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Preface

This book is the eleventh in the series of Advances in Robot Kinematics. All the ar-
ticles contained within it have been rigorously selected on the basis of a peer-review
process. Since the early 1990s these books on Advances in Robot Kinematics have
been published every two years, with the publication of each one being followed by
a symposium in which the participants exchange their results and opinions. In our
eyes, however, all the books represent stand-alone contributions. They are, in prin-
ciple, independent of the symposia and should not be thought of as simply standard
conference proceedings. The articles they contain are a selection that describes the
newest and most original achievements in the field and are, from this perspective,
identical to a special issue of a scientific journal. In order to guarantee that we have
included the latest results, the whole process – from the submission, the reviewing,
the selection of the articles, the various revisions, the preparation of the finished
articles and the publication of the book – has taken less than six months.

Although one might expect that the research in robot kinematics has lost a lit-
tle of its “freshness”, it is clear that even after 24 years, since the first symposium
on Advances in Robot Kinematics took place, the subject still presents an immense
number of research challenges. The success of the symposia is due to the fact that
since its earliest beginnings it has managed to bring together the best of the world’s
researchers and scientists. The activity as a whole has been continuously supported
by the J. Stefan Institute, and since 1992 it has come under the patronage of the
International Federation for the Promotion of Mechanism and Machine Science
(IFToMM). The last symposium was organized in collaboration with the Univer-
sity of Innsbruck, which made available its infrastructure and workforce and led
most of the scientific activities.

The 56 articles in this book cover the latest topics and methods in the kinematics
of robotic systems, including serial, parallel and cable driven, both planar and spa-
tial. The robotic systems range from being less than fully mobile to kinematically
redundant and to over-constrained. Emerging areas, such as the design and control
of humanoids or their subsystems, man and machine systems, as well as the motion
of the human body, are also included.
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vi Preface

We are grateful to the authors for their contributions and to the large team of
reviewers for their critical and insightful recommendations. In particular we are
indebted to Dr. Hans-Peter Schröcker (University of Innsbruck) for his dedication
and expertise, Ms. Jolanda Karada (Karada Publishing Services) for her valuable
technical contribution, and to the staff of Springer who were responsible for putting
the whole book together.

Ljubljana, Slovenia J. Lenarčič
Innsbruck, Austria M.L. Husty
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The Dual Generalized Inverses and Their
Applications in Kinematic Synthesis

Jorge Angeles

Abstract The left and right dual Moore–Penrose generalized inverses are the sub-
ject of this paper. It is shown that, contrary to the real case, these inverses are not
unique, those with minimum Frobenius norm being obtained. Their application in
kinematic synthesis is discussed. It is shown that, in the case of function-generating
RCCC linkages, the left dual generalized inverse leads to a linkage that meets the
prescribed input-output relations with both a least-square error and a minimum size.
The study concludes with the synthesis of a linkage that approximates a homokinetic
transmission between shafts with skew, orthogonal axes.

Key words: Dual generalized Moore–Penrose inverses, least-square approxima-
tion, minimum-Frobenius-norm, homokinetic joint, skew axes

1 Introduction

Dual numbers are well documented in the literature, an extensive bibliography being
available in [1], with 73 entries. The literature is extensive for the scalar case, for
vectors and matrices much less so, but some references can be cited, besides the
previous one, namely, [2] and [3]. Moreover, dual numbers can be defined over both
the real and the complex fields [4]; for the purposes of this paper, real numbers will
suffice. The set of dual numbers itself, however, is not a field, but a ring [5].

The reason why dual numbers are relevant to kinematics can best be summarized
in The Principle of Transference [6]:

The kinematics and statics relations of spatial linkages and cam mechanisms can be derived
upon replacing the real variables occurring in the corresponding relations for spherical
linkages by dual numbers.

Jorge Angeles
McGill University, Montreal, Canada, e-mail: angeles@cim.mcgill.ca

J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
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2 J. Angeles

The theory behind dual numbers is well established, but there are still some ap-
plications domains that haven’t been fully exploited. This paper is a contribution in
this direction. One objective of the paper is to shed light on the handling of over-
determined systems of dual linear equations (DLE), as arising in the approximate
synthesis of linkages, when the number of prescribed conditions to meet exceeds
that of linkage parameters available. In this context, the well-known results of linear
least squares are revisited in the realm of dual numbers. It is shown that the least-
square approximation of an overdetermined system of DLE admits a solution that
can be expressed in the form of the dual-equivalent of the Moore–Penrose general-
ized inverse, often referred to a the left pseudoinverse. The author does not subscribe
to this terminology because it is misleading: the prefix “pseudo” denotes something
“false”, which is not the case here. One novel contribution is the result that, con-
trary to the real case, the left dual generalized inverse is not unique, which allows
for minimizing the Frobenius norm of the said inverse, thereby obtaining a unique
solution that shows a striking similarity with the dual inverse of a square matrix [2].
The same result is shown to apply to the right counterpart of the left generalized
inverse. The concepts discussed in Section 2 are then applied to the approximate
synthesis of function-generating RCCC linkages.

As an example, the synthesis of a linkage of this type to approximate a ho-
mokinetic transmission between two shafts of skew axes and lying at right angles is
fully discussed. By virtue of the minimum-norm property of the unique left Moore–
Penrose generalized inverse – for conciseness, henceforth the foregoing matrix will
be referred to as the “left generalized inverse,” with a similar denomination for its
right counterpart – the linkage thus obtained is one that not only approximates the
prescribed number of conditions with a least-square error, but also does so with
a minimum size. Moreover, the slight errors present in the optimum solution can
be compensated for by means of computer control, upon resorting to an inverse-
kinematics approach that guarantees that the linkage output will follow the pre-
scribed input signal upon modulating the linkage input accordingly.

2 Back to Basics: Algebra of Dual Numbers

While dual algebra is a classic subject, and its bases are well established, there
is still room for research contributions in the area of applications. One such area
is the approximate synthesis of linkages, which often leads to linear least-square
problems, the subject of this paper. Their nonlinear counterparts are manageable
once the foundations for linear problems have been established.

An item that has not been duly addressed in the pertinent literature is the def-
inition of the derivative of a dual-valued function of a dual argument, but it was
discussed by Kotel’nikov in his original book [7]: given the dual function

f̂ (x̂)≡ f (x̂)+ ε fo(x̂), x̂ = x+ εxo
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its derivative with respect to its dual argument can be readily obtained as the limit
of a ratio of increments, which yields the relation

d f̂
dx̂

=
d f
dx

+ ε
d fo

dx
(1)

consistent with Kotel’nikov [7]. This relation will be needed below.
The extension of the foregoing definitions to vectors and matrices follows as

a combination of these definitions and the rules for the counterpart operations for
vectors and matrices. The inverse of a dual matrix is given in [1, 2]. The former
also includes a formula for the dual left generalized inverse.1 As the formulas are
displayed in that paper without derivation, the paper misses an important point: the
generalized inverse in question is not unique. This issue is made apparent below.

For starters the expression for the dual inverse matrix derived in [2] is recalled:
let Â = A+ εAo be a dual matrix, with A, Ao ∈ Rn×n, its inverse being defined as
long as A is invertible, although Ao need not be so. The inverse of Â is given by

Â−1 = A−1 − εA−1AoA−1 (2)

Paraphrasing the derivation of the expression (2) for the dual inverse, not in-
cluded here for the sake of conciseness, let B̂ = B+ εBo be the left generalized
inverse of a m× n dual matrix Â, with m > n. As a consequence, B̂ is bound to be
of n×m. In the sequel, it will be made apparent that only A need be of full rank
for the desired generalized inverse to exist, but Ao can be rank-deficient. Then, B̂
verifies B̂Â = 1n, with 1n denoting the n×n identity matrix. Upon expansion of the
foregoing left-hand side, two real equations are obtained, one for the primal, one for
the dual part:

BA = 1n, BoA+BAo = On (3)

where On denotes the n×n zero matrix, the first equation leading to the not so un-
expected result B = (AT A)−1AT ≡ AI , i.e., the left generalized inverse of A. When
the foregoing expression is substituted into the second of the two above equations,
a matrix equation for Bo is derived:

BoA =−AIAo ⇒ AT BT
o =−AT

o (A
I)T ≡−AT

o A(AT A)−1

which is a system of n2 equations in mn > n2 unknowns, the real components of Bo.
The system is, thus, underdetermined, thereby admitting infinitely many solutions.
The conclusion is, then, that the dual left generalized inverse is not unique. Among
all that many solutions, one of minimum Frobenius norm, tr(BBT ), can be obtained
if one resorts to the right generalized inverse of AT , denoted (AT )† [8]:

(AT )† = A(AT A)−1 (4)

1 Actually, the authors do not stress the difference between the right and the left generalized in-
verses; they represent both with the same symbol, ( · )+.
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whence, after some obvious manipulations,

Bo =−AIAoAI (5)

Therefore, the minimum-Frobenius-norm ÂI is

ÂI = AI − εAIAoAI (6)

which bears a striking similarity with the dual inverse, an expression also displayed
in [1].

The right Moore–Penrose generalized inverse of a dual matrix Ĉ = C+ εCo,
with C, Co ∈ Rm×n and m < n, is defined as the dual matrix Ĉ† ≡ D̂ such that
ĈD̂ = 1m, with D̂ = D+ εDo and D, Do ∈ Rn×m. The computation of D and Do

follows the same pattern as that of B and Bo above. The details are not included here
for conciseness, but the results are displayed below:

Ĉ† = C† − εC†CoC† (7)

a formula that is also displayed in [1], but without a proof. Again, as in the case of
AI , Ĉ† is not unique, the formula displayed above being the one with a minimum
Frobenius norm.

Now the left dual generalized inverse is applied to the solution of an overdeter-
mined system of m dual linear equations in n < m dual unknowns, grouped in vector
x̂, of the form

Âx̂ = b̂ (8)

where Â is assumed as above, to be a dual m×n matrix, with m > n and with a full-
rank primal part, x̂ and b̂ being, respectively, n- and m-dimensional dual vectors. As
the system is overdetermined, it is not possible to find a vector x̂ that will verify all
m dual equations (8), but it will be shown that it is possible to find the vector x̂ that
will render the Euclidean norm of the dual error ê a minimum, with ê defined as

ê = b̂− Âx̂ (9)

whose Euclidean norm2 ‖ê‖ is the square root of the scalar product êT ê, i.e.,

‖ê‖2 = ‖b̂‖2 −2b̂T Âx̂+‖Âx̂‖2 (10)

The error Euclidean norm is minimized upon zeroing the derivative of ‖ê‖2 with
respect to x̂, which readily leads to the dual normal equations (DNE):

ÂT Âx̂ = ÂT b̂ ⇒ ÂT ê0 = 0 (11)

2 If e and eo denote the primal and dual parts of ê, then ‖ê‖2 = ‖e‖2 + ε2eT eo.
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thereby stating an important theoretical result: the minimum-norm error – i.e., the
error ê0 of minimum Euclidean norm – lies in the null space of ÂT , a restatement of
the classical Projection Theorem, but now in dual space. Another theoretical result
is the expression for the least-square solution x̂0, obtained directly from the normal
equations (11):

x̂0 = ÂI b̂ (12)

Expression (12) is a representation of the unique minimum-norm least-square solu-
tion of system (8), but should not be used verbatim to compute x̂0, because of the
frequent ill-conditioning of the product ÂÂT . Instead, the QR decomposition [9]
should be applied.

Interestingly, having chosen the dual part Bo of ÂI with minimum norm guaran-
tees that the dual part xo0 of the least-square solution x̂0 is of minimum Euclidean
norm. This property will be exploited in the synthesis of a RCCC linkage intended
to approximate a homokinetic transmission between two shafts of skew axes, lying
at right angles.

3 Synthesis of a RCCC Linkage

The foregoing results will now be applied to the synthesis of the RCCC linkage
shown in Fig. 1, with geometric parameters defined using the original Denavit–
Hartenberg notation [10].

The input-output (IO) equation of the RCCC linkage was derived by Yang and
Freudenstein [11]. The same equation was more recently cast in a framework that
allows its analysis in a unified form applicable to planar, spherical and spatial four-
bar linkages [12]. For the sake of brevity, the IO equation is not derived here. It is
displayed below, as taken from the foregoing reference:

F̂(ψ̂, φ̂)≡ k̂1 + k̂2 cos ψ̂ + k̂3 cos ψ̂ cos φ̂ − k̂4 cos φ̂ + sin ψ̂ sin φ̂ = 0 (13)

where ψ̂ , the input angle, has been “hatted”, even though this angle is associated
with a R joint, which undergoes pure rotations about its axis. In fact, ψ̂ = ψ + εb2,
where b2 accounts for the location of the common normal between this axis (Z2) and
Z3. The primal parts of the dual Freudenstein parameters (DFP) are given below:

k1 ≡
λ1λ2λ4 −λ3

μ2μ4
, k2 =

λ4μ1

μ4
, k3 = λ1, k4 =

λ2μ1

μ2
(14)

with the definitions λi ≡ cosαi and μi ≡ sinαi �= 0, while αi is displayed in Fig. 1,
their dual counterparts being defined as
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Fig. 1 A generic RCCC linkage.

ko1 = −a1λ2λ4μ1μ2μ4 +a2(λ1λ4 −λ2λ3)μ4 −a3μ2μ3μ4 +a4(λ1λ2 −λ3λ4)μ2

μ2
2 μ2

4

ko2 =
a1λ1λ4μ4 −a4μ1

μ2
4

, ko3 =−a1μ1, ko4 =
a1λ1λ2μ2 −a2μ1

μ2
2

(15)
The synthesis problem can now be formulated as: given a set of input-angle val-

ues {ψi }m
1 and a set of corresponding output values {φi, ui }m

1 , where ui denotes the
ith prescribed value of the output variable3 b1, find the linkage parameters {ai, αi }4

1
that will produce a RCCC linkage that meets the prescribed IO relations. Since we
have m IO conditions to meet, in the form of the dual equations (13), and four dual
linkage parameters, when m = 4 the prescribed IO values can be met exactly, which
corresponds to exact synthesis. For m > 4, no linkage will possibly meet all m pre-
scribed IO values. However, it is possible to find the linkage that will meet these
values with the minimum error, which is known as approximate synthesis. Never-
theless, a word of caution is in order: although the error vector defined in eq. (9)
has components with two different units, radians and m, its norm is well defined,
as per footnote 2. Hence, a linkage can be found that meets the synthesis equations
with an error of minimum Euclidean norm, independent of the units chosen. The
said equations are obtained upon substitution of the input and output variables by

3 The new variable ui is introduced with the purpose of avoiding double subscripts.
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their m prescribed values in the IO equation:

F̂i(ψi, φ̂i)≡ k̂1+ k̂2 cos ψ̂i+ k̂3 cos ψ̂i cos φ̂i− k̂4 cos φ̂i+sin ψ̂i sin φ̂i = 0, i = 1, . . . , m
(16)

which are linear in the dual Freudenstein parameters { k̂i }4
1. Hence, upon assembling

the m foregoing equations, a system of m dual linear equations in the four DFP is
obtained:

Ŝk̂ = b̂ (17)

with

Ŝ =

⎡
⎢⎢⎢⎣

1 cψ1 cψ1cφ1 −cφ1

1 cψ2 cψ2cφ2 −cφ2
...

...
...

...
1 cψm cψmcφm −cφm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
S

+ε

⎡
⎢⎢⎢⎣

0 −b2sψ1 −u1cψ1sφ1 −b2sψ1cφ1 u1sφ1

0 −b2sψ2 −u2cψ2sφ2 −b2sψ2cφ2 u2sφ2
...

...
...

...
0 −b2sψm −umcψmsφm −b2sψmcφm umsφm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
So

(18)
with c(·) and s(·) denoting cos(·) and sin(·), respectively, while

b̂ =−

⎡
⎢⎢⎢⎣

sψ1sφ1

sψ2sφ2
...

sψmsφm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b

−ε

⎡
⎢⎢⎢⎣

u1sψ1cφ1 +b2cψ1sφ1

u2sψ2cφ2 +b2cψ2sφ2
...

umsψmcφm +b2cψmsφm

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
bo

(19)

Now, upon equating the primal and the dual parts of eq. (17), two real vector
equations are obtained, namely,

Sk = b, Sko +Sok = bo ⇒ Sko = bo −Sok (20)

which amount to two overdetermined linear systems of equations, both with the
same matrix coefficient S, one for k, one for ko. The computation of the least-
square solution proceeds in two steps: first the primal equation is solved for k; with
the least-square solution thus obtained, k0, substituted into the dual equation, the
least square solution of this equation, ko0, is obtained. Notice that these calculations
being done using the QR decomposition, the primal synthesis matrix needs factoring
only once. This feature is important if the foregoing procedure is a part of a second,
external optimization procedure, that calls for many iterations. It is noteworthy that
the DH parameter b2 is not included in either the primal or the dual part of the DFP,
eqs. (14) and (15), respectively, and hence, this parameter has been taken to the
right-hand side of the dual synthesis equations (20); b2 has to be treated not as an
unknown, but as a parameter, that can be used to either fine-tune a solution or to
optimize an objective function.

Now the RCCC linkage is synthesized so as to approximate a homokinetic trans-
mission for values of the input and the output variables that sweep angles of 120◦.
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Moreover, the primal synthesis equation leading to a spherical linkage, the associ-
ated synthesis procedure is identical to that reported in [13]. In that paper, a search
is included on the optimum values of the location of the zeros of the input and out-
put dials, which amount to a translation of the data points {ψi, φi }m

1 en masse, i.e.,
under a rigid-body translation, in the φ -vs.-ψ plane. A continuum of values for the
optimum shifts were reported in that paper. The values adopted here are ξ = 146◦

and η = 34◦, for ψ and φ , respectively.
The values ψi, for i = 1, . . . m, with m = 501 prescribed data triads,4 are uni-

formly distributed in the interval 86◦(= −60◦+ 146◦) ≤ ψ ≤ 206◦, while their φi

counterparts are distributed likewise in the interval −26◦(=−60◦+34◦)≤ φ ≤ 94◦.
The shafts to be coupled lying at right angles, α1 = 90◦, whence λ1 = 0 and μ1 = 1.
Furthermore, given its desired homokinetic behavior, the linkage is assumed sym-
metric, as the input and output links play the same role, whence α4 = α2. In this
light, the number of unknown primal Freudenstein parameters reduces to only two,
for k3 = 0 and k4 = k2, a consequence of the foregoing assumptions and relations
(14). The number of prescribed points led to an overdetermined linear system of 501
equations in two unknowns, whose least-square solution is

k1 = 1.217, k2 = 0.9439 ⇒ k4 = 0.9439, α2 = α4 = 46.65◦, α3 = 132.4◦ (21)

with a rms value of the minimum-norm error equal to 0.01942, or 1.942%.
Next, a1 is set at 240 mm, as imposed by the design conditions, with b2 = a1 for

symmetry. Further, the values ui of b1 at the prescribed values of φi, which complete
the ith triad, were distributed symmetrically around b1 = 0, with u1 =−a1/10, um =
a1/10, and following a cycloidal motion program:

ui =− a1

10
+U

(
i−1
m−1

− 1
2π

sin
2π(i−1)

m−1

)
(22)

with amplitude U given as a1/5 in order to limit the output sliding b1. This program
was chosen because it starts smoothly with zero velocity and acceleration, and stops
likewise. The second system of eqs. (20), of 501 equations for two unknowns, ko1

and ko2, led to the least-square solution ko0, with ko3 =−a1 =−240 mm not being
part of the unknowns, for its value is fixed from the prescribed values for α1 and
a1, as per eqs. (15). The optimum values were found to be, for the above-mentioned
values of k0,

ko1 = 319.0 mm, ko2 = 154.6 mm, ko4 = ko2 (23)

with a rms value of the minimum-norm dual error of 1.119 mm, or 2.33% of the
amplitude U . For the record, the normalized dual part of the Euclidean norm of the
dual error, eT eo/

√
m, is 0.3260 mm or 0.07% of the amplitude U .

4 This high number was used with the purpose of bringing the optimum design error e0 as close
as possible to the structural error, which measures the actual deviation of the synthesized output
angle from its prescribed value, as per the results reported in [14].
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Fig. 2 A CAD model of the synthesized RCCC linkage.

Computing the DH linkage parameters now is straightforward, as eqs. (15) in-
volve these parameters linearly. The results are displayed below:

a2 =−76.46 mm, a3 = 209.4 mm, a4 = a2 (24)

where, interestingly, ai being defined as a length in the framework of the DH no-
tation, it must be non-negative. However, a negative value for a2, and hence, for
a4, was obtained above. The interpretation of the negative sign here is well known
within the methodology set forth by Freudenstein [15]: should a2 (a4) turn out to be
negative as a result of the linkage synthesis for function generation, then measure
angle ψ (φ ) not as indicated in Fig. 1, but from its extension, i.e., add 180◦ to the
prescribed input (output) angles. This completes the solution to the synthesis prob-
lem, a CAD model thereof being shown in Fig. 2. In this figure, the output motion
of the quasi-homokinetic mechanism is the rotation of the splined shaft, which is
mounted on the machine frame by means of standard bearings.

4 Conclusions

Some novel results in the realm of the algebra of dual numbers, in connection with
dual linear least-square problems were introduced here, then applied to the syn-
thesis of the RCCC function generating linkage. The methodology thus established
was then illustrated with the solution of a problem of current interest, the approxi-
mate synthesis of a RCCC linkage for homokinetic transmission between shafts with
skew axes, lying at right angles.
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On the Twist Recovery Methodologies After
Failure

Leila Notash

Abstract In this paper, methodologies for investigating the effect of failures on the
performance of manipulators are presented, and the correctional input for recovering
the lost motion provided by the remaining joints, for minimum Euclidean norm of
the correctional and the overall joint velocity vectors, are presented. The procedure
is simulated to examine the norm of the overall input before and after a failure, as
well as the norm of the correctional input.

Key words: Parallel manipulator, failure, twist recovery

1 Introduction

In parallel manipulators, the mobile platform is connected to the base by a number
of legs, e.g., refer to Figure 1. In general, each leg is a kinematic chain of links
connected by active and passive joints. For non-redundant actuation, using the one
degree of freedom joints such as revolute or prismatic joints, the number of active
joints is equal to the degree of freedom (DOF) of the manipulator, e.g., Figure 1(a),
with active prismatic joints. To form a kinematically redundant leg, one or more
redundant active joints could be added to the leg, e.g., Figure 1(b).

Failure of a link and/or a joint could result in the loss of DOF, actuation, motion
constraint, and information in parallel manipulators [6]. If any of these failures affect
the performance of manipulator such that the task cannot be completed as desired,
then the manipulator is considered failed. From the kinematics point of view, the
failure of a joint occurs if the joint is broken, or jammed (its displacement remains
constant), or if the displacement/velocity/acceleration of joint is not at the desired
level. Redundancy in joint displacement sensing was investigated in [3] to facilitate
the joint sensor fault detection, isolation and recovery. The relative manipulativity
index was used in [7] to investigate the Jacobian matrices of manipulators fault tol-
erant to joint failures. In [1], the task space was partitioned to complete the major
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Fig. 1 Planar parallel manipulators: (a) non-redundant; and (b) redundant.

task and optimize a secondary task such as actuator fault tolerance. The effects of
joint failures on the force/moment capabilities and motion performance of parallel
manipulators were respectively investigated in [4, 5]. In this article, the methodol-
ogy for recovering the lost motion due to the failure of joints/actuators, presented
in [5], is briefly discussed. The properties of the recovered motion are examined in
Section 2 by reformulating the correctional and overall velocity vectors for mini-
mum Euclidean norm. The simulation results are reported in Section 3. The article
concludes with Section 4.

2 Recovering Lost Velocity

For parallel manipulators, the relation between the n×1 active joint velocity vector,
q̇, and the m × 1 mobile platform twist (velocity vector), V, is given as q̇ = JV,
where m ≤ 6 depending on the dimension of task space, e.g., m = 3 for planar
motion. The Jacobian matrix of manipulator, J, is an n × m matrix; with n = m for
non-redundant manipulators and n > m for redundant manipulators. For a given q̇,
using the generalized inverse (GI) of J, J#, the platform twist is

V = J#q̇ (1)

Hence, to provide the required platform twist, V should belong to the range space
of J#. In addition, each leg of manipulator should allow the platform twist V.

Considering leg i, its l × 1 joint velocity vector, i q̇ =i [q̇1 q̇2 . . . q̇l−1 q̇l]T , and
the twist, V, are related by the m × l Jacobian matrix of the leg, iJ, as

V =i J i q̇ =
[
iJ1

iJ2 . . .i Jh . . .i Jl−1
iJl

]
i q̇ =

l∑
k=1

iJk
i q̇k (2)
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where each column of iJ, iJk , is a screw representing the axis of the corresponding
joint of leg i; and l ≥ m. To provide the platform velocity, V should be in the range
space of all iJ, for i = 1, . . . , nl , where nl is the number of legs.

After failure, the twist V should be provided by the active joints of the manip-
ulator, as well as by the joints of each leg. When joint h (active or passive) on
leg i is failed its velocity i q̇ch will be different than the desired value i q̇h, and
i q̇f =i [q̇1 . . . q̇ch . . . q̇l]T . When i q̇ch �= i q̇h the velocity equation for leg i

is

Vf =i J i q̇f =
l∑

k=1

iJk
i q̇k − iJh(

i q̇h − i q̇ch) (3)

Then, the manipulator would be considered as failed unless the lost motion of plat-
form is in the range space of the Jacobian matrix corresponding to the remaining
(healthy) joints of that leg [5]. For full recovery of the lost twist iJh(

i q̇h − i q̇ch), in
general the leg with a failed joint should have a redundant joint.

2.1 Correctional Input from Healthy Joints

When joint h has a different velocity the correctional velocity to be provided by the
remaining joints of leg i, i q̇corr = i[q̇corr1 q̇corr2 . . . 0 . . . q̇corr l−1 q̇corr l]T ,
will compensate for the lost twist partially or completely, where in i q̇corr entry h is
replaced by a zero. Then, the recovered velocity of the platform will be

Vr = iJ i q̇f +i J i q̇corr = iJ i q̇f +i Jf
i q̇corr (4)

where in iJf = [iJ1
iJ2 . . . 0 . . . iJl−1

iJl], column h is replaced by zeros.
To fully recover the lost twist, after applying the correctional velocity the change

in the twist should be zero, i.e., V − Vr = iJ(i q̇ −i q̇f ) − iJf
i q̇corr = 0. Then,

the correctional velocity of the healthy joints will be

i q̇corr = iJ#
f

iJh(
i q̇h −i q̇ch) = iJ#

f
iJ(i q̇ − i q̇f ) (5)

where i q̇ −i q̇f = i[0 0 . . . (q̇h − q̇ch) . . . 0 0]T is the lost motion due to failure
of joint h. Then, the overall joint velocities will be

i q̇tot = i q̇f + i q̇corr = iJ#
f

iJ i q̇ + (I − iJ#
f

iJ)i q̇f = iJ#
f

iJ i q̇ (6)

If the velocities of g joints of leg i are different than the required values the
corresponding g columns of iJf will be zero. The lost platform twist will be∑

iJh(
i q̇h − i q̇ch) = iJ(i q̇ − i q̇f ) and the correctional velocity will be

i q̇corr = iJ#
f

∑
iJh(

i q̇h − i q̇ch) = iJ#
f

iJ(i q̇ −i q̇f ) (7)

where the summation is taken over the failed joints.
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When iJf has full row-rank, i.e., V belongs to the range space of iJf , V ∈
R(iJf ), if i q̇ is not physically consistent, e.g., leg i has a combination of revolute
and prismatic joints, the weighted right-generalized inverse [2] of iJf is formulated
such that i q̇T (Wq̇

i q̇) is physically consistent. Then

iJ#
f w = W−1

q̇
iJT

f

(
iJf W−1

q̇
iJT

f

)−1
. (8)

Otherwise, for physically consistent i q̇, iJ#
f = iJT

f (iJf
iJT

f )−1.
The deviation in the platform twist after applying the correctional velocity will

be zero when V ∈ R(iJf ). Hence, the condition for full recovery is

VR⊥ =
(

I − iJf
iJ#

f

)
V = 0 (9)

If some entries of VR⊥ = (I−iJf
iJ#

f )V are not zero the corresponding components
of the platform twist could not be completely recovered. When some of g failed
joints have non-zero velocity V∗ = V − ∑

Jh
i q̇ch could be used in (9). In case iJf

does not have full row-rank, in general, the lost motion cannot be fully recovered
and the platform twist that best approximates the lost motion in the least-square
sense is calculated using the weighted left-GI of iJf .

When the number of failed joints is equal to the number of redundant actuators,
g = l − m, as long as the leg is not at a singularity, after removing the columns
of the m × l Jacobian matrix corresponding to failed joints, the reduced Jacobian
matrix iJr will be an m × m square matrix with rank m and in general there will
be a unique solution for the velocity of healthy joints. When g < l − m while the
rank of iJf is m there will be infinite solutions for i q̇corr and i q̇tot . In the following
subsections, expressions for i q̇corr and i q̇tot are derived considering their norms.

2.2 Minimum Norm for Correctional Velocity Vector

When g out of l actuators/joints of leg i are failed, to minimize the jump in the
velocity of joints after failure while providing the platform twist, the objective func-
tion will be the square of the Euclidean norm of the weighted correctional velocity
vector (W1/2

q̇
i q̇corr ) · (W1/2

q̇
i q̇corr ) = i q̇corr · (Wq̇

i q̇corr ). The linear constraint

equation in terms of the overall velocity vector i q̇tot is V iJ i q̇tot = 0. The Lagrange
function L is formulated by augmenting the constraint equation with the objective
function using the Lagrange multiplier vector λ

L(i q̇corr ,λ) = 1

2
i q̇corr · (Wq̇

i q̇corr ) − λT (V − iJ i q̇tot ) (10)

If i q̇corr · (Wq̇
i q̇corr ) is a minimum for the original constrained problem at the

stationary point (i q̇corr ,λ) the gradient of L vanishes, i.e., ∇L(i q̇corr ,λ) = 0.
When i q̇ch = 0 the constraint equation is V − iJf

i q̇tot = 0 and
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∂L(i q̇corr ,λ)

∂i q̇corr

= Wq̇
i q̇corr − iJf

T
λ = 0 ⇒ i q̇corr = W−1

q̇
iJf

T
λ (11)

∂L(i q̇corr ,λ)

∂λ
= iJf

i q̇tot − V = 0 ⇒ iJf
i q̇f + iJf

i q̇corr = V (12)

then λ = (iJf W−1
q̇

iJf
T
)−1(V − iJf

i q̇f ), iJ i q̇f = iJf
i q̇f for i q̇ch = 0

i q̇corr = iJ#
f w

iJ(i q̇ − i q̇f ) (13)

and iJ#
f w = W−1

q̇
iJf

T
(iJf W−1

q̇
iJf

T
)−1 is the weighted right-GI of iJf .

When i q̇ch �= 0 the constraint equation is V − iJ i q̇tot = 0. To ensure zero

correctional velocity for the failed joints, iJ
T

λ is replaced with iJf
T

λ for i q̇corr

∂L(i q̇corr ,λ)

∂i q̇corr

= Wq̇
i q̇corr − iJ

T
λ = 0 ⇒ i q̇corr = W−1

q̇
iJf

T
λ (14)

∂L(i q̇corr ,λ)

∂λ
= iJ (i q̇f + i q̇corr ) − V = 0 ⇒ iJ i q̇f + iJ i q̇corr = V.

(15)

Then λ = (iJ W−1
q̇

iJf
T
)−1(V− iJ i q̇f ), and as iJf

T
(iJ iJf

T
)−1 = iJf

T
(iJf

iJf
T
)−1

i q̇corr = iJ#
f w(V − iJ i q̇f ) = iJ#

f w
iJ(i q̇ − i q̇f ) (16)

As indicated by equations (13) and (16), the failure recovery methodology of Sec-
tion 2.1 results in minimum 2-norm solution for the correctional velocity vector.
To have physically consistent twist (W1/2

V V) · (W1/2
V V) = V · (WV V), using

the reformulated constraint equation W1/2
V V = W1/2

V
iJ W1/2

q̇ W−1/2
q̇ q̇tot , the

weighted GI will be iJ#
f w = W−1/2

q̇ (W1/2
V

iJf
T

W−1/2
q̇ )# W1/2

V , which will re-

sult in i q̇corr of equations (13) and (16) when iJf has full row-rank, and iJ#
f w =

(iJf
T

WV
iJf )−1 iJf

T
WV when iJf has full column-rank.

2.3 Minimum Norm for Overall Velocity Vector

To minimize the actuation energy after failure while providing the required platform
twist, the objective function will be the square of the Euclidean norm of the weighted
overall velocity vector, i q̇tot · (Wq̇

i q̇tot ). The linear constraint equation in terms of
i q̇tot is V − iJ i q̇tot = 0. The Lagrange function L is

L(i q̇tot ,λ) = 1

2
i q̇tot · (Wq̇

i q̇tot ) − λT (V − iJ i q̇tot ) (17)

and when i q̇tot · (Wq̇
i q̇tot ) is a minimum ∇L(i q̇tot ,λ) = 0.
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When i q̇ch = 0, to have zero overall (and correctional) velocity for the failed
(jammed) joints, the constraint equation is V − iJr

i q̇tot r = 0, where iJr and
i q̇tot r are respectively obtained by removing the columns and entries of iJ and
i q̇tot corresponding to the failed joints.

∂L(i q̇tot r ,λ)

∂i q̇tot r

= Wq̇
i q̇tot r − iJr

T
λ = 0 ⇒ i q̇tot r = W−1

q̇
iJr

T
λ (18)

∂L(i q̇tot r ,λ)

∂λ
= iJr

i q̇tot r − V = 0 ⇒ iJr
i q̇ tot r = V (19)

then λ = (iJr W−1
q̇

iJr
T
)−1V and

i q̇tot r = W−1
q̇

iJr
T

(iJr W−1
q̇

iJr
T
)−1V = iJ#

rwV = iJ#
rw

iJ i q̇ (20)

and the correctional velocity from the healthy joints will be i q̇corr r = i q̇tot r−i q̇f r ,
where the reduced joint velocity vector after failure i q̇f r is obtained by removing
the zero entries of i q̇f corresponding to failed joints.

When i q̇ch �= 0 the constraint equation is V − iJ i q̇tot = 0. To calculate the
minimum norm overall joint velocity vector, first the portion of the platform twist
provided by the failed joints with i q̇ch �= 0 should be removed from the required
platform twist. When gc out of g failed joints have non-zero velocity

V∗ = V −
∑
gc

Jk
i q̇ck (21)

The Lagrange function and its partial derivatives in terms of the overall velocity of
healthy joints are

L(i q̇tot r ,λ) = 1

2
i q̇tot r · (Wq̇

i q̇tot r ) − λT (V∗ − iJr
i q̇tot r ) (22)

∂L(i q̇tot r ,λ)

∂i q̇tot r

= Wq̇
i q̇tot r − iJr

T
λ = 0 ⇒ i q̇tot r = W−1

q̇
iJr

T
λ (23)

∂L(i q̇tot r ,λ)

∂λ
= iJr

i q̇tot r − V∗ = 0 ⇒ iJr
i q̇tot r = V∗. (24)

Then λ = (iJr W−1
q̇

iJr
T
)−1V∗ and the overall velocity of healthy joints is

i q̇tot r = iJ#
rwV∗ = iJ#

rw

(
iJ i q̇ −

∑
gc

Jk
i q̇ck

)
(25)

i q̇tot is obtained by incorporating the velocities of failed joints (zero and non-zero
velocities). As indicated by equations (20) and (25), the recovery methodology of
Section 2.1 results in the minimum 2-norm solution for the overall velocity vector.
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3 Case Study

Considering the manipulator of Figure 1(a), to form kinematically redundant legs,
two active prismatic joints, with axes in the Y and X directions, are added to each leg
between the base and the first revolute joint; the P−→ P−→R P−→R layout of Figure 1(b).

The platform twist V is related to the joint velocities of leg i, i q̇, as

⎡
⎣

vx

vy

ϕ̇

⎤
⎦ =

⎡
⎣

0 1 lisαi + rBi/P s(αi + βi) −cαi rBi/P s(αi + βi)

1 0 −licαi − rBi/P c(αi + βi) −sαi −rBi/P c(αi + βi)

0 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎢⎣

ḋyi

ḋxi

α̇i

l̇i
β̇i

⎤
⎥⎥⎥⎥⎦

= iJ i q̇ (26)

where cαi = cos αi, sαi = sin αi, c(αi + βi) = cos(αi + βi) and so on.
The coordinates of the base attachment points of leg i, Ai, i = 1, . . . , 3, are

(−2,−1.5), (2,−1.5) and (0, 1.5), respectively. The position of connection points
of leg i, Bi , on the platform is set at a constant radius of rBi/P = 0.25 meters
with angular coordinates, θi , of −150◦,−30◦ and 90◦. When the platform pose
is p = [0 0]T meter and ϕ = −30◦ leg 3 is in the Y direction with the joint
displacements of 3q = [0 0.125 90 1.283 − 30]T . Then, the leg Jacobian matrix
is

3J =
⎡
⎣

0 1.0 1.5 0 0.217
1.0 0 −0.125 −1.0 −0.250
0 0 1.0 0 1.0

⎤
⎦ (27)

For the twist of V = [1 0.5 0]T , the minimum norm vector of joint velocity is

3q̇ = 3J#V = [0.250 0.548 0.352 − 0.250 − 0.352]T (28)

with a magnitude of ‖3q̇‖2 = 0.821. When the second active joint (h = 2) of leg
3 is jammed there remain four joints (two active prismatic and two passive revolute
joints) for a 3 DOF task. Then 3q̇f = [0.250 0 0.352 − 0.250 − 0.352]T with
‖3q̇f ‖2 = 0.611, and the platform twist is Vf = 3J 3q̇f = [0.452 0.5 0.0]T .

The failure of this active joint could be fully recovered as (I − 3Jf
3J#

f ) V = 0.
Using an identity weighting matrix, the correctional velocity is

3q̇corr = 3J#
f

3J2 ḋx3 = [0 0 0.427 0 − 0.427]T (29)

with ‖3q̇corr‖2 = 0.604. In this configuration of leg 3, because the first and third
prismatic joints axes are collinear (and the first and second prismatic joints axes
are always perpendicular), the motion of the failed second prismatic joint is fully
recovered by the two passive revolute joints. Then, the overall joint velocities are

3q̇tot = 3q̇f + 3q̇corr = [0.250 0 0.779 − 0.250 − 0.779]T (30)
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which is identical to the overall joint velocity vector calculated with the Lagrange
multiplier method 3q̇tot r = 3J#

r V with ‖3q̇tot‖2 = 1.157.
At this pose and required twist, if the first two joints were jammed the leg would

reduce to the one in Figure 1(a) and Vf = [0.452 0.250 0.0]T . The unique solution
for recovery would be 3q̇corr = [0 0 0.427 − 0.250 − 0.427]T with ‖3q̇corr‖2 =
0.654. Then, 3q̇tot = [0 0 0.779 − 0.500 − 0.779]T with ‖3q̇tot‖2 = 1.210,
i.e., the third prismatic joint and the two revolute joints would respectively recover
the motion of the failed first and second prismatic joints.

4 Conclusion

In this article, methodologies for recovering the lost motion of manipulators due to
joint/actuator failures were presented. When a joint (active or passive) is failed the
required platform twist should be provided by adjusting the motion of the remaining
active joints of the manipulator, as well as the active and passive joints of the leg with
failed joint(s). The method discussed here examined the motion of a leg with failed
joint(s) utilizing the Jacobian matrix of the leg. A similar process could be adapted
to investigate the motion of active joints using the Jacobian matrix of manipulator.
It was shown that the procedure based on the projection of the lost joint motion onto
the orthogonal complement of the null space of the reduced Jacobian matrix results
in minimum Euclidean norm for the correctional velocity vector and the overall
velocity vector.
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A Loop-Based Approach for Rigid Subchain
Identification in General Mechanisms

Shuxian Xia, Huafeng Ding and Andres Kecskemethy

Abstract The determination of rigid or overconstrained subsystems is an important
task in the creative design of robotic mechanisms and in the processing of CAD-
generated models. While for planar mechanisms with planar graphs a number of
methods have been proposed, the case of general spatial mechanisms is still an open
topic. In this paper, a novel method for identifying rigid subsystems is presented.
The method uses the independent loops as building blocks of a graph, called kine-
matical network, which describes the overall transmission behavior. The detection
of rigid subsystems can then be realized by finding the minimal cutsets in the so-
lution flow of the kinematical network. The method is independent of the subspace
in which the bodies are moving, i.e., it is possible to mix planar, spherical and spa-
tial systems. Moreover, it is fast, as only the implicitly coupled loops need to be
processed, which comprise much less elements than the number of bodies.

Key words: Rigid subsystems, degrees of freedom, degenerate kinematic chains

1 Introduction

The topic of rigid subsystem detection has attracted scientists in the robotics and
mechanisms community for many decades. The problem is to detect whether the
overall Grübler sum of degrees of freedom (DoF) for the mechanism is composed
by substructures with positive DoF (i.e. movable subsystems) and negative DoF
(i.e. overconstrained subsystems). Such cases arise for example in the automatic
generation of candidate mechanisms in creative design of robotic devices [3], or
when the constraint graphs for the mechanisms are automatically generated by CAD
systems [10]. An example is shown in Fig. 1. Here, a loop with an internal DoF
= 1 is attached to a subsystem of internal DoF = −1. Thus, the overall Grübler
count suggests that the mechanism has DoF = 0, which is not correct, as the system
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Fig. 1 Example of a rigid subchain.

actually has a DoF of 1 and the lower subsystem can be exchanged by a single rigid
body.

Starting with the rigidity test by Laman’s theorem [9], a number of methods for
planar mechanisms [2, 5, 6, 12, 15], as well as simple spatial systems [10, 11] have
been proposed. However, as shown in [14], these methods are restricted to mech-
anisms with planar graphs, and they also do not cover the case of general spatial
mechanisms with arbitrary joints. Ding et al. [4] presented an algorithm for detect-
ing rigid subchains for planar mechanisms with also non-planar graphs. They use
the “smallest” independent loop as a starting point of a set of stepwise extended
clusters for which rigidity is tested. As a rigid subsystem does not necessarily con-
tain the smallest loop, the algorithm only works when using each independent loop
as a starting point, making the method very involving. Also recently, Sunkari [13]
presented a polynomial-time algorithm for degeneracy testing using cut sets which
may be applicable both to planar and spatial mechanisms. However, in spite of a
high complexity of O(|V |4), where |V | is the number of bodies in the graph, the
algorithm is only able to detect the rigid subchain with the highest number of over-
constraint conditions, and cannot compute the mobility type.

The idea of the present method is to base the rigidity testing on the coupling
of the independent loops of the mechanism. By looking at the global transmission
properties, search space can be restricted to subsystems where rigidity can occur,
and general mechanisms containing any mixture of spatial, planar, or other special
loops can be processed. In the following, first, the basic concept of representing gen-
eral mechanisms as networks of connected loops is recollected, and subsequently the
method for finding rigid subsystems based on the kinematical network is discussed.

2 Description of Mechanisms as Networks of Connected Loops

The concept of mechanism description using a network of linearly connected loops
was introduced in [7], and a fully automatic implementation in the symbolic formula
manipulation software Mathematica for general planar, spherical, translational and
spatial cases is described in [8]. The following planar examples are used for illus-
tration of the method, but the concepts apply one-to-one also to spatial cases. In
this approach, as a first step, a minimal cycle basis comprising a set of smallest
independent loops Li of the mechanism is determined, where ‘length’ is measured
in terms of the number of involved joint variables. Each loop has a local DoF fLi,
which is the number of loop joint coordinates minus the dimension of the subgroup
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Fig. 2 Mapping of mechanisms to kinematical networks.

of Euclidean motion in which the bodies of the loop locally move (spatial, planar,
spherical, translational, etc.). Between the loops there will be couplings at exactly
those joints in which the number of incident loops is equal to or larger than the num-
ber of incident bodies. They correspond to a balance of inner joint coordinates of
the incident loops and some constants. For example, in joint A of Fig. 2a, the sum
of joint coordinates β12 and β21 plus a constant is equal to 360°, yielding a linear
coupling between the loops L1 and L2. The thus connected loops form the so-called
kinematical network in which the loops represent local nonlinear transmission ele-
ments and the couplings between the loops represent the global interrelationships.
From the kinematical network, the DoF can be obtained as the sum of local DoF of
all loops minus the sum of linear couplings. In Fig. 2a, there are four four-bar loops
with local DoF = 1 each, and three linear couplings. Thus the overall DoF is 1. In
Fig. 2b, there are five four-bar loops with local DoF = 1 each, and four linear cou-
plings, thus the global DoF is again 1. This is identical to the usual Grübler count.
Note that here, however, one can easily combine planar, spatial, etc., loops.

An advantage of the kinematical network is that one can easily recognize recur-
sively solvable substructures by the so-called sink method [7]: here, one searches
iteratively for elements in the kinematical network for which the number of edges is
less than or equal to the local degree of freedom of the element. After finding such
an element, all edges are oriented into the element, the element together with all
ingoing edges is removed, and the procedure is re-applied to the rest of the system.
If the procedure covers all loops, one obtains a recursive solution flow (Fig. 2a). If
no such elements can be found, the network must be solved iteratively (Fig. 2b). In
this case, one chooses additional inputs and iterates the equations resulting at linear
couplings in which all edges are oriented towards the linear coupling (in Fig. 2b, q̃
is the additional input and C is the iteration coupling).
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Fig. 3 Different levels of abstraction for a given linkage.

3 Loop-Based Procedure for Rigid Subsystem Detection

In the following, the procedure for the detection of rigid subsystems is illustrated
with the example of Fig. 3a. The example mechanism is planar but all steps are
equally valid for general spatial or mixed planar/spatial mechanisms.

Initialization step
This first step consists in “initializing” the algorithm by mapping the concrete link-
age to a corresponding abstract ‘loop connection graph’ from which the ‘flow’ of
degrees of freedom is more clearly visible.

As a first substep, the minimal cycle basis and the corresponding kinematical
network is established (Fig. 3b). For better visibility, all coupling joints are marked
in Fig. 3a by a dashed circle, and four of the 31 coupling conditions (A1, A2, B, C1,
C2) have been tagged in the corresponding kinematical network Fig. 3b. Moreover,
the local degree of freedom of each loop is displayed in the upper left box of the
loop. Counting all local loop DoF together and subtracting the number of loop cou-
pling conditions, one obtains the global DoF = 30−31 =−1, which is identical to
the classical Grübler count (29 planar bodies, 44 revolute joints).

As a second substep, all recursively solvable subsystems are removed from the
kinematical network, as they are by definition movable and thus cannot contribute to
the rigidity of any other subsystem. In the present example, these are loops L14 and
L15, which can be selected as sinks in this order. In general, it can be expected that
this step will remove a substantial number of loops from the system to be further
analyzed.
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The third substep consists in orienting the edges of the kinematical network.
Typically, as in the example Fig. 2b, the edge orientation will require additional
inputs (not true independent inputs) leading to implicit constraints at some summing
junctions. In Fig. 3b, the additional inputs have been encircled by dashed ellipses,
while the implicit summing junctions are encircled by dashed ellipses and displayed
as gray-filled circles with the number of implicit constraints marked as λx (here
everywhere with λ = 1) within the circle. In the example, the start was chosen at
loop L1 and then the network was traversed such that each loop has sufficient inputs
either from predecessor loops or from further additional inputs. Note that a different
input selection will lead to a different edge orientation, but the global DoF and
that of any substructure will remain the same, as these do not depend on the order
of equation solving. One verifies that for this example one has six sink summing
junctions and five additional inputs, leading again to the global DoF =−1.

As a final substep, the corresponding oriented acyclic ‘Loop Connection Graph’
describing the level of dependency of the individual loops and the sink summing-
junctions is established. In this graph, only loops and sink summing junctions are re-
tained as nodes. The corresponding dependencies are described by weighted edges,
the weight wi of each edge describing the number of joint variables involved in the
connection. Additionally, a global ‘source’ node ‘S’ is introduced, from which the
external inputs for the loops are extracted. Starting from the source node, the ‘depth’
of each branch leading to a node describes the level of recursive dependency of the
node variables with respect to the inputs. Fig. 3c) shows the loop connection graph
for the example at hand. For better visibility, loop nodes are displayed as boxes,
while sink summing nodes are displayed as gray-filled circles.

The rest of the algorithm consists in evaluating directed ‘cuts’ through this
acyclic graph such that the source is on one side, the sink is on the other, and all
edges through which the cut passes are directed from the ‘upstream’ to the ‘down-
stream’ side. Such cuts can be easily determined using state-of-art graph-theoretic
methods [1], which are not further discussed here due to lack of space. The sum of
weights of the cut edges is termed the weight of the cut, while the sum of implicit
equations in the downstream side of the cut is termed the absorbing degree of the
cut. The DoF of the cut is the equal to its weight minus its absorbing degree. This
DoF is equal to the DoF of the nodes on the downstream side of the cut. Whenever
the DoF of the cut is less or equal to zero, the downstream subsystem will repre-
sent a rigid or an overconstrained subsystem. The cut with the minimal DoF will
determine the most overconstrained substructure.

Contraction step
In order to simplify the minimal cut search, the loop connection graph can be further
simplified by the repeated application of the following two rules (see Fig. 4):

I) Sink node contraction. For a sink node for which the sum of input weights is
larger than its absorbing degree, any minimal cut will not be altered if the sink
node ‘absorbs’ all its direct predecessor nodes at the layer of greatest depth,
i.e. all loops and absorbing degrees of one direct predecessor, or those of sev-
eral predecessor nodes at the same level. In such a case, the absorbed loops are
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Fig. 4 Loop connection graph after three contraction steps.

tagged as ‘{i,k, . . .}’ to the right of the node. The resulting weight of the con-
tracted node is equal to the union of input weights of the absorbed nodes and
those of the sink node, minus the common edges between the absorbed nodes
and the sink node, where parallel edges can be summed together. Note that after
application of this contraction step, implicit nodes need not to be sinks anymore.
Application of this rule is shown by the several dashed ellipses in Fig. 3 leading
to ‘step 1’ in Fig. 4.

II) Binary branch contraction. For a binary branch connecting a non-binary start
node VS with a non-binary end node VE , one can determine the ‘weakest link’
as that node closest to the start node for which a cut at its input produces the
minimum value of weight at the cut minus the sum of implicit equations in the
upstream part of the branch, including the absorbing degree of the end node.
The branch is then replaced by a single edge with the weight of the cut, where
all loops and absorbing degrees in the upstream part of the cut are included in
the end node, while all loops and absorbing degrees of the downstream part are
included in the start node. Application of this rule is seen in the transition from
‘step 2’ to ‘step 3’ in Fig. 4 for the loops L10,L12 and {L11,L13}.

Pruning and cutting step
In order to find the minimal cuts, one ‘pruned’ graph is established for each sink. The
pruned graphs are obtained by removing all vertices that do not lie on the path from
the source to the selected sink (Fig. 5). For each of the pruned graphs, all cuts Xi

having non-positive DoF are selected. In Fig. 5, these are the cuts X1,X2,X3,X4 with
DoFs 0,−1,−2,0, respectively. For each cut Xi, there is an associated set Di with
the loops (i.e. bodies and joints) contained in the downstream side of the cut. Such
sets may include each other, and may have a varying degree of non-positive DoF.
By sorting the sets according to their DoF, the rigid subchains can be determined as
follows:



A Loop-Based Approach for Rigid Subchain Identification in General Mechanisms 25

Fig. 5 Pruned graphs and minimal cuts Xi for each of the four sinks from Fig. 4.

1) Select the cut X∗
i with the most negative DoF. The corresponding downstream

set D∗
i is an overconstrained or rigid subassembly. In the example of Fig. 4, the

minimal cut is X3 with corresponding loop set D∗
3 = {L1, . . . ,L6} and DoF =−2.

2) For all cuts Xk with Dk ⊂ D∗
i , the sets Dk inherit the DoF of D∗

i . Thus these sets
can be ignored. In the present example, this is true for cut X4 which inherits the
DoF =−2 from X3.

3) For all sets Dm which are supersets of D∗
i , the actual degree of freedom cannot

be determined from the cut, as there may be further internal DoF count compen-
sations. Thus these cuts must be removed from the list. In the present this applies
to the cut X2.

4) If there are any cuts left, continue with step (1). In the present example, this
corresponds to cut X1 with loop set D1 = {L10, . . . ,L13} and DoF = 0.

Eventually, no further cuts remain in the list. Then, it may be necessary to run
again the algorithm with the rigid and overconstrained subsystems replaced by sin-
gle rigid bodies. However, this is seldom necessary (as in the present example), so
that usually the algorithm terminates here.

Note that while a negative DoF of a cut means that the subsystem Di at the down-
stream side of the cut will be overconstrained, for the surrounding system, this sub-
system will behave like a regular rigid body. This means that negative DoFs are not
propagated through the linkage and that the remaining DoFs will be decreased only
as if the overconstrained subgraph has DoF = 0. The replacement of an overcon-
strained subgraph by a rigid body in the loop connection graph can thus be easily
realized by removing the subgraph altogether with all its outgoing edges, and in-
creasing the number of implicit equations at the start node of each edge through the
cut by the weight of this edge. In the graph of Fig. 5, the complete subgraph of the
cut X3 can be removed, and removal of the subgraph of cut X1 increases the implicit
equation count of loops L9 and L8 by one, respectively. Hence, the remaining sub-
graph consists of loops L7,L8 and L9 with 4 global inputs and 3 implicit constraints.
This yields the correct DoF of 1 for loops L7,L8 and L9, and also of the initially
removed recursively solvable loops L14 and L15. Thus it can be seen that the rigidity
detection algorithm also correctly determines the mobility of the remaining system.
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4 Conclusions and Acknowledgments

By the proposed loop-based approach, the detection of rigid subsystems in general
linkages is reduced to the determination of minimal cut sets in the corresponding
loop connection graphs. This (1) reduces search space considerably, and (2) allows
one to mix planar and spatial subsystems without any restrictions. Moreover, the
method automatically provides the mobility of the remaining system. This may be
used for automatic generation of the kinematical transmission equations at position,
velocity and acceleration level [8]. The method has been fully implemented in Math-
ematica, and all examples for rigidity testing from the literature have been correctly
processed. Further steps will be to implement efficient restart procedures after re-
placement of overconstrained subsystems by rigid bodies and to include known sin-
gle loop special cases such as Bennett or Bricard configurations by pattern matching.

The funding of a research stay at the University of Duisburg-Essen of the second
author as a Humboldt research fellow is greatly acknowledged. Moreover, special
thanks are due to Andreas Scholz for his valuable help in the drawing of the graphs.
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Self-Motions of Planar Projective Stewart
Gough Platforms

G. Nawratil

Abstract In this paper, we study self-motions of non-architecturally singular par-
allel manipulators of Stewart Gough type, where the planar platform and the pla-
nar base are related by a projectivity. By using mainly geometric arguments, we
show that these manipulators have either so-called elliptic self-motions or pure
translational self-motions. In the latter case, the projectivity has to be an affinity
a+Ax, where the singular values s1 and s2 of the 2× 2 transformation matrix A
with 0 < s1 ≤ s2 fulfill the condition s1 ≤ 1 ≤ s2.

Key words: Self-motion, Stewart Gough platform, Borel Bricard problem

1 Introduction

The geometry of a planar Stewart Gough (SG) platform is given by the six base
anchor points Mi with coordinates Mi := (Ai,Bi)

T with respect to the xy-plane πM of
the fixed system Σ0 and by the six platform anchor points mi with coordinates mi :=
(ai,bi)

T with respect to the xy-plane πm of the moving system Σ . If the geometry
of the manipulator is given as well as the six leg lengths Ri, then the SG platform
is in general rigid, but under particular conditions the manipulator can perform an
n-parametric motion (n > 0), which is called self-motion. Note that such motions
are also solutions to the famous Borel Bricard problem (cf. [1–3]).

It is well known that planar SG platforms which are singular in every possi-
ble configuration, possess self-motions in each pose. These so-called architecturally
singular planar SG platforms were extensively studied in [4–7]. Therefore, we are
only interested in self-motions of planar SG platforms, which are not architecturally
singular.

G. Nawratil
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In this paper, we discuss the case where the base anchor points Mi and the plat-
form anchor points mi are related by a non-singular projectivity κ . 1 For the re-
mainder of this article we call such manipulators planar projective SG platforms.
Note that a projectivity is the most general linear mapping between two projective
extended planes, and that κ is uniquely determined by corresponding quadrangles.

It is well known (cf. Chasles [8]), that a planar projective SG platform is architec-
turally singular if and only if one set of anchor points is located on a conic section.
Under consideration of this result the theorem given by Karger in Sec. 3 of [9] can
be rewritten as follows:

Theorem 1. A singular configuration of a planar projective SG platform, which is
not architecturally singular, does not depend on the distribution of the anchor points
in the platform and the base, but only on the mutual position of the planes πM and
πm and on the correspondence between them. The configuration is singular iff either
one of the legs can be replaced by a leg of zero length or two legs can be replaced
by aligned legs.

A non-singular projectivity which maps ideal points onto ideal points is a non-
singular affinity. The subcase of planar parallel manipulators of SG type with
affinely equivalent platform and base (= planar affine SG platforms) was studied
by Karger in [9–11]. It should also be noted that according to Mielczarek et al. [12],
one can attach a two-parametric set of additional legs to planar affine SG platforms
without restricting the direct kinematics, whereas the correspondence between the
anchor points is given by the affinity itself.

As we want to study planar projective SG platforms we have to consider the
projective extension of the carrier planes of the platform and base anchor points, i.e.

(ai,bi) �→ (wi : xi : yi) and (Ai,Bi) �→ (Wi : Xi : Yi). (1)

Note that ideal points are characterized by wi = 0 and Wi = 0, respectively.

2 Basic Results

Lemma 1. One can attach a two-parametric set of additional legs to planar projec-
tive SG platforms without changing the forward kinematics and singularity surface.

Proof. For the proof we can use the homogenized version of the criterion given
in Eq. (12) of [13] which corresponds with the criterion for the solvability of the
inhomogeneous system of equations given in Eq. (30) of [12].

Assume a non-architecturally singular planar manipulator m1, . . . ,M6 is given.
Then one can add a further leg (with anchor points m7 and M7) to the originally legs
(without changing the direct kinematics and the singularity surface) if the following
rank condition holds (see also Remark 1 of Röschel and Mick [6]):

1 If κ is singular, one set of anchor points would collapse into a line or a point, which yields trivial
cases of architecturally singular manipulators.
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rk(Q) = 6 with Q = (q1, . . . ,q7)
T and

qi =(wiWi,wiXi,wiYi,xiWi,xiXi,xiYi,yiWi,yiXi,yiYi)
T .

(2)

Now it can easily be checked by the use of MAPLE that rk(Q) = 6 holds true for

(Wi,Xi,Yi)
T := P(wi,xi,yi)

T for i = 1, . . . ,7 (3)

where P is the matrix of the projectivity (P is a regular 3×3 matrix). �

Remark 1. Due to Lemma 1 it is clear why a singular configuration of a planar pro-
jective SG platform does not depend on the distribution of the anchor points in πM

and πm (cf. Thm. 1). �

Theorem 2. Self-motions of planar projective SG platforms, which are not archi-
tecturally singular, can only be of the following type:

1. Spherical self-motion with rotation center mκ =m,
2. Schönflies self-motion, where the direction of the rotation axis is parallel to the

planes πM and πm,
3. Elliptic self-motion.

Proof. We start by denoting the line of intersection of πM and πm by s in the projec-
tive extension of the Euclidean 3-space. As in any pose of a self-motion of a planar
projective SG platform, the manipulator has to be in a singular configuration, we
can apply Thm. 1. Therefore the manipulator is singular if and only if one of the
following cases hold:

a. πM and πm coincide,
b. S= Sκ holds, where S is the intersection point of s and sκ ,
c. s= sκ .

It is well known that every projectivity of the projective extension of the Euclidean
plane onto itself has at least one real fixed point F = Fκ . Therefore, if one pose of
the self-motion is singular due to item (a), this already implies item (1) if F is a
finite point or item (2) if F is an ideal point. Clearly, this also holds for item (b) with
respect to the fixed point S = Sκ . For the study of item (c) we consider again only
one singular configuration of the self-motion. As s= sκ holds the projectivity from
s onto itself can be (i) hyperbolic, (ii) parabolic or (iii) elliptic.

Item (i) immediately implies that the self-motion can only be a pure rotation
about the finite axis s which is a special case of item (1) and (2), respectively. If s
is the ideal line (⇒ πM ‖ πm) then the self-motion is a pure translation, which is a
special case of item (2).

For item (ii) we have one fixed point and we end up with item (2) and (1), re-
spectively, depending on the circumstance if the fixed point is an ideal point or not.

Item (iii) corresponds to the case of Thm. 1, where two legs can be replaced by
collinear legs, as we cannot attach a leg with zero length (over R) without chang-
ing the direct kinematics and singularity surface. Therefore the following definition
finishes the proof of Thm. 2.
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Definition 1. A self-motion of a planar projective SG platform is called elliptic, if
each pose of this motion is singular due to item (c,iii). �

Due to Thm. 2 we only have to investigate spherical self-motions with rotation
center mκ = m (cf. Sec. 3), Schönflies self-motions with the rotation axis parallel
to πM and πm (cf. Sec. 4) and elliptic self-motions (cf. Sec. 5).

3 Spherical Self-Motions

If a planar projective SG platform has a spherical self-motion about mκ =m, then
the spherical image of this manipulator with respect to the unit sphere S2 centered in
mκ =m also has to have a self-motion. Therefore the problem reduces to the deter-
mination of non-degenerated2 spherical 3-dof RPR manipulators with self-motions,
where the three base and platform anchor points are located on great circles. The
following result is proven in Appendix A of the corresponding technical report [14]:

Lemma 2. A non-degenerated spherical 3-dof RPR manipulator, where the base an-
chor points M◦

1, M◦
2, M◦

3 and the platform anchor points m◦
1, m◦

2, m◦
3 are located on

great circles, can only have a self-motion if two platform points m◦
1 =m◦

3 coincide
(after relabeling of anchor points and interchange of platform and base) and if the
spherical lengths R◦

i of the legs equal R◦
1 =M◦

1M
◦
2, R◦

2 =m◦
1m

◦
2, R◦

3 =M◦
3M

◦
2.

The self-motion of the manipulator given in Lemma 2 is a pure rotation about the
axis a := [mκ =m,m◦

1 =m◦
3 =M◦

2] (cf. Fig. 1a). Trivially, we can only add an ad-
ditional leg (with anchor points m◦

4 and M◦
4) to this manipulator without restricting

the self-motion if m◦
4 =m◦

1 or M◦
4 =M◦

2 holds. This has the following consequence
for the corresponding planar projective SG platform: κ has to map all platform an-
chor points /∈ a on points of a. Therefore κ cannot be a bijection and we get the
contradiction. This proves the following theorem:

Theorem 3. Planar projective SG platforms, which are not architecturally singular,
do not have spherical self-motions with rotation center mκ =m.

4 Schönflies Self-Motions

The Schönflies motion group is a four-dimensional subgroup of the Euclidean mo-
tion group and consists of all translations combined with all rotations about a fixed
direction d, which in our case is parallel to πM and πm. Moreover, it is well known
(e.g. [15]) that platform points being on lines parallel to d have congruent trajecto-
ries in a Schönflies motion. Therefore we can translate every leg of the manipulator
in direction d during a Schönflies self-motion without changing this motion. This
property is important for the following argumentation.

2 Neither all platform anchor points nor all base anchor points collapse into one point.
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Fig. 1 (a) Non-degenerated spherical 3-dof RPR manipulator with a self-motion. (b,c) Non-
degenerated planar 3-dof RPR manipulators with self-motions: Circular translation (b) and a pure
rotation about the point M−

2 =m−
1 =m−

3 (c), which is the planar analogue of (a).

We choose the y-axis of the moving and the fixed frame parallel to the direction d.
Moreover, we choose a line g ∈ πm which is orthogonal to d (cf. Fig. 2a). Under the
projectivity κ the platform anchor points mg ∈ g are mapped to the corresponding
base anchor points Mg := mgκ on the line gκ ∈ πM, which cannot be parallel to d
(cf. Fig. 2b). Note that the lines [mg,Mg] belong to a regulus R.

Now we choose a platform point m /∈ g and denote the footpoint on g with respect
to m by m f . Then τ denotes the signed distance of m f and m with respect to the
direction d. Due to the above considerations we can also add the leg [m,mτ ] (beside
the leg [m,mκ ]) without restricting the self-motion, where mτ denotes the point
which we get by translating m f κ about τ in direction d. If this construction is done
for all points of a line h ‖ g through m we get the line hτ . We distinguish two cases:

• hκ 
= hτ: Now every point m ∈ h (with exception of me := {hκ ∩ hτ}κ−1) can
only rotate about the line [mτ ,mκ ] ‖ d (cf. Fig. 2a,b). Therefore the platform
cannot move in direction d during the self-motion and the problem reduces to the
following planar one: Determine all non-degenerated 3-dof RPR manipulators
with collinear platform anchor points m−

1 , m−
2 , m−

3 and collinear base anchor
points M−

1 , M−
2 , M−

3 possessing a self-motion.
It is well known, that there only exists the so-called circular translation (cf.
Fig. 1b) beside the planar analogue (cf. Fig. 1c) of the spherical self-motion
given in Lemma 2, which yields for the same arguments as in the spherical case
no solution to our problem. The circular translation implies that the projectivity
κ with matrix P = (pi j) has to be an affinity of the following form:

Mi =

(
p21

p31

)
+

(
1 0

p32 p33

)
mi with p33 ∈R\{0,1} and p21, p31, p32 ∈R.

(4)
This can be seen as follows: As the pencil of lines through the ideal point of d
has to be mapped onto an identical pencil of lines through the ideal point of d,
the ideal line has to be mapped onto itself (⇒ p12 = p13 = 0). As the entries of
P are still homogeneous, we can set p11 = 1 without loss of generality (w.l.o.g.),
as p11 = 0 implies that κ is singular. Moreover, the fact that the above mentioned
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Fig. 2 Sketch of the mappings κ and τ between the platform (a) and the base (b). In (c) the proof
of Thm. 5 is illustrated: common point and tangent of an ellipse k and the unit circle c.

pencils are identical yields p22 = 1. Finally, we get p23 = 0 from the condition
that the ideal point in direction d is fixed under κ . Moreover, p33 
= {0,1} has to
hold, because otherwise the affinity is singular resp. hκ = hτ holds, a contradic-
tion.

• hκ = hτ: Now this has to hold for all distances τ because otherwise we get the
above case. As a consequence the projectivity κ with matrix P = (pi j) has to be
an affinity of the following form:

Mi =

(
p21

p31

)
+

(
p22 0
p32 1

)
mi with p22 ∈ R\{0} and p21, p31, p32 ∈ R.

(5)
This can be seen as follows: The condition that the ideal point of the y-axis of
the moving frame is mapped onto the ideal point of the y-axis of the fixed frame
yields p13 = p23 = 0. Now we invest the property that the anchor points of a
leg, during its translation in direction d, always have to correspond one another
within the projectivity. This can be expressed as follows:

P

⎛
⎝1

u
v

⎞
⎠+

⎛
⎝0

0
τ

⎞
⎠= P

⎛
⎝ 1

u
v+ τ

⎞
⎠ . (6)

As the first two rows are fulfilled identically, only the third row yields a condi-
tion, which reads as follows: τ(p11 − p33 + p12u) = 0. This equation can only be
fulfilled for all u ∈ R if p12 = 0 (⇒ κ is an affinity ) and p11 = p33 hold. As the
entries of P are still homogeneous, we can set p11 = 1 w.l.o.g., as p11 = 0 implies
that κ is singular. Moreover, p22 
= 0 has to hold, because otherwise the affinity
is also singular.

These considerations prove the first two sentences of the following theorem:

Theorem 4. A planar projective SG platform, which is not architecturally singular,
can only have a Schönflies self-motion with the direction d of the rotation axis paral-
lel to πM and πm, if it belongs to the subset of planar affine SG platforms. Moreover,
if we choose the y-axis of the moving and the fixed frame in direction of d, the affinity
κ has to be of the form given in Eqs. (4) or (5). In addition, all self-motions of these
manipulators are pure translations and the self-motion is two-dimensional only if
the platform and the base are congruent and all legs have equal length.
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The last sentence of Thm. 4, which was already known to Karger [9], can easily
be proved by direct computations, which are given in Appendix B of the correspond-
ing technical report [14]. Moreover, we can give a geometric characterization of all
non-architecturally singular planar affine SG platforms with self-motions:

Theorem 5. Assume a planar affine SG platform, which is not architecturally sin-
gular, is determined by Mi = a+Ami. Then this manipulator has a self-motion if
and only if the singular values s1 and s2 of A with 0 < s1 ≤ s2 fulfill s1 ≤ 1 ≤ s2.

Proof. First of all, we prove that a planar affine SG platform cannot have an elliptic
self-motion. If s= sκ is not the ideal line, then the projectivity from s onto itself has
at least one fixed point, namely the ideal point of s= sκ . Therefore s= sκ has to be
the ideal line during the whole self-motion. This implies that the elliptic self-motion
is a Schönflies motion, where the direction of the rotation axis is orthogonal to
πM ‖ πm. As all points of the platform have to run on spherical paths, this Schönflies
motion can only be the Borel Bricard motion (cf. [1, 2]) due to [15]. Therefore the
corresponding points of the platform and base have to be related by an inversion. As
an inversion is no projectivity, we get a contradiction.

Under consideration of this result and Thms. 2 and 3, planar affine SG platforms
can only have self-motions given in Thm. 4. We consider the image of the unit
vectors c = (cosϕ ,sinϕ) ∈ πm for ϕ ∈ [0,2π] under κ . Clearly, the tie points of the
vectors Ac are located on an ellipse k (including the special case of a circle).

� The necessary and sufficient condition for an affinity of the form Eq. (5) is that
a vector d1 of Ac has length 1. This corresponds geometrically to the common
points of k and the unit circle c (cf. Fig. 2c).

� The necessary and sufficient condition for an affinity of the form Eq. (4) is that
a vector d2 of Ac exists, which has distance 1 from the ellipse tangent in its
conjugate point d2 on k. This corresponds geometrically to the determination of
common tangents of k and c (cf. Fig. 2c).

If we choose a new coordinate system in the base and platform such that the y-axis
is parallel to di and A−1di, respectively, we end up with an affinity of the form given
in Eq. (5) for i = 1 resp. Eq. (4) for i = 2. Clearly, we only get real common points
and tangents of k and c if the singular values s1 and s2 of A fulfill s1 ≤ 1 ≤ s2. �
Remark 2. Note, that Thm. 5 also implies the result of [10] that planar equiform
SG platforms cannot have a self-motion if they are not architecturally singular, as
s1 = s2 
= 1 holds. Finally, it should also be mentioned that all planar affine SG
platforms given in Eq. (4) and Eq. (5) are Schönflies-singular manipulators due to
item (3) and item (2), respectively, of Thm. 3 given by the author in [16]. �
Example 1. We verify Thm. 5 at hand of the planar affine SG platform with a self-
motion given by Karger on page 162 of [9]. The first three pairs of anchor points
are determined by a1 = b1 = b2 = A1 = B1 = B2 = 0, a2 = 1, a3 = 5, b3 =−4 and
A2 = A3 = B3 = 2. For this example a, A, s1 and s2 are given by:

a =

(
0
0

)
, A =

(
2 2
0 − 1

2

)
, s1 =

√
41−5

4
≈ 0.35, s2 =

√
41+5

4
≈ 2.85.
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5 Conclusion and Future Research

We proved that non-architecturally singular planar projective SG platforms have
either elliptic self-motions (Def. 1) or pure translational self-motions (Thms. 2–4).
The latter are the only self-motions of planar affine SG platforms (Thm. 5).

The study of elliptic self-motions is dedicated to future research. It remains open
whether these self-motions even exist, as no example is known to the author so far.
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Asymptotic Singularities of Planar Parallel
3-RPR Manipulators

Michel Coste

Abstract We study the limits of singularities of planar parallel 3-RPR manipulators
as the lengths of their legs tend to infinity, paying special attention to the presence
of cusps. These asymptotic singularities govern the kinematic behaviour of the ma-
nipulator in a rather large portion of its workspace.

Key words: Parallel robots, singularities

1 Introduction

Planar 3-RPR manipulators have been extensively studied, see for instance [1–10].
Much attention has been paid to the analysis of the singularities of these manipu-
lators. These singularities govern the kinematic properties of the manipulators, for
instance their ability to perform singularity-free assembly mode changing.

It has been reported in several papers (see for instance [8]) that the picture of the
singularities in the actuated joint space stabilizes when the lengths of the legs are
sufficiently large. Actually, in several examples, this stabilization appears already
when the lengths of legs are two or three times the lengths of the sides of the base
and platform triangles. Figure 1 exemplifies this phenomenon.

We study in this paper this stable configuration, introducing the limits of sin-
gularities of planar parallel 3-RPR manipulators as the lengths of their legs tends
to infinity. These asymptotic singularities govern the kinematic behaviour of the
manipulator in a rather large portion of its workspace. We classify the 3-RPR ma-
nipulators with respect to the features of this stable configuration of singularities.
We pay special attention to the presence of cusps in the singular locus, since their
presence is crucial for the possibility of singularity-free assembly mode changing.
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Fig. 1 Asymptotic stability of the section of the singularity surface of a 3-RPR manipulator: sec-
tions at r1 = 20,30,40,60,100.

Fig. 2 3-RPR, parameters and variables used.

2 Mathematical Modelling

The notations, the parameters and the variables we use are explained in Figure 2.
The geometry of the base (resp. platform) is described by the parameters

bA,hA,dA (resp. bB,hB,dB and a sign ε = ±1). In the direct orthonormal frame at-
tached to the base with origin A1, A2 has coordinates (bA,0) (bA > 0) and A3 has
coordinates (dA,hA) (hA > 0). In the direct orthonormal frame attached to the plat-
form with origin B1, B2 has coordinates (bB,0) (bB > 0) and B3 has coordinates
(dB,εhB) (hB > 0); the sign ε is −1 when the triangle B1B2B3 is oriented clock-
wise. We always assume that neither triangle is flat, i.e. bAhAbBhB �= 0. The position
of the vertex B1 of the platform is given in polar coordinates by the angle θ and the
length r1 of the leg A1B1. The orientation of the platform is given by the angle ϕ .
We shall also use the angle ψ = θ −ϕ +π instead of ϕ in order to simplify some
equations.

We denote by r2 and r3 the lengths of the legs A2B2 and A3B3. These lengths are
given by
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r2
2 = r2

1 +2r1
(
(bB cosϕ −bA)cosθ +bB sinϕ sinθ

)
−2bAbB cosϕ +b2

A +b2
B

r2
3 = r2

1 +2r1
(
(dB cosϕ − εhB sinϕ −dA)cosθ +(dB sinϕ + εhB cosϕ −hA)sinθ

)

−2(dAdB + εhAhB)cosϕ +2(εdAhB −hAdB)sinϕ +d2
A +d2

B +h2
A +h2

B
(1)

3 Asymptotic Direct Kinematic Problem and Singularities

We are interested in the limits of r1−r2 and r1−r3 as r1 tends to infinity. We denote
these limits by �2 and �3, respectively. They are easily obtained from Equations (1)
as

�2 = (bA −bB cosϕ)cosθ −bB sinϕ sinθ
�3 = (dA + εhB sinϕ −dB cosϕ)cosθ +(hA −dB sinϕ − εhB cosϕ)sinθ

(2)

Equations (2) are to be seen as describing the asymptotic inverse kinematic
mapping (IKM). The asymptotic direct kinematic problem (DKP) is solving Equa-
tions (2) for θ and ϕ . This can be done by writing Equations (2) in terms of
u = tan(ϕ/2), eliminating u and writing the resultant obtained in t = tan(θ/2); this
process gives the following quartic characteristic equation in t:

0 =
(
(dBl2 −bBl3)(t

2 +1)+2hAbBt +(bAdB −dAbB)(t
2 −1)

)2

+h2
B

(
(l2(t

2 +1)+bA(t
2 −1))2 −b2

B(t
2 +1)2) (3)

If we have a value of θ such that t = tan(θ/2) is a solution of Equation (3), car-
rying this value in Equations (2) yields a linear system in cosϕ and sinϕ , whose
determinant −εbBhB does not vanish. So we obtain a unique solution (θ ,ϕ) to the
asymptotic DKP.

The asymptotic DKP has degree 4 and has no more than 4 solutions.
The Jacobian determinant of the asymptotic IKM (2) is

Jac =
(
hAbB cosθ 2 +(bAdB −dAbB)cosθ sinθ + εbAhB sinθ 2)sinϕ

+
(
(εbAhB −hAbB)cosθ sinθ +(dAbB −bAdB)sinθ 2)cosϕ

(4)

The equation Jac = 0 can easily be solved in tan(ϕ):

tan(ϕ) =
(hAbB − εbAhB) tan(θ)+(bAdB −dAbB) tan(θ)2

hAbB +(bAdB −dAbB) tan(θ)+ εbAhB tan(θ)2 (5)

There is no surprise that we get in this way the curve of poles of the rational
parametrization rSing

1 (ϕ ,θ) of the singularity surface in the workspace obtained in
[10]. This singularity curve in the torus of variables (ϕ ,θ) was already studied in the
quoted paper, where it is proved that it has two branches (connected components),
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Fig. 3 The asymptotic image singularity curve for the Innocenti-Merlet manipulator (diamond).

one passing through the point ϕ = 0,θ = 0 and the other passing through ϕ = π,θ =
0 obtained from the first by a translation of π on the angular variable ϕ .

The image by the asymptotic IKM of the singularity curve in the plane of vari-
ables (�2, �3) consists also of two branches. This curve is generically an irreducible
curve of degree 8, not rational. However, it is possible to obtain parametrizations by
analytic functions of θ of each of the branches by substituting in Equations (2) the
expressions for the trigonometric function of ϕ extracted from Equation (5). One
has to be careful in the determination of the angle ϕ from its tangent, in order to
ensure the continuity. One obtains for the first branch (the inner branch)

�in
2 =

(bA

√
δ −hAb2

B)cosθ −bB(bAdB −dAbB)sinθ√
δ

�in
3 =

(dA

√
δ −hAbBdB)cosθ +(hA

√
δ −dB(bAdB −dAbB)−bAh2

B)sinθ√
δ

(6)

where δ = (hAbB cosθ +(bAdB −dAbB)sinθ)2 +b2
Ah2

B sinθ 2. Note that δ is always
> 0, which ensures the analyticity in θ of the formulas (6). For the second branch
(the outer branch), one replaces all occurrences of

√
δ by −

√
δ in formulas (6).

4 Examples

We show here a few examples of asymptotic image singularity curves in the plane
(�2, �3). The curves are drawn using formulas (6) and their variants for the outer
branch.

The first example (Figure 3) is the Innocenti–Merlet manipulator [7], with bA =
15.9, hA = 10, dA = 0, bB = 17, εhB = 16.1, dB = 13.2; this is also the example
of Figure 1, and one recovers the stable section of the singularity surface for large
lengths of legs. The light gray indicates two solutions for the DKP, the dark gray
four solutions. The inner branch has four cusps and no double point; we call this
configuration a diamond.
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Fig. 4 Other configurations for the asymptotic image singularity curve (swallowtail and annulus).

The next examples (Figure 4) show two other configurations for the image singu-
larity curves, with the same gray scale code. In both examples we have dA = dB = 0.
The example on the left is for bA = 8, hA = 3, bB = 1, εhB = 2. The inner branch
in this case has four cusps and two double points; we call this configuration a swal-
lowtail. The example on the right is for bA = 5, hA = 4, bB = 2, εhB = 2. Here the
inner branch is just an oval; we call this configuration an annulus.

We shall explain in the next section why these three examples show all possible
stable configurations for the asymptotic image singularity curve: diamond, swallow-
tail or annulus.

5 Asymptotic Kinematics and Wave Fronts of an Ellipse

Equations (2) for the asymptotic IKM take a more symmetric form when they are
written, after substituting ϕ with θ −ψ +π , as:

(
�2

�3

)
=

(
bA 0
dA hA

)(
cosθ
sinθ

)
+

(
bB 0
dB εhB

)(
cosψ
sinψ

)
. (7)

The two summands of the right-hand side of Equation (7) are parametrizations of
ellipses EA(θ) and EB(ψ). By a linear change of coordinates, we can assume that
one of the ellipses (say EB) is a circle of radius ρ . We are then in the situation of
the paradigmatic example for wave fronts [11]: the wave front of an ellipse, which
is the envelope of the family of circles with radius ρ centred in a point of the ellipse
(the image of EA under the coordinate change). The outer branch of the wave front
is always a smooth convex curve, whereas the shape of the inner branch of the wave
front bifurcates at values ρ = β 2/α, β , α, α2/β (where α and β are respectively
the semi-major and semi-minor axes lengths of the ellipse). The stable configura-
tions of the wave front outside of the bifurcation values are the ones we encountered
in the preceding section: diamond, swallowtail and annulus.

There is a cusp of the inner branch of the wave front, where it is tangent to the
circle of radius ρ centred at P on the ellipse, when ρ is equal to the curvature radius
of the ellipse at P. Hence, there is no cusp on the inner branch of the wave front
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Fig. 5 Bifurcation between annulus and swallowtail for ρ = β 2/α and ρ = α2/β .

Fig. 6 Bifurcation between diamond and swallowtail for ρ = β and ρ = α .

when ρ is below the minimum or above the maximum of the curvature radius along
the ellipse, which are respectively β 2/α and α2/β . These values correspond to the
bifurcation between annulus and swallowtail, as shown in Figure 5 (ellipse in dotted
line, wave front in solid line, circles in light gray).

The inner branch of the wave front has four cusps and no double points for values
of ρ between β and α . These values correspond to the bifurcation between diamond
and swallowtail, as shown in Figure 6.

In conclusion, we know what are the stable configurations (diamond, swallowtail,
annulus) for the asymptotic DKP and we can characterize the bifurcations between
these stable configurations. We shall make precise the classification of 3-RPR ma-
nipulators according to these stable configurations in the following section.

6 Classification of 3-RPR Manipulators

We use the analysis of the bifurcation of the wave front of an ellipse recalled in the
preceding section. In order to do that, we change coordinates in the (�2, �3)-plane
so that the ellipse EB of Equation 7 is a circle of radius 1 in the new coordinates.

We set MA =
(

bA 0
dA hA

)
, MB =

(
bB 0
dB εhB

)
. The new coordinates (u,v) are given by

(
u
v

)
= M−1

B

(
�1
�2

)
and the equation of the ellipse EA in variables (u,v) is

(
u v

) t(M−1
A MB)M−1

A MB

(
u
v

)
= 1 (8)
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We denote by α and β the semi-major and semi-minor axes lengths of the el-
lipse described by Equation (8). The eigenvalues of the positive symmetric matrix
t(M−1

A MB)M−1
A MB are 1/α2 and 1/β 2, whence we derive an equation whose roots

are α2 and β 2:
S2

B λ 2 −UA,B λ +S2
A = 0 , (9)

with SA = bAhA/2 and SB = bBhB/2 the areas of the triangles and

UA,B =
1
4

(
b2

Ah2
B +h2

Ab2
B +(bAdB −dAbB)

2)

=
1
8

(
a2

A(b
2
B + c2

B −a2
B)+b2

A(c
2
B +a2

B −b2
B)+ c2

A(a
2
B +b2

B − c2
B)
)
,

(10)

where aA, cA, aB, cB denote the lengths of the sides A3A1, A2A3, B3B1, B2B3 re-
spectively,. The second expression for UA,B makes clear that it is symmetric w.r.t.
the three sides of the triangles. The inequality UA,B ≥ 2SASB, expressing the fact
that the discriminant of Equation (9) is always non-negative, is known in geometry
as the Neuberg-Pedoe inequality [12]; the equality case is precisely when the two
triangles are similar.

The diamond configuration occurs when β < 1 < α , i.e. when (1 − α2)(1 −
β 2)< 0. The annulus configuration occurs when 1 < β 2/α or 1 > α2/β , i.e. when
(1−α4/β 2)(1−β 4/α2) > 0. We transform these inequalities using Equation (9)
and obtain the following classification result.

The configuration of the asymptotic singularities of a 3-RPR manipulator is

• a diamond when UA,B > S2
A +S2

B,
• an annulus when U3

A,B < S2
AS2

B(3UA,B +S2
A +S2

B),

• a swallowtail when UA,B < S2
A +S2

B and U3
A,B > S2

AS2
B(3UA,B +S2

A +S2
B).

The inequality UA,B ≥ S2
A +S2

B has a geometric interpretation [13]: it is satisfied
if and only if there is a pose of the manipulator such that the three legs A1B1, A2B2

and A3B3 are parallel. No such geometric interpretation seems to be known for the
inequality U3

A,B < S2
AS2

B(3UA,B +S2
A +S2

B).
The three stable configurations we have found (diamond, annulus and swallow-

tail) only have the stable singularities [11] of a projection of a surface to a plane:
folds, cusps and transversal intersection of folds. Hence these configurations of
asymptotic singularities remain the same for the sections at large values of r1 (or
r2, or r3) of the singularity surface in the actuated joint space; the precise meaning
of “large” depends, of course, on the geometry of the manipulator.

There are non-generic manipulators for which the asymptotic singularities do not
belong to a stable configuration. This is so for “symmetric” manipulators [14]: in
this case the inner branch of the asymptotic singularity curve is reduced to a point.
We plan to study the stable perturbations of such manipulators in a future work.
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7 Conclusion

We studied the asymptotic DKP for 3-RPR manipulators. We have shown that this
is a fourth-degree problem. We have established that there are only three possible
stable configurations for the asymptotic singularities (diamond, swallowtail and an-
nulus), which remain unchanged for sufficiently large values of the lengths of the
legs. We also gave an explicit classification of 3-RPR manipulators with respect to
their asymptotic singularities.
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Classification of the Singularity Loci of m-n
Fully-Parallel Manipulators

Raffaele Di Gregorio

Abstract Singularity analysis of fully-parallel manipulators (FPMs) produced a
wide literature that tried to overcome the difficulty of algebraically calculating the
determinant of general FPM’s Jacobian. An early work of this author addressed
this problem by using Laplace expansion, and proposed an analytic expression of
general FPM’s singularity locus which contains ten terms easy to compute and geo-
metrically interpret. Such an expression is exploited here to classify the singularity
loci of all the m-n FPM architectures.

Key words: Fully-parallel manipulator, instantaneous kinematics, singular config-
uration, singularity locus

1 Introduction

Singularity analysis of parallel manipulators (PMs) is a challenging subject that
faced and explained many unforeseen behaviors of these machines (see [1] for ref-
erences), and it is central in their design for avoiding the machine breakdown and
the use of machine components that are unnecessarily over-sized.

m-n Fully-parallel manipulators (FPMs) [2] are an important class of PMs con-
sisting of a platform connected to a base by means of six kinematic chains (legs)
of type SPS1. In each leg, the distance (leg length) between the two S-pair centers,
henceforth referred to as leg endings, is the actuated-joint variable. Endings of dif-
ferent legs may coalesce into a multiple attachment point in the base (platform), thus
generating different FPM architectures that can be collected into families, named
m-n, where m and n are the numbers of separated attachment points in the base and
in the platform, respectively.
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Fig. 1 6-6 FPM architecture: (a) kinematic scheme, (b) notation.

The 6-6 FPM architecture (Fig. 1), often named general FPM, is the only one
where the attachment points are single both in the base and in the platform. Since
all the other m-n FPM architectures are obtained from the 6-6 one by suitably setting
some geometric constants, all the formulas, properties, etc. applicable to the general
FPM can be easily adapted for each particular m-n FPM architecture.

The singularity analysis of the general FPM was addressed from many points of
view (see, for instance [3–6]) that tried to overcome the difficulty of algebraically
calculating the determinant of its left-Jacobian2 which is a 6×6 matrix with entries
that are explicit functions of manipulator’s configuration. An early work [4] of this
author addressed this problem by using Laplace expansion [7], and proposed an
analytic expression of general FPM’s singularity locus which contains ten terms
easy to compute and geometrically interpret. Such an expression is exploited here
to classify the singularity loci of all the m-n FPM architectures.

The next section will determine all the m-n FPM architectures by using combi-
natorial calculus. Section 3 will show that all the singularity locus expressions can
be collected into three particular forms which allow the geometric classification of
FPM singularities. Eventually, Section 4 will draw the conclusions.

2 m-n FPM Architectures

In the literature, m-n FPM architectures have been enumerated according to the
characteristics that are relevant for the solution of the particular problem to address.
For instance, in [2], the focus was on the solution of FPMs’ direct position analysis,
and the adopted criterion was the presence of connected sets of leg sequences in the
FPM architecture to study. That approach brought to determine 21 FPM architec-
tures collected into 10 m-n FPM families. Here, the problem to address is FPMs’

2 The instantaneous input-output relationship of the general FPM relates platform’s twist (output)
to leg-lengths’ rates (input). It is a linear and homogeneous mapping which contains two 6× 6
matrices, one, here referred to as left-Jacobian, multiplies platform’s twist and the other multiplies
the 6-tuple collecting leg-lengths’ rates [4].
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singularity analysis; thus, the particular architectural features, that simplify the gen-
eral analytic expression reported in [4] for the singularity locus of the 6-6 FPM, has
to be considered. Since the most important simplifications of that expression occur
when two or more leg endings coalesce into a multiple attachment point either in the
base or in the platform, the possible presence of multiple attachment points together
with their multiplicity is the feature to be considered here for classifying all the m-n
FPM architectures. As it will be stressed later, the resulting enumeration is different
from the one presented in [2], and it includes that one.

The determination of all the m-n FPM architectures with different types of at-
tachment points must take into account the following lemmas:

(i) There are always six leg endings in the base (platform), a number of which
may coalesce to form multiple attachment points. Moreover, due to static reasons,
less than three attachment points either in the base or in the platform yield a singu-
lar structure. As a consequence, the number, k, of attachment points, either in the
base or in the platform, must belong to the set {3, 4, 5, 6}.

(ii) The four elements of the set {3, 4, 5, 6} can be combined into couples, which
include the combinations of each element with itself, to form the following 5×4/2
(= 10) couples: 6-6, 6-5, 6-4, 6-3, 5-5, 5-4, 5-3, 4-4, 4-3, 3-3. Thus, each of these
10 couples can identify a subset of FPM architectures, hereafter named m-n subset,
which collects all the FPM architectures with m attachment points in the base and n
attachment points in the platform. And the union of these 10 disjoint subsets yields
the set of all the m-n FPM architectures.

(iii) More than three leg endings which coalesce into one multiple spherical
pair yield an hyperstatic substructure3. Thus, the leg-ending coalescences can in-
volve either two or three leg endings (i.e., only double or triple spherical pairs
are allowed), which implies that the multiplicity, μi, of the ith attachment point
(i = 1, . . . ,k with k ∈ {3,4,5,6}) must belong to the set {1, 2, 3} and satisfy the
condition: μ1 +μ2 + · · ·+μk = 6.

(iv) If two legs share both the endings, they will constitute an hyperstatic sub-
structure. Thus, two legs can share only one ending either in the base or in the
platform.

In order to find all the m-n FPM architectures, one just needs to identify how
many elements, which satisfy (iii) and (iv), belong to the above mentioned 10 m-n
subsets. Hereafter, a type of platform (base) with k attachment points will be iden-
tified by the non-ordered k-tuple (μ1,μ2, . . . ,μk) where μi, for i = 1, . . . ,k, is the
multiplicity of the ith attachment point, and all the k-tuples obtained by permuting
the entries denote the same type of platform (base).

The determination of all the types of platform (base) that have the same number,
k, of attachment points is the first step of this combinatorial analysis. According to
the above considerations, the possible types of platform (base) are:

• if k = 3, the types of platform (base) will be identified by the 3-tuples

3 In the platform (base), a multiple spherical pair with multiplicity greater than three allows the
redistribution of a single transmitted force along more than three directions, what brings to an
indeterminate static problem with an infinite number of solutions.
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(μ1,μ2,μ3) ∈ {(μ1,μ2,μ3) | μ i ∈ {1,2,3}& μ1 +μ2 +μ3 = 6} (1)

and it is easy to demonstrate that {(μ1,μ2,μ3) | μi ∈ {1,2,3}& μ1+μ2+μ3 = 6}
coincides with {(3,2,1),(2,2,2)}.

• If k = 4, the types of platform (base) will be identified by the 4-tuples

(μ1,μ2,μ3,μ4) ∈ {(μ1,μ2,μ3,μ4) | μi ∈ {1,2,3}& μ1 +μ2 +μ3 +μ4 = 6} (2)

and it is easy to demonstrate that {(μ1,μ2,μ3,μ4) | μi ∈ {1,2,3}& μ1 + μ2 +
μ3 +μ4 = 6} coincides with {(3,1,1,1), (2,2,1,1)}.

• If k = 5, the types of platform (base) will be identified by the 5-tuples

(μ1,μ2,μ3,μ4,μ5) ∈ {(μ1,μ2,μ3,μ4,μ5) | μi ∈ {1,2,3}

& μ1 +μ2 +μ3 +μ4 +μ5 = 6} (3)

and proving that {(μ1,μ2,μ3,μ4,μ5) | μi∈{1,2,3}& μ1+μ2+μ3+μ4+μ5 = 6}
coincides with {(2,1,1,1,1)} is easy.

• If k = 6, the types of platform (base) will be identified by the 6-tuple

(μ1,μ2,μ3,μ4,μ5,μ6) ∈ {(μ1,μ2,μ3,μ4,μ5,μ6) | μi ∈ {1,2,3}

& μ1 +μ2 +μ3 +μ4 +μ5 +μ6 = 6} (4)

and proving that {(μ1,μ2,μ3,μ4,μ5,μ6) | μi ∈ {1,2,3}& μ1 + μ2 + μ3 + μ4 +
μ5 +μ6 = 6} coincides with {(1,1,1,1,1,1)} is easy.

Summarizing, there are only 6 types of platform (base): two with k = 3, two with
k = 4, one with k = 5, and one with k = 6. By combining these 6 types of platform
(base) into couples, that include the combinations of each element with itself,
the following 7 × 6/2 (= 21) couples, which one-to-one correspond to as many
different FPM architectures, are obtained:

3-3 FPMs: 3-3/I) (3,2,1)-(2,2,2), 3-3/II) (2,2,2)-(2,2,2), 3-3/III) (3,2,1)-(3,2,1);
4-4 FPMs: 4-4/I) (3,1,1,1)-(2,2,1,1), 4-4/II) (3,1,1,1)-(3,1,1,1),

4-4/III) (2,2,1,1)-(2,2,1,1);
4-3 FPMs: 4-3/I) (3,1,1,1)-(2,2,2), 4-3/II) (3,1,1,1)-(3,2,1),

4-3/III) (2,2,1,1)-(2,2,2), 4-3/IV) (2,2,1,1)-(3,2,1);
5-5 FPMs: (2,1,1,1,1)-(2,1,1,1,1);
5-4 FPMs: 5-4/I) (2,1,1,1,1)-(3,1,1,1), 5-4/II) (2,1,1,1,1)-(2,2,1,1);
5-3 FPMs: 5-3/I) (2,1,1,1,1)-(3,2,1), 5-3/II) (2,1,1,1,1)-(2,2,2);
6-6 FPMs: (1,1,1,1,1,1)-(1,1,1,1,1,1);
6-5 FPMs: (1,1,1,1,1,1)-(2,1,1,1,1);
6-4 FPMs: 6-4/I) (1,1,1,1,1,1)-(3,1,1,1), 6-4/II) (1,1,1,1,1,1)-(2,2,1,1);
6-3 FPMs: 6-3/I) (1,1,1,1,1,1)-(3,2,1), 6-3/II) (1,1,1,1,1,1)-(2,2,2).

The comparison of the found FPM architectures with those reported in [2] reveals
that every architecture reported in [2] is referable to one of the architectures
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identified here, but the architectures identified here are not all present in the
enumeration [2]. In particular, the subsets 6-6, 6-5, 6-4, 6-3 and 5-3 are the same
in both the lists, whereas the remaining m-n subsets are different. Moreover, it is
worth noting that the three 3-3 architectures found here are the ones used in [8] to
generate the family of “flagged parallel manipulators”. Eventually, one can easily
check that all the 35 architectures listed in [9] are referable to those identified here.

3 Singularity Loci Classification

The left-Jacobian transpose, J, of the general FPM can be written (see [4] for details
and Figure 1(b) for the notation) as follows:

J =

[
U
V

]
(5)

where U = [u1,u2,u3,u4,u5,u6], and V = [v1,v2,v3,v4,v5,v6] with ui = (Pi −Bi),
and vi = (Pi −P1)×ui, for i = 1, . . . ,6.

With reference to (5), the singularity condition of the general FPM is det(J) = 0,
where det(J) can be computed through the Laplace expansion [4, 7] as follows:

det(J) = u123v456 −u124v356 +u125v346 −u126v345 +

+ u134v256 −u135v246 +u136v245 +u145v236 −u146v235 +u156v234 (6)

where ui jk = det([ui,u j,uk]) ≡ ui ·u j ×uk, and vi jk = det([vi,v j,vk]) ≡ vi · v j ×vk

with i, j,k = 1, . . . ,6. Even though expression (6) was deduced [4] for the 6-6 FPM,
it holds for all the 21 FPM architectures identified in the previous section where it
can be further simplified by suitably choosing the attachment point, P1, to use as
reference point in the formulas. In fact, a multiple attachment point, when chosen as
reference point, can make more than one vi vector null; and, since the leg numbering
is arbitrary, the only presence of a multiple attachment point allows this choice.

Since attachment points’ multiplicity can be at most three, the following three
cases can be distinguished: (a) FPMs with only single S pairs, (b) FPMs with at
least one double S pair and no triple S pair, and (c) FPMs with at least one triple S
pair. Among the FPM architectures identified in the previous section, one has only
single S pairs (i.e., the 6-6); nine have at least one double S pair and no triple S pair
(i.e., 3-3/II, 4-4/III, 4-3/III, 5-5, 5-4/II, 5-3/II, 6-5, 6-4/II, 6-3/II); and eleven have
at least one triple S pair (i.e., 3-3/I, 3-3/III, 4-4/I, 4-4/II, 4-3/I, 4-3/II, 4-3/IV, 5-4/I,
5-3/I, 6-4/I, 6-3/I).

3.1 FPMs with Only Single S Pairs

This FPM family contains only one architecture, the 6-6, and needs the use of ex-
pression (6) as it is. This expression, referred to 6-6 FPMs, was discussed in [4]



48 R. Di Gregorio

mainly to highlight its consistency with previous geometrically-obtained results and
to determine which type of algebraic form assumes the singularity locus equation.
For the sake of conciseness, that discussion will not be summarized here.

Nevertheless, in addition to the comments reported in [4], it is worth stressing
that expression (6) can be factorized as follows

det(J) = d1d2d3d4d5d6(a123b456 −a124b356 +a125b346 −a126b345 +

+ a134b256 −a135b246 +a136b245 +a145b236 −a146b235 +a156b234) (7)

with ai jk = ai · a j × ak, and bi jk = bi ·b j ×bk, for i, j,k = 1, . . . ,6, where ai is the
unit vector of the ith leg axis and bi = (Pi −P1)× ai is the moment of the same
line4; whereas di = |ui| is the length of the ith leg. Expression (7) separates the leg
lengths from the factor in round brackets, which is a geometric invariant referable
to the relative positions of the six leg axes. This invariant expresses a particular
property of a six-line set that can be enunciated as follows “if this invariant is equal
to zero, the six lines cannot be the lines of action of as many reaction forces that
have to equilibrate any force system applied to a rigid body; moreover, at parity of
force system that must be equilibrated, the greater its value is, the lower the product
of the magnitudes of the six reaction forces is.” In short, if six lines make the factor
in round brackets equal to zero, they can be called “statically” dependent, otherwise
they can be called “statically” independent.

3.2 FPMs with at least One Double S Pair and No Triple S Pair

This FPM family contains nine architectures (i.e., 3-3/II, 4-4/III, 4-3/III, 5-5, 5-4/II,
5-3/II, 6-5, 6-4/II, 6-3/II). In all these architectures, the presence of a double S pair
allows the legs to be so numbered that P1 ≡ P2 what makes v2 = 0. The zeroing of
v2 implies that, in expression (6), all the v2 jk are equal to zero. As a consequence,
for all these architectures, expression (6) can be reduced as follows

det(J) = u123v456 −u124v356 +u125v346 −u126v345 ≡ n12 · s3456 (8)

where
n12 = u1 ×u2 ≡ d1d2(a1 ×a2) (9a)

s3456 = u3v456 −u4v356 +u5v346 −u6v345 ≡ d3d4d5d6

(a3b456 −a4b356 +a5b346 −a6b345) (9b)

Vector n12 is perpendicular to the triangle, B1P1B2, formed by the two legs that
share the double spherical pair; whereas, vector s3456 can be further elaborated to
reach analytic expressions that exploit the particular geometry of the architecture to

4 The 6-tuple $i = (aT
i ,b

T
i )

T is the screw of the ith leg axis, and identifies the location of this axis
in the space.
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be analyzed. For instance, the two expressions reported in [10] and [11], for det(J),
straightforwardly provide the two particular expressions of s3456 that hold for the
architectures 6-3/II and 6-4/II, respectively. The second expression of det(J) given
by (8) states that all the singular configurations of these architectures can be referred
to three geometric conditions: i) n12 is perpendicular to s3456; ii) n12 is a null vector
(i.e., the triangle B1P1B2 degenerates into a segment); and iii) s3456 is a null vector,
that is, the following vector relationship is satisfied

d3d4d5d6(a3b456 −a4b356 +a5b346 −a6b345) = 0 (10)

Condition (ii) occurs when the substructure constituted by the two legs that share
the double S pair assumes a singular configuration. Condition (iii) occurs when the
substructure constituted by the legs 3, 4, 5, and 6 plus platform and base, with the
platform connected to a fixed frame by an S pair having P1 as center, and with the
base connected to the same frame trough a revolute pair whose axis passes through
the points B1 and B2, assumes a singular configuration. Eventually, condition (i) oc-
curs when the two above-mentioned substructures are not singular, but they are so
assembled that form a singular structure.

3.3 FPMs with at least One Triple S Pair

This FPM family contains eleven architectures (i.e., 3-3/I, 3-3/III, 4-4/I, 4-4/II, 4-
3/I, 4-3/II, 4-3/IV, 5-4/I, 5-3/I, 6-4/I, 6-3/I). In all these architectures, the presence
of a triple S pair allows the legs to be so numbered that P1 ≡ P2 ≡ P3 what makes
v2 = v3 = 0. The zeroing of v2 and v3 implies that, in expression (6), all the vi jk

where at least one of the indices i, j, and k is equal to 2 or 3 are equal to zero. As
a consequence, for all these architectures, expression (6) can be reduced to a single
term, as follows

det(J) = u123v456 ≡ d1d2d3d4d5d6(a123b456) (11)

Expression (11) makes it possible to state that all the singularities of these archi-
tectures can be referred to two geometric conditions: i) u123 = 0 ⇒ the tetrahedron,
B1B2B3P1, formed by the three legs that share the triple S pair, degenerates into a
triangle, and ii) v456 = 0 ⇒ the intersection of the three planes, which the center, P1,
of the triple S pair and the axes of the legs 4, 5, and 6 lie on, is a line. The occur-
rence of condition (i) makes point P1 able to perform infinitesimal displacements;
whereas, the occurrence of condition (ii) makes the platform able to perform infin-
itesimal rotations around an axis passing through P1 (i.e., around the line which is
the common intersection of the above-mentioned three planes).
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4 Conclusion

All the m-n FPM architectures have been classified according to a criterion that
makes it possible to collect them into families which share similar singularity locus
equations. Then, the particular forms of these equations have been deduced.

The results of this analysis is that 21 FPM architectures can be distinguished,
but only three forms of singularity locus equation exist: the first contains 10 terms
and must be used only for one architecture; the second contains 4 terms and must
be used for other nine architectures; and the third contains only one term and must
be used for the remaining eleven architectures. Moreover, the second and the third
forms of singularity locus equation provide an easy to use geometric criterion for
classifying the singularities of all the architectures they hold for.
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Compensation of Compliance Errors in Parallel
Manipulators Composed of Non-perfect
Kinematic Chains

Alexandr Klimchik, Anatol Pashkevich, Damien Chablat and Geir Hovland

Abstract The paper is devoted to the compliance errors compensation for parallel
manipulators under external loading. Proposed approach is based on the non-linear
stiffness modeling and reduces to a proper adjusting of a target trajectory. In contrast
to previous works, in addition to compliance errors caused by machining forces,
the problem of assembling errors caused by inaccuracy in the kinematic chains is
considered. The advantages and practical significance of the proposed approach are
illustrated by examples that deal with groove milling with Orthoglide manipulator.

Key words: Parallel robots, nonlinear stiffness modeling, compliance error com-
pensation, non-perfect manipulators

1 Introduction

In many robotic applications such as machining, grinding, trimming etc., the in-
teraction between the workpiece and technological tool causes essential deflections
that significantly decrease the processing accuracy and quality of the final product.
To overcome this difficulty, it is possible to modify either control algorithm or the
prescribed trajectory, which is used as the reference input for a control system [1].
This paper focuses on the second approach that is considered to be more realistic in
the practice. In contrast to the previous works, the proposed compliance error com-
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Fig. 1 Robot error compensation methods.

pensation technique is based on the non-linear stiffness model of the manipulator
that is able to take into account significant external loading [2].

Usually, the problem of the robot error compensation can be solved in two ways
that differ in degree of modification of the robot control software:

(a) by modification of the manipulator model (Fig. 1a) which better suits to the real
manipulator and is used by the robot controller (in simple case, it can be limited
by tuning of the nominal manipulator model, but may also involve essential
model enhancement by introducing additional parameters, if it is allowed by the
robot manufacturer);

(b) by modification of the robot control program (Fig. 1b) that defines the pre-
scribed trajectory in Cartesian space (here, using relevant error model, the input
trajectory is generated in a such way that under the loading the output trajectory
coincides with the desired one, while input trajectory differs from the target
one).

It is clear that the first approach can be implemented in on-line mode, while the
second one requires preliminary off-line computations. But in practice it is rather
unrealistic to include the stiffness model in a commercial robot controller where
all transformations between the joint and Cartesian coordinates are based on the
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manipulator geometrical model. In contrast, the off-line error compensation, based
on the second approach, is attractive for industrial applications.

For the geometrical errors, relevant compensation techniques are already well
developed. Comprehensive review of related works is given in [3]. In the frame of
this work, it is assumed that the geometrical errors are less essential compared to
the non-geometrical ones caused by the interaction between the machining tool and
workpiece. So, the main attention will be paid to the compliance errors and their
compensation techniques.

2 Problem of Compliance Error Compensation

For the compliance errors, the compensation technique must rely on two compo-
nents. The first of them describes distribution of the stiffness properties through-
out the workspace and is defined by the stiffness matrix as a function of the joint
coordinates or the end-effector location [2]. The second component describes the
forces/torques acting on the end-effector while the manipulator is performing its
manufacturing task (manipulator loading). In this work, it is assumed that the second
component is given and can be obtained either from the dedicated technological pro-
cess model (that take into account the tool wear, type of machining process, cutting
speed, rake angle, cutting fluid, workpiece shape etc.) or by direct measurements
using the force/torque sensor integrated into the end-effector.

The stiffness matrix required for the compliance errors compensation highly de-
pends on the robot configuration and essentially varies throughout the workspace.
From general point of view, full-scale compensation of the compliance errors re-
quires essential revision of the manipulator model embedded in the robot controller.
In fact, instead of conventional geometrical model that provides inverse/direct co-
ordinate transformations from the joint to Cartesian spaces and vice versa, here it
is necessary to employ the so-called kinetostatic model [4]. It is essentially more
complicated than the geometrical model and requires intensive computations.

If the compliance errors are relatively small, composition of conventional geo-
metrical model and the stiffness matrix give rather accurate approximation of the
modified mapping from the joint to Cartesian space. In this case, for the first com-
pensation scheme (see Fig. 1a), the kinetostatic model can be easily implemented
on-line if there is an access to the control software modification. Otherwise, the
second scheme (see Fig. 1b) can be easily applied. Moreover, with regard to the
robot-based machining, there is a solution that does not require force/torque mea-
surements or computations [1] where the target trajectory for the robot controller is
modified by applying the “mirror” technique. However, this approach is only suit-
able for the large-scale production where the manufacturing task and the workpiece
location remains the same. Hence, to be applied to the robotic-based machining, the
existing compliance errors compensation techniques should be essentially revised to
take into account essential forces and torques as well as some other important error
sources (inaccuracy in serial chains, for instance).
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3 Nonlinear Technique for Compliance Error Compensation

In industrial robotic controllers, the manipulator motions are usually generated us-
ing the inverse kinematic model that allows us to compute the input signals for ac-
tuators ρ0 corresponding to the desired end-effector location t0, which is assigned
assuming that the compliance errors are negligible. However, if the external loading
F′ is essential, the kinematic control becomes non-applicable because of changes in
the end-effector location. It can be computed from the nonlinear compliance model
as

tF = f −1 (F|t0) (1)

where the subscripts ‘F’ and ‘0’ refer to the loaded and unloaded modes respec-
tively, and ‘|’ separates arguments and parameters of the function f (). Some details
concerning this function are given in our previous publication [2]. It should be men-
tioned that function (1) takes into account loop-closure constraints and validates
both for serial and parallel manipulators.

To compensate this undeterred end-effector displacement from t0 to tF, the target
point should be modified in a such way that, under the loading F, the end-effector is
located in the desired point t0. This requirement can be expressed using the stiffness
model in the following way

F = f
(

t0|t(F)
0

)
(2)

where t(F)
0 denotes the modified target location. Hence, the problem is reduced to

the solution of the nonlinear equation (2) for t(F)
0 , while F and t0 are assumed to be

given. It is worth mentioning that this equation completely differs from the equation
F = f (t|t0), where the unknown variable is t. It means that here the compliance
model does not allow us to compute the modified target point t(F)

0 straightforwardly,
while the linear compensation technique directly operates with Cartesian compli-
ance matrix [5].

Since t0 and t(F)
0 are close enough, to solve equation (2) for t(F)

0 , the Newton-
Raphson technique can be applied. It yields the following iterative scheme

t(F)′
0 = t(F)

0 +K−1
t.p.(t0|t(F)

0 )
(

F−f (t0|t(F)
0 )

)
(3)

where the prime corresponds to the next iteration and Kt.p.(t0|t(F)
0 ) is the stiffness

matrix computed with respect to the second argument of the function F = f (t|t0)

at the original target point (i.e. for t = t0) assuming that unloaded configuration is
modified and corresponds to the end-effector location t(F)

0 . Here F stands for the

solution of equation (2), while the function f (t0|t(F)
0 ) defines the loading for the

current end-effector location under the loading t(F)
0 .

To overcome computational difficulties related to the evaluation of the matrix
Kt.p.(t0|t(F)

0 ), it is possible to use its simple approximation that does not change
from iteration to iteration. In particular, assuming that t and t0 are close enough and
the stiffness properties do not vary substantially in their neighborhood, the stiffness
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Fig. 2 Procedure for compensation of compliance errors in parallel manipulator.

model (2) can be approximated by a linear expression F = KC(t − t0), which in-
cludes the conventional Cartesian stiffness matrix KC. This allows us to replace the
above derivative matrix Kt.p. by −KC and to present the iterative scheme (3) as

t(F)′
0 = t(F)

0 −αK−1
C (t0|t(F)

0 )
(

F−f (t0|t(F)
0 )

)
(4)

where α ∈ (0,1) is the scalar parameter ensuring the convergence. Using the non-
linear compliance model (1), this idea can also be implemented in an iterative algo-
rithm

t(F)′
0 = t(F)

0 +α
(

t0 −f −1(F|t(F)
0 )

)
(5)

which does not include stiffness matrices KC or Kt.p.. Obviously, this is the most
computationally convenient solution and it will be used in the next section.

It should be mentioned that the considered case deals with a perfect parallel ma-
nipulator where end-points of all kinematic chains are aligned and matched. How-
ever, in practice, kinematic chains may include some errors that do not allow us to
assemble them in a parallel manipulator with the same end-effector location. In this
case it is required to compensate two types of errors (caused by the external loading
F and inaccuracy in the serial chains). The second source of errors can be taken into
account by changing of target location Δt0i for each kinematic chain

Δt0i = Δt0 +Δtε −εi (6)
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where Δtε is the end-effector deflections due to assembling of non-perfect kinematic
chains and εi is shifting of the end-point location of ith kinematic chain because of
geometrical errors. Using the principle of virtual work it can be proved that Δtε can
be computed as

Δtε =
(

m∑
i=1

K(i)
C

)−1 m∑
i=1

(
K(i)

C εi

)
(7)

where K(i)
C defines the Cartesian stiffness matrix of i-th kinematic chain that can be

computed using techniques proposed in [2] and m is the number of kinematic chains
in the parallel manipulator. More detailed presentation of the developed iterative
routines is given in Fig. 2.

Hence, using the proposed computational techniques, it is possible to compen-
sate the essential compliance errors by proper adjusting the reference trajectory that
is used as an input for robotic controller. In this case, the control is based on the
inverse kinetostatic model (instead of kinematic one) that takes into account both
the manipulator geometry and elastic properties of its links and joints. Efficiency of
this technique is confirmed by an example presented in the next section.

4 Illustrative Example: Compliance Error Compensation for
Milling

Let us illustrate the compliance errors compensation technique by an example of the
circle groove milling with Orthoglide manipulator (Fig. 3). Detailed specification of
this manipulator can be founded in [6]. According to [7], such technological process
causes the loading Fr = 215 N; Ft = −10 N; Fz = −25 N that together with angular
parameter ϕ = [0,360◦] define the forces Fx and Fy (Figs. 3b,c). Here, the tool
length h is equal to 100 mm. It is assumed that the manipulator has two sources of
inaccuracy:

Fig. 3 Milling forces and trajectory location for groove milling using Orthoglide manipulator.
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(1) Target trajectory;

(2) Shifting of target trajectory caused by errors
in serial chains (assembling errors);

(3) Shifting of target trajectory caused by cutting
force (compliance errors);

(4) Shifting of target trajectory caused by cutting
force and errors in serial chains;

(5) Adjusted trajectory, that insure following the
target trajectory while machining.

Fig. 4 Influence of different error sources on the machining trajectory.

Fig. 5 Compliance error compensation for Orthoglide milling application.

1. the assembling errors in the kinematic chains (assembling errors in actuator angu-
lar locations of about 1◦ around the corresponding actuated axis) causing internal
forces and relevant deflections in joints and links;

2. the external loading ‖F‖ = 217 N which generates essential compliance deflec-
tions causing non-desirable end-platform displacement.

In order to illustrate influence of different error sources on the machining trajec-
tory, let us focus on the 1 mm radius of the circle that should be machined. In this
case, the stiffness matrix is almost the same along the trajectory. Modeling results
for the neighborhood of point Q1 (see [2] for details) are presented in Fig. 4. They
show the influence of different error sources on the machining trajectory without
compensation and the revised machining trajectory that should be implemented in
robot controller in order to follow the target trajectory while machining. Here, path
5 compensates the effects seen in path 4 such that circle 1 is achieved. It can be seen
that the center of path 5 is on the opposite side of circle 1 compared to path 4. It can
also be seen that the main elliptic direction in path 4 becomes the smallest elliptic
direction in path 5. It should be mentioned that because of the torque induced by
the cutting forces (tool length 100 mm), the target trajectory and shifted trajectory
under the cutting forces are intersecting.

Figure 5 presents results for the milling of the 50 mm circle. In this case, without
compensation, the compliance errors can exceed 0.8 mm. After compensation, the
above mentioned errors are reduced to zero (it is obvious that in practice, the com-
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pensation level is limited by the accuracy of the stiffness model). This compensation
is achieved due to the modification of the actuator coordinates ρ along the machin-
ing trajectory. Compared to the relevant values computed via the inverse kinematics,
the actuator coordinates differ up to 1.7 mm. Corresponding forces in actuators can
reach 300 N. Some more results on the compliance errors compensation are pre-
sented in Fig. 5, which includes plots showing modifications of the actuator coordi-
nates Δρ, values of compensated end-effector displacement Δt and the torques in
actuators τ . It should be mentioned that while implementing target trajectory in the
robot controller additional control errors may arise.

Hence, the developed algorithm demonstrates good convergence. It is able to
compensate the compliance errors and can be efficient both for off-line trajectory
planning and for on-line errors compensation.

5 Conclusions

The paper presents a new technique for on-line and off-line compensation of the
compliance errors caused by external loadings in parallel manipulators (including
over-constrained ones) composed of both perfect and non-perfect serial chains. In
contrast to previous works this technique is based on nonlinear stiffness model (in-
verse kinetostatic model) that gives essential benefits for robotic-based machining,
where the elastic deflections can be essential. The advantages and practical signifi-
cance are illustrated by groove milling with Orthoglide manipulator.

Acknowledgements The work presented in this paper was partially funded by the Region “Pays
de la Loire”, France and by the project ANR COROUSSO, France.

References
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Motion Planning of the Multi-Bar System:
The Imbalanced Jacobian Algorithm

Janusz Jakubiak, Krzysztof Tchoń and Mariusz Janiak

Abstract We study the motion planning problem for the multi-bar system composed
of a series of rigid bars connected by spherical joints, moving in R

3 and subject to
non-holonomic constraints. The control system representation of the system takes
the form of a driftless control system with 3 inputs. In order to avoid representation
singularities, the constrained motion planning problem is addressed and solved us-
ing the imbalanced Jacobian algorithm. Performance of the algorithm is illustrated
with the example of the 2-bar system.

Key words: Non-holonomic system, Jacobian motion planning, constraints

1 Introduction

The multi-bar system is defined as a chain of rigid bars connected by spherical joints
that moves in the m-dimensional Euclidean space, subject to non-holonomic con-
straints resulting from the assumption that the instantaneous velocity of the source
point of each bar is aligned with that bar. This kind of system that has appeared for
the first time in [1], recently is playing a significant role in the study of geometry
and flatness of non-holonomic control systems [5–7]. Specifically, in [6] it has been
proved that, locally, the multi-bar system is feedback equivalent to the chained form,
therefore differentially flat. Furthermore, it turns out that its only minimal flat out-
put is the position of the source point of the initial bar. To our best knowledge, the
multi-bar system does not have any physical realization, except for m = 2 when it
specializes to the multi-trailer system in the plane [4]. Potentially, the multi-bar sys-
tem moving in R

3 may represent the motion of a chain of rigid bars in a very viscous
liquid or the flight of a formation of aircraft. However, in this paper the multi-bar
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Fig. 1 Multi-bar system.

system should be merely regarded as a 3-input, non-holonomic testbed for motion
planning algorithms.

In this paper we shall study the motion planning problem of the multi-bar sys-
tem moving in 3-dimensional Euclidean space. Using the spherical coordinates we
derive the control system representations of the kinematics for 1-, 2- and 3-bar sys-
tems. To account for the representation singularities, we formulate a constrained
motion planning problem, and solve it using the imbalanced Jacobian motion plan-
ning algorithm [3]. Performance of the algorithm will be illustrated with computer
simulations of the 2-bar system. The main contribution of this paper lies in providing
a constrained motion planning algorithm for a new class of 3-input non-holonomic
systems, beyond the trident snake robot [2].

The remaining part of this paper is organized as follows. Section 2 defines the
kinematics of the multi-bar systems. The imbalanced Jacobian motion planning al-
gorithm is described in Section 3. Section 4 presents results of computations. Con-
clusions are given in Section 5.

2 Kinematics of Multi-Bar System

We shall study the multi-bar system composed of n rigid bars connected to each
other by spherical joints, moving in the 3-dimensional Euclidean space, schemati-
cally shown in Fig. 1. It is assumed that the bar number i has length li, and connects
the joints number i− 1 and i, for i = 1, . . . ,n, therefore the end point of the ith bar
moves on the 2-dimensional sphere of radius li. The source point of the initial bar
(the bar number 1), treated as the 0-joint, can move freely in R

3. The configura-
tion of the multi-bar system will be defined by means of the Cartesian position of
the source point of the initial bar and the spherical coordinates (ϕi,θi) of the end
point of the bar i (note that the angles θi = 0,π correspond to representation sin-
gularities). For the notational convenience, the absolute angles have been chosen,
measured with respect to the axes of the inertial coordinate frame. A configuration
of the system is described by

q = (x,y,z,ϕ1,θ1, . . . ,ϕn,θn)
T ∈ R

N , (1)

where N = 2n+3. The velocity constraints are imposed on the motion of the multi-
bar system by requiring that the instantaneous velocity of the ith joint is aligned with
the (i+1)st bar, leading to a set of constraint equations for i = 1, . . . ,n (for brevity
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of notation we shall use s and c for sine and cosine functions, respectively)

−

⎛
⎝

sθi cϕi

sθi sϕi

cθi

⎞
⎠×

⎛
⎝

ẋ
ẏ
ż

⎞
⎠+

i−1

∑
j=1

l j

⎡
⎣

sθ j cϕ j cθi cθ j sϕ j cθi + sθ j sϕi sθi

sθ j sϕ j cθi −cθ j cϕ j cθi − sθ j cϕi sθi

−sθ j cϕi−ϕ j sθi cθ j sϕi−ϕ j sθi

⎤
⎦
(

ϕ̇ j

θ̇ j

)
= 0. (2)

Note that in (2) there are only 2 independent equations.

2.1 Kinematics of 1-Bar System

It is instructive to look in some details at the case of n = 1. In this case the configu-
ration variable q = (x,y,z,ϕ1,θ1)

T ∈ R
5. Constraints (2) take the following form

(sinθ1 cosϕ1,sinθ1 sinϕ1,cosθ1)× (ẋ, ẏ, ż) = 0

that is tantamount to
⎡
⎣

0 cosθ1 −sinθ1 sinϕ1 0 0
−cosθ1 0 sinθ1 cosϕ1 0 0

sinθ1 cosϕ1 −sinθ1 cosϕ1 0 0 0

⎤
⎦ q̇ = 0. (3)

It is easily observed that since the constraint matrix contains a skew-symmetric 3×3
submatrix, its rank is equal to 2. This means that the kinematics of the 1-bar system
can be represented by the driftless control system

q̇ = G(q)u = g1(q)u1 +g2(q)u2 +g3(q)u3. (4)

The control vector fields g1(q) = (sinθ1 cosϕ1,sinθ1 sinϕ1,cosθ1,0,0)T , g2(q) =
e4, g3(q) = e5, where ei stands for the ith unit vector in R

5. The control u1 equals
the magnitude of the bar’s linear velocity, while control variables (u2,u3) denote the
rates of change of the spherical coordinates. A computation shows that the growth
vector of the distribution associated with the control system (4) is equal to (3,5)
whenever sinθ1 �= 0, and to (3,4,5) in the case of sinθ1 = 0. This means that the
constraints (3) are non-holonomic, i.e. the system (4) is controllable, however, in
this case the representation singularities give rise to the posture singularities of the
system [8]. Observe that when the 1-bar system becomes planar (i.e. z = 0, θ1 =

π
2 ),

the system (4) describes the kinematics of the unicycle.

2.2 Kinematics of 2- and 3-Bar Systems

For the 2-bar system the configuration variable q= (x,y,z,ϕ1,θ1,ϕ2,θ2)
T ∈R

7, and
the constraints (2) yield the following kinematics representation
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q̇ = G(q)u = g1(q)u1 +g2(q)u2 +g3(q)u3, (5)

where the control vector fields are defined as

g1(q) =
(

l1d2(q)sθ1cϕ1 , l1d2(q)sθ1sϕ1 , l1d2(q)cθ1 ,
sθ2 sϕ2−ϕ1

sθ1

, f2(q),0,0
)T

,

g2 = e6, g3 = e7, ei being the ith unit vector in R
7. Above, for brevity, we have set

d2(q) = cθ1 cθ2 + sθ1 sθ2 cϕ2−ϕ1 and f2(q) = cθ1 sθ2 cϕ2−ϕ1 − sθ1 cθ2 . The system (5) is
well defined on condition that sinθ1 �= 0. It can be shown that the identity d2(q) =
0 means that the bars are mutually perpendicular (a posture singularity), and that
f2(q) = d2(q+ π

2 e5). Apparently, for the planar 2-bar system (z = 0, θ1 = θ2 =
π
2 )

the control system (5) represents the kinematic car.
For the 3-bar system we get q = (x,y,z,ϕ1,θ1,ϕ2,θ2,ϕ3,θ3)

T ∈ R
9, and derive

from (2) the kinematics representation

q̇ = G(q)u = g1(q)u1 +g2(q)u2 +g3(q)u3, (6)

whose control vector fields are the following

g1(q) =
(
l1l2d2(q)d3(q)sθ1cϕ1 , l1l2d2(q)d3(q)sθ1 sϕ1 , l1l2d2(q)d3(q)cθ1 ,

l2d3(q)
sθ2 sϕ2−ϕ1

sθ1

, l2d3(q) f2(q), l1
sθ3 sϕ3−ϕ2

sθ2

, l1 f3(q),0,0
)T

,

g2(q) = e8, g3(q) = e9. The terms d2(q) and f2(q) are defined, whereas d3(q) =
cθ2 cθ3 + sθ2 sθ3 cϕ3−ϕ2 and f3(q) = cθ2 sθ3 cϕ3−ϕ2 − sθ2 cθ3 . The system (6) is well
defined provided that both sinθ1 and sinθ2 are non-zero. Vanishing of d2(q) means
that the bars 1 and 2 are perpendicular, while d3(q) = 0 results in the perpendicular-
ity of the bars 2 and 3 (posture singularities). By analogy to f2(q) we have f3(q) =
d3(q+ π

2 e7). Again, when the 3-bar system gets planar (z = 0, θ1 = θ2 = θ3 =
π
2 ),

the system (6) converts to the kinematic car towing a trailer.

3 Motion Planning

Given the control system representation of kinematics of the n-bar system

q̇ = G(q)u =
m

∑
i=1

gi(q)ui, (7)

q ∈ R
N , let q(t) = ϕq0,t(u(·)) denote its trajectory initialized at q0 and steered by

u(t). The motion planning problem for the system (7) consists in defining a control
function u(t) such that at a prescribed time instant T the system trajectory reaches a
desired point qd ∈R

N , i.e. q(T ) = qd. Additionally, to prevent the system trajectory
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from entering into the representation singularities, it will be required that at any time
instant t ∈ [0,T ] the angles θi(t), i = 1, . . . ,n are suitably bounded.

This constrained motion planning problem will be solved by means of the im-
balanced Jacobian algorithm described in [3]. For the reader’s convenience we shall
concisely recollect the main idea of this algorithm. Given the trajectory q(t), we
introduce the end point map of the system (7)

Kq0,T (u(·)) = q(T ) = ϕq0,T (u(·)). (8)

Now, the motion planning problem is equivalent to determining a control u(t) such
that Kq0,T (u(·)) = qd, while the instantaneous values of the θi angles for i = 1, . . . ,n
are lower and upper bounded

θ lb
i ≤ θi(t)≤ θ ub

i . (9)

In order to include the constraints (9) into the system (7), we shall describe them
using the plus function (x)+ = max{x,0}, so that the constraints will be satisfied,
whenever the functions (θi − θ ub

i )+ and (−θi + θ lb
i )+ vanish for every t ∈ [0,T ].

Because the plus function is nonnegative, this is guaranteed when the sum of inte-
grals over [0,T ] of these functions is zero. Furthermore, for the sake of smoothness
the plus function will be approximated by a function

(x)+ ∼= p(x,α) = x+
1
α

ln(1+ exp(−αx)),

parametrized by α > 0, that approaches (x)+ along with α growing up to +∞. The
constraints (9) will be added to the system (7) by extending the system by an extra
state variable qN+1, resulting in

q̇ = G(q)u,

q̇N+1 = ∑n
i=1 p(θi −θ ub

i ,α)+ p(−θi +θ lb
i ,α)

}
∼= q̇ext = Gext(qext)u. (10)

The motion planning problem in the extended system (10) is unconstrained, and
amounts to defining a control u(t) such that qext(T ) = (qd,0). In principle, this
problem can be solved by means of a Jacobian motion planning algorithm [3]. How-
ever, in to ascertain regularity of the Jacobian, we need to regularize the extended
system. This will be achieved by perturbing the q̇N+1 equation with a function r(q),
e.g. a quadratic function. The resulting regularized system takes the following form

q̇ = G(q)u,

q̇N+1 = ∑n
i=1 p(θi −θ ub

i ,α)+ p(−θi +θ lb
i ,α)+ r(q)

}
∼= q̇reg = Greg(qreg)u.

(11)
A feature of the imbalanced Jacobian motion planning algorithm is that the inverse
Jacobian operator associated with the regularized system operates on the error com-
puted for the extended system. Having chosen the Jacobian pseudo inverse algo-
rithm this means that the control function solves the functional differential equation



64 J. Jakubiak et al.

duϑ (t)
dϑ

=−γBT
regϑ (t)Φ

T
regϑ (T, t)G

−1
reg (uϑ (·))eext(ϑ). (12)

The number γ > 0 defines the speed of convergence of the algorithm. The data
appearing in (12) are computed in the following way. Given a control uϑ (t) parame-
trized by ϑ ∈ R, one first computes trajectories qextϑ (t) of the extended system and
qregϑ (t) of the regularized system. Then, the linearization of the regularized system
along (uϑ (t),qregϑ (t)) is found in the form

ξ̇ (t) = Aregϑ (t)ξ +Bregϑ (t)v,

where

Aregϑ (t) =
∂Greg(qregϑ (t))uϑ (t)

∂qreg
and Bregϑ (t) = Greg(qregϑ (t)).

The fundamental matrix Φregϑ (t,s) of the linearization obeys the evolution equation

∂Φregϑ (t,s)

∂ t
= Aregϑ (t)Φregϑ (t,s)

with the initial condition Φregϑ (s,s) = IN+1. The system (12) contains the inverse
Gram matrix

Greg(uϑ (·)) =
∫ T

0
Φregϑ (T,s)Bregϑ (s)B

T
regϑ (s)Φ

T
regϑ (T,s)ds

of the linearization. The error eext(ϑ) = qext(T )−qext d is computed in the extended
system. If uϑ (t) denotes the solution of (12) initialized at a certain u0(t), then u(t)=
limϑ→+∞ uϑ (t) provides a solution to the constrained motion planning problem for
the n-bar system.

In computations a discrete form of the system (12) has been exploited, thus star-
ting from the initial control u0(t), the control is updated in accordance with

uϑ+1(t) = uϑ (t)− γBT
regϑ (t)Φ

T
regϑ (T, t)G

−1
reg (uϑ (·))eext(ϑ), ϑ = 0,1,2, . . . .

Furthermore, to improve efficiency of the computations, a finite-dimensional parame-
trization of control functions will be employed.

4 Computations

For illustration we shall solve the constrained motion planning problem for the 2-
bar system whose kinematics are represented by the system (5). The unit bar lengths
l1 = l2 = 1 are assumed. The control functions are selected as truncated Fourier
series containing a constant term and 3 harmonics, so for every i = 1,2,3
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Fig. 2 Unconstrained algorithm: error convergence, θ1, θ2 angles, controls, xyz-trajectories.

Fig. 3 Imbalanced Jacobian algorithm: error convergence, θ1, θ2 angles, controls, xyz-trajectories.

ui(t) = λi0 +
3

∑
j=1

λi2 j−1 sin( jωt)+λi2 j cos( jωt).

In this way the control space becomes finite dimensional, of dimension 21. In com-
putations the desired configuration has been set to qd = (0,0,0,0, π

8 ,0,
π
8 )

T , the ini-
tial configuration q0 = (1,2,3, π

3 ,
π
3 ,

π
3 ,

π
3 ). The bounds imposed on the θ1,θ2 angles

are θ lb
1 = θ lb

2 = 0.12π and θ ub
1 = θ ub

2 = 0.88π . The initial value of the control para-
meters λ0 = (1.5,0,0,0,0,0,0,1.5,0,0,0,0,0,0,1.5,0,0,0,0,0,0)T . The perturba-
tion function regularizing Jacobian r(t) = qT (t)q(t), and the plus function approx-
imation parameter α = 90. The convergence ratio γ equals 0.05, and the computa-
tions stop when the error norm drops below 10−3. For comparison, firstly the Jaco-
bian pseudo inverse algorithm without constraints is applied, and then, after adding
the constraints, the imbalanced Jacobian algorithm is used. The results are displayed
in Figs. 2 and 3. One can observe that in the unconstrained example in Fig. 2 both θ1

(slightly) and θ2 (substantially) violate the assumed lower bound, while after the ap-
plication of the imbalanced Jacobian, as in Fig. 3, both these angles remain within
bounds for the whole motion time. This has been achieved at the cost of slightly
increasing the number of iterations of the motion planning algorithm.
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5 Conclusions

For specific multi-bar systems we have addressed and solved a constrained motion
planning problem using the imbalanced Jacobian motion planning algorithm. Our
result extends applicability of this kind of algorithms to a new class of 3 input non-
holonomic systems.
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Robotic Fish Kinectics Design Based on a Fuzzy
Control

Pei-Jun Lee and Wen-June Wang

Abstract This paper shows an application of fuzzy logic in designing and fabri-
cating an intelligent robotic fish with multiple actuators which can swim freely and
autonomously avoid obstacles in water. The multiple actuators on the robotic fish
consist of two pectoral fins, one on each side of the fish, two tail sections, a cen-
ter of gravity adjuster for the head of the fish, and a pump used to draw in or expel
water. The fish can then avoid the obstacle autonomously when it approaches the ob-
stacle. Obstacle avoidance is achieved using fuzzy control technique. As shown in
the simulation and practical experiment, the path of obstacle avoidance using fuzzy
control is much smoother than that using intuitive control. All of the above motion
controls are implemented by FPGA with the aids of several sensors.

Key words: Robotic fish, multiple actuators, fuzzy logic, obstacle avoidance, FPGA

1 Introduction

There have been many studies to investigate robotic fish. In [1, 2] the authors stud-
ied the swimming of manta rays and cownose rays and found that forward motion
is achieved through the use of large-scale, flexible, triangular pectoral fins. Fish of
the Carangidae and Cyprinidae families which produce forward motion by swinging
their tails were studied in [3, 4]. Experimental analysis shows that, there are many
types of fish tail including those that can swing with one, two, or multiple degrees
of freedom. Multiple actuators swinging multiple fins leads to multiple degrees of
freedom, therefore, if the robotic fish has multiple actuators to swing multiple fins,
the robotic fish must have high agility in water. In our previous work [7], the robotic
fish with a multimedia processing system had only two actuators. In order to in-
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Fig. 1 (a) The three parts of the robotic fish. (b) The robotic fish.

crease swimming speed and agility, the implemented robotic fish in this study has
multiple actuators. The multiple actuators of the robotic fish include two pectoral
fins, one on each side of the fish, two tail sections, a center of gravity adjuster for
the head of the fish, and a pump used to draw in or expel water. In this study, the
robotic fish also uses swinging pectoral fins and center of gravity alteration to in-
crease agility. All electrical elements are housed within a box, the outside of which
has been given a fish-like appearance in order to reduce water resistance. The most
important issue for the robotic fish is that of the movement controllers. In [5] a low
frequency wireless remote controller is used which was originally an aircraft remote
control. In [8] the authors used a microcontroller to control the swinging of the fish
tail in such a way that the fish could swim freely.

Based on the above, this study attempts to implement a robotic fish. The robotic
fish has three sections; the head, the fore-tail and the rear-tail. There are multiple
actuators on the robotic fish consisting of two pectoral fins, one on each side of the
fish, two tail sections, a center of gravity adjuster for the head of fish, and a pump
used to draw in or expel water. The robotic fish has the following functions, basic
forward swimming, turning right and left, sinking, and rising. Obstacle avoidance
uses infrared sensors. Fuzzy control is the main control method used to achieve
obstacle avoidance. As in [6], this study uses VHDL to implement the fuzzy control
system in the FPGA embedded system.

2 Swimming Functions of the Robot Fish

In order to investigate the swimming motions and increase the agility of the robotic
fish, we must first realize the functions of the various parts of biological fish. Turning
and forward swimming functions are controlled by the tail; the dorsal fin is used to
maintain balance whilst swimming; the pectoral fins play an important role when
the fish either swims forward, turns, or stops in the water; the ventral fin controls
upward and downward motion of the fish; and the anal fin has a similar functions to
the dorsal fin. In order to imitate the swimming of a biological fish, the robotic fish
is fabricated in three sections; the head, the fore-tail, and the rear-tail as shown in
Figures 1(a) and (b).

Two actuators (servo motors) drive the fore-tail forepart and rear-tail sections,
one actuator per section. While the robotic fish swims at on a fixed horizontal depth,
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Fig. 2 Synchronous swinging of the fore-tail and rear-tail sections.

Fig. 3 The fore-tail and rear-part tails swinging with different degrees.

the motor drives the rear-tail swing within the degree interval [φ −θ ,φ +θ ] where
φ is the central shaft angle and θ is the swing amplitude angle. For instance when
φ =−30 (or +30) and θ = 20, the fish will turn left. Certainly, if φ = 0 the fish will
swim forward. If the servo motor drives the fore-tail to swing synchronously with
the rear-tail, the swimming direction in Figures 2(a), (b) and (c), respectively; the
swimming speed will be much faster than the central shaft angle φ = 0◦.

It should be noted that the fore-tail and the rear-tail swing synchronously but they
may have different angles of swing, for example, if the fore-tail swings within the
degree interval [φ̂ − θ̂ , φ̂ + θ̂ , ], but the rear-tail swings within the degree interval
[φ − θ ,φ + θ ] (see Figures 3(a) or (b)), then the fish will turn left or right much
faster than those in Figure 2.

At the same time, the pectoral fins assist the robotic fish in swimming stably
and smoothly. When the rear-tail swings as in Figure 2(b), and both pectoral fins
swing up and down within the degree interval (70, 100) (see Figure 4), the robotic
fish swims straight forward. Furthermore, when the rear-tail swings as in Figure 2(a)
(or (c)), but only the right (or left) pectoral fin swings up and down within the degree
interval (70, 100) (see Figures 4(a) or (c)), the fish turns left (or right).

In addition to swimming at a fixed horizontal depth, the robotic fish should be
able to sink and rise in water. There are two ways to achieve the sinking and rising
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Fig. 4 Pectoral fin swing.

Fig. 5 Sinking and rising.

motions; drawing in or expelling water [7] (i.e., changing the density of the fish),
or swinging the pectoral fins [2]. A pump can be used to draw water into, or expel
water from a bladder within the fish. The advantage of this method is that the sinking
and rising motions are performed well even when the fish is swimming very slowly
or has stopped. However, this method requires a large space inside the fish’s body
in which to put the pump and bladder, and also involves a long response time. In
this paper, we swing both pectoral fins to achieve the upward or downward motion.
Each pectoral fin is driven by an actuator (servo motor). When the robotic fish swims
downward, the swinging of the pectoral fins is as shown in Figure 5(a), in which the
pectoral fins swing up and down within the degree interval (95, 135). On the other
hand, when the robotic fish swims upward, the swinging of the pectoral fins is as
shown in Figure 5(b), in which the pectoral fins swing up and down within the
degree interval (45, 85). Furthermore, there is a gravity center adjusting structure
inside the fish body [7], in which a mechanism controls the position of rolling balls
thus changing the fish’s center of gravity so that the pitch of the fish body causes the
fish to sink or rise. During upward swimming the gravity center is relocated toward
the rear of the body causing the fish head to pitch up. Conversely, during downward
swimming, the center of gravity is relocated toward the front of the body causing
the fish head to pitch down.

The control core of the robot fish is an embedded system (FPGA) which handles
the motion control on the actuators of the fore-tail, rear-tail, pectoral fins, pump,
and gravity center adjuster. Furthermore, the communication between the infrared
sensors and wireless transmission signals is also processed by FPGA.

3 Fuzzy Control

In this paper we apply fuzzy control to the robotic fish in order to achieve two
tasks, obstacle avoidance. In our experiment, the robotic fish swims autonomously.
If there is an obstacle detected, the robot fish is able to autonomously avoid the
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Fig. 6 Fuzzy sets of antecedent variables. (a) Membership function of the fuzzy sets on X1.
(b) Membership function of the fuzzy sets on X2. (c) Membership functions of the fuzzy sets
on X3. (d) Membership functions of the fuzzy sets on X4.

Fig. 7 Consequent fuzzy sets (a) Rear-tail fuzzy sets. (b) Fore-tail fuzzy sets. (c) Right pectoral fin
fuzzy sets. (d) Left pectoral fin fuzzy sets. (e) Gravity center adjustor fuzzy sets.

obstacle. To detect obstacles, infrared sensors (Gp2D120) are utilized, which can
measure distances precisely within the 10∼80 cm range (the effective range in water
is 10∼60 cm). The analog signals from the infrared sensors are then converted by
an ADC0831 analog/digital converter into 8-bit digital signals that can be used by
the FPGA chips.

There are three infrared sensors positioned on the fish’s head, one on the left;
another on the right, and the other at the front. There is an additional infrared sensor
set under the fish’s body. According to the actual test in water, if the obstacle is to
the front, left, or right of the robotic fish at a distance of around 40 cm, it will be
reliably detected by the infrared sensors. However, if the obstacle is below the fish
then the range of reliable detection drops to 20 cm. In the following, we introduce
the fuzzy control for obstacle avoidance.

Step 1. Determining the antecedent part and the consequent part
The distance between the obstacle and the fish is detected and measured by four
infrared sensors on the fish. Let the distance measured by the left sensor be x1 ∈
X1 = [0,∞], by the front sensor be x2 ∈ X2 = [0,∞], by the right sensor be x3 ∈ X3 =
[0,∞], and by the lower sensor be x4 ∈ X4 = [0,∞]. The above four distances are the
antecedent variables of the fuzzy rule. Through frequent experiments, the following
fuzzy sets with membership functions A1

i (xi), i = 1,2,3,4, are shown in Figure 6.
There are five controlled plants in the robotic fish with the two tail sections,

the left and right pectoral fins and the gravity center adjustment mechanism each
having one motor All consequent parts of the swing are shown in Figure 7. There are
five fuzzy sets representing five different ranges of fish tail swing. For instance, the
fuzzy set VL (very left) denotes the fish tail swing within the central shaft angle φ ∈
[190◦, 250◦]; meaning that the duty cycle range of the motor is [190,250] 0.01 ms.
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Similarly, the other four fuzzy sets for the fore-tail swing within the central shaft
angle are SL (slightly left), ZO (zero), SR (slightly right) and VR (very right) as
shown in Figure 7(b). In the other two figures, Figures 7(c) and 7(d), the fuzzy sets
for the swing frequency of the pectoral fins are EF (extremely fast), F (fast), M
(medium), S (slow), and ES (extremely slow). The motor that alters the center of
gravity enabling the fish body to balance, rise and sink is shown in Figure 7(e).

Step 2. Establishing a fuzzy rule base
The establishment of a fuzzy rule base simply follows a logical process as below.

Rule x1 x2 x3 x4 y1 y2 y3 y4 y5

R(1) LF FF RF BF ZO ZO M M balance
R(2) LN FF RF BF SR SR S F balance
R(3) LF FN RF BF VL VL EF ES balance
R(4) LN FN RF BF VR VR ES EF balance
R(5) LF FF RN BF SL SL F S balance
R(6) LN FF RN BF ZO ZO M M balance
R(7) LF FN RN BF VL VL EF ES balance
R(8) LN FN RN BF ZO ZO M M sink
R(9) LF FF RF BN ZO ZO M M sink
R(10) LN FF RF BN SR SR S F rise
R(11) LF FN RF BN VL VL EF ES rise
R(12) LN FN RF BN VR VR VL EF rise
R(13) LF FF RN BN SL SL F S rise
R(14) LN FF RN BN ZO ZO M M rise
R(15) LF FN RN BN VL VL EF ES rise
R(16) LN FN RN BN VR VR ES EF rise

Step 3. Using a fuzzy inference mechanism and a defuzzification
By using a fuzzy minimum inference engine and the center of gravity [9], we can
obtain the final output y∗i , i = 1,2,3,4,5.

4 Simulation and Experiments

Let the characters L, S, N, and F denote four different distances between the fish and
the obstacle. L and S represent distances which are respectively larger and smaller
than 40 cm. Similarly, F and S represent distances which are respectively larger and
smaller than 20 cm. The other way to achieve obstacle avoidance is the fuzzy control
mentioned in Section 3, which compares to the intuitive control of the robotic fish.
Using MatLab software, Figure 8(a) shows the swimming path of the fish during
obstacle avoidance using intuitive control. Figure 8(b) shows the swimming path
of the fish during obstacle avoidance using fuzzy control. It can be seen that when
turning the corner, the path of the robotic fish using fuzzy control is much smoother
than that using intuitive control.

The following figures are real experiments for the comparison of intuitive con-
trol and fuzzy control during obstacle avoidance. Figure 9(a) is with fuzzy control
and Figure 9(b) shows swimming with intuitive control. It should be noted that the
robotic fish with fuzzy control can turn right smoothly, whereas the fish with intu-
itive control turns right very close to the obstacle as highlighted in frames 7 and 8
of both Figures 9(a) and (b).
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Fig. 8 Swimming paths during obstacle avoidance.

Fig. 9 Comparison during obstacle avoidance.

Fig. 10 Robotic fish surrounded by obstacles.

The following is an experiment where there are obstacles surrounding the robotic
fish as shown in Figure 10. The surrounding obstacles are detected by the right,
left and front infrared sensors of the fish. Thus, the robotic fish will use rising and
sinking to swim away from the closed environment. However, if the bottom sensor
detects the bottom of the pool while the fish is sinking, the fish will start to rise.

Table 1 shows the comparison data between the proposed robot fish and that in
the paper [7], where the test environment is an indoor pool measuring 120×120×
120 cm.

The swimming tests are not limited to indoor pools. The experiments can be
also performed in three outdoor environments; an outdoor fish pool, an adult swim-
ming pool, and a pool under a waterfall. All the above experiments are shown in the
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Table 1 Data comparisons of robot fish.

The proposed robot fish The robot fish in [7]
Speed 60 cm/s 10 cm/s
Turning radius 10 cm/s 30 cm/s
Maximum operating depth 110 cm 50 cm
Vertical speed 20 cm/s 5 cm/s

video [10]. The video is divided into four sections. The first section covers control-
ling the fish with the remote control and performing basic swimming movements.
The second and the third sections cover obstacle avoidance using fuzzy control.

5 Conclusions

This study has completed a robotic fish which can perform several basic swimming
motions, obstacle avoidance. The above motions are achieved by multiple actua-
tors with fuzzy control methods on the fish. The technologies used to implement
this robotic fish include mechanism design, circuit design, FPGA signal integration,
wireless communication, distance sensing, and actuator controlling. When fuzzy
control is applied to the robotic fish, the fish has a much smoother swimming mo-
tion for obstacle avoidance. Finally, we have shown many experiments performing
all functions proposed in this study.
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Self-Calibration of Redundantly Actuated PKM
Based on Motion Reversal Points

Andreas Müller and Maurizio Ruggiu

Abstract In this paper a novel self-calibration method for redundantly actuated pa-
rallel manipulators (RA-PKM) is proposed. It does not require external measure-
ments or encoders in passive joints but only uses actuator joint measurements. The
method uses motion reversal points (MRP) as calibration landmarks. MRP are char-
acterized by vanishing velocity of one actuator while the RA-PKM performs a con-
tinuous motion. In other word the MRP are the input-singularities of an associated
non-redundantly actuated PKM. The general calibration concept is introduced in
the paper and applied to a planar 4RPR RA-PKM. Numerical simulation results are
presented that confirm the feasibility of this method. The selection of appropriate
MRP is briefly discussed.

Key words: Kinematic self-calibration, parallel manipulators, actuation redun-
dancy

1 Introduction

Actuation redundancy improves the kinematic and dynamic properties of PKM as
reported in several publications owed, however, to a more complex control that is
sensitive to geometric uncertainties. But on the other hand actuation redundancy
implies sensor redundancy. This feature gives rise to a novel calibration concept
described in this paper.

Essential for any kinematic calibration method is the acquisition of redundant
measurements. The redundancy is due to inherent constraints within the system to be
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 10,
© Springer Science+Business Media Dordrecht 2012

75

mailto:andreas.mueller@ifm-chemnitz.de
mailto:ruggiu@dimeca.unica.it
mailto:ruggiu@dimeca.unica.it
http://dx.doi.org/10.1007/978-94-007-4620-6_10


76 A. Müller and M. Ruggiu

identified. Representing such constraints by a mathematical model allows for adapt-
ing the model parameters so to fit to the measurements. Commonly redundant mea-
surements are achieved by combining actuator sensor information with additional
external metrology measurement devices temporarily attached to the end-effector
(EE) [6, 12, 15, 16], which makes the calibration expensive and prohibits simple
repetition. In order to avoid the use of expensive external measurement devices it
was proposed to equip passive joints with additional sensors. Such semiautonomous
calibration schemes are reported in [22] for a Gough-Stewart platform where ad-
ditional sensors are located at the universal joints, and in [18] where sensors were
attached to each one of the five passive joints of one strut. A fully autonomous cal-
ibration shall not need any additional sensors and so provide a cost-efficient and
non-intrusive solution. The redundant sensor information is usually acquired by re-
straining the mobility of the EE or by locking some passive joints [1, 8, 14, 17, 19]
so that the manipulator can be actuated by a subset of the actuators while measuring
the motion of those actuators that become redundant due to the locking.

Actuation redundancy implies sensor redundancy since the number of measured
joint coordinates exceeds the DOF of the PKM. This redundancy was exploited
for kinematic calibration of RA-PKM in [2, 3, 5, 20, 21]. Yiu, Meng and Li [20]
calibrated a planar 2DOF manipulator by application of standard calibration meth-
ods. Cong et al. [2] and Zhang et al. [21] developed a calibration method based on
the tracking error projected to the null-space of the forward kinematics Jacobian.
Since, for a perfect match of model and plant, the tracking error should belong to
the null-space, the strategy is to minimize the projected tracking error by adjusting
the kinematic model parameters.

In this paper an alternative approach to kinematic calibration of RA-PKM is pre-
sented that does not make straightforward use of redundant measurements but uses
specific calibration landmarks. It originates from the singularity-based calibration
method proposed for a planar 3-DOF non-redundantly actuated PKM in [9–11] that
was later applied in [13] to the calibration of a spatial 3PRS PKM. The basic idea
of that method was to identify passive input singularities (type II singularities/force
singularities [4]) in the kinematic model (analytically) and in the plant (measure-
ment). Passive singularities are characterized by a reversal motion, i.e. a zero ve-
locity, of some actuator coordinates for a continuous EE-motion, which allows to
detect them without additional sensors. Due to uncertainties in the geometric pa-
rameters the singularities of the model and plant occur at different locations. This
mismatch was minimized by an ad hoc parameter adaptation method so to match the
values inferred from the model with the encoder readings. Apparently the need to
enter input-singularities is a problematic aspect of this method when applied to non-
redundant PKM. In the following a calibration method for RA-PKM is introduced
making use of the basic idea behind the singularity-based calibration method.

Throughout the paper configurations where the velocity of one actuator becomes
zero, while the EE performs continuous motion, will be called motion reversal
points (MRP) and δ denotes the manipulator’s DOF.
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2 Calibration Method Based on Motion Reversal Points

2.1 Basic Concept

The problematic point of the calibration scheme reported in [9–11, 13], originally
proposed for non-redundantly actuated PKM, is that input singularities are critical
in the sense that the PKM cannot be fully restrained by means of the actuators. An-
other crucial point is to ensure that the PKM actually passes through the anticipated
singularities forming a closed low-dimensional subset in joint space. To this end
δ − 1 actuators were locked so that only motions of one free actuator, for which a
MRP (i.e. a zero crossing of its velocity) is expected, are possible. Thus the prob-
lem of detecting the input singularities reduces to a one-dimensional search. The
most problematic aspect of this method is that, in the input singularity, the one-
dimensional motion cannot be controlled by the only one actuator left free. For this
reason the PKM was given an initial motion so to passively swing through the input
singularity and so that the motion reversal of the one free joint can be observed.

Such MRP can also be observed in RA-PKM but without meeting input singu-
larities thus without passing through critical configurations. This is best understood
by recalling that the input-singularities of a non-redundantly actuated PKM with
DOF δ can be eliminated by introducing m > δ redundant actuators that can always
control the PKM motion even when certain δ actuators would encounter a singular-
ity. In other words, actuation redundancy allows controlling the RA-PKM through
points that are input-singularities, i.e. MRP, of the PKM when controlled by some
δ actuators. Consequently a RA-PKM can be safely controlled through MRP that
provide kinematic calibration landmarks.

As an example consider the 4RPR RA-PKM with DOF δ = 3 in Fig. 1. The
manipulator is redundantly actuated by the m = δ + 1 = 4 prismatic joints whose
translation variables are denoted with q1, . . . , q4. Now δ − 1 = 2 of the actuators
could be locked, and one of the two remaining actuators be actuated so to observe
a MRP of the free fourth actuator. This is schematically shown in Fig. 1a) where
actuators 1 and 2 are locked resembling a 1-DOF mechanism. This mechanism can
be controlled either by actuator 3 or 4. The platform is confined to rotate about
the attachment point of actuator 1 and 2 at the platform. A continuous motion of
actuator 3 leads to reversing motion of actuator 4, i.e. q̇4 = 0. Such MRP is attained
when the line of action of the fourth leg passes through the attachment point of
actuator 1 and 2 at the platform, as indicated in Fig. 1a). Analogously if prismatic
joint 4 is actuated, a corresponding MRP of actuator 3 can be observed (Fig. 1b)).
In these cases the platform can only rotate about a fixed point, which gives rise
to a simple analytic expression of the MRP in terms of q1, q2 and the geometric
parameters. Locking actuators 1 and 4 the attachment point of the third actuator
moves on the coupler curve of the 4-bar mechanism consisting of actuators 1 and 4
and the platform (Fig. 2). Moving actuator 2 the MRP of actuator 3 is attained at the
point of the coupler curve that is closest to the attachment point of actuator 3 on the
ground, which can also be determined analytically.



78 A. Müller and M. Ruggiu

Fig. 1 MRP of actuator 4 and 3 of the 4RPR RA-PKM when actuators 1 and 2 are locked.

Fig. 2 MRP of actuator 3 when the actuators 1
and 4 are locked.

Fig. 3 Definition of geometric model parameters
for the 4RPR RA-PKM.

The sensor readings for which a MRP of actuator i is detected will differ from
those inferred from the kinematic model. Minimizing this calibration error by adapt-
ing geometric model parameters gives rise to a MRP-based calibration method.
Clearly the drives for which MRP are to be detected must be backdrivable.

The preceding discussion can easily be generalized for RA-PKM with actuation
redundancy ρ = m − δ. The MRP detection requires to restrain the RA-PKM by
locking δ − 1 actuators leaving m − δ + 1 movable actuators. One of the latter
is used to drive the restrained RA-PKM thus moving the remaining ρ = m − δ

actuators. In general there are Cm
δ−1 = (

m
δ−1

)
different possibilities to lock δ − 1 of

the m actuators. For the sake of simplicity m = δ + 1, i.e. ρ = 1, is assumed in
the following, as it was for the above example, so that there are Cm

m−2 = (m−1)m
2

different possibilities. Then, fixing δ − 1 actuators leaves two free, of which either
one can be controlled so to detect the MRP of the other actuator. Thus, in total there
are 2Cm

m−2 (in general (ρ + 1)Cm
δ−1) different actuation schemes to detect MRP.

For each of the Cm
m−2 possibilities denote with qa,l , l = 1, . . . , Cm

m−2 the vector of

locked actuator coordinates and, for a particular choice, with q
j
a and qi

a the joint
coordinate of the controlled and the free passive actuator, respectively. The vector
of actuator coordinates, qa, is thus split to qa,l , q

j
a and qi

a.
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In Fig. 1a) for instance qa,l = (q1, q2), q
j
a = q3, and qi

a = q4, while in Fig. 1b)

qa,l = (q1, q2), q
j
a = q4, and qi

a = q3. In order to detect MRP of actuator i by

moving actuator j introduce an indicator function F l
ij (q

j
a , qa,l; π) such that F l

ij = 0

if and only if q̇i
a = 0 for any q̇

j
a . The vector π summarizes the geometric model

parameters. The condition F l
ij = 0 allows to infer the value q

j

a,0 of the controlled
actuator at which the MRP of the free passive actuator i occurs in the model for
given qa,l and geometry π .

The proposed calibration method for a RA-PKM with DOF δ and actuation re-
dundancy ρ = 1 can be summarized as follows:

1. Lock δ − 1 actuator coordinates, qa,l , at selected points in the workspace. This
leaves a 1-DOF system with ρ + 1 = 2 movable actuator coordinates.

2. Select one actuator coordinate, q
j
a , from the two movable actuator coordinates to

control the 1-DOF system.
3. Detect MRP in the plant: perform a continuous motion of q

j
a so to pass through

the expected MRP of the second (passive) actuator coordinate qi
a.

The MRP will in general not be detected exactly due to the time discrete sampling
of sensor readings and due to the finite sensor resolution. To approach the MRP, at
which q̇i

a = 0, perform a one-dimensional search by controlling q
j
a and observing

the sign reversal of q̇i
a. This yields an estimate for the controlled actuator joint

coordinate at which the MRP of joint i occurs, denoted q̂
j

a,0.

4. The calibration error for this MRP is ej := q̂
j

a,0 − q
j

a,0. This error is a function of

the geometric model parameters (qj

a,0 depends on π). Find π minimizing ej .

2.2 Adaptation Method

The steps 1–4 are repeated for a representative set of samples corresponding to
different poses of the RA-PKM. For each one of the 2Cm

m−2 possible combinations
of locked and controlled actuators the MRP of the free actuators are detected in the
plant as well as determined from the model. Denote with q̂

j,n

a,0 , n = 1, . . . , N the

overall set of MRP of actuator j detected in the plant, and with q
j,n

a,0 the set of MRP
deduced from the model (with current parameter value π ) obtained for preselected
MRP. The overall ‘calibration error’ can be expressed as

J (π) := 1

2

Cm
m−2∑

j=1

N∑

n=1

(
q̂

j,n

a,0 − q
j,n

a,0

)2
. (1)

The geometry of the model is encoded in the parameter vector π ∈ �, where � is a
ν-dimensional parameter space of feasible geometries. Thus the calibration problem
is transformed into the non-linear minimization problem

J (π) → min π ∈ � (2)
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in the ν geometric model parameters. This is in general a highly non-linear problem.
However, the numerical minimization of (2) should rapidly converge since the ac-
tual geometry of the plant can be assumed to be closed to the nominal geometry π0,
which serves as initial value. Clearly the convergence speed depends on the sensi-
tivity of the MRP to variations of the geometric parameters. It is thus crucial for
the proposed calibration method that the MRP are selected so that a variation of the
geometric parameters has a significant effect on the MRP.

3 Example: 4RPR Mechanism

MRP Indicator Function: Due to space limitations only the MRP of actuator 3 of
the 4RPR RA-PKM for locked actuators 1 and 2 are discussed here. Then the PKM
is controlled by q4 as in Fig. 1b). The indicator function F34 is constructed from the
manipulator Jacobian

J3 = (J3
1, J3

2, J3
4) (3)

of a 3RPR PKM actuated by q1, q2, and q4 with EE located at point B (Fig. 3). The
column J3

i corresponds to actuator i. The twist of a frame attached at B is

( v3
ω3

)
= J3

⎛

⎝
q̇1

q̇2

q̇4

⎞

⎠ . (4)

Denote with J3
v = (J3

v1, J3
v2, J3

v4) the linear velocity Jacobian corresponding to v3

extracted from J3. Now, if actuator 1 and 2 are fixed, i.e. q̇1 = q̇2 = 0, then the
linear velocity of point B is v3 = J3

v4q̇
4. The actuator velocity q̇3 is the linear

velocity v3 of B projected onto the line AB. Hence the MRP indicator function for
q3 is

F34 := u3 · J3
v4 (5)

where u3 is a unit vector along the line AB. Zero crossing of F34 indicates the MRP
of q3 when the PKM is driven by q4 while q1, q2 are fixed. This approach can be
applied analogously to all four actuator coordinates.

Numerical Simulation Results: A numerical simulation of the calibration method
was performed to estimate the deviation of the dimensions LH , LV , and k (Fig. 3) in
the plant from the nominal lengths L0

H = L0
V = 0.5 m, and k0 = 0.15 m. The mov-

ing platform is an equilateral triangle with nominal side length k0. Only the MRP of
actuator 3 when driven by 4 are considered, using the above indicator function F34.
The three plant parameters are subject to an imperfection with magnitude �L and
set to LH = L0

H − �L, LV = L0
V − �L, k = k0 + �L. Simulation is carried out

for the three values �L = 10−4, 10−3, 10−2 m, and the calibration performance
is studied for encoder resolutions �x = 10−5, 10−4, 10−3 m. Fig. 4a) shows the
average absolute calibration error ε := (|L0

H − L̂H | + |L0
V − L̂V | + |k0 − k̂|)/3

when 20 MRP are selected with EE locations on the circle in Fig. 3. The calibra-
tion converges, and remarkably the average error is always smaller than the encoder
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Fig. 4 Calibration error for MRP (a) on the circle and (b) on the vertical line at x = 0.485 m.

resolution. The latter may be explained as average effect similar to the interpolation
between discrete samples. To show the effect of different MRP Fig. 4b) shows the re-
sults when MRP are selected on the vertical line at x = 0.485 m indicated in Fig. 3.
Apparently the achieved calibration errors are in average higher then for MRP on
the circle, which can be explained by the lower sensitivity of MRP closed to the
workspace boundary. The minimization (2) was performed ad hoc using Matlab’s
fminunc for non-smooth objectives. The minimization converged after less than
500 steps. A faster convergence is to expected when the MRP of different actuators
are included in the calibration process.

4 Summary

In this paper a novel calibration method is proposed that differs from the standard
calibration methods in that it does not directly use redundant measurements but
rather employes actuation redundancy to acquire motion reversal points (MRP) that
serve as calibration landmarks. It is discussed for a 4RPR but applicable to general
RA-PKM. This calibration method should allow for an automatic non-intrusive in
situ online self-calibration that could be combined with standard calibration meth-
ods that use the m redundant measurements. It must be noted that the drives of which
MRP are detect must be backdrivable. Here the feasibility of the proposed method is
demonstrated by means of numerical simulations. The statistical error analysis will
be presented in an upcoming publication after the method has been implemented
in a prototype. Future work will focus on strategies for selecting optimal MRP and
on tailored methods for solving (2). MRP should be selected so to maximize the
sensitivity of their location to variations in the geometry. This requires an analytic
sensitivity analysis. In general any geometric parameter can be identified that has an
effect on the MRP locus.
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Trajectory Planning for Systems with Homotopy
Class Constraints

Soonkyum Kim, Koushil Sreenath, Subhrajit Bhattacharya and Vijay Kumar

Abstract There are various applications where homotopy constraints are useful in
trajectory generation for mobile robots. In this paper, we present a method to gener-
ate an optimal trajectory restricted to a particular homotopy class, which is specified
by a given representative trajectory. The optimality is achieved by formulating the
trajectory generation problem as a Mixed-Integer Quadratic Program (MIQP). We
partition the configuration space into nonoverlapping cells and model each cell in
the partition with integer variables and inequality constraints. We associate with
any sequence of integer variables a word, so that each trajectory can be mapped to
a word. We then construct a set of all words that are homotopically equivalent to a
given word. For each word, we fix the integer variables of the MIQP to find the op-
timal time distribution in each cell, by solving a QP for each iteration, to obtain the
locally optimal trajectory in the specified homotopy class. We illustrate an example
of minimum acceleration trajectory generation on a plane with different homotopy
class constraints.

Key words: Trajectory planning, homotopy constraint, optimal trajectory

1 Introduction

Early attempts at classifying homotopy classes in two dimensions include geometric
methods [5, 6], homotopy preserving probabilistic road-map constructions [10], and
triangulation-based path planning [3]. Two trajectories are said to be homotopic if
one can be continuously deformed to another without any intersection with obsta-
cles. Each set of trajectories that are homotopic forms an equivalence class, called a
homotopy class (see Figure 1(a)). A particular homotopy class can be specified by
a representative trajectory in the homotopy class. Thus, trajectory generation with a
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Fig. 1 (a) τ1 is homotopic to τ2 since there is a continuous sequence of trajectories representing
deformation of one into the other. τ3 belongs to a different homotopy class since it cannot be
continuously deformed into any of the other two. (b) Example where the trajectories (τ1 and τ2)
are homologous, but not homotopic. (c) An example of a trajectory corresponding to the word
TPUVWQLJHG.

homotopy class constraint consists of finding an optimal trajectory in the desired ho-
motopy class, specified by the given representative trajectory, that also respects the
kinematic constraints. One can think of applications ranging from multi-robot ex-
ploration, where it may be beneficial to deploy each robot in a different homotopy
class to ensure maximal coverage and minimal congestion, to single arm motion
planning where one may seek paths that go around obstacles one way or the other
way based on the specific task.

In this paper, we use mixed-integer quadratic programming [8] to partition the
configuration space into non overlapping cells and represent each cell by a label
or a letter. We use the notion of words, constructed out of the letters, to coarsely
represent trajectories and relate them with their homotopy classes. First, all words
corresponding to a particular homotopy class are constructed. Then, for each word,
a quadratic program (QP) is solved to find a trajectory that spends equal amounts
of time in each cell specified by the letters of the word. Finally, this trajectory is
iteratively refined to obtain the locally optimal trajectory in the specified homotopy
class.

2 Preliminaries

Our objective in this paper is to design an optimal trajectory for a robot that mini-
mizes an integral cost functional (which depends on the trajectory), while also re-
specting kinematic constraints of the system, avoiding obstacles, and constraining
the trajectory to a particular homotopy class. Although several of these subproblems
have been solved separately, (see [1, 2, 4, 7, 11, 12]), there is no literature, to our
knowledge, that addresses the combined problem described above.
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We will start by assuming that the required homotopy class is specified by an
initial representative trajectory in the homotopy class. Specifically, we will derive
a locally optimal trajectory that is homotopic to the representative trajectory while
also satisfying the kinematic and geometric constraints. We represent a planar tra-
jectory, q(t), by the points [qx(t),qy(t)] parametrized by t.

2.1 Homotopy and Homology Classes for Trajectories

We begin by defining homologous trajectories and illustrate the difference between
homology and homotopy. Two trajectories, q1 and q2, connecting the same start and
end points are homologous if and only if the closed loop formed by them, q1

⊔−q2

(i.e., q1 together with q2 with opposite orientation), forms the boundary of a 2-
dimensional region on the plane not containing/intersecting any obstacles. It is well
known that homology is a “coarser” representation of homotopy [2], with trajecto-
ries that are homotopic being also homologous. Figure 1(b) shows a good example
of two trajectories, which are homologous but not homotopic.

A compact formulation for computing the homology class as h-signatures us-
ing Cauchy integral theorems from complex analysis is carried out by Bhattacharya
et al. [1, 2]. The h-signature of a trajectory, q, with respect to obstacle o j is de-
fined as

Hj (q) =

∫
1

z− z j
dz =

∫ t f

t0

1
qx(t)+ iqy(t)− z j

(q̇x(t)+ iq̇y(t)) dt (1)

where z(t) = qx(t) + iqy(t) is the complex representation of the trajectory, and
z j is the complex representation of an arbitrary point inside obstacle o j. Then
the h-signature about all obstacles is given by H = [H1, . . . ,Hno ]

T with no obsta-
cles.

2.2 Optimal Trajectory Generation

We consider trajectory planning in a compact subset Q ⊂ R
2 on a plane. Let

O = {o1,o2, · · · ,ono} be a set of convex pair-wise disjoint obstacles in Q (The re-
quirement of convexity of obstacles can be relaxed by considering an arbitrarily-
shaped obstacle as a union of convex obstacles.) Each obstacle oi ∈ O can be repre-
sented by a ni-sided convex polygon, whose faces define hyperplanes that partition
Q into two half-spaces. A binary variable can be used to represent either side of
the hyperplane as in [8]. So a point q ∈ Q will be feasible and will avoid collision
with an obstacle oi if there is at least one face f ∈ [1, . . . ,ni] satisfying ni, f ·q ≤ si, f .
Where ni, f is a normal vector to the f th face of obstacle oi pointing inward and
si, f = ni, f · p, for any point p on the f th face. For the obstacle oi, all points q ∈ Q
outside the obstacle must satisfy [9]:
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ni, f ·q ≤ si, f +Mbi, f for bi, f ∈ {0,1}, f = 1, . . . ,ni (2)
ni

∑
f=1

bi, f ≤ ni −1,

where M is a large positive number. The second inequality in (2) implies that the
point should be feasible about at least one face; at least one f such that bi, f = 0.
This formulation breaks up Q into overlapping regions.

The problem of finding a trajectory, q(t), that avoids obstacles, respects kine-
matic constraints and is restricted to a specified homotopy class, is formulated as
follows. The trajectory is obtained by splicing Ns sub-trajectories, each parametrized
by linear combination of N +1 basis functions,

q(t) =
N

∑
k=0

c j,k ek(t) for t j ≤ t < t j+1, (3)

for j ∈ [0, . . . ,Ns − 1], 0 = t0 ≤ t1 ≤ . . . ≤ tNs = t f . Where ek(t) is a suitably
chosen basis function and c j,k are coefficients. Throughout this paper, we use
ek(t) = (t − t j)

k. The trajectory is restricted to be kr-times continuously differen-
tiable at each of the intermediate points, q(t j), for j ∈ [0, . . . ,Ns −1]. Further, obsta-
cle avoidance is achieved by enforcing (2) at some equally distributed intermediate
points on each subtrajectories. The cost function is the integration of norm of rth-
derivative of trajectory:

J(c) =
∫ t f

t0

∥
∥
∥
∥

drq(t)
dtr

∥
∥
∥
∥

2

dt = cT Hc. (4)

where c = [cT
0 , . . . cT

Ns−1]
T . The optimal trajectory generation problem can then be

simplified as the following mixed-integer quadratic program,

min
c, b

cT Hc (5)

s.t. A f c+D f b ≤ g f , Abb ≤ gb, Aeqc = 0

where b is the vector of binary variables. The first inequality captures the feasibil-
ity constraints of (2) for the intermediate points, the second inequality captures the
constraint on sum of binary variables in (2), and Aeqc = 0 imposes rth order dif-
ferentiability at the intermediate points as well as the boundary condition of initial
configuration, q(0) = q0 and final configuration q(t f ) = q f .

To find an optimal trajectory in a specific homotopy or homology class, we now
incorporate topological constraints. If we add a constraint on h-signature, which we
defined earlier, such that the h-signature of the trajectory, H(q), should be some
desired Hd , the quadratic program (5) becomes a nonlinear problem. Furthermore,
the gradient of the new constraint, H = Hd will be zero almost everywhere, because
the value of h-signature does not change within a particular homology class (i.e.
the range of the h-signature is a set of discrete values). So, the resulting problem
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is NP and it is numerically hard to find a solution based on gradients of cost and
constraints. So, we need another way to enforce topological constraints, and this is
carried out as follows.

Although (2) is a sufficient condition for feasibility, we introduce an additional
inequality so as to obtain a partition of Q.

−ni, f ·q ≤−si, f +M(1−bi, f ) for bi, f ∈ {0,1}, f = 1, . . . ,ni. (6)

The first inequality of (2) only guarantees that the point q is on one side of face
when bi, f = 0. With the additional constraint (6), the binary variable, bi, f , uniquely
determines in which half space a point q is on. So we can divide the work space
with hyperplanes of obstacles by value of binary variables.

As a result, a set of connected cells is built, whose union is the feasible space,
Q, and the intersection is only the extended lines of faces of the obstacles (see Fig-
ure 1(c)). Each cell can be identified by a unique letter, representing the vector of
binary variables with one binary variable for each face of each obstacle. Every point
in a particular cell will have the same letter representation. It must be noted that not
all binary vectors define valid cells, and hence letters. The collection of all possible
valid letters is defined as an alphabet.

Determining homotopy class of a trajectory is non-trivial. However, we use lo-
cation information of intermediate intermediate point, each represented by a letter
in the alphabet. Assembling the sequence of letters corresponding to each interme-
diate point of the trajectory and removing trivial repetitions will results in a word,
which is a coarse representation of the trajectory. For example, the path shown in
Figure 1(c) can be represented by the word T PUVW QLJHG. This can then be used
to restrict trajectories to a homotopy class as will be seen in Section 3.

3 Algorithm Description

We have broken the problem of optimal trajectory generation into two parts. First
we find a word that is a coarse representation of the trajectory and use this to restrict
the homotopy class of the trajectory, and next find an optimal trajectory with this
restriction. The following sections present the algorithm in more detail.

3.1 Finding Words in the Same Homotopy Class

To find an optimal trajectory satisfying a given homotopy class constraint, we first
construct Wh, the set of words of the same homotopy class with the required one.
We construct Wh by starting with the word for the given initial trajectory; Wh =
{w0}. Then we choose a word wc ∈Wh and expand the chosen word as follows. For
example let wc = TPUVWQLJHG as in Figure 1(c). We choose two letters, say T
and U . If there is an alternative path, like T XU(the gray plot in Figure 1(c)), for
the path T PU , we construct the closed loop by reversing the new path, and obtain
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T PUXT after removing duplicating letters. If the length of the closed loop is less
than six, no obstacle lies in the closed loop (since we need to visit at least six cells to
encircle a triangle). So we replace the path between the two chosen letters with the
new path, and an expanded word representing the same homotopy class is achieved,
w1 = T XUVW QLJHG. The new word is added into Wh. We repeat this expansion
until there are no more new words.

3.2 Finding the Optimal Trajectory

For a given word, wc ∈ Wh, we parameterize the trajectory with Ns subtrajectories,
where Ns is same as the length of wc. Each subtrajectory is restricted to be in a
particular cell specified by the corresponding letter in the word. Thus, all the binary
variables, bc, of the trajectory generation problem of (5) are fixed by the given word
wc, to reduce the optimization problem to

min
c

cT Hc (7)

s.t. A f c ≤ g̃ f , Aeqc = 0,

which is obtained by substituting bc in (5) and g̃ f = g f −D f bc. As the resulting
problem (7) is a quadratic program, we can find the global optimal trajectory for all
words in Wh, which are in the given homotopy class.

However, it is not trivial to find the spending time in each cell to minimize the
cost of the whole trajectory. To refine the trajectory further, we can adjust the time
spent in each cell. With the final time, t f , fixed, we can find an optimal time distri-
bution by solving

min
t j

min
c

cT Hc
(
s.t. A f c ≤ g̃ f , Aeqc = 0

)
(8)

s.t. t j ≤ t j+1 for j = [0, . . . ,Ns −1], t0 = 0, tNs = t f .

As this problem is a nonlinear program, we cannot guarantee the global minimum.
However, the trajectory is iteratively refined by starting with Δ t j = t j+1−t j =

t f
nw

for
j ∈ [0, . . . ,Ns−1] and solving (8) by an interior-point method. Although we can find
an initial solution without iteration, a better trajectory can be obtained by iterating
the time distribution. Moreover, since the optimization cost reduces with more iter-
ations, this method can be considered as an anytime algorithm that produces better
solutions with more time.

4 Simulation Results

To illustrate how the suggested algorithm works, we performed some simulations to
generate optimal trajectories with various homotopy classes. In this simulation, we
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Fig. 2 (a) Optimal trajectory without homotopy constraints. (b)–(e) Trajectories with four different
homotopy class constraints. The thick black curve is the optimal trajectory in each homotopy class
and thin gray curves are the suboptimal trajectories for each word. The cost (J) for each case is
specified on the upper left corners of plots. (f)–(j) Effect of varying the time distribution in each
cell through iterations of the optimization (8). The number of iterations (itr) and cost are also
specified on the upper left corner of each plot. Note that the cost converges to the local optimal
cost of the case (b) in 6 iterations.

fix the final time t f = 10 and find optimal trajectories for four homotopy classes. To
reduce the computation time, we limit the maximum length of word to twelve.

The plot of Figure 2(a) shows the result of solving (5) without homotopy class
constraints, resulting in an optimal cost of 0.60234. The plots of Figure 2(b)–2(e)
show the result of solving (8) with four different homotopy class constraints, result-
ing in optimal costs that are greater than the global optimal one. When we search for
trajectories with the same homotopy as the optimal trajectory achieved without ho-
motopy class constraints (Figure 2(a)), the obtained optimal trajectory (Figure 2(e))
is a local optimal one with a larger cost. This disparity occurs due to restricting
the trajectory to pass through certain cells and the fact that it is hard to find global
optimal time distribution in each cell. The most optimal trajectory with homotopy
class constraints lies in a different homotopy class from the global optimal one (Fig-
ure 2(b)). However, this is due to the symmetric arrangement of initial/final location
of the trajectory and arrangement of obstacles.

With a fixed time distribution for each cell, the optimization reduces to a quadratic
program for each word, which can be solved efficiently. To see the effect of optimiz-
ing the time distribution, we begin with a trajectory in the particular homotopy class
of Figure 2(b) with equal time distribution over all the cells and iteratively optimize
time distribution. The plots of Figure 2(f)–2(j) illustrate the changes in the trajectory
and the corresponding cost with each iteration. Although this nested optimization is
computationally expensive, with each iteration we get closer to the local optimal
solution, resulting in an algorithm with anytime properties.



90 S. Kim et al.

5 Conclusion

In this paper, we have presented a method to find an optimal trajectory subject
to kinematic constraints, obstacle avoidance, and restricted to a specific homotopy
class. This has been achieved by suitably modifying a MIQP to partition the con-
figuration space and by constructing a coarser representation of the trajectory in the
form of a word to represent the homotopy class. The set of all words representing the
same homotopy class is constructed, and a nested optimization is carried out to find
a locally optimal trajectory restricted to a homotopy class. Although we have only
illustrated examples in the plane, work in [2] suggests obvious extensions to 3-D.
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Validation of a Power Grasping Algorithm for
an Anthropomorphic Robotic Hand on the Basis
of Human Grasping Action

F. Cordella, L. Zollo, A. Salerno, E. Guglielmelli and B. Siciliano

Abstract It is generally acknowledged that performing a natural and reliable grasp
with a robotic hand is a challenging task not yet completely solved. Further, the
robotic hands designed until now do not have the same kinematic characteristics
of a human hand, especially regarding the thumb. The main purpose of this paper
is to use information obtained from the analysis of the human grasping action for
validating and improving a reach-and-grasp algorithm we proposed for determining
the optimal hand position for grasping a cylindrical object. Algorithm effectiveness
has been tested on a real arm-hand robotic system.

Key words: Robotic grasping, hand kinematics

1 Introduction

The human hand represents the most dexterous part of the human body, both for its
complex mechanical structure and for the versatility of its possible activities. In par-
ticular, grasping is one of the human skills that robotic researchers mostly attempt
at imitating. One possible approach to reduce the complexity of the control that en-
sures stability of grasping consists of optimizing grasping configuration. During the
pre-shaping phase, on the basis of the physical characteristics of the object to be
grasped, such as shape and weight, the hand, while approaching the object, attains
the most suitable configuration for seizing. Thus, pre-shaping plays a fundamental
role in order to guarantee a stable grasp.
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Many approaches can be found in the literature to the purpose of searching an
optimization criterion for selecting the optimal grasp configuration for a given ob-
ject. In [1] a review of various techniques has been proposed for identifying the
optimal grasp within the space of feasible grasps for a given set of task constraints,
like object shape, type of task, hand degrees of freedom (DOFs), maximum force to
be applied, etc. The main difficulty of this approach is the choice of the parameters
to be used as constraints and to be included in the objective function [2]. A differ-
ent approach consists in determining the hand-object contact points that guarantee
a firm grip. Joint positions and forces that a robotic hand should apply for a stable
grasp could be provided by a neural system [3] implying a high computational cost.
Contact points can also be determined by means of grasp quality measures, which
are used to evaluate grasp performance. In [4] two groups of grasp quality measure-
ments have been considered and the authors propose a method for satisfying them.
In [5], after heuristically generating a set of feasible grasp candidates, grasp qual-
ity measures, computed with an ad hoc method, have been used to choose the best
grasp. Finally, methods for finding an optimal grasp configuration based on grasping
force determination can be mentioned. They rely on the concepts of wrench matrix
and friction cone [6].

By analyzing the robotic literature, it is evident a sizeable lack of information
about the thumb behavior, despite its fundamental role during the grasping action.
In fact, the robotic hands designed so far [7–9] are not able to replicate the motor
capabilities of the human hand.

From the analysis of the grasping action performed by human beings and from
the study of the anatomy of the human hand and of its behavior during grasping,
it is possible to obtain useful information for developing human-like grasping al-
gorithms so as to improve knowledge about hand kinematics on which this work is
based. Objective of this work is to validate a recently proposed algorithm [10] that
guarantees a stable power grasp and to pave the way for future works devoted to
improving knowledge about the thumb behavior, giving some hints for enhancing
the existing robotic hands. An optoelectronic motion analysis system has been used
for collecting information about finger behavior during grasping. The obtained re-
sults have been used for improving and validating the optimization algorithm that
has been also tested on a real robotic arm-hand system during reach-and-grasp tasks
of cylindrical objects.

2 Experimental Analysis of Human Grasping Action

The Vicon optoelectronic motion analysis system has been used for collecting in-
formation about the fingers during grasping. The system is composed of 7 InfraRed
(IR) cameras, with a frame rate of 100 Hz.

Seven human subjects, 31.7 years old in the average (8.75 Standard Deviation),
five men and two women, all right handed, volunteered to participate in this study.
Subjects were asked to grasp a cylindrical object of 6 cm diameter with a diagonal
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Fig. 1 (a) Human grasp of a cylindrical object with a diagonal volar grasp. (b) Marker configura-
tion with reference frame in black; (c) Subject starting position. The markers on the object allows
identifying its position.

volar grasp (Fig. 1(a)) for 10 times each. 25 reflective markers of 6 mm diameter
were placed on their right hand as shown in Fig. 1(b). All subjects gave informed
consent to participate in the study.

According to results in the literature [11, 12], the protocol for positioning mark-
ers on the hand has been chosen in order to minimize artifacts, due to skin move-
ments or marker occlusion, and for obtaining information about the wrist position
(a reference point for the grasping algorithm).

The participants were seated in front of a table on which the cylindrical object
was located in a-priori known position. Hand starting position and initial posture
were the same for all the participants (Fig. 1(c)). The hand starting configuration was
the one in which the four fingers were fully extended and the thumb was adducted.
The marker positions were recorded in this starting position and during all the trial
until the hand grasps the object. The object position was identified by 4 markers
placed on the top of the cylindrical object, as shown in Fig. 1(c). Every subject
was asked to grasp the object, without lifting it, ten times. Before starting the data
acquisition, each participant was asked to grasp the object five times for training.

2.1 Data Analysis and Results

The Vicon Nexus 1.6.1 Software package has been used to reconstruct marker Carte-
sian positions with the Vicon system and a link model of the hand has been con-
structed. In order to understand if a common behavior among subjects can be ob-
served during the grasping action, two performance parameters have been extracted
from the collected data: (i) the radius of curvature of every finger (i.e. the radius
of the obsculator circles tangent, at each joint, the spline passing throughout the
finger joints); (ii) the adduction/abduction angle between the fingers (i.e. the angle
between two adjacent fingers, subtended by the distance between the PIP joints of
the two fingers). For calculating the above parameters, the last frame of each trial
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Fig. 2 Curvature of the long fingers during diagonal volar grasp. For space reasons only 3 samples
are shown.

Table 1 Mean and standard deviation of ra-
dius of curvature in diagonal volar grasp for
the index finger.

PIP joint DIP joint
Subject # Mean (mm) SDV Mean (mm) SDV

1 28.96 3.01 32.83 5.34

2 22.81 0.93 30.97 8.30

3 25.32 1.97 26.36 1.48

4 33.54 2.32 27.19 2.44

5 29.10 1.27 36.35 4.23

6 29.80 1.66 34.06 4.22

7 31.98 3.51 30.95 2.64

Table 2 Mean and standard deviation of the
adduction/abduction angle (in degrees) of
the MCP joints in diagonal volar grasp.

MCP2−3 MCP3−4 MCP4−5
Subject # Mean SDV Mean SDV Mean SDV

1 31 2.7 29.11 2.18 25.64 1.49

2 37.8 1.49 24.42 1.28 20.88 1.70

3 36.98 1.38 20.71 0.62 23.34 3.25

4 36.44 4.19 21.31 1.34 21.05 0.85

5 36.88 1.36 20.74 0.18 24.67 0.45

6 32.09 1.52 26.40 0.61 29.76 2.4

7 35.48 3.37 22.98 1.41 28.24 3

has been considered for each subject. They are expected to provide useful infor-
mation about the configuration of all the fingers during grasping. Figure 2 shows
the curvature of all the fingers when grasping the cylindrical object with a diagonal
volar grasp. The blue lines are the splines passing throughout the hand joints out-
lined with different colors, as explained in the figure legend. Furthermore, in Table 1
mean value and standard deviation of finger curvature radii during a diagonal volar
grasp are listed. The MetaCarpoPhalangeal (MCP) and fingertip (TIP) radii values
are not reported since they are obviously very high. The mean is calculated for each
subject during the 10 trials. A quite similar behavior among different subjects can
be observed. In Table 1 only the behavior of the index finger is reported for brevity,
but the results are similar also for the other fingers. In Table 2 mean and standard
deviation of the adduction/abduction angle (in degrees) of the MCP joints are listed.
In particular, MCP2−3, MCP3−4, MCP4−5 are the angles between the index finger
and the middle finger, between the middle finger and the ring finger and between
the ring finger and the little finger, respectively.

These findings allow us to say that subjects with different hand size grasp the
cylindrical object with the same long finger configuration independently of the hand
dimension. Therefore, it is possible to use the hand joint position for validating the
grasping algorithm and for introducing the MCP adduction angles.
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3 Bio-Inspired Grasping Algorithm for a Robotic Hand

The wrist plays a fundamental role in the grasping action, i.e. it guides the hand
to the grasp position and adjusts the orientation on the basis of the grasping type
and task. This is the reason why one marker has been positioned on the hand of the
examined human subjects during the motion analysis and why a point on the wrist,
called CarpoMetaCarpal (CMC) joint, is considered in the following as reference
point for the bio-inspired grasping algorithm for determining the position of the
other hand joints.

The algorithm was proposed in our previous work [10] and had the purpose of
predicting the optimal hand configuration for stably grasping a cylindrical object,
given the size of the object and its location in the space. The starting hypothesis
is that the long finger optimal configurations for grasping a cylindrical object with
a diagonal volar grasp is the one that minimizes the sum of the distances between
the hand joints and the object surface. In particular, the position of the CMC joint
that guarantees a stable grasp configuration can be obtained by minimizing the ob-
jective function given by the sum of the distances of all finger joints from the ob-
ject surface. Providing the CMC coordinates and the distances of the joints from
the object surface, in addition to some geometrical considerations (such as the ad-
duction/abduction angles obtained from the motion analysis system), all the joint
coordinates are computed for the four long fingers with a human-like optimal grasp
configuration.

4 Experimental Validation of the Grasping Algorithm

The experimental validation of the algorithm mentioned in Section 3 on a real arm-
hand robotic system has been carried out. The experimental platform (Fig. 3(a)) is
composed of the MIT-Manus planar robot, acting as the arm to realize the reaching
task, and the DLR-HIT-Hand II mounted at the MIT-Manus end-effector, which is
responsible for preshaping and grasping.

The five-fingered dexterous robotic hand DLR-HIT-Hand II has five identical
modular fingers with four DOFs each. The last two joints (proximal and distal) are
1 : 1 coupled, meaning that the corresponding flexion/extension angles are equal.
The thumb is mechanically constrained to assume a fixed opposition of 35.51o in
the xy–plane with an inclination, with respect to z-axis, of 44.13o; this only enables
transverse volar grasps with a fixed thumb inclination. Therefore, during the experi-
ments, the thumb has been disabled in order to perform a power grasp with only the
four long fingers.

The object to be grasped is a cylinder with given shape, weight and position.
The initial configuration of the hand joints, as well as the optimal configuration
from the algorithm have been provided in the MIT-Manus reference frame. Being
the MIT-Manus planar, the arm and hand height from the table could not be varied.
Consequently, the object was properly located in order to allow closing the middle
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Fig. 3 (a) Experimental setup. The DLR-HIT-Hand II and MIT Manus reference frames are shown.
(b) Hand joints trajectory in the Cartesian space for the DLR-HIT-Hand II grasping the cylindrical
object with radius 0.020 m.

finger at half of the object height. This assumption was coherent with findings of
our experiment.

Given the object position, the optimal CMC Cartesian position and the final hand
configuration for grasping the object were obtained through the MATLAB func-
tion f minsearch( f , [initialcondition]). During the reaching movement, the hand has
been moved by the arm towards the optimal CMC position. Thus, the hand has been
controlled in order to reach the final MCP, PIP, DIP joint angles, also provided by
the optimization algorithm. During reaching, the hand cannot change orientation,
being arm motion planar: zDLR-axis is always parallel to yMANUS.

A fifth order polynomial function has been used to plan the MIT-Manus linear
motion from initial position up to final position. Then, a proportional-derivative
(PD) torque control in the Cartesian space has been used to control arm position
(and consequently CMC position) in the plane.

As regards preshaping, final MCP, PIP and DIP joint positions, provided by
the optimization algorithm, have been taken as reference for the DLR-HIT-Hand
II motion controller. A third-degree polynomial function has been used to plan joint
motion up to the final reference value and a PD torque control in the joint space
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enabled reaching the desired final angles. It is worth noticing that, in the DLR-
HIT-Hand II, the DIP and PIP joints are coupled with θDIP = θPIP, thus providing
a constraint to the final position of PIP and TIP, that was often slightly different
with respect to the desired one. The obtained results are shown in Fig. 3, where
the joint trajectories are reported in the Cartesian space. For the arm, a point-to-
point movement has been performed in 3.0 s for each trial, starting from the ini-
tial position Pi = [−0.1 0.1]T m to final position Pf = [−0.0975 −0.1245]T m.
The final position, reported only for grasping an object with radius of 0.020 m for
sake of brevity, takes into account the CMC position supplied by the algorithm
CMC = [−0.0975 −0.179 0.15]T m as well as the offset between the arm end-
effector and the hand CMC due to the flange that connects the DLR-HIT-Hand II to
the MIT-Manus robotic arm. The cylindrical objects to grasp have radii 0.0225 m
and 0.020 m and have been located in (−0.051,−0.257) m in the MIT-Manus ref-
erence frame.

Table 3 reports the actual Cartesian coordinates for each joint of the robotic hand
performing the task of grasping an object with radius of 0.0225 m and compares
them with the Cartesian coordinates produced by the optimization algorithm and
with those measured by the Vicon system. The values in the last column regard an
object with radius of 0.03 m. Moreover, the reference frame is not coincident with
the hand wrist, but is positioned as shown in Fig. 1(b). This is the reason why the
z-coordinate of the values taken with the Vicon system are different from the values
obtained with the other two systems. In particular, the z-coordinate of the hand wrist
is −0.056 m in this reference frame. By taking into account this offset, it is possible
to note a quite similar behavior among the algorithm output, the robot position and
the Vicon results. The small differences in the Cartesian coordinates for the robotic
hand are due to its mechanical structure that constrains the DIP joint motion in
a different way with respect to the human hand. The obtained results allow us to
conclude that the hand configuration obtained with the optimization algorithm is
similar to the stable one assumed by the human beings.

Table 3 Joint Cartesian coordinates resulting from the optimization algorithm, measured on the
robotic hand and obtained by the Vicon system.

“Cartesian position”
Finger Joint Algorithm Robotic hand Vicon system

index MCP [0 0.045 0.088]T m [−0.0025 0.0368 0.1078]T m [−0.0143 0.011 0.043]T m

PIP [0.0485 0.0468 0.1040]T m [0.0264 0.0343 0.1545]T m [0.029 0.014 0.073]T m

DIP [0.0672 0.0454 0.0877]T m [0.0513 0.0321 0.1526]T m [0.057 0.018 0.073]T m

middle MCP [0.0012 0.0100 0.0977]T m [−0.0037 0.0100 0.1178]T m [0.0037 −0.009 0.042]T m

PIP [0.0541 0.0100 0.1126]T m [0.0437 0.0100 0.1457]T m [0.044 −0.008 0.063]T m

DIP [0.0716 0.0100 0.0947]T m [0.0655 0.0100 0.1335]T m [0.074 0.008 0.057]T m

ring MCP [0 −0.0250 0.0925]T m [−0.0025 −0.0168 0.1126]T m [0.011 −0.026 0.031]T m

PIP [0.0515 −0.0268 0.1093]T m [0.0409 −0.0130 0.1462]T m [0.054 −0.019 0.046]T m

DIP [0.0695 −0.0253 0.0922]T m [0.0641 −0.0110 0.1371]T m [0.080 −0.061 0.042]T m

little MCP [−0.0035 −0.0600 0.0735]T m [0.0010 −0.0434 0.0936]T m [0.021 −0.041 0.020]T m

PIP [0.0365 −0.0635 0.0905]T m [0.0313 −0.0380 0.1391]T m [0.056 −0.031 0.030]T m

DIP [0.0584 −0.0615 0.0794]T m [0.0559 −0.0337 0.1409]T m [0.073 −0.026 0.032]T m
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5 Conclusion

Experiments for validating a biologically inspired approach for finding the optimal
grasp configuration have been performed. The algorithm has been improved with
some geometric considerations obtained from the analysis of the human grasping
action. The realized experiments have been described and the obtained data have
been analyzed. They allowed us to maintain that the hand configuration obtained
by the optimization algorithm is similar to the stable one recorded with the Vicon
motion analysis system. The algorithm has been validated through experimental
trials on a real arm-hand robotic system, composed of the MIT-Manus robot arm and
the DLR-HIT-Hand II. Experimental results on the described robotic platform have
proven its feasibility and reliability but have also shown limitations in the grasping
tasks due to the constraints imposed by the mechanical structure, not adequately
similar to the human structure.
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On the Vertical Darboux Motion

Chung-Ching Lee and Jacques M. Hervé

Abstract A vertical Darboux motion (VDM) is a 1-DoF motion. It is a special case
of a general Darboux motion in which all the trajectories in the moving body are
planar ellipses. An axis is globally invariant in a VDM, which is a special cylin-
drical motion. Beyond the transformation of point coordinates, which is available
in the literature, some mechanical generators of a VDM are revealed. These VDM
generators are systematically synthesized by the parallel arrangement of one cylin-
drical (C) pair and one generator of a 5-dimensional (5D) manifold of rigid-body
displacements, in which one point is compelled to move in a fixed plane. For in-
stance, the center of a spherical S pair in a serial PPS chain moves in a plane that
is parallel to the prismatic P pairs. Replacing the PPS chain with other generators
of planar-spherical motion yields isoconstrained generators of VDM. In addition,
overconstrained realizations of VDM generators with exceptional mobility are also
unveiled.

Key words: Vertical Darboux motion, mechanical generator, isoconstrained, over-
constrained, exceptional mobility

1 Introduction

In 1881 Darboux [1–3] introduced a non-planar motion in which all trajectories are
planar curves. Darboux’ explanations are based on the transformation of Cartesian
coordinates in a privileged frame of reference and he proved that the planar tra-
jectories are ellipses. A Darboux motion is a special kind of Schoenflies motion
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Ecole Centrale des Arts et Manufacturess, Paris, France, e-mail: jacques.herve07@orange.fr
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with one DoF. In other words, a set of Darboux displacements is a one-dimensional
(1D) subset of a 4D Schoenflies-motion group. A derivation of the general Darboux
motion by using spatial instantaneous invariants has been given by Veldkamp [4].
When one axis is globally invariant, the special Darboux motion was called in [5],
a “vertical” Darboux motion (abbreviated as VDM), whose mechanical generation
is the main topic of our article. It is worthwhile noticing that, recently, this kind of
special motion was taken as an example of a line symmetric motion in [6].

A VDM is mathematically modeled by a 1D submanifold of a 2D Lie group
of cylindrical motions. Hence, it could be called “cylindrical” Darboux motion.
The parallel arrangement of a 2-DoF cylindrical pair (C) and a 5-DoF generator
of planar-spherical motion (Pl-Sph) such as a PPS open chain, forms a single-loop
chain, which is a mechanical generator of a VDM. Two main families of single-loop
isoconstrained VDM generators are then obtained by replacing a PPS chain with
other planar-spherical motion generators [7, 8]. Four subfamilies of the first type
and two subfamilies of the second one are further proposed. Moreover, overcon-
strained realizations of VDM generator, which belong to the exceptional category of
chains [9, 10] are revealed too.

2 Vertical Darboux Motion

The VDM axis is globally invariant and is assumed to be vertical. That geomet-
ric constraint is obviously realized by the cylindrical pair denoted C. The set of the
relative displacements between the pair of bodies is a 2D Lie group of vertical cylin-
drical motions. Therefore, a VDM is mathematically modeled by a 1D submanifold
of a 2D group of cylindrical motions. In all types of Darboux motion, any point
moves in a fixed plane. As for the special case of a VDM, any point moves also on a
fixed revolute cylinder having the axis of the cylindrical motion. It is straightforward
to verify that the trajectories are ellipses.

In Fig. 1a, a rigid body is connected in parallel by a 2-DoF C pair and a 5-DoF
PPS open chain to a fixed base. This forms a new initiatory model of a C-SPP chain.
The C pair axis is parallel to the unit vector k and the spherical S pair is centered
at A. Point Q is the foot of the perpendicular from A to the C axis. The center A of
the S pair is compelled to move in a fixed plane parallel to both prismatic P pairs.
This plane is orthogonal to the unit vector u and intersects the C axis at the point O.
Hence, the motion of the foregoing body is a cylindrical motion and one of its point
moves in a plane. Clearly, the motion has one DoF. In any two mechanisms that
are congruent at their home configurations, the relative displacements between any
couple of bodies are conjugate by the displacement which transforms one mecha-
nism into the other one [11]. The group of cylindrical motions is commutative (or
Abelian) and, therefore, any of its subsets is self-conjugate (or normal) in the group.
Using the invariance of any subset of cylindrical motions through the conjugation
by any element of the group of cylindrical motions, we establish that the C-SPP
mechanism, which is obtained from the first one (Fig. 1a), through any cylindrical
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Fig. 1 Initiatory C-SPP models.

displacement of the whole C-SPP mechanism, generates the same cylindrical mo-
tion. In the cylindrical displacement of the whole C-SPP mechanism, the axis (Q, k)
of the C pair does not change and two C pairs with the same axis are equivalent to
one C. The S center of the first C-SPP mechanism becomes another point, which is
located on the revolute cylinder with the C axis and passes through the first S center.
The angle between the C axis and the PP plane does not change. That way, we prove
that all the points belonging to a revolute cylinder move in planes.

Further considerations are needed to establish that the points that do not belong
to the initiatory cylinder move also on ellipses. Frame-free vector calculations lead
to the geometric characterization of all elliptical trajectories. Figure 1a shows a
vertical plane determined by the axis (Q, k) and A. Thus, we write: vector (QA) = ai
and (i, j,k) is an orthornormal vector base. Using the exponential formulation of a
rotation, we have i = exp(αj×)u ⇔ u = exp(−αj×)i = cosαi+ sinαk. When the
point A is not constrained to move in a plane, a cylindrical motion provided by the
C pair is expressed by the point transform:

∀ point M ∈ moving body,M → M′ = Q+ tk+ exp(θk×)(QM)

in which t and θ are two canonical variable parameters of the 2-DoF motion. The
t and θ are not independent when A is constrained to move in a plane. One way to
obtain the equation tying t and θ , is to write: A → A′ = Q+ tk+ exp(θk×)(QA)
together with (AA′) ·u = 0. Thus, A′ = Q+ tk+aexp(θk×)i = Q+ tk+acosθ i+
asinθ j

⇒ (AA′) = Q+ tk+acosθ i+asinθ j−Q−ai = a(cosθ −1)i+asinθ j+ tk (1)

and (AA′) ·u = [a(cosθ − 1)i+ asinθ j+ tk] · (cosαi+ sinαk) = acosα(cosθ −
1)+ t sinα . The geometric condition (AA′) ·u = 0 produces the relation

acosα(cosθ −1)+ t sinα = 0 ⇔ t = a(cosα)(1− cosθ)/sinα (2)
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It is straightforward to verify that (QO) = (a/ tanα)k = a(cosα/sinα)k from ele-
mentary geometry. Hence, the vertical Darboux motion can be expressed by

M → M′ = Q+(1− cosθ)(QO)+ exp(θk×)(QM) (3)

where the angle θ is the variable parameter of the special 1-DoF motion. Further-
more, we consider another point A∗ such as (QA∗) = a∗i; A∗ belongs to the line QA.
In a C-SPP chain indicated by QA∗PB∗PD∗, A∗ can be constrained to move in the
plane perpendicular to the vertical plane of (Q, k) and A, which passes through A∗

and O, as shown in Fig. 1b. As mentioned above, all the points that lie on the revo-
lute cylinder of axis (Q, k), which contains the point A∗ moves also on fixed planes.
The radius of the cylinder is a∗ and can be chosen arbitrarily. Hence, we obtain the
following theorem: if, in a subset of cylindrical motions, one point moves in a fixed
plane, then all points move in fixed planes. A particular VDM can then be specified
by its axis (Q, k) together with its vertical amplitude that is the signed length 2(QO).

3 Isoconstrained Mechanical Generators of VDM

The serial arrangement of a planar pair (G) and a spherical pair (S) is called a gen-
erator of a 5D planar-spherical (Pl-Sph) motion. An enumeration of the serial arrays
of pairs without redundant mobility, which are equivalent to generate a (Pl-Sph)
motion, was introduced in [7, 8]. In the previous section, a PPS open chain is the
simplest realization of Pl-Sph motion generator. There are two main families of Pl-
Sph motion generators. One is the Pl-(RR) family and the other is the family of
RR-Sph. The underline indicates a planar subsystem and a parenthesis denotes a
spherical subsystem. The mechanical generators of a Pl-Sph motion including he-
lical H pairs [7] are applied hereinafter. Replacing the PPS subchain in the closed
loop C-SPP chain by any generator of Pl-Sph motion leads to a proper mechanical
generator of a VDM, which is an isoconstrained chain [12]. Two main categories of
VDM generators: C-[(RR)-Pl] and C-[Sph-RR] are presented in Table 1. The corre-
sponding architectures are graphically displayed in Figs. 2 and 3. It is worth noting
that depending on the architectural type of VDM generator and the size of its links,
the range of the mechanically generated VDM may be limited.

In three generators of the first main category, which are C-(RR)PRR (Fig. 2c),
C-(RR)PPR (Fig. 2e), and C-(RR)PRP (Fig. 2f), contiguous R) and P pairs may be
parallel and, then, the R)P subchain can be replaced by a C. We obtain three sub-
categories: C-(RC)RR, C-(RC)PR, and C-(RC)RP. Furthermore, the C pair can be
replaced by one of its kinematic equivalences, namely by either a HH, RH, HR, PH,
HP or PR subchain, which differs from the original RP subchain that is equivalent
to a C pair (Table 2). In the obtained combinations C-(RH)PPR, C-(RH)PRR and
C-(RH)PRP, the H and the P are not necessarily parallel, which leads to the addition
of the C-(RH)Pl family (fourth row in Table 2). One representative generator in each
subcategory is graphically displayed in Fig. 4. In two generators of the second main
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Table 1 Isoconstrained VDM generators of the two main categories.

Category Isoconstrained VDM generators Amount

C-[(RR)-Pl]
C-(RR)RRR C-(RR)RPR C-(RR)PRR C-(RR)RRP

7
C-(RR)PPR C-(RR)PRP C-(RR)RPP

C-[Sph-RR] C-(RRR)RR C-(RRR)PR C-(RRR)PP C-(RRR)RP 4

Fig. 2 A VDM generators of the first main category Pl-(RR).

Fig. 3 VDM generators of the second main category RR-Sph.

category, which are C-(RRR)PP (Fig. 3c), C-(RRR)PR (Fig. 3b), contiguous R) and
P pairs may be parallel and, then, the R)P subchain can be replaced by either a C or
an equivalence of C that differs from the original RP. We obtain two subcategories:
C-(RRC)P and C-(RRC)R (Table 3). Typical architectures are shown in Fig. 5.
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Table 2 Isoconstrained VDM generators of subcategories of the first main category.

Subcategory Isoconstrained VDM generators Amount
C-(RC)RR C-(RP)RRR C-(RH)PRR C-(RH)HRR C-(RP)HRR C-(RH)RRR C-(RR)HRR (1+6)
C-(RC)PR C-(RP)RPR C-(RH)PPR C-(RH)HPR C-(RP)HPR C-(RH)RPR C-(RR)HPR (1+6)
C-(RC)RP C-(RP)RRP C-(RH)PRP C-(RH)HRP C-(RP)HRP C-(RH)RRP C-(RR)HRP (1+6)

C-(RH)-Pl
C-(RH)RRR C-(RH)RPR C-(RH)PRR C-(RH)RRP C-(RH)PPR C-(RH)PRP

7
C-(RH)RPP

Fig. 4 Representative VDM generators for each subcategory of C-[(RR)-Pl].

Fig. 5 Representative VDM generators for each subcategory of C-[Sph-RR] type.

Table 3 Isoconstrained VDM generators of two subcategories of C-[Sph-RR] category.

Subcategory Possible isoconstrained VDM generators Amount

C-(RRC)R
C-(RRH)PR C-(RRP)HR C-(RRH)HR C-(RRH)RP

(1+5)
C-(RRR)HR

C-(RRC)P
C-(RRH)PP C-(RRP)HP C-(RRH)HP C-(RRH)RP

(1+5)
C-(RRR)HP

4 Overconstrained VDM Generators

In Fig. 6, two open chains connect in parallel an end-effector to the fixed frame.
One CR chain embodies the product C (Q,k)R(A,k), which is a 3D submanifold
X−1(k) of the 4D group X (k) of Schoenflies motions. The other HHH chain
is a generator of the 3D group Y (u, p) of pseudo-planar motions [13]; u 	= k.
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Fig. 6 The CR-HHH overconstrained chain with a VDM.

Fig. 7 Overconstrained VDM generators.

The set of the end-effector feasible displacements is X−1(k)∩Y (u, p). From
X (k)∩Y (u, p) = T (⊥u), ∀ pitch p, we derive: X−1(k)∩Y (u, p) = T−1(⊥u);
T−1(⊥u) denotes a 1D submanifold of the 2D group T (⊥u) of planar translations
perpendicular to u [14]. Therefore, the mechanism is movable with one DoF and its
mobility can be established by using the product closure in two or several displace-
ment subgroups. This chain belongs to the exceptional category [9]. Furthermore,
the end-effector motion is a 1-DoF translational motion, which is, in other words,
translation along a curve, which is an ellipse in the present issue. The rigid link
connecting C and R in the CR-HHH mechanism undergoes a VDM.

The HHH generator of Y (u, p) group can be replaced by any one of its kinematic
equivalences. Hence, CR-HPH, CR-HHP, CR-PHH are VDM generators. However,
in Y (u, p) generators including two Ps, the H pair is idle (inactive) and, conse-
quently, can be removed. These results are summarized in Table 4 and are graphi-
cally displayed in Fig. 7.
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Table 4 Overconstrained VDM generators.

Type Overconstrained VDM generators Amount

CR-pY
CR-HHH CR-HPH CR-HHP CR-PHH

5
CR-PP

5 Conclusions

A set of VDMs is a special 1D submanifold of a 2D group of cylindrical motions,
which is a subgroup of a 4D group of Schoenflies motions. Basic mechanical means
to generate a VDM are revealed. Isoconstrained VDM mechanical generators are
obtained through the parallel arrangement of a C pair and a generator of planar-
spherical motion. Subfamilies of VDM generators result from the numerous ways to
produce the same Pl-Sph kinematic bond. Moreover, overconstrained VDM gener-
ators with exceptional mobility are synthesized. In a future work, combining these
kinematic chains will lead to more mechanical generators of a VDM.
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Kinematic Analysis of a Planar Tensegrity
Mechanism for Wave Energy Harvesting

Rafael E. Vasquez, Carl D. Crane III and Julio C. Correa

Abstract Tensegrity systems have been used in several disciplines such as archi-
tecture, biology, aerospace, mechanics and robotics during the last fifty years. How-
ever, just a few references in literature have stated the possibility of using them in
ocean or energy-related applications. This work addresses the kinematic analysis of
a planar 3–dof tensegrity mechanism for ocean wave energy harvesting. A planar
tensegrity mechanism is proposed based on the “X-frame” morphology developed
by Kenneth Snelson in 1960s. A geometric approach is used to solve the forward
and reverse displacement problems. The theory of screws is used to perform the for-
ward and reverse velocity analyses of the device. The result of shows that tensegrity
systems could play an important roll in the expansion of clean energy technologies
that help the world’s sustainable development.

Key words: Planar mechanisms, tensegrity, wave energy

1 Introduction

Due to sustainability concerns, a world race started several years ago to incentivize
the research, development and utilization of renewable energy sources [10]. The
ocean represents an enormous potential energy source [12]; however, its exploitation
is still incipient compared to other well-established power harvesting technologies
such as wind and solar energies.
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Wave energy constitutes the most noticeable form of ocean energy, maybe be-
cause of its impressive capabilities [6]. The U.S. Department of Energy developed
the Marine and Hydrokinetic Technology Database [16], as a resource for the ma-
rine/hydrokinetic industry. There are more than 160 different devices for ocean en-
ergy harvesting registered, with about 40% corresponding to wave energy.

The word tensegrity is a combination of the words tension and integrity. Tenseg-
rity systems were introduced in the 20th century by Füller [7], Emmerich [5] and
Snelson [15]. These systems are formed by a combination of rigid elements (struts)
under compression, and elastic elements (ties) under tension [9].

Tensegrity systems have been used in several disciplines such as architecture,
biology, aerospace, mechanics and robotics during the last fifty years [14]. Applica-
tions in sciences and engineering include, among others, development of structural
domes and bridges, deployable systems for space applications, description and mod-
eling of living organisms and biological systems, and applications in robotics.

Just a few references in literature have stated the possibility of using tensegrity
systems in ocean applications. Scruggs and Skelton [13] suggested their suitability
to harvest energy from ocean waves. Jensen et al. [8] proposed tensegrity structures
to develop wave compliant structures for aquaculture.

Vasquez [17] compared the dynamic behavior of a tensegrity mechanism with
a direct drive heaving under the influence of linear ocean waves, showing that a
tensegrity configuration allows to harvest 10% more power from ocean waves than
a purely heaving system. This work presents the position and velocity analysis for
a planar three dof tensegrity mechanism that is required for the design stage and
integration of the mechanism with electrical generators.

2 Tensegrity Mechanism

Several planar tensegrity-based mechanism have been proposed, see [1, 2] for in-
stance. The proposed 3–dof tensegrity mechanism is based a two-dimensional mor-
phology proposed by Kenneth Snelson in [15]. The mechanism comprises four
members in tension and two members in compression. The members in compression
are replaced by two bars connected by prismatic joints which represent electrical
generators. Two of the ties have a very high modulus of elasticity (the base and the
top platform) with respect to the other two ties. Therefore, the deformations of the
base and the top platform are negligible and the lateral ties are the two deformable
members under tension that are necessary to keep the tensegrity configuration.

3 Position Analysis

The kinematic diagram of the proposed tensegrity mechanism is shown in Fig. 1.
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Fig. 1 Kinematic diagram of the mechanism. (a) Joint axes. (b) Vector diagram.

3.1 Forward Position Analysis

• Given: the constant mechanism parameters a3, a6 and Lpxz (position of point p
on the top platform); and the joint variables, 1S2, 4S5 and 0θ1.

• Find: the position and the orientation of the top platform, xm, zm and φ.

Let us define the following vectors

S2 = 1S2 cos (0θ1)i + 1S2 sin (0θ1)k, (1)

a6 = a6i. (2)

From Fig. 1, the following vector loop equation can be written

LB = S2 − a6. (3)

Equation (3) permits to evaluate LB and θB . The angle δ3 can be computed as

δ3 = arccos

(
L2

B + 4S
2
5 − a2

3

2LB4S5

)
. (4)

Hence,
5θ6 = θB + δ3 + π. (5)

Then, the vector S5 is given by

S5 = 4S5 cos (5θ6)i + 4S5 sin (5θ6)k. (6)

From Fig. 1, the other two vector loop equations can be written as

LA = a6 − S5, (7)
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a3 = LA − S2. (8)

Equation (8) permits to evaluate the orientation φ. There are two solutions for δ3,
however, only one in the first quadrant is taken for this mechanism’s configuration.

Finally, the position of the point p = [xm 0 zm ]T can be computed as

p = S2 + Lpxz

L
a3. (9)

The length of the springs can be computed in terms of the position and orientation
(φ = θ + π) of the top platform, when Lpxz = L/2, as follows

LA =
[
(xm − L/2 cos θ)2 + (zm − L/2 sin θ)2

] 1
2
, (10)

LB =
[
(xm + L/2 cos θ − L0)

2 + (zm + L/2 sin θ)2
] 1

2
. (11)

3.2 Reverse Position Analysis

• Given: the constant mechanism parameters a3, a6 and Lpxz; and the position and
the orientation of the top platform, xm, zm and φ.

• Find: the joint variables, 1S2, 4S5 and 0θ1.

Let us define the following vector

a3 = a3 cos (φ)i + a3 sin (φ)k. (12)

From Fig. 1, the following vector loop equations can be written

S2 = p − Lpxza3, (13)

LA = S2 + a3, (14)

S5 = a6 − LA. (15)

Equation (13) permits to evaluate 1S2 and 0θ1, and (15) permits to evaluate 4S5.

4 Velocity Analysis

The velocity state is defined as a set of parameters from which the velocity of any
body/point of the linkage can be determined relative to a reference body [4, 11].
Since the presented planar mechanism is the first approximation to harvest ocean
energy from ocean waves, the theory of screws [3] is used in this analysis to illustrate
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the methodology that can be used in further works that include spatial tensegrity
configurations.

The directions of the unit vectors isi+1 along each axis and the coordinates of
one point ri on each joint axis are known. Then, Plücker coordinates of the lines
along revolute and prismatic joints are given, respectively, by

{isi+1; isi+1
OL } = {isi+1; ri × isi+1}, (16)

{isi+1; isi+1
OL } = {0; ri × isi+1}. (17)

Using (16) and (17), the Plücker coordinates of the lines along the joint axes are
given by

0$1 = {0s1; 0s1
OL} = {s1; 0 × s1}, 1$2 = {0; 1s2

OL} = {0; s2},
2$3 = {2s3; 2s3

OL} = {s3; S2 × s3}, 3$4 = {3s4; 3s4
OL} = {s4; LA × s4},

4$5 = {0; 4s5
OL} = {0; s5}, 5$6 = {5s6; 5s6

OL} = {s6; a6 × s6}.
All the unit vectors are known and are given by:

s1 = s3 = s4 = s6 = [ 0 −1 0 ]T , s2 = S2

|S2| , s5 = S5

|S5| .

Since the mechanism is a closed-loop kinematic chain, bodies 0 and 6 are the
same (i.e. the ground of the mechanism).

4.1 Forward Velocity Analysis

• Given: the constant mechanism parameters a3, a6 and Lpxz; the joint variables,
1S2, 4S5 and 0θ1; and the velocities of the joint variables 1v2, 4v5 and 0ω1.

• Find: the velocity state of the top platform
[

0ω3 0v3
O

]T
and ẋm, żm and φ̇.

The closed-loop velocity equation can be written in screw form as follows [4]:

0ω1
0$1 +1 v2

1$2 +2 ω3
2$3 +3 ω4

3$4 +4 v5
4$5 +5 ω6

5$6 = 0. (18)

Equation (18) can be written as a 3x3 system in matrix form as follows⎡
⎣ −1 −1 −1

s2z LAz 0
−s2x −LAx −a6x

⎤
⎦

⎡
⎣ 2ω3

3ω4

5ω6

⎤
⎦ = −0ω1

⎡
⎣−1

0
0

⎤
⎦ − 1v2

⎡
⎣ 0

s2x

s2z

⎤
⎦ − 4v5

⎡
⎣ 0

s5x

s5z

⎤
⎦ (19)

The solution of (19) gives the magnitudes of the angular velocities between con-
secutive bodies. Then, the velocity state of the top platform can be computed as[ 0ω3

0v3
O

]
=0 ω1

0$1 +1 v2
1$2 +2 ω3

2$3
. (20)
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Now the velocity of any point p on the top platform, whose position is repre-
sented by rO→P , is given in terms of the velocity state by

0v3
p = 0v3

O + 0ω3 × rO→P . (21)

Equations (19), (20) and (21) complete the forward velocity analysis.

4.2 Reverse Velocity Analysis

• Given: the constant mechanism parameters a3, a6 and Lpxz; the joint variables,

1S2, 4S5 and 0θ1; and the velocity state of the top platform
[

0ω3 0v3
O

]T
in terms

of ẋm, żm and φ̇.
• Find: the velocities of the joint variables 1v2, 4v5 and 0ω1.

Since the velocity of the point p (0v3
p = ẋmi + żmk), and the angular velocity of

the top platform (0ω3 = φ̇j) are known, the element associated with linear velocities
in the velocity state can be computed using (21) as

0v3
O = 0v3

p − 0ω3 × rO→P . (22)

Substituting (20) into (18) yields[ 0ω3

0v3
O

]
= −3ω4

3$4 −4 v5
4$5 −5 ω0

5$0
. (23)

Since the velocity state of the top platform is known, the joint velocities of the
mechanism can be computed from (20) and (23) as follows⎡

⎣−1 0 −1
0 s2x s2z

0 −s2z −s2x

⎤
⎦

⎡
⎣ 0ω1

1v2

2ω3

⎤
⎦ =

⎡
⎣ 0ω3

0v3x

0v3z

⎤
⎦ , (24)

⎡
⎣ −1 0 −1

LAz s5x 0
−LAx s5z 0

⎤
⎦

⎡
⎣ 3ω4

4v5

5ω6

⎤
⎦ = −

⎡
⎣ 0ω3

0v3x

0v3z

⎤
⎦ . (25)

Equations (24) and (25) complete the reverse velocity analysis.

5 Numerical Example

The constant mechanism parameters are defined as L0 = 6 m, Lpxz = 1/2L m
and hm = 6 m. Vasquez [17] performed the solution of the differential equation
of motion for the tensegrity mechanism under the influence of linear ocean waves.
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Fig. 2 Motion of the top platform: (a) Surge, (b) Heave, (c) Pitch [17].

Fig. 3 Reverse kinematic analysis: (a) Motion of generators, (b) Motion of springs.

The solution for the position and velocity of point p and the orientation and angular
velocity of the top platform are taken from [17] and represent the inputs for the
kinematic analysis, Fig. 2.

Equations derived in Sections 3.2 and 4.2 are used to perform the reverse anal-
ysis, see Fig. 3. Fig. 3a shows the motion of the electrical generators under the
influence of ocean waves. Fig. 3b shows that the length of the springs is always
greater than their free length, hence, the tensegrity configuration is preserved.

6 Conclusions

This work addressed the kinematic analysis of a tensegrity mechanism for ocean
wave energy harvesting. A planar tensegrity morphology was selected for the sys-
tem, and the position analyses was performed using a geometric approach. The ve-
locity analysis was performed using theory of screws.
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The interaction between ocean waves, a multi-degree-of-freedom linkage and
electrical generators poses challenging problems in terms of mathematical modeling
and simulation. Nonetheless, the ideas presented in this document will be useful for
the analysis and testing of more advanced and complex energy harvesting devices.

This research constitutes an interesting approach to show how the extensive
knowledge acquired in the analysis and design of mechanisms can be used in new
applications that contribute to the world’s sustainable development.
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Motion Planning for Parallel Robots with
Non-holonomic Joints

Krzysztof Tchoń, Janusz Jakubiak, Patrick Grosch and Federico Thomas

Abstract Designing a robot manipulator with fewer actuators than the dimension of
its configuration space – to reduce bulk, weight and cost – becomes feasible by intro-
ducing mechanical elements that lead to non-holonomic constraints. Unfortunately,
the mechanical advantages of these non-holonomic designs are usually darkened
by the complexity of their control. This paper deals with motion planning for par-
allel robots with non-holonomic joints shedding new light on their control strate-
gies. As a case study, the motion planning problem is solved for a 3-ŬPU parallel
robot, where Ŭ stands for a non-holonomic joint whose instantaneous kinematics are
equivalent to that of a universal joint. It is thus shown how the three prismatic actua-
tors can maneuver to reach any six-degree-of-freedom pose of the moving platform.
The motion planning has been addressed as a control problem in the control system
representation of the robot’s kinematics and a motion planning algorithm has been
devised based on a Jacobian inversion of the end-point map of the representation.
Performance of the algorithm is illustrated with numeric computations.

Key words: Parallel non-holonomic manipulator, Jacobian motion planning

1 Introduction

The joints of standard robots, either serial or parallel, implement lower kinematic
pairs. An alternative to these joints are non-holonomic joints, a mechanical concept
probably used for the first time in [8], which can be implemented using convex
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bodies rolling on spherical surfaces. Two kinds of contacts have been considered:
marble rolling, when the convex body can freely roll in contact with the sphere
without slipping [4], and rubber rolling, when the convex body satisfies additionally
a no-twist condition [9].

In the practical implementations of non-holonomic joints, the rolling convex
body is usually a disk implementing a marble rolling contact with the sphere. If
the disk rolls upon the interior surface of a spherical shell, the resulting joint is said
to implement the Suslov constraint [15]. Alternatively, if the contact is performed
on the outer surface of the spherical shell, the resulting joint is said to implement the
Veselova constraint [3], the kind of non-holonomic joint used throughout this paper.
Lower-mobility spatial parallel robots have become an active research topic in the
field of parallel robot during the last decade because of their simple structure, low
price and easy control. The dimension of the space of admissible velocities for the
end-effector of this kind of parallel robots is lower than six and, if singular config-
urations are excluded, equal to the dimension of the tangent space of the reachable
manifold. The substitution of a standard joint in a lower-mobility parallel robot by
a non-holonomic joint with equivalent instantaneous kinematics has dramatic con-
sequences: while the dimension of the space of admissible velocities for the end-
effector remains the same, the dimension of the reachable space is increased. To the
best of our knowledge, this idea was first used by Ben-Horin and Thomas in [1],
where a three-legged parallel robot is proposed whose each leg is connected to the
base through non-holonomic joints. The kinetostatics of this architecture was ana-
lyzed by Grosch et al. in [6], who proved that this robot was able to locally move
its moving platform – excluding singular configurations – in a six-dimensional con-
figuration space. In this paper we go a step further by presenting a solution to the
motion planning problem for this robot which can be adapted to other designs.

It is worth to mention that the use of non-holonomic devices in the design of
robot manipulators has some tradition. For example, in [13], Stammers et al. present
a robot wrist that can attain any orientation with two motors only. This is achieved
by means of a friction drive, using rollers on a spherical ball to which the end ef-
fector is fixed, and by fixing the two motors to the arm. In [12], Peshkin et al.
present a passive spherical robot which can display programmable constraints. The
device is based on a non-holonomic element involving a sphere and three reorient-
able rollers. In [11], Nakamura et al. describe an n-joint serial manipulator which
can reach any pose in its n-dimensional configuration space with only two actua-
tors. The joints of this manipulator are coupled by (n − 1) non-holonomic devices,
based on spheres and rollers, so that its control is equivalent to maneuvering a car
with n-trailers. Considerable effort has been made to clarify different aspects of
non-holonomic mechanical systems [2]. A challenge in control of these systems re-
sults from a limited applicability of the feedback control, discovered by Brockett
[5] and Lizárraga [10]. In this paper, the motion planning problem for the parallel
non-holonomic robot will be addressed using the endogenous configuration space
approach [14], specified in [7] to the class of mechanical systems including the par-
allel non-holonomic robot used as case study in this paper. The motion planning
problem for the parallel non-holonomic robot will be decomposed into two steps:
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Fig. 1 The 3-ŬPU parallel robot used as a case study and notations associated with leg i.

first the control system representing the robot’s kinematics is subject to a feedback
transformation, and afterwards the end-point map of the obtained system is inverted.

The remainder of the paper is organized as follows. Section 2 summarizes the
main characteristics of the non-holonomic parallel robot used as the case study, and
its instantaneous kinematics. Section 3 introduces the motion planning algorithm. Its
performance is illustrated in Section 4 by a numeric example. Section 5 concludes
the paper.

2 Instantaneous Kinematics of the 3-ŬPU Parallel Robot

The parallel robot manipulator appearing in Fig. 1 (left) can be thought of as a
3-UPU lower mobility parallel robot in which each universal joint attached to the
base is substituted by a non-holonomic joint (see [1] for details). Let us consider
the leg number i, i = 1, 2, 3. According to Fig. 1, we shall introduce the following
notations:

• ai and bi are the position vectors, in the base reference frame, of the centers of
the sphere and of the universal joint, respectively.

• li is the length of leg i, that is, ‖bi − ai‖. Then, gi = (bi − ai )/ li is the unit
vector in the direction of leg i.

• {w1i , w2i , ri} defines a right-handed reference frame with origin at the center of
the sphere. w1i is aligned with ai and w2i is parallel to the roller axis.

• {w3i , w4i , hi} defines a right-handed reference frame with origin at the center of
the universal joint. w3i and w4i are defined by the two revolute axis constituting
the universal joint.

• θji is the joint variable denoting the rotation angle about the axis defined by wji .
• si = hi × ri − [gi · (hi × ri )]gi is the component of hi × ri perpendicular to gi .

Then, it can be proved that (see [6] for details):
(

13×3
03×3

)
l̇ =

[
G3×3 K3×3
S3×3 J3×3

] (
ṗ
ω

)
, (1)
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where l̇ = (l̇1, l̇2, l̇3)
T is the vector of velocities in the actuators,

(
ṗ
ω

)
is the vector

of linear and angular velocities of the moving platform, 13×3 and 03×3 are the 3 × 3
identity and the zero matrix, respectively, and G = G(p, R), K = K(p, R), S =
S(p, R), J = J(p, R) are 3×3 matrices dependent on the end-effector pose (position
and orientation) (p, R) ∈ R

3 × SO(3) whose entries are defined as

KT [i, :] = (bi − p) × gi , GT [i, :] = gi

JT [i, :] = (bi − p) × si − li (ri · gi )hi , ST [i, :] = si ,
(2)

where A[i, :] denotes the i-th row of a matrix A.

3 Motion Planning

As a starting point we shall adopt the kinematics representation (1) of the parallel
non-holonomic robot. Assuming invertibility of the whole block matrix standing on
the right hand side of (1) and taking u = l̇ as a control variable, the kinematics
model is converted to the driftless control system

ṗ = E(p, R)u, Ṙ = [F(p, R)u]R, (3)

used in [7], where [ ] : R
3 → so(3) denotes the standard Lie algebras isomor-

phism of R3 with the cross product and the space of skew symmetric 3 × 3 matrices
with the matrix commutator, so that [v × w] = [v][w] − [w][v], and

[
E(p, R)

F(p, R)

]
=

[
G K
S J

]−1
∣∣∣∣∣
3 first columns

. (4)

Given the control system (3), the motion planning problem for the parallel non-
holonomic robot can be stated in the following way: compute a control function
u(t) steering the system from an initial end effector pose (p0, R0) to the desired one
(pd , Rd) within a prescribed time T . More formally, setting p(t) = pp0,R0,t (u(·)),
R(t) = Rp0,R0,t (u(·)) to be the trajectory of (3) starting at (p0, R0) and driven by
the control u(t), this means that at time T the end-point map of (3) assumes the
prescribed values p(T ) = pd and R(T ) = Rd .

Due to the complexity of the matrix entries on the right hand side of (1), the an-
alytic form of (3) is not very enlightening. To make it more tractable, two regularity
assumptions will be made. First, the matrix G will be assumed invertible, resulting
in the following form of the system (4)

[
E(p,R)

F(p,R)

]
=

[
G−1 + G−1K(J − SG−1K)−1SG−1

−(J − SG−1K)−1SG−1

]
. (5)

The second assumption is the invertibility of S. Under this assumption the feedback
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u = GS−1(J − SG−1K)v, (6)

where v ∈ R
3 is a new control, makes the control system (3) equivalent to

ṗ = S−1Jv, Ṙ = −[v]R. (7)

Thanks to the regularity assumptions, the solution of the motion planning prob-
lem may be obtained in two steps: first a control v(t) solving the motion plan-
ning problem for the system (7) is found, and then the original control u(t) is
computed using (6). The first step can be accomplished in accordance with the
guidelines presented in [7], that will be concisely recalled below. Let vθ (t) be
a family of control functions smoothly dependent on a parameter θ ∈ R, and
pt (θ) = pp0,R0,t (vθ (·)), Rt (θ) = Rp0,R0,t (vθ (·)) denote the trajectory of the system
(7) initialized at (p0, R0) and subject to the control vθ (t). The derivation of the mo-
tion planning algorithm for the system (7) relies on an assumption that there exists
a control family vθ (t), such that the error

e(θ) =
(

pT (θ) − pd , log(RT (θ))RT
d )

)
, (8)

decreases to zero exponentially along with θ with a prescribed decay rate γ > 0,

de(θ)

dθ
= −γ e(θ). (9)

The logarithm of the rotation matrix in (8) is defined as log R = α
2 sin α

(R − RT ),
where cos α = 1

2 (trR − 1) and the angle of rotation 0 ≤ α < π .
To proceed, a pair of auxiliary variables will be introduced, denoted by wt (θ),

st (θ), satisfying the following dependencies

wt (θ) = ∂pt (θ)

∂θ
, [st (θ)] = ∂Rt (θ)

∂θ
RT

t (θ). (10)

The differentiation with respect to θ of the matrices on the r.h.s of the system (7)
results in a collection of differential equations (for details, see [7, proof of theo-
rem 2.1])

(
ẇt (θ)

ṡt (θ)

)
=

[
A11θ (t) A12θ (t)

0 −[vθ (t)]
](

wt (θ)

st (θ)

)
+

[
B1θ (t)

−13

]
d vθ (t)

dθ
, (11)

where the entries of the matrices A11θ (t), A12θ (t) and B1θ (t) have been computed
on the basis of the data provided in [6]. The assumption that p0(θ) = p0 and
R0(θ) = R0 yields the initial conditions for (11) w0(θ) = 0 and s0(θ) = 0. With
these initial conditions the solution of (11) at T can be represented as

(
wT (θ)

sT (θ)

)
=

∫ T

0
�θ(T , t)Bθ (t)

d vθ (t)

dθ
dt, (12)
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where the fundamental matrix �θ(T , t) satisfies the evolution equation ∂�θ (t,s)
∂t

=
Aθ (t)�θ (t, s), �θ(s, s) = 16, and Aθ (t) = [ A11θ (t) A12θ (t)

0 −[vθ (t)]
]
, Bθ (t) = [ B1θ (t)

−13

]
.

The integral operator in (12) can be regarded as a Jacobian operator of the parallel
non-holonomic robot [14]. Now, it has been proved in [7] that the error vanishing
formula (9) is tantamount to the integral equation

∫ T

0
�θ(T , t)Bθ (t)

d vθ (t)

dθ
dt = −γ

(
pT (θ) − pd

rT (θ)

)
, (13)

where [rT (θ)] = log(RT (θ)RT
d ). This being so, the motion planning algorithm for

the parallel non-holonomic robot is obtained by solving the equation (13) using a
generalized inverse of the Jacobian. If the Moore-Penrose pseudo inverse is chosen,
the resulting differential equation for the control function vθ (t) takes the form

dvθ (t)

dθ
= −γ BT

θ (t)�T
θ (T , t)D−1

θ

(
pT (θ) − pd

rT (θ)

)
. (14)

The matrix Dθ = ∫ T

0 �θ(T , t)Bθ (t)BT
θ (t)�T

θ (T , t)dt , is the Gram matrix of the
system (11). Given the system (14), the solution of the motion planning problem is
computed as the limit v(t) = limθ→+∞ vθ (t). The system (7) subject to the con-
trol v(t) produces a trajectory (p(t), R(t)). A suitable substitutions to the feedback
equation (6) defines the control u(t) solving the motion planning problem for the
parallel non-holonomic robot.

4 Computations

Since the motion planning algorithm (14) operates in an infinite dimensional space
of control functions, its computer implementation needs to be preceded by the in-
troduction of a finite dimensional space of controls. This is done in a standard way,
by representing the control function by its truncated orthogonal expansion [14]. In
this paper the truncated Fourier series is exploited, so each control vi(t), i = 1, 2, 3,
will consist of a constant term and up to h harmonics,

vi(t) = λi,0 +
h∑

k=1

(
λi,2k−1 sin

2π

T
kt + λi,2k cos

2π

T
kt

)
, (15)

so the control is finitely parametrized by 	 = (λ1,0, . . . , λ1,2h, . . . , λ3,0, . . . ,

λ3,2h)
T ∈ R

6h+3. In the finite dimensional case the control family takes the form
vθ (t) = P(t)	(θ), where the block matrix P(t) aggregates the basic harmonic func-
tions. Consequently, the differential equation (14) underlying the motion planning
algorithm determines the control coefficients 	
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Fig. 2 Solution of the motion planning problem: controls v(t) and leg lengths l(t).

Fig. 3 Relative position ep(t) and orientation r(t) trajectories.

d	θ

dθ
= −γ J#

p0,R0,T
(	θ )

(
pT (θ) − pd

rT (θ)

)
, (16)

where J#
p0,R0,T

(	θ ) denotes the Moore-Penrose pseudo inverse of the 6 × (6h + 3)

Jacobian matrix

Jp0,R0,T (	θ ) =
∫ T

0
�θ(T , t)Bθ (t)P(t)dt

of the parallel non-holonomic robot. The differential equation (16) should be inte-
grated numerically in accordance with a suitable integration scheme. In the sequel
the simplest Euler scheme will be applied leading to the following difference equa-
tion for 	θ , where θ = 0, 1, . . .

	θ+1 = 	θ − γ J#
p0,R0,T

(	θ )

(
pT (θ) − pd

rT (θ)

)
. (17)

Performance of the motion planning algorithm will be illustrated with a numeric ex-
ample. The initial position of the platform is p0 = (0, 0, 25)T , while its orientation
R0 = RPY(0, 0,−π/6) corresponds to the Roll-Pitch-Yaw angles (0, 0,−π/6).
The desired end effector position and orientation pd = (−0.4,−0.2, 35)T and Rd =
RPY(0, 0,−π/2). The initial values of control parameters have been set to 0, except
for λ11 = λ21 = λ32 = 0.5, λ30 = 1. The planning time horizon T = 1. The algo-
rithm has been stopped when the total error E(θ) = √||pT (θ) − pd ||2 + ||rT (θ)||2
drops below 10−3. In the computations the number h of harmonics is set to two.
Results of computations are shown in Figures 2 and 3. In Figure 3 the relative tra-
jectories are shown, defined as ep(t) = p(t) − pd and [r(t)] = log(R(t)RT

d ).
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5 Conclusion

This paper provides a motion planning algorithm of the parallel non-holonomic
robot. The algorithm’s synthesis has been based on an application of the endoge-
nous configuration space approach preceded by a feedback transformation of the
system (3). Presented results provide a novel motion planning algorithm and essen-
tially extend the applicability of the endogenous configuration space approach.
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Synthesis of a Family of Regular Deployable
Polyhedral Mechanisms (DPMs)

Guowu Wei and Jian S. Dai

Abstract This paper for the first time presents the synthesis of a family of overcon-
strained regular deployable polyhedral mechanisms (DPMs). The mechanisms are
developed based on a novel plane-symmetric eight-bar linkage with exact straight-
line motion. By implanting the plane-symmetric eight-bar linkages into the regular
polyhedron bases, the synthesis of a family of overconstrained regular DPMs are
presented in this paper and the constraint matrix of the mechanisms is constructed
using the screw-loop equation method verifying the mobility of the mechanisms.
The synthesis method presented in this paper can used to synthesize more DPMs
and the proposed DPMs have potential applications in the fields of machines, de-
ployable robots, architectural applications and space technologies.

Key words: Deployable polyhedral mechanisms (DPMs), exact straight-line mo-
tion, eight-bar linkage, overconstrained mechanisms, constraint matrix

1 Introduction

Polyhedral mechanisms, the mechanisms developed by implanting elementary ki-
nematic chains into faces, edges and vertices of the polyhedrons, have drawn re-
search interest starting from the pioneering work of Verheyen [1] on the expandable
polyhedral structures named “Jitterbug transformers” by following Fuller’s [2] in-
troduction of a geometrical structure which he called the “Jitterbug”, as a set of
eight identical regular triangles connected to one another by the vertices. However,
probably it was the showpiece of a mobile octahedron which was named “Heureka-
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polyhedron” [3] shown at the Heureka Exposition in Zurich that aroused more in-
terest for the research of polyhedron mechanisms from kinematicians and struc-
ture researchers. After the Heureka-polyhedron, the most notable contribution in
the field was brought out by Wohlhart starting from the “Turning Tower” by treating
the Heureka octahedron and the Brusels folding as its special cases [4] to the recent
development of new polyhedral star linkages [5] obtained by arranging stretching
spatial “star modules” into the faces of regular and irregular polyhedrons. Agrawal
et al. [6] proposed a simple approach of constructing expanding polyhedrons based
on prismatic joints which preserve their shape because of the rigidity of the vertices.
Similar to Wohlhart’s work, by identifying various types of closed kinematic chains
and implanting them into the face of polyhedrons, several expandable polyhedral
mechanisms have also been presented by different researchers [7, 8]. Over the same
period, a fancy toy “Hoberman Switch Pitch” was brought out based on the geared
expanding structure [9].

In this paper, based on a plane-symmetric eight-bar linkage with exact straight-
line motion [10], a family of overconstrained regular deployable polyhedral mecha-
nisms are synthesized and for the first time presented.

2 A Plane-symmetric Eight-bar Linkage with Exact
Straight-Line Motion

A plane-symmetric eight-bar linkage with exact straight-line motion has been pro-
posed by the authors [10] as illustrated in Fig. 1. The linkage contains four links
1, 3, 5 and 7 with two parallel joint axes at each end and four vertexes V0, V2,
V4 and V6 in isosceles triangle shape with two revolute joint axes being spread at
both ends of the vertexes by ϕ1 and ϕ2. Vertices V0 and V4 are identical and so
are vertices V2 and V6. The eight-bar linkage is a linkage of mobility two. In order
to define the configuration of the linkage, two inputs are required. To facilitate the
study, two of the vertex links V0 and V4 are picked up one (V0) as base and the
other (V4) as platform. Thus, the base and platform vertexes are connected by two
identical limbs each of which consists of two links, one isosceles triangular vertex
and four joints. It is found that in the case when lengths of links 1, 3, 5 and 7 are
the same and the dimensions of vertices V0 and V4, and V2 and V6 are respec-
tively identical, the linkage becomes a plane-symmetric linkage with its two limbs
symmetric to a plane π which passes the centre points of V0 and V4 and is perpen-
dicular to vertices V0 and V4. If the two joints connected to the base are assigned
to be actuated joints. With the symmetric inputs, i.e. θ11 = θ21 (see Fig. 1), vertex
V4, as the platform of the linkage, performs exact straight-line motion with respect
to the base. According to the detailed analysis in [10], the angle β between this
straight-line traced by the trajectories of point P of V4 and the base (a plane which
is coplanar with vertex V0) only dependents on the value of angle ϕ1 and ϕ2 as
β = arctan(1/(cotγ sin(ϕ1/2)+cos(ϕ1/2)cscγ tan(ϕ2/2))), with γ being the angle
between two adjacent normals (see n0, n2, n4 and n6 in Fig. 1) of the vertices. As
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Fig. 1 A plane-symmetric
eight-bar linkage.

indicated in [10], the orientations of the normals n0, n2, n4 and n6 maintain con-
stant and intersect at a common centre O which is referred to as virtual centre of the
eight-bar linkage as shown in Fig. 1, thus in every configuration the angle γ can be
represented by the structure parameters as

γ = arccos

(
tan(ϕ1/2)(1− cosϕ2)

sinϕ2/2

)
. (1)

It should be pointed out that since all the four links 1, 3, 5 and 7 are of the same
length and vertices V0 and V4, and V2 and V6 are identical, the linkage is also
symmetric to another plane that passes through the centre points of V2 and V6 and
is perpendicular to vertices V2 and V6. Therefore this eight-bar linkage is referred
to as spatial plane-symmetric eight-bar linkage.

Based on the eight-bar linkage, a family of regular deployable polyhedral mech-
anisms can be synthesized in the following sections.

3 Synthesis of the Deployable Polyhedral Mechanisms (DPMs)

It is well known that there are only five regular convex polyhedrons and they are
named Platonic polyhedrons. Based on the five Platonic polyhedrons and the pro-
posed plane-symmetric eight-bar linkage, a family of deployable polyhedral mech-
anisms (DPMs) can be constructed and the synthesis of the regular deployable poly-
hedral mechanisms (DPMs) starts from the synthesis of a deployable tetrahedral
mechanism by implanting a group of eight-bar linkages into a regular tetrahedron
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Fig. 2 Synthesis of a deployable tetrahedral mechanisms.

base. The method used for synthesizing the deployable tetrahedral mechanism can
then be applied to the synthesis of the whole family of regular DPMs and can also
be used for synthesis of the other series of DPMs based on the semi-regular and
irregular polyhedrons.

As illustrated in Fig. 2a, a regular tetrahedron ABCD is given with its six edges
denoted by e1 to e6. O1, O2, O3 and O4 are the centres of the four equilateral tri-
angular faces such that AO1, BO2, CO3 and DO4 are all perpendicular to the faces
they pass through and therefore O is the centroid of the tetrahedron. AO1, BO2, CO3

and DO4 are heights of the tetrahedron. The central angle is denoted as α .
In the tetrahedron, as shown in Fig. 2a, an eight-bar linkage is implanted along

edge e3 in such a way that two identical vertices VA and VB of the eight-bar linkage
are perpendicular to AO1 and CO3 such that AO1 and CO3 become vertex axes [10]
of vertices VA and VB. The other two identical vertices of the eight-bar linkage, i.e.
vertices V2 and V4 are placed on faces 2 and 4 in such an arrangement that BO2

passes through the centre of V2 and is perpendicular to V2, and DO4 passes through
centre of V4 and is perpendicular to V4. The revolute joints of the two chains in
the eight-bar linkage, i.e. A1, B1, C1, D1 and A2, B2, C2, D2 are arranged in such
a configuration that joints A1 and B1 are parallel to edge e4, joints C1 and D1 are
parallel to edge e5, joints A2 and B2 are parallel to edge e1, and joints C2 and D2

are parallel to edge e2. The lengths of the two link groups, i.e. links A1B1 and
C1D1, and A2B2 and C2D2 are arbitrary allocated with the condition that A1B1 =
C1D1 = A2B2 = C2D2. Arranged in this way, it can be found that the four angles
ϕA, ϕB, ϕ2 and ϕ4 of the isosceles triangle vertices are identical and they all equal
60◦. Substituting ϕA = ϕB = ϕ2 = ϕ4 = 60◦ into Eq. (1) it has γ1 = γ2 = 70.53◦,
and according to the geometric property of the tetrahedron, it has α = 70.53◦, thus
γ1 = γ2 = α holds.

Then, imaging that the linkage is fixed at point O, given symmetric inputs at any
pair of joints in any of the four vertices, the four vertices perform radially recip-
rocating motions along their vertex axes and the centre point O of the tetrahedron
become the virtual centre of the eight-bar linkage.
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Fig. 3 Synthesis of a deployable tetrahedral mechanisms.

Further, taking the same procedure, integrating four more plane-symmetric eight-
bar linkages into the tetrahedron base along edges e1, e2, e4 and e5, and carrying out
a detailed structure design, a deployable tetrahedral mechanism can be generated in
Figs. 2b and c. Once the deployable tetrahedral mechanism is constructed, all the
virtual centres of the five eight-bar linkages coincident at one common point, i.e.
the virtual centre of the mechanism. Therefore, this synthesis method is referred to
as virtual-centre-based (VCB) synthesis method.

Figures 2b and c show a deployable tetrahedral mechanism that is synthesized
based on plane-symmetric eight-bar linkages, the mechanism is a highly overcon-
strained mechanism of mobility one. The mechanism can perform a radially recipro-
cating motion in such a manner that vertices VA, VB, VC, VD move radially towards
the virtual centre O, vertices V1, V2, V3 and V4 move radially away from the virtual
centre O, and vice versa. It should be pointed out that, in every work configuration,
the four vertices V1, V2, V3 and V4 locate on the faces of a virtual tetrahedron.

Subsequently, based on the same principle, the whole family of regular PDMs
can be synthesized in Fig. 3. They are all overconstrained mechanisms of mobility
one. In all the mechanisms, each edge of the virtual polyhedrons contains a plane-
symmetric eight-bar linkage presented in Section 2 with various vertex angles ϕ1

and ϕ2.
Further, the mobility of the mechanisms can be verified in the next section

through the constraint matrix using the screw-loop method proposed in [11].
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Fig. 4 Synthesis of a deployable tetrahedral mechanisms.

Fig. 5 Synthesis of a deployable tetrahedral mechanisms.

4 Constraint Matrix and Mobility of the Regular Deployable
Polyhedral Mechanisms (DPMs)

Mobility of the regular DPMs can be analyzed through the screw-loop equation
which is evolved from the mechanical network stemmed from Kirchhoff’s circula-
tion law. Taking the deployable tetrahedral mechanism as an example, in order to
facilitate the analysis, as illustrated in Fig. 4a, a general configuration of the mech-
anism is picked up and a reference coordinate system is established with its origin
locating at the virtual centre of the mechanism and x-axis passing through the middle
points of edges AD and BC, y-axis passing through the middle points of edges AB
and CD, and z-axis passing through the middle points of edges AC and BD. In ver-
tices V1, V2, V3 and V4, local coordinate system Oi-xiyizi are established with origin
Oi locating at the centre of the ith vertex (i = 1,2,3,4) as shown in Fig. 5. In the
local coordinate system, zi-axis is collinear with OOi, and xi-axis is parallel to one
of the sides of the equilateral triangle vertex. The lengths of the binary links are all
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l, the distance between the centre of the vertex and the joint axis is b, and the dis-
tances between the virtual centre of the deployable tetrahedral mechanism and the
centres of vertices V1, V2, V3 and V4 are all d. From Fig. 5, the joint screws in every
individual vertex can be obtained in the corresponding local coordinate system as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Si1 = [1 0 0 0 0 b]T , Si2 =
[
−1/2 −

√
3/2 0 0 0 −b

]T

Si3 =
[
−1/2

√
3/2 0 0 0 −b

]T
, S′

i1 = [1 0 0 0 l sinθ −b− l cosθ ]T ,
S′

i2 =
[
−1/2 −

√
3/2 0 −

√
3l sinθ/2 l sinθ/2 −b− l cosθ

]T
,

S′
i3 =

[
−1/2

√
3/2 0

√
3l sinθ/2 l sinθ/2 −b− l cosθ

]T
.

(2)

In the above equation, the first subscript i = 1,2,3 and 4 indicates the number of
vertex. The joint screws in the local coordinate system of each individual vertex can
be transformed to the reference coordinate system through a screw transformation
matrix Ti =

[ Ri 0
p̃iRi Ri

]
, with Ri being the rotation transformation matrix and p̃i being

a skew-symmetric matrix derived from pi presenting the displacement of point Oi

in the reference coordinate system. From Fig. 4a and according to the geometry of
a tetrahedron, Ri and pi (i = 1,2,3,4) can be obtained as

R1 =

⎡
⎣
√

2/2
√

6/6
√

3/3
0 −

√
6/3

√
3/3√

2/2 −
√

6/6 −
√

3/3

⎤
⎦ , R2 =

⎡
⎣−

√
2/2 −

√
6/6 −

√
3/3

0 −
√

6/3
√

3/3
−
√

2/2
√

6/6
√

3/3

⎤
⎦ ,

R3 =

⎡
⎣

√
2/2 −

√
6/6 −

√
3/3

−
√

2/2 −
√

6/6 −
√

3/3
0

√
6/3 −

√
3/3

⎤
⎦ , R4 =

⎡
⎣ 0 −

√
6/3

√
3/3√

2/2 −
√

6/6
√

3/3√
2/2

√
6/6

√
3/3

⎤
⎦ ,

(3)

and

p1 = d
[√

3/3
√

3/3 −
√

3/3
]T

, p2 = d
[
−
√

3/3
√

3/3
√

3/3
]T

,

p3 = d
[
−
√

3/3 −
√

3/3 −
√

3/3
]T

, p4 = d
[√

3/3 −
√

3/3
√

3/3
]T

.
(4)

Thus, through the screw transformation matrix Ti, all the joints screws in the mech-
anism can be obtained in the reference coordinate system.

According to Euler’s formula for independent loop of mechanical graph, the
mechanism contains five independent loops such that the constraint graph of the
mechanism can be obtained in Fig. 4b. Based on the constraint graph, the constraint
matrix [11] of the deployable tetrahedral mechanism can be obtained as

Mc =

⎡
⎢⎢⎢⎣

S11 S′11 0 0 S13 S′13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S42 S′42 S43 S′43
0 0 S12 S′12 −S13 −S′13 0 0 S22 S′22 S23 S′23 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 S21 S′21 −S22 −S′22 0 0 S31 S′31 0 0 S33 S′33 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −S31 −S′31 S32 S′32 0 0 S41 S′41 0 0 −S43 −S′43
0 0 0 0 0 0 −S21 −S′21 0 0 −S23 −S′23 0 0 0 0 0 0 −S41 −S′41 −S42 −S′42 0 0

⎤
⎥⎥⎥⎦ .

(5)
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This is a 30×24 matrix with 0 =
[

0 0 0 0 0 0
]T

and through computation, the
mobility of the mechanism can be given [11] as

m = nc − rank (Mc) = 24−23 = 1, (6)

where m denotes the mobility of the mechanism and nc is the number of joints.
The above analysis proves that the mobility of the deployable tetrahedral mech-

anism is actually one and it is an overconstrained mechanism. The mobility of the
whole proposed family of DPMs can be verified with the same approach.

5 Conclusions

Base on the novel plane-symmetric eight-bar linkage with exact straight-line mo-
tion, this paper investigated the synthesis of a family of regular deployable poly-
hedral mechanisms (DPMs), the principle of the synthesis was introduced based
on the construction of a deployable tetrahedral mechanism and the mobility of the
mechanisms has been verified utilizing the screw-loop equation method. The regular
DPMs presented in this paper have potential applications in the fields of machines,
deployable robots, architectural applications and space technologies.
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Type Synthesis of Binary Actuated Parallel
Mechanisms

D. Schütz, R.J. Ellwood, A. Raatz and J. Hesselbach

Abstract Binary actuators have two stable positions which are defined by mechan-
ical end positions. These actuators can be used within parallel structures, to create
binary robots. These robots feature high repeatability in their discrete configura-
tions. The discrete nature of these actuators simplify the robots as they no longer
need complex feedback controllers. The result is simple cost effective robots that
are suitable for positioning tasks which require only a few destination points. A
drawback of these discrete robots is that the conditions of a specific task must be
fulfilled by the geometric parameters of the binary robot’s kinematic structure. This
contribution focuses on the realization of a type synthesis method based on the com-
bination of simple binary robot structures. The presented method allows a suitable
parallel structure whose end effector is able to reach the given number of positions
of the defined task to be synthesized.

Key words: Type synthesis, binary robots, binary mechanisms

1 Introduction

The simple and robust design of binary actuators allow two stable states to be
reached. Dictated by the mechanical end positions of these actuators, the two re-
sulting positions can be reached with a high repeatability and do not require ex-
tensive feedback control [1]. As a result of this simplified control, a programmable
logic controller (PLC) is more than adequate to control the actuation of the result-
ing binary robot. In the field of binary robotics, many research groups have focused
their efforts on the integration of a large number of n binary actuators inside of a
kinematic structure. This results in a discrete workspace with j= 2n possible end
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effector poses x j [4, 8, 12]. If the main part of these discrete poses lie inside of
a small area, then the end effector of the robot can be moved within the robot’s
quasi-continuous workspace [1]. To achieve the large number of points required for
a quasi-continuous workspace, identical modules are placed in series. The param-
eters of the basis module are then found using a geometric synthesis, which takes
the workspace of the resulting structure into consideration. As the parameters of all
modules within the structure are based on the basis module, this approach allows
the desired structure to be quickly found. Chirikjian et al. have worked on this topic
and the resulting approaches can be found in several of their publications [2, 3, 7].

This contribution focuses on parallel robots where the minimum required num-
ber of binary actuators to fulfill a specific task is sought. In other publications it
has been shown that a given task can be accomplished with a suitable structure if a
geometric synthesis leads to a parameter set where the reachable end effector poses
can be adapted to the desired poses of the specific task. In [9] a geometric synthesis
approach has been presented for a simple fivebar with an RPRPR structure. After the
installation of the mechanical structure, deviations occur between the actual poses
x j,a and the computed nominal poses x j,n. A possible cause of these differences
are due to production and assembly errors which are an inevitable result of produc-
tion methods. As there is no chance to correct the actuated joints’ coordinates q
within the mathematical model of the structure inside the robot control, a method of
mechanical calibration has been introduced [9, 10]. This technique is based on the
adjustment of the mechanical structure with additional components which allow for
the physical correction of the identified parameter values.

This publication looks at the first steps of the adapted task configuration of a
binary robot, being the type synthesis of the kinematic chains. A type synthesis
method for both planar and spatial binary robots is then presented. This method
is then implemented to find the structure for an exemplary sorting task in which 50
given points within a plane need to be reached. Performance criteria such as velocity,
force transmission, and stiffness are not taken into account and should be the topic
of future work.

Given a set of desired points, a simple structure which has a minimal number of
binary actuators is sought. This type synthesis method starts by finding the needed
degrees of freedom (DOF) of the kinematic structure based on the desired number
of end effector poses. For more complex tasks, a method that allows the extension of
typical parallel structures is shown. Furthermore this approach considers an output
link which is suitable as the end effector. After presenting the methods for binary
robot type synthesis, the article points out the required steps to install and calibrate
the mechanical structure.

2 Identification of the Necessary Degrees of Freedom

A structure with n integrated binary actuators is able to position its end effector in j
poses x j with
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j = 2n. (1)

Solving for n, it is then possible to find the minimum number of binary actuators for
the end effector poses x j for a given task.

n ≥ log2 · j with n ∈ IN (2)

The number of binary actuators defines the DOF of the robot structure F as the
condition

F
!
= n. (3)

This condition assures that the robot can switch between all the end effector poses.
If F is less than n, the robot is overdetermined and a change of the actuator configu-
ration q is locked. In the case that the DOF of the structure is larger than the number
of actuators, it is not possible to say whether the structure is in the desired position
as there are not enough constraints on the system. Equation (2) can be used for the
50 point example to show that the structure must have at least six binary actuators
and six DOF respectively.

The need of a planar kinematic structure with F≤3 or a spatial structure with F≤
6 where one to three respectively six binary actuators have to be integrated, can be
accomplished using already published methods for type synthesis of parallel robots,
e.g. [5]. If new structures are required with more than three or six DOF respectively
then the following technique supports the synthesis of suitable structures.

3 Extension of Kinematic Structures

Looking at the geometric considerations of a robot, one of the most cost efficient
robots for a specific task is one in which the number of poses within its discrete
workspace is equal to the number of task poses. As there are several options to
arrange a structure with the desired DOF, additional restrictions are required to allow
a suitable solution to be found. With the condition of a closed kinematic chain, the
simplest planar parallel structure with DOF F is a single loop chain. The DOF can
be calculated using the well-known Grübler formula

F = b(l −1)−
g

∑
i=1

(b− fi) . (4)

In Equation (4), the DOF b of the space in which the structure is designed is either
three for planar structures or six for spatial structures. The notation l stands for the
number of links and g represents the number of joints. The DOF permitted by the
ith joint is declared as fi [6].

The identification of the number of needed links and joints for a planar parallel
structure with one single loop can be determined by transposing Eq. (4) into
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Fig. 1 Planar single loop kinematic chains.

Fig. 2 Connection of an additional branch to a basis structure.

l =
F +∑g

i=1 (b− fi)

b
+1. (5)

In the planar case where b = 3, the number of DOF of each joint is one, fi = 1, as
two links are connected by one joint. Thus a single loop of a closed kinematic chain
consisting of g = l joints and links, allows Eq. (5) to be reduced to Eq. (6). Figure 1
illustrates single loop kinematic chains sorted by their DOF.

l = F +3. (6)

After the parallel structure is chosen, the selection of the joint type (revolute or
prismatic joint) as well as which joints should remain passive and which should
become binary actuators can be handled. To achieve a stiff structure without addi-
tional guides while offering high dynamics, the binary actuators should be located
closed to the base. Extending this to planar single loop chains, the number of binary
actuators is limited to a maximum of two actuators (cf. Fig. 1).

Tsai has shown in [11] the extension of a single loop chain to a multi loop chain
and can be applied for binary parallel robots. Through the addition of branches, it
is possible to extend a given planar basis structure. As illustrated in Fig. 2, one of
the links within the branch structure has been split. One end of this open chain is
connected to the basis structure, while the other end is fixed to the base frame.

The result of this procedure is a parallel structure with a closed kinematic chain
with multiple loops, where the number of loops depends on the number of addi-
tional branches. The advantage of this method is the opportunity to extend the basis
structure until the DOF of the entire kinematic chain is in accordance with Eq. (3).
This is due to the fact that the sum of the DOF of the basis structure Fbasis and the
DOF of each pth additional branch Fbranch,p represents the total DOF of the resulting
structure

Ftotal = Fbasis +
c

∑
p=1

(Fbranch)p , (7)

where c denotes the number of branches.
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Fig. 3 Connection of spatial kinematic chains of a six DOF Stewart–Gough platform and an addi-
tional structure with five DOF to create a structure with eleven DOF.

The principle of this method can be transfered from single loop basis structures
and branches to multiple loop basis structures with additional structures. Thus Equa-
tion (7) can be written as

Ftotal = Fbasis +
d

∑
s=1

(Fadditional)s . (8)

Here d denotes the number of additional structures, where the sth structure has
Fadditional,s DOF.

The advantage of this simple technique is that a type synthesis of spatial parallel
structures for robots with binary actuators can be accomplished in the same way.
The identification of the necessary DOF Ftotal can also be achieved by Eq. (2) and
(3). In contrast the simplification of the Grübler formula cannot be used for spatial
structures as there are different types of joints which feature more than one DOF,
fi ≥ 1.

The adapted method is a general approach to design a closed kinematic chain of
a parallel structure using the minimum number of binary actuators. On the basis of
already presented approaches for type synthesis of parallel robots, it is possible to
derive spatial kinematic chains with up to six DOF. These kinematic chains can be
used as a basis structure which allow a connection of additional structures to gain
the desired DOF expressed in Eq. (8). Therefore one link of an additional closed
kinematic chain must be split up in two pieces. These links are combined with one
or two links of the basis structure, allowing a new structure to be realized. For in-
stance in Fig. 3 the well-known Stewart-Gough platform is extended with a similar
structure that features five DOF, which results in a new structure that allows the in-
tegration of eleven binary prismatic actuators. This enables the end effector to reach
211=2048 poses.

4 End Effector Location

The main objective of type synthesis of parallel structures with the integration of
n desired binary actuators is the positioning of the end effector in the 2n poses.
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Fig. 4 Connection of two independent loops with a transmission linkage.

Therefore the pose of one link of the structure must be changed for every possible
actuator configuration q j. Two techniques can be utilized to fulfill this condition.
The first technique is based on the combination of affixing one end of the additional
structure to the base to allow the localization of binary actuators near the base frame.
The link on the other side of the open chain must be combined with the link which
acts as the output of the basis structure.

If the second end of an additional structure is also connected to the base frame
or directly to a binary actuator, then the total DOF of the structure is still governed
by Eq. (8). Due to independent loops within such a structure, no one link can reach
all of the 2n actuator configurations. Another technique to ensure that an output
link can reach the desired poses is the integration of an additional closed kinematic
chain which has zero DOF. This chain is connected to two output links of inde-
pendent loops of the basis structure. As the DOF of the kth transmission linkage is
Ftransmission,k = 0, the total DOF of the entire structure is not changed. Equation (8)
can be extended with the DOF of u transmission linkages

Ftotal = Fbasis +
d

∑
s=1

(Fadditional)s +
u

∑
k=1

(Ftransmission)k . (9)

Extending this to the 50 point example, it has been shown that the structure will
need six DOF. This can be realized by joining two structures with three DOF, such
as the one illustrated in Fig. 2. As depicted in Fig. 4(a), an end effector link has been
incorporated using a single loop kinematic chain with zero DOF. This structure with
six actuators is thus able to reach 26=64 poses. For completeness, it is also possible
to use this concept with spatial mechanisms, as illustrated in Fig. 4(b). This structure
is based on two planar fivebars and a transmission linkage with one revolute, one
spherical, as well as a combination of revolute and prismatic joint. The structure
allows the integration of four binary actuators at the base, resulting in a discrete
workspace of 24=16 end effector poses.
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5 Geometric Synthesis and Mechanical Calibration

The design process of parallel structures with binary actuators consists of several
additional steps to ensure that the resulting structure can reach each of the desired
poses with its end effector. After the structure and the joint types have been found
using type synthesis, a geometric synthesis can be used to find the structure’s param-
eters. There are many different approaches to compute these parameter values and
are dependent on the desired workspace as well as the task conditions. The discrete
nature of binary robots makes the geometric synthesis an important step in ensuring
the robots capability to reach the desired points. Simple parallel robots with only
a few binary actuators can be synthesized on the basis of geometrical constraints,
as shown for an RPRPR structure [9]. If a geometric synthesis has been established
for simple structures, it can be used as a module in more complex structures. Thus
the single modules can be synthesized independently from one another, allowing a
reduction in the total effort. For instance the RPRPR structure can be used within
the structures of Fig. 4(a) and 4(b). The knowledge gained about the parameters of
the fivebar structures for a given four point constellation can be used in further steps
such as the geometric synthesis of the transmission linkages.

Production and assembly errors cause deviations between the desired poses x j,n

of the task and the reachable poses x j,a of the installed mechanical structure. Due to
the discrete nature of binary robots, it is not possible to change a parameter within
the kinematic model to overcome this discrepancy. In order to overcome this, some
of the physical properties of the binary robot have to be changed.

As presented in [10], it is possible to incorporate additional mechanical compo-
nents into the robot to allow for a mechanical calibration. Here the residual vector
between the desired poses and the measured poses is calculated. The residual is then
minimized using an optimization method and used to find a new mechanical param-
eter set. Following the mechanical adjustment of the robot, a new residual vector is
calculated. This iterative process can be conducted until the residuals have reached
acceptable values. After the mechanical correction has taken place, it is advanta-
geous that these joints be locked for operation mode.

6 Conclusions

Parallel structures with a minimum number of binary actuators can be applied to
positioning tasks with a discrete number of end effector poses. This article presents
methods for type synthesis of these structures depending on the number of desired
end effector poses. It has been shown that parallel structures based on typical type
synthesis can be connected to create structures with a DOF equal to the sum of the
original structures’ DOF. Therefore two methods have been shown to calculate an
output link which is suitable as the end effector location. The first techniques is
based on the connection of one end of an opened chain to the base frame and the
other to the output link of the basis structure. If a structure features independent



138 D. Schütz et al.

loops, then two independent output links can be connected by a transmission link-
age, which is predicated on a single loop chain with zero DOF. After type synthesis
of a suitable structure, a geometric synthesis and mechanical calibration process
must be applied to accomplish the needed accuracy of the regarded task.
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Biokinematic Study of Barn Owl Head
Movements for the Development of a
Bio-Inspired Active Vision Robotic System

Ouriel Barzilay, Yoram Gutfreund and Alon Wolf

Abstract Active vision is a process used by human beings and most animals to
improve their visual recognition and avoid ill-posed visual problems. It has been
proved that, by combining motion to their visual senses and perception, active ob-
servers can solve basic visual problems more efficiently than a passive one and that
complex problems can also be addressed more easily. Autonomous robotic systems
acting in dynamic environments should therefore imitate this process for a better
image recognition and target tracking. Visually guided robotic systems also need
to actively select visual information from the environment for detailed processing
through mechanisms that mimic visual attention and saccadic eye movements. De-
veloping and verifying computational models for visual search and implementing
them on a robotic system are challenging important tasks that we will address based
on our planned exploration of these mechanisms in the barn owl. We intend to inves-
tigate how, by imitating the barn owl’s repertoire of motor behaviors and search pat-
terns, the autonomous agent could obtain meaningful information on the structure
of the environment structure and possibly target position and motion. Towards that
end, we have investigated the conspicuous head motions of barn owls and searched
a kinematic characterization of the movements by means of screw theory.

Key words: Barn owl, head movements, screw theory

1 Introduction

Understanding how we perceive the world is one of the greatest challenges facing
neuroscience. Historically, research into this problem has mostly focused on pas-
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sive perception where information is acquired passively from static sensory organs.
However vast psychophysical and physiological evidence indicate that biological
perception is to a large extent an active process.

In addition to understanding vision as a biological sensory process, the field of
active vision opens up new opportunities for integration with the fields of computa-
tional vision and robotics which strive to capture, model, and mimic complex behav-
iors in artificial agents. Artificial systems which analyze natural environments face
the same tasks and challenges as the brains of active animals. Therefore, identifying
and understanding strategies of active vision in animals is a critical source of infor-
mation for successful artificial vision systems, as well as for the implementation of
mobile autonomous agents.

The novelty of the proposed research lies in the combination and integration of
approaches from three different disciplines. We utilize a classical neuroethological
approach to focus on a single carefully selected animal model. A biomechanical
approach will be adopted to study and interpret head motions from a task-based
and anatomical point of view. Finally, computational vision approaches will be em-
ployed to study and model strategies of active vision. Previous investigations of
active vision behaviors have been conducted in humans [2] and animals such as in-
sects [3] and primates [7]. In this research we aim to establish such a basic and novel
line of research in one non-mammalian species – the barn owl.

Barn owls are skillful predators that employ their visual system to detect small
targets in dim illumination. Their evolutionary adaptation to low light vision has
almost completely eliminated their ability to move their eyes [8]: eye movements
in barn owls are limited to about 3 degrees in each direction [4] and are there-
fore compensated by conspicuous head movements. A barn owl freely scanning the
environment will occasionally perform stereotypic side-to-side peering motion of
its head, a micro behavior believed to facilitate depth estimation [6]. In addition it
will rapidly shift its head position (head saccades) to face regions of interest [5],
a macro behavior that produces a noticeable scan path reminiscent of what a hu-
man eye would perform in its socket. The fact that the process of active vision in
barn owls is mainly manifested in head motions provides a substantial experimental
advantage, since head motions are much easier to track than eye movements.

The primary goal of this study is to provide valuable information towards the un-
derstanding of active vision strategies and mechanisms in barn owls. Our research
strategy is based on the exploration of possible correlations between the animal’s
head movements, the dynamic visual signals acquired by its visual system, and
other task or scene information. Toward that end, we have developed an experi-
mental setup combining motion capture and a head mounted camera providing an
estimation of the bird’s view.

Head movements as measured by our setup were analyzed mathematically in or-
der to identify characteristic movement patterns. We expect reaching insights on the
rotational/translational nature of these movements from screw analysis. In a further
stage, we intend to study the bird’s visual attention and scan path by designing ex-
periments aiming at the characterization of the perceived saliency of objects in the
scene and subsequently propose saliency models in barn owls.
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Based on the insights provided by the kinematic analysis and the study of the
bird’s visual attention, we plan to build a camera-mounted robotic platform and re-
produce barn owl’s typical head movements and visual search patterns. The results
of the motion analysis will then be formalized into algorithms and software run-
ning on the autonomous agent for target localization and tracking. We believe this
biomimetic approach to the design of attention model and active vision system may
bring considerable advances in the field of scene reconstruction and mapping.

2 Methods

2.1 Experimental Setup

To investigate the bird’s head movements, we measured kinematics in perching,
freely moving barn owls. Head motion tracking was achieved via the Vicon™ mo-
tion capture system allowing the recording of kinematics of markers with 0.2 mil-
limeters of accuracy at sampling frequencies reaching 2000 Hz. The owl’s head
kinematic recordings were performed at 120 Hz. We have designed a special head-
mounted device attached to the owl’s head. This tracking device is equipped with
five reflectors tracked by the Vicon system, a miniature wireless CCD camera and a
battery pack for the CCD camera. The CCD camera is fixed and oriented along the
presumed visual axis of the owl. The device has been developed with the intent to
minimize its weight and moment of inertia such that the natural behavior of the bird
remains unaltered. The final version of the device weighs 14 gr. (including marker,
camera and battery pack) and can be adjusted to any subject. The birds preliminarily
underwent a minor surgical operation at the Technion Faculty of Medical Studies,
where a small bolt was glued onto the top of their skull.

The experiments were conducted on two free perching barn owls bred at the
Audiovisual Systems Laboratory at the faculty of Medical Studies. To adapt the
system to record head kinematics in freely viewing owls, young barn owls were
acclimatized to perch on a small rod position about 1.5 meters above the ground.
Furthermore, to ensure an ordinary behavior during recording and with the device
mounted on their head, the barn owls were trained to wear the device on a regular
basis. In every experimental session, an external camera aimed at the perching owl
captured an external view on the head motions of the bird.

2.2 Head Orientation Estimation

We use screw theory to describe the instantaneous head motion of the owl. Screw
coordinates provide information on the nature of the head motion, i.e. pure rota-
tion/pure translation or helical motion, and on the instantaneous biomechanical axis
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of the head motion. These data are then analyzed for a deeper understanding of the
kinematic nature of owl head motions and used for clustering typical head motion
behavior of the owl.

The rigid-body head orientation was obtained from computation of Euler angles
from the location of three markers. Form the computed device’s orientation and
location, we computed the screw parameters according to methods developed in [1,
pp. 77–94].

2.3 Isolation of Peering Motions

In the first part of this research, we isolated and characterized stereotypic head side-
to-side translational motions. These movements are often referred to in the literature
as peering motions. Based on the recordings of the external camera aimed at the barn
owl and of the head-mounted camera, we pre-selected several segments on which
the owl seemed to move its head in the sagittal plane without changing its orienta-
tion. The marker trajectories on those segments were then more closely examined
in Matlab in order to refine the selection of those translational motions. Certain of
the complex motions were decomposed into smaller and simpler motion primitives.

Two sessions have been conducted on two different birds in free perching and
viewing. From the first experiment session (about 24 minutes of recording) were
extracted 20 peering motions with duration 1.51± 0.85 seconds (Owl #1). In the
second session (about 18 minutes of recording), 48 segments were identified as peer-
ing motions, with duration 1.46±0.92 seconds (Owl #1). Sample peering motions
are represented in Fig. 1.

Fig. 1 Sample marker trajectories of a peering motion.
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2.4 Isolation of Non-Peering Motions

For comparison with peering segments, we extracted motions different from peer-
ings. However, fixations (prolonged pauses in the head motion) should not be con-
sidered, as the kinematic parameters are almost constant on these intervals. Fixations
can be identified as segments on which the amplitudes of both the body’s angular
velocity and linear velocity are below a preset threshold. The thresholds were set as
10 deg/s for the angular velocity and 30 mm/s for the linear velocity, as suggested
by [6].

The length of these reference segments was established as the approximate mean
value of all the peering motions durations, 1.5 sec, for consistency of the compar-
ison. Since the velocities may vary in a great measure on small intervals, we were
reluctant to compare the average velocities to the respective thresholds. Instead, we
considered the proportion of trajectory samples that were below the given threshold
values (we refer to this parameter as the fixation ratio). We set the threshold as the
average fixation ratio of the peering motions. The intervals for which less than 30%
of the samples were tagged as fixation points were retained for comparison with the
peering motions.

Based on these considerations, we developed an algorithm for the automatic se-
lection of reference non-peering and non-fixation motions among the set of recorded
kinematic data for each session. Intervals of 180 time samples (1.5 sec) are extracted
from the recordings that are not marked as peering. From the calculated orientation
and position of the solid body, the linear and angular velocity amplitudes are com-
puted and compared to the velocity thresholds. If the segment contains too many
fixation points, the operation is repeated on the recorded segment starting two sec-
onds later. The algorithm stops when as many segments as the number of peering
intervals for a given subject have been selected, unless the end of the data has previ-
ously been reached. Segments on which the owl directed its gaze towards the floor
beneath it (typical sign of stress in the barn owl) were additionally detected from
the orientation of the device and automatically rejected.

3 Results

From the estimation of the orientation and location of the barn owl’s head, the screw
axes and screw parameters were computed on the peering and non-peering seg-
ments. We computed on each segment the mean values and standard deviations of
the screw parameters. These values were then averaged over the number of segments
in the peering cases and reference motions. A comparison was performed by means
of a Mann–Whitney U-test. This non-parametric statistical hypothesis test is ade-
quate for assessing whether two independent samples of observations have equally
large values. The results of this test are presented in Table 1, together with the mean
values averaged over the number of trajectories. Table 2 shows the average standard
deviations of the screw parameters for the translations and reference motions, along
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Table 1 Mean screw parameters values averaged over the set of trajectories.

Peering Non-peering p-value

Owl 1
Pitch 696.88±386.16 782.41±489.72 0.84
Distance from SA 515.56±403.12 656.95±525.20 0.42
Screw Intensity 0.49±0.23 630.20±2745.00 0.0385

Owl 2
Pitch 1159.24±653.70 1010.93±551.17 0.35
Distance from SA 952.15±974.30 880.73±584.91 0.41
Screw Intensity 0.44±0.35 1.53±3.43 0.0242

Table 2 Mean standard deviations of the screw parameters averaged over the set of trajectories.

Peering Non-peering p-value

Owl 1
Pitch 11.12±10.21 372.28±318.60 2.96E −07
Distance from SA 17.19±21.10 496.73±580.01 1.80E −06
Screw Intensity 0.004±0.004 8375.9±36810 6.80E −08

Owl 2
Pitch 52.27±169.42 322.58±354.54 3.84E −12
Distance from SA 32.06±65.43 449.78±504.37 4.15E −11
Screw Intensity 0.003±0.006 1.86±0.35 5.46E −16

with the p-values obtained from Mann–Whitney test. The results are presented there
as mean ± standard deviation over the number of recordings for each owl.

The most prominent observable fact in Tables 1, 2 is that the standard deviations
of the pitch and distances from screw axes along the translational segments were
typically much lower than the standard deviations on the reference motions. This
suggests evidence for the constancy of those values during peerings.

From observation of Table 1, it appears that the screw intensity was smaller in
average on head translations than on other motions for both subjects (p = 0.039 and
0.024, respectively). However, some of the reference motions exhibited high peaks
in the screw magnitude values (see the high standard deviation of non-peering cases
in Table 2). These peaks occurred mainly when the pitch reached 0 mm, i.e. in the
case of pure rotations. After omission of the cases where the average screw intensity
was higher than 10 mm−1, the test results were less statistically significant but yet
suggested lower screw intensity average values on translational motions (p = 0.16
and 0.05).

As expected, the standard deviations for the pitch, distance from the screw axes
and screw intensity were always lower (with statistical significance) on translational
movements than on the reference motions (Table 2). These results were hardly al-
tered by the omission of the cases with high twist magnitudes.
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4 Discussion

We have presented in this paper preliminary results of the kinematic analysis of side-
to-side peering motions of the barn owl’s head in free perching. The goal was to find
a characterization of the movement in screw theory representation to develop in a
further step a mobile robotic platform that would move its visual sensors similarly
to the raptor.

The first finding was that, in a general manner, the six screw coordinates were
approximately constant on peering motions: screw axes varied in a small measure
in their direction and location (four parameters), and the pitch and screw intensity
showed steadiness along those segments. This was not the case on the control group
of reference motions, where sudden changes in the angular velocity of the barn owl’s
head produced notable variations in the values of the six screw parameters. The ref-
erence motions were selected as motions different from peerings and fixations, and
therefore mostly contained head rotations. It was expectable to find variable angular
velocities on these rotations, as the rotations performed by the barn owl are gener-
ally done as quick head saccades, shorter than the segment’s overall duration (1.5 s).
However, the pitch values did not appear to be lower on these motions. Only on a
few cases did the pitch reach zero, as expected for pure rotational movements. This
fact suggests that the head rotations of barn owls generally include a non-negligible
translational element and support the findings of [5]. We believe this phenomenon
finds its basis in the complex physiognomy of the barn owl’s neck.

Another observable fact was the low values of the average screw intensity (corre-
lated to the twist angle), on the peering motions. Conversely, head rotations reached
high values of screw intensity. This parameter emphasizes the “screw-like” nature
of a movement. In the case of peering, the dominant translational nature is thus
understandably characterized by low values of screw intensities.

The previously described results should be validated on additional kinematic
data. For this purpose, new experiments on barn owls will be conducted where the
attention of the perching birds would be stimulated in a controlled way, such as static
and dynamic salient objects in the bird’s environment, auditory signals or with dead
and alive preys. Analysis of the images obtained from the head-mounted camera in
a controlled environment could then provide an understanding on the bird’s visual
attention and the followed scan path. Based on the insights provided by the head
kinematic study and by the head-mounted camera image analysis, a model of visual
search and attention should be implemented in a robotic agent. This agent would
then be mounted on a mobile robotic platform with active gaze control.

We propose in this study a novel biokinematic approach to the challenge of active
vision. This approach might additionally provide insights on the way to address the
problem of visual self-location and mapping (visual SLAM) on autonomous robots.
Our proposal is also a technically challenging inter-disciplinary research with a high
potential to contribute to our understanding of animal and human vision.
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Persistent Screw Systems of Dimension Four

Marco Carricato

Abstract The subalgebras of the Lie algebra se(3) of the Euclidean group are at the
basis of most families of mechanisms with special motion capabilities. Recently, it
was shown that, by conveniently composing subalgebra generators, persistent screw
systems (PSSs) may be obtained. PSSs are not subalgebras of se(3), but they still
exhibit remarkable invariant properties. For this reason, they may play an impor-
tant role in both mobility analysis and mechanism design. This paper presents all
generators of PSSs of dimension 4.

Key words: Screw theory, mechanism synthesis, mobility analysis

1 Introduction

Screw systems, i.e. the subspaces of the Lie algebra se(3) of the Euclidean group,
are fundamentals tools in mechanism theory. In 1978, Hunt [4] found a set of screw
systems that guarantee ‘full-cycle mobility’ of mechanisms. These systems were
proven to be the subalgebras of se(3) and labeled invariant (ISSs) [3]. They exhibit
remarkable properties and they are at the basis of most families of mechanisms with
special motion capabilities (planar, spherical, translational, Schoenflies, etc.).

Recently, Carricato and Rico Martı́nez [1, 2] showed that, by conveniently com-
posing generators of ISSs, persistent screw systems (PSSs) may be obtained. PSSs
have noteworthy properties, even though they are not subalgebras of se(3). In par-
ticular, a kinematic chain whose freedoms belong to the generator of a PSS in a
reference configuration generates, in any other nonsingular pose, a screw subspace
that is congruent to the reference one under a proper isometry. The concept of PSSs
generalizes that of ISSs, with the latter emerging from the former when the men-
tioned isometry is the identity map. PSSs are believed to play an important role in
both mobility analysis and the synthesis of mechanisms, particularly parallel robots.
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Fig. 1 Relative posture between two screws (a); a chain of adjacent screws (b).

This paper presents all generators of PSSs of dimension 4. Due to space limitation,
a rigorous derivation and a proof that the given classification is exhaustive cannot
be included. They will be provided in an extended version of this contribution.

In the following, n-dimensional subspaces of screws are briefly referred to as n-
systems and they are denoted by capital italic letters, e.g. A. Hunt’s classification of
screw spaces is adopted [4], so that the locutions ‘nG system’ and ‘nR system’, with
R being a Roman numeral, denote, respectively, a general n-system and a special
n-system of the Rth type. ISSs are denoted by capital calligraphic letters, followed
by their characteristic geometric quantities in parentheses, e.g. Y (u,h). A screw
representing a relative twist between two bodies is designated by S, followed, if
necessary, by the pitch h in parentheses, e.g. S(h). The axis of the screw is denoted
by x, with s being a unit vector along x. Line directions are always identified by
unit vectors. The screws of a convenient basis of a system S are called principal
and the quantities related to them are denoted by a right subscript p, so that Spi is
the ith principal screw, and hpi and xpi are, respectively, its pitch and its axis. The
principal reciprocal screws, namely the principal screws of the reciprocal system of
S, are denoted by a right subscript r. Given Si and S j (Fig. 1(a)), ni j is the common
perpendicular between their axes; Pi j,i and Pi j, j are the feet of ni j on xi and x j; ni j is
a unit vector parallel to ni j and directed from Pi j,i to Pi j, j; pi j and αi j are the shortest
distance and the relative angle between xi and x j, with αi j being evaluated according
to the right-hand rule about ni j and being comprised in the interval (−π/2,π/2];
finally, pi j = Pi j, j −Pi j,i = pi jni j. Once the relative pose between the axes of two
screws is assigned (by assigning the parameters pi j and αi j), a connection or a link
is said to be laid between them and the screws are called adjacent.

2 Persistent Screw Systems

Let A be an n-dimensional ISS. A may be thought of as generated by l (not necessar-
ily independent) screws Si(hi), with i = 1 . . . l and l ≥ n. The screws are composed
or connected if a link i is laid between Si and Si+1. In this case, the pose between the
axes of any pair of adjacent screws is fixed and Si may be thought of as governing
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the finite displacement Di(θi) between the axes of Si−1 and Si+1 (Fig. 1(b)). Di(θi)
depends on both the geometric parameters of Si (i.e. the axis xi and the pitch hi)
and the displacement variable θi. A represents all the admissible twists of link n,
attached to the second kinematic element of Sl , with respect to link 0, attached to
the first kinematic element of S1. Because of the properties of ISSs, the described
screw chain1 is, in any nonsingular configuration, a generator of A. To lighten the
notation, we will often not distinguish between an ISS and its generator.

Given two ISSs A1 and A2, respectively generated by chain {S1, . . . ,Sl1} and
chain {Sl1+1, . . . ,Sl1+l2}, they may be composed by laying a link between Sl1 and
Sl1+1. The resulting generator, denoted by A1 ◦A2, generates a subspace that is the
sum of A1 and A2, and whose elements represent the admissible twists of link l1+ l2
with respect to link 0. Unless A1 ◦A2 is an ISS, it generates distinct subspaces in
distinct configurations, depending on the instantaneous ‘pose’ of A2 with respect to
A1. The concept of composition may be extended in an obvious way to a sequence
of ISSs. Unless A1 ◦ . . .◦Ah is an ISS, if S is the k-system spawned in the reference
configuration, after a generic displacement of the chain, a different k′-system S′ is
obtained. According to [1], A1 ◦ . . .◦Ah generates a persistent screw system (PSS) if,
for arbitrary finite movements of the generator (and out of singular configurations),
S′ is congruent to S under a proper isometry. In other terms, S is persistent if, for an
arbitrary set of displacements {D1(θ1), . . . ,Dl1+...+lh(θl1+...+lh)}, some Euclidean
displacement D exists such that S′ = DS. Since the subspaces generated by the gen-
erator of a PSS in all possible nonsingular configurations are mutually congruent,
a PSS is not only type-invariant (in the sense that it preserves the ‘qualitative’ ge-
ometric pattern that gives reason for its classification as an nG or nR system), but
it also preserves the ‘quantitative’ features defining its ‘shape’, such as the space
dimension and the relative posture and pitches of its constituent screws. It is worth
observing that the generator of a PSS does not depend on the architecture of the ISS
generators and on the values of variables θi, but it only depends on the ‘shape’ of the
connections between the constituent ISSs (i.e. links l1, l1 + l2, . . . , l1 + . . .+ lh−1).

Any sequence A1 ◦ . . . ◦Ah of ISSs that generates a PSS, and such that no two
adjacent A j, j = 1 . . .h, may be merged together to originate an ISS, is referred to
as a form of the PSS. A form is said to be unary if h = 1, binary if h = 2, and so
on. A form A1 ◦ . . . ◦Ah is said to be conjoint or disjoint depending on whether,
respectively, As ∩At �= 0 or As ∩At = 0, for all pairs of adjacent As and At therein; it
is partially joint otherwise.

A fundamental theorem guarantees that the composition between two ISSs A
and B, namely C = A◦B, always yields a PSS [1]. Two handy methods sufficient to
obtain further forms of C are the following. If I =A∩B and dim I = h �= 0, h adjacent
screws in both A and B may be suitably chosen in order to form generators of I (since
A and B are ISSs, I is also an ISS). Accordingly, if dimA = n and dimB = m, n−h
adjacent screws may be chosen in A to form a generator of a subspace A∗ such

1 Though A is generated here by a chain of serially-connected screws, this is not a necessary
requisite.
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that A = A∗ ⊕ I, and m− h screws may be chosen in B to form a generator of a
subspace B∗ such that B = I ⊕B∗.2 A∗ ◦B and A ◦B∗ are non-binary forms of C.
A dual procedure is applicable when an ISS I exists that, though it is included in
neither A nor B, is comprised in A◦B. In this case, hA adjacent screws in A and hB

in B may be suitably chosen so that hA +hB = h and so as to form a generator of I.
In this case, A◦ I ◦B is a non-binary form of C. The described methods (denoted as
‘ISS subtraction’ and ‘ISS addition’, respectively) are sufficient, but not necessary,
to synthesize non-binary forms of PSSs.

3 The General and the First Special Four-System

According to Hunt [4], a 4-system is general if the principal screws Sr1(hr1) and
Sr2(hr2) of the reciprocal cylindroid have distinct finite pitches; conversely, it is
special if either hr1 = hr2 (4I-system) or one or both of the principal reciprocal
pitches go to infinity (4II through 4V systems).

In the 4G and 4I systems, the principal screws Sp1(hp1) and Sp2(hp2) (hpi =−hri,
i = 1,2) are collinear with Sr1 and Sr2, respectively, whereas Sp3 and Sp4 form a
cylindrical ISS C (xp3) aligned with the nodal line of the reciprocal cylindroid.

In the 4G-system, in particular, hp1 �= hp2 and C (xp3) is the only existing ISS [4].
Since C (xp3) has dimension 2, the generation of a 4G-PSS requires the composition
of no less than three ISSs (e.g. C (xp3) and two independent screws). Accordingly,
there are no binary forms of 4G-PSSs. Ternary and quaternary forms do exist, but
their derivation is too long to be presented here. A brief description may be found
in Table 2 of [1].

In the 4I-system, hp1 = hp2 and the reciprocal cylindroid degenerates into a pla-
nar pencil of equal-pitch screws. The entire 4I-system is axis-symmetric about xp3,
with the screws of pitch hp1 forming both a planar field on the xp1xp2-plane and a
bundle originating in the center O of the reciprocal cylindroid. If hp1 = hp2 = 0,
the bundle is a spherical ISS S (O). Since S (O) has dimension 3, the fundamental
Theorem presented in Section 2 may be used to generate binary forms of 4I-PSSs.
In particular, if S (O) is composed with a 1-dimensional ISS H (x1,h1) (i.e. a sin-
gle screw of axis x1 and pitch h1), xp3 lies at right-angle with the perpendicular line
from O to x1 (Fig. 2(a)) and it forms with x1 an angle αp3,1 such that

tanαp3,1 =−pp3,1/h1, (1)

with pp3,1 being the distance between xp3 and x1. If h1 = 0 (namely, H (x1,h1) is
a revolute ISS R(x1)) and x1 does not pass through O, then αp3,1 = π/2 and pp3,1

is arbitrary (as long as different from zero). If x1 passes through O, i.e. pp3,1 = 0,
and h1 �= 0, then αp3,1 = 0 and xp3 coincides with x1. αp3,1 goes to zero even when

2 A∗ and B∗ are, respectively, tangent spaces at the identity to quotient manifolds of the subgroups
associated with An and Bm by the subgroup associated with Ih [5].
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Fig. 2 Persistent 4I-systems: (a) disjoint binary form, (b) conjoint binary form and (c) disjoint
ternary form.

h1 → ∞ (namely, when H (x1,h1) is a linear-translation ISS P(s1)), in which case
xp3 becomes the line through O parallel to s1.

Another persistent form may be obtained by composing S (O) with the ISS
C (xp3), whose axis passes through O (Fig. 2(b)). Since S (O) and C (xp3) inter-
sect in a 0-pitch screw aligned with xp3, ‘subtracting’ this screw from S (O) yields
the ternary form in Fig. 2(c).

4 The Second, the Fourth and the Fifth Special Four-Systems

The 4II, 4IV and 4V systems emerge when the reciprocal cylindroid becomes, re-
spectively, a 2II, a 2IV and a 2V system [4]. Figure 3 shows the main geometric
features of these subspaces. In the reciprocal 2II and 2IV systems, all finite-pitch
screws are parallel to a single direction un∞ and lie on a characteristic plane Λ (with
the axis xrh of the screw of pitch −h being located at a distance |−h tanζr| from the
axis of the screw of 0-pitch); the ∞-pitch screws are, instead, parallel to a direction
un forming a prescribed nonzero angle ζr with un∞ (0 < ζr ≤ π/2). In particular,
in the 2II system, all finite-pitch screws have the same pitch hr2 (with hr2 =−hp2)
and ζr = π/2. In the reciprocal 2V system, all screws lie on the same line xr, thus
forming a cylindrical ISS (hence, un∞ = un and ζr = 0). The 4II, 4IV and 4V sys-
tems comprise ∞-pitch screws along all directions perpendicular to un∞, whereas all
finite-pitch screws lie in planes perpendicular to un. The 4II and the 4IV system
contains cylindrical ISSs C (xc) on all lines of Λ parallel to uc = un∞ ×un/sinζr.
The 4V system comprises cylindrical ISSs on all lines intersecting xr at right-angle
and all finite-pitch screws belong to this bundle. In all these special systems, the ∞-
pitch screws form a planar-translation ISS T2(un∞); moreover, in the 4II system, the
screws of pitch hp2 parallel to un∞ form, together with T2(un∞), a helicoid-planar
ISS Y (un∞,hp2).
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Fig. 3 The 4II (a), 4IV (b) and 4V (c) systems.

4.1 The Second and the Fifth Special Four-Systems

Binary forms of 4II and 4V -PSSs may be synthesized by way of the fundamental
Theorem in Section 2, by combining any two ISSs among those described at the
beginning of this Section, provided that their composition generates a 4-dimensional
space (which discards, indeed, the composition of a planar-translation ISS with a
cylindrical ISS parallel to it as well as the composition of two mutually parallel
cylindrical ISSs). In particular, a 4II-PSS emerges by composing Y (un∞,hp2) with
either a 1-dimensional ISS H (x1,h1) not parallel to un∞ (Fig. 4(a)) or a cylindrical
ISS C (xc) perpendicular to it (Fig. 4(b)). In the former case, the position of Λ with
respect to the plane parallel to un∞ passing through x1 is determined by the distance

p1,p2 = (h1 −hp2)cotα1,p2, (2)
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Fig. 4 Persistent 4II-systems: (a) disjoint binary form, (b) conjoint binary form, (c–e) disjoint
ternary forms.

with α1,p2 �= 0, and by the sign of α1,p2 (in Fig. 4(a), h1 < hp2 and α1,p2 > 0). When
Y (un∞,hp2) is combined with C (xc) (Fig. 4(b)), Λ is the plane through xc parallel
to un∞ (αc,p2 = π/2 infers pc,p2 = 0). By composing two nonparallel cylindrical
ISSs C (xc) and C (x′c) (Fig. 5(a)), a 4V -PSS is instead obtained. In this case, xr is
the common perpendicular between xc and x′c.

By following the procedures recalled in Section 2, ternary forms of persis-
tent 4II and 4V systems may be obtained by ‘subtracting’ or ‘adding’ convenient
ISSs to the binary forms described above. As far as the 4II system is concerned,
since Y (un∞,hp2)∩C (xc) = P(s), with s parallel to xc, ternary forms of 4II-PSS
may be obtained by subtracting an ∞-pitch screw from the kinematic generator of
Y (un∞,hp2), which is thus reduced to the composition of either two parallel hp2-
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Fig. 5 Persistent 4V -systems: (a) disjoint binary form, (b) conjoint ternary form, (c) disjoint ternary
form.

pitch screws (Fig. 4(c)) or one hp2-pitch screw plus an ∞-pitch screw perpendicular
to it (Figs. 4(d)-4(e)). As for the 4V system, since the ∞-pitch screws contained in
C (xc) and C (x′c) span a planar-translation ISS perpendicular to xr, ternary forms of
4V -PSS may be obtained as C (xc)◦T2(un∞)◦C (x′c) (Fig. 5(b)), C (xc)◦T2(un∞)◦
H (x1,h1), C (xc) ◦P(s) ◦C (x′c), H (x1,h1) ◦T2(un∞) ◦H (x2,h2) (Fig. 5(c)), or
C (xc)◦P(s)◦H (x1,h1), with xc, x′c, x1, x2 and s being all perpendicular to un∞.

4.2 The Fourth Special Four-System

It may be proven that there are no binary forms of 4IV -PSSs. However, the form
H (x1,h1) ◦T2(un∞) ◦H (x2,h2) presented in Section 4.1 (Fig. 5(c)) provides a
clue for the design of ternary forms. It may be readily seen, in fact, that when a
planar-translation ISS T2(un∞) is interposed between two generally-oriented finite-
pitch screws, say H (x1,h1) and H (x2,h2), the relative orientation between all
screws of the kinematic generator is constant for arbitrary chain displacements.
Consequently, the angle ζr between un∞ and un, with un = s1 × s2/sinα12, is in-
variant and, provided that H (x1,h1) and H (x2,h2) are not parallel (i.e. α12 �= 0),
the chain generates a persistent 4-system. If ζr ∈ (0,π/2), this is of the 4th spe-
cial type (Fig. 6(a)). The geometric features of the system are determined as fol-
lows. H (x1,h1) and H (x2,h2) generate, in a generic configuration, a cylindroid A,
whose nodal line coincides with n12. If Sc is the screw of A parallel to uc (namely,
to the direction perpendicular to both un∞ and un), Pc is the foot of xc on n12, and
p′ci = (P12,i −Pc) ·un (i = 1,2) (the prime is used to emphasize that p′ci is not neces-
sarily positive, so that it may not coincide with the distance defined in Section 1), it
is not difficult to prove that

p′ci =
sinαci

sinα12

[
(h2 −h1)sinαc j + p′12 cosαc j

]
, (3)
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Fig. 6 Persistent 4IV -systems: (a) disjoint ternary form, (b) disjoint ternary form, (c) partially joint
ternary form.

where (i, j) ∈ {(1,2),(2,1)}, αci is evaluated according to the right-hand rule about
un, α12 = αc2 −αc1 and p′12 = p′c2 − p′c1. Since the linear combination of Sc with
the screw of T2(un∞) parallel to uc generates a cylindrical ISS, the identification of
xc allows one to determine the characteristic plane Λ of the 4IV system, which must
pass through xc and be parallel to un∞. The principal reciprocal screw Sr2(0) may
be conveniently located on Λ by imposing the reciprocity condition between it and
either H (x1,h1) or H (x2,h2). By denoting the foot of xr2 on xc with Pr2 and by
letting p′n12,r2 = (Pr2 −Pc) ·uc, one obtains that

p′n12,r2 =
tanζr

sinα12

(
h2 cosαc1 sinαc2 −h1 sinαc1 cosαc2 + p′12 cosαc1 cosαc2

)
. (4)
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It is worth observing that all scalars at the right-hand side of Eqs. (3)-(4) are con-
stant, with the exception of p′12, which depends on the variables θ2 and θ3. Accord-
ingly, the pose of xc and xr2 depends on θ2 and θ3 and the reciprocal cylindroid is
fixed to no link of the generator.

If either H (x1,h1) or H (x2,h2) is chosen perpendicular to un∞, it generates,
together with the screw of T2(un∞) parallel to it, a cylindrical ISS and it may be
replaced by a corresponding generator C (xc), thus originating two further forms of
4IV -PSS (Fig. 6(b)-6(c)).

5 The Third Special Four-System

The 4III system is the Schoenflies ISS X (u), which comprises screws of all pitches
on all lines parallel to u and ∞-pitch screws along all directions in space.

6 Conclusions

In [1], Carricato and Rico Martı́nez presented the idea of persistent screw systems
(PSSs), a novel concept generalizing the concept of invariant screw systems. The
latter are the subalgebras of the Lie algebra se(3) of the Euclidean group. PSSs are
not subalgebras of se(3), but they still exhibit remarkable invariant properties for
full-cycle motions. PSSs may play an important role in both mobility analysis and
robot synthesis [1, 2]. In [1], all screw systems of dimension 2 were proven to be
persistent. All generators of PSSs of dimension 3 were revealed and classified in [2].
This paper presented the generators of PSSs of dimension 4. Due to space limitation,
a formal derivation and the proof that the given classification is exhaustive could not
be included. They will be provided in a future extended version of the contribution.
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Simplified Voronoi Diagrams for Motion
Planning of Quadratically-Solvable
Gough–Stewart Platforms

Rubén Vaca, Joan Aranda and Federico Thomas

Abstract The obstacles in Configuration Space of quadratically-solvable Gough–
Stewart platforms, due to both kinematic singularities and collisions, can be uni-
formly represented by a Boolean combination of signs of 4×4 determinants involv-
ing the homogeneous coordinates of sets of four points. This Boolean combination
induces a measure of distance to obstacles in Configuration Space from which a
simplified Voronoi diagram can be derived. Contrary to what happens with stan-
dard Voronoi diagrams, this diagram is no longer a strong deformation retract of
free space but, as Canny proved in 1987, it is still complete for motion planning.
Its main advantage is that it has lower algebraic complexity than standard Voronoi
diagrams based on the Euclidean metric.

Key words: Gough–Stewart platform, pure condition, Voronoi diagrams, path plan-
ning

1 Introduction

Gough–Stewart platforms whose assembly modes can be obtained by solving only
quadratic equations are said to be quadratically-solvable. This family of parallel
platforms is defined by certain geometric constraints in the location of their leg at-
tachments to the fixed base and/or moving platform such as coincidence and collin-
earity (see Fig. 1), or, in general, certain algebraic relations between the coordinates
of the attachments in their local reference frames (see [1] for a non-trivial example).
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Fig. 1 Examples of two well-known quadratically-solvable Gough–Stewart platforms. Left: the
3-2-1 platform. Right: the Zhang-Song platform.

It is interesting to observe how, when all the elements of a quadratically-solvable
Gough–Stewart platform and its environment are approximated by polyhedra, the
obstacles in its configuration space, due to both kinematic singularities and colli-
sions, can be uniformly represented by a Boolean combination of signs of 4× 4
determinants involving the homogeneous coordinates of sets of four points. This
Boolean combination induces a measure of distance to obstacles from which a sim-
plified Voronoi diagram can be derived. A detailed explanation of all these facts
requires a lot of mathematical details but, due to space limitations, we have opted
for an informal style to convey the main concepts.

This paper is organized as follows. Section 2 explains how the kinematic sin-
gularities of quadratically-solvable Gough–Stewart platforms can always be inter-
preted as degeneracies of a set of tetrahedra. Section 3 deals with the collision de-
tection between arbitrary polyhedra. Then, it is shown how the regions where either
collisions or singularities occur can be uniformly represented by a Boolean combi-
nation of signs of 4× 4 determinants. How this representation induces a measure
of distance to these forbidden regions is explained in Section 4 and how a simpli-
fied Voronoi diagram is derived, in Section 5. A simple planar case is analyzed in
Section 6. Finally, we conclude in Section 7.

2 Singularities of Quadratically-Solvable Parallel Robots

The singularities of quadratically-solvable Gough–Stewart obey a neat algebraic
structure. The pure condition of this kind of platforms factorizes into 4×4 determi-
nants which involve the homogeneous coordinates of sets of four attachments [3].
When the coordinates of the leg attachments in the moving platform are expressed
in terms of the position and orientation of the platform, x and Θ respectively, three
kinds of determinants arise:
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• Plane-Point determinants: They involve three attachments of the fixed base and
one of the moving platform. They vanish if, and only if, the point lies on the
plane defined by the three points fixed to the base.

• Point-Plane determinants: They involve three attachments of the moving plat-
form and one of the fixed base. The vanish if, and only if, the fixed point lies on
the moving plane defined by the three points attached to the platform.

• Line-Line determinants: They involve two attachments of the base and two of the
moving platform. They vanish if, and only if, the lines defined by the two couples
of points lie on the same plane.

Hence, the singularities of quadratically-solvable platforms can be geometrically
interpreted as the degeneracy of tetrahedra. For example, the pure condition of the
robot in Fig. 1(left) can be expressed as:

[p1p2p3p7][p5p6p7p8][p4p7p8p9] = 0

where pi stand for the homogeneous coordinates of leg attachment Pi in the world
reference frame. Then, this robot is in a singularity if any of the three determinants
vanish (i.e., if any of the three associated tetrahedra degenerate). Then, if we define
the predicate

� (i, j,k, l) =

{
true if [pip jpkpl ]> 0,
false otherwise,

(1)

the robot’s singularity-free region is the set of configurations where

(�(1,2,3,7)∨�(1,2,3,7))∧ (�(5,6,7,8)∨�(5,6,7,8))∧ (�(4,7,8,9)∨�(4,7,8,9)) (2)

is true. This boolean expression can be seen as a shallow (depth 2) AND-OR
tree with an AND node at the root. The interest of expressing singularity-free re-
gions in this apparently awkward way becomes obvious when integrating them with
collision-free regions as described next.

3 Basic Contacts Between Polyhedra

The configuration space obstacle for a pair of polyhedra is the set of configurations
at which the two polyhedra overlap. The overlap predicates between polyhedra are
logical combinations of primitive predicates. These primitive predicates correspond
to the three basic types of contacts between polyhedra [7], which in turn can be
expressed using the same three kinds of determinants already used to characterize
the singularities of quadratically-solvable platforms.

The formulation of polyhedral interference detection as the evaluation of a
boolean formula that depends only on the features (vertices, edges, and faces) of
polyhedra with convex faces was proposed by Canny [5]. This test was later gener-
alized, and fully expressed in terms of signs of 4×4 determinants, by Thomas and
Torras [9].
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As a simple example of boolean formulas for overlap detection, let us consider
the segment defined by P1P2 and the triangle defined by P3P4P5 in 3D. Then, the
segment is intersecting the triangle if

(�(1,3,4,5)⊗�(2,3,4,5))∧ [(�(1,2,3,4)∧�(1,2,4,5)∧�(1,2,5,3))

∨ (�(1,2,3,4)∧�(1,2,4,5)∧�(1,2,5,3))]

is true, ⊗ being the exclusive or operator defined as (a⊗b) = (a∧b)∨ (a∧b).
Then, the predicates that define collision-free regions can also be represented

as AND-OR trees that can be fused in a seamless way with those representing
singularity-free regions through an AND node. The resulting trees can be obviously
organized in different ways for higher efficiency using the properties of boolean al-
gebra. One of the overlap predicates for polyhedra with convex faces given in [5]
generate a shallow (depth 2) AND-OR predicate tree, whose root is an OR node.
Nevertheless, as Canny already observed, it is computationally advantageous to
make the predicate tree as deep as possible and it is also desirable for the root to
be an AND node.

4 A Measure of Distance to Obstacles in Configuration Space

Following the discussion in [4], we can now observe that by letting positive real
values represent logical one, and non-positive values represent logical zero, that the
min function implements logical AND, and the max function implements logical
OR. Thus, for example, the predicate (2) that characterizes the obstacle in configu-
ration space due to kinematic singularities of the robot in Fig. 1 can be expressed as:

ρ(x,Θ) = min(max([p1p2p3p7],−[p1p2p3p7]),

max([p5p6p7p8],−[p5p6p7p8]),

max([p4p7p8p9],−[p4p7p8p9])).

The above quantity can be used as a measure of distance – it is not a true met-
ric – to the robot’s kinematic singularities, because it varies continuously through
configuration space. Thus, the translation from a predicate representing the singu-
larity and collision-free regions to a measure of distance to forbidden regions is
straightforward. It will be positive at configurations outside them and negative at
configurations inside them. Clearly, this measure of distance decomposes the robot’s
configuration space into regions in which one of the involved determinants is crit-
ical in determining the value of ρ , that is, small changes in its value cause identi-
cal changes in the value of ρ . The boundaries between these regions can be seen
as a Voronoi diagram. Then, searching the configuration space for singularity and
collision-free paths can be reduced to a search on this diagram as explained in the
next section.
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5 Simplified Voronoi Diagrams

A Voronoi diagram is defined to be the set of points equidistant from two or more
generators (points, segments, polygons, . . . ) under the appropriate metric (usually
the Euclidean distance). This construction received considerable attention in the
early eighties as a useful tool for motion planning (see the textbook of Schwartz
and Yap [8], and the references therein, for an introduction and review of the use of
Voronoi diagrams in motion planning).

The main advantage of using the Voronoi diagrams based on the measure of dis-
tance described in the previous section is that they have a lower algebraic complexity
than those resulting from using the Euclidean distance. These diagrams are piece-
wise linear for fixed orientations of the moving platform while standard Voronoi
diagrams would contain quadratic sheets. These simplified Voronoi diagrams are
sometimes also called straight skeletons [6]. Despite this important simplification,
they still have an important property: any path through free space which starts and
ends on the diagram can be continuously deformed so that it lies entirely on the di-
agram [4]. Thus, they are complete for motion planning, i.e., searching the original
space for paths can be reduced to a search on the diagram.

Now, to find a path between two points in free space, it suffices to find a path for
each point onto the diagram, and to join these points with a path that lies wholly on
the diagram.

6 Example

The ideas presented above are for spatial parallel robots. Nevertheless, to exemplify
them, we will rely on a planar case because the corresponding configuration space
is three-dimensional and hence easily representable.

Let us consider a planar robot whose base is determined by the segment
P1P2, its moving platform by the segment P3P4, and its three legs by the seg-
ments P1P3, P2P3, and P2P4. Let us also assume that the homogeneous coordi-
nates of these points are given by p1 = (0,0,1)t , p2 = (15,0,1)t , p3 = (x,y,1)t ,
and p4 = (x+10cos(φ),y+10sin(φ),1)t . Therefore, the configuration of the mov-
ing platform is determined by (x,y,φ). We also introduce a boundary region de-
termined by the square P5P6P7P8 whose vertex coordinates are p5 = (−25,40,1)t ,
p6 = (−25,−40,1)t , p7 = (55,−40,1)t , and p8 = (55,40,1)t .

In this planar case, the regions free from singularities and collisions can be rep-
resented by a Boolean combination of signs of 3× 3 determinants. Actually, the
region free from kinematic singularities is defined by the predicate

P1 = (�(1,2,3)∨�(1,2,3))∧ (�(2,3,4)∨�(2,3,4)),

and the region free from collisions between the moving platform, the base, and the
four segments defining the boundary, by the predicate
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Fig. 2 Measure of distance to the kinematic singularities (a), and the corresponding Voronoi di-
agram (b). Measure of distance to the regions where collisions occur (c), and the corresponding
Voronoi diagram (d). Measure of distance taking into account both singularities and collisions (e),
and the corresponding Voronoi diagram (f). All images are slices of the robot’s configuration space
for φ = π

4 .
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Fig. 3 Representation of the analyzed robot’s configuration space in the region defined by
(x,y,φ) = ([−30,60], [−45,45], [−π/2,π/2]). The plot shows the measure of distance associated
with P1 ∧P2 for φ = −π/2,0, and π/2, and slices of the corresponding Voronoi diagram for
values of φ where there is a change in its topology. The lines connecting them correspond to the
edges of the Voronoi diagram.

P2 =(�(1,2,3)⊗�(1,2,4))∧ (�(1,3,4)⊗�(2,3,4))

∧(�(5,6,3)⊗�(5,6,4))∧ (�(5,3,4)⊗�(6,3,4))

∧(�(6,7,3)⊗�(6,7,4))∧ (�(6,3,4)⊗�(7,3,4))

∧(�(7,8,3)⊗�(7,8,4))∧ (�(7,3,4)⊗�(8,3,4))

∧(�(8,5,3)⊗�(8,5,4))∧ (�(8,3,4)⊗�(5,3,4))

Figs. 2a and 2b show the measure of distance associated with P1 and its corre-
sponding Voronoi diagram, respectively. Figs. 2c and 2d show the same information
for P2. These Voronoi diagrams represent the regions free from kinematic singu-
larities and free from collisions, respectively. Figs. 2e and 2f show the measure of
distance associated with P1 ∧P2 and the corresponding Voronoi diagram thus in-
tegrating all the information in a single diagram. Finally, Fig. 3 shows how this
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diagram evolves, as φ varies, and a singularity and collision-free path connecting
the configuration (35,−20,π/2) and (−10,−15,−π/2). Observe how all slices for
fixed orientations are arrangements of straight line segments.

7 Conclusion

The use of Voronoi diagrams for motion planning received a lot of attention in the
eighties. This interest progressively decreased in favor of algorithms based on ran-
dom samplings. Nevertheless, it still remains as a fundamental tool for those appli-
cations in which an exact representation of free space is required. This paper shows
how a simplified Voronoi diagram of the singularity and collision-free regions of
any quadratically-solvable Gough–Stewart platform can be obtained assuming that
the robot itself and its environment can be well-approximated by sets of polyhedra.
The result is an elegant algorithm fully expressed in terms of 4×4 determinants.

Finally, concerning computational efficiency, it is worth noting that many basic
geometric tests other than interference detection such as classification, containment,
and depth priority tests can be performed by computing sets of determinants. This
has motivated the search for efficient determinant computations using hardware im-
plementations such as the triangle processor and its successor, the polygon engine
[10]. This is a point that could be explored if the presented ideas should be imple-
mented for complex Gough–Stewart platforms in cluttered environments.
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Dynamic Capabilities of a Parallel Robot Based
Routing Machine

J. Corral, Ch. Pinto, F.J. Campa and O. Altuzarra

Abstract In this paper, a study of the capabilities of a parallel manipulator with
four degrees of freedom for machining application is presented. Specifically, rout-
ing tasks will be considered. To carry out this study, a process model that allows
the dynamic behaviour of robot based on the phenomenon of chatter to be consid-
ered is used. The model takes into account characteristics of the process like the
tool, the material to be machined and spindle speed. The dynamic stiffness of the
manipulator is also taken into account. This modal parameter has a decisive influ-
ence on the dynamic behaviour. Using a single-frequency model of stability, values
of the critical depth of cut and chatter frequency are obtained. Since the structural
behaviour of parallel manipulators is a function of the location in the workspace, a
post-processing of both critical depth of and chatter frequency is presented. From
these maps, the dependence of the depth of cut and chatter frequency on the location
is also derived.

Key words: Parallel machine, routing, structural dynamics, depth of cut, chatter

1 Introduction

An index of productivity in the chip removing machining process is the chip flow
that depends on the speed of the tool, feed rate and depth of cut. The automation
of these processes leads to a dependency on the characteristics of the machine in
both productivity and the quality of the finishing. The main rough machining, semi-
finishing and finishing machining require Computer Numerical Control (CNC), the
architecture of which ensures precision at cutting edge. This is usually achieved by
very robust machines in which the large amount of mass helps to provide stiffness.
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However, some finishing tasks are more efficiently met in terms of accuracy and
surface quality by lighter machines with good rigidity, size and mass. This applies,
for example, the routing, certain finishing milling, small planning and reaming. Per-
forming these operations with a heavy and robust machining centres leads to ineffi-
ciency because, on the one hand, the actual capabilities of the machines are wasted
and, on the other hand, the energy consumption associated with moving a heavy ma-
chine is comparatively high [11]. That is why, in certain sectors, the use of robots
and manipulators with good dynamics, good dexterity of the tool to ensure accessi-
bility to cavities and profiles, and less rigid than traditional machines but big enough
to fit entrusted machining tasks is a trending topic [6]. These requirements fit prop-
erly in the most advantageous features of parallel machines and, more specifically,
in those of lower mobility manipulators because some degrees of freedom may be
either not necessary or inherent to the type of the tool itself such as for drilling or
milling. Therefore, in this paper, a characterization based on the dynamic structural
performance of a parallel kinematic manipulator for routing operations is proposed.
The routing is used in the machining of thin components and defines the final shape
of the piece. That is why dimensional accuracy requirements and surface finish qual-
ities determined by the dynamic stiffness of the machine have to be ensured. critical
in that, an unexpected problem in the routing, can damage a 90% processed piece
and the costs it involves.

2 Routing Process Characterization and Modelling

The routing is an operation common in the manufacture of structural components
of reduced thickness of aluminium, titanium and composites for the aviation sec-
tor. The process to obtain these workpieces starts with a block of material which
is firstly shaped by removing up to 90–95% of material by high speed milling. In
the final stages of the machining, the framework of the block itself supports the
endpiece. Routing is one of the last machining operations in which a milling cutter,
diameter of which is between 10 and 16 mm, penetrates the piece to slot it along
the outline. Specifically, full immersion milling with a four-edged, 12 mm diameter
carbide end mill will be considered. Because of the aforementioned milling, the ra-
dial depth of cut equals the tool diameter, 12 mm. The axial depth of cut is defined
by the thickness of the part, which in this type of components is small (from 0.5
mm to 5 mm). So the case study of this work will be based on an operation with
an axial depth of 1 mm. Workpiece material will be 7075-T6 Aluminium, typical of
the aeronautical industry. This material is machined at high cutting speeds, so the
limitation on the spindle speed is given by the reduction capabilities of the spindle.
A small screw with a range from 2,500 to 4,000 rpm will be considered and the
advance per edge will be set at 0.05 mm. Figure 1 represents a sketch of the routing
operation. The horizontal arrow represents the direction of tool advance with clock-
wise rotation. In this scheme, the milling cut, with a radial depth ae equal to the
tool diameter d, and axial depth of cut ap, defined by the thickness of part is shown.
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Fig. 1 Routing process sketch.

These two parameters will determine the dynamic characterization of the process.
While the radial depth of cut remains constant (ae = d), the axial depth of cut will
be established to ensure routing conditions, in the most efficient way, in terms of
geometric accuracy and surface finish from the dynamics point of view. The dy-
namic characterization determines whether the dynamic stiffness of the manipulator
allows a satisfying behaviour against vibrations during the process. The parameter
to evaluate the dynamic stiffness is the critical depth of cut of the stability lobes
diagram (Fig. 2(b)) of the manipulator for a routing operation with a given tool and
workpiece material. As the modal parameters of the manipulator depend heavily on
its position along the workspace, several stability diagrams have to be calculated
inside the workspace. Moreover, the dynamic behaviour of the manipulator is not
symmetrical with respect to the tool axis, so a different stability diagram is obtained
for each feed direction. Finally, as the maximum stable depth of cut of each stability
diagram depends on the spindle speed, to simplify the overall dynamic behaviour
characterization, the authors have decided to use the critical depth of cut, taking
into account that it is a conservative approach. Regenerative chatter in milling is
a common problem that has been extensively studied during the last 60 years [7].
The works of [5, 9, 10] provided the theoretical basis to study the problem. Later,
Budak and Altintas [1], proposed a relatively simple yet effective model to predict
the stability lobes diagram. That model was improved with the multifrequency solu-
tion. In the last decade, the works of Insperger, Butcher or Baily [2, 4] have proposed
alternative algorithms that improved previous models in terms of accuracy and com-
putational time. From the point of view of the designer of a machine tool, stability
models can be used to evaluate the dynamic behaviour of a designed machine tool or
even to redesign features of a machine, as it is shown in the work of [11], who used
the lobes diagrams to find a balance between the dynamic behaviour and the mass
of a machine tool. The stability model developed is based on the well-known sta-
bility model with a single-frequency solution proposed by Budak and Altintas [1].
As the end mill commonly used to perform routing operations has a cutting edge
lead angle of κ = 90◦, the self-excitation in the Z direction, that is, the tool axis di-
rection, is avoided, so a two-dimensional stability model has been used. The basics
of the model are summarized in the following paragraphs. First, the dynamic chip
thickness, which is the origin of the regeneration mechanism, is considered as de-
pendent on the dynamic displacements of the manipulator in X and Y axes. Hence,
the dynamic chip thickness that a flute j located at an angular position φ j cuts, can
be obtained as:
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Fig. 2 (a) Axis and forces considered in the model and (b) lobes diagram.

hd(t) = [Δx(t) · sinφ j(t)+Δy(t) · cosφ j(t)] ·g(t) (1)

where g(t) is a unity window function that takes into account if the flute is inside
the cutting area or not. The dynamic forces model is a linear mechanistic model
where the tangential and radial cutting forces depend on the corresponding shearing
cutting coefficients. These forces are then projected to the XY axis of the reference
system of the tool.
{

Ft(t)
Fr(t)

}
= kt ·ap ·

{
1
kr

}
·h(φ j(t)) ·

{
Fx(φ j)
Fy(φ j)

}
=

[
−cosφ j −sinφ j

sinφ j −cosφ j

]
·
{

Ft(t)
Fr(t)

}
(2)

Introducing Eq. (1) into Eq. (2) the dynamic forces and dynamic displacements are
related by the directional factors matrix A(t).

{
Fx(t)
Fy(t)

}
= ap · kt ·A(t) ·

{
Δx(t)
Δy(t)

}
(3)

Following the single-frequency approach, where the chatter appears only at one
frequency near the natural frequency, the dynamic displacements depend on the
modal parameters of the manipulator which are included in the frequency response
matrix G(ωc), and also on the current and precedent position of the manipulator.

{
Δx(t)
Δy(t)

}
= (1− e−iωcT )

[
Gxx(ωc) Gxy(ωc)
Gyx(ωc) Gyy(ωc)

]
·
{

Fx

Fy

}
· eiωcT (4)

Introducing Eq. (4) into Eq. (3), an eigenvalue problem of second order is obtained,
which can be solved after averaging the directional factors matrix by its average
term of the Fourier series expansion. The eigenvalue problem is shown in Eq. (5).

det[I+ΛA0G(ωc)] = 0 −→ Λ =− z
4π

·ap · kt(1− e−iωcT ) (5)
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Fig. 3 ARABA I kinematic skeleton.

Solving the eigenvalue problem for several values of the chatter frequency, the lim-
iting depth of cut, ap, and the corresponding spindle speed, N, are calculated as:

ap =− 2π
z · kt

· real(Λ) ·
[

1+

(
real(Λ)

imag(Λ)

)2
]

; N =
60 ·ωc

z · (ε +2πk)
(6)

where ε is the phase difference between the surface left by the precedent tooth and
the current tooth.

ε = π −2 ·atan

(
real(Λ)

imag(Λ))

)
(7)

Plotting the depth of cut values against the corresponding spindle speed values cal-
culated in Eq. (6), the stability lobes diagram is completed.

3 Case Study

The ARABA I parallel manipulator has 4 dof, three translations and one rotation
about an axis contained in a vertical plane. Next, the main characteristics to under-
stand properly the structural behaviour will be presented, although more details can
be found in [8]. The manipulator has been designed to assist in machining tasks
and, therefore, the requirements of precision and stiffness typical of this kind of
task. The architecture of the manipulator is presented in Fig. 3 and consists of a
fixed platform and a mobile platform. The linear guides represent the fixed platform
and they are not perfectly aligned but have an offset 2a. Connecting both platforms
four identical legs are arranged which consist of several elements. In this case, the
basic kinematic chain of each leg is PRPaRR, i.e., the connection to the fixed com-
ponent, represented by the guides, is performed through a prismatic joint, then a
rotational joint Bi, a parallelogram joint, and two mutually perpendicular rotational
joints in Ci and Di, respectively.

From Kinematic Problem resolution, the volume corresponding to the manipula-
tor ARABA I workspace is obtained (Fig. 4(a)).
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Fig. 4 (a) Workspace and (b) workplane.

In this work, an initial study in which a constant orientation of the platform is
maintained will be carried out. Moreover, the workspace is discretized into planes
of constant height so that a second variable is fixed (z coordinate constant). In each
plane a homogeneous distribution of measuring points is provided and a represen-
tative point density depending on the size of the working plane is chosen. Fig-
ure 4(b) shows the section of maximal workspace by a z constant plane in which
measurements have been performed. Specifically, this is the z = −700 mm height
plane which, henceforth, is referred to as Z700 plane. The distribution of points of
Fig. 4(b) shows the boundary of the workspace experimentally obtained, ews, and
the points that define the practical workspace, pws, where the study is carried out.
The workspace in which the analysis has been performed and which is free of sin-
gularities will be referred to as operational workspace, Wop.

The dynamic structural behaviour has been carried out by analysing the dynamic
stiffness of the manipulator. For parallel kinematics manipulators dynamic structural
behaviour is a function of the location in their workspace [3]. Due to this depen-
dency, vibratory analyses have to be done in the whole workspace. The results of
these analyses have led the values of the natural frequencies in the Z700 workplane.
Shape modes associated to each natural frequency have been derived in order to
detected possible crossings between modes, consequence of the location dependent
behaviour. For each mode shape the values of the dynamic stiffness have been de-
rived. These values are used in the stability model for the performance evaluation
used in this work and presented in the previous section. A detailed explanation of
the natural frequencies of the model as well as figures and description of the modes
can be found in [3].
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Fig. 5 X-direction critical ap maps: (a) X(+) and (b) X(−).

Fig. 6 Chatter frequency for X-direction advance: (a) positive and (b) negative senses.

4 Results

In the maps of Fig. 5 the values of the critical depth of cut as a function of the
position in the plane, apcrit(x,y) are presented. These maps represent the critical
depth of cut for an advance of the tool along the X-direction. The map on the left
corresponds to the positive X-direction advance and, on the right, the negative one.
As shown in the maps, a critical depth of cut is obtained for each point in the work
plane. If the manipulator exceeds this operational parameter during the machining
task, chatter instability phenomenon will appear resulting in poor finishing and even
machine collapse. For each point, the chatter frequency, the one at the chatter occurs,
is also different. Associated to the chatter instability, the frequency of chatter is also
obtained from the model. This is the frequency at which the chatter occurs. That is,
when the machine removes more material than that permitted by the critical depth of
cut, chatter happens at a given frequency. This fact is useful in order to detect which
shape modes are meaningful and have some influence in the dynamic capabilities of
the machine. In Fig. 6 chatter frequency maps are presented for X-direction of the
tool advance. In this work, the critical depth of cut maps has been obtained. In these
maps, optimal regions of the workplane can be selected for a certain depth of cut.
And so, these maps prove that dynamic capabilities of the manipulator are function
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of the tool tip location in the workspace. A second postprocessing parameter has
been obtained from the model: the frequency of chatter. In future works, this chatter
frequency could be used to find which are the most influential shape modes for
the parallel machine and, in this way, find design criteria to improve the dynamic
capabilities of the routing machine.
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Kinematic Synthesis of Multi-Fingered Robotic
Hands for Finite and Infinitesimal Tasks

E. Simo-Serra, A. Perez-Gracia, H. Moon and N. Robson

Abstract In this paper we present a novel method of designing multi-fingered
robotic hands using tasks composed of both finite and infinitesimal motion. The
method is based on representing the robotic hands as a kinematic chain with a tree
topology. We represent finite motion using Clifford algebra and infinitesimal motion
using Lie algebra to perform finite dimensional kinematic synthesis of the multi-
fingered mechanism. This allows tasks to be defined not only by displacements, but
also by the velocity and acceleration at different positions for the design of robotic
hands. The additional information enables an increased local approximation of the
task at critical positions, as well as contact and curvature specifications. An example
task is provided using an experimental motion capture system and we present the
design of a robotic hand for the task using a hybrid Genetic Algorithm/Levenberg-
Marquadt solver.

Key words: Kinematic synthesis, multi-fingered grippers, Clifford and Lie algebra

1 Introduction

The design of end-effector robotic tools has traditionally taken place in an applica-
tion-oriented fashion within the framework of the mechanical design theory [7].
Among the rich variety of robotic end-effectors, those generally defined as robotic
hands are considered suited not only for grasping, but also for dexterous manipu-
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 22,
© Springer Science+Business Media Dordrecht 2012

173

mailto:esimo@iri.upc.edu
mailto:esimo@iri.upc.edu
mailto:perealba@isu.edu
mailto:hsmoon@neo.tamu.edu
mailto:ninarobson@tamu.edu
http://dx.doi.org/10.1007/978-94-007-4620-6_22


174 E. Simo-Serra et al.

lation. We can define a multi-fingered robotic hand as an end-effector in which the
base, or palm, spans several serial chains in a tree-like structure.

There are a great variety of designs for robotic hands. Some designs mimic the
human hand and exhibit a high number of degrees of freedom [1, 15]; others are
designed for specific applications [4] and may or not be anthropomorphic [5].

Most of the designs have been oriented either towards maximum anthropomor-
phism or towards optimizing grasping, manipulability or workspace size. A good
review on the efforts toward kinematic hand design can be found in [6]. As robotic
hands become more common in industrial applications and human environments, it
makes sense to think that their design will become more task-oriented. Soto Martell
and Gini [14] expose the need for a task-based design process for robotic hands.

The use of kinematic synthesis for the design of the multi-fingered robotic hand
has been applied to individual fingers, see [2]. We believe that the reason why di-
mensional synthesis has been scarcely applied to robotic hand design is because
of the lack of a method that takes a multi-fingered task as the input and outputs a
multi-fingered design.

In this paper, we extend the work presented in [13] by combining it with the
results on kinematic synthesis for infinitesimal positions [8, 9] and expressing the
kinematics using the Clifford algebra of dual quaternions [10]. Note that mechanical
linkages are traditionally synthesized by specifying a task, consisting of a number
of positions that the end-effector has to move through, with the goal of determining
the design parameters, i.e. fixed and moving pivot locations, as well as the size of
the linkage. The difference between the traditional design of mechanical linkages
and the current design with contact direction, used in this research, is basically in
the task, which consists not only of positions, but velocities and accelerations com-
patible with contact and curvature specifications between the end-effector/fingers
and the object to be grasped. In comparison to the traditional synthesis techniques,
these velocities and accelerations yield to a more complicated system of position,
velocity and acceleration design equations, as well as more complicated trajectory
planning techniques.

As an example, we apply this methodology to the design of a multi-fingered
hand for operating a door knob. The motivation for this design arose from an indi-
vidual, who is confined to a wheel chair after an accident. He has limited movement
and weakness in his hands, making it difficult for him to grasp doorknobs at his
workspace. The synthesis presented here is the first step towards developing assis-
tive manipulation devices.

2 Infinitesimal Kinematics

The generic screw S for a twist can be represented as an element of the Lie algebra
se(3) [12],

S = λ(s; r × s + hs) = λ(s; s0 + hs) = (ω; v) ∈ se(3) (1)
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where s, r,ω, v ∈ R
3 with s · s = 1, s0 = r × s and λ, h ∈ R.

The relative velocities between a pair of rigid bodies form one-dimensional sub-
algebras of the Lie algebra se(3) [11]. The most generic subalgebra is generated by
the screw or helical joint S which becomes a revolute joint SR = (s; s0) with h = 0
or a prismatic joint SP = (0; s) with the screw axis at infinity. The binary operation
of the Lie algebra is the Lie bracket, which can be expanded for screws as,

[S1, S2] = [(ω1; v1), (ω2; v2)] = (ω1 × ω2; ω1 × v2 + v1 × ω2) (2)

The velocity of the end-effector for a serial articulated chain with n joints in a
given configuration can be written as [12],

dP
dt

= Ṗ =
n∑

i=1

θ̇iSi (3)

where Ṗ = (ω; v) with ω being the angular velocities and v being the Cartesian
velocities. The screws Si represent the infinitesimal screws of each joint.

The infinitesimal screws can be transformed to an instantaneous position from a
reference position using the Clifford algebra conjugation action,

Sk
i =

(
e

�θ̂k
i−1
2 Sk

i−1

)
Si

(
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�θ̂k
i−1
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i−1

)∗
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⎝
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j=1

e
�θ̂k

j
2 Sj

⎞

⎠ Si

⎛

⎝
i−1∏

j=1

e
�θ̂k

j
2 Sj

⎞

⎠
∗

(4)

where �θ̂k
i = θ̂ k

i − θ̂ r
i with θ̂ r

i is the joint parameter in the reference configuration
and Sk

i is the i-th screw in a serial chain at position k.
The velocity of a joint j in a chain is written as the derivative of a finite screw [3],

dSj

dt
= Ṡj =

j−1∑

i=1

θ̇i[Si , Sj ] (5)

Cross terms and the non-commutation of the derivation operator must be taken
into account as seen by differentiating each velocity component of (3) using the
chain rule. This can be expanded to obtain the acceleration of the end-effector,

d2P
dt2

= P̈ = d

dt
Ṗ =

n∑

i=1

(
θ̈iSi + θ̇iṠi

)
=

n∑

i=1

θ̈iSi +
n−1∑

i=1

θ̇i

n∑

j=i+1

θ̇j [Si , Sj ] (6)

where P̈ = (α; a) with α being the angular accelerations and a being the Cartesian
accelerations.

The approach is general in the sense that the chain rule can be successively ap-
plied to obtain higher derivatives if necessary.
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3 Design Equations for Tree Topologies

Tree topologies can be seen as many different serial chains that share a number of
common joints. The equations can be written as for serial chains, but the task defini-
tion will vary with the topology. The finite motion of a joint can be expressed using
the exponential map of a screw S. This can be expressed using the unit element of
the Clifford even subalgebra of the projective space Cl+(0, 3, 1) or dual quaternion,

e
θ̂
2 S =

(
cos

θ

2
− d

2
sin

θ

2
ε

)
+

(
sin

θ

2
+ d

2
cos

θ

2
ε

)
S = cos

θ̂

2
+ sin

θ̂

2
S. (7)

where ε is the dual unit such that ε2 = 0.
For a serial chain with n joints, the forward kinematics of a serial chain can be

written relative to a reference configuration of the serial chain,

Q̂(�θ̂) =
n∏

i=1

e
�θ̂i

2 Si =
n∏

i=1

(
cos

�θ̂i

2
+ sin

�θ̂i

2
Si

)
(8)

where �θ̂i = θ̂i − θ̂0 with θ̂0 being the joint parameters of the reference configura-
tion.

For a task composed of finite positions, the relative forward kinematics can be
compared to the relative motion from the reference configuration to each position
P̂1k = P̂kP̂

−1
1 [10],

P̂1k =
n∏

i=1

e
�θ̂k

i
2 Si , k = 2, . . . , mp (9)

where mp is the number of positions considered and �θ̂k
i = θ̂ k

i − θ1
i , with k = 1

being the reference configuration.
For a task with velocities, we can use (3) to write,

Ṗk =
n∑

i=1

θ̇ k
i Sk

i , k = 1, . . . , mv (10)

where Ṗk is the absolute velocity information for a given position k in the form
(ω; v). The instantaneous joint screw axis Sk

i can be calculated from (4).
The same procedure can be applied to acceleration to obtain from (6),

P̈k =
n∑

i=1

θ̈ k
i Sk

i +
n−1∑

i=1

θ̇ k
i

n∑

j=i+1

θ̇ k
j [Sk

i , Sk
j ], k = 1, . . . , ma (11)

where P̈k is the absolute acceleration for a given position k in the form (α; a).
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The velocity and acceleration equations can be seen as additional pose informa-
tion that reduce the number of poses needed. Counting the number of independent
unknowns nx and independent equations nf we obtain,

nx = ns + nj (mp + mv + ma − 1) (12)

nf = nc + nd(mp + mv + ma − 1) (13)

where ns is the number of independent structural parameters, nj the number of joint
degrees of freedom, nc the number of independent constraints and nd the degrees of
freedom of the end-effector motion. The number of positions, velocities and acceler-
ations are given by mp, mv and ma respectively. If we consider m = mp +mv +ma

we obtain the familiar formula [10],

m = ns − nc

nd − nj

+ 1 (14)

4 Experimental Set up and Task Specification

Since the first step in our synthesis technique is related to choosing a specific task,
the kinematic task selected for the design is the operation of a standard door knob.
In order to define this kinematic task, the door knob grasping and turning movement
was performed, from a start to end spatial locations. During the movement, the sub-
ject emulates the opening of the door motion with an apparatus shown in Fig. 1a.
The upper limb kinematics at specific points of interest are captured by a 3D Mo-
tion Capture System (Vicon, OMG Plc., UK), available in our Human Interactive
Robotics Lab at Texas A&M University.

Three infrared cameras track the position of each marker relative to a predefined
global coordinate frame, with a sampling rate of 100 Hz. Five moving frames are
defined at the: elbow, wrist, and tip of thumb, tip of index and tip of middle fingers,
respectively. Fig. 1b shows the marker attachment. To only synthesize the motion
of the forearm, the positions chosen were transformed from absolute positions P̂i to

Fig. 1 (a) The experimental
apparatus for emulating the
door knob task and (b) the
kinematic model configured
in the 3D Motion Capture
System.
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positions local to the elbow P̂ij = P̂ −1
j P̂i with P̂J is the position of the elbow. For

velocities this can be written as Ṗij = Ṗi − Ṗj .
The obtained positions and velocities were then used as a task for the kinematic

synthesis of the multi-fingered robotic hand. The kinematic specification consists
of set of three spatial displacements defined by P̂k = (ψk, dk), k = 1, 2, 3, and
the associated angular and linear velocities Ṗk = (ωk; vk), k = 1, 2 in two of the
positions for each fingertip.

5 Solving Numerically

The solver used is an updated version of the kinematic synthesis solver for tree
structures [13] updated to support the design equations (10) and (11). The solver is
composed of a Genetic Algorithm (GA) paired with a Levenberg–Marquadt (LM)
local optimizer. For more details on the solving approach see [13].

The full equation system for a multi-fingered robot with b fingers formed by n

revolute joints can be defined directly by manipulation of the design equations,
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(15)

where b is the number of branches or fingers, nc is the number of joints for a branch
c, n is the total number of joints in the structure and Sk

i,c are the instantaneous axis
of the joint i in the branch c for the frame k calculated by (4). A valid mechanism is
said to be found when F(S,�θ̂ , θ̇ , θ̈) = 0.

6 Results

The kinematic structure of the hand consists of a three degree of freedom palm+wrist
complex (RRR), and three fingers, each of which is modeled as a two degree of
freedom RR kinematic chain as seen in Fig. 2a. This structure was chosen for the
kinematic synthesis of the task as it has fewer degrees of freedom than the human
hand while having an non-fractional number of required samples. As this paper does
not deal with structural synthesis, a pre-determined topology is used. No additional
constraints were placed on the structure. For this kinematic structure with 9 revolute
joints, a total of m = 5 samples are needed as obtained from (14).

The experimental task consists of many hundreds of frames of which mp = 3
were selected. For two of them velocity information was also used providing
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Fig. 2 The topology used and overview of a solution mechanism found.

mv = 2. Due to the nature of the door-knob opening task, the accelerations, re-
lated to curvature constraints (i.e. sliding motion of the fingers along the door-knob)
are fairly small in comparison to the other task specifications and were not taken
into account. Therefore, our task consists of positions, prescribed at the point where
the fingers need to grasp the door knob, and velocities, describing the contact of
the fingers with the door knob. The resulting equation system has 90 unknowns and
102 equations of which only 72 are independent. A set of 50 solutions was obtained
taking an average of 18.06 minutes per solution and needing an average of 13.76
generations per solution with a population of 100 entities.

A selected solution mechanism of the doorknob task can be seen in Fig. 2. The
thick joint axes are connected by thinner lines at the intersections of the common
normals of the joints and the joint axes. The origin is represented by using a square
and the end-effectors are represented by using spheres. This solution shown is more
compact than the human hand as all the joints except one are grouped together and
is able to perform the same task as the human hand. It was observed that generally
the solutions have a similarity between the index and middle finger, while the thumb
has a different shape, which is similar to how the human hand is designed.

7 Conclusions

This paper presents a novel dimensional synthesis methodology for articulated sys-
tems with a tree structure using additional constraints such as velocity and accelera-
tion. It also presents a new design for numerically solving kinematic systems using
these new constraints, adding upon the previous work of numerically solving tree
structures with kinematic synthesis. The addition of velocity, acceleration and other
derivatives at the positions allows a better local approximation of the task motion,
as well tasks with contact and curvature specifications.

For the selected knob-operating task, a tree-like robot with three two-jointed fin-
gers has been designed. Kinematic synthesis is just one step in the design process,
one that allows you to create innovative candidates fitted for the kinematic tasks
under consideration. Enough solutions have been found to suggest that a method to
analyze and rank those needs to be a part of the design process. These results show
that the dimensional synthesis of robotic multi-fingered hands is possible. In addi-
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tion, multi-fingered hands appear not to be redundant when a task involving several
fingers is to be performed.

Acknowledgements This work is partially supported by the Spanish Ministry of Science and
Innovation under project DPI2010-18449.
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Inverse Kinematics Solver for Android Faces
with Elastic Skin

Emarc Magtanong, Akihiko Yamaguchi, Kentaro Takemura, Jun Takamatsu and
Tsukasa Ogasawara

Abstract The ability of androids to display facial expressions is a key factor towards
more natural human-robot interaction. However, controlling the facial expressions
of such robots with elastic facial skin is difficult due to the complexity of model-
ing the skin deformation. We propose a method to solve the inverse kinematics of
android faces to control the android’s facial expression using target feature points.
In our method, we use an artificial neural network to model the forward kinematics
and minimizing a weighted squared error function for solving the inverse kinemat-
ics. We then implement an inverse kinematics solver and evaluate our method using
an actual android.

Key words: Android, artificial neural networks, facial expressions, inverse kine-
matics, human-robot interaction

1 Introduction

One of the main goals in android research is to design robots that are able to interact
with humans in a natural manner. To achieve this objective, efforts have been made
to incorporate the ability to display facial expressions on android robots [3].

Commonly, the android’s face is controlled by directly adjusting the actuator dis-
placements. However, controlling feature points on the android face is more suitable
for making facial expressions since it directly adjusts the appearance of the face [6].
A feature point is defined as a specific point on the android’s face that moves when
displacing the facial actuators. On the other hand, there are only a few methods to
control the android’s face using feature points because solving the inverse kinemat-
ics, which is the relationship between the feature point positions and actuators dis-
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placements, is difficult due to the elastic facial skin of androids. This paper presents
a method for solving the inverse kinematics of such an android face using a machine
learning technique.

The problem in solving for the inverse kinematics of android faces with elastic
skin is that the facial skin surface is deformable. This causes the feature points to
move with each other when displacing the actuators. Specifically, there is coupling
between the feature points. Therefore, it is difficult to formulate an analytic solution
to the inverse kinematics since the feature points are not fixed on a rigid link. Fur-
thermore, specifying target feature points for the inverse kinematics is complicated
because of the coupling problem.

In this paper, we propose three ideas to solve the inverse kinematics of android
faces. Initially, the forward kinematics of the face is modeled using an artificial neu-
ral network. The forward kinematics model determines the feature point positions
given the actuator displacements. Artificial neural networks are employed because
of its capability to learn the complex forward kinematics of android faces. Next,
using an iterative minimization technique for an error function, we compute the ac-
tuator displacements that satisfies the specified target feature point positions. Also,
a weighting method is introduced for computing the difference between the target
and the computed feature point positions to address the problem resulting from the
feature points being coupled. Lastly, we propose a face segmentation technique to
group the facial feature points and the actuators. Segmenting the face reduces the
complexity of modeling the forward kinematics and solving the inverse kinematics.

The proposed inverse kinematics solver is validated by conducting several ex-
periments using an actual android. The experimental results demonstrate the ability
of the proposed inverse kinematic solver to control the android’s facial expressions
using target feature points.

There have been several research done to control the facial expressions of an-
droid robots. A method used in [4] retargets captured human facial expressions from
video to an android by converting 2D feature point positions to actuator displace-
ments using partial least squares regression. Another method in [7] retargets human
facial motion capture data to actuator displacements of an android by interpolating
weights of blendshape models. Unlike these methods, our proposed inverse kine-
matics solver will provide a proper solution even for infeasible target feature point
positions.

The rest of this paper is organized as follows. Section 2 proposes the method to
solve the inverse kinematics of the android’s face and the face segmentation tech-
nique. Section 3 describes the experimental results. Finally, Section 4 concludes the
paper.

2 Inverse Kinematics Solver for an Android Face

To model the forward kinematics, we employ an artificial neural network (ANN).
Then, the actuator displacements are computed using an iterative minimization of
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the difference between the target and the feature point positions computed from the
ANN. Here, a weighting method for the feature points is introduced to handle the
coupling problem. Also, we describe a technique to segment the face of the android.

2.1 Forward Kinematics Using Neural Network

To model the forward kinematics, we use a multilayer feedforward ANN that is
composed of an input, an output, and a hidden layer. Concretely, the ANN is defined
as,

x = ANN(u;Θ), (1)

where Θ denotes the parameters of the neural network and is optimized during train-
ing. The vector u = (u1,u2, . . . ,uNa) represents the input vector of actuator displace-
ments and x = (x1,y1,z1, . . . ,xNf ,yNf ,zNf) defines the output vector of feature point
positions, where Na and Nf denotes the number of actuators and feature points re-
spectively.

For training the ANN, sets of actuator displacements and feature point positions,
D = {un,xn|n = 1,2, . . .}, are used. In training the ANN, a backpropagation algo-
rithm is used to optimize the parameter Θ of the ANN. To avoid overfitting, an early
stopping technique is applied during the training [2]. For the experimental section,
we implement this ANN using MATLAB’s Neural Network Toolbox [1]. The num-
ber of neurons in the hidden layer is determined through initial experimentation.

2.2 Solving for the Inverse Kinematics

This section discusses our proposed solution for the inverse kinematics of the an-
droid’s face based on the forward model learned by the ANN. We aim to address
the difficulty of obtaining an analytic solution for the inverse kinematics from the
forward kinematics ANN and solve the coupling problem when specifying target
feature points. To consider these problems, the inverse kinematics is formulated as
the minimization of the weighted squared error of the feature point positions with
respect to the actuator displacements. That is,

min
u

3Nf

∑
i=1

wi

[
ANN (u)[i]− x∗[i]

]2
,

such that, umin j ≤ u j ≤ umax j.

(2)

In Eq. (2), x∗[i] denotes an i-th element of the target feature point position, the
subscript [ i ] denotes the i-th element of the vector, and (w1,w2, . . . ,w3Nf) are the
weights for the feature points. The weights handle the coupling problem by empha-
sizing the error contribution of each feature point.
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2.3 Face Segmentation

The inverse kinematics solver described in Sections 2.1 and 2.2 is applicable to any
number of feature points and actuators. We refer to the inverse kinematics solver
applied to all feature points and actuators as the full face inverse kinematics solver.
However, we can improve the precision of the inverse kinematics solver by segment-
ing the feature points and actuators. Segmentation means that the feature points and
actuators are grouped to be modeled separately using independent forward kinemat-
ics ANNs. Specifically, the set of all feature points Fw and the set of all actuators
Aw are separated into their subsets: {Fm|m = 1, . . . ,Ng} and {Am|m = 1, . . . ,Ng},
where Ng denotes the number of segments.

To determine the segmentation, we measure the effect of each actuator to each
feature point position. Wherein each facial actuator is independently displaced sev-
eral times and the feature point positions are recorded. We then compute the effect
index defined as,

δ j,i =
1
Ns

Ns

∑
n=1

∣∣∣∣∣∣

∣∣∣∣∣∣

⎛
⎝

xi,n

yi,n

zi,n

⎞
⎠−

⎛
⎝

xi,0

yi,0

zi,0

⎞
⎠
∣∣∣∣∣∣

∣∣∣∣∣∣
(3)

where Ns denotes the number of samples per each actuator and (xi,n,yi,n,zi,n) and
(xi,0,yi,0,zi,0) denote the current and the neutral (i.e., all facial actuator displace-
ments are at minimum) feature point positions respectively. The effect index indi-
cates the effect of an actuator j to the position of a feature point i.

Using Eq. (3) and a threshold, we can define a subset of feature points Fm which
is affected by an actuator subset Am ∈ Aw. Concretely,

Fm = {i|∀i ∈ Fw,δ j,i > threshold,∀ j ∈ Am}. (4)

To segment properly, the feature point subsets F1, . . . ,FNg should not overlap with
each other; the same requirement goes for the actuator subsets A1, . . . ,ANg . Choos-
ing actuator subsets that satisfy these requirements, independent inverse kinematics
solvers can be created for each group of feature points and actuators. The resulting
inverse kinematics solver is referred to as the segmented face inverse kinematics
solver.

3 Experiments of Controlling an Android Face

3.1 Capturing Feature Point Positions

The android used for the evaluation of the proposed method is an Actroid-SIT an-
droid from Kokoro Co. The android’s facial expression is controlled using 11 actua-
tors. For a detailed explanation about the android and the experimental setup, please
refer to [5].
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Fig. 1 Motion capture setup used for capturing feature point positions.

The android’s feature point positions are captured using a motion capture system
for gathering training data for training the forward kinematics ANN in Section 2.1
(see Fig. 1). On the face, 17 feature point markers are placed where significant fea-
ture point movement occurs [7]. For the training data of the forward kinematics
ANN, several actuator configurations such as independent, combination, and ran-
dom actuator displacements are recorded. Feature point positions are recorded while
keeping the actuator displacements stationary. Additional random actuator configu-
rations are captured for testing the generalization of the forward kinematics ANN.

Using the defined feature points shown in Fig. 1b, the forward kinematics ANN
for the full face inverse kinematics solver has 11 actuators as input and 51 (17 feature
points × 3 dimensions) feature point dimensions as output.

3.2 Grouping Feature Points and Actuators

To segment the feature points and actuators of the android, the method mentioned
in Section 2.3 is applied. The threshold value for δ j,i is manually selected through
experimentation. Fig. 2 shows the feature points that are affected by each actuator.
This figure indicates that the feature points and actuators can be segmented into two
parts: the upper face and the lips. The upper face segment has 4 actuator displace-
ments as input and 24 dimensional feature point positions as output, while the lips
segment has 7 actuator displacements as input and 27 dimensional feature point as
output.

3.3 Evaluation of the Forward Kinematics Model

Since the forward kinematics of the android’s face is modeled using an ANN, the
generalization of the model should be evaluated. The generalization measures the
accuracy of the trained ANN when the input data are data not used during training.
This tests if the training data is overfitted by the ANN.
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Fig. 2 Face segmentation of the android robot at threshold = 0.6.

Table 1 Average norm error of the forward kinematics artificial neural network.

Model Type Mean (mm) STD (mm)

Segmented Face 0.54 0.30
Full Face 1.15 0.62

The norm errors of the feature points are computed between the output feature
point positions of the forward kinematics ANN and actual feature points positions
captured by the motion capture system. This is done over 500 samples of random
actuator displacements and the results are averaged. In this experiment, the full face
forward kinematics ANN and the segmented face forward kinematics ANN are com-
pared. As shown in Table 1 the error is small compared to the average displacement
range of the feature points which is 13.32 mm. This suggests that the forward kine-
matics ANN has good generalization. However, it should be noted that the seg-
mented face has better generalization compared to the full face forward kinematics
ANN. The reason for this is that the complexity of modeling the forward kinematics
is decreased by reducing the dimensions for each segmented ANN.

3.4 Evaluation of the Inverse Kinematics

Next, we evaluate the inverse kinematics solvers using two cases; also, the full face
inverse kinematics solver and the segmented face inverse kinematics solver are com-
pared. First, the target feature point positions captured from random actuator dis-
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Fig. 3 Plot comparison of target (target FPs) and controlled feature points.

Fig. 4 Images (b)–(c) are controlled using target feature points from random actuator displacements
(a) and correspond to plots in Fig. 3a. Images (d)–(e) are controlled using independently moved
target feature points and correspond to plots in Fig. 3b.

placements is used as input for the inverse kinematics solver. The weights of each
feature point are set to 1 since such target feature points are assured to be feasible.
The resulting feature points are shown in Fig. 3a. Inspecting the plot, observe that
the target and the controlled feature point positions are close to each other indicating
that the inverse kinematics solver can estimate the actuator displacements.

For the second evaluation, independently displaced feature points are set as target
feature points for the inverse kinematics solver. This verifies if the weighting method
proposed in Eq. (2) solves the coupling problem. The weight of the moved feature
points are assigned as 1 and others as 0.01 to emphasize the moved feature points
during minimization of the error function in Eq. (2). The results in Fig. 3b show that
the controlled feature points are close to the target feature points. This signifies that
the inverse kinematics solver is able to handle the coupling of the feature points.
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Furthermore, we can observe from the plots in Fig. 3 that the segmented face in-
verse kinematics solver achieves better results than the full face inverse kinematics
solver. The difference can also be seen by visually inspecting the controlled android
face shown in Figs. 4b–e. This is because the full face inverse kinematics solver con-
siders all the feature points and actuator displacements using a single ANN which
makes modeling the forward kinematics and the minimization process more com-
plex. This proves that the proposed face segmentation in Section 2.3 increased the
precision of the inverse kinematics solver.

4 Conclusion

This paper presented a method to solve the inverse kinematics of androids with elas-
tic faces. We addressed the problem of solving the inverse kinematics of such an-
droid faces, that is, the complexity of modeling the deformable face and the coupling
of the feature points. Our proposed method employed an artificial neural network to
model the forward kinematics. Then, the inverse kinematics was solved by using an
iterative minimization technique, where a weighted squared error is introduced to
handle the coupling of the feature points. This solution to the coupling enables the
input of infeasible target feature point positions. Lastly, a face segmentation tech-
nique for grouping the feature points and the actuators was proposed to improve
the accuracy of the inverse kinematics solver. Experimental results showed that the
proposed inverse kinematics solver can control the android’s facial expression using
target feature points.
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Decomposing Envelopes of Rational
Hypersurfaces

Tino Schulz and Bert Jüttler

Abstract The envelope of a family of real, rational hypersurfaces is defined by
an implicit equation in the parameter space. This equation can be decomposed into
factors that are mapped to varieties of different dimension. The factorization can be
found using solely gcd computations and polynomial divisions. The decomposition
is used to derive some general results about envelopes, which also contribute to the
analysis of self-intersections.

Key words: Envelopes, singularities, self-intersection

1 Introduction

Envelopes of curves and surfaces are a classical topic of differential geometry and
kinematics [2, 7]. Due to their importance in various applications, computational
techniques for dealing with envelopes have attracted the interest of researchers
from several fields. These include robotics (collision detection and avoidance) and
gearing theory (design of matching pairs of gear teeth surfaces), geometrical op-
tics (caustics), NC-machining (offset curves for tool path generation) and Com-
puter Aided Geometric Design (sweeps, convolutions, Minkowski sums). See e.g.
[1, 5, 6, 8–10] and the references cited therein.

In this paper, we generalize the approach presented in [11], which is restricted to
the curve case, to envelopes of general families of hypersurfaces. More precisely, we
will focus on the fact that envelopes are essentially singularities of the mapping that
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describes the defining family of hypersurfaces. We will identify and compute the
parts of the envelope possessing different dimension, and we derive some general
results of envelopes.

2 Envelopes of Rational Hypersurfaces

We recall basic properties of envelopes and show how to identify their parts pos-
sessing different dimensions. Consider a rational mapping

x(t) =
(
x1(t)/x0(t), . . . ,xn(t)/x0(t)

)�
(1)

where the xi(t) (i = 0 . . .n) are real, n-variate polynomials. Here

t = (t1, . . . , tn)
� ∈ I1 ×·· ·× In = I ⊂ R

n (2)

with closed real intervals Ii (i = 1 . . .n). Moreover, we assume that x0 �= 0 for t ∈
I, gcd(x0, . . . ,xn) = 1 and that the image x(I) is not completely contained in any
hypersurface. Though we are mostly interested in real properties of x, it will be
necessary to consider the complex extension of x : Cn → C

n. When not explicitly
stated differently we will make use of a complex variable s ∈ C

n and examine x(s)
in the remainder of this paper.

If we pick any index j and use t j as a time-like parameter t j = τ , then the mapping
x defines a family of rational hypersurfaces. For each value of τ , the corresponding
hypersurface is obtained by varying the remaining n−1 parameters ti (i �= j).

The envelope of this family of hypersurfaces is defined by the property that it is
tangent to almost every member of the family. With respect to the mapping x, we
can characterize the envelope as the image of those points where the Jacobian J is
singular, i.e., envelopes are essentially singularities. Consequently, the envelope is
independent of the choice of the index j. A short computation confirms that

detJ =
1
x0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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︸ ︷︷ ︸
= h

(3)

where ∂i denotes the differentiation with respect to the i-th variable. The determinant
defining the polynomial h is obtained by adding (∂ix0)/x2

0 times the first column to
the (i+1)-th one for i = 1, . . . ,n, and then factoring out the common denominators.

Since the points s ∈C
n satisfying h(s) = 0 are mapped to the envelope, we call h

the envelope function. The zero set of h consists of one or several (possibly complex)
hypersurfaces, i.e. surfaces whose dimension is exactly n−1.
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3 Decomposing Envelopes

The envelope function possesses a factorization in C[s] into irreducible and rela-
tively prime polynomials h j, j = 1, . . . ,M with certain multiplicities. By a suitable
ordering we can guarantee that the first N factors (N ≤ M) do not divide x0, while
the remaining ones do. After eliminating all factors shared with x0 and reducing the
multiplicities of the remaining factors to 1 we obtain the reduced envelope function

ĥ(s) = ∏
j=1,...,N

h j(s). (4)

Instead of using factorization techniques, the reduced envelope function can be
found via suitable gcd computations, cf. [3]. Clearly, ĥ is squarefree and satisfies
(∇sĥ)(s) �= 0 almost everywhere, where ∇s denotes the gradient with respect to s.

The zero sets of the factors h j are mapped to components that might possess dif-
ferent dimensions. In order to identify those factors h j whose zero sets are mapped
to varieties of a certain dimension, we consider the restriction of the differential of
x at a point s to the tangent spaces of these zero sets. If the rank of this restriction
is equal to r for almost all points satisfying h j(s) = 0, then this algebraic variety is
mapped to a variety of dimension r.

The differential of x at s is the linear mapping defined by the Jacobian J(s). We
consider the augmented Jacobian J+(s) which is obtained by adding the row vector
(
(∇sĥ)(s)

)�
to J(s). The augmented Jacobian thus has n+1 rows and n columns.

The dimension of the kernel of J+ equals n− r, where r = rkJ+. For all points
s0 ∈ C

n satisfying (∇sĥ)(s0) �= 0, the hypersurface ĥ(s) = ĥ(s0) possesses a well-
defined tangent space at s0 and the kernel of J+(s0) is contained in it, due to the
additional row in the augmented Jacobian. Consequently, the augmented Jacobian
J+(s) – and hence also the Jacobian J(s) – maps this tangent space into a space of
dimension r−1.

Thus, for almost all points satisfying h j(s) = 0 for a particular index j, the di-
mension of the image of this hypersurface under x, i.e., of the associated component
of the envelope, is equal to rkJ+(s)− 1. This property is inherited by the matrix
V = (x0)

2J+, which has polynomial entries. The vanishing of all i-th order minors
of V (the determinants of all its (i× i)-submatrices) is a necessary and sufficient
condition for rkV ≤ i−1.

This observation leads us to formulate the following procedure for decomposing
ĥ into factors whose zero sets are mapped into components of different dimensions:

• Let gn+1 = ĥ. Further, let gi be the greatest common divisor of ĥ and of all i-th
order minors of V (i = 1 . . .n). Obviously, gi divides gi+1, and the zero set of gi

is mapped into components of maximum dimension i−2.
• Further, let fi = gi+2/gi+1, (i = 0 . . .n− 1). The zero set of fi is mapped into

components of dimension i. This gives the decomposition

ĥ(s) = ∏
i=0...n−1

fi(s). (5)
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The polynomial fn−1 is called the proper envelope function. A factor h j of ĥ is
called proper, if and only if it is also a factor of fn−1, otherwise it is said to be
improper.

We summarize these observations in

Theorem 1. The rational mapping x maps the zero set of the polynomial fi into a
component of the envelope. The smallest algebraic variety containing this compo-
nent is of dimension i.

Let Di be the image of the zero set of fi under x (i = 0, . . . ,n− 1). The sets Di

are images of real algebraic hypersurfaces under a real rational mapping and are of
complex dimension i. Their real dimension might be lower.

The proper part Dn−1 of the envelope is of particular interest. There exists a real,
squarefree polynomial q such that

Dn−1 ⊆V (q) = {p ∈ C
n : q(p) = 0}. (6)

If the degree of q is minimal, then q = 0 is the implicit equation of the envelope.
The following example illustrates these facts.

Example 1. Let n = 3 and consider

x(s, t,u) =
(
(s+ t)(st +1)(u−1)

1+ s2 ,
4u

1+u2 ,
s2(1+ t2)(1−u2)2

(1+ s2)(1+u2)

)�
. (7)

The reduced envelope function is ĥ = (t + I)(t − I)(1+ st)(u+ 1)(u− 1)s, where
I2 =−1. A short computation gives

f0 = u−1, f1 = (t + I)(t − I)(1+ st)(u+1) and f2 = s. (8)

By applying x to the zero sets of the polynomials fi we obtain that

• D0 is the point (0,2,0)�,
• D1 consists of an ellipse, a line, and two complex conjugate ellipses and
• D2 is a certain subset of the xy-plane.

Consequently, we get q(x,y,z) = z. The numerator of q◦x includes all those factors
of ĥ that are mapped on the proper part of the envelope. Note that f2 and two addi-
tional factors appear in q◦x with multiplicity 2. This will be investigated in the next
section.

The computation of the exact implicit equation of an envelope is rather expensive in
general. Although several methods exist [3], their complexity usually restricts their
practical application to planar or low-degree problems. Techniques for approximate
implicitization are a valuable alternative, see [4, 11].
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4 Using the Decomposition

In this section, we will use the factorization (5) to derive several properties of the
envelope. The first result generalizes Theorem 1 from [11].

Theorem 2. Let q be the implicit equation of the proper part of the envelope as
defined in (6). There exists a real, n-variate, polynomial λ̃ : Cn → C, such that

(q◦x) · (x0)
d = λ̃ · ( fn−1)

2, (9)

where d is the degree of q.

Proof. Since Dn−1 ⊂ V (q) consists of an n− 1-dimensional family of points x(s)
fulfilling fn−1(s) = 0, we can conclude that fn−1 is a factor of the numerator of q◦x.
Additionally we note that if fn−1(s) = 0, then

∇s (q◦x)(s) = J(s)�
(
∇xq◦x

)
(s) = 0, (10)

because J(s) spans the tangent space of the envelope. This implies that ( fn−1)
2 is a

factor of the numerator of q◦x since fn−1 is squarefree. �

Theorem 2 implies that ( fn−1)
2 is a factor of the composition q ◦ x. Now we study

the remaining factors of multiplicity 2:

Corollary 1. If λ̃ is not squarefree, then its factors of multiplicity greater than one
are also factors of ĥ.

Proof. If λ̃ is not squarefree then there exist polynomials ν,μ : Cn → C such that
λ̃ = νμ , where ν is squarefree and μ has only factors of multiplicity greater than
one. For every s ∈ C

n with μ(s) = 0 �= x0(s) we get that

(q◦x)(s) = ν(s)μ(s)
(

fn−1(s)
)2

= 0 (11)

which implies
∇s (q◦x)(s) = J(s)�

(
∇xq◦x

)
(s) = 0, (12)

since ∇sμ(s) = 0. The rightmost identity of equation (12) can only be fulfilled for a
n−1-dimensional family of points if J is singular. Thus every factor of the square-
free representation of μ must also be a factor of ĥ. �

Consequently, the factors of λ̃ with a multiplicity greater than one correspond to
those factors of ĥ that are “singularly” mapped on the proper part of the envelope.
Note that λ̃ might contain factors of x0 which we eliminate by setting

λ = λ̃/gcd(λ̃ ,x0). (13)
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Fig. 1 Example 2: A part of the envelope, which
is the offset of a parabola (dashed curve), and its
self-intersections.

5 Self-intersections and “Undercuts”

According to Theorem 2, q ◦ x = 0 holds also for every point on the zero set of λ .
The factors of λ which are not factors of fn−1 characterize additional intersections
of the family x with the proper part of the envelope:

Corollary 2. Let s′ ∈C
n such that fn−1(s′) �= 0 �= x0(s′). Assume there exists s ∈C

n

satisfying fn−1(s) = 0 and x(s) = x(s′). Then λ (s′) = 0.

Proof. We directly obtain 0 = (q ◦ x)(s) = (q ◦ x)(s′) = λ (s′) · fn−1(s′), which im-
plies λ (s′) = 0. �

Consequently, λ (s′) = 0 is a necessary condition for the point x(s′) to be located
on the proper part of the envelope, and therefore to create an “undercut”. This inter-
esting observation may be used for the trimming of offsets and for eliminating the
undercut of envelope surfaces. We explain this by an example.

Example 2. Consider the rational mapping

x(s, t,u) =
1

x0(s, t)

⎛

⎝

(
1+ s2

)(
u+ut2 +2t

)

2s(1+ t)(1− t)
s2 + t2 −u2 − s2t2 − s2u2 − t2u2 − s2t2u2 −1

⎞

⎠ , (14)

with x0 =
(
1+ s2

)(
1+ t2

)
. It describes as a sphere of radius 1 whose center is

moving along a parabola in the xz-plane, where u is the time-like parameter.
The proper envelope function is fn−1 = (1− s2 − t2 − s2t2)u+(1+ t)s2 and the

proper part of the envelope is the offset surface of distance 1 of the parabola, see
Fig. 1. It is a pipe surface with the implicit equation

q(x,y,z) = 16(x2 + y2)2(x2 + y2 + z2)−2z(3x2 −36y2 −20z2)

+8z(5x4 −4y4 + x2y2 +4x2z2 −4y2z2)+28x2 +65y2 +9z2

−47x4 −56y4 +16z4 −76x2y2 −24y2z2 −40z−25,

(15)
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Fig. 2 Example 2: The zero sets of fn−1 (shows as surface) and λ (shown as point cloud) in the
parameter space (left) are mapped onto the envelope D2 in the image space (right). In particular,
the zero set of λ s mapped to the undercut region.

and it possesses a certain region of self intersection. If one thinks of x as describing
a moving cutting tool which moves along some path, then the part of the envelope
that is bounded by its singularities would be cut away. Thus, in situations like in
this example, this part is referred to as undercut. In several applications (e.g. offset
trimming), it is an important task to determine it.

Let λ (s, t,u) be defined as in section 4, i.e. take λ̃ = (q ◦ x) · (x0)
6/( f 2

n−1) and
remove common factors with x0. It is a rather complicated polynomial of tri-degree
(6,6,4) which describes a surface with two sheets that are almost parallel. Figure 2
shows the zero sets of λ and fn−1 in parameter space (which are visualized by a
point cloud and by parameter lines, respectively) and their images under x. The
image of λ = 0 is the undercut region, and the curves defined by λ = fn−1 = 0 are
mapped to the self-intersection curves of the envelope.

The additional components which are defined by λ also appear in the problem of
sorting assembly modes in robot kinematics. In that context they are referred to as
characteristic (hyper-)surfaces, see [12].

6 Conclusion

We have shown how to decompose the defining equations of an envelope into poly-
nomial factors that are mapped onto varieties of different dimension. The proposed
method is algorithmically simple and constructs an explicit decomposition only us-
ing gcd computations and polynomial division.

We then deduced some general properties of envelopes, generalizing existing
results for curves. In particular, we addressed some aspects which are closely related
to the analysis of self-intersections and “undercuts”.

Future work could be devoted to a more detailed investigation on the properties
of the factorization described in Theorem 2, to its application in the determination
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of undercut regions, and to the use of approximate implicitization techniques for
envelope surfaces.

Acknowledgements The first author was supported by the Marie-Curie Network SAGA (FP7, GA
no. 214584), and by the Doctoral Program “Computational Mathematics” (W1214) at Johannes
Kepler University, Linz. The authors thank the anonymous referees for their useful comments, in
particular for their contributions that led to a correct version of Theorem 1.

References

1. Abdel-Malek, K., Yang, J., Blackmore, D., Joy, K.: Swept volumes: fundation, perspectives,
and applications. Int. J. Shape Model. 12(1), 87–127 (2006)

2. Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications (1990)
3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, New York

(2007)
4. Dokken, T., Thomassen, J.: Overview of approximate implicitization. In: Topics in Algebraic

Geometry and Geometric Modeling, vol. 334, pp. 169–184. American Mathematical Society
(2003)

5. Flaquer, J., Garate, G., Pargada, M.: Envelopes of moving quadric surfaces. Comput. Aided
Geom. Design 9(4), 299–312 (1992)

6. Kim, Y., Varadhan, G., Lin, M., Manocha, D.: Fast swept volume approximation of complex
polyhedral models. Comput. Aided Des. 36(11), 1013–1027 (2004)

7. Kreyszig, E.: Differential Geometry. Dover (1991)
8. Peternell, M., Pottmann, H., Steiner, T., Zhao, H.: Swept volumes. Comput. Aided Des. Appl.

2, 599–608 (2005)
9. Pottmann, H., Peternell, M.: Envelopes-computational theory and applications. In: Spring

Conf. on Computer Graphics, pp. 3–23. Comenius Univ., Bratislava (2000)
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Influence of Pulley Kinematics on Cable-Driven
Parallel Robots

Andreas Pott

Abstract In this paper the modeling of a pulley mechanism for cable-driven par-
allel robots is presented. In many works, the proximal anchor points of the robots
are simplified to be ideal points. Real cables achieve reasonable life time only when
a minimum bending radius is exceeded. Therefore, pulley mechanisms have to be
used which in turn require the extension of the kinematic modeling. In this paper
a kinematic model for a pulley mechanism of the winches is revisited. Then we
derive a corrected structure equation and compare the different results from the ex-
tended model with the estimation from the simplified standard model with respect
to kinematics transformation, workspace, and force distribution.

Key words: Cable-driven parallel robot, pulley mechanism, kinematics, statics,
stiffness, workspace

1 Introduction

A cable-driven parallel robot is a special type of parallel kinematic machine where
the rigid struts are replaced by light-weight cables. Therefore, the inertia of the
robot is largely reduced allowing for application in large-scale [2], ultra-fast [5], and
heavy duty applications [1]. Due to their advantages cable robots attracted increas-
ing attention during the last year. Although some fundamental issues of cable robots
are still open, researchers have started to address practical issues related to con-
struction and control of prototypes. The results presented in this paper were driven
by the development of the cable robot IPAnema [7], which targets at application in
large-scale handling and assembly.

Cables are very flexible and versatile construction elements that are used in appli-
cations such as bridges, cable-cars, and elevators. Nevertheless, there are important
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Fig. 1 Geometry and kinematics of a cable-driven parallel robot: (a) simplified model, (b,c) defini-
tion of coordinate frame KA and variables for pulley kinematics.

design rules when using cables that have to be taken into account such as minimum
feasible bending radius. Therefore, one has to integrate elements such as pulleys to
allow for acceptable durability as well as safety.

Only few authors have addressed the influence of guiding pulleys on the kine-
matics of cable-driven parallel robots. Bruckmann [3] derived an inverse kinematic
algorithm to cope with pulleys. The influence of pulleys was also taken into account
for the dynamic simulation of cable robots [6].

This paper aims at studying the influence of a pulley in the winch on the proper-
ties of a cable robot. Therefore, a kinematic modeling is presented and the equations
for inverse kinematics and statics are derived taking into account the effect of a pul-
ley as guiding element in the winches of the robot. The rest of the paper is organized
as follows. In Sec. 2 the basic equations for the modeling of pulley mechanisms are
presented while in Sec. 3 the method to determine the workspace properties is briefly
explained. The results from the comparison are discussed in Sec. 4 where the paper
closes with the conclusions.

2 Kinematics for Pulley Mechanism

For better reference, the kinematic foundation of cable robots are briefly reviewed.
We refer to the well-known approach as standard model and we extend it by the
guiding pulley in this section. Fig. 1a shows the kinematic structure of a general
spatial cable robot, where the vectors ai denote the proximal anchor points on the
robot base, the vectors bi are the relative positions of the distal anchor points on the
movable platform, and li denote the vector of the cables. The length of the cables is
abbreviated by li = ‖li‖2. Applying a vector loop, the closure-constraint reads

ai − r−R bi − li = 0 for i = 1, . . . ,m , (1)
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Fig. 2 Kinematics of one cable with a guiding pulley.

where the vector r is the Cartesian position of the platform and the rotation matrix
R represents the orientation of the platform.

The parameters and coordinate frame used to exactly define the geometry of a
guiding pulley are depicted in Fig. 1b. In the rest of this section we omit the index
i for the reference points, frames, angles, and lengths for the sake of clarity. In this
paper we propose to express the pulley kinematics based on a local coordinate frame
KA which largely simplifies the kinematic equation and represents a natural concept
of arranging the winches in space. The pulley kinematics realizes a two degree-of-
freedom motion. The first revolute joint is aligned with the z-axes of frame KA. The
second joint is the pulley itself and its joint axis is initially aligned with the y-axis of
frame KA. The center of second rotation is initially located in point M. The distance
between the two screw joint axis is the effective radius rp and it is assumed that the
two joint axis are perpendicular to each other.

The fixed point A in the origin of the coordinate frame KA is the characteristic
point of the pulley kinematics and considered to be a design parameter a. The cable
hits the pulley at point A and wraps around the pulley with an effective radius rp, i.e.
the radius that applies to the neutral fibre in the center of the cable. In the following
considerations we assume that rp is the effective radius, i.e. the radius resulting from
both the actual radius of the pulley and the radius of the cable. Note that this holds
true only if the geometric profile of the pulley and the radius of the cable perfectly
match. The cable leaves the pulley at point C and the angle between point A and
C is denoted by βu. In Fig. 1c one can see the rotated pulley, where the rotation
angle is denoted by γ and is taken in positive direction around the z-axis of frame
KA. The definition of the angles βu and γ with respect to KA is crucial for both the
formulation of the kinematic codes and the consideration of collisions between the
cable and the pulley mechanism. For γ = 0 the pulley is located in the xz-plane of
frame KA. Therefore, in this position βu is measured in positive direction around
the y-axis of KA. The orientation of KA w.r.t. to K0 is expressed by the rotation
matrix RA and assumed to be given.
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The kinematic equations are now derived in KA as follows. From Fig. 2, the
corrected cable length taking into account the pulley radius becomes

l = βurp + l f , (2)

where βu is the angle around the pulley, rp is the pulley radius, and l f is the free
cable length from point C to point B. Considering the two right-angled triangles we
receive

(bxy − rp)
2 +b2

z = MB
2
= l2

f + r2
p, (3)

where bxy =
√

b2
x +b2

y and bz are the coordinates of the point B with respect to

frame KA in cylinder coordinates. To solve the inverse kinematics we need the angle
βu which is computed as follows: Considering the tetragon CMDB, we find two
angles to be right-angles. Therefore, we conclude that the enclosed angle β1 + β2

at point B equals the sought complementary angle βu at point M. Using elementary
trigonometric functions yields

βu = β1 +β2 = arccos
l f√

(bxy − rp)2 +b2
z

+ arccos
bz√

(bxy − rp)2 +b2
z

. (4)

Thus, we receive a closed-form solution for the cable length l. Further reduction in
the computational costs can be achieved using the addition theorem for arccos. It
is worthwhile to mention that one can set up similar formulas using either arctan
or arcsin where both formulations require a distinction of cases when bz changes
its sign. Nevertheless, using arctan and the respective addition theorem gives a very
compact expression which is only valid for positive bz. The advantage of the pre-
sented formula is that one can get the symbolic derivative for the first-order kine-
matics without additional efforts.

A unique solution for the rotation of the first joint can easily be obtained using
the four-quadrant arcus tangens γ = arctan2(by,bx)). To calculate the normal vector
u along the cable in K0 we rotate a negative unit vector −ez along the z-axis with
the following transformation matrices

u =−RA Rz(γ) Ry(βu)ez, (5)

where Ry(βu) and Rz(γ) are the elementary rotation matrix around the y- and z-axis,
respectively.

Considering the force and torque equilibrium for the platform leads to the well-
known structure equations of the standard model (see e.g. [9])

AT f+w = 0, (6)

where AT is the pose-dependent structure matrix, f is the vector of the positive cable
forces, and w is the applied wrench at the platform. When considering a pulley
model for the robot, the type of the equation is maintained where we have to use
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a different unit vector for the direction of the cables as given by Eq. (5). Thus, the
columns of the structure matrix become [AT

p]i = [uT
i ,(bi × ui)

T].

3 Workspace

To compare the results from the workspace calculation with and without pulleys
we use a triangulation of the workspace’s hull [7]. Although the triangulation lacks
the verified nature of interval computations [4] it can be computed with a very high
accuracy at moderate computational times of some seconds. Here we use a method
for the determination of the border of the workspace based on discrete investigation
of single points and on a line search. In this approach the workspace is represented
by triangulation that allows for simple but accurate determination of the volume
and surface. Let (va,vb,vc)i be the vertices of the triangles of the border of the
workspace W and m̂ be the projection center of the workspace. Note, m̂ is a param-
eter in the algorithm for workspace determination describing the point where the
projection of a unit sphere is started. It is straightforward to calculate the surface
S(W ) and the volume V (W ) of the workspace as follows

S(W ) =
1
2

T

∑‖(va −vb)× (va −vc)‖2 (7)

V (W ) =
1
6

T

∑((va − m̂)× (vb − m̂)) . (vc − m̂) (8)

4 Computational Results

The geometrical parameters of the robot used for this study are given in Table 1. The
parameters represent the scale of the archetype IPAnema 1, but no dot exactly match
the values of the prototype. For this robot, the diameter of the cable is rC = 0.002 m

Table 1 Geometrical parameters of the investigated robot given as platform vectors b and base
vectors a.

cable i base vector ai [m] platform vector bi [m]

1 [−2.0,1.5,2.0]T [−0.06,0.06,0.0]T

2 [2.0,1.5,2.0]T [0.06,0.06,0.0]T

3 [2.0,−1.5,2.0]T [0.06,−0.06,0.0]T

4 [−2.0,−1.5,2.0]T [−0.06,−0.06,0.0]T

5 [−2.0,1.5,0.0]T [−0.06,0.06,0.0]T

6 [2.0,1.5,0.0]T [0.06,0.06,0.0]T

7 [2.0,−1.5,0.0]T [0.06,−0.06,0.0]T

8 [−2.0,−1.5,0.0]T [−0.06,−0.06,0.0]T
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Fig. 3 Difference between the cable length computed from the standard kinematic model and the
pulley model for different radii rp of the pulley in cable 1. The left diagram shows the absolute
difference where the right diagram shows the ratio between difference and radius of the pulley.

Fig. 4 Difference between the standard kinematic model and the pulley model for the forces
f1. The left diagram shows the absolute cable forces in cable 1 for a pulley radius of rp =
{0;0.01;0.025;0.05;0.1} where the right diagram shows the difference between the standard
model and different radii of the pulley.

and the effective radius of the pulleys is rp = 0.05 m. All local frames KA,i of the
proximal anchor points Ai and thus the orientation of the winches were parallel
aligned with the world frame K0.

The difference between the standard model and the pulley model for inverse kine-
matics is depicted in Fig. 3, where the diagrams show the difference between both
inverse kinematic codes along a quadratic trajectory with 2 m edge length for dif-
ferent radii rp of the pulley. One can easily see that the cable length computed from
the extended formula is always longer than the standard model. This is clear since
the distance around the pulley must be longer. In the right diagram one can see the
relation between the radius of the pulley and the differences between the kinematic
models. For the considered interval of pulley radii rp ∈ [0.1;0.01] m the ratio is al-
most constant. Thus, the dependency between the additional length of the cable and
the radius of the pulley seems to be linear in this range.

We analyze the difference in the force distribution that arises from the static
model taking into account the guiding pulleys. To calculate the force distribution,
the following closed-form formula is used [8]

f = fm −A+T(w+ATfm), (9)
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Table 2 Comparison of the workspace volume and surface for different radius of the pulley rp.

pulley radius rp [m] volume V [m3] relative volume [%] surface S [m2] relative surface [%]

0.0 5.81 100.0 17.92 100.0
0.001 5.81 99.9 17.87 99.7
0.01 5.80 99.8 17.89 99.8
0.025 5.79 99.7 17.87 99.7
0.05 5.77 99.3 17.75 99.0
0.15 5.68 97.8 17.50 97.6
0.25 5.57 95.8 17.17 95.8
0.35 5.42 93.2 16.76 93.5
0.40 5.32 91.6 16.49 92.0

where fm = 1
2 (fmin + fmax) is the mean feasible force and w is the applied wrench.

For the example we used fmin = 1 N, fmax = 10 N, and an external wrench w = 0.
Note that as long as no external wrench is applied only the ratio between fmin and
fmax influences the results of workspace and force distribution. Fig. 4 shows the
comparison for the forces f1 in cable 1 when moving along a trajectory for different
radii rp of the pulley. The differences are again in the range of some percentage and
the magnitude of the difference seems to be linear for typical sizes of the pulley. For
the practical use in force control the influence seems to be less important since the
error in the cable forces is the scale of the measurement error caused from typical
force sensors.

In order to study the influence of pulleys on the workspace we compute the hull
of the workspace and use the performance criteria surface and volume to compare
the results for different radii of the pulleys. Force limits and external wrench were
chosen as given above. To check for existence of the workspace for a pose, Eq. (9)
was evaluated and the determined force was compared to the force limits as given
in the previous section. The parameters of the workspace algorithms were set as
follows: The iterations depth for the recursive refinement of the hill were chosen to
be six leading to 16386 computed vertices and 32768 triangles. The accuracy for the
line search was ε = 10−4 m such that the first four digits of the performance indices
shall be meaningful. The computational results from the study are given in Table 2.
In this evaluation we used even larger radii for the pulleys than before. The relative
error of the workspace volume is less than 2% for realistic values of the pulley’s
radius.

5 Conclusions

In this paper we presented the modeling of a cable-driven parallel robot taking into
account the effects of pulleys in the robot’s winches. Using an extended modeling
for kinematics and statics the differences of the workspace between the simplified
and extended model where studied. For the robot at hand it turns out that the differ-
ence of the volume and surface of the workspace is in the range of 1% for typical
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pulleys, i.e. with a radius of 2.5% of the robots shortest edge length. Considering
other unconsidered uncertainties the influence on the workspace may be neglected
in many cases. The comparison of the inverse kinematic codes and thus the expected
accuracy of the robot unveils more important differences. The deviations between
standard and pulley model are found to be almost linear in the considered range for
the pulley radius. The shortening of the cables caused by the pulleys may signifi-
cantly increase the inner tension in the robot and thus disturb the force equilibrium
of the mobile platform.

Our future research aims at extending the study of pulleys to stiffness, interfer-
ence, and singularities. Furthermore, we are working towards deriving a real-time
capable kinematic code for the forward kinematics of the pulley model. The pre-
sented model may serve as a basis especially because it allows for a simpler Jaco-
bian. Anyway, more sophisticated methods are needed to meet the required real-time
constraints for use in the controller.
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Fast Approximate Implicitization of Envelope
Curves Using Chebyshev Polynomials

Oliver J.D. Barrowclough, Bert Jüttler and Tino Schulz

Abstract Consider a rational family of planar rational curves in a certain region
of interest. We are interested in finding an approximation to the implicit represen-
tation of the envelope. Since exact implicitization methods tend to be very costly,
we employ an adaptation of approximate implicitization to envelope computation.
Moreover, by utilizing an orthogonal basis in the construction process, the compu-
tational times can be shortened and the numerical condition improved. We provide
an example to illustrate the performance of our approach.

Key words: Implicitization, approximation, envelopes, Chebyshev polynomials

1 Introduction

In geometric applications there are two basic standards for representing curves,
namely the parametric and the implicit descriptions. Both descriptions feature spe-
cific advantages and disadvantages that complement each other. For instance, para-
metric curves allow the simple generation of point samples, while implicit forms
support the decision of point location queries. In many applications, such as inter-
section computations, it is an advantage if both representations are available, and

Oliver J.D. Barrowclough
SINTEF ICT, Applied Mathematics, P.O. Box 124,Blindern, 0314 Oslo, Norway,
e-mail: oliver.barrowclough@sintef.no

Bert Jüttler
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 26,
© Springer Science+Business Media Dordrecht 2012

205

mailto:oliver.barrowclough@sintef.no
mailto:bert.juettler@jku.at
mailto:tino.schulz@inria.fr
http://dx.doi.org/10.1007/978-94-007-4620-6_26


206 O.J.D. Barrowclough et al.

conversion algorithms are therefore of substantial practical interest. The conversion
processes are called parametrization and implicitization, respectively.

A rational curve may always be implicitized, whereas the opposite is not true
[10]. Several techniques for exact implicitization exist, e.g. Gröbner bases, mov-
ing curves/surfaces, or methods based on resultants, (see e.g. [5]). However, due to
their computational complexity, their practical use is often restricted to low-degree
curves. Moreover, the variety obtained by exact implicitization may contain unex-
pected branches and self-intersections.

A valid alternative to exact methods is approximate implicitization; cf. [3, 4].
Instead of the exact variety, a low degree approximation is used to represent the
shape of the geometric object in a certain region of interest. This technique can
be implemented using floating point numbers and thus it offers faster computation,
while having very high convergence rates. As shown in [2], the speed-up may be
increased even further by using an orthogonal basis in the construction process.

These features make approximate implicitization a promising candidate for an ef-
ficient computation of envelope curves. Envelopes are used in different contexts in
mathematics and applications, ranging from gearing theory and geometrical optics
to NC-machining and Computer-Aided Design. In robotics, envelopes are ubiqui-
tous, appearing for instance as singularities or boundaries. The theory of envelopes
is covered by the classical literature, and is continuously extended, due to their prac-
tical importance [1, 6–8].

Approximate implicitization has recently been adapted to the computation of
envelopes in [9]. As shown there, the idea is feasible and most properties of the
original method can be preserved, such as the possibility of obtaining the exact
solution. However, the convergence behaviour for higher degrees has not previously
been studied and the computations are still fairly expensive, needing integrals of
products of high degree polynomials.

The present paper uses the latest results from approximate implicitization to ob-
tain a fast and efficient algorithm for approximating the envelope. This will make
the use of implicit methods more attractive and moreover allow us to study the con-
vergence behaviour experimentally. The paper is organized as follows: In Section
two we will recall the basics of envelopes of planar curves. After that, the third sec-
tion shows how approximate implicitization can be used to compute envelopes and
derives a fast and efficient algorithm. The performance of our approach is illustrated
with an example and discussion in Section four.

2 Envelopes of Rational Families of Curves

Consider the family of rational curves

p(s, t) =
(
x(s, t)/w(s, t),y(s, t)/w(s, t)

)T
, (s, t) ∈ I × J (1)
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where x, y and w are bivariate polynomials of bidegree (n1,n2) with gcd(x,y,w) = 1
and I,J ⊂ R are closed intervals. We assume that w(s, t) �= 0 for all (s, t) ∈ I × J.
Either s or t can be thought of as the time-like parameters, and the remaining pa-
rameter t or s is then used to parameterize the curves forming the family.

The envelope of the mapping p consists of those points where its Jacobian J(s, t)
becomes singular. We observe that detJ(s, t) = h(s, t)/w(s, t)3, where

h(s, t) = det

⎛

⎝
x(s, t) ∂sx(s, t) ∂t x(s, t)
y(s, t) ∂sy(s, t) ∂t y(s, t)
w(s, t) ∂sw(s, t) ∂tw(s, t)

⎞

⎠ . (2)

The function h is called the envelope function, since its zero set determines those
points in the parameter domain which are mapped to the envelope. Unfortunately,
certain parts of the zero set of h may degenerate under the mapping p.

The earlier paper [9] describes how these improper factors can be removed from
h. This can be done via some gcd computation and gives the reduced envelope func-
tion h̃. The image of the zero set of h̃ under p is called proper part of the envelope.

Let q : C2 → C be the polynomial which defines the implicit equation of the
proper part of the envelope of p. According to Theorem 1 of [9], there exists a real
polynomial λ (s, t) such that

(q◦p)(s, t)w(s, t)d = λ (s, t)h̃(s, t)2. (3)

Equation (3) is linear with respect to the coefficients of q and λ . Let

q(x) = cT
q β (x) and λ (s, t) = cT

λ α(s, t), (4)

where β (x) = (βk(x))M
k=1 and α(s, t) = (αi(s)α j(t))

(k1,k2)
(i, j)=(0,0) are bases of polyno-

mials in x and s, t of total degree d and bidegree (k1,k2) respectively, where M =(d+2
2

)
. The coefficients of q and λ with respect to these bases form a vector

c = (cT
q ,c

T
λ )

T . We formulate the problem of approximate envelope implicitization:
Find the coefficients c which solve the weighted least squares minimization problem

min
‖c‖2=1

∫

I×J
ω(s, t)

(
(q◦p)(s, t)w(s, t)d −λ (s, t)h(s, t)2

)2
d(s, t), (5)

for a nonnegative weight function ω , and chosen degrees d, k1 and k2.
It is important to mention that we use h instead of the exact h̃, since our algo-

rithm uses floating point computations which do not support exact gcd computa-
tions. While an exact solution of this simplified problem might produce additional
branches, the effect on our low degree approximation will be negligible.

The result of the minimization (5) depends both on the choice of bases of q and λ
and on the weight function ω . The standard choice of a triangular Bernstein basis for
q and a tensor-product Bernstein basis for λ has been used for the approximations
in this paper and also in [9]. However, as a major difference to the approach in
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[9] where ω ≡ 1, here we use a tensor product Chebyshev weight function on the
domain I × J, for the reasons described in the next section.

3 Fast Approximate Implicitization of Envelope Curves

The direct method for finding an approximate implicitization of envelope curves by
evaluating high degree integrals is simple, but computationally costly. In addition,
the resulting symmetric positive semi-definite matrix can be rather ill conditioned,
leading to inaccurate null space computations when using floating point arithmetic.
This is similar to the case of approximate implicitization of parametric curves pre-
sented in [2]. In that paper, an approach using orthogonal polynomials is presented
which greatly improves both the conditioning and the computation time of the prob-
lem. In this section we give the details of how to implement the approach to approx-
imate implicitization of envelope curves using Chebyshev polynomials.

3.1 Approximate Implicitization Using Chebyshev Polynomials

As described previously, the method works by minimization of the integral (5). Such
a problem is aided by expressing the function in a basis orthonormal with respect
to the chosen weight function ω . The objective function is expressible in any tensor
product polynomial basis of bidegree

(L1,L2) = (max(dn1,k1 +2degs(h)),max(dn2,k2 +2degt(h))).

Thus, choosing an orthonormal basis (e.g., tensor-product Chebyshev polynomials),
T(s, t) = (Ti(s)Tj(t))

L1,L2
i=0, j=0 written in vector form and using (4), we can write

(q◦p)(s, t)w(s, t)d −λ (s, t)h(s, t)2 = T(s, t)T (Dqcq +Dλ cλ ), (6)

where the matrices Dq and Dλ contain coefficients in T. Now, defining a matrix

D = (Dq,Dλ ), (7)

we claim that the singular vector corresponding to the smallest singular value of D
solves the minimization problem (5). To see this, we prove the following Theorem:

Theorem 1. Let the matrix D be defined as in (7). Then we have

min
‖c‖2=1

∫

I×J
ω((q◦p)wd −λh2)2 = min

‖c‖2=1
‖Dc‖2

2.

Proof. By (6) and (7) we have
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∫

I×J
ω((q◦p)wd −λh2)2 =

∫

I×J
ω(cT DT T)(TT Dc) =

cT DT
(∫

I×J
ωTTT

)
Dc = cT DT Dc = ‖Dc‖2

2. 	


Since we have min‖c‖2=1 ‖Dc‖2 = σmin, where σmin is the smallest singular value
of D, the corresponding right singular vector solves the problem. The problem is,
however, better conditioned and can be implemented in a more efficient way than
the weak approach [2].

3.2 Implementation of the Chebyshev Method

The choice of using Chebyshev polynomials for the orthogonal basis is made mainly
for computational reasons; the coefficients can be generated via a fast algorithm.
This utilizes an existing method outlined for univariate polynomials in [11], which
exploits the discrete orthogonality of Chebyshev polynomials at Chebyshev points.

Here we briefly describe the algorithm for efficient generation of tensor-product
Chebyshev coefficients. The univariate Chebyshev points of degree L in the interval
[0,1] are given by:

t j,L = (1− cos( jπ/L))/2, j = 0, . . . ,L.

The Chebyshev coefficients of any tensor product polynomial f of bidegree no
higher than (L1,L2) can then be generated by the following procedure [11]:

• Construct a matrix f = ( f (ti,L1 , t j,L2))
L1,L2
i=0, j=0 of values of the function f at the

tensor-product Chebyshev points,
• Extend f to its even counterpart f̂:

f̂i, j = fi, j, i = 0, . . . ,L1, j = 0, . . . ,L2,

f̂L1+i, j = fL1−i, j, i = 1, . . . ,L1 −1, j = 0, . . . ,L2,

f̂i,L2+ j = fL1−i, j, i = 0, . . . ,L1, j = 1, . . . ,L2 −1,

f̂L1+i,L2+ j = fL1−i,L2− j, i = 1, . . . ,L1 −1, j = 1, . . . ,L2 −1.

• perform a bivariate fast Fourier transform (FFT) to get f̃ = FFT(f̂),
• extract the first (L1 +1,L2 +1) coefficients of f̃ to get g = ( f̃i, j)

L1,L2
i, j=0. The matrix

g then contains the tensor product Chebyshev coefficients of f .

The algorithm for approximate implicitization proceeds by applying the above
procedure to the functions {wd(βk ◦ p)}M

k=1 and {−h2αl}L1L2
l=1 , and arranging the

coefficients in matrices Dq and Dλ according to the definition (7). The efficiency
of the method is due to it being based on point sampling and FFT. Moreover, the
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Fig. 1 Approximations of the envelope of a family of lines for degrees d = 1, . . . ,6.

sampling can be done entirely in parallel making the method highly suitable for
implementation on heterogeneous architectures.

4 Numerical Results

In this section we present an example of the method along with both computation
times and estimations for the convergence rates. In order to generate reliable data,
we have chosen a degree six family of lines which has a rational envelope. We can
thereby use a parametrization of the envelope to compute the algebraic error of the
approximations. The family of lines is pictured in Figure 1, along with the envelope
approximations up to the exact implicitization at degree six. For these approxima-
tions we take k1 = max(0,dn1 −2degs(h)) and k2 = max(0,dn2 −2degt(h)), since
this is also the minimum needed for the exact solution.

It can be seen that with increased degree the approximations converge quickly.
It is possible that with higher degrees, extra branches may appear in the region of
interest. For example, the approximation of degree five has an extra branch close
to the envelope curve. However, such artifacts could be avoided using a suitable
collection of low-degree approximations (see [9] for an adaptive algorithm).

In Table 1 we show the computation times for the above approximations. The
algorithm has been implemented in the Python programming language using the
NumPy library for the built in FFT and singular value decomposition (SVD) algo-
rithms. The results are computed on a 3.4Ghz Intel Core i7-2600 with 8GB RAM.



Fast Envelope Implicitization 211

Table 1 Computation times and number of matrix coefficients for the examples in Figure 1.

Degree d 1 2 3 4 5 6
# coefficients 196 975 2964 7000 14136 25641
Time (s) 0.02 0.04 0.11 0.23 0.45 0.80

Table 2 Maximum algebraic error εd,i, of the approximations of the example in Figure 1, together
with approximate convergence rates rd,i.

Implicit Degree d
1 2 3 4

εd,i rd,i εd,i rd,i εd,i rd,i εd,i ri

Diameter 2−i

1 1.69e-1 – 6.23e-3 – 1.16e-4 – 3.96e-6 –
1/2 1.67e-1 0.02 3.46e-4 4.170 2.62e-6 5.467 2.66e-10 13.86
1/4 3.04e-2 2.458 1.52e-5 4.511 1.50e-9 10.77 1.34e-14 14.27
1/8 6.52e-3 2.223 5.02e-7 4.915 2.87e-12 9.028 n/a n/a
1/16 1.41e-3 2.213 1.58e-8 4.989 5.63e-15 8.993 n/a n/a

Instead of increasing the polynomial degree d, one may also improve the qual-
ity of the approximations by subdivision; the envelope is then approximated by a
piecewise implicit representation. It is thus of interest to see how the approximation
improves as the region Ω = I × J is reduced.

Consider a region Ωi = Ii × Ji, of diameter 2−i centered on a point (s0, t0) in

H = {(s, t) ∈ Ω : h(s, t) = 0}.

For an approximation qd,i of degree d to over the region Ωi, we define the maximum
algebraic error to be

εd,i = max
(s,t)∈H ∩Ωi

|qd,i(p(s, t))|,

where the coefficients cqd,i of qd,i have been renormalized to ‖cqd,i‖= 1, in order
to give meaningful results. Given two approximations qd,i, and qd,i+1, on sub-
sequent subdivision regions Ωi and Ωi+1, we define the convergence rate to be
rd,i = log2(εd,i/εd,i+1). Table 2 shows values of εd,i and rd,i for four successive
subdivisions of the example in Figure 1 and degrees d up to four. Values of εd,i

below machine precision have been omitted.
As can be seen from Table 2, the error εd,i decreases both with increased degree

and increased levels of subdivision. The values of rd,i, suggest that the convergence
rates for d = 1,2,3 and 4 are approximately two, five, nine and 14 respectively.
This corresponds directly to the number of degrees of freedom in approximating
with lines, conics, cubics and quartics and is hence as high a convergence as we can
expect, supporting our choices for the degrees (k1,k2). The results in Table 2 are
typical of rational examples we have tested.

It should be noted that in general, envelope curves are not rational. Thus, this ex-
ample, whilst showing that high convergence rates are attainable, cannot conclude
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that this is always the case. However, from studying additional examples, our expe-
rience shows that convergence behaviour is good in the general setting.

5 Conclusion

We have presented a new implementation of approximate implicitization of enve-
lope curves using Chebyshev polynomials. We have detailed the computation times
and convergence behaviour of a specific example, thereby demonstrating the feasi-
bility of our approach. This paper also motivates theoretical work on convergence
rates as a direction for future research.
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Construction of Overconstrained Linkages by
Factorization of Rational Motions

Gábor Hegedüs, Josef Schicho and Hans-Peter Schröcker

Abstract We prove that for any sufficiently generic rational curve C of degree n in
the group of Euclidean displacements, there exists an overconstrained spatial link-
age with revolute joints whose linkage graph is the 1-skeleton of the n-dimensional
hypercube such that the constrained motion of one of the links is exactly C.
The synthesizing algorithm is based on the factorization of polynomials over the
dual quaternions. The linkage contains n! open nR chains, so that low degree ex-
amples include Bennett’s mechanisms and are related to overconstrained 5R and 6R
chains.

Key words: Dual quaternions, rational motion, factorization, overconstrained mech-
anism, Bennett linkage, 6R chain

1 Introduction

The research on this paper started with an attempt to understand the geometry of
Bennett linkages from the point of view of dual quaternions. The group of Euclidean
displacements can be embedded as an open subset of the Study quadric in the pro-
jectivization of the dual quaternions, regarded as a real vector space of dimension 8.
Rotation subgroups and composition of those get then an algebraic meaning, which
was exploited in [3] to devise an algorithm for the synthesis of a Bennett linkage
such that the coupler assumes three pre-assigned positions in workspace. The key
observation there was that the coupler curve is the intersection of a unique 2-plane
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with the Study quadric. But one can also translate the synthesis problem entirely
into the language of dual quaternions. Then the problem becomes equivalent to the
factorization of a left quadratic polynomial into two linear ones.

Factorizations of left polynomials over the quaternions have been studied by in
[8] by Niven, who was interested in the number of such factorizations. Gordon and
Motzkin proved in [4] that the number of roots is either infinite or at most equal
to the degree of the left polynomial. ([4] studies more generally polynomials over
central simple algebras over commutative fields.) The more recent paper [7] gives
an explicit solution formula for quadratic polynomials. It is not difficult to extend
these results to dual quaternions.

Once the relation between the closure conditions of closed 4R linkages and the
factorizations of left quadratic polynomials became clear, it also became clear that
this relation holds for sufficiently generic left polynomials of arbitrary degree. This
opens various possibilities, and we present some of them in this paper. Our gen-
eral theory is capable of explaining some recent results on the synthesis of Bennett
mechanisms and their limit cases. Moreover, it gives rise to a simple construction of
overconstrained 5R and 6R linkages. To the best of our knowledge, many new types
can be found among the latter class.

We continue this paper by recalling some well-known facts about dual quater-
nions and Euclidean displacements in Section 2. In Section 3 we present a factor-
ization algorithm for generic polynomial parametrizations of curves on the Study
quadric. Some of its remarkable implications are then explained at hand of exam-
ples in Section 4.

2 Preliminaries

In this section, we give a well-known and classical description of the group of Euc-
lidean displacement by dual quaternions. More complete reference is [6].

We denote by SE3 the group of Euclidean displacements, i.e., the group of maps
from R

3 to itself that preserve distances and orientation. It is well-known that SE3

is a semidirect product of the translation subgroup T and the orthogonal group SO3,
which may be identified with the stabilizer of a single point.

We denote by D :=R+εR the ring of dual numbers, with multiplication defined
by ε2 = 0. The algebra H is the non-commutative algebra of quaternions, and DH is
the algebra of quaternions with coefficients in D. Every dual quaternion has a primal
and a dual part (both quaternions in H), a scalar part in D and a vectorial part in D

3.
The conjugated dual quaternion h of h is obtained by multiplying the vectorial part
of h by −1. The dual number hh is called the norm of h, and the dual number h+h
is called the trace of h.

By projectivizing DH as a real 8-dimensional vectorspace, we get P7. The con-
dition that the norm of h is strictly real, i.e. its dual part is zero, is a homogeneous
quadratic equation. Its zero set is called S, the Study quadric. The linear 3-space
represented by all dual quaternions with zero primal part is denoted by E; we have
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E ⊂ S. The complement S−E can be identified with SE3: the primal part describes
SO3, the translations are the dual quaternions with primal part ±1 and strictly vecto-
rial dual part. More precisely, the group isomorphism is given by sending h= p+εq
to the map R

3 → R
3, v �→ pvp+qp

pp ; it is well-known and also easy to check that the
image of this map is strictly vectorial, the image is in SE3, and the above construc-
tion is indeed a group homomorphism. The fact that it is onto follows from the fact
that both groups are connected of the same dimension 6.

A nonzero dual quaternion represents a rotation if and only if its norm and trace
are strictly real and its primal vectorial part is nonzero. It represents a translation if
and only if its norm and trace are strictly real and its primal vectorial part is zero.
The 1-parameter rotation subgroups with fixed axis and the 1-parameter translation
subgroups with fixed parallel direction can be geometrically characterized as the
lines on S through the identity element 1 (the translations are characterized as those
lines that meet the exceptional 3-plane E).

For n > 0, an open linkage with n rotational joints can be described algebraically
as follows. Let h1, . . . ,hn be rotations, that is, of vanishing the dual scalar part. From
now on, we view them as elements of P

7, i.e., for each i, hi is a homogeneous
coordinate vector of dimension 8. The group parametrized by (t − hi)t∈P1 – the
parameter t determines the rotation angle – is the group of the i+1-th link relative
to the i-th link. The position of the last link with respect to the first link is then given
by a product (t1 −h1)(t2 −h2) · · ·(tn −hn), with t1, . . . , tn ∈ P

1.

3 Rational Curves in the Study Quadric and Open Linkages

In this section we prove a factorization theorem for curves in the Study quadric. It
guarantees existence of a number of open chains with revolute joints such that the
last link moves along the prescribed curve. Combining these open chains produces
overconstrained mechanisms.

Let C ⊂ S be a rational curve of degree n > 0. Then there exists a parametrization
of C by a polynomial (a0tn+a1tn−1+a2tn−1+ · · ·+an)t∈P1 , where a0, . . . ,an ∈DH.
If the curve passes through 1, then we may assume a0 = 1 (the polynomial is monic).
Note that this assumption is no loss of generality.

Conversely, let DH[t] be the set of left polynomials with coefficients in DH.
This set can be given a ring structure by the convention that t commutes with the
coefficients. Let P ∈ DH[t] be a polynomial of degree n > 0. We call the map fP :
P

1 → P
7, t �→ P(t) the map associated to P. The image is a rational curve of degree

at most n.
If Q ∈ R[t], Q �= 0, then the maps fP and fPQ are equal. Conversely, if P has a

factor in R[t] of positive degree, we can divide by it without changing the associated
map. Note that, in general, the set of right factors is different from the set of left
factors; but a polynomial in R[t] or in D[t] is a left factor if and only if it is a right
factor, because it is in the center of DH[t]. We are only interested in polynomials
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P ∈ DH[t] such that the rational curve fP(P
1) lies on the Study quadric S. This is

the case if and only if PP is strictly real, that is, PP ∈ R[t].

Proposition 1. Let P∈DH[t] be a monic polynomial of degree n> 0 without strictly
real factors such that PP ∈R[t]. If there is a factorization P(t) = (t−h1) · · ·(t −hn)
with hi ∈ DH representing rotations, then the polynomial PP ∈ R[t] has no real
roots.

Proof. Assume P = (t −h1) · · ·(t −hn) and let Mi := (t −hi)(t −hi) for i = 1, . . . ,n.
While for general hi, Mi is a polynomial in D[t], Mi is in R[t] if hi represents a
rotation. Moreover, Mi has no real roots and the same is true for PP= (t−h1) · · ·(t−
hn)(t −hn) · · ·(t −h1) = M1 · · ·Mn. ��

Theorem 1. Let P ∈ DH[t] be a monic polynomial of degree n > 0 such that PP ∈
R[t]. Assume that the primal part of P has no strictly real factors. Then there is a
factorization P(t) = (t −h1) · · ·(t −hn) with hi ∈ DH representing rotations.

We will sketch a constructive proof of this theorem. It can be used to actually
compute a factorization. Moreover, it will show that this factorization is not unique.
We continue with three technical lemmas whose proofs are omitted due space re-
strictions. The proof of Theorem 1 is constructive so that it serves, at the same time,
as description of an algorithm to actually compute factorizations.

Lemma 1 (polynomial division). Let P1, P2 ∈DH[t], and assume P2 is monic. Then
there is a unique representation P1 = QP2 +R with deg(R) < deg(P2). Moreover, if
h ∈ DH such that P2(h) = 0, then P1(h) = R(h).

Note that the last statement is not trivial because h need not commute with the
coefficients of P2.

Lemma 2. Let P ∈DH[t] and h ∈DH. Then (t −h) is a right factor of P if and only
if P(h) = 0.

Lemma 3. Let P ∈DH[t] such that PP ∈R[t]. Let M ∈R[t] be an irreducible monic
polynomial of degree two that divides PP but not the primal part of P. Then there
exists a unique h ∈ DH such that P(h) = M(h) = 0.

Proof (of Theorem 1). We proceed by induction on n. For n = 0, the statement is
trivial. Assume n ≥ 1. Since the primal part of P has no strictly real factors, P has
no strictly real factors. Consequently PP has no real linear factors. Let M be one
of the irreducible quadratic factors of PP. By Lemma 3, there is a unique h such
that M(h) = P(h) = 0. By Lemma 2, there exists P′ ∈DH[t] such that P′(t−h) = P.
Obviously, P′ is monic of degree n−1. Moreover, we have PP=P′(t−h)(t−h)P

′
=

P′P
′
M, hence P′P

′
is strictly real. Also, P′ cannot have a strictly real factor, since

this factor would also be a left factor and then it would also divide P. Similarly, the
primal part of P′ cannot have strictly real factor, as this factor would also divide the
primal part of P. By induction hypothesis, we obtain P′ = (t −h1) · · ·(t −hn−1) and
so P = (t −h1) · · ·(t −hn−1)(t −h). ��
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This proof is constructive. The algebraic calculations necessary for actually com-
puting a factorization are elementary with exception of the initial factorization of the
real polynomial PP of degree 2n. We illustrate this at hand of a simple example.

Example 1. The polynomial

P(t) = t2 + t(−1+ i− j−2k)−1+ i+2k+ ε(t(−i+ j−2k)−2− j−k)

satisfies the requirements of Theorem 1. (We assume that (1, i, j,k) is the standard
basis of the quaternion algebra H.) In particular,

PP = t4 −2t3 +5t2 −4t +6 = (t2 +2)(t2 −2t +3) ∈ R[t].

We let M1 = t2 + 2 and, using Lemma 1, compute the rotation quaternion h1 =
(1− ε)j+(1+ ε)k that satisfies M1(h1) = P(h1) = 0. By right division, we obtain
the factorizations P = (t − k1)(t −h1) where k1 =−1+(1− ε)i− (1+ ε)k. �

Now we are going to translate Theorem 1 into the language of kinematics. Some
foregoing considerations allow to take into account “joints of higher degree”. Let
h∈DH be a dual quaternion representing a rotation. The parametrization (t−h)t∈P1

of the rotation group defined by h is called a linear parametrization. More generally,
let R1, R2 ∈R[t] such that R1 is monic, deg(R1) = n, deg(R2)< n, without common
factor. Then the parametrization (R1(t)−h1R2(t))t∈P1 is called a rational paramet-
rization of degree n. Higher degree parametrizations of rotation groups may arise
as the product of linear parametrizations, namely when the two axes coincide. Let
us call two dual quaternions h1, h2 representing rotations “compatible” if the axes
coincide; this is the case if and only if h1h2 = h2h1.

Corollary 1. Let C ⊂ S be a rational curve of degree n in the Study quadric, disjoint
from the infinite 3-space E and passing through 1. Then C can be obtained as move-
ment of the last link of an open kR-linkage, with k ≤ n. Moreover, the rotations in
the k joints have a simultaneous rational parametrization, and the sum of the degree
of these parametrizations is equal to n.

Proof. Let P∈DH[t] be monic polynomial of degree n such that fP is a parametriza-
tion of C. Then PP ∈ R[t]. We may assume that P has no strictly real divisor, be-
cause otherwise we could factor it out and get a parametrization of strictly smaller
degree. But also the primal part of P has no real factor: If it has a real zero t0, then
fP(t0) ∈ E, and this contradicts our assumption; if it has an irreducible quadratic
real factor, then there is a pair of conjugate complex numbers z0, z0 such that
q := fP(z0) = fP(z0) ∈ E, and q would also be in C, because C is an algebraic va-
riety. By Theorem 1, there is a factorization P = (t −h1) · · ·(t −hn) with h1, . . . ,hn

representing rotations. If hi, . . . ,hi+m−1 are compatible with each other, then the
product (t−hi) · · ·(t−hi+m−1) can be written as R1−hiR2 for suitable R1,R2 ∈R[t]
such that R1 is monic, deg(R1) = m, deg(R2) < m, because every dual quaternion
compatible with hi is a real linear combination of 1 and hi.
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Remark 1. Theorem 1 is almost a converse to Proposition 1. There are polynomials
P without real factors such that PP ∈R[t] where the proposition and the theorem do
not say anything. In this case, there is an irreducible polynomial R ∈ R[t] dividing
the primal part of P but not the dual part. Since R then also divides the primal part of
P and PP ∈ R[t], the factor R appears twice in the factorization of PP. For instance,
if P = t2 + 1 + εi, then it can be shown that P is not the product of two linear
rotation polynomials. On the other hand, P = t2 +1+ εjt + εi = (t −k)(t −k+ εj)
is a product of two rotation polynomials. A systematic analysis would be good, but
it may be more difficult.

Remark 2. The proof of Theorem 1 can be adapted to the case when primal(P) has
only simple real roots, or equivalently PP has at most double real roots. In this
case, one gets a factorization into linear polynomials parametrizing rotation groups
or translation groups. Together with Theorem 2 below, this observation gives an
alternative explanation of some of the findings in [5].

Theorem 2. Let P ∈ DH[t] be a monic polynomial of degree n > 0 without strictly
real factors such that P has no real factors. Then there exist n! (in general) different
factorizations of the form P(t) = (t − h1) · · ·(t − hn) with hi ∈ DH representing a
rotation. Each factorization of P corresponds to a factorization PP = M1 · · ·Mn into
irreducible quadratic polynomials over R where the order of the factors does matter.
Moreover, we have Mi(hi) = 0 for i = 1, . . . ,n.

Proof. Our proof of Theorem 1 can be translated into a construction of a factoriza-
tion of P into linear factors over DH. The only non-deterministic step is the choice
of a quadratic factor of P′P

′
, where P′ is the left factor from which the next right lin-

ear factor is going to be constructed. The construction is also complete in the sense
that every factorization can be obtained by this non-deterministic algorithm. ��

We can give a precise meaning to the phrase “in general” used in Theorem 2:
A necessary and sufficient condition for the existence of exactly n! different factor-
izations is that PP ∈ R[t] has n distinct quadratic irreducible factors.

Example 2. We continue Example 1 and divide the polynomial P by M2 = t2 −2t +3
instead of M1. At first we compute the unique common zero h2 of M2 and P as
h2 =

1
49 ((28−30ε)i+(7+3ε)j−(63+13ε)k). Right division then yields a second

factorization P = (t − k2)(t − h2) where k2 =
1
49 (49− (21− 19ε)i+(56− 46ε)j+

(35+ 85ε)k). Note that P(t) parametrizes a Bennett motion. The axes of the rota-
tions k1, h1, h2, and k2 (in that order) are the axes of the underlying mechanism in
the moving frame. Thus, we essentially synthesized a Bennett mechanism. �

We conclude this section with a description of the mechanism whose existence
is guaranteed by Theorem 2.

Corollary 2. Let C ⊂ S be a rational curve of degree n in the Study quadric, disjoint
from the infinite 3-space E and passing through 1. Then C is the coupler motion of
a mechanism with revolute joints whose linkage graph (with vertices denoting links
and edges denoting joints) is the 1-skeleton on the n-dimensional hypercube.



Construction of Overconstrained Linkages by Factorization of Rational Motions 219

Proof. We only have to show the statement on the linkage graph. It follows from the
observation that the factorizations (open nR-chains) corresponding to permutations
of M1, . . . , Mn that differ only by a transposition of neighboring factors differ only
in two consecutive revolute axes (compare also Example 3 below). ��

4 Construction of Overconstrained Closed 6R Chains

Corollary 2 states the existence of an overconstrained linkage that contains many
closed chains with 2n revolute joints. Thus, our factorization algorithm can be used
to construct overconstrained 6R linkages to cubic coupler curves. We present the
basic idea at hand of an example.

Example 3. We choose h1 and h2 as in Example 1 and let h3 = 1− i+ εk. In order
to find the six factorizations of the rational cubic curve C ⊂ S parametrized by

P = (t −h1)(t −h2)(t −h3) = t3 + t2(−2+ i− j−3k)+ ε(−i−2k))+

t((−2+ i+2j+5k)− ε(5+2i+2j))+((3− i+ j−k)+ ε(1+3i+2j+2k)),

we have to compute the three quadratic factors of PP:

PP = M1M2M3 where M1 = t2 +2, M2 = t2 −2t +2, M3 = t2 −2t +3.

The factorizations of P correspond to different orders in which the factors M1, M2,
and M3 enter the algorithm outlined in the proof of Theorem 1, for example:

The permutation (M1, M2, M3) corresponds to P = (t −a1)(t −a2)(t −a3) where

a1 =
1
7 (7−3i+8j+5k)+ 1

49 ε(19i−46j+85k),

a2 =
1

161 (161−57i−44j+144k)+ 1
25921 ε(21456i+3852j+9670k),

a3 =
1

23 (−5i+3j+32k)+ 1
529 ε(−114i+418j−57k).

The permutation (M2, M1, M3) corresponds to P = (t −b1)(t −b2)(t −b3) where

b1 =
1
7 (7−3i+8j+5k)+ 1

49 ε(19i−46j+85k) = a1,

b2 =
1
7 (−4i− j+9k)+ 1

49 ε(30i−3j+13k), b3 = 1+k+ εj.

The permutation (M2, M3, M1) corresponds to P = (t − c1)(t − c2)(t − c3) where

c1 = j+k− ε(j−k), c2 = 1− i+k+ ε(i+k), c3 = 1+k+ εj = b3.

The equalities a1 = b1 and b3 = c3 arise because the corresponding permutations of
M1, M2, and M3 differ only by a neighbor transposition. �
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Remark 3. If we start with compatible h1 and h2 or h2 and h3, one of the open 3R
chains becomes a 2R chain with a link parametrization of degree two. We can com-
bine it with any other 3R chain to obtain an overconstrained 5R linkage.

The presented method can produce overconstrained 6R chains with no obvious
relations between the Denavit-Hartenberg parameters. A comparison of a random
6R chain generated by our algorithm with examples known from literature produced
no match. Thus, our family contains new examples. Known mechanisms that can be
synthesized by our method include Yu-Baker’s syncopated double Bennett hybrid
linkage [2] and Bricard’s double collapsable octahedral linkage and its variants [1].

5 Conclusion

We presented an algorithm to factor a generic rational curve C of degree n on the
Study quadric in n! different ways into the product of n rotations. Every factoriza-
tion corresponds to an open nR chain, combining all open chain results in a highly
overconstrained mechanism, as described in Corollary 2. For n = 2, the curve C
corresponds to coupler motion of a Bennett linkage (or its limiting case). For n = 3
we obtain six open 3R chains that can be combined to overconstrained 6R chains
with the same coupler motion. Due to space restrictions, we only explained the al-
gorithmic aspects in the proof of the central Theorem 1. A complete proof as well
as further investigations and details are left to a forthcoming publication.
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References

1. Baker, J.E.: On Bricard’s doubly collapsible octahedron and its planar, spherical and skew coun-
terparts. J. Franklin Inst. 332(6), 657–679 (2005)

2. Baker, J.E.: On syncopated and augmented six-revolute linkages. Mech. Mach. Theory 44(10),
1840–1847 (2009)

3. Brunnthaler, K., Schröcker, H.P., Husty, M.: A new method for the synthesis of Bennett mech-
anisms. In: Proceedings of CK 2005, International Workshop on Computational Kinematics.
Cassino (2005)

4. Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings. Trans. Am. Math.
Soc. 116, 218–226 (1965)

5. Hamann, M.: Line-symmetric motions with respect to reguli. Mech. Mach. Theory 46(7), 960–
974 (2011)

6. Hao, K.: Dual number method, rank of a screw system and generation of lie sub-algebras. Mech.
Mach. Theory 33(7), 1063–1084 (1998)

7. Huang, L., So, W.: Quadratic formulas for quaternions. Appl. Math. Lett. 15(5), 533–540
(2002)

8. Niven, I.: Equations in quaternions. Am. Math. Mon. 48(10), 654–661 (1941)



Bond Theory and Closed 5R Linkages

Gábor Hegedüs, Josef Schicho and Hans-Peter Schröcker

Abstract We present bond theory as a new means for the analysis of overcon-
strained closed linkages with revolute joints. Intuitively, bonds are special points
in the complex configuration curve. They exhibit discrete properties which can be
visualized in bond diagrams and allow to read off directly certain properties such
as the degrees of relative motions, or the special geometry of consecutive revolute
axes. As an application we sketch a classification of overconstrained 5R linkages.

Key words: Dual quaternions, bond theory, overconstrained revolute chain, over-
constrained 5R chain

1 Introduction

Many people have used dual quaternions as a tool for the analysis of overconstrained
linkages [3, 6]. In this paper, we introduce a new technique, based on dual quater-
nions, to facilitate this analysis, which we call the theory of bonds. Intuitively, bonds
are points in the configuration curve with complex coefficients where something de-
generate happens. It turns out that these points exhibit discrete properties which we
call the bond structure. In a certain way, a bond connects two links of a closed
kinematic chain. This accounts for our choice of the name “bond”. It must not be
confused with the concept of “kinematic bond” as described in [1, Chapter 5].

The bonds have several useful properties. From the bond structure we can obtain
geometric information. For instance, one can “read off” the degree of the coupler

Gábor Hegedüs · Josef Schicho
Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy
of Sciences, 4040 Linz, Austria, e-mail: {gabor.hegedues, josef.schicho}@oeaw.ac.at

Hans-Peter Schröcker
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curve between two arbitrary links (Theorem 3). Also, the existence of bonds with
a particular structure has geometric implications, such as three consecutive axes
fulfilling the Bennett conditions.

As an application of bond theory, we sketch a proof of the well-known classifi-
cation of 5R linkages. Goldberg [5] gave a construction for such linkages. In [12],
Wohlhart describes Goldberg’s construction in full generality. Several authors then
tried to prove that every 5R linkage which is neither planar nor spherical is a Gold-
berg linkage, and achieved partial results in this direction [2, 4, 9, 10]. The complete
classification was given in [8] using the computer algebra system Mathematica; the
proof involves big terms which makes it difficult to check it for humans. In this
paper, we outline a complete proof without computer assistance. Due to space re-
strictions, some details must be left to a forthcoming publication.

This research can be considered as a continuation of [7], which introduces the
factorization of left polynomials over the dual quaternions as a technique for link-
age synthesis. It is to a large extend independent of [7] except for the well-known
description of linkages by dual quaternions and an auxiliary result used in the proof
of Theorem 4. We freely use concepts and notation of [7] and we strongly suggest to
consult Section 2 of that article before continuing with the remainder of this paper.

2 Basic Facts from Bond Theory

In the following, h1, . . . ,hn will always denote rotation quaternions (unit dual quater-
nions with vanishing dual scalar part) such that h2

i =−1 for each i. As appropriate,
we identify them with elements of the real vectors space R

8 or with points of the
Study quadric S ⊂ P

7. By [n] we denote the sequence of integers (1, . . . ,n).

Definition 1. Let h1,h2, . . . ,hn be rotation quaternions and I be an injective subse-
quence of [n]. Then the coupling space LI is the linear span of all products ∏k

i=1 h ji ,
where ( j1 < .. . < jk) is any monotonic increasing subsequence of the sequence I.
The empty product is explicitly allowed and has the value 1.

Instead of L{i, j} we simply write Li j, instead of L{i, j,k} we simply write Li jk. The
corresponding coupling space dimensions are denoted by lI , li j, and li jk, respec-
tively. Simple examples of coupling spaces are L∅ = 〈1〉=R, L1 = 〈1,h1〉 or L12 =
〈1,h1,h2,h1h2〉. The relevance of coupling spaces for the study of revolute chains
follows from the observation that the end-effector positions (tn − hn) · · ·(t1 − h1)
with (t0, . . . , tn) ∈ (P1)n of an open nR-chain lie in the coupling space.

Proposition 1. The triple (L1,+, ·) is a field and isomorphic to C.

Proof. The set L1 is closed under addition. Since quaternions in L1 describe rota-
tions about one fixed axis it is also closed under multiplication and inversion. This
already implies that L1 is a field. Clearly, L1 = 〈1,h1〉 where h1 is the half-turn
(rotation with rotation angle π) in L1. Because of (h1)

2 = −1, L1 is isomorphic
to C. �
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Proposition 2. Let h1,h2, . . . ,hn be rotation quaternions and I ⊂ [n] �= ∅ a subse-
quence. Then the dimension of LI is even (and hence in {2,4,6,8}).

Proof. Let ik =max{I}. By Proposition 1, LI is a vector space over the field R[hik ]�
C. Its real dimension is even. �

The following proposition relates coupling spaces and coupling dimensions to
properties of the involved revolute axes. It will be very useful in the classification
of overconstrained 5R linkages. We call two rotation quaternions compatible if they
have the same revolute axis.

Proposition 3. For rotation quaternions h1, . . . ,h6 the following statements hold:

1. l12 = 2 if and only if h1 and h2 are compatible and l12 = 4 otherwise.
2. The three-dimensional projective space defined by L12 is contained in the Study

quadric S if the axes of h1 and h2 are parallel or meet in a point.
3. If the projective space defined by L12 is not contained in the Study quadric, then

h3 ∈ L12 if and only if h3 is compatible with h1 or h2.
4. If the projective space defined by L12 is not contained in the Study quadric, the

vector spaces L12 and L34 are equal if and only if h1 is compatible with h3 and
h2 is compatible with h4.

5. If hi is not compatible with hi+1 for i = 1,2 and dimL123 = 4, the axes of the
rotations h1, h2, h3 are parallel or meet in one point.

6. If hi is not compatible with hi+1 for i = 1,2 and dimL123 = 6, the axes of the
rotations h1, h2, h3 satisfy the Bennett conditions: The normal feet of h1 and
h3 on h2 coincide and the normal distances di,i+1 and angles αi,i+1 between
consecutive axes are related by d12/sinα12 = d23/sinα23.

7. If L123 = L456 and dimL123 = 6, then h1 and h4 or h3 and h6 are compatible.

Most statements of Proposition 3 admit simple proofs or can easily be inferred
from well-known facts, for example [11, Ch. 9–11]. Therefore, we only prove
Proposition 3.6.

Proof. If h3 ∈ L12, it is either compatible with h1 or h2. The latter is excluded
by assumption, the former satisfies the Bennett conditions. Hence, we can assume
h3 /∈ L12 and the vectors 1, h1, h2, h3, h1h2 are linearly independent. As an L1-
vectorspace, L123 is generated by 1,h2,h3,h2h3. Assume that these vectors form
a basis of L123. Then w+ xh2 + yh3 + zh2h3 = 0 with w,x,y,z ∈ L1 would imply
w = x = y = z = 0 so that l123 = 8. This contradicts our assumption. Hence, there is
a non-trivial linear relation

x+ yh2 + zh3 = h2h3 (1)

with unique x,y,z ∈ L1. It is no loss of generality to assume h2
3 =−1 (otherwise we

can replace h3 by a suitable linear combination of 1 and h3 with real coefficients).
By multiplying (1) from the right with h3, we obtain xh3 + yh2h3 − z =−h2. Com-
paring coefficients with (1) then yields y2 =−1, z = xy, and x = zy. Without loss of
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generality, we may assume y = −h1 (otherwise we replace h1 by a suitable linear
combination of 1 and h1 with real coefficients). Then we can also write x = a+bh1

and z = b− ah1 for some a,b ∈ R. If a = 0, (1) becomes (h2 − b)h3 = h1(b− h2),
there is a rotation around h2 that transforms h1 to h3 and the claim follows. If a �= 0,
we set h′2 := a−1(h2 −b) (another rotation about the same axis) and find

h1h′2 +h1h3 +h′2h3 = a−1(h1h2 −bh1 +ah1h3 +h2h3 −bh3)

= a−1(h1h2 −bh1 +ah1h3 +a+bh1 −h1h2 +bh3 −ah1h3 −bh3) = 1.

It follows that h4 := −h1 − h′2 − h3 fulfills the two equations h1 + h′2 = h4 + h3,
h1h′2 = h4 h3. Hence, the closure equation (t − h4)(t − h3)(t − h2)(t − h1) ∈ R of
Bennett’s mechanisms is fulfilled (see [7]). �

From now on we consider rotation quaternions h1, . . . ,hn and assume that the set
K := {(t1, . . . , tn)∈ (P1)n : (t1−h1) · · ·(tn−hn)∈R\{0}} is of dimension one. This
means that (h1, . . . ,hn) is a closed linkage with one degree of freedom, in particular
n ∈ {4,5,6,7}. We call K the configuration curve of the linkage.

Definition 2. Given a closed linkage (h1, . . . ,hn) with one degree of freedom we
define the set of bonds as

B := ZarClo(K)∩{(t1, . . . , tn) ∈ (P1
C
)n : (t1 −h1) · · ·(tn −hn) = 0}.

Here, ZarClo(K) – the Zariski closure of K – is the zero locus of all algebraic equa-
tions that also vanish on K.

The set of bonds B is a complex algebraic variety of dimension zero. It is defined
by real equations and, thus, consists of a finite number of conjugate complex points.
Since conjugate complex pairs carry no additional information, we always identify
them in the context of bonds.

We illustrate the notion of bonds at hand of a simple example.

Example 1. Let (h1,h2,h3,h4) encode a Bennett linkage, where

h1 = i, h2 = j+9ε(i−k), h3 =− 1
3 (i+2j−2k)−2ε(2i−2j−k),

h4 =
1
3 (2i+ j+2k)+ ε(5i+4j−7k).

The ideal of the configuration curve K is I(K) = 〈1+ t3 + t4, t2 + t4, t1 + t4 +1〉. We
computed it by means of Gröbner bases. Some necessary algebraic conditions are
given by Theorem 2, below. The bond set, up to conjugation of coordinates, is

B = {(t1 = i, t2 = 1+ i, t3 = i, t4 =−1− i),(t1 = i−1, t2 = i, t3 = i−1, t4 =−i)}.

Theorems 1 and 2 below state important properties of bonds. For lack of space,
they remain without a proof but they can easily be verified with the bonds of Exam-
ple 1.
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Theorem 1. For any bond b ∈ B there exist indices i, j ∈ [n] such that t2
i + 1 =

t2
j +1 = 0.

A proper investigation of bonds requires to consider algebraic multiplicities.
However, for the sake of simplicity, we mostly ignore this concept in this paper.
This limits the scope of our results but facilitates their presentation. In order to
make this clear, we will speak of “simple bonds”. More precisely, a bond b ∈ B is
called simple, if there are exactly two indices i, j ∈ [n] such that t2

i +1 = t2
j +1 = 0,

b is a simple point of K, and the vanishing order of the functions t2
i +1, t2

j +1 is one
at b.

Definition 3. Let b ∈ B be a simple bond. Then the unordered pair of indices (i, j),
such that t2

i +1 = t2
j +1 = 0, is called the combinatorial bond corresponding to b.

Theorem 2. If b ∈ B is a simple bond with combinatorial bond (i, j) and i < j, then

∏ j
l=i(tl −hl) = ∏i+n

l= j(tl −hl) = 0 (indices are to be read modulo n).

The linkage graph of a closed nR-chain (with vertices corresponding to links and
edges corresponding to joints) is the circular graph with n vertices. The combinato-
rial bond structure can be visualized by drawing connecting lines between the edges
that correspond to connected joints. We call these visualizations bond diagrams.
Figure 1.a displays the combinatorial bond structure of a Bennett mechanism (Ex-
ample 1). The combinatorial bonds are (1,3) and (2,4).

It is possible that we find more simple bonds such that t2
i +1 = t2

j +1 = 0 for a
fixed index pair (i, j). We call the number of bonds corresponding to the same com-
binatorial bond (i, j) the bond number and denote it by bd(i, j). In bond diagrams,
it can be visualized by double lines, triple lines etc.

Proposition 4. If bd(1,2)> 0, then l12 ≤ 2 (the rotations h1 and h2 are compatible).
If bd(1,3)> 0, then l123 ≤ 6 (the axes of h1, h2, and h3 satisfy the Bennett conditions
or belong to a planar or spherical linkage).

Proof. By Theorem 2, bd(1,3) > 0 implies (t1 − h1)(t2 − h2)(t3 − h3) = 0. This is
a nontrivial linear relation between the eight generating vectors of L123. Together
with Proposition 2 this implies l123 ≤ 6. The first assertion is proved in similar
fashion. �

We denote the links of the overconstrained nR chain by o1, . . . ,on and use the
convention that oi is the link between hi and hi+1.

Definition 4. For an index pair (i, j) define the function φi j : K �→ SE3 by

φi j(t1, . . . , tn) = (ti+1 −hi+1) · · ·(t j −h j).

By Ci j := φi j(K) we denote the coupler curve between the two links oi and o j and
by deg(i, j) the product of the algebraic degree of Ci j and the mapping degree of φi j.

Theorem 3. The number deg(i, j) equals the sum of bd(i, j) over all pairs of joints
(i, j) that are separated by the two links. In particular a joint is rigid, if it is not
connected to any other joint.
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The proof of this fundamental result is deferred to a later publication.

Example 2. In the bond diagram of a Bennett mechanism (Figure 1.a) the relative
motion of every pair of opposite linkages is of degree two. In Figure 1.d (Goldberg
linkage), we have deg(i, j) = 1 for (i, j) ∈ {(1,2),(1,5),(3,4),(4,5)}, deg(i, j) = 2
for (i, j) ∈ {(1,4),(2,3),(2,5),(3,5)}, and deg(i, j) = 3 for (i, j) ∈ {(1,3),(2,4)}.

3 Classification of Closed 5R Linkages

As an example for the application of bond theory, we present a classification result
which is originally due to [8].

Theorem 4. A non-trivial overconstrained 5R linkage is a Goldberg linkage [5, 12].

Here, we call the linkage trivial, if it is planar, spherical, a Bennett linkage plus
one fixed axis, or if two consecutive rotations are compatible. We describe the link-
age by the sequence of its rotation quaternions (h1, . . . ,h5).

Lemma 1. Suppose that bd(1,4) > 0, bd(2,4) > 0, deg(1,4) > 2 (see Figure 1.c),
and l234 = l154 = 6. Then h1 and h2 or h1 and h5 are compatible.

Proof. Assume that h1 and h5 are not compatible and consider the vector spaces
L := L234 ∩L154 and L′ := L234 ∩L15. Since L is a R[h4]-right vectorspace, it is of
even dimension. If dimL = 6, we have L234 = L154 and, by Proposition 3, h1 and h2

are compatible. Hence we can assume dimL = 4.
Because of l234 = 6, the mapping degree of φ14 is one. Since we supposed that

deg(1,4)> 2 and C14 is generated by quadratic equations, it cannot be a plane curve.
However, the configuration curve C14 is contained in L′. Thus, dimL′ ≥ 4 and L= L′.
But h1 and h5 are not compatible, hence dimL15 = 4, L = L′ = L15, and L15 ⊆ L234.
This implies L154 = L15L4 ⊆ L234L4 = L234 (where for M,N ⊂H the multiplication
is defined point wise as MN = {mn : m ∈ M,n ∈ N}). Thus, L154 = L234 and it
follows from Proposition 3 that h1 and h2 are compatible. �

Lemma 2. Up to relabeling, the bond diagram of a non-trivial overconstrained 5R
linkage is given by Figure 1.d.

Proof. We can assume li−1,i,i+1 > 4 for all i ∈ {1, . . . ,5} because otherwise the link-
age is spherical by Proposition 3. We prove the statement by a discussion of all
possible cases: Assume that bd(1,3), bd(2,4), bd(3,5), bd(4,1), and bd(5,2) are
all positive (Figure 1.c; combinatorial multiplicities greater than one are not yet ex-
cluded). By Theorem 3, deg(1,2) = 4 > 2, and by Lemma 1, two neighbouring links
are compatible. This case cannot occur. The same reasoning applies, if we remove
all bonds between one joint pair, say (1,4). The next bonds to be removed cannot
be those between (1,3) or (2,4). Without loss of generality, we remove the bonds
(2,5). This case is possible (Figure 1.d) and will later be shown to correspond to
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Fig. 1 Bond diagrams: Bennett linkage, two impossible 5R linkages, Goldberg linkage.

the Goldberg linkage. Now it is easy to see that removing further edges violates our
assumptions. Thus, only possible multiplicities have to be discussed. However, if
bd(2,4) > 1, bd(1,3) > 1, or bd(3,5) > 1, then deg(1,3) ≥ 3 > 2 and once more
Lemma 1 gives a contradiction. The discussion is complete. �

Proof (of Theorem 4). Lemma 2 gives us the bond graph of the linkage (Figure 1.d).
Proposition 3 tells us that the axis triples (h1,h2,h3), (h2,h3,h4), and (h3,h4,h5)
satisfy the Bennett properties. By Theorem 3, deg(5,2) = deg(5,3) = 2. Because of
deg(1,3) = 3 and by an already used argument, the curve C13 is rational of degree
three, so that the synthesis theory of [7] can be applied. (In our case, two consecutive
axes of the overconstrained 6R chains of [7] coincide.) By general results of [7], the
relative motion C13 admits parametrizations

(t −h′′3)(t −h′3)(t −h′2), (t −h′4)(t −h′5)(t −h′1), (t −h′′3)(t −h′6)(t −h′1)

with h′i ∈ Li for i= 1, . . . ,6 and h′′3 ∈ L3 such that (h′1,h
′
2,h

′
3,h

′
6) and (h′′3 ,h

′
4,h

′
5,h

′
6) is

a Bennett quadruple. The original 5R linkage can be constructed by composition of
these two Bennett linkages, with the common axes h3, h6, and subsequent removal
of the joint at h6. This is exactly Goldberg’s construction [5, 12]. �

4 Conclusion

This paper introduced bonds as a tool for the investigation of closed chains of rev-
olute joints with a one-parametric mobility. We demonstrated how to read off geo-
metric and kinematic properties directly from bond diagrams. The details of some
proofs will be presented in a forthcoming paper.

There, we will also show that bonds behave well under specializations in families
of linkages. Some parts of the bond structure are constant in every family, other parts
may change under specialization but in a transparent way. This is particularly useful
for classification purposes, because it gives strong criteria to decide whether a given
bond is a special case of a given family. It motivates to use the bond structure as
a classification scheme for linkages, for instance for the classification of closed 6R
linkages. This is a future plan of the authors.
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Kinematics of an Overconstrained 6R Linkage
with 2-Fold Rotational Symmetry

Ketao Zhang and Jian S. Dai

Abstract This paper presents an overconstrained 6R linkage which is originated
from a metamorphic 8R linkage. The 2-fold rotational symmetry reveals that the
overconstrained 6R linkage is a special line-symmetric Bricard loop. The parametric
constraints of the overconstrained 6R linkage are investigated in terms of Denavit–
Hartenberg convention. This leads to identification of possible variation of paramet-
ric constraints for the special line-symmetric Bricard loops. The kinematics of the
overconstrained 6R linkage is analyzed and motion parameters of the joint-space
are derived. The resultant spherical 4R linkage of the overconstrained 6R linkage
is addressed. The results of the joint-space solution are verified with a numerical
example.

Key words: Overconstrained 6R linkage, 2-fold rotational symmetry, joint-space

1 Introduction

The overconstrained mechanisms which have full cycle mobility but do not satisfy
the Grübler-Kutzbach mobility criterion have attracted substantial interest since the
proposal of the first overconstrained mechanism, Sarrus [1], in 1853. Though very
few overconstrained mechanisms have been used in practical application, a mech-
anism with overconstraints has the advantages to sustain great and variable loads
by means of mass and compliance in heavily loaded machinery [2]. Bennett [3, 4]
discovered the well-known deformable skew isogram which is the only spatial over-
constrained 4R linkage and a basis of some compound mechanisms. Myard [5]
presented the first known of overconstrained 5R linkage which was identified to
be a special plane-symmetric form of one of the Goldberg 5R linkages [6, 7]. The
mobile 4R linkages with lower kinematic pairs have been identified and the present
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limited knowledge confines the systematic investigation of mobile 5R linkages to
those with parallel adjacent joint-axis [2, 8].

Starting from the famous Sarrus linkage, a number of overconstrained 6R link-
ages have been produced. Bricard discovered three different types of mobile 6R
loops during an earlier period beginning from 1897 and the other three in 1927
[9, 10]. Baker [11] went trough a thorough study of the Bricard 6R-loops and classi-
fied these linkages into five distinct kinds in terms of algebraic analysis and ad-
dressed the parametric constraints and closure equations for each category. Alt-
mann [12] reported his workable linkage which turned out to be a special case
of the Bricard line-symmetric 6R linkage. Waldron [13] described a class of over-
constrained linkages obtained by combinations of other overconstrained linkages
and the six-bar linkage formed from two Bennett linkages. Goldberg [6] presented
asymmetrical overconstrained mobile 6R linkages by firstly attaching three selected
Bennett loops in series ‘back to back’ and in his L-shaped manner. Schatz [14] dis-
covered and patented the asymmetric 6R linkage which was named Turbula. This
mobile 6R linkage can be derived from a special plane-symmetric Bricard loop
and developed for various practical applications [15]. Recently, the overconstrained
6R linkage has been used to develop deployable structures and foldable devices
[16, 17]. Zhang, Dai and Fang [18] evolved a metamorphic 8R linkage from origami
fold and derived an overconstrained 6R linkage with 2-fold rotational symmetry.
This paper presents the overconstrained 6R linkage originated from the metamor-
phic 8R linkage [18]. The geometry of the mobile 6R linkage is identified and the
possible variation of parametric constraints for special line-symmetric Bricard 6R
loops is revealed. The kinematics of the overconstrained 6R linkage is analyzed and
the results of the joint-space solution are verified with a numerical example. The
resultant spherical 4R linkage of the overconstrained 6R linkage is addressed.

2 Geometry of the Overconstrained 6R Linkage

The focus is on the overconstrained 6R linkage with 2-fold rotational symmetry in
Fig. 1, and the 6R linkage is characterized by the specific geometry.

According to the derivation of the 6R linkage, any two adjacent joint axes are
coplanar either with common point or parallel. The axes of joints J1 and J4 have the
common point G and GM is the perpendicular bisector of isosceles triangle �ACG.
The axes of joint J1 and J2 have the common point E, and that of joint J3 and J4 have
the common point C. The axes of joint J2 and J3 are parallel. For the joint axes with
common point, the angle length between each two adjacent axes is determinate, that
α1 = 45◦ and α3 = 45◦. Consider the 2-fold rotational symmetry, the joints J4, J5,
and J6 connected in series can be obtained by rotating the joints J1, J2, and J3 around
the symmetry axis GM. The axes of joint J4 and J5 have the common point F , and
that of joints J6 and J1 have the common point A. The axes of joints J5 and J6 are
parallel. The angle length between each two adjacent axes with common point is
determinate, that α4 = 45◦ and α6 = 45◦.
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Fig. 1 The overconstrained
6R linkage with 2-fold rota-
tional symmetry.

Considering the angle length between two intersecting adjacent joint axes, point
B is the projection of common point A on axis BE of joint J2 and the three points
A, B and E form a isosceles right triangle �ABE. Symmetrically, the three points
C, D and F form a isosceles right triangle �CDF and CD is perpendicular to DF.
The four points B, E, E ′ and C are coplanar and form a rectangle. This leads to
identification of the parametric constraints according to design parameters.

3 Kinematics of the Overconstrained 6R Linkage

To facilitate the analysis, a Cartesian coordinate system is attached to each link in
terms of the Denavit–Hartenberg convention [19] with consideration of the geom-
etry in Fig. 1. The zi-axis is aligned with the (i+ 1)th revolute joint axis, and the
xi-axis is defined along the common normal between the ith and (i+1)th joint axes,
pointing from the ith to the (i+1)th joint axis. The axis x0 is in the direction of the
vector cross product z6 × z0 and the origin is located at point O0(A). The origins of
the other coordinate systems are O1(E), O2(C), O3(C), O4(F) and O5(A).

The parameters of a closed-loop linkage including the offset distance between
two adjacent joint axes ai, the translational distance between two incident normals
of a joint axis di and the twist angle between two adjacent joint axes αi are uniquely
determined by the geometry of the axes. The joint variables of the revolute joints
are θi. According to the geometry of the overconstrained 6R linkage with coplanar
adjacent joint axes and 2-fold rotational symmetry, the parameters ai, αi and di are
constant and given by

α1 = α3 = α4 = α6 = 0,α2 = α5 = l (1)

α1 = α3 = α4 = α6 = 45◦,α2 = α5 = 0 (2)

d1 = d4 =−
√

2d,d2 = d5 = d,d3 = d6 = 0 (3)
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in which l and d are the design parameters, and generally these two parameters are
not equal. When the origins of the six coordinate systems are selected as O0(A),
O1(E), O2(E ′), O3(C), O4(F) and O5(A), the parameters di become

d′
1 = d′

4 =−
√

2d,d′
3 = d′

5 = d,d′
2 = d′

6 = 0 (4)

This shows the D-H parameters for general line-symmetric cases of Bricard loops
addressed in [11] are slightly different regarding the origins of coordinate frames in
Fig. 1.

The loop-closure equation of the overconstrained 6R linkage formulated by ap-
plying the homogeneous transformation [20] is derived as

H1 ·H2 ·H3 ·H4 ·H5 ·H6 = I (5)

where Hi (i = 1,2, . . . ,6) is the transformation matrix indicating the change of coor-
dinates between the ith coordinate system and the (i−1)th coordinate system. The
loop-closure equation can be rearranged as

H1 ·H2 ·H3 = H−1
6 ·H−1

5 ·H−1
4 (6)

and expressed as
⎡
⎢⎢⎣

h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

0 0 0 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

h′11 h′12 h′13 h′14
h′21 h′22 h′23 h′24
h′31 h′32 h′33 h′34
0 0 0 1

⎤
⎥⎥⎦ (7)

The elements of the matrices on the two sides are given in Appendix A. Twelve
equations can be yielded from Eq. (7) since the corresponding elements of matrices
on the two sides are equal.

For the overconstrained 6R linkage with one degree of freedom, the joint space
of the linkage can be obtained with one input joint angle.

According to the geometry of the linkage in Fig. 1, the 2-fold rotational symmetry
with symmetry axis GM leads to the following relationship for θi.

θ1 = θ4,θ2 = θ5,θ3 = θ6 (8)

Hence, taking one of the six joint variables as an input, only two independent equa-
tions are necessary to derive the remaining motion parameters.

Three geometric equations can be generated by taking the elements equality of
last column on both side of Eq. (7) and given by

h14 = h′14,h24 = h′24,h34 = h′34 (9)

Expanding the equations with parameters in Appendix A, the geometric constraints
can be obtained as
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Table 1 Motion parameters of the overconstrained 6R linkage.

θ2 θ1 θ3 θ4 θ5 θ6

−2.0944 2.3253 1.5009 2.3253 −2.0944 1.5009
−1.0472 −2.3253 1.6408 −2.3253 −1.0472 1.6408

0 −0.9963 1.8302 −0.9963 0 1.8302
1.0472 0.2721 2.4768 0.2721 1.0472 2.4768
2.0944 −0.2721 0.6648 −0.2721 2.0944 0.6648

−
√

2lcθ2sθ1 − cθ1(d − lsθ2) = dc(θ5 +θ6)+ lcθ6 (10)

d − lsθ2 = dc(θ5 +θ6)+ lsθ6 (11)

where cθi is a shorthand notation for cosθi, and sθi for sinθi.
The right side of Eqs. (10) and (11) are equal and the first fundamental equation is
derived as

−
√

2lcθ2sθ1 − lcθ1sθ2)+dcθ1 − lsθ2 +d = 0 (12)

Substituting Eq. (8) into Eq. (10), another fundamental equation is obtained as

d(cθ2cθ3 − sθ2sθ3)+ l(sθ2 + sθ3)−d = 0 (13)

Consider the motion parameters in the above two equations, θ2 is taken as the input
joint variable and the remaining can then be derived in terms of θ2.

Introduce the trigonometric identity equations

sθi =
2xi

1+ x2
i

,cθi =
1− x2

i

1+ x2
i

(14)

where xi = tan(θi/2), and substitute them into Eqs. (12) and (13), the joint variables
are yielded as

θ5 = θ2 (15)

θ4 = θ1 = arctan

(
d − lsθ2√

2lcθ2

)
(16)

θ6 = θ3 = arctan

(
−ds(θ2/2)− lc(θ2/2)

dc(θ2/2)− ls(θ2/2)

)
(17)

A numerical example is given to illustrate the motion parameters in joint-space of
the overconstrained 6R linkage in Fig. 1. According to the geometry of the linkage,
the motion parameters are determined by the link parameters l and d which should
be fixed in the design stage. Set the two parameters as l = 130 and d = 100. Let θ2

be the input angle in the range of −π to π radian, a group of discrete values of the
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Fig. 2 The joint-space curves of the joint variables.

Fig. 3 The resultant spherical 4R linkage.

motion parameters are listed in Table 1. The joint-space curves of the joint variables
are illustrated in Fig. 2.

4 Geometry Induced Spherical 4R Linkage

According to the expression of joint variables in Eqs. (16) and (17), the relationship
between the variable joint-rotation angles is characterized by the fixed link length l
and offset of links d. As aforementioned, the two design parameters l and d are not
equal in general.

Specially, when the two parameters l and d are designed to be equal, the Eqs. (16)
and (18) become

θ4 = θ1 = arctan(−(1− sθ2)/(
√

2cθ2)) (18)

θ6 = θ3 = π/2 (19)

The Eq. (19) shows that the joint-rotation angles θ3 and θ6 are constant. The axes
of joints J2, J3 and J4 become coplanar and the axes of J5, J6 and J1 are coplanar
symmetrically. Under such a condition, the joints J3 and J6 of the overconstrained
6R linkage in Fig. 1 are restricted by geometric constraints and they are not effective.
This leads to the degeneration from the overconstrained 6R linkage in Fig. 1 to the
spherical 4R linkage in Fig. 3.
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5 Conclusions

The overconstrained 6R linkage presented in this paper is characterized by the 2-
fold rotational symmetry. The geometry turns out that the mobile 6R linkage is a
special case of the line-symmetric Bricard 6R linkage. The parametric constraints
are derived by using the Denavit–Hartenberg convention and the possible variation
of these parametric constraints for the special line symmetric Bricard 6R-loop is
revealed. The motion parameters of the 6R linkage are derived in terms of alge-
braic kinematics analysis and the results are verified by a numerical example. The
overconstrained 6R linkage degenerates to a spherical 4R linkage when the link
parameters l and d are equal.

Acknowledgements The authors thank the support of European Commission – FP7 under Grant
No. 270436 and help from Evangelos Emmanouil on the LATEX file formatting.

Appendix A

h11 = cθ1c(θ2 +θ3)− (
√

2sθ1s(θ2 +θ3))/2

h′11 = cθ4c(θ5 +θ6)+(
√

2sθ4s(θ5 +θ6))/2

h12 = (sθ1(c(θ2 +θ3)−1))/2−
√

2cθ1s(θ2 +θ3)

h′12 = sθ4c(θ5 +θ6)+(
√

2cθ4s(θ5 +θ6))/2

h13 =−(sθ1(1+ cθ2cθ3)− sθ2sθ3)/2−
√

2cθ1s(θ2 +θ3)

h′13 = (
√

2s(θ5 +θ6))/2

h14 = lcθ1cθ2 +
√

2sθ1(lsθ2 −d))/2

h′14 =−lcθ6 +ds(θ5 +θ6)

h21 =−sθ1c(θ2 +θ3)+(
√

2cθ1s(θ2 +θ3))/2

h′21 = sθ4(c(θ5 +θ6)−1))− (
√

2cθ4s(θ5 +θ6))/2

h22 = (cθ1(c(θ2 +θ3)−1))/2+
√

2sθ1s(θ2 +θ3)

h′22 = (cθ4(c(θ5 +θ6)−1))/2+
√

2sθ4s(θ5 +θ6)

h23 =−(cθ1(1+ c(θ2 +θ3)))/2−
√

2sθ1s(θ2 +θ3)

h′23 = (1+ c(θ5 +θ6))/2

h24 =−lsθ1cθ2 +(
√

2cθ1(lsθ2 −d))/2

h′24 = (−
√

2dc(θ5 +θ6)+ lsθ6)/2

h31 = (
√

2s(θ2 +θ3))/2

h′31 =−(sθ4(1+ c(θ5 +θ6))−
√

2cθ4s(θ5 +θ6))/2
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h32 =

(
c

(
θ2 +θ3

2

))2

h′32 =−cθ4(1+ c(θ5 +θ6))/2−
√

2sθ4s(θ5 +θ6)

h33 =

(
s

(
θ2 +θ3

2

))2

h′33 = (1− c(θ5 +θ6))/2

h34 =−
√

2(d − lsθ2)/2

h′34 =−
√

2(dc(θ5 +θ6)+ lsθ6)/2
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Design and Control of a Redundant Suspended
Cable-Driven Parallel Robots

Johann Lamaury, Marc Gouttefarde, Micaël Michelin and Olivier Tempier

Abstract This paper introduces a six degree-of-freedom suspended parallel robot
driven by eight cables. The determination of an optimal geometry of such a paral-
lel cable robot together with the design of a prototype are briefly outlined. Then,
based on usual kinematic modeling, a basic control strategy is presented. Since the
parallel cable-driven robot presented here is redundantly actuated, this control strat-
egy has to deal with the problem of cable tension distribution. This latter turns out
to be challenging because of the under-constrained nature of the considered cable-
driven robot. The extension to these robots of existing tension distribution methods
is finally discussed.

Key words: Cable-driven parallel robots, actuation redundancy, tension distribu-
tion

1 Introduction

The main advantages of cable-driven parallel robots (CDPR) are fast motion, light
weight, large workspaces and heavy loads capabilities, making them well adapted
to tasks over important workspaces, not provided by common robot architectures.
These manipulators mainly consist of a base, a mobile platform connected to the
base through flexible cables and motorized winches. By means of these motors, the
cable lengths are controlled, allowing the platform motion control. Thus, as cables
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can be unwound over great lengths, it is possible to design parallel robots with great
workspaces.

Since the first works carried out in the eighties, many CDPR applications have
been foreseen thanks to the versatility of this type of parallel robots. Crane appli-
cations [1] and rehabilitation [10] might be mentioned as examples. Our goal is to
design a 6 degree-of-freedom (DOF) industrial robot able to carry out some pick-
and-place tasks over large workspaces possibly with heavy payloads. The majority
of studied fully constrained CDPR, such as FALCON robot [8] and the SEGESTA
prototype [6], cannot carry out the specifications. Indeed, their structure imposes to
have some cables pulling the platform from the bottom. Such cables would prob-
ably collide with some goods or workers. Suspended CDPR, e.g. the well-known
NIST-ROBOCRANE [1], represent a solution as, in this configuration, all cables
grow from above the mobile platform.

Additionally, actuation redundancy is used in order to significantly improve the
ratio between the size of the workspace and the robot overall size, as shown in
Fig. 1. In this figure, the workspace is defined as the set of feasible static equilib-
rium mobile platform poses where feasible means that there exists a set of non-
negative cable tensions satisfying the equilibrium (cables cannot push on the plat-
form). Fig. 1 shows that the use of two additional cables improves the suspended
CDPR workspace by 225%. The 6-cable CDPR of Fig. 1(a) has the ROBOCRANE
configuration, whereas the 8-cable CDPR has an original arrangement of cables out-
lined in the present paper.

However, suspended CDPR called a special attention from some researchers
[2, 5, 16] but only few studies focused on redundant ones [12, 15]. Those archi-
tectures raise some challenging modeling and control issues such as tension dis-
tribution. In this paper, an 8-cable suspended CDPR prototype called ReelAx8 is
presented, together with preliminary results and discussion on the aforementioned
control issues.

2 Optimal Configuration and Design of the ReelAx8 Prototype

A method has been developed and implemented [13] in order to determine the best
configuration of a suspended CDPR regarding our aforementioned needs. This op-
timal configuration consists of the cable output point positions on the base and the
attachment point positions on the platform, together with the arrangement of the
cables between them. The chosen optimality criterion is based on the ability to ad-
mit a shift of the center of gravity of the loaded platform, i.e. to resist to wrenches
generated by off-centered payloads. Furthermore, because of the targeted industrial
applications, the robot architecture needs a suspended configuration. Typically, four
posts are settled at each plant corners as illustrated in Fig. 2(b). Then, eight cables
are used in order to obtain a large static workspace [13]. Finally, the great number
of possible configurations is strongly restrained by adding symmetry constraints in
order to keep a homogeneous behavior over the whole workspace. Both the layout
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Fig. 1 Workspace analysis of 6 and 8 cables suspended CDPR (constant null orientation) to fit in a
rectangular room.

Fig. 2 Optimal configuration of an 8-cable suspended CDPR.

of the drawing points and the attachment points on the platform is thus chosen to be
symmetric with respect to a central vertical axis (z of Fb defined in next section).
Moreover, the cable arrangement is such that if a point of the base is connected to
another point on the platform, their symmetric points are also connected by a cable.
It is also required that no cable interference exists across the prescribed workspace.

The resulting robot geometry, shown in Fig. 2(b), has been implemented on a
prototype called ReelAx8 shown in Fig. 2(a).

In this optimal configuration, cable drawing points belong to two different hori-
zontal planes. In the platform reference pose depicted in Fig. 2, the cables growing
out from the top plane go to the top of the platform, and are not attached to their
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nearest platform’s corner but to the next clockwise one. On the contrary, the cables
growing out from the second plane go to the bottom of the platform, and are attached
to their next counterclockwise platform’s corner. This layout allows very good ori-
entation capabilities and increase the robot’s stiffness. ReelAx8 global dimensions
are 3.8×2.4×3 meters (L, l, h) and its maximum workspace is shown in Fig. 1(b).
Motors are settled on the ground with idler pulleys to guide the cables along each
post, which has two cable outputs at different hight equipped with pulleys and conic
eyelets. The platform attachment points are embedded in spherical joints. The cable
winches are installed at the foot of the poles and consist of a drum actuated by direct-
drive electric motors. A ball screws allows the drum forward/backward motion so
that the cables do not wound on themselves during the winding. The identification
of the geometric parameters was performed with a laser tracker.

3 Kinematics

The kinematic model is based on m cables which link the base from points Ai , to
points Bi of the platform, i ∈ 1, . . . ,m. Vectors ai and bi define these points in the
base frame Fb = (O,x,y,z) and in the platform frame Fp = (P,x′,y′,z′), located
at the platform center-of-gravity (COG) P , respectively. O, the origin of the base
frame, is located at the center of the robot volume. The position of the platform
reference point P is defined by vector p. The mobile platform orientation is given

by the rotation matrix Q. The cable length, denoted li , is the norm of vector
→

AiBi .
The inverse kinematics is complex when considering the mass and extensibility of
the cables. In this study, massless inextensible cables are supposed. Therefore, the
inverse kinematics consists in computing li .

li = ∥
∥ai −p−Qbi

∥
∥ (1)

The expression of the wrench applied by the cables to the platform can be written
as

Wt = f (2)

where W is called the wrench matrix, t = [t1, . . . , tm]T ∈ �m is the cable tension
vector and f = [f1, . . . ,fn]T ∈ �n. In static equilibrium, f is the opposite of the
wrench due to the platform weight.

The challenge lies in the cable inability to transmit compressive forces, which
means that all components of t have to remain non-negative. If m = n and W is not
singular, (2) leads to one unique solution, which does not guarantee non-negativity.
Furthermore, if one or more cable have negative tensions, the platform is probably
not in its current desired pose, but in another static equilibrium pose. To avoid vio-
lating this positiveness constraint, actuation redundancy can be used. Indeed, when
W is non-square (m > n), (2) can be written as follows:

t = W+f+Hλ = tp + tn (3)
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Fig. 3 ReelAx8 PID-control scheme.

where W+ is the Moore–Penrose pseudo-inverse of the wrench matrix and λ is an
arbitrary m-dimensional vector. We define H = I−W+W, where I ∈ �m×�m is the
identity matrix, as the projection matrix onto the nullspace of W, and Σ ⊂R

m as the
r-dimensional affine space containing tp and spanned by this nullspace. Physically,
the linear combination of the columns of H results in internal forces which do not
modify the wrench applied on the platform. tp is the minimum-norm solution and
tn is the homogeneous solution.

4 Control

Our first closed-loop control of ReelAx8 is shown in the block diagram of Fig. 3.
A Cartesian trajectory is generated and converted into the desired cable lengths ld ,
through the inverse kinematics. Thanks to a regular winding of the cables on the
winch drum, the motor optical encoders supply angle information easily convert-
ible into the current measured cable lengths lm. The error ε = ld − lm is estimated,
corrected by a decentralized PID, and finally results in τ . Because this vector may
contain negative tensions, a tension distribution algorithm should be used. This al-
gorithm yields tension vector tsol which is converted to τsol, the m-dimensional mo-
tor torque vector, as τsol = Rtsol, where R is the drum radius. Thanks to a proper
winding system and tuning of the controller gains, this basic control topology is ca-
pable of providing acceptable tracking performances over an important workspace,
in translation as well as in rotation. The robots is controlled with Simulink, through
xPC target and embedded Matlab, currently at a 5 kHz frequency.

Close to the central vertical axis z of Fb and along the hypotenuses of the four
possible three-post triangles of the (O,x,y) plane, the eight cables are taut. How-
ever, according to our experiments, as soon as the platform is located inside a tri-
angle made by three posts, wherein the six corresponding cables can balance the
weight of the mobile platform, the two cables growing out from the furthest post are
often slack. In this case, the platform is probably not in the desired pose, since our
control scheme is in fact asking these two cables to push on the platform.

Indeed, no effective tension distribution were implemented in real-time yet be-
cause of compatibility issues with Embedded Matlab. Hence, in our current imple-
mentation, the block “Tension distribution” shown in Fig. 3 is inactive (tn = 0 in
(3)). Nevertheless, simulations allowed us to study the extension of existing tension
distribution methods to the case of suspended CDPR.
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5 Tension Distribution Issues

Because of the redundant nature of ReelAx8 actuation (m = n+2), the nullspace of
its wrench matrix is non-empty and (2) has an infinity of solutions, among which an
optimal or near-optimal one is generally sought. The tension distribution problem
is then to find a cable tension vector t = [t1, . . . , tm] ∈ R

m, whose components are
contained between a minimum tmin and a maximum tmax, i.e. such as tmin ≤ ti ≤ tmax,
i ∈ {1, . . . ,m}. tmax may be given by the limit of cable elastic deformation, and tmin
can be set as the lowest acceptable tension to avoid loose cables, i.e. tmin ≥ 0.

Most of works dedicated to tension distribution deal with CDPR having a non-
empty force-closure workspace. Some efficient optimization methods were pro-
posed using linear programming methods (LPM) [3, 7, 14] or quadratic program-
ming methods (QPM). More specifically, for the redundantly actuated suspended
CDPR case, Oh and Agrawal [12] proposed to find a feasible space for tension dis-
tribution described by a set of linear inequalities and to plan the robot trajectory to
stay into this space. More recently, Yu et al. [15] proposed the use of a QPM in
coupling basic tension optimization problem to an active stiffness control scheme.

However, LPM is subject to discontinuities in the cable tension distribution that
may result in high mechanical loads, observed in simulations, and in vibrations.
QPM are suffering from non-predictable worst-case runtime [4]. These procedures
may be expensive in terms of computation time and usually incompatible with real-
time control. Indeed, it was observed in our simulations that this type of methods
often exceeds our controller loop time. That is why an efficient numerical method is
required. To our knowledge, no method has been demonstrated to work in real-time
on a suspended CDPR with redundant actuation.

To illustrate the effect of redundancy, Ω is defined as the set of feasible tensions,
i.e. the set of vectors t defined as:

Ω = {t | ti ∈ [tmin, tmax] ∀i ∈ [1,m]} (4)

Ω is an intersection of halfspaces, a convex bounded polyhedron also called a poly-
tope. More precisely, if tmin and tmax are identical over the m cables, Ω is a m-
dimensional hypercube. Finally, we also define Λ ⊂ R

r as the convex polyhedron
generated by the intersection of Σ within Ω as shown in Fig. 4. If Λ is non-empty,
a solution that respects the tension limiting values exists and must be found. By
computing Λ for the mobile platform along various trajectories, it was observed in
simulation that for suspended CDPR the size of Λ is usually very small as Σ cut Ω

close to the tmin vertex, but Λ still exists.
To overcome the problems and disadvantages of the aforementioned LPM and

QPM methods, some authors proposed to apply non-iterative algorithms. One so-
lution, according to Lafourcade’s works [9], is to find tsol ∈ Λ the closest to an
objective tension vector tobj ∈ Ω . For ReelAx8, tobj is set as a constant, equal to
the coordinates of Ω COG. Then, tn = Htobj is calculated as the orthogonal pro-
jection of tobj onto Σ . However, for suspended robots Λ is small in comparison to
Ω when the platform is unloaded or carrying a light payload. In these cases, Λ is
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Fig. 4 Intersection Λ between Ω and Σ in the case m = 3 and n = 1.

very close from tmin. Consequently, tsol is most of the time outside Λ, which means
non-admissible. It was observed on ReelAx8: for numerous poses, one or two cables
have non-admissible tensions tk,k ∈ [1,2]. In the considered algorithm, the one or
two slack cable(s) are then “saturated” at the tmin value and (3) is solved again with
the additional constraints tk = tmin. If one cable is saturated, tsol is thus moved in the
direction of the saturation until it belongs to a facet of Ω , or to an edge if two cables
are saturated. This algorithm appears to work well in simulation. Furthermore, tsol,
defined as the minimum of the Euclidean norm ‖tobj − t‖2 under the constraint (2),
is a quadratic criteria that guarantees the solution continuity [9].

tobj can also be defined as the COG of Λ. This can be computed through the
determination of Λ vertices followed by a triangulation of the Λ polyhedron [11].
Finally, the COG of each simplexes is calculated together with Λ COG, defined
as tobj. This method has also been implemented. However the computational time
required at each loop is high because of the considered number of cables that implies
many combinatorial calculations.

6 Conclusion

This paper introduced a suspended six DOF CDPR driven by eight cables called
ReelAx8. It provides interesting motion capabilities over an important workspace,
regarding its footprint. However, experimental tests revealed open problems such as
the need of efficient tension distribution algorithms in order to improve the accuracy.
Such algorithms have been tested in simulation but still remains to be apply in real-
time to the prototype. This may raise issues since real-time implementation is criti-
cal, as it is the case in previous works on fully constrained CDPR which rarely report
practical real-time implementations. Furthermore, due to the under-constrained na-
ture of the robot, Λ maybe very small, e.g. if the platform is unloaded, and tsol ∈ Λ

could be hard to find. These issues are part of our future works.
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Planning Singularity-Free Force-Feasible Paths
on the Stewart Platform

Oriol Bohigas, Montserrat Manubens and Lluı́s Ros

Abstract This paper provides a method for computing force-feasible paths on the
Stewart platform. Given two configurations of the platform, the method attempts to
connect them through a path that, at any point, allows the platform to counteract any
external wrench lying inside a predefined six-dimensional region. In particular, the
Jacobian matrix of the manipulator will be full rank along such path, so that the path
will not traverse the forward singularity locus at any point. The path is computed
by first characterizing the force-feasible C-space of the manipulator as the solu-
tion set of a system of equations, and then using a higher-dimensional continuation
technique to explore this set systematically from one configuration, until the second
configuration is found. Examples are included that demonstrate the performance of
the method on illustrative situations.

Key words: Singularity-free path planning, higher-dimensional continuation, sin-
gularity avoidance, Stewart platform

1 Introduction

Singular configurations of the Stewart platform are well-known and widely studied
in the literature [9, 11]. They yield uncontrollable motions or unresolvable end-
effector forces and, thus, they are to be avoided in the vast majority of applications.
On this regard, several works consider the issue of local singularity avoidance [1],
but only a few tackle the more general problem of computing singularity-free paths
between two distant configurations. Solutions to this problem include an algorithm
based on deforming a parametrized path between the query configurations [5], a
variational approach that reduces the problem to a boundary value problem [14],
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and a numerical technique based on treating the singularity locus as a collection
of obstacles [6]. All of these algorithms work well in favorable situations, but [5]
and [14] mention limitations relative to proving path existence in certain cases,
and [6] is computationally intensive, as it requires constructing polytope approx-
imations of the entire singularity set before searching for the path. An important
drawback of [5, 6, 14], moreover, is that the clearance of the path relative to the
singularity locus is measured in terms of the determinant or the condition number
of the Jacobian matrix, which, as noted in [15], lack physical significance.

In contrast to such works, this paper provides a method for planning paths that
maintain a physically meaningful clearance with respect to the singularity locus.
This clearance is defined following the spirit of [3, 8], as the one that results from
only allowing force-feasible configurations; i.e., those on which the leg forces re-
main within the allowed limits, for any platform wrench lying inside a prescribed
six-dimensional region (Section 2). The planning method relies on defining a sys-
tem of equations whose solution manifold corresponds to the force-feasible subset
of the C-space, so that maneuvering through such manifold guarantees singularity
avoidance at all times (Section 3). Then, an extension of the higher-dimensional
continuation strategy given in [7] is defined to explore this manifold systematically,
until a path joining the start and goal configurations is found, or path non-existence
is determined at a given resolution (Section 4). The approach has been implemented
and validated on several experiments (Section 5).

2 Problem Statement

Fig. 1 The Stewart platform.

The Stewart platform consists of a mov-
ing plate, or platform, connected to a fixed
base by means of six legs, where each leg
is a universal-prismatic-spherical chain. The
most general version of such manipulator fol-
lows the so-called 6-6 design, where the leg
anchor points are all different (Fig. 1), though
not necessarily coplanar [10]. The six pris-
matic joints are actuated, allowing to control
the six degrees of freedom of the platform,
and the remaining joints are passive.

Let OXY Z and PX ′Y ′Z′ be fixed and mov-
ing reference frames, respectively attached to
the base and the platform (Fig. 1). Any con-
figuration of the platform can be uniquely
represented by a pair q = (p,R) ∈ SE(3), where p = [x,y,z]T is the position vec-
tor of point P in the fixed frame, and R is a 3× 3 rotation matrix providing the
orientation of PX ′Y ′Z′ relative to OXY Z. Not all values for R and p are permitted
though, because the leg lengths ρi need to be within the range [ρi,ρi] of allowable



Planning Singularity-Free Force-Feasible Paths on the Stewart Platform 247

values on each leg. Thus, if ai and bi denote the position vectors of the anchor points
Ai and Bi of the ith leg (Fig. 1), expressed in OXY Z and PX ′Y ′Z′ respectively, the
configuration will only be valid if for i = 1, . . . ,6 it satisfies

ρ2
i = |p+Rbi −ai|2, (1)

ρi ∈ [ρi,ρi]. (2)

Often, moreover, each configuration q must be force feasible, in the sense that the
platform must be able to equilibrate any external wrench ŵ acting on it, subject to
lie inside a given six-dimensional region W ⊂ R

6. The significance of W depends
on the particular context of application. For example, W may be determined by
the set of allowable inertia forces acting on the platform, or by the set of wrenches
that should be suppliable to the environment. Specifically, the force-feasibility re-
quirement on a given q implies that for any wrench ŵ ∈ W there must be a vector
f = [ f1, . . . , f6]

T of leg forces satisfying

J(q) ·f = ŵ, (3)

with
f ∈ D = [ f1, f1]× . . .× [ f6, f6], (4)

where J(q) is the 6× 6 screw Jacobian of the manipulator at configuration q, and
[ fi, fi] is the interval of force magnitudes that can be resisted by the ith leg. In this
paper, W will be a six-dimensional non-degenerate ellipsoid defined by

(ŵ− ŵ0)
TE (ŵ− ŵ0)≤ 1, (5)

where ŵ0 is a fixed wrench and E is a constant 6× 6 positive-definite symmet-
ric matrix. Also, ŵ, ŵ0, and J(q) will be assumed to be given in a frame PXY Z
centered in P and parallel to OXY Z, but any other frame could be assumed if de-
sired.

Now, let C be the set of all q ∈ SE(3) satisfying Eqs. (1)-(4) for all ŵ ∈ W ,
which we will call the force-feasible C-space of the manipulator. Given two con-
figurations in C , q1 and q2, the goal of this paper is to provide an algorithm for
computing a path on C connecting them, if one exists, or to determine path non-
existence otherwise. To find such a path, we next define a system of equations that
characterize C .

3 Equations of the Force-Feasible C-Space

Let f 0 be any vector of resultant leg forces corresponding to ŵ0, i.e.,

J(q) ·f0 = ŵ0. (6)
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By substitution of ŵ − ŵ0 = J(q)(f − f 0) into Eq. (5) we realize that, for a
given q, the set F of leg forces f satisfying Eq. (3) for some ŵ ∈ W is given by
(f −f0)

TB (f −f 0)≤ 1, where B = J(q)TE J(q). Hence, F is an ellipsoid,
because E is symmetric and positive-definite, but this ellipsoid will be bounded in
all directions, or only in some, depending on whether det(J(q)) �= 0 or not.

Now note that, for q to be force-feasible, it must be F ⊂ D , which can be
checked as follows. Let vi ∈ R

6 be a vector satisfying

Bivi = 0 (7)

vT
i B vi = 1 (8)

vi,i ≥ 0 (9)

where vi,i denotes the ith component of vi, and Bi stands for the matrix B with
its ith row removed. If det(J(q)) �= 0, then B and Bi are full row rank, and there
is exactly one vector vi satisfying (7)-(9). Using Lagrange multipliers, one can see
that in such a case f 0 −vi and f 0 +vi are the vectors in F attaining the smallest
and largest value along the ith coordinate. Hence, when det(J(q)) �= 0, F ⊂ D iff

f0,i − vi,i ≥ fi and f0,i + vi,i ≤ fi, for i = 1, . . . ,6. (10)

When det(J(q)) = 0, it will always be F �⊂D , because F will be unbounded along
some of its principal directions.

Observe that the constraints in (2), (9), and (10) are equivalent to imposing

(ρi −mi)
2 + r2

i = h2
i , (11)

vi,i = s2
i , (12)

f0,i − vi,i = t2
i + fi, f0,i + vi,i =−u2

i + fi, (13)

respectively, where mi and hi are the midpoint and half-range of [ρi,ρi], and ri, si,
ti, and ui are newly-defined auxiliary variables. As a result, C can be characterized
as the set of points q that satisfy the system formed by Eqs. (1), (6), (7), (8), and
(11)-(13) for some value of the remaining variables. For ease of explanation, this
system will be written as F (x) = 0, where x∈R

nx encompasses all variables in the
system, including those in q.

Let M be the set of points x that satisfy F (x) = 0, which is a manifold of
dimension d = 6 when no further constraints are imposed on q = (p,R). Note that
such points are in correspondence with the points q ∈C because any value of q ∈C
determines the values for the remaining variables in x ∈ M . Thus, since q1 and q2
have corresponding points x1 and x2 on M , and all paths on C are represented
in M , and viceversa, the original problem of computing a force-feasible path in C
from q1 to q2 can be reduced to that of connecting x1 and x2 through a path on M .
It is not difficult to see, moreover, that for any x ∈ M it will be det(J(q)) �= 0, so
that any path computed on M will be free of singular configurations. Certainly, if it
were det(J(q)) = 0 for some x∈M , then B would be rank deficient, implying that
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Fig. 2 The higher-dimensional continuation method applied to a 2-dimensional manifold in R
3.

Ker(Bi) = Ker(B) for some i. Therefore, any vi satisfying Eq. (7) would violate
Eq. (8), which is in contradiction with the fact that x ∈ M .

4 Exploring the Force-Feasible C-Space for a Path

To determine a path on M connecting x1 and x2 we can gradually construct
an atlas of M , i.e., a collection of charts where each chart Ci defines a local
map from a domain Pi ⊂ R

d to an open set of M around a point xi ∈ M ,
initially x1. The atlas will be computed using the higher-dimensional continua-
tion approach proposed in [7], which defines the local map for chart Ci

using Ψ i, an orthonormal basis of TxiM , the d-dimensional tangent space of
M at xi. The map is defined by first selecting a vector ui

j ∈ R
d of parameters

(Fig. 2, left), which is used to generate a point xi
j ∈ R

nx in the neighborhood

Fig. 3 Chart construction.

of xi, using
xi

j = xi +Ψ i u
i
j. (14)

Then, a point x j ∈ M corresponding to the pro-
jection of xi

j on M is computed, by solving the

system formed by F (x j) = 0 and ΨT
i (x j −xi

j) =

0 using a Newton method initialized at xi
j. Each

point x j is the potential center of a new chart
(Fig. 2, right), and Henderson introduced a method
to determine how to select the chart centers to en-
sure a good coverage of the manifold [7]. In his
approach, the domain Pi of chart Ci is initialized
as a d-dimensional hypercube enclosing a ball Bi

of radius r, both defined in TxiM , as illustrated
in Fig. 3, top. A vertex of Pi exterior to Bi, with
position vector s, is used to generate a point xi

j,
using (14) with ui

j = α ·s/‖s‖, where α is initial-
ized to r. If the projection of xi

j to M does not
converge, or if the new chart Cj at x j is too far or
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too different from Ci, the new chart is discarded and a new attempt of chart gener-
ation is performed with a smaller α , allowing to adapt the size of the area covered
by each chart to the local curvature of the manifold. When Cj is valid, it is used to
crop Pi from the intersection between Bi and Ci

j, the projection on TxiM of the
part of the manifold covered by Cj. This projection is approximated by a ball Bi

j

of radius r in TxiM , centered at the point given by ui
j, as shown in Fig. 3, bottom.

The intersection of Bi and Bi
j defines a new face for Pi that eliminates some of its

vertices (in particular the one given by s) and generates new ones. Symmetrically,
the polytope P j associated with Cj is cropped using Ci. When Ci is surrounded by
other charts, Pi becomes a convex polytope included in Bi, and Ci is considered
to be closed, meaning that no further expansion of the atlas needs to be attempted
from that chart. When all charts are closed, the connected component of M con-
taining the initial point x1 gets fully covered. If a path exists from x1 to x2, x2

must be included in one of the charts of the atlas and, thus, a solution path can be
determined by searching on the graph implicitly defined by the chart centers and
their neighborhood relations. In practice, however, the expansion of the charts is
performed according to an A* search strategy using an admissible heuristic [13],
so that the path is returned as soon as it is found without computing the whole at-
las, and it is guaranteed to be the shortest possible on M . If x2 is not included in
any of the charts in the end, path non-existence is established at the considered value
for r.

5 Experiments

The method has been implemented in C, and run on a iMac equipped with a 2.93
GHz Intel Core i7 processor. To verify its performance on a realistic situation, the
geometric parameters of the INRIA left hand have been used [10]. All legs of this
manipulator admit forces in the range [ fi, fi] = [−300,300], and for the experiments
we have set ŵ0 = [0,0,150,0,0,0]T and E = I6×6, assuming SI units throughout.
In this case, the force-feasible C-space of this manipulator is close to the workspace
defined by its allowable leg lengths [10], and the algorithm solves typical planning
queries in a few seconds, even when permitting the variation of all pose parameters.

To graphically illustrate the performance of the method, however, it is bet-
ter to adopt the geometric parameters of the more academic manipulator in [9],
where large variations of the leg lengths are allowed, leading to a very large
workspace with interesting singularity surfaces. Two experiments are shown for
this manipulator, assuming [ fi, fi] = [−300,300] and E = I6×6 as before, but us-
ing ŵ0 = [0,0,1,0,0,0]T. In a first experiment we compute a force-feasible path for
the platform moving at a constant orientation, defined by the Euler angles φ =−2◦,
θ = 30◦ and ψ = −87◦ under the convention in [9], and at a constant value of z.
Using the start and goal configurations defined by the positions p1 = [0.4,0,0.1]T

and p2 = [−0.3,0,0.1]T for P, the resulting path in the XY plane is computed in
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Fig. 4 Top: Two paths computed for the manipulator in [9]. Bottom: Plot of the maximum and
minimum forces supported by each leg along the left path.

578 seconds. Fig. 4, left shows this path, together with the singularity curve to be
avoided, the atlas corresponding to the whole force-feasible connected component
accessible from p1 (shown as a mesh), and the region explored by the A* algorithm
(shaded in grey). It can be seen that the interpolated path between p1 and p2 would
go through singularities, but the computed path correctly avoids them while keeping
the leg forces within the specified ranges (Fig. 4, bottom). In a second experiment,
we solve the same planning query but keeping constant the orientation of the plat-
form only, obtaining the path in XYZ shown in Fig. 4, right in 90 minutes. The
singularity surface, computed using [2] and shown in the figure, is correctly avoided
by the computed path. It must be noted that these are hard planning queries, since
the workspace in [9] is enormous when compared to typical workspaces arising in
usual platforms. Moreover, once a partial atlas is computed, all planning queries
between configurations covered by such atlas can be solved in a few milliseconds.

6 Conclusions and Future Work

This paper has presented a path planning method for computing non-singular paths
on the Stewart platform, based on imposing the resolvability of a six-dimensional
set of wrenches at any point on the path. The method has been tested successfully
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on manipulators of various geometries, and computes paths in reasonable times in
realistic situations. The presented approach could be generalized by requiring the
path to fulfill additional constraints, like guaranteeing a certain positioning accuracy
of the platform, or the avoidance of platform collisions. While the former constraints
can in principle be incorporated using dual developments to those herein presented,
the latter require investigating the possibility of randomizing the planner, in the spirit
of [4] or [12], for example.
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Orientation Capability of a 3-RPSR Parallel
Mechanism for a Movable-Die Drive Mechanism
of Pipe Bender

Yukio Takeda, Satoshi Inada, Daisuke Matsuura, Kazuya Hirose and Ken Ichiryu

Abstract Kinematic analysis of a 3-RPSR parallel mechanism with six DOF, which
has been applied to a movable-die drive mechanism of pipe bender, has been done.
Orientation capability of this mechanism has been investigated taking into consid-
eration singularity and motion range of spherical joints. A mechanism with a high
orientation capability designed based on the analysis is shown.

Key words: Robotics, kinematics, parallel mechanism, orientation capability, sin-
gularity, pipe bender

1 Introduction

Parallel mechanisms with six degrees of freedom (DOF) have attracted attention as
appropriate mechanisms for performing tasks which require high accuracy, high ac-
celeration, high rigidity, and high power. A huge number of researches have been
done for such mechanisms with six connecting chains between the base and the
output link, such as those with variable link lengths (Stewart platform type), fixed
length links with linear drives, and fixed length links with rotary drives. They have
been applied to motion simulators, machine tools, manipulators, etc. However, due
to the limited orientation capability (small range of orientation angle of the output
link) of these mechanisms, their applications are quite limited. In our previous work,
a six-DOF parallel mechanism with three connecting chains, named 3-RPSR mech-
anism with triple revolute joints on the base, has been proposed as a mechanism
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Fig. 1 Configuration of pipe bender. Fig. 2 Principle of penetration bending method.

which can have a good orientation capability [2]. This mechanism has been applied
to a movable-die drive mechanism of pipe bender [1]. This mechanism was designed
to perform a good orientation capability such as a full rotation around the center axis
and inclination by 45 deg in any direction. Through its application to a pipe bender,
we found that better orientation capability is required for manufacturing complex
three-dimensional shaped pipes.

In the present paper, kinematic analysis of 3-RPSR mechanism has been per-
formed to clarify the relationship between kinematic parameters and orientation ca-
pability taking into consideration singularity and motion range of joints. Then, a
mechanism having a better orientation capability is shown.

2 Pipe Bender Composed of Parallel Mechanism

The basic configuration of the pipe bender is shown in Fig. 1. A straight pipe pushed
upward by a pipe feeder (a) is transformed into a desired shape by being pushed
through a fixed die (b) and a movable die (c). The position and orientation of the
movable die are changed by the movable-die drive mechanism (d) synchronously
driven with the feeding of the pipe. As the movable-die drive mechanism, we applied
a parallel mechanism with six DOF.

Figure 2 shows the geometric parameters used to represent the position and ori-
entation of the movable die relative to the fixed die, and forces applied to the pipe
from two dies and pipe feeder. ξB, ζB, θ and R are the offset, angle of the movable
die and the curvature radius of the bent pipe, and FB, FC and FP are the forces applied
to pipe by movable die, fixed die and feeder. By neglecting the friction between the
pipe and two dies, bending moment, M, exerted on the pipe at point O, is written as

M = (FB cosθ)ζB +(FB sinθ)ξB = FBRsinθ . (1)

From Eq. (1) and Fig. 1, it can be found that increasing the movable-die incli-
nation angle, θ , is important to reduce the force amplitude, FB, without losing the
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Fig. 3 3-RPSR mechanism with triple revolute joints. Fig. 4 Location of revolute joint on the
output link.

capability to achieve large bending moment. Increasing θ is also effective to avoid
the interference between the fixed die and movable die, because that will enlarge the
distance between two dies.

3 3-RPSR Mechanism

3.1 Description of the Mechanism

The kinematic structure of the 3-RPSR mechanism is shown in Fig. 3. The axes of
all revolute joints which connect the connecting chains with the base are coincident
with the Z axis of the base coordinate system O-XY Z. The three connecting chains
have the same structure and dimensions, and they are symmetrically located with
respect to O-XY Z and the moving coordinate system fixed on the output link P-
xyz. P represents the reference point on the output link. The revolute joints on the
base and the prismatic joints are active joints. As shown in Figs. 3 and 4, a moving
coordinate system Bi-xiyizi is considered, while i represents the connecting chain
number (i = 1,2,3). Bi-xiyizi is fixed to the output link at point Bi, and direction
of the zi axis coincides with the axis of the revolute joint on the output link. The
center of the spherical joint connecting i-th chain is denoted as Ai. The orientation
of the output link is represented by the three angles θy, θz, and ψ , shown in Fig. 5.
Kinematic constants are r (radius of the location circle of revolute joints on the
output link, Fig. 4), l (link length AiBi), and βB (the angle between the axis of the
prismatic joint and the base plane (XY plane), Fig. 6).

Figures 3 and 4 illustrate the definitions of important vectors for the following
kinematic analysis. A unit vector sA,i is heading the direction of the rotation center
of the spherical joint. Rotation angle of the spherical joint, θA,i, is defined as the

angle between
−−→
AiBi and sA,i. Vectors ai and ri represent the position of the spherical

joint’s center from the origin O and that from the output point P. Unit vectors ti, e1,
e2,i, and zi represent the direction of the link

−−→
AiBi, that of the revolute joint on the
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Fig. 5 Definition of orientation
angles.

Fig. 6 Definition of βB. Fig. 7 Solutions in Bi-x′iy
′
i coordi-

nate system.

base, that of the prismatic joint, and that of the rotation axis of the revolute joint Bi,
respectively.

Relationship among three coordinate systems O-XY Z, P-xyz and Bi-xiyizi is de-
scribed based on 4×4 transformation matrices T P

B,i, T O
B,i and T O

P as follows:

[
1

xO

]
= T O

P

[
1

xP

]
= T O

P T P
B,i

[
1

xB,i

]
= T O

Bi

[
1

xB,i

]
, where T O

B,i =

[
1 0 0 0

BO
i RO

B,i

]
, (2)

xO, xP, xB,i, BO
i = [XB,iYB,iZB,i]

T and RO
B,i = [amn] (m,n = 1,2,3) are position vectors

written in O-XY Z, P-xyz and Bi-xiyizi coordinate systems, and position and orienta-
tion of the frame Bi-xiyizi in terms of O-XY Z, respectively.

3.2 Inverse Displacement Analysis

The center of spherical joint Ai moves on the circular cone defined by a point O, Z
axis and angle βB (ZA,i ≤ 0). On the other hand, Ai lies on a circle centered on Bi

and radius l. These constraints are written by the following two equations and an
inequality with respect to the coordinates of Ai(xi,yi,zi) in Bi-xiyizi,

x2
i + y2

i = l2

{(XB,i +a11xi +a12yi)
2 +(YB,i +a21xi +a22yi)

2} tan2 βB = (ZB,i +a31xi +a32yi)
2

ZB,i +a31xi +a32yi ≤ 0

⎫⎬
⎭

(3)
By solving these simultaneous equations with an inequality, inverse displacement
analysis is performed for a given T O

P ( T O
B,i is calculated from T O

P and kinematic
constants). It should be noted that Eq. (3) has two solutions, but only one of them
is practical, when the actual working mode is considered. As shown in Fig. 7, two
solutions Ai,1 and Ai,2 on xiyi plane (zi = 0) are illustrated as the intersections of Si

(the second equation of Eq. (3)) and a circle of radius l (the first equation of Eq. (3)),
and distance between the point Bi and curvature Si is minimized at point Ti. When
Eq. (3) has a multiple root, that means the mechanism is at a singular point, and
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Fig. 8 Example of singular configurations.

Ai,1 and Ai,2 coincide with Ti. Without working mode change through the singular
point Ti, the solution cannot transfer Ai,1(or 2) to Ai,2(or 1). Based on a coordinate

system Bi-x′iy
′
i, in which x′i is aligned to

−−→
BiTi and y′i is determined as z′i = x′i ×y′i, two

solutions are discriminated as positive or negative along the y′i coordinate. In our
study, negative solution is chosen.

3.3 Jacobian Matrix

Relationship between the force FO/moment MO exerted on the output link and driv-
ing force/moment of active joints τ are written in base coordinate frame as

[
FO

MO

]
=−JTτ , JT = J1J−1

2 , (4)

where

J1 =

[
tO
1 tO

2 tO
3 zO

1 zO
2 zO

3
rO

1 × tO
1 rO

2 × tO
2 rO

3 × tO
3 rO

1 × zO
1 rO

2 × zO
2 rO

3 × zO
3

]
,

J2 =

⎡
⎢⎢⎢⎢⎣

{aO
1 × tO

1 ,e
O
1 } 0 0 {aO

1 × zO
1 ,e

O
1 } 0 0

0 {aO
2 × tO

2 ,e
O
1 } 0 0 {aO

2 × zO
2 ,e

O
1 } 0

0 0 {aO
3 × tO

3 ,e
O
1 } 0 0 {aO

3 × zO
3 ,e

O
1 }

{tO
1 ,e

O
2,1} 0 0 {zO

1 ,e
O
2,1} 0 0

0 {tO
2 ,e

O
2,2} 0 0 {zO

2 ,e
O
2,2} 0

0 0 {tO
3 ,e

O
2,3} 0 0 {zO

3 ,e
O
2,3}

⎤
⎥⎥⎥⎥⎦,

and τ = [τ1,1,τ1,2,τ1,3,τ2,1,τ2,2,τ2,3]
T. τ1,i denotes the driving torque of the revolute

joint on the base, and τ2,i denotes the driving force of the prismatic joint of i-th
connecting chain. J is the Jacobian matrix including closed-loop constraint.



258 Y. Takeda et al.

3.4 Singular Configuration and Predominant Factors of
Orientation Capability

When the rank of matrix J in Eq. (4) is deficient, the mechanism is located at a
singular configuration. Singular configurations of the mechanism are classified as
follows.

(a) Uncertain configuration: At this configuration, the matrix J1 loses its full
rank. Typical configurations are: (a-1) axes of revolute joints on the output link zi

and points Ai of two connecting chains are located in a plane, (a-2) points Ai of
two connecting chains coincide. The case (a-2) is not physically available due to the
collision of two arms. Example of (a-1) is shown in Fig. 8(a).

(b) Stationary configuration: At this configuration, the matrix J2 loses its rank.
This configuration occurs when the curve Si is tangent to the circle of radius l in
Fig. 7 and Eq. (3) in one connecting chain has a multiple root. Example of this
singular configuration is shown in Fig. 8(b). Here, let us note that the singular con-
figuration of this mechanism is theoretically equivalent to the well-known 6-3 fully
parallel mechanism with 6-SPS structure.

As well as the singular configurations mentioned above, motion range of the
spherical joint at Ai is one of the predominant factors of the orientation capability
because motion range of spherical joint is quite limited. In the next section, orienta-
tion capability of the 3-RPSR mechanism is investigated taking into consideration
these factors.

4 Analysis of Orientation Capability of 3-RPSR Mechanism

4.1 Evaluation Indices

Taking into consideration typically required movement of a movable-die drive
mechanism in bending a spiral pipe, output motion for evaluation was given as

XP = X ′′ cosθz, YP = X ′′ sinθz, ZP = ZO −SZ +2 SZ
SX

X ′′, θy =
θy,max

SX
X ′′,

Ψ = 0, θz = (i−1)π/9 (i = 1, . . . ,6), X ′′ : [−SX ,SX ]

}
(5)

Here, SX and SZ are maximum strokes of PB in the XY plane and in Z direction, and
θy,max is the maximum inclination angle of the movable die.

As an example of result, changes of detJ and the swing angle of spherical joint
max(θA,i)i=1,2,3 (denoted as θA,max) with respect to orientation angle θy for a mech-
anism of r = 45 mm, l = 150 mm, βB = 0 deg are shown in Fig. 9 for SX = SZ =
16 mm, θy,max = 90 deg. At a pose XP = YP = 0, ZP = ZO, θy = θz = ψ = 0, the
direction of swing center of spherical joint sA,i was determined where ZO was given
such that orientation capability would be optimal. From the figure, we found the
following results.
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Fig. 9 Change of detJ and θA,max with respect to θy (r = 45 mm, l = 150 mm, βB = 0 deg).

(1) Maximum inclination angle, max(|θy|), depends on the direction (θz).
(2) Swing angle of spherical joint θA,max linearly changes according to θy.
Considering the application of the mechanism to pipe bender, both the maxi-

mum of the maximum inclination angles at a constant θz, denoted as max(θy,1(θz =
const.)), and the minimum of the maximum inclination angle at a constant θz,
denoted as min(θy,2(θz = const.)), are important, where θy,1(θz = const.) and
θy,2(θz = const.) are shown in the figure. As for the requirement to spherical joint,
smaller value of ratio of the maximum swing angle of spherical joint θA,max at
max(θy,1(θz = const.)) to max(θy,1(θz = const.)) is better. Then, we determined
max(θy,1(θz = const.)), min(θy,2(θz = const.)) and θA,max/max(θy,1(θz = const.))
as the evaluation indices.

4.2 Results

Relationship between design parameters and evaluation indices are shown in Fig. 10.
Here, min(θy,2(θz = const.)) vs. design parameters is not shown. We found that
design parameters have less effect on min(θy,2(θz = const.)) than max(θy,1(θz =
const.)). It is known from the results that βB is the most important design param-
eters among the kinematic constants and that set of kinematic constants should be
optimized in order to obtain a mechanism that can achieve a high orientation capa-
bility and reduce requirement to the swing angle of spherical joint.

Based on the analysis results, we optimized kinematic constants, then we de-
signed a mechanism. Its 3D-CAD diagram is shown in Fig. 11. As shown in the fig-
ure, our designed mechanism can achieve a very high orientation capability while
practical dimension of links and motion range of joints are considered as well as
singularity.
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Fig. 10 Relationships between design parameters and evaluation indices (kinematic constants that
are not specified in the figure are r = 45 mm, l = 150 mm, βB = 15 deg).

Fig. 11 3D-CAD diagram of designed mechanism (r = 45 mm, l = 260 mm, βB = 20 deg).

5 Conclusions

Kinematic analysis of a 3-RPSR parallel mechanism with six DOF, which has been
applied to a movable-die drive mechanism of pipe bender, has been done to clarify
the relationship of its design parameters and orientation capability. Based on the
results of analysis, a mechanism that can achieve a high orientation capability was
designed.
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Investigation of a Cable-Driven Parallel
Mechanism for Interaction with a Variety of
Surfaces, Applied to the Cleaning of Free-Form
Buildings

K.H.J. Voss, V. van der Wijk and J.L. Herder

Abstract In this paper, the capability of a specific cable-driven parallel mechanism
to interact with a variety of surfaces is investigated. This capability could be of use
in for example the cleaning of large building surfaces. A method is presented to
investigate the workspace for which the cables do not interfere and a surface in-
teraction force can be generated. This method takes into account the influence of
cable mass. As an example, this method is used for the design of a mechanism with
a workspace conform to the dimensions of a typical building facade. The mecha-
nism is concluded to be feasible as long as there is room to locate the pulleys at an
adequate distance from the surface.

Key words: Cable-driven parallel mechanism, cable interference, workspace, cable
mass influence, surface interaction

1 Introduction

The cleaning of building surfaces, especially large ones, is a challenging task be-
cause of the difficulty in reaching them. With the increasing number of buildings
with free-form architecture, so called ‘blobitecture’, this task has become even more
challenging, and sometimes even impossible to do with conventional equipment
such as suspended platforms [13]. Another problem is that conventional cleaning is
expensive, because of the considerable amount of human labor involved [4] and the
necessary adaptations to the building to make it cleanable.

For the cleaning of glass surfaces, several automated devices have been proposed
and developed, e.g. [3, 4]. However, they still require human labor or they are only
applicable to a single surface or a limited number of simple surfaces. The current
problem is therefore that a cost-effective automated device that can interact with a
wide variety of large and small, straight and curved surfaces is still to be found.
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Cable Driven Parallel Mechanisms (CDPMs) are known to have several advan-
tages: they have a large workspace to mass ratio, they are easy to reconfigure and
they are relatively cheap [5, 9]. Therefore these mechanisms have a large potential
for the cost-effective interaction with a wide variety of surfaces. However, to the
authors best knowledge, the investigation of these mechanisms for this purpose is
unknown.

The goal of this paper is therefore to propose a CDPM for the purpose of inter-
action with a variety of large surfaces.

The paper is structured as follows. Firstly, the device configuration is presented.
Secondly, the method for the determination of the workspace in order to investi-
gate its feasibility for interaction with large free-form surfaces is presented. In this
method cable interferences, the influence of cable mass and the ability to provide a
surface interaction force are taken into account. The method is applied to an exam-
ple, yielding numerical results that are then discussed. The control of the device and
the actual cleaning process are not treated in this paper.

2 Mechanism Configuration and Definitions

Figure 1 shows the configuration of an eight cable CDPM. It consists of actuated
winches located at points Ai. For the application on a building, these winches can
be mounted on the ground, the roof or on beams at a distance from the surface. The
winches are connected by cables to a mobile platform at Bi. An end-effector (e.g.
a cleaning head [2]) can be located at H. F is the fixed frame and M is the mobile
frame attached to the platform. Vectors Ai,F describe the location of points Ai in F ,
vectors Bi,M describe the location of Bi in M.

The three translational degrees of freedom (DOFs) of the platform are described
by the vector r directed from the origin of F to the origin of M. The three rota-
tional DOFs of the platform are defined by a rotation about the y-, x- and z-axis of F
respectively, contained in vector θ = [θx,θy,θz]

T. This rotation from F to M is de-
scribed by a rotation matrix R(θ) =Rz(θz)Rx(θx)Ry(θy), where the latter three ma-
trices are elementary rotation matrices. The pose is defined as x = [rT,θ T]T, which
thus includes all DOFs. The surface to be interacted with lies within quadrilateral
A5A6A7A8 with possible features in yF direction.

There is actuation redundancy because there are eight actuated cables actuating
six DOFs; The seventh cable is necessary to keep tension in the cables, the eighth is
added to achieve a proper workspace.

Surfaces conform those usually found on buildings have large dimensions in
two directions, and also some smaller features in the third direction. However, the
workspace of a CDPM usually has fairly equal dimensions in all directions (e.g.
[1, 11]). In this paper it will be shown that the presented CDPM has the proper
workspace with one small edge and two long edges, which could make it applicable
on the set of mentioned surfaces. Within this workspace, the cables are always free
of interference and an interaction force on the surface can be produced.
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Fig. 1 CDPM configuration. Fig. 2 Cable pair.

3 Method

To generate a workspace in which cables do not interfere, the interference needs to
be detected. This needs to be done in such a way that the result is also valid for cables
that sag due to their mass and that it is implementable in the method for calculating
a wrench feasible workspace, which is explained later. This made existing methods
to calculate cable interferences (e.g. [8, 10]) insufficient. Therefore a new method is
developed specifically for this configuration.

Instead of investigating the interference between each possible pair of cables and
also the mobile platform, a simplifying observation can be made. Namely, interfer-
ence will always occur between cables in one of the pairs of cables 1-5, 2-6, 3-7 and
4-8, prior to any interference between cables belonging to different pairs or between
a cable and the mobile platform. Therefore, interference is tested solely between
two cables in one of these pairs. E.g. a rotation of the pose in Fig. 1 around the zF

axis will result in interference occurring first in pair 1-5 or 4-8.
Figure 2 shows a pair of cables i and j in a state of no interference. Plane P with

normal vector p is spanned by v1 from pulley Ai to Aj and by v2 from Ai along cable
i. The cables in this pair are defined to interfere if cable j (v3) lies in or on the other
side of P, because it will then have crossed cable i. This is the case if ∠(p,v3)≥ 90°,
or in terms of the vectors vi:

det([v1,v2,v3])≤ 0. (1)

Eq. (1) is still based on an assumption of massless, straight cables. To account for
mass effects, i.e. sag of the cables, a distance margin dmar is introduced. Should the
minimal distance dmin between two straight cables fall below dmar, the sagged cables
are defined to interfere, see Eq. (2).
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dmin =
∣
∣
∣v1 ·

v2 ×v3

‖v2 ×v3‖

∣
∣
∣=

∣
∣
∣
det([v1,v2,v3])

‖v2 ×v3‖

∣
∣
∣< dmar. (2)

Instead of testing for interference by evaluating Eqs. (1) and (2), they can be com-
bined in Eq. (3), allowing for a single equation to test for interference.

det([v1,v2,v3])

‖v2 ×v3‖
< dmar. (3)

To determine a proper dmar, the sagged state of the cables will be compared to the
state with straight cables. The method to calculate the sagged state is adapted from
[7, 12], in which the location of one end of a cable in a local x-z plane with the other
end clamped at (0,0) is given by Eqs. (4) and (5).

xend =
FxL0

EA0
+

|Fx|
ρ0g

(

asinh
(Fz

Fx

)

− asinh
(Fz −ρ0gL0

Fx

))

, (4)

zend =
FzL0

EA0
− ρ0gL2

0

2EA0
+

1
ρ0g

(√

F2
x +F2

z +
√

F2
x +(Fz −ρ0gL0)2

)

. (5)

For a given pose of the mobile platform, xend and zend can be calculated for each
cable. Young’s modulus E, cable cross-sectional area A0, linear density ρ0 and grav-
itational acceleration g are assumed to be known. The forces Fx and Fz at the end
and the sagged cable length L0 are to be calculated, which are three unknowns for
two equations. Therefore there are 2m equations for 3m unknowns for an n-DOF,
m-cable device. Then, with static equilibrium providing an additional n equations,
the equations are solvable for an n = m CDPM, as was done in [7, 12]. However, an
n = m−2 CDPM like the one investigated here has two extra free variables. These
free variables are used in the adapted method presented here.

At first, suppose that the cables are massless and therefore straight. Then Eq. (6)
[1] shows how 6× 8 wrench matrix WM relates the cable tension forces gathered
in 8× 1 vector t to the forces and torques (i.e. wrench), gathered in 6× 1 wrench
vector fM in M.

WMt =
[

u1,M · · · u8,M
B1,M ×u1,M · · · B8,M ×u8,M

]

t = fM, ui,M =
li,M

‖li,M‖ (6)

The unknowns for a given pose x and a given external force vector fM are calculated
using a four step method. The first step is to solve the linear programming equa-
tion of Eq. (7) [6] with cable tensions t between specified bounds. c = −1 to find
maximal valid cable tensions, which results in low sag.

min
t

cTt such that WMt = fM, t ∈ [tlow, thigh]. (7)

The second step is to solve the system of Eqs. (4) and (5) and equilibrium for
the eight cables simultaneously. The initial values of Fx and Fz for each cable
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are calculated from the t found with Eq. (7). The initial values of the L0 are
‖Li,M‖= ‖Ai,M −Bi,M‖.

The found solution for t is not unique because of the free variables, but starting
from this solution, these variables can be used to affect the sag of all cables so that
they stay below a pre-defined limit δmax. This limit is defined by Eq. (8), and if this
equation is not true, step three is performed.

∀i ∈ [1,2, . . . ,8] : δi ≤ δmax, where δi =
L0,i −‖li‖

‖li‖
. (8)

Step three is to add Eq. (9) to the system of equations and solve it again, where i is
the number of the cable with the largest δi, Fp is the solution for Fz for this cable and
α > 1. The effect is that the Fz for the cable with the most sag is increased, which
reduces its δi. Step three is repeated until Eq. (8) is valid. δmax needs to be raised if
this proves impossible.

Fz,i = αFp. (9)

For step four, it is now possible to calculate the path of a sagged cable from Ai

to Bi with [7, 12]. This allows minimal distances between the sagged cables to
be calculated and the presence of interference to be investigated with a plot. By
comparing these results at a number of poses for which Eq. (3) predicts interference,
the optimal dmar can be found.

Now that dmar is known, the space that needs to be tested for interference is dis-
cretized into a finite number of poses. If for a specific grid point Eq. (3) is false for
each pair of cables, it is considered that there is no interference and the correspond-
ing pose is added to the interference free space (IFS).

In addition to being interference free, at a pose an adequate surface normal force
also needs to be producible. This means that there should be equilibrium for an fM
in which a surface interaction is specified along the yM direction and a gravity force
is specified in the proper direction. This could be tested by checking whether the
system of sag equations converges for this pose and this fM. However, a lack of con-
vergence might also indicate a wrongly defined δmax or α and it is recommended to
visually inspect the solution for a pose that does converge. This makes this approach
infeasible and instead, a test for wrench feasibility with a method adapted from [6]
to include the effects of cable mass is proposed.

A pose is wrench feasible if at this pose Eq. (6) can be satisfied with a t ∈
[tmin, tmax]; this can be tested with [6]. Although this method is based on massless
cables, the cable mass is accounted for in two ways. Firstly, the cable mass mc given
by mc = ρ0 ∑8

i=1 ‖li‖ is added to the platform mass mp, resulting in a larger gravity
force fM. Not just a part, but the entire mass of all eight cables is added, because the
pulleys at the top need to lift this entire mass.

Secondly, the tmin is determined in the same way as dmar is determined: for a
number of representative poses with sagged cables the cable tensions are calculated.
The cable tensions that are found to be minimally necessary to keep Eq. (8) valid
are the input for tmin. In [6] wrench feasibility is tested for pose intervals. To reduce
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Table 1 Numerical values, all coordinates are in meters

A1,F [−30,−5,−50]T A5,F [−30,5,−50]T B1,M [0,3,−2]T B5,M [−3,−3,0]T

A2,F [30,−5,−50]T A6,F [30,5,−50]T B2,M [0,3,−2]T B6,M [3,−3,0]T

A3,F [30,−5,65]T A7,F [30,5,60]T B3,M [0,3,2]T B7,M [3,−3,0]T

A4,F [−30,−5,65]T A8,F [−30,5,60]T B4,M [0,3,2]T B8,M [−3,−3,0]T

HM [0,5,0]T ρ0 0.24 kg/m E 400 GPa A0 50 mm2

mp 250 kg g 9.81 m/s2

calculation time, here the IFS is used as an input grid of poses to test. The result is
an interference free wrench feasible workspace (IFWFW).

4 Results

The method is applied to the configuration of Fig. 1 with the numerical values of
Table 1. mp is the mass of the platform; ρ0, E and A0 are consistent with commer-
cially available fiber core wire rope. Using the discussed method, the table values
were selected to make a good set for the cleaning of a building facade of 40×100 m
with feature depths of 5 m.

fM =
[

[Fs +Fg]
T,0,0,0

]T
, Fs = [0,100,0]T, Fg = R(θ)T[0,0,mg]T (10)

The wrench vector fM used in this analysis is given by Eq. (10). Herein, a surface
interaction force of 100 N is defined in +yM direction. A force mg in +zF direction
counteracts the gravity on the platform. R(θ)T rotates this force to the mobile frame.
m = mp for the sag analysis and m = mp +mc for the wrench feasibility analysis.
The rest of the forces and the torques are zero for equilibrium.

Using this force vector, the influence of cable mass is investigated for a number
of poses to find a suitable dmar and tmin. A δmax = 0.0005 and α = 1.1 were used for
these investigations. Together with all entries of thigh equal to 6 kN in Eq. (7) this
resulted in maximal cable tensions of around 9.5 kN for the final solution of all poses
of the sagged state. This corresponds to a safety factor of 4 for the used wire rope
and will also be used as the tmax for the wrench feasibility analysis. A dmar of 0.35 m
was concluded to be adequate. This occurred e.g. at pose x= [20,0,40,19°,0°,20°]T

where the cables 1 and 5 were observed to touch each other in sagged state, while
Eq. (3) predicted a distance of 0.35 m. A cable tension of 1.6 kN insures that Eq. (8)
is satisfied for each cable in each pose and therefore this is used as the tmin for the
wrench feasibility analysis.

Figure 3 shows the result of pulling the cables tight to make Eq. 8 valid for the
pose x = [20,0,50,0°,0°,0°]T. Cable 5 had too much sag at first, which is illus-
trated by the dashed line. After pulling the cable tight, the cable was located along
the solid line. This increased the minimal distance between Cable 1 and 5 from
0.48 m to 1.26 m, which shows how this method can increase the interference free
space. Another effect of pulling tight is that the stiffness added by Cable 5 to the
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Fig. 3 Sagged cable states. Fig. 4 IFWFW. Fig. 5 IFWFW.

mobile platform was raised by more than a factor 5 in all directions. Although this
had no real effect on the total stiffness of the mobile platform, since this is mostly
determined by the very taut cables (e.g. Cable 3), it does mean that Cable 5 will be
less influenced by outside factors like wind.

Using all the found data, the IFWFW can be calculated. In principle this is a 6
dimensional space, but to make the results presentable, three-dimensional IFWFWs
are calculated for fixed sets of the vector θ . The grid for r is 40×5×100 m in x, y
and z direction respectively. Plotted are all the positions that point H can reach. Fig-
ure 4 shows the IFWFW for all rotations equal to zero. For 82% of the investigated
grid points, the wrench was feasible and there was no interference. Figure 5 shows
the IFWFW for a rotation of 45° around xF . The cables interfere in the bottom part
of the grid, but this rotation can be used to reach higher with point H. Now, 40%
of the grid points were wrench feasible and interference free. For poses towards the
core of the IFWFW, maximal surface interaction forces far higher than 100 N can
be produced, e.g. 3.7 kN for x = [0,0,0,0°,0°,0°]T.

The found IFWFW conforms rather well to a flat box-like shape, which is a good
shape for cleaning building facades. To achieve this shape, the pulleys had to be
positioned at quite a distance away from its edges. As long as this is not a problem,
the CDPM is a viable option for a facade cleaning device. Within the workspace the
mechanism is independent of surface features, but interference of cables with the
surface still needs to be checked.

5 Discussion and Conclusion

In this paper, the occurrence of interference was defined as a limit to the workspace.
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However, even after interference has occurred between cables or with the surface,
the mechanism might still be able to function. This could favorably increase the
workspace of e.g. the situation in Fig. 5. The assumption of interference between
cable pairs resulted in an interference calculation method fast enough to be used in
real-time operation. This method should not only work for the flat box-like CDPM
configuration presented here, but also for similar configurations with different box
shapes and sizes. These could be used to clean solar panel arrays or cooling towers.

It can be concluded that a CDPM is suitable for interaction with a large surface.
Within the workspace, this surface can have any shape. A method has been devel-
oped in which linear cable theory is used to analyze cable interference and wrench
feasibility for an over-actuated CDPM while taking into account the effects of ca-
ble mass. This method can be used to design CDPMs for surface interaction, which
was done for a facade cleaning application. The designed mechanism is viable for
this application as long as the pulleys can be placed at sufficient distances from the
surface.
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ing. In: Proceedings of the 21st ISARC (2004)

5. Gouttefarde, M., Gosselin, C.: Analysis of the wrench-closure workspace of planar parallel
cable-driven mechanisms. IEEE Trans. Robot. 22(3), 343–445 (2006)

6. Gouttefarde, M., Merlet, J.P., Daney, D.: Wrench-feasible workspace of parallel cable-driven
mechanisms. In: IEEE International Conference on Robotics and Automation, pp. 1492–1497
(2007)

7. Kozak, K.: Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE
Trans. Robot. 22(3), 425–433 (2006)

8. Merlet, J.P.: Analysis of the influence of wires interference on the workspace of wire robots.
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Auto Calibration Method for Cable-Driven
Parallel Robots Using Force Sensors

Philipp Miermeister and Andreas Pott

Abstract This paper presents an auto calibration method for overconstrained cable-
driven parallel robots using internal position and force sensors. The consideration
of cable forces is necessary in order to regard the cable elasticity. A calibration
workflow is proposed and implemented including pose selection, measurement, and
parameter adjustment. The calibration procedure is not limited to the geometrical
parameters, but also allows to identify force related parameters such as the cable
stiffness and platform mass. The calibration results are shown for an unknown pa-
rameter set and the influence of sensor noise on the calibration results is presented.

Key words: Cable-driven parallel robot, auto calibration, least squares, force sen-
sors

1 Introduction

A cable-driven parallel robot, here also simply called cable robot, is a parallel kine-
matic machine mainly consisting of a platform, cables and winches as shown in
Figure 1. The cables connect the platform to the winches which control the platform
pose by changing the cable length. In the recent years cable robots got lots of atten-
tion [1, 3] due to their advantages over serial kinematics and conventional parallel
kinematics. On the one side, cable robots inherit the properties of all parallel kine-
matic robots as for example high structural stiffness, payload and good precision.
On the other side, they outperform conventional parallel kinematics with regards
to flexibility, workspace and speed, because the cables allow ultra light weight con-
structions in nearly arbitrary large areas. The winches can be easily attached to solid
structures such as steel frames or walls and allow to change the robot configuration
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 34,
© Springer Science+Business Media Dordrecht 2012

269

mailto:philipp.miermeister@ipa.fhg.de,andreas.pott@ipa.fhg.de
http://dx.doi.org/10.1007/978-94-007-4620-6_34


270 P. Miermeister and A. Pott

Fig. 1 Cable-driven parallel robot demonstrator at Fraunhofer IPA.

in a short time. Since each new configuration requires the identification of the actual
geometric parameters, an out calibration procedure is highly desirable. Especially
an auto calibration method is of interest where only internal sensors are used to
determine the robot parameters avoiding the use of expensive and time consuming
external metrology equipment such as laser trackers. The calibration task consists of
multiple parts [2]. At first, a model of the robot has to be established including the
parameters which have the largest influence on the robots behavior. This goes along
with pose selection [6] in order to find a well conditioned identification matrix which
reflects the sensitivity with respect to parametric errors. The well conditioned pose
set is used to compute the actuator set points for the measurement procedure based
on the nominal model. After measurement it is necessary to compare the predicted
and measured quantities in order to minimize the error in the unknown parameters.
Firstly we derive the equations for the kinematic model.

2 Robot Kinematics

The cable robot consists of m cables connecting the platform to the winches which
in turn are attached to a rigid base. The platform pose is described by the gener-
alized coordinates x =

[
rT dT

]T
where r and d refer to the platform position and

orientation, respectively. Considering the base coordinates ai and the cable attach-
ment points at the platform described by bi, the kinematic loop for a single drive
chain reads

li = ai − r−R0P(d)bi, (1)

where li refers to the cable vector and R0P is the rotation matrix between the plat-
form frame KP and the inertial frame K0 shown in Figure 2. Considering the cables
as massless elements in an ideal tightened state without elongation and sagging it is
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Fig. 2 Robot kinematics.

possible to compute the actuator variables qθ =
[

θ1 · · · θm
]T

for a given platform
pose x using the analytically and uniquely solvable inverse kinematics

qθ = h(p,x,x0) = qN(x)−q(x0), (2)

where qN,i(x)= ‖lN,i‖2 denotes the nominal controlled cable length, x0 describes the
initial configuration, and p relates to the system parametrization. The corresponding
forward kinematics

x = h−1 = f(p,qθ ) (3)

has to be solved numerically and provides multiple solutions. Both Eqs. (2) and (3)
are fundamental to the solution of various problems such as the development of con-
trollers. Therefore it is of highest importance to determine the correct geometrical
parametrization pG =

[
aT

1 bT
1 · · · aT

m bT
m

]T
using a calibration strategy. Deriving the

actuator variable qθ with respect to the platform pose x and using the kinetostatic
principle one gets the following relation

dθ(x)
dx

=
dq(x)

dx
= Jqx =−AP (4)

therein

AT =

[
(0)u1 · · · (0)um

(0)b1 × (0)u1 · · · (0)bm × (0)um

]
(5)

corresponds to the well known structure matrix AT [5]. Matrix P depends on the
parametrization of the rotation and expresses the relation between the geometrical
and analytical Jacobian matrix. For quaternions, matrix P can be computed as in [4].
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3 Force Equations

While a calibration method, that is only based on robot kinematics, works well for
robots with stiff links, this is not true for cable robots where the error introduced by
the flexible cables is not negligible. Here a simplified linear spring model

f = KQ−1Δq(x,qθ ) (6)

is used to describe the cable elasticity where K = diag(k) is the stiffness matrix
and Q = diag(q) is a m×m diagonal matrix containing the cable lengths. Vector
Δq = q(x)−qN(x0,qθ ) represents the difference between the actual cable length q
and the nominal cable length qN. Damping effects are neglected, because all poses
are measured in a state of rest after dynamic effects have decayed. For an exclu-
sively kinematic model, forward kinematics is used to compute a valid pose which
fulfills the kinematic constraints (1). Taking cable forces into account, the platform
is described as a free floating body whose static equilibrium is described by con-
straint

g(x) = AT(p,x)f(qθ ,x)+wg(x) = 0. (7)

During calibration, no process forces are applied to the platform so that the external
wrench equates to the gravitational wrench wg. Unknown external process forces
would make calibration impossible. The same is true for the unknown platform dy-
namics wherefore all poses that are used for calibration must fulfill Eq. (7). Finding
a static pose from a given initial pose x̂ with ĝ = g(x̂) is a nonlinear optimization
problem. For small deviations Δx around the equilibrium point xeq it is possible to
linearize Eq. (7) and solve the associated least squares problem

min

(
1
2

rTr
)

(8)

with r = Δg− JgxΔx. The minimal solution can be computed by solving the well
known normal equation

JT
gxJgxΔx = JT

gxΔg (9)

where the Jacobian equation reads

Jgx =
dg(x)

dx
=

dAT(x)
dx

f(x)+AT(x)
df(x)

dx
+

dwg(x)
dx

. (10)

The derivative of the first expression in (10) yields

JAx =
d
dx

(
A(x)T) f(x) =

m

∑
i=1

d
dx

(
vA,i(x)T) fi(x) (11)

where vA,i is the i-th column vector of the structure matrix AT. The derivative of the
force vector and the wrench vector yield
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Jfx =
df(x)

dx
=−KQNQ−2AP (12)

with QN = diag(qN) and

Jwx =
d
dx

wg(x) = mg

[

0
(
− d

dx
bg,y

)T (
d
dx

bg,x

)T

0

]T

(13)

where the local platform vector bg describes the point of action of the gravitational
force.

4 Calibration Method

The aim of calibration is to find the parameter set popt for a given model that mini-
mizes the error between the measured cable forces fM and the predicted cable forces
fT. To make cable forces comparable it must be guaranteed that all influences are
modeled or otherwise can be avoided. Therefore, during calibration, all process
forces must be avoided and the platform must remain in a stable state as defined
by (7) in order to avoid forces caused by system dynamics.

4.1 Objective Function

The cable forces computed by Eqs. (6) and (7) depend on the current platform pose
x, the reference platform pose x0 and the parameter set p. Considering a set of u
different poses with m cables and w parameters subject to calibration one gets the
residual vector for all poses rF =

[
r(1)TF · · · r(u)TF

]T
where

rF(p) = fM − f(p,x(p)) (14)

expresses the difference between the measured fM =
[

f(1)TM · · · f(u)TM

]T
and predicted

forces f =
[

f(1)T · · · f(u)T
]T

. Using the linearized force equation as well as the dif-
ference between the measured and the nominal cable force Δ f= fM− f(pN) one gets
rF(Δp) = Δ f−HΔp. The optimum of the corresponding objective function 1

2 rT
FrF

can be computed by solving the weighted least squares problem

HTWTHΔp = HTWTΔ f. (15)

The diagonal weighting matrix WT is used to weight the different cables individ-
ually with respect to their force state. Cables with small forces are weighted less
than cables with high forces since the linear elastic model only holds true when
fi > fmin. Furthermore, calibration of parameters with vastly different magnitudes
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such as geometrical parameters in comparison with the spring parameters, make pa-
rameter scaling necessary in order to get a well conditioned identification matrix H.
This is achieved by right multiplication of WP so that Δ f = HW−1

P WPΔp = H̃Δ p̃
with H̃ = HW−1

P and Δ p̃ = WPΔp. The weighting matrix can be chosen as in [2].
Regarding the spring constants k, the initial cable offsets qoff as well as the plat-
form mass mP, one can combine the force related parameters in a single vector
pF =

[
qT

off kT bT
g mP

]T
. Deriving force Eq. (6) with respect to the parameter set

p =
[

pT
G pT

F

]T
one gets

δ f =
df(p,x(p))

dp
δp =

(
∂ f
∂p

+
∂ f
∂x

∂x
∂p

)
δp (16)

Implicit differentiation of force constraint (7) yields

dg(p,x(p),x0(p))
dp

=
∂g(p,x,x0)

∂p
+

∂g(p,x,x0)

∂x
∂x
∂p

= 0 (17)

and therefore the mapping of the parameters p on the platform pose x while staying
on the constraint manifold g yields

∂x
∂p

=−∂g(p,x)
∂x

−1 ∂g(p,x)
∂p

. (18)

Now the relation between the cable forces f and the robot parameters p can be
described by substituting (18) and (16) resulting in

δ f =

(
∂ f
∂p

− ∂ f
∂x

∂g(p,x)
∂x

−1 ∂g(p,x)
∂p

)

δp (19)

where the derivatives with respect to x are given by Eqs. (10) and (12). Deriving
force Eqs. (6) and (7) with respect to the parameter set p while holding x constant,
one gets

∂ f
∂pG

=−KQ−2 ∂Q
∂pG

Δq+KQ−1 ∂Δq
∂pG

, (20)

∂ f
∂qoff

=−KQ−1,
∂ f
∂k

= Q−1Δq, (21)

∂g(p,x(p))
∂p

=

(
∂

∂p

(
A(p,x)T) f(p,x)+A(p,x)T ∂ f(p,x)

∂p
+

∂wg(p,x)
∂p

)
. (22)
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5 Results

The proposed robot model depends on 8m+4 parameters. For a use case scenario,
the parameter values of the robot model are chosen similar to the parameters of the
actual cable robot prototype which consists of m = 8 cables. Therefore the robot
model is defined by 68 parameters. The winch parameters are chosen according to
the actual robot frame which has the size of 8m× 6m× 5m. The cable stiffness is
approximately ki = 50000N and the platform mass is around 20kg. It is not possible
to regard all m parameters as unknowns at the same time because then the iden-
tification matrix H becomes singular, which means that some parameters are not
identifiable. For instance, one has to fix 6 parameters of the base vectors a in order
to define the position and orientation of the robot frame. In reality, the uncertain-
ties in some parameters of the cable robot are larger than the uncertainties in some
other parameters. After manually assembling the cable robot, the uncertainties in
the winch positions a, the initial cable lengths qoff and the spring constants k may
be large, while the platform geometry b is already well known. Considering w un-
known parameters ai, qoff, k, mP and bg, it is necessary to define at least w poses
such that the identification matrix becomes regular. A higher number of poses yields
a better conditioned identification matrix. Here a pose set of 200 different poses is
used, which are equally distributed in a 2m cube around the origin. The condition
number with respect to inversion yields κ = cond(H)= 250. The uncertainties in the
model parameters are modeled by introducing normal distributed errors for all un-
known parameters. The standard deviation for the different parameters are chosen as
σ(ai) = 0.3m, σ(qoff) = 0.02m, σ(k) = 500N, σ(mP) = 5kg and σ(bg) = 0.01m.
The result of the calibration procedure can be seen in Figure 3(a) using a Levenberg–
Marquardt algorithm for optimization. The platform position error is determined by
adding 50 equally distributed platform poses to the cube and computing the root
mean sqaured error over all platform poses. While the calibration procedure works
very well when assuming ideal force sensors without noise, in reality on has to take
noise into account depending on the sensor quality. The influence of the sensor noise
for 200 measured platform poses is shown in Figure 3(b) using random erroneous
parameter sets. The curve shows the platform position error that remains after the
calibration procedure has finished. For force sensors with a standard deviated noise
up to 15N one can expect an average pose error smaller than 10mm. The effect of
noise can be reduced using a larger number of pose measurements.

6 Conclusion and Outlook

In this paper we presented an auto calibration method for cable-driven parallel
robots using force sensors at the platform. It was shown with help of a simulation
model, that the here proposed robot model and calibration workflow can be used
to determine the geometrical and force related parameters of a cable robot. The
calibration method addresses the cable flexibility explicitly and therefore allows to
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Fig. 3 Platform positioning accuracy and with respect to iteration steps and sensor noise.

determine the robots geometrical parameters more accurately than a solely geomet-
rical calibration method. In the future, the calibration method will be used with the
cable robot demonstrator IPAnema.
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Protein Folding Pathways Implementing
Dihedral Angle Variable Speed

Mikel Diez, Victor Petuya, Mónica Urizar and Alfonso Hernández

Abstract Protein folding remains as an impossible riddle biologist must solve. Its
huge computational requirements make it difficult to obtain clues regarding protein
folding nature. The procedure presented in this paper presents a fast algorithm ca-
pable of obtaining hundreds of intermediate positions between the unfolded and the
folded structures of several proteins. Presented algorithms make use of the balls and
rods approach for protein structure modelization. In this paper, structures are nor-
malized in order to minimize differences between experimental data and the kine-
matic model used in this paper.

Key words: Protein, folding, biokinematics, serial robot

1 Introduction

Protein folding problem is one of the most challenging riddles that remains unsolved
on biochemistry. Actually there is little option when trying to obtain a protein folded
structure. Experimental methods, such as X-ray diffraction or Nuclear Magnetic
resonance are still lords and masters in this field. Nevertheless these methods give
little information about the folding process itself.

Currently, in order to solve or to obtain information about the folding process
analytical methods are the only available choice. The mayor problem of these meth-
ods is their high computational requirements. Ab initio methods are focused on the
search of a potential energy minima. This potential energy minima is supposed to
correspond to the folded structure of the protein. The search is carried out by statisti-
cal minimization procedures such as Monte Carlo methods[6]. The mayor drawback
of these methods is their high computational cost. Recent works [11] are capable of

Mikel Diez · Victor Petuya · Mónica Urizar · Alfonso Hernández
Department of Mechanical Engineering, Faculty of Engineering in Bilbao, Bilbao, Spain, e-mail:
{mikel.diez, victor.petuya, monica.urizar, a.hernandez}@ehu.es
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Fig. 1 Structural conformation. Degrees of freedom of the protein.

simulating 1.5 millisecond of movement using the Folding @Home distributed com-
puting platform. Other important drawback is the high number of local minima that
potential energy fields present, making possible that the minimization process finish
on an incorrect and not fully folded structure. Molecular dynamics [8] approaches
the problem without any simplification. Molecular dynamics tries to simulate the
whole real movement of every atom considering every possible factor. This yields
to enormous computational efforts that actually limits its use to small molecules
or linear fibrous proteins. Lattice models [5] approach the same problem from the
simplification side. On this models proteins are simplified so that each amino acid is
modeled as a single “bead” and their movement is restricted to a lattice. These meth-
ods work similarly to interval analysis methods used to solve the forward kinematic
problem in mechanism [7].

2 Kinematic Model of Protein Structure

For protein structure modeling ball and rods approach has been used. This model has
already been used in other protein simulations works such as [9, 10]. In this paper
apart from bond length and angles peptide planes omega angle is also considered
constant. This approach allow us to only consider dihedral angles φi and ψi as the
only protein degrees of freedom (see Fig. 1), thus reducing the computational cost
of the model.

The procedure presented in this paper is an evolution of the one presented in [3].
The algorithm presented in [3] considered only one possible rotation direction on
each protein degree of freedom resulting on a computationally very cheap method
of simulating protein movement but obtaining poor results on complex protein mo-
tions such as protein folding. In this paper the proposed algorithm allows changes
on the rotation direction under certain circumstances, resulting on a computationally
more expensive method but greatly improving the results obtained with the previous
algorithm. The procedure progresses during the simulation using proteins’ natural
degrees of freedom, i.e. dihedral angles, in order to better reflect the true nature of
the movement and maintain the kinematic continuity of the motion. Folded struc-
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tures of the proteins under study are taken from the Protein Data Bank (PDB) and
used as input data for the procedure.

As the procedure calculates dihedral angles values for the simulation process
and considering that available data comes from experimental procedures, data qual-
ity must be rated. On a protein, atom-atom interactions make them to vibrate around
an equilibrium position. Since experimental methods take “photographs” of proteins
the internal disposition of atoms in two “photographs” of the same protein is never
the same. Thus bond length and angles values differ between initial and final posi-
tions of the same protein function. As a result, calculated dihedral angles increments
will not make initial position to reach the final one. That being so, it has been chosen
to normalize bond length and peptide planes applying the normalization algorithm
presented in [3]. Normalization process is carried out ensuring both bond length
values and peptide planes existence maintaining protein biological sense. This nor-
malization process does allow us to avoid potential energy bonded terms evaluation
during the simulation process. Since bond lengths and peptide ω angle are equal on
both initial and final structures there is no change on their energies during the sim-
ulation process. Actual normalization algorithm does not normalize bond angles,
nevertheless their contribution to the proteins’ potential energy can be neglected
rarely representing more than 2% of proteins total energy.

3 Algorithm for Dihedral Angle Rotation Implementing Variable
Speed

The simulations were carried out using a software developed by our research group
called GIMPRO [4].

The inputs for the simulation process were the unfolded and folded conforma-
tions of the proteins. The motion of the protein is defined by a series of incremental
steps, applied on the dihedral angle values, from the initial to the final conforma-
tions. In the analysis, the dihedral angles φi and ψi of each amino acid are calculated
for the initial (0) and final ( f ) conformations.

Three indicators have been used in order to verify the validity of the results re-
garding both obtained precision and biological meaning of the simulation process.
Firstly the root mean squared deviation (rmsd) is used as a global indicator assess-
ing the geometric similarity between the obtained structure and the pattern folded
structure. Secondly proteins’ potential energy is used as a local indicator. Proteins’
potential energy is highly dependent on interatomic distances and its value changes
drastically when two or more atoms are about to collide. From the several available
potential energy fields, AMBER force field, with the parameters proposed by Cornel
[1] has been chosen. Finally Ramachandran plots are obtained to biologically vali-
date folded structures.

Two algorithms have been developed for the simulation of the molecular mecha-
nism. First algorithm, described in detail in [2], works by blocking degrees of free-
dom that, in each iteration, lead to greater increases in potential energy.
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Algorithm 1 Potential energy algorithm for the k-th step of the procedure

1: foreach DoF i in the protein do
2: Rotate the i-th DoF (Δψi||Δφi)
3: Ek

i ← Evaluate potential energy after rotation of the i-th DoF
4: ΔEk

i = Ek
i −Ek

i−1 ← Energy increment associated with the i-th DoF
5: end foreach
6: Ek = Ek

i ← Potential energy after step k
7: while

[(
Ek −E0

)
/E0

]
·100 ≥ εk do

8: Unrotate DoF i (−Δψi||−Δφi) related to the highest ΔEk
i

9: Rotate DoF i with reduced angular increment (Δψi/n||Δφi/n)
10: Ek ← Evaluate new potential energy
11: if

[(
Ek −E0

)
/E0

]
·100 ≥ εk then

12: Unrotate DoF i (−Δψi/n||−Δφi/n)
13: end if
14: ΔEk

i = 0
15: if i-th DoF is slowed more than m times then
16: Δψi =−Δψi||Δφi =−Δφi

17: end if
18: Ek ← Evaluate new potential energy
19: end while

The second algorithm, presented in Algorithm 1, is an evolution of the first one.
This algorithm prior to blocking the degree of freedom tries to make the rotation
with a reduced increment value. First, the algorithm starts by calculating protein’s
initial conformation potential energies’ non bonded term, E0, value. Once calcu-
lated, simulation process starts rotating sequentially proteins’ degrees of freedom,
from the first amino acid to the last one. After each rotation, the variation in pro-
tein’s potential energy, ΔEk

i , is stored for later use and associated with the degree
of freedom i that has generated it. Once all degrees of freedom are rotated the final
conformations’ potential energy value is obtained Ek. This value cannot exceed the
allowed threshold for the current k iteration, E0 +E0 ∗ εk, where εk is an energy tol-
erance intended to distribute energy changes uniformly across the simulation, and is
calculated as follows:

εk =
k · ε

p
(1)

where ε is the total energy tolerance and p is the number of steps for the simulation
process, both parameters are defined by the user. In case Ek exceeds the threshold,
the algorithm begins by analyzing the degree of freedom that has generated greater
potential energy increments. The rotation of this degree of freedom is rolled back
and applied again, halving its angular increment value (Δψi/2,Δφi/2). In the event
that this new rotation does not achieve to reduce the value of the potential energy
below the threshold, the degree of freedom is blocked. The process is repeated with
the next degrees of freedom that have generated greater potential energy increases,
until the energy requirements are fulfilled. Along the simulation, the algorithm keeps
a record of the number of times a degree of freedom has been blocked or slowed
down. If a degree of is blocked m times (user defined) the algorithm considers that it
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Table 1 Simulation results for Algorithms 1 and 2

Protein
Algorithm 1 Algorithm 2

rmsd energy %
RP (atoms in

favored regions)
rmsd energy %

RP (atoms in
favored regions)

1k9p –Å −% −% 10.63Å 7.2% 96%
1vii 9.05Å 9.8% 41% 8.66Å 9.1% 41%
1zac 20Å 6.4% 89% 23.47Å 8.7% 86%

cannot move in that direction and changes its rotation direction (Δψi =−Δψi,Δφi =
−Δφi) for the next n iterations (user defined).

As can be seen the algorithm has total freedom to change dihedral angle values
it may happen that when reached the p number of steps defined by the user the
dihedral angles did not have enough time to reach their final value. Because of this
fact p is incremented by 1 whenever on an iteration at least one degree of freedom
has been either blocked or reversed. This also makes the energy tolerance to be
adjusted dynamically during the simulation process (see (1)).

The simulation may end by three events. Firstly the dihedral angles have reached
their final values. Second the algorithm consumes the energy tolerance defined by
the user. Finally as the number of steps is incremented each time a degree of free-
dom is blocked or reversed the simulation may continue indefinitely. It has been
introduced a maximum number of iterations of 10 ∗ p in order to avoid too large
simulations.

Both algorithms use information from the evaluation of the proteins’ potential
energy to guide the simulation process. The objective of feeding the model with data
of the potential energy is to avoid peaks in potential energy. These increments reflect
the imminent collision of two atoms. The algorithm is intended to favor rotations
that cause moderate changes in potential energy, in order that the energy changes as
smoothly as possible during the course of the motion.

4 Results

Both algorithms have been tested in several proteins with different order of final
structure complexity. For the simulations, parameters have been set as follows: p =
100, n = 2, m = 2 and the maximum energy tolerance ε = 10%. A video of the
simulation of 1vii folding process can be viewed on www.ehu.es/compmech. On
Table 1 results for both algorithms are represented.

From Table 1 several conclusions can be made. The first one, the algorithm pre-
sented in this paper is able to obtain a solution where the first algorithm cannot, such
as the folding of 1k9p protein. On 1vii folding the algorithm presented in this paper
slightly improves the rmsd value obtained with the first algorithm. It is to mention
that although on this folding both algorithms obtains quite low Ramachandran plot
values, folded structure used as data also presents low Ramachandran plot values,

http://www.ehu.es/compmech
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Fig. 2 Partially folded structure obtained with algorithm 1 (a) and algorithm 2 (b). See how both
algorithms obtain 5 α-helixes. Represented with pymol.

being only 58% of the atoms inside the favored zones. On the other hand 1zac fold-
ing process results on high rmsd values for both the first and the second algorithm.
This high values are due to the complexity of the structure that is composed of five
α-helixes. In this case both algorithms achieve secondary structures folding but fail
in the tertiary structure one (see Fig. 2) due to the interferences between main chain
loops radicals.

Folding process is highly dependent on the secondary chains or R groups config-
uration. Currently the algorithm treats these chains as rigid bodies simply translating
them through the simulation process. Those chains are supposed to rotate around
their axes in order to favor the folding process. With the purpose of testing the influ-
ence of the secondary chains stiffness in the folding simulation, another simulation
has been made with 1vii protein, without considering their energy contribution into
the simulation process. This simulation does not represent any real protein move-
ment since not considering secondary chains energy allow atoms of those chains
to collide between each other. Ramachandran plots are neither calculated for these
simulation since atomic collisions between radicals allowance makes impossible for
those positions to fall into the allowed zones of the Ramachandran plots.

This simulation reduces dramatically the rmsd value obtaining a minimum value
of 5.35Å for the 1vii folding. In conclusion, taking into account R groups energy
contribution without considering their rotational degrees of freedom penalizes the
simulation process. Blocking those degrees of freedom makes the energy landscape
more restrictive. This leads to a noticeable reduction on the available paths for the
folding process, thus, the algorithm has a limited available research space. This
problem is greater in proteins with more complex structures such as 1k9p or 1zac
proteins. The same simulation has been done with both proteins obtaining lower
rmsd values. On the 1k9p rmsd is reduced to 6.26Å and on 1zac to 10.7Å.

New evolutions of the proposed procedure will be focused on the introduction of
R groups’ degrees of freedom into the simulation process. It is important to evaluate
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which of the approaches obtains the best compromise between solution precision
and computational effort, aways maintaining the biological sense of the obtained
structures. Furthermore, computational cost will play a determinant role on these
new algorithms because of their models higher complexity.

5 Conclusion

Proteins and mechanisms similar characteristics allow us to use simplified models
of protein structures that are suitable for kinematic simulations. The algorithm pro-
posed in this paper is capable of simulating different proteins foldings obtaining
promising results. Its implementation of dihedral angle variable speed and capacity
of changing rotational direction allows it to search a wider configurational space.
Future work is focused on developing a more complex model of protein structure
that considers secondary chains rotation, so as to reduce the restriction imposed by
the rigid secondary chains assumption resultant energy landscape.
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Sufficient Conditions for the Mobility of
Overconstrained Mechanisms

René Bartkowiak and Christoph Woernle

Abstract A single-loop mechanism with n ≤ 6 helical joints which has a finite
mobility with a degree of freedom f ≥ 1 is overconstrained. Here the case f = 1
is considered. For the finite mobility of an overconstrained mechanism it is suffi-
cient, that the first-order closure condition is fulfilled in an open neighborhood of
the actual position of the joint axes. Since the explicit functional dependencies of
the closure condition are unknown, a Taylor-series expansion yields necessary con-
ditions for the mobility of the mechanism. According to [6] it is sufficient for the
finite mobility of the mechanism if all higher-order mobility conditions up to a max-
imum, but unknown, order m are fulfilled. Special solutions for necessary mobility
conditions are discussed which guarantee that all higher-order necessary conditions
are fulfilled. By this these special solutions are sufficient for finite mobility. Some
of this special mobility conditions are presented.

Key words: Overconstrained mechanisms, kinematical synthesis, loop closure con-
dition, mobility condition

1 Mobility Conditions for Overconstrained Mechanisms

The screw axes of a single-loop mechanism with n helical joints (nH mechanism)
according to Fig. 1 are described by 6-vectors

âi ≡
[
ai

aε i

]
, i = 1, . . . ,n, (1)
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Fig. 1 Mechanism with n helical joints (nH).

containing the real part ai and the dual part aε i of the corresponding dual vec-
tor âi = ai + εaε i with ε2 = 0. Without loss of generality the first and nth axes â1

and ân are fixed. The joint angles are qi.
In the following, overconstrained nH mechanisms, n ≤ 6, with one degree of

freedom (dof) are considered. If the motion of the mechanism is parametrized, with-
out loss of generality, by the joint coordinate s = qn of the nth helical joint, the
first-order closure condition is

A(s)λ(s) = ân with A=
[
â1 . . . ân−1

]
, λ=

⎡
⎣ λ1...

λn−1

⎤
⎦ , λi =− q̇i

q̇n
. (2)

For finite mobility of the mechanism it is sufficient that the nth joint axis ân is a
linear combination of the other n−1 screw axes in an open neighborhood of an
actual position s0 = qn0. Since the functional dependencies A(s) and λ(s) are a
priori not known, the loop closure condition (2) is expanded to a TAYLOR series at
a position s0 = qn0 with s = qn0 +δ s yielding

ân0 =

A(s)︷ ︸︸ ︷(
A0 +

A′
0

1!
δ s+

A′′
0

2!
δ s2 + . . .

) λ(s)︷ ︸︸ ︷(
λ0 +

λ′
0

1!
δ s+

λ′′
0

2!
δ s2 + . . .

)
(3)

with ân0 = ân, A0 =A(s0), A′
0 =

dA(s)
ds |s0 , . . . and λ0 = λ(s0), λ′

0 =
dλ(s)

ds |s0 , . . . .
The derivative A′

0 = [ â′
10 . . . â′

n−1,0 ] of matrix A with respect to s is expressed by
the derivatives of the screw axes using the dual vector product

â′
k0 ≡

dâk(s)
ds

∣∣∣∣
s0

=−
k−1

∑
i=1

˜̂ai0 âk0 λi0 with ˜̂a≡
[
ã 0
ãε ã

]
. (4)

The tilde operator ˜ transforms a vector a to the skew-symmetric tensor ã, thus
ãb= a×b, see [3].
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Since the closure condition (3) must hold for arbitrary values of δ s, the coeffi-
cients of the powers of δ s must independently vanish

δ s0 : A0λ0 = ân0 ,
δ s1 : A0λ

′
0 = −A′

0λ0 ,
δ s2 : A0λ

′′
0 = −A′′

0 λ0 −2A′
0λ

′
0 ,

...

(5)

The mechanism is mobile, if solutions λ0,λ
′
0,λ

′′
0 , . . . of the loop closure equa-

tions (5) exist. These solutions exist, if each right-hand side lies in the column space
of matrix A0, thus

ân0, −A′
0λ0, −A′′

0 λ0 −2A′
0λ

′
0, . . . ∈ span

{
â10, . . . , ân−1,0

}
. (6)

Then the solution of (5) can be written by means of a left inverse A+
0 , for example

the MOORE-PENROSE pseudo-inverse,

λ0 = A+
0 ân0,

λ′
0 = −A+

0 A′
0A

+
0 ân0,

λ′′
0 = A+

0

(
2A′

0A
+
0 A′

0 −A′′
0

)
A+

0 ân0,
...

(7)

The condition (6) means that all screws on the right-hand side of (5) and the column
screws of matrix A0 have the same reciprocal screws k̂ j0, j = 1, . . . ,(6− rank(A0)),

k̂
T
j0 Δ x̂

!
= 0 with Δ =

[
0 I
I 0

]
, j = 1, . . . ,(6− rank(A0)). (8)

Here x̂ stands for any right-hand side of (5). The reciprocal screws k̂ j0 are obtained
from the reciprocity condition

k̂
T
j0 ΔA0 = 0 , j = 1, . . . ,(6− rank(A0)) . (9)

Inserting (5) and (7) into the reciprocity condition (8) yields a system of m non-
linear equations for the unknown screws âi0, i = 1, . . . ,n,

0 = k̂
T
j0 Δ ân0 ≡ g1 (ân0,A0) ,

0 = k̂
T
j0 ΔA′

0A
+
0 ân0 ≡ g2 (ân0,A0) ,

0 = k̂
T
j0 Δ

(
−2A′

0A
+
0 A′

0 +A′′
0

)
A+

0 ân0 ≡ g3 (ân0,A0) ,
...

0 = . . . ≡ gm (ân0,A0) ,

(10)
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where m is the highest order of the closure conditions from (5) that are taken into
consideration. The equations (10) are necessary conditions for the finite mobility of
an overconstrained nH mechanism with one dof [2]. The solution of (10) are those
screw axes âi0, i = 1, . . . ,n, in the actual configuration, which fulfill all closure
conditions from (5) up to the order m. The nonlinear system of equations (10) can be
numerically solved. In [6] it is shown that there exists a finite maximum number of
closure conditions for the finite mobility of overconstrained mechanisms. However
the order m of the sufficient closure conditions is still unknown and depends on the
number of links and the types of the joints.

There exist special solutions of (10) which provide sufficient but not necessary
conditions for the mobility of overconstrained mechanisms. Some examples of such
solutions are presented in the following.

2 Sufficient but not Necessary Conditions for Finite Mobility

It is well known that for the mobility of a mechanism with n = 4 revolute joints (4R)
the closure conditions from (5) up to the maximum order m = 2 are sufficient and
necessary [1].

4R mechanism The closure conditions for the 4R mechanism are solved up to the
second order. In order to fulfill the first-order closure condition from (5) the fourth
screw axis â40 is expressed as a linear combination of the other three axes with the

unknown ratios λ0 =
[

λ10 λ20 λ30
]T

, thus

â40 =A0λ0. (11)

With the derivatives of the screw axes according to (4),

â′
10 = 0 , â′

20 =−˜̂a10 â20 λ10 , â′
30 =−˜̂a10 â30 λ10 − ˜̂a20 â30 λ20 , (12)

the second-order closure condition 0=A0λ
′
0 +A′

0λ0 from (5) becomes

0= â′
10 λ10 + â′

20 λ20 + â′
30 λ30 + â10 λ ′

10 + â20 λ ′
20 + â30 λ ′

30 . (13)

By rearranging (13) the axis â30 is obtained by

â30 =
( ˜̂a10 λ10 λ30 + ˜̂a20 λ20 λ30 −I λ ′

30

)−1 (
â′

20 λ20 + â10 λ ′
10 + â20 λ ′

20

)
, (14)

if det
( ˜̂a10 λ10 λ30 + ˜̂a20 λ20 λ30 −I λ ′

30

)
�= 0. With (11) and (14) the axes â30 and

â40 are calculated for arbitrary values of â10, â20,λ0,λ
′
0 in such a way that the first-

and second-order closure conditions are fulfilled. In order to obtain revolute axes,
all axes have to fulfill the Plücker conditions

aT
i0 aε i0 = 0 with |ai0|= 1, i = 1, . . . ,4. (15)
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It can be shown that these conditions for â30 and â40 are fulfilled with the special
values

λ0 ≡

⎡
⎣λ10

λ20

λ30

⎤
⎦=

⎡
⎣ λ10

μ1

μ2 λ10

⎤
⎦ and λ′

0 ≡

⎡
⎣λ ′

10
λ ′

20
λ ′

30

⎤
⎦=

⎡
⎣ λ ′

10
0

μ2 λ ′
10

⎤
⎦ (16)

with μ1,μ2 = ±1. The arbitrarily given axes â10, â20 and axes â30, â40 obtained
from (11), (14), and (16) fulfill the implicit Bennett condition for the fixed angles
and distances β12, b12 between axes â1, â2 and β23, b23 between axes â2, â3,

b23

sinβ23
= μ1 μ2

b12

sinβ12
. (17)

Since the Bennett mechanism has finite mobility all necessary mobility condi-
tions (10) are fulfilled. Thus the fulfillment of the closure conditions up to the max-
imum order m = 2 is a sufficient condition for the mobility of a 4R mechanism.

nH mechanism For general nH mechanisms, n ≤ 6, the maximum order m is un-
known. However special sufficient conditions can be found. For example there exist
special solutions of the second necessary mobility condition from (10)

0 = k̂
T
j0 ΔA′

0λ0 , j = 1, . . . ,(6− rank(A0)) , (18)

which are sufficient but not necessary for the mobility of overconstrained nH mech-
anisms, whereby it is required that the first-order condition from (5) is fulfilled,
ân0 =A0λ0.

First special solution For instance the special solution of the mobility condi-
tion (18)

A′
0λ0 = 0 (19)

is sufficient for finite mobility [4, 5]. This is shown by rearranging the higher-order
closure conditions from (5) under consideration of (7) and (19),

A′′
0 λ0 = 2A′

0A
+
0 A′

0λ0︸ ︷︷ ︸
0

,

A′′′
0 λ0 = 3A′′

0 A
+
0 A′

0λ0︸ ︷︷ ︸
0

+3A′
0A

+
0 A′′

0 λ0︸ ︷︷ ︸
0

−6A′
0A

+
0 A′

0A
+
0 A′

0λ0︸ ︷︷ ︸
0

,

...

(20)

An example for the special solution (19) is the Bennett mechanism in a special
position where all four joint axes intersect a common line orthogonally, see Fig. 2. In
this position the coefficient matrix of the linear system of equations (14) is singular,
det

(˜̂a10 λ10 λ30 + ˜̂a20 λ20 λ30 −I λ ′
30

)
= 0. The matrix A0 = [ â10 â20 â30 ] is
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Fig. 2 Special configuration of the Bennett mechanism.

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 cosβ12 cosβ12 cosβ23 + sinβ12 sinβ23

0 0 0
0 sinβ12 cosβ23 sinβ12 − cosβ12 sinβ23

0 b12 sinβ12 −(b12 +b23) (cosβ12 sinβ23 − cosβ23 sinβ12)
0 0 0
0 −b12 cosβ12 −(b12 +b23) (cosβ12 cosβ23 + sinβ12 sinβ23)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (21)

and the fourth screw axis is â40 =
[

cosβ23 0 −sinβ23 −b23 sinβ23 0 −b23 cosβ23
]T

.
The sufficient condition (19) here is

A′
0 λ0 = 0⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 −γ sinβ12 sinβ12

0 0 0
0 0 0
0 γ b12 cosβ12 −b12 cosβ12

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣−γ
−1
−γ

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(22)

with γ = sinβ23 (b12−b23)
b23 (cosβ12 sinβ23−cosβ23 sinβ12)

.

Second special solution Another special solution of the second necessary mobility
condition (18) is

0= k̂
T
j0ΔA′

0 , j = 1, . . . ,(6− rank(A0)) . (23)

The geometrical interpretation of (23) is, that the derivatives of the screw axes with
respect to the independent parameter s lie in the same screw space as the screw axes
of the helical joints. By rearranging the higher order mobility conditions from (10)
under consideration of (7) and (23) it is shown that (23) is a sufficient condition
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k̂
T
j0ΔA′′

0λ0 =2 k̂
T
j0ΔA′

0︸ ︷︷ ︸
0

A+
0 A

′
0λ0,

k̂
T
j0ΔA′′′

0 λ0=3 k̂
T
j0ΔA′′

0︸ ︷︷ ︸
0

A+
0A

′
0λ0+3 k̂

T
j0ΔA′

0︸ ︷︷ ︸
0

A+
0A

′′
0λ0−6 k̂

T
j0ΔA′

0︸ ︷︷ ︸
0

A+
0A

′
0A

+
0A

′
0λ0

...

An example for the special solution (23) is a Sarrus linkage with six helical joints.
This special 6H mechanism has two groups of three adjacent parallel joint axes. Five
screw axes are given by

A0 =

[
a10 a10 a10 a40 a40

aε10 aε20 aε30 aε40 aε50

]
(24)

and the sixth screw axis by â60 =
[
a40 aε60

]T
. The reciprocal screw obtained from

the reciprocity condition (9) is

k̂0 =

[
0

ã10a40

]
. (25)

To proof the fulfillment of the second-order mobility condition from (10),

k̂
T
0 Δ A′

0λ0 = 0, (26)

the matrix A′
0 = [ â′

10 . . . â′
50 ] is calculated by means of (4). The dual vector prod-

uct of the parallel screws â10, â20, â30 with a10 = a20 = a30 is given by

˜̂a10 âi0 ≡
[̃
a10

aε10

][
a10

aε i0

]
=

[
0
b1i

]
, i = 2,3, (27)

with the common normal vector b1i from â10 to âi0. The dual vector product of the
non-parallel screws â10, â40 and â10, â50 with a40 = a50 is given by

[̃
a10

aε10

][
a40

aε i0

]
=

[̃
a10

aε10

][
a40

aε40

]
+

[̃
a10

aε10

][
0

(hi −h4)a40 + b̃4ia40

]
, i = 4,5, (28)

whereby hi are the screw pitches. The derivatives of the screw axes â′
i0, i = 1, . . . ,5,

are put together to the matrix

A′
0 =

[
0 0 0 ˜̂a10 â40(λ10 +λ20 +λ30) ˜̂a10 â40(λ10 +λ20 +λ30)
0 â′

ε20 â′
ε30 â′

ε40 â′
ε50

]
. (29)

The real part of the first-order closure condition from (5) yields

a10 (λ10 +λ20 +λ30)+a40 (λ40 +λ50 −1) = 0. (30)
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Without loss of generality the direction vector of the first screw axis is defined as
a10 =

[
1 0 0

]T
. From (30) it then follows

λ10 +λ20 +λ30 = 0 and λ40 +λ50 = 1. (31)

Introducing (31) into the second-order mobility condition (26) yields

[
0

ã10a40

]T

Δ
[
0 0 0 0 0
0 â′

ε20 â′
ε30 â′

ε40 â′
ε50

]
︸ ︷︷ ︸

0

λ0 = 0. (32)

Thus it is shown that condition (23) is sufficient for finite mobility of an overcon-
strained nH mechanism.

Third special solution Another special solution of the mobility conditions (18) and,
by this, a further sufficient but not necessary condition for the finite mobility is

0= kT
ε0

[
a1 . . . an−1

]
and 0= kT

0

[
aε1 . . . aεn−1

]
. (33)

The Sarrus mechanism with helical joints fulfills the condition (33), seen in (32).

3 Conclusions

For the synthesis of overconstrained 6H mechanisms sufficient but not necessary
conditions for the position of the screw axes are found which guarantee finite mo-
bility. These conditions are special solutions of the necessary conditions which are
obtained by the requirement that the higher-order loop-closure conditions are ful-
filled. Examples demonstrate some of these sufficient but not necessary conditions.
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Beiträge Algebra Geom. 39(2), 367–378 (1998)



Some Rigid-Body Constraint Varieties
Generated by Linkages

J.M. Selig

Abstract The set of rigid-body displacements allowed by three simple open-chain
linkages are studied. These linkages consist of a cylindrical and spherical joint: the
CS dyad, a revolute, a prismatic and a spherical joint: the RPS linkage, two revolutes
and a spherical joint: the RRS linkage. Using the Study quadric to represent the
group of all rigid-body displacements the constraint varieties for these examples
are found. In the case of the CS and RPS linkages these are found to be quartic
hypersurfaces while the constraint variety for the RRS linkage is a hypersurface of
degree 8. Finally it is shown that all three constraint varieties are linear projections
of a Segre variety in P

15.

Key words: Rigid-body displacements, open-chain linkages, constraint varieties

1 Introduction

Previous work [6, 7] studied the set of all proper rigid-body displacements which
transformed a point in such a way that it remained on a fixed plane or a fixed sphere.
These sets of rigid displacements are important in kinematics because they can also
be viewed as the possible displacements achievable by an ES or an SS dyad respec-
tively. It was shown that if the space of rigid displacements is represented by the
Study quadric, then the constraint manifolds for the point-plane and point-sphere
constraints are the intersection of the Study quadric with another quadric hypersur-
face in P

7.
The present work follows some work of McCarthy and co-workers [4] who in-

vestigated the set of displacements achievable by certain open-chain linkages. Some
of this work is repeated here using the Study quadric as a model for the group of
all rigid-body displacements. In a final section some general remarks are made con-
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Fig. 1 A point on a cylinder.

cerning the geometry of the constraint varieties produced by the three examples
considered below.

It is convenient to use the Clifford algebra Cl(0,3,1) to perform some of the geo-
metric computations. This algebra is particularly well suited to Euclidean geometry
and contains the dual quaterions as a subalgebra. Unfortunately limitations on space
preclude a review of this material, however a complete introduction to this algebra
and its use for geometric computation may be found in [5, chap. 10].

2 The CS Dyad

The first linkage considered is a chain consisting of a cylindrical joint together with
a spherical joint. Note that the same set of displacements could be achieved with
a revolute joint, a prismatic joint and a spherical joint so long as the axes of the
revolute and prismatic joints are parallel.

Another way to look at this set of possible displacements is as the set of group
elements that preserve the incidence of a point with a cylinder. The point is the
centre of the spherical joint and the axis of the cylinder is the axis of the cylindrical
joint, see Fig. 1.

Using the Clifford algebra Cl(0,3,1), it is now easy to find the equation satisfied
by the group elements which preserve this incidence. In this algebra a point is given
by p = p0e1e2e3 + p1e2e3e+ p2e3e1e+ p3e1e2e where the pi are the projective co-
ordinates of the point and The eis are the basis elements of the algebra. A general
line has the form �= u01e2e3+u02e3e1+u03e1e2+u23e1e+u31e2e+u12e3e, where
the ui j are the Plücker coordinates of the line. In general the square of the distance
from a point p to a line � is given by,

r2 = (p∨ �)(p∨ �)−/��−.

Here ∨ is the shuffle product, a derived product in the Clifford algebra and the
superscript ()−, denotes the Clifford conjugate of an element of the algebra. If the
cylinder has axis � and radius r then the required rigid displacements g, will satisfy,
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(gpg−∨ �)(gpg−∨ �)− = r2(��−).

If the point p lies on the cylinder to begin with, then this can be written,

(gpg−∨ �)(gpg−∨ �)−− (p∨ �)(p∨ �)−(gg−)2 = 0. (1)

For a fixed cylinder this equation is a homogeneous quartic in P
7.

To make this a little clearer and to investigate some of the properties of these
constraint varieties a particular example is introduced. Assume that the point p is
initially located at the origin and the line � is parallel to the z-axis but displaced a
distance r in the x-direction. In the Clifford algebra these elements are given by

p = e1e2e3 and �= e1e2 − re2e.

A general group element in this algebra has the form,

g = a0 +a1e2e3 +a2e3e1 +a3e1e2 + c0ee1e2e3 + c1e1e+ c2e2e+ c3e3e, (2)

where the coefficients ai and ci satisfy a0c0 +a1c1 +a2c2 +a3c3 = 0, the quadratic
equation defining the Study quadric. Using this to transform the point gives,

gpg− = (a2
0 +a2

1 +a2
2 +a2

3)e1e2e3 +2(a0c1 −a1c0 +a2c3 −a3c2)e2e3e+

2(a0c2 −a1c3 −a2c0 +a3c1)e3e1e+2(a0c3 +a1c2 −a2c1 −a3c0)e1e2e

and hence,

gpg− ∨ � = −2r(a0c2 −a1c3 −a2c0 +a3c1)e−
2(a0c2 −a1c3 −a2c0 +a3c1)e1 +(
2(a0c1 −a1c0 +a2c3 −a3c2)− r(a2

0 +a2
1 +a2

2 +a2
3)
)
e2.

Finally the quartic equation sought is,

(gpg−∨ �)(gpg−∨ �)−− (p∨ �)(p∨ �)−(gg−)2 =

4(a0c1 −a1c0 +a2c3 −a3c2)
2 +4(a0c2 −a1c3 −a2c0 −a3c1)

2 −
4r(a2

0 +a2
1 +a2

2 +a2
3)(a0c1 −a1c0 +a2c3 −a3c2) = 0.

Let us write,

F = (a0c1 −a1c0 +a2c3 −a3c2)
2 +(a0c2 −a1c3 −a2c0 −a3c1)

2 −
r(a2

0 +a2
1 +a2

2 +a2
3)(a0c1 −a1c0 +a2c3 −a3c2),

so that the quartic constraint equation is F = 0. Clearly F vanishes when a0 =
a1 = a2 = a3 = 0. This 3-plane also lies in the Study quadric a0c0 +a1c0 +a2c2 +
a3c3 = 0 but does not correspond to any rigid-body displacement. This 3-plane of
ideal elements will be denoted A∞. The above shows that A∞ lies in this constraint
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Fig. 2 A point on a hyperboloid.

variety. Moreover, it is easy to see that the partial derivatives ∂F/∂ai and ∂F/∂ci

(i = 0,1,2,3) all vanish on A∞. So the 3-plane is in fact singular in the quartic.
Notice that this result doesn’t depend on the value of r, the radius of the cylinder.

Moreover, the corresponding equation for a CS linkage with a different axis can be
found by an action of the group of rigid-body displacements. However, the 3-plane
A∞ is invariant under the action of the group and hence this 3-plane will be singular
in the constraint variety for any CS linkage.

3 The RPS Linkage

Next we look at the RPS linkage. The group elements generated by such a linkage
can be considered as the group elements that constrain the centre of the spherical
joint to remain on a cylindrical hyperboloid. This cylindrical hyperboloid is the
regulus generated by swinging the prismatic joint about the axis of the revolute, see
Fig. 2.

The equation satisfied by the group elements satisfying this constraint can be
found in much the same way as in the previous section. In this case we need to
consider the distance of the point to the axis of the revolute joint, (p∨ �)(p∨ �)− as
well as the distance from the point to the plane defined by the common perpendicular
between the axes of the revolute and prismatic joints, see Fig. 2. If this plane is
labelled π then the square of the perpendicular distance from the point p to the plane
is given by the expression, (p∨π)(p∨π)−. The equation of a general hyperbola is
x2/α2 − y2/β 2 = 1, where α and β are constants. Hence the group elements g,
which preserve the incidence of the point with a cylindrical hyperboloid will be,

1
α2 (gpg−∨ �)(gpg−∨ �)−− 1

β 2 (gpg− ∨π)(gpg−∨π)− = (gg−)2.

As in the previous section this constraint equation has degree 4 in the components
of the group element g.
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Suppose that the minimum distance from the axis of the revolute joint � to the
point p is l. This design parameter will be referred to as the link-length of the link-
age. Clearly this minimum will occur when the point lies on the plane π and hence
it is easy to see that α = l in the equation above. By considering a more general
point on the hyperboloid, see Fig. 2(b), the constant β can be shown to satisfy
β 2 = l2/ tan2 φ , where φ is the twist angle between the axes revolute joint and the
prismatic joint. Hence in terms of the design parameters l and φ the equation for the
constraint variety may be written as,

cos2 φ(gpg−∨ �)(gpg−∨ �)−− sin2 φ(gpg− ∨π)(gpg−∨π)− = l2(gg−)2. (3)

As a concrete example consider a linkage with a similar design to the CS linkage
studied above. The point p can initially be taken to be at the origin, p = e1e2e3 and
the axis of the revolute joint can be taken as � = e1e2 − le2e, that is a line parallel
to the z-axis but displaced l units in the x-direction. The plane π can be taken as
the xy-plane, π = e3. Notice that the location of the prismatic joint is not important,
only its direction determined by the twist angle φ . With these choices many of the
computations we need have already been done above, in fact the only new result
needed is,

gpg− ∨π =−2(a0c3 +a1c2 −a2c1 −a3c0).

Substituting the results into (3) above and rearranging a little gives,

0 =4cos2 φ(a0c2 −a1c3 −a2c0 +a3c1)
2+

4cos2 φ(a0c1 −a1c0 +a2c3 −a3c2)
2−

4sin2 φ(a0c3 +a1c2 −a2c1 −a3c0)
2−

4l cos2 φ(a0c1 −a1c0 +a2c3 −a3c2)(a
2
0 +a2

1 +a2
2 +a2

3)−
l2 sin2 φ(a2

0 +a2
1 +a2

2 +a2
3)

2.

Notice that the quartic variety in P
7 defined by this equation contains the 3-plane

A∞ and moreover is singular on this plane.

4 The RRS Linkage

Finally here consider the RRS linkage. It is well known that a point attached to a pair
of revolute joints will trace out a general torus, see [1]. As in [1] the equation of the
surface traced out by the point can be found by considering the radial components
and z-components of the point p in Fig. 3 and then eliminating the second joint
angle θ2 to give,

(
(x2 + y2 + z2)− (l2 +d2 + r2)

)2
= 4l2

(

r2 −
(

z−d cosφ
sinφ

)2
)

.
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Fig. 3 The RRS linkage.

The design parameters l, d, r and φ are as shown in Fig. 3 and can be thought of as
the link-length, offset, second radius and twist-angle respectively.

To find the equation in P
7 satisfied by the group elements which preserve the

incidence of the point with the torus we look again at the radial and z-components
of p. The radial component of p is the distance from the first joint axis �1 to p.
For a general point the square of this distance will be (gpg− ∨ �1)(gpg− ∨ �1)

−.
For the coordinates of Fig. 3, this expression can be used to replace x2 + y2. The
z-component of p is the distance to p from the plane containing the perpendicular
common to �1 and �2. This distance can be expressed as gpg−∨π which can be used
to replace z in the equation above. Multiplying terms by the factor gg− to produce a
homogeneous equation gives,

(
(gpg−∨�1)(gpg−∨�1)

−+(gpg−∨π)(gpg−∨π)−− (l2 +d2 + r2)(gg−)2)2
=

4(gg−)2l2

(

(gg−)2r2 −
(
(gpg−∨π)−d(gg−)cosφ

sinφ

)2
)

. (4)

Clearly this equation has degree 8 in the components of the group elements g.
In [1] Fichter and Hunt look for circles in the general torus described above

to find all possible mobile RRSR mechanisms. A revolute joint produces a one-
parameter family of group elements which lie on a line in the Study quadric. So to
find all mobile RRSR mechanisms we could look for lines in the degree 8 hyper-
surface given by equation (4). Actually, we only need to look for lines of the form
g(λ ) = 1+λ� where � is a line—the axis of the final revolute joint. Substituting this
form into the equation for the constraint variety will produce a degree 8 equation in
the parameter λ . For the line to lie in the constraint variety the coefficients of each
power of λ must vanish. Hence we can produce conditions for an RRSR mechanism
to be mobile. In principle, this strategy for finding mobile mechanisms can be ex-
tended to other linkages, however the analysis of the conditions produced may not
be straightforward.
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5 The Segre Variety P
1 ×P

1 ×P
3

The three examples studied above, together with a couple of other examples not
considered here, are united by the fact that their constraint varieties are projections
of the Segre variety P

1 ×P
1 ×P

3.
To see this first consider the Segre variety P

1 ×P
1 ×P

3. A point, with homoge-
neous coordinates, (α0 : α1)× (β0 : β2)× (γ0 : γ1 : γ2 : γ3) can be mapped to a point
(X000 : X100 : X010 : · · · : X113) in P

15. This is the Segre map defined by Xi jk = αiβ jγk.
That is X000 = α0β0γ0, X100 = α1β0γ0 and so forth. The image of this map is known
as the Segre variety. Using the techniques described in [2] it is possible to show
that this variety has degree 20. It is also easy to see that it lies on several quadric
hypersurfaces in P

15. There are 12 quadrics of the form Xi jkXilm −Xi jmXilk = 0 and
another 12 of the form Xi jkXl jm −Xi jmXl jk = 0. Then there are 6 each of the forms
X00kX11l −X10lX01k = 0, X01kX10l −X00lX11k = 0 and X00kX11l −X01kX10l = 0. Finally
there are 4 of the form X00kX11k −X10kX01k = 0. This makes 46 linearly independent
quadrics.

To see the connection with the constraint varieties discussed above we will look
at just one example. Consider the CS dyad from Section 2, in particular the example
given at the end of the section. The constraint variety can be parameterised as a
product of Clifford algebra elements,

g = (α0 +α1(e1e2 − re2e))(β0 +β1e3e)(γ0 + γ1e2e3 + γ2e3e1 + γ3e1e2).

Multiplying out the above product gives an element of the form given in (2) with
components,

a0 = α0β0γ0 −α1β0γ3, c0 = −α0β1γ3 −α1β1γ0 + rα1β0γ2,
a1 = α0β0γ1 −α1β0γ2, c1 = −α0β1γ2 −α1β1γ1 − rα1β0γ3,
a2 = α0β0γ2 +α1β0γ1, c2 = α0β1γ1 −α1β1γ2 − rα1β0γ0,
a3 = α0β0γ3 +α1β0γ0, c3 = α0β1γ0 −α1β1γ3 + rα1β0γ1.

Now suppose we choose new coordinates for P
15, label these new coordinates

ā0, . . . , ā3, b̄0, . . . , b̄3, c̄0, . . . , c̄3 and set,

ā0 = X000 −X103, c̄0 =−X013 −X110 + rX102,

and so forth. The coordinates b̄i can be chosen so that the coordinate transformation
is non-singular. Now it is clear that mapping āi �→ ai and c̄i �→ ci maps the Segre
variety to the constraint variety for the CS linkage. Geometrically this is a linear
projection from P

15 to P
7, the centre of the projection is given by the 7-plane which

is the intersection of the eight hyperplanes āi = 0, c̄i = 0. It is not difficult to see that
similar constructions can be given for the other examples discussed above.

Note that is should be possible to compute the degree of the constraint variety
from the degree of the Segre variety and a knowledge of how the Segre variety
meets the centre of the projection, see [2].
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6 Conclusions

In the space available it has only been possible to outline briefly the geometry of
these constraint varieties and hint at some possible applications for this approach.

This work should be viewed as part of a general programme to investigate ge-
ometric constraint varieties. These are the possible rigid displacements allowed by
some geometric problem. The rigid displacements allowed by simple linkages are
of most relevance to Kinematics and Robotics. It is known that a revolute joint pro-
duces a line in the Study quadric, a general RR dyad generates the intersection of the
Study quadric with a 3-plane. An RRR linkage gives a P

1 ×P
1 ×P

1 Segre variety,
[3]. Some quadratic constraint varieties were studied in [7].

The ubiquity of Segre manifolds is now clear and connected to the parameterisa-
tion of these varieties as products of subgroups. The constraint variety of a general
RR dyad could be thought of as the Segre variety P

1 ×P
1. Moreover, it can be pre-

dicted with some confidence that the constraint variety formed by the displacements
allowed by a general RRRR linkage will be the projection of a P

1 ×P
1 ×P

1 ×P
1

Segre variety.
By intersecting several of these constraint varieties we can study the properties

of mechanisms formed by joining the corresponding linkages in parallel. Except in
the case of point-plane constraints, this problem has not been investigated to any
great extent.

McCarthy and co-workers use equations such as those found above to design
mechanisms, see [4]. It would be useful to formalize this problem by embedding
the space of all possible linkages of some type, in an algebraic variety. For example,
the CS dyads could be thought of as (an open set in) QK ×P

3, the product of the
Klein quadric of lines in P

3 with the space of points. This turns design synthesis
into a problem in Algebraic geometry. Unfortunately these problems are still highly
non-trivial.

References

1. Fichter, E.F., Hunt, K.H.: The fecund torus, its bitangent-circles and derived linkages. Mech.
Mach. Theory 10(2–3), 167–176 (1975). doi:10.1016/0094-114X(75)90017-8

2. Harris, J.: Algebraic Geometry. A First Course. Springer Verlag, New York (1992)
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Constraint-Consistent Analysis of Muscle Force
Contributions to Human Gait

Emel Demircan and Oussama Khatib

Abstract The goal of this study is to apply a task-space approach to characterize
muscle force contributions to the body center of mass during human gait taking into
account the contacts with the environment and the constraints in the musculoskeletal
system. Motion capture, electromyography and force plate data were taken from a
male subject walking at free speed. The obtained data were used together with a
full-body musculoskeletal model to generate and to analyze the simulation of one
complete gait cycle. The contribution of the muscles spanning the lower body joints
to the body center of mass acceleration were calculated using a task-space approach
which was successfully applied to analyze human dynamic motions in our previous
studies. The results showed that gluteus medius, vasti, biceps femoris long head and
short head, tibialis anterior, medial gastrocnemius, rectus femoris and soleus were
the primary contributors to gait at free speed. The study provides an approach for in
depth motion analysis including the effects of contact forces and joint mechanics as
well as physiological constraints, muscle dynamics and actuation.

Key words: Human locomotion, operational space accelerations, muscle function,
musculoskeletal modeling

1 Introduction

Understanding the control mechanisms involved in human movement presents a
daunting challenge to the biomechanics and neuroscience communities. In the pres-
ence of this challenge there is a significant motivation to predict and emulate injury-
free and high-performing human movement [2, 4, 8, 15]. In robotics research, simi-
lar challenges arise to improve the dynamic performance of multi-degree-of freedom
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 38,
© Springer Science+Business Media Dordrecht 2012

301

mailto:emeld@cs.stanford.edu,khatib@cs.stanford.edu
http://dx.doi.org/10.1007/978-94-007-4620-6_38


302 E. Demircan and O. Khatib

manipulators without compromising for safety [16]. In both areas, optimal perfor-
mance of a skill (or a task) is affected by the kinematic constraints of the system as
well as by the torque generating capacities, or the strength of the actuators. Over the
last decade, our efforts have concentrated on the synthesis and analysis of human
motion using efficient techniques in robotics research [6, 7, 11].

Investigating human motion dynamics by determining how the muscles con-
tribute to body center of mass accelerations in dynamic skills can help predict injury-
causing motion patterns or to synthesize subject-specific optimal movement. Several
studies have examined how muscles provide support and progression [12, 13] to
overground and treadmill walking at several walking speeds. However, the charac-
terization of human gait taking into account the effect of contacts (i.e. foot strike)
and constraints (i.e. muscle force generating capacity) in subject’s task space hasn’t
been studied. In this paper we address this problem and present a robotics method
for the constraint-consistent analysis of human gait using simulated musculoskeletal
model and data from motion capture, electromyography and force plates.

2 Constraint-Consistent Motion Analysis

2.1 Task-Space Formulation

In robotics research, the Operational Space Formulation [9] was introduced to ad-
dress the dynamic interaction between a robot’s task-space motion and force. To
characterize the additional task redundancy, the operational space formulation de-
fines a dynamically consistent task null space. Multiple operational tasks can be
controlled if they are combined into a single task vector and additional criteria can
be controlled within the task-consistent null-space. A task can be defined to be any
formal description of desired activity that can be explicitly represented as a function
of the joint coordinates, q, q̇ and q̈. Multiple tasks can be combined into a single task
definition in a higher dimensional space, as long as they are kinematically consistent
with each other. The full task is represented as the m×1 vector, xt = xt(q), formed
by vertically concatenating the coordinates of the operational points. The Jacobian
matrix associated with the task, xt , is denoted by Jt . The joint space equations of
motion can be expressed as,

A(q)q̈+b(q, q̇)+g(q)+ JT
extFext = Γ , (1)

where q is the vector of n joint coordinates, A(q) is the n×n kinetic energy matrix,
b(q, q̇) is the n× 1 vector of centrifugal and Coriolis joint forces, g(q) is the n× 1
vector of gravity, and Γ is the n×1 vector of generalized joint forces (torques). In
the presence of external forces in the system, the associated Jacobian and reaction
force vector are Jext and Fext , respectively. To simplify notation, we will often refrain
from explicitly denoting the functional dependence of these quantities on q and q̇.
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The task dynamic behavior can be obtained by projecting the system dynamics
(1) into the space associated with the task, using the generalized inverse of the Ja-
cobian, Jt . This generalized inverse of the Jacobian has been showed to be unique
and dynamically consistent [9, 10] and given by,

J̄t = A−1JT
t (JtA

−1JT
t )

−1, (2)

The dynamic behavior associated with the task, xt can be obtained by

J̄T
t (Aq̈+b+g+Γext = Γ )⇒ Λt ẍt +μt + pt +Rt = Ft . (3)

In the operational space, Λt is the m×m kinetic energy matrix associated with
the task, and μt , pt , Rt and Ft are, respectively, the centrifugal and Coriolis force
vector, gravity vector, reaction force vector and generalized force acting along the
direction of the task, xt . This process provides a description of the dynamics in task
coordinates rather than joint space coordinates (while joint space coordinates are
still present in (3), the inertial term involves task space accelerations rather than
joint space accelerations). The control framework defined in terms of the relevant
task coordinates, xt can be represented using a relevant operational space force, Ft

acting along the same direction. The forces acting along given task coordinates can
be mapped to a joint torque, Γtask by the relationship,

Γtask = JT
t Ft . (4)

This model can be applied to analyze the acceleration characteristics in human dy-
namic skills shaped by the skeletal mechanics as well as the physiological parame-
ters. For a human musculoskeletal system of n degrees of freedom and r muscles,
a set of muscle forces, m, arises based on muscle activations, as well as the skele-
tal configuration, q and q̇. These muscle forces are related to the joint torques, Γ ,
through the r×n muscle Jacobian matrix, L:

Γ = LT m, (5)

where m is the vector of net muscle forces (active and passive components) and Γ is
the n×1 vector of muscle induced joint torques required to produce the desired mo-
tion. In presence of contacts with the environment (i.e. foot strike), the contact force
vectors and the corresponding Jacobian matrices should be included in the equa-
tions of motion of the system. Thus, the muscle induced joint torque/operational
space acceleration relationship can be given as,

ẍ = J(q)A(q)−1(Γ −g(q)− JT
c1

Fext1 − JT
c2

Fext2). (6)

where J(q), A(q) and g(q) are respectively the Jacobian matrix, joint space kinetic
energy matrix and the joint space gravity torque vector. Fext1 and Fext2 capture the
external forces/moments in the system at two different contact points c1 and c2 with
the corresponding Jacobian matrices JT

c1
and JT

c2
.
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Table 1 Functional groups of lower body muscles used in gait analysis.

Hip Adduction Hip Abduction Hip Flexion Hip Extension

Biceps Femoris L. Head Gluteus Maximus Gluteus Medius Biceps Femoris L. Head
Gracilis Gluteus Medius Gracilis Gluteus Maximus

Sartorius Iliacus Gluteus Medius
Tensor Fasciae Latae Psoas

Rectus Femoris
Sartorius
Tensor Fasciae Latae

Hip Intrarotation Hip Extrarotation Knee Flexion Knee Extension

Gluteus Medius Gluteus Medius Biceps Femoris L. Head Rectus Femoris
Iliacus Biceps Femoris S. Head Vastus Intermedius
Psoas Gracilis
Tensor Fasciae Latae Medial Gastrocnemius

Sartorius

Ankle Plantar Flexion Ankle Dorsi Flexion

Medial Gastrocnemius Tibialis Anterior
Soleus

The feasible set of operational space accelerations can be determined using (6)
given the bounds on the muscle induced joint torque capacities by,

0 < Γ < LT mmax. (7)

where mmax is the vector of muscle force generating capacities.
In order to evaluate the actual muscle contributions to gait, we can scale the

force generating capacities of each individual muscle by its activation pattern ob-
tained from the electromyography data and from the simulation results. The actual
resulting torque values can be obtained through the relation,

Γ = LT mmaxa. (8)

where a represents the activation level of the muscles of interest. In consequence,
Equation 6 becomes,

ẍ = J(q)A(q)−1(LT mmaxa−g(q)− JT
c1

Fext1 − JT
c2

Fext2). (9)

To evaluate the contributions of muscle forces to the center of mass acceleration
in operational space, we grouped the muscles according to their primary function
(Table 1). These muscle groups were determined based on the their activity mea-
sured by the electromyography channels during gait. The torque generating capaci-
ties of 28 muscles spanning the right and left hip, knee and ankle joints were mapped
into the operational space accelerations of the body center of mass.
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Fig. 1 Three-dimensional dynamic simulation of normal walking at free speed. The lower extremity
and the back joint are actuated by 54 musculo-tendon actuators. Muscle color indicates simulated
activation level from fully activated (red) to fully deactivated (blue).

2.2 Experiments and Musculoskeletal Simulations

Motion analysis data were collected for one male subject walking at 1.75 m/s.
Three-dimensional marker trajectories, force plate, and electromyography data were
recorded simultaneously using an 8-camera Vicon system (OMG plc, Oxford UK).
A static trial was performed on the subject to assist scaling the musculoskeletal
model (with markers attached to the medial and lateral femoral epicondyles and me-
dial and lateral malleoli). Three-marker clusters were placed on the subject’s feet,
thigh, and shank for tracking purposes [3]. Four markers were placed on both the
pelvis (anterior and posterior superior iliac spines) and torso (acromion processes,
seventh cervical spine, and sternal notch). The ground reaction forces were sam-
pled at 1200 Hz and low-pass filtered at 20 Hz. The muscle activity was recorded
at 1200 Hz. The raw electromyography (EMG) data were processed by high-pass
filtering at 30 Hz to remove motion artifacts, full-wave rectifying and then low-pass
filtering at 6 Hz to generate a linear envelope. These data were then normalized to a
maximum isometric muscle contraction measured from the subject.

One complete gait cycle was simulated for a subject walking at free speed
(1.75 m/s) (Figure 1). A generic musculoskeletal model with 23 degrees of free-
dom, actuated by 54 muscle-tendon compartments [5], was scaled to match subject’s
anthropometry based on experimentally measured markers placed on anatomical
landmarks. The hip was modeled as a ball-and-socket joint (3 dofs), the knee was
modeled as a custom joint with 1 dof [14], and the foot and ankle were modeled as a
custom joint with 2 dofs (dorsiflexion and plantar flexion at the ankle joint; eversion
and inversion at the tarsal joint). Lumbar motion was modeled as a ball-and-socket
joint (3 dofs) [1]. Muscle parameters and path geometries in the model were based
on data reported by [5].
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Fig. 2 Muscle force contributions to accelerations of body center of mass during gait at free speed.
The vertical and horizontal color bars illustrate individual muscle contribution (%) to vertical and
horizontal acceleration of the center of mass, respectively. Contributions of the muscles listed in
(e) are given for four configurations: (a) heel strike, (b) early stance, (c) late stance, (d) toe-off.
Gluteus medius, vasti, biceps femoris long head and short head, tibialis anterior, medial gastroc-
nemius, rectus femoris and soleus were the primary contributors to gait at free speed. During early
stance, biceps femoris and vasti highly contributed to horizonal acceleration of center of mass
while gluteus medius, biceps femoris, medial gastrocnemius, tibialis anterior an vasti contributed
to support. During late stance, medial gastrocnemius and soleus were the main contributors to pro-
gression while tibialis anterior and soleus contributed to vertical acceleration of the center of mass.
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3 Results

The three-dimensional dynamic simulation provided the joint kinematics, muscle
dynamics and actuation. The operational space and contact-consistent task-space
frameworks provided the effects of contacts and constraints to the resulting motion
dynamics. The contributions of 28 muscles to the center of body accelerations dur-
ing gait at free speed were calculated (Figure 2). The results showed that gluteus
medius, vasti, biceps femoris (long head and short head), tibialis anterior, medial
gastrocnemius, rectus femoris and soleus were the primary contributors to gait in
both progression and support.

Muscles which provided vertical support also resisted progression in early stance
(i.e. vasti) and assisted progression in late stance (i.e. soleus). During early stance,
biceps femoris and vasti highly contributed to horizonal acceleration of center of
mass while gluteus medius, biceps femoris, medial gastrocnemius, tibialis anterior
an vasti contributed to support. During late stance, medial gastrocnemius and soleus
were the main contributors to progression while tibialis anterior and soleus con-
tributed to vertical acceleration of the center of mass.

4 Conclusions

We presented a robotics approach to analyze human dynamics in the context of
the desired task and the contacts in the environment as well as the physiological
constraints, muscle dynamics and actuation. Using this approach together with mo-
tion capture, force plate and EMG data we simulated a musculoskeletal model to
characterize human gait. Three-dimensional muscle-actuated dynamic simulation
of one complete gait cycle was created, the characteristics of the relationship gov-
erning the transmission of muscle forces to the body center of mass operational
space accelerations were analyzed. The dynamic simulation provided the kinemat-
ics as well as muscle dynamics and actuation. The constraint-consistent task-space
framework provided the effects of constraints and contacts in the environment. In-
dividual muscle contributions to body center of mass acceleration during gait at free
speed confirmed with the values reported in the literature [12]. The task-space anal-
ysis approach presented in this paper provides a comprehensive analysis of human
motion dynamics including the effects of constraints and contacts.

Acknowledgements The financial support of Honda Company is gratefully acknowledged. The
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capture experiments.
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Inherently Balanced 4R Four-Bar Based
Linkages

V. van der Wijk and J.L. Herder

Abstract Synthesis of mechanisms with their center of mass (CoM) at an invari-
ant point on one of the elements is useful for the design of statically balanced and
shaking-force balanced mechanisms and manipulators. For this purpose, a kinematic
architecture based on a general 4R four-bar linkage is found by applying the method
of principal vectors as a linkage together with a similar four-bar linkage. The balance
conditions are obtained for an arbitrary mass distribution of each of the elements and
a balanced grasper mechanism and a balanced two-degree-of-freedom manipulator
are derived as practical examples.

Key words: Center of mass, four-bar linkage, shaking-force balancing, static bal-
ancing

1 Introduction

When the center of mass (CoM) of a mechanism (i.e. manipulator, robot) is at a
stationary point with respect to the base, the mechanism is shaking-force balanced.
This means that for all motion of the mechanism the resultant dynamic forces on
the base are zero [7]. Shaking-force balance therefore is important for high speed
mechanisms with minimal vibrations of the base. A mechanism with a stationary
CoM is also statically balanced with respect to gravity. Then a mechanism can be
maintained in each posture with minimal effort [3].

The CoM of a mechanism is stationary if it is an invariant point on at least one
of the elements with this point or element being (part of) the base. An elementary
way to describe the CoM with respect to its elements is with the method of prin-
cipal vectors [1]. This method has been applied to derive such inherently balanced
linkages considering general mass distributions of all elements [5, 6].
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Fig. 1 Center of mass of four-bar linkage A0A1A2A3, similar linkage A4A5A6A7, the principal vector
linkage A1P1B1SB2P3A2P2, and links D8E8 and D9E9 is at invariant point S on links A5A6, B1S,
B2S.

It was shown in [2, 8] that the CoM of a general 4R four-bar linkage also is an in-
variant point on the coupler link of a similar four-bar linkage moving synchronously.
In addition, with the double contour method [4] similar linkages are found for the
analysis of the CoM of more complex linkages. This method is based on principal
vectors.

The goal of this paper is to combine and to apply the three mentioned approaches
as linkages to obtain an inherently balanced 4R four-bar based kinematic architec-
ture from which a wide variety of balanced mechanisms can be derived. First the
kinematic architecture is found and subsequently its force balance conditions are
derived.

2 Kinematic Architecture with CoM at Invariant Link Point

Figure 1 shows a kinematic architecture of which the CoM of all elements is at
invariant link point S. The architecture is based on a general 4R four-bar link-
age A0A1A2A3. S is a point on the coupler link A5A6 of a similar four-bar link-
age A4A5A6A7 [2, 8] and is also a point on a linkage of parallelograms A1P1B1P2,
P2B1SB2, and A2P2B2P3 of which the (principal) dimensions a1, a21, a23, and a3 are
defined by the principal points Pi [1, 6]. In addition to their coinciding joint at S,
these two linkages can be linked by parallelograms SA6C1B1 and SB2C2A5 of which
B1C1 and B2C2 are part of elements P1B1C1 and P3B2C2, respectively. These paral-
lelograms are found with the double contour method of which one solution could be
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Fig. 2 By describing the CoM of all elements S along the principal vectors vi, the conditions wi for
which S is a coupler point of the similar linkage are found.

the linkage P1C1A6A7A4A5 [4]. Other possible links are D8E8 and D9E9 which are
parallel to lines A0A4 and A3A7, respectively.

The conditions for which the CoM of all elements S is a coupler point of similar
linkage A4A5A6A7 can be written as a function of the principal dimensions. To obtain
the conditions, the position of S can be written with complex vectors as illustrated
in Fig. 2 with

A0S = v1u1 + v2u2 + v3u3 = w1u4 +w2u1 +w3u2 (1)

Vectors ui are the time dependent vectors describing the relative positions of joints
A0, A1, A2, and A3. Constant vectors vi are the principal vectors describing the prin-
cipal points Pi within each element. Vectors wi are also constant and determine the
size and pose of the similar linkage. These vectors can be written as

v1 =
l1−a1 cosβ1

l1
+ a1 sinβ1

l1
i v2 =

a21 cosβ21
l2

+ a21 sinβ21
l2

i v3 =
a3 cosβ3

l3
+ a3 sinβ3

l3
i

w1 = κR
1 +κ I

1i w2 = γR + γ I i w3 = w2(ρR +ρ I i)

with link lengths li and angles βi j to describe the orientation of the principal di-
mensions ai j with respect to the line connecting the joints. Vectors wi are written
with the real and imaginary parts of the orientation κ1 of A0A4, the orientation γ
of the similar linkage and the orientation ρ of A5S with respect to A5A6. With the
substitution of the loop equation u1 +u2 +u3 = u4 for u4, Eq. 1 can be rewritten as

(v1 −w1 −w2)u1 +(v2 −w1 −w3)u2 +(v3 −w1)u3 = 0 (2)

and after substitution of the constant vectors it is written as
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{(1− a1 cosβ1

l1
−κR

1 − γR)+(
a1 sinβ1

l1
−κ I

1 − γ I)i}u1 +

{(a21 cosβ21

l2
−κR

1 − γRρR + γ Iρ I)+(
a21 sinβ21

l2
−κ I

1 − γRρ I − γ IρR)i}u2+ (3)

{(a3 cosβ3

l3
−κR

1 )+(
a3 sinβ3

l3
−κ I

1)i}u3 = 0

Since generally this equation must hold for all motion, i.e. for all independent values
of ui not being restricted to the relative motions of the 4R four-bar linkage, each of
the six terms needs to be zero. The terms for u3 are zero when

κR
1 =

a3 cosβ3

l3
, κ I

1 =
a3 sinβ3

l3
, κ1 = tan−1

(
κ I

1

κR
1

)
= β3 (4)

from which κ1 is found to be equal to β3 as was shown in another way also in [8].
Subsequently, γ is found from the terms for u1 being zero resulting in

γR = 1− a1 cosβ1

l1
− a3 cosβ3

l3
,γ I =

a1 sinβ1

l1
− a3 sinβ3

l3

γ = tan−1
(

γ I

γR

)
= tan−1

( a1
l1

sinβ1 − a3
l3

sinβ3

1− a1
l1

cosβ1 − a3
l3

cosβ3

)
(5)

η =
√
(γR)2 +(γ I)2 =

√
(1− a1

l1
cosβ1 −

a3

l3
cosβ3)2 +(

a1

l1
sinβ1 −

a3

l3
sinβ3)2

η is the scaling factor of the similar linkage and equals η = l5/l1 = l6/l2 = l7/l3 =
‖A4A7‖/l4. ρ is found when the terms for u2 are zero, which is for

ρR =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)− ( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)

( a1 sinβ1
l1

− a3 sinβ3
l3

)2 +(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2

ρ I =
(1− a1 cosβ1

l1
− a3 cosβ3

l3
)( a21 sinβ21

l2
− a3 sinβ3

l3
)− ( a1 sinβ1

l1
− a3 sinβ3

l3
)( a21 cosβ21

l2
− a3 cosβ3

l3
)

( a1 sinβ1
l1

− a3 sinβ3
l3

)2 +(1− a1 cosβ1
l1

− a3 cosβ3
l3

)2

ρ = tan−1
(

ρ I

ρR

)
, τ =

√
(ρR)2 +(ρ I)2 (6)

From polygon A0A3A7A4 and with κ1 and γ known, angle κ2 can be derived as

κR
2 = 1−κR

1 − γR = a1 cosβ1
l1

κ I
2 = κ I

1 + γ I = a1 sinβ1
l1

κ2 = tan−1
(

κ I
2

κR
2

)
= β1 (7)

Herewith the similar linkage has been fully defined with parameters based on the
principal dimensions and the dimensions of the four-bar linkage A0A1A2A3 solely.
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Fig. 3 The mass of link 4 is distributed on the other three links. Shown are (a) link 1 and (b) link 3
on which a mass ma

4 at A0, a mass mb
4 at A3, and a mass mc

4 at J3 on each of the links are modeled.

3 Force Balance Conditions

To have S be the CoM of the complete kinematic architecture of Fig. 1, the principal
dimensions a1, a21, a23, and a3 need to be calculated from the mass of each element
and their positions. Since the principal dimensions are defined with respect to three
elements of the four-bar linkage A0A1A2A3, the first step is to distribute the mass of
the fourth element, m4 of link 4, equivalently to the other elements. For links 1 and 3
this can be done by modeling a mass ma

4 =m4(1−e4/l4) at A0, a mass mb
4 =m4e4/l4

at A3 and a mass mc
4 = m4 f4/l4 at positions J3 on both links 1 and 3 as indicated

in Figs. 3a and b, respectively. ma
4, mb

4, and mc
4 also need to be modeled on link

2, which will be shown later on. For the analysis of link 1 it now has a total mass
m′

1 = m1 +ma
4 +mc

4 centered at s′1 from A1 which is de CoM of the three masses.
Similarly, for the analysis of link 3 it has a total mass m′

3 = m3 +mb
4 +mc

4 centered
at s′3 from A2.

To include the masses of D8E8 and D9E9, also they can be distributed among the
other elements in a similar way as with m4. Unfortunately this paper leaves too little
space to present this distribution in detail, for which they are not considered here.

With m4 distributed, link 4 can be taken out resulting in the linkage of Fig. 4. This
linkage is an extended composition of the linkage investigated in [5, 6] and the same
method can be applied here to derive the principal dimensions. This means that Pi

can be found independently from one another with linear momentum equations.
To find P1, the linear momentum of the linkage for θ̇2 = θ̇3 = 0 (links 2 and 3

being immovable) can be written with respect to reference frame x1y1 aligned with
a1 as indicated in Fig. 4, to be equal to the total mass mtot moving at S as
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Fig. 4 Mass model of the kinematic architecture after distribution of the mass of link 4 to link 1
and link 2, and without considering links D8E8 and D9E9.

L1

θ̇1
=

[
m′

1s′1 cosα1 +(m5 +m6 +m7 +m11 +m33)a1 +m12 p12 +m13 p13 +m5 p5

m′
1s′1 sinα1 −m12q12 −m13q13 −m5q5

]

=

[
mtota1

0

]
(8)

with mtot =m1+m2+m3+m4+m5+m6+m7+m11+m12+m13+m31+m32+m33.
From these equations a1 and α1 are obtained with a1 resulting in

a1 =

√
m′2

1 s′21 − (m12q12 +m13q13 +m5q5)2 +m12 p12 +m13 p13 +m5 p5

mtot −m5 −m6 −m7 −m11 −m33
(9)

P3 is found similarly by writing the linear momentum of the linkage for θ̇1 = θ̇2 = 0
with respect to frame x3y3 aligned with a3 to be equal to mtot moving at S as

L3

θ̇3
=

[
m′

3s′3 cosα3 +(m5 +m6 +m7 +m31 +m13)a3 +m32 p32 +m33 p33 +m7 p7

m′
3s′3 sinα3 −m32q32 −m33q33 −m7q7

]

=

[
mtota3

0

]
(10)

From these equations a3 and α3 are obtained with a3 resulting in
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Fig. 5 Equivalent Linear Momentum System (ELMS) for θ̇2 when θ̇1 = θ̇3 = 0 for which the
masses of the moving elements are projected on link 2. P2 is found as being the CoM of the ELMS.

a3 =

√
m′2

3 s′23 − (m32q32 +m33q33 +m7q7)2 +m32 p32 +m33 p33 +m7 p7

mtot −m5 −m6 −m7 −m31 −m13
(11)

As in [5, 6], P2 can be found by using an Equivalent Linear Momentum System
(ELMS). This means that the mass of the moving elements for θ̇1 = θ̇3 = 0 (immov-
able parallelogram P2B1SB2, link 2 rotating about P2) are modeled on link 2 such
that their linear momentum is equal to one of the reference frames x21y21, x23y23, and
x2y2. Figure 5 shows the resulting ELMS with masses u1 = m1 +ma

4 +m11 p11/a21

and u2 = m3 +mb
4 +m31 p31/a23 at A1 and A2, respectively, masses m5 and m6 at

A5 and A6, respectively, mass m6 at distances e6 and f6 with respect to line A5A6,
and masses m11 and m31 also placed at J1 and J3, respectively. u1 and u2 contain the
distributed masses ma

4 and mb
4 of link 4 on link 2 and a mass mc

4 is placed at J3. J3 is
located at a distance l2 from P2 normal to line A1A2 in indicated direction.

P2 is found as being the CoM of the ELMS. With P2 being located at a distance
x2 from A1 along A1A2 and y2 normal to A1A2 as indicated in Fig. 5, P2 is found by
solving the linear momentum equations of the ELMS

L2

θ̇2
= u1

[
y2

−x2

]
+ v1

[
x2

y2

]
+u2

[
y2

−(x2 − l2)

]
− v2

[
x2 − l2

y2

]
+m2

[
y2 − f2

−(x2 − e2)

]
+

m5η l2τ
[

sin(γ +ρ)
−cos(γ +ρ)

]
+m7η l2

[
τ sin(γ +ρ)− sin(γ)

−τ cos(γ +ρ)+ cos(γ)

]
+

m6

[
η l2τ sin(γ +ρ)− e6 sin(γ)− f6 cos(γ)
−η l2τ cos(γ +ρ)+ e6 cos(γ)− f6 sin(γ)

]
+mc

4

[
−l2
0

]
= 0 (12)

with v1 = m11q11/a21 and v2 = m31q31/a23. No algebraic solution for P2 was found,
for which the equations have to be solved numerically. The principal dimensions

defining P2 are calculated as a21 =
√

x2
2 + y2

2 and a23 =
√
(l2 − x2)2 + y2

2 with which
all principal dimensions are obtained.
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Fig. 6 Two examples of balanced mechanisms derived from Fig. 1 with the CoM being a joint with
the base: (a) double grasper mechanism, (b) two-degree-of-freedom balanced manipulator.

4 Conclusion

An inherently balanced kinematic architecture of which the CoM is an invariant link
point has been composed based on a general 4R four-bar linkage and by applying
the method of principal vectors as a linkage together with a similar four-bar link-
age. The conditions for the kinematic architecture were derived as a function of the
principal dimensions. The principal dimensions were calculated from a generally
defined mass and mass location of each element, resulting in the general force bal-
ance conditions of the kinematic architecture. Figure 6 shows examples of possible
balanced devices that can be derived from the kinematic architecture such as a dou-
ble grasper mechanism and a 2-DoF manipulator with end-effector considering an
arbitrary mass distribution of each of the shown elements.
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Integrated Type and Dimensional Synthesis of
Planar Four-Bar Mechanisms

Tim J. Luu and M. John D. Hayes

Abstract A novel approach to integrated type and approximate dimensional syn-
thesis of planar four-bar mechanisms (i.e. linkages comprised of any two of RR, PR,
RP, and PP dyads) for rigid-body guidance is proposed. The essence is to corre-
late coordinates of the coupler attachment points in two different coordinate frames,
thereby reducing the number of independent variables defining a suitable dyad for
the desired rigid-body motion from five to two. After applying these geometric con-
straints, numerical methods are used to size link lengths, locate joint axes, and de-
cide between RR, PR, RP and PP dyads that, when combined, guide a rigid body
through the best approximation, in a least-squares sense, of n specified positions
and orientations, where n ≥ 5. No initial guesses of type or dimension are required.
An example is presented illustrating the effectiveness and robustness of this new
approach.

Key words: Approximate type and dimensional synthesis, planar four-bar mecha-
nisms, rigid body guidance, singular value decomposition

1 Introduction

Planar linkages contain either revolute (R-pairs), or prismatic (P -pairs). These kine-
matic pairs permit rotations about one axis, or translations parallel to one direction,
respectively. In general, dimensional synthesis for rigid body guidance assumes a
mechanism type, i.e., planar 4R; slider-crank; crank-slider; trammel, etc. Our aim
is to develop a completely general planar mechanism synthesis algorithm that in-

Tim J. Luu
Neptec Design Group Ltd., Ottawa, Ontario, Canada, e-mail: tluu@neptec.com

M. John D. Hayes
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario,
Canada, e-mail: jhayes@mae.carleton.ca
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tegrates both type and dimensional synthesis for n-position approximate synthe-
sis for rigid body guidance. The pairing of the two types leads to four possible
dyads: revolute-revolute (RR), prismatic-revolute (PR), revolute-prismatic (RP), and
prismatic-prismatic (PP).

There is an extensive body of literature reporting research on approximate di-
mensional kinematic synthesis of planar four-bar mechanisms for rigid-body guid-
ance, see for example [1, 4–6, 9, 12]. However, there are no methods reported in
the substantial body of literature that successfully integrate both type and approxi-
mate dimensional synthesis of planar four-bar mechanisms for rigid body guidance,
without a priori knowledge or initial guesses with the exception of two special cases
reported in [2, 3]. In this paper a method for doing so is presented for the first time.

The minimization criteria of the algorithm presented in this paper is purely math-
ematical: the condition number of the synthesis matrix. The algorithm will be en-
hanced when the transmission angle is incorporated as an optimization objective.
It would be additionally beneficial to examine the order and branch defect prob-
lems. It may be that advances made in [10] can be incorporated into the integrated
type-dimensional synthesis algorithm to address these issues. These issues notwith-
standing, the algorithm presented in this paper is a robust foundation upon which to
build. The algorithm is being adapted for synthesis of spatial motion platforms.

2 Kinematic Constraints: Circular and Linear

The motion of the coupler link in a four-bar planar mechanism is determined by the
relative displacements of all links in the kinematic chain. The relative displacement
of two rigid bodies in the plane can be considered as the displacement of a Cartesian
reference coordinate frame E attached to one of the bodies with respect to a Carte-
sian reference coordinate frame Σ attached to the other. Without loss of generality,
Σ may be considered fixed with E free to move, see Figure 1. The homogeneous
coordinates of points represented in E are given by the ratios (x : y : z). Those of
the same points represented in Σ are given by the ratios (X : Y : Z). The mapping
between the coordinates of points expressed in the two reference frames is given by
the homogeneous coordinate transformation

⎡
⎣

X

Y

Z

⎤
⎦ =

⎡
⎣

cosθ −sinθ a

sinθ cosθ b

0 0 1

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ , (1)

where (a,b) are the (X
Z

, Y
Z

) Cartesian coordinates of the origin of E with respect
to Σ , and θ is the orientation of E relative to Σ . Any point (x : y : z) in E can
be mapped to (X : Y : Z) in Σ using this transformation. For rigid body guidance,
each pose is defined by the position and orientation of E with respect to Σ , which
is specified by the ordered triple (a,b,θ). Dyads are connected through the coupler
link at the coupler attachment points M1 and M2, see Figure 1.
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Fig. 1 Planar RRRP linkage.

There is a specific type of constrained motion corresponding to each one of the
four types of planar lower-pair dyad. The ungrounded R pair in an RR dyad is con-
strained to move on a circle with a fixed centre. Because of this they are denoted
circular constraints. Linear constraints result when PR and RP dyads are employed
because the R pair attachment point is constrained to move on a line defined by the
P pair translation direction. The PP dyad represents a planar constraint: the line of
one P pair direction is constrained to translate on the direction line of the other.

It can be shown [2] that the model representing both circular and linear con-
straints for n Cartesian point coordinate pairs can be expressed in matrix form as

Ck =
[
X2

j +Y 2
j 2Xj 2Yj 1

]
⎡
⎢⎢⎣

K0
K1
K2
K3

⎤
⎥⎥⎦ = 0, (2)

where C is an n× 4 dimensional array with j ∈ {1,2, . . . ,n}, with X and Y being
the Cartesian coordinates of points on either a circle or line, and the Ki are constant
shape parameters determined by the constraint imposed by the dyad [2].

For circular constraints the Ki are defined as

K0 = 1, K1 = −Xc, K2 = −Yc, K3 = K2
1 +K2

2 − r2, (3)

where (Xc,Yc) are the Cartesian coordinates of the circle centre expressed in Σ and
r is the circle radius.

Linear constraints require K0 = 0 and the remaining Ki are proportional to line
coordinates defined by

K1 = −1

2
FZ/Σ sinθΣ, K2 = 1

2
FZ/Σ cosθΣ, K3 = FX/Σ sinθΣ −FY/Σ cosθΣ,

(4)
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where (FX/Σ : FY/Σ : FZ/Σ) are homogeneous coordinates of a fixed point, ex-
pressed in Σ , on the line that makes an angle θΣ with the positive X-axis in Σ .

In the definitions of the Ki , the parameter K0 acts as a binary switch between
circular and linear constraints. When K0 = 1 Equation (2) represents the implicit
equation of points on a circle, and when K0 = 0 the equation becomes that of a line.
Nonetheless, K0 is still an homogenizing parameter whose value is arbitrary. The
Ki can be normalized by K0, but only when K0 is nonzero.

3 Integrating Type and Approximate Dimensional Synthesis

Equations (2), (3), and (4) are used to integrate type and approximate dimensional
synthesis of planar for-bar mechanisms for rigid-body guidance. Constructing the
required synthesis matrix C based on the prescribed poses is done by relating the
position of the two rigid body attachment points M1 and M2 in both reference frames
E and Σ , see Figure 1. Reference frames Σ and E are correlated in two ways:

1. Points M1 and M2 move on circles or lines in Σ ;
2. Points M1 and M2 have constant coordinates in E.

Let (x,y) be the coordinates expressed in E of one of the coupler attachment points,
M , and (X,Y ) be the coordinates of the same point expressed in Σ . Carrying out
the matrix multiplication in Equation (1) yields

X = x cosθ −y sinθ +az,

Y = x sinθ +y cosθ +bz,

Z = z.

(5)

Ignoring infinitely distant coupler attachment points, it is reasonable to set z = 1
in Equation (5) and substituting the result into Equation (2), with j ∈ {1,2, . . . ,n}
yields

Ck =

⎡
⎢⎢⎣

(
x cosθj −y sinθj +aj

)2 + (
x sinθj +y cosθj +bj

)2

2
(
x cosθj −y sinθj +aj

)
2
(
x sinθj +y cosθj +bj

)
1

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

K0
K1
K2
K3

⎤
⎥⎥⎦ = 0. (6)

Prescribing n > 5 poses makes C an n×4 matrix. The parameters x and y possess
constant values in E. The n-dimensional vector parameters a, b, and θ in C are all
known a priori because they are the specified poses of E with respect to Σ .

The only unknown parameters in C are x and y. Determining the x and y that best
satisfy Equation (6) will solve the problem. Once values for x and y are obtained
C is fully determined, which allows the vector k to be identified. The problem is
now a two dimensional search for x and y. However, at least two dyads are required
to form a planar mechanism. This implies that there must be at least two distinct
values for x and y in order for a complete solution to exist. The x and y are found
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such that they satisfy Equation (6). For equations of the form Ck = 0 the only real
k that satisfies the equation is the zero vector if C is not singular. In other words, for
non-trivial k to exist, C must be rank deficient [11]. The task becomes finding values
for x and y that make C rank deficient, or failing that, the most ill-conditioned.

The conditioning of a matrix is measured by the ratio of the largest and smallest
singular values of the matrix, which is called the condition number κ . It is compu-
tationally more convenient to use is the inverse of the condition number, γ

γ ≡ 1

κ
= σMIN

σMAX
, 0 ≤ γ ≤ 1, (7)

because it is bounded both from above and below. A well conditioned matrix has
γ ≈ 1, while an ill-conditioned matrix has γ ≈ 0. Therefore, selecting x and y that
renders C the most rank deficient involves minimizing γ .

The Nelder–Mead Downhill Simplex Method in Multidimensions algorithm may
be used for this minimization [7]. This method requires only function evaluations,
not derivatives. It is not very efficient in terms of the evaluations it requires, but for
the problem at hand the computational burden is relatively small. We will not discuss
the convergence properties, because any optimization method may be employed.

Since the Nelder–Mead algorithm needs an initial guess, γ may be plotted in
terms of x and y first, in the neighborhood of (x, y) = (0, 0) up to a user-defined
range of the maximum distance that the coupler attachment points can be from the
moving frame E origin, denoted ε. As x and y represent the position of a coupler
attachment point with respect to moving reference frame E. The x and y parameters
may then be selected approximately corresponding to the smallest value of γ . These
points represent the local minima of the entire γ plot, that is, with ε = ∞. However,
for practical reasons, with ε finite, these minima may be regarded as the global
minima of the region of interest. At least two minima are required to obtain a planar
four-bar mechanism, as each minimum corresponds to a single dyad. The Nelder-
Mead algorithm is fed these approximate values as inputs, and converges to the
values of x and y that minimize γ .

Once the values of x and y have been determined the matrix C in Equation (6)
can be populated. The k parameters may then be estimated. We have elected to use
singular value decomposition (SVD) because we are necessarily required to work
with either singular, or numerically very-close-to-singular sets of equations. SVD
decomposes any given m×n matrix C into the product of three matrix factors such
that

Cm×n = Um×mSm×nVT
n×n, (8)

where U and V are orthogonal, and S is a rectangular matrix whose only non-zero
elements are on the diagonal of the upper n × n sub-matrix. These diagonal ele-
ments are the singular values of C arranged in descending order, lower bounded by
zero [8]. SVD constructs orthonormal bases spanning the range of C in U and the
nullspace of C in V. If C is rank deficient, then the last n− rank(C) singular values
of C are zero. Furthermore, the corresponding columns of V are unit basis vectors
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Fig. 2 The γ plot of the poses defining a square corner.

that span the nullspace of C. As such, any linear combination of these columns is a
non-trivial solution that best satisfies the system Ck = 0.

For overconstrained systems, where the m× n matrix C has m > n, in general
no non-trivial exact solution exists, because in general an overconstrained synthesis
matrix possesses full rank. In this case, the optimal approximate solution in a least-
squares sense is last column of V, corresponding to the smallest singular value of
C. Furthermore, the more ill-conditioned C is, the closer the optimal approximate
solution is to being an exact solution. Because the Ki are homogeneous, the scaling
posses no problem because k will be normalized by dividing through by K0. In
the case where K0 ≈ 0, or K0 = 0 the linear definitions for K1, K2, and K3 from
Equation (4) are used. The switching threshold for K0 to represent either an RR or
PR (or RP) dyad must be user defined based on the geometry of the problem.

Note that PP dyads are a special case. Two serial P pairs restricts the distal link
from changing its orientation. For type synthesis, given any set of poses with non
constant orientation, the PP dyad is immediately ruled out.

3.1 Example

Consider an example that requires completely general integrated type and approxi-
mate dimensional synthesis by defining poses that are impossible to generate exactly
by any four-bar planar mechanism. The poses define a square corner. A point on a
rigid body moves linearly between the Cartesian coordinates from (0, 1) to (1, 0) via
(1, 1). The orientation increases linearly from 0 to 90 degrees. The poses are listed
in Table 1.
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Table 1 Specified poses defining a square corner.

Pose 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a 0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
b 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0
θ◦ 0.0 4.5 9.0 13.5 18.0 27.0 31.5 36.0 45.0 49.5 54.0 58.5 63.0 72.0 76.5 81.0 85.5 90.0

Dyad 1 Dyad 2
x 0.8413 0.8413
y 0.5706 −0.5706
K0 0.2010 0.2010

K0/K0 1 1
K1/K0 −4.5843 1.0549
K2/K0 1.0539 −4.5843
K3/K0 1.2704 1.2704

Fig. 3 Identified RRRR mechanism and corresponding dyads.

A planar four-bar mechanism cannot exactly replicate the motion defined above
because points on the coupler generate either a 6th, 4th, or 2nd order curve. The
curve

xn +yn = 1 (9)

approaches a square corner as n → ∞. With n ≤ 6 for planar four-bar mechanisms, it
is impossible to exactly replicate the desired motion. Although a PPPP mechanism
may be able to generate the desired point translation, the change in orientation rules
out this type of mechanism.

The pose data are substituted into Equation (6) to populate C. The γ of C are
then plotted as a function of x and y and are shown in Figure 2. As can be seen in
this figure, two distinct minima occur at approximately (0.8,0.6) and (0.8,−0.6).
Using the Nelder-Mead minimization and the pair of approximate x and y as initial
guesses, the exact values of the two minima are found, and listed in Figure 3. These
values are then substituted into Equation (6) to completely determine C. SVD is
then applied to C to find k corresponding to each minimum. The values of k thus
determined are also listed in Figure 3. The resulting synthesized mechanism, illus-
trated in Figure 3, is composed of two RR dyads centred on (4.5843,−1.0539) and
(−1.0539,4.5843), both with links having length 1.7307.
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4 Conclusions

In this paper a novel method was presented that integrates type and approximate
dimensional synthesis of planar four-bar mechanisms used for rigid-body guidance.
Coupler attachment points are correlated between moving frame E and fixed frame
Σ thereby reducing the number of independent variables defining a suitable dyad
for the desired poses from five to two. Numerical methods are then used to deter-
mine both mechanism type and approximate dimensions. A numerical example was
presented, illustrating the utility of the algorithm.
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Positional Workspace Boundary for Serial
Manipulators with Revolute Joints

Ciprian S. Borcea and Ileana Streinu

Abstract We have recently shown that the boundary of the positional workspace
for an nR serial manipulator with any pair of consecutive axes coplanar is made of
circular arcs with an underlying combinatorial structure of interconnectivity. In the
orthogonal case, the boundary is linear in size and can be computed efficiently with a
polynomial time algorithm. In this paper we show that the general (non-orthogonal)
case may be much more complex: in the worst case, the boundary may consist of 2n

such arcs.

Key words: Revolute-jointed serial manipulator, hyper-redundant, reach problem,
positional workspace, boundary, descriptive complexity

1 Introduction and Overview

The positional workspace (in short, the workspace) W of a serial manipulator is
defined as the set of points in R3 which can be reached by a marked reference point T
on the last link. The first link is considered fixed. The marked point may be imagined
as the hand or end-effector reduced to a point (see Fig.1(a)). Exact description and
computation of the workspace is of fundamental importance for manipulator design,
placement in the environment and performance evaluation (see e.g. [1, 11]).

Historical Background. Workspace determination has been approached with a
variety of methods: analysis of Jacobian singularities, recursive algebraic de-
scriptions [9], tracing of extreme reaches, numerical or probabilistic calculations.
Many papers addressed the workspace problem for general or specific robots
with very few joints, e.g. [10, 12]. Despite the increased relevance of the prob-
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lem for understanding nano-robots and protein structures, the case of an arbi-
trary number of joints has received little attention. The recursive procedure of
[9], although general in principle, has been explicitly used only for instances
with a small number of revolute axes. Numerical methods are fragile and lack
any guarantee of sampling more than a small region of the workspace boundary.

Fig. 1 A general 4R serial manipulator with intersecting
consecutive joint axes, in (a) a schematic, standard rep-
resentation and (b) viewed as a panel-and-hinge chain
with labeled intersections of hinges pi,i+1 =Ai∩Ai+1. The
panel πi,i+1 is the plane spanned by Ai and Ai+1.

Recent Results on Workspace
and Extremal Reaches. In [5],
we present a complete math-
ematical solution of the posi-
tional workspace boundary de-
termination problem, for all
spatial revolute-jointed serial
manipulators with any pair of
consecutive joints coplanar. In-
spired by the terminology in
Rigidity theory, and to em-
phasize the role of the planes
spanned by the two joint axes

carried by all interior links, we call them panel-and-hinge chains. The revolute
joints, now called hinges or hinge axes, have no angular limitation in rotating around
them. We denote the sequence of hinge axes by A1, · · · ,An, and refer to the intersec-
tion of axes Ai and Ai+1 by pi,i+1. This notation is used in Figs. 1 and 2. The natural
order of the hinges is 1,2,3, · · · as they appear on the chain.

Fig. 2 Planar section ∂W2
through the workspace boundary
∂W of an orthogonal chain with
n = 5 hinges. Shown are also
the circular arc endpoints, and
the max-boundary (black) and
min-boundary (gray).

Our solution has a geometric and a combinato-
rial part. On the geometric side, we showed that,
for panel-and-hinge chains, the intersection ∂W2 of
the workspace boundary ∂W with a plane passing
through the first hinge axis1 is always made of cir-
cular arcs (Fig. 2). This boundary may have sev-
eral connected components (the example in Fig. 2
has two, an outer layer and an inner “hole”). Each
circular segment has a very clear relationship with
an extremal reach problem (definitions are given in
Sec. 2). We have shown that the entire 2D section of
the workspace boundary ∂W2 is obtained by trac-
ing extreme reaches relative to a base-point S which
sweeps the first hinge axis. The workspace boundary
∂W is obtained as the surface of revolution of ∂W2

around the first axis. On the combinatorial side, we
showed that the articulation of the circular arcs in

∂W2, the positions of the corresponding centers and their angular sectors are con-
trolled through a discrete structure based on the notion of fold points. Fold points
are key characteristics of extremal configurations of panel-and-hinge chains and a

1 The subscript in ∂W2 serves as a reminder that we are referring to a planar region.
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Fig. 3 The natural order criterion for maximum, resp. minimum reach of polygonal chains. Ex-
tensions of the thick hinge segments are shown with thinner lines. (a) This flat chain is in its global
maximum position, since the oriented segment ST (thick gray) crosses the hinges in the natural
order. (b) This flat configuration, although a critical one for the endpoint distance function, is not
a maximum: the hinges are not crossed in natural order. (c) A flat non-zero minimum: the oriented
projective complement of ST (thick gray) is crossed by the hinges in natural order.

distinctive feature of this restricted class of serial manipulators. Therefore, comput-
ing the workspace boundary amounts to giving a description of the connectivity of
these circular arcs, along with their centers, radii and angular sectors. The number
of such arcs gives the overall complexity of the boundary ∂W2.

These results make use of our recent complete solution [3] to the Extreme
Reaches Problem for nR manipulators. Let the endpoint axis of the chain be the
line through a base-point S on the first link and the end-point T . The necessary and
sufficient condition given in our paper is that the global maximum of the distance
between S and T is attained when the oriented line segment between the base-point
and the end-point meets all joint axes in their natural sequential order 1,2, · · · ,n.
For an nR manipulator with coplanar consecutive hinges (the kind considered in
this paper), non-zero minima have a similar characterization: the complement of the
segment between S and T , oriented as a projective arc from the base-point S to the
end-point T and passing through the point at infinity, meets all joint axes in their
natural sequential order.

Fig. 4 A polygon folded to
a 3D maximum configuration.
The black dots are the end-
points and the two foldpoints;
notice the endpoint axis, going
through all of them. In light
gray, for visual reference, is a
flat configuration of the chain.

Fig. 3 illustrates these criteria for flat configurations,
i.e. those where all the panels (and thus all hinges,
plus S and T ) lie in a common plane. Fig. 4 illustrates
the general case, where the maximum is attained in a
3D configuration, and where flat pieces in maximum
reach position are connected at fold points (see Sec. 2);
the end-to-end axis, joining the endpoints of the chain,
passes through the fold points, while globally crossing
all the hinge axes in natural order. Note from Fig. 3 that
in general our criterion is applied to hinge axes con-
ceived as entire lines, not just line segments.

The two Max and Min Reach criteria are essential
for tracing the max-boundary and the min-boundary of
the workspace, that is, those parts of the workspace
boundary that can be obtained as the maximum reach,

respectively non-zero minimum reach of the end-point distance function between a
base-point S on the first joint axis and the end-point T . Together, the max-boundary
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and the min-boundary yield the whole workspace boundary; see Fig. 2 for an exam-
ple.

Algorithm for Computing the Workspace Boundary. In [5], we present an ef-
ficient algorithm for computing the description of ∂W2 in the case of orthogonal
chains, i.e. when the angles between two consecutive hinge axes are π

2 . For a panel-
and-hinge chain with n links, the boundary ∂W2 consists of O(n) circular arcs. We
show how to efficiently compute each one, and their connectivity, in linear O(n)
time. This case makes use of special properties of orthogonal chains and general-
izes to a larger class of manipulators identified in [4, 5]). It is natural to ask: Is it
possible to extend these algorithmic ideas to all panel-and-hinge chains? Our pre-
vious theoretical results suggest a positive answer. Here, however, we uncover an
intrinsic difficulty.

Our Result. A general algorithm for positional workspace boundary calculation
would take at least as much time as it takes to describe the result. In this paper,
we give a family of examples showing that the size of the workspace boundary can
sometimes be O(2n), i.e. exponentially large.

2 Workspace Boundary

The endpoint distance function assigns a real non-negative value (the distance be-
tween the endpoints S and T ) to each spatial configuration of the chain. The endpoint
distance varies between two extreme values, the global minimum and maximum. As
a function, it may have local minima, maxima and other critical values, attained in
critical configurations. It is known that in all critical configurations, the endpoint
axis meets all the hinge axes.

Fold Points and Flat Pieces. Two or more consecutive hinges cut by the endpoint
axis away from their intersection point must be coplanar: the panels between them
are folded over in a flat configuration. This leads to a structural decomposition of a
critical configuration into flat pieces and identifies certain fold points. The flat pieces
arise from contiguous segments of the chain (i.e. within an interval i to j of panel
indices), in which several coplanar consecutive hinges are cut (simultaneously, in
their common plane) by the endpoint axis (as in Fig. 3(a,c)). The flat pieces are
connected at fold points, which are those intersections of hinge axes which meet the
endpoint axis (see Fig. 4). The two hinges incident at each fold point determine,
in addition, a simpler “triangular” folding panel, which is met by the endpoint axis
only at the fold point.

Algorithms for Extremal Reaches. A dual characterization of the global maxi-
mum as a constrained shortest-path is given in [3]: the global maximum of the end-
point distance function coincides with the length of the shortest path from S to T
which meets all hinges in their natural order. This result allowed us to recast the
reach calculation as a constrained shortest path problem, and to give a polynomial
time algorithm in [6] for extremal reaches of arbitrary panel-and-hinge chains.

Workspace Boundary. The workspace is the locus of the end-point T in R3, as the
chain assumes all possible configurations. Since the abstract configuration space can
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be parametrized by n dihedral angles and thus is the n-dimensional torus (S1)n, we
obtain the workspace as the image W of the end-point map e : (S1)n → R3, which
takes a configuration θ = (θ1, . . . ,θn) ∈ (S1)n to the corresponding position of the
end-point T (θ) ∈ R3. The symmetry under the circle group S1 given by rotations of
the whole part from the second body on, around the fixed first hinge, implies that
the workspace W is determined by any planar section W2 through the first hinge.

Singularities of the Endpoint Map. By definition, a singularity of the end-point
map e is a configuration θ where the differential De(θ) has rank strictly less than
three. A geometric characterization for the singular configurations is known from
[2, 7, 8]: a configuration is singular if and only if there is a line through T = e(θ)
which intersects projectively all hinges. A configuration θ where T reaches a point
in the boundary ∂W of the workspace must be singular, for otherwise the image of
e would cover a neighborhood of T = e(θ) in R3. Therefore, the boundary of the
workspace is contained in the image of the singularity locus e(Σ): ∂W ⊂ e(Σ).

The Workspace Boundary ∂W2 for Panel-and-Hinge Chains. We combine the
above characterization of the singularity locus with our characterization of extremal
configurations. We choose an arbitrary base-point or start point S on the fixed first
panel. The configurations achieving the maximum distance between S and T must
have T on the workspace boundary, and the oriented endpoint segment ST intersects
all hinges in natural order. Obviously, we can move S along this segment until it
reaches the first hinge A1, with the same T as maximum reach. This means that all
maximum reach positions of T relative to a base-point S can be obtained with S on
the first hinge A1. As we vary the position of S on A1, the end-point T will trace
a portion of the workspace boundary which we call the max-boundary. Since the
sphere centered at S and passing through T obviously contains the whole workspace,
the max-boundary is contained in (actually, coincides with, cf. [5]) the intersection
of the workspace with the workspace convex hull boundary.

Fig. 5 (a) A minimum reach config-
uration with the same T for both S and
S−. (b) A minimum reach configuration
for S is a maximum reach configuration
for S+.

Non-zero minima are treated similarly. For
a given position of a base-point S with a non-
zero value for the minimum reach, the end-
point T must be on the workspace boundary and
on the projective complement of the endpoint
segment. There are two possibilities, illustrated
schematically in Fig. 5: (a) the intersection with
A1 is on the ray from S to the point at infinity;
in this case we can move S until it reaches A1

at a point denoted by S−, with the same T as
non-zero minimum reach, or (b) the intersection
with A1 (and thereby with all hinges) is on the
ray from the point at infinity to T , when repo-
sitioning S on A1 at a point denoted by S+ pro-
duces a maximum reach configuration instead of a minimum one. This means that
the corresponding position of T belongs to the max-boundary. By restricting the
choice of the base-point S to the first hinge A1, the corresponding non-zero mini-
mum reach positions of T trace all possible non-zero minimum reaches which are
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not already maximum reaches (relative to a repositioned S). The closure of the lo-
cus obtained by varying S on A1 and marking these reaches of T gives our min-
boundary.

Pivoting at Fold Points. A maximum or non-zero minimum reach configuration has
the endpoint axis projectively incident with all hinges. We may assume that T , and
thus the endpoint line ST as well, are in the reference plane, intersecting all hinges
(possibly at infinity). If the endpoint line ST avoids all points pi,i+1 =Ai∩Ai+1, then
all panels, one after another, must be in the same plane, namely the reference plane,
and thus we have a flat configuration. Non-flat extreme reaches must therefore have
one or more points p j, j+1 on the end-point line ST . These are the fold points of
the extremal configuration. If p j, j+1 is a fold point, the corresponding panel π j, j+1

may have a different normal direction from its two neighbors π j−1, j and π j+1, j+2,
but all panels π j+1, j+2, . . . ,πk−1,k between one fold point p j, j+1 and the next fold
point pk,k+1, with j+ 1 < k, must be coplanar. All panels up to the first fold point
must be in the reference plane and all panels after the last fold point are coplanar.
One may imagine now all hinges as ‘locked’, except for the two meeting at p j, j+1.
This creates a short chain of 2-hinges: when T is near the given initial position, it
is tracing a circular arc with center at p j, j+1 in the reference plane. For some time,
depending on the position of S on the first axis, the line through p j, j+1 and T will
intersect the first two axes in the same order as before. This scenario will be called
pivoting (at the fold point p j, j+1) and will be used repeatedly for tracing the max-
and min-boundaries.

Algorithm for Computing the Workspace Boundary (Sketch). We lay our chain
flat in the reference plane and conceptually sweep a point S on the first axis A1,
starting from the intersection with the second hinge axis A2, stopping at certain
events S1,S2, · · · . Using our general algorithm [6], we compute the maximum reach
from S to T at each corresponding event Si: the first fold point on the line from Si to
T gives the center of a circular arc on the workspace boundary ∂W2, with the radius
given by the actual length of the maximum reach value from that fold point on. The
circular arc is traced during a pivoting step for as long as the combinatorics of the
maximum reach (imagined for S moving on the first axis) still goes through this first
fold point. The max-boundary ends with either S going to infinity, or, in the other
direction, when a maximum reach morphs into a min reach. In [5] we describe how
to do the sweep efficiently in the orthogonal case (when consecutive hinges meet at
an angle of π/2). This method can be generalized to a larger family of chains, but -
as we now show - it will not always work in polynomial time. The main source of
difficulty arises from the sheer complexity of the boundary, in terms of number of
circular arcs making it.

3 An Exponentially Large Workspace Boundary

If for a choice of a starting point S on the first axis, a flat chain is in a maximum reach
configuration with respect to the terminus T , then the line segment ST (“endpoint
axis”) meets all the hinges in the natural order. Imagine the ST line segment drawn
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Fig. 6 Two endpoint axes, in gray and dotted gray, for two positions of S on the first hinge. (a) A
straight (solid, from T to S = E123) endpoint axis, crossing the hinges in the natural order 123. (b)
The second (dotted, from T to S = E123′) is reflected in the third axis, and corresponds to a flip of
the last panel, bringing the terminus T to the new position T ′, as shown in (c).

in “red” on the plane containing the flat chain. Then, when the chain is folded into
a different flat configuration (with rotations by π of some panels along incident
hinges), the “red” line bends at the folds and appears as if reflected in those hinge
axes which were folded. Walking along such a folded endpoint axis from S to T ,
reflection at a hinge line corresponds to some flipping of the next panel along that
hinge, as to achieve another flat configuration where the reflected endpoint axis
aligns to become straight. Fig. 6 illustrates this observation. We use it to represent,
on a single flat configuration, multiple endpoint axes (called from now on paths)
corresponding to maximum reach configurations originating from several starting
points S chosen on the first hinge line.

To simplify the description of our construction, we relabel the hinges so that the
first one is now A0. We describe now the worst-case scenario of 2n possible paths
(going through or reflecting into each of n hinges, in natural order) and refer to
Fig. 7. The first hinge axis A0 is taken to be horizontal, and above it we construct
a convex chain with n hinges A1, · · · ,An. We take Ai+1 such that it makes a left
turn angle of 2n−iα with Ai, for some very small angle α . The terminus T is placed
slightly above the last hinge An, so that a vertical line through T will meet the
horizontal axis A1 in a point S = S12···n. When taken as the starting point S, this
leads to chain (with n−1 hinges) which is, in this flat position, in a global maximum
reach position; indeed, its endpoint segment ST is straight and meets all the hinges
in natural order. For appropriate choices of the edge lengths of the chain (which
also grow exponentially), there are 2n ways of reflecting this ST path, in all the
hinges, so that these reflected paths will meet the base A0 hinge in 2n points; these
are denoted by S1∗2∗···n∗ , with i∗ being either i (to denote that hinge i is crossed) or
i′ (reflection at hinge i). In Fig. 7 the symbol S is dropped, and just the sequence
of signed indices is shown. Because of the very specific choice of slopes for the
hinges, a precise straight-line drawing is impossible to draw (due to exponential
explosion in its size) or to decipher (if scaled too small). We have therefore, for
clarity, illustrated this intersection and reflection pattern with curved lines instead,
as in Fig. 7(b). The choice of slopes (exponentially increasing from An to A1) and
edge lengths (inductively, proceeding from An to A1, so that the crossing pattern
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Fig. 7 (a) The base case, of two hinges A1,A2 and 4 reflected paths. The reflection angles in
this picture are not exact. (b) The reflection pattern for 3 hinges, illustrated with curved lines:
black solid, the hinges; gray dashed, the reflection paths. Labeled on the horizontal A0 axis are
the 23 = 8 reflection patterns. (c) The general pattern in which the paths intersect the first axis,
generalized from (b). The arcs illustrate a matching of shorter patterns (on n−1 symbols), before
being preceded by a 1 (to indicate crossing straight through line 1) or 1’ (reflected through line 1)
for the larger pattern on n symbols.

illustrated in Fig. 7(b) is realized) allow for this very special chain, with 2n circle
arcs on its max boundary.

This family of examples precludes a general, worst case polynomial time algo-
rithm for computing the entire workspace boundary. We leave for future work the
problem of finding an output-sensitive method, as well as devising algorithms for
simpler tasks, such as the determination of topological parameters of the workspace
boundary (connected components).
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Kinematics Analysis of a Parallel Surgical Robot

A. Szilaghyi, A. Stoica, D. Pisla, C. Vaida and N. Plitea

Abstract The geometric and kinematic analysis of a surgical parallel robot, used for
camera and active instruments positioning is presented in this paper. Its workspace
is also illustrated. The robot structure consists of two modules: the PARAMIS robot
and the new parallel positioning module. The use of this new parallel structure in
surgery presents the following advantages: it releases some of the pressure on the
abdominal wall in certain positions of the robot and the new robot may be used ei-
ther as laparoscope holder or as manipulator of active instruments, used for cutting,
suturing, grasping etc. The new robot provides the necessary control of motion to
fulfil the imposed tasks in the case of surgical applications. Numerical results and
conclusions from the performed simulations are described.

Key words: Kinematics, parallel robot, surgical applications, numerical results

1 Introduction

In the last 25 years, minimally invasive surgery (MIS) has evolved and developed
continuously. MIS refers to any procedure which is less invasive than open surgery
for the same purpose [1]. This procedure typically involves the use of several small
sized incisions to introduce the surgical instruments together with an endoscope
which provides an indirect view of the surgical field. In a MIS procedure, some
of the demonstrated patient benefits are: less trauma, reduced blood loss, shorter
recovery time, less emotional discomfort, less morbidity. As a result of the latest
developments in this field, robots have been used in complex surgical procedures.
However, these robots are not autonomous machines that can carry out simple, pre-
programmed instructions by themselves, but they are able to supplement the sur-
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geon’s abilities, translating human movements into more steady and accurate robotic
movements, which, in turn, manipulate instruments to aid delicate operations [2].

Initial use of robots in surgery began in 1985, with PUMA 560 serial robot which
has been used to hold and to guide tools for stereotactic biopsy in neurosurgery [3].
The first surgical robotic application for positioning the laparoscopic camera within
the surgical field was performed, in 1993 with the help of AESOP 1000 robotic
system [4]. Prosurgics provides FreeHand [5], a robotic system that positions the la-
paroscopic camera based on the head motions of the surgeon. Another surgical robot
is ViKY developed by EndoControl [6, 7], which is a compact motorized endoscope
holder for a wide range of laparoscopic and thoracic surgeries. One of the most com-
plex robot used in MIS is the da Vinci surgical system [8] developed in 1997 by Intu-
itive Surgical Inc. and currently at the second generation, approved for medical use,
namely in surgery and urology. Another system, the laparoscope manipulator Naviot
was developed in Japan. It is based on a five-bar linkage mechanism that has two in-
dependent motors on the bottom. In addition, the zoom-up mechanism of the laparo-
scope was applied to this manipulation system [9, 10]. Titan Medical Corporation
developed another important system, called Amadeus® [11]. It uses cutting edge
hardware and software from medical, defence and aerospace industries [11]. An-
other robot for surgery is MiroSurge, a configuration of the Miro platform (MRSP),
that allows bimanual endoscopic telesurgery with force feedback [12]. Medrobotics
[13] developed a flexible robot based on a highly articulated multi-link structure, for
minimally invasive surgery.

The Technical University of Cluj-Napoca achieved the first steps in this field of
research starting with 2005. The first experimental model of the laparoscopic holder
PARAMIS was made in 2008 [14–16]. Taking into account, earlier results of the
PARAMIS robot as laparoscope holder, encouraged further researches to expand the
applicability domain of the robot, by transforming the passive joint from the tip of
the arm, in active joint. This paper proposes the kinematic study of a parallel robot,
consisting of PARAMIS robot and a new parallel module, which is described in
detail in Section 2. Sections 3 and 4 deal with the kinematical analysis of the parallel
robot, followed by some numerical simulation results in Section 5. Conclusions are
given in Section 6.

2 Description of the New Robot

The main requirements of surgeons imposed on a surgical robot used for minimally
invasive surgery are the following: the robot control has to be accurate, it has to be
stable and rigid in the operating room, it should occupy a minimum space in the
patient proximity; in addition to these technical characteristics the safety features
must prevent the patient or surgeon harm in case of a robot malfunction [17].

The existing PARAMIS robot had actually all of these characteristics, but from
practice it has been proved that there are situations when the abdominal wall is under
a lot of pressure in certain positions from the laparoscope, requiring an additional
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Fig. 1 The structure of the robot: (a) kinematic scheme; (b) detail of the parallel module.

mechanism that could release some of that pressure. The new robot structure has
also the advantage that it may be used either as laparoscope holder or as a position-
ing arm for the active instruments used for cutting, suturing, grasping etc.

The new parallel robot with five motors is based on an already existing robot and
an attachable parallel orientation module, assuring high rigidity due to its closed
chains. The motivation for choosing a parallel configuration is given by its archi-
tectural advantages [18]. There is a restriction the mechanism must accomplish:
the surgical instrument must pass through a fixed point in space. Such as example
is the point B(XB,YB,ZB) in Figure 1a which represent the point of incision of the
laparoscope in the abdomen. The robotic arm consists of a positioning parallel mod-
ule with 3 motors (PARAMIS), and an orientation parallel module with 2 motors,
presented in Figure 1a. From the first three active joints, actuated from the robot ba-
sis, two of them are prismatic and one is rotational. From the other two active joints
on the tip of the arm rA, one of them is rotational and the other one is a prismatic
joint.

In this case the robot uses its five active joints and several passive joints (four
rotational joints and one prismatic joint) to fulfil its task. The last two active joints
are q4 and q5, where q4 achieves a rotational motion around the axis X’, which is an
axis situated in a parallel plane with the fixed plane XOY and q5 achieves a rotational
motion around the axis Y *, which is an axis situated in a plane obtained after the last
motion. These two active joints, have the role to maintain a virtual point, fixed, to
eliminate to leading the instrument, using the abdominal wall. Angles ψ and θ are
also presented in Figure 1b. The laparoscope can be positioned in any point of the
surgical field and the advantage of using this orientation parallel module is a better
guidance of the camera and the possibility to position an active instrument.
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3 The Geometric Model and the Robot Workspace

To obtain the geometric model, a mobile frame AX’Y ’Z’, attached to the endoscope
in the point A is used. As one can see in Fig. 1, rA has the following form:

rA = b+ e2 +
√

d2 − (q2 −q1)2 (1)

where q1, q2, q3, q4 and q5 are the active coordinates of the robot and b, h, e2 and d
are geometrical parameters. A relation between some of these coordinates and the
coordinates of point A(XA,YA,ZA) may be defined:

XA = rA · cos(q3), YA = rA · sin(q3), ZA = q1, (2)

Direct geometric model. The displacements in motor coordinates q1, q2 and q3 are
given. One must take into consideration that the laparoscope must pass through the
fixed point B, and for that to operate the robot without pressing on the abdominal
wall, the coordinates q4 and q5 have to be determined. The end-effector coordinates
are namely the point E(XE ,YE ,ZE) – the tip of the laparoscope, and the two rotation
angles ψ and θ . The angles ψ and θ are defined by equations:

ψ = arctan2(YB−YA,ZA−ZB), θ = arctan2(XA−XB,
√

e2−(XA−XB)2), (3)

Where:

e =
√

(XB −XA)2 +(YB −YA)2 +(ZB −ZA)2 (4)

Coordinates q4 and q5 are determined by the expressions:

q4 = ψ (5)

q5 = ct1 · sin(θ)+ e3 · cos(θ)+ r · cos(α)− ct2 (6)

where

α =
arcsin(ct1 · cos(θ)− e3 · sin(θ)− e4)

r
(7)

The notations ct1, ct2, e3, e4 and r were used for some geometrical parameters 1.
The coordinates of point E are determined by the following relations:

⎧⎨
⎩

XE = XA −h · sin(θ),
YE = YA +h · sin(ψ) · sin(θ),
ZE = ZA −h · cos(ψ) · cos(θ),

(8)

Inverse geometric model. In this case, the generalized coordinates q1, q2, q3, q4

and q5 of the robot and the rotational angles ψ and θ , have to be determined using
the generalized coordinates of the end effector XE , YE , ZE .

To solve the problem, the expressions of the coordinates of point A(XA,YA,ZA),
are determined using the coordinates XE , YE , ZE of point E.
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Fig. 2 The robot workspace.

⎧⎨
⎩

XA = XE +h · sin(θ),
YA = YE −h · sin(ψ) · cos(θ),
ZA = ZE +h · cos(ψ) · cos(θ),

(9)

where the rotational angles ψ and θ are defined by equations:

ψ = arctan2(YE −YB,ZB −ZE) (10)

θ = arctan2(XB −XE ,
√

e2
1 − (XB −XE)2) (11)

where:

e1 =
√
(XB −XE)2 +(YB −YE)2 +(ZB −ZE)2 (12)

q1 = ZE +h · cos(θ) · cos(ψ),

q2 = ZE +h · cos(ψ) · cos(θ)+
√

d2 − (rA −b− e2)2,
q3 = arctan2(YE −h · sin(ψ) · cos(θ),XE +h · sin(θ)),
q4 = ψ ,
q5 = ct1 · sin(θ)+ e3 · cos(θ)+ r · cos(α)− ct2,

(13)

The active coordinates are obtained with the equations (13).

Robot workspace. Figure 2 shows the workspace of the robot, pointing out the
constraints imposed. In order to analytically generate the workspace inside the ab-
dominal cavity, the inverse geometric model has been used where the insertion point
into the abdomen: B(XB,YB,ZB) and the coordinates of point E(XE ,YE ,ZE) are con-
sidered known. There are several constraints that must be taken into consideration:
the angle between a normal axis on the insertion surface and the instrument must
not exceed 60 degrees; denoting with A the outer extremity and with E the tip of
the instrument the following restrictions apply: length AB ≤ 220 mm and length
BE ≥ 50 mm, restrictions imposed by the dimensions of the trocar and the total
laparoscope length.
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4 Kinematics

The relations for the kinematics, including velocities and accelerations uses the
equations from the geometric model.

Fi(qi,XE ,YE ,ZE ,ψ ,θ) = 0; i = 1 . . . 5 (14)

The system of equations in implicit form is obtained using the equations of the
previous section:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F1 = q1 −ZE −h · cos(θ) · cos(ψ),
F2 = (q2 −ZE −h · cos(ψ) · cos(θ))2 −d2 +RAD,
F3 = (XE +h · sin(θ)) · sin(q3)− (YE −h · sin(ψ) · cos(θ)) · cos(q3),
F4 = q4 −ψ ,
F5 = q5 − ct1 · sin(θ)− e3 · cos(θ)− r · cos(α)− ct2,

(15)

where:

RAD = (
√
(XE +h · sin(θ))2 +(YE −h · sin(ψ) · cos(θ))2 −b− e2)

2 (16)

The relations for velocities result by differentiating the system of equations (15)
with respect to time. Using the matrix representation, the kinematic model for ve-
locities is:

A · Ẋ +B · q̇ = 0, (17)

Differentiating two times the system of equations (15), with respect to time, results
the relations for accelerations.

Ȧ · Ẋ +A · Ẍ + Ḃ · q̇+B · q̈ = 0, (18)

where q̇ = [q̇1 q̇2 q̇3 q̇4 q̇5]
T are the driving velocities, Ẋ = [ẊE ẎE ŻE ψ̇ θ̇ ]T are

the end-effector and the angular velocities, q̈ = [q̈1 q̈2 q̈3 q̈4 q̈5]
T are the driving

accelerations and Ẍ = [ẌE ŸE Z̈E ψ̈ θ̈ ]T are the end-effector and the angular accel-
erations. Both the direct kinematic model (DKM) and the inverse kinematic model
(IKM) for velocities and accelerations were determined from relations (17) and (18).
The solving of the both kinematic models leads to analytical solutions, which rep-
resents an advantage in the achievement of the control system.

5 Numerical Results

In the case of the parallel robot used in minimally invasive surgery, the geomet-
ric and kinematic models have been developed, in order to perform the imposed
movements (given by the surgeon). It is supposed that the end effector axis always
passes through a fixed point defined in space, which is the intersection point be-
tween the abdomen and the end effector. For validation, the developed models were
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Fig. 3 Time history diagrams for driving coordinates, velocities and accelerations.

implemented as functions in the MATLAB simulation software, finally obtaining
numerical results and graphics for an imposed movement. As input data were used
the following constructive values of components involved directly in equations:
b = 326 mm, d = 654 mm, h = 270 mm, e2 = 44 mm, ct1 = 125 mm, ct2 = 53 mm,
e3 = 28, e4 = 27 mm, r = 144 mm. For simulation it was chosen the command
MOVE UP [19] which means a motion of the end-effector from the initial position
and orientation with 5 degrees on the upper direction, from the surgeon’s view. In
kinematic terms, the motion represents a rotation around an axis with the origin in B,
perpendicular on the longitudinal axis of the laparoscope, this axis being contained
in a plane parallel with the horizontal one (XOY). Using a set of initial coordinates
(XEi = 990 mm, YEi = 30 mm, ZEi = 420 mm) for the end-effector and follow-
ing the MOVE UP command the coordinates of the final position were determined
(XEf = 995 mm, YEf = 33.3 mm, ZEf = 421.8 mm), respecting the imposed geo-
metrical restriction represented by a fixed point B with coordinates (XB = 975 mm,
YB = 20 mm, ZB = 490 mm), where the longitudinal axis of the end effector must
pass through. Figure 3 represents the obtained simulation results of the kinematics.

6 Conclusions

A new orientation parallel module was described in this paper. Starting from an ex-
isting robot with three DOF and adding a new parallel module, a structure was ob-
tained which no longer induce any pressure on the abdominal wall which can handle
both a laparoscope or an active instrument for different operations like cutting, su-
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turing, grasping. The direct and inverse kinematics were solved using an analytical
method. The obtained numerical results have shown that the kinematic models could
be successfully implemented in the control algorithms of the experimental model.
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Constraint Singularity-Free Design of the
IRSBot-2

Coralie Germain, Sébastien Briot, Stéphane Caro and Philippe Wenger

Abstract This paper deals with the constraint analysis of a novel two-degree-
of-freedom (DOF) spatial translational parallel robot for high-speed applications
named the IRSBot-2 (acronym for IRCCyN Spatial Robot with 2 DOF). Unlike
most two-DOF robots dedicated to planar translational motions this robot has two
spatial kinematic chains that provide a very good intrinsic stiffness. First, the robot
architecture is presented and its constraint singularity conditions are given. Then,
its constraint singularities are analyzed in its parameter space based on a cylindrical
algebraic decomposition. Finally, a deep analysis is carried out in order to determine
the sets of design parameters of the IRSBot-2 that prevent it from reaching any con-
straint singularity. To the best of our knowledge, such an analysis is performed for
the first time.

Key words: Parallel manipulator, constraint singularity, cylindrical algebraic de-
composition, design

1 Introduction

Several robot architectures with two translational degrees of freedom (DOF) for
high-speed operations have been proposed in the past decades. Brogårdh proposed
in [2] an architecture made of a parallelogram joint (also called Π joint) located
between the linear actuators and the platform. Another two-DOF translational robot
was presented in [5], where the authors use two Π joints to link the platform with
two vertical prismatic actuators. Its equivalent architecture actuated by revolute
joints is presented in [4].
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The foregoing architectures are all planar, i.e., their elements are constrained to
move in the plane of motion. As a result, their elements are all subject to bending
effects in the direction normal to the plane of motion. In order to guarantee a mini-
mum stiffness in this direction, the elements have to be bulky, leading to high inertia
and low acceleration capacities. In order to overcome these problems, a new Delta-
like robot, named the Par2, was proposed in [7]. However, even if its acceleration
capacities are impressive, its accuracy is poor.

A two-DOF spatial translational robot, named IRSBot-2, was introduced in [3] to
overcome its counterparts in terms of mass in motion, stiffness and workspace size.
The IRSBot-2 has a spatial architecture and the distal parts of its legs are subject
only to traction/compression/torsion. As a result, its stiffness is increased and its
total mass can be reduced. Nevertheless, the IRSBot-2 may reach some constraint
singularities [1, 8]. In this paper, a deep analysis is carried out in order to determine
the sets of design parameters of the IRSBot-2 that prevent it from reaching any
constraint singularity.

This paper is organized as follows. First, the robot architecture is described and
its constraint singularity conditions are given. Then, its constraint singularities are
analyzed in its parameter space based on a cylindrical algebraic decomposition. Fi-
nally, the set of design parameters for the robot to be free of constraint singularity
are determined.

2 Robot Architecture and Constraint Singularity Conditions

The IRSBot-2 is shown in Fig. 1 and is composed of two identical legs linking the
fixed base to the moving platform. Each leg contains a proximal module and a distal
module, which are illustrated in Fig. 2.

Fig. 1 CAD Modeling of the IRSBot-2 Fig. 2 Kinematic chain of the ith leg (i = 1,2)
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Fig. 3 Parameterization of the ith leg (i = 1,2)

Fig. 4 Closed-loop Ei–Hbi–Hhi–Fi: pro-
jection of the distal module on the plane
(x0 Oz0)

The parameters of the IRSBot-2 used throughout this paper are depicted in Figs. 3
and 4. From [3], the IRSBot-2 reaches a constraint singularity iff:1

θ1 = θ2 + kπ, k = 0,1 (1)

and
(xP2 − xP1)cos2 β cosθ2 − (zP2 − zP1)sinθ2 = 0 (2)

It is noteworthy that Eqs. (1) and (2) depend only on the design parameters asso-
ciated with the distal module. Therefore, the proximal modules of the IRSBot-2 do
not affect its constraint singularities and we focus only on the constraint singularities
associated with the distal modules.

3 Constraint Singularity Analysis of the IRSBot-2 in Its
Parameter Space

This section aims to find the sets of design parameters (a1, a2, β , p, l2eq) that allow
the IRSBot-2 to reach some constraint singularities. Note that the foregoing five de-
sign parameters are shown in Fig. 3. a1, a2 and l2eq are the lengths of segments EiE1i,
FiF1i and HbiHhi, respectively. p is the moving-platform radius. The coordinates of
vector

−−→
P1P2 can be expressed as:

1 Let β denote β22, then β11 = π +β , β21 =−β and β12 = π −β
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xP2 − xP1 = 2p+ �(cosψ2 − cosψ1) (3)

zP2 − zP1 = �(sinψ2 − sinψ1) (4)
�=

a2 l2eq

a1 −a2
(5)

Angles ψ1 and ψ2 are depicted in Figs. 3 and 4. From the closed-loop Ei–Hbi–Hhi–Fi

(i = 1,2) and Fig. 4, the following relations between λi, θi and ψi are obtained:

l2eq cosψi = λi cosθi − (a1 −a2)sinβ (6)

−l2eq sinψi = −λi sinθi (7)

λi is depicted in Fig. 4 and is derived from Eqs. (3) to (7):

λi =
√

l2
2
eq +(a1 −a2)2 sin2 β +2(−1)i+1l2eq cosψi(a1 −a2)sinβ (8)

The following three cases, obtained from Eqs. (1) and (8), allow us to simplify
Eqs. (3) to (7) to end up with a univariate polynomial form of constraint singularity
condition (2):

Case I: θ1 = θ2 +π and λ1 = λ2 �= 0
Case II: θ1 = θ2 +π and λ1 �= λ2

Case III: θ1 = θ2

For Case I, Eq. (2) takes the form:

PI(X) = A1X2 +B1X +C1 = 0 (9)

with ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 =− l2
2
eq sin2 β a2/(a1 −a2)

B1 = l2eq (1− sin2 β ) (p−a2 sinβ )
C1 =− p (a1 −a2) (1− sin2 β ) sinβ + l2

2
eq a2/(a1 −a2)

X = cosψ , ψ = ψ2, X ∈ [−1, 1], [a1, a2, β , p] ∈ D ,

l2eq ∈ ]0,+∞[

D =]0,+∞[×]0, a1[×[0, π/2]×]0,+∞[.
For Case II, Eq. (2) takes the form:

PII(X) = A2X2 +C2 = 0 (10)

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A2 = a2 sin3 β
C2 = p(1− sin2 β )−a2 sin3 β

X = cosθ , θ = θ2, X ∈ [−1, 0], [a1, a2, β , p] ∈ D ,

l2eq ∈ ](a1 −a2)sinβ |sinθ |, (a1 −a2)sinβ [

For Case III, Eq. (2) takes the form:

PIII(X) = A3X2 +C3 = 0 (11)
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Table 1 Formulae describing the boundaries of the cells in Tables 2, 3 and 4.

a11 = 0 p1 = 0
a12 =+∞ p2(a1,a2,β ) = 1−sinβ

1+sinβ a2 sinβ

a21 = a1 p3(a1,a2,β ) = 1−sin2 β
1+sin2 β a2 sinβ

a22 =+∞ p4(a1,a2,β ) = a2 sinβ
β1 = 0 p5(a1,a2,β ) = 1+sin2 β

1−sin2 β a2 sinβ

β2 = arcsin(1/
√

3) p6(a1,a2,β ) = 1+sinβ
1−sinβ a2 sinβ

β3 = π/4 p7 =+∞
β4 = π/2 p8(a1,a2,β ) = a2 sinβ tan2 β
l2eq1(a1,a2,β , p) = a1−a2

a2
p

l2eq2(a1,a2,β , p) = (a1 −a2) sinβ
l2eq3(a1,a2,β , p) = a1−a2

2a2 sinβ

√
(sin2 β −1)

[
(sin2 β −1)(p−a2 sinβ )2 +4 pa2 sin3 β

]
l2eq4(a1,a2,β , p) = (a1 −a2) sinβ |sinθ |
l2eq4(a1,a2,β , p) = +∞

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A3 = a2 sin3 β
C3 = p(1− sin2 β )−a2 sin3 β

X = cosθ , θ = θ2, X ∈ [−1, 1], [a1, a2, β , p] ∈ D ,

l2eq ∈ ](a1 −a2)sinβ ,+∞[

As a matter of fact, the IRSBot-2 reaches a constraint singularity as long as one
of the univariate polynomials (9), (10), (11) admits one solution at least. The set
of design parameters (a1, a2, β , p, l2eq) for which the constraint singularities asso-
ciated with Cases I, II and III can be reached are obtained with a method based on
the notion of Discriminant Varieties and Cylindrical Algebraic Decomposition. This
method resorts to Gröbner bases for the solutions of systems of equations and is de-
scribed in [6]. Besides, the tools used to perform the computations are implemented
in a Maple library called Siropa.2

Table 1 provides the different formulae bounding the five-dimensional cells as-
sociated with Cases I, II and III. a1 and β can be chosen independently. Then,
the boundaries for a2, p are l2eq are determined successively. Table 2 character-
izes all the cells where the IRSBot-2 can reach a constraint singularity, namely,
where PI , PII or PIII has at least one real root. It is noteworthy that a real root of
one the three foregoing polynomials amounts to two symmetrical singular configu-
rations of the distal module. It is apparent that six cells arise where PI has a single
real root, two cells arise where PI has two real roots. PII and PIII can get two real
roots in one cell only. Some constraint singularities of the IRSBot-2 are shown on
http://irccyn.ec-nantes.fr/Robotique/IRSBot2.

2 http://www.irccyn.ec-nantes.fr/∼chablat/SIROPA/files/siropa-mpl.html

http://irccyn.ec-nantes.fr/Robotique/IRSBot2
http://www.irccyn.ec-nantes.fr/~chablat/SIROPA/files/siropa-mpl.html
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Table 2 Cells of R5 where the IRSBot-2 can reach constraint singularities.

Case I

(]a11,a12[, ]a21,a22[, ]β1,β4[)

]p1, p2[ (]l2eq1, l2eq2[)

Two singular configs.

]p2, p3[ (]l2eq1
, l2eq2

[)
]p3, p4[ (]l2eq1

, l2eq2
[)

]p4, p5[ (]l2eq2
, l2eq1

[)
]p5, p6[ (]l2eq2

, l2eq1
[)

]p6, p7[ (]l2eq2
, l2eq1

[)
]p3, p4[ (]l2eq3

, l2eq1
[)

Four singular configs.
]p4, p5[ (]l2eq3

, l2eq2
[)

Case II
(]a11,a12[, ]a21,a22[, ]β1,β4[) ]p1, p8[ (]l2eq4, l2eq2[) Four singular configs.
Case III
(]a11,a12[, ]a21,a22[, ]β1,β4[) ]p1, p8[ (]l2eq1, l2eq2[) Four singular configs.

4 Design Parameters for the IRSBot-2 to Be Free of Constraint
Singularity

This section aims to find the sets of design parameters (a1, a2, β , p, l2eq) that pre-
vent the IRSBot-2 from reaching any constraint singularity. It amounts to find the
intersection of cells where PI , PII and PIII do not have any real root over their mutual
domain.

It turns out to be quite difficult to obtain the intersection of cells contrary to
their union. As a consequence, we will search for the cells where the product of PI ,
PII and PIII does not have any real root. From (10) and (11), it is apparent that the
expressions of PII and PIII are the same, but their domains are disjointed and comple-
mentary because of the bounds of l2eq. Therefore, the sets of design parameters (a1,
a2, β , p, l2eq) that prevent the IRSBot-2 from reaching any constraint singularity
correspond to the union of cells that do not provide any real root for the following
two univariate polynomials:

PIV(X) = PI PII(X) = (A1X2 +B1X +C1)(A2((X −1)/2)2 +C2) = 0 (12)

with {
X ∈ [−1, 1], [a1, a2, β , p] ∈ D ,

l2eq ∈ ]|sinθ |(a1 −a2) sinβ , (a1 −a2)sinβ [

and
PV (X) = PI PIII(X) = (A1X2 +B1X +C1)(A3X2 +C3) = 0 (13)

with {
X ∈ [−1, 1], [a1, a2, β , p] ∈ D ,

l2eq ∈ ](a1 −a2)sinβ ,+∞[

A1, B1, C1, A2, C2, A3, C3 and D being defined in Eqs. (9) to (11).
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Table 3 Cells where Eq. (12) does not have any real root with a1 ∈]a11,a12[ and a2 ∈]a21,a22[.

[β1,β2[ (]p8, p3[, ]l2eq4
, l2eq1

[),(]p3, p4[, ]l2eq4
, l2eq3

[),(]p4, p5[, ]l2eq4
, l2eq3

[),(]p5, p7[, ]l2eq4
, l2eq2

[)
[β2,β3[ (]p8, p4[, ]l2eq4

, l2eq3
[),(]p4, p5[, ]l2eq4

, l2eq3
[),(]p5, p7[, ]l2eq4

, l2eq2
[)

[β3,β4] (]p8, p5[, ]l2eq4
, l2eq3

[),(]p5, p7[, ]l2eq4
, l2eq2

[)

Table 4 Cells where Eq. (13) does not have any real root with a1 ∈]a11,a12[ and a2 ∈]a21,a22[.

[β1,β2[ (]p8, p3[, ]l2eq2
, l2eq5

[),(]p3, p4[, ]l2eq2
, l2eq5

[),(]p4, p5[, ]l2eq1
, l2eq5

[),(]p5, p7[, ]l2eq1
, l2eq5

[)
[β2,β3[ (]p8, p4[, ]l2eq2

, l2eq5
[),(]p4, p5[, ]l2eq1

, l2eq5
[),(]p5, p7[, ]l2eq1

, l2eq5
[)

[β3,β4] (]p8, p5[, ]l2eq1
, l2eq5

[),(]p5, p7[, ]l2eq1
, l2eq5

[)

Fig. 5 Cells where the IRSBot-2 cannot reach any constraint singularity for: (a) a1 = 1, β =
arcsin(1/

√
3) and l2eq < (a1 −a2)sinβ ; (b) a1 = 1, β = arcsin(1/

√
3) and l2eq > (a1 −a2)sinβ .

Eq. (12) amounts to the product of PI and PII with a change a variable for PII and
the most restrictive domain for l2eq defined in (10), whereas Eq. (13) amounts to
the product of PI and PIII with the most restrictive domain for l2eq defined in (11).
Table 1 gives the different formulae bounding the five-dimensional cells associated
with (12) and (13). The cells where PIV and PV do not have any real root, i.e., the
sets of design parameters (a1, a2, β , p, l2eq) that prevent the IRSBot-2 from reaching
any constraint singularity, are expressed in Tables 3 and 4, respectively.

Figure 5(a) (Fig. 5(b), resp.) illustrates the cells where Eq. (12) (Eq. (13), resp.)
does not have any real root, namely, the sets of design parameters that prevent the
IRSBot-2 from reaching any constraint singularity for a1 = 1, β = arcsin(1/

√
3) and

l2eq < (a1 − a2)sinβ (l2eq > (a1 − a2)sinβ , resp.). We can notice that the amount
of constraint singularity-free designs is higher with l2eq > (a1 −a2)sinβ than with
l2eq < (a1 −a2)sinβ .
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5 Conclusions

This paper dealt with the constraint analysis of the IRSBot-2 throughout its param-
eter space. Its constraint singularities were analyzed in its parameter space with a
method based on the notion of Discriminant Varieties and Cylindrical Algebraic
Decomposition. This method allowed us to convert a kinematic problem into an al-
gebraic one. Then, a deep analysis was carried out in order to determine the sets
of design parameters of the distal modules that prevent the IRSBot-2 from reach-
ing any constraint singularity. To the best of our knowledge, such an analysis had
never been performed before. The design parameters associated with the proximal
modules for the IRSBot-2 to be assembled will be determined in a future work.
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Agency (Project ANR-2011-BS3-006-01-ARROW). The authors also thank Damien Chablat for
his great help with the Siropa Maple library.
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Human Muscle Fatigue Model in Dynamic
Motions

Ruina Ma, Damien Chablat, Fouad Bennis and Liang Ma

Abstract Human muscle fatigue is considered to be one of the main reasons for
Musculoskeletal Disorder (MSD). Recent models have been introduced to define
muscle fatigue for static postures. However, the main drawbacks of these models
are that the dynamic effect of the human and the external load are not taken into
account. In this paper, each human joint is assumed to be controlled by two muscle
groups to generate motions such as push/pull. The joint torques are computed using
Lagrange’s formulation to evaluate the dynamic factors of the muscle fatigue model.
An experiment is defined to validate this assumption and the result for one person
confirms its feasibility. The evaluation of this model can predict the fatigue and
MSD risk in industry production quickly.

Key words: Muscle fatigue model, dynamic motions, human simulation

1 Introduction

Muscle fatigue is defined as “any reduction in the ability to exert force in response to
voluntary effort” [2] and is one of the main reasons leading to MSD [7]. From Hill’s
muscle model [4] to today’s muscle fatigue models, this topic has been researched
from different scientific field with special point of views. In general, mainly two
approaches have been adopted to evaluate muscle fatigue [10], either in theoretical
methods or in empirical methods. In [11], Wexleret et al. proposed a new mus-
cle fatigue model based on Ca2+ cross-bridge mechanism and verified the model
with simulation experiments. Although this model can be used to predict the muscle
force fatigue under different simulation frequencies, the large number of variables
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make it difficult to use compare with other models. In [8], Liu et al. proposed a
fatigue and recovery models based on motor units pattern. They demonstrated the
relationship among muscle activation, fatigue and recovery. This model is available
under maximum voluntary contraction situation; this condition is rare in the man-
ual working situation. Another muscle fatigue model was developed by Giat [3]
based on force-pH relationship. This fatigue model was obtained by curve fitting
of the pH level with time in the course of stimulation and recovery, but it cannot
used in evaluating the muscle fatigue in the whole working process. In [9], Ma et
al. proposed a muscle fatigue model from the macroscopic point of view. External
physical factors and personal factors were taken into consideration to construct the
model. This model can predict the muscle fatigue trend in static working posture
(θelbow = 90◦, θshoulder = 30◦), but in dynamic working situation this model was
limited.

The purpose of this work is to extend muscle fatigue model to dynamic work-
ing situations. The difference force generation between static working posture and
dynamic working motions is dependent on the activation of different muscle types.
There are three types of fibers of muscle: slow-twitch fibers, fast-twitch A fibers
and fast-twitch B fibers [5]. In every postures and motions all of the three muscle
fibers are used, but the percentage of every fibers in static and dynamic situation is
different. In a static working posture fast-twitch fibers is mostly used and this type
of muscle fibers have a low resistance to fatigue. In a low speed dynamic working
motions slow-twitch fibers are mainly used and this type of muscle fibers have a
high resistance to fatigue. Meanwhile, the blood circulation during dynamic mo-
tions is better than in a static working posture. For these reasons, the behavior of the
muscle and its fatigue rate are different in the two types of situations. In this paper, a
muscle fatigue model in dynamic situation is proposed. A new approach to identify
the fatigue rate parameter k is used. An experimental setup is defined to validate this
assumption.

Firstly, some assumptions are given and a new dynamic muscle fatigue model is
proposed. Secondly, an experiment is designed to verify this model. Thirdly, a case-
study for one person is illustrated and the fatigue parameter k is evaluated. Finally,
some perspectives are presented.

2 Proposal of a New Muscle Fatigue Model

Dynamic muscle fatigue model: Muscles in the human body have one most impor-
tant function, such as force generating devices. They can work only in a single direc-
tion. Hence, for each single joint, at least two groups of muscles (agonistic muscle
and antagonistic muscle) are necessary to control the motion. The co-contraction of
the two groups of muscles provide stability to joint and balance to the posture. From
the articulation point of view, it is assumed that a joint is controlled by two groups
of muscles (one for flexion and one for extension). These muscle groups create a
torque on the joint. This torque drives the human movement and whether it is pos-
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Table 1 Parameters in dynamic fatigue model.

Item Unit Description
ΓMVC N.m Maximum voluntary contraction of joint torque, i.e. Γmax
Γcem(t) N.m Current exertable maximum joint torque
Γjoint N.m Joint torque, i.e. the torque which the joint needs to generate
k min−1 Fatigue rate

itive or negative depends on the angle and direction of joint rotation. Based on the
previous model of Ma et al., we propose that:

1. the fatigue of muscle is proportional to the joint torque, i.e. in the same period of
time, the larger the torque of joint exerted, the more fatigue people feel;

2. the fatigue of muscle is inversely proportional to the muscle torque capacity, i.e.
the smaller the capacity is, the quicker the muscle becomes tired.

This can be mathematically described by the following equation.

dΓcem(t)
dt

=−k · Γcem(t)
ΓMVC

·Γjoint(t) (1)

where the set of parameters are listed in Table 1. If we assume that Γcem(0) = ΓMVC

and k is a constant, the integration result of the previous equation is given by

Γcem(t) = ΓMVC · e
− k

ΓMVC

∫ t
0 Γjoint(u)du

(2)

The value of ΓMVC is a fixed value determined by individual person. In the first ap-
proximation, we assume that ΓMVC is a constant of a joint torque during a limited
period of time. According to robotic dynamic model [6], Γjoint(u) can be modeled
by a variable depending on the angle, the velocity, the acceleration and the inter-
nal/external load.

Γjoint(u)
def
= Γ (u,θ , θ̇ , θ̈) (3)

This way, Equation (2) can be further simplified in the form.

Γcem(t) = ΓMVC · e
− k

ΓMVC

∫ t
0 Γ (u,θ ,θ̇ ,θ̈)du

(4)

Equation (4) defines our new dynamic muscle fatigue model. The model takes con-
sideration of the motion by the variations of the torque Γjoint from joint level. This
torque which is computed using robotic method is integrated to obtain the current
exertable maximum joint torque. At first stage, we do not take into account the
muscle co-contraction factor [1]. This work enlarges the muscle fatigue model use-
fulness range.

The new dynamic fatigue model is in joint level. As mentioned in the assumption,
the motion of joint is driven by a pair of muscles. Obviously, this model can be easily
applicated in muscle level. For one cycle, the Γjoint is negative or positive related
with elbow rotation range. If Γjoint is positive, we suppose it is the effect of agonistic
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muscle. Inversely, if Γjoint is negative, we suppose it is the effect of antagonistic
muscle. Based on this consideration, there will be two fatigue rate parameters k
(kagonist and kantagonist) for a dynamic operation in the muscle level. Our new dynamic
fatigue model can applicate fatigue evaluation in muscle level.

3 Experiment Design for Validation

The aim of the experiment design is to evalu-

Fig. 1 Measurement device.

ate the muscle fatigue model. We suppose that in
a push operation the agonistic muscle is mainly
used whereas in a pull operation the antagonis-
tic muscle is mainly used. Based on this as-
sumptions, we concentrate the study on the el-
bow joint and use a push/pull operation to sim-
ulate dynamic motions. This evaluation consists
in measuring the maximal push and pull strength
after a continuous movement of the lower arm.

Experiment materials (Figure 1):
1. A dynamometer. This device is used to measure the maximum push/pull force

after lengths of time’s movement of the lower arm.
2. A bar. This weight is grabbed by the hand of the participant and is used to simu-

late the weight of an operation tool in industrial environment. For our experiment
the bar weight is 3 Kg.

3. A metronome. This tool is used to define the sample times of the motion. For our
experiment the frequency is 1Hz.

4. A self-made support. This support is used to maintain the elbow posture during
the motion and measure the torque after the operation.

Experiment procedure: The participant seats in a chair and puts his elbow on the
support. The procedure is to repeat a rotation of the elbow joint from 0 to 75 degrees
and then from 75 degrees to 0 during ti unit of time. This movement is done with
the bar in hand. The experiment procedure is as follows:
1. Measure ΓMVC before starting the operation (ΓMVC(0) = Γcem(0));
2. Perform the dynamic operation during ti unit of time;
3. Measure the remained maximum torque of elbow joint Γcem(ti);
4. Take a rest about 1-2 hours until complete recovery;
5. Repeat steps 2, 3 and 4 for different values of ti, ti ∈ {0,1,2,3,4,5} minutes.

4 Case Study of Muscle Fatigue for the Elbow Joint

Kinematics and dynamics of the arm: In this section we will illustrate the dynamic
calculation in our dynamic muscle fatigue model using robotic method. An example
of the lower arm cyclic periodic movement during 2 seconds is demonstrated in
details.
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Fig. 2 (a) Geometric and inertia parameters of one arm, (b) simplified arm structure.

Geometric modeling of arm: As presented in Figure 2, the arm model is composed
of an upper arm, a lower arm and a hand. Figure 2(b) gives the simplified model
of the arm used for the calculation. In order to determine the torque Γjoint, several
parameters of the arm need to be obtained. These parameters are the length of the
lower arm (�f), the length of the hand (�h), the radius of the lower arm (rf) and the
mass of the lower arm (mf). If the human has a height of H and a weight of M, ac-
cording to the anthropometry database [2], the related geometric human parameters
are: �f = 0.146H, rf = 0.125�f, �h = 0.108H, mf = 0.023M.

Trajectory generation: We suppose that for one motion of lower arm up and down
movement both the initial and the final velocity and acceleration are null. We use
a polynomial function to describe this movement. According to the hypothesis, the
minimum degree of the polynomial satisfying the constraints is at least five and has
the following form:

P = a0 +a1t +a2t2 +a3t3 +a4t4 +a5t5 (5)

where the coefficients ai are determined from the boundary conditions:

θ(0) = θ initial , θ̇(0) = 0, θ̈(0) = 0
θ(t f ) = θ end , θ̇(t f ) = 0, θ̈(t f ) = 0

(6)

The trajectory between θ initial and θ end is determined by

θ(t) = θ initial + r(t) ·
(

θ end −θ initial
)
, 0 ≤ t ≤ t f (7)

Solving Equation (7) with the above mentioned condition we can get the following
interpolation function

r(t) = 10(t/t f )
3 −15(t/t f )

4 +6(t/t f )
5 (8)

Based on this interpolation function we can get the velocity and acceleration of
every moment in the joint trajectory. Figure 3 represents the evolution of θ , θ̇ and
θ̈ for the considering experiment with the angle change between 0 to 5π/12.

Dynamic model and joint torque evaluation: The Lagrange method is applied to
compute the dynamic model [6]. Firstly, we calculate the joint kinetic energy and
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Fig. 3 (a) Joint angle, (b) joint angular velocity, (c) joint angular acceleration evolution during one
cycle motion.

Fig. 4 (a) Elbow joint torque, (b) momentum of agonistic muscle, (c) momentum of antagonistic
muscle.

the joint potential energy

E = Ejoint +Eobject, U =Ujoint +Uobject (9)

Then, the joint torque is given by

Γ =
d
dt

(
∂L

∂ θ̇

)

−
(

∂L
∂θ

)

(10)

where L = E −U .
In our dynamic muscle fatigue model,

∫ t
0 Γ (u,θ , θ̇ , θ̈)du is the joint momentum.

This is the most important difference between dynamic muscle fatigue model and
static muscle fatigue model. In static situation the joint torque is a constant, and with
time goes by the joint momentum is a linear function. In dynamic muscle fatigue
model the joint torque is changing with joint angle and time. The joint momentum
is a non-linear function. Figure 4(a) is the torque of elbow joint in a cyclic motion
of 2 seconds and there are a part of positive torque and a part of negative torque.
We consider the positive torque as a result of the effect of angonistic muscle and the
negative torque as a result of antagonistic muscle. Figure 4 presented joint torque
and momentum evolution of two groups of muscles during 2 seconds.

Experimental results: The experiment part is an implementation and verification of
above mentioned experiment design. At the first stage we just measure one person
to test its operability and feasibility. A large number of tests will be carried out in
the future stage.
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Table 2 Current exertable maximum joint torque for push and pull action.

Γcem [N · m] 0 min 1 min 2 min 3 min 4 min 5 min
Push 31.46 30.08 28.07 29.33 26.32 26.82
Pull 31.71 28.33 22.94 22.31 20.05 18.67

Experiment result for one person: A male subject (H = 188 cm, M = 80 Kg) took
part in the presented experiment. Push and Pull torque of the lower arm are measured
for the different operation times of t in {0,1,2,3,4,5} minutes. The experiment
results are presented in Table 2.

Fatigue rate parameter k evaluation: The parameter k represents fatigue rate and it
depends on individual person itself. To evaluate the parameter k of our model, we
suppose k is constant. The following Eq. (11) which is deduced from Eq. (4) is used
to calculate ki with the help of using the experiment measurement of Γcemi for each
operation.

ki =− ln

(
Γcem(t)
ΓMVC

)

/

∫ ti

0
Γ (u,θ , θ̇ , θ̈)du (11)

For t = 1,2,3,4,5 minutes, the agonistic and antagonistic muscle group fatigue rate
were evaluated as follows:

kagonist = [0.13,0.17,0.07,0.13,0.09][min−1]

kantagonist = [19.56,28.07,20.32,19.86,18.36][min−1]

In Ma [9], the values of k obtained are around

Fig. 5 Theoretical evolution of Γcem and
experiment data using different values of
kagonist .

0.87, so kagonist is a realistic value due to that
the fact the blood circulation is better dur-
ing dynamic motions. Conversely, kantagonist

seems to be too high. In fact, due to the
co-contraction activities influence, the torque
of the antagonistic muscle group is higher
than the results computed by the dynamic
model. To characterize kantagonist more pre-
cisely, another experimental measurement is
necessary to make the same motion with a
pulley based system that inverse the gravity
force. Because of the measurement errors of
forces, the calculated k is not exactly the same for each time t. To evaluate the con-
fidence of the fatigue rate parameter k, with the minimum, average and maximum
values of kagonist , Γcem is evaluated separately and compared with the experimen-
tal measurements in Fig. 5. It seems that the first two experimental measurements
overestimate kagonist . This means that we have to wait three minutes to have a good
evaluation of the muscle fatigue properties. In fact, we can consider the force capac-
ity of one muscle group can increase in the beginning of the activity as a warming-up
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period of the muscle. As only one person participated the experiment, the conclu-
sion cannot be generalized but we have obtained interesting informations. The test
will be done for a representative number of participants in the future works.

5 Conclusion and Perspectives

In this paper, a new muscle fatigue model for dynamic motions is presented. Thanks
to the robotic method, dynamic factors have been introduced to characterize a new
dynamic muscle fatigue model from the joint level. This model can be explained the-
oretically. Meanwhile, an experiment has been designed to validate it. This model
could demonstrate the potential for predicting muscle fatigue in dynamic motions.
The limit of this work is that it still lacks experimental validation for more partici-
pants. In the future, validations of experiments for a number of participants will be
carried out.
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Solution Regions in the Parameter Space of a
3-RRR Decoupled Robot for a Prescribed
Workspace

D. Chablat, G. Moroz, V. Arakelian, S. Briot and P. Wenger

Abstract This paper proposes a new design method to determine the feasible set
of parameters of translational or position/orientation decoupled parallel robots for a
prescribed singularity-free workspace of regular shape. The suggested method uses
Groebner bases to define the singularities and the cylindrical algebraic decompo-
sition to characterize the set of parameters. It makes it possible to generate all the
robot designs. A 3-RRR decoupled robot is used to validate the proposed design
method.

Key words: Parallel robot, design, singularities, Groebner basis, discriminant vari-
eties, cylindrical algebraic decomposition

1 Introduction

Parallel robots are attractive for various reasons but one has to cope with their sin-
gularities. There exists three main ways of coping with singularities, which have
their own merits. A first approach consists in eliminating the singularities at the
design stage by properly determining the kinematic architecture, the geometric pa-
rameters and the joint limits [1, 8]. This approach is difficult to apply in general and
restricts the design possibilities but it is safe. A second approach is the determina-
tion of the singularity-free regions in the workspace [2, 3]. This solution does not
involve a priori design restrictions but it may be difficult to determine safe regions
that are sufficiently large. Finally, a third way consists in planning singularity-free
trajectories in the manipulator workspace [4]. In this paper, the first approach is
used. Designing a parallel robot that will operate in a singularity-free workspace is
a first requirement but the designer often needs to optimize the robot as function
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of various criteria [5]. Our goal is to generate the set of geometric parameters for
a given singularity-free workspace. The resulting solution regions in the parameter
space are of primary interest for the designer. Accordingly, this paper proposes a
new design method to determine these solution regions. This method holds for par-
allel translational robots and for parallel robots with position/orientation decoupled
architecture. Groebner bases are used to define the singularities and Cylindrical al-
gebraic decomposition is applied to characterize the set of design parameters. The
paper is organized as follows. Section 2 introduces the design method to generate
the solution regions in the parameter space for a prescribed workspace of regular
shape. Then, Section 3 applies this method to a 3-RRR planar parallel robot with
position/orientation decoupled architecture.

2 Design Method

2.1 Definition of the Prescribed Regular Workspace

A robot should have sufficiently large, regular workspace with no singularity inside
[9]. For planar (resp. spatial) translational robots, a regular workspace can be defined
by a circle, a square or a rectangle (resp. a cylinder, a cube or parallelepiped). A
circle, a cylinder or a sphere can be modeled with one single algebraic equation.
A rectangle or a parallelepiped can be defined with a set of linear equations. It can
be approximated using a Lamé curve (resp. surface). This approximation makes it
possible to handle only one equation, thus simplifying the problem resolution as
will be shown further. In the rest of the paper, the problem is formulated in the plane
for practical reasons. A Lamé curve based workspace WL can be defined by the
following boundary algebraic equation:

WL :

(
x− xc

lx/2

)n

+

(
y− yc

ly/2

)n

= 1 (1)

lx and ly being the edge lengths of the desired rectangle, n being a strictly positive
integer. For the purpose of this paper, n = 4 and lx = ly = 4. A rectangle based
workspace can be modeled by four parametric lines, noted W Ci

W Ci :

{
x = P(i)xt +P(i+1)x(1− t)
y = P(i)yt +P(i+1)y(1− t)

with t ∈ [0 1], i = 1,2,3,4 (2)

P(i)x = xc ± lx/2 P(i)y = yc ± ly/2 where Pi denote the rectangle vertices. For po-
sition/orientation decoupled robot architectures, the regular workspace is defined
using the same approach for the translational module and the orientation module is
considered separately, as it will be shown in the next section.
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2.2 Method to Generate the Solution Regions in the Parameter
Space

The problem can be stated as follows: find the regions in the parameter space where
the boundaries W of the workspace W have no intersection with the serial and
parallel singularities loci δi, namely:

P : [a1 . . .an]/δi ∩W = /0,a j > 0, j = 1, . . . ,n (3)

where [a1 . . .an] are the set of design parameters. This approach stands if and only
the singularity curves or points are never fully included in the prescribed region. In
order to find the design parameters for which the intersection is empty, the design
parameters will be sorted according to the number of intersections between the sin-
gularities and W . It is then necessary to decompose the design parameter space into
cells C1, . . . ,Ck, such that: (a) Ci is an open connected subset of the design parame-
ter space; (b) for all design parameter values in Ci, the design parameter space has a
constant number of solutions. This analysis is done in 3 steps [6]:

(a) computation of a subset of the joint space (workspace, resp.) where the number
of solutions changes: the Discriminant Variety;

(b) description of the complementary of the discriminant variety in connected cells:
the Generic Cylindrical Algebraic Decomposition;

(c) connecting the cells that belong to the same connected component of the com-
plementary of the discriminant variety: interval comparisons.

The results are sets of regions with the same number

Fig. 1 The 3-RRR decoupled
parallel robot under study.

of intersections between δi and W . These three steps
were integrated in a single function in the Siropa Li-
brary implemented in Maple (Moroz, 2010). For the
purpose of this study, only the solutions with zero in-
tersections are considered. When a decoupled robot is
analyzed, problem P is first treated for a prescribed
workspace and a slightly modified problem P ′ is
then treated, in which the set of design parameters
include the orientation parameters. This approach is
illustrated in the next section.

3 Application to a 3-RRR Decoupled Parallel Robot

The robot under study is a planar 3-RRR robot with a modified mobile platform
design [10] (Fig. 1), thus decoupling the position and the orientation of the plat-
form [11]. It is assumed to have three identical legs. The loop (A1,B1,P,B2,A2)
corresponds to a five-bar robot that defines the position of point P and the leg
(A3,B3,C3) adjusts the orientation according to the position. If position of point
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P is given, this third leg is equivalent to a four-bar linkage. For this 3-RRR robot,
thus, the problem can be split into two parts: (i) design of the five-bar robot (the
translational module) so that the end-effector can move in a prescribed singularity-
free workspace and (ii) design of the third leg (the four-bar linkages (A3,B3,C3,P))
so that the platform can be oriented within desired bounds throughout the prescribed
workspace.

3.1 Translational Module: Five-Bar Robot

The constraint equations of the five-bar robot are defined as:

Ci :

{
x− l cos(θ1)− l cos(θ2)+ e/2 = 0 y− l sin(θ1)− l sin(θ2) = 0
x− l cos(θ3)− l cos(θ4)− e/2 = 0 y− l sin(θ3)− l sin(θ4) = 0

(4)

where ‖A1B1‖ = ‖A2B2‖ = ‖B1P‖ = ‖B2P‖ = and ‖A1A2‖ = e. The differentia-
tion of the relation between the input variables q and the output variables X with
respect to time leads to the velocity model At+Bq̇ = 0 where A and B are n×n Ja-
cobian matrices, t is the platform twist and q̇ is the vector of joint rates. The roots of
the determinant of A and B define the parallel and serial singularities, respectively.
The first ones are directly characterized in the workspace and the second ones have
to be projected from the joint space onto the workspace. The singularities are calcu-
lated using Groebner bases [6] as in [7].

The parallel singularities can be factored into a sextic, denoted δp1, and two
quadratic polynomial equations, denoted δp2 and δp3

δp1 : 16(y6 + x6)+8(e2y4 − e2x4)+48(y4x2 + y2x4)+ e4y2 + e4x2 −16l2e2y2 = 0

δp2 : x2 +

(
y− 1

2

√
4l2 − e2

)2

− l2 = 0 δp3 : x2 +

(
y+

1
2

√
4l2 − e2

)2

− l2 = 0

The serial singularities are two quadratic equations

δs1 : (2x+ e)2 +4y2 −16l2 = 0 δs2 : (2x− e)2 +4y2 −16l2 = 0

Due to the symmetry of the robot with respect to y-axis, the design parameters
are restricted to (l f ) i.e. the size of the legs and the distance from axis x to the
geometric center of the robot’s workspace W , respectively. Parameter e is set to 1 to
have a two dimensional representation of the solution regions. For robots with two
degrees of freedom, the intersection of the boundaries of W and the singularities is
generically a finite set of points. Thus, as mentioned in Section 2.2, the singularity
curves or points are never fully included in the prescribed region.

Lamé curve based workspace: The problem to be solved is:

PL : [ f l]/Sp1 ∩Sp2 ∩Sp3 ∩Ss1 ∩Ss2 ∩W = /0, f > 0, l > 0



Solution Regions in the Parameter Space of a 3-RRR Decoupled Robot 361

Fig. 2 (a) Solution regions RL1, RL2 and RL3 of problem PL and five-bar robot design when (b)
f = 3.7, l = 3 (c) f = 3.7, l = 0.9.

Fig. 3 Solution regions for problems (a) PC1, (b) PC2, (c) PC3 and (d) intersection regions RC f 1,
RC f 2 and RC f 3.

Only the solutions with zero intersections are kept. Fig. 2 depicts the three solution
regions obtained RL1, RL2 and RL3, i.e. the parameter sets for which the prescribed
workspace is singularity-free.

It turns out that in RL1, WL is inside the workspace (Fig. 2b). Conversely, in
RL2 and RL3, WL is outside the workspace (Fig. 2c). Thus the only feasible region
is RL1. A feasible solution should not be taken on the boundary of RL1 since any
solution on the boundary could touch a singularity curve. Fig. 2b shows a solution
near the boundary of RL1.

Square based workspace: In this case, four separate problems need to be solved:

PCi : [ f l]/Sp1∩Sp2∩Sp3∩Ss1∩Ss2∩W Ci = /0, f > 0, l > 0, t∈[0,1], i= 1, . . . ,4

where are the parametric equations defining the boundaries of the square. Only the
solutions with zero intersections are kept. Due to the symmetry of the square with
respect to the y-axis, PC3 and PC4 yield the same regions in the design parameters
space. Fig. 3 depicts (a) four connected solution regions for problem PC1, (b) two
solution regions for PC2 and (c) three solution regions for PC3. As compared to the
Lamé curve based workspace, there is an additional step here: the final regions must
be obtained by intersecting all these regions, thus yielding the three regions RC f 13,
RC f 2 and RC f 3 as shown in Fig. 4. As expected, the solution regions obtained are
similar to those associated with a Lamé curve (Fig.2) and only RC f 1 is solution to
the problem for the same reasons. Fig. 5a shows a solution near the boundary of
RC f 3.
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Fig. 4 Intersection regions RC f 1,
RC f 2 and RC f 3.

Fig. 5 A five-bar solution robot when f = 3.8, l = 3.3 from
RC f 1 (a) and when f = 3.8, l = 0.9 from RC f 2(b).

3.2 Orientation Module: Four-Bar Linkages

One of the two base points of the four-bar linkages is the reference point P(x,y) of
the moving platform. Accordingly, the constraint equation of the four-bar linkage
is:

C2 : (x+d cos(α)− l cos(θ5))
2 +(y+d sin(α)−g− l sin(θ5))

2 = l2 (5)

where θ5 and α are the input and output angles, respectively, ‖A3B3‖= ‖B3P‖= l,
‖C3P‖= d and ‖A3O‖= g. A serial (resp. parallel) singularity is reached whenever
(A3B3) is aligned with (B3C3) (resp. when (B3C3) is aligned with (C3P)). These
singularities are defined as follows:

δs3 : (2gsin(α)−2xcos(α)−2ysin(α))d −d2 − x2 −g2 − y2 +4l2 +2yg = 0

δp4 :
g2 +2(l sin(α)−d sin(α)− y)g+ x2

(d cos(α))−2l cos(α))x+ y2 +(2d sin(α)−2l sin(α))y+d2 −2ld = 0

δp5 :
g2 −2(l sin(α)+d sin(α)+ y)g+ x2+
(d cos(α))+2l cos(α))x+ y2 +(2d sin(α)+2l sin(α))y+d2 +2ld = 0

It is proposed to find those designs for which the platform can be oriented within
desired bounds throughout the prescribed workspace. Accordingly, the parameters
considered here are the orientation angle α of the moving platform plus only one
geometric parameter to handle a two-dimensional parameter space. For the purpose
of this study, we choose the distance between the fixed base point C3 and the geo-
metric center of the prescribed workspace: h = g− f and parameter d is set to 1 to
have a two dimensional representation of the solution regions.

Lamé curve prescribed workspace: From Fig. 2, the smallest value of parameter
l is equal to 3. This value is chosen for the four-bar linkage design. The following
problem has then to be solved:

PL′ : [h α]/δp4 ∩δp5 ∩δs3 ∩W L = /0,h > 0 (6)

There exist two solution regions, RL′1 and RL′2 (Fig. 6), each one being as-
sociated with a single working mode and a single assembly mode. These regions
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describe the orientation ranges as function of parameter h, for which the robot can
reach the full prescribed workspace without crossing singularities. It is then possi-
ble to choose h such that the range of the angular displacement α is greater than a
prescribed value.

Square prescribed workspace: From Fig. 3, the smallest value of parameter l
is equal to 3.3. This value is chosen for the 4-bar linkage design. The following
problems have to be solved:

PC′i : [h α]/δp4 ∩δp5 ∩δs3 ∩W i = /0,h > 0, t ∈ [0 1], i = 1, . . . ,4 (7)

The solutions regions of these problems and

Fig. 6 Solution regions of problem PL′

for a four-bar linkage when l = 3.

the intersection regions are shown in Figs. 7
and 8, respectively. Figure 9 depicts two 3-
RRR parallel robots obtained for a square
regular workspace. The solution obtained in
Fig. 9b is more compact than in Fig. 9a and
its angular range interval is greater but the
design should take into account the self col-
lisions.

Fig. 7 Solution regions for problems (a) PC′1, (b) PC′2, (c) PC′3

Fig. 8 Intersection regions when
l = 3.3.

Fig. 9 Two examples from the regions Pc5 and Pc6 for
(a) h = 4.25, α = [−1.717 − 1.424] and (b) h = 2.2, α =
[1.306 1.835].
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4 Conclusions

This paper presented a new design method to determine the feasible set of param-
eters of parallel manipulators for a prescribed singularity-free regular workspace.
Rather than giving a single feasible or optimal solution, this method provides the
solution regions in the parameter space. Groebner bases, discriminant varieties and
cylindrical algebraic decomposition were used to generate the solution regions. As a
result, their boundaries have an exact formulation. Solutions close to the boundaries
of these regions correspond to robots for which the prescribed workspace is close to
a singularity curve. The prescribed workspace can be defined in a more restrictive
way to ensure that the robot will remain far enough from singularities. A solution
would be to add a condition relying on some kinetostatic index [9]. The method
was applied to a 3-RRR parallel planar robot with position/orientation decoupled
architecture. It can handle other types of translational or decoupled robots but there
are some limits that are due to the algebraic tools used. In particular, the number of
parameters involved in the elimination process should not be too high.
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Inverse Geometrico-Static Analysis of
Under-Constrained Cable-Driven Parallel
Robots with Four Cables

Marco Carricato, Ghasem Abbasnejad and Dominic Walter

Abstract This paper presents the inverse geometrico-static analysis of under-
constrained cable-driven parallel robots with 4 cables. The problem consists in find-
ing all equilibrium configurations of the end-effector when either its orientation or
the center-of-mass’s position is assigned. In both cases, a further point of the end-
effector is constrained to lie on a given plane. A major challenge is posed by the
intrinsic coupling between kinematics and statics, which must be tackled simulta-
neously. The problems at hand are solved by analytical elimination procedures, thus
leading to univariate polynomials free of spurious factors. All potential solutions
may be real.

Key words: Cable-driven parallel robots, under-constrained robots, kinematic anal-
ysis, static analysis

1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body exten-
sible legs in order to control the end-effector (EE) pose, thus strengthening classic
advantages characterizing closed-chain architectures versus serial ones. A CDPR is
under-constrained if the EE preserves some freedoms once actuators are locked.
Typically, this occurs when the EE is controlled by a number of cables n smaller
than the number of degrees of freedom (dofs) that the EE possesses with respect to
the base [2].
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Fig. 1 A cable-driven parallel robot with 4 cables: (a) model for the IGP with assigned orientation,
(b) model for the IGP with assigned position.

A major challenge in the kinematic study of under-constrained CDPRs emerges
from the fact that the EE configuration depends on both the cable lengths and the
applied forces (e.g. gravity). Accordingly, loop-closure and mechanical-equilibrium
equations must be solved simultaneously and displacement-analysis problems be-
come significantly more complex than analogous tasks concerning rigid-link fully-
constrained manipulators [7, 9, 10]. Recently, Carricato and Merlet [2–4] proposed
a general methodology for the kinematic, static and stability analysis of under-
constrained CDPRs equipped with n ≤ 5 cables. By properly formulating the math-
ematical model, the method allows one to find the entire set of equilibrium config-
urations when either n EE-pose coordinates (inverse problem) or n cable lengths
(direct problem) are assigned.

In this paper, the inverse geometrico-static problem of CDPRs with 4 cables is
solved. Two instances are considered, depending on whether the EE orientation or
the EE’s center-of-mass position is assigned. Since 4 dofs of the EE are to be con-
trolled, an additional constraint must be set on the EE-pose coordinates: when the
EE orientation is assigned, the EE’s center-of-mass is constrained to lie on a given
plane (this condition may be useful, for instance, to set the center-of-mass at a given
height); when the EE orientation is assigned, an additional point of the EE is set to
lie on a given plane (this condition may be useful for obstacle avoidance, in order
to guide the EE tilt). In both cases, the overall robot configuration, the cable lengths
and the cable tensions are to be computed.
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2 Geometrico-Static Model

The EE is connected to the fixed base by 4 cables (Fig. 1). The ith cable exits
from the base at point Ai and it is connected to the EE at point Bi . The geometric
parameters of both the EE and the base are arbitrary. A is a fixed Cartesian frame
attached at A1, whereas B is a Cartesian frame attached to the EE at the platform’s
center of mass G. The platform pose is described by XT = [gT ; �T ], where gT =
[x, y, z]T is the position of G in A and �T = [e1, e2, e3]T is the array grouping
the Rodrigues variables parameterizing the EE orientation with respect to A. The
EE is acted upon by a constant force of magnitude Q, applied at G. This force is
described as a 0-pitch wrench QLe, where Le is the normalized Plücker vector of
the line of action. The normalized Plücker vector of the line associated with the ith
cable is Li/ρi , where ρi is the cable length, pi is any vector from the reduction
pole of moments O to the cable line and LT

i = [(Ai − Bi)
T ; {pi × (Ai − Bi)}T ].

Accordingly, the wrench exerted by the ith cable on the EE is (τi/ρi)Li , with τi

being a positive scalar representing the intensity of the cable tensile force. Without
loss of generality, one may assume O ≡ A1.

When all cables of the robot are in tension, the set of geometrical constraints
imposed on the EE is

||Ai − Bi ||2 = ρ2
i , i = 1 . . . 4, (1)

with the overall pose being determined by the EE static equilibrium, i.e.

4∑

i=1

τi

ρi

Li + QLe = [
L1 L2 L3 L4 Le

]
︸ ︷︷ ︸

M(O)

⎡

⎢⎢⎢⎢⎣

(τ1/ρ1)

(τ2/ρ2)

(τ3/ρ3)

(τ4/ρ4)

Q

⎤

⎥⎥⎥⎥⎦
= 0, (2)

with τi ≥ 0, i = 1 . . . 4.
Equations (1)–(2) amount to 10 scalar relations in 14 variables, namely g, �, ρi

and τi , i = 1 . . . 4.
Generally, a finite set of system configurations may be determined if 4 additional

constraints are assigned on the variables. When these constraints concern the EE-
pose coordinates, an inverse geometrico-static problem (IGP) must be solved. Two
relevant cases may be considered, depending on whether: (i) the orientation � is as-
signed and G is constrained to lie on a given plane (IGP with assigned orientation);
or (ii) the position of G is known and a further point B5 of the EE is required to lie
on a given plane (IGP with assigned position). In both cases, the pose coordinates
are subject to 4 linear constraints, i.e. qi(X) = 0, i = 1 . . . 4.

By following the method presented in [2], cable tensions may be eliminated from
the set of unknowns by observing that Eq. (2) holds only if

rank [M(O)] ≤ 4, (3)
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which is a purely geometrical condition, since M(O) is a 6 × 5 matrix only de-
pending on X. By setting all 5 × 5 minors of M(O) equal to zero, 6 polynomial
relations that do not contain cable tensions may be obtained, 5 of which are linearly
independent, namely pj (X) = 0, j = 1 . . . 5. The 0-dimensional variety V of the
ideal generated by {q1, . . . , q4, p1, . . . , p5} provides the equilibrium configurations
of the EE that satisfy the imposed constraints.

Once X is known, cable lengths may be computed by Eq. (1) and cable tensions
may be obtained by 4 linearly-independent relations chosen within Eq. (2). Stability
may be assessed as in [2]. Once a configuration is found, it proves feasible only if it
is stable and therein cable tensions are positive.

3 IGP with Assigned Orientation

In this case, � is known and G is constrained to lie on a plane � (Fig. 1(a)). The
constraints qi(X) = 0, i = 1 . . . 4, are

e1 = ē1, e2 = ē2, e3 = ē3, g · n − d� = xn1 + yn2 + zn3 − d� = 0, (4)

where ē1, ē2 and ē3 are known scalars, n = [n1, n2, n3]T is a unit vector perpen-
dicular to � and |d�| is the distance of � from A1. Two subcases may be identified,
depending on whether n3 �= 0 or n3 = 0.

3.1 n3 �= 0

When n3 �= 0, � is a nonvertical plane and z may be expressed, from the last rela-
tionship in Eq. (4), as z = −(n1/n3)x − (n2/n3)y +d�/n3. By taking advantage of
this expression and by imposing the first three constraints in Eq. (4), the 5 relations
pj (X) = 0, j = 1 . . . 5, emerging from Eq. (3) become cubic relations in x and y

comprising 10 monomials, i.e. [y3, y2x, yx2, x3, y2, yx, x2, y, x, 1].
The problem may be efficiently solved by implementing a Sylvester dialytic

method, namely by rewriting the relations pj = 0 as linear equations in all mono-
mials involving the original unknowns except one, which is ‘hidden’ in the equation
coefficients. If these monomials are treated as linear unknowns, a square homo-
geneous system is obtained and the determinant of the coefficient matrix provides
a resultant in the hidden variable. In the case at hand, by hiding y, 4 monomi-
als in x emerge and, thus, four relations pj = 0, j = 1 . . . 4, may be used to
build up a square Sylvester matrix. However, the corresponding resultant exhibits
a spurious solution. In order to get rid of the extraneous factor, all five relations
pj = 0, j = 1 . . . 5, may be linearized in the 5 monomials contained in the array
κ1 = [y3, x3, x2, x, 1]T , namely
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Table 1 A 4-4 CDPR whose IGP with assigned orientation admits 5 real potential solutions (d� =
3/

√
6).

[A2]A [A3]A [A4]A [B1 − G]A [B2 − G]A [B3 − G]A [B4 − G]A
√

6n

8 9 1 −3 3 2 3 −2
0 7 8 4 −2 1 1 1
5 6 4 3 1 0 2 1

S1(y)κ1 = 0, (5)

where S1(y) is a 5 × 5 matrix whose entries are known polynomial functions of y.
Letting the determinant of S1(y) vanish yields a 5th-degree univariate equation in
y. This was obtained in symbolic form and it is devoid of spurious roots. For each
root, a unique value for x may be obtained by solving the linear system (5).

Solutions may be either complex or real, with only the latter ones having phys-
ical interest. By varying the robot’s geometry, the count of real roots may change.
Table 1 reports an example for which the IGP with assigned orientation admits 5
real solutions (not all of them necessarily feasible). Examples of this kind may be
obtained by using the algorithms developed in [1], namely a continuation procedure
adapted from a routine originally proposed by Dietmaier [6] and two evolutionary
techniques based on a genetic algorithm and particle swarm optimization.

3.2 n3 = 0

When n3 = 0 (without loss of generality, n2 �= 0), � is vertical and y may be
expressed, from the last relation in Eq. (4), as y = −(n1/n2)x + (d�/n2).

By substituting this expression in the relations pj (X) = 0, j = 1 . . . 5, one
obtains 5 cubics in the monomials [z2x, zx2, x3, z2, zx, x2, z, x, 1]. By a procedure
similar to that described in Sec. 3.1, a least-degree univariate equation free from
extraneous polynomial factors may be obtained by linearizing all five relations pj =
0, j = 1 . . . 5, in the 5 monomials contained in the array κ2 = [z2, x3, x2, x, 1]T ,
and by writing them in the form

S2(z)κ2 = 0, (6)

where S2(z) is a 5 × 5 matrix whose entries are known polynomial functions of z.
Letting the determinant of S2(z) vanish yields a 4th-degree univariate polynomial in
z, which is available in symbolic form and devoid of spurious roots. For each root,
a unique value for x may be obtained by solving the linear system (6). Even in this
case, all roots may possibly be real.
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4 IGP with Assigned Position

In this case, the position of G is known and a further point B5 of the EE is con-
strained to lie on an assigned plane � (Fig. 1(b)). The constraints qi(X) = 0,
i = 1 . . . 4, become

x = x̄, y = ȳ, z = z̄, r5 · n − d� = 0, (7)

where x̄, ȳ and z̄ are known scalars, r5 is the position vector of B5 in A, n is a unit
vector perpendicular to � and |d�| is the distance of � from A1.

If R(�) is the rotation matrix between B and A, the position vector of Bi , i =
1 . . . 5, in A may be expressed as ri = [Bi]A = g + R(�)[Bi]B, where the position
of Bi in B is known. By substituting these expressions in the 5 relations pj (X) = 0,
j = 1 . . . 5, and by imposing the first three constraints in Eq. (7), one obtains 5
sextics in e1, e2 and e3. By a similar expansion, the fourth relationship in Eq. (7),
i.e. q4 = 0, becomes a quadratic equation in the Rodrigues parameters.

By denoting the ideal generated by the set J = {p1, . . . , p5, q4} as 〈J 〉, the solu-
tions of the IGP with assigned position form the variety V of 〈J 〉. The high order
of the polynomials in J suggests applying elimination procedures based on Groeb-
ner bases in order to solve the problem. Even though the lexicographic monomial
order is, in general, particularly suitable to solve polynomial systems, for it pro-
vides equation sets whose variables may be eliminated successively, it is highly
inefficient in terms of computation time and memory requirements. A Groebner ba-
sis G[J ] of 〈J 〉 with respect to a graded reverse lexicographic order, instead, i.e.
grevlex(e1, e2, e3), may be computed in a very expedited way (tenths of seconds,
for the case at hand, on a PC with a 2.67GHz Intel Xeon processor and 4GB of
RAM). Once G[J ] is known, the FGLM algorithm [8], converting a Groebner basis
from one monomial order to another, may be called upon to compute a univariate
polynomial in 〈J 〉. However, a more efficient method is provided by the Groebner-
Sylvester hybrid approach proposed in [5]. The method is based on the observation
that G[J ] comprises 12 polynomials and these contain 12 monomials in e1 and e2,
i.e. κ3 = [e1e

4
2, e

5
2, e1e

3
2, e

4
2, e1e

2
2, e

3
2, e

2
1, e1e2, e

2
2, e1, e2, 1]T . Accordingly, G[J ]

may be set up as a square system of homogeneous linear equations in the form

S3(e3)κ3 = 0, (8)

where S3(e3) is a 12×12 matrix polynomial in e3. Letting the determinant of S3(e3)

vanish yields a spurious-root-free univariate polynomial of degree 32 in e3. For each
root, unique values for e1 and e2 may be obtained by solving the linear system (8).

An alternative procedure is based on the properties of the normal set N[J ],
which is the array grouping all monomials which are not multiples of any lead-
ing monomial in G[J ] [11]. N[J ] contains 32 monomials in �, i.e. N[J ] =
[η1, . . . , η32]T . If rh is the remainder on division of e3ηh by G[J ], rh is a linear
combination of the monomials of N[J ], i.e. rh = ∑32

k=1 ahkηk , with ahk being a
constant coefficient. Since rh − e3ηh belongs to 〈J 〉, it must vanish on the variety
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Table 2 A 4-4 CDPR whose IGP with assigned position admits 32 real potential solutions (d� =
−0.0543588).

[A2]A [A3]A [A4]A [B1]B [B2]B [B3]B [B4]B [B5]B n (x̄, ȳ, z̄)

0.0096715 0.1602038 0.3227272 0.8585338 0.3187879 0.6598471 0.6273182 0.4579794 0.8894538 0.1339193
0 0.0649423 0.7151215 0 0.4888859 0.6661870 0.9610494 0.5558744 0.4392272 0.2021438

0.5484151 0.6597958 0.5378416 0 0 0.8744523 0.0797477 0.8222827 −.1262981 0.1180386

V , for any h. Thus, one may assemble all equations of this kind in the form

(A[J, e3] − e3I32) N[J ] = 0, (9)

where A[J, e3] = [ahk] is a 32 × 32 numeric matrix (called multiplication matrix
for e3) and I32 is the 32 × 32 identity matrix. Equation (9) is a linear eigenvalue
problem, whose 32nd-degree characteristic polynomial is the desired resultant in
e3. Equation (9) provides an efficient way to numerically compute all solutions of
the problem at hand as the eigenvalues of A[J, e3].

By taking advantage of the algorithms developed in [1], several sets of robot
parameters were found proving that all 32 solutions may be real. Table 2 reports an
example.

5 Conclusions

This study solved the inverse geometrico-static problem (IGP) of under-constrained
cable-driven parallel robots with 4 cables. The problem consists in finding all equi-
librium configurations of the robot when a subset of the end-effector pose coordi-
nates is assigned. Two relevant cases were considered.

In the former, the orientation of the end-effector is assigned and the center of
mass is constrained to lie on a plane (IGP with assigned orientation). The prob-
lem was solved by an elimination procedure based on a Sylvester dialytic method.
A least-degree univariate polynomial was obtained in symbolic form. This has de-
gree 4 or 5, depending on the orientation of the plane constraining the center of mass
being vertical or not, and all roots may be real.

In the latter case, the position of the center of mass is assigned and a further point
of the end-effector is required to lie on a known plane (IGP with assigned position).
The problem was solved by exact-arithmetic procedures based on Groebner-basis
computation. In this case, at the most 32 solutions (and a corresponding univariate
polynomial) were obtained. By the algorithms developed in [1], a numerical exam-
ple was found that proves that all potential solutions may be real.

It is worth observing that all solution counts reported above refer to potential
solutions of the problems at hand, since they do not take into account the con-
straints imposed by the sign of cable tensions and the stability of equilibrium. Once
such constraints are imposed and solutions are sifted, the number of feasible con-
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figurations reduces. When multiple feasible configurations exist, the EE may switch
across them, due to inertia forces or external disturbances. Accordingly, the compu-
tation of the entire set of equilibrium configurations is essential for robust trajectory
planning. This motivates the relevance of the presented algorithms, even when they
are not applicable to real-time computation (as for the IGP with assigned position).
For real-time applications, these authors are exploring interval-analysis-based ap-
proaches, in collaboration with Dr. Merlet’s team at INRIA.
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The Kinematotropic 3-CPU Parallel Robot:
Analysis of Mobility and Reconfigurability
Aspects

Luca Carbonari and Massimo Callegari

Abstract This paper investigates the mobility analysis of a 3-CPU parallel machine,
aiming at checking the possibility to perform both pure rotational and pure transla-
tional motions. Machine kinematics is formalized by taking advantage of algebraic
geometry principles that allow extracting the necessary constraint equations in form
of polynomial ideals. The analysis of the sub-ideals deriving from the decomposi-
tion of the starting constraint equations yields the conclusion that several kinds of
motion are actually achievable by the same 3-CPU architecture. Among them, pure
rotational and pure translational mobilities are present. Finally, the existence of ma-
chine configurations allowing the transition between such modes is proved and the
related poses are explicitly worked out.

Key words: Parallel kinematics machines, kinematotropic mechanisms, reconfig-
urable mechanisms, algebraic geometry

1 Introduction

During past years, two different minor mobility parallel robots have been devel-
oped and prototyped at the Laboratory of Robotics of the Polytechnic University of
Marche in Ancona (Italy): a pure translational machine, called I.Ca.Ro. [2], and a
spherical wrist, called Sphe.I.Ro. [1]. Notwithstanding the quite different kinematic
performances of the machines, they are both based on the same 3-CPU architec-
ture, with of course a different setting of the joints. The present work was aimed at
investigating whether a common mechanical architecture might be able to provide
both motions by a simple reconfiguration or even if the same machine yields the two
different kinds of motions by meeting some “switching configuration”, i.e. it shows
a kinematotropic behaviour [4, 8].
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Fig. 1 Possible arrangement of the 3 revolute joints equivalent to a reconfigurable spherical joint
(a) and 3-CPU architecture able to yield different motions (b).

The key idea was to realize a reconfigurable universal joint that allows to vary ro-
bot kinematics without changes in legs structure. A simple solution to this problem
is using a spherical joint made of three consecutive revolute pairs (see Figure 1(a)):
in this way, three different universal joints are obtained by locking, one at a time,
the three rotations of the spherical joint. It is worth to remark that both I.Ca.Ro.
and Sphe.I.Ro. are comprehended within these joints configurations. An extended
analysis [3] pointed out that the only chance to yield different kinds of motions with
the 3-CPU configuration is to lock the first rotation of spherical joint, thus obtaining
the kinematics scheme of Sphe.I.Ro. for which the universal joint is made of two
revolute pairs, the first one perpendicular to the plane of the leg and the second lying
on leg plane intersecting the center of platform reference frame.

2 Kinematics Equations

In order to use a parametrization free of representation singularities, the transfor-
mation matrix 0T1 between the two frames {0} and {1} (see Figure 1(b)) has been
expressed as a function of Study’s parameters:

0T1 =

(
0R1

0q1

0 x2
0 + x2

1 + x2
2 + x2

3

)
(1)

where rotation matrix 0R1 and translation vector 0p1 are:

0R1 =

⎛
⎝x2

0 + x2
1 − x2

2 − x2
3 2(x1x2 − x0x3) 2(x1x3 − x0x2)

2(x1x2 − x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)
2(x1x3 − x0x2) 2(x2x3 − x0x1) x2

0 − x2
1 − x2

2 + x2
3

⎞
⎠ (2)
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0p1 =

⎛
⎝2(−x0y1 + x1y0 − x2y3 + x3y2)

2(−x0y2 + x1y3 − x2y0 − x3y1)
2(−x0y3 − x1y2 − x2y1 + x3y0)

⎞
⎠ (3)

It is noted that Study’s notation is based on 8 parameters x0, x1, x2, x3, y0, y1, y2,
y3 which define a point in the 6-dimensional quadric S ∈ P

7, a semi-algebraic set
defined by [6]:

x0y0 + x1y1 + x2y2 + x3y3 = 0
x2

0 + x2
1 + x2

2 + x2
3 �= 0

(4)

If the inequality in (4) is assigned an arbitrary constant value, the expression be-
comes a normalizing equation ensuring that matrix (1) is effectively a non singular
transformation matrix; typically it is assumed x2

0+x2
1+x2

2+x2
3 = 1. In the following

of the paper it is called: 〈γ1 : x0y0 + x1y1 + x2y2 + x3y3,γ2 : x2
0 + x2

1 + x2
2 + x2

3 −1〉.
In order to obtain a complete algebraic description of robot kinematics, Study

quadric equations (4), that are intrinsic of the used parametrization, must be jux-
taposed to relations characteristic of the specific legs architecture. Among these
constraint equations, a distinction can be made based on their dependence on robot
actuation. Indeed, each leg is made of a serial kinematic chain whose joints constrain
the manipulator mobility regardless of the actuation parameters. On the other hand
some equations are needed to describe the influence of actuation displacements on
end effector pose.

To this aim, it is observed that in each leg the universal joint constrains the end
effector to maintain the axis of the last revolute joint in the plane of the leg itself.
Such constraint can be geometrically visualized as the co-planarity of four points,
i.e. origin of frame {0}, origin of frame {1}, any point of cylindrical pair axis and
any point of revolute joint axis. Such coplanarity can be mathematically expressed
by letting a matrix determinant vanish, i.e. the 4×4 matrix built by aligning the ho-
mogeneous vectors denoting the positions of these four points. Referring to Figure 1
the four points are respectively A, B, Ci and Di, thus:

αi : det
(
A B Ci Di

)
, αi = 0 (5)

Points A and Ci are solid with mobile platform, therefore their coordinates do not
vary when they are expressed in the local frame. On the contrary, B and Di must be
expanded through transformation (1) as B =0 T1

[
0 0 0 1

]T
and Di =

0 T1
[
eT

i 1
]T

where ei denotes the direction of last revolute joint of the ith leg with respect to mov-
ing frame {1}. In order to simplify the three polynomial equations αi, Study quadric
equations (4) can be exploited for elimination of null parts and simplification of non
vanishing factors, yielding:

α1 : x0y2 + x1y3 + x2y0 + x3y1, α1 = 0
α2 : x0y3 + x1y2 + x2y1 + x3y0, α2 = 0
α3 : x0y1 + x1y0 + x2y3 + x3y2, α3 = 0

(6)
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Equations (6) together with the Study-quadric (4) are not sufficient yet to uniquely
characterize robot kinematics since no description of actuated joints has been pro-
vided so far.

Considering the ith leg, its architecture allows the connection point with the ma-
nipulator move only within leg’s plane. In particular, its translation along the respec-
tive cylindrical joint axis is directly related to the displacement of the cylindrical
joint:

DT
i

[
s1,i

0

]
=

[
eT

i 1
]0 TT

1

[
s1,i

0

]
= q1,i (7)

where s1,i is the direction of joint 1 (the cylindrical joint) of ith leg and q1,i is its
displacement. It is worth to remark that q1,i also represents the actuation parameter
since it is the controlled distance between the center of reference frame {0} and the
center of the cylindrical pair. Expansion of (7) for each leg directly yields:

β1 : x0y1 + x1y0 − x2y3 + x3y2 − e(x0x2 + x1x3)−δ1, β1 = 0
β2 : x0y2 + x1y3 − x2y0 + x3y1 − e(x0x3 + x1x2)−δ2, β2 = 0
β3 : x0y3 + x1y2 − x2y1 + x3y0 − e(x0x1 + x2x3)−δ3, β3 = 0

(8)

where δi = (q1,i − c)/2.

3 Equations Analysis: Primary Decomposition

At this point of the work, the robotic system is fully algebraically described by
a set of polynomial constraint equations, that can be collected in the polynomial
ideal F = 〈α1,α2,α3,β1,β2,β3,γ1,γ2〉. As suggested by Walter et al. [6], a sim-
pler formulation of the constraint equations F is fundamental for a deeper under-
standing of robot kinematic behaviour. With this aim, the authors developed a spe-
cialized study on that portion of the polynomial ideal collecting those constraints
equations purely dependent on kinematic architecture, thus polynomials α1, α2 and
α3. This sub-ideal, that is hereby called H , should also comprehend polynomial γ1,
without which the Study’s representation is meaningless. Therefore, the sub-ideal
H = 〈α1,α2,α3,γ1〉 is analyzed through the computation of its primary decompo-
sition; this method consists of splitting the ideal into several sub-ideals such that the
union of their vanishing sets correspond to the vanishing set of the starting ideal. We
remark that the zero set, or vanishing set, V (J ) of a polynomial ideal J is the set
of all points that simultaneously satisfy the homogeneous equations composing J .

The primary decomposition of ideal H yields:

V (H ) =
16⋃

i=1

V (Hi) (9)

with:
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H1 = 〈y0,y1,y2,y3〉 ,
H2 = 〈y0 − y3,y1 − y3,y2 − y3,x0 + x1 + x2 + x3〉 , H3 = 〈y0 + y3,y1 − y3,y3 + y2,x0 − x1 + x2 − x3〉 ,
H4 = 〈y0 + y3,y1 + y3,y2 − y3,x0 + x1 − x2 − x3〉 , H5 = 〈y0 − y3,y1 + y3,y3 + y2,x0 − x1 − x2 + x3〉 ,

H6 = 〈x0 + x3,x1 + x2,y0 − y3,y1 − y2〉 , H7 = 〈x0 − x3,x1 − x2,y0 + y3,y1 + y2〉 ,
H8 = 〈x0 + x1,x2 + x3,y0 − y1,y2 − y3〉 , H9 = 〈x0 − x1,x2 − x3,y0 + y1,y3 + y2〉 ,

H10 = 〈x0 + x2,x1 + x3,y0 − y2,y1 − y3〉 , H11 = 〈x0 − x2,x1 − x3,y0 + y2,y1 + y3〉 ,
H12 = 〈x0 − x3,x1 − x3,x2 − x3,y0 + y1 + y2 + y3〉 , H13 = 〈x0 + x3,x1 − x3,x2 + x3,y0 − y1 + y2 − y3〉 ,
H14 = 〈x0 − x3,x1 + x3,x2 + x3,y0 − y1 − y2 + y3〉 , H15 = 〈x0 + x3,x1 + x3,x2 − x3,y0 + y1 − y2 − y3〉 ,

H16 = 〈x0,x1,x2,x3〉
(10)

The 16 sub-ideals (10) must be interpreted as different coexisting systems of equa-
tions able to describe the whole kinematic behaviour of the 3-CPU platform and to
which correspond different types of solutions. Sub-ideal H16 represents a degen-
erate case since its vanishing set can not be satisfied together with γ2 = 0: thus it
represents an exception, since its solution is not compatible with V (F ).

4 Robot Mobility

The sub-ideals Hi denote the different types of mobility that the robotic platform is
able to perform. Such conclusion turns evident if homogeneous equations provided
by V (Hi) are substituted into end-effector transformation (1), which assumes a
different shape for each one of the sub-ideals. Just to make an example, the van-
ishing set of H1 can be considered: in this case the translation vector 0q1 vanishes
while both the rotation matrix and the scaling factor x2

0+x2
1+x2

2+x2
3 do not change.

Thus, the resulting transformation yields a pure rotational behaviour of the platform,
namely the mobility expected in [1].

A deeper investigation on every sub-ideal revealed that several types of motions
are allowed by the 3-CPU architecture. The transformations yielded by each substi-
tution are not analytically reported but a brief description of the different kinds of
mobility is provided in the following:

• H1: as previously mentioned, the vanishing set of this ideal refers to a pure rota-
tional behaviour, already widely studied by several past works.

• H2, H3, H4, H5: all these ideals correspond to the same type of mobility, char-
acterized by 3 spurious DOFs: the end-effector can change its orientation rotating
about two distinct axes and it can translate along a direction which rotates solidly
with the moving platform.

• H6, H7, H8, H9, H10, H11: the mobilities deriving from these ideals can not be
exploited by the actuation chosen for the 3-CPU manipulator, since for each one
of them the end-effector is only allowed to move on a plane perpendicular to one
of the cylindrical joints passing through the origin of the absolute reference frame
{0}. In these configurations, at least one of the cylindrical pairs is prevented from
translating: the mechanical system gets stuck in an under-actuated configuration
and one of platform DOFs becomes uncontrollable.
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• H12, H13, H14, H15: here the manipulator is capable of pure translational mo-
tions, differing for the orientations of the manipulator, which are fixed in these
cases. It is worth showing the homogeneous transformation is for at least one of
these ideals. Thus, substitution of V (H12) into (1) yields:

0T1 =

⎛
⎜⎜⎝

0 0 4x2
3 −4x3 (y1 + y3)

4x2
3 0 0 −4x3 (y2 + y1)

0 4x2
3 0 −4x3 (y3 + y2)

0 0 0 4x2
3

⎞
⎟⎟⎠ (11)

Each mobility previously defined is fully determined only by one ideal that contem-
porary comprehends equations (8), the normalizing polynomial γ2 and the respective
ideal Hi. For each mode it is defined Gi = 〈β1,β2,β3,γ2,Hi〉.

5 Transition Conditions

Previous section highlighted the possibility to obtain a multifunctional robot by us-
ing the same 3-CPU architecture, since it proved capable of both pure rotational and
pure translational motions: therefore it is relevant to investigate the possibility to
switch from a type of mobility to the other, which is done in the present section.

The configurations that may act as switching poses between two mobilities Gi

and G j must belong to both the characteristic vanishing sets V (Gi) and V (G j). As a
matter of fact, solutions that are common to a couple of vanishing sets are solutions
of the intersection of the sets: V (Gi)∩V (G j). As known, a solution is common to
a couple of ideals if it satisfies all the polynomial equations collected in their zero
sets: V (Gi)∩V (G j) = V (Gi ∪G j).

It is not difficult to figure out what is the number of feasible solutions of
V (Gi)∩V (G j). To do that, Gröbner bases Gi, j of ideals Gi ∪G j are computed. It
should be remarked that for this task both Study’s parameters defining robot con-
figuration and actuation displacements δ1, δ2 and δ3 are unknown. For this reason
the computation of ideals bases is performed on the polynomial ring defined on the
complex field C by the lexicographic variables ordering x0 � x1 � x2 � x3 � y0 �
y1 � y2 � y3 � δ1 � δ2 � δ3 [7]. The number of solutions of each ideal intersection
is equal to the dimension of the vanishing set of the respective basis; thus, com-
putation of dim(Gi, j) [5], whose results are reported in table 1, directly provides
the dimension of the space of solutions for each ideal intersection. Observation of
such results gives information about the conditions that must be respected for the
transition between two mobilities to take place:

• The intersection of vanishing sets having no common solutions has dimension
−1; it means that no configuration is suitable for transition between mobilities.

• Dimension equal to 0 indicates that a finite number of solutions is available;
therefore, the switch is possible in a restricted number (explicitly computable) of
configurations.
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Table 1 Dimensions of intersections of the ideals characteristic of the different mobilities.
∪ G15 G14 G13 G12 G11 G10 G9 G8 G7 G6 G5 G4 G3 G2 G1

G1 0 0 0 0 1 1 1 1 1 1 2 2 2 2 3
G2 1 1 −1 1 0 2 0 2 0 2 1 1 1 3
G3 1 1 1 −1 0 2 2 0 2 0 1 1 3
G4 −1 1 1 1 2 0 0 2 2 0 1 3
G5 1 −1 1 1 2 0 2 0 0 2 3
G6 2 −1 −1 2 1 1 1 1 −1 3
G7 −1 2 2 −1 1 1 1 1 3
G8 −1 2 −1 2 1 1 −1 3
G9 2 −1 2 −1 1 1 3

G10 2 2 −1 −1 −1 3
G11 −1 −1 2 2 3
G12 −1 −1 −1 3
G13 −1 −1 3
G14 −1 3
G15 3

• A dimension greater than 0 denotes the existence of an infinite number of solu-
tions; it is in general possible to extract a relation between actuation parameters
that must be satisfied to make the transition possible.

The first row of table 1 arises a particular interest because its elements represent the
transitions involving the pure rotational mobility: the zero set V (G1) shares solu-
tions with all other ideals. Therefore, an intermediate passage through this behaviour
makes possible, although not directly, all the transitions within table 1. Therefore, a
deeper investigation on these specific cases looks reasonable.

• V (G1 ∪G2,G3,G4,G5): such spaces of solutions have dimension 2, thus the tran-
sition conditions are expressed by surfaces in the space of actuation parameters.
The respective Gröbner bases contain, within others, also polynomials:

G1,2 ⊂ π1 : δ1 +δ2 +δ3 −2e G1,3 ⊂ π2 : δ1 −δ2 −δ3 −2e
G1,4 ⊂ π3 : δ1 +δ2 −δ3 +2e G1,5 ⊂ π4 : δ1 −δ2 +δ3 +2e

(12)

whose vanishing sets define 4 planes in the space of actuation displacements.
• V (G1 ∪ G6,G7,G8,G9,G10,G11): since the dimension 1, it is expected that the

respective spaces are curves in δ1, δ2, δ3. Indeed, the following equations are
found:

G1,6 ⊂ ρ1 :
δ2 − e
δ1 +δ3

G1,7 ⊂ ρ2 :
δ2 + e
δ1 −δ3

G1,8 ⊂ ρ3 :
δ3 − e
δ1 +δ2

G1,9 ⊂ ρ4 :
δ3 + e
δ1 −δ2

G1,10 ⊂ ρ5 :
δ1 − e
δ2 +δ3

G1,11 ⊂ ρ6 :
δ1 + e
δ2 −δ3

(13)

that correspond to 6 different lines in the space of δ1, δ2 and δ3.
• V (G1∪G12,G13,G14,G15): as expected due to the null dimension of vanishing set

intersection, a finite number of solutions is available here, represented by points
identified by zero sets of bases generators:
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G1,12 ⊂ ε1 :
δ1 + e
δ2 + e
δ3 + e

G1,13 ⊂ ε2 :
δ1 + e
δ2 − e
δ3 − e

G1,14 ⊂ ε3 :
δ1 − e
δ2 + e
δ3 − e

G1,15 ⊂ ε4 :
δ1 − e
δ2 − e
δ3 + e

(14)

6 Conclusions

The kinematic analysis of the kinematotropic 3-CPU manipulator has been shown
by means of Study’s quadric representation, thus allowing to use of an algebraic
approach to the constraints analysis. The polynomial ideal collecting the actuation
independent equations has been decomposed in several sub-ideals, each one char-
acteristic of a particular mobility. The spaces of common solutions of each pair of
sub-ideals have been studied to detect the transition conditions between different
mobilities: the respective vanishing sets gave their dimensions, if achievable, in the
unknown actuation variables. This allowed to conclude that a transition path be-
tween various behaviours is always possible due to the fact that the pure rotational
mobility shares solutions with every other mode. Moreover, observation of bases
generators provided a precise formulation of the spaces of common solutions for
transitions between pure rotational behaviour and other mobilities.
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vances in Robot Kinematics, pp. 449–458. Kluwer (1996)



A Planar Compliant Mechanism with RRP
Mobilities Based on the Singularity Analysis of a
3-US Parallel Mechanism

Lennart Rubbert, Stéphane Caro, Pierre Renaud and Jacques Gangloff

Abstract A new design method for parallel compliant mechanisms based on the
singularity analysis of parallel mechanisms is presented in this paper. Here a 3-
US parallel mechanism is introduced and its singular configurations are analyzed
with Grassmann–Cayley algebra for the design of a compliant mechanism with RRP
mobilities. A novel architecture of compliant mechanism, based on a 3-UU parallel
mechanism, is presented and finally its stiffness properties are analyzed with a finite
element method.

Key words: Singularity, parallel mechanism, mechanism analysis, Grassmann–
Cayley algebra, compliant mechanism, mechanism design

1 Introduction

In a compliant mechanism, mobilities are obtained by material deformation. Com-
pliant mechanisms are often obtained from a single part and they exhibit a high com-
pactness without any backlash. They are thus considered for the design of MEMS
or surgical tools, where small displacements are needed with a high accuracy.

Two open problems remain in the design of such mechanisms. First, their manu-
facturing remains difficult. Many manufacturing processes are only adapted to pla-
nar structures, which is a strong design constraint. Second, the synthesis of com-
pliant mechanisms is more complex than rigid-link mechanisms. Kinematics and
statics of the mechanism cannot be analyzed independently [7], and stresses in the
structure need to be considered. One way to design a compliant mechanism is to syn-
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Fig. 1 Kinematic scheme of the compensation mechanism.

thesize a rigid-link mechanism and then transform the joints into compliant joints,
also called flexure joints [5]. Revolute flexure joints can be easily manufactured
contrary to spherical joints. The main issue during the design is therefore to identify
rigid-link mechanisms that exhibit adequate kinematics and that can be transformed
into compliant mechanisms.

In this paper, we propose to take advantage of singularity analysis of parallel
mechanisms in order to select the architecture of a compliant mechanism. Parallel
mechanisms are known for their high stiffness. We can design a compliant mech-
anism by considering a mechanism that exhibits a parallel singularity in a planar
configuration and suppressing its actuated joints. Passive joints are then designed as
flexure joints and are easy to manufacture. The obtained compliant mechanism ex-
hibits small displacements in the directions determined from its singularity analysis
as well as interesting stiffness properties. Such a design approach is, to the authors’
knowledge, original and is illustrated in this paper by focusing on the design of a
RRP compliant mechanism from a 3-US parallel mechanism, in the context of the
design of a surgical tool.

The need for a RRP compliant mechanism in the design of a surgical tool is
briefly described in Section 2. The singularity of the 3-US mechanism are analyzed
with Grassmann–Cayley algebra in Section 3. The design and numerical simulation
of the obtained compliant mechanism are shown in Section 4. Finally, conclusions
and perspectives are written in Section 5.

2 Need for a RRP Compliant Mechanism

A cardiac stabilizer [2] is a surgical device that must actively immobilize the sur-
face of a beating heart during surgery. It is mainly composed of a shaft that enters
the body to reach the surface of the heart at one end. At the other end, the shaft is
actuated with a mechanism which takes advantage of the oblong geometry of the
shaft in order to maximize the compactness [3]. The kinematic scheme represented
in Fig. 1 is considered. The shaft is controlled using a XY-stage located in a plane
P2 perpendicular to the shaft. The shaft is linked to the XY-stage with a spherical
joint in O2 and oriented with a spherical joint in O1. A prismatic joint is however
needed to take into account the distance variation between O1 and O2. As the rota-
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Fig. 2 Equivalent kinematic chains and architecture of the 3-US.

tion around the shaft axis is not necessary, a RRP mechanism, in grey in Fig. 1, is
therefore considered to connect the shaft to the base.

3 Singularity Analysis with Grassmann–Cayley Algebra

The 3-US parallel mechanism has three identical legs where each leg is composed
of a universal joint and a spherical joint. The first revolute joint axes of the univer-
sal joints are in the plane of the base and intersect in point O (Fig. 2). The 3-US
mechanism has three degrees of freedom and its platform velocity can be described
by three translational velocities and three angular velocities. In fact, the platform
motions are coupled except when the platform is in the plane of its base. In this con-
figuration the motion capabilities are decoupled in two angular velocities around the
orthogonal in-plane axes and in one translational velocity along the axis normal to
the base. In this configuration we get exactly the desired RRP motion capabilities
described in Section 2.

The universal joint is similar to two revolute joints with perpendicular and inter-
secting axes. The spherical joint can be seen as three revolute joints with perpen-
dicular and intersecting axes as shown in Fig. 2. This section aims to analyze the
singularities of the 3-US for its five symmetrical actuation modes and the instan-
taneous gained motions in the vicinity of the singular configurations. The ith joint
of each leg is actuated for the ith actuation mode of the mechanism, i = 1, . . . ,5.
It is noteworthy that the architecture of the compliant mechanism will be directly
related to the selected actuation scheme. The singularities of the 3-US are analyzed
with the Grassmann–Cayley Algebra (GCA) [1, 4]. In the following, the singularity
analysis for the first actuation mode is detailed as an illustrative example and the
instantaneous gained motions are described for all actuation modes.
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3.1 Analysis of the First Actuation Mode

Twist System of the 3-US: The twist system Ti associated with the ith leg of the
3-US is spanned by five zero-pitch twists defined as:

ε̂ i
01 =

[
u1i

ai ×u1i

]
, ε̂ i

02 =

[
u2i

ai ×u2i

]
, ε̂ i

03 =

[
u3i

bi ×u3i

]

ε̂ i
04 =

[
u4i

bi ×u4i

]
, ε̂ i

05 =

[
u5i

bi ×u5i

]
, i = 1,2,3 (1)

u1i and u2i are the unit vectors of the first and second revolute joint axes of the
universal joint of the ith leg. u3i, u4i and u5i are the unit vectors of the revolute
joints associated with the spherical joint of the ith leg. ai and bi are the Cartesian
coordinate vectors of points Ai and Bi shown in Fig. 2. The twist system T of the
3-US is the intersection of T1, T2 and T3.

Wrench System of the 3-US: In a non-singular configuration, the constraint wrench
system Wc of the 3-US is a three-system spanned by the following three pure forces:

F̂ c
i =

[
ni

bi ×ni

]
, i = 1,2,3 (2)

ni being the unit vector of
−−→
AiBi. In turn, the actuation wrench system Wa of the 3-

US depends on its actuation scheme. In case the first revolute joint of each leg is
actuated, Wa is spanned by the following three pure forces:

F̂ a
1i =

[
u2i

bi ×u2i

]
, i = 1,2,3 (3)

In case the second revolute joint of each leg is actuated, Wa is spanned by the
following three pure forces:

F̂ a
2i =

[
u1i

bi ×u1i

]
, i = 1,2,3 (4)

In case the jth revolute joint of each leg is actuated, j = 3,4,5, Wa is spanned by
the following three pure forces:

F̂ a
ji =

[
v ji

c ji ×v ji

]
, i = 1,2,3 (5)

v ji being the unit vector of the intersection line L ji of planes P1i and P ji. c ji is the
Cartesian coordinate vector of any point Cji on line L ji. P1i is spanned by vectors
u1i and u2i and passes through point Ai. P3i is spanned by vectors u4i and u5i and
passes through point Bi. P4i is spanned by vectors u3i and u5i and passes through
point Bi. P5i is spanned by vectors u3i and u4i and passes through point Bi.
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Fig. 3 Wrench graph of the 3-US associated with its first actuation mode.

As a result, the global wrench system Wk
3US of the 3-US associated with its kth

actuation scheme is spanned by Wa and Wc, namely,

Wk
3US = span(F̂ c

1 , F̂
c
2 , F̂

c
3 , F̂

a
k1, F̂

a
k2, F̂

a
k3), k = 1, . . . ,5 (6)

Wrench Graph of the 3-US: The six forces F̂ c
1 , F̂ c

2 , F̂ c
3 , F̂ a

11, F̂ a
12 and F̂ a

13 form
a basis of the global wrench system W1

3US. Those wrenches are represented by six
finite lines in P3. To obtain the six extensors of the superbracket, we have to select
twelve projective points on the six projective lines, i.e., two points on each line. Let
b1, b2, b3 be the intersection points of F̂ a

11 and F̂ c
1 , F̂ a

12 and F̂ c
2 , F̂ a

13 and F̂ c
3 , re-

spectively. F̂ a
11, F̂ c

1 , F̂ a
12, F̂ c

2 , F̂ a
13 and F̂ c

3 intersect the infinite plane Π∞ at points
u21 = (u21, 0)T , n1 = (n1, 0)T , u22 = (u22, 0)T , n2 = (n2, 0)T , u23 = (u23, 0)T and
n3 = (n3, 0)T , respectively. The wrench graph of the 3-US corresponding to its first
actuation mode is illustrated in Fig. 3.

Superbracket of the 3-US: The expression of the superbracket of the 3-US associ-
ated with its first actuation mode is derived from the nine projective points depicted
in Fig. 3 and takes the form: [b1u21 b1n1 b2u22 b2n2 b3u23 b3n3]. This expression can
be developed into a linear combination of 24 bracket monomials [4], each one be-
ing the product of three brackets of four projective points. The superbracket was
simplified by using a novel graphical user interface:1

[b1u21 b1n1 b2u22 b2n2 b3u23 b3n3] = [b1 u21 n1
•
b2][b1 b2

•
n2 b3][

•
u22 u23 b3 n3] (7)

= (b1 u21 n1)∧ (b2 u22 n2)∧ (b3 u23 n3)∧ (b1 b2 b3) (8)

1 http://www.irccyn.ec-nantes.fr/∼caro/SIROPA/GUIGCASiropa.jar

http://www.irccyn.ec-nantes.fr/~caro/SIROPA/GUIGCASiropa.jar
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where dotted letters stand for permuted elements and ∧ denotes the meet opera-
tor [4].

Geometric Parallel Singularity Conditions: Let Πl be the plane passing through
point Bl and spanned by u2l and nl , l = 1,2,3. Let Π4 be the plane passing through
points B1, B2 and B3. Equation (8) vanishes, namely, the 3-US reaches a parallel
singularity for its first actuation mode, if and only if planes Π1, Π2, Π3 and Π4

intersect at least at one point.

3.2 Singularity Conditions and Instantaneous Gained Motions

Singularity conditions have been determined for the first actuation mode. A similar
procedure was used to analyze the singularities associated with the second actuation
mode of the 3-US. It is noteworthy that the simplification of the superbracket expres-
sion is not straightforward for the third, fourth and fifth actuation modes. Therefore,
we can use GCA and Grassmann geometry as complementary approaches in order to
derive the singularity conditions related to those five actuation modes as explained
in [1]. In case of the third, fourth and fifth actuation modes, the Grassmann–Caley
algebra is directly applied to the planar configuration when the plane of the plat-
form normal to the u5i is in the plane of the base defined by u1i for the singularity
analysis (Fig. 2).

For the five actuation modes, the 3-US turns to be singular in the planar config-
uration, i.e., when the base and moving-platform are coplanar. As a matter of fact,
from Eq. (7), the global wrench system of the 3-US becomes a 3-system composed
of six coplanar pure forces in this configuration. Its twist system T3US is reciprocal
to Wk

3US, k = 1, . . . ,5 and becomes also a 3-system in this configuration even if the
actuated joints are locked. T3US is spanned by two zero-pitch twists with non par-
allel axes belonging to Π4 and one infinite-pitch twist of axis normal to Π4. As a
consequence, the instantaneous gained motions of the moving-platform correspond
to the desired RRP motion, namely, one translation along the direction normal to Π4

and two rotations about non parallel axes belonging to Π4 for all actuation modes in
the planar configuration.

4 Design of the Compliant Mechanism

For each actuation mode, the 3-US gains the desired RRP motion described in Sec-
tion 2. Since the mechanism will be machined in a plane, it is more convenient to
machine flexure joints with revolute axes in the plane. Therefore, among the five
revolute joints per leg that can be suppressed, we choose to eliminate the fifth revo-
lute joint of each leg (u5i, Fig. 2) which is the only one to have an axis normal “to
the base and moving platform” in the planar configuration of the 3-US. Therefore,
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Fig. 4 Kinematic scheme and CAD view of the 3-UU compliant mechanism.

the 3-US becomes a 3-UU as illustrated in Fig. 4. The 3-UU compliant mechanism
is then designed by replacing each revolute joint by a circular flexure hinge. The
computer-aided design of the compliant 3-UU is shown in Fig. 4.

The compliant mechanism is assessed by computing the 6 × 6 compliance
matrix, which relates the displacement u = [x;y;z;θx;θy;θz] to the load L =
[Fx;Fy;Fz;Mx;My;Mz] applied at the center of the platform [6]:

u = C.L (9)

The 6×6 compliance matrix C is evaluated using a finite element analysis (PTC
ProMechanica):

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

7.3e-5 −2.5e-8 −4.2e-8 −3.4e-5 5.3e-8 1.4e-6
3.8e-8 7.3e-5 −2.7e-8 −8.0e-6 9.0e-6 1.4e-6
−1.1e-7 −5.9e-8 1.7e-2 4.1e-5 1.1e-4 1.2e-6
−1.9e-6 0.0 −8.7e-5 1.4 −6.0e-3 4.1e-5

0.0 1.5e-6 −1.2e-5 −8.4e-4 1.4 3.0e-5
0.0 −6.0e-8 −9.6e-7 4.0e-6 0.0 6.9e-3

⎤
⎥⎥⎥⎥⎥⎥⎦

(10)

The translational stiffness along the vertical axis is approximately 240 times
lower than the in-plane translational stiffnesses. The rotational stiffness along the
vertical axis is 210 times greater than the in-plane rotational stiffnesses. This is ver-
ified when three forces are applied at the center of the mechanism: there is only a
displacement along the vertical axis (Fig. 5 left). When three moments are applied
at the center of the mechanism, there are two rotations about in-plane axes (Fig. 5
right). Therefore, the compliant mechanism behaves as a RRP mechanism.

5 Conclusion

A new design method for parallel compliant mechanism based on singular con-
figurations has been presented in this paper. A 3-US parallel mechanism has been
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Fig. 5 Finite element analysis of the 3-UU compliant mechanism under a combined load (left) and
moment (right).

introduced and based on the Grassmann–Cayley algebra it has been possible to an-
alyze the singularities in this mechanism for the design of a compliant mechanism
with RRP mobilities. The stiffnesses of the compliant mechanism have been eval-
uated with a finite element analysis. The high ratio between the stiffnesses in the
different motion directions shows that the compliant mechanism behaves as a RRP
mechanism. Hence, a new compliant planar parallel architecture for a RRP com-
pliant mechanism has been proposed. The next step will consist in optimizing the
mechanism to match the expected performances in terms of relative stiffnesses and
stresses in the material.
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Velocity Level Kinematic Analysis of Serial
nA-Chains

James D. Robinson and M. John D. Hayes

Abstract The algebraic screw pair, or A-pair, represents a new class of kine-
matic constraint that exploits the self-motions inherent to a specific configuration
of Griffis–Duffy platform. The A-pair causes a sinusoidal coupling of rotation and
translation between adjacent links in the kinematic chain. The resulting linkage is
termed an A-chain. This paper presents a derivation of the manipulator Jacobian
of nA-chains in general, and a specific 4 degree-of-freedom hybrid serial-parallel
4A-chain.

Key words: Algebraic screw pair, Griffis–Duffy platform, nA Jacobian

1 Introduction

The algebraic screw pair [4], or A-pair, is a novel kinematic pair based on a spe-
cific configuration of parallel manipulator called the Griffis–Duffy platform (GDP)
[1]. The GDP is a special configuration of the six legged, six degree-of-freedom
(DOF) Stewart-Gough platform (SGP) that, in most configurations, is subject to
self-motions regardless of the lengths of the actuated legs [2]. Kinematic chains
composed of rigid links serially connected by A-pairs are denoted A-chains. The
A-pair induces a sinusoidal coupling of rotation and translation between adjacent
links. For this paper the derivation of the manipulator Jacobian of a 4A-chain, illus-
trated in Figure 1a, is used to demonstrate the method. While the method does not
fail for n > 4, the terms become inconveniently large to express explicitly.

The A-pairs used in this paper are the midline-to-vertex GDP configuration, see
Figure 1b. They are constrained by: the fixed base and moving platform anchor point
triangles are congruent equilateral triangles with each side of the triangles being of
length a and the six legs are all of a fixed length, l, equal to the height, h, of the
triangles as illustrated in Figure 2a.
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Fig. 1 (a) Prototype 4A-chain. (b) Midline-to-vertex configuration GDP.

Fig. 2 (a) Platform shape parameters. (b) Coordinate systems and leg anchor point.

The value of l is

l = h = a
√

3

2
. (1)

It turns out that the self-motions of this GDP couple rotation about an axis passing
through the geometric centres of both the fixed base and moving platform triangles
with translation along that axis. Using the coordinate systems illustrated in Fig-
ure 2b, it can be shown [2] that the separation of the fixed base and moving plat-
form, d , is a function of the rotation angle, θ , about the axis common to both the
fixed base and moving platform:

d = ρ sin

(
θ

2

)
, where ρ = a

√
6

3
. (2)
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Fig. 3 DH-parameters of a link in an A-chain.

It is expected that A-chains will exhibit increased stiffness and positioning accu-
racy relative to R-chains. While we currently lack empirical proof, it appears to be
true based on a visual comparison of the prototype manipulator with the first four
R-pair joints in a Thermo CRS A465. The proposed actuation system consists of a
central spline affixed to the moving platform that is constrained by three spur gears
affixed to the base, all possessing identical pitch diameters. One of the spur gears
is active, which rotates the spline. This arrangement allows the spline to translate
along its axis of rotation.

2 The Jacobian of a Single A-Pair

The Jacobian matrix of a manipulator maps its joint rates to the linear and angular
velocities of its end effector (EE). Standard methods from the literature, see [5] for
example, can be adapted to account for the coupled translation and rotation of the A-
pair. The Jacobian matrix of a 1A-chain can be determined by examining the rotation
and translation components of the coupled motion separately. The orientation of the
joint is directly expressed by the joint variable θ1. The translation component of the
joint motion is a function of θ1, and computed with Equation (2).

In a 1A-chain, the linear velocity of the EE induced by θ̇1 has two components:
one due to the rotation of the joint, perpendicular to the axis of rotation as with a
revolute joint; the other is due to the translation coupled to the rotation, and is ex-
pressed by pez = d1+ρ sin(θ1/2), where pez is the ẑ0-component of the EE position
vector, d1 is the offset of the EE from the base along ẑ0 when θ1 = 0, and ẑ0 is axis
of rotation. There is only one joint rate q̇1 = θ̇1. The influence of the rotation of the
joint on the linear velocity is found as if it were a revolute joint:

q̇1JP1r
= z0×(pe−p0)θ̇1 =

⎡
⎣ 0

0
1

⎤
⎦×

⎡
⎣−θ̇1a1 cos θ1 − 0

−θ̇1a1 sin θ1 − 0
0

⎤
⎦=

⎡
⎣ θ̇1a1 sin θ1

−θ̇1a1 cos θ1
0

⎤
⎦ , (3)
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where, in general, JP1r
is the is the 3×1 vector mapping the angular rate of joint i to

its contribution to the linear velocity of the EE, pe and p0 are the position vectors of
the EE coordinate origin, and position vector of the joint coordinate system origin
both expressed in the non moving frame, and a1 is the DH-parameter for the link
length of a link affixed to the moving platform of the single A-pair, illustrated in Fig-
ure 3. The time derivative of pez yields the translation component of the Jacobian,
JP1t :

q̇1JP1t = d

dt

⎡
⎢⎣

0
0

d1 + ρ sin
(

θ1
2

)
⎤
⎥⎦ =

⎡
⎢⎣

0
0

θ̇1
2 ρ cos

(
θ1
2

)
⎤
⎥⎦ , (4)

therefore JP1t = [ 0 0 ρ
2 cos( θ1

2 ) ]T . Summing the two components yields the map-
ping from the joint rate q̇1 to the EE linear velocity:

JP1 = JP1r + JP1t =
⎡
⎢⎣

a1 sin θ1
−a1 cos θ1
ρ
2 cos

(
θ1
2

)
⎤
⎥⎦ , (5)

and ṗe = JP1(q)q̇1.
The translation that is coupled with the rotation of the A-pair does not have an

effect on the orientation of the EE, thus the contribution of the A-pair actuation rate
to the angular velocity of the EE, ωe, is the same as that of a revolute joint:

JO1 = ẑ0 =
⎡
⎣ 0

0
1

⎤
⎦ , (6)

and ωe = JO1(q)q̇1. The full Jacobian is

J =
[

JP1

JO1

]
. (7)

However, in this A-pair the EE coordinate system origin is located at the geo-
metric centre of the moving platform (the EE frame is coincident with a base frame
located at the geometric centre of the fixed base when the A-pair is in the theoretical
home position). Hence, the origin of the EE lies on the joint axis rendering a1 = 0
and the velocity relations simplify to

JP1 =
⎡
⎢⎣

0
0

ρ
2 cos

(
θ1
2

)
⎤
⎥⎦ , JO1 =

⎡
⎣ 0

0
1

⎤
⎦ . (8)
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Table 1 DH-parameters.

Link i ai αi di θf i

1 0 90◦ d1 0◦
2 a2 180◦ −ρ −90◦
3 0 −90◦ −ρ 90◦
4 0 0◦ d4 0◦

The Jacobian matrix for the single A-pair is always rank deficient, which is ex-
pected because motion in an arbitrary direction will never be possible with just a
single A-pair. If one considers only the two achievable degrees of freedom of the
single A-pair with the EE origin on the joint axis (motion along the joint axis and
rotation about the same axis) a more useful analysis can be performed.

The mapping to EE angular velocity from the joint rate is one-to-one and inde-
pendent of the joint state. This implies that, if joint limits are ignored, the angular
velocity of the EE can always be controlled one-to-one. However, the mapping of
linear velocity is dependant on the joint state and cannot be continuously controlled.
When cos( θ1

2 ) goes to zero (i.e. when θ approaches 180◦) the joint approaches a
singular position. At the singularity the linear velocity of the EE is null and any
rotation away from θ1 = 180◦ in either direction will result in motion in the nega-
tive ẑ0-direction only. The singularity is also evident if the Jacobian is rearranged to
solve for the joint rate required to achieve a certain velocity, v1, along the ẑ0-axis:

θ̇1 = 2v1

ρ cos
(

θ1
2

) . (9)

As θ1 approaches 180◦, θ̇1 approaches infinity.

3 The Jacobian of a 4A-Chain

The DH-parameters of the 4A-chain illustrated in Figure 1a, using the DH-parameter
convention in [5], are listed in Table 1. Figure 3 shows the assignment of DH-
parameters to a link in an A-chain. The position vector of the base frame origin
is p0 = 0. The relative pose of the EE, pe, is found by transforming the homoge-
neous coordinates of its origin to the non moving base coordinate reference system.
The homogeneous transformation, obtained using the methods of [4], has the form:

0T4 =

⎡
⎢⎢⎣

1 0 0 0
pex −c1c2−3c4 + s1s4 c1c2−3s4 + s1c4 −c1s2−3
pey −s1c2−3c4 − c1s4 s1c2−3s4 − c1c4 −s1s2−3

pez −s2−3c4 s2−3s4 c2−3

⎤
⎥⎥⎦ , (10)
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where

pe =
⎡
⎣pex

pey

pez

⎤
⎦ =

⎡
⎢⎣

s1ρ s
θ2
2 + c1s2a2 − s1ρ s

θ3
2 − c1s2−3ρ s

θ4
2 − c1s2−3d4

−c1ρ s
θ2
2 + s1s2a2 + c1ρ s

θ3
2 − s1s2−3ρ s

θ4
2 − s1s2−3d4

ρ s
θ1
2 + d1 − c2a2 + ρ c2−3s

θ4
2 + d4c2−3

⎤
⎥⎦

is the position vector of the EE origin, and c1, s1, etc. are abbreviations for cos θ1,
sin θ1, etc., respectively. In addition to the EE pose the transformation matrices de-
scribing the pose of each intermediate reference frame (�i , i = 1, 2, 3) are impor-
tant. The pose of �1 is given by

0T1 =

⎡
⎢⎢⎣

1 0 0 0
p1x c1 0 s1
p1y s1 0 −c1

p1z 0 1 0

⎤
⎥⎥⎦ , p1 =

⎡
⎣p1x

p1y

p1z

⎤
⎦ =

⎡
⎣ 0

0
ρ s

θ1
2 + d1

⎤
⎦ . (11)

The pose of �2 is given by

0T2 =

⎡
⎢⎢⎣

1 0 0 0
p2x c1s2 −c1c2 −s1
p2y s1s2 −s1c2 c1

p2z −c2 −s2 0

⎤
⎥⎥⎦, p2 =

⎡
⎣p2x

p2y

p2z

⎤
⎦=

⎡
⎢⎣

ρ s1s
θ2
2 + a2 c1s2 − ρ s1

−ρ c1s
θ2
2 + a2 s1s2 + ρ c1

ρ s
θ1
2 + d1 − a2 c2

⎤
⎥⎦. (12)

Finally the pose of �3 is

0T3 =

⎡
⎢⎢⎣

1 0 0 0
p3x −c1c2−3 s1 −c1s2−3
p3y −s1c2−3 −c1 −s1s2−3

p3z −s2−3 0 c2−3

⎤
⎥⎥⎦ , (13)

p3 =
⎡
⎣p3x

p3y

p3z

⎤
⎦ =

⎡
⎢⎣

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2

−ρ c1s
θ2
2 + a2 s1s2 + ρ c1s

θ3
2

ρ s
θ1
2 + d1 − a2 c2

⎤
⎥⎦ . (14)

The position vectors p1, p2 and p3 that describe the position of the origin of the
corresponding intermediate reference frames are given in Equations (11), (12) and
(14), respectively. The joint axes, taken from the respective transformation matrices,
are

ẑ0 =
⎡
⎣ 0

0
1

⎤
⎦ , ẑ1 =

⎡
⎣ s1

−c1
0

⎤
⎦ , ẑ2 =

⎡
⎣−s1

c1
0

⎤
⎦ , ẑ3 =

⎡
⎣−c1s2−3

−s1s2−3
c2−3

⎤
⎦ . (15)

The vector mapping the rate of actuation of Joint 1 to the linear velocity of the
EE due to the rotation of Joint 1 is
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JP1,r
= z0 × (pe − p0)

=
⎡
⎢⎣

ρ c1s
θ2
2 − a2 s1s2 − ρ c1s

θ3
2 + ρ s1s2−3s

θ4
2 + d4 s1s2−3

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2 − ρ c1s2−3s

θ4
2 − d4 c1s2−3

0

⎤
⎥⎦ , (16)

and the vector mapping the rate of actuation of Joint 1 to the linear velocity of the
EE due to the translation of Joint 1 is

JP1,t
=

⎡
⎣ 0

0
ρ
2 c

θ1
2

⎤
⎦ . (17)

The total linear velocity Jacobian component for Joint 1 comes from the summa-
tion of Equations (16) and (17) for i = 1, giving

JP1 =
⎡
⎢⎣

ρ c1s
θ2
2 − a2 s1s2 − ρ c1s

θ3
2 + ρ s1s2−3s

θ4
2 + d4 s1s2−3

ρ s1s
θ2
2 + a2 c1s2 − ρ s1s

θ3
2 − ρ c1s2−3s

θ4
2 − d4 c1s2−3

ρ
2 c

θ1
2

⎤
⎥⎦ , (18)

and because only the rotational component of the joint motion impacts the orienta-
tion of the EE, the angular velocity component of the Jacobian is

JO1 =
⎡
⎣ 0

0
1

⎤
⎦ . (19)

Similarly for Joints 2, 3, and 4:

JP2 =
⎡
⎢⎣

a2 s1c2 − ρ s1c2−3s
θ4
2 − d4 s1c2−3 − ρ

2 c1c
θ2
2

a2 s1c2 − ρ s1c2−3s
θ4
2 − d4 s1c2−3 − ρ

2 c1c
θ2
2

a2s2 − ρs2−3s
θ4
2 − d4s2−3

⎤
⎥⎦ , and JO2 =

⎡
⎣ s1

−c1
0

⎤
⎦ .

JP3 =
⎡
⎢⎣

ρ c1c2−3s
θ4
2 + d4 c1c2−3 − ρ

2 c
θ3
2 s1

ρ s1c2−3s
θ4
2 + d4 s1c2−3 + ρ

2 c
θ3
2 c1

ρs2−3s
θ4
2 + d4s2−3

⎤
⎥⎦ , and JO3 =

⎡
⎣−s1

c1
0

⎤
⎦ .

JP4 =
⎡
⎢⎣

−ρ
2 c

θ4
2 c1s2−3

−ρ
2 c

θ4
2 s1s2−3

ρ
2 c

θ4
2 c2−3

⎤
⎥⎦ , and JO4 =

⎡
⎣−c1s2−3

−s1s2−3
c2−3

⎤
⎦ .

The full 6 × 4 Jacobian is assembled as

J =
[

JP1 JP2 JP3 JP4

JO1 JO2 JO3 JO4

]
. (20)
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A full examination of the singularities has yet to be conducted but a simple ex-
ample of a singular configuration is easily found. With only four joint variables it is
no surprise that there will be certain directions in which the EE cannot be moved at
a given time, but in certain situations the capabilities are further diminished. When
θv1 = θv2 = θv3 = θv4 = 180◦ the Jacobian matrix becomes

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 (a2 + ρ + d4) −(ρ + d4) 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 −1 0
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

In this configuration instantaneous linear velocities along the y0- and z0-axes and
angular velocity about the x0-axis are not achievable.

4 Conclusions

In this paper the Jacobian for nA-chains in general, and in particular, a novel 4
DOF 4A-chain was derived. These chains are joined by A-pairs, which take advan-
tage of the single DOF self motion of the architecturally singular midline-to-vertex
configuration of the Griffis–Duffy platform. The self motion is a sinusoidally cou-
pled rotation and translation. The coupling means that existing techniques for estab-
lishing the relationship between the joint rates and the resulting linear and angular
velocity of the distal link in the chain have to be adapted. Linear and angular veloc-
ity relationships between links were considered distinctly and the results combined
to reveal the manipulator Jacobian. With the Jacobian established, the manipulator
singular configurations can now be investigated with the starting point based on the
method reported in [3].
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Singular Manifold of the General Hexagonal
Stewart Platform Manipulator

Viswanath Shanker and Sandipan Bandyopadhyay

Abstract The knowledge of the singular manifold of a manipulator is essential for
its design, path-planning and control. However, due to the computational complex-
ity, it is very difficult to obtain an analytical description of the manifold in terms of
the architecture as well as configuration parameters of the manipulator. In this pa-
per, the singularity of a general hexagonal Stewart platform manipulator (GHSPM)
is studied and its singular manifold is obtained. The manifolds geometric structure
is analysed by projecting it to the position and orientation subspaces, respectively.
An explicit geometric characterisation is obtained in the former case, where is it
found that the geometric nature of the singular surface is the same as in the case
of the SRSPM. The other surface, however, defies such analysis at this point due to
its high degree. The theoretical results are illustrated with numerical examples and
plots.

Key words: Stewart platform, singular manifold, geometric characterisation

1 Introduction

The singular manifold of the Stewart platform manipulator (SPM) has been studied
for decades. In 2000, St-Onge and Gosselin [3] pointed out that the singular locus of
the Stewart platform manipulator (GSPM) with planar base and moving platforms
to be a polynomial expression that is cubic in z and quadratic in x, y; x, y, z being
the coordinates of the origin of the moving platform. However, the polynomial was
not derived in closed-form and the study of singularities in the orientation space was
not included. Li et al. [2] have studied the orientation-space singularities in terms of
Euler angles, and found that the highest degree of the cosines of the Euler angles in
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the singularity condition was three. The state of the art in this regard can be found
in greater detail in [1, 2].

In 2006, Bandyopadhyay and Ghosal [1] obtained the closed-form expression for
the singular manifold of a class of SPMs, known as the semi-regular SPM (SRSPM),
in which the alternate sides of the moving as well as the fixed platforms have equal
lengths. For this class of SPMs, they were able to obtain the expressions for the sin-
gular manifold in closed-form, both in the position as well as the orientation space.
Further, given the low degree of the singular surface in the position space, they were
able to characterise it completely, and also obtained an explicit parametrisation for
the same.

This paper attempts to extend the results of [1] to the more general case of the
GHSPM. Though most of the Stewart platform-based manipulators fall in the SR-
SPM category, there are practical examples outside of this category, e.g., the spot-
welding robot F-200iB from FANUC Robotics Corporation, USA. It is, therefore, of
theoretical as well as practical interest to study the singular manifold of the GHSPM
class of manipulators.

Studies reveal that the singular surface in the position coordinates of the GH-
SPM has a very similar geometry to that of the SRSPM. In fact, the characters may
be identical; however, while this could be demonstrated exactly over hundreds of
random test cases, conclusive proofs on some aspects could not be obtained for the
most general case. The orientation-singular surface shows some change in its alge-
braic structure from the SRSPM case. These results have been illustrated through
numerical examples and plots.

The paper is organised as follows: In Section 2, the mathematical formulation of
singularity is presented, followed by a description of the symbolic simplification of
the singularity condition in Section 3. The geometric characterisation of the singular
surface in the position space is discussed in Section 4. The theoretical results are il-
lustrated by numerical examples and plots in Section 5, followed by the conclusions
in Section 6.

2 Mathematical Formulation

In this section, the kinematics of the GHSPM and the formulation of the singularity
are explained in brief. The approach is based on the formulation given in [1], which
presents a more comprehensive description.

Stewart, or Stewart–Gough platform manipulators are among the best-known six-
degrees-of-freedom parallel manipulators. The most general form of SPM consists
of a rigid moving platform connected to a fixed rigid base by six identical legs, of
UPS or SPS architecture. However, in practice, the fixed as well as the moving plat-
forms are of the form of rigid hexagons1 in most SPMs. This class of manipulators,

1 The case of triangular platforms is obviously included in this group.
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Fig. 1 General hexagonal Stewart platform manipulator (GHSPM).

known as the general hexagonal Stewart platform manipulator (abbreviated here as
GHSPM), is studied in this paper.

The manipulator is shown in Fig. 1. The legs are assumed to have UPS archi-
tecture (which has the same kinematics as the SPS-legged SPM, except for the idle
rotations of the legs about their respective axes). Let t i = (xti , yti , 0)T denote the
position of the ith S-joint in the top platform with respect to the coordinate system
attached to a point p(x, y, z) on the platform. Similarly, let bi = (xbi, ybi, 0)T de-
note the corresponding points in the base coordinate system. The rotation matrix R,
expressed in terms of the Rodrigue’s parameters c1, c2, c3, represent the orientation
of the moving frame with respect to the fixed. The singularity condition is derived
from the criterion of degeneracy of the statics of the manipulator. The wrench act-
ing on the moving platform (w.r.t. p) due to the force F i in the ith leg is given in
the base frame as W i = (Fisi; Rt i × Fisi ) where si denotes the unit-vector along
the ith leg. From the loop-closure condition applied to the loops O − bi − t i −
p − O (i = 1, . . . , 6), one finds si = (p + Rt i − bi )/ li (i = 1, . . . , 6) where li
denotes the length of the ith leg. The condition for static equilibrium is given by
W = ∑6

i=1 W i (i = 1, . . . , 6), where W = (F ; M) denotes the net external
wrench on the moving platform, in the same frame as W i . Breaking into the compo-
nents, the equation of static equilibrium becomes Hf = W , f = (F1, . . . , F6)

T ,
where:

H =
(

1
l1

(p + Rt1 − b1) . . . 1
l6

(p + Rt6 − b6)
1
l2

((Rt1) × (p − b1)) . . . 1
l6

((Rt6) × (p − b6))

)

(1)

It is well-established in literature that the statics of the manipulator is degenerate
(equivalently, the manipulator is in a singular configuration), when the wrench trans-
formation matrix H is rank-deficient, i.e., det(H ) = 0:
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1

l1l2l3l4l5l6
det

(
(p + Rt1 − b1)

T . . . (p + Rt6 − b6)
T

((Rt1) × (p − b1))
T . . . ((Rt6) × (p − b6))

T

)

= 0 (2)

As the leg lengths may be assumed to be non-zero, one finds the condition for sin-
gularity as S = 0, where S is the determinant appearing in the L.H.S. of Eq. (2).

3 Symbolic Simplification of the Singularity Condition

While the derivation of the condition for singularity is fairly straight-forward, the
analysis and understanding of it is extremely difficult. A number of previous at-
tempts to simplify the expression S to a physically comprehensible, or mathemati-
cally amenable state have failed in obtaining S as a closed-form expression in terms
of the architecture and pose parameters of the manipulator. To the best of the knowl-
edge of authors, such expressions are available for only one class of SPMs, namely,
the SRSPM [1], and a similar result on GHSPM is being reported for the very first
time in this work.

The use of a computer algebra system (CAS) is imperative for the symbolic
simplification of the singularity condition. However, as noted in [1], commercially
available generic systems fail to deliver for problems of this magnitude, unless
specifically designed simplification algorithms are used. The present work uses the
algorithms developed in [1] to obtain the desired closed-form expressions. The sin-
gular manifold is obtained as surfaces in the position and the orientation spaces,
respectively. The details of the steps involved are skipped for the sake of brevity,
while the essential aspects are highlighted below. All computations were performed
using the commercial CAS Mathematica 8.0 [4].

3.1 Singular Surface in the Position Space, Sp

• The original size of the expression for S is 2.69 MB (in Mathematica’s inter-
nal representation), or roughly 60 pages.2

• The expression is then transformed to the form Sp = C · P , where C is the
27-vector of the coefficients, and P the corresponding set of monomials in the
variables x, y, z. In other words, S is cast in its monomial-based canonical form
in the variables x, y, z, as described in [1]. The size of the expression at this
stage is the largest (2.15 GB). However, as the expression is now broken into 27
smaller subexpressions in lesser number of variables (i.e., these do not contain
any of x, y, z), the symbolic simplification works much better on these than on
the original expression. In fact, in the experience of the authors, the CAS runs
out of memory fairly soon while attempting to simplify expressions as big as the
original form of S.

2 This is only an estimate, as the output has never been printed for obvious reasons!
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• The simplification process reveals that 11 of the elements of C vanish identically.
The remaining 16 monomials with non-zero coefficients are:

{1, z, z2, z3, y, yz, yz2, y2, y2z, x, xz, xz2, xy, xyz, x2, x2z}
It can be observed that the structure of Sp, expressed as a polynomial in the
coordinates of p is the same as in the case of the SRSPM. This confirms that the
generalisation of the SRSPM to the GHSPM does not change the structure of the
singular manifold, when analysed as a surface in the position coordinates of the
origin of the moving platform.

• However, a key difference between the cases of SRSPM and GHSPM is that the
later involves a large number of architecture parameters, i.e., xti, yti , xbi, ybi

(i = 1, . . . , 6) (out of which 17 are independent) as opposed to only 3 in the case
of the SRSPM. Thus, in this case the final result is much larger (28.54 MB). It
may appear that the simplification procedure is counter-productive, as it has in-
creased the size of S by nearly 10 times. However, further analysis on geometric
characterisation would justify the need for this particular form of the expression.

• The computation was carried out on a PC with a 3 GHz AMD Phenom II X6
Processor and 8 GB RAM. It took nearly 7 hours for the entire process.

3.2 Singular Surface in the Orientation Space, SO

The steps involved are similar to the above, except that S is expressed as a polyno-
mial in c1, c2, c3 in this case. The end-result is somewhat different from that of the
SRSPM in this case.

• There are 84 distinct monomials, as opposed to 77 in the case of the SRSPM.
• There is no identically vanishing coefficient; i.e., SO expressed as a polynomial

in c1, c2, c3 does have 84 non-zero terms in general.
• However, the total degree of any term does not exceed 6, the same as in the

SRSPM.

4 Geometric Characterisation of Sp

The low degree of Sp permits extensive analysis of its geometry. As the algebraic
structure of Sp is the same as in the case of the SRSPM, there is not much of a
difference in the geometry as well. However, due to the large size of the expressions
in this case, not all of the results could be obtained conclusively. The key elements
of this analysis are given below.

It can be seen from the expression of Sp that it may be expressed as a general
conic section for a fixed value of z:
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C �= ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 (3)

where the coefficients a, b, c, f, g, h are functions of z, architecture and orientation
parameters. The geometric nature of C at various z-sections was studied as described
below.

• The discriminant, δ = h2 − ab was computed in closed-form, and was found to
be of the form δ = e0z

2 + e1z + e2. The discriminant of this quadratic in z, � =
e2

1 − 4e0e2, was also computed in closed form. However, since it has very high
degree in the architecture parameters (� 400), it was not possible to establish
the sign of � explicitly. Nevertheless, two sets of tests conducted suggest that �

vanishes identically:

– Random integer test: All the parameters appearing in e0, e1, e2 above are as-
signed random integer values, such that these coefficients can be computed
exactly. In each of the 700 tests conducted, the hypothesis � = 0 held true.

– Possible zero test of Mathematica: The CAS has a built-in routine Pos-
sibleZeroQ for testing if a function can vanish at some combination of its
arguments. This test also returned a positive result.

Thus, it can be reasonably inferred that � = 0 and consequently δ = e0(z −
zp)2, zp = −e1/(2e0), though it could not be proven conclusively.

• As per the above inference, the sign of δ is dependent on e0 alone for all z �= zp.
Once again, random integer tests are conducted for 1000 runs, and it is found
that e0 is a non-zero number and a perfect square. Thus δ ≥ 0 and consequently, C
is a hyperbola at all z ∈ R except for z = zp, where it is a parabola.

• A further possibility is that C degenerates to a pair of straight lines. The geometric
condition for this case turns out to be a quintic equation in z, which upon sim-
plification reveals itself as a quartic. Therefore, it is possible for C to degenerate
into a pair of straight lines at 0, 2 or 4 values of z.

In summary, it may be stated that the geometric character of the surface Sp for
GHSPM is (possibly) the same as that in the case of the SRSPM. However, some of
its properties could not be established conclusively.

5 Visualisation and Illustrative Examples

The architecture parameters of the GHSPM considered are given below:
(xt1, xt2, xt3, xt4, xt5, xt6) = (0, 0, 0.4, 1.1, 1, 0.3), (yt1, yt2, yt3, yt4, yt5, yt6) =
(0, 1.2, 2, 0.6,−0.3,−0.9), (xb1, xb2, xb3, xb4, xb5, xb6) = (0, 0, 0.3, 1, 0.8, 0.2),
(yb1, yb2, yb3, yb4, yb5, yb6) = (0, 1, 1.6, 0.3,−0.3,−0.7). For the orientation of
the top platform given by c1 = 0, c2 = 0.2, c3 = 0.1, Sp is found as:
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Fig. 2 Sp at c1 = c2 = 0.2, c3 = 0.1.

2.921x2z + 2.534x2 + 3.426xyz + 9.509xy − 7.437xz2 + 20.122xz + 9.871x

+ 0.313y2z + 0.926y2 + 6.147yz2 + 10.584yz + 7.676y − 35.213z3 + 12.602z2

+ 12.496z = 0

The resulting surface is shown in Fig. 2. Further, it is found that for this set of
values, � = 6.3 × 10−12 � 0, zp = −3.168, and the sections at which the hyper-
bolas degenerate into pairs of straight lines are given by zs = −0.423,−2.683.
The first point can be seen clearly in Fig. 2. The singular surface in the ori-
entation space, SO , is plotted in the coordinates (α, β, θ), where (c1, c2, c3) =
(cos α cos β, cos α sin β, sin α) tan(θ/2), so that the plot is confined in a finite space.
The surface SO for x = y = 0.1, z = 2 is shown in Fig. 3. Further, for
c2 = 0.1, c3 = 0.1, the singularity condition is given by

−2.266 + 8.476c1 + 48.928c2
1 − 0.595c3

1 − 177.337c4
1 − 353.120c5

1 − 5.568c6
1 = 0

This yields 4 real roots for c1: −62.913,−0.351, 0.151, 0.415.

6 Conclusions

In this paper, closed-form expression for the singular manifold of a GHSPM has
been derived. The geometric characterisation of the singular surface has been done
in the position space, with results apparently identical with those of the SRSPM.
However, the size and complexity of the expressions are much larger in this case, and
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Fig. 3 SO for x = y = 0.1, z = 2

not all observations could be proven explicitly. Nonetheless, some of the analytical
results presented here are new, and it is believed that the extension of the results of
SRSPM to the more general case of GHSPM would help in further studies in, and
applications of, this class of SPM.
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Managing the Redundancy of N−−−1 Wire-Driven
Parallel Robots

J-P. Merlet

Abstract We consider wire-driven parallel robot with N ≥ 4 wires that are connec-
ted at the same point on the platform. Such robot has 3 d.o.f. but it is non-redundant
(e.g. we cannot control the tension in the wires) as there will always be only at most
3 wires under tension simultaneously. We consider in this paper three approaches
that make this robot really redundant: elasticity in the wires, using counterweights
in the wires or attaching the redundant wires to a fixed point on the other wires. We
show that these methods may be effective but still require further studies.

Key words: Cable robot, wire-driven parallel robot, redundancy

1 The N−−−1 Wire Driven Parallel Robot

A wire-driven parallel robot has the same mechanical structure as a parallel robot
with rigid extensible legs but the linear actuators are substituted by wires that can
be coiled and uncoiled. Such robot has the advantages of being mechanically sim-
ple and to allow for large workspace (the leg length variations being much larger
than with rigid legs). Their main drawback is that wire can be pulled but cannot
be pushed: hence kinematics cannot be decoupled from statics, especially for robot
having less than 6 d.o.f., and this added complexity explains why the kinematics of
such robot is still an open issue [5]. A large number of potential applications has
led to a renewal of interest for wire-driven parallel robots for example for rescue
crane [2, 9, 11], assistance robots and rehabilitation [3] or haptic devices [1, 6].

In this paper we are considering a special class of wire-driven parallel robot,
called the N − 1 robot, in which the N wires are all connected at the same point C
on the platform. If N ≥ 3, then the robot has 3 d.o.f., namely it allows to control the
position of C but not the orientation of the platform. As soon as N ≥ 4 such robot
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is called redundant, whatever the definition of redundancy is [7, 10]. Redundant
robot will be the topic of this paper, starting by an examination of the reality of this
redundancy.

2 Is the N−−−1 Robot Redundant?

Using more than 3 non-elastic wires for an N −1 robot is a natural idea to improve
the performances of this robot. Let us denote by Ai the fixed output points of the
wires on the base and consider the workspace of this robot which is the volume Vε
spanned by moving the convex hull of the Ais along the downward vertical (with an
upper limit which is the base plane and a lower limit determined by the maximal
wire lengths). Hence adding a wire allows one to increase the workspace volume as
soon as the added Ai is not located within the convex hull of the previous Ais.

It may also be sought that having redundant wire(s) allows one to control the
tension distribution in the wires [4] and hence to improve the carrying capacity of
the robot. Unfortunately we have shown both theoretically and experimentally in
our ICRA paper from 2012 that this is not true if the wires are not elastic: whatever
the number of wires is, at a given pose there will always be at most 3 wires under
tension while the other wires will be slack. Without going into the proof let us ex-
plain intuitively this result. Consider a 3-1 robot in a pose C3 that lies in its Vε : the
mechanical equilibrium at C3 is satisfied and the tension in the 3 wires are uniquely
determined. If we add a 4th wire its length is uniquely determined as the distance
between A4 and C3. A wire system allows one to control either the wire length or
the wire tension (but not both). Hence:

• if we impose the length, then the mechanical equilibrium will be satisfied with a
0 tension in the 4th wire

• if we impose a tension (i.e. the wire length is smaller than the distance between
A4, C3), then C will move in a location different from C3

Being unable to control the tensions in the wires is a disappointing result because
this is typically one of the most obvious advantage of redundancy. We will propose
in the next sections different ways to exploit the availability of additional wires for
tension management while preserving the pose of the platform.

3 Tension Management

3.1 Elastic Wires

As mentioned previously a drawback of non-elastic wires is that tension control is
difficult. This may be changed if we assume elasticity in the wires. Let τi be the
tension in wire i, li its length at rest and ρi its length when under tension. If we
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assume that the wire is a perfect linear spring we have

τi = k(ρi − li) (1)

where k is the stiffness of the wire (assumed to be identical for all wires). Consider
now a 3-1 robot submitted to a load of mass m and having all 3 wires connected at the
center of mass of the load. The robot is submitted to a pure force F = (0,0,−mg)T

and the tension τ in the wires may be calculated as

τ = JTF (2)

where JT is the transpose of the Jacobian matrix of the robot. For the inverse kine-
matics (IK) the coordinates x,y,z of C are known, which allows one to calculate JT

and then ρi as the distance between Ai, C. Using equation (2) we may then determine
the τ . The control length of the wire may thus be calculated as

li = ρi −
τi

k

But there are sources of uncertainties in the modeling: on k, on li, on the location
of the Ai and due to the fact that the wires are not exactly attached at the same
point on the platform. We will focus on the influence of the uncertainties on k and li,
assuming that the Ai have been calibrated while the influence of the colocation of the
wire attachment points will be addressed in another paper. It is therefore necessary
to investigate what is the influence of the stiffness on the pose of the robot for a
given control input. We have thus solved the forward kinematics (FK) problem i.e.
determine what are the possible coordinates of C for given lis. Equation (2) allows
one to calculate τ as functions of the coordinates of C while equation (1) has now as
unknowns x,y,z,ρi. The geometrical IK of the robot provides an additional equation

ρ2
i = ||AiC||2 (3)

Equation (1) is linear in ρi and the result is reported in equation (3) to get a con-
straint equation in x,y,z. Repeating this process for all 3 wires leads to 3 constraint
equations. Using resultant on these equations allows for successive elimination of
x,y, leading to an univariate polynomial in z. This polynomial may be factored out
as the product of 2 polynomials of degree 22, 34. Note that this approach is less
efficient than the one proposed by Dietmaier [8] but has the advantage of providing
directly the x,y,z. With this tool we may investigate the influence of uncertainties
on k and li on the positioning.

As an example we consider the 3-1 wires robot with anchor points A1 = (0,0,0),
A2 = (0,400,0), A3 = (400,0,0). The wire control values are given as l1 = 200,
l2 = 350, l3 = 300 which leads to the pose x = 137.5, y = 96.875, z = −108.208
for wires without elasticity. To take into account the uncertainty on the control li
and on the stiffness k we have considered a possible ±3 error on the li and a ±0.1k
error on the k. We have then solved the FK for a random sampling of 1000 sets
of k, l within these ranges. For a nominal value of k = 100 we have found that



408 J-P. Merlet

the variations on x,y,z were in the ranges [−3.86,2.7], [−3.24,3.93], [−5.16,3.74],
while the τ variations were [−15.49,14.23], [26.9,28.96], [−26.11,24.18]. For a
nominal value of k = 3000 we found out that the variations on x,y,z were in
the ranges [−3.64,3.63], [−4.3,3.47], [−6.32,6.14], while the τ variations were
[−20.58,19.46], [−40.1,36.2], [−44.21,39.36]. Hence even small uncertainties on
the values of the l,k lead to significant positioning errors for the robot.

We consider now a 4-1 robot with the purpose of using the redundancy to adjust
the wire tension e.g. to minimize the criteria H = ∑ j=4

j=1 τ2
j . Using equation (2) one

can obtain three wire tensions as a linear function of the remaining one. Without lack
of exhaustivity we may calculate τ2,τ3,τ4 as a function of τ1. H is then a quadratic
function in τ1 and it is therefore trivial to determine τ1 that leads to the minimum
of H. For the IK, being given the pose of the load, the τ and equation (1) we may
determine the four lis. To determine the influence on the positioning of the uncer-
tainties on k and on lis we have to solve the FK problem.

In the FK problem the li’s are given and we have to determine the pose of the
load. For that purpose we note that the first equation of (1) allows to determine
τ1 as function of ρ1, while equation (2) is used to determine τ2,τ3,τ4. The three
remaining equations of (1) are then linear in x,y,z. After solving this system we
report the result in the IK equations (3) after subtracting the equation for wire 1 to
the equations for wire 2, 3, 4. Together with (3) for wire 1 these equations constitutes
a system of 4 equations in the unknowns ρ1,ρ2,ρ3,ρ4. One of this equation is linear
in ρ4 and is solved for this variable. The 3 remaining equations, denoted a1,a2,a3,
are of degree (6,6,2), (3,3,3), (9,9,3) in ρ1,ρ2,ρ3. The four equations a1,ρ3a1,a2,a3

are linear in the monomials 1,ρ3,ρ2
3 ,ρ3

3 and hence the determinant of the matrix
of this linear system should be 0, which leads to a polynomial P1 of degree 15 in
ρ1,ρ2. Taking the resultant of a1,a2 in ρ3 leads to a polynomial P2 of degree 18
in ρ1,ρ2. The resultant of P1,P2 factors out in 2 polynomials of degree 76 and
96 in ρ1. Although this complete the theoretical solution, the degree of the involved
polynomial is too high to be used in practice and consequently we have to resort
to a numerical procedure. For that purpose we solve the linear system (2) to get
τ2,τ3,τ4 as function of τ1. Then the first equation of (1) is used to determine τ1 as a
function of ρ1. The three remaining equations of (1) together with the IK equations
(3) constitute a system of 7 equations in the 7 unknowns x,y,z,ρ1,ρ2,ρ3,ρ4. As all
unknowns may easily be bounded we have used an interval analysis approach to
solve this system, all solutions being found in less than one second.

We have considered the 4-1 robot derived from the previous 3-1 by adding a 4th
wire whose exit point on the base is A4 = (400,400,0). We have then used the IK to
determine what should be the li to reach the pose x = 100, y = 200, z =−200 while
minimizing ∑ j=4

j=1 τ2
i for k = 1000. The nominal values were determined as l1 = l2 =

299.558, l3 = l4 = 412.1083 which leads to τ1 = τ2 = 441.45, τ3 = τ4 = 202.238.
Using the FK with these values of the ls leads also to solutions in which only 3
wires are under tension, namely wires (1, 2, 3) or (1, 2, 4), both cases leading to the
same pose of the load with x = 99.6834, y = 200.2192, z =−200.1581. It should be
noted that already elasticity does not allow for precise positioning as we are unable
to determine the final pose of the platform for given control inputs.
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We have then assumed similar errors on the ls and on k than in the previous
example and have computed the FK solutions for 1000 sets of (l,k) chosen ran-
domly. We found out that the variations on x,y,z were in the ranges [−7.532,4.579],
[−6.868,5.75], [−7.6,2.875] for a nominal value of k = 100 and [−5.488,4.7948],
[−4.79,4.262], [−5.1429,4.247] for k = 1000. Over the test set the mean values
of the τi’s for k = 1000 were 467.606, 463.06, 278.35, 256.35 with a variation of
[−192,133.86], [−187.45,138.09], [−274.185,146.07], [−241.75,168.745]. Here
again we observe significant positioning errors and very large change in the ten-
sions. As a conclusion adding elasticity in the wires for managing redundancy will
require a very good wire length control together with a perfect stiffness calibration.

3.2 Using Counterweights

The principle here is to attach known weight(s) on some wire(s), close to the plat-
form in order not to disturb the coiling of the wires. The purpose of the counter-
weight is to change the direction of the tension(s) applied on the platform in order
to possibly control the value of the wire tensions (in this section a wire is under
tension if its τ is negative).

Consider for example a 4-1 robot with a counterweight of mass m4 on wire 4
located at point M at a distance d of C (Figure 2). For a given pose of C we are able
to calculate the values of ρ1,ρ2,ρ3. Wire 4 exerts on the platform a force τ14 that is
directed along MC while it exerts a force τ24 on the counterweight that is directed
along A4M. The mechanical equilibrium of the platform may be written as:

j=3

∑
j=1

τ jAjC/ρ j + τ14MC/d +(0,0,−mg)T = 0 (4)

The mechanical equilibrium of the counterweight may be written as:

− τ14MC/d + τ24A4M/(ρ4 −d)+(0,0,−m1g)T = 0 (5)

A direct consequence of equations (5) is that M must lie in the vertical plane that
includes A4, C. This constraint, together with the equations ||MC||2 = d2, ||MA4||2 =
(ρ4 − d)2, allows one to determine the unique location of M as a function of ρ4.
Substituting the values of the coordinates of M into equations (4, 5) leads to a linear
system of 5 equations in the unknowns τ1,τ2,τ3,τ14,τ24. Hence the wire tensions
may be established as functions of ρ4: their generic form is τi = Pi/W , where Pi is
a polynomial of degree 8 in ρ4 while W is quadratic in this variable. Figure 1 shows
the values of the tension τ1,τ2,τ3 as a function of ρ4 at the pose (25,125,−300)
for a load of 80 kg and a counterweight of 5 kg located at a distance 50 from the
platform together with the values of the tensions for the 3-1 robot with wires 1, 2,
3. It may be seen that even for a relatively low counterweight mass the tensions in
the wire 2, 3 are substantially lower while the tension in wire 1 increases. We may
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Fig. 1 The tensions in the wires of a 4-1 robot at the pose (25,125,−300) for a load of 80 kg and
a counterweight of 5 kg on wire 4 located at a distance of 50 from the platform are shown as a
function of ρ4. The horizontal dashed lines show the value of the tensions in the wires for the 3-1
robot without wire 4.

consider the problem of determining the value of ρ4 that maximizes H = ∑ j=3
j=1 τ j,

all tensions being negative or equal to 0. The derivative of H with respect to ρ4

is a 14th order polynomial in ρ4 and determining its positive roots allows one to
find ρ4 that maximizes H. We have then considered the cases where counterweights
were attached to a single wire at different location or a counterweight was added to
several wires. Extensive numerical tests confirmed that by adding counterweight(s)
tension in some wires may be significantly reduced but at the cost of a large increase
for the other wires and altogether no improvement for H. Note that, as mentioned
by a reviewer, we may study the problem by assuming that the platform is a rigid
line MC having 2R3T motion and this will lead to the same equations and results.

In conclusion adding counterweight is a possibility to deal with specific cases
(e.g. decreasing the tension in one wire so that it can be disconnected) but is not a
solution for overall improvement of the tensions in the wires.

3.3 Attaching Wires to Wires

The idea here is to have some wires that are not connected to C but to fixed location
on other wires. As an example we will consider a 4-1 robot in which the 4th wire
is attached at point M1 on wire 1 so that the distance between M1 and C when wire
1 is under tension is l1 (Figure 2). The unknowns for the IK are the 3 coordinates
of M1 and the 5 tensions τ1 to τ5. First note that the mechanical equilibrium at M1

imposes that M1,A1,A4,C are coplanar and that for given M1,τ1 the tensions τ4,τ5

may be derived from the mechanical equilibrium. Hence we may consider only the
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Fig. 2 A 4-1 robot with a counterweight attached on wire 4 and a 4-1 robot with wire 4 attached
to wire 1. This robot reaches some pose under the influence of gravity.

following 6 unknowns: the coordinates x1,y1,z1 of M1 and the tensions τ1,τ2,τ3. But
for a given M1 the equilibrium condition of the load (2) is a linear system in τ1,τ2,τ3

that may be solved independently. Hence we may focus only on the constraints on
M1 i.e. ||M1C|| = l1 and the coplanarity condition between M1,A1,A4,C. We end
up with a system of 2 equations in 3 unknowns with one linear equation and one
quadratic equation. Consequently we are able to express all tensions τ1 to τ5 as
functions of any single variable in the set x1,y1,z1. As we have a free variable we
may choose it to optimize different criterion such as minimizing the sum H of the
force exerted by the motors or minimizing the maximum Hmin of the wire tensions.
Note that finding the optimal choice for these criterion is easy: although the tensions
are not algebraic expression of the free variable, the derivatives of H, Hmin with
respect to this variable are polynomials of degree 12 in the free variable.

As an example we have considered the pose x = 110, y = 150, z = −200 with
l1 = 100. If only 3 wires were used the criteria H was optimal when using wires 1, 2,
4 with a value of 1268.83 and wire tensions 669.85, 132.83, 466.14, while for Hmin

the best configuration is obtained when using wires 1, 2, 3 with a criteria value of
498.14 and wire tensions 375.116, 498.14, 413.17. We have then considered the 4-1
redundant case, examining all possible wire configurations. Surprisingly although
we have tested numerous poses it appears that H is never improved when using
redundancy, although we have not be able to figure out a theoretical explanation.

On the other hand Hmin has been improved for the test pose with a value of
430.082 with as main wires 1, 2, 4 and wire 3 attached to wire 4. This corresponds to
a gain of 13.66% compared to the non-redundant case. For this pose we have tested
all values of l1 between 10 and 130 with a step increment of 10 without observing
any significant change in Hmin. Finally we have performed 100 test with random
values for the coordinates of C within the ranges [60,340], [60,340], [−300,−50]
and random values for l1 in the range [10,130]. The mean value for the improve-
ment on Hmin was 13.27% with a minimum value of 0 and a maximal value of
37.714087%. Hence attaching wires to other wires seems to be a feasible solution
to manage tension distribution in the wires.
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4 Conclusion

Although apparently redundant an N−1 robot with N ≥ 4 does not allow to manage
tension distribution in the wires if they are not elastic. Tension management using
the elasticity of the wires is quite difficult as the positioning of the platform is very
sensitive to the stiffness of the wires and to wire lengths control. We have then in-
vestigated the use of adding counterweights in the wires, showing that the overall
tension distribution is not improved, although this solution may lead to a decrease in
some tensions. Then we have examined attaching redundant wires to fixed location
on other wires: this simple solution is efficient to decrease the value of the maxi-
mal tension although the sum of the wire tensions is not improved. Management of
redundancy opens numerous kinematics issues that are worth being investigated.
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Dynamics of the Upper Limb with a Detailed
Model for the Shoulder

Jorge Ambrósio, Carlos Quental, João Folgado and Jacinto Monteiro

Abstract The human muscle-skeletal system has a large number of redundant mus-
cles, implying that the same motion may be obtained by different combination of
muscle forces. As a consequence, the modeling of the kinematics of biomechanical
models used for human motion task simulations has important implication on the
distribution of the muscle forces and joint reaction forces. This work compares the
performance and applicability of three biomechanical models, with different levels
of complexity, in face of specific kinematic modeling assumptions for the anatom-
ical joints and muscle geometry. The muscle contraction dynamics is simulated by
the Hill-type muscle model, being the activation of each muscle a unknown in the
redundant force sharing problem. An optimization technique is applied to minimize
of an objective function related with muscle metabolic energy consumption. The
input for the model analysis comprises the data for an abduction motion, kinemat-
ically consistent with the biomechanical models developed, acquired using video
imaging at the Laboratory of Biomechanics of Lisbon.

Key words: Biomechanical model, force sharing, muscle models, optimization

1 Introduction

The upper limb is composed of an open chain mechanism that includes the shoulder,
the elbow and the wrist, as presented in Figure 1. The shoulder includes four skele-
tal segments, the thorax, clavicle, scapula and humerus, connected through three
anatomical articulations: sternoclavicular (SC), acromioclavicular (AC) and gleno-
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Fig. 1 Anatomy of the upper extremity (a) Glenohumeral (shoulder joint); (b) Bones of the upper
extremity [4].

humeral (GH) joints. The scapula is constrained to slide over the thoracic cage. The
coordinated actions in all articulations give the shoulder a large range of motion
being several the mechanisms that provide additional stability to the glenoid fossa,
such as the muscle coordination, elastic ligament tension, labrum deformation, joint
suction, adhesion/cohesion, articular version, proprioception, or negative internal
joint pressure [6]. Depending on the application, models with different complexity
of the upper limb skeletal system can be envisaged. Typical application is crash-
worthiness and ergonomy represent the shoulder joint as a spherical joint between
the humerus and thorax [12]. In clinical applications the detailed anatomy of the
shoulder is represented, being the anatomical joints between the different bony seg-
ments represented by mechanical joints [5]. Also the musculoskeletal system may
be represented including more or less muscles represented by bundles eventually
wrapping around complex obstacles [9].

In this work a simpler model is defined by 4 rigid bodies, thorax, humerus, ulna
and radius, with the, glenohumeral (GH), humeroulnar (HU) and radioulnar (RU) ar-
ticulations, and two other more complex models include 7 rigid bodies, thorax, rib
cage, clavicle, scapula, humerus, ulna and radius, constrained by the sternoclavicu-
lar, acromioclavicular, scapulothoracic, GH, HU and RU articulations. The different
muscular system in each of the biomechanical models, include 15 muscles, for the
simpler model, and 21 muscles, for the most complex model. The objective of the
models is the evaluation of the muscle and joint reaction forces. An optimization
procedure is applied to solve the problem, in the framework of the inverse dynamic
analysis of an experimentally acquired motion [11].
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Fig. 2 (a) geometrical description of the upper limb; (b) model of the upper limb.

2 Biomechanical Model

The skeletal model proposed here is based on data by Garner and Pandy [3] modified
to be in accordance with the standardization of the upper limb data proposed by
the International Society of Biomechanics (ISB) [4].The model includes the thorax,
rib cage, clavicle, scapula, humerus, ulna and radius modeled as rigid bodies, as
depicted by Figure 2.

Model 1 is defined by 4 rigid bodies, thorax, humerus, ulna and radius, con-
strained by 3 anatomical joints, glenohumeral joint (GH), humeroulnar joint (HU)
and radioulnar joint (RU), being the clavicle and scapula stationary rigidly attached
to the thorax. The remaining 2 models are similar as far as the skeletal system is
concerned. They include 7 rigid bodies, thorax, rib cage, clavicle, scapula, humerus,
ulna and radius, and 5 anatomical joints, sternoclavicular (SC), acromioclavicular
(AC) and GH, represented by spherical joints, and HU and RU, represented by hinge
joints. The scapulothoracic articulation is modeled by two holonomic constraints
that ensure the scapula to glide over the rib cage. Cartesian coordinates with Eu-
ler parameters are used by the methods implemented in this work [7]. Being each
body defined by 7 coordinates, Model 1 is described by 28 coordinates and 23 kine-
matic constraints being the two other models are defined by 49 coordinates and 40
kinematic constraints.

Figure 3 illustrates the biomechanical models developed. In Model 1 the clavi-
cle and scapula are considered part of the thorax and, consequently, all the muscles
between them are neglected. The model includes 15 muscles modeled by 24 bun-
dles. The muscle path is defined by via points and uses the obstacle-set method to
describe possible interactions of muscles with bones and soft tissues [2].

The musculoskeletal system of Model 2 includes all the muscles of the upper
limb, i.e., 21 muscles defined by 37 bundles [9]. The musculoskeletal system of
Model 3, characterized by 20 muscles modeled by 127 bundles, is based on the
muscle data set published by the Delft Shoulder Group [5]. Although the muscle
path is not as detailed as in Models 1 and 2, the number of bundles is significantly
higher which may reproduce better muscles with broad origins or insertions. All
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Fig. 3 Musculoskeletal models where black lines represent muscles: (a) Model 1; (b) Model 2;
(c) Model 3.

muscle data, including origins and insertions coordinates as well as musculoskeletal
parameters were scaled to the same anatomical dimensions of the skeletal model,
being the data available in reference [9].

3 Methods

The arm abduction motion, analyzed here, is recorded for 7 seconds using 4
video cameras with sampling rates of 100 Hz while synchronous electromyogra-
phy (EMG) signals of 9 superficial muscles are also acquired at the Laboratory of
Biomechanics of Lisbon (LBL). Inverse dynamics is used in the solution of biome-
chanical problems when the motion is prescribed and only the forces responsible
for such motion are unknown. The acquired kinematic data, positions in this case, is
filtered and its kinematic consistency with the biomechanical models used is en-
sured [10]. The velocity and acceleration constraint equations, associated to the
biomechanical models, are used afterwards to obtain the velocities q̇ and acceler-
ations q̈ of the anatomical segments.

The equations of motion of the biomechanical multibody system are given by

Mq̈ + �T
q λ = g (1)

where the masses, inertias and geometric characteristics are presented in reference
[9]. Knowing the kinematics of the model and the external forces the problem can be
solved for the unknown Lagrange multipliers λ, associated to the joint reaction and
muscle forces, i.e., can be solved using an inverse dynamics procedure. The major
difference in the biomechanical model relatively to common mechanical models of
other disciplines resides on the representation of the muscle forces.

The muscle contraction dynamics is represented using the Hill type muscle model
that includes an active contractile element (CE) and a passive element (PE). The
muscle force results from the contribution of both passive and active elements
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The passive element represents the non-controllable part of the muscle that only
depends on the muscle length Lm(t), if the muscle is stretched beyond its resting
length. The contractile element depends upon the maximum isometric force of the
muscle Fm

0 , muscle length Lm(t), muscle contractile velocity L̇m(t) and activation
am(t). Functions Fm

L (t) and Fm

L̇
(t) describe the relationship force-length and force-

velocity, respectively, and depend only in the kinematics of the anatomical segments
and muscle physiology. The only unknown in the muscle force is the activation
am(t), which together with the joint reactions are part of vector λ in Equation (1).

Mathematically, the optimization problem associated to the solution of all mus-
cle forces and joint reactions for all time frames, in which the kinematic data is
acquired, is formulated as
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(3)

where the objective function represents the metabolic energy expenditure, V i is the
volume, F i

CE the contractile element force, PCSAi the cross-sectional area and
ai the activation for muscle i, in a total of m muscles. Variables c1, c2 and c3
are weighting factors defined according to [8]. The constraints of the optimization
problem are the constraint equations, which must be fulfilled every time frame, the
bounds of the muscle activations, which must be null or positive and the stability
of the GH and ST joints that must be subjected to compressive forces all time. Re-
garding the GH joint stability constraint, FGH

s,i is the of the shear reaction force in

the ith glenoid direction and FGH
c the compressive reaction force at the GH joint; Si

represents the directional force ratio thresholds. In the ST joint stability constraint,
FST stands for the ST reaction force and nST

c for the unitary vector that defines the
direction of compression between the scapula and thorax.

The size of the optimization problem is proportional to the complexity of the
biomechanical model. For each time frame: Model 1 is defined by 43 design vari-
ables (joint reaction and muscle forces), 24 equality constraints and 24 boundary
constraints; Model 2 is defined by 70 design variables and 42 equality, 6 inequality
and 37 boundary constraints; and Model 3 is defined by 161 design variables and
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Fig. 4 Selected muscle forces predicted by the biomechanical models; (a) Model 1 (b) Model 2
(c) Model 3.

42 equality, 6 inequality and 128 boundary constraints. The optimization problem
is suitably solved using the Sequential Quadratic Programming method.

4 Results

The application of the methods outlined in this work to the abduction motion ac-
quired at the LBL lead to the estimation of the muscle forces for the complete mus-
culoskeletal system of the upper limb. Forces for selected muscles are depicted in
Figure 4 for the 3 models studied being the dashed line the contractile element con-
tribution and the solid line the sum of the contractile and passive elements of the Hill
muscle force model. Notice that the Trapezius Scapular and the Deltoid Clavicular
are not present on Model 1 and, consequently, are not shown in Figure 4, for that
model.
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Fig. 5 Glenohumeral joint reaction force for the 3 biomechanical models.

Model 1 can only be applied for a range of the arm elevation between 13° and
46°, when the scapula does not contribute much to the shoulder motion, based
on the translation of the GH joint. Despite its simplicity, the results highlight the
supraspinatus muscle as the most active muscle. This muscle is responsible for
starting the abduction motion and its activity is most important in the first 30° so
the model, even being so simple, agrees with the literature [1]. After about 35° of
arm amplitude, the teres minor and infraspinatus muscles start to produce a large
amount of passive force which may mean that this model is not applicable in the
full range of motion considered. Although Model 2 has a lower number of muscles
bundles than Model 3, which is clearly a disadvantage, it has the advantage of in-
cluding more via points and obstacles to define each muscle path and thus be more
accurate representing muscles moment arms. In this motion, the results yielded by
both models are very similar.

The GH joint reaction force is presented for the 3 models in Figure 5. Compar-
ing Models 1 and 2 until 35° of arm amplitude shows very similar reaction forces.
This result supports that a simpler model can indeed be applicable depending on the
range of motion. The reaction forces from Models 2 and 3 are slightly shifted by
50–100 N but the pattern is similar. Both models are in close agreement with the re-
sults obtained by the Delft Shoulder group using the same optimization criterion [1].
The shift in the forces is due to the different moment arms considered in Models 2
and 3, which result from the application of the obstacle-set method.

5 Conclusions

Three biomechanical models of the upper limb, with different levels of complexity
for both skeletal and musculoskeletal representation, are presented. Model 1 is ap-
plicable for a shorter range of motion of the Glenohumeral joint than Models 2 and
3. Model 2 defines the muscle path more accurately while Model 3 has a consider-
ably higher number of muscle bundles that may simulate better the muscle function.
For the type of motion considered both Models 2 and 3 perform well. However, in
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more complex motions the number of muscles used in Model 2 may present diffi-
culties in the search for a feasible solution of the redundant force sharing problem.
Also the mechanical definition of the anatomical joints has large implications on the
results of the muscle force sharing problem. It is foreseen that the use of anatom-
ically correct joints, modeled as contact joints, instead of the simple spherical and
hinge mechanical joints used leads to a different muscle force distribution.
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Inverse Kinematics for the Control of
Hyper-Redundant Binary Mechanisms with
Application to Solar Concentrator Mirrors

Amy M. Bilton and Steven Dubowsky

Abstract Solar thermal systems require precision mirror concentrators. Their shape
is expensive to manufacture and difficult to control. Here, a concept is proposed to
control the shape of a solar concentrator using parallel binary actuators embedded
in a mirror’s structure. The actuators can only move a set distance between two
bi-stable positions. Since the actuators have fixed displacements and the kinematic
parameters of the hyper-redundant mechanism are not well known, determining the
actuator inputs to correct a mirror shape error is a challenge. In this paper, a lin-
earized kinematic model is developed that can be used for control. System models
and laboratory experiments demonstrate the effectiveness of the approach.

Key words: Parallel binary kinematics, elastic averaging, solar concentrator

1 Introduction

Precision parabolic solar concentrator mirrors are an important component of many
solar systems, see Figure 1. Shape errors from manufacturing, thermal warping and
other effects can degrade their performance [2, 7]. It has been suggested that embed-
ding bi-stable (binary) actuators in mirror structures could reduce solar concentrator
manufacturing costs and improve system performance [5].

Using continuous actuators to correct mirror shape has been studied for tele-
scopes such as the James Webb Space Telescope [3, 4]. In the Webb, complex and
costly continuous actuators control the position and shape of mirror segments. Solar
mirrors do not require high precision shape control and only the rigid body positions
of segments need to be controlled. Here, this control is done with bi-stable actuators.

The precision of a binary system is determined by the number of actuators. As
it increases, the precision approaches that of a continuous system. Generally, many
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Fig. 1 Faceted parabolic mirror system developed by SES and the US Department of Energy [7].

Fig. 2 Examples of a planar, segmented-mirror, parallel structures.

binary actuators are required and parameters of kinematic system are uncertain,
making the system design and control challenging. Studies have shown the feasibil-
ity of binary solar mirrors, but control methods still need to be developed to operate
them to correct manufacturing and other shape errors [5].

The earliest research on bi-stable actuator mechanism kinematics considered se-
rial robotic chains actuated by solenoids, pistons and shape memory alloys [1, 6, 11].
More recently, studies demonstrated the potential of low-cost and simple bi-stable
actuators using dielectric elastomer actuators (DEAs) [8, 9]. These actuators are
highly efficient, as they only require power to change their current state. In addition,
these actuators respond quickly, changing their output state in seconds.

A segmented mirror naturally has a parallel kinematic structure. Figure 2 shows
simple examples with rigid mirror segments. Past examples of parallel binary de-
vices include BRAID [11], and an MRI compatible manipulator [10]. The MRI con-
cept improved its precision by using many more actuators than degrees-of-freedom
and compliance to mediate the redundant actuation by elastic averaging [9]. Pre-
vious work on binary-actuated mirrors developed detailed system models without
consideration of control requirements [5]. Control methods for parallel binary sys-
tems have been developed that rely on detailed system models [10]. The objective
of this work is to develop methods to control binary structures without the need for
detailed system models.

The workspace of binary mechanisms consists of a finite set of points and the
inverse kinematics problem requires searching all possible discrete mechanism po-
sitions for the output closest to the desired shape [6, 11]. This paper presents a
method to find the binary actuator input that best compensates for a mirror shape
error. This method uses a linearized kinematic model with parameters determined
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Fig. 3 Control system block diagram.

using system identification. The controller uses inverse kinematics to determine the
actuator input for the mirror shape correction.

2 Analytical Development

Bi-stable actuators have fixed displacements and no actuator sensing is required.
However, measurements of the mirror’s shape are necessary for control. For manu-
facturing errors, such as accumulations of tolerances, this may be done off-line us-
ing laser industrial optical metrology. For real-time disturbances, such as to thermal
distortions, indirect measurement may be required, such as monitoring the power
collected. Figure 3 shows the control block diagram.

The problem is to find the binary-actuator commands required to correct an er-
ror in the mirror’s shape. The challenge is the kinematic parameters of the binary-
actuated parallel mechanisms are not well known. Since the workspace of a binary
system consists of a set of 2N (N is the number of actuators) points, the control
problem reduces to determining the binary input that places the system closest to
the desired position. Since the mechanism and actuators are not ideal, the param-
eters of the device also need to be identified. The approach developed exploits the
fact that position errors are small and the system’s behavior is nearly linear.

The representative examples, shown in Figure 2, have 6 and 17 embedded binary
actuators. The mirror structure has three-segments where the mirrors are joined by
flexible members. The supporting structure contains embedded actuators connected
to the segments by pin joints. Table 1 gives the mirror properties.

To evaluate the performance of a solar thermal collector, a metric based the
amount of light energy captured by the system’s thermal receiver is formulated.
In solar thermal systems, the receiver should ideally be as small as possible. Here,
the receiver is assumed to lie in a plane and the mirror’s control system should be

Table 1 Structural parameters of rigid panel model.

Parameter Value Parameter Value
Structure Length 9.48 m Binary Actuator Stroke Length (δ ) 50 mm
Mirror Connector Stiffness (EI) 590 Nm2 Elastic Element Stiffness (k) 1000–3000 N/m
Number of Binary Actuators (n) 6 and 17 Focal Plane Distance (Lp) 18.53 m
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Fig. 4 Focal plane workspace for rigid-panel structures.

able to move each segment so that all of the sunlight is reflected on the smallest
possible receiver. In other words, the mirror should be able to shift the location of
segment’s common focus and keep the defocus as small as possible. For example,
for the mirrors shown in Figure 2, a receiver size (maximum defocus) of 20 cm and
focal correction of 2 m are reasonable for solar collector applications.

The focal position and defocus can be evaluated by simple ray tracing. The posi-
tion of the common focus is defined as the average position of the reflected rays for
a given actuator input:

fc(d) =
DA(d)+DB(d)+DC(d)

3
(1)

where DA(d), DB(d) and DC(d) are the positions of the reflected rays in the focal
plane for panels A, B, and C respectively. The defocus is defined as the maximum
distance between two reflected rays:

Fd(d) = max(DA(d),DB(d),DC(d))−min(DA(d),DB(d),DC(d)) (2)

The control system is intended to correct for manufacturing errors or slowly
changing effects, such as thermal changes. Therefore, static or kinematic models
are sufficient. These models can be developed analytically. However, real systems
are complex, with dozens of actuators making closed-form analysis burdensome.
For the simple example shown in Figure 2a, a system of 28 simultaneous equations
must be solved. Hence, computer-based methods are more appropriate and ADINA
Finite Element Analysis (FEA) is used. It will be shown below that linear models
can be developed for control using the small displacement assumption.

ADINA was used to calculate the motions of reflected rays in the focal plane
workspace. The analysis results for the 6-actuator mirror are shown in Figure 4a.
It has been previously shown that a binary systems workspace can be more evenly
distributed if the compliant elements are not symmetric [9]. Here, the stiffness of
the elements is uniformly distributed between 1000 and 3000 N/m. Figure 4a shows
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that ability to shift the system focal point (the horizontal axis is limited to virtually
five values). In addition, for most of these solutions, the system defocus exceeds the
assumed limit of 20 cm, hence the light from the segments would miss the assumed
receiver. Clearly, this 6-actuator design is ineffective.

Figure 4b shows the focal plane workspace of 17-actuator mirror with random
compliant members. This workspace is more evenly distributed than the 6-actuator
mirror. The 17-actuator mirror is able to correct for an almost continuous range of
mirror distortions (2 m) with defocuses within the specification (20 cm).

The system control must determine how to switch the actuators to provide the re-
quired focal position and maintain an acceptable defocus range. This requires solv-
ing the forward kinematics problem with unknown mechanism parameters.

3 Mirror Control System

As shown in Figure 3, to control a binary mirror system, the forward kinematics
must be computed. Analytical and FEA models of a spatial system with many actu-
ators and embedded compliance are complex and depend on knowledge of system
parameters. In addition, FEA models are too computationally intensive for online
system control. Fortunately, solar mirrors should require only small corrections and
the system is approximately linear for this range of movement [5]. In this case, lin-
ear approximation of the mirror displacements (ŷ) can be written as ŷ = Ad where
A is a matrix representing the linear system kinematics, and d is a vector of zeros
and ones indicating which actuators are extended.

Different methods can be used to identify the coefficients of A. For example,
A can be determined using system measurements when each actuator is individu-
ally deployed. For example, when actuator k is deployed, the kth column of A is
determined directly as follows:

[a1,k, . . .am,k]
T = [y1, . . . ,ym]

T . (3)

In many cases, it is more practical to determine A experimentally. Here, two
methods are compared. In the first, the coefficients are directly measured, as shown
in Equation (3). In the second, multiple actuators are deployed simultaneously and
optimization methods are used to find A to minimize the mean error:

ε =
1
p

p

∑
i=1

√
(ŷi −yi)T (ŷi −yi) =

1
p

p

∑
i=1

√
(Adi −yi)T (Adi −yi) (4)

where p is the number of calibration points, yi is the ith vector of measured values,
and di is the input vector for the ith measurement. Once the model is obtained, it
is used to determine which actuator inputs minimize the distance to the desired
system position. Methods to accomplish this include search routines such as genetic
algorithms, which have been used in the area of binary robotics [6].
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Fig. 5 Three-dimensional experimental setup.

Fig. 6 Experimental system workspace.

4 Experimental Validation

The experimental system, shown in Figure 5, has 19 rigid hexagonal mirror seg-
ments mounted on a compliant plate. The plate is supported by 13 vertical binary
actuators with rubber mounts that provide compliance. It is also supported by 30
vertical passive compliant struts. The binary actuators are assembled using micro-
linear actuators manufactured by Firgelli Technologies.

The spatial rotation the center mirror is used as the system output. The rotations
are measured using a laser beam which reflected off the center mirror onto a focal
plane which is observed by a CCD camera. The camera data is transformed to yield
the mirror’s rotations.

The workspace of the center mirror segment with uniform elastic element stiff-
nesses is shown in Figure 6a. The mirror segment has 8192 (213) possible positions.
Since the structure is symmetric, these positions are clustered and there are large un-
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Fig. 7 Model results for 10 random points.

reachable areas. Breaking the symmetry by modifying the stiffnesses of the elastic
elements will spread the system workspace, as shown in Figure 6b.

The experimental system is modeled using three methods: a FEA model and two
linear models. The results of the FEA were compared to the experimental measure-
ments. There was reasonably good agreement for the deflection magnitudes, but the
FEA model had errors in individual measurements in excess of 1 degree. To improve
the FEA accuracy, compliance of every element would need to be measured, which
would be extremely cumbersome.

Two different linear models were developed. In the first, the coefficients of A
were determined through direct measurement when the actuators were deployed
individually, see Equation (3). In the second, the measurements were made for 52
randomly selected actuator combinations and A was determined using optimization
methods, Equation (4). The results of these linear models are shown in Figure 7.
The model outputs and measurements corresponding to the same actuator input are
circled. The optimization approach resulted in more accurate results with an average
error of less than 0.1 degrees. These small errors show the model is appropriate for
system control.

5 Summary and Conclusions

A binary-actuation approach to correct shape deformations of solar concentrators
due to manufacturing errors and thermal effects is presented. In this approach, bi-
nary actuators are embedded in a compliant mirror substructure and deployed in a
specified pattern to correct the mirror shape. Analytical models and experimental
studies demonstrate key features of binary-actuated solar concentrators, particularly
their discrete workspaces. It is also shown that their workspaces can be more evenly
distributed by varying elastic element stiffness to break the structure symmetry. A
control approach for binary actuated mirror systems based on forward kinematics is
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also presented. This approach first uses system identification techniques to calibrate
a linear model that can then be used to determine the binary inputs required to reach
desired system positions. Experimental studies show the linear kinematic model has
small errors and is appropriate for control.
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Mobile Robot Motion Primitives That Take into
Account the Cost of Control

Sohee Lee and Frank Chongwoo Park

Abstract We propose a motion generation framework for nonholonomic wheeled
mobile robots that takes into account the cost of control. Control implementation
costs are formulated in terms of the minimum attention functional of [1]. Assuming
a control law consisting of a general open-loop term added to a time-varying linear
feedback term, we derive a set of minimum attention motion primitives for wheeled
mobile robots of the Dubins type, and show how to utilize the primitives to generate
minimum attention motions in real-time.

Key words: Minimum attention, motion primitives, wheeled mobile robot

1 Introduction

As the capabilities of mobile robots expand, the tasks being placed on the onboard
computer of a mobile robot are becoming increasingly complex and computation-
ally demanding. In particular, because real-time sensor data processing and object
recognition are highly computation-intensive processes, one must take into account
the cost of control implementation – loosely, the amount of “attention” required,
which we make more precise below – when planning and controlling motions. Also,
because motions need to be planned and generated in real-time, it is important to ex-
ploit as much as possible a basis of stored motions, or motion primitives, that can
be combined in real-time to generate a rich class of motions.

In this paper we propose and derive a class of motion primitives for wheeled
platforms (e.g., the moving base of typical mobile manipulators) that explicitly take
into account the cost of control implementation. Control implementation costs are
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quantified in terms of the minimum attention functional of Brockett [1]. The basic
premise behind the minimum attention functional is that the easiest control law to
implement is a constant input; the more frequently the control changes, the more
effort is required to implement it. Control laws typically depend on the state and
time, so that the cost of implementation can be linked with the rate at which the
control changes with respect to changes in both state and time (“attention”).

To make things more precise, given a system with state equation ẋ = f (x,u, t),
where x and u are respectively the state and control vectors, and t denotes time, the
attention functional is then formulated as

∫ t f

0

∫
ℜn

α
∥∥∥∥∂u

∂x

∥∥∥∥
2

+(1−α)

∥∥∥∥∂u
∂ t

∥∥∥∥
2

dx dt. (1)

Here, the first term reflects the dependence of the control on feedback, while the
second term reflects the variation in the open-loop control term. It is interesting to
point out the following connection between the weighting term α ∈ [0,1] and the
human motor learning process: first attempts at a new motion rely almost entirely
on feedback (α = 1), but through practice (i.e., gradually decreasing α to zero) the
motion eventually becomes an open-loop, refined motion.

While the attention functional is intuitively appealing, solutions are very difficult
to come by – even the existence of solutions is not guaranteed in the general case
– primarily because the integral is over both the state x and time t. In [1] analytic
solutions are obtained for only the most basic second-order scalar system ẍ = u
(and the solutions are far from straightforward). In subsequent work [2] it is shown
that for linear systems, splitting of the control into a feedback term and an open-
loop term leads to an algorithmic solution, but for more general nonlinear systems
analytic characterizations appear to be difficult.

In this paper we consider a planar wheeled differential drive robot of the Dubins
type and, assuming additive separability of the control term into a general feed-
forward and linear time-varying feedback term, we computationally derive a set of
motion primitives – essentially, trajectories that minimize the attention functional
for a representative set of boundary conditions – for a general class of boundary
conditions. Our choice of control law is justified by observing that in most practical
situations, it is necessary to restrict the set of possible feedback laws because of
limitations on the gain or a desire for stability.

Moreover, for nonholonomic wheeled mobile robots it is well known that smooth
stabilizing feedback laws do not exist, but that time-varying point-to-point stabiliz-
ing feedback laws can be constructed [3]. For our purposes we therefore adopt a
control law consisting of a general open-loop term, and add to this a time-varying
feedback term as proposed in [3]. While the focus of this work is not necessarily
on stabilization, from both a physical and practical implementation perspective the
additive feedforward-feedback control law structure is reasonable.

Finding, among this class of admissible controls, suboptimal solutions to the
minimum attention functional can constitute a useful set of motion primitives. For
example, control signal communications can be scheduled in such a way that less
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“attention” is given to updating the control, and more processing resources can be
assigned to other tasks. Our overall motivation for determining the minimum at-
tention primitives is in fact similar to that for the minimum-time motion primitives
found in [4].

Before proceeding to our main results, we mention existing work on the related
notion of limited communication control [5]; here the goal is to find an input control
sequence to minimize the tracking error of the control system given a communica-
tion sequence. Whereas in minimum attention control the cost of control is defined
as the objective criterion to be minimized, in the limited communication control
framework this criterion is expressed in the form of a constraint.

2 Minimum Attention Motions for a Wheeled Mobile Platform

We consider a single-wheeled unicycle of the Dubins type (see Figure 2 (a)) for our
differential drive mobile platform. The kinematic state equations are of the follow-
ing form:

q̇ =

⎛
⎝ ẋ

ẏ
θ̇

⎞
⎠=

⎛
⎝ r cosθ 0

r sinθ 0
0 1

⎞
⎠
(

v
ω

)
= S(q)u, (2)

where q represents the configuration of the unicycle, (x,y) denotes the Cartesian po-
sition of the reference frame attached to the mobile robot with respect to the global
frame, θ denotes its orientation relative to the global frame, v is the velocity in the
forward direction, and ω is the angular velocity with respect to the axis normal to the
x-y plane. The minimum attention functional for our system assumes the following
form:

min
u(q,t)

∫ t f

0

∫
ℜ3

α
∥∥∥∥∂u

∂q

∥∥∥∥
2

+(1−α)

∥∥∥∥∂u
∂ t

∥∥∥∥
2

dq dt (3)

subject to ⎧⎨
⎩

q̇ = S(q)u
u− ≤ u ≤ u−

q(0),q(t f ), q̇(0), q̇(t f ) given,
(4)

where u− and u− are lower and upper bounds on the control u, respectively.
To make the problem tractable, we assume that the control input, u, can be split

into a closed-loop linear feedback term and an open-loop feedforward term. As
noted earlier, this assumption on the form of the control is justifiable by observing
that in most practical situations, it is necessary to restrict the set of possible feed-
back laws because of limitations on the gain or a desire for stability, and an additive
feedforward-feedback control law makes sense from a practical implementation per-
spective.

We also restrict the feedback term to an admissible class of feedback controls
that guarantee globally asymptotical stability of the system. As is well known, for



432 S. Lee and F.C. Park

nonholonomic systems there does not exist any smooth stabilizing feedback law, but
various discontinuous or time-varying feedback controllers for point-to-point stabi-
lization have been developed. For our purposes we consider a smooth time-varying
feedback control term of the form proposed in [3]. To work with this feedback con-
trol law, we need to change the coordinates with respect to the body frame; we refer
the reader to [3] for details of the coordinate transformation. The underlying state
equation can be rewritten as

q̇b =

⎛
⎝ ẋb

ẏb

θ̇

⎞
⎠=

⎛
⎝ 0 ω 0

−ω 0 0
0 0 0

⎞
⎠
⎛
⎝ xb

yb

θ

⎞
⎠+

⎛
⎝ 1 0

0 0
0 1

⎞
⎠
(

v
ω

)
= f (qb,u, t). (5)

With this model, the feedback control for stabilization to a desired configuration
(without loss of generality, we may set qb(t f ) = (0,0,0)) is of the form

(
v
ω

)
=−

(
k1 0 0
0 sin t k3

)
qb = K(t)qb, (6)

where k1,k3 > 0. Therefore, the control becomes u(qb, t) = u0(t)+K(t)qb and the
feedback term is related not only to the state but also to time.

The complete formulation of the minimum attention control problem for the non-
holonomic mobile platform can be expressed as follows (here we replace q by the
body coordinates qb):

min
u0,k1,k3

∫ t f

0
α ‖K(t)‖2 +(1−α)‖u̇−K(t)q̇b‖2 dt (7)

subject to ⎧⎪⎪⎨
⎪⎪⎩

q̇b = f (qb,u, t)
u = uo(t)+K(t)qb

u− ≤ u ≤ u−,k1,k3 > 0
qb(0),qb(t f ), q̇b(0), q̇b(t f ) given.

(8)

To convert the above into a finite-dimensional optimization problem, the control
term u(t) is parametrized with a relatively small set of control variables P. Here,
we use B-spline curves depending on the choice of basis functions Bi(t) and the
control points P = {p1, . . . , pm}, where pi ∈ ℜn and n is equal to the dimension of
the control. The trajectories then assume the form u = u(t,P) = ∑m

i=1 Bi(t)pi.
By parameterizing u(t) in terms of B-splines and solving the state equations (5)

using u(t,P) and with the initial conditions qb(0), we can derive the state and veloc-
ity trajectories. For the objective function, the derivative of the control trajectories
can be derived straightforwardly from the B-spline basis functions. Then, the origi-
nal optimal control problem reduces to a parameter optimization problem, in which
the optimization variables are the control points.

Figure 1 (a) illustrates some sample minimum attention trajectories generated
using our optimization procedure, for different start and goal configuration pairs.
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Fig. 1 For various start and goal configurations pairs, (a) some sample minimum attention trajecto-
ries and optimal trajectories of (b) minimum time motion primitives (θ = π

4 ) [4] and (c) minimum
torque motion primitives [6].

3 Motion Primitives for Mobile Robots

The first work to examine motion primitives for wheeled mobile robots is that of
Balkcom and Mason [4], who find the minimum time trajectories between any two
configurations in the plane. The optimal control problem is to minimize the integral
functional

min
t f ,u

∫ t f

0
1 dt subject to q̇ = S(q)u, u ∈ U , (9)

where U denotes the set of admissible controls, and q(0), q(t f ), q̇(0), q̇(t f ) are
given. The above optimal control problem is solved analytically, and it is proved
that every nontrivial time-optimal trajectory is a finite sequence of linear paths and
rotations about the robot center. Experiments are conducted for a planar differential
drive nonholonomic wheeled robot of the Dubins type, in which the mobile robot
starts from an arbitrary configuration (x,y,θ) and moves to the (0,0,0) configura-
tion; the configuration space is partitioned by optimal trajectories that consist of
nine different symmetry classes. These are illustrated in Figure 1 (b).

Kim et al. [6] also propose a robot motion generation framework in which the
training motion data consisting of minimum torque motions is constructed and clus-
tered. Here the optimal control problem is to find the optimal torque profile for the
following objective function:

max
t f

∥∥∥∥argmin
τ

∫ t f

0
‖τ(t)‖2 dt

∥∥∥∥
∞

subject to τ(t) = M(q)q̈+C(q)q̇+G(q), (10)

where kinematic and torque limits and boundary conditions are given.
Using methods for dimension reduction, fast, torque-efficient motions for a non-

holonomic mobile robot were obtained. The configuration space is divided into six
regions even when the dynamics are taken into account.The average trajectories of
each class are represented in Figure 1 (c).

Our aim is to develop a similar set of motion primitives for nonholonomic
wheeled robots, but for the minimum attention functional. In our experiments, we



434 S. Lee and F.C. Park

Fig. 2 The illustration of (a) a unicycle robot; (b) constructing the training motion data; (c) the
result of partitioning the configuration space.

Fig. 3 The (averaged) minimum attention trajectories for each class.

assume that the robot starts at arbitrary points on the positive quadrant of an unit cir-
cle, with a user-specified initial heading angle, and moves to the origin with θ = 0
as shown in Figure 2 (b). The position angle, φ , ranges from 0 to π

2 and the rotation
angle, θ , ranges from zero to 2π . The test configurations are uniformly distributed
in that region. For each initial configuration, the minimum attention path used as
the training data for PCA is computed for (7). The paths with similar starting poses
and similar trajectory shapes are grouped and classified so that five classes are de-
termined as Figure 2 (c). The average trajectories are displayed as in Figure 3.

4 Real-Time Motion Generation Using Primitives

In this section we describe the general procedure for fast generation of minimum at-
tention motions using the previously derived motion primitives. Elements of this ap-
proach were previously proposed in [6] and illustrated through the case of a wheeled
mobile robot, and for space reasons we defer the technical details of this approach
to [6]. Here, we describe how to generate training motion data for the minimum
attention criterion, and based on results of numerical studies, discuss some practical
aspects of the minimum attention principle as a paradigm for motion generation.
The key steps are illustrated in the block diagram in [6].

By solving the optimization problem (7), the optimal trajectories used as training
motion data can be obtained for user-defined initial and final poses. One difference
with previous works is that it is the set of control input trajectories u(t) that consti-
tute the training motion data. Once a sufficiently large set of training motion data
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Fig. 4 (a) The training data profile and mean velocity; (b) Three dominant principal components;
(c) The worst case: the optimal motion (left) and near optimal motion by PCA of class 3 (right)

is secured, these trajectories are grouped into several clusters: trajectories within a
cluster will share several essential features, e.g., similar starting and ending poses,
and similar trajectory shapes.

Assuming the training motion data is appropriately clustered, the next step is
to derive a set of basis functions, or motion primitives, for each cluster that are
representative of the trajectories contained. We achieve this via principal compo-
nent analysis (PCA) of the trajectories in each cluster. A finite number of the most
dominant principal components are then used as basis functions for generating the
suboptimal motions.

Once the motion primitives are constructed, these can be linearly combined to
form the control trajectories for the corresponding cluster and given initial con-
figuration. Here, control trajectories can be interpolated with the three dominant
principal components, e.g., the velocity in the forward direction v(t) = vmean(t)+
x1 · pc1(t)+ x2 · pc2(t)+ x3 · pc3(t)+ x4. The detailed formulation and notation are
described in [6].

Figure 4 shows the principal components extracted from the training data of class
3 and the resultant minimum attention motion. For this case, the optimal value is
increased only by 23% even for the worst case shown in Figure 4(c).

5 Discussion

As expected, the control profiles corresponding to minimum attention trajectories
tend to be flat compared to, e.g. control profiles that minimize torque, energy, or
wheel rotation (see Figure 5), while at the same time having smooth state trajecto-
ries.

This flatness of the control profile is closely related with an important applica-
tion of the derived minimum attention motion primitives, communication schedul-
ing. Once the motion is obtained, depending on the shape of the control trajectory,
we can schedule updates to the control signal, thereby facilitating the use of lim-
ited computational resources and enabling mobile manipulators to perform multiple
tasks as shown in Figure 5.
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Fig. 5 The scheduling of communication of control in (a) the minimum attention, (b) minimum
wheel rotation (

∫ 1
2 |v+w|+ |v−w|dt), (c) the minimum energy (

∫ 1
2 uT udt), and (d) the minimum

torque (10) motion.

6 Conclusion

In this paper, we have proposed a means of efficiently generating motions for non-
holonomic wheeled mobile robots that explicitly takes into account the cost of con-
trol implementation. Control implementation costs are quantified in terms of the
minimum attention functional [1], whose basic premise is that the easiest control
law to implement is a constant input; the more frequently the control changes with
respect to time and state, the more effort is required to implement it. Assuming
additive separability of the control term into a general feedforward and linear time-
varying feedback term, we first computationally derive a set of minimum attention
motion primitives. A method for real-time motion generation based on linear com-
binations of these movement primitives is then described and application of the
derived minimum attention motion primitives is discussed.
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Synthesis of Spatial CC Dyads and 4C
Mechanisms for Pick & Place Tasks with
Guiding Locations

P. Larochelle

Abstract A novel dimensional synthesis technique for solving the mixed exact and
approximate motion synthesis problem for spatial CC kinematic chains is presented.
The methodology uses an analytic representation of the spatial CC dyad’s rigid body
constraint equation in combination with an algebraic geometry formulation of the
perpendicular screw bisector to yield designs that exactly reach the prescribed pick
& place locations while approximating an arbitrary number of guiding locations.
The result is a dimensional synthesis technique for mixed exact and approximate
motion generation that utilizes only algebraic geometry and does not require the use
of any iterative optimization algorithms or a metric on spatial displacements. An
example that demonstrates the synthesis technique is included.

Key words: Spatial mechanisms, 4C mechanisms, CC dyads

1 Introduction

As a product is assembled in an automated factory a common task that needs to be
performed is the movement of parts or subassemblies from one location to another;
this is commonly referred to as a pick & place task. For the assembly of a com-
plex product the number of pick & place tasks that need to be performed could run
into the thousands. Parts are picked out of bins and placed into subassemblies, sub-
assemblies are picked up and placed into the final product, etc. One solution is to use
devices with a high number of degrees of freedom such as industrial robots. Robots
can perform these tasks but at penalties in costs, cycle time, and maintenance. A sec-
ond solution is to use a cascading series of simple one degree of freedom devices;
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J. Lenarčič, M. Husty (eds.), Latest Advances in Robot Kinematics,
DOI 10.1007/978-94-007-4620-6 55,
© Springer Science+Business Media Dordrecht 2012

437

mailto:pierrel@fit.edu
http://dx.doi.org/10.1007/978-94-007-4620-6_55


438 P. Larochelle

e.g. a series of servo motors. Creating such a manipulation pipelines takes a longer
design time and is often more art than science.

Spatial robotic mechanisms offer another alternative. The synthesis algorithm
presented here is part of ongoing efforts directed at realizing the capability to design
two degree of freedom robotic spatial mechanisms capable of performing spatial
pick & place tasks. These low degree of freedom devices are capable of producing
the necessary spatial motion for accomplishing pick & place tasks. Hence, spatial
robotic mechanisms provide an alternative for solving spatial assembly tasks that
might otherwise require a robot or multiple single degree of freedom devices.

A well known result from screw theory [1, 9] is that moving an object from one
spatial location to another does not require six degrees of freedom. In fact, such
motions can be accomplished with a single degree of freedom twist about a unique
screw axis. However this solution is often impractical due to the location of the
screw axis within the workspace and the collisions and interferences between ob-
jects that may result. Spatial robotic mechanisms are low degree of freedom ma-
chines that are a compromise between the 6 or more degree of freedom industrial
robot and the series of single degree of freedom motion generators. Here, we focus
on utilizing the spatial CC dyad as the motion generator for a class of spatial robotic
mechanisms to achieve two desired locations exactly (i.e. pick & place) while ap-
proximating a set of guiding locations that take the workpiece from the pick location
to the place location.

In a related work [12] presents the derivation of the constraint manifold for spher-
ical RR dyads using the image space representation of displacements. This work
was an extension of the ideas presented in [13]. In [11] the spatial generalization of
the planar Burmester curves was presented from a geometric viewpoint. The focus
of this work was the synthesis of CC and related dyads for exact motion genera-
tion through three and four locations. The synthesis of CC dyads for exact motion
through 5 locations was presented in [9, 10]. In [3, 5, 6] the extension of Burmester
theory, using Roth’s line congruence approach [13], for the exact synthesis of 4C
mechanisms for 4 locations is presented. The approximate motion synthesis of spa-
tial 4C mechanisms for rigid body guidance was presented in [7]. Circuit and branch
defects of the spatial 4C mechanism were investigated in [4] and the detection of
self-collisions of the links was discussed in [2]. The methodology used here for
performing the dimensional synthesis for mixed exact and approximate rigid body
guidance is based upon the works of [14] and builds upon the spherical version
presented in [8].

This paper proceeds as follows. First, the geometry and kinematics of the spatial
CC dyad are reviewed. Next, the synthesis algorithm for solving the mixed exact and
approximate motion generation problem for spatial CC dyads is presented. Finally,
an example spatial robotic mechanism design is presented; the synthesis of a spatial
4C mechanism to accomplish a pick & place tasks exactly while approximating
three guiding locations.



Synthesis of Spatial Robotic Mechanisms for Pick & Place Tasks 439

2 Synthesis Algorithm

A spatial 4C closed chain may be viewed as the combination of two CC dyads where
each dyad consists of one link and two C joints; one fixed and the other moving, see
Fig. 1. The approach taken here is to synthesize two dyads separately and then join
their floating links to yield a kinematic closed chain. Let the fixed axis be specified
by the dual vector û measured in the fixed reference frame F and let the moving
axis be specified by v̂ measured in the moving frame M. Moreover, let l̂ define the
moving axis v̂ in the fixed frame F so that, l̂ = [Â]v̂ where [Â] is the dual orthogonal
matrix that defines M with respect to F [9]. Because the link is rigid, the dual angle
between the two axes of the dyad remains constant. This geometric constraint may
be expressed analytically as,

û · l̂ = û · [Â]v̂ = cos α̂. (1)

This constraint equation is the foundation of the synthesis algorithm presented be-
low. In order to solve the mixed exact and approximate synthesis problem we first
solve the exact synthesis problem for 3 prescribed locations.

2.1 Exact Synthesis for Three Locations

Here we select a moving axis v̂ of a CC dyad and solve for the corresponding fixed
axis û such that the dyad guides the moving body exactly through 3 prescribed
locations [6]. To solve this synthesis problem we first work with the real or direction
part of the CC constraint equations and then subsequently address the moment part.
We write the real part of Eq. (1) for each of the desired locations, [Â]i, i = 1,2,3.
Next, we subtract the first equation from the remaining two to arrive at a linear
system of equations,

[P]u = k (2)

where

[P] =

⎡
⎣
(l2 − l1)T

(l3 − l1)T

0 0 1

⎤
⎦ ,

li is the direction of the moving axis in the ith location, k = [0 0 1]T , and u is the
desired direction of the fixed axis. Note that we must solve Eq. (2) for each moving
axis direction to find its corresponding fixed axis direction. Moreover, note that since
we are using 3-vectors to define the axes when in fact they are directions that only
require 2 independent coordinates, the last row of [P] is chosen to yield the vector
u that is the intersection of the fixed axis with the z = 1 plane. In the event that [P]
is rank deficient (i.e. when the fixed axis does not intersect the z = 1 plane) simply
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Fig. 1 Spatial 4C mechanism: geometry and nomenclature.

change the last row to any vector that does not lie in this plane (e.g. [1 0 0]T ). Next,
we proceed to solve for the moment of the fixed axis.

We write the dual part of Eq. (1) for each of the desired locations, [Â]i, i = 1,2,3
and then subtract the first equation from the remaining two to arrive at a linear
system of equations,

[H]u0 = t (3)

where

[H] =

⎡
⎣
(l2 − l1)T

(l3 − l1)T

uT

⎤
⎦ , t =

⎡
⎣
−(l02 − l01)

T u
−(l03 − l01)

T u
0

⎤
⎦ ,

and u0 is the desired moment of the fixed axis. Solve Eqs. (2) and (3) for each
desired moving axis of a CC dyad to find the unique corresponding fixed axis that
guides the moving body exactly through the 3 prescribed locations.
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2.2 Mixed Synthesis Algorithm

We now consider the synthesis of CC dyads that guide a moving body exactly
through 2 pick & place locations and approximately through n guiding locations.
First a desired moving axis v̂ is selected. Next, we seek a corresponding fixed axis
û = (u,u0) for the dyad. We proceed by identifying the spherical image of the CC
dyad. Duffy showed that associated with each spatial CC dyad there is a spherical
image consisting of a spherical RR dyad whose link lengths are the angular twists of
the CC dyad. Moreover, he proved that the spatial CC dyad and its associated spher-
ical RR image have the exactly the same angular relationships and motions [1, 9].
Therefore the synthesis of the spatial CC dyad can be decomposed into two sub-
problems; (1) the angular synthesis or the synthesis of the link twist angles of the
CC dyad and (2) the moment synthesis or the synthesis of the link length of the CC
dyad. We address the former first.

The angular synthesis of the spatial CC dyad can be solved by performing the
synthesis of its spherical RR image. The direction of the fixed axis is found by solv-
ing n 3 orientation problems to yield a set of fixed axis directions ui, i = 1,2, . . . ,n.
The 3 orientation problems are derived from the 2 pick & place locations along with
1 of the guiding locations. Hence, there are n unique 3 orientation problems (Eq. 2)
that are solved to obtain n fixed axis directions ui, i = 1,2, . . . ,n. It was shown in [8]
that the direction of the fixed axis that will guide the moving body as desired is the
normalized sum of these directions of ui, i = 1,2, . . . ,n,

u =
∑ui

‖∑ui‖
. (4)

We now focus on the moment synthesis problem; finding the desired moment u0 of
the fixed axis û.

The moment synthesis of the spatial CC dyad can be solved by utilizing the geo-
metric interpretation of Eq. (1); that û must lie on the screw perpendicular bisector
associated with the pick & place locations of the desired moving axis v̂. For the
CC dyad to reach exactly the pick & place locations Eq. (1) must hold true in both
locations. Write Eq. (1) for the pick & place locations and take the difference to
yield,

û · (l̂place − l̂pick) = 0. (5)

Eq. (5) is the equation of the screw perpendicular bisector of l̂pick and l̂place [9]. The
set of screws û that satisfy Eq. 5 is a two parameter set whose axes intersect and
are orthogonal to B̂ as shown in Fig. 2. Note that N̂ is the common normal to l̂pick

and l̂place, V̂ is the midpoint screw, and B̂ = N̂× V̂. Recall that the direction of û
has been previously found from Eq. (4). Therefore finding a point on the fixed axis
û is sufficient for determining the unknown moment u0. From the properties of the
screw perpendicular bisector it is known that û must intersect and be orthogonal to
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Fig. 2 Spatial CC dyad and the screw perpendicular bisector.

B̂; we now determine this point of intersection and use it to determine the unknown
moment û0.

For the prescribed moving axis v̂ solve n 3 location problems to yield a set
of fixed axes ûi, i = 1,2, . . . ,n. The 3 location problems are derived from the 2
pick & place locations along with 1 of the guiding locations. Hence, there are n
unique 3 location problems (Eqs. 2 and 3) that are solved to obtain n fixed axes ûi,
i = 1,2, . . . ,n. Because each of these CC dyads guide the body exactly through the
pick & place locations their fixed axes also intersect B̂. Note that if each of these
n CC dyads exactly reach all of the guiding locations then their n fixed axes ûi,
i = 1,2, . . . ,n intersect B̂ in a unique point. In general the CC dyads will not be ca-
pable of exactly reaching the n guiding locations and the intersections of their fixed
axes with B̂ will not be a unique point. Next, determine these n intersection points
pi, i = 1,2, . . . ,n. The desired point p on the fixed axis û is the average of these
intersection points,

p =
∑pi

n
. (6)

Finally the unknown moment may be determined from u0 = p×u. The CC dyad
with prescribed moving axis v̂ and fixed axis û, as determined with the above algo-
rithm, guides the moving body exactly through the pick & place locations and near
the n guiding locations.
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Table 1 Five prescribed locations and synthesis results.

Longitude Latitude Roll X Y Z Motion Type Dyad #1 Constraint Dyad #2 Constraint
0.00 0.00 0.00 3 5 −1 exact −0.5173+2.0058ε −0.3854−4.3362ε
0.00 25.00 10.00 4 4 −2 approximate −0.8074+1.9092ε −0.1617−5.3040ε
20.00 45.00 20.00 2 3 −3 approximate −0.8760+2.0811ε −0.3371−4.6082ε
65.00 65.00 10.00 5 2 −4 approximate −0.5801+2.2399ε −0.5922−2.7565ε
90.00 90.00 0.00 1 1 −5 exact −0.5173+2.0058ε −0.3854−4.3362ε

3 Example

We employ the preceding methodology and design a 4C spatial mechanism to guide
a moving body exactly through two pick & place locations and near 3 guiding lo-
cations as defined in Table 1 where [A] = [Rotz(lng)][Roty(−lat)][Rotx(rol)] and all
angles are expressed in degrees. Two CC dyads are synthesized independently and
then their floating links are joined to yield a 4C closed-chain mechanism.

For dyad #1 a moving axis was prescribed: v̂1 = [0.2673 0.5345 −0.8018 0.0000
0.8018 0.5345]T . The mixed synthesis algorithm presented above yielded u1 =
[−0.1292 0.4342 0.8915]T , p1 = [0.7935 − 0.0109 − 1.1956]T , and fixed axis
û1 = [−0.1292 0.4342 0.8915 0.5094 −0.5529 0.3431]T . The resulting CC dyad’s
link lengths are: a = −2.34 and α = 121.15 (deg). For dyad #2 a different mov-
ing axis was chosen: v̂2 = [0.5774 −0.5774 0.5774 −0.5774 −0.5774 0.0000]T .
The mixed synthesis algorithm yielded u2 = [−0.6675 0.5265 0.5265]T , p2 =
[2.5000 − 1.0968 0.0968]T , and fixed axis û2 = [−0.6675 0.5265 0.5265 −
0.6284 −1.3809 0.5842]T . The resulting CC dyad’s link lengths are: b = 4.70 and
β = 112.67 (deg). When the two dyads are combined to form a spatial 4C mecha-
nism the fixed link length is g = 0.72 and γ = 38.34(deg) and the length of the cou-
pler link is h = 0.78 and η = 128.11(deg). This 4C mechanism has a non-Grashof
0−π double-rocker spherical four-bar image [1, 4].

To verify the motion of the moving body the CC dyad constraint equations were
evaluated in each of the 5 locations; the left-hand side of Eq. (1), i.e û · [Â]v̂, is
reported in the right columns of Tb. 1. Note that the inner product between the fixed
and moving lines of each CC dyad is identical in the pick & place locations thereby
verifying that the moving body does in fact reach the pick & place locations exactly.

4 Conclusions

A novel dimensional synthesis technique for solving the mixed exact and approxi-
mate motion problem for spatial CC open and 4C closed kinematic chains has been
presented. The methodology uses an analytic representation of the spatial CC dyad’s
rigid body constraint equation in combination with classical geometric motion syn-
thesis techniques to yield designs that exactly reach two prescribed pick & place
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locations while approximating n guiding locations. Such tasks are common in auto-
mated assembly and production systems. An example was presented to demonstrate
the synthesis procedure.
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On the Role of Passive Structures in the Knee
Loaded Motion

Nicola Sancisi and Vincenzo Parenti-Castelli

Abstract The role of the passive structures of the human knee in loaded and un-
loaded motion has been deeply investigated in the literature. However, what makes
its comprehension difficult is the inherent redundancy of the anatomical structures
that constrain the motion itself. This paper, based on simulation and experimental
data, provides some inferences on the role of the constraint redundancy of this com-
plex anatomical joint. The results suggest that the knee behaves prevalently like a
one-degree-of-freedom isostatic system when moderate external loads are applied,
continuously constrained by 5 articular structures recruited according to the external
loads and to the system configuration.

Key words: Knee, kinematics, statics, passive constraints, redundancy

1 Introduction

Human diarthrodial joints are complex systems that feature a number of involved
anatomical structures such as ligaments, bones and muscles. The role of these struc-
tures in the joint kinematics and statics still rises a number of open questions and,
in spite of a huge amount of papers devoted to this issue, it is still largely unknown.

A great attention has been devoted to the knee joint for its relevance in human
locomotion. The kinematic and static behaviour of the knee, for instance, has been
deeply investigated and many mathematical models together with both in vivo and
in vitro experiments have been presented in the literature [3].

Since many years these authors pursued a systematic approach [1] which aims at
modelling a joint by means of equivalent mechanisms. The approach involves three
different steps starting from the definition of the kinematic model, then moving to
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a static model and finally to a dynamic model. The behaviour of the joint is deter-
mined by the constraints provided by the anatomical structures. When modelling the
knee by equivalent mechanisms, redundant constraints appear which make the mod-
elling a challenging task [8]. The behaviour of the knee has been modelled rather
successfully in previous papers [6, 7], but the redundant nature of the passive/active
anatomical structures makes a deeper comprehension still lacking of a definite as-
sessment.

This paper presents a further advancement of the authors procedure that attempts
to deepen the role of the anatomical structure redundancy in terms of kinematic and
static behaviour of the knee. Namely, based on simulation and experimental data,
the paper tries to shed light into this complex and challenging issue.

2 Model Definition

The study was performed by defining a static model of the knee. The model was
recently proposed [9]: just the main information are reported here, while theoretical
and mathematical details can be found in the cited literature.

The static model was obtained in two steps by means of a sequential approach [1,
9]. According to this procedure, a kinematic model of the joint is devised at the first
step (M1). This model replicates the natural motion of the knee when no loads are
applied (i.e. the knee passive motion) and thus it reproduces the mobility of the joint.
The kinematic model features just a few anatomical structures, i.e. the structures
that actually constrain the passive motion, and can replicate the knee behaviour in
passive conditions only. This first model is then generalized at the second step (M2),
by adding the remaining passive structures and by considering their viscoelastic
properties. M2 represents the static model of the knee and can replicate the joint
behaviour also when external static loads (muscular loads excluded) are applied:
the new model reproduces the stability of the joint.

The most important feature of this sequential approach is that generalization from
M1 to M2 model does not worsen or modify the results of the kinematic model. In
other words, M2 reproduces the static behaviour of the joint, but it can also replicate
the passive motion of the knee with the same accuracy as M1: as a consequence, M2
shows both the same mobility and the same stability as the original joint.

2.1 Kinematic Model M1

The kinematic model is based on the experimental evidence that the passive mo-
tion of the knee has 1 degree of freedom (dof) and it is mainly guided by a few
articular structures: the two rigid articular contacts and the isometric fibres of three
ligaments, namely the anterior cruciate (ACL), the posterior cruciate (PCL) and the
medial collateral (MCL) ligaments [6, 7, 11]. The model features two rigid bod-
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ies, representing the tibia and femur, interconnected by five rigid links: two links
represent the articular contacts respectively at the lateral (CL) and medial (CM)
condyles; the remaining three links substitute the ACL, PCL, MCL isometric fibres
[7] (Figure 1(a)). This model is basically a 1-dof mechanism and it replicates the
knee passive motion with a high accuracy [6].

Five closure equations can be written by specifying that the length of each link
remains constant. The passive motion can thus be obtained from the model by solv-
ing the closure equations of the mechanism. The model geometrical parameters are
obtained from the anatomy by measuring the condyles and the isometric fibres of a
specimen. This preliminary estimate is then refined by reducing the weighted mean
squared differences between the model and the experimental passive motion to a
minimum. A bounded optimization procedure is used to find the minimum, in order
to keep the final geometry of the model close to the first estimate [1]. This procedure
was applied to a specimen, and the relevant model M1 was defined.

2.2 Static Model M2

The kinematic model was generalized at the second step by the sequential approach,
in order to obtain the static model of the knee [9]. In particular, all main ligaments
were considered at this step, including the previously added ACL, PCL, MCL. Each
ligament was modelled by a group of fibres that represent relevant fibre bundles of
the original ligament. The ACL, PCL, MCL were also modelled as groups of fibres
at this step, by adding new fibres beside the isometric ones obtained at the first step.

Thus, the knee ligaments were substituted by 24 fibres on the whole: 5 in the
ACL (4 new, 1 isometric), 5 in the PCL (4 new, 1 isometric), 6 in the MCL (5 new,
1 isometric), 3 in the lateral collateral ligament (LCL), 1 in the arcuate ligament
(AL), 2 in the popliteus tendon (PT), 2 in the oblique popliteus ligament (OPL).
Moreover, elastic properties of ligaments were considered at this step: all fibres
(isometric fibres included) can lengthen, when forces are applied. In particular, each
fibre was modelled as a spring with a non-linear force-strain relation [5]:

Fj = k j ε2
j ε j > 0

Fj = 0 ε j ≤ 0
(1)

where k j is a stiffness parameter and ε j is the strain of the j-th fibre: ε j =
L j−L0 j

L0 j
in

which L j and L0 j are respectively the length and the unloaded length of the fibre.
Fibre-fibre and fibre-bone interactions were ignored.

The two M1 links at the condyles still were used to model the articular contacts.
However, these two links are not rigid in M2 and, on the contrary, can change their
length according to a force-strain relation similar to Eq. (1). This equation also
makes it possible to reproduce bone separation at one or both condyles, as it may
happen under certain loading conditions. The final static model is represented in
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Fig. 1 Kinematic and static model of the knee.

Figure 1(b): the dashed lines are the fibres identified at the first step (corresponding
to the links of M1), the solid lines are the new fibres added at the second step.

The femur-tibia relative motion can be obtained by choosing a particular loading
condition and by solving the equilibrium equations of the system. In this study, the
loads related to the most common clinical tests (i.e. the anterior/posterior drawer,
the in/external torsion and the ab/adduction tests) were applied to the joint. These
loading conditions were chosen since they are clinically relevant. In particular, the
loading conditions reported in a specific paper [2] were considered and the relevant
experimental motions were chosen as a reference. For all clinical tests, the tibia was
left free to move under the action of its weight and of the external forces corre-
sponding to a particular test. The femur, on the contrary, was fixed at several flexion
angles, from 0 to 90 degrees. A counterforce was also applied at the distal extremity
of the tibia, in order to keep the tibia longitudinal axis approximately vertical.

A first estimate of the M2 geometrical (fibre insertions and unloaded lengths)
and elastic (k j) parameters was obtained from the literature and from the same spec-
imen used to define M1 [4, 5, 9]. In particular, many posterior structures (AL, PT,
OPL) were not recorded during the experiment and were thus reconstructed from
photographic and published material [10]. The final value of the model parame-
ters was obtained by minimizing the weighted mean squared differences between
the model and the reference motions [2]. The procedure is similar to that used for
M1, although the sequential approach introduces further constraints that have to be
considered during parameter optimization to not modify the results obtained at the
first step [9]. For instance, the unloaded lengths of the five springs that represent
the ACL, PCL, MCL isometric fibres and the articular contacts were not optimized,
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Table 1 Loaded passive structures at full extension for all considered clinical tests: • = major
contribution, ◦ = minor contribution.

Clinical test ACL PCL sMCL dMCL LCL AL PT OPL CM CL

Anterior drawer • • •
Posterior drawer • • ◦ • • •
External torsion • • • ◦ • •
Internal torsion • • • •
Abduction • • • ◦ • •
Adduction • • • •

since they were already defined at the first step. Moreover, the insertions of all fibres
were not optimized to simplify the procedure.

The forces exerted by the passive structures during clinical tests were analysed by
means of the optimized M2 model, in order to understand the role of the knee passive
structures to guarantee both stability and mobility of the joint in loaded motion. For
a more schematic and comprehensive representation of the results, the net force of
all fibres of each ligament was computed. From a static point of view, this is the
same as ignoring the moment exerted by each ligament on the bones. However,
these moments are low in this case, and the simplification makes the analysis of the
final results easier. Only the MCL was split into two different bundles, i.e. the deep
(dMCL) and the superficial (sMCL) bundles, in order to account for the two distinct
insertions that this ligament shows on the tibia (Figure 1(b)). Thus, a total amount
of 10 forces were computed for all clinical tests and flexion angles; these forces
correspond to the ligaments ACL, PCL, sMCL, dMCL, LCL, AL, PT, OPL and the
articular contacts CM, CL.

3 Results

The static model M2 made it possible to replicate the specimen passive motion and
the knee behaviour during clinical tests with a good accuracy. Detailed results on
the model accuracy were already published [9] and are not reported here.

As for the analysis of the passive structure forces, the most loaded structures at
the specimen reference pose (i.e. full extension, corresponding approximately to 5◦

of flexion for the considered specimen) are reported in Table 1. These results agree
well in general with the experimental results from the reference paper [2]: both
PCL and some posterior structures constrain the posterior drawer at full extension;
some posterior structures (PCL excluded) also constrain the external rotation and
the adduction of the knee. Moreover, Figures 2(a)–2(b) represent the magnitude
of passive structure forces for the external torsion and abduction tests at all the
considered flexion angles.

Overall, the results obtained from M2 show that in most cases only 5 structures
exert the highest forces and support most of the loads. This seems almost a constant
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Fig. 2 Magnitude of the passive structure forces during clinical tests at all the considered flexion
angles. For decreasing force magnitude at 0◦ of flexion: (a) CL, LCL, ACL, sMCL, CM, ALS, PT,
dMCL; (b) CL, sMCL, ACL, CM, PCL, dMCL.

for the considered loading conditions and for the different flexion angles. In other
words, despite the high number of passive structures in the knee, at any moment
only 5 structures are prevalently tight during loaded motion (Figures 2(a)–2(b)). For
instance, it can be noticed in Figures 2(a) that, approximately at about 50◦ of flexion,
the ACL is substituted by the dMCL, overall keeping 5 structures tight during the
external torsion test (apart from a brief overlapping). Only near full extension there
are more than 5 structures tight: this can be justified by the fact that at full extension
there is the need to improve the joint stability.

Table 1 confirms these considerations. Five anatomical structures prevail over
the others for three tests; a sixth structure produces a minor contribution, to im-
prove stability near full extension. On the contrary, for the other three tests, less
than 5 structures are tight at full extension. However, it should be considered that
the particular loading conditions analysed in the reference and in the present paper
facilitate bone separation: no compressive preload is applied at the femur and tibia
and, on the contrary, tibia weight tends to separate the bones. In this sense, it is
probably no accident that the three tests that show less than 5 structures tight at full
extension are also those that show bone separation at one articular surface (i.e. CM
or CL do not exert forces). As a consequence, the ligaments are loaded more than in
standard loading conditions, since they have to compensate for the unnatural bone
separation.

These considerations have interesting outcomes both from a static and a kine-
matic point of view. Indeed, if flexion angle is fixed, the tibia has 5 dof with respect
to the femur: at least 5 constraints are required to equilibrate this bone. Thus, from
a static point of view, the forces exerted by the 5 tight passive structures consti-
tute the minimum force complex that can guarantee the equilibrium of the joint in
general. In other words, despite the high number of constraints that make the joint
a potentially overconstrained hyperstatic system, the knee behaves as an isostatic
structure when standard moderate loads are applied: the particular geometry of ar-
ticular structures seems to guarantee that just the minimum number of structures is
loaded at any moment, and no unnecessary constraints are active.
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As for the kinematic point of view, if only 5 structures are prevalently tight, the
knee behaves as a system that features two rigid bodies (i.e. the femur and tibia)
interconnected by 5 links: this representation is quite similar to the one used for the
definition of M1. Thus, the knee seems to behave almost as a 1-dof spatial mecha-
nism similar to M1 also in loaded conditions, with the difference that, in this case,
the links are not perfectly rigid. As a further consequence, the loads required to flex
the knee are only those needed to equilibrate the external loads: apart from the strain
in the mechanism links, no energy is spent (or received) to lengthen (or shorten) ad-
ditional redundant elastic structures. This aspect could facilitate the flexion and the
general mobility of the knee when loads are applied, since the joint remains in-
trinsically a 1-dof system: flexion forces can be controlled better, since redundant
elastic forces (apart from minor secondary ones) do not interfere with the loaded
motion.

In other words, alternate static M1 models could also be used to model the static
behaviour of the knee. However, some differences arise with respect to the passive
M1 model. Firstly, the articular structures featured in the static M1 mechanisms de-
pend on the loading conditions and could change also during the flexion arc. On the
contrary, as described in previous sections, the articular structures featured in the
passive M1 may be retained for all the flexion arc. However, it should be noted that
previous investigations showed that other articular structures can be considered also
for M1, with no substantial change in the results [8]: this led to the conclusion that,
in passive conditions, all articular structures are more or less kinematically equiv-
alent and the knee moves as an overconstrained system with 1-dof. As a second
difference, the strain of static M1 links should be considered during loaded motion.
However, the static M1 models could still be considered rigid link mechanisms as
a first approximation, for the computation of the joint loads and motion. The ex-
tent to which static M1 replicates the joint loads and motion has not been verified
yet.

In conclusion, the results suggest that the knee behaves prevalently like a 1-dof
isostatic system also when moderate external loads are applied. This aspect could
improve the mobility of the joint. The knee behaves like a hyperstatic system at
particular loading conditions or configurations (for instance, at full extension) when
stability of the joint must prevail over mobility.

The present investigation shows some limitations. The static model M2 was in-
deed just partially based on data measured on a specimen: as explained, missing ex-
perimental data (posterior structures and loaded motion included) were taken from
average measurements from the literature, and could be affected by large errors.
Moreover, a stronger M2 validation is required: despite M2 replicated the reference
motions with a good accuracy, the static model should be applied on more speci-
mens and other reference motions, in order to be quantitatively reliable. However,
it is believed that the qualitative analysis here provided could help to clarify the
kinematic and static behaviour of the knee.



452 N. Sancisi and V. Parenti-Castelli

4 Conclusions

A static model of the knee was defined, to analyse the role of the joint passive
structures to guide and restrain the knee motion under several loading conditions.
Although preliminarily, the results show that when moderate external loads are ap-
plied, 5 articular structures provide most of the loads to guarantee the equilibrium:
the knee prevalently behaves as a 1-dof isostatic system, in spite of the high num-
ber of passive structures that potentially could make it a hyperstatic system. This
particular behaviour could improve joint mobility when loads are applied. On the
contrary, more than 5 passive structures are recruited when the particular configura-
tion or loading condition require a greater stability of the joint.
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