scores of a group of babies could be examined for their correlation 
with the variables of heart rate, reflex responses, etc. These coefficients for a particular factor are usually 
called factor loadings. They represent the prominence of each variable in each factor (and vice versa). 
The sum of the squared factor-loading coefficients is called its communality. The larger the communality, 
the larger is the amount of shared variance that is presumably “explained” by that factor.

Because the attached coefficients indicate the impact of the component variables, factors are sometimes 
named according to the constituents that have high impact. For example, V1 might be called a body-size
factor if it has large coefficients for the variables height and weight; and V2 might be called a complexion
factor if it has large coefficients for variables indicating the color of skin, hair, and eyes. The body-size 
factor in the foregoing example would probably have high factor loads for height and weight, but small 
loads for skin, hair, and eyes.

28.3.3 Rotations

Perhaps the most complex (and controversial) part of the operating procedure occurs after the most 
prominent (or “principal”) components have been identified. In the basic mathematical reasoning, all of 
the factors are regarded as orthogonal, i.e., their axes are perpendicular to one another. (This type of 
orthogonality cannot be visualized for four or more axes, but it is easy to assume mathematically.)

In the next step, the axes are often rotated to produce an optimum arrangement. The criteria of 
optimality differ with different strategies of rotation, which can keep the axes orthogonal or change 
them into oblique patterns. Among the many names for these rotational procedures are varimax and 
oblique Procrustean.

28.3.4 Factor vs. Component Analysis

Factor analysis and principal component analysis are mathematical “siblings” that do essentially the 
same thing in slightly different ways. In published literature, the investigators often begin with principal
component analysis, but then call the results factor analysis after the rotations cited in the preceding 
section. The operations of the two methods also differ in using “standardized” Z scores, e.g., (X − )/s, 
or the original units of expression for the variables. The methods may also work with the matrix of 
correlation coefficients or covariances, and may find the appropriate components (or factors) with least  
squares computations or with a special method called maximum-likelihood solutions. The main concep-
tual distinction has been described by Maurice Kendall:3 “In component analysis we begin with the 
observations and look for components … [going] from the data toward a hypothetical model. In factor 
analysis, we work the other way round … .”

28.3.5 Published Examples

The published examples cited here were taken from literature that happened to be noted by the author, 
without a systematic search. The investigators almost never cite reasons for choosing between factor 
and principal component analysis, and probably use whatever program is conveniently available or 
preferred by the statistical consultant.

X
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28.3.5.1 Factor Analysis — With factor analysis, an “index of need for health resources” was 
developed4 for geographic regions of the nation of India. After the original principal components 
approach, applied to 7 variables, “revealed two factors” that were “not directly meaningful,” the inves-
tigators applied varimax rotation to produce two other factors that had “immediate use.” The first factor, 
called proximate determinants, had high “loadings” for the four variables that indicated rates of homicide, 
crude deaths, infant mortality, and crude births. The second factor, called sociomedical background, had 
high loadings for the other three variables, which indicated population rates or proportions of doctors, 
illiterates, and hospital beds. The percentage of “explained variation” was 67% for the first factor and 
16% for the second.

When data for 360 patients with rheumatoid arthritis received an “iterated principal component factor 
analysis,” the investigators5 decided that the 9 constituents of the Arthritis Impact Measurement Scale 
could be reduced to a 4-factor model that accounted for 77% of the variance. After a 5th factor was 
added to allow better assessment of “the areas of clinical interest,” the investigators concluded that the  
“model” containing “5 distinct components” was “preferable to 9 more highly correlated scales for use 
as explanatory variables.”

Factor analysis was applied6 when 428 physicians responded to a questionnaire containing 56 items 
intended to measure attitudes that “influence resource utilization.” After various forms of matrix rotation 
and statistical checking, the investigators emerged with factors for “four prominent domains [that] closely 
corresponded with our hypothesized domains a priori. [They] were interpreted as cost-consciousness, 
discomfort with uncertainty, fear of malpractice, and annoyance with utilization review.”

In other medical applications, factor analysis was used as follows: to reduce 28 candidate variables 
to four “meaningful factors” that could be used as “outcome measures” in chronic obstructive pulmonary 
disease7; to convert ten variables in patients with asthma to three factors that “provided a useful summary 
of asthma severity”8; and to produce 3 factors for 46 sociogeographic variables associated with multiple 
sclerosis in regions of the United States.9

28.3.5.2 Principal Component Analysis — After examining data from a battery of 24 audi-
ologic tests, Henderson et al.10 used principal component analysis to derive a composite score as the 
primary outcome variable in a clinical trial comparing the efficacy of three cochlear implant devices for 
bilateral profound hearing loss. The investigators found that “the first principal component had its largest 
coefficients associated with the most difficult audiologic tests” and that “changes in the composite score 
over time were also closely related to subjective impressions of implant performance” by the patients 
and clinicians.

In an ophthalmologic application,11 principal component analysis was used to analyze 53 variables, 
which were the “threshold” value at visual field locations checked with the Humphrey automated 
perimeter. For locations in both eyes of 304 “normal” persons, the data set contained 53 × 2 × 304 =
32,224 threshold measurements. The investigators found (probably to no one’s surprise) that the average 
threshold value for each person became the first principal component in accounting for variations.

Principal component analyses have often been applied to differentiate symptom patterns in patients 
with schizophrenia, tested with the PANSS (Positive and Negative Syndrome Scale) inventory. A 
five-factor model is reported12 to be “an interesting tool when new, selective, psychopharmacological 
drugs are to be evaluated.” Principal component analyses have also been used to combine laboratory 
tests and culture conditions in melanomas grafted onto mice,13 to reduce 6 tests of function to three 
principal components in pulmonary disease,14 and to divide 61 patients receiving coronary bypass grafts 
into three “subtypes” formed from eight morphologic and electrocardiographic variables.15

28.3.6 Biplot Illustrations

If a good reduction of the variables is provided by the first two principal components, they can be 
used as the main axes of a bi-plot graph, which shows the relationships among different members 
of a group. Each member’s location is plotted according to coordinates for the first and second 
principal component.

© 2002 by Chapman & Hall/CRC 



28.4 Cluster Analysis

Cluster analysis, which yields sets of composite categories rather than sums of weighted variables, can
have an intuitive appeal to biologists concerned with challenges in taxonomic classification. Appropriate
new forms of taxonomy were the basis for such major scientific advances as the Linnaean classification
of animals and plants, Darwin’s theory of evolution, Mendeleyev’s periodic table, and the astronomic
partition of “dwarf” and “giant” stars. In clinical medicine, the fundamental taxonomy used for thoughts
about human ailments is a set of nosographic categories, called the International Classification of Disease,
which is revised every 10 years.

During the latter half of the 20th century, as new forms of technologic and other data become available,
diverse investigators wanted to eliminate the “subjective” judgments of traditional taxonomy, and to 
substitute new systems created by numerical methods that were presumably objective and “stable.”
According to an excellent text by Everitt,16 the strategies of cluster analysis were applied in all of these
methods but were given different names: numerical taxonomy in biology, Q analysis in psychology, and
unsupervised pattern recognition in the field of artificial intelligence.

The goal of cluster analysis is to divide the persons or other entities into an appropriate set of categorical 
clusters; and the process begins, as in factor or component analysis, with data for multiple variables in
members of an observed group.

28.4.1 Basic Structures

The clustering process can be arranged to form either partitions or trees. In a partition, each object is
assigned to a single clustered location. In a tree, the hierarchical organization allows objects to belong
to a “pedigreed” family of clusters.

Figure 28.3 illustrates a hierarchical family arrangement of different species of horses.16 The hierarchy
in this instance was established judgmentally. The process begins with the “parent” group and forms a
“family” in successive splits of the “pedigree.” When cluster analysis is done mathematically with a
hierarchical method, the direction is reversed, starting with individual members that are successively
combined to form the family groups. The branching pattern of construction is often called a dendogram.
Figure 28.4 shows a dendogram developed17 to classify the distribution of pain in 127 patients with 

FIGURE 28.3
Hierarchical family arrangement showing an evolutionary tree for species of horses. (Figure taken from Chapter 
Reference 16.)
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temporomandibular (TM) joint dysfunction who had indicated the locations of their pain graphically in
squares of a stylized graph of the face. In the main hierarchical clusters of Figure 28.4, the pain was
mainly over the TM joint for group A, involved the ramus (vertical portion) of the mandible in group
B, and extended over the zygomatic arch in group C.

In nonhierarchical partitions, the
members are grouped into clusters that
do not overlap and that do not have
“familial” relationships. Figure 28.5
illustrates a partition18 of four clusters
for 16 members.

28.4.2 Operational Strategies

The main operational strategies in clus-
ter analysis involve the choice of mech -
anisms for “measuring” the “similarity”
or “affinity” of different objects. The
different tactics used for this purpose
create a complex array of strategies and
nomenclatures.

One common approach is to measure
the distance between values of the vari-
ables. For example, suppose person A
has values of 35 and 109, respectively,
in variables 1 and 2, and person B has the corresponding values of 27 and 183. With the Pythagorean
theorem, the squared Euclidean distance between the two persons is (35 − 27)2 + (109 − 183)2 = 74.4. A
similar tactic can be used for Euclidean distance in more than two variables. Because the values of the
variables may be correlated with one another, multivariable distance is usually measured instead with an
entity called Mahalanobis D2, which takes account of the covariances.

The diverse methods proposed for evaluating and joining distances have produced an extensive
nomenclature, which is mentioned here just to give you an idea of the names. The measures of distance
include city block metric, genetic distance, and information radius. The strategies16 for joining distances
can be called single linkage, nearest neighbor, complete linkage, furthest neighbor, Ward’s information
loss, Lance and Williams’ recurrence formula, monothetic or polythetic divisions, and minimizing traces
for matrixes showing dispersion of appropriate sums of squared values between and among groups.

28.4.3 Published Examples

Cluster analysis has been medically applied in various attempts to form “typologies” consisting of
clustered categories that form subgroups for a particular ailment. Clinicians have formed many such
subgroups judgmentally with staging systems for cancer, categories of insulin-dependent and nondepen-
dent for diabetes mellitus, the various “non-” forms of disease nosology,19 and many other purely clinical
subclassifications. With cluster analysis methods, these judgments are replaced by a formal mathematical
approach. Cluster analysis has been used to form subgroups for the clinical spectrum of back pain,20

hepatitis,21 chronic affective disorders,22 insulin-dependent diabetes mellitus,23 eating habits of obese
patients,24 and the previously illustrated partition of the temporomandibular joint syndrome.17 Other
relatively recent medical applications include efforts to categorize the geographic distribution of female
cancer patterns in Belgium,25 epidemiologic transitions in cause-specific mortality trends in The Neth-
erlands,26 and the resource utilization of Veterans Administration medical centers.27

In memorable nonmedical applications, cluster analysis was used to help identify an unknown
mummy according to its craniofacial morphologic similarity with other Egyptian queens,28 and to
achieve a classification of 109 pure malt Scotch whiskies according to features of “nose, colour,
body, palate and finish.” 29

FIGURE 28.4
Dendrogram showing distribution of temporomandibular pain in 127
patients, and subsequent hierarchical formation of three main groups,
marked A, B, and C. (Figure taken from Chapter Reference 17.)
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In one medical application that reported 
use of cluster analysis, the investigators did 
not employ the customary many-internal, 
non-dependent-variable arrangement. After 
analyzing an array of variables that might be 
predicto rs  of  p re- term del ive ry, the 
investigators30 divided each variable into 
binary categories, and then used the presence 
or absence of pre-term delivery to group the 
categories into three clusters of “risk”: 
younger women, older women who were 
smokers, and nonsmoking older women. 
Because the grouping and clustering was 
done in direct relation to the outcome vari-
able, this study is an example of the targeted
multicategorical stratification procedure.

28.4.4 Epidemiologic Clusters

Beyond these statistical procedures, epidemiologists often use the word cluster in a quite different, 
nonmathematical way, referring to apparent mini-epidemics of disease. The mini-epidemic becomes noted 
when the scanners of vital-statistics data find a “spatial cluster,” in which a particular disease seems to 
have an unexplainably increased occurrence either in calendar time or at a particular geographic location. 
The usual next step is to search for etiology of the spatial cluster by looking for correlations with suspected 
hazards such as contaminated water, nuclear power plants, electromagnetic radiation, or “toxic wastes.” 
Various statistical methods have been and continue to be proposed for analyzing the geographic-temporal 
patterns of data31 to find (or confirm) these clusters and their alleged causes.

Unfortunately, the investigators seldom consider checking data for the possibility that the “outbreak” 
is due to increased detection of the disease via increased screening, surveillance, and new diagnostic 
technologies in the selected spatial region. Other obvious possibilities are that the increase is a 
stochastic variation among the huge plethora of opportunities for “blips” when multitudes of different 
diseases are recorded for a multitude of geographic regions over a multitude of different points in 
time. After the needless fears induced by the publicity for diverse “clusters” that turned out to be 
etiologic “false alarms,” the topic is now being approached with greater caution than formerly. Never-
theless, a media-sensitive and suitably zealous investigator can almost always get publicity for “discov -
eries” that can warn an already frightened public about yet another “menace” of daily life.32

28.5 Correspondence Analysis

In correspondence analysis, the variables are demarcated into categories (as in cluster analysis), but the  
operational strategy uses algebraic models, as in principal component analysis. The procedure has been  
advocated as a powerful method for analyzing multi-categorical contingency tables.33

Although seldom applied in medical activities, the correspondence analysis technique has been used34

“to reduce the dimensions of the raw … (mainly) categorical data” in preparation for a cluster analysis 
that provided a “four group typology” of nonspecific low back pain, “using both organic and psychiatric 
symptoms and signs.” In another application,35 where the correspondence technique was combined with 
a Bayesian strategy, the arrays of symptoms, called indicants, in sets of patients with chest pain and 
with abdominal pain, were reduced and divided into clusters that were then “validated” for their accuracy 
in separating “risk groups” for various diagnoses.

FIGURE 28.5
Illustration of a partition that forms four clusters, marked A, 
B, C, and D. (Figure taken from Chapter Reference 18.)
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28.6 Psychometric Attractions

Latent-variable analytic methods, such as factor and principal component analyses, have had substantial 
appeal in the world of psychometrics, where new indexes (or rating scales) are regularly prepared to 
“measure” such “constructs” as intelligence, social opinions, or health status, that cannot readily be cited 
in ordinary dimensions.

In the customary arrangement, a psychometric “instrument” contains a set of multiple items, each of 
which can be regarded as a variable. Each item often asks a question or makes an assertion for which 
the response is cited on a five-point (or other) scale that can refer to degrees of frequency (never, …, 
always), agreement (strongly disagree, …, strongly agree), volume (none, …, a lot), or other pertinent 
expressions. The psychometrician usually begins with a large number of items (often more than 100) 
and tries to reduce them to a smaller group (perhaps 30 or fewer) that will provide a “unidimensional” 
representation of the selected construct.

To demonstrate that all the items refer to the same construct, i.e., the “latent variable,” they are 
required to have the “homogeneity” shown by a high intercorrelation with one another. The index of 
multivariable intercorrelation is called Cronbach’s alpha, but also receives other names (e.g., Kuder-
Richardson formula 20) when the variables are expressed in binary categories rather than ordinal (or 
dimensional) scales.

The factor and principal component analyses usually produce several “constructs,” rather than just 
one; but the individual factors are sometimes checked for the “internal reliability” demonstrated by a 
high value in Cronbach’s alpha. (It was used in the previously cited study12 of PANSS to support the 
construct “validity” of the “positive and general psychopathology scales.”)

Despite the psychometric enthusiasm, the demonstration of “homogeneity” among multiple items is 
often contrary to clinimetric goals36,37 in forming new indexes and rating scales. The clinician usually 
wants to combine different attributes into a single composite index (such as the Apgar Score or TNM 
staging system), not to join multiple items that all presumably measure the same attribute. If all the 
items express the same thing, the clinician may want to eliminate the ones that seem redundant. For 
example, in routinely assessing a patient’s red blood status, an efficient clinician might examine the 
value of hematocrit or hemoglobin or red blood count, but not all three. A psychometrician, however, 
might combine all three into an index of erythematosity that would have a particularly high value for 
Cronbach’s alpha. Furthermore, because Cronbach’s alpha inevitably gets much higher when more items 
are included, an impressively high value may merely represent multiplicity of items rather than maxi-
mization of homogeneity.38

The psychometrician’s methods may therefore be quite suitable for the goal of getting a “uni-
dimensional construct,” but ineffective (or misleading) when applied for the clinimetric goal of forming 
a multi-dimensional composite of different entities.

28.7 Scientific Problems and Challenges

Lacking an established criterion or a target variable to validate the results, the diverse forms of non-
targeted analysis produce accomplishments that are wholly arbitrary. The approaches were at first rejected 
by most statisticians, but then began to gain respectability as the challenges became mathematically 
intriguing. For example, factor analysis was originally advocated and used exclusively in the psychosocial 
sciences, but is now often discussed as a statistical method. About 3 decades ago, Cormack39 denounced 
the “irrelevantly and unjustifiably … large quantities of multivariate data [summarized] by clusters, 
undefined a priori … [as a] waste of more valuable time than any other statistical innovation.” More 
recently, however, Hansen and Tukey40 benevolently stated that clustering can “help with either graphical 
or verbal description … [particularly] if we can avoid asking too much of clustering techniques.” 
Hartigan18 suggested that clustering can “be used routinely in the early stages of a data analysis in a 
similar way to drawing graphs or histograms,” but his belief that “the classification of disease … [is] 
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an important … area of application” has not been confirmed when cluster methods were used for 
subsequent nosographic explorations.

Because every scientific taxonomy must have a specific purpose and function,36 the main reason 
scientists do not like the various forms of non-targeted analysis is that the substantive goal of the 
classification may be neither identified nor overtly checked. The results depend completely on the  
mathematical methods used for the statistical arrangement and on the particular collection of data 
being analyzed. For example, insulin-dependent diabetes mellitus, although an important and well-
recognized clinical category, might not emerge as a significant entity if the analytic data came from 
a clinic having very few such patients.

A separate scientific problem, particularly in nonclinical activities, is the “reification” that occurs 
when the factors or clusters, although constructed as acts of pure mathematics, become regarded as 
specific real entities. For example, a still raging controversy in the psychosocial sciences was provoked 
when intelligence, originally called a g factor in analyses by Spearman,41 became advocated as a 
specific attribute of human biology. The initial dispute was whether the attribute was appropriately 
examined with “intelligence tests” and catalogued with factor-analytic gambits.2 The more recent 
dispute arises from attempts42 to separate genetic, ethnic, and environmental contributions to personal 
intelligence.

In a different application, the principal component method has been proposed for solving problems 
of multicollinearity in regression analysis. When multiple “independent” variables are regressed against 
a single target variable, efforts are often made to eliminate the independent variables that are highly 
correlated with one another. To avoid the sometimes invidious choice of deciding which variables are 
redundant, the principal component method might allow all of them to be retained when reformulated 
as suitably constructed new principal-component variables. Despite the theoretical attractiveness, the 
approach was recently shown to have major flaws and “very serious potential pitfalls” when checked in  
several “well-known data sets.”43

In an intriguing investigation, Juniper et al.44 compared “two philosophically different methods for 
selecting items for a disease-specific quality of life questionnaire.” One method was a psychometric 
factor analysis. The other was an “impact approach” in which patients with asthma chose what they 
regarded as important. The investigators found substantial agreement in many of the selections, but also 
noted that the psychometric approach produced items that did not always “make clinical sense” while 
omitting “three items of the greatest importance to patients.”

In medical applications, non-targeted analyses seem to attain face validity only when clinicians agree  
that the results are “sensible.” For example, to avoid idiosyncratic effects from 30 individual variables 
that could be used in prognostic prediction for a cohort of 4226 patients receiving coronary angiography,  
Harrell et al.45 tried the “parsimonious approach” of grouping the variables into more “simple indices.” 
The approach depended on clusters formed after a principal component analysis, but the actual clinical 
index for each group was created only after the variables were “further grouped” by “two cardiologists.” 
The 5 indexes that emerged referred to pain, myocardial damage, vascular disease, risk factors, and 
conduction defects; and 5 of the original variables were left “standing alone.” These 10 entities then 
gave a better prognostic performance than the original 30 variables alone and were just as effective (but 
more comprehensible) than the results of the original principal component analysis. The authors recom-
mended use of the “clustering method for clinical prediction problems when the number of potential 
predictor variables is large” but also stated that “the more clinical insight one injects into the analysis 
at any point, the better is the end result.”

If clinical “insight” is indeed valuable, however, clinicians might be urged more often to take the 
incentive in creating suitable classifications by working from “inside-out” in the manner used by 
Virginia Apgar and other clinical taxonomists. The need for mathematical approaches, working from 
“outside-in,” seems to arise only when clinicians have been delinquent in meeting their own intellectual 
responsibilities.36,46,47 If connoisseurs of the substantive phenomena have not made suitable taxonomic 
efforts, the mathematical procedures will obviously seem more attractive than nothing. On the other 
hand, if non-targeted analytic methods are not guided by a substantive direction or orientation, the 
approach can perhaps be best summarized with the waggish remark once made to me by the late Donald 
Mainland: “If you don’t know what you’re doing, factor analysis is a great way to do it.”
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The targeted analytic method called analysis of variance, sometimes cited acronymically as ANOVA, 
was devised (like so many other procedures in statistics) by Sir Ronald A. Fisher. Although often marking 
the conceptual boundary between elementary and advanced statistics, or between amateur “fan” and 
professional connoisseur, ANOVA is sometimes regarded and taught as “elementary” enough to be used 
for deriving subsequent simple procedures, such as the t test. Nevertheless, ANOVA is used much less 
often today than formerly, for reasons to be noted in the discussions that follow.

29.1 Conceptual Background

The main distinguishing feature of ANOVA is that the independent variable contains polytomous 
categories, which are analyzed simultaneously in relation to a dimensional or ordinal dependent (out-
come) variable.

Suppose treatments A, B, and C are tested for effects on blood pressure in a randomized trial. When 
the results are examined, we want to determine whether one of the treatments differs significantly from 
the others. With the statistical methods available thus far, the only way to answer this question would 
be to do multiple comparisons for pairs of groups, contrasting results in group A vs. B, A vs. C, and B  
vs. C. If more ambitious, we could compare A vs. the combined results of B and C, or group B vs. the 
combined results of A and C, and so on. We could work out various other arrangements, but in each 
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instance, the comparison would rely on contrasting two collected groups, because we currently know
no other strategy.

The analysis of variance allows a single simultaneous “comparison” for three or more groups. The result
becomes a type of screening test that indicates whether at least one group differs significantly from the
others, but further examination is needed to find the distinctive group(s). Despite this disadvantage, ANOVA
has been a widely used procedure, particularly by professional statisticians, who often like to apply it even
when simpler tactics are available. For example, when data are compared for only two groups, a t test or
Z test is simpler, and, as noted later, produces exactly the same results as ANOVA. Nevertheless, many
persons will do the two-group comparison (and report the results) with an analysis of variance.

29.1.1 Clinical Illustration

Although applicable in experimental trials, ANOVA has been most often used for observational studies.
A real-world example, shown in Figure 29.1, contains data for the survival times, in months, of a random
sample of 60 patients with lung cancer,1,2 having one of the four histologic categories of WELL (well-
differentiated), SMALL (small cell), ANAP (anaplastic), and CYTOL (cytology only). The other variable
(the five categories of TNM stage) listed in Figure 29.1 will be considered later. The main analytic
question now is whether histology in any of these groups has significantly different effects on survival.

29.1.1.1 Direct Examination — The best thing to do with these data, before any formal statis -
tical analyses begin, is to examine the results directly. In this instance, we can readily determine the group
sizes, means, and standard deviations for each of the four histologic categories and for the total. The results,
shown in Table 29.1, immediately suggest that the data do not have Gaussian distributions, because the
standard deviations are almost all larger than the means. Nevertheless, to allow the illustration to proceed,
the results can be further appraised. They show that the well-differentiated and small-cell groups, as
expected clinically, have the highest and lowest mean survival times, respectively. Because of relatively
small group sizes and non-Gaussian distributions, however, the distinctions may not be stochastically
significant.

Again before applying any advanced statistics, we can check these results stochastically by using simple
t tests. For the most obvious comparison of WELL vs. SMALL, we can use the components of Formula
[13.7] to calculate sp = = 21.96; (1/nA) + (1/nB) = (1/22) + (1/11) =
.369; and = 24.43 − 4.45 = 19.98. These data could then be entered into Formula [13.7] to
produce t = 9.98/[(21.96)(.369)] = 2.47. At 31 d.f., the associated 2P value is about .02. From this
distinction, we might also expect that all the other paired comparisons will not be stochastically
significant. (If you check the calculations, you will find that the appropriate 2P values are all >.05.)

29.1.1.2 “Holistic” and Multiple-Comparison Problems — The foregoing comparison
indicates a “significant” difference in mean survival between the WELL and SMALL groups, but does
not answer the “holistically” phrased analytic question, which asked whether histology has significant
effects in any of the four groups in the entire collection. Besides, an argument could be made, using 

TABLE 29.1

Summary of Survival Times in Four Histologic Groups  
of Patients with Lung Cancer in Figure 29.1

Histologic 
Category

Group 
Size

Mean
Survival

Standard 
Deviation

WELL 22 24.43 26.56
SMALL 11 4.45 3.77
ANAP 18 10.87 23.39
CYTOL 9 11.54 13.47
Total 60 14.77 22.29

21 26.56( )2 10 3.77( )2+[ ]/ 21 10+( )
XA XB–
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distinctions discussed in Section 25.2.1.1, that the contrast of WELL vs. SMALL was only one of the 
six (4 × 3/2) possible paired comparisons for the four histologic categories. With the Bonferroni correc-
tion, the working level of α ′ for each of the six comparisons would be .05/6 = .008. With the latter 
criterion, the 2P value of about .02 for WELL vs. SMALL would no longer be stochastically significant.

We therefore need a new method to answer the original question. Instead of examining six pairs of 
contrasted means, we can use a holistic approach by finding the grand mean of the data, determining 
the deviations of each group of data from that mean, and analyzing those deviations appropriately.

OBS ID HISTOL TNMSTAGE SURVIVE

 1  62 WELL I 82.3
 2  107 WELL II 5.3
 3  110 WELL IIIA 29.6
 4  157 WELL I 20.3
 5  163 WELL I 54.9
 6  246 SMALL I 10.3
 7  271 WELL IIIB 1.6
 8  282 ANAP IIIA 7.6
 9  302 WELL I 28.0
10  337 CYTOL I 12.8
11  344 WELL II 4.0
12  352 ANAP IIIA 1.3
13  371 WELL IIIB 14.1
14  387 SMALL IIIA 0.2
15  428 SMALL II 6.8
16  466 ANAP IIIB 1.4
17  513 ANAP I 0.1
18  548 ANAP IV 1.8
19  581 ANAP IV 6.0
20  605 CYTOL IV 1.0
21  609 CYTOL IV 6.2
22  628 SMALL IV 4.4
23  671 SMALL IV 5.5
24  764 SMALL IV 0.3
25  784 ANAP IV 1.6
26  804 WELL I 12.2
27  806 ANAP IIIB 6.5
28  815 WELL I 39.9
29  852 WELL IIIB 4.5
30  855 WELL II 1.6
31  891 CYTOL IIIB 8.1
32  892 WELL IIIB 62.0
33  931 CYTOL IIIB 8.8
34  998 WELL IIIB 0.2
35 1039 SMALL IV 0.6
36 1044 ANAP II 19.3
37 1054 WELL IIIB 0.6
38 1057 ANAP I 10.9
39 1155 ANAP I 0.2
40 1192 SMALL IV 11.2
41 1223 ANAP IV 0.9
42 1228 ANAP II 27.9
43 1303 ANAP IIIB 2.9
44 1309 ANAP II 99.9
45 1317 ANAP IV 4.7
46 1355 CYTOL IIIB 1.8
47 1361 WELL IV 1.0
48 1380 CYTOL IV 10.6
49 1405 SMALL IV 3.7
50 1444 WELL II 55.9
51 1509 SMALL IV 3.4
52 1515 WELL I 79.7
53 1521 ANAP IV 1.9
54 1556 ANAP IIIB 0.8
55 1567 SMALL IV 2.5
56 1608 CYTOL I 8.6
57 1612 WELL IIIA 13.3
58 1666 CYTOL IV 46.0
59 1702 WELL II 23.9
60 1738 WELL II 2.6

FIGURE 29.1
Printout of data on histologic type, TNM Stage, and months of survival in a random sample of 60 patients with primary cancer 
of the lung. [OBS = observation number in sample; ID = original indentification number; HISTOL = histology type; TNMSTAGE 
= one of five ordinal anatomic TNM stages for lung cancer; SURVIVE = survival time (mos.); WELL = well-differentiated; 
SMALL = small cell; ANAP = anaplastic; CYTOL = cytology only.]
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Many different symbols have been used to indicate the entities that are involved. In the illustration
here, Yij will represent the target variable (survival time) for person i in group j. For example, if WELL
is the first group in Figure 29.1, the eighth person in the group has Y8,1 = 4.0. The mean of the values
in group j will be = Σ Yij/nj, where nj is the number of members in the group. Thus, for the last
group (cytology) in Table 29.1, n4 = 9, ΣYi,4 = 103.9, and = 103.9/9 = 11.54. The grand mean, ,
will be Σ (nj )/N, where N = Σ nj = size of the total group under analysis. From the data in Table 29.1,
G = [(22 × 24.43) + (11 × 4.45) + (18 × 10.87) + (9 × 11.54)]/60 = 885.93/60 = 14.77.

We can now determine the distance,  − , between each group’s mean and the grand mean. For 
the ANAP group, the distance is 10.87 − 14.77 = −3.90. For the other three groups, the distances are 
–3.23 for CYTOL, −10.32 for SMALL, and +9.66 for WELL. This inspection confirms that the means 
of the SMALL and WELL groups are most different from the grand mean, but the results contain no 
attention to stochastic variation in the data.

29.1.2 Analytic Principles

To solve the stochastic challenge, we can use ANOVA, which like many other classical statistical 
strategies, expresses real world phenomena with mathematical models. We have already used such models 
both implicitly and explicitly. In univariate statistics, the mean, , was an implicit “model” for fitting 
a group of data from only the values in the single set of data. The measured deviations from that model, 
Yi − , were then converted to the group’s basic variance, .

In bivariate statistics for the associations in Chapters 18 and 19, we used an explicit model based on 
an additional variable, expressed algebraically as = a + bXi. We then compared variances for three 
sets of deviations: Yi − , between the items of data and the explicit model; Yi − , between the items 
of data and the implicit model; and , between the explicit and implicit models. The group variances 
or sums of squares associated with these deviations were called residual (or “error”) for ,
basic for , and model for Σ( − )2.

29.1.2.1 Distinctions in Nomenclature — The foregoing symbols and nomenclature have 
been simplified for the sake of clarity. In strict statistical reasoning, any set of observed data is regarded 
as a sample from an unobserved population whose parameters are being estimated from the data. If 
“modeled” with a straight line, the parametric population would be cited as Y = α + βX. When the 
results for the observed data are expressed as = a + bXi, the coefficients a and b are estimates of 
the corresponding α and β parameters.

Also in strict reasoning, variance is an attribute of the parametric population. Terms such as 
 or , which are used to estimate the parametric variances, should be called sums 

of squares, not group variances. The linguistic propriety has been violated here for two reasons: (1) the  
distinctions are more easily understood when called variance, and (2) the violations constantly appear 
in both published literature and computer print-outs. The usage here, although a departure from strict 
formalism, is probably better than in many discussions elsewhere where the sums of squares are called 
variances instead of group variances.

Another issue in nomenclature is syntactical rather than mathematical. In most English prose, 
between is used for a distinction of two objects, and among for more than two. Nevertheless, in the 
original description of the analysis of variance, R. A. Fisher used the preposition between rather than 
among when more than two groups or classes were involved. The term between groups has been 
perpetuated by subsequent writers, much to the delight of English-prose pedants who may denounce 
the absence of literacy in mathematical technocracy. Nevertheless, Fisher and his successors have been 
quite correct in maintaining between. Its use for the cited purpose is approved by diverse high-echelon 
authorities, including the Oxford English Dictionary, which states that “between has been, from its 
earliest appearance, extended to more than two.”3 [As one of the potential pedants, I was ready to use 
among in this text until I checked the dictionary and became enlightened.]

29.1.2.2 Partition of Group Variance — The same type of partitioning that was used for 
group variance in linear regression is also applied in ANOVA. Conceptually, however, the models are 

Yj

Y4 G
Yj

Yj G

Y

Y Σ Yi Y–( )2

Ŷi

Ŷi Y
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expressed differently. Symbolically, each observation can be labelled Yij, with j representing the group
and i, the person (or other observed entity) within the group. The grand mean, , is used for the “implicit
model” when the basic group or system variance, , is summed for the individual values of
Yi in all of the groups. The individual group means, , become the explicit models when the total
system is partitioned into groups. The residual group variance is the sum of the values of Σ(Yi − )2

within each of the groups. [In more accurate symbolism, the two cited group variances would be written
with double subscripts and summations as ΣΣ(Yij − )2 and ΣΣ(Yij − )2.] The model group variance,
summed for each group of nj members with group mean , is Σnj( − )2. These results for data in
the four groups of Figure 29.1 and Table 29.1 are shown in Table 29.2.

Except for minor differences due to rounding, the components of Table 29.2 have the same structure
noted earlier for simple linear regression in Section 19.2.2. The structure is as follows:

{Basic Group Variance} = {Model Variance between Groups} + { Residual Variance within Groups}

or Syy = SM + SR.
The structure is similar to that of the deviations

Total Deviation = Model Deviation + Residual Deviation

which arises when each individual deviation is expressed in the algebraic identity

If  is moved to the first part of the right side, the equation becomes

and is consistent with a parametric algebraic model that has the form

Yij = µ + γj + εij

In this model, each person’s value of Yij consists of three contributions: (1) from the grand parametric
mean, µ (which is estimated by ); (2) from the parametric increment, γj (estimated by − ),
between the grand mean and group mean; and (3) from an error term, εij (estimated by Yij − ), for
the increment between the observed value of Yij and the group mean.

For stochastic appraisal of results, the null hypothesis assumption is that the m groups have the same
parametric mean, i.e., γ1 = γ2 = … = γj = … = γm.

TABLE 29.2

Group-Variance Partitions of Sums of Squares for the Four Histologic Groups  
in Figure 29.1 and Table 29.1

Group
Basic

(Total System)
Model

(Between Groups)
Residual

(Within Groups)

WELL 16866.67 22(24.43 − 14.77)2 = 2052.94 14813.73
SMALL 1313.52 11(4.45 − 14.77)2 = 1171.53 141.99
ANAP 9576.88 18(10.87 − 14.77)2 = 273.78 9303.10
CYTOL 1546.32 9(11.54 − 14.77)2 = 93.90 1452.42
Total 29304.61* 3593.38* 25711.24

* These are the correct totals. They differ slightly from the sum of the collection of individual values, calculated 
with rounding, in each column.

G
Σ Yi G–( )2
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29.1.2.3 Mean Variances and Degrees of Freedom — When divided by the associated 
degrees of freedom, each of the foregoing group variances is converted to a mean value. For the basic 
group variance, the total system contains N = Σnj members, and d.f. = N − 1. For the model variance, the 
m groups have m − 1 degrees of freedom. For the residual variance, each group has nj − 1 degrees of freedom, 
and the total d.f. for m groups is Σ (nj − 1) = N − m.

The degrees of freedom are thus partitioned, like the group variances, into an expression that indicates 
their sum as

N − 1 = (m − 1) + (N − m)

The mean variances, however, no longer form an equal partition. Their symbols, and the associated 
values in the example here, are as follows:

Mean Group Variance = Syy/(N − 1) = 29304.61/59 = 496.69

Mean Model Variance = SM/(m − 1) = 3593.38/3 = 1197.79 
(between groups)

Mean Residual Variance = SR/(N − m) = 25711.24/56 = 459.13 
(within groups)

29.2 Fisher’s F Ratio

Under the null hypothesis of no real difference between the groups—i.e., the assumption that they have  
the same parametric mean—each of the foregoing three mean variances can be regarded as a separate 
estimate of the true parametric variance. Within the limits of stochastic variation in random sampling, 
the three mean variances should equal one another.

To test stochastic significance, R. A. Fisher constructed a variance ratio, later designated as F, that is  
expressed as

It can be cited symbolically as

[29.1]

If only two groups are being compared, some simple algebra will show that Formula [29.1] becomes 
the square of the earlier Formula [13.7] for the calculation of t (or Z). This distinction is the reason why  
the F ratio is sometimes used, instead of t (or Z), for contrasting two groups, as noted earlier in 
Section 13.3.6.

The Fisher ratio has a sampling distribution in which the associated 2P value is found for the values 
of F at the two sets of degrees of freedom in values of m − 1 and N − m. The three components make 
the distribution difficult to tabulate completely; and it is usually cited according to values for F for each 
degree of freedom simultaneously at fixed values of 2P such as .1, .05, .01.

In the example under discussion here, the F ratio is 1197.79/459.13 = 2.61. In the Geigy tables4

available for the combination of 3 and 56 degrees of freedom, the required F values are 2.184 for 2P = .1, 
2.769 for 2P = .05, and 3.359 for 2P = .025. If only the Geigy values were available, the result would 
be written as .05 < 2P < .1. In an appropriate computer program, however, the actual 2P value is usually 
calculated and displayed directly. In this instance, it was .0605.

If 2P is small enough to lead to rejection of the null hypothesis, the stochastic conclusion is that at 
least one of the groups has a mean significantly different from the others. Because the counter-hypothesis 
for the F test is always that the mean variance is larger between groups than within them, the null 
hypothesis can promptly be conceded if the F ratio is < 1. In this instance, because the null hypothesis 
cannot be rejected at α = .05, we cannot conclude that a significant difference in survival has been 

Mean variance between groups
Mean variance within groups

--------------------------------------------------------------------------

F SM/ m 1–( )
SR/ N m–( )
----------------------------=
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stochastically confirmed for the histologic categories. The observed quantitative distinctions seem
impressive, however, and would probably attain stochastic significance if the group sizes were larger.

29.3 Analysis-of-Variance Table

The results of an analysis of variance are commonly presented, in both published literature and computer
printouts, with a tabular arrangement that warrants special attention because it is used not only for
ANOVA but also for multivariable regression procedures that involve partitioning the sums of squared
deviations (SS) that form group variances.

In each situation, the results show the partition for the sums of squares of three entities: (1) the total
SS before imposition of an explicit model, (2) the SS between the explicit model and the original implicit
grand mean, and (3) the residual SS for the explicit model. The last of these entities is often called the
“unexplained” or “error” variance. Both of these terms are unfortunate because the mathematical “expla-
nation” is a statistical phenomenon that may have nothing to do with biologic mechanisms of explanation
and the “error” represents deviations between observed and estimated values, not mistakes or inaccuracies
in the basic data. In certain special arrangements, to be discussed shortly, the deviations receive an
additionally improved “explanation” when the model is enhanced with subdivisions of the main variable
or with the incorporation of additional variables.

Figure 29.2 shows the conventional headings for the ANOVA table of the histology example in
Figure 29.1. For this “one-way” analysis, the total results are divided into two rows of components. The
number of rows is appropriately expanded when more subgroups are formed (as discussed later) via
such mechanisms as subdivisions or inclusion of additional variables.

29.4 Problems in Performance

The mathematical reasoning used in many ANOVA arrangements was developed for an ideal experi-
mental world in which all the compared groups or subgroups had the same size. If four groups were
being compared, each group had the same number of members, so that n1 = n2 = n3 = n4. If the groups
were further divided into subgroups—such as men and women or young, middle-aged, and old—the
subgroups had the same sizes within each group.

These equi-sized arrangements were easily attained for experiments in the world of agriculture, where
R. A. Fisher worked and developed his ideas about ANOVA. Equally sized groups and subgroups are
seldom achieved, however, in the realities of clinical and epidemiologic research. The absence of equal
sizes may then create a major problem in the operation of computer programs that rely on equal sizes,
and that may be unable to manage data for other circumstances. For the latter situations, the computer
programs may divert ANOVA into the format of a “general linear model,” which is essentially a method
of multiple regression. One main reason, therefore, why regression methods are replacing ANOVA

Dependent Variable: SURVIVE

Source DF Sum of Squares Mean Square F Value Pr > F

Model 3 3593.3800000 1197.7933333 2.61 0.0605

Error 56 25711.2333333 459.1291667

Corrected Total 59 29304.6133333

R-Square C.V. Root MSE SURVIVE Mean

0.122622 145.1059 21.427300 14.766667

FIGURE 29.2
Printout of analysis-of-variance table for survival time in the four histologic groups of Figure 29.1.
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methods today is that the automated regression methods can more easily process data for unequal-sized
groups and subgroups.

29.5 Problems of Interpretation

The results of an analysis of variance are often difficult to interpret for both quantitative and stochastic
reasons, as well as for substantive decisions.

29.5.1 Quantitative Distinctions

The results of ANOVA are almost always cited with F ratios and P values that indicate stochastic
accomplishments but not quantitative descriptive distinctions. The reader is thus left without a mechanism
to decide what has been accomplished quantitatively, while worrying that “significant” P values may
arise mainly from large group sizes.

Although not commonly used, a simple statistical index can provide a quantitative description of the
results. The index, called eta squared, was previously discussed in Section 27.2.2 as a counterpart of r2 for
proportionate reduction of group variance in linear regression. Labeled “R-square” in the printout of
Figure 29.2, the expression is

For the histologic data in Figure 29.2, this index is 3593.38/29304.61 = 0.12, representing a modest
achievement, which barely exceeds the 10% noted earlier (see Section 19.3.3) as a minimum level for
“quantitative significance” in variance reduction.

29.5.2 Stochastic “Nonsignificance”

Another important issue is what to do when a result is not stochastically significant, i.e., P > α. In previous
analytic methods, a confidence interval could be calculated around the “nonsignificant” increment, ratio,
or coefficient that described the observed dO distinction in the results. If the upper end of this confidence
interval excluded a quantitatively significant value (such as δ), the result could be called stochastically
nonsignificant. If the confidence interval included δ, the investigator might be reluctant to concede the
null hypothesis of “no difference.”

This type of reasoning would be equally pertinent for ANOVA, but is rarely used because the results
seldom receive a descriptive citation. Confidence intervals, although sometimes calculated for the mean
of each group, are almost never determined to give the value of eta the same type of upper and lower
confidence boundaries that can be calculated around a correlation coefficient in simple linear regression.

In the absence of a confidence interval for eta, the main available descriptive approach is to examine
results in individual groups or in paired comparisons. If any of the results seem quantitatively significant,
the investigator, although still conceding the null hypothesis (because P > α), can remain suspicious that
a “significant” difference exists, but has not been confirmed stochastically. For example, in Figure 29.2,
the P value of 0.06 would not allow rejection of the null hypothesis that all group means are equal. 
Nevertheless, the modestly impressive value of 0.12 for eta squared and the large increment noted earlier 
between the WELL and SMALL group means suggest that the group sizes were too small for stochastic 
confirmation of what is probably a quantitatively “significant” distinction.

29.5.3 Stochastic “Significance”

If P < α, the analysis has identified something that is stochastically significant, and the next step is to 
find where it is located. As noted earlier, the search involves a series of paired comparisons. A system  

η2 Model (between-group) variance
Total system (basic) variance

------------------------------------------------------------------------------- SM

Syy
-------= =
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containing m groups will allow m(m − 1)/2 paired comparisons when each group’s mean is contrasted
against the mean of every other group. With m additional paired comparisons between each group and
the total of the others, the total number of paired comparisons will be m(m + 1)/2. For example, the 
small-cell histologic group in Table 29.1 could be compared against each of the three other groups and
also against their total. A particularly ingenious (or desperate) investigator might compare a single
group or paired groups against pairs (or yet other combinations) of the others.

This plethora of activities produces the multiple comparison problem discussed in Chapter 25, as well
as the multiple eponymous and striking titles (such as Tukey’s honestly significant difference5) that have
been given to the procedures proposed for examining and solving the problem.

29.5.4 Substantive Decisions

Because the foregoing solutions all depend on arbitrary mathematical mechanisms, investigators who
are familiar with the substantive content of the data usually prefer to avoid the polytomous structure of
the analysis of variance. For example, a knowledgeable investigator might want to compare only the
SMALL vs. WELL groups with a direct 2-group contrast (such as a t test) in the histologic data, avoiding
the entire ANOVA process. An even more knowledgeable investigator, recognizing that survival can be
affected by many factors (such as TNM stage and age) other than histologic category, might not want
to do any type of histologic appraisal unless the other cogent variables have been suitably accounted for.

For all these reasons, ANOVA is a magnificent method of analyzing data if you are unfamiliar with
what the data really mean or represent. If you know the substantive content of the research, however,
and if you have specific ideas to be examined, you may want to use a simpler and more direct way of
examining them.

29.6 Additional Applications of ANOVA

From a series of mathematical models and diverse arrangements, the analysis of variance has a versatility,
analogous to that discussed earlier for chi square, that for many years made ANOVA the most commonly
used statistical procedure for analyzing complex data. In recent years, however, the ubiquitous availability
of computers has led to the frequent replacement of ANOVA by multiple regression procedures, whose
results are often easier to understand. Besides, ANOVA can mathematically be regarded as a subdivision
of the general-linear-model strategies used in multivariable regression analysis.

Accordingly, four of the many other applications of ANOVA are outlined here only briefly, mainly
so that you will have heard of them in case you meet them (particularly in older literature). Details
can be found in many statistical textbooks. The four procedures to be discussed are multi-factor
arrangements, nested analyses, the analysis of covariance (ANCOVA), and repeated-measures arrange -
ments (including the intraclass correlation coefficient).

29.6.1 Multi-Factor Arrangements

The procedures discussed so far are called one-way analyses of variance, because only a single inde-
pendent variable (i.e., histologic category) was examined in relation to survival time. In many circum-
stances, however, two or more independent variables can be regarded as “factors” affecting the dependent
variable. When these additional factors are included, the analysis is called two-way (or two-factor), three-
way (or three-factor), etc.

For example, if the two factors of histologic category and TNM stage are considered simultaneously,
the data for the 60 patients in Figure 29.1 would be arranged as shown in Table 29.3. The identification
of individual survival times would require triple subscripts: i for the person, j for the row, and k for  
the column.
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29.6.1.1 “Main Effects” — In the mathematical model of the two-way arrangement, the
categorical mean for each factor—Histology and TNM Stage—makes a separate contribution, called
the “main effect,” beyond the grand mean. The remainder (or unexplained) deviation for each person is
called the residual error. Thus, a two-factor model for the two independent variables would express the
observed results as

[29.2]

The term here represents the grand mean. The next two terms represent the respective deviations of
each row mean ( ) and each column mean ( ) from the grand mean. The four components in the
last term for the residual deviation of each person are constructed as “residuals” that maintain the
algebraic identity. The total sum of squares in the system will be Σ (Yijk − )2, with N − 1 degrees of
freedom. There will be two sums of squares for the model, cited as Σ nj( − )2 for the row factor,
and as Σnk( − )2 for the column factor. The residual sum of squares will be the sum of all the
values of (Yijk − − + )2.

Figure 29.3 shows the printout of pertinent calculations for the data in Table 29.3. In the lower half
of Figure 29.3, the 4-category histologic variable has 3 degrees of freedom and its “Type I SS” (sum of
squares) and mean square, respectively, are the same 3593.38 and 1197.79 shown earlier. The 5-category
TNM-stage variable has 4 degrees of freedom and corresponding values of 3116.39 and 779.10. The
residual error group variance in the upper part of the table is now calculated differently—as the “corrected 

TABLE 29.3

Two-Way Arrangement of Individual Data for Survival Time (in Months)  
of Patients with Lung Cancer

Histologic 
Category

TNM Stage Mean for Total 
Row CategoryI II IIIA IIIB IV

Well 82.3
20.3
54.9
28.0
12.2
39.9
79.7

5.3
4.0
1.6

55.9
23.9

2.6

29.6
13.3

1.6
14.1

4.5
62.0

0.2
0.6

1.0

24.43

Small 10.3 6.8 0.2 — 4.4
5.5
0.3
0.6

11.2
3.7
3.4
2.5

4.45

Anap 0.1
10.9
0.2

19.3
27.9
99.9

7.6
1.3

1.4
6.5
2.9
0.8

1.8
6.0
1.6
0.9
4.7
1.9

10.87

Cytol 12.8
8.6

— — 8.1
8.8
1.8

1.0
6.2

10.6
46.0

11.54

Mean for Total 
Column Category 27.7 24.72 10.40 8.72 5.96 14.77
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total” sum of squares minus the sum of Type I squares, which is a total of 6709.77 for the two factors
in the model. Since those two factors have 7 (=3 + 4) degrees of freedom, the mean square for the model
is 6709.77/7 = 958.54, and the d.f. in the error variance is 59 − 7 = 52. The mean square for the error
variance becomes 22594.84/52 = 434.52. When calculated for this two-factor model, the F ratio of mean
squares is 2.21, which now achieves a P value (marked “Pr > F”) just below .05. If the α  level is set at
.05, this result is “significant,” whereas it was not so in the previous analysis for histology alone.

The label “Type I SS” is used because ANOVA calculations can also produce three other types of
sums of squares (marked II, III, and IV when presented) that vary with the order in which factors are
entered or removed in a model, and with consideration of the interactions discussed in the next section.
As shown in the lower section of Figure 29.3, an F-ratio value can be calculated for each factor when
its mean square is divided by the “error” mean square. For histology, this ratio is 1197.79/434.52 = 2.76.
For TNM stage, the corresponding value in the printout is 1.79. The corresponding 2P values are just
above .05 for histology and .14 for TNM stage.

29.6.1.2 Interactions — In linear models, each factor is assumed to have its own separate
additive effect. In biologic reality, however, the conjunction of two factors may have an antagonistic or
synergistic effect beyond their individual actions, so that the whole differs from the sum of the parts.
For example, increasing weight and increasing blood pressure may each lead to increasing mortality,
but their combined effect may be particularly pronounced in persons who are at the extremes of obesity
and hypertension. Statisticians use the term interactions for these conjunctive effects; and the potential
for interactions is often considered whenever an analysis contains two or more factors.

To examine these effects in a two-factor analysis, the model for Yijk is expanded to contain an 
interaction term. It is calculated, for the mean of each cell of the conjoined categories, as the deviation
from the product of mean values of the pertinent row and column variables for each cell. In the expression
of the equation for Yijk , the first three terms of Equation [29.2] are the same: , for the grand mean;

− for each row; and − for each column. Because the observed mean in each cell will be
, the interaction effect will be the deviation estimated as − − + . The remaining

residual effect, used for calculating the residual sum of squares, is Yijk − . For each sum of squares,
the degrees of freedom are determined appropriately for the calculations of mean squares and F ratios.

The calculation of interaction effects can be illustrated with an example from the data of Table 29.3 for
the 7-member cell in the first row, first column. The grand mean is 14.77; the entire WELL histologic
category has a mean of 24.43; and TNM stage I has a mean of 27.71. The mean of the seven values in the
cited cell is (82.3 + 20.3 +  + 79.7)/7 = 45.33. According to the algebraic equation, = 14.77; in the
first row, ( ) = 24.43 − 14.77 = 9.66; and in the first column, ( ) = 27.71 − 14.77 = 12.94.
The interaction effect in the cited cell will be estimated as 45.33 − 24.43 − 27.71 + 14.77 = 7.96. The
estimated value of the residual for each of the seven Yijk values in the cited cell will be Yijk − 7.96.

Dependent Variable: SURVIVE

Source DF Sum of Squares Mean Square F Value Pr > F

Model 7 6709.7729638 958.5389948 2.21 0.0486
Error 52 22594.8403695 434.5161610
Corrected Total 59 29304.6133333

R-Square C.V. Root MSE SURVIVE Mean
0.228966 141.1629 20.845051 14.766667

Source DF Type I SS Mean Square F Value Pr > F

HISTOL 3 3593.3800000 1197.7933333 2.76 0.0515
TNMSTAGE 4 3116.3929638 779.0982410 1.79 0.1443

FIGURE 29.3
Printout for 2-way ANOVA of data in Figure 29.1 and Table 29.3.

G
Yj G Yk G
Yjk Yjk Yj Yk G
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Figure 29.4 shows the printout of the ANOVA table when an interaction model is used for the two-
factor data in Table 29.3. In Figure 29.4, the sums of squares (marked Type I SS) and mean squares for
histology and TNM stage are the same as inTable 29.3, and they also have the same degrees of freedom.
The degrees of freedom for the interaction are tricky to calculate, however. In this instance, because
some of the cells ofTable 29.3 are empty or have only 1 member, we first calculate degrees for freedom
for the residual sum of squares, Σ (Yijk − )2. In each pertinent cell, located at (j, k) coordinates in
the table, the degrees of freedom will be njk − 1. Working across and then downward through the cells
in Table 29.3, the sum of the njk − 1 values will be 6 + 5 + 1 + 5 + 7 + 2 + 2 + 1 + 3 + 5 + 1 + 2 + 3 
= 43. (The values are 0 for the four cells with one member each and also for the 3 cells with no members.)
This calculation shows that the model accounts for 59 − 43 = 16 d.f.; and as the two main factors have
a total of 7 d.f., the interaction factor contributes 9 d.f. to the model, as shown in the last row of
Figure 29.4.

Calculated with the new mean square error term in Figure 29.4, the F values produce 2P values below
<.05 for the model, for the histology factor, and for the histology-TNM-stage interaction. The 2P value
is about .09 for the TNM-stage main effect.

The difficult challenge of interpreting three-way and more complex interactions are considered
elsewhere2 in discussions of multivariable analysis.

29.6.2 Nested Analyses

The groups of a single factor in ANOVA can sometimes be divided into pertinent subgroups. For example,
the three treatments A, B, and C might each have been given in two sets of doses, low and high, so that
six subgroups could be analyzed, two for each treatment. The results can then be evaluated with a
procedure called a hierarchical or nested analysis. The variations in the total sum of squares would arise
for the six subgroups and the three main groups, and the analysis is planned accordingly.

29.6.3 Analysis of Covariance

An analysis of covariance (acronymically designated as ANCOVA) can be done for at least two reasons.
The first is to adjust for the action of a second factor suspected of being as a confounder in affecting 
both the dependent variable and the other factor under analysis.

The second reason is to allow appropriate analyses of a ranked independent variable that is expressed
in either a dimensional or ordinal scale. This ranking is ignored when the ordinary ANOVA procedure
relies on nominal categories for the independent variable. Thus, in the analyses shown in Figs. 29.3
and 29.4, the polytomous categories of TNM stage were managed as though they were nominal. To

Source DF Sum of Squares Mean Square F Value Pr > F

Model 16 13835.482381 864.717649 2.40 0.0114
Error 43 15469.130952 359.747231
Corrected Total 59 29304.613333

R-Square C.V. Root MSE SURVIVE Mean
0.472126 128.4447 18.967004 14.766667

Source DF Type I SS Mean Square F Value Pr > F

HISTOL 3 3593.3800000 1197.7933333 3.33 0.0282
TNMSTAGE 4 3116.3929638 779.0982410 2.17 0.0890
HISTOL*TNMSTAGE 9 7125.7094171 791.7454908 2.20 0.0408

FIGURE 29.4
Two-way ANOVA, with interaction component, for results in Table 29.3 and Figure 29.3. [Printout from SAS PROC GLM
computer program.]

Yjk
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allow maintenance of the ranks, TNM stage could be declared a covariate, which would then be analyzed
as though it had a dimensional scale.

The results of the covariance analysis are shown in Figure 29.5. Note that TNM stage now has only
1 degree of freedom, thus giving the model a total of 4 D.F., an F value of 3.61 and a P value of 0.0111,
despite a decline of R-square from .229 in Figure 29.3 to .208 in Figure 29.5. The histology variable,
which had P = .052 in Figure 29.3 now has P = .428; and TNM stage, with P = .144 in Figure 29.3, has
now become highly significant at P = .0012. These dramatic changes indicate what can happen when
the rank sequence is either ignored or appropriately analyzed for polytomous variables.

In past years, the effect of confounding or ranked covariates was often formally “adjusted” in an analysis
of covariance, using a complex set of computations and symbols.Today, however, the same adjustment
is almost always done with a multiple regression procedure. The adjustment process in ANCOVA is
actually a form of regression analysis in which the related effects of the covariate are determined by
regression and then removed from the error variance. The group means of the main factor are also
“adjusted” to correspond to a common value of the covariate. The subsequent analysis is presumably
more “powerful” in detecting the effects of the main factor, because the confounding effects have 
presumably been “removed.” The process and results are usually much easier to understand, however,
when done with multiple linear regression.2

29.6.4 Repeated-Measures Arrangements

Repeated measures is the name given to analyses in which the same entity has been observed repeatedly.
The repetitions can occur with changes over time, perhaps after interventions such as treatment, or with
examinations of the same (unchanged) entity by different observers or systems of measurement.

29.6.4.1 Temporal Changes — The most common repeated-measures situation is an ordinary
crossover study, where the same patients receive treatments A and B. The effects of treatment A vs.
treatment B in each person can be subtracted and thereby reduced to a single group of increments, which
can be analyzed with a paired t test, as discussed in Section 7.8.2.2. The same analysis of increments
can be used for the before-and-after measurements of the effect in patients receiving a particular
treatment, such as the results shown earlier for blood glucose in Table 7.4.

Because the situations just described can easily be managed with paired t tests, the repeated-measures
form of ANOVA is usually reserved for situations in which the same entity has been measured at three
or more time points. The variables that become the main factors in the analysis are the times and the
groups (such as treatment). Interaction terms can be added for the effects of groups × times.

Source DF Sum of Squares Mean Square F Value Pr > F

Model 4 6087.9081999 1521.9770500 3.61 0.0111
Error 55 23216.7051334 422.1219115
Corrected Total 59 29304.6133333

R-Square C.V. Root MSE SURVIVE Mean
0.207746 139.1350 20.545606 14.766667

Source DF Type I SS Mean Square F Value Pr > F

TNMSTAGE 1 4897.3897453 4897.3897453 11.60 0.0012
HISTOL 3 1190.5184546 396.8394849 0.94 0.4276

FIGURE 29.5
Printout of Analysis of Covariance for data in Figure 29.3, with TNM stage used as ranked variable.
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Four major problems, for which consensus solutions do not yet exist, arise when the same entity is 
measured repeatedly over time:

1. Independence. The first problem is violation of the assumption that the measurements are inde-
pendent. The paired t test manages this problem by reducing the pair of measurements to their 
increment, which becomes a simple “new” variable. This distinction may not always be suitably 
employed with more than two sets of repeated measurements.

2. Incremental components. A second problem is the choice of components for calculating 
incremental changes for each person. Suppose t0 is an individual baseline value, and the 
subsequent values are t1, t2, and t3. Do we always measure increments from the baseline 
value, i.e., t1 − t0, t2 − t0, and t3 − t0, or should the increments be listed successively as t1 −
t0, t2 − t1, t3 − t2?

3. Summary index of response. If a treatment is imposed after the baseline value at t0, what is 
the best single index for summarizing the post-therapeutic response? Should it be the mean 
of the post-treatment values, the increment between t0 and the last measurement, or a regres-
sion line for the set of values?

4. Neglect of trend. This problem is discussed further in Section 29.8. As noted earlier, an 
ordinary analysis of variance does not distinguish between unranked nominal and ranked 
ordinal categories in the independent polytomous variable. If the variable represents serial 
points in time, their ranking may produce a trend, but it will be neglected unless special 
arrangements are used in the calculations.

29.6.4.2 Intraclass Correlations — Studies of observer or instrument variability can also be 
regarded as a type of repeated measures, for which the results are commonly cited with an intraclass 
correlation coefficient (ICC).

As noted in Section 20.7.3, the basic concept was developed as a way of assessing agreement for 
measurements of a dimensional variable, such as height or weight, between members of the same class, 
such as brothers in a family. To avoid the inadequacy of a correlation coefficient, the data were appraised 
with a repeated-measures analysis-of-variance. To avoid decisions about which member of a pair should 
be listed as the first or second measurements, all possible pairs were listed twice, with each member as  
the first measurement and then as the second. The total sums of squares could be partitioned into one 
sum for variability between the individuals being rated, i.e., the subjects (SSS), and another sum of 
squares due to residual error (SSE). The intraclass correlation was then calculated as

The approach was later adapted for psychometric definitions of reliability. The appropriate means for 
the sums of squares were symbolized as  for variance in the subjects and  for the corresponding 
residual errors. Reliability was then defined as

Using the foregoing symbols, when each of a set of n persons is measured by each of a set of r raters, 
the variance of a single observation, s, can be partitioned as

where  is the mean of the appropriate sums of squares for the raters.
These variances can be arranged into several formulas for calculating RI. The different arrangements 

depend on the models used for the “sampling” and the interpretation.6 In a worked example cited by 
Everitt,7 vital capacity was measured by four raters for each of 20 patients. The total sum of squares for  
the 80 observations, with d.f. = 79, was divided into three sets of sums of squares: (1) for the four 
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observers with d.f. = 3; (2) for the 20 patients with d.f. = 19; and (3) for the residual “error” with d.f. =
3 × 19 = 57. The formula used by Everitt for calculating the intraclass correlation coefficient was

A counterpart formula, using SSR to represent sums of squares for raters, is

The intraclass correlation coefficient (ICC) can be used when laboratory measurements of “instrument” 
variability are expressed in dimensional data. Nevertheless, as discussed in Chapter 20, most laboratories 
prefer to use simpler pair-wise and other straightforward statistical approaches that are easier to under -
stand and interpret than the ICC.

The simpler approaches may also have mathematical advantages that have been cited by Bland and 
Altman,8 who contend that the ICC, although appropriate for repetitions of the same measurement, is 
unsatisfactory “when dealing with measurements by two different methods” where “there is no ordering 
of the repeated measures and hence no obvious choice of X or Y.” Other disadvantages ascribed to the 
ICC are that it depends “on the range of measurement and … is not related to the actual scale of 
measurement or to the size of error which might be clinically allowable.” Instead, Bland and Altman 
recommend their “limits of agreement” method, which was discussed throughout Section 20.7.1. The 
method relies on examining the increments in measurement for each subject. The mean difference then 
indicates bias, and the standard deviation is used to calculate a 95% descriptive zone for the “limits of 
agreement.” A plot of the differences against the mean value of each pair will indicate whether the 
discrepancies in measurement diverge as the measured values increase.

For categorical data, concordance is usually expressed (see Chapter 20) with other indexes of vari-
ability, such as kappa, which yields the same results as the intraclass coefficient in pertinent situations.

29.7 Non-Parametric Methods of Analysis

The mathematical models of ANOVA require diverse assumptions about Gaussian distributions and 
homoscedastic (i.e., similar) variances. These assumptions can be avoided by converting the dimen-
sional data to ranks and analyzing the values of the ranks. The Kruskal-Wallis procedure, which is 
the eponym for a one-way ANOVA using ranked data, corresponds to a Wilcoxon–Mann–Whitney 
U test for 3 or more groups. The Friedman procedure, which refers to a two-way analysis of ranked 
data, was proposed almost 60 years ago by Milton Friedman, who later become more famous in 
economics than in statistics.

29.8 Problems in Analysis of Trends

If a variable has ordinal grades, the customary ANOVA procedure will regard the ranked categories 
merely as nominal, and will not make provision for the possible or anticipated trend associated with 
different ranks. The problem occurs with an ordinal variable, such as TNM stage in Figure 29.1, because
the effect of an increasing stage is ignored. The neglect of a ranked effect can be particularly important  
when the independent variable (or “factor”) is time, for which the effects might be expected to occur in  
a distinct temporal sequence. This problem in repeated-measures ANOVA evoked a denunciation by 
Sheiner,9 who contended that the customary ANOVA methods were wholly inappropriate for many 
studies of the time effects of pharmacologic agents.
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The appropriate form of analysis can be carried out, somewhat in the manner of the chi-square test 
for linear trend in an array of proportions (see Chapter 27), by assigning arbitrary coding values (such 
as 1, 2, 3, 4) to the ordinal categories. The process is usually done more easily and simply, however, as  
a linear regression analysis.

29.9 Use of ANOVA in Published Literature

To find examples of ANOVA in published medical literature, the automated Colleague Medical Database 
was searched for papers, in English, of human-subject research that appeared in medical journals during 
1991–95, and in which analysis of variance was mentioned in the abstract-summary. From the list of 
possibilities, 15 were selected to cover a wide array of journals and topics. The discussion that follows 
is a summary of results in those 15 articles.

A one-way analysis of variance was used to check the rate of disappearance of ethanol from venous 
blood in 12 subjects who drank the same dose of alcohol in orange juice on four occasions.10 The 
authors concluded that the variation between subjects exceeded the variations within subjects. Another  
classical one-way ANOVA was done to examine values of intestinal calcium absorption and serum 
parathyroid hormone levels in three groups of people: normal controls and asthmatic patients receiving  
either oral or inhaled steroid therapy.11 A one-way ANOVA compared diverse aspects of functional 
status in two groups of patients receiving either fluorouracil or saline infusions for head and neck 
cancer.12 In a complex but essentially one-way ANOVA, several dependent variables (intervention points, 
days of monitoring, final cardiovascular function) were related to subgroups defined by APACHE II 
severity scores in a surgical intensive care unit.13 (The results were also examined in a regression 
analysis.) In another one-way analysis of variance, preference ratings for six different modes of teaching 
and learning were evaluated14 among three groups, comprising first-year, second-year, and fourth-year 
medical students in the United Arab Emirates. The results were also examined for the preferences of 
male vs. female students.

In a two-way ANOVA, neurologic dysfunction at age four years was related15 to two main factors: 
birth weight and location of birth in newborn intensive care units of either Copenhagen or Dublin. 
Multifactor ANOVAs were applied,16 in 20 patients with conjunctival malignant melanoma, to the 
relationship between 5-year survival and the counts of cells positive for proliferating cell nuclear antigen, 
predominant cell type, maximum tumor depth, and site of tumor. The result, showing that patients with 
low counts had better prognoses, was then “confirmed” with a Cox proportional hazards regression 
analysis. (The latter approach would probably have been best used directly.)

Repeated measures ANOVA was used in the following studies: to check the effect of oat bran consumption 
on serum cholesterol levels at four time points;17 to compare various effects (including blood pressure levels 
and markers of alcohol consumption) in hypertensive men randomized to either a control group or to receive 
special “advice” about methods of reducing alcohol consumption;18 to assess the time trend of blood 
pressure during a 24-hour monitoring period in patients receiving placebo or an active antihypertensive 
agent;19 and to monitor changes at three time points over 6 months in four indexes (body weight, serum 
osmolality, serum sodium, and blood urea nitrogen/creatinine ratios) for residents of a nursing home. 19

The intraclass correlation coefficient was used in three other studies concerned with reliability (or 
reproducibility) of the measurements performed in neuropathic tests,21 a brief psychiatric rating scale,22

and a method of grading photoageing in skin casts.23
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Answers to Exercises

The following “official” answers are for Exercises that have an odd second number. Answers to the 
even-numbered Exercises are contained in an Instructor’s Manual.

Chapter 1

1.1. 4. (Architecture)
1.3. 3. (Stochastic)
1.5. 1. (A descriptive summary, expressed in nonquantitative terms.)
1.7. 5. (A decision about classifying the raw data. If you cited 6 as the answer, you can also be justified, 
although data processing usually refers to the conversion of sick into a coded category, such as “1 in 
column 37 of card 6,” rather than the data acquisition process that converts raw data, such as “Apgar ≤ 
6,” into a designated category, such as “sick.” Because the distinctions are somewhat blurred, either 
answer is acceptable.)
1.9. 5, if you think the research was done to demonstrate the quality of the raw data; 4, if you think 
the research has an architectural role with respect to biased observations. Either answer is acceptable.
1.11. 4. (Architecture)

Chapter 2

2.1.
2.1.1. Age, height, and each blood pressure measurement are dimensional. Sex is binary. 
Diagnosis is nominal. Treatment is nominal, if different agents are used; dimensional, if different  
dosages of the same agent are given in the same schedule; ordinal, if the dosages of the same 
agent can be ranked but cannot be arranged in exact dimensions because of the different schedules.
2.1.2. To analyze blood pressure responses, some of the following changes might be examined:

Ultimate Effect: Increment of before and after values.
Immediate Effect: Increment of before and during values.
Therapeutic Trend: Rating of rise, stable, fall, up-and-down, down-and-up, etc. for trend 

observed in the three consecutive BP values
Ultimate Success: Deciding if the blood pressure after treatment is normal or abnormal.

2.3. Examples

“How do you feel today compared with yesterday?”
“What has happened to your pain since you received the medication?”
“What sort of change has occurred in your child’s temperature?”
“How much heavier have you gotten since your last birthday?”

2.5. The TNM index expressions are composite “profiles” that contain three single-state variables. 
They are nominal and cannot be readily ranked because they do not have an aggregated expression. In 
the TNM staging system, each TNM profile index is assigned to an ordinal stage such as I, II, III, … .
If desired, the TNM indexes could be ordinally ranked according to their locations in the staging system.
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2.7. There are no real advantages. The trivial saving of effort in citing one rather than two digits when 
the data are extracted will be followed by massive disadvantages when the data are later analyzed. The  
investigator will be unable to determine any averages (such as means or medians), unable to find any 
trends within the same decade, and unable to find distinctions that cross decades (such as the age group  
35–54). The moral of the story is: Always enter dimensional data in their original dimensions or in direct 
transformations (such as kg ↔ lb) that preserve the original dimensions. Never compress dimensional 
data for their original citation; the compression can always be done later, during the analyses.
2.9. Individual answers.

Chapter 3

3.1. The median is probably the best choice for this right-skewed distribution.
3.3. Mean =  = 120.10. For these 20 numbers, the median is between ranks 10 and 11. The actual 
values at these ranks are 91 and 96; and so median = (91 + 96)/2 = 93.5. Mode is 97. Geometric mean 
is (3.198952738 × 1040)1/20 = (3.198952738 × 1040).05 = 105.99.

Chapter 4

4.1. The data set contains 56 members.
4.1.1. For lower quartile, (.25)(56) = 14, and the rank is between 14 and 15. The values of 17
appear at both the 14th and 15th rank, and so QL = 17. For upper quartile, (.75)(56) = 42, and 
rank is between 42 and 43. Q U = 28, which occupies ranks 41–44. [With the r = P(n + l) formula, 
(.25)(57) = 14.25 and so QL is at 17 between 14th and 15th rank. For QU, (.75)(57) = 42.75, which 
is again between rank 42 and 43.]
4.1.2. (.025)(56) = 1.4, which will become rank 2, at which the value is 12 for P.025. For P.975,
(.975)(56) = 54.6, which will become rank 55, at which the value is 41. [With the r = P(n + 1) 
formula, (.025)(57) = 1.4, which would put the 2.5 percentile value at 11.5, between ranks 1 and 
2. Since (.975)(57) = 55.6, the 97.5 percentile value is at 42 between the 55th and 56th ranks.]
4.l.3. The value of 30 in Table 3.1 is at the 48th rank. At rank 47, 47/56 = .839; and at rank 48,
the cumulative proportion is 48/56 = .857. Therefore 30 occupies both the 84th and 85th percentiles. 
[With the formula P = r/(n + l), we get 48/57 = .842, which would be the 84th percentile.]

4.3. If the data were Gaussian, the positive and negative Z-scores would be symmetrically distributed 
around the mean. They are not.
4.5. Let each candidate’s raw score be Xi. From the array of candidate raw scores, calculate  and s 
and then calculate Zi = (Xi − )/s for each candidate. These results will have a mean of zero and s.d. 
of l. To make the s.d. 100, multiply each Zi by 100, to get 100Z i. The results will have a mean of zero 
and s.d. of 100. Then add 500 to each 100Z i. The results will have a mean of 500 and s.d. of 100. Thus,  
the formula is: Final Score = [100(Xi − )/s] + 500.
Practical Demonstration of the Formula:

Three candidates get 75, 83, and 92 in the raw scores. For these data, = 83.33 and s = 8.50. 
The original Zi scores for the three candidates will be (75 − 83.33)/8.50 = −0.98, (83 − 83.33)/8.50 = −0.04 
and (92 − 83.33)/8.50 = 1.02. Multiplied by 100, these scores become −98, −4, and 102. When 500 is 
added, the scores become 402, 496, and 602. For these three values, a check on your calculator will 
confirm that = 500 and s = 100.
4.7.

4.7.l. False. The percentile reflects a ranking among candidates, not the actual score on the test.
4.7.2. False. If the actual results have a Gaussian or near-Gaussian distribution, only a small 
change is needed to go from the 50th to 59th percentile. A much larger change is needed to go 
from the 90th to 99th percentile. Thus, Mary made comparatively more progress than John.
4.7.3. False. Same problem as 4.7.2. Percentiles give ranks, not scores, and may distort the 

X

X
X

X

X

X
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magnitudes of differences in actual scores. The three cited percentiles (84, 98, and 99.9) are 
roughly about l, 2, and 3 standard deviations above the mean in a Gaussian distribution, so that 
the actual magnitudes of scores are about equidistant.
4.7.4. False. In this “middle” zone of the distribution, where data are usually most abundant, a 
small change in actual score can produce large changes in percentiles.
4.7.5. Uncertain. The overall percentile scores for each student last year represent a comparative 
ranking among all students who took the test last year. The percentile rating averaged for different 
students will not be a meaningful number. On the other hand, if percentiles (rather than actual 
test scores) are the only information available to the dean, he has no other option if he wants to 
compare this year’s results.

4.9. As Joe’s lawyer, you argue that “grading on a curve” is an abominable way to assess competence. 
If you give the exam exclusively to an assembled collection of the most superb omphalologists in the 
country, some of them will nevertheless fail if “graded on a curve.” Why should Joe, whose actual score 
of 72% is usually accepted as passing in most events, be failed because of the performance of other 
people? As lawyer for the Board, you argue that it is impossible to determine an absolute passing score 
for the complex examination. Accordingly, the passing score is determined from a point on the curve 
of scores obtained by a reference group of Joe’s peers. He failed because his performance was worse 
than that of other people with presumably similar backgrounds and training. (This approach has been 
used, and successfully defended despite legal attacks, by almost all certification Boards in the U.S.)

Chapter 5

5.1. It seems peculiar to assemble a group of people who have been deliberately chosen for all being 
“healthy,” and then to exclude 5% of them arbitrarily as being outside the “range of normal.” Why not 
include the full range of data in the healthy, i.e. “normal,” people? 
5.3. Individual answers. 
5.5.

5.5.1 Let  and . Since s2 = v/(n−1), we can substitute s2(n− 1) for v, 
to get . Accordingly, in the 56-item data set, .
5.5.2. cv = s/ = 7.693/22.732 = .388. 
5.5.3. The lower quartile is at rank (.25)(56) = 14 → between 14 and 15. The upper quartile is 
at rank (.75)(56) = 42 → between 42 and 43. InTable 3.1, the value of 17 occupies ranks 12–16.
The value 28 occupies ranks 41–44. The quartile coefficient of variation will be (28  17)/(28 +
17) = 11/45 = .24. 

5.7. Individual answers. 

Chapter 6

6.1.
6.1.1. Since each tossed coin can emerge as a head or tail, there are four possibilities: HH, HT, 
TH, and TT. The chance is 1/4 for getting two heads or two tails. The chance is 2/4 = 1/2 for 
getting a head and a tail.
6.1.2. Each of the two dice has six sides marked 1, 2,..., 6. When tossed, the pair can have 36 
possible outcomes, ranging from 1-1 to 6-6. A value of 7 occurs on six occasions: 1 – 6, 2–5, 3–4, 
4–3, 5–2, and 6–1. Thus, the probability of a 7 is 6/36 = 1/6.
6.1.3. Common things occur commonly, but uncommon things can also occur if given enough 
opportunity. A pair of consecutive 7’s can be expected about once in 36 pairs of tosses. If you 
stay at the dice table long enough to observe 72 or more tosses, two of them could yield consecutive 
7’s under ordinary circumstances. If the consecutive pairs of 7’s appear with substantially greater 
frequency than .03, you might suspect that the dice are “loaded”. 

s v/n 1–= s′ v/n=
s′ s2 n 1–( )/n= s′ 7.693( )2 55( )/56 7.624= =

X
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6.1.4. The 5 possible ways of tossing a 6 are 1–5, 2–4, 3–3, 4–2, and 5–1. Thus, the probability 
of getting a 6 on a single roll is 5/36. The fact that a 6 was just tossed is irrelevant, since each 
toss is a new or “independent” event. (If you were considering, in advance, whether two consecutive 
sixes might be tossed, the probability would be (5/36)(5/36) = .019.)
6.1.5. Although effectively balanced on its pivot, no roulette wheel is ever perfectly balanced. 
Accordingly, the roulette ball is more likely to fall in slots for certain numbers than for others. If  
you prepare a frequency count of the consecutive outcomes of each rotation, you can begin to see 
the pattern of the higher-probability outcomes for each wheel on its particular pivot. This 
“histogram” can then guide you into successful betting. Changing the wheels at regular intervals 
will destroy the characteristics of the histograms. 

6.3. If is the mean, a zone of 1.96 standard deviations around the mean should include 95% of the 
data. Conversely, a zone of 1.96 standard deviations around the observed value of 40 should have a 95% 
chance of including the mean. Thus, if we calculate 40 ± (1.96)(12.3) = 40 ± 24.1, the mean can be 
expected, with 95% chance or confidence, to lie within the zone of 15.9 to 64.1. (This principle will be  
used more formally in Chapter 7 for determining confidence intervals.)
6.5.

6.5.1. As noted in Section 4.9.3., the standard deviation of a proportion P is . For the cited 
data, the result will be . The standard error, estimated as s/ , will be 

. The coefficient of stability will be . Substituting 6/9 for P, we 
get , which becomes .
Since lies between 4 and 5, this result lies between 1/5 = .20 and 1/4 = .25, and is obviously 
much larger than the smaller value (e.g. .1 or .05) needed for a stable central index. (If you actually 
did the calculation, c.s. = .24.)
6.5.2. The result is now stable because = 30; and the standard error and c.s. will be 1/10 of 
their previous values. The main “non-statistical” question is whether the poll was taken from a 
random sample of all potential voters. If the 900 people were a “convenience sample”—comprising 
casual passers-by in a single neighborhood, all members of the same club, or respondents to a 
mailed questionnaire--the sample may be highly biased and unrepresentative, regardless of the 
stable result. Also, are the sampled people actually likely to vote?

6.7. Individual answers.

Chapter 7

7.1.
7.1.1. The two-tailed value for t7,.05 is 2.365. The 95% confidence interval is 34 ±
(2.365)(5.18/ ) = 34 ± 4.33, and extends from 29.67 to 38.33.
7.1.2. For a one-tailed confidence interval of 90%, we want to use t7,.20 which is 1.415. The lower 
border for the interval would be 34 – (1.415)(5.18/ ), which is 34 − 2.59 = 31.41.
7.1.3. The extreme values in the data are 28 and 42. Removal of these values reduces the 
respective means to 34.86 and 32.86. The maximum proportional variation is (34 − 32.86)/34 =
.03, which does not seem excessive.
7.1.4. The median is 36 with removal of any item from 28–31, and 31 with removal of any item 
from 36–40. For the original median of 33.5, the maximum proportional variation is 2.5/33.5 = .07.
7.1.5. According to the jackknife procedure, the coefficients of potential variation for the mean 
are a maximum of .03 (as noted in Answer 7.1.3). The analogous coefficient (as noted in Answer  
7.1.4) for the median is .07. According to the parametric procedure, the standard error of the mean  
is 5.18/ = 1.83 and so its coefficient of potential variation is 1.83/34 = .05. With either the 
empirical or parametric procedure, the mean seems more stable than the median, perhaps because 
the median in this data set comes from the two middlemost values, 31 and 36, which are more 
widely separated than any two other adjacent members of the data. Without knowing more about  
the source of the data or what one intends to do with the mean, its stability is difficult to evaluate. 

X

pq
6/9( ) 3/9( ) 18/9= n

18/9( )/3 18/27= s/ n( )/p
18( )/27 )/ 6/9( ) 18/27( ) 9/6( ) = 18/3( ) 1/6( ) 18/18 = 1/ 18=
18

900

8

8

8
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Using the parametric result (.05) for the coefficient of potential variation would in general produce
a more cautious decision than the jackknife results. In this instance, if we accept the parametric 
coefficient of .05 as indicating stability, the mean might be regarded as stable.

7.3. The laboratory is trying to indicate a 95% interval for the range of the observed data, but the 
phrase “95% confidence interval” refers to dispersion around an estimate of the mean, not to dispersion  
of the data. The correct phrase should be simply “range of normal” or “customary inner 95% range.” 
The word confidence should be used only in reference to the location of a mean (or proportion or other 
central index of a group).

Chapter 8

8.1. The value of .40 is relatively unstable since the standard error is = .089 and .089/.40 
= .22. To answer the policy question, one approach is to put a 95% Gaussian confidence interval around  
the observed proportion. The interval would be .40 ± 1.96 × .089 = .40 ± .175; it extends from .225 to 
.575. Because the confidence interval does not include the hypothesized value of .10, the result is probably 
not compatible with the 10% policy. A second approach is to do a one-sample Z test for the hypothesized 
parameter of .10. The calculation would be Z = (.40 – .10)/  = .30/.089 = 3.37, for which 
2P ð .001.

An entirely different approach is to jackknife 12/30 into 12/29 = .41 or 11/29 = .38. This range of 
maximum difference is .41 – .38 = .03, which is proportionately .03/.40 = .075. Because the ratio exceeds 
.05, it immediately shows that the original proportion (.40) is unstable. The jackknife approach, however,
does not answer the policy question.
8.3. With an 80% failure rate, the usual rate of success is 20% or .20. The chance of getting three 
consecutive successes is .2 × .2 × .2 = .008. Unless you think that the clinician is a wizard or that his 
patients have unusually good prognoses, this low probability seems hard to believe.
8.5.

8.5.1. Since 95% confidence intervals are regularly accepted, use Zα = Z.05 = 1.96. If the 
proportion of dementia is unknown, use p = q = .5. With a 1% tolerance, e = .01. Then solve n 
≥ (.5)(.5)(1.96)2/(.01)2 to get n ≥ 9604.
8.5.2. With .20 as the estimated proportion, solve n ≥ (.20)(.80)(1.96)2/(.01)2 to get n ≥ 6147.
8.5.3. When the commissioner is distressed by the large sample sizes, offer to raise the tolerance 
level to 5%. The sample size will then be n ≥ (.20) (.80)(1.96)2/(.05)2, which reduces the sample 
to n ≥ 246, which is within the specified limit of 300.

8.7. Individual answers.

Chapter 9

Chapter 10

10.1. Like beauty, the concept of what is cogent is in the eye of the beholder. For the investigators, the  
most important issue seems to have been myocardial infarction. If this is your choice, do you also want  
to focus on all myocardial infarctions, or just the associated deaths? Would you prefer to focus, instead, 
on total deaths? And how about strokes, which seemed more common in the aspirin group?

9.1
9.3

Individual answers.

.40( ) .60( ) 30⁄

.40( ) .60( ) 30⁄
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Another major decision here is whether to express the risks as events per “subject,” i.e., patient, 
or events per subject year. The investigators went to great effort to calculate and list subject years, so 
these are presumably the preferred units of analysis. They will be used in the first set of analyses here. 
The second set of analyses will use patients as the denominators of “risk.”

The figures in the following tables will provide results used in answers to 10.1.1, 10.1.2, and 
10.1.3, as well as 10.1.4 and 10.1.5.

10.1.1. In the U.S. trial, the total death rate ratios, at values of ∼1.05, were not impressively higher 
in the placebo group. The NNT would be 1/.000873 = 1145 persons to prevent one death. The 
MI rate ratios were impressive, at 2.6 for fatal MI and 1.7 for total MI. The corresponding values  
of NNT, however, were less impressive, at 1/.00145 = 690 and 1/.0091 = 110. The rate ratios for 
stroke were elevated for aspirin, but less impressively (at 1.5 for fatal and 1.2 for total stroke). 
The corresponding NNT values were 1/.000272 = 3676 and l/.00192 = 521.
10.1.2. The most impressive rate ratios in the U.K. trial were the elevated values for the risk of 
stroke with aspirin. The total death rate ratios in favor of aspirin, however, were more impressive  
in the U.K. than in the U.S. trial, but the U.K. rate ratio effects for MI were unimpressive. 
Nevertheless, the NNT values in the U.K. trial were more impressive, in each respect, than in the  
U.S. trial. The NNT results were l/.0096 = 104 for total deaths, 1/.00153 = 654 for fatal MI, 
1/.00216 = 463 for total MI, 1/.00173 = 578 for fatal stroke, and 1/.0037 = 270 for total stroke.
10.1.3. Risk of myocardial infarction was sum of deaths + nonfatal MIs. Per subject years, the 
proportionate increment in aspirin vs. placebo was –.00185/.00440 = −42%. Per subjects, the 
corresponding result was −.0091/.0217 = −42%. Both of these values are close to but not exactly 44%,  
which may have been calculated with a statistical adjustment for age. The corresponding relative 
risks are .00255/.00440 = .58 per subject year and .0126/.0217 = .58 per subject.

Rates per Subject Year, U.S. Study Rates per Subject Year, U.K. Study

Aspirin Placebo 
Increment 
in Rates 

Ratio of
Higher to 

Lower Rate Aspirin
No

Aspirin 
Increment 
in Rates 

Ratio of
Higher to 

Lower Rate

Total deaths .00398 .00418 .000196 1.050 .0143 .0159 .0016 1.112
Fatal MI .000183 .000478 .000295 2.612 .00473 .00496 .00023 1.049
Total rate for 
MI 

.00255 .00440 .00185 1.725 .00898 .00929 .00031 1.035

Fatal stroke .000165 .000110 .0000546 1.500 .00159 .000106 .00043 1.500
Total rate for 
stroke 

.00218 .00180 .000377 1.211 .00484 .00412 .00072 1.175

Rates per Subject, U.S. Study Rates per Subject, U.K. Study

Rate Aspirin Placebo 
Increment 
in Rates 

Ratio of
Higher to 

Lower Rate Aspirin
No

Aspirin 
Increment 
in Rates 

Ratio of
Higher to 

Lower Rate

Total deaths .0197 .0206 .000873 1.046 .0787 .0883 .0096 1.122
Fatal MI .000906 .002356 .00145 2.600 .02596 .02749 .00153 1.059
Total rate for 
MI 

.0126 .0217 .0091 1.722 .0493 .0515 .00216 1.045

Fatal stroke .000816 .000544 .000272 1.500 .00875 .00702 .00173 1.246
Total rate for 
stroke 

.0108 .00888 .00192 1.216 .0265 .0228 .0037 1.162

Note: The ratios of rates are essentially identical, whether the denominators are subject years or subjects. The increments 
in rates are higher with subjects than with subject years and will be used here for calculations of the number needed  
to treat.
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10.1.4. Even though the U.K. subjects were “healthy,” they were probably older than the 
U.S. group.
10.1.5. In the U.S. trial, the NNT values were 110 for total MI and 521 for total stroke. Thus, for  
the one stroke created in about 500 patients in the U.S., about 5 MIs would have been prevented. 
In the U.K. trial, the NNT values were 463 for total MI and 270 for total stroke. Thus, in the 
U.K., while one MI was being prevented in about 500 patients, about 2 strokes were being created. 
Your decision about whether the aspirin is worth taking may depend on whether you live in the 
U.S. or the U.K., and whether you prefer a stroke-free or MI-free existence.
10.1.6. Individual answers. 

10.3. This was another trap question. If you fell in, please be enlightened as you emerge:
10.3.1. The actual risks cannot be calculated for users and nonusers of reserpine because this was 
not a forward-directed cohort study. If any “rates” are to be calculated, they would have to be 
antecedent rates of exposure to reserpine. These rates would be .073(= 11/150) in the cases and 
.022 (= 26/1200) in the controls. A formation of increments or ratios for these two rates, however, 
would not be particularly informative. If the idea is to determine the relative risk of breast cancer in 
users and nonusers of reserpine, the best index would be the odds ratio, which is (11 × 1174)/(26 ×
139) = 3.57.
10.3.2. Because the actual risks cannot be determined for users and nonusers, an incremental risk 
cannot be calculated. One of the prime disadvantages of the etiologic case-control study is that it  
provides only a ratio, i.e., the odds ratio (which approximates the relative risk ratio). This type of  
study, however, cannot produce an increment in risks. 

10.5. Individual answers, but ARF's gut reactions are as follows:
10.5.1. Look for an increment of at least 10% and a ratio of at least 1.25. This is achieved if the 
success rate is 56% for active treatment.
10.5.2. Because mortality is already so low, much of this decision will depend on the risks and 
inconvenience of the active treatment. However, on a purely quantitative basis, the mortality rate 
should be lowered to at least 50% of its previous value. Hence, the active treatment should have 
a mortality of 4% or less.
10.5.3. The active treatment should be proportionately at least 50% better, so that its mean should 
be (1.5) × (1.3) = 1.95.
10.5.4. If the risk ratio is as high as 10, the absolute risk of getting endometrial cancer with 
estrogens is only .01. For a chance of only one in a hundred, the woman might be told the risk 
and allowed to make up her own mind. (If the risk ratio is lower than 10, the actual risk is even 
smaller than .01). Besides, the prognosis of estrogen-associated endometrial cancer is 
extraordinarily favorable compared with cancers that were not estrogen-associated. 

10.7. Individual answers. Note that the investigators often fail to report (and editors fail to demand 
citation of) the values of δ or θ that were anticipated for the trial.

Chapter 11

11.1. In a “unit-fragility” type of procedure, do an “extreme” relocation by exchanging the lowest
member of Group A and the highest member of Group B. Group A would become 12, 14, 16, 17, 17, 
125. Group B would become 1, 19, 29, 31, 33, 34. For a purely “mental” approach, without any 
calculations, compare the two sets of medians. In medians, the original comparison was 15 vs. 32; after 
the exchange, the comparison is 16.5 vs. 30; and the latter comparison still seems highly impressive. 
[On the other hand, if you use a calculator, the “new” means become = 33.5 and = 24.5, so 
that the direction of the increment is reversed. Better ways to handle this problem are discussed in 
Chapters 12 and 16.]
11.3. If the observed “nonsignificant” difference is  – = –5, a more extreme difference in the 
same direction will be more negative and, hence, at the lower end of the interval.

XA XB

XA XB
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11.5.
11.5.1. Answers to be supplied by readers. (ARF is not happy with it for reasons discussed in the 
text, but has nothing better to offer unless we shift completely to the idea of descriptive boundaries.)
11.5.2. (a) When sample sizes are unavoidably small, a too strict value of α will prevent any 
conclusions. Rather than discard everything as “nonsignificant,” the value of α might be made 
more lenient. The “significant” conclusions can then be regarded as tentative—to be confirmed 
in future research.

(b) In certain types of “data-dredging” procedures the information is being “screened” in 
search of anything that might be “significant.” The material caught in this type of “fishing 
expedition” would then have to be evaluated scientifically as being viable fish or decayed auto tires.
11.5.3. Before any conclusion is drawn for a difference that emerged from multiple comparisons 
in a data-dredged screening examination.
11.5.4. Raising α to more lenient levels would reduce the sample sizes needed to attain 
“significance.” The research costs would be reduced. Lowering α to stricter levels would have the 
opposite effects. Since the credibility of the research depends mainly on its scientific structure 
rather than the stochastic hypotheses, the scientific credibility of the research might be unaffected. 
The purely statistical effect depends on how you feel mathematically about the old and new α
levels. As noted later, however, a stricter level of α will reduce the possibility of “false positive” 
conclusions, but will raise the possibility of “false negatives.” A more lenient level of α will have 
opposite effects: more false positives but fewer false negatives.

11.7. The chance of getting two consecutive 7’s requires a 7 on each toss. The probability of this event 
is the product of (1/6)(1/6) = .03. It would also be possible, however, to get a 7 on one toss, but not the 
other. This event could occur as yes/no with a probability of (1/6)(5/6) = .14, or as no/yes with a 
probability of (5/6)(1/6) = .14. The total probability for the yes/yes, yes/no, no/yes, and no/no events 
would be .03 + .14 + .14 + .69 = 1.00.

Chapter 12

12.1. The remaining untested tables are

using k = 1.870129870 × 102, the p value for the first table is k/2!3!3!3! = 0.433 and for the second 
table is k/3!2!2!4! = 0.325. The sum of these two p values is 0.758, which, when added to .242 (the 
two-tailed p value noted in Section 12.6.1) gives 1.
12.3. Observed difference in means is 5.17, which is 34/4 = 8.50 for Treatment X and 10/3 =
3.33 for Treatment Y. This difference is exceeded by only the following four arrangements.

The seven items in the trial can be divided into one group of four and one group of three in 35 
ways [= 7!/(4!)(3!)]. Of these arrangements, three yield mean differences that are as great or greater 
than 5.17; and two yield mean differences that are negatively as large or larger than 5.17. The two-tailed 
P value is thus 3/35 + 2/35 = 5/35 = .143.

(40% vs. 50%) (60% vs. 33%)

X Y
Mean

X
Mean

Y Difference, 

3,8,11,13 1,2,6 8.75 3 5.75
6,8,11,13 1,2,3 9.5 2 7.5
1,2,3,6 8,11,13 3 10.6 –7.6
1,2,3,8 6,11,13 3.5 10 –6.5

2 3
3 3 

 
 

  and  3 2
2 4 

 
 

X Y–
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Chapter 13

13.1. For Group A, = 12.833 and s = 6.113. For Group B, = 45.167 and s = 39.479. The value 
of sp becomes 28.25, and t = (32.334/28.25) = 1.98. At 10 d.f., this result falls below the 
required t.05 = 2.23 and so 2P > .05. A major source of the problem is the high variability in both groups, 
particularly in Group B, where the coefficient of variation is 0.8. The standardized increment, which is 
(32.334/28.25) = 1.145, seems impressive despite the large value for sp, but the group size factor is not 
quite big enough to get t across the necessary threshold.
13.3

13.3.1. For Group A: t8,.05 = 2.306 t8,.0l = 3.355

95% Conf. Interval: 7.33 ± 2.306 (.527) = 7.33 ± 1.22 = 6.11 to 8.55 lbs 
99% Conf. Interval: 7.33 ± 3.355 (.527) = 7.33 ± 1.77 = 5.56 to 9.10 lbs.

For Group B: t5,.05 = 2.571 t5,.0l = 4.032

95% Conf. Interval: 8.17 ± 2.571 (.601) = 8.17 ± 1.55 = 6.62 to 9.72 lbs
99% Conf. Interval: 8.17 ± 4.032 (.601) = 8.17 ± 2.42 = 5.75 to 10.59 lbs

13.3.2. Using the formula t = ( − µ)/[ ], we get

tA = = 1.195. At 8 d.f., .20 < 2P < .40

tB =  =  = 2.45. At 5 d.f., .05 < 2P < 0.1

13.3.3.

For t test,  and  Because

For confidence interval calculations, a 97.5% confidence interval around  is ±
(t13,.025)(standard error) = (−.84) ± (2.533)(.812) = −.84 ± 2.06, which spans from −2.90 to +1.22. 
Since this interval includes 0 (the assumed mean of the populational difference), we cannot 
conclude that a remarkable event has occurred.

Group A Group B
ΣXA = 66 ΣXB = 49
nA = 9 nB = 6

= 7.33 lbs = 8.17 lbs
Σ = 504 Σ = 411
(ΣXA)2/nA = 484 (ΣXB)2/nB = 400.17
Σ − (ΣXA)2/nA = 20 Σ − (ΣXB)2/nB = 10.83

= 2.50 = 2.17
sA = 1.58 sB = 1.47

= .527 = .601

X X
6( ) 6( )/12

XA XB

XA
2 XB

2

XA
2 XB

2

sA
2 sB

2

sXA
sXB

X s n⁄

7.33 6.7–
.527

------------------------

8.17 6.7–
.601

------------------------ 1.47
.601
----------

t XA XB–
s.e. XA XB–( )

----------------------- ,= s.e. XA XB–( ) sp
2 1

nA
----- 1

nB
-----+ 

  .=

sp
2 nA 1–( )sA

2 nB 1–( )sB
2+

nA nB 2–+
-------------------------------------------------------- 30.85

13
------------- 2.3731  and s.e. XA XB–( ), 2.3731( ) 1

9
--- 1

6
---+ 

 = = = =

 .6595 .812, t .84–
812
----------- 1.034. At 13 d.f., the 2P value for this t is 0.2.>–= = = =

XA XB– XA XB–
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13.3.4. If this is a single Gaussian population, its mean, µ, is 7.67 and its standard deviation, σ,
is estimated as = = 1.491. We would expect to find 95% of the cases within 

 This interval is 7.67 ± 1.96(1.491) = 4.75 to 10.59. Because this interval includes 5, 
there is nothing peculiar about the baby who gained only 5 lbs. (The baby becomes “peculiar” 
only if you erroneously determine a 95% confidence interval around the mean and find that the 
baby does not fit into that interval. But why should it?)

13.5.
13.5.1. Adding the two standard errors mentally, the commentator got 6 + 4 = 10. The doubled 
value, 20, was more than twice the incremental difference in means, which was 25 –16 = 9. At 
this magnitude for the crude approximation, the commentator felt reasonably sure that the 95% 
confidence interval around 9 would include the null hypothesis value of 0.
13.5.2. To do a t test with the pooled variance Formula [13.13] requires converting the standard 
errors back to standard deviations. With a slightly less accurate but much simpler approach, you 
can use Formula [13.15], calculating the denominator as = 7.21. The value of Z (or t) is 
then 9/7.21 = 1.25. With the large sample sizes here, you can refer to a Z distribution, and note 
(from the Geigy tables or the computer printout) that the corresponding 2P value is .21. If you 
used the pooled-variance method, the standard deviations are sA = 4 = 36 and sB = 6 =
48. The value of sp becomes

 =  = 41.71 

and 

t = (9/41.71)( ) = 1.29

In the Geigy tables, for ν = N − 2 = 143, the two-tailed P value is 0.2 when t = 1.29 and 0.1 when 
t = 1.66. (The result is the same as what was obtained with Z.)
13.5.3. The commentator easily calculated the standard deviations by first taking square roots of 
the group sizes as = = 9 and = = 8. Mentally multiplying these values times 
the cited standard errors produced the respective standard deviations of sA = 36 and sB = 48. These 
values are so much larger than the corresponding means of = 16 and = 25 that both 
distributions must be greatly eccentric and unsuitable for summarization with means.
13.5.4. The distibutions should be examined for shape before any decisions are made. Without 
any further information, however, a good approach might be to compare medians and do a Pitman-
Welch test on the medians.

13.7. All of the answers are available in previous discussions that can be summarized as follows:
13.7.1. The subtraction of means is direct, easy, and conventional. Alternative stochastic tests can 
be arranged, however, with ratios or other indexes of contrast.
13.7.2. Not necessarily. The discrepancies may be misleading if the data greatly depart from a 
Gaussian distribution. (In such circumstances, a better approach may be to use percentile and 
other “distribution-free” tactics.)
13.7.3. If deviations from the mean are added directly, the sum of Σ(Xi – ) will always be zero.
13.7.4. Division by n − 1 offers a better estimate, on average, of the corresponding (and presumably 
larger) standard deviation in the larger parametric population from which the observed results are 
a “sample.”
13.7.5. The standard error is a purely analytic (and poorly labeled) term, denoting the standard 
deviation in a sampled series of means. The term has nothing to do with the original process of 
measurement.
13.7.6. Division produces a standardized result in a manner analogous to converting the number 
of deaths in a group to a rate of death.

SXX/n 33.333/15
µ 1.96σ± .

42 62+

81 64

80( ) 36( )2 63( ) 48( )2+[ ] / 81 64 2–+( ) 1740

81( ) 64( )/145

nA 81 nB 64

XA XB

X
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13.7.7. When a parameter is estimated from n members of an observed group of data, the same 
parameter is presumably estimated from all subsequent theoretical samplings. To produce the same 
parametric value, the samplings lose a degree of freedom from the original n degrees. The term 
degree is an arbitrary label for n – k, where k is the number of parameters being estimated.
13.7.8. Under the null hypothesis that two groups are similar, the P value represents the random 
stochastic chance of getting a result that is at least as large as the observed difference. (Other 
types of P values, discussed in later chapters, have other meanings for other hypotheses.) The P 
value has become dominant because of intellectual inertia and professional conformity, and because 
investigators have not given suitable attention to the more important quantitative descriptive issues 
in “significance.”
13.7.9. In repeated theoretical parametric samplings, we can be confident that the true value of 
the parameter will appear in 1 − α (e.g., 95%) of the intervals constructed around the observed 
estimate, using the corresponding value of Zα or tα. The confidence is statistically unjustified if 
the samples are small, if they widely depart from a Gaussian distribution, or if the parameter is 
a binary proportion with values near 0 or 1, far from the meridian value of .5. The confidence is 
also unjustified, for substantive rather than statistical reasons, if the sample is biased, i.e., not 
adequately representative of what it allegedly represents.
13.7.10. If we reject the null hypothesis whenever P ≤ α, the hypothesis can be true for an α
proportions of rejections, leading to false positive conclusions that a distinction is “significant” 
when, in fact, it is not. The P value is often, although not always, determined from standard errors,  
but has nothing to do with errors in the measurement process. The value of α is regularly set at 
.05 because of (again) intellectual inertia and professional conformity. 

Chapter 14

14.1. For evaluating “clinical significance,” the death rates were .104 (or 10.4%) for timolol and .162 
(or 16.2%) for placebo. This is an absolute reduction of 16.2  10.4 = 5.8% in deaths, and a proportionate 
reduction of 5.8%/16.2% = 36%. Many people would regard this as a quantitatively significant 
improvement. On the other hand, the survival rates were 89.6% and 83.8%, respectively. The 
proportionate improvement in survival was 5.8%/83.8% = 7%, which may not seem so impressive (unless 
you were one of the survivors). Another way of expressing the quantitative contrast is with the number 
needed to treat, discussed in Chapter 10. For the direct increment of .162  .104 = .058, NNT = l/.058 
≅ 17. Thus, about 1 extra person survived for every 17 actively treated.

For statistical significance, X2 can be calculated as

Alternatively, since the fourfold table will be

the calculation can be

At 1 degree of freedom, this value of X2 has an associated 2P < .001. The authors seem justified in 
claiming “statistical significance.”

98 847 945
152 787 939
250 1634 1884

98( )2

945
------------ 152( )2

939
--------------- 250( )2

1884
---------------–+ 1884( )2

250( ) 1634( )
-------------------------------  = 13.85

98 787×( ) 847 152×( )–[ ]21884
250( ) 1634( ) 945( ) 939( )

-------------------------------------------------------------------------------- 13.85=
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14.3. What Mendel observed was 74% (= 787/1064) and 26% in his proportions. Intuitively, this seems 
quite consistent with the proposed ratios. If we want mathematical confirmation for this intuition, we 
can proceed as follows.

At a ratio of 3:1, the expected values for 1064 crosses are (3/4)(1064) and (1/4)(1064), i.e, 798 
and 266. Using the observed-expected formula, we have

At 1 d.f., this is not stochastically significant (P > .3). Therefore, the result is consistent with the 
hypothesis.
14.5. To use the mental calculation approach with Formula [14.8], note that we must get .001 multiplied 
by something that will make the result exceed 2. Since .001 = 1 × 10-3, the multiplier must be 2 × 103

or 2000. The latter is the square root of N, which should therefore be 4 × 106, or about 4 million. 
Consequently, each player should have batted about 2 million times.

For a more formal calculation, let Zα = 1.96. Let π = (.333 + .332)/2 = .3325. Then 1  π = .6675. 
Substitute in Formula [14.19] to get n = (2)(.3325)(.6675) (l.96)2/(.001)2 = 1,705,238.2 as the number 
of times at bat for each player. [To check the accuracy of this calculation, assume that N = 2n = 3,410,478 
and apply Formula [14.7] with k = .5. The result is × (.5) ×  =
1.96, which is the Z needed for 2P < .05.]

Chapter 15

15.1. Like the common cold, “fibrositis” is often a self-limited condition that gradually improves with 
time. Patients could therefore be expected to be generally “better” in the second month of treatment 
than in the first. Unless the “fibrositis” was distinctly chronic and stable, it was not a suitable condition  
for a crossover trial. In the entry criteria, however, the investigators made no demands for a minimum 
duration of symptoms.
15.3.

15.3.1. The data are “perfectly” aligned, so that the first 6 ranks are in Group A, and the next 6 
ranks are in Group B. The sum of the first 6 ranks is (6)(7)/2 = 21. The total sum of ranks is 
(12)(13)/2 = 78. For the U test, the lower value will be 21 − [(6)(7)/2] = 0. In Table 15.4, for n1

= n2 = 6, a U value of ≤ 5 will have 2P ≤.05.
15.3.2. The data are not matched, but we could arbitrarily form sets of 6 matched pairs in which 
each of the 6 values in Group A is matched with each of the 6 values in Group B. We could 
determine the total number of possible matchings and then check results for all the associated 
sign tests. An enormously simpler approach, however, is to recognize that the value in Group B 
will always be larger than the value in Group A, no matter how the matching is done. Thus, the 
six matched pairs will always have 6 positive signs for B − A. For a “null hypothesis” probability 
of 1/2, this result has a P value of (1/2)6 = 1/64 = .016.
15.3.3. The median for the total data set is at 18 (between 17 and 19). For the 2 × 2 table, we get

Below Median Above Median TOTAL

Group A 6 0 6
Group B 0 6 6
TOTAL 6 6 12

X2 787 798–( )2

798
------------------------------ 277 266–( )2

266
------------------------------ 11–( )2

798
---------------- 11( )2

266
------------+=+=

121
798
--------- 121

266
--------- .152 .455 .607=+=+=

.001 .3325( ) .6675( )⁄[ ] 3,410,478
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The Fisher test requires only 1 calculation, because the table is at the “extreme” value;
and the calculation is quite simple (because 2 sets of values cancel for 6!). Thus, the P value for
the table can be calculated as (6!)(6!)/12! = .001. For two tails, this is doubled to a 2P value of .002.

Note that in this instance, the Fisher test on the median gave a more “powerful,” i.e. lower,
P value than the two other tests. Its result in this instance is also the same as the Pitman-Welch
P value, which was obtained as 2/[12!/(6!)(6!)].

15.5. Of the 19 paired comparisons, 11 are tied and 8 favor propranolol. Ignoring the 11 ties, we can
do a sign test to get a P value for (1/2)8. Because (1/2)5 = 1/32 = .03 and (1/2)8 will be even smaller,
we can state that P < .05. With greater mental effort, we can calculate (1/2)8 = 1/256, which is P < .01.
(The authors reported “P < 0.04” for the comparison, but did not say which test was used.)

Chapter 16

16.1.
16.1.1. Since the symmetrical confidence-interval component is 10.9 − 6.0 = 4.9, and since Zα =
1.96 for a 95% C.I., the value of SED must have been 4.9/1.96 = 2.5. The coefficient of potential
variation for SED/do = 2.5/6.0 = .42, which is below .5. If you use .5 as a boundary, you can be 
impressed.
16.1.2. Since the two groups have equal size, SED was calculated as  If we
assume sA = sB = s, SED =  and s = (SED) For SED = 2.5 and n = 100, s = 17.7.
The respective ratios for C.V., which are 17.7/140.4 = .13 and 17.7/146.4 = .12, are not large
enough to suggest that the means misrepresent the data.
16.1.3. In Figure 16.7, the, confidence interval component is 13.0 – 6.0 = 7.0, and so SED =
7.0/1.96 = 3.57. Using the same reasoning as in 14.1.2, and with n = 50, we now calculate s =
(SED) = 3.57 = 17.8, which is close enough to 17.7 to confirm the authors’ statement.
16.1.4. The diabetic group in Figure 16.7 contains a value >190 and the non-diabetic group 
contains a value >180. Neither of these values appeared in Figure 16.6. Therefore, the groups in
Figure 16.7 could not have been sampled from those in Figure 16.6. Another suspicion of “different
sources” could be evoked by the statement that the means and standard deviations in Figure 16.7
are the same as in Figure 16.6. This exact similarity is unlikely if the groups in Figure 16.7 were
each randomly sampled from those in Figure 16.6. What probably happened is that the data in
both figures were obtained via a “Monte Carlo” construction, using the assigned means of 146.4
and 140.4, the assigned standard deviation of ∼17.7, the assumption that both groups were
Gaussian, and then doing random sampling from the theoretical Gaussian curve for each group.
Alternatively, both groups could have been sampled from a much larger population.

16.3. If ±2 is a standard deviation, the value of 2 SD is
about 4, and 95% of the data on the right side should extend
as 4 ± 4, or from about 0 to 8, which corresponds roughly
to what is shown in the graph. If ±2 is a standard error, the
value of SD is about 18, since  The data would
extend as 4 ± 2(18), which they do not. Therefore, the 
± values are SDs.
16.5. The lower quartile, median, and upper quartile points
are connected with a solid line in Figure AE 16.1. Dotted
lines show the extensions to the “0th” and “100th”
percentiles at the extremes of the data for age in the African
and Caucasian groups of Figure 16.12. The three quartile
points show that Africans are older than Caucasians in the
mid-zone of the data (although not at the extremes). The 
“bend” in the quantile-quantile line shows that the two
groups have unequal variance (which could have been
readily noted from the asymmetrical box for Caucasians in Figure 16.12).

sA
2 sB

2+( ) n⁄ .
2s2/n, n/2.

n/2 50/2

FIGURE AE 16.1
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16.7. Individual answers. As for the Supreme Court, as might be expected, it did not take a clear stand  
on the scientific issue. Instead, after acknowledging that the Frye rule might be too rigid, the Court said  
that local judges could use their own wisdom to evaluate scientific evidence and to decide what might 
be admissible, even if it did not comply with the Frye rule. Because the Court offered no guidelines for  
the local decisions, judges may have to start enrolling in appropriate courses of instruction.

Chapter 17

17.1.
17.1.1. With increased use of screening tests (such as cervical pap smears, mammography, and 
routine white blood counts) and more definitive technologic tests (such as ultrasound, CT scans, 
and MRI), many cancers are now detected that would formerly have been unidentified during the 
life of the patients. If incidence rates are determined not from death certificates, but from tumor 
registries or other special repositories of diagnostic data, the incidence rates will inevitably 
increase. The cancers that would formerly be found only as “surprise discoveries” at necropsy (if  
necropsy was done) will now be found and counted among the “vital statistics.”
17.1.2. Many of the cancers identified with the new screening and technologic procedures will 
be relatively asymptomatic and slow-growing. They will usually have better prognoses, even if 
left untreated, than the cancers that formerly were diagnosed because they had produced symptoms. 
Because the customary morphologic classifications do not distinguish these functional behaviors 
of cancer, the survival rates will rise because the relatively “benign” cancers are now included in 
the numerators and denominators. The relatively “malignant” cancers, however, may continue to 
be just as lethal as before. When referred to a community denominator, the cancer death rates 
may seem unchanged.
17.1.3. Because no unequivocal data (about nutrition, life style, smoking, alcohol, etc.) exist about 
risk factors for these cancers, it is difficult to choose a suitable public-health intervention that 
offers the prospect of more good than harm. Many nonmedical scientists — if professionally 
uncommitted to a particular “cause” or viewpoint — might therefore conclude that basic 
biomedical research has a better potential for preventing these cancers than any currently known 
public-health intervention.

17.3.
17.3.1. The denominator is 300, and 4 cases existed on July 1. Prevalence is 4/300 = .0133.
17.3.2. The incidence rate depends on whom you count as the eligible people and what you count 
as incidence. Three new episodes occurred during the cited time period. If we regard everyone as  
eligible, the denominator is 300, and the incidence of new episodes will be 3/300 = .01. If you 
insist that the eligible people are those who are free of the disease on July 1, the eligible group 
consists of 300 − 4 = 296 people. If you insist on counting only new instances of disease, the 
recurrence in case #3 is not counted as an episode. The incidence would be 2/296 = .0068. If you 
allow the denominator to include anyone who becomes disease-free during the interval, only case 
1 is excluded. If the numerator includes any new episode of disease, there are 3 such episodes in  
the interval. Incidence would be 3/299 = .01.
17.3.3. Numerator depends on whether you count 7 episodes or 6 diseased people. Denominator 
is 300.

17.5.
17.5.1. Adding 0.5 to each cell produces (5.5)(8.5)/(0.5)(.05) = 187.
17.5.2. The main arguments were (1) the control groups were improperly chosen and should 
have contained women with the same pregnancy problems (threatened abortion, etc.) that might 
have evoked DES therapy in the exposed group; (2) the ascertainment of previous DES exposure 
may have been biased; (3) the Connecticut Tumor Registry shows an apparently unchanged 
annual incidence of clear-cell cancer despite little or no usage of DES for pregnancies of the 
past few decades.
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17.5.3. If the occurrence rate of CCVC is very small, perhaps 1 × 10−5 in non-exposed women, 
the cohorts of 2000 people were too small to pick up any cases. On the other hand, if the rate is 
1 × 10−4 (as some epidemiologists believe) and if the case-control odds ratios of 325 or 187 are 
correct, we should expect about 32.5 or 18.7 cases per thousand in the exposed group. This number 
is large enough for at least several cases to be detected in a cohort of 2000 people. Accordingly, 
either the odds ratios are wrong or the occurrence rate of CCVC is much smaller than currently 
believed. Either way, the cancerophobic terror seems unjustified.

17.7.
1. What were the four numbers from which the odds ratio was calculated? (If they are small 
enough to make the result sufficiently unstable, i.e., far from stochastic significance, you can 
dismiss the study without any further questions. You can also get an idea, from the control group  
data, of the exposure rate in the general population.)
2. What is the particular adverse event? (If it is a relatively trivial phenomenon, major public-
policy action may not be needed.)
3. What is the customary rate of occurrence of the adverse event? (If it has a relatively high 
rate, e.g., > .1, the odds ratio may be deceptively high. If it has a particularly low rate, e.g., ≤ 
.0001, the high odds ratio (or risk ratio) might be deceptively frightening. Examination of the 
NNE or some other index of contrast might give a better idea of how “impressive” the distinction 
may be.
4. What is the particular “exposure”? (If it is sufficiently beneficial, such as a useful vaccination 
or surgical procedure, you can consider whether an alternative beneficial exposure is available if 
the current agent is “indicted” or “removed” from general usage.)

Chapter 18

18.1.
18.1.1. The simplest approach is to note that the intercept is 1.6 for the displayed formula Y =
1.07X + 1.6. This stated intercept appears to be the correct location of the point where the line 
crosses the Y axis when X = 0. (Note that the artist’s statement of “+1.6” for the intercept disagrees 
with the “+0.02” listed in the caption.) A more complicated, but still relatively simple approach, 
is to note that the vertical extent of the Y points is from about 2 to 86 units and the horizontal 
extent of X is from 0 to 80. Thus, the crude slope is (86 − 2)/(80 − 0) ∼ 1, consistent with the 
stated slope of 1.07.
18.1.2. The abscissa has a break and does not begin at 0. The intervals can be measured by eye 
and ruler, however. When 0 is reached, the line seems to intersect at about Y = −0.9. At X = 50, 
the value of Y is roughly 1, so that it covers 2 units (from −1 to +1) of Y during an X-span of 
50 units. The value of 2/50 = .04, which is the cited slope of the line. About 19 points are above  
the line and 12 points are below it, but the latter points have larger distances from the line. Thus, 
although the numbers of points are unequal above and below the line, the sum of values for 

– Yi is probably equal and the line fits properly. 
19.3. Individual answers.

Chapter 19

19.1.
19.1.1. The statistician first drew the graph for the 11 points shown in Figure AE.19.1. Drawing
a new visual axis through the point containing both median values (10,45), the statistician noted 
that all other points were in the positive covariance zones of Quadrants I or III. The range of 
points, from 1 to 19 on the X-axis and from 10 to 80 on the Y-axis, suggested a slope of about 
70/18, which is about 4. Because the points seemed about equally distributed around the median 

Ŷi
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values on both axes, the statistician guessed that the standard deviations for X and Y would each
be about one fourth the corresponding range, i.e., sx ~ 18/4 = 4.5 and sy ~ 70/4 = 17.5, and so
sx /sy was guessed as about 4.5/17.5, which is the inverse of the estimated slope, 70 /18. Because
r = bsx/sy, the guesswork implies that r will roughly be (70/18)[(18/4)/(70/4)] ≅ 1 if the slope is
as high as 4. From the dispersion of points, the statistician knows that the slope will not be as
high as 4 and that r will not be as high as 1, but the statistician also knows, from Table 19.3, that
for 11 points of data, with n = 11, P will be < .05 if r > .6. Believing that r will be close to or
exceed .6, the statistician then guessed that the result will be stochastically significant. [A simpler
approach is to note that the bi-median split produces a  table that is . This is at the
extreme of a Fisher test for 10!/(5! 5!) = 252 possibilities. The two-tailed P will be 2/252 = .008.]
19.1.2.

ΣX = 110; = 10; ΣX 2 = 1430; Sxx = 1430 − (1102 /11) = 330
ΣY = 490;  =  44.55; ΣY 2 = 26700; Syy = 26700 − (490)2 /11 = 4872.73
ΣXY =   5635; (ΣXΣY)/N =  4900; Sxy =   735; b =   Sxy/Sxx =   2.23
a =

The graph of points is shown in Fig. AE19.1, and the line passes through (0, 22.28) and (10,
44.55). If you plotted the alternative line, b′ = Sxy/Syy = 735/4872.73 = .151; a′ = 10 − (.151) 
(44.55) = 3.28. The line passes through (3.28, 0) and (10, 44.55).

 and r = .58
= 2.14

 Because the required t.05 is 2.26 for P ð .05 at ν =  9, the result just misses being 
stochastically significant. On the other hand, because the investigator clearly specified an advance 
direction for the co-relationship, an argument can be offered that a one-tailed P value is warranted. 
If so, t.1 is 1.833, and “significance” is attained.

The visual guess of 4 for the slope was too high because the lowest and highest values 
for Y do not occur at the extreme ends of the range for X. The guess of 1/4 = .25 for the estimated 
sx/sy was quite good, however, because Sxx /Syy = 330/4872.73 = .068 and sx /sy =

19.3. Official Answer: YES. If one-tailed P values are permissible for comparisons of two groups, they 
should also be permissible for comparisons of two variables.
19.5.

19.5.1. The top figure (for firearm homicide) 
shows too much scatter to have a correlation as 
high as .913. The lower figure (for firearm 
suicide) looks like its data could be fit well with 
two horizontal lines, one at about 5.5 for low 
values of X, and the other at about 6.5 for higher 
values of X. In fact, the upper figure might also 
be relatively well fit with two horizontal lines, 
one through the lower values of X and the other 
through higher values.
19.5.2. Neither of the two graphs shows a 
relationship “strong enough” to suggest that the 
correlations have r values as high as .64 and .74.
19.5.3. An excellent example of a correlation that 
got r = − .789 and P < .05 for only 7 data points. 
In view of what happens for values beyond x Š 
120, however, the relationship doesn’t seem 
convincing.
19.5.4. Does this look like a good correlation? Nevertheless, it achieved r = .45. 

2 2× 0  5
5 0 

 
 

X
Y

Y bX 44.55 2.23( ) 10( ) 22.28=–=–

r2 Sxy
2 SxxSyy( )⁄ 735( )2 330( ) 4872.73( )[ ]⁄ .336;= =

t r 1 r2–⁄( ) n 2– .58/ 1 .336–( ) 9==

Sxx/ Syy .26.=

FIGURE AE.19.1
Graph (and regression line) for data in Exercise 
19.1.
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19.7.
19.7.1. The graph has too much scatter for the relationship to be biologically meaningful; also r
is too low.
19.7.2. Each regression line seems to intersect the Y-axis at the stated intercepts of ~ 130, ~ 48,
and ~ 120.

Chapter 20

20.1.

20.1.1. (See Table AE.20.1.) The mini-Wright seems more inconsistent. Its average squared
increment in the two readings is 28.2 vs. 21.6 for the Wright.
20.1.2. (a) No, r shows good correlation, but not necessarily good agreement, and some points
seem substantially discrepant from the line of “unity.”

(b) Check mean square increment of the two readings. Table AE.20.1 shows it is 37.67.
Thus, the two sets of readings agree better with themselves than across readings with each other.

(c) Check mean increment. It is −1.88 (see Table AE.20.1) and thus not very biased.
Check plot of increments vs. average magnitudes. A suitable graph will show that no major
pattern is evident.

20.3.
20.3.1. (NYHA IV) + (CCS IV) − BOTH = 51 + 50 − 11 = 90. Seems correct.
20.3.2. Wide disagreements in Groups I–IV and IV–I are disconcerting. They suggest that many
patients without angina are disabled, and many patients with severe angina had no functional
problems. This is either an odd clinical situation or a major disagreement in the two scales.
20.3.3. Not a useful table prognostically. It shows current status of patients after operation, but
does not indicate pre-op status of those who lived or died. For predictions, we need to know
outcome in relation to pre-op status.

TABLE AE.20.1

Answer to Exercise 20.1.1

Incremental Differences 
between lst and 2nd Mean of Two 

First Readings

Increment First Wright 
and First Mini-Wright 

HeadingSubject Wright Mini-Wright

1 4 −13 503 −18
2 −2 15 412.5 −35
3 4 12 518  −4
4 33 −16 431 6
5 6 0 488 −24
6 −54 −25 578.5 −43
7 −2 −96 388.5 49
8 11 −10 411 62
9 12 −16 654   −8

10 4 13 439 −12
11 −3 12 424.5 −15
12 23 21 641 30
13 −8 33 263.5 7
14 −14 10 477.5 1
15 13 −9 218.5 −81
16 51 −20 386.5 73
17 6 8 439 −24þ
ΣX2 7966 13479 d = −1.88
ΣX2/17 468.59 792.88

21.64 28.16

37.67

Σd2/17 =
ΣX2 /17 24120/17 =
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20.5.
20.5.1. 
(a) Value of X2 for “agreement” seems to be [(19 × 12) − (5 × 1)]2 (37)/(24 × 13 × 20 × 17) =
17.345, which is an ordinary chi-square calculation. This is an inappropriate approach to these data.
(b) Value of X2 for “change” seems to be (5 − 1)2/(5 + 1) = 16/6 = 2.67. This is the McNemar 
formula and would be appropriate for indexing disagreement, but these small numbers probably 
need a correction factor so that = (|5 − 1| − 1)2/6 = 9/6 = 1.5, not 2.67.
(c) Better citations would be po = (19 + 12)/37 = 31/37 = .84, or kappa. Because pe = [(20 ×
24) + (13 × 17)]/372 = .512, kappa = (.84 − .512)/(l − .512) = .672.
20.5.2. McNemar index of bias here is (5−1)/(5+1) = 4/6 = .67, suggesting that the therapists 
are more likely to make “satisfactory” ratings than the patients. Because of the small numbers, 
this index would have to be checked stochastically. The McNemar chi-square values in 20.5.1.(b),  
however, are too small (even without the correction factor) to exceed the boundary of 3.84 (=
1.962) needed for stochastic significance of X2 at 1 d.f.

Chapter 21

21.1. If we start with 10,000 school-aged children, of whom 4% are physically abused, the fourfold 
table will show

Of the 400 abused children, 96% (384) are detected by the physical exam; of the 9600 nonabused, 
8% (768) have false-positive exams. Consequently, nosologic sensitivity = 96% (384/400), nosologic 
specificity = 92% (8832/9600), and diagnostic sensitivity (positive predictive accuracy) = 33% 
(384/1152).
21.3. Results from nomogram table show:

Usefulness of test cannot be determined without knowing its negative predictive accuracy. The 
nomogram technique, however, does not seem easy to use, and many clinicians might prefer to do a direct 
calculation, if a suitable program were available to ease the work. For example, recall that posterior odds =
prior odds × LR. For P(D) = .02, prior odds = .02/.98 = .0196. For LR = 10, posterior odds = 10 × .0196 =
.196. Because probability = odds/(1 + odds), posterior probability = .196/(1 + .196) = .16. This is close to 
the ∼17% estimated from the nomogram. For a working formula, convert P(D) to prior odds of 
P(D)/[1 – P(D)]; multiply it by LR to yield posterior odds, and convert the latter to posterior probability 
as LR[P(D)/{1 – P(D)}]/(1 + LR[P(D)/{(1 – P(D)}]). The latter algebra simplifies to P(D T) =
LR[P(D)]/{l – P(D) + LR[P(D)]}. Thus, for LR = 20 and P(D) = 20%, P(DT) = [20(.20)]/[1 – .2 +
(20)(.20)] = .83, as shown in the foregoing table.

Confirmed Condition
Physical Exam Abused Not Abused Total

Positive 384 768 1152
Negative 16 8832 8848
TOTAL 400 9600 10000

Value of +LR Value of P(D) Value of P(DT)

10 2% ∼17%
10 20% ∼75%

5 2%  ∼8%
5 20% ∼53%

20 2% ∼35%
20 20% ∼83%

XM
2
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21.5. Prevalence depends on total group size, N, which is not used when likelihood ratios are calculated 
from the components T and S in N = T + S.
21.7. Individual answers.
21.9. Individual answers.

Chapter 22

22.1.
22.1.1. Calculations for fixed-interval method:

22.1.2. Calculations for direct method:

22.1.3. The distinctions clearly illustrate the differences between analyses in which the censored 
people do or do not contribute to the intervening denominators. At the end of the fifth year of 
follow-up in this cohort of 126 people, we clinically know only two things for sure: 56 people 
have died and 60 people have actually been followed for at least 5 years. Everyone else in the 
cohort is either lost or in the stage of censored suspended animation called withdrawn alive. 
Assuming that the 12 (= 4 + 6 + 0 + 2) lost people are irretrievably lost, we still have 54 people 
(= 15 + 11 + 15 + 7 + 6) who are percolating through the follow-up process at various stages of 
continuing observation before 5 years. The cumulative survival rate of 0.067 in the direct method  
is based on the two clearly known items of clinical information at 5 years. The cumulative survival 
rate of 0.443 in the fixed-interval method is based on the interval contributions made by all the 
censored people. In fact, if you take 33 as half the number of the 66 (= 12 + 54) censored people 
and add 33 to the direct numerator and denominator at 5 years, the cumulative survival becomes 
0.398; and the two methods agree more closely.

Rather than dispute the merits of the two methods, we might focus our intellectual energy 
on the basic scientific policy here. Why are 5-year survival rates being reported at all when the 
5-year status is yet to be determined for almost as many people (54) as the 60 for whom the status 
is known? Why not restrict the results to what was known at a 1-year or at most a 2-year period, 
for which the fate of the unknown group has much less of an impact? A clinician predicting a 
patient’s 5-year chances of survival from these data might be excessively cautious in giving the 
direct estimate of 0.067. On the other hand, the clinician would have a hard time pragmatically 
defending an actuarial estimate of 0.443, when the only real facts are that four people of a potential 
60 have actually survived for 5 years. 

Interval
Alive at 

Beginning

Died 
during 
Interval

Lost to 
Follow-Up

Withdrawn 
Alive

Adjusted 
Denominator

Proportion 
Dying

Proportion 
Surviving

Cumulative 
Survival 

Rate

0–1 126 47 4 15 116.5 0.403 0.597 0.597
1–2 60 5 6 11 51.5 0.097 0.903 0.539
2–3 38 2 0 15 30.5 0.066 0.934 0.503
3–4 21 2 2 7 16.5 0.121 0.879 0.443
4–5 10 0 0 6 7.0 0.000 1.000 0.443

 
Interval

Censored People
Removed

Cumulative
Mortality Rate

Cumulative
Survival Rate

0–1 19 47/107 = 0.439 0.561
1–2 17 52/90 = 0.578 0.422
2–3 15 54/75 = 0.720 0.280
3–4 9 56/66 = 0.848 0.151
4–5 6 56/60 = 0.933 0.067
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22.3. See Figure EA.22.3.
22.5. Individual answers.

Chapter 23

23.1. In 1936, telephones were not yet relatively inexpensive and ubiquitous in the U.S. Owners of 
telephones were particularly likely to be in higher socioeconomic classes and, therefore, Republicans. 
In addition, readers of the “upscale” literary magazine were likely to be college graduates, a status which, 
in 1936, was also commonly held by Republicans. The use of these two “sampling frames,” despite the  
random selection of telephone owners, produced an overwhelmingly Republican response.
23.3.

23.3.1. Authors did not indicate why they made no recommendations. Perhaps they were worried  
about “β error” because the confidence interval around the observed result goes from –0.120 to 
+.070. [Observed mortality rates were 15/100 = .150 for propranolol and 12/95 = .126 for placebo, 
so that result was lower in placebo by .126 − .150 = −.024. Standard error under H0 is 

= .049 and two-tailed 95% C.I. would be −.024 ± (1.96)(.049) = −
.024 ± .096, which extends from −0.12 to +.072. Thus, the result might be regarded as a stochastic 
variation for the possibility that propranolol was 7.2% better. The authors also state that their 
population was unusually “mild” in prognosis. [Perhaps propranolol works better in patients with 
worse prognoses.]
23.3.2. The most direct, simple approach is as follows. If mortality rate with propranolol is 10% 
below that of placebo, the true propranolol mortality rate is 12.6% − 10% = 2.6%. In the 100 
patients treated with propranolol, we would expect 2.6 deaths and 97.4 survivors. Applying a chi-
square goodness-of-fit test to this “model,” we would have

 =  = 59.14 + 1.58 = 60.72 and P < .001

The chance is therefore tiny that the observed results arose by chance from such a population.
In a more “conventional” way, we can use the formula

where δ − do would be .10 − (−.024) = .124, and

so that ZH = .124/.04936 = 2.51, P < .025. We can reject the alternative hypothesis that propranolol 
mortality was 10% below that of placebo.

23.5. Figure E.23.5 shows that the values of do (labeled PC − PT) ranged from −.20 to +.20, with negative 
values favoring treatment. Without knowing the actual values of P C and PT, we cannot decide how large 
δ should be for quantitative significance. Most investigators would probably accept do = .10 as 
quantitatively significant, regardless of magnitudes for PC and PT. Using the principle that δ = θPC and 
letting θ = .5, we would have δ ≥ .1 for PC ≥ .2, δ ≥ .05 for PC ≥ .1, and δ ≥ .025 for PC ≥ .05. With 

FIGURE EA.22.3
Graph showing answer to Exercise 22.3. The Ka-
plan-Meier “curve” is shown as a step-function, 
without vertical connections. 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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these boundaries, most of the “positive” trials that favored treatment in Figure E.23.5 seemed to have
dO > δ and certainly had upper confidence limits that exceeded δ, although the lower confidence interval
included 0. Accordingly, the main defect in these trials was capacity, not power. A recommendation to
use the Neyman-Pearson approach would needlessly inflate the sample sizes. Conversely, the top eight
negative trials, favoring the control group would seem to have their quantitative “nonsignificance”
confirmed by upper confidence limits that were < δ. The other “negative” trials in Figure E.23.5 seemed
to have upper confidence limits that included δ and lower limits that included 0. The investigator would 
thus have to concede both the original null and the alternative hypothesis. An appropriate sample size 
for the latter trials would depend on which hypothesis the investigator wanted to reject, i.e., to confirm 
a big or small difference.

Thus, although a Neyman-Pearson calculation would probably have been unnecessary for any of 
the cited trials, Freiman et al. recommended that the “determination of sample size” should be done as 
cited in two references9,l5 that presented the Neyman-Pearson approach.

Chapter 24

24.1. For the big difference, set Zα at 1.645 for a one-tailed Po < .05. With πA = .08 and πB = .10, π =
.09 and so

n Š  [1/(.02)2][1.645]2 [2(.09)(.91)] = 1068

and 2n would be 2136.
For the tiny difference, Zα can also be set at 1.645 for a one-tailed PE < .05. The calculation will be

n Š  [1/(.02 − .005)2] [1.645]2[(.08)(.92) + (.10)(.90)] = 1968

and 2n would be 3935 — which is larger than the 2958 calculated previously in Exercise 23.2.
The main reason why sample size for the big difference did not become much smaller than before  

is the shift from δ = .03 to δ = .02. These values are quite small for a “big” difference, and the “gain” 
of having only one Zα term in the numerator of the calculation is offset by the loss of having to divide 
by the square of a smaller value of δ.
24.3. Using the data employed in Exercise 14.4, we can assume that the rate of total myocardial infarction 
is .02 per person in the placebo group, and will be reduced by 25% to a value of .015 in the aspirin 
group, so that δ = .005. The anticipated value for π will be (.02 + .015)/2 = .0175. If we choose a two-
tailed α = .05, so that Zα = 1.96, and a one-tailed β = .2, so that Zβ = 0.84, the Neyman-Pearson 
calculation becomes

n Š [1/(.005)2][1.96 + 0.84]2[2(.0175)(.9825)] = 10783.9

This result is close to the actual sample size of about 11,000 in each group.
According to the original grant request, which was kindly sent to me by Dr. Charles Hennekens, 

the investigators expected that aspirin would produce “a 20% decrease in cardiovascular mortality” and 
a “10% decrease in total mortality” during “the proposed study period of four and one-half years.” The  
expected  yr CVD mortality among male physicians was estimated (from population data and the 
anticipated “age distribution of respondents”) as .048746. With a 20% relative reduction, δ = .009749 
and the aspirin CV mortality would be .038997. The estimate for π would be (0.48746 + .038997)/2 =
.043871. The α level was a one-tailed .05 so that Zα = 1.645 and β was also a one-tailed .05 so that 
Zβ = 1.645. With these assumptions, n Š [1/(.009749)2] [1.645 + 1.645]2 [2(.043871) (.956129)] = 9554.2. 
The increase to about 11,000 per group was presumably done for “insurance.”

An important thing to note in the published “final report” of the U.S. study (see Exercise 10.1) 
is that neither of the planned reductions was obtained. The total cardiovascular death rate and the total 
death rate in the two groups were almost the same (with relative risks of .96 and .96, respectively). The  
significant reduction in myocardial infarction (which had not been previously designated as a principal 
endpoint) was the main finding that led to premature termination of the trial. 

41
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Chapter 25

25.1. Individual answers.
25.3. The stochastic calculations rely on the idea that each comparison is “independent.” Thus, if 
treatments A, B, and C are each given independently and if the effects of the agents are not interrelated,  
the three comparisons are independent for A vs. B, A vs. C, and B vs. C. In a person’s body, however, 
the values of different chemical constituents are usually interrelated by underlying “homeostatic” 
mechanisms. Consequently, the different chemical values are not independent and cannot be evaluated 
with the [1 − (1 − α)k] formula used for independent stochastic comparisons. Another possible (but less  
likely) explanation is that the originally designated normal zones were expanded, after a plethora of 
“false positives” were found, to encompass a much larger range that would include more values in 
healthy people.
25.5. Individual answers.

Chapter 26

26.1. Stratum proportions in the total population are W1 = 101/252, W2 = 134/252, and W3 = 17/252. 
Direct adjusted rate for OPEN would be (W1)(6/64) + (W2)(10/59) + (W3)(1/3) = .1502. Analogous 
calculation for TURP yields .1438. [To avoid problems in rounding, the original fractions should be 
used for each calculation.]
26.3. Concato et al. used two different taxonomic classifications (Kaplan–Feinstein and Charlson et al.) 
for severity of co-morbidity, and three different statistical methods (standardization, composite-staging, 
and Cox regression) for adjusting the “crude” results. With each of the six approaches, the adjusted risk  
ratio was about 1. Nevertheless, despite the agreement found with these diverse methods, the relatively 
small groups in the Concato study led to 95% confidence intervals that reached substantially higher (and 
lower) values around the adjusted ratios. For example, with the Cox regression method in the Concato 
study the 95% confidence limits for the adjusted risk ratio of 0.91 extended from 0.47 to 1.75. The 
original investigators contended that this wide spread made the Concato result unreliable, and besides, 
it included the higher RR values, ranging from 1.27 to 1.45, that had been found in the previous claims-
data study.
26.5.

26.5.1. No. Crude death rate is “standardized” by the division of numerator deaths and 
denominator population.
26.5.2. (1) Guyana rates may be truly lower in each age-specific stratum; (2) many of the deaths  
in Guyana may not be officially reported; (3) Guyana rates may be the same or higher than U.S.  
in each age-specific stratum, but Guyana may have a much younger population.
26.5.3. The third conjecture in 26.5.2 is supported by the additional data. Despite the high infant  
mortality, if we subtract infant deaths from births, we find that Guyana increments its youth at 
a much higher rate than the U.S. The annual birth increment per thousand population is 
38.1(1 – .0383) = 36.6 for Guyana and 18.2(1 − .0198) = 17.8 for U.S.

26.7. Individual answers.

Chapter 27

27.1.
27.1.1. By ordinary linear regression for the two variables in Figure 27.2. The tactic seems
inappropriate. If a Pearson correlation coefficient is not justified, the results do not warrant use 
of an ordinary regression model.
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27.1.2. No. Duration of survival, which is the outcome (dependent) variable, has been put on the  
X rather than Y axis. Furthermore, the log scale makes values of interleukin < .1 look as though 
they were zero. If the X-axis data are divided essentially at tertiles and the Y data dichotomously  
at an interleukin level of 1, the tabular data that match the graph become

The declining trend is not at all as constant as implied by “r = −.51.” In fact, the trend is reversed 
in the high survival group.

A better way to show the results would be to orient the data properly and to divide 
interleukin roughly at the tertiles to get

This result is also inconsistent with the constantly declining trend implied by the value of r = –.51 
for interleukin vs. survival in the graph.
27.1.3. The graph says “N = 33,” but only 30 points are shown — as discovered in 27.1.2. The 
legend does not mention any hidden or overlapping points. What happened to the missing 3 people?

27.3.
27.3.1. System B seems preferable. It has a larger overall gradient (72 − 10 = 62% vs. 57 − 6 =
51%) and patients seem more equally distributed in the three stages.
27.3.2. Coding the three categories as −1, 0, +1, we can calculate slope with Formula [27.19]. 
For System A, the numerator is 221(3 − 70) − 85(53 − 122) = −14807 + 5865 = −8942. For System 
B, the numerator is 221(9 − 36) − 85(86 − 50) = –5967 − 3060 = −9027. Denominators are 221(122 
+ 53) − (122 − 53)2 = 33914 for System A and 221(50 + 86) − (86 − 50)2 = 28760 for System 
B. Slope is –8942/33914 = −.264 for A, and −9027/28760 = −.314 for B. Note that results are 
consistent with the “judgmental” evaluation (in AE27.3.1) that average gradient = .51/2 = .255 in 
A and .62/2 = .31 in B.  can be calculated, as discussed in Section 27.5.5.2 (just after Equation 
[27.19]), from (numerator of slope)(slope)/NPQ, where NPQ = (221)(85)(221 − 85)/(221)2 =
(85)(136)/221 = 52.307. In System A, = (−8942)(−.264)/52.307 = 45.13. In System B, =
(−9027)(−.314)/52.307 = 54.44. The result is highly stochastically significant in both, but is bigger 
in System B.
27.3.3. Note that overall X2 = 45.5 in System A, so that the residual  is X2 − = 45.51 −
45.13 = 0.38. In System B, the overall X2 is 54.89. The residual is 54.89 – 54.44 = 0.45.
27.3.3. Overall gradient (51% vs. 62%) has already been cited. Another index here could be 
lambda. Total errors would be 85. With System A, errors are (122 – 70) + 12 + 3 = 67. With 
system B, errors are (50 − 36) + 40 + 9 = 63. Thus, lambda is (85 − 67)/85 = .21 for System A, 
and (85 − 63)/85 = .26 for System B. Overall chi-square is 45.5 for System A and 54.9 for System 
B. Finally, to quantify the hunch about “better” distribution, we can use Shannon’s H (recall 
Section 5.10.2). The proportions of data in each category of the denominator are .552, .208, and 
.240 in System A and .226, .385, and .389 in system B. Shannon’s H is .433 for System A and 
.465 for System B. Thus, System B gets better scores with all four methods.
27.3.4. In each system, each stratum has “stable” numbers, the gradient is monotonic, and the 
gradient is relatively “evenly” distributed (31% and 20% in System A; 25% and 37% in System 
B). Therefore, the overall gradients of 51% vs. 62% are probably the best simple comparison. If 
the strata had unstable numbers and/or dramatically uneven gradients, the best summary would 
probably be the linear slope.

Duration of 
Survival

Proportion of 
Interleukin Levels Š1

< 4 10/11 (91%)
4–13 4/11 (36%)
≥14 5/8 (63%)

 Interleukin 
Level

Proportion Who 
Survived < 10 days

< 1 6/11 (55%)
< 10 5/10 (50%)
≥ 10 7/9 (78%)

XL
2

XL
2 XL

2

XR
2 XL

2
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